Btrfs: fix memory leak of orphan block rsv
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
00361589
JB
233static noinline int cow_file_range_inline(struct btrfs_root *root,
234 struct inode *inode, u64 start,
235 u64 end, size_t compressed_size,
236 int compress_type,
237 struct page **compressed_pages)
c8b97818 238{
00361589 239 struct btrfs_trans_handle *trans;
c8b97818
CM
240 u64 isize = i_size_read(inode);
241 u64 actual_end = min(end + 1, isize);
242 u64 inline_len = actual_end - start;
fda2832f 243 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
244 u64 data_len = inline_len;
245 int ret;
246
247 if (compressed_size)
248 data_len = compressed_size;
249
250 if (start > 0 ||
70b99e69 251 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (!compressed_size &&
254 (actual_end & (root->sectorsize - 1)) == 0) ||
255 end + 1 < isize ||
256 data_len > root->fs_info->max_inline) {
257 return 1;
258 }
259
00361589
JB
260 trans = btrfs_join_transaction(root);
261 if (IS_ERR(trans))
262 return PTR_ERR(trans);
263 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
264
2671485d 265 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
00361589
JB
266 if (ret) {
267 btrfs_abort_transaction(trans, root, ret);
268 goto out;
269 }
c8b97818
CM
270
271 if (isize > actual_end)
272 inline_len = min_t(u64, isize, actual_end);
273 ret = insert_inline_extent(trans, root, inode, start,
274 inline_len, compressed_size,
fe3f566c 275 compress_type, compressed_pages);
2adcac1a 276 if (ret && ret != -ENOSPC) {
79787eaa 277 btrfs_abort_transaction(trans, root, ret);
00361589 278 goto out;
2adcac1a 279 } else if (ret == -ENOSPC) {
00361589
JB
280 ret = 1;
281 goto out;
79787eaa 282 }
2adcac1a 283
bdc20e67 284 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 285 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 286 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589
JB
287out:
288 btrfs_end_transaction(trans, root);
289 return ret;
c8b97818
CM
290}
291
771ed689
CM
292struct async_extent {
293 u64 start;
294 u64 ram_size;
295 u64 compressed_size;
296 struct page **pages;
297 unsigned long nr_pages;
261507a0 298 int compress_type;
771ed689
CM
299 struct list_head list;
300};
301
302struct async_cow {
303 struct inode *inode;
304 struct btrfs_root *root;
305 struct page *locked_page;
306 u64 start;
307 u64 end;
308 struct list_head extents;
309 struct btrfs_work work;
310};
311
312static noinline int add_async_extent(struct async_cow *cow,
313 u64 start, u64 ram_size,
314 u64 compressed_size,
315 struct page **pages,
261507a0
LZ
316 unsigned long nr_pages,
317 int compress_type)
771ed689
CM
318{
319 struct async_extent *async_extent;
320
321 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 322 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
323 async_extent->start = start;
324 async_extent->ram_size = ram_size;
325 async_extent->compressed_size = compressed_size;
326 async_extent->pages = pages;
327 async_extent->nr_pages = nr_pages;
261507a0 328 async_extent->compress_type = compress_type;
771ed689
CM
329 list_add_tail(&async_extent->list, &cow->extents);
330 return 0;
331}
332
d352ac68 333/*
771ed689
CM
334 * we create compressed extents in two phases. The first
335 * phase compresses a range of pages that have already been
336 * locked (both pages and state bits are locked).
c8b97818 337 *
771ed689
CM
338 * This is done inside an ordered work queue, and the compression
339 * is spread across many cpus. The actual IO submission is step
340 * two, and the ordered work queue takes care of making sure that
341 * happens in the same order things were put onto the queue by
342 * writepages and friends.
c8b97818 343 *
771ed689
CM
344 * If this code finds it can't get good compression, it puts an
345 * entry onto the work queue to write the uncompressed bytes. This
346 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
347 * are written in the same order that the flusher thread sent them
348 * down.
d352ac68 349 */
771ed689
CM
350static noinline int compress_file_range(struct inode *inode,
351 struct page *locked_page,
352 u64 start, u64 end,
353 struct async_cow *async_cow,
354 int *num_added)
b888db2b
CM
355{
356 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 357 u64 num_bytes;
db94535d 358 u64 blocksize = root->sectorsize;
c8b97818 359 u64 actual_end;
42dc7bab 360 u64 isize = i_size_read(inode);
e6dcd2dc 361 int ret = 0;
c8b97818
CM
362 struct page **pages = NULL;
363 unsigned long nr_pages;
364 unsigned long nr_pages_ret = 0;
365 unsigned long total_compressed = 0;
366 unsigned long total_in = 0;
367 unsigned long max_compressed = 128 * 1024;
771ed689 368 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
369 int i;
370 int will_compress;
261507a0 371 int compress_type = root->fs_info->compress_type;
4adaa611 372 int redirty = 0;
b888db2b 373
4cb13e5d
LB
374 /* if this is a small write inside eof, kick off a defrag */
375 if ((end - start + 1) < 16 * 1024 &&
376 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
377 btrfs_add_inode_defrag(NULL, inode);
378
42dc7bab 379 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
380again:
381 will_compress = 0;
382 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
383 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 384
f03d9301
CM
385 /*
386 * we don't want to send crud past the end of i_size through
387 * compression, that's just a waste of CPU time. So, if the
388 * end of the file is before the start of our current
389 * requested range of bytes, we bail out to the uncompressed
390 * cleanup code that can deal with all of this.
391 *
392 * It isn't really the fastest way to fix things, but this is a
393 * very uncommon corner.
394 */
395 if (actual_end <= start)
396 goto cleanup_and_bail_uncompressed;
397
c8b97818
CM
398 total_compressed = actual_end - start;
399
400 /* we want to make sure that amount of ram required to uncompress
401 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
402 * of a compressed extent to 128k. This is a crucial number
403 * because it also controls how easily we can spread reads across
404 * cpus for decompression.
405 *
406 * We also want to make sure the amount of IO required to do
407 * a random read is reasonably small, so we limit the size of
408 * a compressed extent to 128k.
c8b97818
CM
409 */
410 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 411 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 412 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
413 total_in = 0;
414 ret = 0;
db94535d 415
771ed689
CM
416 /*
417 * we do compression for mount -o compress and when the
418 * inode has not been flagged as nocompress. This flag can
419 * change at any time if we discover bad compression ratios.
c8b97818 420 */
6cbff00f 421 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 422 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
423 (BTRFS_I(inode)->force_compress) ||
424 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 425 WARN_ON(pages);
cfbc246e 426 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
427 if (!pages) {
428 /* just bail out to the uncompressed code */
429 goto cont;
430 }
c8b97818 431
261507a0
LZ
432 if (BTRFS_I(inode)->force_compress)
433 compress_type = BTRFS_I(inode)->force_compress;
434
4adaa611
CM
435 /*
436 * we need to call clear_page_dirty_for_io on each
437 * page in the range. Otherwise applications with the file
438 * mmap'd can wander in and change the page contents while
439 * we are compressing them.
440 *
441 * If the compression fails for any reason, we set the pages
442 * dirty again later on.
443 */
444 extent_range_clear_dirty_for_io(inode, start, end);
445 redirty = 1;
261507a0
LZ
446 ret = btrfs_compress_pages(compress_type,
447 inode->i_mapping, start,
448 total_compressed, pages,
449 nr_pages, &nr_pages_ret,
450 &total_in,
451 &total_compressed,
452 max_compressed);
c8b97818
CM
453
454 if (!ret) {
455 unsigned long offset = total_compressed &
456 (PAGE_CACHE_SIZE - 1);
457 struct page *page = pages[nr_pages_ret - 1];
458 char *kaddr;
459
460 /* zero the tail end of the last page, we might be
461 * sending it down to disk
462 */
463 if (offset) {
7ac687d9 464 kaddr = kmap_atomic(page);
c8b97818
CM
465 memset(kaddr + offset, 0,
466 PAGE_CACHE_SIZE - offset);
7ac687d9 467 kunmap_atomic(kaddr);
c8b97818
CM
468 }
469 will_compress = 1;
470 }
471 }
560f7d75 472cont:
c8b97818
CM
473 if (start == 0) {
474 /* lets try to make an inline extent */
771ed689 475 if (ret || total_in < (actual_end - start)) {
c8b97818 476 /* we didn't compress the entire range, try
771ed689 477 * to make an uncompressed inline extent.
c8b97818 478 */
00361589
JB
479 ret = cow_file_range_inline(root, inode, start, end,
480 0, 0, NULL);
c8b97818 481 } else {
771ed689 482 /* try making a compressed inline extent */
00361589 483 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
484 total_compressed,
485 compress_type, pages);
c8b97818 486 }
79787eaa 487 if (ret <= 0) {
151a41bc
JB
488 unsigned long clear_flags = EXTENT_DELALLOC |
489 EXTENT_DEFRAG;
490 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
491
771ed689 492 /*
79787eaa
JM
493 * inline extent creation worked or returned error,
494 * we don't need to create any more async work items.
495 * Unlock and free up our temp pages.
771ed689 496 */
c2790a2e 497 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 498 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
499 PAGE_CLEAR_DIRTY |
500 PAGE_SET_WRITEBACK |
501 PAGE_END_WRITEBACK);
c8b97818
CM
502 goto free_pages_out;
503 }
504 }
505
506 if (will_compress) {
507 /*
508 * we aren't doing an inline extent round the compressed size
509 * up to a block size boundary so the allocator does sane
510 * things
511 */
fda2832f 512 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
513
514 /*
515 * one last check to make sure the compression is really a
516 * win, compare the page count read with the blocks on disk
517 */
fda2832f 518 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
519 if (total_compressed >= total_in) {
520 will_compress = 0;
521 } else {
c8b97818
CM
522 num_bytes = total_in;
523 }
524 }
525 if (!will_compress && pages) {
526 /*
527 * the compression code ran but failed to make things smaller,
528 * free any pages it allocated and our page pointer array
529 */
530 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 531 WARN_ON(pages[i]->mapping);
c8b97818
CM
532 page_cache_release(pages[i]);
533 }
534 kfree(pages);
535 pages = NULL;
536 total_compressed = 0;
537 nr_pages_ret = 0;
538
539 /* flag the file so we don't compress in the future */
1e701a32
CM
540 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
541 !(BTRFS_I(inode)->force_compress)) {
a555f810 542 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 543 }
c8b97818 544 }
771ed689
CM
545 if (will_compress) {
546 *num_added += 1;
c8b97818 547
771ed689
CM
548 /* the async work queues will take care of doing actual
549 * allocation on disk for these compressed pages,
550 * and will submit them to the elevator.
551 */
552 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
553 total_compressed, pages, nr_pages_ret,
554 compress_type);
179e29e4 555
24ae6365 556 if (start + num_bytes < end) {
771ed689
CM
557 start += num_bytes;
558 pages = NULL;
559 cond_resched();
560 goto again;
561 }
562 } else {
f03d9301 563cleanup_and_bail_uncompressed:
771ed689
CM
564 /*
565 * No compression, but we still need to write the pages in
566 * the file we've been given so far. redirty the locked
567 * page if it corresponds to our extent and set things up
568 * for the async work queue to run cow_file_range to do
569 * the normal delalloc dance
570 */
571 if (page_offset(locked_page) >= start &&
572 page_offset(locked_page) <= end) {
573 __set_page_dirty_nobuffers(locked_page);
574 /* unlocked later on in the async handlers */
575 }
4adaa611
CM
576 if (redirty)
577 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
578 add_async_extent(async_cow, start, end - start + 1,
579 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
580 *num_added += 1;
581 }
3b951516 582
771ed689 583out:
79787eaa 584 return ret;
771ed689
CM
585
586free_pages_out:
587 for (i = 0; i < nr_pages_ret; i++) {
588 WARN_ON(pages[i]->mapping);
589 page_cache_release(pages[i]);
590 }
d397712b 591 kfree(pages);
771ed689
CM
592
593 goto out;
594}
595
596/*
597 * phase two of compressed writeback. This is the ordered portion
598 * of the code, which only gets called in the order the work was
599 * queued. We walk all the async extents created by compress_file_range
600 * and send them down to the disk.
601 */
602static noinline int submit_compressed_extents(struct inode *inode,
603 struct async_cow *async_cow)
604{
605 struct async_extent *async_extent;
606 u64 alloc_hint = 0;
771ed689
CM
607 struct btrfs_key ins;
608 struct extent_map *em;
609 struct btrfs_root *root = BTRFS_I(inode)->root;
610 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611 struct extent_io_tree *io_tree;
f5a84ee3 612 int ret = 0;
771ed689
CM
613
614 if (list_empty(&async_cow->extents))
615 return 0;
616
3e04e7f1 617again:
d397712b 618 while (!list_empty(&async_cow->extents)) {
771ed689
CM
619 async_extent = list_entry(async_cow->extents.next,
620 struct async_extent, list);
621 list_del(&async_extent->list);
c8b97818 622
771ed689
CM
623 io_tree = &BTRFS_I(inode)->io_tree;
624
f5a84ee3 625retry:
771ed689
CM
626 /* did the compression code fall back to uncompressed IO? */
627 if (!async_extent->pages) {
628 int page_started = 0;
629 unsigned long nr_written = 0;
630
631 lock_extent(io_tree, async_extent->start,
2ac55d41 632 async_extent->start +
d0082371 633 async_extent->ram_size - 1);
771ed689
CM
634
635 /* allocate blocks */
f5a84ee3
JB
636 ret = cow_file_range(inode, async_cow->locked_page,
637 async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1,
640 &page_started, &nr_written, 0);
771ed689 641
79787eaa
JM
642 /* JDM XXX */
643
771ed689
CM
644 /*
645 * if page_started, cow_file_range inserted an
646 * inline extent and took care of all the unlocking
647 * and IO for us. Otherwise, we need to submit
648 * all those pages down to the drive.
649 */
f5a84ee3 650 if (!page_started && !ret)
771ed689
CM
651 extent_write_locked_range(io_tree,
652 inode, async_extent->start,
d397712b 653 async_extent->start +
771ed689
CM
654 async_extent->ram_size - 1,
655 btrfs_get_extent,
656 WB_SYNC_ALL);
3e04e7f1
JB
657 else if (ret)
658 unlock_page(async_cow->locked_page);
771ed689
CM
659 kfree(async_extent);
660 cond_resched();
661 continue;
662 }
663
664 lock_extent(io_tree, async_extent->start,
d0082371 665 async_extent->start + async_extent->ram_size - 1);
771ed689 666
00361589 667 ret = btrfs_reserve_extent(root,
771ed689
CM
668 async_extent->compressed_size,
669 async_extent->compressed_size,
81c9ad23 670 0, alloc_hint, &ins, 1);
f5a84ee3
JB
671 if (ret) {
672 int i;
3e04e7f1 673
f5a84ee3
JB
674 for (i = 0; i < async_extent->nr_pages; i++) {
675 WARN_ON(async_extent->pages[i]->mapping);
676 page_cache_release(async_extent->pages[i]);
677 }
678 kfree(async_extent->pages);
679 async_extent->nr_pages = 0;
680 async_extent->pages = NULL;
3e04e7f1 681
fdf8e2ea
JB
682 if (ret == -ENOSPC) {
683 unlock_extent(io_tree, async_extent->start,
684 async_extent->start +
685 async_extent->ram_size - 1);
79787eaa 686 goto retry;
fdf8e2ea 687 }
3e04e7f1 688 goto out_free;
f5a84ee3
JB
689 }
690
c2167754
YZ
691 /*
692 * here we're doing allocation and writeback of the
693 * compressed pages
694 */
695 btrfs_drop_extent_cache(inode, async_extent->start,
696 async_extent->start +
697 async_extent->ram_size - 1, 0);
698
172ddd60 699 em = alloc_extent_map();
b9aa55be
LB
700 if (!em) {
701 ret = -ENOMEM;
3e04e7f1 702 goto out_free_reserve;
b9aa55be 703 }
771ed689
CM
704 em->start = async_extent->start;
705 em->len = async_extent->ram_size;
445a6944 706 em->orig_start = em->start;
2ab28f32
JB
707 em->mod_start = em->start;
708 em->mod_len = em->len;
c8b97818 709
771ed689
CM
710 em->block_start = ins.objectid;
711 em->block_len = ins.offset;
b4939680 712 em->orig_block_len = ins.offset;
cc95bef6 713 em->ram_bytes = async_extent->ram_size;
771ed689 714 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 715 em->compress_type = async_extent->compress_type;
771ed689
CM
716 set_bit(EXTENT_FLAG_PINNED, &em->flags);
717 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 718 em->generation = -1;
771ed689 719
d397712b 720 while (1) {
890871be 721 write_lock(&em_tree->lock);
09a2a8f9 722 ret = add_extent_mapping(em_tree, em, 1);
890871be 723 write_unlock(&em_tree->lock);
771ed689
CM
724 if (ret != -EEXIST) {
725 free_extent_map(em);
726 break;
727 }
728 btrfs_drop_extent_cache(inode, async_extent->start,
729 async_extent->start +
730 async_extent->ram_size - 1, 0);
731 }
732
3e04e7f1
JB
733 if (ret)
734 goto out_free_reserve;
735
261507a0
LZ
736 ret = btrfs_add_ordered_extent_compress(inode,
737 async_extent->start,
738 ins.objectid,
739 async_extent->ram_size,
740 ins.offset,
741 BTRFS_ORDERED_COMPRESSED,
742 async_extent->compress_type);
3e04e7f1
JB
743 if (ret)
744 goto out_free_reserve;
771ed689 745
771ed689
CM
746 /*
747 * clear dirty, set writeback and unlock the pages.
748 */
c2790a2e 749 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
750 async_extent->start +
751 async_extent->ram_size - 1,
151a41bc
JB
752 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
753 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 754 PAGE_SET_WRITEBACK);
771ed689 755 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
756 async_extent->start,
757 async_extent->ram_size,
758 ins.objectid,
759 ins.offset, async_extent->pages,
760 async_extent->nr_pages);
771ed689
CM
761 alloc_hint = ins.objectid + ins.offset;
762 kfree(async_extent);
3e04e7f1
JB
763 if (ret)
764 goto out;
771ed689
CM
765 cond_resched();
766 }
79787eaa
JM
767 ret = 0;
768out:
769 return ret;
3e04e7f1
JB
770out_free_reserve:
771 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 772out_free:
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
774 async_extent->start +
775 async_extent->ram_size - 1,
c2790a2e 776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
777 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
778 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
779 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 780 kfree(async_extent);
3e04e7f1 781 goto again;
771ed689
CM
782}
783
4b46fce2
JB
784static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
785 u64 num_bytes)
786{
787 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
788 struct extent_map *em;
789 u64 alloc_hint = 0;
790
791 read_lock(&em_tree->lock);
792 em = search_extent_mapping(em_tree, start, num_bytes);
793 if (em) {
794 /*
795 * if block start isn't an actual block number then find the
796 * first block in this inode and use that as a hint. If that
797 * block is also bogus then just don't worry about it.
798 */
799 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
800 free_extent_map(em);
801 em = search_extent_mapping(em_tree, 0, 0);
802 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
803 alloc_hint = em->block_start;
804 if (em)
805 free_extent_map(em);
806 } else {
807 alloc_hint = em->block_start;
808 free_extent_map(em);
809 }
810 }
811 read_unlock(&em_tree->lock);
812
813 return alloc_hint;
814}
815
771ed689
CM
816/*
817 * when extent_io.c finds a delayed allocation range in the file,
818 * the call backs end up in this code. The basic idea is to
819 * allocate extents on disk for the range, and create ordered data structs
820 * in ram to track those extents.
821 *
822 * locked_page is the page that writepage had locked already. We use
823 * it to make sure we don't do extra locks or unlocks.
824 *
825 * *page_started is set to one if we unlock locked_page and do everything
826 * required to start IO on it. It may be clean and already done with
827 * IO when we return.
828 */
00361589
JB
829static noinline int cow_file_range(struct inode *inode,
830 struct page *locked_page,
831 u64 start, u64 end, int *page_started,
832 unsigned long *nr_written,
833 int unlock)
771ed689 834{
00361589 835 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
836 u64 alloc_hint = 0;
837 u64 num_bytes;
838 unsigned long ram_size;
839 u64 disk_num_bytes;
840 u64 cur_alloc_size;
841 u64 blocksize = root->sectorsize;
771ed689
CM
842 struct btrfs_key ins;
843 struct extent_map *em;
844 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
845 int ret = 0;
846
83eea1f1 847 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 848
fda2832f 849 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
850 num_bytes = max(blocksize, num_bytes);
851 disk_num_bytes = num_bytes;
771ed689 852
4cb5300b 853 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
854 if (num_bytes < 64 * 1024 &&
855 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 856 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 857
771ed689
CM
858 if (start == 0) {
859 /* lets try to make an inline extent */
00361589
JB
860 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
861 NULL);
771ed689 862 if (ret == 0) {
c2790a2e
JB
863 extent_clear_unlock_delalloc(inode, start, end, NULL,
864 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 865 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
866 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
867 PAGE_END_WRITEBACK);
c2167754 868
771ed689
CM
869 *nr_written = *nr_written +
870 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871 *page_started = 1;
771ed689 872 goto out;
79787eaa 873 } else if (ret < 0) {
79787eaa 874 goto out_unlock;
771ed689
CM
875 }
876 }
877
878 BUG_ON(disk_num_bytes >
6c41761f 879 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 880
4b46fce2 881 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
882 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
883
d397712b 884 while (disk_num_bytes > 0) {
a791e35e
CM
885 unsigned long op;
886
287a0ab9 887 cur_alloc_size = disk_num_bytes;
00361589 888 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 889 root->sectorsize, 0, alloc_hint,
81c9ad23 890 &ins, 1);
00361589 891 if (ret < 0)
79787eaa 892 goto out_unlock;
d397712b 893
172ddd60 894 em = alloc_extent_map();
b9aa55be
LB
895 if (!em) {
896 ret = -ENOMEM;
ace68bac 897 goto out_reserve;
b9aa55be 898 }
e6dcd2dc 899 em->start = start;
445a6944 900 em->orig_start = em->start;
771ed689
CM
901 ram_size = ins.offset;
902 em->len = ins.offset;
2ab28f32
JB
903 em->mod_start = em->start;
904 em->mod_len = em->len;
c8b97818 905
e6dcd2dc 906 em->block_start = ins.objectid;
c8b97818 907 em->block_len = ins.offset;
b4939680 908 em->orig_block_len = ins.offset;
cc95bef6 909 em->ram_bytes = ram_size;
e6dcd2dc 910 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 911 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 912 em->generation = -1;
c8b97818 913
d397712b 914 while (1) {
890871be 915 write_lock(&em_tree->lock);
09a2a8f9 916 ret = add_extent_mapping(em_tree, em, 1);
890871be 917 write_unlock(&em_tree->lock);
e6dcd2dc
CM
918 if (ret != -EEXIST) {
919 free_extent_map(em);
920 break;
921 }
922 btrfs_drop_extent_cache(inode, start,
c8b97818 923 start + ram_size - 1, 0);
e6dcd2dc 924 }
ace68bac
LB
925 if (ret)
926 goto out_reserve;
e6dcd2dc 927
98d20f67 928 cur_alloc_size = ins.offset;
e6dcd2dc 929 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 930 ram_size, cur_alloc_size, 0);
ace68bac
LB
931 if (ret)
932 goto out_reserve;
c8b97818 933
17d217fe
YZ
934 if (root->root_key.objectid ==
935 BTRFS_DATA_RELOC_TREE_OBJECTID) {
936 ret = btrfs_reloc_clone_csums(inode, start,
937 cur_alloc_size);
00361589 938 if (ret)
ace68bac 939 goto out_reserve;
17d217fe
YZ
940 }
941
d397712b 942 if (disk_num_bytes < cur_alloc_size)
3b951516 943 break;
d397712b 944
c8b97818
CM
945 /* we're not doing compressed IO, don't unlock the first
946 * page (which the caller expects to stay locked), don't
947 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
948 *
949 * Do set the Private2 bit so we know this page was properly
950 * setup for writepage
c8b97818 951 */
c2790a2e
JB
952 op = unlock ? PAGE_UNLOCK : 0;
953 op |= PAGE_SET_PRIVATE2;
a791e35e 954
c2790a2e
JB
955 extent_clear_unlock_delalloc(inode, start,
956 start + ram_size - 1, locked_page,
957 EXTENT_LOCKED | EXTENT_DELALLOC,
958 op);
c8b97818 959 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
960 num_bytes -= cur_alloc_size;
961 alloc_hint = ins.objectid + ins.offset;
962 start += cur_alloc_size;
b888db2b 963 }
79787eaa 964out:
be20aa9d 965 return ret;
b7d5b0a8 966
ace68bac
LB
967out_reserve:
968 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 969out_unlock:
c2790a2e 970 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
971 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
972 EXTENT_DELALLOC | EXTENT_DEFRAG,
973 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
974 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 975 goto out;
771ed689 976}
c8b97818 977
771ed689
CM
978/*
979 * work queue call back to started compression on a file and pages
980 */
981static noinline void async_cow_start(struct btrfs_work *work)
982{
983 struct async_cow *async_cow;
984 int num_added = 0;
985 async_cow = container_of(work, struct async_cow, work);
986
987 compress_file_range(async_cow->inode, async_cow->locked_page,
988 async_cow->start, async_cow->end, async_cow,
989 &num_added);
8180ef88 990 if (num_added == 0) {
cb77fcd8 991 btrfs_add_delayed_iput(async_cow->inode);
771ed689 992 async_cow->inode = NULL;
8180ef88 993 }
771ed689
CM
994}
995
996/*
997 * work queue call back to submit previously compressed pages
998 */
999static noinline void async_cow_submit(struct btrfs_work *work)
1000{
1001 struct async_cow *async_cow;
1002 struct btrfs_root *root;
1003 unsigned long nr_pages;
1004
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 root = async_cow->root;
1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1009 PAGE_CACHE_SHIFT;
1010
66657b31 1011 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1012 5 * 1024 * 1024 &&
771ed689
CM
1013 waitqueue_active(&root->fs_info->async_submit_wait))
1014 wake_up(&root->fs_info->async_submit_wait);
1015
d397712b 1016 if (async_cow->inode)
771ed689 1017 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1018}
c8b97818 1019
771ed689
CM
1020static noinline void async_cow_free(struct btrfs_work *work)
1021{
1022 struct async_cow *async_cow;
1023 async_cow = container_of(work, struct async_cow, work);
8180ef88 1024 if (async_cow->inode)
cb77fcd8 1025 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1026 kfree(async_cow);
1027}
1028
1029static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1030 u64 start, u64 end, int *page_started,
1031 unsigned long *nr_written)
1032{
1033 struct async_cow *async_cow;
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 unsigned long nr_pages;
1036 u64 cur_end;
287082b0 1037 int limit = 10 * 1024 * 1024;
771ed689 1038
a3429ab7
CM
1039 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1040 1, 0, NULL, GFP_NOFS);
d397712b 1041 while (start < end) {
771ed689 1042 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1043 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1044 async_cow->inode = igrab(inode);
771ed689
CM
1045 async_cow->root = root;
1046 async_cow->locked_page = locked_page;
1047 async_cow->start = start;
1048
6cbff00f 1049 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1050 cur_end = end;
1051 else
1052 cur_end = min(end, start + 512 * 1024 - 1);
1053
1054 async_cow->end = cur_end;
1055 INIT_LIST_HEAD(&async_cow->extents);
1056
1057 async_cow->work.func = async_cow_start;
1058 async_cow->work.ordered_func = async_cow_submit;
1059 async_cow->work.ordered_free = async_cow_free;
1060 async_cow->work.flags = 0;
1061
771ed689
CM
1062 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1063 PAGE_CACHE_SHIFT;
1064 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1065
1066 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1067 &async_cow->work);
1068
1069 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1070 wait_event(root->fs_info->async_submit_wait,
1071 (atomic_read(&root->fs_info->async_delalloc_pages) <
1072 limit));
1073 }
1074
d397712b 1075 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1076 atomic_read(&root->fs_info->async_delalloc_pages)) {
1077 wait_event(root->fs_info->async_submit_wait,
1078 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1079 0));
1080 }
1081
1082 *nr_written += nr_pages;
1083 start = cur_end + 1;
1084 }
1085 *page_started = 1;
1086 return 0;
be20aa9d
CM
1087}
1088
d397712b 1089static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1090 u64 bytenr, u64 num_bytes)
1091{
1092 int ret;
1093 struct btrfs_ordered_sum *sums;
1094 LIST_HEAD(list);
1095
07d400a6 1096 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1097 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1098 if (ret == 0 && list_empty(&list))
1099 return 0;
1100
1101 while (!list_empty(&list)) {
1102 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1103 list_del(&sums->list);
1104 kfree(sums);
1105 }
1106 return 1;
1107}
1108
d352ac68
CM
1109/*
1110 * when nowcow writeback call back. This checks for snapshots or COW copies
1111 * of the extents that exist in the file, and COWs the file as required.
1112 *
1113 * If no cow copies or snapshots exist, we write directly to the existing
1114 * blocks on disk
1115 */
7f366cfe
CM
1116static noinline int run_delalloc_nocow(struct inode *inode,
1117 struct page *locked_page,
771ed689
CM
1118 u64 start, u64 end, int *page_started, int force,
1119 unsigned long *nr_written)
be20aa9d 1120{
be20aa9d 1121 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1122 struct btrfs_trans_handle *trans;
be20aa9d 1123 struct extent_buffer *leaf;
be20aa9d 1124 struct btrfs_path *path;
80ff3856 1125 struct btrfs_file_extent_item *fi;
be20aa9d 1126 struct btrfs_key found_key;
80ff3856
YZ
1127 u64 cow_start;
1128 u64 cur_offset;
1129 u64 extent_end;
5d4f98a2 1130 u64 extent_offset;
80ff3856
YZ
1131 u64 disk_bytenr;
1132 u64 num_bytes;
b4939680 1133 u64 disk_num_bytes;
cc95bef6 1134 u64 ram_bytes;
80ff3856 1135 int extent_type;
79787eaa 1136 int ret, err;
d899e052 1137 int type;
80ff3856
YZ
1138 int nocow;
1139 int check_prev = 1;
82d5902d 1140 bool nolock;
33345d01 1141 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1142
1143 path = btrfs_alloc_path();
17ca04af 1144 if (!path) {
c2790a2e
JB
1145 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1146 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1147 EXTENT_DO_ACCOUNTING |
1148 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1149 PAGE_CLEAR_DIRTY |
1150 PAGE_SET_WRITEBACK |
1151 PAGE_END_WRITEBACK);
d8926bb3 1152 return -ENOMEM;
17ca04af 1153 }
82d5902d 1154
83eea1f1 1155 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1156
1157 if (nolock)
7a7eaa40 1158 trans = btrfs_join_transaction_nolock(root);
82d5902d 1159 else
7a7eaa40 1160 trans = btrfs_join_transaction(root);
ff5714cc 1161
79787eaa 1162 if (IS_ERR(trans)) {
c2790a2e
JB
1163 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1164 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1165 EXTENT_DO_ACCOUNTING |
1166 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1167 PAGE_CLEAR_DIRTY |
1168 PAGE_SET_WRITEBACK |
1169 PAGE_END_WRITEBACK);
79787eaa
JM
1170 btrfs_free_path(path);
1171 return PTR_ERR(trans);
1172 }
1173
74b21075 1174 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1175
80ff3856
YZ
1176 cow_start = (u64)-1;
1177 cur_offset = start;
1178 while (1) {
33345d01 1179 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1180 cur_offset, 0);
79787eaa
JM
1181 if (ret < 0) {
1182 btrfs_abort_transaction(trans, root, ret);
1183 goto error;
1184 }
80ff3856
YZ
1185 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1186 leaf = path->nodes[0];
1187 btrfs_item_key_to_cpu(leaf, &found_key,
1188 path->slots[0] - 1);
33345d01 1189 if (found_key.objectid == ino &&
80ff3856
YZ
1190 found_key.type == BTRFS_EXTENT_DATA_KEY)
1191 path->slots[0]--;
1192 }
1193 check_prev = 0;
1194next_slot:
1195 leaf = path->nodes[0];
1196 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1197 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1198 if (ret < 0) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 goto error;
1201 }
80ff3856
YZ
1202 if (ret > 0)
1203 break;
1204 leaf = path->nodes[0];
1205 }
be20aa9d 1206
80ff3856
YZ
1207 nocow = 0;
1208 disk_bytenr = 0;
17d217fe 1209 num_bytes = 0;
80ff3856
YZ
1210 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1211
33345d01 1212 if (found_key.objectid > ino ||
80ff3856
YZ
1213 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1214 found_key.offset > end)
1215 break;
1216
1217 if (found_key.offset > cur_offset) {
1218 extent_end = found_key.offset;
e9061e21 1219 extent_type = 0;
80ff3856
YZ
1220 goto out_check;
1221 }
1222
1223 fi = btrfs_item_ptr(leaf, path->slots[0],
1224 struct btrfs_file_extent_item);
1225 extent_type = btrfs_file_extent_type(leaf, fi);
1226
cc95bef6 1227 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1228 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1229 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1230 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1231 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1232 extent_end = found_key.offset +
1233 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1234 disk_num_bytes =
1235 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1236 if (extent_end <= start) {
1237 path->slots[0]++;
1238 goto next_slot;
1239 }
17d217fe
YZ
1240 if (disk_bytenr == 0)
1241 goto out_check;
80ff3856
YZ
1242 if (btrfs_file_extent_compression(leaf, fi) ||
1243 btrfs_file_extent_encryption(leaf, fi) ||
1244 btrfs_file_extent_other_encoding(leaf, fi))
1245 goto out_check;
d899e052
YZ
1246 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247 goto out_check;
d2fb3437 1248 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1249 goto out_check;
33345d01 1250 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1251 found_key.offset -
1252 extent_offset, disk_bytenr))
17d217fe 1253 goto out_check;
5d4f98a2 1254 disk_bytenr += extent_offset;
17d217fe
YZ
1255 disk_bytenr += cur_offset - found_key.offset;
1256 num_bytes = min(end + 1, extent_end) - cur_offset;
1257 /*
1258 * force cow if csum exists in the range.
1259 * this ensure that csum for a given extent are
1260 * either valid or do not exist.
1261 */
1262 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263 goto out_check;
80ff3856
YZ
1264 nocow = 1;
1265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266 extent_end = found_key.offset +
1267 btrfs_file_extent_inline_len(leaf, fi);
1268 extent_end = ALIGN(extent_end, root->sectorsize);
1269 } else {
1270 BUG_ON(1);
1271 }
1272out_check:
1273 if (extent_end <= start) {
1274 path->slots[0]++;
1275 goto next_slot;
1276 }
1277 if (!nocow) {
1278 if (cow_start == (u64)-1)
1279 cow_start = cur_offset;
1280 cur_offset = extent_end;
1281 if (cur_offset > end)
1282 break;
1283 path->slots[0]++;
1284 goto next_slot;
7ea394f1
YZ
1285 }
1286
b3b4aa74 1287 btrfs_release_path(path);
80ff3856 1288 if (cow_start != (u64)-1) {
00361589
JB
1289 ret = cow_file_range(inode, locked_page,
1290 cow_start, found_key.offset - 1,
1291 page_started, nr_written, 1);
79787eaa
JM
1292 if (ret) {
1293 btrfs_abort_transaction(trans, root, ret);
1294 goto error;
1295 }
80ff3856 1296 cow_start = (u64)-1;
7ea394f1 1297 }
80ff3856 1298
d899e052
YZ
1299 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300 struct extent_map *em;
1301 struct extent_map_tree *em_tree;
1302 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1303 em = alloc_extent_map();
79787eaa 1304 BUG_ON(!em); /* -ENOMEM */
d899e052 1305 em->start = cur_offset;
70c8a91c 1306 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1307 em->len = num_bytes;
1308 em->block_len = num_bytes;
1309 em->block_start = disk_bytenr;
b4939680 1310 em->orig_block_len = disk_num_bytes;
cc95bef6 1311 em->ram_bytes = ram_bytes;
d899e052 1312 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1313 em->mod_start = em->start;
1314 em->mod_len = em->len;
d899e052 1315 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1316 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1317 em->generation = -1;
d899e052 1318 while (1) {
890871be 1319 write_lock(&em_tree->lock);
09a2a8f9 1320 ret = add_extent_mapping(em_tree, em, 1);
890871be 1321 write_unlock(&em_tree->lock);
d899e052
YZ
1322 if (ret != -EEXIST) {
1323 free_extent_map(em);
1324 break;
1325 }
1326 btrfs_drop_extent_cache(inode, em->start,
1327 em->start + em->len - 1, 0);
1328 }
1329 type = BTRFS_ORDERED_PREALLOC;
1330 } else {
1331 type = BTRFS_ORDERED_NOCOW;
1332 }
80ff3856
YZ
1333
1334 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1335 num_bytes, num_bytes, type);
79787eaa 1336 BUG_ON(ret); /* -ENOMEM */
771ed689 1337
efa56464
YZ
1338 if (root->root_key.objectid ==
1339 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1340 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1341 num_bytes);
79787eaa
JM
1342 if (ret) {
1343 btrfs_abort_transaction(trans, root, ret);
1344 goto error;
1345 }
efa56464
YZ
1346 }
1347
c2790a2e
JB
1348 extent_clear_unlock_delalloc(inode, cur_offset,
1349 cur_offset + num_bytes - 1,
1350 locked_page, EXTENT_LOCKED |
1351 EXTENT_DELALLOC, PAGE_UNLOCK |
1352 PAGE_SET_PRIVATE2);
80ff3856
YZ
1353 cur_offset = extent_end;
1354 if (cur_offset > end)
1355 break;
be20aa9d 1356 }
b3b4aa74 1357 btrfs_release_path(path);
80ff3856 1358
17ca04af 1359 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1360 cow_start = cur_offset;
17ca04af
JB
1361 cur_offset = end;
1362 }
1363
80ff3856 1364 if (cow_start != (u64)-1) {
00361589
JB
1365 ret = cow_file_range(inode, locked_page, cow_start, end,
1366 page_started, nr_written, 1);
79787eaa
JM
1367 if (ret) {
1368 btrfs_abort_transaction(trans, root, ret);
1369 goto error;
1370 }
80ff3856
YZ
1371 }
1372
79787eaa 1373error:
a698d075 1374 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1375 if (!ret)
1376 ret = err;
1377
17ca04af 1378 if (ret && cur_offset < end)
c2790a2e
JB
1379 extent_clear_unlock_delalloc(inode, cur_offset, end,
1380 locked_page, EXTENT_LOCKED |
151a41bc
JB
1381 EXTENT_DELALLOC | EXTENT_DEFRAG |
1382 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1383 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1384 PAGE_SET_WRITEBACK |
1385 PAGE_END_WRITEBACK);
7ea394f1 1386 btrfs_free_path(path);
79787eaa 1387 return ret;
be20aa9d
CM
1388}
1389
d352ac68
CM
1390/*
1391 * extent_io.c call back to do delayed allocation processing
1392 */
c8b97818 1393static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1394 u64 start, u64 end, int *page_started,
1395 unsigned long *nr_written)
be20aa9d 1396{
be20aa9d 1397 int ret;
7f366cfe 1398 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1399
7ddf5a42 1400 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1401 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1402 page_started, 1, nr_written);
7ddf5a42 1403 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1404 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1405 page_started, 0, nr_written);
7ddf5a42
JB
1406 } else if (!btrfs_test_opt(root, COMPRESS) &&
1407 !(BTRFS_I(inode)->force_compress) &&
1408 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1409 ret = cow_file_range(inode, locked_page, start, end,
1410 page_started, nr_written, 1);
7ddf5a42
JB
1411 } else {
1412 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1413 &BTRFS_I(inode)->runtime_flags);
771ed689 1414 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1415 page_started, nr_written);
7ddf5a42 1416 }
b888db2b
CM
1417 return ret;
1418}
1419
1bf85046
JM
1420static void btrfs_split_extent_hook(struct inode *inode,
1421 struct extent_state *orig, u64 split)
9ed74f2d 1422{
0ca1f7ce 1423 /* not delalloc, ignore it */
9ed74f2d 1424 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1425 return;
9ed74f2d 1426
9e0baf60
JB
1427 spin_lock(&BTRFS_I(inode)->lock);
1428 BTRFS_I(inode)->outstanding_extents++;
1429 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1430}
1431
1432/*
1433 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1434 * extents so we can keep track of new extents that are just merged onto old
1435 * extents, such as when we are doing sequential writes, so we can properly
1436 * account for the metadata space we'll need.
1437 */
1bf85046
JM
1438static void btrfs_merge_extent_hook(struct inode *inode,
1439 struct extent_state *new,
1440 struct extent_state *other)
9ed74f2d 1441{
9ed74f2d
JB
1442 /* not delalloc, ignore it */
1443 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1444 return;
9ed74f2d 1445
9e0baf60
JB
1446 spin_lock(&BTRFS_I(inode)->lock);
1447 BTRFS_I(inode)->outstanding_extents--;
1448 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1449}
1450
eb73c1b7
MX
1451static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1452 struct inode *inode)
1453{
1454 spin_lock(&root->delalloc_lock);
1455 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1456 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1457 &root->delalloc_inodes);
1458 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1459 &BTRFS_I(inode)->runtime_flags);
1460 root->nr_delalloc_inodes++;
1461 if (root->nr_delalloc_inodes == 1) {
1462 spin_lock(&root->fs_info->delalloc_root_lock);
1463 BUG_ON(!list_empty(&root->delalloc_root));
1464 list_add_tail(&root->delalloc_root,
1465 &root->fs_info->delalloc_roots);
1466 spin_unlock(&root->fs_info->delalloc_root_lock);
1467 }
1468 }
1469 spin_unlock(&root->delalloc_lock);
1470}
1471
1472static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1473 struct inode *inode)
1474{
1475 spin_lock(&root->delalloc_lock);
1476 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1477 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1478 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1479 &BTRFS_I(inode)->runtime_flags);
1480 root->nr_delalloc_inodes--;
1481 if (!root->nr_delalloc_inodes) {
1482 spin_lock(&root->fs_info->delalloc_root_lock);
1483 BUG_ON(list_empty(&root->delalloc_root));
1484 list_del_init(&root->delalloc_root);
1485 spin_unlock(&root->fs_info->delalloc_root_lock);
1486 }
1487 }
1488 spin_unlock(&root->delalloc_lock);
1489}
1490
d352ac68
CM
1491/*
1492 * extent_io.c set_bit_hook, used to track delayed allocation
1493 * bytes in this file, and to maintain the list of inodes that
1494 * have pending delalloc work to be done.
1495 */
1bf85046 1496static void btrfs_set_bit_hook(struct inode *inode,
41074888 1497 struct extent_state *state, unsigned long *bits)
291d673e 1498{
9ed74f2d 1499
75eff68e
CM
1500 /*
1501 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1502 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1503 * bit, which is only set or cleared with irqs on
1504 */
0ca1f7ce 1505 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1506 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1507 u64 len = state->end + 1 - state->start;
83eea1f1 1508 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1509
9e0baf60 1510 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1511 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1512 } else {
1513 spin_lock(&BTRFS_I(inode)->lock);
1514 BTRFS_I(inode)->outstanding_extents++;
1515 spin_unlock(&BTRFS_I(inode)->lock);
1516 }
287a0ab9 1517
963d678b
MX
1518 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1519 root->fs_info->delalloc_batch);
df0af1a5 1520 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1521 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1522 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1523 &BTRFS_I(inode)->runtime_flags))
1524 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1525 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1526 }
291d673e
CM
1527}
1528
d352ac68
CM
1529/*
1530 * extent_io.c clear_bit_hook, see set_bit_hook for why
1531 */
1bf85046 1532static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1533 struct extent_state *state,
1534 unsigned long *bits)
291d673e 1535{
75eff68e
CM
1536 /*
1537 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1538 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1539 * bit, which is only set or cleared with irqs on
1540 */
0ca1f7ce 1541 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1542 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1543 u64 len = state->end + 1 - state->start;
83eea1f1 1544 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1545
9e0baf60 1546 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1547 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1548 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1549 spin_lock(&BTRFS_I(inode)->lock);
1550 BTRFS_I(inode)->outstanding_extents--;
1551 spin_unlock(&BTRFS_I(inode)->lock);
1552 }
0ca1f7ce
YZ
1553
1554 if (*bits & EXTENT_DO_ACCOUNTING)
1555 btrfs_delalloc_release_metadata(inode, len);
1556
0cb59c99 1557 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1558 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1559 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1560
963d678b
MX
1561 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1562 root->fs_info->delalloc_batch);
df0af1a5 1563 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1564 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1565 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1566 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1567 &BTRFS_I(inode)->runtime_flags))
1568 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1569 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1570 }
291d673e
CM
1571}
1572
d352ac68
CM
1573/*
1574 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1575 * we don't create bios that span stripes or chunks
1576 */
64a16701 1577int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1578 size_t size, struct bio *bio,
1579 unsigned long bio_flags)
239b14b3
CM
1580{
1581 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1582 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1583 u64 length = 0;
1584 u64 map_length;
239b14b3
CM
1585 int ret;
1586
771ed689
CM
1587 if (bio_flags & EXTENT_BIO_COMPRESSED)
1588 return 0;
1589
f2d8d74d 1590 length = bio->bi_size;
239b14b3 1591 map_length = length;
64a16701 1592 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1593 &map_length, NULL, 0);
3ec706c8 1594 /* Will always return 0 with map_multi == NULL */
3444a972 1595 BUG_ON(ret < 0);
d397712b 1596 if (map_length < length + size)
239b14b3 1597 return 1;
3444a972 1598 return 0;
239b14b3
CM
1599}
1600
d352ac68
CM
1601/*
1602 * in order to insert checksums into the metadata in large chunks,
1603 * we wait until bio submission time. All the pages in the bio are
1604 * checksummed and sums are attached onto the ordered extent record.
1605 *
1606 * At IO completion time the cums attached on the ordered extent record
1607 * are inserted into the btree
1608 */
d397712b
CM
1609static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1610 struct bio *bio, int mirror_num,
eaf25d93
CM
1611 unsigned long bio_flags,
1612 u64 bio_offset)
065631f6 1613{
065631f6 1614 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1615 int ret = 0;
e015640f 1616
d20f7043 1617 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1618 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1619 return 0;
1620}
e015640f 1621
4a69a410
CM
1622/*
1623 * in order to insert checksums into the metadata in large chunks,
1624 * we wait until bio submission time. All the pages in the bio are
1625 * checksummed and sums are attached onto the ordered extent record.
1626 *
1627 * At IO completion time the cums attached on the ordered extent record
1628 * are inserted into the btree
1629 */
b2950863 1630static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1631 int mirror_num, unsigned long bio_flags,
1632 u64 bio_offset)
4a69a410
CM
1633{
1634 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1635 int ret;
1636
1637 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1638 if (ret)
1639 bio_endio(bio, ret);
1640 return ret;
44b8bd7e
CM
1641}
1642
d352ac68 1643/*
cad321ad
CM
1644 * extent_io.c submission hook. This does the right thing for csum calculation
1645 * on write, or reading the csums from the tree before a read
d352ac68 1646 */
b2950863 1647static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1648 int mirror_num, unsigned long bio_flags,
1649 u64 bio_offset)
44b8bd7e
CM
1650{
1651 struct btrfs_root *root = BTRFS_I(inode)->root;
1652 int ret = 0;
19b9bdb0 1653 int skip_sum;
0417341e 1654 int metadata = 0;
b812ce28 1655 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1656
6cbff00f 1657 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1658
83eea1f1 1659 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1660 metadata = 2;
1661
7b6d91da 1662 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1663 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1664 if (ret)
61891923 1665 goto out;
5fd02043 1666
d20f7043 1667 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1668 ret = btrfs_submit_compressed_read(inode, bio,
1669 mirror_num,
1670 bio_flags);
1671 goto out;
c2db1073
TI
1672 } else if (!skip_sum) {
1673 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1674 if (ret)
61891923 1675 goto out;
c2db1073 1676 }
4d1b5fb4 1677 goto mapit;
b812ce28 1678 } else if (async && !skip_sum) {
17d217fe
YZ
1679 /* csum items have already been cloned */
1680 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1681 goto mapit;
19b9bdb0 1682 /* we're doing a write, do the async checksumming */
61891923 1683 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1684 inode, rw, bio, mirror_num,
eaf25d93
CM
1685 bio_flags, bio_offset,
1686 __btrfs_submit_bio_start,
4a69a410 1687 __btrfs_submit_bio_done);
61891923 1688 goto out;
b812ce28
JB
1689 } else if (!skip_sum) {
1690 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1691 if (ret)
1692 goto out;
19b9bdb0
CM
1693 }
1694
0b86a832 1695mapit:
61891923
SB
1696 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1697
1698out:
1699 if (ret < 0)
1700 bio_endio(bio, ret);
1701 return ret;
065631f6 1702}
6885f308 1703
d352ac68
CM
1704/*
1705 * given a list of ordered sums record them in the inode. This happens
1706 * at IO completion time based on sums calculated at bio submission time.
1707 */
ba1da2f4 1708static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1709 struct inode *inode, u64 file_offset,
1710 struct list_head *list)
1711{
e6dcd2dc
CM
1712 struct btrfs_ordered_sum *sum;
1713
c6e30871 1714 list_for_each_entry(sum, list, list) {
39847c4d 1715 trans->adding_csums = 1;
d20f7043
CM
1716 btrfs_csum_file_blocks(trans,
1717 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1718 trans->adding_csums = 0;
e6dcd2dc
CM
1719 }
1720 return 0;
1721}
1722
2ac55d41
JB
1723int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1724 struct extent_state **cached_state)
ea8c2819 1725{
6c1500f2 1726 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1727 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1728 cached_state, GFP_NOFS);
ea8c2819
CM
1729}
1730
d352ac68 1731/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1732struct btrfs_writepage_fixup {
1733 struct page *page;
1734 struct btrfs_work work;
1735};
1736
b2950863 1737static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1738{
1739 struct btrfs_writepage_fixup *fixup;
1740 struct btrfs_ordered_extent *ordered;
2ac55d41 1741 struct extent_state *cached_state = NULL;
247e743c
CM
1742 struct page *page;
1743 struct inode *inode;
1744 u64 page_start;
1745 u64 page_end;
87826df0 1746 int ret;
247e743c
CM
1747
1748 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1749 page = fixup->page;
4a096752 1750again:
247e743c
CM
1751 lock_page(page);
1752 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1753 ClearPageChecked(page);
1754 goto out_page;
1755 }
1756
1757 inode = page->mapping->host;
1758 page_start = page_offset(page);
1759 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1760
2ac55d41 1761 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1762 &cached_state);
4a096752
CM
1763
1764 /* already ordered? We're done */
8b62b72b 1765 if (PagePrivate2(page))
247e743c 1766 goto out;
4a096752
CM
1767
1768 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1769 if (ordered) {
2ac55d41
JB
1770 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1771 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1772 unlock_page(page);
1773 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1774 btrfs_put_ordered_extent(ordered);
4a096752
CM
1775 goto again;
1776 }
247e743c 1777
87826df0
JM
1778 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1779 if (ret) {
1780 mapping_set_error(page->mapping, ret);
1781 end_extent_writepage(page, ret, page_start, page_end);
1782 ClearPageChecked(page);
1783 goto out;
1784 }
1785
2ac55d41 1786 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1787 ClearPageChecked(page);
87826df0 1788 set_page_dirty(page);
247e743c 1789out:
2ac55d41
JB
1790 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1791 &cached_state, GFP_NOFS);
247e743c
CM
1792out_page:
1793 unlock_page(page);
1794 page_cache_release(page);
b897abec 1795 kfree(fixup);
247e743c
CM
1796}
1797
1798/*
1799 * There are a few paths in the higher layers of the kernel that directly
1800 * set the page dirty bit without asking the filesystem if it is a
1801 * good idea. This causes problems because we want to make sure COW
1802 * properly happens and the data=ordered rules are followed.
1803 *
c8b97818 1804 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1805 * hasn't been properly setup for IO. We kick off an async process
1806 * to fix it up. The async helper will wait for ordered extents, set
1807 * the delalloc bit and make it safe to write the page.
1808 */
b2950863 1809static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1810{
1811 struct inode *inode = page->mapping->host;
1812 struct btrfs_writepage_fixup *fixup;
1813 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1814
8b62b72b
CM
1815 /* this page is properly in the ordered list */
1816 if (TestClearPagePrivate2(page))
247e743c
CM
1817 return 0;
1818
1819 if (PageChecked(page))
1820 return -EAGAIN;
1821
1822 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1823 if (!fixup)
1824 return -EAGAIN;
f421950f 1825
247e743c
CM
1826 SetPageChecked(page);
1827 page_cache_get(page);
1828 fixup->work.func = btrfs_writepage_fixup_worker;
1829 fixup->page = page;
1830 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1831 return -EBUSY;
247e743c
CM
1832}
1833
d899e052
YZ
1834static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1835 struct inode *inode, u64 file_pos,
1836 u64 disk_bytenr, u64 disk_num_bytes,
1837 u64 num_bytes, u64 ram_bytes,
1838 u8 compression, u8 encryption,
1839 u16 other_encoding, int extent_type)
1840{
1841 struct btrfs_root *root = BTRFS_I(inode)->root;
1842 struct btrfs_file_extent_item *fi;
1843 struct btrfs_path *path;
1844 struct extent_buffer *leaf;
1845 struct btrfs_key ins;
d899e052
YZ
1846 int ret;
1847
1848 path = btrfs_alloc_path();
d8926bb3
MF
1849 if (!path)
1850 return -ENOMEM;
d899e052 1851
b9473439 1852 path->leave_spinning = 1;
a1ed835e
CM
1853
1854 /*
1855 * we may be replacing one extent in the tree with another.
1856 * The new extent is pinned in the extent map, and we don't want
1857 * to drop it from the cache until it is completely in the btree.
1858 *
1859 * So, tell btrfs_drop_extents to leave this extent in the cache.
1860 * the caller is expected to unpin it and allow it to be merged
1861 * with the others.
1862 */
5dc562c5 1863 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1864 file_pos + num_bytes, 0);
79787eaa
JM
1865 if (ret)
1866 goto out;
d899e052 1867
33345d01 1868 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1869 ins.offset = file_pos;
1870 ins.type = BTRFS_EXTENT_DATA_KEY;
1871 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1872 if (ret)
1873 goto out;
d899e052
YZ
1874 leaf = path->nodes[0];
1875 fi = btrfs_item_ptr(leaf, path->slots[0],
1876 struct btrfs_file_extent_item);
1877 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1878 btrfs_set_file_extent_type(leaf, fi, extent_type);
1879 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1880 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1881 btrfs_set_file_extent_offset(leaf, fi, 0);
1882 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1883 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1884 btrfs_set_file_extent_compression(leaf, fi, compression);
1885 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1886 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1887
d899e052 1888 btrfs_mark_buffer_dirty(leaf);
ce195332 1889 btrfs_release_path(path);
d899e052
YZ
1890
1891 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1892
1893 ins.objectid = disk_bytenr;
1894 ins.offset = disk_num_bytes;
1895 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1896 ret = btrfs_alloc_reserved_file_extent(trans, root,
1897 root->root_key.objectid,
33345d01 1898 btrfs_ino(inode), file_pos, &ins);
79787eaa 1899out:
d899e052 1900 btrfs_free_path(path);
b9473439 1901
79787eaa 1902 return ret;
d899e052
YZ
1903}
1904
38c227d8
LB
1905/* snapshot-aware defrag */
1906struct sa_defrag_extent_backref {
1907 struct rb_node node;
1908 struct old_sa_defrag_extent *old;
1909 u64 root_id;
1910 u64 inum;
1911 u64 file_pos;
1912 u64 extent_offset;
1913 u64 num_bytes;
1914 u64 generation;
1915};
1916
1917struct old_sa_defrag_extent {
1918 struct list_head list;
1919 struct new_sa_defrag_extent *new;
1920
1921 u64 extent_offset;
1922 u64 bytenr;
1923 u64 offset;
1924 u64 len;
1925 int count;
1926};
1927
1928struct new_sa_defrag_extent {
1929 struct rb_root root;
1930 struct list_head head;
1931 struct btrfs_path *path;
1932 struct inode *inode;
1933 u64 file_pos;
1934 u64 len;
1935 u64 bytenr;
1936 u64 disk_len;
1937 u8 compress_type;
1938};
1939
1940static int backref_comp(struct sa_defrag_extent_backref *b1,
1941 struct sa_defrag_extent_backref *b2)
1942{
1943 if (b1->root_id < b2->root_id)
1944 return -1;
1945 else if (b1->root_id > b2->root_id)
1946 return 1;
1947
1948 if (b1->inum < b2->inum)
1949 return -1;
1950 else if (b1->inum > b2->inum)
1951 return 1;
1952
1953 if (b1->file_pos < b2->file_pos)
1954 return -1;
1955 else if (b1->file_pos > b2->file_pos)
1956 return 1;
1957
1958 /*
1959 * [------------------------------] ===> (a range of space)
1960 * |<--->| |<---->| =============> (fs/file tree A)
1961 * |<---------------------------->| ===> (fs/file tree B)
1962 *
1963 * A range of space can refer to two file extents in one tree while
1964 * refer to only one file extent in another tree.
1965 *
1966 * So we may process a disk offset more than one time(two extents in A)
1967 * and locate at the same extent(one extent in B), then insert two same
1968 * backrefs(both refer to the extent in B).
1969 */
1970 return 0;
1971}
1972
1973static void backref_insert(struct rb_root *root,
1974 struct sa_defrag_extent_backref *backref)
1975{
1976 struct rb_node **p = &root->rb_node;
1977 struct rb_node *parent = NULL;
1978 struct sa_defrag_extent_backref *entry;
1979 int ret;
1980
1981 while (*p) {
1982 parent = *p;
1983 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
1984
1985 ret = backref_comp(backref, entry);
1986 if (ret < 0)
1987 p = &(*p)->rb_left;
1988 else
1989 p = &(*p)->rb_right;
1990 }
1991
1992 rb_link_node(&backref->node, parent, p);
1993 rb_insert_color(&backref->node, root);
1994}
1995
1996/*
1997 * Note the backref might has changed, and in this case we just return 0.
1998 */
1999static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2000 void *ctx)
2001{
2002 struct btrfs_file_extent_item *extent;
2003 struct btrfs_fs_info *fs_info;
2004 struct old_sa_defrag_extent *old = ctx;
2005 struct new_sa_defrag_extent *new = old->new;
2006 struct btrfs_path *path = new->path;
2007 struct btrfs_key key;
2008 struct btrfs_root *root;
2009 struct sa_defrag_extent_backref *backref;
2010 struct extent_buffer *leaf;
2011 struct inode *inode = new->inode;
2012 int slot;
2013 int ret;
2014 u64 extent_offset;
2015 u64 num_bytes;
2016
2017 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2018 inum == btrfs_ino(inode))
2019 return 0;
2020
2021 key.objectid = root_id;
2022 key.type = BTRFS_ROOT_ITEM_KEY;
2023 key.offset = (u64)-1;
2024
2025 fs_info = BTRFS_I(inode)->root->fs_info;
2026 root = btrfs_read_fs_root_no_name(fs_info, &key);
2027 if (IS_ERR(root)) {
2028 if (PTR_ERR(root) == -ENOENT)
2029 return 0;
2030 WARN_ON(1);
2031 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2032 inum, offset, root_id);
2033 return PTR_ERR(root);
2034 }
2035
2036 key.objectid = inum;
2037 key.type = BTRFS_EXTENT_DATA_KEY;
2038 if (offset > (u64)-1 << 32)
2039 key.offset = 0;
2040 else
2041 key.offset = offset;
2042
2043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2044 if (ret < 0) {
2045 WARN_ON(1);
2046 return ret;
2047 }
50f1319c 2048 ret = 0;
38c227d8
LB
2049
2050 while (1) {
2051 cond_resched();
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055
2056 if (slot >= btrfs_header_nritems(leaf)) {
2057 ret = btrfs_next_leaf(root, path);
2058 if (ret < 0) {
2059 goto out;
2060 } else if (ret > 0) {
2061 ret = 0;
2062 goto out;
2063 }
2064 continue;
2065 }
2066
2067 path->slots[0]++;
2068
2069 btrfs_item_key_to_cpu(leaf, &key, slot);
2070
2071 if (key.objectid > inum)
2072 goto out;
2073
2074 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2075 continue;
2076
2077 extent = btrfs_item_ptr(leaf, slot,
2078 struct btrfs_file_extent_item);
2079
2080 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2081 continue;
2082
e68afa49
LB
2083 /*
2084 * 'offset' refers to the exact key.offset,
2085 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2086 * (key.offset - extent_offset).
2087 */
2088 if (key.offset != offset)
38c227d8
LB
2089 continue;
2090
e68afa49 2091 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2092 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2093
38c227d8
LB
2094 if (extent_offset >= old->extent_offset + old->offset +
2095 old->len || extent_offset + num_bytes <=
2096 old->extent_offset + old->offset)
2097 continue;
38c227d8
LB
2098 break;
2099 }
2100
2101 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2102 if (!backref) {
2103 ret = -ENOENT;
2104 goto out;
2105 }
2106
2107 backref->root_id = root_id;
2108 backref->inum = inum;
e68afa49 2109 backref->file_pos = offset;
38c227d8
LB
2110 backref->num_bytes = num_bytes;
2111 backref->extent_offset = extent_offset;
2112 backref->generation = btrfs_file_extent_generation(leaf, extent);
2113 backref->old = old;
2114 backref_insert(&new->root, backref);
2115 old->count++;
2116out:
2117 btrfs_release_path(path);
2118 WARN_ON(ret);
2119 return ret;
2120}
2121
2122static noinline bool record_extent_backrefs(struct btrfs_path *path,
2123 struct new_sa_defrag_extent *new)
2124{
2125 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2126 struct old_sa_defrag_extent *old, *tmp;
2127 int ret;
2128
2129 new->path = path;
2130
2131 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2132 ret = iterate_inodes_from_logical(old->bytenr +
2133 old->extent_offset, fs_info,
38c227d8
LB
2134 path, record_one_backref,
2135 old);
2136 BUG_ON(ret < 0 && ret != -ENOENT);
2137
2138 /* no backref to be processed for this extent */
2139 if (!old->count) {
2140 list_del(&old->list);
2141 kfree(old);
2142 }
2143 }
2144
2145 if (list_empty(&new->head))
2146 return false;
2147
2148 return true;
2149}
2150
2151static int relink_is_mergable(struct extent_buffer *leaf,
2152 struct btrfs_file_extent_item *fi,
116e0024 2153 struct new_sa_defrag_extent *new)
38c227d8 2154{
116e0024 2155 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2156 return 0;
2157
2158 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2159 return 0;
2160
116e0024
LB
2161 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2162 return 0;
2163
2164 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2165 btrfs_file_extent_other_encoding(leaf, fi))
2166 return 0;
2167
2168 return 1;
2169}
2170
2171/*
2172 * Note the backref might has changed, and in this case we just return 0.
2173 */
2174static noinline int relink_extent_backref(struct btrfs_path *path,
2175 struct sa_defrag_extent_backref *prev,
2176 struct sa_defrag_extent_backref *backref)
2177{
2178 struct btrfs_file_extent_item *extent;
2179 struct btrfs_file_extent_item *item;
2180 struct btrfs_ordered_extent *ordered;
2181 struct btrfs_trans_handle *trans;
2182 struct btrfs_fs_info *fs_info;
2183 struct btrfs_root *root;
2184 struct btrfs_key key;
2185 struct extent_buffer *leaf;
2186 struct old_sa_defrag_extent *old = backref->old;
2187 struct new_sa_defrag_extent *new = old->new;
2188 struct inode *src_inode = new->inode;
2189 struct inode *inode;
2190 struct extent_state *cached = NULL;
2191 int ret = 0;
2192 u64 start;
2193 u64 len;
2194 u64 lock_start;
2195 u64 lock_end;
2196 bool merge = false;
2197 int index;
2198
2199 if (prev && prev->root_id == backref->root_id &&
2200 prev->inum == backref->inum &&
2201 prev->file_pos + prev->num_bytes == backref->file_pos)
2202 merge = true;
2203
2204 /* step 1: get root */
2205 key.objectid = backref->root_id;
2206 key.type = BTRFS_ROOT_ITEM_KEY;
2207 key.offset = (u64)-1;
2208
2209 fs_info = BTRFS_I(src_inode)->root->fs_info;
2210 index = srcu_read_lock(&fs_info->subvol_srcu);
2211
2212 root = btrfs_read_fs_root_no_name(fs_info, &key);
2213 if (IS_ERR(root)) {
2214 srcu_read_unlock(&fs_info->subvol_srcu, index);
2215 if (PTR_ERR(root) == -ENOENT)
2216 return 0;
2217 return PTR_ERR(root);
2218 }
38c227d8
LB
2219
2220 /* step 2: get inode */
2221 key.objectid = backref->inum;
2222 key.type = BTRFS_INODE_ITEM_KEY;
2223 key.offset = 0;
2224
2225 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2226 if (IS_ERR(inode)) {
2227 srcu_read_unlock(&fs_info->subvol_srcu, index);
2228 return 0;
2229 }
2230
2231 srcu_read_unlock(&fs_info->subvol_srcu, index);
2232
2233 /* step 3: relink backref */
2234 lock_start = backref->file_pos;
2235 lock_end = backref->file_pos + backref->num_bytes - 1;
2236 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2237 0, &cached);
2238
2239 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2240 if (ordered) {
2241 btrfs_put_ordered_extent(ordered);
2242 goto out_unlock;
2243 }
2244
2245 trans = btrfs_join_transaction(root);
2246 if (IS_ERR(trans)) {
2247 ret = PTR_ERR(trans);
2248 goto out_unlock;
2249 }
2250
2251 key.objectid = backref->inum;
2252 key.type = BTRFS_EXTENT_DATA_KEY;
2253 key.offset = backref->file_pos;
2254
2255 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2256 if (ret < 0) {
2257 goto out_free_path;
2258 } else if (ret > 0) {
2259 ret = 0;
2260 goto out_free_path;
2261 }
2262
2263 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2264 struct btrfs_file_extent_item);
2265
2266 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2267 backref->generation)
2268 goto out_free_path;
2269
2270 btrfs_release_path(path);
2271
2272 start = backref->file_pos;
2273 if (backref->extent_offset < old->extent_offset + old->offset)
2274 start += old->extent_offset + old->offset -
2275 backref->extent_offset;
2276
2277 len = min(backref->extent_offset + backref->num_bytes,
2278 old->extent_offset + old->offset + old->len);
2279 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2280
2281 ret = btrfs_drop_extents(trans, root, inode, start,
2282 start + len, 1);
2283 if (ret)
2284 goto out_free_path;
2285again:
2286 key.objectid = btrfs_ino(inode);
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 key.offset = start;
2289
a09a0a70 2290 path->leave_spinning = 1;
38c227d8
LB
2291 if (merge) {
2292 struct btrfs_file_extent_item *fi;
2293 u64 extent_len;
2294 struct btrfs_key found_key;
2295
2296 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2297 if (ret < 0)
2298 goto out_free_path;
2299
2300 path->slots[0]--;
2301 leaf = path->nodes[0];
2302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2303
2304 fi = btrfs_item_ptr(leaf, path->slots[0],
2305 struct btrfs_file_extent_item);
2306 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2307
116e0024
LB
2308 if (extent_len + found_key.offset == start &&
2309 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2310 btrfs_set_file_extent_num_bytes(leaf, fi,
2311 extent_len + len);
2312 btrfs_mark_buffer_dirty(leaf);
2313 inode_add_bytes(inode, len);
2314
2315 ret = 1;
2316 goto out_free_path;
2317 } else {
2318 merge = false;
2319 btrfs_release_path(path);
2320 goto again;
2321 }
2322 }
2323
2324 ret = btrfs_insert_empty_item(trans, root, path, &key,
2325 sizeof(*extent));
2326 if (ret) {
2327 btrfs_abort_transaction(trans, root, ret);
2328 goto out_free_path;
2329 }
2330
2331 leaf = path->nodes[0];
2332 item = btrfs_item_ptr(leaf, path->slots[0],
2333 struct btrfs_file_extent_item);
2334 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2335 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2336 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2337 btrfs_set_file_extent_num_bytes(leaf, item, len);
2338 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2339 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2340 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2341 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2342 btrfs_set_file_extent_encryption(leaf, item, 0);
2343 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2344
2345 btrfs_mark_buffer_dirty(leaf);
2346 inode_add_bytes(inode, len);
a09a0a70 2347 btrfs_release_path(path);
38c227d8
LB
2348
2349 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2350 new->disk_len, 0,
2351 backref->root_id, backref->inum,
2352 new->file_pos, 0); /* start - extent_offset */
2353 if (ret) {
2354 btrfs_abort_transaction(trans, root, ret);
2355 goto out_free_path;
2356 }
2357
2358 ret = 1;
2359out_free_path:
2360 btrfs_release_path(path);
a09a0a70 2361 path->leave_spinning = 0;
38c227d8
LB
2362 btrfs_end_transaction(trans, root);
2363out_unlock:
2364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2365 &cached, GFP_NOFS);
2366 iput(inode);
2367 return ret;
2368}
2369
2370static void relink_file_extents(struct new_sa_defrag_extent *new)
2371{
2372 struct btrfs_path *path;
2373 struct old_sa_defrag_extent *old, *tmp;
2374 struct sa_defrag_extent_backref *backref;
2375 struct sa_defrag_extent_backref *prev = NULL;
2376 struct inode *inode;
2377 struct btrfs_root *root;
2378 struct rb_node *node;
2379 int ret;
2380
2381 inode = new->inode;
2382 root = BTRFS_I(inode)->root;
2383
2384 path = btrfs_alloc_path();
2385 if (!path)
2386 return;
2387
2388 if (!record_extent_backrefs(path, new)) {
2389 btrfs_free_path(path);
2390 goto out;
2391 }
2392 btrfs_release_path(path);
2393
2394 while (1) {
2395 node = rb_first(&new->root);
2396 if (!node)
2397 break;
2398 rb_erase(node, &new->root);
2399
2400 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2401
2402 ret = relink_extent_backref(path, prev, backref);
2403 WARN_ON(ret < 0);
2404
2405 kfree(prev);
2406
2407 if (ret == 1)
2408 prev = backref;
2409 else
2410 prev = NULL;
2411 cond_resched();
2412 }
2413 kfree(prev);
2414
2415 btrfs_free_path(path);
2416
2417 list_for_each_entry_safe(old, tmp, &new->head, list) {
2418 list_del(&old->list);
2419 kfree(old);
2420 }
2421out:
2422 atomic_dec(&root->fs_info->defrag_running);
2423 wake_up(&root->fs_info->transaction_wait);
2424
2425 kfree(new);
2426}
2427
2428static struct new_sa_defrag_extent *
2429record_old_file_extents(struct inode *inode,
2430 struct btrfs_ordered_extent *ordered)
2431{
2432 struct btrfs_root *root = BTRFS_I(inode)->root;
2433 struct btrfs_path *path;
2434 struct btrfs_key key;
2435 struct old_sa_defrag_extent *old, *tmp;
2436 struct new_sa_defrag_extent *new;
2437 int ret;
2438
2439 new = kmalloc(sizeof(*new), GFP_NOFS);
2440 if (!new)
2441 return NULL;
2442
2443 new->inode = inode;
2444 new->file_pos = ordered->file_offset;
2445 new->len = ordered->len;
2446 new->bytenr = ordered->start;
2447 new->disk_len = ordered->disk_len;
2448 new->compress_type = ordered->compress_type;
2449 new->root = RB_ROOT;
2450 INIT_LIST_HEAD(&new->head);
2451
2452 path = btrfs_alloc_path();
2453 if (!path)
2454 goto out_kfree;
2455
2456 key.objectid = btrfs_ino(inode);
2457 key.type = BTRFS_EXTENT_DATA_KEY;
2458 key.offset = new->file_pos;
2459
2460 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2461 if (ret < 0)
2462 goto out_free_path;
2463 if (ret > 0 && path->slots[0] > 0)
2464 path->slots[0]--;
2465
2466 /* find out all the old extents for the file range */
2467 while (1) {
2468 struct btrfs_file_extent_item *extent;
2469 struct extent_buffer *l;
2470 int slot;
2471 u64 num_bytes;
2472 u64 offset;
2473 u64 end;
2474 u64 disk_bytenr;
2475 u64 extent_offset;
2476
2477 l = path->nodes[0];
2478 slot = path->slots[0];
2479
2480 if (slot >= btrfs_header_nritems(l)) {
2481 ret = btrfs_next_leaf(root, path);
2482 if (ret < 0)
2483 goto out_free_list;
2484 else if (ret > 0)
2485 break;
2486 continue;
2487 }
2488
2489 btrfs_item_key_to_cpu(l, &key, slot);
2490
2491 if (key.objectid != btrfs_ino(inode))
2492 break;
2493 if (key.type != BTRFS_EXTENT_DATA_KEY)
2494 break;
2495 if (key.offset >= new->file_pos + new->len)
2496 break;
2497
2498 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2499
2500 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2501 if (key.offset + num_bytes < new->file_pos)
2502 goto next;
2503
2504 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2505 if (!disk_bytenr)
2506 goto next;
2507
2508 extent_offset = btrfs_file_extent_offset(l, extent);
2509
2510 old = kmalloc(sizeof(*old), GFP_NOFS);
2511 if (!old)
2512 goto out_free_list;
2513
2514 offset = max(new->file_pos, key.offset);
2515 end = min(new->file_pos + new->len, key.offset + num_bytes);
2516
2517 old->bytenr = disk_bytenr;
2518 old->extent_offset = extent_offset;
2519 old->offset = offset - key.offset;
2520 old->len = end - offset;
2521 old->new = new;
2522 old->count = 0;
2523 list_add_tail(&old->list, &new->head);
2524next:
2525 path->slots[0]++;
2526 cond_resched();
2527 }
2528
2529 btrfs_free_path(path);
2530 atomic_inc(&root->fs_info->defrag_running);
2531
2532 return new;
2533
2534out_free_list:
2535 list_for_each_entry_safe(old, tmp, &new->head, list) {
2536 list_del(&old->list);
2537 kfree(old);
2538 }
2539out_free_path:
2540 btrfs_free_path(path);
2541out_kfree:
2542 kfree(new);
2543 return NULL;
2544}
2545
5d13a98f
CM
2546/*
2547 * helper function for btrfs_finish_ordered_io, this
2548 * just reads in some of the csum leaves to prime them into ram
2549 * before we start the transaction. It limits the amount of btree
2550 * reads required while inside the transaction.
2551 */
d352ac68
CM
2552/* as ordered data IO finishes, this gets called so we can finish
2553 * an ordered extent if the range of bytes in the file it covers are
2554 * fully written.
2555 */
5fd02043 2556static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2557{
5fd02043 2558 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2559 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2560 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2561 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2562 struct extent_state *cached_state = NULL;
38c227d8 2563 struct new_sa_defrag_extent *new = NULL;
261507a0 2564 int compress_type = 0;
e6dcd2dc 2565 int ret;
82d5902d 2566 bool nolock;
e6dcd2dc 2567
83eea1f1 2568 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2569
5fd02043
JB
2570 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2571 ret = -EIO;
2572 goto out;
2573 }
2574
c2167754 2575 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2576 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2577 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2578 if (nolock)
2579 trans = btrfs_join_transaction_nolock(root);
2580 else
2581 trans = btrfs_join_transaction(root);
2582 if (IS_ERR(trans)) {
2583 ret = PTR_ERR(trans);
2584 trans = NULL;
2585 goto out;
c2167754 2586 }
6c760c07
JB
2587 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2588 ret = btrfs_update_inode_fallback(trans, root, inode);
2589 if (ret) /* -ENOMEM or corruption */
2590 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2591 goto out;
2592 }
e6dcd2dc 2593
2ac55d41
JB
2594 lock_extent_bits(io_tree, ordered_extent->file_offset,
2595 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2596 0, &cached_state);
e6dcd2dc 2597
38c227d8
LB
2598 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2599 ordered_extent->file_offset + ordered_extent->len - 1,
2600 EXTENT_DEFRAG, 1, cached_state);
2601 if (ret) {
2602 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2603 if (last_snapshot >= BTRFS_I(inode)->generation)
2604 /* the inode is shared */
2605 new = record_old_file_extents(inode, ordered_extent);
2606
2607 clear_extent_bit(io_tree, ordered_extent->file_offset,
2608 ordered_extent->file_offset + ordered_extent->len - 1,
2609 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2610 }
2611
0cb59c99 2612 if (nolock)
7a7eaa40 2613 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2614 else
7a7eaa40 2615 trans = btrfs_join_transaction(root);
79787eaa
JM
2616 if (IS_ERR(trans)) {
2617 ret = PTR_ERR(trans);
2618 trans = NULL;
2619 goto out_unlock;
2620 }
0ca1f7ce 2621 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2622
c8b97818 2623 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2624 compress_type = ordered_extent->compress_type;
d899e052 2625 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2626 BUG_ON(compress_type);
920bbbfb 2627 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2628 ordered_extent->file_offset,
2629 ordered_extent->file_offset +
2630 ordered_extent->len);
d899e052 2631 } else {
0af3d00b 2632 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2633 ret = insert_reserved_file_extent(trans, inode,
2634 ordered_extent->file_offset,
2635 ordered_extent->start,
2636 ordered_extent->disk_len,
2637 ordered_extent->len,
2638 ordered_extent->len,
261507a0 2639 compress_type, 0, 0,
d899e052 2640 BTRFS_FILE_EXTENT_REG);
d899e052 2641 }
5dc562c5
JB
2642 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2643 ordered_extent->file_offset, ordered_extent->len,
2644 trans->transid);
79787eaa
JM
2645 if (ret < 0) {
2646 btrfs_abort_transaction(trans, root, ret);
5fd02043 2647 goto out_unlock;
79787eaa 2648 }
2ac55d41 2649
e6dcd2dc
CM
2650 add_pending_csums(trans, inode, ordered_extent->file_offset,
2651 &ordered_extent->list);
2652
6c760c07
JB
2653 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2654 ret = btrfs_update_inode_fallback(trans, root, inode);
2655 if (ret) { /* -ENOMEM or corruption */
2656 btrfs_abort_transaction(trans, root, ret);
2657 goto out_unlock;
1ef30be1
JB
2658 }
2659 ret = 0;
5fd02043
JB
2660out_unlock:
2661 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2662 ordered_extent->file_offset +
2663 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2664out:
5b0e95bf 2665 if (root != root->fs_info->tree_root)
0cb59c99 2666 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2667 if (trans)
2668 btrfs_end_transaction(trans, root);
0cb59c99 2669
0bec9ef5 2670 if (ret) {
5fd02043
JB
2671 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2672 ordered_extent->file_offset +
2673 ordered_extent->len - 1, NULL, GFP_NOFS);
2674
0bec9ef5
JB
2675 /*
2676 * If the ordered extent had an IOERR or something else went
2677 * wrong we need to return the space for this ordered extent
2678 * back to the allocator.
2679 */
2680 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2681 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2682 btrfs_free_reserved_extent(root, ordered_extent->start,
2683 ordered_extent->disk_len);
2684 }
2685
2686
5fd02043 2687 /*
8bad3c02
LB
2688 * This needs to be done to make sure anybody waiting knows we are done
2689 * updating everything for this ordered extent.
5fd02043
JB
2690 */
2691 btrfs_remove_ordered_extent(inode, ordered_extent);
2692
38c227d8
LB
2693 /* for snapshot-aware defrag */
2694 if (new)
2695 relink_file_extents(new);
2696
e6dcd2dc
CM
2697 /* once for us */
2698 btrfs_put_ordered_extent(ordered_extent);
2699 /* once for the tree */
2700 btrfs_put_ordered_extent(ordered_extent);
2701
5fd02043
JB
2702 return ret;
2703}
2704
2705static void finish_ordered_fn(struct btrfs_work *work)
2706{
2707 struct btrfs_ordered_extent *ordered_extent;
2708 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2709 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2710}
2711
b2950863 2712static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2713 struct extent_state *state, int uptodate)
2714{
5fd02043
JB
2715 struct inode *inode = page->mapping->host;
2716 struct btrfs_root *root = BTRFS_I(inode)->root;
2717 struct btrfs_ordered_extent *ordered_extent = NULL;
2718 struct btrfs_workers *workers;
2719
1abe9b8a 2720 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2721
8b62b72b 2722 ClearPagePrivate2(page);
5fd02043
JB
2723 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2724 end - start + 1, uptodate))
2725 return 0;
2726
2727 ordered_extent->work.func = finish_ordered_fn;
2728 ordered_extent->work.flags = 0;
2729
83eea1f1 2730 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2731 workers = &root->fs_info->endio_freespace_worker;
2732 else
2733 workers = &root->fs_info->endio_write_workers;
2734 btrfs_queue_worker(workers, &ordered_extent->work);
2735
2736 return 0;
211f90e6
CM
2737}
2738
d352ac68
CM
2739/*
2740 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2741 * if there's a match, we allow the bio to finish. If not, the code in
2742 * extent_io.c will try to find good copies for us.
d352ac68 2743 */
facc8a22
MX
2744static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2745 u64 phy_offset, struct page *page,
2746 u64 start, u64 end, int mirror)
07157aac 2747{
4eee4fa4 2748 size_t offset = start - page_offset(page);
07157aac 2749 struct inode *inode = page->mapping->host;
d1310b2e 2750 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2751 char *kaddr;
ff79f819 2752 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2753 u32 csum_expected;
ff79f819 2754 u32 csum = ~(u32)0;
c2cf52eb
SK
2755 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2756 DEFAULT_RATELIMIT_BURST);
d1310b2e 2757
d20f7043
CM
2758 if (PageChecked(page)) {
2759 ClearPageChecked(page);
2760 goto good;
2761 }
6cbff00f
CH
2762
2763 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2764 goto good;
17d217fe
YZ
2765
2766 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2767 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2768 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2769 GFP_NOFS);
b6cda9bc 2770 return 0;
17d217fe 2771 }
d20f7043 2772
facc8a22
MX
2773 phy_offset >>= inode->i_sb->s_blocksize_bits;
2774 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2775
facc8a22 2776 kaddr = kmap_atomic(page);
b0496686 2777 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2778 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2779 if (csum != csum_expected)
07157aac 2780 goto zeroit;
d397712b 2781
7ac687d9 2782 kunmap_atomic(kaddr);
d20f7043 2783good:
07157aac
CM
2784 return 0;
2785
2786zeroit:
c2cf52eb 2787 if (__ratelimit(&_rs))
facc8a22 2788 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c2cf52eb 2789 (unsigned long long)btrfs_ino(page->mapping->host),
facc8a22 2790 (unsigned long long)start, csum, csum_expected);
db94535d
CM
2791 memset(kaddr + offset, 1, end - start + 1);
2792 flush_dcache_page(page);
7ac687d9 2793 kunmap_atomic(kaddr);
facc8a22 2794 if (csum_expected == 0)
3b951516 2795 return 0;
7e38326f 2796 return -EIO;
07157aac 2797}
b888db2b 2798
24bbcf04
YZ
2799struct delayed_iput {
2800 struct list_head list;
2801 struct inode *inode;
2802};
2803
79787eaa
JM
2804/* JDM: If this is fs-wide, why can't we add a pointer to
2805 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2806void btrfs_add_delayed_iput(struct inode *inode)
2807{
2808 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2809 struct delayed_iput *delayed;
2810
2811 if (atomic_add_unless(&inode->i_count, -1, 1))
2812 return;
2813
2814 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2815 delayed->inode = inode;
2816
2817 spin_lock(&fs_info->delayed_iput_lock);
2818 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2819 spin_unlock(&fs_info->delayed_iput_lock);
2820}
2821
2822void btrfs_run_delayed_iputs(struct btrfs_root *root)
2823{
2824 LIST_HEAD(list);
2825 struct btrfs_fs_info *fs_info = root->fs_info;
2826 struct delayed_iput *delayed;
2827 int empty;
2828
2829 spin_lock(&fs_info->delayed_iput_lock);
2830 empty = list_empty(&fs_info->delayed_iputs);
2831 spin_unlock(&fs_info->delayed_iput_lock);
2832 if (empty)
2833 return;
2834
24bbcf04
YZ
2835 spin_lock(&fs_info->delayed_iput_lock);
2836 list_splice_init(&fs_info->delayed_iputs, &list);
2837 spin_unlock(&fs_info->delayed_iput_lock);
2838
2839 while (!list_empty(&list)) {
2840 delayed = list_entry(list.next, struct delayed_iput, list);
2841 list_del(&delayed->list);
2842 iput(delayed->inode);
2843 kfree(delayed);
2844 }
24bbcf04
YZ
2845}
2846
d68fc57b 2847/*
42b2aa86 2848 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2849 * files in the subvolume, it removes orphan item and frees block_rsv
2850 * structure.
2851 */
2852void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2853 struct btrfs_root *root)
2854{
90290e19 2855 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2856 int ret;
2857
8a35d95f 2858 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2859 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2860 return;
2861
90290e19 2862 spin_lock(&root->orphan_lock);
8a35d95f 2863 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2864 spin_unlock(&root->orphan_lock);
2865 return;
2866 }
2867
2868 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2869 spin_unlock(&root->orphan_lock);
2870 return;
2871 }
2872
2873 block_rsv = root->orphan_block_rsv;
2874 root->orphan_block_rsv = NULL;
2875 spin_unlock(&root->orphan_lock);
2876
d68fc57b
YZ
2877 if (root->orphan_item_inserted &&
2878 btrfs_root_refs(&root->root_item) > 0) {
2879 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2880 root->root_key.objectid);
4ef31a45
JB
2881 if (ret)
2882 btrfs_abort_transaction(trans, root, ret);
2883 else
2884 root->orphan_item_inserted = 0;
d68fc57b
YZ
2885 }
2886
90290e19
JB
2887 if (block_rsv) {
2888 WARN_ON(block_rsv->size > 0);
2889 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2890 }
2891}
2892
7b128766
JB
2893/*
2894 * This creates an orphan entry for the given inode in case something goes
2895 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2896 *
2897 * NOTE: caller of this function should reserve 5 units of metadata for
2898 * this function.
7b128766
JB
2899 */
2900int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2901{
2902 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2903 struct btrfs_block_rsv *block_rsv = NULL;
2904 int reserve = 0;
2905 int insert = 0;
2906 int ret;
7b128766 2907
d68fc57b 2908 if (!root->orphan_block_rsv) {
66d8f3dd 2909 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2910 if (!block_rsv)
2911 return -ENOMEM;
d68fc57b 2912 }
7b128766 2913
d68fc57b
YZ
2914 spin_lock(&root->orphan_lock);
2915 if (!root->orphan_block_rsv) {
2916 root->orphan_block_rsv = block_rsv;
2917 } else if (block_rsv) {
2918 btrfs_free_block_rsv(root, block_rsv);
2919 block_rsv = NULL;
7b128766 2920 }
7b128766 2921
8a35d95f
JB
2922 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2923 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2924#if 0
2925 /*
2926 * For proper ENOSPC handling, we should do orphan
2927 * cleanup when mounting. But this introduces backward
2928 * compatibility issue.
2929 */
2930 if (!xchg(&root->orphan_item_inserted, 1))
2931 insert = 2;
2932 else
2933 insert = 1;
2934#endif
2935 insert = 1;
321f0e70 2936 atomic_inc(&root->orphan_inodes);
7b128766
JB
2937 }
2938
72ac3c0d
JB
2939 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2940 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2941 reserve = 1;
d68fc57b 2942 spin_unlock(&root->orphan_lock);
7b128766 2943
d68fc57b
YZ
2944 /* grab metadata reservation from transaction handle */
2945 if (reserve) {
2946 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2947 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2948 }
7b128766 2949
d68fc57b
YZ
2950 /* insert an orphan item to track this unlinked/truncated file */
2951 if (insert >= 1) {
33345d01 2952 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2953 if (ret) {
8a35d95f
JB
2954 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2955 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
2956 if (reserve) {
2957 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2958 &BTRFS_I(inode)->runtime_flags);
2959 btrfs_orphan_release_metadata(inode);
2960 }
2961 if (ret != -EEXIST) {
2962 btrfs_abort_transaction(trans, root, ret);
2963 return ret;
2964 }
79787eaa
JM
2965 }
2966 ret = 0;
d68fc57b
YZ
2967 }
2968
2969 /* insert an orphan item to track subvolume contains orphan files */
2970 if (insert >= 2) {
2971 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2972 root->root_key.objectid);
79787eaa
JM
2973 if (ret && ret != -EEXIST) {
2974 btrfs_abort_transaction(trans, root, ret);
2975 return ret;
2976 }
d68fc57b
YZ
2977 }
2978 return 0;
7b128766
JB
2979}
2980
2981/*
2982 * We have done the truncate/delete so we can go ahead and remove the orphan
2983 * item for this particular inode.
2984 */
48a3b636
ES
2985static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2986 struct inode *inode)
7b128766
JB
2987{
2988 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2989 int delete_item = 0;
2990 int release_rsv = 0;
7b128766
JB
2991 int ret = 0;
2992
d68fc57b 2993 spin_lock(&root->orphan_lock);
8a35d95f
JB
2994 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2995 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2996 delete_item = 1;
7b128766 2997
72ac3c0d
JB
2998 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2999 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3000 release_rsv = 1;
d68fc57b 3001 spin_unlock(&root->orphan_lock);
7b128766 3002
4ef31a45 3003 if (trans && delete_item)
33345d01 3004 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
7b128766 3005
8a35d95f 3006 if (release_rsv) {
d68fc57b 3007 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3008 atomic_dec(&root->orphan_inodes);
3009 }
7b128766 3010
4ef31a45 3011 return ret;
7b128766
JB
3012}
3013
3014/*
3015 * this cleans up any orphans that may be left on the list from the last use
3016 * of this root.
3017 */
66b4ffd1 3018int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3019{
3020 struct btrfs_path *path;
3021 struct extent_buffer *leaf;
7b128766
JB
3022 struct btrfs_key key, found_key;
3023 struct btrfs_trans_handle *trans;
3024 struct inode *inode;
8f6d7f4f 3025 u64 last_objectid = 0;
7b128766
JB
3026 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3027
d68fc57b 3028 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3029 return 0;
c71bf099
YZ
3030
3031 path = btrfs_alloc_path();
66b4ffd1
JB
3032 if (!path) {
3033 ret = -ENOMEM;
3034 goto out;
3035 }
7b128766
JB
3036 path->reada = -1;
3037
3038 key.objectid = BTRFS_ORPHAN_OBJECTID;
3039 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3040 key.offset = (u64)-1;
3041
7b128766
JB
3042 while (1) {
3043 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3044 if (ret < 0)
3045 goto out;
7b128766
JB
3046
3047 /*
3048 * if ret == 0 means we found what we were searching for, which
25985edc 3049 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3050 * find the key and see if we have stuff that matches
3051 */
3052 if (ret > 0) {
66b4ffd1 3053 ret = 0;
7b128766
JB
3054 if (path->slots[0] == 0)
3055 break;
3056 path->slots[0]--;
3057 }
3058
3059 /* pull out the item */
3060 leaf = path->nodes[0];
7b128766
JB
3061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3062
3063 /* make sure the item matches what we want */
3064 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3065 break;
3066 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3067 break;
3068
3069 /* release the path since we're done with it */
b3b4aa74 3070 btrfs_release_path(path);
7b128766
JB
3071
3072 /*
3073 * this is where we are basically btrfs_lookup, without the
3074 * crossing root thing. we store the inode number in the
3075 * offset of the orphan item.
3076 */
8f6d7f4f
JB
3077
3078 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3079 btrfs_err(root->fs_info,
3080 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3081 ret = -EINVAL;
3082 goto out;
3083 }
3084
3085 last_objectid = found_key.offset;
3086
5d4f98a2
YZ
3087 found_key.objectid = found_key.offset;
3088 found_key.type = BTRFS_INODE_ITEM_KEY;
3089 found_key.offset = 0;
73f73415 3090 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3091 ret = PTR_RET(inode);
3092 if (ret && ret != -ESTALE)
66b4ffd1 3093 goto out;
7b128766 3094
f8e9e0b0
AJ
3095 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3096 struct btrfs_root *dead_root;
3097 struct btrfs_fs_info *fs_info = root->fs_info;
3098 int is_dead_root = 0;
3099
3100 /*
3101 * this is an orphan in the tree root. Currently these
3102 * could come from 2 sources:
3103 * a) a snapshot deletion in progress
3104 * b) a free space cache inode
3105 * We need to distinguish those two, as the snapshot
3106 * orphan must not get deleted.
3107 * find_dead_roots already ran before us, so if this
3108 * is a snapshot deletion, we should find the root
3109 * in the dead_roots list
3110 */
3111 spin_lock(&fs_info->trans_lock);
3112 list_for_each_entry(dead_root, &fs_info->dead_roots,
3113 root_list) {
3114 if (dead_root->root_key.objectid ==
3115 found_key.objectid) {
3116 is_dead_root = 1;
3117 break;
3118 }
3119 }
3120 spin_unlock(&fs_info->trans_lock);
3121 if (is_dead_root) {
3122 /* prevent this orphan from being found again */
3123 key.offset = found_key.objectid - 1;
3124 continue;
3125 }
3126 }
7b128766 3127 /*
a8c9e576
JB
3128 * Inode is already gone but the orphan item is still there,
3129 * kill the orphan item.
7b128766 3130 */
a8c9e576
JB
3131 if (ret == -ESTALE) {
3132 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3133 if (IS_ERR(trans)) {
3134 ret = PTR_ERR(trans);
3135 goto out;
3136 }
c2cf52eb
SK
3137 btrfs_debug(root->fs_info, "auto deleting %Lu",
3138 found_key.objectid);
a8c9e576
JB
3139 ret = btrfs_del_orphan_item(trans, root,
3140 found_key.objectid);
5b21f2ed 3141 btrfs_end_transaction(trans, root);
4ef31a45
JB
3142 if (ret)
3143 goto out;
7b128766
JB
3144 continue;
3145 }
3146
a8c9e576
JB
3147 /*
3148 * add this inode to the orphan list so btrfs_orphan_del does
3149 * the proper thing when we hit it
3150 */
8a35d95f
JB
3151 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3152 &BTRFS_I(inode)->runtime_flags);
925396ec 3153 atomic_inc(&root->orphan_inodes);
a8c9e576 3154
7b128766
JB
3155 /* if we have links, this was a truncate, lets do that */
3156 if (inode->i_nlink) {
a41ad394
JB
3157 if (!S_ISREG(inode->i_mode)) {
3158 WARN_ON(1);
3159 iput(inode);
3160 continue;
3161 }
7b128766 3162 nr_truncate++;
f3fe820c
JB
3163
3164 /* 1 for the orphan item deletion. */
3165 trans = btrfs_start_transaction(root, 1);
3166 if (IS_ERR(trans)) {
c69b26b0 3167 iput(inode);
f3fe820c
JB
3168 ret = PTR_ERR(trans);
3169 goto out;
3170 }
3171 ret = btrfs_orphan_add(trans, inode);
3172 btrfs_end_transaction(trans, root);
c69b26b0
JB
3173 if (ret) {
3174 iput(inode);
f3fe820c 3175 goto out;
c69b26b0 3176 }
f3fe820c 3177
66b4ffd1 3178 ret = btrfs_truncate(inode);
4a7d0f68
JB
3179 if (ret)
3180 btrfs_orphan_del(NULL, inode);
7b128766
JB
3181 } else {
3182 nr_unlink++;
3183 }
3184
3185 /* this will do delete_inode and everything for us */
3186 iput(inode);
66b4ffd1
JB
3187 if (ret)
3188 goto out;
7b128766 3189 }
3254c876
MX
3190 /* release the path since we're done with it */
3191 btrfs_release_path(path);
3192
d68fc57b
YZ
3193 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3194
3195 if (root->orphan_block_rsv)
3196 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3197 (u64)-1);
3198
3199 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3200 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3201 if (!IS_ERR(trans))
3202 btrfs_end_transaction(trans, root);
d68fc57b 3203 }
7b128766
JB
3204
3205 if (nr_unlink)
4884b476 3206 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3207 if (nr_truncate)
4884b476 3208 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3209
3210out:
3211 if (ret)
c2cf52eb
SK
3212 btrfs_crit(root->fs_info,
3213 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3214 btrfs_free_path(path);
3215 return ret;
7b128766
JB
3216}
3217
46a53cca
CM
3218/*
3219 * very simple check to peek ahead in the leaf looking for xattrs. If we
3220 * don't find any xattrs, we know there can't be any acls.
3221 *
3222 * slot is the slot the inode is in, objectid is the objectid of the inode
3223 */
3224static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3225 int slot, u64 objectid)
3226{
3227 u32 nritems = btrfs_header_nritems(leaf);
3228 struct btrfs_key found_key;
f23b5a59
JB
3229 static u64 xattr_access = 0;
3230 static u64 xattr_default = 0;
46a53cca
CM
3231 int scanned = 0;
3232
f23b5a59
JB
3233 if (!xattr_access) {
3234 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3235 strlen(POSIX_ACL_XATTR_ACCESS));
3236 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3237 strlen(POSIX_ACL_XATTR_DEFAULT));
3238 }
3239
46a53cca
CM
3240 slot++;
3241 while (slot < nritems) {
3242 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3243
3244 /* we found a different objectid, there must not be acls */
3245 if (found_key.objectid != objectid)
3246 return 0;
3247
3248 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3249 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3250 if (found_key.offset == xattr_access ||
3251 found_key.offset == xattr_default)
3252 return 1;
3253 }
46a53cca
CM
3254
3255 /*
3256 * we found a key greater than an xattr key, there can't
3257 * be any acls later on
3258 */
3259 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3260 return 0;
3261
3262 slot++;
3263 scanned++;
3264
3265 /*
3266 * it goes inode, inode backrefs, xattrs, extents,
3267 * so if there are a ton of hard links to an inode there can
3268 * be a lot of backrefs. Don't waste time searching too hard,
3269 * this is just an optimization
3270 */
3271 if (scanned >= 8)
3272 break;
3273 }
3274 /* we hit the end of the leaf before we found an xattr or
3275 * something larger than an xattr. We have to assume the inode
3276 * has acls
3277 */
3278 return 1;
3279}
3280
d352ac68
CM
3281/*
3282 * read an inode from the btree into the in-memory inode
3283 */
5d4f98a2 3284static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3285{
3286 struct btrfs_path *path;
5f39d397 3287 struct extent_buffer *leaf;
39279cc3 3288 struct btrfs_inode_item *inode_item;
0b86a832 3289 struct btrfs_timespec *tspec;
39279cc3
CM
3290 struct btrfs_root *root = BTRFS_I(inode)->root;
3291 struct btrfs_key location;
46a53cca 3292 int maybe_acls;
618e21d5 3293 u32 rdev;
39279cc3 3294 int ret;
2f7e33d4
MX
3295 bool filled = false;
3296
3297 ret = btrfs_fill_inode(inode, &rdev);
3298 if (!ret)
3299 filled = true;
39279cc3
CM
3300
3301 path = btrfs_alloc_path();
1748f843
MF
3302 if (!path)
3303 goto make_bad;
3304
d90c7321 3305 path->leave_spinning = 1;
39279cc3 3306 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3307
39279cc3 3308 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3309 if (ret)
39279cc3 3310 goto make_bad;
39279cc3 3311
5f39d397 3312 leaf = path->nodes[0];
2f7e33d4
MX
3313
3314 if (filled)
3315 goto cache_acl;
3316
5f39d397
CM
3317 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3318 struct btrfs_inode_item);
5f39d397 3319 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3320 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3321 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3322 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3323 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3324
3325 tspec = btrfs_inode_atime(inode_item);
3326 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3327 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3328
3329 tspec = btrfs_inode_mtime(inode_item);
3330 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3331 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3332
3333 tspec = btrfs_inode_ctime(inode_item);
3334 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3335 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3336
a76a3cd4 3337 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3338 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3339 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3340
3341 /*
3342 * If we were modified in the current generation and evicted from memory
3343 * and then re-read we need to do a full sync since we don't have any
3344 * idea about which extents were modified before we were evicted from
3345 * cache.
3346 */
3347 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3348 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3349 &BTRFS_I(inode)->runtime_flags);
3350
0c4d2d95 3351 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3352 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3353 inode->i_rdev = 0;
5f39d397
CM
3354 rdev = btrfs_inode_rdev(leaf, inode_item);
3355
aec7477b 3356 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3357 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3358cache_acl:
46a53cca
CM
3359 /*
3360 * try to precache a NULL acl entry for files that don't have
3361 * any xattrs or acls
3362 */
33345d01
LZ
3363 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3364 btrfs_ino(inode));
72c04902
AV
3365 if (!maybe_acls)
3366 cache_no_acl(inode);
46a53cca 3367
39279cc3 3368 btrfs_free_path(path);
39279cc3 3369
39279cc3 3370 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3371 case S_IFREG:
3372 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3373 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3374 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3375 inode->i_fop = &btrfs_file_operations;
3376 inode->i_op = &btrfs_file_inode_operations;
3377 break;
3378 case S_IFDIR:
3379 inode->i_fop = &btrfs_dir_file_operations;
3380 if (root == root->fs_info->tree_root)
3381 inode->i_op = &btrfs_dir_ro_inode_operations;
3382 else
3383 inode->i_op = &btrfs_dir_inode_operations;
3384 break;
3385 case S_IFLNK:
3386 inode->i_op = &btrfs_symlink_inode_operations;
3387 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3388 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3389 break;
618e21d5 3390 default:
0279b4cd 3391 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3392 init_special_inode(inode, inode->i_mode, rdev);
3393 break;
39279cc3 3394 }
6cbff00f
CH
3395
3396 btrfs_update_iflags(inode);
39279cc3
CM
3397 return;
3398
3399make_bad:
39279cc3 3400 btrfs_free_path(path);
39279cc3
CM
3401 make_bad_inode(inode);
3402}
3403
d352ac68
CM
3404/*
3405 * given a leaf and an inode, copy the inode fields into the leaf
3406 */
e02119d5
CM
3407static void fill_inode_item(struct btrfs_trans_handle *trans,
3408 struct extent_buffer *leaf,
5f39d397 3409 struct btrfs_inode_item *item,
39279cc3
CM
3410 struct inode *inode)
3411{
51fab693
LB
3412 struct btrfs_map_token token;
3413
3414 btrfs_init_map_token(&token);
5f39d397 3415
51fab693
LB
3416 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3417 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3418 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3419 &token);
3420 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3421 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3422
51fab693
LB
3423 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3424 inode->i_atime.tv_sec, &token);
3425 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3426 inode->i_atime.tv_nsec, &token);
5f39d397 3427
51fab693
LB
3428 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3429 inode->i_mtime.tv_sec, &token);
3430 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3431 inode->i_mtime.tv_nsec, &token);
5f39d397 3432
51fab693
LB
3433 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3434 inode->i_ctime.tv_sec, &token);
3435 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3436 inode->i_ctime.tv_nsec, &token);
5f39d397 3437
51fab693
LB
3438 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3439 &token);
3440 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3441 &token);
3442 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3443 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3444 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3445 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3446 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3447}
3448
d352ac68
CM
3449/*
3450 * copy everything in the in-memory inode into the btree.
3451 */
2115133f 3452static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3453 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3454{
3455 struct btrfs_inode_item *inode_item;
3456 struct btrfs_path *path;
5f39d397 3457 struct extent_buffer *leaf;
39279cc3
CM
3458 int ret;
3459
3460 path = btrfs_alloc_path();
16cdcec7
MX
3461 if (!path)
3462 return -ENOMEM;
3463
b9473439 3464 path->leave_spinning = 1;
16cdcec7
MX
3465 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3466 1);
39279cc3
CM
3467 if (ret) {
3468 if (ret > 0)
3469 ret = -ENOENT;
3470 goto failed;
3471 }
3472
b4ce94de 3473 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3474 leaf = path->nodes[0];
3475 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3476 struct btrfs_inode_item);
39279cc3 3477
e02119d5 3478 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3479 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3480 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3481 ret = 0;
3482failed:
39279cc3
CM
3483 btrfs_free_path(path);
3484 return ret;
3485}
3486
2115133f
CM
3487/*
3488 * copy everything in the in-memory inode into the btree.
3489 */
3490noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *root, struct inode *inode)
3492{
3493 int ret;
3494
3495 /*
3496 * If the inode is a free space inode, we can deadlock during commit
3497 * if we put it into the delayed code.
3498 *
3499 * The data relocation inode should also be directly updated
3500 * without delay
3501 */
83eea1f1 3502 if (!btrfs_is_free_space_inode(inode)
2115133f 3503 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3504 btrfs_update_root_times(trans, root);
3505
2115133f
CM
3506 ret = btrfs_delayed_update_inode(trans, root, inode);
3507 if (!ret)
3508 btrfs_set_inode_last_trans(trans, inode);
3509 return ret;
3510 }
3511
3512 return btrfs_update_inode_item(trans, root, inode);
3513}
3514
be6aef60
JB
3515noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3516 struct btrfs_root *root,
3517 struct inode *inode)
2115133f
CM
3518{
3519 int ret;
3520
3521 ret = btrfs_update_inode(trans, root, inode);
3522 if (ret == -ENOSPC)
3523 return btrfs_update_inode_item(trans, root, inode);
3524 return ret;
3525}
3526
d352ac68
CM
3527/*
3528 * unlink helper that gets used here in inode.c and in the tree logging
3529 * recovery code. It remove a link in a directory with a given name, and
3530 * also drops the back refs in the inode to the directory
3531 */
92986796
AV
3532static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3533 struct btrfs_root *root,
3534 struct inode *dir, struct inode *inode,
3535 const char *name, int name_len)
39279cc3
CM
3536{
3537 struct btrfs_path *path;
39279cc3 3538 int ret = 0;
5f39d397 3539 struct extent_buffer *leaf;
39279cc3 3540 struct btrfs_dir_item *di;
5f39d397 3541 struct btrfs_key key;
aec7477b 3542 u64 index;
33345d01
LZ
3543 u64 ino = btrfs_ino(inode);
3544 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3545
3546 path = btrfs_alloc_path();
54aa1f4d
CM
3547 if (!path) {
3548 ret = -ENOMEM;
554233a6 3549 goto out;
54aa1f4d
CM
3550 }
3551
b9473439 3552 path->leave_spinning = 1;
33345d01 3553 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3554 name, name_len, -1);
3555 if (IS_ERR(di)) {
3556 ret = PTR_ERR(di);
3557 goto err;
3558 }
3559 if (!di) {
3560 ret = -ENOENT;
3561 goto err;
3562 }
5f39d397
CM
3563 leaf = path->nodes[0];
3564 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3565 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3566 if (ret)
3567 goto err;
b3b4aa74 3568 btrfs_release_path(path);
39279cc3 3569
33345d01
LZ
3570 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3571 dir_ino, &index);
aec7477b 3572 if (ret) {
c2cf52eb
SK
3573 btrfs_info(root->fs_info,
3574 "failed to delete reference to %.*s, inode %llu parent %llu",
3575 name_len, name,
3576 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3577 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3578 goto err;
3579 }
3580
16cdcec7 3581 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3582 if (ret) {
3583 btrfs_abort_transaction(trans, root, ret);
39279cc3 3584 goto err;
79787eaa 3585 }
39279cc3 3586
e02119d5 3587 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3588 inode, dir_ino);
79787eaa
JM
3589 if (ret != 0 && ret != -ENOENT) {
3590 btrfs_abort_transaction(trans, root, ret);
3591 goto err;
3592 }
e02119d5
CM
3593
3594 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3595 dir, index);
6418c961
CM
3596 if (ret == -ENOENT)
3597 ret = 0;
d4e3991b
ZB
3598 else if (ret)
3599 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3600err:
3601 btrfs_free_path(path);
e02119d5
CM
3602 if (ret)
3603 goto out;
3604
3605 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3606 inode_inc_iversion(inode);
3607 inode_inc_iversion(dir);
e02119d5 3608 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3609 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3610out:
39279cc3
CM
3611 return ret;
3612}
3613
92986796
AV
3614int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3615 struct btrfs_root *root,
3616 struct inode *dir, struct inode *inode,
3617 const char *name, int name_len)
3618{
3619 int ret;
3620 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3621 if (!ret) {
3622 btrfs_drop_nlink(inode);
3623 ret = btrfs_update_inode(trans, root, inode);
3624 }
3625 return ret;
3626}
39279cc3 3627
a22285a6
YZ
3628/*
3629 * helper to start transaction for unlink and rmdir.
3630 *
d52be818
JB
3631 * unlink and rmdir are special in btrfs, they do not always free space, so
3632 * if we cannot make our reservations the normal way try and see if there is
3633 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3634 * allow the unlink to occur.
a22285a6 3635 */
d52be818 3636static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3637{
39279cc3 3638 struct btrfs_trans_handle *trans;
a22285a6 3639 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3640 int ret;
3641
e70bea5f
JB
3642 /*
3643 * 1 for the possible orphan item
3644 * 1 for the dir item
3645 * 1 for the dir index
3646 * 1 for the inode ref
e70bea5f
JB
3647 * 1 for the inode
3648 */
6e137ed3 3649 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3650 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3651 return trans;
4df27c4d 3652
d52be818
JB
3653 if (PTR_ERR(trans) == -ENOSPC) {
3654 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3655
d52be818
JB
3656 trans = btrfs_start_transaction(root, 0);
3657 if (IS_ERR(trans))
3658 return trans;
3659 ret = btrfs_cond_migrate_bytes(root->fs_info,
3660 &root->fs_info->trans_block_rsv,
3661 num_bytes, 5);
3662 if (ret) {
3663 btrfs_end_transaction(trans, root);
3664 return ERR_PTR(ret);
a22285a6 3665 }
5a77d76c 3666 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3667 trans->bytes_reserved = num_bytes;
a22285a6 3668 }
d52be818 3669 return trans;
a22285a6
YZ
3670}
3671
3672static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3673{
3674 struct btrfs_root *root = BTRFS_I(dir)->root;
3675 struct btrfs_trans_handle *trans;
3676 struct inode *inode = dentry->d_inode;
3677 int ret;
a22285a6 3678
d52be818 3679 trans = __unlink_start_trans(dir);
a22285a6
YZ
3680 if (IS_ERR(trans))
3681 return PTR_ERR(trans);
5f39d397 3682
12fcfd22
CM
3683 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3684
e02119d5
CM
3685 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3686 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3687 if (ret)
3688 goto out;
7b128766 3689
a22285a6 3690 if (inode->i_nlink == 0) {
7b128766 3691 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3692 if (ret)
3693 goto out;
a22285a6 3694 }
7b128766 3695
b532402e 3696out:
d52be818 3697 btrfs_end_transaction(trans, root);
b53d3f5d 3698 btrfs_btree_balance_dirty(root);
39279cc3
CM
3699 return ret;
3700}
3701
4df27c4d
YZ
3702int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3703 struct btrfs_root *root,
3704 struct inode *dir, u64 objectid,
3705 const char *name, int name_len)
3706{
3707 struct btrfs_path *path;
3708 struct extent_buffer *leaf;
3709 struct btrfs_dir_item *di;
3710 struct btrfs_key key;
3711 u64 index;
3712 int ret;
33345d01 3713 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3714
3715 path = btrfs_alloc_path();
3716 if (!path)
3717 return -ENOMEM;
3718
33345d01 3719 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3720 name, name_len, -1);
79787eaa
JM
3721 if (IS_ERR_OR_NULL(di)) {
3722 if (!di)
3723 ret = -ENOENT;
3724 else
3725 ret = PTR_ERR(di);
3726 goto out;
3727 }
4df27c4d
YZ
3728
3729 leaf = path->nodes[0];
3730 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3731 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3732 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3733 if (ret) {
3734 btrfs_abort_transaction(trans, root, ret);
3735 goto out;
3736 }
b3b4aa74 3737 btrfs_release_path(path);
4df27c4d
YZ
3738
3739 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3740 objectid, root->root_key.objectid,
33345d01 3741 dir_ino, &index, name, name_len);
4df27c4d 3742 if (ret < 0) {
79787eaa
JM
3743 if (ret != -ENOENT) {
3744 btrfs_abort_transaction(trans, root, ret);
3745 goto out;
3746 }
33345d01 3747 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3748 name, name_len);
79787eaa
JM
3749 if (IS_ERR_OR_NULL(di)) {
3750 if (!di)
3751 ret = -ENOENT;
3752 else
3753 ret = PTR_ERR(di);
3754 btrfs_abort_transaction(trans, root, ret);
3755 goto out;
3756 }
4df27c4d
YZ
3757
3758 leaf = path->nodes[0];
3759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3760 btrfs_release_path(path);
4df27c4d
YZ
3761 index = key.offset;
3762 }
945d8962 3763 btrfs_release_path(path);
4df27c4d 3764
16cdcec7 3765 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3766 if (ret) {
3767 btrfs_abort_transaction(trans, root, ret);
3768 goto out;
3769 }
4df27c4d
YZ
3770
3771 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3772 inode_inc_iversion(dir);
4df27c4d 3773 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3774 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3775 if (ret)
3776 btrfs_abort_transaction(trans, root, ret);
3777out:
71d7aed0 3778 btrfs_free_path(path);
79787eaa 3779 return ret;
4df27c4d
YZ
3780}
3781
39279cc3
CM
3782static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3783{
3784 struct inode *inode = dentry->d_inode;
1832a6d5 3785 int err = 0;
39279cc3 3786 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3787 struct btrfs_trans_handle *trans;
39279cc3 3788
b3ae244e 3789 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3790 return -ENOTEMPTY;
b3ae244e
DS
3791 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3792 return -EPERM;
134d4512 3793
d52be818 3794 trans = __unlink_start_trans(dir);
a22285a6 3795 if (IS_ERR(trans))
5df6a9f6 3796 return PTR_ERR(trans);
5df6a9f6 3797
33345d01 3798 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3799 err = btrfs_unlink_subvol(trans, root, dir,
3800 BTRFS_I(inode)->location.objectid,
3801 dentry->d_name.name,
3802 dentry->d_name.len);
3803 goto out;
3804 }
3805
7b128766
JB
3806 err = btrfs_orphan_add(trans, inode);
3807 if (err)
4df27c4d 3808 goto out;
7b128766 3809
39279cc3 3810 /* now the directory is empty */
e02119d5
CM
3811 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3812 dentry->d_name.name, dentry->d_name.len);
d397712b 3813 if (!err)
dbe674a9 3814 btrfs_i_size_write(inode, 0);
4df27c4d 3815out:
d52be818 3816 btrfs_end_transaction(trans, root);
b53d3f5d 3817 btrfs_btree_balance_dirty(root);
3954401f 3818
39279cc3
CM
3819 return err;
3820}
3821
39279cc3
CM
3822/*
3823 * this can truncate away extent items, csum items and directory items.
3824 * It starts at a high offset and removes keys until it can't find
d352ac68 3825 * any higher than new_size
39279cc3
CM
3826 *
3827 * csum items that cross the new i_size are truncated to the new size
3828 * as well.
7b128766
JB
3829 *
3830 * min_type is the minimum key type to truncate down to. If set to 0, this
3831 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3832 */
8082510e
YZ
3833int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3834 struct btrfs_root *root,
3835 struct inode *inode,
3836 u64 new_size, u32 min_type)
39279cc3 3837{
39279cc3 3838 struct btrfs_path *path;
5f39d397 3839 struct extent_buffer *leaf;
39279cc3 3840 struct btrfs_file_extent_item *fi;
8082510e
YZ
3841 struct btrfs_key key;
3842 struct btrfs_key found_key;
39279cc3 3843 u64 extent_start = 0;
db94535d 3844 u64 extent_num_bytes = 0;
5d4f98a2 3845 u64 extent_offset = 0;
39279cc3 3846 u64 item_end = 0;
8082510e 3847 u32 found_type = (u8)-1;
39279cc3
CM
3848 int found_extent;
3849 int del_item;
85e21bac
CM
3850 int pending_del_nr = 0;
3851 int pending_del_slot = 0;
179e29e4 3852 int extent_type = -1;
8082510e
YZ
3853 int ret;
3854 int err = 0;
33345d01 3855 u64 ino = btrfs_ino(inode);
8082510e
YZ
3856
3857 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3858
0eb0e19c
MF
3859 path = btrfs_alloc_path();
3860 if (!path)
3861 return -ENOMEM;
3862 path->reada = -1;
3863
5dc562c5
JB
3864 /*
3865 * We want to drop from the next block forward in case this new size is
3866 * not block aligned since we will be keeping the last block of the
3867 * extent just the way it is.
3868 */
0af3d00b 3869 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3870 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3871 root->sectorsize), (u64)-1, 0);
8082510e 3872
16cdcec7
MX
3873 /*
3874 * This function is also used to drop the items in the log tree before
3875 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3876 * it is used to drop the loged items. So we shouldn't kill the delayed
3877 * items.
3878 */
3879 if (min_type == 0 && root == BTRFS_I(inode)->root)
3880 btrfs_kill_delayed_inode_items(inode);
3881
33345d01 3882 key.objectid = ino;
39279cc3 3883 key.offset = (u64)-1;
5f39d397
CM
3884 key.type = (u8)-1;
3885
85e21bac 3886search_again:
b9473439 3887 path->leave_spinning = 1;
85e21bac 3888 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3889 if (ret < 0) {
3890 err = ret;
3891 goto out;
3892 }
d397712b 3893
85e21bac 3894 if (ret > 0) {
e02119d5
CM
3895 /* there are no items in the tree for us to truncate, we're
3896 * done
3897 */
8082510e
YZ
3898 if (path->slots[0] == 0)
3899 goto out;
85e21bac
CM
3900 path->slots[0]--;
3901 }
3902
d397712b 3903 while (1) {
39279cc3 3904 fi = NULL;
5f39d397
CM
3905 leaf = path->nodes[0];
3906 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3907 found_type = btrfs_key_type(&found_key);
39279cc3 3908
33345d01 3909 if (found_key.objectid != ino)
39279cc3 3910 break;
5f39d397 3911
85e21bac 3912 if (found_type < min_type)
39279cc3
CM
3913 break;
3914
5f39d397 3915 item_end = found_key.offset;
39279cc3 3916 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3917 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3918 struct btrfs_file_extent_item);
179e29e4
CM
3919 extent_type = btrfs_file_extent_type(leaf, fi);
3920 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3921 item_end +=
db94535d 3922 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3923 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3924 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3925 fi);
39279cc3 3926 }
008630c1 3927 item_end--;
39279cc3 3928 }
8082510e
YZ
3929 if (found_type > min_type) {
3930 del_item = 1;
3931 } else {
3932 if (item_end < new_size)
b888db2b 3933 break;
8082510e
YZ
3934 if (found_key.offset >= new_size)
3935 del_item = 1;
3936 else
3937 del_item = 0;
39279cc3 3938 }
39279cc3 3939 found_extent = 0;
39279cc3 3940 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3941 if (found_type != BTRFS_EXTENT_DATA_KEY)
3942 goto delete;
3943
3944 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3945 u64 num_dec;
db94535d 3946 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3947 if (!del_item) {
db94535d
CM
3948 u64 orig_num_bytes =
3949 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
3950 extent_num_bytes = ALIGN(new_size -
3951 found_key.offset,
3952 root->sectorsize);
db94535d
CM
3953 btrfs_set_file_extent_num_bytes(leaf, fi,
3954 extent_num_bytes);
3955 num_dec = (orig_num_bytes -
9069218d 3956 extent_num_bytes);
e02119d5 3957 if (root->ref_cows && extent_start != 0)
a76a3cd4 3958 inode_sub_bytes(inode, num_dec);
5f39d397 3959 btrfs_mark_buffer_dirty(leaf);
39279cc3 3960 } else {
db94535d
CM
3961 extent_num_bytes =
3962 btrfs_file_extent_disk_num_bytes(leaf,
3963 fi);
5d4f98a2
YZ
3964 extent_offset = found_key.offset -
3965 btrfs_file_extent_offset(leaf, fi);
3966
39279cc3 3967 /* FIXME blocksize != 4096 */
9069218d 3968 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3969 if (extent_start != 0) {
3970 found_extent = 1;
e02119d5 3971 if (root->ref_cows)
a76a3cd4 3972 inode_sub_bytes(inode, num_dec);
e02119d5 3973 }
39279cc3 3974 }
9069218d 3975 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3976 /*
3977 * we can't truncate inline items that have had
3978 * special encodings
3979 */
3980 if (!del_item &&
3981 btrfs_file_extent_compression(leaf, fi) == 0 &&
3982 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3983 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3984 u32 size = new_size - found_key.offset;
3985
3986 if (root->ref_cows) {
a76a3cd4
YZ
3987 inode_sub_bytes(inode, item_end + 1 -
3988 new_size);
e02119d5
CM
3989 }
3990 size =
3991 btrfs_file_extent_calc_inline_size(size);
afe5fea7 3992 btrfs_truncate_item(root, path, size, 1);
e02119d5 3993 } else if (root->ref_cows) {
a76a3cd4
YZ
3994 inode_sub_bytes(inode, item_end + 1 -
3995 found_key.offset);
9069218d 3996 }
39279cc3 3997 }
179e29e4 3998delete:
39279cc3 3999 if (del_item) {
85e21bac
CM
4000 if (!pending_del_nr) {
4001 /* no pending yet, add ourselves */
4002 pending_del_slot = path->slots[0];
4003 pending_del_nr = 1;
4004 } else if (pending_del_nr &&
4005 path->slots[0] + 1 == pending_del_slot) {
4006 /* hop on the pending chunk */
4007 pending_del_nr++;
4008 pending_del_slot = path->slots[0];
4009 } else {
d397712b 4010 BUG();
85e21bac 4011 }
39279cc3
CM
4012 } else {
4013 break;
4014 }
0af3d00b
JB
4015 if (found_extent && (root->ref_cows ||
4016 root == root->fs_info->tree_root)) {
b9473439 4017 btrfs_set_path_blocking(path);
39279cc3 4018 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4019 extent_num_bytes, 0,
4020 btrfs_header_owner(leaf),
66d7e7f0 4021 ino, extent_offset, 0);
39279cc3
CM
4022 BUG_ON(ret);
4023 }
85e21bac 4024
8082510e
YZ
4025 if (found_type == BTRFS_INODE_ITEM_KEY)
4026 break;
4027
4028 if (path->slots[0] == 0 ||
4029 path->slots[0] != pending_del_slot) {
8082510e
YZ
4030 if (pending_del_nr) {
4031 ret = btrfs_del_items(trans, root, path,
4032 pending_del_slot,
4033 pending_del_nr);
79787eaa
JM
4034 if (ret) {
4035 btrfs_abort_transaction(trans,
4036 root, ret);
4037 goto error;
4038 }
8082510e
YZ
4039 pending_del_nr = 0;
4040 }
b3b4aa74 4041 btrfs_release_path(path);
85e21bac 4042 goto search_again;
8082510e
YZ
4043 } else {
4044 path->slots[0]--;
85e21bac 4045 }
39279cc3 4046 }
8082510e 4047out:
85e21bac
CM
4048 if (pending_del_nr) {
4049 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4050 pending_del_nr);
79787eaa
JM
4051 if (ret)
4052 btrfs_abort_transaction(trans, root, ret);
85e21bac 4053 }
79787eaa 4054error:
39279cc3 4055 btrfs_free_path(path);
8082510e 4056 return err;
39279cc3
CM
4057}
4058
4059/*
2aaa6655
JB
4060 * btrfs_truncate_page - read, zero a chunk and write a page
4061 * @inode - inode that we're zeroing
4062 * @from - the offset to start zeroing
4063 * @len - the length to zero, 0 to zero the entire range respective to the
4064 * offset
4065 * @front - zero up to the offset instead of from the offset on
4066 *
4067 * This will find the page for the "from" offset and cow the page and zero the
4068 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4069 */
2aaa6655
JB
4070int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4071 int front)
39279cc3 4072{
2aaa6655 4073 struct address_space *mapping = inode->i_mapping;
db94535d 4074 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4075 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4076 struct btrfs_ordered_extent *ordered;
2ac55d41 4077 struct extent_state *cached_state = NULL;
e6dcd2dc 4078 char *kaddr;
db94535d 4079 u32 blocksize = root->sectorsize;
39279cc3
CM
4080 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4081 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4082 struct page *page;
3b16a4e3 4083 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4084 int ret = 0;
a52d9a80 4085 u64 page_start;
e6dcd2dc 4086 u64 page_end;
39279cc3 4087
2aaa6655
JB
4088 if ((offset & (blocksize - 1)) == 0 &&
4089 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4090 goto out;
0ca1f7ce 4091 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4092 if (ret)
4093 goto out;
39279cc3 4094
211c17f5 4095again:
3b16a4e3 4096 page = find_or_create_page(mapping, index, mask);
5d5e103a 4097 if (!page) {
0ca1f7ce 4098 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4099 ret = -ENOMEM;
39279cc3 4100 goto out;
5d5e103a 4101 }
e6dcd2dc
CM
4102
4103 page_start = page_offset(page);
4104 page_end = page_start + PAGE_CACHE_SIZE - 1;
4105
39279cc3 4106 if (!PageUptodate(page)) {
9ebefb18 4107 ret = btrfs_readpage(NULL, page);
39279cc3 4108 lock_page(page);
211c17f5
CM
4109 if (page->mapping != mapping) {
4110 unlock_page(page);
4111 page_cache_release(page);
4112 goto again;
4113 }
39279cc3
CM
4114 if (!PageUptodate(page)) {
4115 ret = -EIO;
89642229 4116 goto out_unlock;
39279cc3
CM
4117 }
4118 }
211c17f5 4119 wait_on_page_writeback(page);
e6dcd2dc 4120
d0082371 4121 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4122 set_page_extent_mapped(page);
4123
4124 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4125 if (ordered) {
2ac55d41
JB
4126 unlock_extent_cached(io_tree, page_start, page_end,
4127 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4128 unlock_page(page);
4129 page_cache_release(page);
eb84ae03 4130 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4131 btrfs_put_ordered_extent(ordered);
4132 goto again;
4133 }
4134
2ac55d41 4135 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4136 EXTENT_DIRTY | EXTENT_DELALLOC |
4137 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4138 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4139
2ac55d41
JB
4140 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4141 &cached_state);
9ed74f2d 4142 if (ret) {
2ac55d41
JB
4143 unlock_extent_cached(io_tree, page_start, page_end,
4144 &cached_state, GFP_NOFS);
9ed74f2d
JB
4145 goto out_unlock;
4146 }
4147
e6dcd2dc 4148 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4149 if (!len)
4150 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4151 kaddr = kmap(page);
2aaa6655
JB
4152 if (front)
4153 memset(kaddr, 0, offset);
4154 else
4155 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4156 flush_dcache_page(page);
4157 kunmap(page);
4158 }
247e743c 4159 ClearPageChecked(page);
e6dcd2dc 4160 set_page_dirty(page);
2ac55d41
JB
4161 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4162 GFP_NOFS);
39279cc3 4163
89642229 4164out_unlock:
5d5e103a 4165 if (ret)
0ca1f7ce 4166 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4167 unlock_page(page);
4168 page_cache_release(page);
4169out:
4170 return ret;
4171}
4172
695a0d0d
JB
4173/*
4174 * This function puts in dummy file extents for the area we're creating a hole
4175 * for. So if we are truncating this file to a larger size we need to insert
4176 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4177 * the range between oldsize and size
4178 */
a41ad394 4179int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4180{
9036c102
YZ
4181 struct btrfs_trans_handle *trans;
4182 struct btrfs_root *root = BTRFS_I(inode)->root;
4183 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4184 struct extent_map *em = NULL;
2ac55d41 4185 struct extent_state *cached_state = NULL;
5dc562c5 4186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4187 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4188 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4189 u64 last_byte;
4190 u64 cur_offset;
4191 u64 hole_size;
9ed74f2d 4192 int err = 0;
39279cc3 4193
a71754fc
JB
4194 /*
4195 * If our size started in the middle of a page we need to zero out the
4196 * rest of the page before we expand the i_size, otherwise we could
4197 * expose stale data.
4198 */
4199 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4200 if (err)
4201 return err;
4202
9036c102
YZ
4203 if (size <= hole_start)
4204 return 0;
4205
9036c102
YZ
4206 while (1) {
4207 struct btrfs_ordered_extent *ordered;
4208 btrfs_wait_ordered_range(inode, hole_start,
4209 block_end - hole_start);
2ac55d41 4210 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4211 &cached_state);
9036c102
YZ
4212 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4213 if (!ordered)
4214 break;
2ac55d41
JB
4215 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4216 &cached_state, GFP_NOFS);
9036c102
YZ
4217 btrfs_put_ordered_extent(ordered);
4218 }
39279cc3 4219
9036c102
YZ
4220 cur_offset = hole_start;
4221 while (1) {
4222 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4223 block_end - cur_offset, 0);
79787eaa
JM
4224 if (IS_ERR(em)) {
4225 err = PTR_ERR(em);
f2767956 4226 em = NULL;
79787eaa
JM
4227 break;
4228 }
9036c102 4229 last_byte = min(extent_map_end(em), block_end);
fda2832f 4230 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4231 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4232 struct extent_map *hole_em;
9036c102 4233 hole_size = last_byte - cur_offset;
9ed74f2d 4234
3642320e 4235 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4236 if (IS_ERR(trans)) {
4237 err = PTR_ERR(trans);
9ed74f2d 4238 break;
a22285a6 4239 }
8082510e 4240
5dc562c5
JB
4241 err = btrfs_drop_extents(trans, root, inode,
4242 cur_offset,
2671485d 4243 cur_offset + hole_size, 1);
5b397377 4244 if (err) {
79787eaa 4245 btrfs_abort_transaction(trans, root, err);
5b397377 4246 btrfs_end_transaction(trans, root);
3893e33b 4247 break;
5b397377 4248 }
8082510e 4249
9036c102 4250 err = btrfs_insert_file_extent(trans, root,
33345d01 4251 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4252 0, hole_size, 0, hole_size,
4253 0, 0, 0);
5b397377 4254 if (err) {
79787eaa 4255 btrfs_abort_transaction(trans, root, err);
5b397377 4256 btrfs_end_transaction(trans, root);
3893e33b 4257 break;
5b397377 4258 }
8082510e 4259
5dc562c5
JB
4260 btrfs_drop_extent_cache(inode, cur_offset,
4261 cur_offset + hole_size - 1, 0);
4262 hole_em = alloc_extent_map();
4263 if (!hole_em) {
4264 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4265 &BTRFS_I(inode)->runtime_flags);
4266 goto next;
4267 }
4268 hole_em->start = cur_offset;
4269 hole_em->len = hole_size;
4270 hole_em->orig_start = cur_offset;
8082510e 4271
5dc562c5
JB
4272 hole_em->block_start = EXTENT_MAP_HOLE;
4273 hole_em->block_len = 0;
b4939680 4274 hole_em->orig_block_len = 0;
cc95bef6 4275 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4276 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4277 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4278 hole_em->generation = trans->transid;
8082510e 4279
5dc562c5
JB
4280 while (1) {
4281 write_lock(&em_tree->lock);
09a2a8f9 4282 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4283 write_unlock(&em_tree->lock);
4284 if (err != -EEXIST)
4285 break;
4286 btrfs_drop_extent_cache(inode, cur_offset,
4287 cur_offset +
4288 hole_size - 1, 0);
4289 }
4290 free_extent_map(hole_em);
4291next:
3642320e 4292 btrfs_update_inode(trans, root, inode);
8082510e 4293 btrfs_end_transaction(trans, root);
9036c102
YZ
4294 }
4295 free_extent_map(em);
a22285a6 4296 em = NULL;
9036c102 4297 cur_offset = last_byte;
8082510e 4298 if (cur_offset >= block_end)
9036c102
YZ
4299 break;
4300 }
1832a6d5 4301
a22285a6 4302 free_extent_map(em);
2ac55d41
JB
4303 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4304 GFP_NOFS);
9036c102
YZ
4305 return err;
4306}
39279cc3 4307
3972f260 4308static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4309{
f4a2f4c5
MX
4310 struct btrfs_root *root = BTRFS_I(inode)->root;
4311 struct btrfs_trans_handle *trans;
a41ad394 4312 loff_t oldsize = i_size_read(inode);
3972f260
ES
4313 loff_t newsize = attr->ia_size;
4314 int mask = attr->ia_valid;
8082510e
YZ
4315 int ret;
4316
3972f260
ES
4317 /*
4318 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4319 * special case where we need to update the times despite not having
4320 * these flags set. For all other operations the VFS set these flags
4321 * explicitly if it wants a timestamp update.
4322 */
4323 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4324 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4325
a41ad394 4326 if (newsize > oldsize) {
a41ad394
JB
4327 truncate_pagecache(inode, oldsize, newsize);
4328 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4329 if (ret)
8082510e 4330 return ret;
8082510e 4331
f4a2f4c5
MX
4332 trans = btrfs_start_transaction(root, 1);
4333 if (IS_ERR(trans))
4334 return PTR_ERR(trans);
4335
4336 i_size_write(inode, newsize);
4337 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4338 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4339 btrfs_end_transaction(trans, root);
a41ad394 4340 } else {
8082510e 4341
a41ad394
JB
4342 /*
4343 * We're truncating a file that used to have good data down to
4344 * zero. Make sure it gets into the ordered flush list so that
4345 * any new writes get down to disk quickly.
4346 */
4347 if (newsize == 0)
72ac3c0d
JB
4348 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4349 &BTRFS_I(inode)->runtime_flags);
8082510e 4350
f3fe820c
JB
4351 /*
4352 * 1 for the orphan item we're going to add
4353 * 1 for the orphan item deletion.
4354 */
4355 trans = btrfs_start_transaction(root, 2);
4356 if (IS_ERR(trans))
4357 return PTR_ERR(trans);
4358
4359 /*
4360 * We need to do this in case we fail at _any_ point during the
4361 * actual truncate. Once we do the truncate_setsize we could
4362 * invalidate pages which forces any outstanding ordered io to
4363 * be instantly completed which will give us extents that need
4364 * to be truncated. If we fail to get an orphan inode down we
4365 * could have left over extents that were never meant to live,
4366 * so we need to garuntee from this point on that everything
4367 * will be consistent.
4368 */
4369 ret = btrfs_orphan_add(trans, inode);
4370 btrfs_end_transaction(trans, root);
4371 if (ret)
4372 return ret;
4373
a41ad394
JB
4374 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4375 truncate_setsize(inode, newsize);
2e60a51e
MX
4376
4377 /* Disable nonlocked read DIO to avoid the end less truncate */
4378 btrfs_inode_block_unlocked_dio(inode);
4379 inode_dio_wait(inode);
4380 btrfs_inode_resume_unlocked_dio(inode);
4381
a41ad394 4382 ret = btrfs_truncate(inode);
f3fe820c
JB
4383 if (ret && inode->i_nlink)
4384 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4385 }
4386
a41ad394 4387 return ret;
8082510e
YZ
4388}
4389
9036c102
YZ
4390static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4391{
4392 struct inode *inode = dentry->d_inode;
b83cc969 4393 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4394 int err;
39279cc3 4395
b83cc969
LZ
4396 if (btrfs_root_readonly(root))
4397 return -EROFS;
4398
9036c102
YZ
4399 err = inode_change_ok(inode, attr);
4400 if (err)
4401 return err;
2bf5a725 4402
5a3f23d5 4403 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4404 err = btrfs_setsize(inode, attr);
8082510e
YZ
4405 if (err)
4406 return err;
39279cc3 4407 }
9036c102 4408
1025774c
CH
4409 if (attr->ia_valid) {
4410 setattr_copy(inode, attr);
0c4d2d95 4411 inode_inc_iversion(inode);
22c44fe6 4412 err = btrfs_dirty_inode(inode);
1025774c 4413
22c44fe6 4414 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4415 err = btrfs_acl_chmod(inode);
4416 }
33268eaf 4417
39279cc3
CM
4418 return err;
4419}
61295eb8 4420
bd555975 4421void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4422{
4423 struct btrfs_trans_handle *trans;
4424 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4425 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4426 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4427 int ret;
4428
1abe9b8a 4429 trace_btrfs_inode_evict(inode);
4430
39279cc3 4431 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4432 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4433 btrfs_is_free_space_inode(inode)))
bd555975
AV
4434 goto no_delete;
4435
39279cc3 4436 if (is_bad_inode(inode)) {
7b128766 4437 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4438 goto no_delete;
4439 }
bd555975 4440 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4441 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4442
c71bf099 4443 if (root->fs_info->log_root_recovering) {
6bf02314 4444 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4445 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4446 goto no_delete;
4447 }
4448
76dda93c
YZ
4449 if (inode->i_nlink > 0) {
4450 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4451 goto no_delete;
4452 }
4453
0e8c36a9
MX
4454 ret = btrfs_commit_inode_delayed_inode(inode);
4455 if (ret) {
4456 btrfs_orphan_del(NULL, inode);
4457 goto no_delete;
4458 }
4459
66d8f3dd 4460 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4461 if (!rsv) {
4462 btrfs_orphan_del(NULL, inode);
4463 goto no_delete;
4464 }
4a338542 4465 rsv->size = min_size;
ca7e70f5 4466 rsv->failfast = 1;
726c35fa 4467 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4468
dbe674a9 4469 btrfs_i_size_write(inode, 0);
5f39d397 4470
4289a667 4471 /*
8407aa46
MX
4472 * This is a bit simpler than btrfs_truncate since we've already
4473 * reserved our space for our orphan item in the unlink, so we just
4474 * need to reserve some slack space in case we add bytes and update
4475 * inode item when doing the truncate.
4289a667 4476 */
8082510e 4477 while (1) {
08e007d2
MX
4478 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4479 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4480
4481 /*
4482 * Try and steal from the global reserve since we will
4483 * likely not use this space anyway, we want to try as
4484 * hard as possible to get this to work.
4485 */
4486 if (ret)
4487 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4488
d68fc57b 4489 if (ret) {
c2cf52eb
SK
4490 btrfs_warn(root->fs_info,
4491 "Could not get space for a delete, will truncate on mount %d",
4492 ret);
4289a667
JB
4493 btrfs_orphan_del(NULL, inode);
4494 btrfs_free_block_rsv(root, rsv);
4495 goto no_delete;
d68fc57b 4496 }
7b128766 4497
0e8c36a9 4498 trans = btrfs_join_transaction(root);
4289a667
JB
4499 if (IS_ERR(trans)) {
4500 btrfs_orphan_del(NULL, inode);
4501 btrfs_free_block_rsv(root, rsv);
4502 goto no_delete;
d68fc57b 4503 }
7b128766 4504
4289a667
JB
4505 trans->block_rsv = rsv;
4506
d68fc57b 4507 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4508 if (ret != -ENOSPC)
8082510e 4509 break;
85e21bac 4510
8407aa46 4511 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4512 btrfs_end_transaction(trans, root);
4513 trans = NULL;
b53d3f5d 4514 btrfs_btree_balance_dirty(root);
8082510e 4515 }
5f39d397 4516
4289a667
JB
4517 btrfs_free_block_rsv(root, rsv);
4518
4ef31a45
JB
4519 /*
4520 * Errors here aren't a big deal, it just means we leave orphan items
4521 * in the tree. They will be cleaned up on the next mount.
4522 */
8082510e 4523 if (ret == 0) {
4289a667 4524 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4525 btrfs_orphan_del(trans, inode);
4526 } else {
4527 btrfs_orphan_del(NULL, inode);
8082510e 4528 }
54aa1f4d 4529
4289a667 4530 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4531 if (!(root == root->fs_info->tree_root ||
4532 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4533 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4534
54aa1f4d 4535 btrfs_end_transaction(trans, root);
b53d3f5d 4536 btrfs_btree_balance_dirty(root);
39279cc3 4537no_delete:
89042e5a 4538 btrfs_remove_delayed_node(inode);
dbd5768f 4539 clear_inode(inode);
8082510e 4540 return;
39279cc3
CM
4541}
4542
4543/*
4544 * this returns the key found in the dir entry in the location pointer.
4545 * If no dir entries were found, location->objectid is 0.
4546 */
4547static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4548 struct btrfs_key *location)
4549{
4550 const char *name = dentry->d_name.name;
4551 int namelen = dentry->d_name.len;
4552 struct btrfs_dir_item *di;
4553 struct btrfs_path *path;
4554 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4555 int ret = 0;
39279cc3
CM
4556
4557 path = btrfs_alloc_path();
d8926bb3
MF
4558 if (!path)
4559 return -ENOMEM;
3954401f 4560
33345d01 4561 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4562 namelen, 0);
0d9f7f3e
Y
4563 if (IS_ERR(di))
4564 ret = PTR_ERR(di);
d397712b 4565
c704005d 4566 if (IS_ERR_OR_NULL(di))
3954401f 4567 goto out_err;
d397712b 4568
5f39d397 4569 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4570out:
39279cc3
CM
4571 btrfs_free_path(path);
4572 return ret;
3954401f
CM
4573out_err:
4574 location->objectid = 0;
4575 goto out;
39279cc3
CM
4576}
4577
4578/*
4579 * when we hit a tree root in a directory, the btrfs part of the inode
4580 * needs to be changed to reflect the root directory of the tree root. This
4581 * is kind of like crossing a mount point.
4582 */
4583static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4584 struct inode *dir,
4585 struct dentry *dentry,
4586 struct btrfs_key *location,
4587 struct btrfs_root **sub_root)
39279cc3 4588{
4df27c4d
YZ
4589 struct btrfs_path *path;
4590 struct btrfs_root *new_root;
4591 struct btrfs_root_ref *ref;
4592 struct extent_buffer *leaf;
4593 int ret;
4594 int err = 0;
39279cc3 4595
4df27c4d
YZ
4596 path = btrfs_alloc_path();
4597 if (!path) {
4598 err = -ENOMEM;
4599 goto out;
4600 }
39279cc3 4601
4df27c4d
YZ
4602 err = -ENOENT;
4603 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4604 BTRFS_I(dir)->root->root_key.objectid,
4605 location->objectid);
4606 if (ret) {
4607 if (ret < 0)
4608 err = ret;
4609 goto out;
4610 }
39279cc3 4611
4df27c4d
YZ
4612 leaf = path->nodes[0];
4613 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4614 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4615 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4616 goto out;
39279cc3 4617
4df27c4d
YZ
4618 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4619 (unsigned long)(ref + 1),
4620 dentry->d_name.len);
4621 if (ret)
4622 goto out;
4623
b3b4aa74 4624 btrfs_release_path(path);
4df27c4d
YZ
4625
4626 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4627 if (IS_ERR(new_root)) {
4628 err = PTR_ERR(new_root);
4629 goto out;
4630 }
4631
4df27c4d
YZ
4632 *sub_root = new_root;
4633 location->objectid = btrfs_root_dirid(&new_root->root_item);
4634 location->type = BTRFS_INODE_ITEM_KEY;
4635 location->offset = 0;
4636 err = 0;
4637out:
4638 btrfs_free_path(path);
4639 return err;
39279cc3
CM
4640}
4641
5d4f98a2
YZ
4642static void inode_tree_add(struct inode *inode)
4643{
4644 struct btrfs_root *root = BTRFS_I(inode)->root;
4645 struct btrfs_inode *entry;
03e860bd
FNP
4646 struct rb_node **p;
4647 struct rb_node *parent;
33345d01 4648 u64 ino = btrfs_ino(inode);
5d4f98a2 4649
1d3382cb 4650 if (inode_unhashed(inode))
76dda93c 4651 return;
e1409cef
MX
4652again:
4653 parent = NULL;
5d4f98a2 4654 spin_lock(&root->inode_lock);
e1409cef 4655 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4656 while (*p) {
4657 parent = *p;
4658 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4659
33345d01 4660 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4661 p = &parent->rb_left;
33345d01 4662 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4663 p = &parent->rb_right;
5d4f98a2
YZ
4664 else {
4665 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4666 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4667 rb_erase(parent, &root->inode_tree);
4668 RB_CLEAR_NODE(parent);
4669 spin_unlock(&root->inode_lock);
4670 goto again;
5d4f98a2
YZ
4671 }
4672 }
4673 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4674 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4675 spin_unlock(&root->inode_lock);
4676}
4677
4678static void inode_tree_del(struct inode *inode)
4679{
4680 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4681 int empty = 0;
5d4f98a2 4682
03e860bd 4683 spin_lock(&root->inode_lock);
5d4f98a2 4684 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4685 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4686 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4687 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4688 }
03e860bd 4689 spin_unlock(&root->inode_lock);
76dda93c 4690
0af3d00b
JB
4691 /*
4692 * Free space cache has inodes in the tree root, but the tree root has a
4693 * root_refs of 0, so this could end up dropping the tree root as a
4694 * snapshot, so we need the extra !root->fs_info->tree_root check to
4695 * make sure we don't drop it.
4696 */
4697 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4698 root != root->fs_info->tree_root) {
76dda93c
YZ
4699 synchronize_srcu(&root->fs_info->subvol_srcu);
4700 spin_lock(&root->inode_lock);
4701 empty = RB_EMPTY_ROOT(&root->inode_tree);
4702 spin_unlock(&root->inode_lock);
4703 if (empty)
4704 btrfs_add_dead_root(root);
4705 }
4706}
4707
143bede5 4708void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4709{
4710 struct rb_node *node;
4711 struct rb_node *prev;
4712 struct btrfs_inode *entry;
4713 struct inode *inode;
4714 u64 objectid = 0;
4715
4716 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4717
4718 spin_lock(&root->inode_lock);
4719again:
4720 node = root->inode_tree.rb_node;
4721 prev = NULL;
4722 while (node) {
4723 prev = node;
4724 entry = rb_entry(node, struct btrfs_inode, rb_node);
4725
33345d01 4726 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4727 node = node->rb_left;
33345d01 4728 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4729 node = node->rb_right;
4730 else
4731 break;
4732 }
4733 if (!node) {
4734 while (prev) {
4735 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4736 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4737 node = prev;
4738 break;
4739 }
4740 prev = rb_next(prev);
4741 }
4742 }
4743 while (node) {
4744 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4745 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4746 inode = igrab(&entry->vfs_inode);
4747 if (inode) {
4748 spin_unlock(&root->inode_lock);
4749 if (atomic_read(&inode->i_count) > 1)
4750 d_prune_aliases(inode);
4751 /*
45321ac5 4752 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4753 * the inode cache when its usage count
4754 * hits zero.
4755 */
4756 iput(inode);
4757 cond_resched();
4758 spin_lock(&root->inode_lock);
4759 goto again;
4760 }
4761
4762 if (cond_resched_lock(&root->inode_lock))
4763 goto again;
4764
4765 node = rb_next(node);
4766 }
4767 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4768}
4769
e02119d5
CM
4770static int btrfs_init_locked_inode(struct inode *inode, void *p)
4771{
4772 struct btrfs_iget_args *args = p;
4773 inode->i_ino = args->ino;
e02119d5 4774 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4775 return 0;
4776}
4777
4778static int btrfs_find_actor(struct inode *inode, void *opaque)
4779{
4780 struct btrfs_iget_args *args = opaque;
33345d01 4781 return args->ino == btrfs_ino(inode) &&
d397712b 4782 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4783}
4784
5d4f98a2
YZ
4785static struct inode *btrfs_iget_locked(struct super_block *s,
4786 u64 objectid,
4787 struct btrfs_root *root)
39279cc3
CM
4788{
4789 struct inode *inode;
4790 struct btrfs_iget_args args;
4791 args.ino = objectid;
4792 args.root = root;
4793
4794 inode = iget5_locked(s, objectid, btrfs_find_actor,
4795 btrfs_init_locked_inode,
4796 (void *)&args);
4797 return inode;
4798}
4799
1a54ef8c
BR
4800/* Get an inode object given its location and corresponding root.
4801 * Returns in *is_new if the inode was read from disk
4802 */
4803struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4804 struct btrfs_root *root, int *new)
1a54ef8c
BR
4805{
4806 struct inode *inode;
4807
4808 inode = btrfs_iget_locked(s, location->objectid, root);
4809 if (!inode)
5d4f98a2 4810 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4811
4812 if (inode->i_state & I_NEW) {
4813 BTRFS_I(inode)->root = root;
4814 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4815 btrfs_read_locked_inode(inode);
1748f843
MF
4816 if (!is_bad_inode(inode)) {
4817 inode_tree_add(inode);
4818 unlock_new_inode(inode);
4819 if (new)
4820 *new = 1;
4821 } else {
e0b6d65b
ST
4822 unlock_new_inode(inode);
4823 iput(inode);
4824 inode = ERR_PTR(-ESTALE);
1748f843
MF
4825 }
4826 }
4827
1a54ef8c
BR
4828 return inode;
4829}
4830
4df27c4d
YZ
4831static struct inode *new_simple_dir(struct super_block *s,
4832 struct btrfs_key *key,
4833 struct btrfs_root *root)
4834{
4835 struct inode *inode = new_inode(s);
4836
4837 if (!inode)
4838 return ERR_PTR(-ENOMEM);
4839
4df27c4d
YZ
4840 BTRFS_I(inode)->root = root;
4841 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4842 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4843
4844 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4845 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4846 inode->i_fop = &simple_dir_operations;
4847 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4848 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4849
4850 return inode;
4851}
4852
3de4586c 4853struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4854{
d397712b 4855 struct inode *inode;
4df27c4d 4856 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4857 struct btrfs_root *sub_root = root;
4858 struct btrfs_key location;
76dda93c 4859 int index;
b4aff1f8 4860 int ret = 0;
39279cc3
CM
4861
4862 if (dentry->d_name.len > BTRFS_NAME_LEN)
4863 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4864
39e3c955 4865 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4866 if (ret < 0)
4867 return ERR_PTR(ret);
5f39d397 4868
4df27c4d
YZ
4869 if (location.objectid == 0)
4870 return NULL;
4871
4872 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4873 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4874 return inode;
4875 }
4876
4877 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4878
76dda93c 4879 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4880 ret = fixup_tree_root_location(root, dir, dentry,
4881 &location, &sub_root);
4882 if (ret < 0) {
4883 if (ret != -ENOENT)
4884 inode = ERR_PTR(ret);
4885 else
4886 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4887 } else {
73f73415 4888 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4889 }
76dda93c
YZ
4890 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4891
34d19bad 4892 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4893 down_read(&root->fs_info->cleanup_work_sem);
4894 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4895 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4896 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4897 if (ret) {
4898 iput(inode);
66b4ffd1 4899 inode = ERR_PTR(ret);
01cd3367 4900 }
c71bf099
YZ
4901 }
4902
3de4586c
CM
4903 return inode;
4904}
4905
fe15ce44 4906static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4907{
4908 struct btrfs_root *root;
848cce0d 4909 struct inode *inode = dentry->d_inode;
76dda93c 4910
848cce0d
LZ
4911 if (!inode && !IS_ROOT(dentry))
4912 inode = dentry->d_parent->d_inode;
76dda93c 4913
848cce0d
LZ
4914 if (inode) {
4915 root = BTRFS_I(inode)->root;
efefb143
YZ
4916 if (btrfs_root_refs(&root->root_item) == 0)
4917 return 1;
848cce0d
LZ
4918
4919 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4920 return 1;
efefb143 4921 }
76dda93c
YZ
4922 return 0;
4923}
4924
b4aff1f8
JB
4925static void btrfs_dentry_release(struct dentry *dentry)
4926{
4927 if (dentry->d_fsdata)
4928 kfree(dentry->d_fsdata);
4929}
4930
3de4586c 4931static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4932 unsigned int flags)
3de4586c 4933{
a66e7cc6
JB
4934 struct dentry *ret;
4935
4936 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4937 return ret;
39279cc3
CM
4938}
4939
16cdcec7 4940unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4941 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4942};
4943
9cdda8d3 4944static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4945{
9cdda8d3 4946 struct inode *inode = file_inode(file);
39279cc3
CM
4947 struct btrfs_root *root = BTRFS_I(inode)->root;
4948 struct btrfs_item *item;
4949 struct btrfs_dir_item *di;
4950 struct btrfs_key key;
5f39d397 4951 struct btrfs_key found_key;
39279cc3 4952 struct btrfs_path *path;
16cdcec7
MX
4953 struct list_head ins_list;
4954 struct list_head del_list;
39279cc3 4955 int ret;
5f39d397 4956 struct extent_buffer *leaf;
39279cc3 4957 int slot;
39279cc3
CM
4958 unsigned char d_type;
4959 int over = 0;
4960 u32 di_cur;
4961 u32 di_total;
4962 u32 di_len;
4963 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4964 char tmp_name[32];
4965 char *name_ptr;
4966 int name_len;
9cdda8d3 4967 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
4968
4969 /* FIXME, use a real flag for deciding about the key type */
4970 if (root->fs_info->tree_root == root)
4971 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4972
9cdda8d3
AV
4973 if (!dir_emit_dots(file, ctx))
4974 return 0;
4975
49593bfa 4976 path = btrfs_alloc_path();
16cdcec7
MX
4977 if (!path)
4978 return -ENOMEM;
ff5714cc 4979
026fd317 4980 path->reada = 1;
49593bfa 4981
16cdcec7
MX
4982 if (key_type == BTRFS_DIR_INDEX_KEY) {
4983 INIT_LIST_HEAD(&ins_list);
4984 INIT_LIST_HEAD(&del_list);
4985 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4986 }
4987
39279cc3 4988 btrfs_set_key_type(&key, key_type);
9cdda8d3 4989 key.offset = ctx->pos;
33345d01 4990 key.objectid = btrfs_ino(inode);
5f39d397 4991
39279cc3
CM
4992 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4993 if (ret < 0)
4994 goto err;
49593bfa
DW
4995
4996 while (1) {
5f39d397 4997 leaf = path->nodes[0];
39279cc3 4998 slot = path->slots[0];
b9e03af0
LZ
4999 if (slot >= btrfs_header_nritems(leaf)) {
5000 ret = btrfs_next_leaf(root, path);
5001 if (ret < 0)
5002 goto err;
5003 else if (ret > 0)
5004 break;
5005 continue;
39279cc3 5006 }
3de4586c 5007
5f39d397
CM
5008 item = btrfs_item_nr(leaf, slot);
5009 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5010
5011 if (found_key.objectid != key.objectid)
39279cc3 5012 break;
5f39d397 5013 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5014 break;
9cdda8d3 5015 if (found_key.offset < ctx->pos)
b9e03af0 5016 goto next;
16cdcec7
MX
5017 if (key_type == BTRFS_DIR_INDEX_KEY &&
5018 btrfs_should_delete_dir_index(&del_list,
5019 found_key.offset))
5020 goto next;
5f39d397 5021
9cdda8d3 5022 ctx->pos = found_key.offset;
16cdcec7 5023 is_curr = 1;
49593bfa 5024
39279cc3
CM
5025 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5026 di_cur = 0;
5f39d397 5027 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5028
5029 while (di_cur < di_total) {
5f39d397
CM
5030 struct btrfs_key location;
5031
22a94d44
JB
5032 if (verify_dir_item(root, leaf, di))
5033 break;
5034
5f39d397 5035 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5036 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5037 name_ptr = tmp_name;
5038 } else {
5039 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5040 if (!name_ptr) {
5041 ret = -ENOMEM;
5042 goto err;
5043 }
5f39d397
CM
5044 }
5045 read_extent_buffer(leaf, name_ptr,
5046 (unsigned long)(di + 1), name_len);
5047
5048 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5049 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5050
fede766f 5051
3de4586c 5052 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5053 * skip it.
5054 *
5055 * In contrast to old kernels, we insert the snapshot's
5056 * dir item and dir index after it has been created, so
5057 * we won't find a reference to our own snapshot. We
5058 * still keep the following code for backward
5059 * compatibility.
3de4586c
CM
5060 */
5061 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5062 location.objectid == root->root_key.objectid) {
5063 over = 0;
5064 goto skip;
5065 }
9cdda8d3
AV
5066 over = !dir_emit(ctx, name_ptr, name_len,
5067 location.objectid, d_type);
5f39d397 5068
3de4586c 5069skip:
5f39d397
CM
5070 if (name_ptr != tmp_name)
5071 kfree(name_ptr);
5072
39279cc3
CM
5073 if (over)
5074 goto nopos;
5103e947 5075 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5076 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5077 di_cur += di_len;
5078 di = (struct btrfs_dir_item *)((char *)di + di_len);
5079 }
b9e03af0
LZ
5080next:
5081 path->slots[0]++;
39279cc3 5082 }
49593bfa 5083
16cdcec7
MX
5084 if (key_type == BTRFS_DIR_INDEX_KEY) {
5085 if (is_curr)
9cdda8d3
AV
5086 ctx->pos++;
5087 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5088 if (ret)
5089 goto nopos;
5090 }
5091
49593bfa 5092 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5093 ctx->pos++;
5094
5095 /*
5096 * Stop new entries from being returned after we return the last
5097 * entry.
5098 *
5099 * New directory entries are assigned a strictly increasing
5100 * offset. This means that new entries created during readdir
5101 * are *guaranteed* to be seen in the future by that readdir.
5102 * This has broken buggy programs which operate on names as
5103 * they're returned by readdir. Until we re-use freed offsets
5104 * we have this hack to stop new entries from being returned
5105 * under the assumption that they'll never reach this huge
5106 * offset.
5107 *
5108 * This is being careful not to overflow 32bit loff_t unless the
5109 * last entry requires it because doing so has broken 32bit apps
5110 * in the past.
5111 */
5112 if (key_type == BTRFS_DIR_INDEX_KEY) {
5113 if (ctx->pos >= INT_MAX)
5114 ctx->pos = LLONG_MAX;
5115 else
5116 ctx->pos = INT_MAX;
5117 }
39279cc3
CM
5118nopos:
5119 ret = 0;
5120err:
16cdcec7
MX
5121 if (key_type == BTRFS_DIR_INDEX_KEY)
5122 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5123 btrfs_free_path(path);
39279cc3
CM
5124 return ret;
5125}
5126
a9185b41 5127int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5128{
5129 struct btrfs_root *root = BTRFS_I(inode)->root;
5130 struct btrfs_trans_handle *trans;
5131 int ret = 0;
0af3d00b 5132 bool nolock = false;
39279cc3 5133
72ac3c0d 5134 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5135 return 0;
5136
83eea1f1 5137 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5138 nolock = true;
0af3d00b 5139
a9185b41 5140 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5141 if (nolock)
7a7eaa40 5142 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5143 else
7a7eaa40 5144 trans = btrfs_join_transaction(root);
3612b495
TI
5145 if (IS_ERR(trans))
5146 return PTR_ERR(trans);
a698d075 5147 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5148 }
5149 return ret;
5150}
5151
5152/*
54aa1f4d 5153 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5154 * inode changes. But, it is most likely to find the inode in cache.
5155 * FIXME, needs more benchmarking...there are no reasons other than performance
5156 * to keep or drop this code.
5157 */
48a3b636 5158static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5159{
5160 struct btrfs_root *root = BTRFS_I(inode)->root;
5161 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5162 int ret;
5163
72ac3c0d 5164 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5165 return 0;
39279cc3 5166
7a7eaa40 5167 trans = btrfs_join_transaction(root);
22c44fe6
JB
5168 if (IS_ERR(trans))
5169 return PTR_ERR(trans);
8929ecfa
YZ
5170
5171 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5172 if (ret && ret == -ENOSPC) {
5173 /* whoops, lets try again with the full transaction */
5174 btrfs_end_transaction(trans, root);
5175 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5176 if (IS_ERR(trans))
5177 return PTR_ERR(trans);
8929ecfa 5178
94b60442 5179 ret = btrfs_update_inode(trans, root, inode);
94b60442 5180 }
39279cc3 5181 btrfs_end_transaction(trans, root);
16cdcec7
MX
5182 if (BTRFS_I(inode)->delayed_node)
5183 btrfs_balance_delayed_items(root);
22c44fe6
JB
5184
5185 return ret;
5186}
5187
5188/*
5189 * This is a copy of file_update_time. We need this so we can return error on
5190 * ENOSPC for updating the inode in the case of file write and mmap writes.
5191 */
e41f941a
JB
5192static int btrfs_update_time(struct inode *inode, struct timespec *now,
5193 int flags)
22c44fe6 5194{
2bc55652
AB
5195 struct btrfs_root *root = BTRFS_I(inode)->root;
5196
5197 if (btrfs_root_readonly(root))
5198 return -EROFS;
5199
e41f941a 5200 if (flags & S_VERSION)
22c44fe6 5201 inode_inc_iversion(inode);
e41f941a
JB
5202 if (flags & S_CTIME)
5203 inode->i_ctime = *now;
5204 if (flags & S_MTIME)
5205 inode->i_mtime = *now;
5206 if (flags & S_ATIME)
5207 inode->i_atime = *now;
5208 return btrfs_dirty_inode(inode);
39279cc3
CM
5209}
5210
d352ac68
CM
5211/*
5212 * find the highest existing sequence number in a directory
5213 * and then set the in-memory index_cnt variable to reflect
5214 * free sequence numbers
5215 */
aec7477b
JB
5216static int btrfs_set_inode_index_count(struct inode *inode)
5217{
5218 struct btrfs_root *root = BTRFS_I(inode)->root;
5219 struct btrfs_key key, found_key;
5220 struct btrfs_path *path;
5221 struct extent_buffer *leaf;
5222 int ret;
5223
33345d01 5224 key.objectid = btrfs_ino(inode);
aec7477b
JB
5225 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5226 key.offset = (u64)-1;
5227
5228 path = btrfs_alloc_path();
5229 if (!path)
5230 return -ENOMEM;
5231
5232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5233 if (ret < 0)
5234 goto out;
5235 /* FIXME: we should be able to handle this */
5236 if (ret == 0)
5237 goto out;
5238 ret = 0;
5239
5240 /*
5241 * MAGIC NUMBER EXPLANATION:
5242 * since we search a directory based on f_pos we have to start at 2
5243 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5244 * else has to start at 2
5245 */
5246 if (path->slots[0] == 0) {
5247 BTRFS_I(inode)->index_cnt = 2;
5248 goto out;
5249 }
5250
5251 path->slots[0]--;
5252
5253 leaf = path->nodes[0];
5254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5255
33345d01 5256 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5257 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5258 BTRFS_I(inode)->index_cnt = 2;
5259 goto out;
5260 }
5261
5262 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5263out:
5264 btrfs_free_path(path);
5265 return ret;
5266}
5267
d352ac68
CM
5268/*
5269 * helper to find a free sequence number in a given directory. This current
5270 * code is very simple, later versions will do smarter things in the btree
5271 */
3de4586c 5272int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5273{
5274 int ret = 0;
5275
5276 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5277 ret = btrfs_inode_delayed_dir_index_count(dir);
5278 if (ret) {
5279 ret = btrfs_set_inode_index_count(dir);
5280 if (ret)
5281 return ret;
5282 }
aec7477b
JB
5283 }
5284
00e4e6b3 5285 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5286 BTRFS_I(dir)->index_cnt++;
5287
5288 return ret;
5289}
5290
39279cc3
CM
5291static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5292 struct btrfs_root *root,
aec7477b 5293 struct inode *dir,
9c58309d 5294 const char *name, int name_len,
175a4eb7
AV
5295 u64 ref_objectid, u64 objectid,
5296 umode_t mode, u64 *index)
39279cc3
CM
5297{
5298 struct inode *inode;
5f39d397 5299 struct btrfs_inode_item *inode_item;
39279cc3 5300 struct btrfs_key *location;
5f39d397 5301 struct btrfs_path *path;
9c58309d
CM
5302 struct btrfs_inode_ref *ref;
5303 struct btrfs_key key[2];
5304 u32 sizes[2];
5305 unsigned long ptr;
39279cc3
CM
5306 int ret;
5307 int owner;
5308
5f39d397 5309 path = btrfs_alloc_path();
d8926bb3
MF
5310 if (!path)
5311 return ERR_PTR(-ENOMEM);
5f39d397 5312
39279cc3 5313 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5314 if (!inode) {
5315 btrfs_free_path(path);
39279cc3 5316 return ERR_PTR(-ENOMEM);
8fb27640 5317 }
39279cc3 5318
581bb050
LZ
5319 /*
5320 * we have to initialize this early, so we can reclaim the inode
5321 * number if we fail afterwards in this function.
5322 */
5323 inode->i_ino = objectid;
5324
aec7477b 5325 if (dir) {
1abe9b8a 5326 trace_btrfs_inode_request(dir);
5327
3de4586c 5328 ret = btrfs_set_inode_index(dir, index);
09771430 5329 if (ret) {
8fb27640 5330 btrfs_free_path(path);
09771430 5331 iput(inode);
aec7477b 5332 return ERR_PTR(ret);
09771430 5333 }
aec7477b
JB
5334 }
5335 /*
5336 * index_cnt is ignored for everything but a dir,
5337 * btrfs_get_inode_index_count has an explanation for the magic
5338 * number
5339 */
5340 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5341 BTRFS_I(inode)->root = root;
e02119d5 5342 BTRFS_I(inode)->generation = trans->transid;
76195853 5343 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5344
5dc562c5
JB
5345 /*
5346 * We could have gotten an inode number from somebody who was fsynced
5347 * and then removed in this same transaction, so let's just set full
5348 * sync since it will be a full sync anyway and this will blow away the
5349 * old info in the log.
5350 */
5351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5352
569254b0 5353 if (S_ISDIR(mode))
39279cc3
CM
5354 owner = 0;
5355 else
5356 owner = 1;
9c58309d
CM
5357
5358 key[0].objectid = objectid;
5359 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5360 key[0].offset = 0;
5361
f186373f
MF
5362 /*
5363 * Start new inodes with an inode_ref. This is slightly more
5364 * efficient for small numbers of hard links since they will
5365 * be packed into one item. Extended refs will kick in if we
5366 * add more hard links than can fit in the ref item.
5367 */
9c58309d
CM
5368 key[1].objectid = objectid;
5369 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5370 key[1].offset = ref_objectid;
5371
5372 sizes[0] = sizeof(struct btrfs_inode_item);
5373 sizes[1] = name_len + sizeof(*ref);
5374
b9473439 5375 path->leave_spinning = 1;
9c58309d
CM
5376 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5377 if (ret != 0)
5f39d397
CM
5378 goto fail;
5379
ecc11fab 5380 inode_init_owner(inode, dir, mode);
a76a3cd4 5381 inode_set_bytes(inode, 0);
39279cc3 5382 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5383 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5384 struct btrfs_inode_item);
293f7e07
LZ
5385 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5386 sizeof(*inode_item));
e02119d5 5387 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5388
5389 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5390 struct btrfs_inode_ref);
5391 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5392 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5393 ptr = (unsigned long)(ref + 1);
5394 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5395
5f39d397
CM
5396 btrfs_mark_buffer_dirty(path->nodes[0]);
5397 btrfs_free_path(path);
5398
39279cc3
CM
5399 location = &BTRFS_I(inode)->location;
5400 location->objectid = objectid;
39279cc3
CM
5401 location->offset = 0;
5402 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5403
6cbff00f
CH
5404 btrfs_inherit_iflags(inode, dir);
5405
569254b0 5406 if (S_ISREG(mode)) {
94272164
CM
5407 if (btrfs_test_opt(root, NODATASUM))
5408 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5409 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5410 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5411 BTRFS_INODE_NODATASUM;
94272164
CM
5412 }
5413
39279cc3 5414 insert_inode_hash(inode);
5d4f98a2 5415 inode_tree_add(inode);
1abe9b8a 5416
5417 trace_btrfs_inode_new(inode);
1973f0fa 5418 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5419
8ea05e3a
AB
5420 btrfs_update_root_times(trans, root);
5421
39279cc3 5422 return inode;
5f39d397 5423fail:
aec7477b
JB
5424 if (dir)
5425 BTRFS_I(dir)->index_cnt--;
5f39d397 5426 btrfs_free_path(path);
09771430 5427 iput(inode);
5f39d397 5428 return ERR_PTR(ret);
39279cc3
CM
5429}
5430
5431static inline u8 btrfs_inode_type(struct inode *inode)
5432{
5433 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5434}
5435
d352ac68
CM
5436/*
5437 * utility function to add 'inode' into 'parent_inode' with
5438 * a give name and a given sequence number.
5439 * if 'add_backref' is true, also insert a backref from the
5440 * inode to the parent directory.
5441 */
e02119d5
CM
5442int btrfs_add_link(struct btrfs_trans_handle *trans,
5443 struct inode *parent_inode, struct inode *inode,
5444 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5445{
4df27c4d 5446 int ret = 0;
39279cc3 5447 struct btrfs_key key;
e02119d5 5448 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5449 u64 ino = btrfs_ino(inode);
5450 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5451
33345d01 5452 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5453 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5454 } else {
33345d01 5455 key.objectid = ino;
4df27c4d
YZ
5456 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5457 key.offset = 0;
5458 }
5459
33345d01 5460 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5461 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5462 key.objectid, root->root_key.objectid,
33345d01 5463 parent_ino, index, name, name_len);
4df27c4d 5464 } else if (add_backref) {
33345d01
LZ
5465 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5466 parent_ino, index);
4df27c4d 5467 }
39279cc3 5468
79787eaa
JM
5469 /* Nothing to clean up yet */
5470 if (ret)
5471 return ret;
4df27c4d 5472
79787eaa
JM
5473 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5474 parent_inode, &key,
5475 btrfs_inode_type(inode), index);
9c52057c 5476 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5477 goto fail_dir_item;
5478 else if (ret) {
5479 btrfs_abort_transaction(trans, root, ret);
5480 return ret;
39279cc3 5481 }
79787eaa
JM
5482
5483 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5484 name_len * 2);
0c4d2d95 5485 inode_inc_iversion(parent_inode);
79787eaa
JM
5486 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5487 ret = btrfs_update_inode(trans, root, parent_inode);
5488 if (ret)
5489 btrfs_abort_transaction(trans, root, ret);
39279cc3 5490 return ret;
fe66a05a
CM
5491
5492fail_dir_item:
5493 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5494 u64 local_index;
5495 int err;
5496 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5497 key.objectid, root->root_key.objectid,
5498 parent_ino, &local_index, name, name_len);
5499
5500 } else if (add_backref) {
5501 u64 local_index;
5502 int err;
5503
5504 err = btrfs_del_inode_ref(trans, root, name, name_len,
5505 ino, parent_ino, &local_index);
5506 }
5507 return ret;
39279cc3
CM
5508}
5509
5510static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5511 struct inode *dir, struct dentry *dentry,
5512 struct inode *inode, int backref, u64 index)
39279cc3 5513{
a1b075d2
JB
5514 int err = btrfs_add_link(trans, dir, inode,
5515 dentry->d_name.name, dentry->d_name.len,
5516 backref, index);
39279cc3
CM
5517 if (err > 0)
5518 err = -EEXIST;
5519 return err;
5520}
5521
618e21d5 5522static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5523 umode_t mode, dev_t rdev)
618e21d5
JB
5524{
5525 struct btrfs_trans_handle *trans;
5526 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5527 struct inode *inode = NULL;
618e21d5
JB
5528 int err;
5529 int drop_inode = 0;
5530 u64 objectid;
00e4e6b3 5531 u64 index = 0;
618e21d5
JB
5532
5533 if (!new_valid_dev(rdev))
5534 return -EINVAL;
5535
9ed74f2d
JB
5536 /*
5537 * 2 for inode item and ref
5538 * 2 for dir items
5539 * 1 for xattr if selinux is on
5540 */
a22285a6
YZ
5541 trans = btrfs_start_transaction(root, 5);
5542 if (IS_ERR(trans))
5543 return PTR_ERR(trans);
1832a6d5 5544
581bb050
LZ
5545 err = btrfs_find_free_ino(root, &objectid);
5546 if (err)
5547 goto out_unlock;
5548
aec7477b 5549 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5550 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5551 mode, &index);
7cf96da3
TI
5552 if (IS_ERR(inode)) {
5553 err = PTR_ERR(inode);
618e21d5 5554 goto out_unlock;
7cf96da3 5555 }
618e21d5 5556
2a7dba39 5557 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5558 if (err) {
5559 drop_inode = 1;
5560 goto out_unlock;
5561 }
5562
ad19db71
CS
5563 /*
5564 * If the active LSM wants to access the inode during
5565 * d_instantiate it needs these. Smack checks to see
5566 * if the filesystem supports xattrs by looking at the
5567 * ops vector.
5568 */
5569
5570 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5571 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5572 if (err)
5573 drop_inode = 1;
5574 else {
618e21d5 5575 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5576 btrfs_update_inode(trans, root, inode);
08c422c2 5577 d_instantiate(dentry, inode);
618e21d5 5578 }
618e21d5 5579out_unlock:
7ad85bb7 5580 btrfs_end_transaction(trans, root);
b53d3f5d 5581 btrfs_btree_balance_dirty(root);
618e21d5
JB
5582 if (drop_inode) {
5583 inode_dec_link_count(inode);
5584 iput(inode);
5585 }
618e21d5
JB
5586 return err;
5587}
5588
39279cc3 5589static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5590 umode_t mode, bool excl)
39279cc3
CM
5591{
5592 struct btrfs_trans_handle *trans;
5593 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5594 struct inode *inode = NULL;
43baa579 5595 int drop_inode_on_err = 0;
a22285a6 5596 int err;
39279cc3 5597 u64 objectid;
00e4e6b3 5598 u64 index = 0;
39279cc3 5599
9ed74f2d
JB
5600 /*
5601 * 2 for inode item and ref
5602 * 2 for dir items
5603 * 1 for xattr if selinux is on
5604 */
a22285a6
YZ
5605 trans = btrfs_start_transaction(root, 5);
5606 if (IS_ERR(trans))
5607 return PTR_ERR(trans);
9ed74f2d 5608
581bb050
LZ
5609 err = btrfs_find_free_ino(root, &objectid);
5610 if (err)
5611 goto out_unlock;
5612
aec7477b 5613 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5614 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5615 mode, &index);
7cf96da3
TI
5616 if (IS_ERR(inode)) {
5617 err = PTR_ERR(inode);
39279cc3 5618 goto out_unlock;
7cf96da3 5619 }
43baa579 5620 drop_inode_on_err = 1;
39279cc3 5621
2a7dba39 5622 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5623 if (err)
33268eaf 5624 goto out_unlock;
33268eaf 5625
9185aa58
FB
5626 err = btrfs_update_inode(trans, root, inode);
5627 if (err)
5628 goto out_unlock;
5629
ad19db71
CS
5630 /*
5631 * If the active LSM wants to access the inode during
5632 * d_instantiate it needs these. Smack checks to see
5633 * if the filesystem supports xattrs by looking at the
5634 * ops vector.
5635 */
5636 inode->i_fop = &btrfs_file_operations;
5637 inode->i_op = &btrfs_file_inode_operations;
5638
a1b075d2 5639 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5640 if (err)
43baa579
FB
5641 goto out_unlock;
5642
5643 inode->i_mapping->a_ops = &btrfs_aops;
5644 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5645 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5646 d_instantiate(dentry, inode);
5647
39279cc3 5648out_unlock:
7ad85bb7 5649 btrfs_end_transaction(trans, root);
43baa579 5650 if (err && drop_inode_on_err) {
39279cc3
CM
5651 inode_dec_link_count(inode);
5652 iput(inode);
5653 }
b53d3f5d 5654 btrfs_btree_balance_dirty(root);
39279cc3
CM
5655 return err;
5656}
5657
5658static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5659 struct dentry *dentry)
5660{
5661 struct btrfs_trans_handle *trans;
5662 struct btrfs_root *root = BTRFS_I(dir)->root;
5663 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5664 u64 index;
39279cc3
CM
5665 int err;
5666 int drop_inode = 0;
5667
4a8be425
TH
5668 /* do not allow sys_link's with other subvols of the same device */
5669 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5670 return -EXDEV;
4a8be425 5671
f186373f 5672 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5673 return -EMLINK;
4a8be425 5674
3de4586c 5675 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5676 if (err)
5677 goto fail;
5678
a22285a6 5679 /*
7e6b6465 5680 * 2 items for inode and inode ref
a22285a6 5681 * 2 items for dir items
7e6b6465 5682 * 1 item for parent inode
a22285a6 5683 */
7e6b6465 5684 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5685 if (IS_ERR(trans)) {
5686 err = PTR_ERR(trans);
5687 goto fail;
5688 }
5f39d397 5689
3153495d 5690 btrfs_inc_nlink(inode);
0c4d2d95 5691 inode_inc_iversion(inode);
3153495d 5692 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5693 ihold(inode);
e9976151 5694 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5695
a1b075d2 5696 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5697
a5719521 5698 if (err) {
54aa1f4d 5699 drop_inode = 1;
a5719521 5700 } else {
10d9f309 5701 struct dentry *parent = dentry->d_parent;
a5719521 5702 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5703 if (err)
5704 goto fail;
08c422c2 5705 d_instantiate(dentry, inode);
6a912213 5706 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5707 }
39279cc3 5708
7ad85bb7 5709 btrfs_end_transaction(trans, root);
1832a6d5 5710fail:
39279cc3
CM
5711 if (drop_inode) {
5712 inode_dec_link_count(inode);
5713 iput(inode);
5714 }
b53d3f5d 5715 btrfs_btree_balance_dirty(root);
39279cc3
CM
5716 return err;
5717}
5718
18bb1db3 5719static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5720{
b9d86667 5721 struct inode *inode = NULL;
39279cc3
CM
5722 struct btrfs_trans_handle *trans;
5723 struct btrfs_root *root = BTRFS_I(dir)->root;
5724 int err = 0;
5725 int drop_on_err = 0;
b9d86667 5726 u64 objectid = 0;
00e4e6b3 5727 u64 index = 0;
39279cc3 5728
9ed74f2d
JB
5729 /*
5730 * 2 items for inode and ref
5731 * 2 items for dir items
5732 * 1 for xattr if selinux is on
5733 */
a22285a6
YZ
5734 trans = btrfs_start_transaction(root, 5);
5735 if (IS_ERR(trans))
5736 return PTR_ERR(trans);
39279cc3 5737
581bb050
LZ
5738 err = btrfs_find_free_ino(root, &objectid);
5739 if (err)
5740 goto out_fail;
5741
aec7477b 5742 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5743 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5744 S_IFDIR | mode, &index);
39279cc3
CM
5745 if (IS_ERR(inode)) {
5746 err = PTR_ERR(inode);
5747 goto out_fail;
5748 }
5f39d397 5749
39279cc3 5750 drop_on_err = 1;
33268eaf 5751
2a7dba39 5752 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5753 if (err)
5754 goto out_fail;
5755
39279cc3
CM
5756 inode->i_op = &btrfs_dir_inode_operations;
5757 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5758
dbe674a9 5759 btrfs_i_size_write(inode, 0);
39279cc3
CM
5760 err = btrfs_update_inode(trans, root, inode);
5761 if (err)
5762 goto out_fail;
5f39d397 5763
a1b075d2
JB
5764 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5765 dentry->d_name.len, 0, index);
39279cc3
CM
5766 if (err)
5767 goto out_fail;
5f39d397 5768
39279cc3
CM
5769 d_instantiate(dentry, inode);
5770 drop_on_err = 0;
39279cc3
CM
5771
5772out_fail:
7ad85bb7 5773 btrfs_end_transaction(trans, root);
39279cc3
CM
5774 if (drop_on_err)
5775 iput(inode);
b53d3f5d 5776 btrfs_btree_balance_dirty(root);
39279cc3
CM
5777 return err;
5778}
5779
d352ac68
CM
5780/* helper for btfs_get_extent. Given an existing extent in the tree,
5781 * and an extent that you want to insert, deal with overlap and insert
5782 * the new extent into the tree.
5783 */
3b951516
CM
5784static int merge_extent_mapping(struct extent_map_tree *em_tree,
5785 struct extent_map *existing,
e6dcd2dc
CM
5786 struct extent_map *em,
5787 u64 map_start, u64 map_len)
3b951516
CM
5788{
5789 u64 start_diff;
3b951516 5790
e6dcd2dc
CM
5791 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5792 start_diff = map_start - em->start;
5793 em->start = map_start;
5794 em->len = map_len;
c8b97818
CM
5795 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5796 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5797 em->block_start += start_diff;
c8b97818
CM
5798 em->block_len -= start_diff;
5799 }
09a2a8f9 5800 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5801}
5802
c8b97818
CM
5803static noinline int uncompress_inline(struct btrfs_path *path,
5804 struct inode *inode, struct page *page,
5805 size_t pg_offset, u64 extent_offset,
5806 struct btrfs_file_extent_item *item)
5807{
5808 int ret;
5809 struct extent_buffer *leaf = path->nodes[0];
5810 char *tmp;
5811 size_t max_size;
5812 unsigned long inline_size;
5813 unsigned long ptr;
261507a0 5814 int compress_type;
c8b97818
CM
5815
5816 WARN_ON(pg_offset != 0);
261507a0 5817 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5818 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5819 inline_size = btrfs_file_extent_inline_item_len(leaf,
5820 btrfs_item_nr(leaf, path->slots[0]));
5821 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5822 if (!tmp)
5823 return -ENOMEM;
c8b97818
CM
5824 ptr = btrfs_file_extent_inline_start(item);
5825
5826 read_extent_buffer(leaf, tmp, ptr, inline_size);
5827
5b050f04 5828 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5829 ret = btrfs_decompress(compress_type, tmp, page,
5830 extent_offset, inline_size, max_size);
c8b97818 5831 if (ret) {
7ac687d9 5832 char *kaddr = kmap_atomic(page);
c8b97818
CM
5833 unsigned long copy_size = min_t(u64,
5834 PAGE_CACHE_SIZE - pg_offset,
5835 max_size - extent_offset);
5836 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5837 kunmap_atomic(kaddr);
c8b97818
CM
5838 }
5839 kfree(tmp);
5840 return 0;
5841}
5842
d352ac68
CM
5843/*
5844 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5845 * the ugly parts come from merging extents from the disk with the in-ram
5846 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5847 * where the in-ram extents might be locked pending data=ordered completion.
5848 *
5849 * This also copies inline extents directly into the page.
5850 */
d397712b 5851
a52d9a80 5852struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5853 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5854 int create)
5855{
5856 int ret;
5857 int err = 0;
db94535d 5858 u64 bytenr;
a52d9a80
CM
5859 u64 extent_start = 0;
5860 u64 extent_end = 0;
33345d01 5861 u64 objectid = btrfs_ino(inode);
a52d9a80 5862 u32 found_type;
f421950f 5863 struct btrfs_path *path = NULL;
a52d9a80
CM
5864 struct btrfs_root *root = BTRFS_I(inode)->root;
5865 struct btrfs_file_extent_item *item;
5f39d397
CM
5866 struct extent_buffer *leaf;
5867 struct btrfs_key found_key;
a52d9a80
CM
5868 struct extent_map *em = NULL;
5869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5870 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5871 struct btrfs_trans_handle *trans = NULL;
261507a0 5872 int compress_type;
a52d9a80 5873
a52d9a80 5874again:
890871be 5875 read_lock(&em_tree->lock);
d1310b2e 5876 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5877 if (em)
5878 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5879 read_unlock(&em_tree->lock);
d1310b2e 5880
a52d9a80 5881 if (em) {
e1c4b745
CM
5882 if (em->start > start || em->start + em->len <= start)
5883 free_extent_map(em);
5884 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5885 free_extent_map(em);
5886 else
5887 goto out;
a52d9a80 5888 }
172ddd60 5889 em = alloc_extent_map();
a52d9a80 5890 if (!em) {
d1310b2e
CM
5891 err = -ENOMEM;
5892 goto out;
a52d9a80 5893 }
e6dcd2dc 5894 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5895 em->start = EXTENT_MAP_HOLE;
445a6944 5896 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5897 em->len = (u64)-1;
c8b97818 5898 em->block_len = (u64)-1;
f421950f
CM
5899
5900 if (!path) {
5901 path = btrfs_alloc_path();
026fd317
JB
5902 if (!path) {
5903 err = -ENOMEM;
5904 goto out;
5905 }
5906 /*
5907 * Chances are we'll be called again, so go ahead and do
5908 * readahead
5909 */
5910 path->reada = 1;
f421950f
CM
5911 }
5912
179e29e4
CM
5913 ret = btrfs_lookup_file_extent(trans, root, path,
5914 objectid, start, trans != NULL);
a52d9a80
CM
5915 if (ret < 0) {
5916 err = ret;
5917 goto out;
5918 }
5919
5920 if (ret != 0) {
5921 if (path->slots[0] == 0)
5922 goto not_found;
5923 path->slots[0]--;
5924 }
5925
5f39d397
CM
5926 leaf = path->nodes[0];
5927 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5928 struct btrfs_file_extent_item);
a52d9a80 5929 /* are we inside the extent that was found? */
5f39d397
CM
5930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5931 found_type = btrfs_key_type(&found_key);
5932 if (found_key.objectid != objectid ||
a52d9a80
CM
5933 found_type != BTRFS_EXTENT_DATA_KEY) {
5934 goto not_found;
5935 }
5936
5f39d397
CM
5937 found_type = btrfs_file_extent_type(leaf, item);
5938 extent_start = found_key.offset;
261507a0 5939 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5940 if (found_type == BTRFS_FILE_EXTENT_REG ||
5941 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5942 extent_end = extent_start +
db94535d 5943 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5944 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5945 size_t size;
5946 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5947 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5948 }
5949
5950 if (start >= extent_end) {
5951 path->slots[0]++;
5952 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5953 ret = btrfs_next_leaf(root, path);
5954 if (ret < 0) {
5955 err = ret;
5956 goto out;
a52d9a80 5957 }
9036c102
YZ
5958 if (ret > 0)
5959 goto not_found;
5960 leaf = path->nodes[0];
a52d9a80 5961 }
9036c102
YZ
5962 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5963 if (found_key.objectid != objectid ||
5964 found_key.type != BTRFS_EXTENT_DATA_KEY)
5965 goto not_found;
5966 if (start + len <= found_key.offset)
5967 goto not_found;
5968 em->start = start;
70c8a91c 5969 em->orig_start = start;
9036c102
YZ
5970 em->len = found_key.offset - start;
5971 goto not_found_em;
5972 }
5973
cc95bef6 5974 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
5975 if (found_type == BTRFS_FILE_EXTENT_REG ||
5976 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5977 em->start = extent_start;
5978 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5979 em->orig_start = extent_start -
5980 btrfs_file_extent_offset(leaf, item);
b4939680
JB
5981 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
5982 item);
db94535d
CM
5983 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5984 if (bytenr == 0) {
5f39d397 5985 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5986 goto insert;
5987 }
261507a0 5988 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5989 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5990 em->compress_type = compress_type;
c8b97818 5991 em->block_start = bytenr;
b4939680 5992 em->block_len = em->orig_block_len;
c8b97818
CM
5993 } else {
5994 bytenr += btrfs_file_extent_offset(leaf, item);
5995 em->block_start = bytenr;
5996 em->block_len = em->len;
d899e052
YZ
5997 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5998 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5999 }
a52d9a80
CM
6000 goto insert;
6001 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6002 unsigned long ptr;
a52d9a80 6003 char *map;
3326d1b0
CM
6004 size_t size;
6005 size_t extent_offset;
6006 size_t copy_size;
a52d9a80 6007
689f9346 6008 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6009 if (!page || create) {
689f9346 6010 em->start = extent_start;
9036c102 6011 em->len = extent_end - extent_start;
689f9346
Y
6012 goto out;
6013 }
5f39d397 6014
9036c102
YZ
6015 size = btrfs_file_extent_inline_len(leaf, item);
6016 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6017 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6018 size - extent_offset);
3326d1b0 6019 em->start = extent_start + extent_offset;
fda2832f 6020 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6021 em->orig_block_len = em->len;
70c8a91c 6022 em->orig_start = em->start;
261507a0 6023 if (compress_type) {
c8b97818 6024 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6025 em->compress_type = compress_type;
6026 }
689f9346 6027 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6028 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6029 if (btrfs_file_extent_compression(leaf, item) !=
6030 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6031 ret = uncompress_inline(path, inode, page,
6032 pg_offset,
6033 extent_offset, item);
79787eaa 6034 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6035 } else {
6036 map = kmap(page);
6037 read_extent_buffer(leaf, map + pg_offset, ptr,
6038 copy_size);
93c82d57
CM
6039 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6040 memset(map + pg_offset + copy_size, 0,
6041 PAGE_CACHE_SIZE - pg_offset -
6042 copy_size);
6043 }
c8b97818
CM
6044 kunmap(page);
6045 }
179e29e4
CM
6046 flush_dcache_page(page);
6047 } else if (create && PageUptodate(page)) {
6bf7e080 6048 BUG();
179e29e4
CM
6049 if (!trans) {
6050 kunmap(page);
6051 free_extent_map(em);
6052 em = NULL;
ff5714cc 6053
b3b4aa74 6054 btrfs_release_path(path);
7a7eaa40 6055 trans = btrfs_join_transaction(root);
ff5714cc 6056
3612b495
TI
6057 if (IS_ERR(trans))
6058 return ERR_CAST(trans);
179e29e4
CM
6059 goto again;
6060 }
c8b97818 6061 map = kmap(page);
70dec807 6062 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6063 copy_size);
c8b97818 6064 kunmap(page);
179e29e4 6065 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6066 }
d1310b2e 6067 set_extent_uptodate(io_tree, em->start,
507903b8 6068 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6069 goto insert;
6070 } else {
31b1a2bd 6071 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6072 }
6073not_found:
6074 em->start = start;
70c8a91c 6075 em->orig_start = start;
d1310b2e 6076 em->len = len;
a52d9a80 6077not_found_em:
5f39d397 6078 em->block_start = EXTENT_MAP_HOLE;
9036c102 6079 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6080insert:
b3b4aa74 6081 btrfs_release_path(path);
d1310b2e 6082 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6083 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6084 (unsigned long long)em->start,
6085 (unsigned long long)em->len,
6086 (unsigned long long)start,
6087 (unsigned long long)len);
a52d9a80
CM
6088 err = -EIO;
6089 goto out;
6090 }
d1310b2e
CM
6091
6092 err = 0;
890871be 6093 write_lock(&em_tree->lock);
09a2a8f9 6094 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6095 /* it is possible that someone inserted the extent into the tree
6096 * while we had the lock dropped. It is also possible that
6097 * an overlapping map exists in the tree
6098 */
a52d9a80 6099 if (ret == -EEXIST) {
3b951516 6100 struct extent_map *existing;
e6dcd2dc
CM
6101
6102 ret = 0;
6103
3b951516 6104 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6105 if (existing && (existing->start > start ||
6106 existing->start + existing->len <= start)) {
6107 free_extent_map(existing);
6108 existing = NULL;
6109 }
3b951516
CM
6110 if (!existing) {
6111 existing = lookup_extent_mapping(em_tree, em->start,
6112 em->len);
6113 if (existing) {
6114 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6115 em, start,
6116 root->sectorsize);
3b951516
CM
6117 free_extent_map(existing);
6118 if (err) {
6119 free_extent_map(em);
6120 em = NULL;
6121 }
6122 } else {
6123 err = -EIO;
3b951516
CM
6124 free_extent_map(em);
6125 em = NULL;
6126 }
6127 } else {
6128 free_extent_map(em);
6129 em = existing;
e6dcd2dc 6130 err = 0;
a52d9a80 6131 }
a52d9a80 6132 }
890871be 6133 write_unlock(&em_tree->lock);
a52d9a80 6134out:
1abe9b8a 6135
f0bd95ea
TI
6136 if (em)
6137 trace_btrfs_get_extent(root, em);
1abe9b8a 6138
f421950f
CM
6139 if (path)
6140 btrfs_free_path(path);
a52d9a80
CM
6141 if (trans) {
6142 ret = btrfs_end_transaction(trans, root);
d397712b 6143 if (!err)
a52d9a80
CM
6144 err = ret;
6145 }
a52d9a80
CM
6146 if (err) {
6147 free_extent_map(em);
a52d9a80
CM
6148 return ERR_PTR(err);
6149 }
79787eaa 6150 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6151 return em;
6152}
6153
ec29ed5b
CM
6154struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6155 size_t pg_offset, u64 start, u64 len,
6156 int create)
6157{
6158 struct extent_map *em;
6159 struct extent_map *hole_em = NULL;
6160 u64 range_start = start;
6161 u64 end;
6162 u64 found;
6163 u64 found_end;
6164 int err = 0;
6165
6166 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6167 if (IS_ERR(em))
6168 return em;
6169 if (em) {
6170 /*
f9e4fb53
LB
6171 * if our em maps to
6172 * - a hole or
6173 * - a pre-alloc extent,
6174 * there might actually be delalloc bytes behind it.
ec29ed5b 6175 */
f9e4fb53
LB
6176 if (em->block_start != EXTENT_MAP_HOLE &&
6177 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6178 return em;
6179 else
6180 hole_em = em;
6181 }
6182
6183 /* check to see if we've wrapped (len == -1 or similar) */
6184 end = start + len;
6185 if (end < start)
6186 end = (u64)-1;
6187 else
6188 end -= 1;
6189
6190 em = NULL;
6191
6192 /* ok, we didn't find anything, lets look for delalloc */
6193 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6194 end, len, EXTENT_DELALLOC, 1);
6195 found_end = range_start + found;
6196 if (found_end < range_start)
6197 found_end = (u64)-1;
6198
6199 /*
6200 * we didn't find anything useful, return
6201 * the original results from get_extent()
6202 */
6203 if (range_start > end || found_end <= start) {
6204 em = hole_em;
6205 hole_em = NULL;
6206 goto out;
6207 }
6208
6209 /* adjust the range_start to make sure it doesn't
6210 * go backwards from the start they passed in
6211 */
6212 range_start = max(start,range_start);
6213 found = found_end - range_start;
6214
6215 if (found > 0) {
6216 u64 hole_start = start;
6217 u64 hole_len = len;
6218
172ddd60 6219 em = alloc_extent_map();
ec29ed5b
CM
6220 if (!em) {
6221 err = -ENOMEM;
6222 goto out;
6223 }
6224 /*
6225 * when btrfs_get_extent can't find anything it
6226 * returns one huge hole
6227 *
6228 * make sure what it found really fits our range, and
6229 * adjust to make sure it is based on the start from
6230 * the caller
6231 */
6232 if (hole_em) {
6233 u64 calc_end = extent_map_end(hole_em);
6234
6235 if (calc_end <= start || (hole_em->start > end)) {
6236 free_extent_map(hole_em);
6237 hole_em = NULL;
6238 } else {
6239 hole_start = max(hole_em->start, start);
6240 hole_len = calc_end - hole_start;
6241 }
6242 }
6243 em->bdev = NULL;
6244 if (hole_em && range_start > hole_start) {
6245 /* our hole starts before our delalloc, so we
6246 * have to return just the parts of the hole
6247 * that go until the delalloc starts
6248 */
6249 em->len = min(hole_len,
6250 range_start - hole_start);
6251 em->start = hole_start;
6252 em->orig_start = hole_start;
6253 /*
6254 * don't adjust block start at all,
6255 * it is fixed at EXTENT_MAP_HOLE
6256 */
6257 em->block_start = hole_em->block_start;
6258 em->block_len = hole_len;
f9e4fb53
LB
6259 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6260 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6261 } else {
6262 em->start = range_start;
6263 em->len = found;
6264 em->orig_start = range_start;
6265 em->block_start = EXTENT_MAP_DELALLOC;
6266 em->block_len = found;
6267 }
6268 } else if (hole_em) {
6269 return hole_em;
6270 }
6271out:
6272
6273 free_extent_map(hole_em);
6274 if (err) {
6275 free_extent_map(em);
6276 return ERR_PTR(err);
6277 }
6278 return em;
6279}
6280
4b46fce2
JB
6281static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6282 u64 start, u64 len)
6283{
6284 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6285 struct extent_map *em;
4b46fce2
JB
6286 struct btrfs_key ins;
6287 u64 alloc_hint;
6288 int ret;
4b46fce2 6289
4b46fce2 6290 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6291 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6292 alloc_hint, &ins, 1);
00361589
JB
6293 if (ret)
6294 return ERR_PTR(ret);
4b46fce2 6295
70c8a91c 6296 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6297 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6298 if (IS_ERR(em)) {
6299 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6300 return em;
6301 }
4b46fce2
JB
6302
6303 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6304 ins.offset, ins.offset, 0);
6305 if (ret) {
6306 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6307 free_extent_map(em);
6308 return ERR_PTR(ret);
4b46fce2 6309 }
00361589 6310
4b46fce2
JB
6311 return em;
6312}
6313
46bfbb5c
CM
6314/*
6315 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6316 * block must be cow'd
6317 */
00361589 6318noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6319 u64 *orig_start, u64 *orig_block_len,
6320 u64 *ram_bytes)
46bfbb5c 6321{
00361589 6322 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6323 struct btrfs_path *path;
6324 int ret;
6325 struct extent_buffer *leaf;
6326 struct btrfs_root *root = BTRFS_I(inode)->root;
6327 struct btrfs_file_extent_item *fi;
6328 struct btrfs_key key;
6329 u64 disk_bytenr;
6330 u64 backref_offset;
6331 u64 extent_end;
6332 u64 num_bytes;
6333 int slot;
6334 int found_type;
7ee9e440 6335 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6336 path = btrfs_alloc_path();
6337 if (!path)
6338 return -ENOMEM;
6339
00361589 6340 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6341 offset, 0);
6342 if (ret < 0)
6343 goto out;
6344
6345 slot = path->slots[0];
6346 if (ret == 1) {
6347 if (slot == 0) {
6348 /* can't find the item, must cow */
6349 ret = 0;
6350 goto out;
6351 }
6352 slot--;
6353 }
6354 ret = 0;
6355 leaf = path->nodes[0];
6356 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6357 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6358 key.type != BTRFS_EXTENT_DATA_KEY) {
6359 /* not our file or wrong item type, must cow */
6360 goto out;
6361 }
6362
6363 if (key.offset > offset) {
6364 /* Wrong offset, must cow */
6365 goto out;
6366 }
6367
6368 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6369 found_type = btrfs_file_extent_type(leaf, fi);
6370 if (found_type != BTRFS_FILE_EXTENT_REG &&
6371 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6372 /* not a regular extent, must cow */
6373 goto out;
6374 }
7ee9e440
JB
6375
6376 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6377 goto out;
6378
46bfbb5c 6379 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6380 if (disk_bytenr == 0)
6381 goto out;
6382
6383 if (btrfs_file_extent_compression(leaf, fi) ||
6384 btrfs_file_extent_encryption(leaf, fi) ||
6385 btrfs_file_extent_other_encoding(leaf, fi))
6386 goto out;
6387
46bfbb5c
CM
6388 backref_offset = btrfs_file_extent_offset(leaf, fi);
6389
7ee9e440
JB
6390 if (orig_start) {
6391 *orig_start = key.offset - backref_offset;
6392 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6393 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6394 }
eb384b55 6395
46bfbb5c 6396 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6397
6398 if (btrfs_extent_readonly(root, disk_bytenr))
6399 goto out;
6400
6401 /*
6402 * look for other files referencing this extent, if we
6403 * find any we must cow
6404 */
00361589
JB
6405 trans = btrfs_join_transaction(root);
6406 if (IS_ERR(trans)) {
6407 ret = 0;
46bfbb5c 6408 goto out;
00361589
JB
6409 }
6410
6411 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6412 key.offset - backref_offset, disk_bytenr);
6413 btrfs_end_transaction(trans, root);
6414 if (ret) {
6415 ret = 0;
6416 goto out;
6417 }
46bfbb5c
CM
6418
6419 /*
6420 * adjust disk_bytenr and num_bytes to cover just the bytes
6421 * in this extent we are about to write. If there
6422 * are any csums in that range we have to cow in order
6423 * to keep the csums correct
6424 */
6425 disk_bytenr += backref_offset;
6426 disk_bytenr += offset - key.offset;
eb384b55 6427 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6428 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6429 goto out;
6430 /*
6431 * all of the above have passed, it is safe to overwrite this extent
6432 * without cow
6433 */
eb384b55 6434 *len = num_bytes;
46bfbb5c
CM
6435 ret = 1;
6436out:
6437 btrfs_free_path(path);
6438 return ret;
6439}
6440
eb838e73
JB
6441static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6442 struct extent_state **cached_state, int writing)
6443{
6444 struct btrfs_ordered_extent *ordered;
6445 int ret = 0;
6446
6447 while (1) {
6448 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6449 0, cached_state);
6450 /*
6451 * We're concerned with the entire range that we're going to be
6452 * doing DIO to, so we need to make sure theres no ordered
6453 * extents in this range.
6454 */
6455 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6456 lockend - lockstart + 1);
6457
6458 /*
6459 * We need to make sure there are no buffered pages in this
6460 * range either, we could have raced between the invalidate in
6461 * generic_file_direct_write and locking the extent. The
6462 * invalidate needs to happen so that reads after a write do not
6463 * get stale data.
6464 */
6465 if (!ordered && (!writing ||
6466 !test_range_bit(&BTRFS_I(inode)->io_tree,
6467 lockstart, lockend, EXTENT_UPTODATE, 0,
6468 *cached_state)))
6469 break;
6470
6471 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6472 cached_state, GFP_NOFS);
6473
6474 if (ordered) {
6475 btrfs_start_ordered_extent(inode, ordered, 1);
6476 btrfs_put_ordered_extent(ordered);
6477 } else {
6478 /* Screw you mmap */
6479 ret = filemap_write_and_wait_range(inode->i_mapping,
6480 lockstart,
6481 lockend);
6482 if (ret)
6483 break;
6484
6485 /*
6486 * If we found a page that couldn't be invalidated just
6487 * fall back to buffered.
6488 */
6489 ret = invalidate_inode_pages2_range(inode->i_mapping,
6490 lockstart >> PAGE_CACHE_SHIFT,
6491 lockend >> PAGE_CACHE_SHIFT);
6492 if (ret)
6493 break;
6494 }
6495
6496 cond_resched();
6497 }
6498
6499 return ret;
6500}
6501
69ffb543
JB
6502static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6503 u64 len, u64 orig_start,
6504 u64 block_start, u64 block_len,
cc95bef6
JB
6505 u64 orig_block_len, u64 ram_bytes,
6506 int type)
69ffb543
JB
6507{
6508 struct extent_map_tree *em_tree;
6509 struct extent_map *em;
6510 struct btrfs_root *root = BTRFS_I(inode)->root;
6511 int ret;
6512
6513 em_tree = &BTRFS_I(inode)->extent_tree;
6514 em = alloc_extent_map();
6515 if (!em)
6516 return ERR_PTR(-ENOMEM);
6517
6518 em->start = start;
6519 em->orig_start = orig_start;
2ab28f32
JB
6520 em->mod_start = start;
6521 em->mod_len = len;
69ffb543
JB
6522 em->len = len;
6523 em->block_len = block_len;
6524 em->block_start = block_start;
6525 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6526 em->orig_block_len = orig_block_len;
cc95bef6 6527 em->ram_bytes = ram_bytes;
70c8a91c 6528 em->generation = -1;
69ffb543
JB
6529 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6530 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6531 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6532
6533 do {
6534 btrfs_drop_extent_cache(inode, em->start,
6535 em->start + em->len - 1, 0);
6536 write_lock(&em_tree->lock);
09a2a8f9 6537 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6538 write_unlock(&em_tree->lock);
6539 } while (ret == -EEXIST);
6540
6541 if (ret) {
6542 free_extent_map(em);
6543 return ERR_PTR(ret);
6544 }
6545
6546 return em;
6547}
6548
6549
4b46fce2
JB
6550static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6551 struct buffer_head *bh_result, int create)
6552{
6553 struct extent_map *em;
6554 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6555 struct extent_state *cached_state = NULL;
4b46fce2 6556 u64 start = iblock << inode->i_blkbits;
eb838e73 6557 u64 lockstart, lockend;
4b46fce2 6558 u64 len = bh_result->b_size;
eb838e73 6559 int unlock_bits = EXTENT_LOCKED;
0934856d 6560 int ret = 0;
eb838e73 6561
172a5049 6562 if (create)
eb838e73 6563 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6564 else
c329861d 6565 len = min_t(u64, len, root->sectorsize);
eb838e73 6566
c329861d
JB
6567 lockstart = start;
6568 lockend = start + len - 1;
6569
eb838e73
JB
6570 /*
6571 * If this errors out it's because we couldn't invalidate pagecache for
6572 * this range and we need to fallback to buffered.
6573 */
6574 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6575 return -ENOTBLK;
6576
4b46fce2 6577 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6578 if (IS_ERR(em)) {
6579 ret = PTR_ERR(em);
6580 goto unlock_err;
6581 }
4b46fce2
JB
6582
6583 /*
6584 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6585 * io. INLINE is special, and we could probably kludge it in here, but
6586 * it's still buffered so for safety lets just fall back to the generic
6587 * buffered path.
6588 *
6589 * For COMPRESSED we _have_ to read the entire extent in so we can
6590 * decompress it, so there will be buffering required no matter what we
6591 * do, so go ahead and fallback to buffered.
6592 *
6593 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6594 * to buffered IO. Don't blame me, this is the price we pay for using
6595 * the generic code.
6596 */
6597 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6598 em->block_start == EXTENT_MAP_INLINE) {
6599 free_extent_map(em);
eb838e73
JB
6600 ret = -ENOTBLK;
6601 goto unlock_err;
4b46fce2
JB
6602 }
6603
6604 /* Just a good old fashioned hole, return */
6605 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6606 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6607 free_extent_map(em);
eb838e73 6608 goto unlock_err;
4b46fce2
JB
6609 }
6610
6611 /*
6612 * We don't allocate a new extent in the following cases
6613 *
6614 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6615 * existing extent.
6616 * 2) The extent is marked as PREALLOC. We're good to go here and can
6617 * just use the extent.
6618 *
6619 */
46bfbb5c 6620 if (!create) {
eb838e73
JB
6621 len = min(len, em->len - (start - em->start));
6622 lockstart = start + len;
6623 goto unlock;
46bfbb5c 6624 }
4b46fce2
JB
6625
6626 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6627 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6628 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6629 int type;
6630 int ret;
eb384b55 6631 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6632
6633 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6634 type = BTRFS_ORDERED_PREALLOC;
6635 else
6636 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6637 len = min(len, em->len - (start - em->start));
4b46fce2 6638 block_start = em->block_start + (start - em->start);
46bfbb5c 6639
00361589 6640 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6641 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6642 if (type == BTRFS_ORDERED_PREALLOC) {
6643 free_extent_map(em);
6644 em = create_pinned_em(inode, start, len,
6645 orig_start,
b4939680 6646 block_start, len,
cc95bef6
JB
6647 orig_block_len,
6648 ram_bytes, type);
00361589 6649 if (IS_ERR(em))
69ffb543 6650 goto unlock_err;
69ffb543
JB
6651 }
6652
46bfbb5c
CM
6653 ret = btrfs_add_ordered_extent_dio(inode, start,
6654 block_start, len, len, type);
46bfbb5c
CM
6655 if (ret) {
6656 free_extent_map(em);
eb838e73 6657 goto unlock_err;
46bfbb5c
CM
6658 }
6659 goto unlock;
4b46fce2 6660 }
4b46fce2 6661 }
00361589 6662
46bfbb5c
CM
6663 /*
6664 * this will cow the extent, reset the len in case we changed
6665 * it above
6666 */
6667 len = bh_result->b_size;
70c8a91c
JB
6668 free_extent_map(em);
6669 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6670 if (IS_ERR(em)) {
6671 ret = PTR_ERR(em);
6672 goto unlock_err;
6673 }
46bfbb5c
CM
6674 len = min(len, em->len - (start - em->start));
6675unlock:
4b46fce2
JB
6676 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6677 inode->i_blkbits;
46bfbb5c 6678 bh_result->b_size = len;
4b46fce2
JB
6679 bh_result->b_bdev = em->bdev;
6680 set_buffer_mapped(bh_result);
c3473e83
JB
6681 if (create) {
6682 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6683 set_buffer_new(bh_result);
6684
6685 /*
6686 * Need to update the i_size under the extent lock so buffered
6687 * readers will get the updated i_size when we unlock.
6688 */
6689 if (start + len > i_size_read(inode))
6690 i_size_write(inode, start + len);
0934856d 6691
172a5049
MX
6692 spin_lock(&BTRFS_I(inode)->lock);
6693 BTRFS_I(inode)->outstanding_extents++;
6694 spin_unlock(&BTRFS_I(inode)->lock);
6695
0934856d
MX
6696 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6697 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6698 &cached_state, GFP_NOFS);
6699 BUG_ON(ret);
c3473e83 6700 }
4b46fce2 6701
eb838e73
JB
6702 /*
6703 * In the case of write we need to clear and unlock the entire range,
6704 * in the case of read we need to unlock only the end area that we
6705 * aren't using if there is any left over space.
6706 */
24c03fa5 6707 if (lockstart < lockend) {
0934856d
MX
6708 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6709 lockend, unlock_bits, 1, 0,
6710 &cached_state, GFP_NOFS);
24c03fa5 6711 } else {
eb838e73 6712 free_extent_state(cached_state);
24c03fa5 6713 }
eb838e73 6714
4b46fce2
JB
6715 free_extent_map(em);
6716
6717 return 0;
eb838e73
JB
6718
6719unlock_err:
eb838e73
JB
6720 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6721 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6722 return ret;
4b46fce2
JB
6723}
6724
4b46fce2
JB
6725static void btrfs_endio_direct_read(struct bio *bio, int err)
6726{
e65e1535 6727 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6728 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6729 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6730 struct inode *inode = dip->inode;
6731 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6732 struct bio *dio_bio;
facc8a22
MX
6733 u32 *csums = (u32 *)dip->csum;
6734 int index = 0;
4b46fce2 6735 u64 start;
4b46fce2
JB
6736
6737 start = dip->logical_offset;
6738 do {
6739 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6740 struct page *page = bvec->bv_page;
6741 char *kaddr;
6742 u32 csum = ~(u32)0;
6743 unsigned long flags;
6744
6745 local_irq_save(flags);
7ac687d9 6746 kaddr = kmap_atomic(page);
b0496686 6747 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6748 csum, bvec->bv_len);
6749 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6750 kunmap_atomic(kaddr);
4b46fce2
JB
6751 local_irq_restore(flags);
6752
6753 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6754 if (csum != csums[index]) {
6755 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6756 (unsigned long long)btrfs_ino(inode),
6757 (unsigned long long)start,
6758 csum, csums[index]);
4b46fce2
JB
6759 err = -EIO;
6760 }
6761 }
6762
6763 start += bvec->bv_len;
4b46fce2 6764 bvec++;
facc8a22 6765 index++;
4b46fce2
JB
6766 } while (bvec <= bvec_end);
6767
6768 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6769 dip->logical_offset + dip->bytes - 1);
9be3395b 6770 dio_bio = dip->dio_bio;
4b46fce2 6771
4b46fce2 6772 kfree(dip);
c0da7aa1
JB
6773
6774 /* If we had a csum failure make sure to clear the uptodate flag */
6775 if (err)
9be3395b
CM
6776 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6777 dio_end_io(dio_bio, err);
6778 bio_put(bio);
4b46fce2
JB
6779}
6780
6781static void btrfs_endio_direct_write(struct bio *bio, int err)
6782{
6783 struct btrfs_dio_private *dip = bio->bi_private;
6784 struct inode *inode = dip->inode;
6785 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6786 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6787 u64 ordered_offset = dip->logical_offset;
6788 u64 ordered_bytes = dip->bytes;
9be3395b 6789 struct bio *dio_bio;
4b46fce2
JB
6790 int ret;
6791
6792 if (err)
6793 goto out_done;
163cf09c
CM
6794again:
6795 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6796 &ordered_offset,
5fd02043 6797 ordered_bytes, !err);
4b46fce2 6798 if (!ret)
163cf09c 6799 goto out_test;
4b46fce2 6800
5fd02043
JB
6801 ordered->work.func = finish_ordered_fn;
6802 ordered->work.flags = 0;
6803 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6804 &ordered->work);
163cf09c
CM
6805out_test:
6806 /*
6807 * our bio might span multiple ordered extents. If we haven't
6808 * completed the accounting for the whole dio, go back and try again
6809 */
6810 if (ordered_offset < dip->logical_offset + dip->bytes) {
6811 ordered_bytes = dip->logical_offset + dip->bytes -
6812 ordered_offset;
5fd02043 6813 ordered = NULL;
163cf09c
CM
6814 goto again;
6815 }
4b46fce2 6816out_done:
9be3395b 6817 dio_bio = dip->dio_bio;
4b46fce2 6818
4b46fce2 6819 kfree(dip);
c0da7aa1
JB
6820
6821 /* If we had an error make sure to clear the uptodate flag */
6822 if (err)
9be3395b
CM
6823 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6824 dio_end_io(dio_bio, err);
6825 bio_put(bio);
4b46fce2
JB
6826}
6827
eaf25d93
CM
6828static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6829 struct bio *bio, int mirror_num,
6830 unsigned long bio_flags, u64 offset)
6831{
6832 int ret;
6833 struct btrfs_root *root = BTRFS_I(inode)->root;
6834 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6835 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6836 return 0;
6837}
6838
e65e1535
MX
6839static void btrfs_end_dio_bio(struct bio *bio, int err)
6840{
6841 struct btrfs_dio_private *dip = bio->bi_private;
6842
6843 if (err) {
33345d01 6844 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6845 "sector %#Lx len %u err no %d\n",
33345d01 6846 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6847 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6848 dip->errors = 1;
6849
6850 /*
6851 * before atomic variable goto zero, we must make sure
6852 * dip->errors is perceived to be set.
6853 */
6854 smp_mb__before_atomic_dec();
6855 }
6856
6857 /* if there are more bios still pending for this dio, just exit */
6858 if (!atomic_dec_and_test(&dip->pending_bios))
6859 goto out;
6860
9be3395b 6861 if (dip->errors) {
e65e1535 6862 bio_io_error(dip->orig_bio);
9be3395b
CM
6863 } else {
6864 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6865 bio_endio(dip->orig_bio, 0);
6866 }
6867out:
6868 bio_put(bio);
6869}
6870
6871static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6872 u64 first_sector, gfp_t gfp_flags)
6873{
6874 int nr_vecs = bio_get_nr_vecs(bdev);
6875 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6876}
6877
6878static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6879 int rw, u64 file_offset, int skip_sum,
c329861d 6880 int async_submit)
e65e1535 6881{
facc8a22 6882 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6883 int write = rw & REQ_WRITE;
6884 struct btrfs_root *root = BTRFS_I(inode)->root;
6885 int ret;
6886
b812ce28
JB
6887 if (async_submit)
6888 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6889
e65e1535 6890 bio_get(bio);
5fd02043
JB
6891
6892 if (!write) {
6893 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6894 if (ret)
6895 goto err;
6896 }
e65e1535 6897
1ae39938
JB
6898 if (skip_sum)
6899 goto map;
6900
6901 if (write && async_submit) {
e65e1535
MX
6902 ret = btrfs_wq_submit_bio(root->fs_info,
6903 inode, rw, bio, 0, 0,
6904 file_offset,
6905 __btrfs_submit_bio_start_direct_io,
6906 __btrfs_submit_bio_done);
6907 goto err;
1ae39938
JB
6908 } else if (write) {
6909 /*
6910 * If we aren't doing async submit, calculate the csum of the
6911 * bio now.
6912 */
6913 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6914 if (ret)
6915 goto err;
c2db1073 6916 } else if (!skip_sum) {
facc8a22
MX
6917 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6918 file_offset);
c2db1073
TI
6919 if (ret)
6920 goto err;
6921 }
e65e1535 6922
1ae39938
JB
6923map:
6924 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6925err:
6926 bio_put(bio);
6927 return ret;
6928}
6929
6930static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6931 int skip_sum)
6932{
6933 struct inode *inode = dip->inode;
6934 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6935 struct bio *bio;
6936 struct bio *orig_bio = dip->orig_bio;
6937 struct bio_vec *bvec = orig_bio->bi_io_vec;
6938 u64 start_sector = orig_bio->bi_sector;
6939 u64 file_offset = dip->logical_offset;
6940 u64 submit_len = 0;
6941 u64 map_length;
6942 int nr_pages = 0;
e65e1535 6943 int ret = 0;
1ae39938 6944 int async_submit = 0;
e65e1535 6945
e65e1535 6946 map_length = orig_bio->bi_size;
53b381b3 6947 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
6948 &map_length, NULL, 0);
6949 if (ret) {
64728bbb 6950 bio_put(orig_bio);
e65e1535
MX
6951 return -EIO;
6952 }
facc8a22 6953
02f57c7a
JB
6954 if (map_length >= orig_bio->bi_size) {
6955 bio = orig_bio;
6956 goto submit;
6957 }
6958
53b381b3
DW
6959 /* async crcs make it difficult to collect full stripe writes. */
6960 if (btrfs_get_alloc_profile(root, 1) &
6961 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
6962 async_submit = 0;
6963 else
6964 async_submit = 1;
6965
02f57c7a
JB
6966 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6967 if (!bio)
6968 return -ENOMEM;
6969 bio->bi_private = dip;
6970 bio->bi_end_io = btrfs_end_dio_bio;
6971 atomic_inc(&dip->pending_bios);
6972
e65e1535
MX
6973 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6974 if (unlikely(map_length < submit_len + bvec->bv_len ||
6975 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6976 bvec->bv_offset) < bvec->bv_len)) {
6977 /*
6978 * inc the count before we submit the bio so
6979 * we know the end IO handler won't happen before
6980 * we inc the count. Otherwise, the dip might get freed
6981 * before we're done setting it up
6982 */
6983 atomic_inc(&dip->pending_bios);
6984 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6985 file_offset, skip_sum,
c329861d 6986 async_submit);
e65e1535
MX
6987 if (ret) {
6988 bio_put(bio);
6989 atomic_dec(&dip->pending_bios);
6990 goto out_err;
6991 }
6992
e65e1535
MX
6993 start_sector += submit_len >> 9;
6994 file_offset += submit_len;
6995
6996 submit_len = 0;
6997 nr_pages = 0;
6998
6999 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7000 start_sector, GFP_NOFS);
7001 if (!bio)
7002 goto out_err;
7003 bio->bi_private = dip;
7004 bio->bi_end_io = btrfs_end_dio_bio;
7005
7006 map_length = orig_bio->bi_size;
53b381b3 7007 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7008 start_sector << 9,
e65e1535
MX
7009 &map_length, NULL, 0);
7010 if (ret) {
7011 bio_put(bio);
7012 goto out_err;
7013 }
7014 } else {
7015 submit_len += bvec->bv_len;
7016 nr_pages ++;
7017 bvec++;
7018 }
7019 }
7020
02f57c7a 7021submit:
e65e1535 7022 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7023 async_submit);
e65e1535
MX
7024 if (!ret)
7025 return 0;
7026
7027 bio_put(bio);
7028out_err:
7029 dip->errors = 1;
7030 /*
7031 * before atomic variable goto zero, we must
7032 * make sure dip->errors is perceived to be set.
7033 */
7034 smp_mb__before_atomic_dec();
7035 if (atomic_dec_and_test(&dip->pending_bios))
7036 bio_io_error(dip->orig_bio);
7037
7038 /* bio_end_io() will handle error, so we needn't return it */
7039 return 0;
7040}
7041
9be3395b
CM
7042static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7043 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7044{
7045 struct btrfs_root *root = BTRFS_I(inode)->root;
7046 struct btrfs_dio_private *dip;
9be3395b 7047 struct bio *io_bio;
4b46fce2 7048 int skip_sum;
facc8a22 7049 int sum_len;
7b6d91da 7050 int write = rw & REQ_WRITE;
4b46fce2 7051 int ret = 0;
facc8a22 7052 u16 csum_size;
4b46fce2
JB
7053
7054 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7055
9be3395b 7056 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7057 if (!io_bio) {
7058 ret = -ENOMEM;
7059 goto free_ordered;
7060 }
7061
facc8a22
MX
7062 if (!skip_sum && !write) {
7063 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7064 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7065 sum_len *= csum_size;
7066 } else {
7067 sum_len = 0;
7068 }
7069
7070 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7071 if (!dip) {
7072 ret = -ENOMEM;
9be3395b 7073 goto free_io_bio;
4b46fce2 7074 }
4b46fce2 7075
9be3395b 7076 dip->private = dio_bio->bi_private;
4b46fce2
JB
7077 dip->inode = inode;
7078 dip->logical_offset = file_offset;
e6da5d2e 7079 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7080 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7081 io_bio->bi_private = dip;
e65e1535 7082 dip->errors = 0;
9be3395b
CM
7083 dip->orig_bio = io_bio;
7084 dip->dio_bio = dio_bio;
e65e1535 7085 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7086
7087 if (write)
9be3395b 7088 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7089 else
9be3395b 7090 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7091
e65e1535
MX
7092 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7093 if (!ret)
eaf25d93 7094 return;
9be3395b
CM
7095
7096free_io_bio:
7097 bio_put(io_bio);
7098
4b46fce2
JB
7099free_ordered:
7100 /*
7101 * If this is a write, we need to clean up the reserved space and kill
7102 * the ordered extent.
7103 */
7104 if (write) {
7105 struct btrfs_ordered_extent *ordered;
955256f2 7106 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7107 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7108 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7109 btrfs_free_reserved_extent(root, ordered->start,
7110 ordered->disk_len);
7111 btrfs_put_ordered_extent(ordered);
7112 btrfs_put_ordered_extent(ordered);
7113 }
9be3395b 7114 bio_endio(dio_bio, ret);
4b46fce2
JB
7115}
7116
5a5f79b5
CM
7117static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7118 const struct iovec *iov, loff_t offset,
7119 unsigned long nr_segs)
7120{
7121 int seg;
a1b75f7d 7122 int i;
5a5f79b5
CM
7123 size_t size;
7124 unsigned long addr;
7125 unsigned blocksize_mask = root->sectorsize - 1;
7126 ssize_t retval = -EINVAL;
7127 loff_t end = offset;
7128
7129 if (offset & blocksize_mask)
7130 goto out;
7131
7132 /* Check the memory alignment. Blocks cannot straddle pages */
7133 for (seg = 0; seg < nr_segs; seg++) {
7134 addr = (unsigned long)iov[seg].iov_base;
7135 size = iov[seg].iov_len;
7136 end += size;
a1b75f7d 7137 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7138 goto out;
a1b75f7d
JB
7139
7140 /* If this is a write we don't need to check anymore */
7141 if (rw & WRITE)
7142 continue;
7143
7144 /*
7145 * Check to make sure we don't have duplicate iov_base's in this
7146 * iovec, if so return EINVAL, otherwise we'll get csum errors
7147 * when reading back.
7148 */
7149 for (i = seg + 1; i < nr_segs; i++) {
7150 if (iov[seg].iov_base == iov[i].iov_base)
7151 goto out;
7152 }
5a5f79b5
CM
7153 }
7154 retval = 0;
7155out:
7156 return retval;
7157}
eb838e73 7158
16432985
CM
7159static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7160 const struct iovec *iov, loff_t offset,
7161 unsigned long nr_segs)
7162{
4b46fce2
JB
7163 struct file *file = iocb->ki_filp;
7164 struct inode *inode = file->f_mapping->host;
0934856d 7165 size_t count = 0;
2e60a51e 7166 int flags = 0;
38851cc1
MX
7167 bool wakeup = true;
7168 bool relock = false;
0934856d 7169 ssize_t ret;
4b46fce2 7170
5a5f79b5 7171 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7172 offset, nr_segs))
5a5f79b5 7173 return 0;
3f7c579c 7174
38851cc1
MX
7175 atomic_inc(&inode->i_dio_count);
7176 smp_mb__after_atomic_inc();
7177
0e267c44
JB
7178 /*
7179 * The generic stuff only does filemap_write_and_wait_range, which isn't
7180 * enough if we've written compressed pages to this area, so we need to
7181 * call btrfs_wait_ordered_range to make absolutely sure that any
7182 * outstanding dirty pages are on disk.
7183 */
7184 count = iov_length(iov, nr_segs);
7185 btrfs_wait_ordered_range(inode, offset, count);
7186
0934856d 7187 if (rw & WRITE) {
38851cc1
MX
7188 /*
7189 * If the write DIO is beyond the EOF, we need update
7190 * the isize, but it is protected by i_mutex. So we can
7191 * not unlock the i_mutex at this case.
7192 */
7193 if (offset + count <= inode->i_size) {
7194 mutex_unlock(&inode->i_mutex);
7195 relock = true;
7196 }
0934856d
MX
7197 ret = btrfs_delalloc_reserve_space(inode, count);
7198 if (ret)
38851cc1
MX
7199 goto out;
7200 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7201 &BTRFS_I(inode)->runtime_flags))) {
7202 inode_dio_done(inode);
7203 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7204 wakeup = false;
0934856d
MX
7205 }
7206
7207 ret = __blockdev_direct_IO(rw, iocb, inode,
7208 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7209 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7210 btrfs_submit_direct, flags);
0934856d
MX
7211 if (rw & WRITE) {
7212 if (ret < 0 && ret != -EIOCBQUEUED)
7213 btrfs_delalloc_release_space(inode, count);
172a5049 7214 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7215 btrfs_delalloc_release_space(inode,
7216 count - (size_t)ret);
172a5049
MX
7217 else
7218 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7219 }
38851cc1 7220out:
2e60a51e
MX
7221 if (wakeup)
7222 inode_dio_done(inode);
38851cc1
MX
7223 if (relock)
7224 mutex_lock(&inode->i_mutex);
0934856d
MX
7225
7226 return ret;
16432985
CM
7227}
7228
05dadc09
TI
7229#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7230
1506fcc8
YS
7231static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7232 __u64 start, __u64 len)
7233{
05dadc09
TI
7234 int ret;
7235
7236 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7237 if (ret)
7238 return ret;
7239
ec29ed5b 7240 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7241}
7242
a52d9a80 7243int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7244{
d1310b2e
CM
7245 struct extent_io_tree *tree;
7246 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7247 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7248}
1832a6d5 7249
a52d9a80 7250static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7251{
d1310b2e 7252 struct extent_io_tree *tree;
b888db2b
CM
7253
7254
7255 if (current->flags & PF_MEMALLOC) {
7256 redirty_page_for_writepage(wbc, page);
7257 unlock_page(page);
7258 return 0;
7259 }
d1310b2e 7260 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7261 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7262}
7263
48a3b636
ES
7264static int btrfs_writepages(struct address_space *mapping,
7265 struct writeback_control *wbc)
b293f02e 7266{
d1310b2e 7267 struct extent_io_tree *tree;
771ed689 7268
d1310b2e 7269 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7270 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7271}
7272
3ab2fb5a
CM
7273static int
7274btrfs_readpages(struct file *file, struct address_space *mapping,
7275 struct list_head *pages, unsigned nr_pages)
7276{
d1310b2e
CM
7277 struct extent_io_tree *tree;
7278 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7279 return extent_readpages(tree, mapping, pages, nr_pages,
7280 btrfs_get_extent);
7281}
e6dcd2dc 7282static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7283{
d1310b2e
CM
7284 struct extent_io_tree *tree;
7285 struct extent_map_tree *map;
a52d9a80 7286 int ret;
8c2383c3 7287
d1310b2e
CM
7288 tree = &BTRFS_I(page->mapping->host)->io_tree;
7289 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7290 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7291 if (ret == 1) {
7292 ClearPagePrivate(page);
7293 set_page_private(page, 0);
7294 page_cache_release(page);
39279cc3 7295 }
a52d9a80 7296 return ret;
39279cc3
CM
7297}
7298
e6dcd2dc
CM
7299static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7300{
98509cfc
CM
7301 if (PageWriteback(page) || PageDirty(page))
7302 return 0;
b335b003 7303 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7304}
7305
d47992f8
LC
7306static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7307 unsigned int length)
39279cc3 7308{
5fd02043 7309 struct inode *inode = page->mapping->host;
d1310b2e 7310 struct extent_io_tree *tree;
e6dcd2dc 7311 struct btrfs_ordered_extent *ordered;
2ac55d41 7312 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7313 u64 page_start = page_offset(page);
7314 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7315
8b62b72b
CM
7316 /*
7317 * we have the page locked, so new writeback can't start,
7318 * and the dirty bit won't be cleared while we are here.
7319 *
7320 * Wait for IO on this page so that we can safely clear
7321 * the PagePrivate2 bit and do ordered accounting
7322 */
e6dcd2dc 7323 wait_on_page_writeback(page);
8b62b72b 7324
5fd02043 7325 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7326 if (offset) {
7327 btrfs_releasepage(page, GFP_NOFS);
7328 return;
7329 }
d0082371 7330 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7331 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7332 if (ordered) {
eb84ae03
CM
7333 /*
7334 * IO on this page will never be started, so we need
7335 * to account for any ordered extents now
7336 */
e6dcd2dc
CM
7337 clear_extent_bit(tree, page_start, page_end,
7338 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7339 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7340 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7341 /*
7342 * whoever cleared the private bit is responsible
7343 * for the finish_ordered_io
7344 */
5fd02043
JB
7345 if (TestClearPagePrivate2(page) &&
7346 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7347 PAGE_CACHE_SIZE, 1)) {
7348 btrfs_finish_ordered_io(ordered);
8b62b72b 7349 }
e6dcd2dc 7350 btrfs_put_ordered_extent(ordered);
2ac55d41 7351 cached_state = NULL;
d0082371 7352 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7353 }
7354 clear_extent_bit(tree, page_start, page_end,
32c00aff 7355 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7356 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7357 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7358 __btrfs_releasepage(page, GFP_NOFS);
7359
4a096752 7360 ClearPageChecked(page);
9ad6b7bc 7361 if (PagePrivate(page)) {
9ad6b7bc
CM
7362 ClearPagePrivate(page);
7363 set_page_private(page, 0);
7364 page_cache_release(page);
7365 }
39279cc3
CM
7366}
7367
9ebefb18
CM
7368/*
7369 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7370 * called from a page fault handler when a page is first dirtied. Hence we must
7371 * be careful to check for EOF conditions here. We set the page up correctly
7372 * for a written page which means we get ENOSPC checking when writing into
7373 * holes and correct delalloc and unwritten extent mapping on filesystems that
7374 * support these features.
7375 *
7376 * We are not allowed to take the i_mutex here so we have to play games to
7377 * protect against truncate races as the page could now be beyond EOF. Because
7378 * vmtruncate() writes the inode size before removing pages, once we have the
7379 * page lock we can determine safely if the page is beyond EOF. If it is not
7380 * beyond EOF, then the page is guaranteed safe against truncation until we
7381 * unlock the page.
7382 */
c2ec175c 7383int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7384{
c2ec175c 7385 struct page *page = vmf->page;
496ad9aa 7386 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7387 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7388 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7389 struct btrfs_ordered_extent *ordered;
2ac55d41 7390 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7391 char *kaddr;
7392 unsigned long zero_start;
9ebefb18 7393 loff_t size;
1832a6d5 7394 int ret;
9998eb70 7395 int reserved = 0;
a52d9a80 7396 u64 page_start;
e6dcd2dc 7397 u64 page_end;
9ebefb18 7398
b2b5ef5c 7399 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7400 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7401 if (!ret) {
e41f941a 7402 ret = file_update_time(vma->vm_file);
9998eb70
CM
7403 reserved = 1;
7404 }
56a76f82
NP
7405 if (ret) {
7406 if (ret == -ENOMEM)
7407 ret = VM_FAULT_OOM;
7408 else /* -ENOSPC, -EIO, etc */
7409 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7410 if (reserved)
7411 goto out;
7412 goto out_noreserve;
56a76f82 7413 }
1832a6d5 7414
56a76f82 7415 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7416again:
9ebefb18 7417 lock_page(page);
9ebefb18 7418 size = i_size_read(inode);
e6dcd2dc
CM
7419 page_start = page_offset(page);
7420 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7421
9ebefb18 7422 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7423 (page_start >= size)) {
9ebefb18
CM
7424 /* page got truncated out from underneath us */
7425 goto out_unlock;
7426 }
e6dcd2dc
CM
7427 wait_on_page_writeback(page);
7428
d0082371 7429 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7430 set_page_extent_mapped(page);
7431
eb84ae03
CM
7432 /*
7433 * we can't set the delalloc bits if there are pending ordered
7434 * extents. Drop our locks and wait for them to finish
7435 */
e6dcd2dc
CM
7436 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7437 if (ordered) {
2ac55d41
JB
7438 unlock_extent_cached(io_tree, page_start, page_end,
7439 &cached_state, GFP_NOFS);
e6dcd2dc 7440 unlock_page(page);
eb84ae03 7441 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7442 btrfs_put_ordered_extent(ordered);
7443 goto again;
7444 }
7445
fbf19087
JB
7446 /*
7447 * XXX - page_mkwrite gets called every time the page is dirtied, even
7448 * if it was already dirty, so for space accounting reasons we need to
7449 * clear any delalloc bits for the range we are fixing to save. There
7450 * is probably a better way to do this, but for now keep consistent with
7451 * prepare_pages in the normal write path.
7452 */
2ac55d41 7453 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7454 EXTENT_DIRTY | EXTENT_DELALLOC |
7455 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7456 0, 0, &cached_state, GFP_NOFS);
fbf19087 7457
2ac55d41
JB
7458 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7459 &cached_state);
9ed74f2d 7460 if (ret) {
2ac55d41
JB
7461 unlock_extent_cached(io_tree, page_start, page_end,
7462 &cached_state, GFP_NOFS);
9ed74f2d
JB
7463 ret = VM_FAULT_SIGBUS;
7464 goto out_unlock;
7465 }
e6dcd2dc 7466 ret = 0;
9ebefb18
CM
7467
7468 /* page is wholly or partially inside EOF */
a52d9a80 7469 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7470 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7471 else
e6dcd2dc 7472 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7473
e6dcd2dc
CM
7474 if (zero_start != PAGE_CACHE_SIZE) {
7475 kaddr = kmap(page);
7476 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7477 flush_dcache_page(page);
7478 kunmap(page);
7479 }
247e743c 7480 ClearPageChecked(page);
e6dcd2dc 7481 set_page_dirty(page);
50a9b214 7482 SetPageUptodate(page);
5a3f23d5 7483
257c62e1
CM
7484 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7485 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7486 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7487
2ac55d41 7488 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7489
7490out_unlock:
b2b5ef5c
JK
7491 if (!ret) {
7492 sb_end_pagefault(inode->i_sb);
50a9b214 7493 return VM_FAULT_LOCKED;
b2b5ef5c 7494 }
9ebefb18 7495 unlock_page(page);
1832a6d5 7496out:
ec39e180 7497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7498out_noreserve:
b2b5ef5c 7499 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7500 return ret;
7501}
7502
a41ad394 7503static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7504{
7505 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7506 struct btrfs_block_rsv *rsv;
a71754fc 7507 int ret = 0;
3893e33b 7508 int err = 0;
39279cc3 7509 struct btrfs_trans_handle *trans;
dbe674a9 7510 u64 mask = root->sectorsize - 1;
07127184 7511 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7512
4a096752 7513 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7514 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7515
fcb80c2a
JB
7516 /*
7517 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7518 * 3 things going on here
7519 *
7520 * 1) We need to reserve space for our orphan item and the space to
7521 * delete our orphan item. Lord knows we don't want to have a dangling
7522 * orphan item because we didn't reserve space to remove it.
7523 *
7524 * 2) We need to reserve space to update our inode.
7525 *
7526 * 3) We need to have something to cache all the space that is going to
7527 * be free'd up by the truncate operation, but also have some slack
7528 * space reserved in case it uses space during the truncate (thank you
7529 * very much snapshotting).
7530 *
7531 * And we need these to all be seperate. The fact is we can use alot of
7532 * space doing the truncate, and we have no earthly idea how much space
7533 * we will use, so we need the truncate reservation to be seperate so it
7534 * doesn't end up using space reserved for updating the inode or
7535 * removing the orphan item. We also need to be able to stop the
7536 * transaction and start a new one, which means we need to be able to
7537 * update the inode several times, and we have no idea of knowing how
7538 * many times that will be, so we can't just reserve 1 item for the
7539 * entirety of the opration, so that has to be done seperately as well.
7540 * Then there is the orphan item, which does indeed need to be held on
7541 * to for the whole operation, and we need nobody to touch this reserved
7542 * space except the orphan code.
7543 *
7544 * So that leaves us with
7545 *
7546 * 1) root->orphan_block_rsv - for the orphan deletion.
7547 * 2) rsv - for the truncate reservation, which we will steal from the
7548 * transaction reservation.
7549 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7550 * updating the inode.
7551 */
66d8f3dd 7552 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7553 if (!rsv)
7554 return -ENOMEM;
4a338542 7555 rsv->size = min_size;
ca7e70f5 7556 rsv->failfast = 1;
f0cd846e 7557
907cbceb 7558 /*
07127184 7559 * 1 for the truncate slack space
907cbceb
JB
7560 * 1 for updating the inode.
7561 */
f3fe820c 7562 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7563 if (IS_ERR(trans)) {
7564 err = PTR_ERR(trans);
7565 goto out;
7566 }
f0cd846e 7567
907cbceb
JB
7568 /* Migrate the slack space for the truncate to our reserve */
7569 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7570 min_size);
fcb80c2a 7571 BUG_ON(ret);
f0cd846e 7572
5a3f23d5
CM
7573 /*
7574 * setattr is responsible for setting the ordered_data_close flag,
7575 * but that is only tested during the last file release. That
7576 * could happen well after the next commit, leaving a great big
7577 * window where new writes may get lost if someone chooses to write
7578 * to this file after truncating to zero
7579 *
7580 * The inode doesn't have any dirty data here, and so if we commit
7581 * this is a noop. If someone immediately starts writing to the inode
7582 * it is very likely we'll catch some of their writes in this
7583 * transaction, and the commit will find this file on the ordered
7584 * data list with good things to send down.
7585 *
7586 * This is a best effort solution, there is still a window where
7587 * using truncate to replace the contents of the file will
7588 * end up with a zero length file after a crash.
7589 */
72ac3c0d
JB
7590 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7591 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7592 btrfs_add_ordered_operation(trans, root, inode);
7593
5dc562c5
JB
7594 /*
7595 * So if we truncate and then write and fsync we normally would just
7596 * write the extents that changed, which is a problem if we need to
7597 * first truncate that entire inode. So set this flag so we write out
7598 * all of the extents in the inode to the sync log so we're completely
7599 * safe.
7600 */
7601 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7602 trans->block_rsv = rsv;
907cbceb 7603
8082510e
YZ
7604 while (1) {
7605 ret = btrfs_truncate_inode_items(trans, root, inode,
7606 inode->i_size,
7607 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7608 if (ret != -ENOSPC) {
3893e33b 7609 err = ret;
8082510e 7610 break;
3893e33b 7611 }
39279cc3 7612
fcb80c2a 7613 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7614 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7615 if (ret) {
7616 err = ret;
7617 break;
7618 }
ca7e70f5 7619
8082510e 7620 btrfs_end_transaction(trans, root);
b53d3f5d 7621 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7622
7623 trans = btrfs_start_transaction(root, 2);
7624 if (IS_ERR(trans)) {
7625 ret = err = PTR_ERR(trans);
7626 trans = NULL;
7627 break;
7628 }
7629
7630 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7631 rsv, min_size);
7632 BUG_ON(ret); /* shouldn't happen */
7633 trans->block_rsv = rsv;
8082510e
YZ
7634 }
7635
7636 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7637 trans->block_rsv = root->orphan_block_rsv;
8082510e 7638 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7639 if (ret)
7640 err = ret;
8082510e
YZ
7641 }
7642
917c16b2
CM
7643 if (trans) {
7644 trans->block_rsv = &root->fs_info->trans_block_rsv;
7645 ret = btrfs_update_inode(trans, root, inode);
7646 if (ret && !err)
7647 err = ret;
7b128766 7648
7ad85bb7 7649 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7650 btrfs_btree_balance_dirty(root);
917c16b2 7651 }
fcb80c2a
JB
7652
7653out:
7654 btrfs_free_block_rsv(root, rsv);
7655
3893e33b
JB
7656 if (ret && !err)
7657 err = ret;
a41ad394 7658
3893e33b 7659 return err;
39279cc3
CM
7660}
7661
d352ac68
CM
7662/*
7663 * create a new subvolume directory/inode (helper for the ioctl).
7664 */
d2fb3437 7665int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7666 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7667{
39279cc3 7668 struct inode *inode;
76dda93c 7669 int err;
00e4e6b3 7670 u64 index = 0;
39279cc3 7671
12fc9d09
FA
7672 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7673 new_dirid, new_dirid,
7674 S_IFDIR | (~current_umask() & S_IRWXUGO),
7675 &index);
54aa1f4d 7676 if (IS_ERR(inode))
f46b5a66 7677 return PTR_ERR(inode);
39279cc3
CM
7678 inode->i_op = &btrfs_dir_inode_operations;
7679 inode->i_fop = &btrfs_dir_file_operations;
7680
bfe86848 7681 set_nlink(inode, 1);
dbe674a9 7682 btrfs_i_size_write(inode, 0);
3b96362c 7683
76dda93c 7684 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7685
76dda93c 7686 iput(inode);
ce598979 7687 return err;
39279cc3
CM
7688}
7689
39279cc3
CM
7690struct inode *btrfs_alloc_inode(struct super_block *sb)
7691{
7692 struct btrfs_inode *ei;
2ead6ae7 7693 struct inode *inode;
39279cc3
CM
7694
7695 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7696 if (!ei)
7697 return NULL;
2ead6ae7
YZ
7698
7699 ei->root = NULL;
2ead6ae7 7700 ei->generation = 0;
15ee9bc7 7701 ei->last_trans = 0;
257c62e1 7702 ei->last_sub_trans = 0;
e02119d5 7703 ei->logged_trans = 0;
2ead6ae7 7704 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7705 ei->disk_i_size = 0;
7706 ei->flags = 0;
7709cde3 7707 ei->csum_bytes = 0;
2ead6ae7
YZ
7708 ei->index_cnt = (u64)-1;
7709 ei->last_unlink_trans = 0;
46d8bc34 7710 ei->last_log_commit = 0;
2ead6ae7 7711
9e0baf60
JB
7712 spin_lock_init(&ei->lock);
7713 ei->outstanding_extents = 0;
7714 ei->reserved_extents = 0;
2ead6ae7 7715
72ac3c0d 7716 ei->runtime_flags = 0;
261507a0 7717 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7718
16cdcec7
MX
7719 ei->delayed_node = NULL;
7720
2ead6ae7 7721 inode = &ei->vfs_inode;
a8067e02 7722 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7723 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7724 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7725 ei->io_tree.track_uptodate = 1;
7726 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7727 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7728 mutex_init(&ei->log_mutex);
f248679e 7729 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7730 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7731 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7732 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7733 RB_CLEAR_NODE(&ei->rb_node);
7734
7735 return inode;
39279cc3
CM
7736}
7737
fa0d7e3d
NP
7738static void btrfs_i_callback(struct rcu_head *head)
7739{
7740 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7741 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7742}
7743
39279cc3
CM
7744void btrfs_destroy_inode(struct inode *inode)
7745{
e6dcd2dc 7746 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7747 struct btrfs_root *root = BTRFS_I(inode)->root;
7748
b3d9b7a3 7749 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7750 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7751 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7752 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7753 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7754 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7755
a6dbd429
JB
7756 /*
7757 * This can happen where we create an inode, but somebody else also
7758 * created the same inode and we need to destroy the one we already
7759 * created.
7760 */
7761 if (!root)
7762 goto free;
7763
5a3f23d5
CM
7764 /*
7765 * Make sure we're properly removed from the ordered operation
7766 * lists.
7767 */
7768 smp_mb();
7769 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7770 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7771 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7772 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7773 }
7774
8a35d95f
JB
7775 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7776 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7777 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7778 (unsigned long long)btrfs_ino(inode));
8a35d95f 7779 atomic_dec(&root->orphan_inodes);
7b128766 7780 }
7b128766 7781
d397712b 7782 while (1) {
e6dcd2dc
CM
7783 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7784 if (!ordered)
7785 break;
7786 else {
c2cf52eb
SK
7787 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7788 (unsigned long long)ordered->file_offset,
7789 (unsigned long long)ordered->len);
e6dcd2dc
CM
7790 btrfs_remove_ordered_extent(inode, ordered);
7791 btrfs_put_ordered_extent(ordered);
7792 btrfs_put_ordered_extent(ordered);
7793 }
7794 }
5d4f98a2 7795 inode_tree_del(inode);
5b21f2ed 7796 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7797free:
fa0d7e3d 7798 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7799}
7800
45321ac5 7801int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7802{
7803 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7804
6379ef9f
NA
7805 if (root == NULL)
7806 return 1;
7807
fa6ac876 7808 /* the snap/subvol tree is on deleting */
0af3d00b 7809 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7810 root != root->fs_info->tree_root)
45321ac5 7811 return 1;
76dda93c 7812 else
45321ac5 7813 return generic_drop_inode(inode);
76dda93c
YZ
7814}
7815
0ee0fda0 7816static void init_once(void *foo)
39279cc3
CM
7817{
7818 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7819
7820 inode_init_once(&ei->vfs_inode);
7821}
7822
7823void btrfs_destroy_cachep(void)
7824{
8c0a8537
KS
7825 /*
7826 * Make sure all delayed rcu free inodes are flushed before we
7827 * destroy cache.
7828 */
7829 rcu_barrier();
39279cc3
CM
7830 if (btrfs_inode_cachep)
7831 kmem_cache_destroy(btrfs_inode_cachep);
7832 if (btrfs_trans_handle_cachep)
7833 kmem_cache_destroy(btrfs_trans_handle_cachep);
7834 if (btrfs_transaction_cachep)
7835 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7836 if (btrfs_path_cachep)
7837 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7838 if (btrfs_free_space_cachep)
7839 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7840 if (btrfs_delalloc_work_cachep)
7841 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7842}
7843
7844int btrfs_init_cachep(void)
7845{
837e1972 7846 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7847 sizeof(struct btrfs_inode), 0,
7848 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7849 if (!btrfs_inode_cachep)
7850 goto fail;
9601e3f6 7851
837e1972 7852 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7853 sizeof(struct btrfs_trans_handle), 0,
7854 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7855 if (!btrfs_trans_handle_cachep)
7856 goto fail;
9601e3f6 7857
837e1972 7858 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7859 sizeof(struct btrfs_transaction), 0,
7860 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7861 if (!btrfs_transaction_cachep)
7862 goto fail;
9601e3f6 7863
837e1972 7864 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7865 sizeof(struct btrfs_path), 0,
7866 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7867 if (!btrfs_path_cachep)
7868 goto fail;
9601e3f6 7869
837e1972 7870 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7871 sizeof(struct btrfs_free_space), 0,
7872 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7873 if (!btrfs_free_space_cachep)
7874 goto fail;
7875
8ccf6f19
MX
7876 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7877 sizeof(struct btrfs_delalloc_work), 0,
7878 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7879 NULL);
7880 if (!btrfs_delalloc_work_cachep)
7881 goto fail;
7882
39279cc3
CM
7883 return 0;
7884fail:
7885 btrfs_destroy_cachep();
7886 return -ENOMEM;
7887}
7888
7889static int btrfs_getattr(struct vfsmount *mnt,
7890 struct dentry *dentry, struct kstat *stat)
7891{
df0af1a5 7892 u64 delalloc_bytes;
39279cc3 7893 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7894 u32 blocksize = inode->i_sb->s_blocksize;
7895
39279cc3 7896 generic_fillattr(inode, stat);
0ee5dc67 7897 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7898 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7899
7900 spin_lock(&BTRFS_I(inode)->lock);
7901 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7902 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7903 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7904 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7905 return 0;
7906}
7907
d397712b
CM
7908static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7909 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7910{
7911 struct btrfs_trans_handle *trans;
7912 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7913 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7914 struct inode *new_inode = new_dentry->d_inode;
7915 struct inode *old_inode = old_dentry->d_inode;
7916 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7917 u64 index = 0;
4df27c4d 7918 u64 root_objectid;
39279cc3 7919 int ret;
33345d01 7920 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7921
33345d01 7922 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7923 return -EPERM;
7924
4df27c4d 7925 /* we only allow rename subvolume link between subvolumes */
33345d01 7926 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7927 return -EXDEV;
7928
33345d01
LZ
7929 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7930 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7931 return -ENOTEMPTY;
5f39d397 7932
4df27c4d
YZ
7933 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7934 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7935 return -ENOTEMPTY;
9c52057c
CM
7936
7937
7938 /* check for collisions, even if the name isn't there */
7939 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
7940 new_dentry->d_name.name,
7941 new_dentry->d_name.len);
7942
7943 if (ret) {
7944 if (ret == -EEXIST) {
7945 /* we shouldn't get
7946 * eexist without a new_inode */
7947 if (!new_inode) {
7948 WARN_ON(1);
7949 return ret;
7950 }
7951 } else {
7952 /* maybe -EOVERFLOW */
7953 return ret;
7954 }
7955 }
7956 ret = 0;
7957
5a3f23d5
CM
7958 /*
7959 * we're using rename to replace one file with another.
7960 * and the replacement file is large. Start IO on it now so
7961 * we don't add too much work to the end of the transaction
7962 */
4baf8c92 7963 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7964 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7965 filemap_flush(old_inode->i_mapping);
7966
76dda93c 7967 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7968 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7969 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7970 /*
7971 * We want to reserve the absolute worst case amount of items. So if
7972 * both inodes are subvols and we need to unlink them then that would
7973 * require 4 item modifications, but if they are both normal inodes it
7974 * would require 5 item modifications, so we'll assume their normal
7975 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7976 * should cover the worst case number of items we'll modify.
7977 */
6e137ed3 7978 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
7979 if (IS_ERR(trans)) {
7980 ret = PTR_ERR(trans);
7981 goto out_notrans;
7982 }
76dda93c 7983
4df27c4d
YZ
7984 if (dest != root)
7985 btrfs_record_root_in_trans(trans, dest);
5f39d397 7986
a5719521
YZ
7987 ret = btrfs_set_inode_index(new_dir, &index);
7988 if (ret)
7989 goto out_fail;
5a3f23d5 7990
33345d01 7991 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7992 /* force full log commit if subvolume involved. */
7993 root->fs_info->last_trans_log_full_commit = trans->transid;
7994 } else {
a5719521
YZ
7995 ret = btrfs_insert_inode_ref(trans, dest,
7996 new_dentry->d_name.name,
7997 new_dentry->d_name.len,
33345d01
LZ
7998 old_ino,
7999 btrfs_ino(new_dir), index);
a5719521
YZ
8000 if (ret)
8001 goto out_fail;
4df27c4d
YZ
8002 /*
8003 * this is an ugly little race, but the rename is required
8004 * to make sure that if we crash, the inode is either at the
8005 * old name or the new one. pinning the log transaction lets
8006 * us make sure we don't allow a log commit to come in after
8007 * we unlink the name but before we add the new name back in.
8008 */
8009 btrfs_pin_log_trans(root);
8010 }
5a3f23d5
CM
8011 /*
8012 * make sure the inode gets flushed if it is replacing
8013 * something.
8014 */
33345d01 8015 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8016 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8017
0c4d2d95
JB
8018 inode_inc_iversion(old_dir);
8019 inode_inc_iversion(new_dir);
8020 inode_inc_iversion(old_inode);
39279cc3
CM
8021 old_dir->i_ctime = old_dir->i_mtime = ctime;
8022 new_dir->i_ctime = new_dir->i_mtime = ctime;
8023 old_inode->i_ctime = ctime;
5f39d397 8024
12fcfd22
CM
8025 if (old_dentry->d_parent != new_dentry->d_parent)
8026 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8027
33345d01 8028 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8029 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8030 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8031 old_dentry->d_name.name,
8032 old_dentry->d_name.len);
8033 } else {
92986796
AV
8034 ret = __btrfs_unlink_inode(trans, root, old_dir,
8035 old_dentry->d_inode,
8036 old_dentry->d_name.name,
8037 old_dentry->d_name.len);
8038 if (!ret)
8039 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8040 }
79787eaa
JM
8041 if (ret) {
8042 btrfs_abort_transaction(trans, root, ret);
8043 goto out_fail;
8044 }
39279cc3
CM
8045
8046 if (new_inode) {
0c4d2d95 8047 inode_inc_iversion(new_inode);
39279cc3 8048 new_inode->i_ctime = CURRENT_TIME;
33345d01 8049 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8050 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8051 root_objectid = BTRFS_I(new_inode)->location.objectid;
8052 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8053 root_objectid,
8054 new_dentry->d_name.name,
8055 new_dentry->d_name.len);
8056 BUG_ON(new_inode->i_nlink == 0);
8057 } else {
8058 ret = btrfs_unlink_inode(trans, dest, new_dir,
8059 new_dentry->d_inode,
8060 new_dentry->d_name.name,
8061 new_dentry->d_name.len);
8062 }
4ef31a45 8063 if (!ret && new_inode->i_nlink == 0)
e02119d5 8064 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8065 if (ret) {
8066 btrfs_abort_transaction(trans, root, ret);
8067 goto out_fail;
8068 }
39279cc3 8069 }
aec7477b 8070
4df27c4d
YZ
8071 ret = btrfs_add_link(trans, new_dir, old_inode,
8072 new_dentry->d_name.name,
a5719521 8073 new_dentry->d_name.len, 0, index);
79787eaa
JM
8074 if (ret) {
8075 btrfs_abort_transaction(trans, root, ret);
8076 goto out_fail;
8077 }
39279cc3 8078
33345d01 8079 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8080 struct dentry *parent = new_dentry->d_parent;
6a912213 8081 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8082 btrfs_end_log_trans(root);
8083 }
39279cc3 8084out_fail:
7ad85bb7 8085 btrfs_end_transaction(trans, root);
b44c59a8 8086out_notrans:
33345d01 8087 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8088 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8089
39279cc3
CM
8090 return ret;
8091}
8092
8ccf6f19
MX
8093static void btrfs_run_delalloc_work(struct btrfs_work *work)
8094{
8095 struct btrfs_delalloc_work *delalloc_work;
8096
8097 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8098 work);
8099 if (delalloc_work->wait)
8100 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8101 else
8102 filemap_flush(delalloc_work->inode->i_mapping);
8103
8104 if (delalloc_work->delay_iput)
8105 btrfs_add_delayed_iput(delalloc_work->inode);
8106 else
8107 iput(delalloc_work->inode);
8108 complete(&delalloc_work->completion);
8109}
8110
8111struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8112 int wait, int delay_iput)
8113{
8114 struct btrfs_delalloc_work *work;
8115
8116 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8117 if (!work)
8118 return NULL;
8119
8120 init_completion(&work->completion);
8121 INIT_LIST_HEAD(&work->list);
8122 work->inode = inode;
8123 work->wait = wait;
8124 work->delay_iput = delay_iput;
8125 work->work.func = btrfs_run_delalloc_work;
8126
8127 return work;
8128}
8129
8130void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8131{
8132 wait_for_completion(&work->completion);
8133 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8134}
8135
d352ac68
CM
8136/*
8137 * some fairly slow code that needs optimization. This walks the list
8138 * of all the inodes with pending delalloc and forces them to disk.
8139 */
eb73c1b7 8140static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8141{
ea8c2819 8142 struct btrfs_inode *binode;
5b21f2ed 8143 struct inode *inode;
8ccf6f19
MX
8144 struct btrfs_delalloc_work *work, *next;
8145 struct list_head works;
1eafa6c7 8146 struct list_head splice;
8ccf6f19 8147 int ret = 0;
ea8c2819 8148
8ccf6f19 8149 INIT_LIST_HEAD(&works);
1eafa6c7 8150 INIT_LIST_HEAD(&splice);
63607cc8 8151
eb73c1b7
MX
8152 spin_lock(&root->delalloc_lock);
8153 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8154 while (!list_empty(&splice)) {
8155 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8156 delalloc_inodes);
1eafa6c7 8157
eb73c1b7
MX
8158 list_move_tail(&binode->delalloc_inodes,
8159 &root->delalloc_inodes);
5b21f2ed 8160 inode = igrab(&binode->vfs_inode);
df0af1a5 8161 if (!inode) {
eb73c1b7 8162 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8163 continue;
df0af1a5 8164 }
eb73c1b7 8165 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8166
8167 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8168 if (unlikely(!work)) {
8169 ret = -ENOMEM;
8170 goto out;
5b21f2ed 8171 }
1eafa6c7
MX
8172 list_add_tail(&work->list, &works);
8173 btrfs_queue_worker(&root->fs_info->flush_workers,
8174 &work->work);
8175
5b21f2ed 8176 cond_resched();
eb73c1b7 8177 spin_lock(&root->delalloc_lock);
ea8c2819 8178 }
eb73c1b7 8179 spin_unlock(&root->delalloc_lock);
8c8bee1d 8180
1eafa6c7
MX
8181 list_for_each_entry_safe(work, next, &works, list) {
8182 list_del_init(&work->list);
8183 btrfs_wait_and_free_delalloc_work(work);
8184 }
eb73c1b7
MX
8185 return 0;
8186out:
8187 list_for_each_entry_safe(work, next, &works, list) {
8188 list_del_init(&work->list);
8189 btrfs_wait_and_free_delalloc_work(work);
8190 }
8191
8192 if (!list_empty_careful(&splice)) {
8193 spin_lock(&root->delalloc_lock);
8194 list_splice_tail(&splice, &root->delalloc_inodes);
8195 spin_unlock(&root->delalloc_lock);
8196 }
8197 return ret;
8198}
1eafa6c7 8199
eb73c1b7
MX
8200int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8201{
8202 int ret;
1eafa6c7 8203
eb73c1b7
MX
8204 if (root->fs_info->sb->s_flags & MS_RDONLY)
8205 return -EROFS;
8206
8207 ret = __start_delalloc_inodes(root, delay_iput);
8208 /*
8209 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8210 * we have to make sure the IO is actually started and that
8211 * ordered extents get created before we return
8212 */
8213 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8214 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8215 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8216 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8217 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8218 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8219 }
8220 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8221 return ret;
8222}
8223
8224int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8225 int delay_iput)
8226{
8227 struct btrfs_root *root;
8228 struct list_head splice;
8229 int ret;
8230
8231 if (fs_info->sb->s_flags & MS_RDONLY)
8232 return -EROFS;
8233
8234 INIT_LIST_HEAD(&splice);
8235
8236 spin_lock(&fs_info->delalloc_root_lock);
8237 list_splice_init(&fs_info->delalloc_roots, &splice);
8238 while (!list_empty(&splice)) {
8239 root = list_first_entry(&splice, struct btrfs_root,
8240 delalloc_root);
8241 root = btrfs_grab_fs_root(root);
8242 BUG_ON(!root);
8243 list_move_tail(&root->delalloc_root,
8244 &fs_info->delalloc_roots);
8245 spin_unlock(&fs_info->delalloc_root_lock);
8246
8247 ret = __start_delalloc_inodes(root, delay_iput);
8248 btrfs_put_fs_root(root);
8249 if (ret)
8250 goto out;
8251
8252 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8253 }
eb73c1b7 8254 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8255
eb73c1b7
MX
8256 atomic_inc(&fs_info->async_submit_draining);
8257 while (atomic_read(&fs_info->nr_async_submits) ||
8258 atomic_read(&fs_info->async_delalloc_pages)) {
8259 wait_event(fs_info->async_submit_wait,
8260 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8261 atomic_read(&fs_info->async_delalloc_pages) == 0));
8262 }
8263 atomic_dec(&fs_info->async_submit_draining);
8264 return 0;
8265out:
1eafa6c7 8266 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8267 spin_lock(&fs_info->delalloc_root_lock);
8268 list_splice_tail(&splice, &fs_info->delalloc_roots);
8269 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8270 }
8ccf6f19 8271 return ret;
ea8c2819
CM
8272}
8273
39279cc3
CM
8274static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8275 const char *symname)
8276{
8277 struct btrfs_trans_handle *trans;
8278 struct btrfs_root *root = BTRFS_I(dir)->root;
8279 struct btrfs_path *path;
8280 struct btrfs_key key;
1832a6d5 8281 struct inode *inode = NULL;
39279cc3
CM
8282 int err;
8283 int drop_inode = 0;
8284 u64 objectid;
00e4e6b3 8285 u64 index = 0 ;
39279cc3
CM
8286 int name_len;
8287 int datasize;
5f39d397 8288 unsigned long ptr;
39279cc3 8289 struct btrfs_file_extent_item *ei;
5f39d397 8290 struct extent_buffer *leaf;
39279cc3
CM
8291
8292 name_len = strlen(symname) + 1;
8293 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8294 return -ENAMETOOLONG;
1832a6d5 8295
9ed74f2d
JB
8296 /*
8297 * 2 items for inode item and ref
8298 * 2 items for dir items
8299 * 1 item for xattr if selinux is on
8300 */
a22285a6
YZ
8301 trans = btrfs_start_transaction(root, 5);
8302 if (IS_ERR(trans))
8303 return PTR_ERR(trans);
1832a6d5 8304
581bb050
LZ
8305 err = btrfs_find_free_ino(root, &objectid);
8306 if (err)
8307 goto out_unlock;
8308
aec7477b 8309 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8310 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8311 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8312 if (IS_ERR(inode)) {
8313 err = PTR_ERR(inode);
39279cc3 8314 goto out_unlock;
7cf96da3 8315 }
39279cc3 8316
2a7dba39 8317 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8318 if (err) {
8319 drop_inode = 1;
8320 goto out_unlock;
8321 }
8322
ad19db71
CS
8323 /*
8324 * If the active LSM wants to access the inode during
8325 * d_instantiate it needs these. Smack checks to see
8326 * if the filesystem supports xattrs by looking at the
8327 * ops vector.
8328 */
8329 inode->i_fop = &btrfs_file_operations;
8330 inode->i_op = &btrfs_file_inode_operations;
8331
a1b075d2 8332 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8333 if (err)
8334 drop_inode = 1;
8335 else {
8336 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8337 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8338 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8339 }
39279cc3
CM
8340 if (drop_inode)
8341 goto out_unlock;
8342
8343 path = btrfs_alloc_path();
d8926bb3
MF
8344 if (!path) {
8345 err = -ENOMEM;
8346 drop_inode = 1;
8347 goto out_unlock;
8348 }
33345d01 8349 key.objectid = btrfs_ino(inode);
39279cc3 8350 key.offset = 0;
39279cc3
CM
8351 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8352 datasize = btrfs_file_extent_calc_inline_size(name_len);
8353 err = btrfs_insert_empty_item(trans, root, path, &key,
8354 datasize);
54aa1f4d
CM
8355 if (err) {
8356 drop_inode = 1;
b0839166 8357 btrfs_free_path(path);
54aa1f4d
CM
8358 goto out_unlock;
8359 }
5f39d397
CM
8360 leaf = path->nodes[0];
8361 ei = btrfs_item_ptr(leaf, path->slots[0],
8362 struct btrfs_file_extent_item);
8363 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8364 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8365 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8366 btrfs_set_file_extent_encryption(leaf, ei, 0);
8367 btrfs_set_file_extent_compression(leaf, ei, 0);
8368 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8369 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8370
39279cc3 8371 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8372 write_extent_buffer(leaf, symname, ptr, name_len);
8373 btrfs_mark_buffer_dirty(leaf);
39279cc3 8374 btrfs_free_path(path);
5f39d397 8375
39279cc3
CM
8376 inode->i_op = &btrfs_symlink_inode_operations;
8377 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8378 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8379 inode_set_bytes(inode, name_len);
dbe674a9 8380 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8381 err = btrfs_update_inode(trans, root, inode);
8382 if (err)
8383 drop_inode = 1;
39279cc3
CM
8384
8385out_unlock:
08c422c2
AV
8386 if (!err)
8387 d_instantiate(dentry, inode);
7ad85bb7 8388 btrfs_end_transaction(trans, root);
39279cc3
CM
8389 if (drop_inode) {
8390 inode_dec_link_count(inode);
8391 iput(inode);
8392 }
b53d3f5d 8393 btrfs_btree_balance_dirty(root);
39279cc3
CM
8394 return err;
8395}
16432985 8396
0af3d00b
JB
8397static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8398 u64 start, u64 num_bytes, u64 min_size,
8399 loff_t actual_len, u64 *alloc_hint,
8400 struct btrfs_trans_handle *trans)
d899e052 8401{
5dc562c5
JB
8402 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8403 struct extent_map *em;
d899e052
YZ
8404 struct btrfs_root *root = BTRFS_I(inode)->root;
8405 struct btrfs_key ins;
d899e052 8406 u64 cur_offset = start;
55a61d1d 8407 u64 i_size;
154ea289 8408 u64 cur_bytes;
d899e052 8409 int ret = 0;
0af3d00b 8410 bool own_trans = true;
d899e052 8411
0af3d00b
JB
8412 if (trans)
8413 own_trans = false;
d899e052 8414 while (num_bytes > 0) {
0af3d00b
JB
8415 if (own_trans) {
8416 trans = btrfs_start_transaction(root, 3);
8417 if (IS_ERR(trans)) {
8418 ret = PTR_ERR(trans);
8419 break;
8420 }
5a303d5d
YZ
8421 }
8422
154ea289
CM
8423 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8424 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8425 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8426 *alloc_hint, &ins, 1);
5a303d5d 8427 if (ret) {
0af3d00b
JB
8428 if (own_trans)
8429 btrfs_end_transaction(trans, root);
a22285a6 8430 break;
d899e052 8431 }
5a303d5d 8432
d899e052
YZ
8433 ret = insert_reserved_file_extent(trans, inode,
8434 cur_offset, ins.objectid,
8435 ins.offset, ins.offset,
920bbbfb 8436 ins.offset, 0, 0, 0,
d899e052 8437 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8438 if (ret) {
8439 btrfs_abort_transaction(trans, root, ret);
8440 if (own_trans)
8441 btrfs_end_transaction(trans, root);
8442 break;
8443 }
a1ed835e
CM
8444 btrfs_drop_extent_cache(inode, cur_offset,
8445 cur_offset + ins.offset -1, 0);
5a303d5d 8446
5dc562c5
JB
8447 em = alloc_extent_map();
8448 if (!em) {
8449 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8450 &BTRFS_I(inode)->runtime_flags);
8451 goto next;
8452 }
8453
8454 em->start = cur_offset;
8455 em->orig_start = cur_offset;
8456 em->len = ins.offset;
8457 em->block_start = ins.objectid;
8458 em->block_len = ins.offset;
b4939680 8459 em->orig_block_len = ins.offset;
cc95bef6 8460 em->ram_bytes = ins.offset;
5dc562c5
JB
8461 em->bdev = root->fs_info->fs_devices->latest_bdev;
8462 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8463 em->generation = trans->transid;
8464
8465 while (1) {
8466 write_lock(&em_tree->lock);
09a2a8f9 8467 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8468 write_unlock(&em_tree->lock);
8469 if (ret != -EEXIST)
8470 break;
8471 btrfs_drop_extent_cache(inode, cur_offset,
8472 cur_offset + ins.offset - 1,
8473 0);
8474 }
8475 free_extent_map(em);
8476next:
d899e052
YZ
8477 num_bytes -= ins.offset;
8478 cur_offset += ins.offset;
efa56464 8479 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8480
0c4d2d95 8481 inode_inc_iversion(inode);
d899e052 8482 inode->i_ctime = CURRENT_TIME;
6cbff00f 8483 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8484 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8485 (actual_len > inode->i_size) &&
8486 (cur_offset > inode->i_size)) {
d1ea6a61 8487 if (cur_offset > actual_len)
55a61d1d 8488 i_size = actual_len;
d1ea6a61 8489 else
55a61d1d
JB
8490 i_size = cur_offset;
8491 i_size_write(inode, i_size);
8492 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8493 }
8494
d899e052 8495 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8496
8497 if (ret) {
8498 btrfs_abort_transaction(trans, root, ret);
8499 if (own_trans)
8500 btrfs_end_transaction(trans, root);
8501 break;
8502 }
d899e052 8503
0af3d00b
JB
8504 if (own_trans)
8505 btrfs_end_transaction(trans, root);
5a303d5d 8506 }
d899e052
YZ
8507 return ret;
8508}
8509
0af3d00b
JB
8510int btrfs_prealloc_file_range(struct inode *inode, int mode,
8511 u64 start, u64 num_bytes, u64 min_size,
8512 loff_t actual_len, u64 *alloc_hint)
8513{
8514 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8515 min_size, actual_len, alloc_hint,
8516 NULL);
8517}
8518
8519int btrfs_prealloc_file_range_trans(struct inode *inode,
8520 struct btrfs_trans_handle *trans, int mode,
8521 u64 start, u64 num_bytes, u64 min_size,
8522 loff_t actual_len, u64 *alloc_hint)
8523{
8524 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8525 min_size, actual_len, alloc_hint, trans);
8526}
8527
e6dcd2dc
CM
8528static int btrfs_set_page_dirty(struct page *page)
8529{
e6dcd2dc
CM
8530 return __set_page_dirty_nobuffers(page);
8531}
8532
10556cb2 8533static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8534{
b83cc969 8535 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8536 umode_t mode = inode->i_mode;
b83cc969 8537
cb6db4e5
JM
8538 if (mask & MAY_WRITE &&
8539 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8540 if (btrfs_root_readonly(root))
8541 return -EROFS;
8542 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8543 return -EACCES;
8544 }
2830ba7f 8545 return generic_permission(inode, mask);
fdebe2bd 8546}
39279cc3 8547
6e1d5dcc 8548static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8549 .getattr = btrfs_getattr,
39279cc3
CM
8550 .lookup = btrfs_lookup,
8551 .create = btrfs_create,
8552 .unlink = btrfs_unlink,
8553 .link = btrfs_link,
8554 .mkdir = btrfs_mkdir,
8555 .rmdir = btrfs_rmdir,
8556 .rename = btrfs_rename,
8557 .symlink = btrfs_symlink,
8558 .setattr = btrfs_setattr,
618e21d5 8559 .mknod = btrfs_mknod,
95819c05
CH
8560 .setxattr = btrfs_setxattr,
8561 .getxattr = btrfs_getxattr,
5103e947 8562 .listxattr = btrfs_listxattr,
95819c05 8563 .removexattr = btrfs_removexattr,
fdebe2bd 8564 .permission = btrfs_permission,
4e34e719 8565 .get_acl = btrfs_get_acl,
39279cc3 8566};
6e1d5dcc 8567static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8568 .lookup = btrfs_lookup,
fdebe2bd 8569 .permission = btrfs_permission,
4e34e719 8570 .get_acl = btrfs_get_acl,
39279cc3 8571};
76dda93c 8572
828c0950 8573static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8574 .llseek = generic_file_llseek,
8575 .read = generic_read_dir,
9cdda8d3 8576 .iterate = btrfs_real_readdir,
34287aa3 8577 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8578#ifdef CONFIG_COMPAT
34287aa3 8579 .compat_ioctl = btrfs_ioctl,
39279cc3 8580#endif
6bf13c0c 8581 .release = btrfs_release_file,
e02119d5 8582 .fsync = btrfs_sync_file,
39279cc3
CM
8583};
8584
d1310b2e 8585static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8586 .fill_delalloc = run_delalloc_range,
065631f6 8587 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8588 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8589 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8590 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8591 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8592 .set_bit_hook = btrfs_set_bit_hook,
8593 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8594 .merge_extent_hook = btrfs_merge_extent_hook,
8595 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8596};
8597
35054394
CM
8598/*
8599 * btrfs doesn't support the bmap operation because swapfiles
8600 * use bmap to make a mapping of extents in the file. They assume
8601 * these extents won't change over the life of the file and they
8602 * use the bmap result to do IO directly to the drive.
8603 *
8604 * the btrfs bmap call would return logical addresses that aren't
8605 * suitable for IO and they also will change frequently as COW
8606 * operations happen. So, swapfile + btrfs == corruption.
8607 *
8608 * For now we're avoiding this by dropping bmap.
8609 */
7f09410b 8610static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8611 .readpage = btrfs_readpage,
8612 .writepage = btrfs_writepage,
b293f02e 8613 .writepages = btrfs_writepages,
3ab2fb5a 8614 .readpages = btrfs_readpages,
16432985 8615 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8616 .invalidatepage = btrfs_invalidatepage,
8617 .releasepage = btrfs_releasepage,
e6dcd2dc 8618 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8619 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8620};
8621
7f09410b 8622static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8623 .readpage = btrfs_readpage,
8624 .writepage = btrfs_writepage,
2bf5a725
CM
8625 .invalidatepage = btrfs_invalidatepage,
8626 .releasepage = btrfs_releasepage,
39279cc3
CM
8627};
8628
6e1d5dcc 8629static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8630 .getattr = btrfs_getattr,
8631 .setattr = btrfs_setattr,
95819c05
CH
8632 .setxattr = btrfs_setxattr,
8633 .getxattr = btrfs_getxattr,
5103e947 8634 .listxattr = btrfs_listxattr,
95819c05 8635 .removexattr = btrfs_removexattr,
fdebe2bd 8636 .permission = btrfs_permission,
1506fcc8 8637 .fiemap = btrfs_fiemap,
4e34e719 8638 .get_acl = btrfs_get_acl,
e41f941a 8639 .update_time = btrfs_update_time,
39279cc3 8640};
6e1d5dcc 8641static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8642 .getattr = btrfs_getattr,
8643 .setattr = btrfs_setattr,
fdebe2bd 8644 .permission = btrfs_permission,
95819c05
CH
8645 .setxattr = btrfs_setxattr,
8646 .getxattr = btrfs_getxattr,
33268eaf 8647 .listxattr = btrfs_listxattr,
95819c05 8648 .removexattr = btrfs_removexattr,
4e34e719 8649 .get_acl = btrfs_get_acl,
e41f941a 8650 .update_time = btrfs_update_time,
618e21d5 8651};
6e1d5dcc 8652static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8653 .readlink = generic_readlink,
8654 .follow_link = page_follow_link_light,
8655 .put_link = page_put_link,
f209561a 8656 .getattr = btrfs_getattr,
22c44fe6 8657 .setattr = btrfs_setattr,
fdebe2bd 8658 .permission = btrfs_permission,
0279b4cd
JO
8659 .setxattr = btrfs_setxattr,
8660 .getxattr = btrfs_getxattr,
8661 .listxattr = btrfs_listxattr,
8662 .removexattr = btrfs_removexattr,
4e34e719 8663 .get_acl = btrfs_get_acl,
e41f941a 8664 .update_time = btrfs_update_time,
39279cc3 8665};
76dda93c 8666
82d339d9 8667const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8668 .d_delete = btrfs_dentry_delete,
b4aff1f8 8669 .d_release = btrfs_dentry_release,
76dda93c 8670};