btrfs: remove assert in btrfs_init_dev_replace_tgtdev()
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
ae5e165d 46#include <linux/iversion.h>
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
f82b7359 381 unsigned int write_flags;
771ed689
CM
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
c2fcdcdf 407static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 413 return 1;
eec63c65
DS
414 /* defrag ioctl */
415 if (BTRFS_I(inode)->defrag_compress)
416 return 1;
f79707b0
WS
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 return 0;
0b246afa 420 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 422 BTRFS_I(inode)->prop_compress)
c2fcdcdf 423 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
424 return 0;
425}
426
6158e1ce 427static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
429{
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
6158e1ce 432 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
433 btrfs_add_inode_defrag(NULL, inode);
434}
435
d352ac68 436/*
771ed689
CM
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
c8b97818 440 *
771ed689
CM
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
c8b97818 446 *
771ed689
CM
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
450 * are written in the same order that the flusher thread sent them
451 * down.
d352ac68 452 */
c44f649e 453static noinline void compress_file_range(struct inode *inode,
771ed689
CM
454 struct page *locked_page,
455 u64 start, u64 end,
456 struct async_cow *async_cow,
457 int *num_added)
b888db2b 458{
0b246afa 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 460 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 461 u64 blocksize = fs_info->sectorsize;
c8b97818 462 u64 actual_end;
42dc7bab 463 u64 isize = i_size_read(inode);
e6dcd2dc 464 int ret = 0;
c8b97818
CM
465 struct page **pages = NULL;
466 unsigned long nr_pages;
c8b97818
CM
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
c8b97818
CM
469 int i;
470 int will_compress;
0b246afa 471 int compress_type = fs_info->compress_type;
4adaa611 472 int redirty = 0;
b888db2b 473
6158e1ce
NB
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
475 SZ_16K);
4cb5300b 476
42dc7bab 477 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
478again:
479 will_compress = 0;
09cbfeaf 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 484
f03d9301
CM
485 /*
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
491 *
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
494 */
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
497
c8b97818
CM
498 total_compressed = actual_end - start;
499
4bcbb332
SW
500 /*
501 * skip compression for a small file range(<=blocksize) that
01327610 502 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
503 */
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
507
069eac78
DS
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
510 total_in = 0;
511 ret = 0;
db94535d 512
771ed689
CM
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
c8b97818 517 */
c2fcdcdf 518 if (inode_need_compress(inode, start, end)) {
c8b97818 519 WARN_ON(pages);
31e818fe 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
c8b97818 525
eec63c65
DS
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 529 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 530
4adaa611
CM
531 /*
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
536 *
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
e9679de3
TT
539 *
540 * Note that the remaining part is redirtied, the start pointer
541 * has moved, the end is the original one.
4adaa611 542 */
e9679de3
TT
543 if (!redirty) {
544 extent_range_clear_dirty_for_io(inode, start, end);
545 redirty = 1;
546 }
f51d2b59
DS
547
548 /* Compression level is applied here and only here */
549 ret = btrfs_compress_pages(
550 compress_type | (fs_info->compress_level << 4),
261507a0 551 inode->i_mapping, start,
38c31464 552 pages,
4d3a800e 553 &nr_pages,
261507a0 554 &total_in,
e5d74902 555 &total_compressed);
c8b97818
CM
556
557 if (!ret) {
558 unsigned long offset = total_compressed &
09cbfeaf 559 (PAGE_SIZE - 1);
4d3a800e 560 struct page *page = pages[nr_pages - 1];
c8b97818
CM
561 char *kaddr;
562
563 /* zero the tail end of the last page, we might be
564 * sending it down to disk
565 */
566 if (offset) {
7ac687d9 567 kaddr = kmap_atomic(page);
c8b97818 568 memset(kaddr + offset, 0,
09cbfeaf 569 PAGE_SIZE - offset);
7ac687d9 570 kunmap_atomic(kaddr);
c8b97818
CM
571 }
572 will_compress = 1;
573 }
574 }
560f7d75 575cont:
c8b97818
CM
576 if (start == 0) {
577 /* lets try to make an inline extent */
6018ba0a 578 if (ret || total_in < actual_end) {
c8b97818 579 /* we didn't compress the entire range, try
771ed689 580 * to make an uncompressed inline extent.
c8b97818 581 */
00361589 582 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 583 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 584 } else {
771ed689 585 /* try making a compressed inline extent */
00361589 586 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
587 total_compressed,
588 compress_type, pages);
c8b97818 589 }
79787eaa 590 if (ret <= 0) {
151a41bc 591 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
592 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
593 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
594 unsigned long page_error_op;
595
e6eb4314 596 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 597
771ed689 598 /*
79787eaa
JM
599 * inline extent creation worked or returned error,
600 * we don't need to create any more async work items.
601 * Unlock and free up our temp pages.
8b62f87b
JB
602 *
603 * We use DO_ACCOUNTING here because we need the
604 * delalloc_release_metadata to be done _after_ we drop
605 * our outstanding extent for clearing delalloc for this
606 * range.
771ed689 607 */
ba8b04c1
QW
608 extent_clear_unlock_delalloc(inode, start, end, end,
609 NULL, clear_flags,
610 PAGE_UNLOCK |
c2790a2e
JB
611 PAGE_CLEAR_DIRTY |
612 PAGE_SET_WRITEBACK |
e6eb4314 613 page_error_op |
c2790a2e 614 PAGE_END_WRITEBACK);
c8b97818
CM
615 goto free_pages_out;
616 }
617 }
618
619 if (will_compress) {
620 /*
621 * we aren't doing an inline extent round the compressed size
622 * up to a block size boundary so the allocator does sane
623 * things
624 */
fda2832f 625 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
626
627 /*
628 * one last check to make sure the compression is really a
170607eb
TT
629 * win, compare the page count read with the blocks on disk,
630 * compression must free at least one sector size
c8b97818 631 */
09cbfeaf 632 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 633 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
634 *num_added += 1;
635
636 /*
637 * The async work queues will take care of doing actual
638 * allocation on disk for these compressed pages, and
639 * will submit them to the elevator.
640 */
1170862d 641 add_async_extent(async_cow, start, total_in,
4d3a800e 642 total_compressed, pages, nr_pages,
c8bb0c8b
AS
643 compress_type);
644
1170862d
TT
645 if (start + total_in < end) {
646 start += total_in;
c8bb0c8b
AS
647 pages = NULL;
648 cond_resched();
649 goto again;
650 }
651 return;
c8b97818
CM
652 }
653 }
c8bb0c8b 654 if (pages) {
c8b97818
CM
655 /*
656 * the compression code ran but failed to make things smaller,
657 * free any pages it allocated and our page pointer array
658 */
4d3a800e 659 for (i = 0; i < nr_pages; i++) {
70b99e69 660 WARN_ON(pages[i]->mapping);
09cbfeaf 661 put_page(pages[i]);
c8b97818
CM
662 }
663 kfree(pages);
664 pages = NULL;
665 total_compressed = 0;
4d3a800e 666 nr_pages = 0;
c8b97818
CM
667
668 /* flag the file so we don't compress in the future */
0b246afa 669 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 670 !(BTRFS_I(inode)->prop_compress)) {
a555f810 671 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 672 }
c8b97818 673 }
f03d9301 674cleanup_and_bail_uncompressed:
c8bb0c8b
AS
675 /*
676 * No compression, but we still need to write the pages in the file
677 * we've been given so far. redirty the locked page if it corresponds
678 * to our extent and set things up for the async work queue to run
679 * cow_file_range to do the normal delalloc dance.
680 */
681 if (page_offset(locked_page) >= start &&
682 page_offset(locked_page) <= end)
683 __set_page_dirty_nobuffers(locked_page);
684 /* unlocked later on in the async handlers */
685
686 if (redirty)
687 extent_range_redirty_for_io(inode, start, end);
688 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
689 BTRFS_COMPRESS_NONE);
690 *num_added += 1;
3b951516 691
c44f649e 692 return;
771ed689
CM
693
694free_pages_out:
4d3a800e 695 for (i = 0; i < nr_pages; i++) {
771ed689 696 WARN_ON(pages[i]->mapping);
09cbfeaf 697 put_page(pages[i]);
771ed689 698 }
d397712b 699 kfree(pages);
771ed689 700}
771ed689 701
40ae837b
FM
702static void free_async_extent_pages(struct async_extent *async_extent)
703{
704 int i;
705
706 if (!async_extent->pages)
707 return;
708
709 for (i = 0; i < async_extent->nr_pages; i++) {
710 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 711 put_page(async_extent->pages[i]);
40ae837b
FM
712 }
713 kfree(async_extent->pages);
714 async_extent->nr_pages = 0;
715 async_extent->pages = NULL;
771ed689
CM
716}
717
718/*
719 * phase two of compressed writeback. This is the ordered portion
720 * of the code, which only gets called in the order the work was
721 * queued. We walk all the async extents created by compress_file_range
722 * and send them down to the disk.
723 */
dec8f175 724static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
725 struct async_cow *async_cow)
726{
0b246afa 727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
728 struct async_extent *async_extent;
729 u64 alloc_hint = 0;
771ed689
CM
730 struct btrfs_key ins;
731 struct extent_map *em;
732 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 733 struct extent_io_tree *io_tree;
f5a84ee3 734 int ret = 0;
771ed689 735
3e04e7f1 736again:
d397712b 737 while (!list_empty(&async_cow->extents)) {
771ed689
CM
738 async_extent = list_entry(async_cow->extents.next,
739 struct async_extent, list);
740 list_del(&async_extent->list);
c8b97818 741
771ed689
CM
742 io_tree = &BTRFS_I(inode)->io_tree;
743
f5a84ee3 744retry:
771ed689
CM
745 /* did the compression code fall back to uncompressed IO? */
746 if (!async_extent->pages) {
747 int page_started = 0;
748 unsigned long nr_written = 0;
749
750 lock_extent(io_tree, async_extent->start,
2ac55d41 751 async_extent->start +
d0082371 752 async_extent->ram_size - 1);
771ed689
CM
753
754 /* allocate blocks */
f5a84ee3
JB
755 ret = cow_file_range(inode, async_cow->locked_page,
756 async_extent->start,
757 async_extent->start +
758 async_extent->ram_size - 1,
dda3245e
WX
759 async_extent->start +
760 async_extent->ram_size - 1,
761 &page_started, &nr_written, 0,
762 NULL);
771ed689 763
79787eaa
JM
764 /* JDM XXX */
765
771ed689
CM
766 /*
767 * if page_started, cow_file_range inserted an
768 * inline extent and took care of all the unlocking
769 * and IO for us. Otherwise, we need to submit
770 * all those pages down to the drive.
771 */
f5a84ee3 772 if (!page_started && !ret)
5e3ee236
NB
773 extent_write_locked_range(inode,
774 async_extent->start,
d397712b 775 async_extent->start +
771ed689 776 async_extent->ram_size - 1,
771ed689 777 WB_SYNC_ALL);
3e04e7f1
JB
778 else if (ret)
779 unlock_page(async_cow->locked_page);
771ed689
CM
780 kfree(async_extent);
781 cond_resched();
782 continue;
783 }
784
785 lock_extent(io_tree, async_extent->start,
d0082371 786 async_extent->start + async_extent->ram_size - 1);
771ed689 787
18513091 788 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
789 async_extent->compressed_size,
790 async_extent->compressed_size,
e570fd27 791 0, alloc_hint, &ins, 1, 1);
f5a84ee3 792 if (ret) {
40ae837b 793 free_async_extent_pages(async_extent);
3e04e7f1 794
fdf8e2ea
JB
795 if (ret == -ENOSPC) {
796 unlock_extent(io_tree, async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1);
ce62003f
LB
799
800 /*
801 * we need to redirty the pages if we decide to
802 * fallback to uncompressed IO, otherwise we
803 * will not submit these pages down to lower
804 * layers.
805 */
806 extent_range_redirty_for_io(inode,
807 async_extent->start,
808 async_extent->start +
809 async_extent->ram_size - 1);
810
79787eaa 811 goto retry;
fdf8e2ea 812 }
3e04e7f1 813 goto out_free;
f5a84ee3 814 }
c2167754
YZ
815 /*
816 * here we're doing allocation and writeback of the
817 * compressed pages
818 */
6f9994db
LB
819 em = create_io_em(inode, async_extent->start,
820 async_extent->ram_size, /* len */
821 async_extent->start, /* orig_start */
822 ins.objectid, /* block_start */
823 ins.offset, /* block_len */
824 ins.offset, /* orig_block_len */
825 async_extent->ram_size, /* ram_bytes */
826 async_extent->compress_type,
827 BTRFS_ORDERED_COMPRESSED);
828 if (IS_ERR(em))
829 /* ret value is not necessary due to void function */
3e04e7f1 830 goto out_free_reserve;
6f9994db 831 free_extent_map(em);
3e04e7f1 832
261507a0
LZ
833 ret = btrfs_add_ordered_extent_compress(inode,
834 async_extent->start,
835 ins.objectid,
836 async_extent->ram_size,
837 ins.offset,
838 BTRFS_ORDERED_COMPRESSED,
839 async_extent->compress_type);
d9f85963 840 if (ret) {
dcdbc059
NB
841 btrfs_drop_extent_cache(BTRFS_I(inode),
842 async_extent->start,
d9f85963
FM
843 async_extent->start +
844 async_extent->ram_size - 1, 0);
3e04e7f1 845 goto out_free_reserve;
d9f85963 846 }
0b246afa 847 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 848
771ed689
CM
849 /*
850 * clear dirty, set writeback and unlock the pages.
851 */
c2790a2e 852 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
853 async_extent->start +
854 async_extent->ram_size - 1,
a791e35e
CM
855 async_extent->start +
856 async_extent->ram_size - 1,
151a41bc
JB
857 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 859 PAGE_SET_WRITEBACK);
4e4cbee9 860 if (btrfs_submit_compressed_write(inode,
d397712b
CM
861 async_extent->start,
862 async_extent->ram_size,
863 ins.objectid,
864 ins.offset, async_extent->pages,
f82b7359
LB
865 async_extent->nr_pages,
866 async_cow->write_flags)) {
fce2a4e6
FM
867 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
868 struct page *p = async_extent->pages[0];
869 const u64 start = async_extent->start;
870 const u64 end = start + async_extent->ram_size - 1;
871
872 p->mapping = inode->i_mapping;
873 tree->ops->writepage_end_io_hook(p, start, end,
874 NULL, 0);
875 p->mapping = NULL;
ba8b04c1
QW
876 extent_clear_unlock_delalloc(inode, start, end, end,
877 NULL, 0,
fce2a4e6
FM
878 PAGE_END_WRITEBACK |
879 PAGE_SET_ERROR);
40ae837b 880 free_async_extent_pages(async_extent);
fce2a4e6 881 }
771ed689
CM
882 alloc_hint = ins.objectid + ins.offset;
883 kfree(async_extent);
884 cond_resched();
885 }
dec8f175 886 return;
3e04e7f1 887out_free_reserve:
0b246afa 888 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 889 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 890out_free:
c2790a2e 891 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
892 async_extent->start +
893 async_extent->ram_size - 1,
3e04e7f1
JB
894 async_extent->start +
895 async_extent->ram_size - 1,
c2790a2e 896 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 897 EXTENT_DELALLOC_NEW |
151a41bc
JB
898 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
899 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
900 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
901 PAGE_SET_ERROR);
40ae837b 902 free_async_extent_pages(async_extent);
79787eaa 903 kfree(async_extent);
3e04e7f1 904 goto again;
771ed689
CM
905}
906
4b46fce2
JB
907static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
908 u64 num_bytes)
909{
910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
911 struct extent_map *em;
912 u64 alloc_hint = 0;
913
914 read_lock(&em_tree->lock);
915 em = search_extent_mapping(em_tree, start, num_bytes);
916 if (em) {
917 /*
918 * if block start isn't an actual block number then find the
919 * first block in this inode and use that as a hint. If that
920 * block is also bogus then just don't worry about it.
921 */
922 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
923 free_extent_map(em);
924 em = search_extent_mapping(em_tree, 0, 0);
925 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
926 alloc_hint = em->block_start;
927 if (em)
928 free_extent_map(em);
929 } else {
930 alloc_hint = em->block_start;
931 free_extent_map(em);
932 }
933 }
934 read_unlock(&em_tree->lock);
935
936 return alloc_hint;
937}
938
771ed689
CM
939/*
940 * when extent_io.c finds a delayed allocation range in the file,
941 * the call backs end up in this code. The basic idea is to
942 * allocate extents on disk for the range, and create ordered data structs
943 * in ram to track those extents.
944 *
945 * locked_page is the page that writepage had locked already. We use
946 * it to make sure we don't do extra locks or unlocks.
947 *
948 * *page_started is set to one if we unlock locked_page and do everything
949 * required to start IO on it. It may be clean and already done with
950 * IO when we return.
951 */
00361589
JB
952static noinline int cow_file_range(struct inode *inode,
953 struct page *locked_page,
dda3245e
WX
954 u64 start, u64 end, u64 delalloc_end,
955 int *page_started, unsigned long *nr_written,
956 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 957{
0b246afa 958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 959 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
960 u64 alloc_hint = 0;
961 u64 num_bytes;
962 unsigned long ram_size;
a315e68f 963 u64 cur_alloc_size = 0;
0b246afa 964 u64 blocksize = fs_info->sectorsize;
771ed689
CM
965 struct btrfs_key ins;
966 struct extent_map *em;
a315e68f
FM
967 unsigned clear_bits;
968 unsigned long page_ops;
969 bool extent_reserved = false;
771ed689
CM
970 int ret = 0;
971
70ddc553 972 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 973 WARN_ON_ONCE(1);
29bce2f3
JB
974 ret = -EINVAL;
975 goto out_unlock;
02ecd2c2 976 }
771ed689 977
fda2832f 978 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 979 num_bytes = max(blocksize, num_bytes);
566b1760 980 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 981
6158e1ce 982 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 983
771ed689
CM
984 if (start == 0) {
985 /* lets try to make an inline extent */
f74670f7
AJ
986 ret = cow_file_range_inline(root, inode, start, end, 0,
987 BTRFS_COMPRESS_NONE, NULL);
771ed689 988 if (ret == 0) {
8b62f87b
JB
989 /*
990 * We use DO_ACCOUNTING here because we need the
991 * delalloc_release_metadata to be run _after_ we drop
992 * our outstanding extent for clearing delalloc for this
993 * range.
994 */
ba8b04c1
QW
995 extent_clear_unlock_delalloc(inode, start, end,
996 delalloc_end, NULL,
c2790a2e 997 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
998 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
999 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1000 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1001 PAGE_END_WRITEBACK);
771ed689 1002 *nr_written = *nr_written +
09cbfeaf 1003 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1004 *page_started = 1;
771ed689 1005 goto out;
79787eaa 1006 } else if (ret < 0) {
79787eaa 1007 goto out_unlock;
771ed689
CM
1008 }
1009 }
1010
4b46fce2 1011 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1012 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1013 start + num_bytes - 1, 0);
771ed689 1014
3752d22f
AJ
1015 while (num_bytes > 0) {
1016 cur_alloc_size = num_bytes;
18513091 1017 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1018 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1019 &ins, 1, 1);
00361589 1020 if (ret < 0)
79787eaa 1021 goto out_unlock;
a315e68f
FM
1022 cur_alloc_size = ins.offset;
1023 extent_reserved = true;
d397712b 1024
771ed689 1025 ram_size = ins.offset;
6f9994db
LB
1026 em = create_io_em(inode, start, ins.offset, /* len */
1027 start, /* orig_start */
1028 ins.objectid, /* block_start */
1029 ins.offset, /* block_len */
1030 ins.offset, /* orig_block_len */
1031 ram_size, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1033 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1034 if (IS_ERR(em))
ace68bac 1035 goto out_reserve;
6f9994db 1036 free_extent_map(em);
e6dcd2dc 1037
e6dcd2dc 1038 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1039 ram_size, cur_alloc_size, 0);
ace68bac 1040 if (ret)
d9f85963 1041 goto out_drop_extent_cache;
c8b97818 1042
17d217fe
YZ
1043 if (root->root_key.objectid ==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1045 ret = btrfs_reloc_clone_csums(inode, start,
1046 cur_alloc_size);
4dbd80fb
QW
1047 /*
1048 * Only drop cache here, and process as normal.
1049 *
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1054 *
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1057 */
00361589 1058 if (ret)
4dbd80fb
QW
1059 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1060 start + ram_size - 1, 0);
17d217fe
YZ
1061 }
1062
0b246afa 1063 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1064
c8b97818
CM
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1068 *
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
c8b97818 1071 */
a315e68f
FM
1072 page_ops = unlock ? PAGE_UNLOCK : 0;
1073 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1074
c2790a2e 1075 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1076 start + ram_size - 1,
1077 delalloc_end, locked_page,
c2790a2e 1078 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1079 page_ops);
3752d22f
AJ
1080 if (num_bytes < cur_alloc_size)
1081 num_bytes = 0;
4dbd80fb 1082 else
3752d22f 1083 num_bytes -= cur_alloc_size;
c59f8951
CM
1084 alloc_hint = ins.objectid + ins.offset;
1085 start += cur_alloc_size;
a315e68f 1086 extent_reserved = false;
4dbd80fb
QW
1087
1088 /*
1089 * btrfs_reloc_clone_csums() error, since start is increased
1090 * extent_clear_unlock_delalloc() at out_unlock label won't
1091 * free metadata of current ordered extent, we're OK to exit.
1092 */
1093 if (ret)
1094 goto out_unlock;
b888db2b 1095 }
79787eaa 1096out:
be20aa9d 1097 return ret;
b7d5b0a8 1098
d9f85963 1099out_drop_extent_cache:
dcdbc059 1100 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1101out_reserve:
0b246afa 1102 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1103 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1104out_unlock:
a7e3b975
FM
1105 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1106 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1107 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1108 PAGE_END_WRITEBACK;
1109 /*
1110 * If we reserved an extent for our delalloc range (or a subrange) and
1111 * failed to create the respective ordered extent, then it means that
1112 * when we reserved the extent we decremented the extent's size from
1113 * the data space_info's bytes_may_use counter and incremented the
1114 * space_info's bytes_reserved counter by the same amount. We must make
1115 * sure extent_clear_unlock_delalloc() does not try to decrement again
1116 * the data space_info's bytes_may_use counter, therefore we do not pass
1117 * it the flag EXTENT_CLEAR_DATA_RESV.
1118 */
1119 if (extent_reserved) {
1120 extent_clear_unlock_delalloc(inode, start,
1121 start + cur_alloc_size,
1122 start + cur_alloc_size,
1123 locked_page,
1124 clear_bits,
1125 page_ops);
1126 start += cur_alloc_size;
1127 if (start >= end)
1128 goto out;
1129 }
ba8b04c1
QW
1130 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1131 locked_page,
a315e68f
FM
1132 clear_bits | EXTENT_CLEAR_DATA_RESV,
1133 page_ops);
79787eaa 1134 goto out;
771ed689 1135}
c8b97818 1136
771ed689
CM
1137/*
1138 * work queue call back to started compression on a file and pages
1139 */
1140static noinline void async_cow_start(struct btrfs_work *work)
1141{
1142 struct async_cow *async_cow;
1143 int num_added = 0;
1144 async_cow = container_of(work, struct async_cow, work);
1145
1146 compress_file_range(async_cow->inode, async_cow->locked_page,
1147 async_cow->start, async_cow->end, async_cow,
1148 &num_added);
8180ef88 1149 if (num_added == 0) {
cb77fcd8 1150 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1151 async_cow->inode = NULL;
8180ef88 1152 }
771ed689
CM
1153}
1154
1155/*
1156 * work queue call back to submit previously compressed pages
1157 */
1158static noinline void async_cow_submit(struct btrfs_work *work)
1159{
0b246afa 1160 struct btrfs_fs_info *fs_info;
771ed689
CM
1161 struct async_cow *async_cow;
1162 struct btrfs_root *root;
1163 unsigned long nr_pages;
1164
1165 async_cow = container_of(work, struct async_cow, work);
1166
1167 root = async_cow->root;
0b246afa 1168 fs_info = root->fs_info;
09cbfeaf
KS
1169 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1170 PAGE_SHIFT;
771ed689 1171
ee863954
DS
1172 /*
1173 * atomic_sub_return implies a barrier for waitqueue_active
1174 */
0b246afa 1175 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1176 5 * SZ_1M &&
0b246afa
JM
1177 waitqueue_active(&fs_info->async_submit_wait))
1178 wake_up(&fs_info->async_submit_wait);
771ed689 1179
d397712b 1180 if (async_cow->inode)
771ed689 1181 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1182}
c8b97818 1183
771ed689
CM
1184static noinline void async_cow_free(struct btrfs_work *work)
1185{
1186 struct async_cow *async_cow;
1187 async_cow = container_of(work, struct async_cow, work);
8180ef88 1188 if (async_cow->inode)
cb77fcd8 1189 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1190 kfree(async_cow);
1191}
1192
1193static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1194 u64 start, u64 end, int *page_started,
f82b7359
LB
1195 unsigned long *nr_written,
1196 unsigned int write_flags)
771ed689 1197{
0b246afa 1198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1199 struct async_cow *async_cow;
1200 struct btrfs_root *root = BTRFS_I(inode)->root;
1201 unsigned long nr_pages;
1202 u64 cur_end;
771ed689 1203
a3429ab7 1204 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1205 1, 0, NULL);
d397712b 1206 while (start < end) {
771ed689 1207 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1208 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1209 async_cow->inode = igrab(inode);
771ed689
CM
1210 async_cow->root = root;
1211 async_cow->locked_page = locked_page;
1212 async_cow->start = start;
f82b7359 1213 async_cow->write_flags = write_flags;
771ed689 1214
f79707b0 1215 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1216 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1217 cur_end = end;
1218 else
ee22184b 1219 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1220
1221 async_cow->end = cur_end;
1222 INIT_LIST_HEAD(&async_cow->extents);
1223
9e0af237
LB
1224 btrfs_init_work(&async_cow->work,
1225 btrfs_delalloc_helper,
1226 async_cow_start, async_cow_submit,
1227 async_cow_free);
771ed689 1228
09cbfeaf
KS
1229 nr_pages = (cur_end - start + PAGE_SIZE) >>
1230 PAGE_SHIFT;
0b246afa 1231 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1232
0b246afa 1233 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1234
771ed689
CM
1235 *nr_written += nr_pages;
1236 start = cur_end + 1;
1237 }
1238 *page_started = 1;
1239 return 0;
be20aa9d
CM
1240}
1241
2ff7e61e 1242static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1243 u64 bytenr, u64 num_bytes)
1244{
1245 int ret;
1246 struct btrfs_ordered_sum *sums;
1247 LIST_HEAD(list);
1248
0b246afa 1249 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1250 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1251 if (ret == 0 && list_empty(&list))
1252 return 0;
1253
1254 while (!list_empty(&list)) {
1255 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1256 list_del(&sums->list);
1257 kfree(sums);
1258 }
58113753
LB
1259 if (ret < 0)
1260 return ret;
17d217fe
YZ
1261 return 1;
1262}
1263
d352ac68
CM
1264/*
1265 * when nowcow writeback call back. This checks for snapshots or COW copies
1266 * of the extents that exist in the file, and COWs the file as required.
1267 *
1268 * If no cow copies or snapshots exist, we write directly to the existing
1269 * blocks on disk
1270 */
7f366cfe
CM
1271static noinline int run_delalloc_nocow(struct inode *inode,
1272 struct page *locked_page,
771ed689
CM
1273 u64 start, u64 end, int *page_started, int force,
1274 unsigned long *nr_written)
be20aa9d 1275{
0b246afa 1276 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1277 struct btrfs_root *root = BTRFS_I(inode)->root;
1278 struct extent_buffer *leaf;
be20aa9d 1279 struct btrfs_path *path;
80ff3856 1280 struct btrfs_file_extent_item *fi;
be20aa9d 1281 struct btrfs_key found_key;
6f9994db 1282 struct extent_map *em;
80ff3856
YZ
1283 u64 cow_start;
1284 u64 cur_offset;
1285 u64 extent_end;
5d4f98a2 1286 u64 extent_offset;
80ff3856
YZ
1287 u64 disk_bytenr;
1288 u64 num_bytes;
b4939680 1289 u64 disk_num_bytes;
cc95bef6 1290 u64 ram_bytes;
80ff3856 1291 int extent_type;
79787eaa 1292 int ret, err;
d899e052 1293 int type;
80ff3856
YZ
1294 int nocow;
1295 int check_prev = 1;
82d5902d 1296 bool nolock;
4a0cc7ca 1297 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1298
1299 path = btrfs_alloc_path();
17ca04af 1300 if (!path) {
ba8b04c1
QW
1301 extent_clear_unlock_delalloc(inode, start, end, end,
1302 locked_page,
c2790a2e 1303 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1304 EXTENT_DO_ACCOUNTING |
1305 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1306 PAGE_CLEAR_DIRTY |
1307 PAGE_SET_WRITEBACK |
1308 PAGE_END_WRITEBACK);
d8926bb3 1309 return -ENOMEM;
17ca04af 1310 }
82d5902d 1311
70ddc553 1312 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1313
80ff3856
YZ
1314 cow_start = (u64)-1;
1315 cur_offset = start;
1316 while (1) {
e4c3b2dc 1317 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1318 cur_offset, 0);
d788a349 1319 if (ret < 0)
79787eaa 1320 goto error;
80ff3856
YZ
1321 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1322 leaf = path->nodes[0];
1323 btrfs_item_key_to_cpu(leaf, &found_key,
1324 path->slots[0] - 1);
33345d01 1325 if (found_key.objectid == ino &&
80ff3856
YZ
1326 found_key.type == BTRFS_EXTENT_DATA_KEY)
1327 path->slots[0]--;
1328 }
1329 check_prev = 0;
1330next_slot:
1331 leaf = path->nodes[0];
1332 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1333 ret = btrfs_next_leaf(root, path);
e8916699
LB
1334 if (ret < 0) {
1335 if (cow_start != (u64)-1)
1336 cur_offset = cow_start;
79787eaa 1337 goto error;
e8916699 1338 }
80ff3856
YZ
1339 if (ret > 0)
1340 break;
1341 leaf = path->nodes[0];
1342 }
be20aa9d 1343
80ff3856
YZ
1344 nocow = 0;
1345 disk_bytenr = 0;
17d217fe 1346 num_bytes = 0;
80ff3856
YZ
1347 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1348
1d512cb7
FM
1349 if (found_key.objectid > ino)
1350 break;
1351 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1352 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1353 path->slots[0]++;
1354 goto next_slot;
1355 }
1356 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1357 found_key.offset > end)
1358 break;
1359
1360 if (found_key.offset > cur_offset) {
1361 extent_end = found_key.offset;
e9061e21 1362 extent_type = 0;
80ff3856
YZ
1363 goto out_check;
1364 }
1365
1366 fi = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_file_extent_item);
1368 extent_type = btrfs_file_extent_type(leaf, fi);
1369
cc95bef6 1370 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1371 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1372 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1373 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1374 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1375 extent_end = found_key.offset +
1376 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1377 disk_num_bytes =
1378 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1379 if (extent_end <= start) {
1380 path->slots[0]++;
1381 goto next_slot;
1382 }
17d217fe
YZ
1383 if (disk_bytenr == 0)
1384 goto out_check;
80ff3856
YZ
1385 if (btrfs_file_extent_compression(leaf, fi) ||
1386 btrfs_file_extent_encryption(leaf, fi) ||
1387 btrfs_file_extent_other_encoding(leaf, fi))
1388 goto out_check;
d899e052
YZ
1389 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1390 goto out_check;
2ff7e61e 1391 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1392 goto out_check;
58113753
LB
1393 ret = btrfs_cross_ref_exist(root, ino,
1394 found_key.offset -
1395 extent_offset, disk_bytenr);
1396 if (ret) {
1397 /*
1398 * ret could be -EIO if the above fails to read
1399 * metadata.
1400 */
1401 if (ret < 0) {
1402 if (cow_start != (u64)-1)
1403 cur_offset = cow_start;
1404 goto error;
1405 }
1406
1407 WARN_ON_ONCE(nolock);
17d217fe 1408 goto out_check;
58113753 1409 }
5d4f98a2 1410 disk_bytenr += extent_offset;
17d217fe
YZ
1411 disk_bytenr += cur_offset - found_key.offset;
1412 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1413 /*
1414 * if there are pending snapshots for this root,
1415 * we fall into common COW way.
1416 */
1417 if (!nolock) {
ea14b57f 1418 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1419 if (!err)
1420 goto out_check;
1421 }
17d217fe
YZ
1422 /*
1423 * force cow if csum exists in the range.
1424 * this ensure that csum for a given extent are
1425 * either valid or do not exist.
1426 */
58113753
LB
1427 ret = csum_exist_in_range(fs_info, disk_bytenr,
1428 num_bytes);
1429 if (ret) {
91e1f56a 1430 if (!nolock)
ea14b57f 1431 btrfs_end_write_no_snapshotting(root);
58113753
LB
1432
1433 /*
1434 * ret could be -EIO if the above fails to read
1435 * metadata.
1436 */
1437 if (ret < 0) {
1438 if (cow_start != (u64)-1)
1439 cur_offset = cow_start;
1440 goto error;
1441 }
1442 WARN_ON_ONCE(nolock);
17d217fe 1443 goto out_check;
91e1f56a
RK
1444 }
1445 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1446 if (!nolock)
ea14b57f 1447 btrfs_end_write_no_snapshotting(root);
f78c436c 1448 goto out_check;
91e1f56a 1449 }
80ff3856
YZ
1450 nocow = 1;
1451 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1452 extent_end = found_key.offset +
514ac8ad
CM
1453 btrfs_file_extent_inline_len(leaf,
1454 path->slots[0], fi);
da17066c 1455 extent_end = ALIGN(extent_end,
0b246afa 1456 fs_info->sectorsize);
80ff3856
YZ
1457 } else {
1458 BUG_ON(1);
1459 }
1460out_check:
1461 if (extent_end <= start) {
1462 path->slots[0]++;
e9894fd3 1463 if (!nolock && nocow)
ea14b57f 1464 btrfs_end_write_no_snapshotting(root);
f78c436c 1465 if (nocow)
0b246afa 1466 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1467 goto next_slot;
1468 }
1469 if (!nocow) {
1470 if (cow_start == (u64)-1)
1471 cow_start = cur_offset;
1472 cur_offset = extent_end;
1473 if (cur_offset > end)
1474 break;
1475 path->slots[0]++;
1476 goto next_slot;
7ea394f1
YZ
1477 }
1478
b3b4aa74 1479 btrfs_release_path(path);
80ff3856 1480 if (cow_start != (u64)-1) {
00361589
JB
1481 ret = cow_file_range(inode, locked_page,
1482 cow_start, found_key.offset - 1,
dda3245e
WX
1483 end, page_started, nr_written, 1,
1484 NULL);
e9894fd3
WS
1485 if (ret) {
1486 if (!nolock && nocow)
ea14b57f 1487 btrfs_end_write_no_snapshotting(root);
f78c436c 1488 if (nocow)
0b246afa 1489 btrfs_dec_nocow_writers(fs_info,
f78c436c 1490 disk_bytenr);
79787eaa 1491 goto error;
e9894fd3 1492 }
80ff3856 1493 cow_start = (u64)-1;
7ea394f1 1494 }
80ff3856 1495
d899e052 1496 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1497 u64 orig_start = found_key.offset - extent_offset;
1498
1499 em = create_io_em(inode, cur_offset, num_bytes,
1500 orig_start,
1501 disk_bytenr, /* block_start */
1502 num_bytes, /* block_len */
1503 disk_num_bytes, /* orig_block_len */
1504 ram_bytes, BTRFS_COMPRESS_NONE,
1505 BTRFS_ORDERED_PREALLOC);
1506 if (IS_ERR(em)) {
1507 if (!nolock && nocow)
ea14b57f 1508 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1509 if (nocow)
1510 btrfs_dec_nocow_writers(fs_info,
1511 disk_bytenr);
1512 ret = PTR_ERR(em);
1513 goto error;
d899e052 1514 }
6f9994db
LB
1515 free_extent_map(em);
1516 }
1517
1518 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1519 type = BTRFS_ORDERED_PREALLOC;
1520 } else {
1521 type = BTRFS_ORDERED_NOCOW;
1522 }
80ff3856
YZ
1523
1524 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1525 num_bytes, num_bytes, type);
f78c436c 1526 if (nocow)
0b246afa 1527 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1528 BUG_ON(ret); /* -ENOMEM */
771ed689 1529
efa56464 1530 if (root->root_key.objectid ==
4dbd80fb
QW
1531 BTRFS_DATA_RELOC_TREE_OBJECTID)
1532 /*
1533 * Error handled later, as we must prevent
1534 * extent_clear_unlock_delalloc() in error handler
1535 * from freeing metadata of created ordered extent.
1536 */
efa56464
YZ
1537 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1538 num_bytes);
efa56464 1539
c2790a2e 1540 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1541 cur_offset + num_bytes - 1, end,
c2790a2e 1542 locked_page, EXTENT_LOCKED |
18513091
WX
1543 EXTENT_DELALLOC |
1544 EXTENT_CLEAR_DATA_RESV,
1545 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1546
e9894fd3 1547 if (!nolock && nocow)
ea14b57f 1548 btrfs_end_write_no_snapshotting(root);
80ff3856 1549 cur_offset = extent_end;
4dbd80fb
QW
1550
1551 /*
1552 * btrfs_reloc_clone_csums() error, now we're OK to call error
1553 * handler, as metadata for created ordered extent will only
1554 * be freed by btrfs_finish_ordered_io().
1555 */
1556 if (ret)
1557 goto error;
80ff3856
YZ
1558 if (cur_offset > end)
1559 break;
be20aa9d 1560 }
b3b4aa74 1561 btrfs_release_path(path);
80ff3856 1562
17ca04af 1563 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1564 cow_start = cur_offset;
17ca04af
JB
1565 cur_offset = end;
1566 }
1567
80ff3856 1568 if (cow_start != (u64)-1) {
dda3245e
WX
1569 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1570 page_started, nr_written, 1, NULL);
d788a349 1571 if (ret)
79787eaa 1572 goto error;
80ff3856
YZ
1573 }
1574
79787eaa 1575error:
17ca04af 1576 if (ret && cur_offset < end)
ba8b04c1 1577 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1578 locked_page, EXTENT_LOCKED |
151a41bc
JB
1579 EXTENT_DELALLOC | EXTENT_DEFRAG |
1580 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1581 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1582 PAGE_SET_WRITEBACK |
1583 PAGE_END_WRITEBACK);
7ea394f1 1584 btrfs_free_path(path);
79787eaa 1585 return ret;
be20aa9d
CM
1586}
1587
47059d93
WS
1588static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1589{
1590
1591 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1592 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1593 return 0;
1594
1595 /*
1596 * @defrag_bytes is a hint value, no spinlock held here,
1597 * if is not zero, it means the file is defragging.
1598 * Force cow if given extent needs to be defragged.
1599 */
1600 if (BTRFS_I(inode)->defrag_bytes &&
1601 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1602 EXTENT_DEFRAG, 0, NULL))
1603 return 1;
1604
1605 return 0;
1606}
1607
d352ac68
CM
1608/*
1609 * extent_io.c call back to do delayed allocation processing
1610 */
c6100a4b 1611static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1612 u64 start, u64 end, int *page_started,
f82b7359
LB
1613 unsigned long *nr_written,
1614 struct writeback_control *wbc)
be20aa9d 1615{
c6100a4b 1616 struct inode *inode = private_data;
be20aa9d 1617 int ret;
47059d93 1618 int force_cow = need_force_cow(inode, start, end);
f82b7359 1619 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1620
47059d93 1621 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1622 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1623 page_started, 1, nr_written);
47059d93 1624 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1625 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1626 page_started, 0, nr_written);
c2fcdcdf 1627 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1628 ret = cow_file_range(inode, locked_page, start, end, end,
1629 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1630 } else {
1631 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1632 &BTRFS_I(inode)->runtime_flags);
771ed689 1633 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1634 page_started, nr_written,
1635 write_flags);
7ddf5a42 1636 }
52427260
QW
1637 if (ret)
1638 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1639 return ret;
1640}
1641
c6100a4b 1642static void btrfs_split_extent_hook(void *private_data,
1bf85046 1643 struct extent_state *orig, u64 split)
9ed74f2d 1644{
c6100a4b 1645 struct inode *inode = private_data;
dcab6a3b
JB
1646 u64 size;
1647
0ca1f7ce 1648 /* not delalloc, ignore it */
9ed74f2d 1649 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1650 return;
9ed74f2d 1651
dcab6a3b
JB
1652 size = orig->end - orig->start + 1;
1653 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1654 u32 num_extents;
dcab6a3b
JB
1655 u64 new_size;
1656
1657 /*
ba117213
JB
1658 * See the explanation in btrfs_merge_extent_hook, the same
1659 * applies here, just in reverse.
dcab6a3b
JB
1660 */
1661 new_size = orig->end - split + 1;
823bb20a 1662 num_extents = count_max_extents(new_size);
ba117213 1663 new_size = split - orig->start;
823bb20a
DS
1664 num_extents += count_max_extents(new_size);
1665 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1666 return;
1667 }
1668
9e0baf60 1669 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1670 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1671 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1672}
1673
1674/*
1675 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1676 * extents so we can keep track of new extents that are just merged onto old
1677 * extents, such as when we are doing sequential writes, so we can properly
1678 * account for the metadata space we'll need.
1679 */
c6100a4b 1680static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1681 struct extent_state *new,
1682 struct extent_state *other)
9ed74f2d 1683{
c6100a4b 1684 struct inode *inode = private_data;
dcab6a3b 1685 u64 new_size, old_size;
823bb20a 1686 u32 num_extents;
dcab6a3b 1687
9ed74f2d
JB
1688 /* not delalloc, ignore it */
1689 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1690 return;
9ed74f2d 1691
8461a3de
JB
1692 if (new->start > other->start)
1693 new_size = new->end - other->start + 1;
1694 else
1695 new_size = other->end - new->start + 1;
dcab6a3b
JB
1696
1697 /* we're not bigger than the max, unreserve the space and go */
1698 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1699 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1700 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1701 spin_unlock(&BTRFS_I(inode)->lock);
1702 return;
1703 }
1704
1705 /*
ba117213
JB
1706 * We have to add up either side to figure out how many extents were
1707 * accounted for before we merged into one big extent. If the number of
1708 * extents we accounted for is <= the amount we need for the new range
1709 * then we can return, otherwise drop. Think of it like this
1710 *
1711 * [ 4k][MAX_SIZE]
1712 *
1713 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1714 * need 2 outstanding extents, on one side we have 1 and the other side
1715 * we have 1 so they are == and we can return. But in this case
1716 *
1717 * [MAX_SIZE+4k][MAX_SIZE+4k]
1718 *
1719 * Each range on their own accounts for 2 extents, but merged together
1720 * they are only 3 extents worth of accounting, so we need to drop in
1721 * this case.
dcab6a3b 1722 */
ba117213 1723 old_size = other->end - other->start + 1;
823bb20a 1724 num_extents = count_max_extents(old_size);
ba117213 1725 old_size = new->end - new->start + 1;
823bb20a
DS
1726 num_extents += count_max_extents(old_size);
1727 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1728 return;
1729
9e0baf60 1730 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1731 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1732 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1733}
1734
eb73c1b7
MX
1735static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1736 struct inode *inode)
1737{
0b246afa
JM
1738 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1739
eb73c1b7
MX
1740 spin_lock(&root->delalloc_lock);
1741 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1742 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1743 &root->delalloc_inodes);
1744 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1745 &BTRFS_I(inode)->runtime_flags);
1746 root->nr_delalloc_inodes++;
1747 if (root->nr_delalloc_inodes == 1) {
0b246afa 1748 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1749 BUG_ON(!list_empty(&root->delalloc_root));
1750 list_add_tail(&root->delalloc_root,
0b246afa
JM
1751 &fs_info->delalloc_roots);
1752 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1753 }
1754 }
1755 spin_unlock(&root->delalloc_lock);
1756}
1757
1758static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1759 struct btrfs_inode *inode)
eb73c1b7 1760{
9e3e97f4 1761 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1762
eb73c1b7 1763 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1764 if (!list_empty(&inode->delalloc_inodes)) {
1765 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1766 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1767 &inode->runtime_flags);
eb73c1b7
MX
1768 root->nr_delalloc_inodes--;
1769 if (!root->nr_delalloc_inodes) {
0b246afa 1770 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1771 BUG_ON(list_empty(&root->delalloc_root));
1772 list_del_init(&root->delalloc_root);
0b246afa 1773 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1774 }
1775 }
1776 spin_unlock(&root->delalloc_lock);
1777}
1778
d352ac68
CM
1779/*
1780 * extent_io.c set_bit_hook, used to track delayed allocation
1781 * bytes in this file, and to maintain the list of inodes that
1782 * have pending delalloc work to be done.
1783 */
c6100a4b 1784static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1785 struct extent_state *state, unsigned *bits)
291d673e 1786{
c6100a4b 1787 struct inode *inode = private_data;
9ed74f2d 1788
0b246afa
JM
1789 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1790
47059d93
WS
1791 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1792 WARN_ON(1);
75eff68e
CM
1793 /*
1794 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1795 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1796 * bit, which is only set or cleared with irqs on
1797 */
0ca1f7ce 1798 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1799 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1800 u64 len = state->end + 1 - state->start;
8b62f87b 1801 u32 num_extents = count_max_extents(len);
70ddc553 1802 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1803
8b62f87b
JB
1804 spin_lock(&BTRFS_I(inode)->lock);
1805 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1806 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1807
6a3891c5 1808 /* For sanity tests */
0b246afa 1809 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1810 return;
1811
104b4e51
NB
1812 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1813 fs_info->delalloc_batch);
df0af1a5 1814 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1815 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1816 if (*bits & EXTENT_DEFRAG)
1817 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1818 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1819 &BTRFS_I(inode)->runtime_flags))
1820 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1821 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1822 }
a7e3b975
FM
1823
1824 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1825 (*bits & EXTENT_DELALLOC_NEW)) {
1826 spin_lock(&BTRFS_I(inode)->lock);
1827 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1828 state->start;
1829 spin_unlock(&BTRFS_I(inode)->lock);
1830 }
291d673e
CM
1831}
1832
d352ac68
CM
1833/*
1834 * extent_io.c clear_bit_hook, see set_bit_hook for why
1835 */
c6100a4b 1836static void btrfs_clear_bit_hook(void *private_data,
41074888 1837 struct extent_state *state,
9ee49a04 1838 unsigned *bits)
291d673e 1839{
c6100a4b 1840 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1842 u64 len = state->end + 1 - state->start;
823bb20a 1843 u32 num_extents = count_max_extents(len);
47059d93 1844
4a4b964f
FM
1845 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1846 spin_lock(&inode->lock);
6fc0ef68 1847 inode->defrag_bytes -= len;
4a4b964f
FM
1848 spin_unlock(&inode->lock);
1849 }
47059d93 1850
75eff68e
CM
1851 /*
1852 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1853 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1854 * bit, which is only set or cleared with irqs on
1855 */
0ca1f7ce 1856 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1857 struct btrfs_root *root = inode->root;
83eea1f1 1858 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1859
8b62f87b
JB
1860 spin_lock(&inode->lock);
1861 btrfs_mod_outstanding_extents(inode, -num_extents);
1862 spin_unlock(&inode->lock);
0ca1f7ce 1863
b6d08f06
JB
1864 /*
1865 * We don't reserve metadata space for space cache inodes so we
1866 * don't need to call dellalloc_release_metadata if there is an
1867 * error.
1868 */
a315e68f 1869 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1870 root != fs_info->tree_root)
0ca1f7ce
YZ
1871 btrfs_delalloc_release_metadata(inode, len);
1872
6a3891c5 1873 /* For sanity tests. */
0b246afa 1874 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1875 return;
1876
a315e68f
FM
1877 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1878 do_list && !(state->state & EXTENT_NORESERVE) &&
1879 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1880 btrfs_free_reserved_data_space_noquota(
1881 &inode->vfs_inode,
51773bec 1882 state->start, len);
9ed74f2d 1883
104b4e51
NB
1884 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1885 fs_info->delalloc_batch);
6fc0ef68
NB
1886 spin_lock(&inode->lock);
1887 inode->delalloc_bytes -= len;
1888 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1889 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1890 &inode->runtime_flags))
eb73c1b7 1891 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1892 spin_unlock(&inode->lock);
291d673e 1893 }
a7e3b975
FM
1894
1895 if ((state->state & EXTENT_DELALLOC_NEW) &&
1896 (*bits & EXTENT_DELALLOC_NEW)) {
1897 spin_lock(&inode->lock);
1898 ASSERT(inode->new_delalloc_bytes >= len);
1899 inode->new_delalloc_bytes -= len;
1900 spin_unlock(&inode->lock);
1901 }
291d673e
CM
1902}
1903
d352ac68
CM
1904/*
1905 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1906 * we don't create bios that span stripes or chunks
6f034ece
LB
1907 *
1908 * return 1 if page cannot be merged to bio
1909 * return 0 if page can be merged to bio
1910 * return error otherwise
d352ac68 1911 */
81a75f67 1912int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1913 size_t size, struct bio *bio,
1914 unsigned long bio_flags)
239b14b3 1915{
0b246afa
JM
1916 struct inode *inode = page->mapping->host;
1917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1918 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1919 u64 length = 0;
1920 u64 map_length;
239b14b3
CM
1921 int ret;
1922
771ed689
CM
1923 if (bio_flags & EXTENT_BIO_COMPRESSED)
1924 return 0;
1925
4f024f37 1926 length = bio->bi_iter.bi_size;
239b14b3 1927 map_length = length;
0b246afa
JM
1928 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1929 NULL, 0);
6f034ece
LB
1930 if (ret < 0)
1931 return ret;
d397712b 1932 if (map_length < length + size)
239b14b3 1933 return 1;
3444a972 1934 return 0;
239b14b3
CM
1935}
1936
d352ac68
CM
1937/*
1938 * in order to insert checksums into the metadata in large chunks,
1939 * we wait until bio submission time. All the pages in the bio are
1940 * checksummed and sums are attached onto the ordered extent record.
1941 *
1942 * At IO completion time the cums attached on the ordered extent record
1943 * are inserted into the btree
1944 */
8c27cb35 1945static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1946 int mirror_num, unsigned long bio_flags,
eaf25d93 1947 u64 bio_offset)
065631f6 1948{
c6100a4b 1949 struct inode *inode = private_data;
4e4cbee9 1950 blk_status_t ret = 0;
e015640f 1951
2ff7e61e 1952 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1953 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1954 return 0;
1955}
e015640f 1956
4a69a410
CM
1957/*
1958 * in order to insert checksums into the metadata in large chunks,
1959 * we wait until bio submission time. All the pages in the bio are
1960 * checksummed and sums are attached onto the ordered extent record.
1961 *
1962 * At IO completion time the cums attached on the ordered extent record
1963 * are inserted into the btree
1964 */
8c27cb35 1965static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1966 int mirror_num, unsigned long bio_flags,
1967 u64 bio_offset)
4a69a410 1968{
c6100a4b 1969 struct inode *inode = private_data;
2ff7e61e 1970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1971 blk_status_t ret;
61891923 1972
2ff7e61e 1973 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1974 if (ret) {
4e4cbee9 1975 bio->bi_status = ret;
4246a0b6
CH
1976 bio_endio(bio);
1977 }
61891923 1978 return ret;
44b8bd7e
CM
1979}
1980
d352ac68 1981/*
cad321ad 1982 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1983 * on write, or reading the csums from the tree before a read.
1984 *
1985 * Rules about async/sync submit,
1986 * a) read: sync submit
1987 *
1988 * b) write without checksum: sync submit
1989 *
1990 * c) write with checksum:
1991 * c-1) if bio is issued by fsync: sync submit
1992 * (sync_writers != 0)
1993 *
1994 * c-2) if root is reloc root: sync submit
1995 * (only in case of buffered IO)
1996 *
1997 * c-3) otherwise: async submit
d352ac68 1998 */
8c27cb35 1999static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
2000 int mirror_num, unsigned long bio_flags,
2001 u64 bio_offset)
44b8bd7e 2002{
c6100a4b 2003 struct inode *inode = private_data;
0b246afa 2004 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2005 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2006 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2007 blk_status_t ret = 0;
19b9bdb0 2008 int skip_sum;
b812ce28 2009 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2010
6cbff00f 2011 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2012
70ddc553 2013 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2014 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2015
37226b21 2016 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2017 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2018 if (ret)
61891923 2019 goto out;
5fd02043 2020
d20f7043 2021 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2022 ret = btrfs_submit_compressed_read(inode, bio,
2023 mirror_num,
2024 bio_flags);
2025 goto out;
c2db1073 2026 } else if (!skip_sum) {
2ff7e61e 2027 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2028 if (ret)
61891923 2029 goto out;
c2db1073 2030 }
4d1b5fb4 2031 goto mapit;
b812ce28 2032 } else if (async && !skip_sum) {
17d217fe
YZ
2033 /* csum items have already been cloned */
2034 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2035 goto mapit;
19b9bdb0 2036 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2037 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2038 bio_offset, inode,
0b246afa
JM
2039 __btrfs_submit_bio_start,
2040 __btrfs_submit_bio_done);
61891923 2041 goto out;
b812ce28 2042 } else if (!skip_sum) {
2ff7e61e 2043 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2044 if (ret)
2045 goto out;
19b9bdb0
CM
2046 }
2047
0b86a832 2048mapit:
2ff7e61e 2049 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2050
2051out:
4e4cbee9
CH
2052 if (ret) {
2053 bio->bi_status = ret;
4246a0b6
CH
2054 bio_endio(bio);
2055 }
61891923 2056 return ret;
065631f6 2057}
6885f308 2058
d352ac68
CM
2059/*
2060 * given a list of ordered sums record them in the inode. This happens
2061 * at IO completion time based on sums calculated at bio submission time.
2062 */
ba1da2f4 2063static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2064 struct inode *inode, struct list_head *list)
e6dcd2dc 2065{
e6dcd2dc 2066 struct btrfs_ordered_sum *sum;
ac01f26a 2067 int ret;
e6dcd2dc 2068
c6e30871 2069 list_for_each_entry(sum, list, list) {
7c2871a2 2070 trans->adding_csums = true;
ac01f26a 2071 ret = btrfs_csum_file_blocks(trans,
d20f7043 2072 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2073 trans->adding_csums = false;
ac01f26a
NB
2074 if (ret)
2075 return ret;
e6dcd2dc
CM
2076 }
2077 return 0;
2078}
2079
2ac55d41 2080int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2081 unsigned int extra_bits,
ba8b04c1 2082 struct extent_state **cached_state, int dedupe)
ea8c2819 2083{
09cbfeaf 2084 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2085 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2086 extra_bits, cached_state);
ea8c2819
CM
2087}
2088
d352ac68 2089/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2090struct btrfs_writepage_fixup {
2091 struct page *page;
2092 struct btrfs_work work;
2093};
2094
b2950863 2095static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2096{
2097 struct btrfs_writepage_fixup *fixup;
2098 struct btrfs_ordered_extent *ordered;
2ac55d41 2099 struct extent_state *cached_state = NULL;
364ecf36 2100 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2101 struct page *page;
2102 struct inode *inode;
2103 u64 page_start;
2104 u64 page_end;
87826df0 2105 int ret;
247e743c
CM
2106
2107 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2108 page = fixup->page;
4a096752 2109again:
247e743c
CM
2110 lock_page(page);
2111 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2112 ClearPageChecked(page);
2113 goto out_page;
2114 }
2115
2116 inode = page->mapping->host;
2117 page_start = page_offset(page);
09cbfeaf 2118 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2119
ff13db41 2120 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2121 &cached_state);
4a096752
CM
2122
2123 /* already ordered? We're done */
8b62b72b 2124 if (PagePrivate2(page))
247e743c 2125 goto out;
4a096752 2126
a776c6fa 2127 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2128 PAGE_SIZE);
4a096752 2129 if (ordered) {
2ac55d41 2130 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2131 page_end, &cached_state);
4a096752
CM
2132 unlock_page(page);
2133 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2134 btrfs_put_ordered_extent(ordered);
4a096752
CM
2135 goto again;
2136 }
247e743c 2137
364ecf36 2138 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2139 PAGE_SIZE);
87826df0
JM
2140 if (ret) {
2141 mapping_set_error(page->mapping, ret);
2142 end_extent_writepage(page, ret, page_start, page_end);
2143 ClearPageChecked(page);
2144 goto out;
2145 }
2146
f3038ee3
NB
2147 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2148 &cached_state, 0);
2149 if (ret) {
2150 mapping_set_error(page->mapping, ret);
2151 end_extent_writepage(page, ret, page_start, page_end);
2152 ClearPageChecked(page);
2153 goto out;
2154 }
2155
247e743c 2156 ClearPageChecked(page);
87826df0 2157 set_page_dirty(page);
8b62f87b 2158 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2159out:
2ac55d41 2160 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2161 &cached_state);
247e743c
CM
2162out_page:
2163 unlock_page(page);
09cbfeaf 2164 put_page(page);
b897abec 2165 kfree(fixup);
364ecf36 2166 extent_changeset_free(data_reserved);
247e743c
CM
2167}
2168
2169/*
2170 * There are a few paths in the higher layers of the kernel that directly
2171 * set the page dirty bit without asking the filesystem if it is a
2172 * good idea. This causes problems because we want to make sure COW
2173 * properly happens and the data=ordered rules are followed.
2174 *
c8b97818 2175 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2176 * hasn't been properly setup for IO. We kick off an async process
2177 * to fix it up. The async helper will wait for ordered extents, set
2178 * the delalloc bit and make it safe to write the page.
2179 */
b2950863 2180static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2181{
2182 struct inode *inode = page->mapping->host;
0b246afa 2183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2184 struct btrfs_writepage_fixup *fixup;
247e743c 2185
8b62b72b
CM
2186 /* this page is properly in the ordered list */
2187 if (TestClearPagePrivate2(page))
247e743c
CM
2188 return 0;
2189
2190 if (PageChecked(page))
2191 return -EAGAIN;
2192
2193 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2194 if (!fixup)
2195 return -EAGAIN;
f421950f 2196
247e743c 2197 SetPageChecked(page);
09cbfeaf 2198 get_page(page);
9e0af237
LB
2199 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2200 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2201 fixup->page = page;
0b246afa 2202 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2203 return -EBUSY;
247e743c
CM
2204}
2205
d899e052
YZ
2206static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2207 struct inode *inode, u64 file_pos,
2208 u64 disk_bytenr, u64 disk_num_bytes,
2209 u64 num_bytes, u64 ram_bytes,
2210 u8 compression, u8 encryption,
2211 u16 other_encoding, int extent_type)
2212{
2213 struct btrfs_root *root = BTRFS_I(inode)->root;
2214 struct btrfs_file_extent_item *fi;
2215 struct btrfs_path *path;
2216 struct extent_buffer *leaf;
2217 struct btrfs_key ins;
a12b877b 2218 u64 qg_released;
1acae57b 2219 int extent_inserted = 0;
d899e052
YZ
2220 int ret;
2221
2222 path = btrfs_alloc_path();
d8926bb3
MF
2223 if (!path)
2224 return -ENOMEM;
d899e052 2225
a1ed835e
CM
2226 /*
2227 * we may be replacing one extent in the tree with another.
2228 * The new extent is pinned in the extent map, and we don't want
2229 * to drop it from the cache until it is completely in the btree.
2230 *
2231 * So, tell btrfs_drop_extents to leave this extent in the cache.
2232 * the caller is expected to unpin it and allow it to be merged
2233 * with the others.
2234 */
1acae57b
FDBM
2235 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2236 file_pos + num_bytes, NULL, 0,
2237 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2238 if (ret)
2239 goto out;
d899e052 2240
1acae57b 2241 if (!extent_inserted) {
4a0cc7ca 2242 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2243 ins.offset = file_pos;
2244 ins.type = BTRFS_EXTENT_DATA_KEY;
2245
2246 path->leave_spinning = 1;
2247 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2248 sizeof(*fi));
2249 if (ret)
2250 goto out;
2251 }
d899e052
YZ
2252 leaf = path->nodes[0];
2253 fi = btrfs_item_ptr(leaf, path->slots[0],
2254 struct btrfs_file_extent_item);
2255 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2256 btrfs_set_file_extent_type(leaf, fi, extent_type);
2257 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2258 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2259 btrfs_set_file_extent_offset(leaf, fi, 0);
2260 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2261 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2262 btrfs_set_file_extent_compression(leaf, fi, compression);
2263 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2264 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2265
d899e052 2266 btrfs_mark_buffer_dirty(leaf);
ce195332 2267 btrfs_release_path(path);
d899e052
YZ
2268
2269 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2270
2271 ins.objectid = disk_bytenr;
2272 ins.offset = disk_num_bytes;
2273 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2274
297d750b 2275 /*
5846a3c2
QW
2276 * Release the reserved range from inode dirty range map, as it is
2277 * already moved into delayed_ref_head
297d750b 2278 */
a12b877b
QW
2279 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2280 if (ret < 0)
2281 goto out;
2282 qg_released = ret;
84f7d8e6
JB
2283 ret = btrfs_alloc_reserved_file_extent(trans, root,
2284 btrfs_ino(BTRFS_I(inode)),
2285 file_pos, qg_released, &ins);
79787eaa 2286out:
d899e052 2287 btrfs_free_path(path);
b9473439 2288
79787eaa 2289 return ret;
d899e052
YZ
2290}
2291
38c227d8
LB
2292/* snapshot-aware defrag */
2293struct sa_defrag_extent_backref {
2294 struct rb_node node;
2295 struct old_sa_defrag_extent *old;
2296 u64 root_id;
2297 u64 inum;
2298 u64 file_pos;
2299 u64 extent_offset;
2300 u64 num_bytes;
2301 u64 generation;
2302};
2303
2304struct old_sa_defrag_extent {
2305 struct list_head list;
2306 struct new_sa_defrag_extent *new;
2307
2308 u64 extent_offset;
2309 u64 bytenr;
2310 u64 offset;
2311 u64 len;
2312 int count;
2313};
2314
2315struct new_sa_defrag_extent {
2316 struct rb_root root;
2317 struct list_head head;
2318 struct btrfs_path *path;
2319 struct inode *inode;
2320 u64 file_pos;
2321 u64 len;
2322 u64 bytenr;
2323 u64 disk_len;
2324 u8 compress_type;
2325};
2326
2327static int backref_comp(struct sa_defrag_extent_backref *b1,
2328 struct sa_defrag_extent_backref *b2)
2329{
2330 if (b1->root_id < b2->root_id)
2331 return -1;
2332 else if (b1->root_id > b2->root_id)
2333 return 1;
2334
2335 if (b1->inum < b2->inum)
2336 return -1;
2337 else if (b1->inum > b2->inum)
2338 return 1;
2339
2340 if (b1->file_pos < b2->file_pos)
2341 return -1;
2342 else if (b1->file_pos > b2->file_pos)
2343 return 1;
2344
2345 /*
2346 * [------------------------------] ===> (a range of space)
2347 * |<--->| |<---->| =============> (fs/file tree A)
2348 * |<---------------------------->| ===> (fs/file tree B)
2349 *
2350 * A range of space can refer to two file extents in one tree while
2351 * refer to only one file extent in another tree.
2352 *
2353 * So we may process a disk offset more than one time(two extents in A)
2354 * and locate at the same extent(one extent in B), then insert two same
2355 * backrefs(both refer to the extent in B).
2356 */
2357 return 0;
2358}
2359
2360static void backref_insert(struct rb_root *root,
2361 struct sa_defrag_extent_backref *backref)
2362{
2363 struct rb_node **p = &root->rb_node;
2364 struct rb_node *parent = NULL;
2365 struct sa_defrag_extent_backref *entry;
2366 int ret;
2367
2368 while (*p) {
2369 parent = *p;
2370 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2371
2372 ret = backref_comp(backref, entry);
2373 if (ret < 0)
2374 p = &(*p)->rb_left;
2375 else
2376 p = &(*p)->rb_right;
2377 }
2378
2379 rb_link_node(&backref->node, parent, p);
2380 rb_insert_color(&backref->node, root);
2381}
2382
2383/*
2384 * Note the backref might has changed, and in this case we just return 0.
2385 */
2386static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2387 void *ctx)
2388{
2389 struct btrfs_file_extent_item *extent;
38c227d8
LB
2390 struct old_sa_defrag_extent *old = ctx;
2391 struct new_sa_defrag_extent *new = old->new;
2392 struct btrfs_path *path = new->path;
2393 struct btrfs_key key;
2394 struct btrfs_root *root;
2395 struct sa_defrag_extent_backref *backref;
2396 struct extent_buffer *leaf;
2397 struct inode *inode = new->inode;
0b246afa 2398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2399 int slot;
2400 int ret;
2401 u64 extent_offset;
2402 u64 num_bytes;
2403
2404 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2405 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2406 return 0;
2407
2408 key.objectid = root_id;
2409 key.type = BTRFS_ROOT_ITEM_KEY;
2410 key.offset = (u64)-1;
2411
38c227d8
LB
2412 root = btrfs_read_fs_root_no_name(fs_info, &key);
2413 if (IS_ERR(root)) {
2414 if (PTR_ERR(root) == -ENOENT)
2415 return 0;
2416 WARN_ON(1);
ab8d0fc4 2417 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2418 inum, offset, root_id);
2419 return PTR_ERR(root);
2420 }
2421
2422 key.objectid = inum;
2423 key.type = BTRFS_EXTENT_DATA_KEY;
2424 if (offset > (u64)-1 << 32)
2425 key.offset = 0;
2426 else
2427 key.offset = offset;
2428
2429 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2430 if (WARN_ON(ret < 0))
38c227d8 2431 return ret;
50f1319c 2432 ret = 0;
38c227d8
LB
2433
2434 while (1) {
2435 cond_resched();
2436
2437 leaf = path->nodes[0];
2438 slot = path->slots[0];
2439
2440 if (slot >= btrfs_header_nritems(leaf)) {
2441 ret = btrfs_next_leaf(root, path);
2442 if (ret < 0) {
2443 goto out;
2444 } else if (ret > 0) {
2445 ret = 0;
2446 goto out;
2447 }
2448 continue;
2449 }
2450
2451 path->slots[0]++;
2452
2453 btrfs_item_key_to_cpu(leaf, &key, slot);
2454
2455 if (key.objectid > inum)
2456 goto out;
2457
2458 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2459 continue;
2460
2461 extent = btrfs_item_ptr(leaf, slot,
2462 struct btrfs_file_extent_item);
2463
2464 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2465 continue;
2466
e68afa49
LB
2467 /*
2468 * 'offset' refers to the exact key.offset,
2469 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2470 * (key.offset - extent_offset).
2471 */
2472 if (key.offset != offset)
38c227d8
LB
2473 continue;
2474
e68afa49 2475 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2476 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2477
38c227d8
LB
2478 if (extent_offset >= old->extent_offset + old->offset +
2479 old->len || extent_offset + num_bytes <=
2480 old->extent_offset + old->offset)
2481 continue;
38c227d8
LB
2482 break;
2483 }
2484
2485 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2486 if (!backref) {
2487 ret = -ENOENT;
2488 goto out;
2489 }
2490
2491 backref->root_id = root_id;
2492 backref->inum = inum;
e68afa49 2493 backref->file_pos = offset;
38c227d8
LB
2494 backref->num_bytes = num_bytes;
2495 backref->extent_offset = extent_offset;
2496 backref->generation = btrfs_file_extent_generation(leaf, extent);
2497 backref->old = old;
2498 backref_insert(&new->root, backref);
2499 old->count++;
2500out:
2501 btrfs_release_path(path);
2502 WARN_ON(ret);
2503 return ret;
2504}
2505
2506static noinline bool record_extent_backrefs(struct btrfs_path *path,
2507 struct new_sa_defrag_extent *new)
2508{
0b246afa 2509 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2510 struct old_sa_defrag_extent *old, *tmp;
2511 int ret;
2512
2513 new->path = path;
2514
2515 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2516 ret = iterate_inodes_from_logical(old->bytenr +
2517 old->extent_offset, fs_info,
38c227d8 2518 path, record_one_backref,
c995ab3c 2519 old, false);
4724b106
JB
2520 if (ret < 0 && ret != -ENOENT)
2521 return false;
38c227d8
LB
2522
2523 /* no backref to be processed for this extent */
2524 if (!old->count) {
2525 list_del(&old->list);
2526 kfree(old);
2527 }
2528 }
2529
2530 if (list_empty(&new->head))
2531 return false;
2532
2533 return true;
2534}
2535
2536static int relink_is_mergable(struct extent_buffer *leaf,
2537 struct btrfs_file_extent_item *fi,
116e0024 2538 struct new_sa_defrag_extent *new)
38c227d8 2539{
116e0024 2540 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2541 return 0;
2542
2543 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2544 return 0;
2545
116e0024
LB
2546 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2547 return 0;
2548
2549 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2550 btrfs_file_extent_other_encoding(leaf, fi))
2551 return 0;
2552
2553 return 1;
2554}
2555
2556/*
2557 * Note the backref might has changed, and in this case we just return 0.
2558 */
2559static noinline int relink_extent_backref(struct btrfs_path *path,
2560 struct sa_defrag_extent_backref *prev,
2561 struct sa_defrag_extent_backref *backref)
2562{
2563 struct btrfs_file_extent_item *extent;
2564 struct btrfs_file_extent_item *item;
2565 struct btrfs_ordered_extent *ordered;
2566 struct btrfs_trans_handle *trans;
38c227d8
LB
2567 struct btrfs_root *root;
2568 struct btrfs_key key;
2569 struct extent_buffer *leaf;
2570 struct old_sa_defrag_extent *old = backref->old;
2571 struct new_sa_defrag_extent *new = old->new;
0b246afa 2572 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2573 struct inode *inode;
2574 struct extent_state *cached = NULL;
2575 int ret = 0;
2576 u64 start;
2577 u64 len;
2578 u64 lock_start;
2579 u64 lock_end;
2580 bool merge = false;
2581 int index;
2582
2583 if (prev && prev->root_id == backref->root_id &&
2584 prev->inum == backref->inum &&
2585 prev->file_pos + prev->num_bytes == backref->file_pos)
2586 merge = true;
2587
2588 /* step 1: get root */
2589 key.objectid = backref->root_id;
2590 key.type = BTRFS_ROOT_ITEM_KEY;
2591 key.offset = (u64)-1;
2592
38c227d8
LB
2593 index = srcu_read_lock(&fs_info->subvol_srcu);
2594
2595 root = btrfs_read_fs_root_no_name(fs_info, &key);
2596 if (IS_ERR(root)) {
2597 srcu_read_unlock(&fs_info->subvol_srcu, index);
2598 if (PTR_ERR(root) == -ENOENT)
2599 return 0;
2600 return PTR_ERR(root);
2601 }
38c227d8 2602
bcbba5e6
WS
2603 if (btrfs_root_readonly(root)) {
2604 srcu_read_unlock(&fs_info->subvol_srcu, index);
2605 return 0;
2606 }
2607
38c227d8
LB
2608 /* step 2: get inode */
2609 key.objectid = backref->inum;
2610 key.type = BTRFS_INODE_ITEM_KEY;
2611 key.offset = 0;
2612
2613 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2614 if (IS_ERR(inode)) {
2615 srcu_read_unlock(&fs_info->subvol_srcu, index);
2616 return 0;
2617 }
2618
2619 srcu_read_unlock(&fs_info->subvol_srcu, index);
2620
2621 /* step 3: relink backref */
2622 lock_start = backref->file_pos;
2623 lock_end = backref->file_pos + backref->num_bytes - 1;
2624 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2625 &cached);
38c227d8
LB
2626
2627 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2628 if (ordered) {
2629 btrfs_put_ordered_extent(ordered);
2630 goto out_unlock;
2631 }
2632
2633 trans = btrfs_join_transaction(root);
2634 if (IS_ERR(trans)) {
2635 ret = PTR_ERR(trans);
2636 goto out_unlock;
2637 }
2638
2639 key.objectid = backref->inum;
2640 key.type = BTRFS_EXTENT_DATA_KEY;
2641 key.offset = backref->file_pos;
2642
2643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2644 if (ret < 0) {
2645 goto out_free_path;
2646 } else if (ret > 0) {
2647 ret = 0;
2648 goto out_free_path;
2649 }
2650
2651 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2652 struct btrfs_file_extent_item);
2653
2654 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2655 backref->generation)
2656 goto out_free_path;
2657
2658 btrfs_release_path(path);
2659
2660 start = backref->file_pos;
2661 if (backref->extent_offset < old->extent_offset + old->offset)
2662 start += old->extent_offset + old->offset -
2663 backref->extent_offset;
2664
2665 len = min(backref->extent_offset + backref->num_bytes,
2666 old->extent_offset + old->offset + old->len);
2667 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2668
2669 ret = btrfs_drop_extents(trans, root, inode, start,
2670 start + len, 1);
2671 if (ret)
2672 goto out_free_path;
2673again:
4a0cc7ca 2674 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2675 key.type = BTRFS_EXTENT_DATA_KEY;
2676 key.offset = start;
2677
a09a0a70 2678 path->leave_spinning = 1;
38c227d8
LB
2679 if (merge) {
2680 struct btrfs_file_extent_item *fi;
2681 u64 extent_len;
2682 struct btrfs_key found_key;
2683
3c9665df 2684 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2685 if (ret < 0)
2686 goto out_free_path;
2687
2688 path->slots[0]--;
2689 leaf = path->nodes[0];
2690 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2691
2692 fi = btrfs_item_ptr(leaf, path->slots[0],
2693 struct btrfs_file_extent_item);
2694 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2695
116e0024
LB
2696 if (extent_len + found_key.offset == start &&
2697 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2698 btrfs_set_file_extent_num_bytes(leaf, fi,
2699 extent_len + len);
2700 btrfs_mark_buffer_dirty(leaf);
2701 inode_add_bytes(inode, len);
2702
2703 ret = 1;
2704 goto out_free_path;
2705 } else {
2706 merge = false;
2707 btrfs_release_path(path);
2708 goto again;
2709 }
2710 }
2711
2712 ret = btrfs_insert_empty_item(trans, root, path, &key,
2713 sizeof(*extent));
2714 if (ret) {
66642832 2715 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2716 goto out_free_path;
2717 }
2718
2719 leaf = path->nodes[0];
2720 item = btrfs_item_ptr(leaf, path->slots[0],
2721 struct btrfs_file_extent_item);
2722 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2723 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2724 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2725 btrfs_set_file_extent_num_bytes(leaf, item, len);
2726 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2727 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2728 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2729 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2730 btrfs_set_file_extent_encryption(leaf, item, 0);
2731 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2732
2733 btrfs_mark_buffer_dirty(leaf);
2734 inode_add_bytes(inode, len);
a09a0a70 2735 btrfs_release_path(path);
38c227d8 2736
84f7d8e6 2737 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2738 new->disk_len, 0,
2739 backref->root_id, backref->inum,
b06c4bf5 2740 new->file_pos); /* start - extent_offset */
38c227d8 2741 if (ret) {
66642832 2742 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2743 goto out_free_path;
2744 }
2745
2746 ret = 1;
2747out_free_path:
2748 btrfs_release_path(path);
a09a0a70 2749 path->leave_spinning = 0;
3a45bb20 2750 btrfs_end_transaction(trans);
38c227d8
LB
2751out_unlock:
2752 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2753 &cached);
38c227d8
LB
2754 iput(inode);
2755 return ret;
2756}
2757
6f519564
LB
2758static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2759{
2760 struct old_sa_defrag_extent *old, *tmp;
2761
2762 if (!new)
2763 return;
2764
2765 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2766 kfree(old);
2767 }
2768 kfree(new);
2769}
2770
38c227d8
LB
2771static void relink_file_extents(struct new_sa_defrag_extent *new)
2772{
0b246afa 2773 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2774 struct btrfs_path *path;
38c227d8
LB
2775 struct sa_defrag_extent_backref *backref;
2776 struct sa_defrag_extent_backref *prev = NULL;
2777 struct inode *inode;
2778 struct btrfs_root *root;
2779 struct rb_node *node;
2780 int ret;
2781
2782 inode = new->inode;
2783 root = BTRFS_I(inode)->root;
2784
2785 path = btrfs_alloc_path();
2786 if (!path)
2787 return;
2788
2789 if (!record_extent_backrefs(path, new)) {
2790 btrfs_free_path(path);
2791 goto out;
2792 }
2793 btrfs_release_path(path);
2794
2795 while (1) {
2796 node = rb_first(&new->root);
2797 if (!node)
2798 break;
2799 rb_erase(node, &new->root);
2800
2801 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2802
2803 ret = relink_extent_backref(path, prev, backref);
2804 WARN_ON(ret < 0);
2805
2806 kfree(prev);
2807
2808 if (ret == 1)
2809 prev = backref;
2810 else
2811 prev = NULL;
2812 cond_resched();
2813 }
2814 kfree(prev);
2815
2816 btrfs_free_path(path);
38c227d8 2817out:
6f519564
LB
2818 free_sa_defrag_extent(new);
2819
0b246afa
JM
2820 atomic_dec(&fs_info->defrag_running);
2821 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2822}
2823
2824static struct new_sa_defrag_extent *
2825record_old_file_extents(struct inode *inode,
2826 struct btrfs_ordered_extent *ordered)
2827{
0b246afa 2828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2829 struct btrfs_root *root = BTRFS_I(inode)->root;
2830 struct btrfs_path *path;
2831 struct btrfs_key key;
6f519564 2832 struct old_sa_defrag_extent *old;
38c227d8
LB
2833 struct new_sa_defrag_extent *new;
2834 int ret;
2835
2836 new = kmalloc(sizeof(*new), GFP_NOFS);
2837 if (!new)
2838 return NULL;
2839
2840 new->inode = inode;
2841 new->file_pos = ordered->file_offset;
2842 new->len = ordered->len;
2843 new->bytenr = ordered->start;
2844 new->disk_len = ordered->disk_len;
2845 new->compress_type = ordered->compress_type;
2846 new->root = RB_ROOT;
2847 INIT_LIST_HEAD(&new->head);
2848
2849 path = btrfs_alloc_path();
2850 if (!path)
2851 goto out_kfree;
2852
4a0cc7ca 2853 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2854 key.type = BTRFS_EXTENT_DATA_KEY;
2855 key.offset = new->file_pos;
2856
2857 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2858 if (ret < 0)
2859 goto out_free_path;
2860 if (ret > 0 && path->slots[0] > 0)
2861 path->slots[0]--;
2862
2863 /* find out all the old extents for the file range */
2864 while (1) {
2865 struct btrfs_file_extent_item *extent;
2866 struct extent_buffer *l;
2867 int slot;
2868 u64 num_bytes;
2869 u64 offset;
2870 u64 end;
2871 u64 disk_bytenr;
2872 u64 extent_offset;
2873
2874 l = path->nodes[0];
2875 slot = path->slots[0];
2876
2877 if (slot >= btrfs_header_nritems(l)) {
2878 ret = btrfs_next_leaf(root, path);
2879 if (ret < 0)
6f519564 2880 goto out_free_path;
38c227d8
LB
2881 else if (ret > 0)
2882 break;
2883 continue;
2884 }
2885
2886 btrfs_item_key_to_cpu(l, &key, slot);
2887
4a0cc7ca 2888 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2889 break;
2890 if (key.type != BTRFS_EXTENT_DATA_KEY)
2891 break;
2892 if (key.offset >= new->file_pos + new->len)
2893 break;
2894
2895 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2896
2897 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2898 if (key.offset + num_bytes < new->file_pos)
2899 goto next;
2900
2901 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2902 if (!disk_bytenr)
2903 goto next;
2904
2905 extent_offset = btrfs_file_extent_offset(l, extent);
2906
2907 old = kmalloc(sizeof(*old), GFP_NOFS);
2908 if (!old)
6f519564 2909 goto out_free_path;
38c227d8
LB
2910
2911 offset = max(new->file_pos, key.offset);
2912 end = min(new->file_pos + new->len, key.offset + num_bytes);
2913
2914 old->bytenr = disk_bytenr;
2915 old->extent_offset = extent_offset;
2916 old->offset = offset - key.offset;
2917 old->len = end - offset;
2918 old->new = new;
2919 old->count = 0;
2920 list_add_tail(&old->list, &new->head);
2921next:
2922 path->slots[0]++;
2923 cond_resched();
2924 }
2925
2926 btrfs_free_path(path);
0b246afa 2927 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2928
2929 return new;
2930
38c227d8
LB
2931out_free_path:
2932 btrfs_free_path(path);
2933out_kfree:
6f519564 2934 free_sa_defrag_extent(new);
38c227d8
LB
2935 return NULL;
2936}
2937
2ff7e61e 2938static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2939 u64 start, u64 len)
2940{
2941 struct btrfs_block_group_cache *cache;
2942
0b246afa 2943 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2944 ASSERT(cache);
2945
2946 spin_lock(&cache->lock);
2947 cache->delalloc_bytes -= len;
2948 spin_unlock(&cache->lock);
2949
2950 btrfs_put_block_group(cache);
2951}
2952
d352ac68
CM
2953/* as ordered data IO finishes, this gets called so we can finish
2954 * an ordered extent if the range of bytes in the file it covers are
2955 * fully written.
2956 */
5fd02043 2957static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2958{
5fd02043 2959 struct inode *inode = ordered_extent->inode;
0b246afa 2960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2961 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2962 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2964 struct extent_state *cached_state = NULL;
38c227d8 2965 struct new_sa_defrag_extent *new = NULL;
261507a0 2966 int compress_type = 0;
77cef2ec
JB
2967 int ret = 0;
2968 u64 logical_len = ordered_extent->len;
82d5902d 2969 bool nolock;
77cef2ec 2970 bool truncated = false;
a7e3b975
FM
2971 bool range_locked = false;
2972 bool clear_new_delalloc_bytes = false;
2973
2974 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2975 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2976 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2977 clear_new_delalloc_bytes = true;
e6dcd2dc 2978
70ddc553 2979 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2980
5fd02043
JB
2981 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2982 ret = -EIO;
2983 goto out;
2984 }
2985
7ab7956e
NB
2986 btrfs_free_io_failure_record(BTRFS_I(inode),
2987 ordered_extent->file_offset,
2988 ordered_extent->file_offset +
2989 ordered_extent->len - 1);
f612496b 2990
77cef2ec
JB
2991 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2992 truncated = true;
2993 logical_len = ordered_extent->truncated_len;
2994 /* Truncated the entire extent, don't bother adding */
2995 if (!logical_len)
2996 goto out;
2997 }
2998
c2167754 2999 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3000 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
3001
3002 /*
3003 * For mwrite(mmap + memset to write) case, we still reserve
3004 * space for NOCOW range.
3005 * As NOCOW won't cause a new delayed ref, just free the space
3006 */
bc42bda2 3007 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3008 ordered_extent->len);
6c760c07
JB
3009 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3010 if (nolock)
3011 trans = btrfs_join_transaction_nolock(root);
3012 else
3013 trans = btrfs_join_transaction(root);
3014 if (IS_ERR(trans)) {
3015 ret = PTR_ERR(trans);
3016 trans = NULL;
3017 goto out;
c2167754 3018 }
69fe2d75 3019 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3020 ret = btrfs_update_inode_fallback(trans, root, inode);
3021 if (ret) /* -ENOMEM or corruption */
66642832 3022 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3023 goto out;
3024 }
e6dcd2dc 3025
a7e3b975 3026 range_locked = true;
2ac55d41
JB
3027 lock_extent_bits(io_tree, ordered_extent->file_offset,
3028 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3029 &cached_state);
e6dcd2dc 3030
38c227d8
LB
3031 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3032 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3033 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3034 if (ret) {
3035 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3036 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3037 /* the inode is shared */
3038 new = record_old_file_extents(inode, ordered_extent);
3039
3040 clear_extent_bit(io_tree, ordered_extent->file_offset,
3041 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3042 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3043 }
3044
0cb59c99 3045 if (nolock)
7a7eaa40 3046 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3047 else
7a7eaa40 3048 trans = btrfs_join_transaction(root);
79787eaa
JM
3049 if (IS_ERR(trans)) {
3050 ret = PTR_ERR(trans);
3051 trans = NULL;
a7e3b975 3052 goto out;
79787eaa 3053 }
a79b7d4b 3054
69fe2d75 3055 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3056
c8b97818 3057 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3058 compress_type = ordered_extent->compress_type;
d899e052 3059 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3060 BUG_ON(compress_type);
b430b775
JM
3061 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3062 ordered_extent->len);
7a6d7067 3063 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3064 ordered_extent->file_offset,
3065 ordered_extent->file_offset +
77cef2ec 3066 logical_len);
d899e052 3067 } else {
0b246afa 3068 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3069 ret = insert_reserved_file_extent(trans, inode,
3070 ordered_extent->file_offset,
3071 ordered_extent->start,
3072 ordered_extent->disk_len,
77cef2ec 3073 logical_len, logical_len,
261507a0 3074 compress_type, 0, 0,
d899e052 3075 BTRFS_FILE_EXTENT_REG);
e570fd27 3076 if (!ret)
2ff7e61e 3077 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3078 ordered_extent->start,
3079 ordered_extent->disk_len);
d899e052 3080 }
5dc562c5
JB
3081 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3082 ordered_extent->file_offset, ordered_extent->len,
3083 trans->transid);
79787eaa 3084 if (ret < 0) {
66642832 3085 btrfs_abort_transaction(trans, ret);
a7e3b975 3086 goto out;
79787eaa 3087 }
2ac55d41 3088
ac01f26a
NB
3089 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3090 if (ret) {
3091 btrfs_abort_transaction(trans, ret);
3092 goto out;
3093 }
e6dcd2dc 3094
6c760c07
JB
3095 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3096 ret = btrfs_update_inode_fallback(trans, root, inode);
3097 if (ret) { /* -ENOMEM or corruption */
66642832 3098 btrfs_abort_transaction(trans, ret);
a7e3b975 3099 goto out;
1ef30be1
JB
3100 }
3101 ret = 0;
c2167754 3102out:
a7e3b975
FM
3103 if (range_locked || clear_new_delalloc_bytes) {
3104 unsigned int clear_bits = 0;
3105
3106 if (range_locked)
3107 clear_bits |= EXTENT_LOCKED;
3108 if (clear_new_delalloc_bytes)
3109 clear_bits |= EXTENT_DELALLOC_NEW;
3110 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3111 ordered_extent->file_offset,
3112 ordered_extent->file_offset +
3113 ordered_extent->len - 1,
3114 clear_bits,
3115 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3116 0, &cached_state);
a7e3b975
FM
3117 }
3118
a698d075 3119 if (trans)
3a45bb20 3120 btrfs_end_transaction(trans);
0cb59c99 3121
77cef2ec
JB
3122 if (ret || truncated) {
3123 u64 start, end;
3124
3125 if (truncated)
3126 start = ordered_extent->file_offset + logical_len;
3127 else
3128 start = ordered_extent->file_offset;
3129 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3130 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3131
3132 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3133 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3134
0bec9ef5
JB
3135 /*
3136 * If the ordered extent had an IOERR or something else went
3137 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3138 * back to the allocator. We only free the extent in the
3139 * truncated case if we didn't write out the extent at all.
0bec9ef5 3140 */
77cef2ec
JB
3141 if ((ret || !logical_len) &&
3142 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3143 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3144 btrfs_free_reserved_extent(fs_info,
3145 ordered_extent->start,
e570fd27 3146 ordered_extent->disk_len, 1);
0bec9ef5
JB
3147 }
3148
3149
5fd02043 3150 /*
8bad3c02
LB
3151 * This needs to be done to make sure anybody waiting knows we are done
3152 * updating everything for this ordered extent.
5fd02043
JB
3153 */
3154 btrfs_remove_ordered_extent(inode, ordered_extent);
3155
38c227d8 3156 /* for snapshot-aware defrag */
6f519564
LB
3157 if (new) {
3158 if (ret) {
3159 free_sa_defrag_extent(new);
0b246afa 3160 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3161 } else {
3162 relink_file_extents(new);
3163 }
3164 }
38c227d8 3165
e6dcd2dc
CM
3166 /* once for us */
3167 btrfs_put_ordered_extent(ordered_extent);
3168 /* once for the tree */
3169 btrfs_put_ordered_extent(ordered_extent);
3170
5fd02043
JB
3171 return ret;
3172}
3173
3174static void finish_ordered_fn(struct btrfs_work *work)
3175{
3176 struct btrfs_ordered_extent *ordered_extent;
3177 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3178 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3179}
3180
c3988d63 3181static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3182 struct extent_state *state, int uptodate)
3183{
5fd02043 3184 struct inode *inode = page->mapping->host;
0b246afa 3185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3186 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3187 struct btrfs_workqueue *wq;
3188 btrfs_work_func_t func;
5fd02043 3189
1abe9b8a 3190 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3191
8b62b72b 3192 ClearPagePrivate2(page);
5fd02043
JB
3193 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3194 end - start + 1, uptodate))
c3988d63 3195 return;
5fd02043 3196
70ddc553 3197 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3198 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3199 func = btrfs_freespace_write_helper;
3200 } else {
0b246afa 3201 wq = fs_info->endio_write_workers;
9e0af237
LB
3202 func = btrfs_endio_write_helper;
3203 }
5fd02043 3204
9e0af237
LB
3205 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3206 NULL);
3207 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3208}
3209
dc380aea
MX
3210static int __readpage_endio_check(struct inode *inode,
3211 struct btrfs_io_bio *io_bio,
3212 int icsum, struct page *page,
3213 int pgoff, u64 start, size_t len)
3214{
3215 char *kaddr;
3216 u32 csum_expected;
3217 u32 csum = ~(u32)0;
dc380aea
MX
3218
3219 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3220
3221 kaddr = kmap_atomic(page);
3222 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3223 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3224 if (csum != csum_expected)
3225 goto zeroit;
3226
3227 kunmap_atomic(kaddr);
3228 return 0;
3229zeroit:
0970a22e 3230 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3231 io_bio->mirror_num);
dc380aea
MX
3232 memset(kaddr + pgoff, 1, len);
3233 flush_dcache_page(page);
3234 kunmap_atomic(kaddr);
dc380aea
MX
3235 return -EIO;
3236}
3237
d352ac68
CM
3238/*
3239 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3240 * if there's a match, we allow the bio to finish. If not, the code in
3241 * extent_io.c will try to find good copies for us.
d352ac68 3242 */
facc8a22
MX
3243static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3244 u64 phy_offset, struct page *page,
3245 u64 start, u64 end, int mirror)
07157aac 3246{
4eee4fa4 3247 size_t offset = start - page_offset(page);
07157aac 3248 struct inode *inode = page->mapping->host;
d1310b2e 3249 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3250 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3251
d20f7043
CM
3252 if (PageChecked(page)) {
3253 ClearPageChecked(page);
dc380aea 3254 return 0;
d20f7043 3255 }
6cbff00f
CH
3256
3257 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3258 return 0;
17d217fe
YZ
3259
3260 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3261 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3262 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3263 return 0;
17d217fe 3264 }
d20f7043 3265
facc8a22 3266 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3267 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3268 start, (size_t)(end - start + 1));
07157aac 3269}
b888db2b 3270
c1c3fac2
NB
3271/*
3272 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3273 *
3274 * @inode: The inode we want to perform iput on
3275 *
3276 * This function uses the generic vfs_inode::i_count to track whether we should
3277 * just decrement it (in case it's > 1) or if this is the last iput then link
3278 * the inode to the delayed iput machinery. Delayed iputs are processed at
3279 * transaction commit time/superblock commit/cleaner kthread.
3280 */
24bbcf04
YZ
3281void btrfs_add_delayed_iput(struct inode *inode)
3282{
0b246afa 3283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3284 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3285
3286 if (atomic_add_unless(&inode->i_count, -1, 1))
3287 return;
3288
24bbcf04 3289 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3290 ASSERT(list_empty(&binode->delayed_iput));
3291 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3292 spin_unlock(&fs_info->delayed_iput_lock);
3293}
3294
2ff7e61e 3295void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3296{
24bbcf04 3297
24bbcf04 3298 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3299 while (!list_empty(&fs_info->delayed_iputs)) {
3300 struct btrfs_inode *inode;
3301
3302 inode = list_first_entry(&fs_info->delayed_iputs,
3303 struct btrfs_inode, delayed_iput);
c1c3fac2 3304 list_del_init(&inode->delayed_iput);
8089fe62
DS
3305 spin_unlock(&fs_info->delayed_iput_lock);
3306 iput(&inode->vfs_inode);
3307 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3308 }
8089fe62 3309 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3310}
3311
d68fc57b 3312/*
42b2aa86 3313 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3314 * files in the subvolume, it removes orphan item and frees block_rsv
3315 * structure.
3316 */
3317void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3318 struct btrfs_root *root)
3319{
0b246afa 3320 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3321 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3322 int ret;
3323
8a35d95f 3324 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3325 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3326 return;
3327
90290e19 3328 spin_lock(&root->orphan_lock);
8a35d95f 3329 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3330 spin_unlock(&root->orphan_lock);
3331 return;
3332 }
3333
3334 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3335 spin_unlock(&root->orphan_lock);
3336 return;
3337 }
3338
3339 block_rsv = root->orphan_block_rsv;
3340 root->orphan_block_rsv = NULL;
3341 spin_unlock(&root->orphan_lock);
3342
27cdeb70 3343 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3344 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3345 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3346 root->root_key.objectid);
4ef31a45 3347 if (ret)
66642832 3348 btrfs_abort_transaction(trans, ret);
4ef31a45 3349 else
27cdeb70
MX
3350 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3351 &root->state);
d68fc57b
YZ
3352 }
3353
90290e19
JB
3354 if (block_rsv) {
3355 WARN_ON(block_rsv->size > 0);
2ff7e61e 3356 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3357 }
3358}
3359
7b128766
JB
3360/*
3361 * This creates an orphan entry for the given inode in case something goes
3362 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3363 *
3364 * NOTE: caller of this function should reserve 5 units of metadata for
3365 * this function.
7b128766 3366 */
73f2e545
NB
3367int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3368 struct btrfs_inode *inode)
7b128766 3369{
73f2e545
NB
3370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3371 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3372 struct btrfs_block_rsv *block_rsv = NULL;
3373 int reserve = 0;
3374 int insert = 0;
3375 int ret;
7b128766 3376
d68fc57b 3377 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3378 block_rsv = btrfs_alloc_block_rsv(fs_info,
3379 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3380 if (!block_rsv)
3381 return -ENOMEM;
d68fc57b 3382 }
7b128766 3383
8a35d95f 3384 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3385 &inode->runtime_flags)) {
d68fc57b
YZ
3386#if 0
3387 /*
3388 * For proper ENOSPC handling, we should do orphan
3389 * cleanup when mounting. But this introduces backward
3390 * compatibility issue.
3391 */
3392 if (!xchg(&root->orphan_item_inserted, 1))
3393 insert = 2;
3394 else
3395 insert = 1;
3396#endif
3397 insert = 1;
7b128766
JB
3398 }
3399
72ac3c0d 3400 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3401 &inode->runtime_flags))
d68fc57b 3402 reserve = 1;
3d5addaf
LB
3403
3404 spin_lock(&root->orphan_lock);
3405 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3406 if (!root->orphan_block_rsv) {
3407 root->orphan_block_rsv = block_rsv;
3408 } else if (block_rsv) {
3409 btrfs_free_block_rsv(fs_info, block_rsv);
3410 block_rsv = NULL;
3411 }
3412
3413 if (insert)
3414 atomic_inc(&root->orphan_inodes);
d68fc57b 3415 spin_unlock(&root->orphan_lock);
7b128766 3416
d68fc57b
YZ
3417 /* grab metadata reservation from transaction handle */
3418 if (reserve) {
3419 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3420 ASSERT(!ret);
3421 if (ret) {
1a932ef4
LB
3422 /*
3423 * dec doesn't need spin_lock as ->orphan_block_rsv
3424 * would be released only if ->orphan_inodes is
3425 * zero.
3426 */
3b6571c1
JB
3427 atomic_dec(&root->orphan_inodes);
3428 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3429 &inode->runtime_flags);
3b6571c1
JB
3430 if (insert)
3431 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3432 &inode->runtime_flags);
3b6571c1
JB
3433 return ret;
3434 }
d68fc57b 3435 }
7b128766 3436
d68fc57b
YZ
3437 /* insert an orphan item to track this unlinked/truncated file */
3438 if (insert >= 1) {
73f2e545 3439 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3440 if (ret) {
4ef31a45
JB
3441 if (reserve) {
3442 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3443 &inode->runtime_flags);
4ef31a45
JB
3444 btrfs_orphan_release_metadata(inode);
3445 }
1a932ef4
LB
3446 /*
3447 * btrfs_orphan_commit_root may race with us and set
3448 * ->orphan_block_rsv to zero, in order to avoid that,
3449 * decrease ->orphan_inodes after everything is done.
3450 */
3451 atomic_dec(&root->orphan_inodes);
4ef31a45 3452 if (ret != -EEXIST) {
e8e7cff6 3453 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3454 &inode->runtime_flags);
66642832 3455 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3456 return ret;
3457 }
79787eaa
JM
3458 }
3459 ret = 0;
d68fc57b
YZ
3460 }
3461
3462 /* insert an orphan item to track subvolume contains orphan files */
3463 if (insert >= 2) {
0b246afa 3464 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3465 root->root_key.objectid);
79787eaa 3466 if (ret && ret != -EEXIST) {
66642832 3467 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3468 return ret;
3469 }
d68fc57b
YZ
3470 }
3471 return 0;
7b128766
JB
3472}
3473
3474/*
3475 * We have done the truncate/delete so we can go ahead and remove the orphan
3476 * item for this particular inode.
3477 */
48a3b636 3478static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3479 struct btrfs_inode *inode)
7b128766 3480{
3d6ae7bb 3481 struct btrfs_root *root = inode->root;
d68fc57b 3482 int delete_item = 0;
7b128766
JB
3483 int ret = 0;
3484
8a35d95f 3485 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3486 &inode->runtime_flags))
d68fc57b 3487 delete_item = 1;
7b128766 3488
1a932ef4
LB
3489 if (delete_item && trans)
3490 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3491
72ac3c0d 3492 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3493 &inode->runtime_flags))
1a932ef4 3494 btrfs_orphan_release_metadata(inode);
7b128766 3495
1a932ef4
LB
3496 /*
3497 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3498 * to zero, in order to avoid that, decrease ->orphan_inodes after
3499 * everything is done.
3500 */
3501 if (delete_item)
8a35d95f 3502 atomic_dec(&root->orphan_inodes);
703c88e0 3503
4ef31a45 3504 return ret;
7b128766
JB
3505}
3506
3507/*
3508 * this cleans up any orphans that may be left on the list from the last use
3509 * of this root.
3510 */
66b4ffd1 3511int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3512{
0b246afa 3513 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3514 struct btrfs_path *path;
3515 struct extent_buffer *leaf;
7b128766
JB
3516 struct btrfs_key key, found_key;
3517 struct btrfs_trans_handle *trans;
3518 struct inode *inode;
8f6d7f4f 3519 u64 last_objectid = 0;
7b128766
JB
3520 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3521
d68fc57b 3522 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3523 return 0;
c71bf099
YZ
3524
3525 path = btrfs_alloc_path();
66b4ffd1
JB
3526 if (!path) {
3527 ret = -ENOMEM;
3528 goto out;
3529 }
e4058b54 3530 path->reada = READA_BACK;
7b128766
JB
3531
3532 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3533 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3534 key.offset = (u64)-1;
3535
7b128766
JB
3536 while (1) {
3537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3538 if (ret < 0)
3539 goto out;
7b128766
JB
3540
3541 /*
3542 * if ret == 0 means we found what we were searching for, which
25985edc 3543 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3544 * find the key and see if we have stuff that matches
3545 */
3546 if (ret > 0) {
66b4ffd1 3547 ret = 0;
7b128766
JB
3548 if (path->slots[0] == 0)
3549 break;
3550 path->slots[0]--;
3551 }
3552
3553 /* pull out the item */
3554 leaf = path->nodes[0];
7b128766
JB
3555 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3556
3557 /* make sure the item matches what we want */
3558 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3559 break;
962a298f 3560 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3561 break;
3562
3563 /* release the path since we're done with it */
b3b4aa74 3564 btrfs_release_path(path);
7b128766
JB
3565
3566 /*
3567 * this is where we are basically btrfs_lookup, without the
3568 * crossing root thing. we store the inode number in the
3569 * offset of the orphan item.
3570 */
8f6d7f4f
JB
3571
3572 if (found_key.offset == last_objectid) {
0b246afa
JM
3573 btrfs_err(fs_info,
3574 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3575 ret = -EINVAL;
3576 goto out;
3577 }
3578
3579 last_objectid = found_key.offset;
3580
5d4f98a2
YZ
3581 found_key.objectid = found_key.offset;
3582 found_key.type = BTRFS_INODE_ITEM_KEY;
3583 found_key.offset = 0;
0b246afa 3584 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3585 ret = PTR_ERR_OR_ZERO(inode);
67710892 3586 if (ret && ret != -ENOENT)
66b4ffd1 3587 goto out;
7b128766 3588
0b246afa 3589 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3590 struct btrfs_root *dead_root;
3591 struct btrfs_fs_info *fs_info = root->fs_info;
3592 int is_dead_root = 0;
3593
3594 /*
3595 * this is an orphan in the tree root. Currently these
3596 * could come from 2 sources:
3597 * a) a snapshot deletion in progress
3598 * b) a free space cache inode
3599 * We need to distinguish those two, as the snapshot
3600 * orphan must not get deleted.
3601 * find_dead_roots already ran before us, so if this
3602 * is a snapshot deletion, we should find the root
3603 * in the dead_roots list
3604 */
3605 spin_lock(&fs_info->trans_lock);
3606 list_for_each_entry(dead_root, &fs_info->dead_roots,
3607 root_list) {
3608 if (dead_root->root_key.objectid ==
3609 found_key.objectid) {
3610 is_dead_root = 1;
3611 break;
3612 }
3613 }
3614 spin_unlock(&fs_info->trans_lock);
3615 if (is_dead_root) {
3616 /* prevent this orphan from being found again */
3617 key.offset = found_key.objectid - 1;
3618 continue;
3619 }
3620 }
7b128766 3621 /*
a8c9e576
JB
3622 * Inode is already gone but the orphan item is still there,
3623 * kill the orphan item.
7b128766 3624 */
67710892 3625 if (ret == -ENOENT) {
a8c9e576 3626 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3627 if (IS_ERR(trans)) {
3628 ret = PTR_ERR(trans);
3629 goto out;
3630 }
0b246afa
JM
3631 btrfs_debug(fs_info, "auto deleting %Lu",
3632 found_key.objectid);
a8c9e576
JB
3633 ret = btrfs_del_orphan_item(trans, root,
3634 found_key.objectid);
3a45bb20 3635 btrfs_end_transaction(trans);
4ef31a45
JB
3636 if (ret)
3637 goto out;
7b128766
JB
3638 continue;
3639 }
3640
a8c9e576
JB
3641 /*
3642 * add this inode to the orphan list so btrfs_orphan_del does
3643 * the proper thing when we hit it
3644 */
8a35d95f
JB
3645 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3646 &BTRFS_I(inode)->runtime_flags);
925396ec 3647 atomic_inc(&root->orphan_inodes);
a8c9e576 3648
7b128766
JB
3649 /* if we have links, this was a truncate, lets do that */
3650 if (inode->i_nlink) {
fae7f21c 3651 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3652 iput(inode);
3653 continue;
3654 }
7b128766 3655 nr_truncate++;
f3fe820c
JB
3656
3657 /* 1 for the orphan item deletion. */
3658 trans = btrfs_start_transaction(root, 1);
3659 if (IS_ERR(trans)) {
c69b26b0 3660 iput(inode);
f3fe820c
JB
3661 ret = PTR_ERR(trans);
3662 goto out;
3663 }
73f2e545 3664 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3665 btrfs_end_transaction(trans);
c69b26b0
JB
3666 if (ret) {
3667 iput(inode);
f3fe820c 3668 goto out;
c69b26b0 3669 }
f3fe820c 3670
66b4ffd1 3671 ret = btrfs_truncate(inode);
4a7d0f68 3672 if (ret)
3d6ae7bb 3673 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3674 } else {
3675 nr_unlink++;
3676 }
3677
3678 /* this will do delete_inode and everything for us */
3679 iput(inode);
66b4ffd1
JB
3680 if (ret)
3681 goto out;
7b128766 3682 }
3254c876
MX
3683 /* release the path since we're done with it */
3684 btrfs_release_path(path);
3685
d68fc57b
YZ
3686 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3687
3688 if (root->orphan_block_rsv)
2ff7e61e 3689 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3690 (u64)-1);
3691
27cdeb70
MX
3692 if (root->orphan_block_rsv ||
3693 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3694 trans = btrfs_join_transaction(root);
66b4ffd1 3695 if (!IS_ERR(trans))
3a45bb20 3696 btrfs_end_transaction(trans);
d68fc57b 3697 }
7b128766
JB
3698
3699 if (nr_unlink)
0b246afa 3700 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3701 if (nr_truncate)
0b246afa 3702 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3703
3704out:
3705 if (ret)
0b246afa 3706 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3707 btrfs_free_path(path);
3708 return ret;
7b128766
JB
3709}
3710
46a53cca
CM
3711/*
3712 * very simple check to peek ahead in the leaf looking for xattrs. If we
3713 * don't find any xattrs, we know there can't be any acls.
3714 *
3715 * slot is the slot the inode is in, objectid is the objectid of the inode
3716 */
3717static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3718 int slot, u64 objectid,
3719 int *first_xattr_slot)
46a53cca
CM
3720{
3721 u32 nritems = btrfs_header_nritems(leaf);
3722 struct btrfs_key found_key;
f23b5a59
JB
3723 static u64 xattr_access = 0;
3724 static u64 xattr_default = 0;
46a53cca
CM
3725 int scanned = 0;
3726
f23b5a59 3727 if (!xattr_access) {
97d79299
AG
3728 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3729 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3730 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3731 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3732 }
3733
46a53cca 3734 slot++;
63541927 3735 *first_xattr_slot = -1;
46a53cca
CM
3736 while (slot < nritems) {
3737 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3738
3739 /* we found a different objectid, there must not be acls */
3740 if (found_key.objectid != objectid)
3741 return 0;
3742
3743 /* we found an xattr, assume we've got an acl */
f23b5a59 3744 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3745 if (*first_xattr_slot == -1)
3746 *first_xattr_slot = slot;
f23b5a59
JB
3747 if (found_key.offset == xattr_access ||
3748 found_key.offset == xattr_default)
3749 return 1;
3750 }
46a53cca
CM
3751
3752 /*
3753 * we found a key greater than an xattr key, there can't
3754 * be any acls later on
3755 */
3756 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3757 return 0;
3758
3759 slot++;
3760 scanned++;
3761
3762 /*
3763 * it goes inode, inode backrefs, xattrs, extents,
3764 * so if there are a ton of hard links to an inode there can
3765 * be a lot of backrefs. Don't waste time searching too hard,
3766 * this is just an optimization
3767 */
3768 if (scanned >= 8)
3769 break;
3770 }
3771 /* we hit the end of the leaf before we found an xattr or
3772 * something larger than an xattr. We have to assume the inode
3773 * has acls
3774 */
63541927
FDBM
3775 if (*first_xattr_slot == -1)
3776 *first_xattr_slot = slot;
46a53cca
CM
3777 return 1;
3778}
3779
d352ac68
CM
3780/*
3781 * read an inode from the btree into the in-memory inode
3782 */
67710892 3783static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3784{
0b246afa 3785 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3786 struct btrfs_path *path;
5f39d397 3787 struct extent_buffer *leaf;
39279cc3
CM
3788 struct btrfs_inode_item *inode_item;
3789 struct btrfs_root *root = BTRFS_I(inode)->root;
3790 struct btrfs_key location;
67de1176 3791 unsigned long ptr;
46a53cca 3792 int maybe_acls;
618e21d5 3793 u32 rdev;
39279cc3 3794 int ret;
2f7e33d4 3795 bool filled = false;
63541927 3796 int first_xattr_slot;
2f7e33d4
MX
3797
3798 ret = btrfs_fill_inode(inode, &rdev);
3799 if (!ret)
3800 filled = true;
39279cc3
CM
3801
3802 path = btrfs_alloc_path();
67710892
FM
3803 if (!path) {
3804 ret = -ENOMEM;
1748f843 3805 goto make_bad;
67710892 3806 }
1748f843 3807
39279cc3 3808 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3809
39279cc3 3810 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3811 if (ret) {
3812 if (ret > 0)
3813 ret = -ENOENT;
39279cc3 3814 goto make_bad;
67710892 3815 }
39279cc3 3816
5f39d397 3817 leaf = path->nodes[0];
2f7e33d4
MX
3818
3819 if (filled)
67de1176 3820 goto cache_index;
2f7e33d4 3821
5f39d397
CM
3822 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3823 struct btrfs_inode_item);
5f39d397 3824 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3825 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3826 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3827 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3828 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3829
a937b979
DS
3830 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3831 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3832
a937b979
DS
3833 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3834 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3835
a937b979
DS
3836 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3837 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3838
9cc97d64 3839 BTRFS_I(inode)->i_otime.tv_sec =
3840 btrfs_timespec_sec(leaf, &inode_item->otime);
3841 BTRFS_I(inode)->i_otime.tv_nsec =
3842 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3843
a76a3cd4 3844 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3845 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3846 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3847
c7f88c4e
JL
3848 inode_set_iversion_queried(inode,
3849 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3850 inode->i_generation = BTRFS_I(inode)->generation;
3851 inode->i_rdev = 0;
3852 rdev = btrfs_inode_rdev(leaf, inode_item);
3853
3854 BTRFS_I(inode)->index_cnt = (u64)-1;
3855 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3856
3857cache_index:
5dc562c5
JB
3858 /*
3859 * If we were modified in the current generation and evicted from memory
3860 * and then re-read we need to do a full sync since we don't have any
3861 * idea about which extents were modified before we were evicted from
3862 * cache.
6e17d30b
YD
3863 *
3864 * This is required for both inode re-read from disk and delayed inode
3865 * in delayed_nodes_tree.
5dc562c5 3866 */
0b246afa 3867 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3868 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3869 &BTRFS_I(inode)->runtime_flags);
3870
bde6c242
FM
3871 /*
3872 * We don't persist the id of the transaction where an unlink operation
3873 * against the inode was last made. So here we assume the inode might
3874 * have been evicted, and therefore the exact value of last_unlink_trans
3875 * lost, and set it to last_trans to avoid metadata inconsistencies
3876 * between the inode and its parent if the inode is fsync'ed and the log
3877 * replayed. For example, in the scenario:
3878 *
3879 * touch mydir/foo
3880 * ln mydir/foo mydir/bar
3881 * sync
3882 * unlink mydir/bar
3883 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3884 * xfs_io -c fsync mydir/foo
3885 * <power failure>
3886 * mount fs, triggers fsync log replay
3887 *
3888 * We must make sure that when we fsync our inode foo we also log its
3889 * parent inode, otherwise after log replay the parent still has the
3890 * dentry with the "bar" name but our inode foo has a link count of 1
3891 * and doesn't have an inode ref with the name "bar" anymore.
3892 *
3893 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3894 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3895 * transaction commits on fsync if our inode is a directory, or if our
3896 * inode is not a directory, logging its parent unnecessarily.
3897 */
3898 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3899
67de1176
MX
3900 path->slots[0]++;
3901 if (inode->i_nlink != 1 ||
3902 path->slots[0] >= btrfs_header_nritems(leaf))
3903 goto cache_acl;
3904
3905 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3906 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3907 goto cache_acl;
3908
3909 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3910 if (location.type == BTRFS_INODE_REF_KEY) {
3911 struct btrfs_inode_ref *ref;
3912
3913 ref = (struct btrfs_inode_ref *)ptr;
3914 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3915 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3916 struct btrfs_inode_extref *extref;
3917
3918 extref = (struct btrfs_inode_extref *)ptr;
3919 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3920 extref);
3921 }
2f7e33d4 3922cache_acl:
46a53cca
CM
3923 /*
3924 * try to precache a NULL acl entry for files that don't have
3925 * any xattrs or acls
3926 */
33345d01 3927 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3928 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3929 if (first_xattr_slot != -1) {
3930 path->slots[0] = first_xattr_slot;
3931 ret = btrfs_load_inode_props(inode, path);
3932 if (ret)
0b246afa 3933 btrfs_err(fs_info,
351fd353 3934 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3935 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3936 root->root_key.objectid, ret);
3937 }
3938 btrfs_free_path(path);
3939
72c04902
AV
3940 if (!maybe_acls)
3941 cache_no_acl(inode);
46a53cca 3942
39279cc3 3943 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3944 case S_IFREG:
3945 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3946 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3947 inode->i_fop = &btrfs_file_operations;
3948 inode->i_op = &btrfs_file_inode_operations;
3949 break;
3950 case S_IFDIR:
3951 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3952 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3953 break;
3954 case S_IFLNK:
3955 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3956 inode_nohighmem(inode);
39279cc3
CM
3957 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3958 break;
618e21d5 3959 default:
0279b4cd 3960 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3961 init_special_inode(inode, inode->i_mode, rdev);
3962 break;
39279cc3 3963 }
6cbff00f
CH
3964
3965 btrfs_update_iflags(inode);
67710892 3966 return 0;
39279cc3
CM
3967
3968make_bad:
39279cc3 3969 btrfs_free_path(path);
39279cc3 3970 make_bad_inode(inode);
67710892 3971 return ret;
39279cc3
CM
3972}
3973
d352ac68
CM
3974/*
3975 * given a leaf and an inode, copy the inode fields into the leaf
3976 */
e02119d5
CM
3977static void fill_inode_item(struct btrfs_trans_handle *trans,
3978 struct extent_buffer *leaf,
5f39d397 3979 struct btrfs_inode_item *item,
39279cc3
CM
3980 struct inode *inode)
3981{
51fab693
LB
3982 struct btrfs_map_token token;
3983
3984 btrfs_init_map_token(&token);
5f39d397 3985
51fab693
LB
3986 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3987 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3988 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3989 &token);
3990 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3991 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3992
a937b979 3993 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3994 inode->i_atime.tv_sec, &token);
a937b979 3995 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3996 inode->i_atime.tv_nsec, &token);
5f39d397 3997
a937b979 3998 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3999 inode->i_mtime.tv_sec, &token);
a937b979 4000 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 4001 inode->i_mtime.tv_nsec, &token);
5f39d397 4002
a937b979 4003 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 4004 inode->i_ctime.tv_sec, &token);
a937b979 4005 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 4006 inode->i_ctime.tv_nsec, &token);
5f39d397 4007
9cc97d64 4008 btrfs_set_token_timespec_sec(leaf, &item->otime,
4009 BTRFS_I(inode)->i_otime.tv_sec, &token);
4010 btrfs_set_token_timespec_nsec(leaf, &item->otime,
4011 BTRFS_I(inode)->i_otime.tv_nsec, &token);
4012
51fab693
LB
4013 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
4014 &token);
4015 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
4016 &token);
c7f88c4e
JL
4017 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
4018 &token);
51fab693
LB
4019 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
4020 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
4021 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
4022 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
4023}
4024
d352ac68
CM
4025/*
4026 * copy everything in the in-memory inode into the btree.
4027 */
2115133f 4028static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 4029 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
4030{
4031 struct btrfs_inode_item *inode_item;
4032 struct btrfs_path *path;
5f39d397 4033 struct extent_buffer *leaf;
39279cc3
CM
4034 int ret;
4035
4036 path = btrfs_alloc_path();
16cdcec7
MX
4037 if (!path)
4038 return -ENOMEM;
4039
b9473439 4040 path->leave_spinning = 1;
16cdcec7
MX
4041 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4042 1);
39279cc3
CM
4043 if (ret) {
4044 if (ret > 0)
4045 ret = -ENOENT;
4046 goto failed;
4047 }
4048
5f39d397
CM
4049 leaf = path->nodes[0];
4050 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4051 struct btrfs_inode_item);
39279cc3 4052
e02119d5 4053 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4054 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4055 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4056 ret = 0;
4057failed:
39279cc3
CM
4058 btrfs_free_path(path);
4059 return ret;
4060}
4061
2115133f
CM
4062/*
4063 * copy everything in the in-memory inode into the btree.
4064 */
4065noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4066 struct btrfs_root *root, struct inode *inode)
4067{
0b246afa 4068 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4069 int ret;
4070
4071 /*
4072 * If the inode is a free space inode, we can deadlock during commit
4073 * if we put it into the delayed code.
4074 *
4075 * The data relocation inode should also be directly updated
4076 * without delay
4077 */
70ddc553 4078 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4079 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4080 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4081 btrfs_update_root_times(trans, root);
4082
2115133f
CM
4083 ret = btrfs_delayed_update_inode(trans, root, inode);
4084 if (!ret)
4085 btrfs_set_inode_last_trans(trans, inode);
4086 return ret;
4087 }
4088
4089 return btrfs_update_inode_item(trans, root, inode);
4090}
4091
be6aef60
JB
4092noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4093 struct btrfs_root *root,
4094 struct inode *inode)
2115133f
CM
4095{
4096 int ret;
4097
4098 ret = btrfs_update_inode(trans, root, inode);
4099 if (ret == -ENOSPC)
4100 return btrfs_update_inode_item(trans, root, inode);
4101 return ret;
4102}
4103
d352ac68
CM
4104/*
4105 * unlink helper that gets used here in inode.c and in the tree logging
4106 * recovery code. It remove a link in a directory with a given name, and
4107 * also drops the back refs in the inode to the directory
4108 */
92986796
AV
4109static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4110 struct btrfs_root *root,
4ec5934e
NB
4111 struct btrfs_inode *dir,
4112 struct btrfs_inode *inode,
92986796 4113 const char *name, int name_len)
39279cc3 4114{
0b246afa 4115 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4116 struct btrfs_path *path;
39279cc3 4117 int ret = 0;
5f39d397 4118 struct extent_buffer *leaf;
39279cc3 4119 struct btrfs_dir_item *di;
5f39d397 4120 struct btrfs_key key;
aec7477b 4121 u64 index;
33345d01
LZ
4122 u64 ino = btrfs_ino(inode);
4123 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4124
4125 path = btrfs_alloc_path();
54aa1f4d
CM
4126 if (!path) {
4127 ret = -ENOMEM;
554233a6 4128 goto out;
54aa1f4d
CM
4129 }
4130
b9473439 4131 path->leave_spinning = 1;
33345d01 4132 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4133 name, name_len, -1);
4134 if (IS_ERR(di)) {
4135 ret = PTR_ERR(di);
4136 goto err;
4137 }
4138 if (!di) {
4139 ret = -ENOENT;
4140 goto err;
4141 }
5f39d397
CM
4142 leaf = path->nodes[0];
4143 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4144 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4145 if (ret)
4146 goto err;
b3b4aa74 4147 btrfs_release_path(path);
39279cc3 4148
67de1176
MX
4149 /*
4150 * If we don't have dir index, we have to get it by looking up
4151 * the inode ref, since we get the inode ref, remove it directly,
4152 * it is unnecessary to do delayed deletion.
4153 *
4154 * But if we have dir index, needn't search inode ref to get it.
4155 * Since the inode ref is close to the inode item, it is better
4156 * that we delay to delete it, and just do this deletion when
4157 * we update the inode item.
4158 */
4ec5934e 4159 if (inode->dir_index) {
67de1176
MX
4160 ret = btrfs_delayed_delete_inode_ref(inode);
4161 if (!ret) {
4ec5934e 4162 index = inode->dir_index;
67de1176
MX
4163 goto skip_backref;
4164 }
4165 }
4166
33345d01
LZ
4167 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4168 dir_ino, &index);
aec7477b 4169 if (ret) {
0b246afa 4170 btrfs_info(fs_info,
c2cf52eb 4171 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4172 name_len, name, ino, dir_ino);
66642832 4173 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4174 goto err;
4175 }
67de1176 4176skip_backref:
2ff7e61e 4177 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4178 if (ret) {
66642832 4179 btrfs_abort_transaction(trans, ret);
39279cc3 4180 goto err;
79787eaa 4181 }
39279cc3 4182
4ec5934e
NB
4183 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4184 dir_ino);
79787eaa 4185 if (ret != 0 && ret != -ENOENT) {
66642832 4186 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4187 goto err;
4188 }
e02119d5 4189
4ec5934e
NB
4190 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4191 index);
6418c961
CM
4192 if (ret == -ENOENT)
4193 ret = 0;
d4e3991b 4194 else if (ret)
66642832 4195 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4196err:
4197 btrfs_free_path(path);
e02119d5
CM
4198 if (ret)
4199 goto out;
4200
6ef06d27 4201 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4202 inode_inc_iversion(&inode->vfs_inode);
4203 inode_inc_iversion(&dir->vfs_inode);
4204 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4205 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4206 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4207out:
39279cc3
CM
4208 return ret;
4209}
4210
92986796
AV
4211int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4212 struct btrfs_root *root,
4ec5934e 4213 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4214 const char *name, int name_len)
4215{
4216 int ret;
4217 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4218 if (!ret) {
4ec5934e
NB
4219 drop_nlink(&inode->vfs_inode);
4220 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4221 }
4222 return ret;
4223}
39279cc3 4224
a22285a6
YZ
4225/*
4226 * helper to start transaction for unlink and rmdir.
4227 *
d52be818
JB
4228 * unlink and rmdir are special in btrfs, they do not always free space, so
4229 * if we cannot make our reservations the normal way try and see if there is
4230 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4231 * allow the unlink to occur.
a22285a6 4232 */
d52be818 4233static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4234{
a22285a6 4235 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4236
e70bea5f
JB
4237 /*
4238 * 1 for the possible orphan item
4239 * 1 for the dir item
4240 * 1 for the dir index
4241 * 1 for the inode ref
e70bea5f
JB
4242 * 1 for the inode
4243 */
8eab77ff 4244 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4245}
4246
4247static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4248{
4249 struct btrfs_root *root = BTRFS_I(dir)->root;
4250 struct btrfs_trans_handle *trans;
2b0143b5 4251 struct inode *inode = d_inode(dentry);
a22285a6 4252 int ret;
a22285a6 4253
d52be818 4254 trans = __unlink_start_trans(dir);
a22285a6
YZ
4255 if (IS_ERR(trans))
4256 return PTR_ERR(trans);
5f39d397 4257
4ec5934e
NB
4258 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4259 0);
12fcfd22 4260
4ec5934e
NB
4261 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4262 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4263 dentry->d_name.len);
b532402e
TI
4264 if (ret)
4265 goto out;
7b128766 4266
a22285a6 4267 if (inode->i_nlink == 0) {
73f2e545 4268 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4269 if (ret)
4270 goto out;
a22285a6 4271 }
7b128766 4272
b532402e 4273out:
3a45bb20 4274 btrfs_end_transaction(trans);
2ff7e61e 4275 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4276 return ret;
4277}
4278
4df27c4d
YZ
4279int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4280 struct btrfs_root *root,
4281 struct inode *dir, u64 objectid,
4282 const char *name, int name_len)
4283{
0b246afa 4284 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4285 struct btrfs_path *path;
4286 struct extent_buffer *leaf;
4287 struct btrfs_dir_item *di;
4288 struct btrfs_key key;
4289 u64 index;
4290 int ret;
4a0cc7ca 4291 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4292
4293 path = btrfs_alloc_path();
4294 if (!path)
4295 return -ENOMEM;
4296
33345d01 4297 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4298 name, name_len, -1);
79787eaa
JM
4299 if (IS_ERR_OR_NULL(di)) {
4300 if (!di)
4301 ret = -ENOENT;
4302 else
4303 ret = PTR_ERR(di);
4304 goto out;
4305 }
4df27c4d
YZ
4306
4307 leaf = path->nodes[0];
4308 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4309 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4310 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4311 if (ret) {
66642832 4312 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4313 goto out;
4314 }
b3b4aa74 4315 btrfs_release_path(path);
4df27c4d 4316
0b246afa
JM
4317 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4318 root->root_key.objectid, dir_ino,
4319 &index, name, name_len);
4df27c4d 4320 if (ret < 0) {
79787eaa 4321 if (ret != -ENOENT) {
66642832 4322 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4323 goto out;
4324 }
33345d01 4325 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4326 name, name_len);
79787eaa
JM
4327 if (IS_ERR_OR_NULL(di)) {
4328 if (!di)
4329 ret = -ENOENT;
4330 else
4331 ret = PTR_ERR(di);
66642832 4332 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4333 goto out;
4334 }
4df27c4d
YZ
4335
4336 leaf = path->nodes[0];
4337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4338 btrfs_release_path(path);
4df27c4d
YZ
4339 index = key.offset;
4340 }
945d8962 4341 btrfs_release_path(path);
4df27c4d 4342
e67bbbb9 4343 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4344 if (ret) {
66642832 4345 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4346 goto out;
4347 }
4df27c4d 4348
6ef06d27 4349 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4350 inode_inc_iversion(dir);
c2050a45 4351 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4352 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4353 if (ret)
66642832 4354 btrfs_abort_transaction(trans, ret);
79787eaa 4355out:
71d7aed0 4356 btrfs_free_path(path);
79787eaa 4357 return ret;
4df27c4d
YZ
4358}
4359
39279cc3
CM
4360static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4361{
2b0143b5 4362 struct inode *inode = d_inode(dentry);
1832a6d5 4363 int err = 0;
39279cc3 4364 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4365 struct btrfs_trans_handle *trans;
44f714da 4366 u64 last_unlink_trans;
39279cc3 4367
b3ae244e 4368 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4369 return -ENOTEMPTY;
4a0cc7ca 4370 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4371 return -EPERM;
134d4512 4372
d52be818 4373 trans = __unlink_start_trans(dir);
a22285a6 4374 if (IS_ERR(trans))
5df6a9f6 4375 return PTR_ERR(trans);
5df6a9f6 4376
4a0cc7ca 4377 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4378 err = btrfs_unlink_subvol(trans, root, dir,
4379 BTRFS_I(inode)->location.objectid,
4380 dentry->d_name.name,
4381 dentry->d_name.len);
4382 goto out;
4383 }
4384
73f2e545 4385 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4386 if (err)
4df27c4d 4387 goto out;
7b128766 4388
44f714da
FM
4389 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4390
39279cc3 4391 /* now the directory is empty */
4ec5934e
NB
4392 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4393 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4394 dentry->d_name.len);
44f714da 4395 if (!err) {
6ef06d27 4396 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4397 /*
4398 * Propagate the last_unlink_trans value of the deleted dir to
4399 * its parent directory. This is to prevent an unrecoverable
4400 * log tree in the case we do something like this:
4401 * 1) create dir foo
4402 * 2) create snapshot under dir foo
4403 * 3) delete the snapshot
4404 * 4) rmdir foo
4405 * 5) mkdir foo
4406 * 6) fsync foo or some file inside foo
4407 */
4408 if (last_unlink_trans >= trans->transid)
4409 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4410 }
4df27c4d 4411out:
3a45bb20 4412 btrfs_end_transaction(trans);
2ff7e61e 4413 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4414
39279cc3
CM
4415 return err;
4416}
4417
28f75a0e
CM
4418static int truncate_space_check(struct btrfs_trans_handle *trans,
4419 struct btrfs_root *root,
4420 u64 bytes_deleted)
4421{
0b246afa 4422 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4423 int ret;
4424
dc95f7bf
JB
4425 /*
4426 * This is only used to apply pressure to the enospc system, we don't
4427 * intend to use this reservation at all.
4428 */
2ff7e61e 4429 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4430 bytes_deleted *= fs_info->nodesize;
4431 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4432 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4433 if (!ret) {
0b246afa 4434 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4435 trans->transid,
4436 bytes_deleted, 1);
28f75a0e 4437 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4438 }
28f75a0e
CM
4439 return ret;
4440
4441}
4442
ddfae63c
JB
4443/*
4444 * Return this if we need to call truncate_block for the last bit of the
4445 * truncate.
4446 */
4447#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4448
39279cc3
CM
4449/*
4450 * this can truncate away extent items, csum items and directory items.
4451 * It starts at a high offset and removes keys until it can't find
d352ac68 4452 * any higher than new_size
39279cc3
CM
4453 *
4454 * csum items that cross the new i_size are truncated to the new size
4455 * as well.
7b128766
JB
4456 *
4457 * min_type is the minimum key type to truncate down to. If set to 0, this
4458 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4459 */
8082510e
YZ
4460int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4461 struct btrfs_root *root,
4462 struct inode *inode,
4463 u64 new_size, u32 min_type)
39279cc3 4464{
0b246afa 4465 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4466 struct btrfs_path *path;
5f39d397 4467 struct extent_buffer *leaf;
39279cc3 4468 struct btrfs_file_extent_item *fi;
8082510e
YZ
4469 struct btrfs_key key;
4470 struct btrfs_key found_key;
39279cc3 4471 u64 extent_start = 0;
db94535d 4472 u64 extent_num_bytes = 0;
5d4f98a2 4473 u64 extent_offset = 0;
39279cc3 4474 u64 item_end = 0;
c1aa4575 4475 u64 last_size = new_size;
8082510e 4476 u32 found_type = (u8)-1;
39279cc3
CM
4477 int found_extent;
4478 int del_item;
85e21bac
CM
4479 int pending_del_nr = 0;
4480 int pending_del_slot = 0;
179e29e4 4481 int extent_type = -1;
8082510e
YZ
4482 int ret;
4483 int err = 0;
4a0cc7ca 4484 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4485 u64 bytes_deleted = 0;
897ca819
TM
4486 bool be_nice = false;
4487 bool should_throttle = false;
4488 bool should_end = false;
8082510e
YZ
4489
4490 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4491
28ed1345
CM
4492 /*
4493 * for non-free space inodes and ref cows, we want to back off from
4494 * time to time
4495 */
70ddc553 4496 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4497 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4498 be_nice = true;
28ed1345 4499
0eb0e19c
MF
4500 path = btrfs_alloc_path();
4501 if (!path)
4502 return -ENOMEM;
e4058b54 4503 path->reada = READA_BACK;
0eb0e19c 4504
5dc562c5
JB
4505 /*
4506 * We want to drop from the next block forward in case this new size is
4507 * not block aligned since we will be keeping the last block of the
4508 * extent just the way it is.
4509 */
27cdeb70 4510 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4511 root == fs_info->tree_root)
dcdbc059 4512 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4513 fs_info->sectorsize),
da17066c 4514 (u64)-1, 0);
8082510e 4515
16cdcec7
MX
4516 /*
4517 * This function is also used to drop the items in the log tree before
4518 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4519 * it is used to drop the loged items. So we shouldn't kill the delayed
4520 * items.
4521 */
4522 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4523 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4524
33345d01 4525 key.objectid = ino;
39279cc3 4526 key.offset = (u64)-1;
5f39d397
CM
4527 key.type = (u8)-1;
4528
85e21bac 4529search_again:
28ed1345
CM
4530 /*
4531 * with a 16K leaf size and 128MB extents, you can actually queue
4532 * up a huge file in a single leaf. Most of the time that
4533 * bytes_deleted is > 0, it will be huge by the time we get here
4534 */
ee22184b 4535 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4536 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4537 err = -EAGAIN;
4538 goto error;
4539 }
4540 }
4541
4542
b9473439 4543 path->leave_spinning = 1;
85e21bac 4544 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4545 if (ret < 0) {
4546 err = ret;
4547 goto out;
4548 }
d397712b 4549
85e21bac 4550 if (ret > 0) {
e02119d5
CM
4551 /* there are no items in the tree for us to truncate, we're
4552 * done
4553 */
8082510e
YZ
4554 if (path->slots[0] == 0)
4555 goto out;
85e21bac
CM
4556 path->slots[0]--;
4557 }
4558
d397712b 4559 while (1) {
39279cc3 4560 fi = NULL;
5f39d397
CM
4561 leaf = path->nodes[0];
4562 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4563 found_type = found_key.type;
39279cc3 4564
33345d01 4565 if (found_key.objectid != ino)
39279cc3 4566 break;
5f39d397 4567
85e21bac 4568 if (found_type < min_type)
39279cc3
CM
4569 break;
4570
5f39d397 4571 item_end = found_key.offset;
39279cc3 4572 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4573 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4574 struct btrfs_file_extent_item);
179e29e4
CM
4575 extent_type = btrfs_file_extent_type(leaf, fi);
4576 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4577 item_end +=
db94535d 4578 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4579
4580 trace_btrfs_truncate_show_fi_regular(
4581 BTRFS_I(inode), leaf, fi,
4582 found_key.offset);
179e29e4 4583 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4584 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4585 path->slots[0], fi);
09ed2f16
LB
4586
4587 trace_btrfs_truncate_show_fi_inline(
4588 BTRFS_I(inode), leaf, fi, path->slots[0],
4589 found_key.offset);
39279cc3 4590 }
008630c1 4591 item_end--;
39279cc3 4592 }
8082510e
YZ
4593 if (found_type > min_type) {
4594 del_item = 1;
4595 } else {
76b42abb 4596 if (item_end < new_size)
b888db2b 4597 break;
8082510e
YZ
4598 if (found_key.offset >= new_size)
4599 del_item = 1;
4600 else
4601 del_item = 0;
39279cc3 4602 }
39279cc3 4603 found_extent = 0;
39279cc3 4604 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4605 if (found_type != BTRFS_EXTENT_DATA_KEY)
4606 goto delete;
4607
4608 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4609 u64 num_dec;
db94535d 4610 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4611 if (!del_item) {
db94535d
CM
4612 u64 orig_num_bytes =
4613 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4614 extent_num_bytes = ALIGN(new_size -
4615 found_key.offset,
0b246afa 4616 fs_info->sectorsize);
db94535d
CM
4617 btrfs_set_file_extent_num_bytes(leaf, fi,
4618 extent_num_bytes);
4619 num_dec = (orig_num_bytes -
9069218d 4620 extent_num_bytes);
27cdeb70
MX
4621 if (test_bit(BTRFS_ROOT_REF_COWS,
4622 &root->state) &&
4623 extent_start != 0)
a76a3cd4 4624 inode_sub_bytes(inode, num_dec);
5f39d397 4625 btrfs_mark_buffer_dirty(leaf);
39279cc3 4626 } else {
db94535d
CM
4627 extent_num_bytes =
4628 btrfs_file_extent_disk_num_bytes(leaf,
4629 fi);
5d4f98a2
YZ
4630 extent_offset = found_key.offset -
4631 btrfs_file_extent_offset(leaf, fi);
4632
39279cc3 4633 /* FIXME blocksize != 4096 */
9069218d 4634 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4635 if (extent_start != 0) {
4636 found_extent = 1;
27cdeb70
MX
4637 if (test_bit(BTRFS_ROOT_REF_COWS,
4638 &root->state))
a76a3cd4 4639 inode_sub_bytes(inode, num_dec);
e02119d5 4640 }
39279cc3 4641 }
9069218d 4642 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4643 /*
4644 * we can't truncate inline items that have had
4645 * special encodings
4646 */
4647 if (!del_item &&
c8b97818 4648 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4649 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4650 btrfs_file_extent_compression(leaf, fi) == 0) {
4651 u32 size = (u32)(new_size - found_key.offset);
4652
4653 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4654 size = btrfs_file_extent_calc_inline_size(size);
4655 btrfs_truncate_item(root->fs_info, path, size, 1);
4656 } else if (!del_item) {
514ac8ad 4657 /*
ddfae63c
JB
4658 * We have to bail so the last_size is set to
4659 * just before this extent.
514ac8ad 4660 */
ddfae63c
JB
4661 err = NEED_TRUNCATE_BLOCK;
4662 break;
4663 }
0305cd5f 4664
ddfae63c 4665 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4666 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4667 }
179e29e4 4668delete:
ddfae63c
JB
4669 if (del_item)
4670 last_size = found_key.offset;
4671 else
4672 last_size = new_size;
39279cc3 4673 if (del_item) {
85e21bac
CM
4674 if (!pending_del_nr) {
4675 /* no pending yet, add ourselves */
4676 pending_del_slot = path->slots[0];
4677 pending_del_nr = 1;
4678 } else if (pending_del_nr &&
4679 path->slots[0] + 1 == pending_del_slot) {
4680 /* hop on the pending chunk */
4681 pending_del_nr++;
4682 pending_del_slot = path->slots[0];
4683 } else {
d397712b 4684 BUG();
85e21bac 4685 }
39279cc3
CM
4686 } else {
4687 break;
4688 }
897ca819 4689 should_throttle = false;
28f75a0e 4690
27cdeb70
MX
4691 if (found_extent &&
4692 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4693 root == fs_info->tree_root)) {
b9473439 4694 btrfs_set_path_blocking(path);
28ed1345 4695 bytes_deleted += extent_num_bytes;
84f7d8e6 4696 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4697 extent_num_bytes, 0,
4698 btrfs_header_owner(leaf),
b06c4bf5 4699 ino, extent_offset);
39279cc3 4700 BUG_ON(ret);
2ff7e61e
JM
4701 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4702 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4703 trans->delayed_ref_updates * 2,
4704 trans->transid, 0);
28f75a0e
CM
4705 if (be_nice) {
4706 if (truncate_space_check(trans, root,
4707 extent_num_bytes)) {
897ca819 4708 should_end = true;
28f75a0e
CM
4709 }
4710 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4711 fs_info))
897ca819 4712 should_throttle = true;
28f75a0e 4713 }
39279cc3 4714 }
85e21bac 4715
8082510e
YZ
4716 if (found_type == BTRFS_INODE_ITEM_KEY)
4717 break;
4718
4719 if (path->slots[0] == 0 ||
1262133b 4720 path->slots[0] != pending_del_slot ||
28f75a0e 4721 should_throttle || should_end) {
8082510e
YZ
4722 if (pending_del_nr) {
4723 ret = btrfs_del_items(trans, root, path,
4724 pending_del_slot,
4725 pending_del_nr);
79787eaa 4726 if (ret) {
66642832 4727 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4728 goto error;
4729 }
8082510e
YZ
4730 pending_del_nr = 0;
4731 }
b3b4aa74 4732 btrfs_release_path(path);
28f75a0e 4733 if (should_throttle) {
1262133b
JB
4734 unsigned long updates = trans->delayed_ref_updates;
4735 if (updates) {
4736 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4737 ret = btrfs_run_delayed_refs(trans,
4738 fs_info,
4739 updates * 2);
1262133b
JB
4740 if (ret && !err)
4741 err = ret;
4742 }
4743 }
28f75a0e
CM
4744 /*
4745 * if we failed to refill our space rsv, bail out
4746 * and let the transaction restart
4747 */
4748 if (should_end) {
4749 err = -EAGAIN;
4750 goto error;
4751 }
85e21bac 4752 goto search_again;
8082510e
YZ
4753 } else {
4754 path->slots[0]--;
85e21bac 4755 }
39279cc3 4756 }
8082510e 4757out:
85e21bac
CM
4758 if (pending_del_nr) {
4759 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4760 pending_del_nr);
79787eaa 4761 if (ret)
66642832 4762 btrfs_abort_transaction(trans, ret);
85e21bac 4763 }
79787eaa 4764error:
76b42abb
FM
4765 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4766 ASSERT(last_size >= new_size);
4767 if (!err && last_size > new_size)
4768 last_size = new_size;
7f4f6e0a 4769 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4770 }
28ed1345 4771
39279cc3 4772 btrfs_free_path(path);
28ed1345 4773
ee22184b 4774 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4775 unsigned long updates = trans->delayed_ref_updates;
4776 if (updates) {
4777 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4778 ret = btrfs_run_delayed_refs(trans, fs_info,
4779 updates * 2);
28ed1345
CM
4780 if (ret && !err)
4781 err = ret;
4782 }
4783 }
8082510e 4784 return err;
39279cc3
CM
4785}
4786
4787/*
9703fefe 4788 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4789 * @inode - inode that we're zeroing
4790 * @from - the offset to start zeroing
4791 * @len - the length to zero, 0 to zero the entire range respective to the
4792 * offset
4793 * @front - zero up to the offset instead of from the offset on
4794 *
9703fefe 4795 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4796 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4797 */
9703fefe 4798int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4799 int front)
39279cc3 4800{
0b246afa 4801 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4802 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4803 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4804 struct btrfs_ordered_extent *ordered;
2ac55d41 4805 struct extent_state *cached_state = NULL;
364ecf36 4806 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4807 char *kaddr;
0b246afa 4808 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4809 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4810 unsigned offset = from & (blocksize - 1);
39279cc3 4811 struct page *page;
3b16a4e3 4812 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4813 int ret = 0;
9703fefe
CR
4814 u64 block_start;
4815 u64 block_end;
39279cc3 4816
b03ebd99
NB
4817 if (IS_ALIGNED(offset, blocksize) &&
4818 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4819 goto out;
9703fefe 4820
8b62f87b
JB
4821 block_start = round_down(from, blocksize);
4822 block_end = block_start + blocksize - 1;
4823
364ecf36 4824 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4825 block_start, blocksize);
5d5e103a
JB
4826 if (ret)
4827 goto out;
39279cc3 4828
211c17f5 4829again:
3b16a4e3 4830 page = find_or_create_page(mapping, index, mask);
5d5e103a 4831 if (!page) {
bc42bda2 4832 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4833 block_start, blocksize);
4834 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4835 ret = -ENOMEM;
39279cc3 4836 goto out;
5d5e103a 4837 }
e6dcd2dc 4838
39279cc3 4839 if (!PageUptodate(page)) {
9ebefb18 4840 ret = btrfs_readpage(NULL, page);
39279cc3 4841 lock_page(page);
211c17f5
CM
4842 if (page->mapping != mapping) {
4843 unlock_page(page);
09cbfeaf 4844 put_page(page);
211c17f5
CM
4845 goto again;
4846 }
39279cc3
CM
4847 if (!PageUptodate(page)) {
4848 ret = -EIO;
89642229 4849 goto out_unlock;
39279cc3
CM
4850 }
4851 }
211c17f5 4852 wait_on_page_writeback(page);
e6dcd2dc 4853
9703fefe 4854 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4855 set_page_extent_mapped(page);
4856
9703fefe 4857 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4858 if (ordered) {
9703fefe 4859 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4860 &cached_state);
e6dcd2dc 4861 unlock_page(page);
09cbfeaf 4862 put_page(page);
eb84ae03 4863 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4864 btrfs_put_ordered_extent(ordered);
4865 goto again;
4866 }
4867
9703fefe 4868 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4869 EXTENT_DIRTY | EXTENT_DELALLOC |
4870 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4871 0, 0, &cached_state);
5d5e103a 4872
e3b8a485 4873 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4874 &cached_state, 0);
9ed74f2d 4875 if (ret) {
9703fefe 4876 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4877 &cached_state);
9ed74f2d
JB
4878 goto out_unlock;
4879 }
4880
9703fefe 4881 if (offset != blocksize) {
2aaa6655 4882 if (!len)
9703fefe 4883 len = blocksize - offset;
e6dcd2dc 4884 kaddr = kmap(page);
2aaa6655 4885 if (front)
9703fefe
CR
4886 memset(kaddr + (block_start - page_offset(page)),
4887 0, offset);
2aaa6655 4888 else
9703fefe
CR
4889 memset(kaddr + (block_start - page_offset(page)) + offset,
4890 0, len);
e6dcd2dc
CM
4891 flush_dcache_page(page);
4892 kunmap(page);
4893 }
247e743c 4894 ClearPageChecked(page);
e6dcd2dc 4895 set_page_dirty(page);
e43bbe5e 4896 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4897
89642229 4898out_unlock:
5d5e103a 4899 if (ret)
bc42bda2 4900 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4901 blocksize);
8b62f87b 4902 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4903 unlock_page(page);
09cbfeaf 4904 put_page(page);
39279cc3 4905out:
364ecf36 4906 extent_changeset_free(data_reserved);
39279cc3
CM
4907 return ret;
4908}
4909
16e7549f
JB
4910static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4911 u64 offset, u64 len)
4912{
0b246afa 4913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4914 struct btrfs_trans_handle *trans;
4915 int ret;
4916
4917 /*
4918 * Still need to make sure the inode looks like it's been updated so
4919 * that any holes get logged if we fsync.
4920 */
0b246afa
JM
4921 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4922 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4923 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4924 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4925 return 0;
4926 }
4927
4928 /*
4929 * 1 - for the one we're dropping
4930 * 1 - for the one we're adding
4931 * 1 - for updating the inode.
4932 */
4933 trans = btrfs_start_transaction(root, 3);
4934 if (IS_ERR(trans))
4935 return PTR_ERR(trans);
4936
4937 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4938 if (ret) {
66642832 4939 btrfs_abort_transaction(trans, ret);
3a45bb20 4940 btrfs_end_transaction(trans);
16e7549f
JB
4941 return ret;
4942 }
4943
f85b7379
DS
4944 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4945 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4946 if (ret)
66642832 4947 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4948 else
4949 btrfs_update_inode(trans, root, inode);
3a45bb20 4950 btrfs_end_transaction(trans);
16e7549f
JB
4951 return ret;
4952}
4953
695a0d0d
JB
4954/*
4955 * This function puts in dummy file extents for the area we're creating a hole
4956 * for. So if we are truncating this file to a larger size we need to insert
4957 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4958 * the range between oldsize and size
4959 */
a41ad394 4960int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4961{
0b246afa 4962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4963 struct btrfs_root *root = BTRFS_I(inode)->root;
4964 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4965 struct extent_map *em = NULL;
2ac55d41 4966 struct extent_state *cached_state = NULL;
5dc562c5 4967 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4968 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4969 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4970 u64 last_byte;
4971 u64 cur_offset;
4972 u64 hole_size;
9ed74f2d 4973 int err = 0;
39279cc3 4974
a71754fc 4975 /*
9703fefe
CR
4976 * If our size started in the middle of a block we need to zero out the
4977 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4978 * expose stale data.
4979 */
9703fefe 4980 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4981 if (err)
4982 return err;
4983
9036c102
YZ
4984 if (size <= hole_start)
4985 return 0;
4986
9036c102
YZ
4987 while (1) {
4988 struct btrfs_ordered_extent *ordered;
fa7c1494 4989
ff13db41 4990 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4991 &cached_state);
a776c6fa 4992 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4993 block_end - hole_start);
9036c102
YZ
4994 if (!ordered)
4995 break;
2ac55d41 4996 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 4997 &cached_state);
fa7c1494 4998 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4999 btrfs_put_ordered_extent(ordered);
5000 }
39279cc3 5001
9036c102
YZ
5002 cur_offset = hole_start;
5003 while (1) {
fc4f21b1 5004 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5005 block_end - cur_offset, 0);
79787eaa
JM
5006 if (IS_ERR(em)) {
5007 err = PTR_ERR(em);
f2767956 5008 em = NULL;
79787eaa
JM
5009 break;
5010 }
9036c102 5011 last_byte = min(extent_map_end(em), block_end);
0b246afa 5012 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5013 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5014 struct extent_map *hole_em;
9036c102 5015 hole_size = last_byte - cur_offset;
9ed74f2d 5016
16e7549f
JB
5017 err = maybe_insert_hole(root, inode, cur_offset,
5018 hole_size);
5019 if (err)
3893e33b 5020 break;
dcdbc059 5021 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5022 cur_offset + hole_size - 1, 0);
5023 hole_em = alloc_extent_map();
5024 if (!hole_em) {
5025 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5026 &BTRFS_I(inode)->runtime_flags);
5027 goto next;
5028 }
5029 hole_em->start = cur_offset;
5030 hole_em->len = hole_size;
5031 hole_em->orig_start = cur_offset;
8082510e 5032
5dc562c5
JB
5033 hole_em->block_start = EXTENT_MAP_HOLE;
5034 hole_em->block_len = 0;
b4939680 5035 hole_em->orig_block_len = 0;
cc95bef6 5036 hole_em->ram_bytes = hole_size;
0b246afa 5037 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5038 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5039 hole_em->generation = fs_info->generation;
8082510e 5040
5dc562c5
JB
5041 while (1) {
5042 write_lock(&em_tree->lock);
09a2a8f9 5043 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5044 write_unlock(&em_tree->lock);
5045 if (err != -EEXIST)
5046 break;
dcdbc059
NB
5047 btrfs_drop_extent_cache(BTRFS_I(inode),
5048 cur_offset,
5dc562c5
JB
5049 cur_offset +
5050 hole_size - 1, 0);
5051 }
5052 free_extent_map(hole_em);
9036c102 5053 }
16e7549f 5054next:
9036c102 5055 free_extent_map(em);
a22285a6 5056 em = NULL;
9036c102 5057 cur_offset = last_byte;
8082510e 5058 if (cur_offset >= block_end)
9036c102
YZ
5059 break;
5060 }
a22285a6 5061 free_extent_map(em);
e43bbe5e 5062 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5063 return err;
5064}
39279cc3 5065
3972f260 5066static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5067{
f4a2f4c5
MX
5068 struct btrfs_root *root = BTRFS_I(inode)->root;
5069 struct btrfs_trans_handle *trans;
a41ad394 5070 loff_t oldsize = i_size_read(inode);
3972f260
ES
5071 loff_t newsize = attr->ia_size;
5072 int mask = attr->ia_valid;
8082510e
YZ
5073 int ret;
5074
3972f260
ES
5075 /*
5076 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5077 * special case where we need to update the times despite not having
5078 * these flags set. For all other operations the VFS set these flags
5079 * explicitly if it wants a timestamp update.
5080 */
dff6efc3
CH
5081 if (newsize != oldsize) {
5082 inode_inc_iversion(inode);
5083 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5084 inode->i_ctime = inode->i_mtime =
c2050a45 5085 current_time(inode);
dff6efc3 5086 }
3972f260 5087
a41ad394 5088 if (newsize > oldsize) {
9ea24bbe 5089 /*
ea14b57f 5090 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5091 * This is to ensure the snapshot captures a fully consistent
5092 * state of this file - if the snapshot captures this expanding
5093 * truncation, it must capture all writes that happened before
5094 * this truncation.
5095 */
0bc19f90 5096 btrfs_wait_for_snapshot_creation(root);
a41ad394 5097 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5098 if (ret) {
ea14b57f 5099 btrfs_end_write_no_snapshotting(root);
8082510e 5100 return ret;
9ea24bbe 5101 }
8082510e 5102
f4a2f4c5 5103 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5104 if (IS_ERR(trans)) {
ea14b57f 5105 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5106 return PTR_ERR(trans);
9ea24bbe 5107 }
f4a2f4c5
MX
5108
5109 i_size_write(inode, newsize);
5110 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5111 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5112 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5113 btrfs_end_write_no_snapshotting(root);
3a45bb20 5114 btrfs_end_transaction(trans);
a41ad394 5115 } else {
8082510e 5116
a41ad394
JB
5117 /*
5118 * We're truncating a file that used to have good data down to
5119 * zero. Make sure it gets into the ordered flush list so that
5120 * any new writes get down to disk quickly.
5121 */
5122 if (newsize == 0)
72ac3c0d
JB
5123 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5124 &BTRFS_I(inode)->runtime_flags);
8082510e 5125
f3fe820c
JB
5126 /*
5127 * 1 for the orphan item we're going to add
5128 * 1 for the orphan item deletion.
5129 */
5130 trans = btrfs_start_transaction(root, 2);
5131 if (IS_ERR(trans))
5132 return PTR_ERR(trans);
5133
5134 /*
5135 * We need to do this in case we fail at _any_ point during the
5136 * actual truncate. Once we do the truncate_setsize we could
5137 * invalidate pages which forces any outstanding ordered io to
5138 * be instantly completed which will give us extents that need
5139 * to be truncated. If we fail to get an orphan inode down we
5140 * could have left over extents that were never meant to live,
01327610 5141 * so we need to guarantee from this point on that everything
f3fe820c
JB
5142 * will be consistent.
5143 */
73f2e545 5144 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5145 btrfs_end_transaction(trans);
f3fe820c
JB
5146 if (ret)
5147 return ret;
5148
a41ad394
JB
5149 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5150 truncate_setsize(inode, newsize);
2e60a51e
MX
5151
5152 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5153 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5154 inode_dio_wait(inode);
0b581701 5155 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5156
a41ad394 5157 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5158 if (ret && inode->i_nlink) {
5159 int err;
5160
19fd2df5
LB
5161 /* To get a stable disk_i_size */
5162 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5163 if (err) {
3d6ae7bb 5164 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5165 return err;
5166 }
5167
7f4f6e0a
JB
5168 /*
5169 * failed to truncate, disk_i_size is only adjusted down
5170 * as we remove extents, so it should represent the true
5171 * size of the inode, so reset the in memory size and
5172 * delete our orphan entry.
5173 */
5174 trans = btrfs_join_transaction(root);
5175 if (IS_ERR(trans)) {
3d6ae7bb 5176 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5177 return ret;
5178 }
5179 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5180 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5181 if (err)
66642832 5182 btrfs_abort_transaction(trans, err);
3a45bb20 5183 btrfs_end_transaction(trans);
7f4f6e0a 5184 }
8082510e
YZ
5185 }
5186
a41ad394 5187 return ret;
8082510e
YZ
5188}
5189
9036c102
YZ
5190static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5191{
2b0143b5 5192 struct inode *inode = d_inode(dentry);
b83cc969 5193 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5194 int err;
39279cc3 5195
b83cc969
LZ
5196 if (btrfs_root_readonly(root))
5197 return -EROFS;
5198
31051c85 5199 err = setattr_prepare(dentry, attr);
9036c102
YZ
5200 if (err)
5201 return err;
2bf5a725 5202
5a3f23d5 5203 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5204 err = btrfs_setsize(inode, attr);
8082510e
YZ
5205 if (err)
5206 return err;
39279cc3 5207 }
9036c102 5208
1025774c
CH
5209 if (attr->ia_valid) {
5210 setattr_copy(inode, attr);
0c4d2d95 5211 inode_inc_iversion(inode);
22c44fe6 5212 err = btrfs_dirty_inode(inode);
1025774c 5213
22c44fe6 5214 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5215 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5216 }
33268eaf 5217
39279cc3
CM
5218 return err;
5219}
61295eb8 5220
131e404a
FDBM
5221/*
5222 * While truncating the inode pages during eviction, we get the VFS calling
5223 * btrfs_invalidatepage() against each page of the inode. This is slow because
5224 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5225 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5226 * extent_state structures over and over, wasting lots of time.
5227 *
5228 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5229 * those expensive operations on a per page basis and do only the ordered io
5230 * finishing, while we release here the extent_map and extent_state structures,
5231 * without the excessive merging and splitting.
5232 */
5233static void evict_inode_truncate_pages(struct inode *inode)
5234{
5235 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5236 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5237 struct rb_node *node;
5238
5239 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5240 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5241
5242 write_lock(&map_tree->lock);
5243 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5244 struct extent_map *em;
5245
5246 node = rb_first(&map_tree->map);
5247 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5248 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5249 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5250 remove_extent_mapping(map_tree, em);
5251 free_extent_map(em);
7064dd5c
FM
5252 if (need_resched()) {
5253 write_unlock(&map_tree->lock);
5254 cond_resched();
5255 write_lock(&map_tree->lock);
5256 }
131e404a
FDBM
5257 }
5258 write_unlock(&map_tree->lock);
5259
6ca07097
FM
5260 /*
5261 * Keep looping until we have no more ranges in the io tree.
5262 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5263 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5264 * still in progress (unlocked the pages in the bio but did not yet
5265 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5266 * ranges can still be locked and eviction started because before
5267 * submitting those bios, which are executed by a separate task (work
5268 * queue kthread), inode references (inode->i_count) were not taken
5269 * (which would be dropped in the end io callback of each bio).
5270 * Therefore here we effectively end up waiting for those bios and
5271 * anyone else holding locked ranges without having bumped the inode's
5272 * reference count - if we don't do it, when they access the inode's
5273 * io_tree to unlock a range it may be too late, leading to an
5274 * use-after-free issue.
5275 */
131e404a
FDBM
5276 spin_lock(&io_tree->lock);
5277 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5278 struct extent_state *state;
5279 struct extent_state *cached_state = NULL;
6ca07097
FM
5280 u64 start;
5281 u64 end;
131e404a
FDBM
5282
5283 node = rb_first(&io_tree->state);
5284 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5285 start = state->start;
5286 end = state->end;
131e404a
FDBM
5287 spin_unlock(&io_tree->lock);
5288
ff13db41 5289 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5290
5291 /*
5292 * If still has DELALLOC flag, the extent didn't reach disk,
5293 * and its reserved space won't be freed by delayed_ref.
5294 * So we need to free its reserved space here.
5295 * (Refer to comment in btrfs_invalidatepage, case 2)
5296 *
5297 * Note, end is the bytenr of last byte, so we need + 1 here.
5298 */
5299 if (state->state & EXTENT_DELALLOC)
bc42bda2 5300 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5301
6ca07097 5302 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5303 EXTENT_LOCKED | EXTENT_DIRTY |
5304 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5305 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5306
7064dd5c 5307 cond_resched();
131e404a
FDBM
5308 spin_lock(&io_tree->lock);
5309 }
5310 spin_unlock(&io_tree->lock);
5311}
5312
bd555975 5313void btrfs_evict_inode(struct inode *inode)
39279cc3 5314{
0b246afa 5315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5316 struct btrfs_trans_handle *trans;
5317 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5318 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5319 int steal_from_global = 0;
3d48d981 5320 u64 min_size;
39279cc3
CM
5321 int ret;
5322
1abe9b8a 5323 trace_btrfs_inode_evict(inode);
5324
3d48d981 5325 if (!root) {
e8f1bc14 5326 clear_inode(inode);
3d48d981
NB
5327 return;
5328 }
5329
0b246afa 5330 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5331
131e404a
FDBM
5332 evict_inode_truncate_pages(inode);
5333
69e9c6c6
SB
5334 if (inode->i_nlink &&
5335 ((btrfs_root_refs(&root->root_item) != 0 &&
5336 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5337 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5338 goto no_delete;
5339
39279cc3 5340 if (is_bad_inode(inode)) {
3d6ae7bb 5341 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5342 goto no_delete;
5343 }
bd555975 5344 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5345 if (!special_file(inode->i_mode))
5346 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5347
7ab7956e 5348 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5349
0b246afa 5350 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5351 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5352 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5353 goto no_delete;
5354 }
5355
76dda93c 5356 if (inode->i_nlink > 0) {
69e9c6c6
SB
5357 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5358 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5359 goto no_delete;
5360 }
5361
aa79021f 5362 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5363 if (ret) {
3d6ae7bb 5364 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5365 goto no_delete;
5366 }
5367
2ff7e61e 5368 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5369 if (!rsv) {
3d6ae7bb 5370 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5371 goto no_delete;
5372 }
4a338542 5373 rsv->size = min_size;
ca7e70f5 5374 rsv->failfast = 1;
0b246afa 5375 global_rsv = &fs_info->global_block_rsv;
4289a667 5376
6ef06d27 5377 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5378
4289a667 5379 /*
8407aa46
MX
5380 * This is a bit simpler than btrfs_truncate since we've already
5381 * reserved our space for our orphan item in the unlink, so we just
5382 * need to reserve some slack space in case we add bytes and update
5383 * inode item when doing the truncate.
4289a667 5384 */
8082510e 5385 while (1) {
08e007d2
MX
5386 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5387 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5388
5389 /*
5390 * Try and steal from the global reserve since we will
5391 * likely not use this space anyway, we want to try as
5392 * hard as possible to get this to work.
5393 */
5394 if (ret)
3bce876f
JB
5395 steal_from_global++;
5396 else
5397 steal_from_global = 0;
5398 ret = 0;
d68fc57b 5399
3bce876f
JB
5400 /*
5401 * steal_from_global == 0: we reserved stuff, hooray!
5402 * steal_from_global == 1: we didn't reserve stuff, boo!
5403 * steal_from_global == 2: we've committed, still not a lot of
5404 * room but maybe we'll have room in the global reserve this
5405 * time.
5406 * steal_from_global == 3: abandon all hope!
5407 */
5408 if (steal_from_global > 2) {
0b246afa
JM
5409 btrfs_warn(fs_info,
5410 "Could not get space for a delete, will truncate on mount %d",
5411 ret);
3d6ae7bb 5412 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5413 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5414 goto no_delete;
d68fc57b 5415 }
7b128766 5416
0e8c36a9 5417 trans = btrfs_join_transaction(root);
4289a667 5418 if (IS_ERR(trans)) {
3d6ae7bb 5419 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5420 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5421 goto no_delete;
d68fc57b 5422 }
7b128766 5423
3bce876f 5424 /*
01327610 5425 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5426 * sure there is room to do it, if not we need to commit and try
5427 * again.
5428 */
5429 if (steal_from_global) {
2ff7e61e 5430 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5431 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5432 min_size, 0);
3bce876f
JB
5433 else
5434 ret = -ENOSPC;
5435 }
5436
5437 /*
5438 * Couldn't steal from the global reserve, we have too much
5439 * pending stuff built up, commit the transaction and try it
5440 * again.
5441 */
5442 if (ret) {
3a45bb20 5443 ret = btrfs_commit_transaction(trans);
3bce876f 5444 if (ret) {
3d6ae7bb 5445 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5446 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5447 goto no_delete;
5448 }
5449 continue;
5450 } else {
5451 steal_from_global = 0;
5452 }
5453
4289a667
JB
5454 trans->block_rsv = rsv;
5455
d68fc57b 5456 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5457 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5458 break;
85e21bac 5459
0b246afa 5460 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5461 btrfs_end_transaction(trans);
8082510e 5462 trans = NULL;
2ff7e61e 5463 btrfs_btree_balance_dirty(fs_info);
8082510e 5464 }
5f39d397 5465
2ff7e61e 5466 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5467
4ef31a45
JB
5468 /*
5469 * Errors here aren't a big deal, it just means we leave orphan items
5470 * in the tree. They will be cleaned up on the next mount.
5471 */
8082510e 5472 if (ret == 0) {
4289a667 5473 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5474 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5475 } else {
3d6ae7bb 5476 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5477 }
54aa1f4d 5478
0b246afa
JM
5479 trans->block_rsv = &fs_info->trans_block_rsv;
5480 if (!(root == fs_info->tree_root ||
581bb050 5481 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5482 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5483
3a45bb20 5484 btrfs_end_transaction(trans);
2ff7e61e 5485 btrfs_btree_balance_dirty(fs_info);
39279cc3 5486no_delete:
f48d1cf5 5487 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5488 clear_inode(inode);
39279cc3
CM
5489}
5490
5491/*
5492 * this returns the key found in the dir entry in the location pointer.
5493 * If no dir entries were found, location->objectid is 0.
5494 */
5495static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5496 struct btrfs_key *location)
5497{
5498 const char *name = dentry->d_name.name;
5499 int namelen = dentry->d_name.len;
5500 struct btrfs_dir_item *di;
5501 struct btrfs_path *path;
5502 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5503 int ret = 0;
39279cc3
CM
5504
5505 path = btrfs_alloc_path();
d8926bb3
MF
5506 if (!path)
5507 return -ENOMEM;
3954401f 5508
f85b7379
DS
5509 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5510 name, namelen, 0);
0d9f7f3e
Y
5511 if (IS_ERR(di))
5512 ret = PTR_ERR(di);
d397712b 5513
c704005d 5514 if (IS_ERR_OR_NULL(di))
3954401f 5515 goto out_err;
d397712b 5516
5f39d397 5517 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5518 if (location->type != BTRFS_INODE_ITEM_KEY &&
5519 location->type != BTRFS_ROOT_ITEM_KEY) {
5520 btrfs_warn(root->fs_info,
5521"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5522 __func__, name, btrfs_ino(BTRFS_I(dir)),
5523 location->objectid, location->type, location->offset);
5524 goto out_err;
5525 }
39279cc3 5526out:
39279cc3
CM
5527 btrfs_free_path(path);
5528 return ret;
3954401f
CM
5529out_err:
5530 location->objectid = 0;
5531 goto out;
39279cc3
CM
5532}
5533
5534/*
5535 * when we hit a tree root in a directory, the btrfs part of the inode
5536 * needs to be changed to reflect the root directory of the tree root. This
5537 * is kind of like crossing a mount point.
5538 */
2ff7e61e 5539static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5540 struct inode *dir,
5541 struct dentry *dentry,
5542 struct btrfs_key *location,
5543 struct btrfs_root **sub_root)
39279cc3 5544{
4df27c4d
YZ
5545 struct btrfs_path *path;
5546 struct btrfs_root *new_root;
5547 struct btrfs_root_ref *ref;
5548 struct extent_buffer *leaf;
1d4c08e0 5549 struct btrfs_key key;
4df27c4d
YZ
5550 int ret;
5551 int err = 0;
39279cc3 5552
4df27c4d
YZ
5553 path = btrfs_alloc_path();
5554 if (!path) {
5555 err = -ENOMEM;
5556 goto out;
5557 }
39279cc3 5558
4df27c4d 5559 err = -ENOENT;
1d4c08e0
DS
5560 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5561 key.type = BTRFS_ROOT_REF_KEY;
5562 key.offset = location->objectid;
5563
0b246afa 5564 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5565 if (ret) {
5566 if (ret < 0)
5567 err = ret;
5568 goto out;
5569 }
39279cc3 5570
4df27c4d
YZ
5571 leaf = path->nodes[0];
5572 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5573 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5574 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5575 goto out;
39279cc3 5576
4df27c4d
YZ
5577 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5578 (unsigned long)(ref + 1),
5579 dentry->d_name.len);
5580 if (ret)
5581 goto out;
5582
b3b4aa74 5583 btrfs_release_path(path);
4df27c4d 5584
0b246afa 5585 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5586 if (IS_ERR(new_root)) {
5587 err = PTR_ERR(new_root);
5588 goto out;
5589 }
5590
4df27c4d
YZ
5591 *sub_root = new_root;
5592 location->objectid = btrfs_root_dirid(&new_root->root_item);
5593 location->type = BTRFS_INODE_ITEM_KEY;
5594 location->offset = 0;
5595 err = 0;
5596out:
5597 btrfs_free_path(path);
5598 return err;
39279cc3
CM
5599}
5600
5d4f98a2
YZ
5601static void inode_tree_add(struct inode *inode)
5602{
5603 struct btrfs_root *root = BTRFS_I(inode)->root;
5604 struct btrfs_inode *entry;
03e860bd
FNP
5605 struct rb_node **p;
5606 struct rb_node *parent;
cef21937 5607 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5608 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5609
1d3382cb 5610 if (inode_unhashed(inode))
76dda93c 5611 return;
e1409cef 5612 parent = NULL;
5d4f98a2 5613 spin_lock(&root->inode_lock);
e1409cef 5614 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5615 while (*p) {
5616 parent = *p;
5617 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5618
4a0cc7ca 5619 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5620 p = &parent->rb_left;
4a0cc7ca 5621 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5622 p = &parent->rb_right;
5d4f98a2
YZ
5623 else {
5624 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5625 (I_WILL_FREE | I_FREEING)));
cef21937 5626 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5627 RB_CLEAR_NODE(parent);
5628 spin_unlock(&root->inode_lock);
cef21937 5629 return;
5d4f98a2
YZ
5630 }
5631 }
cef21937
FDBM
5632 rb_link_node(new, parent, p);
5633 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5634 spin_unlock(&root->inode_lock);
5635}
5636
5637static void inode_tree_del(struct inode *inode)
5638{
0b246afa 5639 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5640 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5641 int empty = 0;
5d4f98a2 5642
03e860bd 5643 spin_lock(&root->inode_lock);
5d4f98a2 5644 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5645 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5646 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5647 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5648 }
03e860bd 5649 spin_unlock(&root->inode_lock);
76dda93c 5650
69e9c6c6 5651 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5652 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5653 spin_lock(&root->inode_lock);
5654 empty = RB_EMPTY_ROOT(&root->inode_tree);
5655 spin_unlock(&root->inode_lock);
5656 if (empty)
5657 btrfs_add_dead_root(root);
5658 }
5659}
5660
143bede5 5661void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5662{
0b246afa 5663 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5664 struct rb_node *node;
5665 struct rb_node *prev;
5666 struct btrfs_inode *entry;
5667 struct inode *inode;
5668 u64 objectid = 0;
5669
0b246afa 5670 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5671 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5672
5673 spin_lock(&root->inode_lock);
5674again:
5675 node = root->inode_tree.rb_node;
5676 prev = NULL;
5677 while (node) {
5678 prev = node;
5679 entry = rb_entry(node, struct btrfs_inode, rb_node);
5680
4a0cc7ca 5681 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5682 node = node->rb_left;
4a0cc7ca 5683 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5684 node = node->rb_right;
5685 else
5686 break;
5687 }
5688 if (!node) {
5689 while (prev) {
5690 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5691 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5692 node = prev;
5693 break;
5694 }
5695 prev = rb_next(prev);
5696 }
5697 }
5698 while (node) {
5699 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5700 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5701 inode = igrab(&entry->vfs_inode);
5702 if (inode) {
5703 spin_unlock(&root->inode_lock);
5704 if (atomic_read(&inode->i_count) > 1)
5705 d_prune_aliases(inode);
5706 /*
45321ac5 5707 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5708 * the inode cache when its usage count
5709 * hits zero.
5710 */
5711 iput(inode);
5712 cond_resched();
5713 spin_lock(&root->inode_lock);
5714 goto again;
5715 }
5716
5717 if (cond_resched_lock(&root->inode_lock))
5718 goto again;
5719
5720 node = rb_next(node);
5721 }
5722 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5723}
5724
e02119d5
CM
5725static int btrfs_init_locked_inode(struct inode *inode, void *p)
5726{
5727 struct btrfs_iget_args *args = p;
90d3e592
CM
5728 inode->i_ino = args->location->objectid;
5729 memcpy(&BTRFS_I(inode)->location, args->location,
5730 sizeof(*args->location));
e02119d5 5731 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5732 return 0;
5733}
5734
5735static int btrfs_find_actor(struct inode *inode, void *opaque)
5736{
5737 struct btrfs_iget_args *args = opaque;
90d3e592 5738 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5739 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5740}
5741
5d4f98a2 5742static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5743 struct btrfs_key *location,
5d4f98a2 5744 struct btrfs_root *root)
39279cc3
CM
5745{
5746 struct inode *inode;
5747 struct btrfs_iget_args args;
90d3e592 5748 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5749
90d3e592 5750 args.location = location;
39279cc3
CM
5751 args.root = root;
5752
778ba82b 5753 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5754 btrfs_init_locked_inode,
5755 (void *)&args);
5756 return inode;
5757}
5758
1a54ef8c
BR
5759/* Get an inode object given its location and corresponding root.
5760 * Returns in *is_new if the inode was read from disk
5761 */
5762struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5763 struct btrfs_root *root, int *new)
1a54ef8c
BR
5764{
5765 struct inode *inode;
5766
90d3e592 5767 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5768 if (!inode)
5d4f98a2 5769 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5770
5771 if (inode->i_state & I_NEW) {
67710892
FM
5772 int ret;
5773
5774 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5775 if (!is_bad_inode(inode)) {
5776 inode_tree_add(inode);
5777 unlock_new_inode(inode);
5778 if (new)
5779 *new = 1;
5780 } else {
e0b6d65b
ST
5781 unlock_new_inode(inode);
5782 iput(inode);
67710892
FM
5783 ASSERT(ret < 0);
5784 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5785 }
5786 }
5787
1a54ef8c
BR
5788 return inode;
5789}
5790
4df27c4d
YZ
5791static struct inode *new_simple_dir(struct super_block *s,
5792 struct btrfs_key *key,
5793 struct btrfs_root *root)
5794{
5795 struct inode *inode = new_inode(s);
5796
5797 if (!inode)
5798 return ERR_PTR(-ENOMEM);
5799
4df27c4d
YZ
5800 BTRFS_I(inode)->root = root;
5801 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5802 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5803
5804 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5805 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5806 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5807 inode->i_fop = &simple_dir_operations;
5808 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5809 inode->i_mtime = current_time(inode);
9cc97d64 5810 inode->i_atime = inode->i_mtime;
5811 inode->i_ctime = inode->i_mtime;
5812 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5813
5814 return inode;
5815}
5816
3de4586c 5817struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5818{
0b246afa 5819 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5820 struct inode *inode;
4df27c4d 5821 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5822 struct btrfs_root *sub_root = root;
5823 struct btrfs_key location;
76dda93c 5824 int index;
b4aff1f8 5825 int ret = 0;
39279cc3
CM
5826
5827 if (dentry->d_name.len > BTRFS_NAME_LEN)
5828 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5829
39e3c955 5830 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5831 if (ret < 0)
5832 return ERR_PTR(ret);
5f39d397 5833
4df27c4d 5834 if (location.objectid == 0)
5662344b 5835 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5836
5837 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5838 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5839 return inode;
5840 }
5841
0b246afa 5842 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5843 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5844 &location, &sub_root);
5845 if (ret < 0) {
5846 if (ret != -ENOENT)
5847 inode = ERR_PTR(ret);
5848 else
5849 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5850 } else {
73f73415 5851 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5852 }
0b246afa 5853 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5854
34d19bad 5855 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5856 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5857 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5858 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5859 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5860 if (ret) {
5861 iput(inode);
66b4ffd1 5862 inode = ERR_PTR(ret);
01cd3367 5863 }
c71bf099
YZ
5864 }
5865
3de4586c
CM
5866 return inode;
5867}
5868
fe15ce44 5869static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5870{
5871 struct btrfs_root *root;
2b0143b5 5872 struct inode *inode = d_inode(dentry);
76dda93c 5873
848cce0d 5874 if (!inode && !IS_ROOT(dentry))
2b0143b5 5875 inode = d_inode(dentry->d_parent);
76dda93c 5876
848cce0d
LZ
5877 if (inode) {
5878 root = BTRFS_I(inode)->root;
efefb143
YZ
5879 if (btrfs_root_refs(&root->root_item) == 0)
5880 return 1;
848cce0d 5881
4a0cc7ca 5882 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5883 return 1;
efefb143 5884 }
76dda93c
YZ
5885 return 0;
5886}
5887
b4aff1f8
JB
5888static void btrfs_dentry_release(struct dentry *dentry)
5889{
944a4515 5890 kfree(dentry->d_fsdata);
b4aff1f8
JB
5891}
5892
3de4586c 5893static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5894 unsigned int flags)
3de4586c 5895{
5662344b 5896 struct inode *inode;
a66e7cc6 5897
5662344b
TI
5898 inode = btrfs_lookup_dentry(dir, dentry);
5899 if (IS_ERR(inode)) {
5900 if (PTR_ERR(inode) == -ENOENT)
5901 inode = NULL;
5902 else
5903 return ERR_CAST(inode);
5904 }
5905
41d28bca 5906 return d_splice_alias(inode, dentry);
39279cc3
CM
5907}
5908
16cdcec7 5909unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5910 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5911};
5912
23b5ec74
JB
5913/*
5914 * All this infrastructure exists because dir_emit can fault, and we are holding
5915 * the tree lock when doing readdir. For now just allocate a buffer and copy
5916 * our information into that, and then dir_emit from the buffer. This is
5917 * similar to what NFS does, only we don't keep the buffer around in pagecache
5918 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5919 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5920 * tree lock.
5921 */
5922static int btrfs_opendir(struct inode *inode, struct file *file)
5923{
5924 struct btrfs_file_private *private;
5925
5926 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5927 if (!private)
5928 return -ENOMEM;
5929 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5930 if (!private->filldir_buf) {
5931 kfree(private);
5932 return -ENOMEM;
5933 }
5934 file->private_data = private;
5935 return 0;
5936}
5937
5938struct dir_entry {
5939 u64 ino;
5940 u64 offset;
5941 unsigned type;
5942 int name_len;
5943};
5944
5945static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5946{
5947 while (entries--) {
5948 struct dir_entry *entry = addr;
5949 char *name = (char *)(entry + 1);
5950
5951 ctx->pos = entry->offset;
5952 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5953 entry->type))
5954 return 1;
5955 addr += sizeof(struct dir_entry) + entry->name_len;
5956 ctx->pos++;
5957 }
5958 return 0;
5959}
5960
9cdda8d3 5961static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5962{
9cdda8d3 5963 struct inode *inode = file_inode(file);
39279cc3 5964 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5965 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5966 struct btrfs_dir_item *di;
5967 struct btrfs_key key;
5f39d397 5968 struct btrfs_key found_key;
39279cc3 5969 struct btrfs_path *path;
23b5ec74 5970 void *addr;
16cdcec7
MX
5971 struct list_head ins_list;
5972 struct list_head del_list;
39279cc3 5973 int ret;
5f39d397 5974 struct extent_buffer *leaf;
39279cc3 5975 int slot;
5f39d397
CM
5976 char *name_ptr;
5977 int name_len;
23b5ec74
JB
5978 int entries = 0;
5979 int total_len = 0;
02dbfc99 5980 bool put = false;
c2951f32 5981 struct btrfs_key location;
5f39d397 5982
9cdda8d3
AV
5983 if (!dir_emit_dots(file, ctx))
5984 return 0;
5985
49593bfa 5986 path = btrfs_alloc_path();
16cdcec7
MX
5987 if (!path)
5988 return -ENOMEM;
ff5714cc 5989
23b5ec74 5990 addr = private->filldir_buf;
e4058b54 5991 path->reada = READA_FORWARD;
49593bfa 5992
c2951f32
JM
5993 INIT_LIST_HEAD(&ins_list);
5994 INIT_LIST_HEAD(&del_list);
5995 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5996
23b5ec74 5997again:
c2951f32 5998 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5999 key.offset = ctx->pos;
4a0cc7ca 6000 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6001
39279cc3
CM
6002 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6003 if (ret < 0)
6004 goto err;
49593bfa
DW
6005
6006 while (1) {
23b5ec74
JB
6007 struct dir_entry *entry;
6008
5f39d397 6009 leaf = path->nodes[0];
39279cc3 6010 slot = path->slots[0];
b9e03af0
LZ
6011 if (slot >= btrfs_header_nritems(leaf)) {
6012 ret = btrfs_next_leaf(root, path);
6013 if (ret < 0)
6014 goto err;
6015 else if (ret > 0)
6016 break;
6017 continue;
39279cc3 6018 }
3de4586c 6019
5f39d397
CM
6020 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6021
6022 if (found_key.objectid != key.objectid)
39279cc3 6023 break;
c2951f32 6024 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6025 break;
9cdda8d3 6026 if (found_key.offset < ctx->pos)
b9e03af0 6027 goto next;
c2951f32 6028 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6029 goto next;
39279cc3 6030 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6031 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6032 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6033 PAGE_SIZE) {
6034 btrfs_release_path(path);
6035 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6036 if (ret)
6037 goto nopos;
6038 addr = private->filldir_buf;
6039 entries = 0;
6040 total_len = 0;
6041 goto again;
c2951f32 6042 }
23b5ec74
JB
6043
6044 entry = addr;
6045 entry->name_len = name_len;
6046 name_ptr = (char *)(entry + 1);
c2951f32
JM
6047 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6048 name_len);
23b5ec74 6049 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 6050 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
6051 entry->ino = location.objectid;
6052 entry->offset = found_key.offset;
6053 entries++;
6054 addr += sizeof(struct dir_entry) + name_len;
6055 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6056next:
6057 path->slots[0]++;
39279cc3 6058 }
23b5ec74
JB
6059 btrfs_release_path(path);
6060
6061 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6062 if (ret)
6063 goto nopos;
49593bfa 6064
d2fbb2b5 6065 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6066 if (ret)
bc4ef759
DS
6067 goto nopos;
6068
db62efbb
ZB
6069 /*
6070 * Stop new entries from being returned after we return the last
6071 * entry.
6072 *
6073 * New directory entries are assigned a strictly increasing
6074 * offset. This means that new entries created during readdir
6075 * are *guaranteed* to be seen in the future by that readdir.
6076 * This has broken buggy programs which operate on names as
6077 * they're returned by readdir. Until we re-use freed offsets
6078 * we have this hack to stop new entries from being returned
6079 * under the assumption that they'll never reach this huge
6080 * offset.
6081 *
6082 * This is being careful not to overflow 32bit loff_t unless the
6083 * last entry requires it because doing so has broken 32bit apps
6084 * in the past.
6085 */
c2951f32
JM
6086 if (ctx->pos >= INT_MAX)
6087 ctx->pos = LLONG_MAX;
6088 else
6089 ctx->pos = INT_MAX;
39279cc3
CM
6090nopos:
6091 ret = 0;
6092err:
02dbfc99
OS
6093 if (put)
6094 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6095 btrfs_free_path(path);
39279cc3
CM
6096 return ret;
6097}
6098
a9185b41 6099int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6100{
6101 struct btrfs_root *root = BTRFS_I(inode)->root;
6102 struct btrfs_trans_handle *trans;
6103 int ret = 0;
0af3d00b 6104 bool nolock = false;
39279cc3 6105
72ac3c0d 6106 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6107 return 0;
6108
70ddc553
NB
6109 if (btrfs_fs_closing(root->fs_info) &&
6110 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6111 nolock = true;
0af3d00b 6112
a9185b41 6113 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6114 if (nolock)
7a7eaa40 6115 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6116 else
7a7eaa40 6117 trans = btrfs_join_transaction(root);
3612b495
TI
6118 if (IS_ERR(trans))
6119 return PTR_ERR(trans);
3a45bb20 6120 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6121 }
6122 return ret;
6123}
6124
6125/*
54aa1f4d 6126 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6127 * inode changes. But, it is most likely to find the inode in cache.
6128 * FIXME, needs more benchmarking...there are no reasons other than performance
6129 * to keep or drop this code.
6130 */
48a3b636 6131static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6132{
2ff7e61e 6133 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6134 struct btrfs_root *root = BTRFS_I(inode)->root;
6135 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6136 int ret;
6137
72ac3c0d 6138 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6139 return 0;
39279cc3 6140
7a7eaa40 6141 trans = btrfs_join_transaction(root);
22c44fe6
JB
6142 if (IS_ERR(trans))
6143 return PTR_ERR(trans);
8929ecfa
YZ
6144
6145 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6146 if (ret && ret == -ENOSPC) {
6147 /* whoops, lets try again with the full transaction */
3a45bb20 6148 btrfs_end_transaction(trans);
94b60442 6149 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6150 if (IS_ERR(trans))
6151 return PTR_ERR(trans);
8929ecfa 6152
94b60442 6153 ret = btrfs_update_inode(trans, root, inode);
94b60442 6154 }
3a45bb20 6155 btrfs_end_transaction(trans);
16cdcec7 6156 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6157 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6158
6159 return ret;
6160}
6161
6162/*
6163 * This is a copy of file_update_time. We need this so we can return error on
6164 * ENOSPC for updating the inode in the case of file write and mmap writes.
6165 */
e41f941a
JB
6166static int btrfs_update_time(struct inode *inode, struct timespec *now,
6167 int flags)
22c44fe6 6168{
2bc55652 6169 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6170 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6171
6172 if (btrfs_root_readonly(root))
6173 return -EROFS;
6174
e41f941a 6175 if (flags & S_VERSION)
3a8c7231 6176 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6177 if (flags & S_CTIME)
6178 inode->i_ctime = *now;
6179 if (flags & S_MTIME)
6180 inode->i_mtime = *now;
6181 if (flags & S_ATIME)
6182 inode->i_atime = *now;
3a8c7231 6183 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6184}
6185
d352ac68
CM
6186/*
6187 * find the highest existing sequence number in a directory
6188 * and then set the in-memory index_cnt variable to reflect
6189 * free sequence numbers
6190 */
4c570655 6191static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6192{
4c570655 6193 struct btrfs_root *root = inode->root;
aec7477b
JB
6194 struct btrfs_key key, found_key;
6195 struct btrfs_path *path;
6196 struct extent_buffer *leaf;
6197 int ret;
6198
4c570655 6199 key.objectid = btrfs_ino(inode);
962a298f 6200 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6201 key.offset = (u64)-1;
6202
6203 path = btrfs_alloc_path();
6204 if (!path)
6205 return -ENOMEM;
6206
6207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6208 if (ret < 0)
6209 goto out;
6210 /* FIXME: we should be able to handle this */
6211 if (ret == 0)
6212 goto out;
6213 ret = 0;
6214
6215 /*
6216 * MAGIC NUMBER EXPLANATION:
6217 * since we search a directory based on f_pos we have to start at 2
6218 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6219 * else has to start at 2
6220 */
6221 if (path->slots[0] == 0) {
4c570655 6222 inode->index_cnt = 2;
aec7477b
JB
6223 goto out;
6224 }
6225
6226 path->slots[0]--;
6227
6228 leaf = path->nodes[0];
6229 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6230
4c570655 6231 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6232 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6233 inode->index_cnt = 2;
aec7477b
JB
6234 goto out;
6235 }
6236
4c570655 6237 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6238out:
6239 btrfs_free_path(path);
6240 return ret;
6241}
6242
d352ac68
CM
6243/*
6244 * helper to find a free sequence number in a given directory. This current
6245 * code is very simple, later versions will do smarter things in the btree
6246 */
877574e2 6247int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6248{
6249 int ret = 0;
6250
877574e2
NB
6251 if (dir->index_cnt == (u64)-1) {
6252 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6253 if (ret) {
6254 ret = btrfs_set_inode_index_count(dir);
6255 if (ret)
6256 return ret;
6257 }
aec7477b
JB
6258 }
6259
877574e2
NB
6260 *index = dir->index_cnt;
6261 dir->index_cnt++;
aec7477b
JB
6262
6263 return ret;
6264}
6265
b0d5d10f
CM
6266static int btrfs_insert_inode_locked(struct inode *inode)
6267{
6268 struct btrfs_iget_args args;
6269 args.location = &BTRFS_I(inode)->location;
6270 args.root = BTRFS_I(inode)->root;
6271
6272 return insert_inode_locked4(inode,
6273 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6274 btrfs_find_actor, &args);
6275}
6276
19aee8de
AJ
6277/*
6278 * Inherit flags from the parent inode.
6279 *
6280 * Currently only the compression flags and the cow flags are inherited.
6281 */
6282static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6283{
6284 unsigned int flags;
6285
6286 if (!dir)
6287 return;
6288
6289 flags = BTRFS_I(dir)->flags;
6290
6291 if (flags & BTRFS_INODE_NOCOMPRESS) {
6292 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6293 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6294 } else if (flags & BTRFS_INODE_COMPRESS) {
6295 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6296 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6297 }
6298
6299 if (flags & BTRFS_INODE_NODATACOW) {
6300 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6301 if (S_ISREG(inode->i_mode))
6302 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6303 }
6304
6305 btrfs_update_iflags(inode);
6306}
6307
39279cc3
CM
6308static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6309 struct btrfs_root *root,
aec7477b 6310 struct inode *dir,
9c58309d 6311 const char *name, int name_len,
175a4eb7
AV
6312 u64 ref_objectid, u64 objectid,
6313 umode_t mode, u64 *index)
39279cc3 6314{
0b246afa 6315 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6316 struct inode *inode;
5f39d397 6317 struct btrfs_inode_item *inode_item;
39279cc3 6318 struct btrfs_key *location;
5f39d397 6319 struct btrfs_path *path;
9c58309d
CM
6320 struct btrfs_inode_ref *ref;
6321 struct btrfs_key key[2];
6322 u32 sizes[2];
ef3b9af5 6323 int nitems = name ? 2 : 1;
9c58309d 6324 unsigned long ptr;
39279cc3 6325 int ret;
39279cc3 6326
5f39d397 6327 path = btrfs_alloc_path();
d8926bb3
MF
6328 if (!path)
6329 return ERR_PTR(-ENOMEM);
5f39d397 6330
0b246afa 6331 inode = new_inode(fs_info->sb);
8fb27640
YS
6332 if (!inode) {
6333 btrfs_free_path(path);
39279cc3 6334 return ERR_PTR(-ENOMEM);
8fb27640 6335 }
39279cc3 6336
5762b5c9
FM
6337 /*
6338 * O_TMPFILE, set link count to 0, so that after this point,
6339 * we fill in an inode item with the correct link count.
6340 */
6341 if (!name)
6342 set_nlink(inode, 0);
6343
581bb050
LZ
6344 /*
6345 * we have to initialize this early, so we can reclaim the inode
6346 * number if we fail afterwards in this function.
6347 */
6348 inode->i_ino = objectid;
6349
ef3b9af5 6350 if (dir && name) {
1abe9b8a 6351 trace_btrfs_inode_request(dir);
6352
877574e2 6353 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6354 if (ret) {
8fb27640 6355 btrfs_free_path(path);
09771430 6356 iput(inode);
aec7477b 6357 return ERR_PTR(ret);
09771430 6358 }
ef3b9af5
FM
6359 } else if (dir) {
6360 *index = 0;
aec7477b
JB
6361 }
6362 /*
6363 * index_cnt is ignored for everything but a dir,
df6703e1 6364 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6365 * number
6366 */
6367 BTRFS_I(inode)->index_cnt = 2;
67de1176 6368 BTRFS_I(inode)->dir_index = *index;
39279cc3 6369 BTRFS_I(inode)->root = root;
e02119d5 6370 BTRFS_I(inode)->generation = trans->transid;
76195853 6371 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6372
5dc562c5
JB
6373 /*
6374 * We could have gotten an inode number from somebody who was fsynced
6375 * and then removed in this same transaction, so let's just set full
6376 * sync since it will be a full sync anyway and this will blow away the
6377 * old info in the log.
6378 */
6379 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6380
9c58309d 6381 key[0].objectid = objectid;
962a298f 6382 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6383 key[0].offset = 0;
6384
9c58309d 6385 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6386
6387 if (name) {
6388 /*
6389 * Start new inodes with an inode_ref. This is slightly more
6390 * efficient for small numbers of hard links since they will
6391 * be packed into one item. Extended refs will kick in if we
6392 * add more hard links than can fit in the ref item.
6393 */
6394 key[1].objectid = objectid;
962a298f 6395 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6396 key[1].offset = ref_objectid;
6397
6398 sizes[1] = name_len + sizeof(*ref);
6399 }
9c58309d 6400
b0d5d10f
CM
6401 location = &BTRFS_I(inode)->location;
6402 location->objectid = objectid;
6403 location->offset = 0;
962a298f 6404 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6405
6406 ret = btrfs_insert_inode_locked(inode);
6407 if (ret < 0)
6408 goto fail;
6409
b9473439 6410 path->leave_spinning = 1;
ef3b9af5 6411 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6412 if (ret != 0)
b0d5d10f 6413 goto fail_unlock;
5f39d397 6414
ecc11fab 6415 inode_init_owner(inode, dir, mode);
a76a3cd4 6416 inode_set_bytes(inode, 0);
9cc97d64 6417
c2050a45 6418 inode->i_mtime = current_time(inode);
9cc97d64 6419 inode->i_atime = inode->i_mtime;
6420 inode->i_ctime = inode->i_mtime;
6421 BTRFS_I(inode)->i_otime = inode->i_mtime;
6422
5f39d397
CM
6423 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6424 struct btrfs_inode_item);
b159fa28 6425 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6426 sizeof(*inode_item));
e02119d5 6427 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6428
ef3b9af5
FM
6429 if (name) {
6430 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6431 struct btrfs_inode_ref);
6432 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6433 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6434 ptr = (unsigned long)(ref + 1);
6435 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6436 }
9c58309d 6437
5f39d397
CM
6438 btrfs_mark_buffer_dirty(path->nodes[0]);
6439 btrfs_free_path(path);
6440
6cbff00f
CH
6441 btrfs_inherit_iflags(inode, dir);
6442
569254b0 6443 if (S_ISREG(mode)) {
0b246afa 6444 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6445 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6446 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6447 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6448 BTRFS_INODE_NODATASUM;
94272164
CM
6449 }
6450
5d4f98a2 6451 inode_tree_add(inode);
1abe9b8a 6452
6453 trace_btrfs_inode_new(inode);
1973f0fa 6454 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6455
8ea05e3a
AB
6456 btrfs_update_root_times(trans, root);
6457
63541927
FDBM
6458 ret = btrfs_inode_inherit_props(trans, inode, dir);
6459 if (ret)
0b246afa 6460 btrfs_err(fs_info,
63541927 6461 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6462 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6463
39279cc3 6464 return inode;
b0d5d10f
CM
6465
6466fail_unlock:
6467 unlock_new_inode(inode);
5f39d397 6468fail:
ef3b9af5 6469 if (dir && name)
aec7477b 6470 BTRFS_I(dir)->index_cnt--;
5f39d397 6471 btrfs_free_path(path);
09771430 6472 iput(inode);
5f39d397 6473 return ERR_PTR(ret);
39279cc3
CM
6474}
6475
6476static inline u8 btrfs_inode_type(struct inode *inode)
6477{
6478 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6479}
6480
d352ac68
CM
6481/*
6482 * utility function to add 'inode' into 'parent_inode' with
6483 * a give name and a given sequence number.
6484 * if 'add_backref' is true, also insert a backref from the
6485 * inode to the parent directory.
6486 */
e02119d5 6487int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6488 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6489 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6490{
db0a669f 6491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6492 int ret = 0;
39279cc3 6493 struct btrfs_key key;
db0a669f
NB
6494 struct btrfs_root *root = parent_inode->root;
6495 u64 ino = btrfs_ino(inode);
6496 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6497
33345d01 6498 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6499 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6500 } else {
33345d01 6501 key.objectid = ino;
962a298f 6502 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6503 key.offset = 0;
6504 }
6505
33345d01 6506 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6507 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6508 root->root_key.objectid, parent_ino,
6509 index, name, name_len);
4df27c4d 6510 } else if (add_backref) {
33345d01
LZ
6511 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6512 parent_ino, index);
4df27c4d 6513 }
39279cc3 6514
79787eaa
JM
6515 /* Nothing to clean up yet */
6516 if (ret)
6517 return ret;
4df27c4d 6518
79787eaa
JM
6519 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6520 parent_inode, &key,
db0a669f 6521 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6522 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6523 goto fail_dir_item;
6524 else if (ret) {
66642832 6525 btrfs_abort_transaction(trans, ret);
79787eaa 6526 return ret;
39279cc3 6527 }
79787eaa 6528
db0a669f 6529 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6530 name_len * 2);
db0a669f
NB
6531 inode_inc_iversion(&parent_inode->vfs_inode);
6532 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6533 current_time(&parent_inode->vfs_inode);
6534 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6535 if (ret)
66642832 6536 btrfs_abort_transaction(trans, ret);
39279cc3 6537 return ret;
fe66a05a
CM
6538
6539fail_dir_item:
6540 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6541 u64 local_index;
6542 int err;
0b246afa
JM
6543 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6544 root->root_key.objectid, parent_ino,
6545 &local_index, name, name_len);
fe66a05a
CM
6546
6547 } else if (add_backref) {
6548 u64 local_index;
6549 int err;
6550
6551 err = btrfs_del_inode_ref(trans, root, name, name_len,
6552 ino, parent_ino, &local_index);
6553 }
6554 return ret;
39279cc3
CM
6555}
6556
6557static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6558 struct btrfs_inode *dir, struct dentry *dentry,
6559 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6560{
a1b075d2
JB
6561 int err = btrfs_add_link(trans, dir, inode,
6562 dentry->d_name.name, dentry->d_name.len,
6563 backref, index);
39279cc3
CM
6564 if (err > 0)
6565 err = -EEXIST;
6566 return err;
6567}
6568
618e21d5 6569static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6570 umode_t mode, dev_t rdev)
618e21d5 6571{
2ff7e61e 6572 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6573 struct btrfs_trans_handle *trans;
6574 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6575 struct inode *inode = NULL;
618e21d5
JB
6576 int err;
6577 int drop_inode = 0;
6578 u64 objectid;
00e4e6b3 6579 u64 index = 0;
618e21d5 6580
9ed74f2d
JB
6581 /*
6582 * 2 for inode item and ref
6583 * 2 for dir items
6584 * 1 for xattr if selinux is on
6585 */
a22285a6
YZ
6586 trans = btrfs_start_transaction(root, 5);
6587 if (IS_ERR(trans))
6588 return PTR_ERR(trans);
1832a6d5 6589
581bb050
LZ
6590 err = btrfs_find_free_ino(root, &objectid);
6591 if (err)
6592 goto out_unlock;
6593
aec7477b 6594 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6595 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6596 mode, &index);
7cf96da3
TI
6597 if (IS_ERR(inode)) {
6598 err = PTR_ERR(inode);
618e21d5 6599 goto out_unlock;
7cf96da3 6600 }
618e21d5 6601
ad19db71
CS
6602 /*
6603 * If the active LSM wants to access the inode during
6604 * d_instantiate it needs these. Smack checks to see
6605 * if the filesystem supports xattrs by looking at the
6606 * ops vector.
6607 */
ad19db71 6608 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6609 init_special_inode(inode, inode->i_mode, rdev);
6610
6611 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6612 if (err)
b0d5d10f
CM
6613 goto out_unlock_inode;
6614
cef415af
NB
6615 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6616 0, index);
b0d5d10f
CM
6617 if (err) {
6618 goto out_unlock_inode;
6619 } else {
1b4ab1bb 6620 btrfs_update_inode(trans, root, inode);
b0d5d10f 6621 unlock_new_inode(inode);
08c422c2 6622 d_instantiate(dentry, inode);
618e21d5 6623 }
b0d5d10f 6624
618e21d5 6625out_unlock:
3a45bb20 6626 btrfs_end_transaction(trans);
2ff7e61e 6627 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6628 if (drop_inode) {
6629 inode_dec_link_count(inode);
6630 iput(inode);
6631 }
618e21d5 6632 return err;
b0d5d10f
CM
6633
6634out_unlock_inode:
6635 drop_inode = 1;
6636 unlock_new_inode(inode);
6637 goto out_unlock;
6638
618e21d5
JB
6639}
6640
39279cc3 6641static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6642 umode_t mode, bool excl)
39279cc3 6643{
2ff7e61e 6644 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6645 struct btrfs_trans_handle *trans;
6646 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6647 struct inode *inode = NULL;
43baa579 6648 int drop_inode_on_err = 0;
a22285a6 6649 int err;
39279cc3 6650 u64 objectid;
00e4e6b3 6651 u64 index = 0;
39279cc3 6652
9ed74f2d
JB
6653 /*
6654 * 2 for inode item and ref
6655 * 2 for dir items
6656 * 1 for xattr if selinux is on
6657 */
a22285a6
YZ
6658 trans = btrfs_start_transaction(root, 5);
6659 if (IS_ERR(trans))
6660 return PTR_ERR(trans);
9ed74f2d 6661
581bb050
LZ
6662 err = btrfs_find_free_ino(root, &objectid);
6663 if (err)
6664 goto out_unlock;
6665
aec7477b 6666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6667 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6668 mode, &index);
7cf96da3
TI
6669 if (IS_ERR(inode)) {
6670 err = PTR_ERR(inode);
39279cc3 6671 goto out_unlock;
7cf96da3 6672 }
43baa579 6673 drop_inode_on_err = 1;
ad19db71
CS
6674 /*
6675 * If the active LSM wants to access the inode during
6676 * d_instantiate it needs these. Smack checks to see
6677 * if the filesystem supports xattrs by looking at the
6678 * ops vector.
6679 */
6680 inode->i_fop = &btrfs_file_operations;
6681 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6682 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6683
6684 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6685 if (err)
6686 goto out_unlock_inode;
6687
6688 err = btrfs_update_inode(trans, root, inode);
6689 if (err)
6690 goto out_unlock_inode;
ad19db71 6691
cef415af
NB
6692 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6693 0, index);
39279cc3 6694 if (err)
b0d5d10f 6695 goto out_unlock_inode;
43baa579 6696
43baa579 6697 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6698 unlock_new_inode(inode);
43baa579
FB
6699 d_instantiate(dentry, inode);
6700
39279cc3 6701out_unlock:
3a45bb20 6702 btrfs_end_transaction(trans);
43baa579 6703 if (err && drop_inode_on_err) {
39279cc3
CM
6704 inode_dec_link_count(inode);
6705 iput(inode);
6706 }
2ff7e61e 6707 btrfs_btree_balance_dirty(fs_info);
39279cc3 6708 return err;
b0d5d10f
CM
6709
6710out_unlock_inode:
6711 unlock_new_inode(inode);
6712 goto out_unlock;
6713
39279cc3
CM
6714}
6715
6716static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6717 struct dentry *dentry)
6718{
271dba45 6719 struct btrfs_trans_handle *trans = NULL;
39279cc3 6720 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6721 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6723 u64 index;
39279cc3
CM
6724 int err;
6725 int drop_inode = 0;
6726
4a8be425
TH
6727 /* do not allow sys_link's with other subvols of the same device */
6728 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6729 return -EXDEV;
4a8be425 6730
f186373f 6731 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6732 return -EMLINK;
4a8be425 6733
877574e2 6734 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6735 if (err)
6736 goto fail;
6737
a22285a6 6738 /*
7e6b6465 6739 * 2 items for inode and inode ref
a22285a6 6740 * 2 items for dir items
7e6b6465 6741 * 1 item for parent inode
a22285a6 6742 */
7e6b6465 6743 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6744 if (IS_ERR(trans)) {
6745 err = PTR_ERR(trans);
271dba45 6746 trans = NULL;
a22285a6
YZ
6747 goto fail;
6748 }
5f39d397 6749
67de1176
MX
6750 /* There are several dir indexes for this inode, clear the cache. */
6751 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6752 inc_nlink(inode);
0c4d2d95 6753 inode_inc_iversion(inode);
c2050a45 6754 inode->i_ctime = current_time(inode);
7de9c6ee 6755 ihold(inode);
e9976151 6756 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6757
cef415af
NB
6758 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6759 1, index);
5f39d397 6760
a5719521 6761 if (err) {
54aa1f4d 6762 drop_inode = 1;
a5719521 6763 } else {
10d9f309 6764 struct dentry *parent = dentry->d_parent;
a5719521 6765 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6766 if (err)
6767 goto fail;
ef3b9af5
FM
6768 if (inode->i_nlink == 1) {
6769 /*
6770 * If new hard link count is 1, it's a file created
6771 * with open(2) O_TMPFILE flag.
6772 */
3d6ae7bb 6773 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6774 if (err)
6775 goto fail;
6776 }
08c422c2 6777 d_instantiate(dentry, inode);
9ca5fbfb 6778 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6779 }
39279cc3 6780
1832a6d5 6781fail:
271dba45 6782 if (trans)
3a45bb20 6783 btrfs_end_transaction(trans);
39279cc3
CM
6784 if (drop_inode) {
6785 inode_dec_link_count(inode);
6786 iput(inode);
6787 }
2ff7e61e 6788 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6789 return err;
6790}
6791
18bb1db3 6792static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6793{
2ff7e61e 6794 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6795 struct inode *inode = NULL;
39279cc3
CM
6796 struct btrfs_trans_handle *trans;
6797 struct btrfs_root *root = BTRFS_I(dir)->root;
6798 int err = 0;
6799 int drop_on_err = 0;
b9d86667 6800 u64 objectid = 0;
00e4e6b3 6801 u64 index = 0;
39279cc3 6802
9ed74f2d
JB
6803 /*
6804 * 2 items for inode and ref
6805 * 2 items for dir items
6806 * 1 for xattr if selinux is on
6807 */
a22285a6
YZ
6808 trans = btrfs_start_transaction(root, 5);
6809 if (IS_ERR(trans))
6810 return PTR_ERR(trans);
39279cc3 6811
581bb050
LZ
6812 err = btrfs_find_free_ino(root, &objectid);
6813 if (err)
6814 goto out_fail;
6815
aec7477b 6816 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6817 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6818 S_IFDIR | mode, &index);
39279cc3
CM
6819 if (IS_ERR(inode)) {
6820 err = PTR_ERR(inode);
6821 goto out_fail;
6822 }
5f39d397 6823
39279cc3 6824 drop_on_err = 1;
b0d5d10f
CM
6825 /* these must be set before we unlock the inode */
6826 inode->i_op = &btrfs_dir_inode_operations;
6827 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6828
2a7dba39 6829 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6830 if (err)
b0d5d10f 6831 goto out_fail_inode;
39279cc3 6832
6ef06d27 6833 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6834 err = btrfs_update_inode(trans, root, inode);
6835 if (err)
b0d5d10f 6836 goto out_fail_inode;
5f39d397 6837
db0a669f
NB
6838 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6839 dentry->d_name.name,
6840 dentry->d_name.len, 0, index);
39279cc3 6841 if (err)
b0d5d10f 6842 goto out_fail_inode;
5f39d397 6843
39279cc3 6844 d_instantiate(dentry, inode);
b0d5d10f
CM
6845 /*
6846 * mkdir is special. We're unlocking after we call d_instantiate
6847 * to avoid a race with nfsd calling d_instantiate.
6848 */
6849 unlock_new_inode(inode);
39279cc3 6850 drop_on_err = 0;
39279cc3
CM
6851
6852out_fail:
3a45bb20 6853 btrfs_end_transaction(trans);
c7cfb8a5
WS
6854 if (drop_on_err) {
6855 inode_dec_link_count(inode);
39279cc3 6856 iput(inode);
c7cfb8a5 6857 }
2ff7e61e 6858 btrfs_btree_balance_dirty(fs_info);
39279cc3 6859 return err;
b0d5d10f
CM
6860
6861out_fail_inode:
6862 unlock_new_inode(inode);
6863 goto out_fail;
39279cc3
CM
6864}
6865
c8b97818 6866static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6867 struct page *page,
c8b97818
CM
6868 size_t pg_offset, u64 extent_offset,
6869 struct btrfs_file_extent_item *item)
6870{
6871 int ret;
6872 struct extent_buffer *leaf = path->nodes[0];
6873 char *tmp;
6874 size_t max_size;
6875 unsigned long inline_size;
6876 unsigned long ptr;
261507a0 6877 int compress_type;
c8b97818
CM
6878
6879 WARN_ON(pg_offset != 0);
261507a0 6880 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6881 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6882 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6883 btrfs_item_nr(path->slots[0]));
c8b97818 6884 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6885 if (!tmp)
6886 return -ENOMEM;
c8b97818
CM
6887 ptr = btrfs_file_extent_inline_start(item);
6888
6889 read_extent_buffer(leaf, tmp, ptr, inline_size);
6890
09cbfeaf 6891 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6892 ret = btrfs_decompress(compress_type, tmp, page,
6893 extent_offset, inline_size, max_size);
e1699d2d
ZB
6894
6895 /*
6896 * decompression code contains a memset to fill in any space between the end
6897 * of the uncompressed data and the end of max_size in case the decompressed
6898 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6899 * the end of an inline extent and the beginning of the next block, so we
6900 * cover that region here.
6901 */
6902
6903 if (max_size + pg_offset < PAGE_SIZE) {
6904 char *map = kmap(page);
6905 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6906 kunmap(page);
6907 }
c8b97818 6908 kfree(tmp);
166ae5a4 6909 return ret;
c8b97818
CM
6910}
6911
d352ac68
CM
6912/*
6913 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6914 * the ugly parts come from merging extents from the disk with the in-ram
6915 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6916 * where the in-ram extents might be locked pending data=ordered completion.
6917 *
6918 * This also copies inline extents directly into the page.
6919 */
fc4f21b1
NB
6920struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6921 struct page *page,
6922 size_t pg_offset, u64 start, u64 len,
6923 int create)
a52d9a80 6924{
fc4f21b1 6925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6926 int ret;
6927 int err = 0;
a52d9a80
CM
6928 u64 extent_start = 0;
6929 u64 extent_end = 0;
fc4f21b1 6930 u64 objectid = btrfs_ino(inode);
a52d9a80 6931 u32 found_type;
f421950f 6932 struct btrfs_path *path = NULL;
fc4f21b1 6933 struct btrfs_root *root = inode->root;
a52d9a80 6934 struct btrfs_file_extent_item *item;
5f39d397
CM
6935 struct extent_buffer *leaf;
6936 struct btrfs_key found_key;
a52d9a80 6937 struct extent_map *em = NULL;
fc4f21b1
NB
6938 struct extent_map_tree *em_tree = &inode->extent_tree;
6939 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6940 const bool new_inline = !page || create;
a52d9a80 6941
890871be 6942 read_lock(&em_tree->lock);
d1310b2e 6943 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6944 if (em)
0b246afa 6945 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6946 read_unlock(&em_tree->lock);
d1310b2e 6947
a52d9a80 6948 if (em) {
e1c4b745
CM
6949 if (em->start > start || em->start + em->len <= start)
6950 free_extent_map(em);
6951 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6952 free_extent_map(em);
6953 else
6954 goto out;
a52d9a80 6955 }
172ddd60 6956 em = alloc_extent_map();
a52d9a80 6957 if (!em) {
d1310b2e
CM
6958 err = -ENOMEM;
6959 goto out;
a52d9a80 6960 }
0b246afa 6961 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6962 em->start = EXTENT_MAP_HOLE;
445a6944 6963 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6964 em->len = (u64)-1;
c8b97818 6965 em->block_len = (u64)-1;
f421950f
CM
6966
6967 if (!path) {
6968 path = btrfs_alloc_path();
026fd317
JB
6969 if (!path) {
6970 err = -ENOMEM;
6971 goto out;
6972 }
6973 /*
6974 * Chances are we'll be called again, so go ahead and do
6975 * readahead
6976 */
e4058b54 6977 path->reada = READA_FORWARD;
f421950f
CM
6978 }
6979
5c9a702e 6980 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6981 if (ret < 0) {
6982 err = ret;
6983 goto out;
6984 }
6985
6986 if (ret != 0) {
6987 if (path->slots[0] == 0)
6988 goto not_found;
6989 path->slots[0]--;
6990 }
6991
5f39d397
CM
6992 leaf = path->nodes[0];
6993 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6994 struct btrfs_file_extent_item);
a52d9a80 6995 /* are we inside the extent that was found? */
5f39d397 6996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6997 found_type = found_key.type;
5f39d397 6998 if (found_key.objectid != objectid ||
a52d9a80 6999 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7000 /*
7001 * If we backup past the first extent we want to move forward
7002 * and see if there is an extent in front of us, otherwise we'll
7003 * say there is a hole for our whole search range which can
7004 * cause problems.
7005 */
7006 extent_end = start;
7007 goto next;
a52d9a80
CM
7008 }
7009
5f39d397
CM
7010 found_type = btrfs_file_extent_type(leaf, item);
7011 extent_start = found_key.offset;
d899e052
YZ
7012 if (found_type == BTRFS_FILE_EXTENT_REG ||
7013 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7014 extent_end = extent_start +
db94535d 7015 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7016
7017 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7018 extent_start);
9036c102
YZ
7019 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7020 size_t size;
514ac8ad 7021 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7022 extent_end = ALIGN(extent_start + size,
0b246afa 7023 fs_info->sectorsize);
09ed2f16
LB
7024
7025 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7026 path->slots[0],
7027 extent_start);
9036c102 7028 }
25a50341 7029next:
9036c102
YZ
7030 if (start >= extent_end) {
7031 path->slots[0]++;
7032 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7033 ret = btrfs_next_leaf(root, path);
7034 if (ret < 0) {
7035 err = ret;
7036 goto out;
a52d9a80 7037 }
9036c102
YZ
7038 if (ret > 0)
7039 goto not_found;
7040 leaf = path->nodes[0];
a52d9a80 7041 }
9036c102
YZ
7042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7043 if (found_key.objectid != objectid ||
7044 found_key.type != BTRFS_EXTENT_DATA_KEY)
7045 goto not_found;
7046 if (start + len <= found_key.offset)
7047 goto not_found;
e2eca69d
WS
7048 if (start > found_key.offset)
7049 goto next;
9036c102 7050 em->start = start;
70c8a91c 7051 em->orig_start = start;
9036c102
YZ
7052 em->len = found_key.offset - start;
7053 goto not_found_em;
7054 }
7055
fc4f21b1 7056 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7057 new_inline, em);
7ffbb598 7058
d899e052
YZ
7059 if (found_type == BTRFS_FILE_EXTENT_REG ||
7060 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7061 goto insert;
7062 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7063 unsigned long ptr;
a52d9a80 7064 char *map;
3326d1b0
CM
7065 size_t size;
7066 size_t extent_offset;
7067 size_t copy_size;
a52d9a80 7068
7ffbb598 7069 if (new_inline)
689f9346 7070 goto out;
5f39d397 7071
514ac8ad 7072 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7073 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7074 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7075 size - extent_offset);
3326d1b0 7076 em->start = extent_start + extent_offset;
0b246afa 7077 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7078 em->orig_block_len = em->len;
70c8a91c 7079 em->orig_start = em->start;
689f9346 7080 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7081 if (!PageUptodate(page)) {
261507a0
LZ
7082 if (btrfs_file_extent_compression(leaf, item) !=
7083 BTRFS_COMPRESS_NONE) {
e40da0e5 7084 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7085 extent_offset, item);
166ae5a4
ZB
7086 if (ret) {
7087 err = ret;
7088 goto out;
7089 }
c8b97818
CM
7090 } else {
7091 map = kmap(page);
7092 read_extent_buffer(leaf, map + pg_offset, ptr,
7093 copy_size);
09cbfeaf 7094 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7095 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7096 PAGE_SIZE - pg_offset -
93c82d57
CM
7097 copy_size);
7098 }
c8b97818
CM
7099 kunmap(page);
7100 }
179e29e4 7101 flush_dcache_page(page);
a52d9a80 7102 }
d1310b2e 7103 set_extent_uptodate(io_tree, em->start,
507903b8 7104 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7105 goto insert;
a52d9a80
CM
7106 }
7107not_found:
7108 em->start = start;
70c8a91c 7109 em->orig_start = start;
d1310b2e 7110 em->len = len;
a52d9a80 7111not_found_em:
5f39d397 7112 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7113insert:
b3b4aa74 7114 btrfs_release_path(path);
d1310b2e 7115 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7116 btrfs_err(fs_info,
5d163e0e
JM
7117 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7118 em->start, em->len, start, len);
a52d9a80
CM
7119 err = -EIO;
7120 goto out;
7121 }
d1310b2e
CM
7122
7123 err = 0;
890871be 7124 write_lock(&em_tree->lock);
7b4df058 7125 err = btrfs_add_extent_mapping(em_tree, &em, start, len);
890871be 7126 write_unlock(&em_tree->lock);
a52d9a80 7127out:
1abe9b8a 7128
fc4f21b1 7129 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7130
527afb44 7131 btrfs_free_path(path);
a52d9a80
CM
7132 if (err) {
7133 free_extent_map(em);
a52d9a80
CM
7134 return ERR_PTR(err);
7135 }
79787eaa 7136 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7137 return em;
7138}
7139
fc4f21b1
NB
7140struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7141 struct page *page,
7142 size_t pg_offset, u64 start, u64 len,
7143 int create)
ec29ed5b
CM
7144{
7145 struct extent_map *em;
7146 struct extent_map *hole_em = NULL;
7147 u64 range_start = start;
7148 u64 end;
7149 u64 found;
7150 u64 found_end;
7151 int err = 0;
7152
7153 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7154 if (IS_ERR(em))
7155 return em;
9986277e
DC
7156 /*
7157 * If our em maps to:
7158 * - a hole or
7159 * - a pre-alloc extent,
7160 * there might actually be delalloc bytes behind it.
7161 */
7162 if (em->block_start != EXTENT_MAP_HOLE &&
7163 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7164 return em;
7165 else
7166 hole_em = em;
ec29ed5b
CM
7167
7168 /* check to see if we've wrapped (len == -1 or similar) */
7169 end = start + len;
7170 if (end < start)
7171 end = (u64)-1;
7172 else
7173 end -= 1;
7174
7175 em = NULL;
7176
7177 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7178 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7179 end, len, EXTENT_DELALLOC, 1);
7180 found_end = range_start + found;
7181 if (found_end < range_start)
7182 found_end = (u64)-1;
7183
7184 /*
7185 * we didn't find anything useful, return
7186 * the original results from get_extent()
7187 */
7188 if (range_start > end || found_end <= start) {
7189 em = hole_em;
7190 hole_em = NULL;
7191 goto out;
7192 }
7193
7194 /* adjust the range_start to make sure it doesn't
7195 * go backwards from the start they passed in
7196 */
67871254 7197 range_start = max(start, range_start);
ec29ed5b
CM
7198 found = found_end - range_start;
7199
7200 if (found > 0) {
7201 u64 hole_start = start;
7202 u64 hole_len = len;
7203
172ddd60 7204 em = alloc_extent_map();
ec29ed5b
CM
7205 if (!em) {
7206 err = -ENOMEM;
7207 goto out;
7208 }
7209 /*
7210 * when btrfs_get_extent can't find anything it
7211 * returns one huge hole
7212 *
7213 * make sure what it found really fits our range, and
7214 * adjust to make sure it is based on the start from
7215 * the caller
7216 */
7217 if (hole_em) {
7218 u64 calc_end = extent_map_end(hole_em);
7219
7220 if (calc_end <= start || (hole_em->start > end)) {
7221 free_extent_map(hole_em);
7222 hole_em = NULL;
7223 } else {
7224 hole_start = max(hole_em->start, start);
7225 hole_len = calc_end - hole_start;
7226 }
7227 }
7228 em->bdev = NULL;
7229 if (hole_em && range_start > hole_start) {
7230 /* our hole starts before our delalloc, so we
7231 * have to return just the parts of the hole
7232 * that go until the delalloc starts
7233 */
7234 em->len = min(hole_len,
7235 range_start - hole_start);
7236 em->start = hole_start;
7237 em->orig_start = hole_start;
7238 /*
7239 * don't adjust block start at all,
7240 * it is fixed at EXTENT_MAP_HOLE
7241 */
7242 em->block_start = hole_em->block_start;
7243 em->block_len = hole_len;
f9e4fb53
LB
7244 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7245 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7246 } else {
7247 em->start = range_start;
7248 em->len = found;
7249 em->orig_start = range_start;
7250 em->block_start = EXTENT_MAP_DELALLOC;
7251 em->block_len = found;
7252 }
bf8d32b9 7253 } else {
ec29ed5b
CM
7254 return hole_em;
7255 }
7256out:
7257
7258 free_extent_map(hole_em);
7259 if (err) {
7260 free_extent_map(em);
7261 return ERR_PTR(err);
7262 }
7263 return em;
7264}
7265
5f9a8a51
FM
7266static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7267 const u64 start,
7268 const u64 len,
7269 const u64 orig_start,
7270 const u64 block_start,
7271 const u64 block_len,
7272 const u64 orig_block_len,
7273 const u64 ram_bytes,
7274 const int type)
7275{
7276 struct extent_map *em = NULL;
7277 int ret;
7278
5f9a8a51 7279 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7280 em = create_io_em(inode, start, len, orig_start,
7281 block_start, block_len, orig_block_len,
7282 ram_bytes,
7283 BTRFS_COMPRESS_NONE, /* compress_type */
7284 type);
5f9a8a51
FM
7285 if (IS_ERR(em))
7286 goto out;
7287 }
7288 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7289 len, block_len, type);
7290 if (ret) {
7291 if (em) {
7292 free_extent_map(em);
dcdbc059 7293 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7294 start + len - 1, 0);
7295 }
7296 em = ERR_PTR(ret);
7297 }
7298 out:
5f9a8a51
FM
7299
7300 return em;
7301}
7302
4b46fce2
JB
7303static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7304 u64 start, u64 len)
7305{
0b246afa 7306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7307 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7308 struct extent_map *em;
4b46fce2
JB
7309 struct btrfs_key ins;
7310 u64 alloc_hint;
7311 int ret;
4b46fce2 7312
4b46fce2 7313 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7314 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7315 0, alloc_hint, &ins, 1, 1);
00361589
JB
7316 if (ret)
7317 return ERR_PTR(ret);
4b46fce2 7318
5f9a8a51
FM
7319 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7320 ins.objectid, ins.offset, ins.offset,
6288d6ea 7321 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7322 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7323 if (IS_ERR(em))
2ff7e61e
JM
7324 btrfs_free_reserved_extent(fs_info, ins.objectid,
7325 ins.offset, 1);
de0ee0ed 7326
4b46fce2
JB
7327 return em;
7328}
7329
46bfbb5c
CM
7330/*
7331 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7332 * block must be cow'd
7333 */
00361589 7334noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7335 u64 *orig_start, u64 *orig_block_len,
7336 u64 *ram_bytes)
46bfbb5c 7337{
2ff7e61e 7338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7339 struct btrfs_path *path;
7340 int ret;
7341 struct extent_buffer *leaf;
7342 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7343 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7344 struct btrfs_file_extent_item *fi;
7345 struct btrfs_key key;
7346 u64 disk_bytenr;
7347 u64 backref_offset;
7348 u64 extent_end;
7349 u64 num_bytes;
7350 int slot;
7351 int found_type;
7ee9e440 7352 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7353
46bfbb5c
CM
7354 path = btrfs_alloc_path();
7355 if (!path)
7356 return -ENOMEM;
7357
f85b7379
DS
7358 ret = btrfs_lookup_file_extent(NULL, root, path,
7359 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7360 if (ret < 0)
7361 goto out;
7362
7363 slot = path->slots[0];
7364 if (ret == 1) {
7365 if (slot == 0) {
7366 /* can't find the item, must cow */
7367 ret = 0;
7368 goto out;
7369 }
7370 slot--;
7371 }
7372 ret = 0;
7373 leaf = path->nodes[0];
7374 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7375 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7376 key.type != BTRFS_EXTENT_DATA_KEY) {
7377 /* not our file or wrong item type, must cow */
7378 goto out;
7379 }
7380
7381 if (key.offset > offset) {
7382 /* Wrong offset, must cow */
7383 goto out;
7384 }
7385
7386 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7387 found_type = btrfs_file_extent_type(leaf, fi);
7388 if (found_type != BTRFS_FILE_EXTENT_REG &&
7389 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7390 /* not a regular extent, must cow */
7391 goto out;
7392 }
7ee9e440
JB
7393
7394 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7395 goto out;
7396
e77751aa
MX
7397 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7398 if (extent_end <= offset)
7399 goto out;
7400
46bfbb5c 7401 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7402 if (disk_bytenr == 0)
7403 goto out;
7404
7405 if (btrfs_file_extent_compression(leaf, fi) ||
7406 btrfs_file_extent_encryption(leaf, fi) ||
7407 btrfs_file_extent_other_encoding(leaf, fi))
7408 goto out;
7409
46bfbb5c
CM
7410 backref_offset = btrfs_file_extent_offset(leaf, fi);
7411
7ee9e440
JB
7412 if (orig_start) {
7413 *orig_start = key.offset - backref_offset;
7414 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7415 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7416 }
eb384b55 7417
2ff7e61e 7418 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7419 goto out;
7b2b7085
MX
7420
7421 num_bytes = min(offset + *len, extent_end) - offset;
7422 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7423 u64 range_end;
7424
da17066c
JM
7425 range_end = round_up(offset + num_bytes,
7426 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7427 ret = test_range_bit(io_tree, offset, range_end,
7428 EXTENT_DELALLOC, 0, NULL);
7429 if (ret) {
7430 ret = -EAGAIN;
7431 goto out;
7432 }
7433 }
7434
1bda19eb 7435 btrfs_release_path(path);
46bfbb5c
CM
7436
7437 /*
7438 * look for other files referencing this extent, if we
7439 * find any we must cow
7440 */
00361589 7441
e4c3b2dc 7442 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7443 key.offset - backref_offset, disk_bytenr);
00361589
JB
7444 if (ret) {
7445 ret = 0;
7446 goto out;
7447 }
46bfbb5c
CM
7448
7449 /*
7450 * adjust disk_bytenr and num_bytes to cover just the bytes
7451 * in this extent we are about to write. If there
7452 * are any csums in that range we have to cow in order
7453 * to keep the csums correct
7454 */
7455 disk_bytenr += backref_offset;
7456 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7457 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7458 goto out;
46bfbb5c
CM
7459 /*
7460 * all of the above have passed, it is safe to overwrite this extent
7461 * without cow
7462 */
eb384b55 7463 *len = num_bytes;
46bfbb5c
CM
7464 ret = 1;
7465out:
7466 btrfs_free_path(path);
7467 return ret;
7468}
7469
fc4adbff
AG
7470bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7471{
7472 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7473 bool found = false;
fc4adbff
AG
7474 void **pagep = NULL;
7475 struct page *page = NULL;
cc2b702c
DS
7476 unsigned long start_idx;
7477 unsigned long end_idx;
fc4adbff 7478
09cbfeaf 7479 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7480
7481 /*
7482 * end is the last byte in the last page. end == start is legal
7483 */
09cbfeaf 7484 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7485
7486 rcu_read_lock();
7487
7488 /* Most of the code in this while loop is lifted from
7489 * find_get_page. It's been modified to begin searching from a
7490 * page and return just the first page found in that range. If the
7491 * found idx is less than or equal to the end idx then we know that
7492 * a page exists. If no pages are found or if those pages are
7493 * outside of the range then we're fine (yay!) */
7494 while (page == NULL &&
7495 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7496 page = radix_tree_deref_slot(pagep);
7497 if (unlikely(!page))
7498 break;
7499
7500 if (radix_tree_exception(page)) {
809f9016
FM
7501 if (radix_tree_deref_retry(page)) {
7502 page = NULL;
fc4adbff 7503 continue;
809f9016 7504 }
fc4adbff
AG
7505 /*
7506 * Otherwise, shmem/tmpfs must be storing a swap entry
7507 * here as an exceptional entry: so return it without
7508 * attempting to raise page count.
7509 */
6fdef6d4 7510 page = NULL;
fc4adbff
AG
7511 break; /* TODO: Is this relevant for this use case? */
7512 }
7513
91405151
FM
7514 if (!page_cache_get_speculative(page)) {
7515 page = NULL;
fc4adbff 7516 continue;
91405151 7517 }
fc4adbff
AG
7518
7519 /*
7520 * Has the page moved?
7521 * This is part of the lockless pagecache protocol. See
7522 * include/linux/pagemap.h for details.
7523 */
7524 if (unlikely(page != *pagep)) {
09cbfeaf 7525 put_page(page);
fc4adbff
AG
7526 page = NULL;
7527 }
7528 }
7529
7530 if (page) {
7531 if (page->index <= end_idx)
7532 found = true;
09cbfeaf 7533 put_page(page);
fc4adbff
AG
7534 }
7535
7536 rcu_read_unlock();
7537 return found;
7538}
7539
eb838e73
JB
7540static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7541 struct extent_state **cached_state, int writing)
7542{
7543 struct btrfs_ordered_extent *ordered;
7544 int ret = 0;
7545
7546 while (1) {
7547 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7548 cached_state);
eb838e73
JB
7549 /*
7550 * We're concerned with the entire range that we're going to be
01327610 7551 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7552 * extents in this range.
7553 */
a776c6fa 7554 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7555 lockend - lockstart + 1);
7556
7557 /*
7558 * We need to make sure there are no buffered pages in this
7559 * range either, we could have raced between the invalidate in
7560 * generic_file_direct_write and locking the extent. The
7561 * invalidate needs to happen so that reads after a write do not
7562 * get stale data.
7563 */
fc4adbff
AG
7564 if (!ordered &&
7565 (!writing ||
7566 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7567 break;
7568
7569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7570 cached_state);
eb838e73
JB
7571
7572 if (ordered) {
ade77029
FM
7573 /*
7574 * If we are doing a DIO read and the ordered extent we
7575 * found is for a buffered write, we can not wait for it
7576 * to complete and retry, because if we do so we can
7577 * deadlock with concurrent buffered writes on page
7578 * locks. This happens only if our DIO read covers more
7579 * than one extent map, if at this point has already
7580 * created an ordered extent for a previous extent map
7581 * and locked its range in the inode's io tree, and a
7582 * concurrent write against that previous extent map's
7583 * range and this range started (we unlock the ranges
7584 * in the io tree only when the bios complete and
7585 * buffered writes always lock pages before attempting
7586 * to lock range in the io tree).
7587 */
7588 if (writing ||
7589 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7590 btrfs_start_ordered_extent(inode, ordered, 1);
7591 else
7592 ret = -ENOTBLK;
eb838e73
JB
7593 btrfs_put_ordered_extent(ordered);
7594 } else {
eb838e73 7595 /*
b850ae14
FM
7596 * We could trigger writeback for this range (and wait
7597 * for it to complete) and then invalidate the pages for
7598 * this range (through invalidate_inode_pages2_range()),
7599 * but that can lead us to a deadlock with a concurrent
7600 * call to readpages() (a buffered read or a defrag call
7601 * triggered a readahead) on a page lock due to an
7602 * ordered dio extent we created before but did not have
7603 * yet a corresponding bio submitted (whence it can not
7604 * complete), which makes readpages() wait for that
7605 * ordered extent to complete while holding a lock on
7606 * that page.
eb838e73 7607 */
b850ae14 7608 ret = -ENOTBLK;
eb838e73
JB
7609 }
7610
ade77029
FM
7611 if (ret)
7612 break;
7613
eb838e73
JB
7614 cond_resched();
7615 }
7616
7617 return ret;
7618}
7619
6f9994db
LB
7620/* The callers of this must take lock_extent() */
7621static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7622 u64 orig_start, u64 block_start,
7623 u64 block_len, u64 orig_block_len,
7624 u64 ram_bytes, int compress_type,
7625 int type)
69ffb543
JB
7626{
7627 struct extent_map_tree *em_tree;
7628 struct extent_map *em;
7629 struct btrfs_root *root = BTRFS_I(inode)->root;
7630 int ret;
7631
6f9994db
LB
7632 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7633 type == BTRFS_ORDERED_COMPRESSED ||
7634 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7635 type == BTRFS_ORDERED_REGULAR);
6f9994db 7636
69ffb543
JB
7637 em_tree = &BTRFS_I(inode)->extent_tree;
7638 em = alloc_extent_map();
7639 if (!em)
7640 return ERR_PTR(-ENOMEM);
7641
7642 em->start = start;
7643 em->orig_start = orig_start;
7644 em->len = len;
7645 em->block_len = block_len;
7646 em->block_start = block_start;
7647 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7648 em->orig_block_len = orig_block_len;
cc95bef6 7649 em->ram_bytes = ram_bytes;
70c8a91c 7650 em->generation = -1;
69ffb543 7651 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7652 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7653 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7654 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7655 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7656 em->compress_type = compress_type;
7657 }
69ffb543
JB
7658
7659 do {
dcdbc059 7660 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7661 em->start + em->len - 1, 0);
7662 write_lock(&em_tree->lock);
09a2a8f9 7663 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7664 write_unlock(&em_tree->lock);
6f9994db
LB
7665 /*
7666 * The caller has taken lock_extent(), who could race with us
7667 * to add em?
7668 */
69ffb543
JB
7669 } while (ret == -EEXIST);
7670
7671 if (ret) {
7672 free_extent_map(em);
7673 return ERR_PTR(ret);
7674 }
7675
6f9994db 7676 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7677 return em;
7678}
7679
4b46fce2
JB
7680static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7681 struct buffer_head *bh_result, int create)
7682{
0b246afa 7683 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7684 struct extent_map *em;
eb838e73 7685 struct extent_state *cached_state = NULL;
50745b0a 7686 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7687 u64 start = iblock << inode->i_blkbits;
eb838e73 7688 u64 lockstart, lockend;
4b46fce2 7689 u64 len = bh_result->b_size;
eb838e73 7690 int unlock_bits = EXTENT_LOCKED;
0934856d 7691 int ret = 0;
eb838e73 7692
172a5049 7693 if (create)
3266789f 7694 unlock_bits |= EXTENT_DIRTY;
172a5049 7695 else
0b246afa 7696 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7697
c329861d
JB
7698 lockstart = start;
7699 lockend = start + len - 1;
7700
e1cbbfa5
JB
7701 if (current->journal_info) {
7702 /*
7703 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7704 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7705 * confused.
7706 */
50745b0a 7707 dio_data = current->journal_info;
e1cbbfa5
JB
7708 current->journal_info = NULL;
7709 }
7710
eb838e73
JB
7711 /*
7712 * If this errors out it's because we couldn't invalidate pagecache for
7713 * this range and we need to fallback to buffered.
7714 */
9c9464cc
FM
7715 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7716 create)) {
7717 ret = -ENOTBLK;
7718 goto err;
7719 }
eb838e73 7720
fc4f21b1 7721 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7722 if (IS_ERR(em)) {
7723 ret = PTR_ERR(em);
7724 goto unlock_err;
7725 }
4b46fce2
JB
7726
7727 /*
7728 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7729 * io. INLINE is special, and we could probably kludge it in here, but
7730 * it's still buffered so for safety lets just fall back to the generic
7731 * buffered path.
7732 *
7733 * For COMPRESSED we _have_ to read the entire extent in so we can
7734 * decompress it, so there will be buffering required no matter what we
7735 * do, so go ahead and fallback to buffered.
7736 *
01327610 7737 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7738 * to buffered IO. Don't blame me, this is the price we pay for using
7739 * the generic code.
7740 */
7741 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7742 em->block_start == EXTENT_MAP_INLINE) {
7743 free_extent_map(em);
eb838e73
JB
7744 ret = -ENOTBLK;
7745 goto unlock_err;
4b46fce2
JB
7746 }
7747
7748 /* Just a good old fashioned hole, return */
7749 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7750 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7751 free_extent_map(em);
eb838e73 7752 goto unlock_err;
4b46fce2
JB
7753 }
7754
7755 /*
7756 * We don't allocate a new extent in the following cases
7757 *
7758 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7759 * existing extent.
7760 * 2) The extent is marked as PREALLOC. We're good to go here and can
7761 * just use the extent.
7762 *
7763 */
46bfbb5c 7764 if (!create) {
eb838e73
JB
7765 len = min(len, em->len - (start - em->start));
7766 lockstart = start + len;
7767 goto unlock;
46bfbb5c 7768 }
4b46fce2
JB
7769
7770 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7771 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7772 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7773 int type;
eb384b55 7774 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7775
7776 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7777 type = BTRFS_ORDERED_PREALLOC;
7778 else
7779 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7780 len = min(len, em->len - (start - em->start));
4b46fce2 7781 block_start = em->block_start + (start - em->start);
46bfbb5c 7782
00361589 7783 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7784 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7785 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7786 struct extent_map *em2;
0b901916 7787
5f9a8a51
FM
7788 em2 = btrfs_create_dio_extent(inode, start, len,
7789 orig_start, block_start,
7790 len, orig_block_len,
7791 ram_bytes, type);
0b246afa 7792 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7793 if (type == BTRFS_ORDERED_PREALLOC) {
7794 free_extent_map(em);
5f9a8a51 7795 em = em2;
69ffb543 7796 }
5f9a8a51
FM
7797 if (em2 && IS_ERR(em2)) {
7798 ret = PTR_ERR(em2);
eb838e73 7799 goto unlock_err;
46bfbb5c 7800 }
18513091
WX
7801 /*
7802 * For inode marked NODATACOW or extent marked PREALLOC,
7803 * use the existing or preallocated extent, so does not
7804 * need to adjust btrfs_space_info's bytes_may_use.
7805 */
7806 btrfs_free_reserved_data_space_noquota(inode,
7807 start, len);
46bfbb5c 7808 goto unlock;
4b46fce2 7809 }
4b46fce2 7810 }
00361589 7811
46bfbb5c
CM
7812 /*
7813 * this will cow the extent, reset the len in case we changed
7814 * it above
7815 */
7816 len = bh_result->b_size;
70c8a91c
JB
7817 free_extent_map(em);
7818 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7819 if (IS_ERR(em)) {
7820 ret = PTR_ERR(em);
7821 goto unlock_err;
7822 }
46bfbb5c
CM
7823 len = min(len, em->len - (start - em->start));
7824unlock:
4b46fce2
JB
7825 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7826 inode->i_blkbits;
46bfbb5c 7827 bh_result->b_size = len;
4b46fce2
JB
7828 bh_result->b_bdev = em->bdev;
7829 set_buffer_mapped(bh_result);
c3473e83
JB
7830 if (create) {
7831 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7832 set_buffer_new(bh_result);
7833
7834 /*
7835 * Need to update the i_size under the extent lock so buffered
7836 * readers will get the updated i_size when we unlock.
7837 */
4aaedfb0 7838 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7839 i_size_write(inode, start + len);
0934856d 7840
50745b0a 7841 WARN_ON(dio_data->reserve < len);
7842 dio_data->reserve -= len;
f28a4928 7843 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7844 current->journal_info = dio_data;
c3473e83 7845 }
4b46fce2 7846
eb838e73
JB
7847 /*
7848 * In the case of write we need to clear and unlock the entire range,
7849 * in the case of read we need to unlock only the end area that we
7850 * aren't using if there is any left over space.
7851 */
24c03fa5 7852 if (lockstart < lockend) {
0934856d
MX
7853 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7854 lockend, unlock_bits, 1, 0,
ae0f1625 7855 &cached_state);
24c03fa5 7856 } else {
eb838e73 7857 free_extent_state(cached_state);
24c03fa5 7858 }
eb838e73 7859
4b46fce2
JB
7860 free_extent_map(em);
7861
7862 return 0;
eb838e73
JB
7863
7864unlock_err:
eb838e73 7865 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7866 unlock_bits, 1, 0, &cached_state);
9c9464cc 7867err:
50745b0a 7868 if (dio_data)
7869 current->journal_info = dio_data;
eb838e73 7870 return ret;
4b46fce2
JB
7871}
7872
58efbc9f
OS
7873static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7874 struct bio *bio,
7875 int mirror_num)
8b110e39 7876{
2ff7e61e 7877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7878 blk_status_t ret;
8b110e39 7879
37226b21 7880 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7881
2ff7e61e 7882 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7883 if (ret)
ea057f6d 7884 return ret;
8b110e39 7885
2ff7e61e 7886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7887
8b110e39
MX
7888 return ret;
7889}
7890
7891static int btrfs_check_dio_repairable(struct inode *inode,
7892 struct bio *failed_bio,
7893 struct io_failure_record *failrec,
7894 int failed_mirror)
7895{
ab8d0fc4 7896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7897 int num_copies;
7898
ab8d0fc4 7899 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7900 if (num_copies == 1) {
7901 /*
7902 * we only have a single copy of the data, so don't bother with
7903 * all the retry and error correction code that follows. no
7904 * matter what the error is, it is very likely to persist.
7905 */
ab8d0fc4
JM
7906 btrfs_debug(fs_info,
7907 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7908 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7909 return 0;
7910 }
7911
7912 failrec->failed_mirror = failed_mirror;
7913 failrec->this_mirror++;
7914 if (failrec->this_mirror == failed_mirror)
7915 failrec->this_mirror++;
7916
7917 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7918 btrfs_debug(fs_info,
7919 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7920 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7921 return 0;
7922 }
7923
7924 return 1;
7925}
7926
58efbc9f
OS
7927static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7928 struct page *page, unsigned int pgoff,
7929 u64 start, u64 end, int failed_mirror,
7930 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7931{
7932 struct io_failure_record *failrec;
7870d082
JB
7933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7934 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7935 struct bio *bio;
7936 int isector;
f1c77c55 7937 unsigned int read_mode = 0;
17347cec 7938 int segs;
8b110e39 7939 int ret;
58efbc9f 7940 blk_status_t status;
c16a8ac3 7941 struct bio_vec bvec;
8b110e39 7942
37226b21 7943 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7944
7945 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7946 if (ret)
58efbc9f 7947 return errno_to_blk_status(ret);
8b110e39
MX
7948
7949 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7950 failed_mirror);
7951 if (!ret) {
7870d082 7952 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7953 return BLK_STS_IOERR;
8b110e39
MX
7954 }
7955
17347cec 7956 segs = bio_segments(failed_bio);
c16a8ac3 7957 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7958 if (segs > 1 ||
c16a8ac3 7959 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7960 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7961
7962 isector = start - btrfs_io_bio(failed_bio)->logical;
7963 isector >>= inode->i_sb->s_blocksize_bits;
7964 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7965 pgoff, isector, repair_endio, repair_arg);
37226b21 7966 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7967
7968 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7969 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7970 read_mode, failrec->this_mirror, failrec->in_validation);
7971
58efbc9f
OS
7972 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7973 if (status) {
7870d082 7974 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7975 bio_put(bio);
7976 }
7977
58efbc9f 7978 return status;
8b110e39
MX
7979}
7980
7981struct btrfs_retry_complete {
7982 struct completion done;
7983 struct inode *inode;
7984 u64 start;
7985 int uptodate;
7986};
7987
4246a0b6 7988static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7989{
7990 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7991 struct inode *inode = done->inode;
8b110e39 7992 struct bio_vec *bvec;
7870d082 7993 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7994 int i;
7995
4e4cbee9 7996 if (bio->bi_status)
8b110e39
MX
7997 goto end;
7998
2dabb324 7999 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8000 io_tree = &BTRFS_I(inode)->io_tree;
8001 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 8002 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8003
8b110e39 8004 done->uptodate = 1;
c09abff8 8005 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8006 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8007 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8008 io_tree, done->start, bvec->bv_page,
8009 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8010end:
8011 complete(&done->done);
8012 bio_put(bio);
8013}
8014
58efbc9f
OS
8015static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8016 struct btrfs_io_bio *io_bio)
4b46fce2 8017{
2dabb324 8018 struct btrfs_fs_info *fs_info;
17347cec
LB
8019 struct bio_vec bvec;
8020 struct bvec_iter iter;
8b110e39 8021 struct btrfs_retry_complete done;
4b46fce2 8022 u64 start;
2dabb324
CR
8023 unsigned int pgoff;
8024 u32 sectorsize;
8025 int nr_sectors;
58efbc9f
OS
8026 blk_status_t ret;
8027 blk_status_t err = BLK_STS_OK;
4b46fce2 8028
2dabb324 8029 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8030 sectorsize = fs_info->sectorsize;
2dabb324 8031
8b110e39
MX
8032 start = io_bio->logical;
8033 done.inode = inode;
17347cec 8034 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8035
17347cec
LB
8036 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8037 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8038 pgoff = bvec.bv_offset;
2dabb324
CR
8039
8040next_block_or_try_again:
8b110e39
MX
8041 done.uptodate = 0;
8042 done.start = start;
8043 init_completion(&done.done);
8044
17347cec 8045 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8046 pgoff, start, start + sectorsize - 1,
8047 io_bio->mirror_num,
8048 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8049 if (ret) {
8050 err = ret;
8051 goto next;
8052 }
8b110e39 8053
9c17f6cd 8054 wait_for_completion_io(&done.done);
8b110e39
MX
8055
8056 if (!done.uptodate) {
8057 /* We might have another mirror, so try again */
2dabb324 8058 goto next_block_or_try_again;
8b110e39
MX
8059 }
8060
629ebf4f 8061next:
2dabb324
CR
8062 start += sectorsize;
8063
97bf5a55
LB
8064 nr_sectors--;
8065 if (nr_sectors) {
2dabb324 8066 pgoff += sectorsize;
97bf5a55 8067 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8068 goto next_block_or_try_again;
8069 }
8b110e39
MX
8070 }
8071
629ebf4f 8072 return err;
8b110e39
MX
8073}
8074
4246a0b6 8075static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8076{
8077 struct btrfs_retry_complete *done = bio->bi_private;
8078 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8079 struct extent_io_tree *io_tree, *failure_tree;
8080 struct inode *inode = done->inode;
8b110e39
MX
8081 struct bio_vec *bvec;
8082 int uptodate;
8083 int ret;
8084 int i;
8085
4e4cbee9 8086 if (bio->bi_status)
8b110e39
MX
8087 goto end;
8088
8089 uptodate = 1;
2dabb324 8090
2dabb324 8091 ASSERT(bio->bi_vcnt == 1);
263663cd 8092 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8093
7870d082
JB
8094 io_tree = &BTRFS_I(inode)->io_tree;
8095 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8096
c09abff8 8097 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8098 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8099 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8100 bvec->bv_offset, done->start,
8101 bvec->bv_len);
8b110e39 8102 if (!ret)
7870d082
JB
8103 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8104 failure_tree, io_tree, done->start,
8105 bvec->bv_page,
8106 btrfs_ino(BTRFS_I(inode)),
8107 bvec->bv_offset);
8b110e39
MX
8108 else
8109 uptodate = 0;
8110 }
8111
8112 done->uptodate = uptodate;
8113end:
8114 complete(&done->done);
8115 bio_put(bio);
8116}
8117
4e4cbee9
CH
8118static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8119 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8120{
2dabb324 8121 struct btrfs_fs_info *fs_info;
17347cec
LB
8122 struct bio_vec bvec;
8123 struct bvec_iter iter;
8b110e39
MX
8124 struct btrfs_retry_complete done;
8125 u64 start;
8126 u64 offset = 0;
2dabb324
CR
8127 u32 sectorsize;
8128 int nr_sectors;
8129 unsigned int pgoff;
8130 int csum_pos;
ef7cdac1 8131 bool uptodate = (err == 0);
8b110e39 8132 int ret;
58efbc9f 8133 blk_status_t status;
dc380aea 8134
2dabb324 8135 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8136 sectorsize = fs_info->sectorsize;
2dabb324 8137
58efbc9f 8138 err = BLK_STS_OK;
c1dc0896 8139 start = io_bio->logical;
8b110e39 8140 done.inode = inode;
17347cec 8141 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8142
17347cec
LB
8143 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8144 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8145
17347cec 8146 pgoff = bvec.bv_offset;
2dabb324 8147next_block:
ef7cdac1
LB
8148 if (uptodate) {
8149 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8150 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8151 bvec.bv_page, pgoff, start, sectorsize);
8152 if (likely(!ret))
8153 goto next;
8154 }
8b110e39
MX
8155try_again:
8156 done.uptodate = 0;
8157 done.start = start;
8158 init_completion(&done.done);
8159
58efbc9f
OS
8160 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8161 pgoff, start, start + sectorsize - 1,
8162 io_bio->mirror_num, btrfs_retry_endio,
8163 &done);
8164 if (status) {
8165 err = status;
8b110e39
MX
8166 goto next;
8167 }
8168
9c17f6cd 8169 wait_for_completion_io(&done.done);
8b110e39
MX
8170
8171 if (!done.uptodate) {
8172 /* We might have another mirror, so try again */
8173 goto try_again;
8174 }
8175next:
2dabb324
CR
8176 offset += sectorsize;
8177 start += sectorsize;
8178
8179 ASSERT(nr_sectors);
8180
97bf5a55
LB
8181 nr_sectors--;
8182 if (nr_sectors) {
2dabb324 8183 pgoff += sectorsize;
97bf5a55 8184 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8185 goto next_block;
8186 }
2c30c71b 8187 }
c1dc0896
MX
8188
8189 return err;
8190}
8191
4e4cbee9
CH
8192static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8193 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8194{
8195 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8196
8197 if (skip_csum) {
8198 if (unlikely(err))
8199 return __btrfs_correct_data_nocsum(inode, io_bio);
8200 else
58efbc9f 8201 return BLK_STS_OK;
8b110e39
MX
8202 } else {
8203 return __btrfs_subio_endio_read(inode, io_bio, err);
8204 }
8205}
8206
4246a0b6 8207static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8208{
8209 struct btrfs_dio_private *dip = bio->bi_private;
8210 struct inode *inode = dip->inode;
8211 struct bio *dio_bio;
8212 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8213 blk_status_t err = bio->bi_status;
c1dc0896 8214
99c4e3b9 8215 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8216 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8217
4b46fce2 8218 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8219 dip->logical_offset + dip->bytes - 1);
9be3395b 8220 dio_bio = dip->dio_bio;
4b46fce2 8221
4b46fce2 8222 kfree(dip);
c0da7aa1 8223
99c4e3b9 8224 dio_bio->bi_status = err;
4055351c 8225 dio_end_io(dio_bio);
23ea8e5a
MX
8226
8227 if (io_bio->end_io)
4e4cbee9 8228 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8229 bio_put(bio);
4b46fce2
JB
8230}
8231
52427260
QW
8232static void __endio_write_update_ordered(struct inode *inode,
8233 const u64 offset, const u64 bytes,
8234 const bool uptodate)
4b46fce2 8235{
0b246afa 8236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8237 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8238 struct btrfs_workqueue *wq;
8239 btrfs_work_func_t func;
14543774
FM
8240 u64 ordered_offset = offset;
8241 u64 ordered_bytes = bytes;
67c003f9 8242 u64 last_offset;
4b46fce2
JB
8243 int ret;
8244
52427260
QW
8245 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8246 wq = fs_info->endio_freespace_worker;
8247 func = btrfs_freespace_write_helper;
8248 } else {
8249 wq = fs_info->endio_write_workers;
8250 func = btrfs_endio_write_helper;
8251 }
8252
163cf09c 8253again:
67c003f9 8254 last_offset = ordered_offset;
163cf09c
CM
8255 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8256 &ordered_offset,
4246a0b6 8257 ordered_bytes,
14543774 8258 uptodate);
4b46fce2 8259 if (!ret)
163cf09c 8260 goto out_test;
4b46fce2 8261
52427260
QW
8262 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8263 btrfs_queue_work(wq, &ordered->work);
163cf09c 8264out_test:
67c003f9
NA
8265 /*
8266 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8267 * in the range, we can exit.
8268 */
8269 if (ordered_offset == last_offset)
8270 return;
163cf09c
CM
8271 /*
8272 * our bio might span multiple ordered extents. If we haven't
8273 * completed the accounting for the whole dio, go back and try again
8274 */
14543774
FM
8275 if (ordered_offset < offset + bytes) {
8276 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8277 ordered = NULL;
163cf09c
CM
8278 goto again;
8279 }
14543774
FM
8280}
8281
8282static void btrfs_endio_direct_write(struct bio *bio)
8283{
8284 struct btrfs_dio_private *dip = bio->bi_private;
8285 struct bio *dio_bio = dip->dio_bio;
8286
52427260 8287 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8288 dip->bytes, !bio->bi_status);
4b46fce2 8289
4b46fce2 8290 kfree(dip);
c0da7aa1 8291
4e4cbee9 8292 dio_bio->bi_status = bio->bi_status;
4055351c 8293 dio_end_io(dio_bio);
9be3395b 8294 bio_put(bio);
4b46fce2
JB
8295}
8296
8c27cb35 8297static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8298 struct bio *bio, int mirror_num,
8299 unsigned long bio_flags, u64 offset)
8300{
c6100a4b 8301 struct inode *inode = private_data;
4e4cbee9 8302 blk_status_t ret;
2ff7e61e 8303 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8304 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8305 return 0;
8306}
8307
4246a0b6 8308static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8309{
8310 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8311 blk_status_t err = bio->bi_status;
e65e1535 8312
8b110e39
MX
8313 if (err)
8314 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8315 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8316 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8317 bio->bi_opf,
8b110e39
MX
8318 (unsigned long long)bio->bi_iter.bi_sector,
8319 bio->bi_iter.bi_size, err);
8320
8321 if (dip->subio_endio)
8322 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8323
8324 if (err) {
e65e1535
MX
8325 dip->errors = 1;
8326
8327 /*
8328 * before atomic variable goto zero, we must make sure
8329 * dip->errors is perceived to be set.
8330 */
4e857c58 8331 smp_mb__before_atomic();
e65e1535
MX
8332 }
8333
8334 /* if there are more bios still pending for this dio, just exit */
8335 if (!atomic_dec_and_test(&dip->pending_bios))
8336 goto out;
8337
9be3395b 8338 if (dip->errors) {
e65e1535 8339 bio_io_error(dip->orig_bio);
9be3395b 8340 } else {
2dbe0c77 8341 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8342 bio_endio(dip->orig_bio);
e65e1535
MX
8343 }
8344out:
8345 bio_put(bio);
8346}
8347
4e4cbee9 8348static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8349 struct btrfs_dio_private *dip,
8350 struct bio *bio,
8351 u64 file_offset)
8352{
8353 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8354 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8355 blk_status_t ret;
c1dc0896
MX
8356
8357 /*
8358 * We load all the csum data we need when we submit
8359 * the first bio to reduce the csum tree search and
8360 * contention.
8361 */
8362 if (dip->logical_offset == file_offset) {
2ff7e61e 8363 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8364 file_offset);
8365 if (ret)
8366 return ret;
8367 }
8368
8369 if (bio == dip->orig_bio)
8370 return 0;
8371
8372 file_offset -= dip->logical_offset;
8373 file_offset >>= inode->i_sb->s_blocksize_bits;
8374 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8375
8376 return 0;
8377}
8378
58efbc9f
OS
8379static inline blk_status_t
8380__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8381 int async_submit)
e65e1535 8382{
0b246afa 8383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8384 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8385 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8386 blk_status_t ret;
e65e1535 8387
4c274bc6 8388 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8389 if (async_submit)
8390 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8391
5fd02043 8392 if (!write) {
0b246afa 8393 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8394 if (ret)
8395 goto err;
8396 }
e65e1535 8397
e6961cac 8398 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8399 goto map;
8400
8401 if (write && async_submit) {
c6100a4b
JB
8402 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8403 file_offset, inode,
0b246afa
JM
8404 __btrfs_submit_bio_start_direct_io,
8405 __btrfs_submit_bio_done);
e65e1535 8406 goto err;
1ae39938
JB
8407 } else if (write) {
8408 /*
8409 * If we aren't doing async submit, calculate the csum of the
8410 * bio now.
8411 */
2ff7e61e 8412 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8413 if (ret)
8414 goto err;
23ea8e5a 8415 } else {
2ff7e61e 8416 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8417 file_offset);
c2db1073
TI
8418 if (ret)
8419 goto err;
8420 }
1ae39938 8421map:
9b4a9b28 8422 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8423err:
e65e1535
MX
8424 return ret;
8425}
8426
e6961cac 8427static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8428{
8429 struct inode *inode = dip->inode;
0b246afa 8430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8431 struct bio *bio;
8432 struct bio *orig_bio = dip->orig_bio;
4f024f37 8433 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8434 u64 file_offset = dip->logical_offset;
e65e1535 8435 u64 map_length;
1ae39938 8436 int async_submit = 0;
725130ba
LB
8437 u64 submit_len;
8438 int clone_offset = 0;
8439 int clone_len;
5f4dc8fc 8440 int ret;
58efbc9f 8441 blk_status_t status;
e65e1535 8442
4f024f37 8443 map_length = orig_bio->bi_iter.bi_size;
725130ba 8444 submit_len = map_length;
0b246afa
JM
8445 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8446 &map_length, NULL, 0);
7a5c3c9b 8447 if (ret)
e65e1535 8448 return -EIO;
facc8a22 8449
725130ba 8450 if (map_length >= submit_len) {
02f57c7a 8451 bio = orig_bio;
c1dc0896 8452 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8453 goto submit;
8454 }
8455
53b381b3 8456 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8457 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8458 async_submit = 0;
8459 else
8460 async_submit = 1;
8461
725130ba
LB
8462 /* bio split */
8463 ASSERT(map_length <= INT_MAX);
02f57c7a 8464 atomic_inc(&dip->pending_bios);
3c91ee69 8465 do {
725130ba 8466 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8467
725130ba
LB
8468 /*
8469 * This will never fail as it's passing GPF_NOFS and
8470 * the allocation is backed by btrfs_bioset.
8471 */
e477094f 8472 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8473 clone_len);
8474 bio->bi_private = dip;
8475 bio->bi_end_io = btrfs_end_dio_bio;
8476 btrfs_io_bio(bio)->logical = file_offset;
8477
8478 ASSERT(submit_len >= clone_len);
8479 submit_len -= clone_len;
8480 if (submit_len == 0)
8481 break;
e65e1535 8482
725130ba
LB
8483 /*
8484 * Increase the count before we submit the bio so we know
8485 * the end IO handler won't happen before we increase the
8486 * count. Otherwise, the dip might get freed before we're
8487 * done setting it up.
8488 */
8489 atomic_inc(&dip->pending_bios);
e65e1535 8490
66ba772e 8491 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8492 async_submit);
8493 if (status) {
725130ba
LB
8494 bio_put(bio);
8495 atomic_dec(&dip->pending_bios);
8496 goto out_err;
8497 }
e65e1535 8498
725130ba
LB
8499 clone_offset += clone_len;
8500 start_sector += clone_len >> 9;
8501 file_offset += clone_len;
5f4dc8fc 8502
725130ba
LB
8503 map_length = submit_len;
8504 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8505 start_sector << 9, &map_length, NULL, 0);
8506 if (ret)
8507 goto out_err;
3c91ee69 8508 } while (submit_len > 0);
e65e1535 8509
02f57c7a 8510submit:
66ba772e 8511 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8512 if (!status)
e65e1535
MX
8513 return 0;
8514
8515 bio_put(bio);
8516out_err:
8517 dip->errors = 1;
8518 /*
8519 * before atomic variable goto zero, we must
8520 * make sure dip->errors is perceived to be set.
8521 */
4e857c58 8522 smp_mb__before_atomic();
e65e1535
MX
8523 if (atomic_dec_and_test(&dip->pending_bios))
8524 bio_io_error(dip->orig_bio);
8525
8526 /* bio_end_io() will handle error, so we needn't return it */
8527 return 0;
8528}
8529
8a4c1e42
MC
8530static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8531 loff_t file_offset)
4b46fce2 8532{
61de718f 8533 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8534 struct bio *bio = NULL;
8535 struct btrfs_io_bio *io_bio;
8a4c1e42 8536 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8537 int ret = 0;
8538
8b6c1d56 8539 bio = btrfs_bio_clone(dio_bio);
9be3395b 8540
c1dc0896 8541 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8542 if (!dip) {
8543 ret = -ENOMEM;
61de718f 8544 goto free_ordered;
4b46fce2 8545 }
4b46fce2 8546
9be3395b 8547 dip->private = dio_bio->bi_private;
4b46fce2
JB
8548 dip->inode = inode;
8549 dip->logical_offset = file_offset;
4f024f37
KO
8550 dip->bytes = dio_bio->bi_iter.bi_size;
8551 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8552 bio->bi_private = dip;
8553 dip->orig_bio = bio;
9be3395b 8554 dip->dio_bio = dio_bio;
e65e1535 8555 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8556 io_bio = btrfs_io_bio(bio);
8557 io_bio->logical = file_offset;
4b46fce2 8558
c1dc0896 8559 if (write) {
3892ac90 8560 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8561 } else {
3892ac90 8562 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8563 dip->subio_endio = btrfs_subio_endio_read;
8564 }
4b46fce2 8565
f28a4928
FM
8566 /*
8567 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8568 * even if we fail to submit a bio, because in such case we do the
8569 * corresponding error handling below and it must not be done a second
8570 * time by btrfs_direct_IO().
8571 */
8572 if (write) {
8573 struct btrfs_dio_data *dio_data = current->journal_info;
8574
8575 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8576 dip->bytes;
8577 dio_data->unsubmitted_oe_range_start =
8578 dio_data->unsubmitted_oe_range_end;
8579 }
8580
e6961cac 8581 ret = btrfs_submit_direct_hook(dip);
e65e1535 8582 if (!ret)
eaf25d93 8583 return;
9be3395b 8584
3892ac90
LB
8585 if (io_bio->end_io)
8586 io_bio->end_io(io_bio, ret);
9be3395b 8587
4b46fce2
JB
8588free_ordered:
8589 /*
61de718f
FM
8590 * If we arrived here it means either we failed to submit the dip
8591 * or we either failed to clone the dio_bio or failed to allocate the
8592 * dip. If we cloned the dio_bio and allocated the dip, we can just
8593 * call bio_endio against our io_bio so that we get proper resource
8594 * cleanup if we fail to submit the dip, otherwise, we must do the
8595 * same as btrfs_endio_direct_[write|read] because we can't call these
8596 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8597 */
3892ac90 8598 if (bio && dip) {
054ec2f6 8599 bio_io_error(bio);
61de718f 8600 /*
3892ac90 8601 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8602 * and all the cleanup and final put for dio_bio (through
8603 * dio_end_io()).
8604 */
8605 dip = NULL;
3892ac90 8606 bio = NULL;
61de718f 8607 } else {
14543774 8608 if (write)
52427260 8609 __endio_write_update_ordered(inode,
14543774
FM
8610 file_offset,
8611 dio_bio->bi_iter.bi_size,
52427260 8612 false);
14543774 8613 else
61de718f
FM
8614 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8615 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8616
4e4cbee9 8617 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8618 /*
8619 * Releases and cleans up our dio_bio, no need to bio_put()
8620 * nor bio_endio()/bio_io_error() against dio_bio.
8621 */
4055351c 8622 dio_end_io(dio_bio);
4b46fce2 8623 }
3892ac90
LB
8624 if (bio)
8625 bio_put(bio);
61de718f 8626 kfree(dip);
4b46fce2
JB
8627}
8628
2ff7e61e 8629static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8630 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8631{
8632 int seg;
a1b75f7d 8633 int i;
0b246afa 8634 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8635 ssize_t retval = -EINVAL;
5a5f79b5
CM
8636
8637 if (offset & blocksize_mask)
8638 goto out;
8639
28060d5d
AV
8640 if (iov_iter_alignment(iter) & blocksize_mask)
8641 goto out;
a1b75f7d 8642
28060d5d 8643 /* If this is a write we don't need to check anymore */
cd27e455 8644 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8645 return 0;
8646 /*
8647 * Check to make sure we don't have duplicate iov_base's in this
8648 * iovec, if so return EINVAL, otherwise we'll get csum errors
8649 * when reading back.
8650 */
8651 for (seg = 0; seg < iter->nr_segs; seg++) {
8652 for (i = seg + 1; i < iter->nr_segs; i++) {
8653 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8654 goto out;
8655 }
5a5f79b5
CM
8656 }
8657 retval = 0;
8658out:
8659 return retval;
8660}
eb838e73 8661
c8b8e32d 8662static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8663{
4b46fce2
JB
8664 struct file *file = iocb->ki_filp;
8665 struct inode *inode = file->f_mapping->host;
0b246afa 8666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8667 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8668 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8669 loff_t offset = iocb->ki_pos;
0934856d 8670 size_t count = 0;
2e60a51e 8671 int flags = 0;
38851cc1
MX
8672 bool wakeup = true;
8673 bool relock = false;
0934856d 8674 ssize_t ret;
4b46fce2 8675
8c70c9f8 8676 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8677 return 0;
3f7c579c 8678
fe0f07d0 8679 inode_dio_begin(inode);
38851cc1 8680
0e267c44 8681 /*
41bd9ca4
MX
8682 * The generic stuff only does filemap_write_and_wait_range, which
8683 * isn't enough if we've written compressed pages to this area, so
8684 * we need to flush the dirty pages again to make absolutely sure
8685 * that any outstanding dirty pages are on disk.
0e267c44 8686 */
a6cbcd4a 8687 count = iov_iter_count(iter);
41bd9ca4
MX
8688 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8689 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8690 filemap_fdatawrite_range(inode->i_mapping, offset,
8691 offset + count - 1);
0e267c44 8692
6f673763 8693 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8694 /*
8695 * If the write DIO is beyond the EOF, we need update
8696 * the isize, but it is protected by i_mutex. So we can
8697 * not unlock the i_mutex at this case.
8698 */
8699 if (offset + count <= inode->i_size) {
4aaedfb0 8700 dio_data.overwrite = 1;
5955102c 8701 inode_unlock(inode);
38851cc1 8702 relock = true;
edf064e7
GR
8703 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8704 ret = -EAGAIN;
8705 goto out;
38851cc1 8706 }
364ecf36
QW
8707 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8708 offset, count);
0934856d 8709 if (ret)
38851cc1 8710 goto out;
e1cbbfa5
JB
8711
8712 /*
8713 * We need to know how many extents we reserved so that we can
8714 * do the accounting properly if we go over the number we
8715 * originally calculated. Abuse current->journal_info for this.
8716 */
da17066c 8717 dio_data.reserve = round_up(count,
0b246afa 8718 fs_info->sectorsize);
f28a4928
FM
8719 dio_data.unsubmitted_oe_range_start = (u64)offset;
8720 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8721 current->journal_info = &dio_data;
97dcdea0 8722 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8723 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8724 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8725 inode_dio_end(inode);
38851cc1
MX
8726 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8727 wakeup = false;
0934856d
MX
8728 }
8729
17f8c842 8730 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8731 fs_info->fs_devices->latest_bdev,
c8b8e32d 8732 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8733 btrfs_submit_direct, flags);
6f673763 8734 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8735 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8736 current->journal_info = NULL;
ddba1bfc 8737 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8738 if (dio_data.reserve)
bc42bda2
QW
8739 btrfs_delalloc_release_space(inode, data_reserved,
8740 offset, dio_data.reserve);
f28a4928
FM
8741 /*
8742 * On error we might have left some ordered extents
8743 * without submitting corresponding bios for them, so
8744 * cleanup them up to avoid other tasks getting them
8745 * and waiting for them to complete forever.
8746 */
8747 if (dio_data.unsubmitted_oe_range_start <
8748 dio_data.unsubmitted_oe_range_end)
52427260 8749 __endio_write_update_ordered(inode,
f28a4928
FM
8750 dio_data.unsubmitted_oe_range_start,
8751 dio_data.unsubmitted_oe_range_end -
8752 dio_data.unsubmitted_oe_range_start,
52427260 8753 false);
ddba1bfc 8754 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8755 btrfs_delalloc_release_space(inode, data_reserved,
8756 offset, count - (size_t)ret);
69fe2d75 8757 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8758 }
38851cc1 8759out:
2e60a51e 8760 if (wakeup)
fe0f07d0 8761 inode_dio_end(inode);
38851cc1 8762 if (relock)
5955102c 8763 inode_lock(inode);
0934856d 8764
364ecf36 8765 extent_changeset_free(data_reserved);
0934856d 8766 return ret;
16432985
CM
8767}
8768
05dadc09
TI
8769#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8770
1506fcc8
YS
8771static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8772 __u64 start, __u64 len)
8773{
05dadc09
TI
8774 int ret;
8775
8776 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8777 if (ret)
8778 return ret;
8779
2135fb9b 8780 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8781}
8782
a52d9a80 8783int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8784{
d1310b2e
CM
8785 struct extent_io_tree *tree;
8786 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8787 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8788}
1832a6d5 8789
a52d9a80 8790static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8791{
be7bd730
JB
8792 struct inode *inode = page->mapping->host;
8793 int ret;
b888db2b
CM
8794
8795 if (current->flags & PF_MEMALLOC) {
8796 redirty_page_for_writepage(wbc, page);
8797 unlock_page(page);
8798 return 0;
8799 }
be7bd730
JB
8800
8801 /*
8802 * If we are under memory pressure we will call this directly from the
8803 * VM, we need to make sure we have the inode referenced for the ordered
8804 * extent. If not just return like we didn't do anything.
8805 */
8806 if (!igrab(inode)) {
8807 redirty_page_for_writepage(wbc, page);
8808 return AOP_WRITEPAGE_ACTIVATE;
8809 }
0a9b0e53 8810 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8811 btrfs_add_delayed_iput(inode);
8812 return ret;
9ebefb18
CM
8813}
8814
48a3b636
ES
8815static int btrfs_writepages(struct address_space *mapping,
8816 struct writeback_control *wbc)
b293f02e 8817{
d1310b2e 8818 struct extent_io_tree *tree;
771ed689 8819
d1310b2e 8820 tree = &BTRFS_I(mapping->host)->io_tree;
43317599 8821 return extent_writepages(tree, mapping, wbc);
b293f02e
CM
8822}
8823
3ab2fb5a
CM
8824static int
8825btrfs_readpages(struct file *file, struct address_space *mapping,
8826 struct list_head *pages, unsigned nr_pages)
8827{
d1310b2e
CM
8828 struct extent_io_tree *tree;
8829 tree = &BTRFS_I(mapping->host)->io_tree;
0932584b 8830 return extent_readpages(tree, mapping, pages, nr_pages);
3ab2fb5a 8831}
e6dcd2dc 8832static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8833{
d1310b2e
CM
8834 struct extent_io_tree *tree;
8835 struct extent_map_tree *map;
a52d9a80 8836 int ret;
8c2383c3 8837
d1310b2e
CM
8838 tree = &BTRFS_I(page->mapping->host)->io_tree;
8839 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8840 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8841 if (ret == 1) {
8842 ClearPagePrivate(page);
8843 set_page_private(page, 0);
09cbfeaf 8844 put_page(page);
39279cc3 8845 }
a52d9a80 8846 return ret;
39279cc3
CM
8847}
8848
e6dcd2dc
CM
8849static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8850{
98509cfc
CM
8851 if (PageWriteback(page) || PageDirty(page))
8852 return 0;
3ba7ab22 8853 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8854}
8855
d47992f8
LC
8856static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8857 unsigned int length)
39279cc3 8858{
5fd02043 8859 struct inode *inode = page->mapping->host;
d1310b2e 8860 struct extent_io_tree *tree;
e6dcd2dc 8861 struct btrfs_ordered_extent *ordered;
2ac55d41 8862 struct extent_state *cached_state = NULL;
e6dcd2dc 8863 u64 page_start = page_offset(page);
09cbfeaf 8864 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8865 u64 start;
8866 u64 end;
131e404a 8867 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8868
8b62b72b
CM
8869 /*
8870 * we have the page locked, so new writeback can't start,
8871 * and the dirty bit won't be cleared while we are here.
8872 *
8873 * Wait for IO on this page so that we can safely clear
8874 * the PagePrivate2 bit and do ordered accounting
8875 */
e6dcd2dc 8876 wait_on_page_writeback(page);
8b62b72b 8877
5fd02043 8878 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8879 if (offset) {
8880 btrfs_releasepage(page, GFP_NOFS);
8881 return;
8882 }
131e404a
FDBM
8883
8884 if (!inode_evicting)
ff13db41 8885 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8886again:
8887 start = page_start;
a776c6fa 8888 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8889 page_end - start + 1);
e6dcd2dc 8890 if (ordered) {
dbfdb6d1 8891 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8892 /*
8893 * IO on this page will never be started, so we need
8894 * to account for any ordered extents now
8895 */
131e404a 8896 if (!inode_evicting)
dbfdb6d1 8897 clear_extent_bit(tree, start, end,
131e404a 8898 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8899 EXTENT_DELALLOC_NEW |
131e404a 8900 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8901 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8902 /*
8903 * whoever cleared the private bit is responsible
8904 * for the finish_ordered_io
8905 */
77cef2ec
JB
8906 if (TestClearPagePrivate2(page)) {
8907 struct btrfs_ordered_inode_tree *tree;
8908 u64 new_len;
8909
8910 tree = &BTRFS_I(inode)->ordered_tree;
8911
8912 spin_lock_irq(&tree->lock);
8913 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8914 new_len = start - ordered->file_offset;
77cef2ec
JB
8915 if (new_len < ordered->truncated_len)
8916 ordered->truncated_len = new_len;
8917 spin_unlock_irq(&tree->lock);
8918
8919 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8920 start,
8921 end - start + 1, 1))
77cef2ec 8922 btrfs_finish_ordered_io(ordered);
8b62b72b 8923 }
e6dcd2dc 8924 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8925 if (!inode_evicting) {
8926 cached_state = NULL;
dbfdb6d1 8927 lock_extent_bits(tree, start, end,
131e404a
FDBM
8928 &cached_state);
8929 }
dbfdb6d1
CR
8930
8931 start = end + 1;
8932 if (start < page_end)
8933 goto again;
131e404a
FDBM
8934 }
8935
b9d0b389
QW
8936 /*
8937 * Qgroup reserved space handler
8938 * Page here will be either
8939 * 1) Already written to disk
8940 * In this case, its reserved space is released from data rsv map
8941 * and will be freed by delayed_ref handler finally.
8942 * So even we call qgroup_free_data(), it won't decrease reserved
8943 * space.
8944 * 2) Not written to disk
0b34c261
GR
8945 * This means the reserved space should be freed here. However,
8946 * if a truncate invalidates the page (by clearing PageDirty)
8947 * and the page is accounted for while allocating extent
8948 * in btrfs_check_data_free_space() we let delayed_ref to
8949 * free the entire extent.
b9d0b389 8950 */
0b34c261 8951 if (PageDirty(page))
bc42bda2 8952 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8953 if (!inode_evicting) {
8954 clear_extent_bit(tree, page_start, page_end,
8955 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8956 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8957 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8958 &cached_state);
131e404a
FDBM
8959
8960 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8961 }
e6dcd2dc 8962
4a096752 8963 ClearPageChecked(page);
9ad6b7bc 8964 if (PagePrivate(page)) {
9ad6b7bc
CM
8965 ClearPagePrivate(page);
8966 set_page_private(page, 0);
09cbfeaf 8967 put_page(page);
9ad6b7bc 8968 }
39279cc3
CM
8969}
8970
9ebefb18
CM
8971/*
8972 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8973 * called from a page fault handler when a page is first dirtied. Hence we must
8974 * be careful to check for EOF conditions here. We set the page up correctly
8975 * for a written page which means we get ENOSPC checking when writing into
8976 * holes and correct delalloc and unwritten extent mapping on filesystems that
8977 * support these features.
8978 *
8979 * We are not allowed to take the i_mutex here so we have to play games to
8980 * protect against truncate races as the page could now be beyond EOF. Because
8981 * vmtruncate() writes the inode size before removing pages, once we have the
8982 * page lock we can determine safely if the page is beyond EOF. If it is not
8983 * beyond EOF, then the page is guaranteed safe against truncation until we
8984 * unlock the page.
8985 */
11bac800 8986int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8987{
c2ec175c 8988 struct page *page = vmf->page;
11bac800 8989 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8992 struct btrfs_ordered_extent *ordered;
2ac55d41 8993 struct extent_state *cached_state = NULL;
364ecf36 8994 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8995 char *kaddr;
8996 unsigned long zero_start;
9ebefb18 8997 loff_t size;
1832a6d5 8998 int ret;
9998eb70 8999 int reserved = 0;
d0b7da88 9000 u64 reserved_space;
a52d9a80 9001 u64 page_start;
e6dcd2dc 9002 u64 page_end;
d0b7da88
CR
9003 u64 end;
9004
09cbfeaf 9005 reserved_space = PAGE_SIZE;
9ebefb18 9006
b2b5ef5c 9007 sb_start_pagefault(inode->i_sb);
df480633 9008 page_start = page_offset(page);
09cbfeaf 9009 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9010 end = page_end;
df480633 9011
d0b7da88
CR
9012 /*
9013 * Reserving delalloc space after obtaining the page lock can lead to
9014 * deadlock. For example, if a dirty page is locked by this function
9015 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9016 * dirty page write out, then the btrfs_writepage() function could
9017 * end up waiting indefinitely to get a lock on the page currently
9018 * being processed by btrfs_page_mkwrite() function.
9019 */
364ecf36 9020 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9021 reserved_space);
9998eb70 9022 if (!ret) {
11bac800 9023 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9024 reserved = 1;
9025 }
56a76f82
NP
9026 if (ret) {
9027 if (ret == -ENOMEM)
9028 ret = VM_FAULT_OOM;
9029 else /* -ENOSPC, -EIO, etc */
9030 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9031 if (reserved)
9032 goto out;
9033 goto out_noreserve;
56a76f82 9034 }
1832a6d5 9035
56a76f82 9036 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9037again:
9ebefb18 9038 lock_page(page);
9ebefb18 9039 size = i_size_read(inode);
a52d9a80 9040
9ebefb18 9041 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9042 (page_start >= size)) {
9ebefb18
CM
9043 /* page got truncated out from underneath us */
9044 goto out_unlock;
9045 }
e6dcd2dc
CM
9046 wait_on_page_writeback(page);
9047
ff13db41 9048 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9049 set_page_extent_mapped(page);
9050
eb84ae03
CM
9051 /*
9052 * we can't set the delalloc bits if there are pending ordered
9053 * extents. Drop our locks and wait for them to finish
9054 */
a776c6fa
NB
9055 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9056 PAGE_SIZE);
e6dcd2dc 9057 if (ordered) {
2ac55d41 9058 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9059 &cached_state);
e6dcd2dc 9060 unlock_page(page);
eb84ae03 9061 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9062 btrfs_put_ordered_extent(ordered);
9063 goto again;
9064 }
9065
09cbfeaf 9066 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9067 reserved_space = round_up(size - page_start,
0b246afa 9068 fs_info->sectorsize);
09cbfeaf 9069 if (reserved_space < PAGE_SIZE) {
d0b7da88 9070 end = page_start + reserved_space - 1;
bc42bda2
QW
9071 btrfs_delalloc_release_space(inode, data_reserved,
9072 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9073 }
9074 }
9075
fbf19087 9076 /*
5416034f
LB
9077 * page_mkwrite gets called when the page is firstly dirtied after it's
9078 * faulted in, but write(2) could also dirty a page and set delalloc
9079 * bits, thus in this case for space account reason, we still need to
9080 * clear any delalloc bits within this page range since we have to
9081 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9082 */
d0b7da88 9083 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9084 EXTENT_DIRTY | EXTENT_DELALLOC |
9085 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 9086 0, 0, &cached_state);
fbf19087 9087
e3b8a485 9088 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9089 &cached_state, 0);
9ed74f2d 9090 if (ret) {
2ac55d41 9091 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9092 &cached_state);
9ed74f2d
JB
9093 ret = VM_FAULT_SIGBUS;
9094 goto out_unlock;
9095 }
e6dcd2dc 9096 ret = 0;
9ebefb18
CM
9097
9098 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9099 if (page_start + PAGE_SIZE > size)
9100 zero_start = size & ~PAGE_MASK;
9ebefb18 9101 else
09cbfeaf 9102 zero_start = PAGE_SIZE;
9ebefb18 9103
09cbfeaf 9104 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9105 kaddr = kmap(page);
09cbfeaf 9106 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9107 flush_dcache_page(page);
9108 kunmap(page);
9109 }
247e743c 9110 ClearPageChecked(page);
e6dcd2dc 9111 set_page_dirty(page);
50a9b214 9112 SetPageUptodate(page);
5a3f23d5 9113
0b246afa 9114 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9115 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9116 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9117
e43bbe5e 9118 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9119
9120out_unlock:
b2b5ef5c 9121 if (!ret) {
8b62f87b 9122 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9123 sb_end_pagefault(inode->i_sb);
364ecf36 9124 extent_changeset_free(data_reserved);
50a9b214 9125 return VM_FAULT_LOCKED;
b2b5ef5c 9126 }
9ebefb18 9127 unlock_page(page);
1832a6d5 9128out:
8b62f87b 9129 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9130 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9131 reserved_space);
9998eb70 9132out_noreserve:
b2b5ef5c 9133 sb_end_pagefault(inode->i_sb);
364ecf36 9134 extent_changeset_free(data_reserved);
9ebefb18
CM
9135 return ret;
9136}
9137
a41ad394 9138static int btrfs_truncate(struct inode *inode)
39279cc3 9139{
0b246afa 9140 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9141 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9142 struct btrfs_block_rsv *rsv;
a71754fc 9143 int ret = 0;
3893e33b 9144 int err = 0;
39279cc3 9145 struct btrfs_trans_handle *trans;
0b246afa
JM
9146 u64 mask = fs_info->sectorsize - 1;
9147 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9148
0ef8b726
JB
9149 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9150 (u64)-1);
9151 if (ret)
9152 return ret;
39279cc3 9153
fcb80c2a 9154 /*
01327610 9155 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9156 * 3 things going on here
9157 *
9158 * 1) We need to reserve space for our orphan item and the space to
9159 * delete our orphan item. Lord knows we don't want to have a dangling
9160 * orphan item because we didn't reserve space to remove it.
9161 *
9162 * 2) We need to reserve space to update our inode.
9163 *
9164 * 3) We need to have something to cache all the space that is going to
9165 * be free'd up by the truncate operation, but also have some slack
9166 * space reserved in case it uses space during the truncate (thank you
9167 * very much snapshotting).
9168 *
01327610 9169 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9170 * space doing the truncate, and we have no earthly idea how much space
01327610 9171 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9172 * doesn't end up using space reserved for updating the inode or
9173 * removing the orphan item. We also need to be able to stop the
9174 * transaction and start a new one, which means we need to be able to
9175 * update the inode several times, and we have no idea of knowing how
9176 * many times that will be, so we can't just reserve 1 item for the
01327610 9177 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9178 * Then there is the orphan item, which does indeed need to be held on
9179 * to for the whole operation, and we need nobody to touch this reserved
9180 * space except the orphan code.
9181 *
9182 * So that leaves us with
9183 *
9184 * 1) root->orphan_block_rsv - for the orphan deletion.
9185 * 2) rsv - for the truncate reservation, which we will steal from the
9186 * transaction reservation.
9187 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9188 * updating the inode.
9189 */
2ff7e61e 9190 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9191 if (!rsv)
9192 return -ENOMEM;
4a338542 9193 rsv->size = min_size;
ca7e70f5 9194 rsv->failfast = 1;
f0cd846e 9195
907cbceb 9196 /*
07127184 9197 * 1 for the truncate slack space
907cbceb
JB
9198 * 1 for updating the inode.
9199 */
f3fe820c 9200 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9201 if (IS_ERR(trans)) {
9202 err = PTR_ERR(trans);
9203 goto out;
9204 }
f0cd846e 9205
907cbceb 9206 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9207 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9208 min_size, 0);
fcb80c2a 9209 BUG_ON(ret);
f0cd846e 9210
5dc562c5
JB
9211 /*
9212 * So if we truncate and then write and fsync we normally would just
9213 * write the extents that changed, which is a problem if we need to
9214 * first truncate that entire inode. So set this flag so we write out
9215 * all of the extents in the inode to the sync log so we're completely
9216 * safe.
9217 */
9218 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9219 trans->block_rsv = rsv;
907cbceb 9220
8082510e
YZ
9221 while (1) {
9222 ret = btrfs_truncate_inode_items(trans, root, inode,
9223 inode->i_size,
9224 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9225 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9226 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9227 err = ret;
8082510e 9228 break;
3893e33b 9229 }
39279cc3 9230
8082510e 9231 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9232 if (ret) {
9233 err = ret;
9234 break;
9235 }
ca7e70f5 9236
3a45bb20 9237 btrfs_end_transaction(trans);
2ff7e61e 9238 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9239
9240 trans = btrfs_start_transaction(root, 2);
9241 if (IS_ERR(trans)) {
9242 ret = err = PTR_ERR(trans);
9243 trans = NULL;
9244 break;
9245 }
9246
47b5d646 9247 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9248 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9249 rsv, min_size, 0);
ca7e70f5
JB
9250 BUG_ON(ret); /* shouldn't happen */
9251 trans->block_rsv = rsv;
8082510e
YZ
9252 }
9253
ddfae63c
JB
9254 /*
9255 * We can't call btrfs_truncate_block inside a trans handle as we could
9256 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9257 * we've truncated everything except the last little bit, and can do
9258 * btrfs_truncate_block and then update the disk_i_size.
9259 */
9260 if (ret == NEED_TRUNCATE_BLOCK) {
9261 btrfs_end_transaction(trans);
9262 btrfs_btree_balance_dirty(fs_info);
9263
9264 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9265 if (ret)
9266 goto out;
9267 trans = btrfs_start_transaction(root, 1);
9268 if (IS_ERR(trans)) {
9269 ret = PTR_ERR(trans);
9270 goto out;
9271 }
9272 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9273 }
9274
8082510e 9275 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9276 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9277 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9278 if (ret)
9279 err = ret;
8082510e
YZ
9280 }
9281
917c16b2 9282 if (trans) {
0b246afa 9283 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9284 ret = btrfs_update_inode(trans, root, inode);
9285 if (ret && !err)
9286 err = ret;
7b128766 9287
3a45bb20 9288 ret = btrfs_end_transaction(trans);
2ff7e61e 9289 btrfs_btree_balance_dirty(fs_info);
917c16b2 9290 }
fcb80c2a 9291out:
2ff7e61e 9292 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9293
3893e33b
JB
9294 if (ret && !err)
9295 err = ret;
a41ad394 9296
3893e33b 9297 return err;
39279cc3
CM
9298}
9299
d352ac68
CM
9300/*
9301 * create a new subvolume directory/inode (helper for the ioctl).
9302 */
d2fb3437 9303int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9304 struct btrfs_root *new_root,
9305 struct btrfs_root *parent_root,
9306 u64 new_dirid)
39279cc3 9307{
39279cc3 9308 struct inode *inode;
76dda93c 9309 int err;
00e4e6b3 9310 u64 index = 0;
39279cc3 9311
12fc9d09
FA
9312 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9313 new_dirid, new_dirid,
9314 S_IFDIR | (~current_umask() & S_IRWXUGO),
9315 &index);
54aa1f4d 9316 if (IS_ERR(inode))
f46b5a66 9317 return PTR_ERR(inode);
39279cc3
CM
9318 inode->i_op = &btrfs_dir_inode_operations;
9319 inode->i_fop = &btrfs_dir_file_operations;
9320
bfe86848 9321 set_nlink(inode, 1);
6ef06d27 9322 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9323 unlock_new_inode(inode);
3b96362c 9324
63541927
FDBM
9325 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9326 if (err)
9327 btrfs_err(new_root->fs_info,
351fd353 9328 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9329 new_root->root_key.objectid, err);
9330
76dda93c 9331 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9332
76dda93c 9333 iput(inode);
ce598979 9334 return err;
39279cc3
CM
9335}
9336
39279cc3
CM
9337struct inode *btrfs_alloc_inode(struct super_block *sb)
9338{
69fe2d75 9339 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9340 struct btrfs_inode *ei;
2ead6ae7 9341 struct inode *inode;
39279cc3 9342
712e36c5 9343 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9344 if (!ei)
9345 return NULL;
2ead6ae7
YZ
9346
9347 ei->root = NULL;
2ead6ae7 9348 ei->generation = 0;
15ee9bc7 9349 ei->last_trans = 0;
257c62e1 9350 ei->last_sub_trans = 0;
e02119d5 9351 ei->logged_trans = 0;
2ead6ae7 9352 ei->delalloc_bytes = 0;
a7e3b975 9353 ei->new_delalloc_bytes = 0;
47059d93 9354 ei->defrag_bytes = 0;
2ead6ae7
YZ
9355 ei->disk_i_size = 0;
9356 ei->flags = 0;
7709cde3 9357 ei->csum_bytes = 0;
2ead6ae7 9358 ei->index_cnt = (u64)-1;
67de1176 9359 ei->dir_index = 0;
2ead6ae7 9360 ei->last_unlink_trans = 0;
46d8bc34 9361 ei->last_log_commit = 0;
2ead6ae7 9362
9e0baf60
JB
9363 spin_lock_init(&ei->lock);
9364 ei->outstanding_extents = 0;
69fe2d75
JB
9365 if (sb->s_magic != BTRFS_TEST_MAGIC)
9366 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9367 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9368 ei->runtime_flags = 0;
b52aa8c9 9369 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9370 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9371
16cdcec7
MX
9372 ei->delayed_node = NULL;
9373
9cc97d64 9374 ei->i_otime.tv_sec = 0;
9375 ei->i_otime.tv_nsec = 0;
9376
2ead6ae7 9377 inode = &ei->vfs_inode;
a8067e02 9378 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9379 extent_io_tree_init(&ei->io_tree, inode);
9380 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9381 ei->io_tree.track_uptodate = 1;
9382 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9383 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9384 mutex_init(&ei->log_mutex);
f248679e 9385 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9386 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9387 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9388 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9389 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9390 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9391
9392 return inode;
39279cc3
CM
9393}
9394
aaedb55b
JB
9395#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9396void btrfs_test_destroy_inode(struct inode *inode)
9397{
dcdbc059 9398 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9399 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9400}
9401#endif
9402
fa0d7e3d
NP
9403static void btrfs_i_callback(struct rcu_head *head)
9404{
9405 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9406 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9407}
9408
39279cc3
CM
9409void btrfs_destroy_inode(struct inode *inode)
9410{
0b246afa 9411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9412 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9413 struct btrfs_root *root = BTRFS_I(inode)->root;
9414
b3d9b7a3 9415 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9416 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9417 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9418 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9419 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9420 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9421 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9422 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9423 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9424
a6dbd429
JB
9425 /*
9426 * This can happen where we create an inode, but somebody else also
9427 * created the same inode and we need to destroy the one we already
9428 * created.
9429 */
9430 if (!root)
9431 goto free;
9432
8a35d95f
JB
9433 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9434 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9435 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9436 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9437 atomic_dec(&root->orphan_inodes);
7b128766 9438 }
7b128766 9439
d397712b 9440 while (1) {
e6dcd2dc
CM
9441 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9442 if (!ordered)
9443 break;
9444 else {
0b246afa 9445 btrfs_err(fs_info,
5d163e0e
JM
9446 "found ordered extent %llu %llu on inode cleanup",
9447 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9448 btrfs_remove_ordered_extent(inode, ordered);
9449 btrfs_put_ordered_extent(ordered);
9450 btrfs_put_ordered_extent(ordered);
9451 }
9452 }
56fa9d07 9453 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9454 inode_tree_del(inode);
dcdbc059 9455 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9456free:
fa0d7e3d 9457 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9458}
9459
45321ac5 9460int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9461{
9462 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9463
6379ef9f
NA
9464 if (root == NULL)
9465 return 1;
9466
fa6ac876 9467 /* the snap/subvol tree is on deleting */
69e9c6c6 9468 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9469 return 1;
76dda93c 9470 else
45321ac5 9471 return generic_drop_inode(inode);
76dda93c
YZ
9472}
9473
0ee0fda0 9474static void init_once(void *foo)
39279cc3
CM
9475{
9476 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9477
9478 inode_init_once(&ei->vfs_inode);
9479}
9480
e67c718b 9481void __cold btrfs_destroy_cachep(void)
39279cc3 9482{
8c0a8537
KS
9483 /*
9484 * Make sure all delayed rcu free inodes are flushed before we
9485 * destroy cache.
9486 */
9487 rcu_barrier();
5598e900
KM
9488 kmem_cache_destroy(btrfs_inode_cachep);
9489 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9490 kmem_cache_destroy(btrfs_path_cachep);
9491 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9492}
9493
f5c29bd9 9494int __init btrfs_init_cachep(void)
39279cc3 9495{
837e1972 9496 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9497 sizeof(struct btrfs_inode), 0,
5d097056
VD
9498 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9499 init_once);
39279cc3
CM
9500 if (!btrfs_inode_cachep)
9501 goto fail;
9601e3f6 9502
837e1972 9503 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9504 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9505 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9506 if (!btrfs_trans_handle_cachep)
9507 goto fail;
9601e3f6 9508
837e1972 9509 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9510 sizeof(struct btrfs_path), 0,
fba4b697 9511 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9512 if (!btrfs_path_cachep)
9513 goto fail;
9601e3f6 9514
837e1972 9515 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9516 sizeof(struct btrfs_free_space), 0,
fba4b697 9517 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9518 if (!btrfs_free_space_cachep)
9519 goto fail;
9520
39279cc3
CM
9521 return 0;
9522fail:
9523 btrfs_destroy_cachep();
9524 return -ENOMEM;
9525}
9526
a528d35e
DH
9527static int btrfs_getattr(const struct path *path, struct kstat *stat,
9528 u32 request_mask, unsigned int flags)
39279cc3 9529{
df0af1a5 9530 u64 delalloc_bytes;
a528d35e 9531 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9532 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9533 u32 bi_flags = BTRFS_I(inode)->flags;
9534
9535 stat->result_mask |= STATX_BTIME;
9536 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9537 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9538 if (bi_flags & BTRFS_INODE_APPEND)
9539 stat->attributes |= STATX_ATTR_APPEND;
9540 if (bi_flags & BTRFS_INODE_COMPRESS)
9541 stat->attributes |= STATX_ATTR_COMPRESSED;
9542 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9543 stat->attributes |= STATX_ATTR_IMMUTABLE;
9544 if (bi_flags & BTRFS_INODE_NODUMP)
9545 stat->attributes |= STATX_ATTR_NODUMP;
9546
9547 stat->attributes_mask |= (STATX_ATTR_APPEND |
9548 STATX_ATTR_COMPRESSED |
9549 STATX_ATTR_IMMUTABLE |
9550 STATX_ATTR_NODUMP);
fadc0d8b 9551
39279cc3 9552 generic_fillattr(inode, stat);
0ee5dc67 9553 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9554
9555 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9556 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9557 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9558 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9559 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9560 return 0;
9561}
9562
cdd1fedf
DF
9563static int btrfs_rename_exchange(struct inode *old_dir,
9564 struct dentry *old_dentry,
9565 struct inode *new_dir,
9566 struct dentry *new_dentry)
9567{
0b246afa 9568 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9569 struct btrfs_trans_handle *trans;
9570 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9571 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9572 struct inode *new_inode = new_dentry->d_inode;
9573 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9574 struct timespec ctime = current_time(old_inode);
cdd1fedf 9575 struct dentry *parent;
4a0cc7ca
NB
9576 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9577 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9578 u64 old_idx = 0;
9579 u64 new_idx = 0;
9580 u64 root_objectid;
9581 int ret;
86e8aa0e
FM
9582 bool root_log_pinned = false;
9583 bool dest_log_pinned = false;
cdd1fedf
DF
9584
9585 /* we only allow rename subvolume link between subvolumes */
9586 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9587 return -EXDEV;
9588
9589 /* close the race window with snapshot create/destroy ioctl */
9590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9591 down_read(&fs_info->subvol_sem);
cdd1fedf 9592 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9593 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9594
9595 /*
9596 * We want to reserve the absolute worst case amount of items. So if
9597 * both inodes are subvols and we need to unlink them then that would
9598 * require 4 item modifications, but if they are both normal inodes it
9599 * would require 5 item modifications, so we'll assume their normal
9600 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9601 * should cover the worst case number of items we'll modify.
9602 */
9603 trans = btrfs_start_transaction(root, 12);
9604 if (IS_ERR(trans)) {
9605 ret = PTR_ERR(trans);
9606 goto out_notrans;
9607 }
9608
9609 /*
9610 * We need to find a free sequence number both in the source and
9611 * in the destination directory for the exchange.
9612 */
877574e2 9613 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9614 if (ret)
9615 goto out_fail;
877574e2 9616 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9617 if (ret)
9618 goto out_fail;
9619
9620 BTRFS_I(old_inode)->dir_index = 0ULL;
9621 BTRFS_I(new_inode)->dir_index = 0ULL;
9622
9623 /* Reference for the source. */
9624 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9625 /* force full log commit if subvolume involved. */
0b246afa 9626 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9627 } else {
376e5a57
FM
9628 btrfs_pin_log_trans(root);
9629 root_log_pinned = true;
cdd1fedf
DF
9630 ret = btrfs_insert_inode_ref(trans, dest,
9631 new_dentry->d_name.name,
9632 new_dentry->d_name.len,
9633 old_ino,
f85b7379
DS
9634 btrfs_ino(BTRFS_I(new_dir)),
9635 old_idx);
cdd1fedf
DF
9636 if (ret)
9637 goto out_fail;
cdd1fedf
DF
9638 }
9639
9640 /* And now for the dest. */
9641 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9642 /* force full log commit if subvolume involved. */
0b246afa 9643 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9644 } else {
376e5a57
FM
9645 btrfs_pin_log_trans(dest);
9646 dest_log_pinned = true;
cdd1fedf
DF
9647 ret = btrfs_insert_inode_ref(trans, root,
9648 old_dentry->d_name.name,
9649 old_dentry->d_name.len,
9650 new_ino,
f85b7379
DS
9651 btrfs_ino(BTRFS_I(old_dir)),
9652 new_idx);
cdd1fedf
DF
9653 if (ret)
9654 goto out_fail;
cdd1fedf
DF
9655 }
9656
9657 /* Update inode version and ctime/mtime. */
9658 inode_inc_iversion(old_dir);
9659 inode_inc_iversion(new_dir);
9660 inode_inc_iversion(old_inode);
9661 inode_inc_iversion(new_inode);
9662 old_dir->i_ctime = old_dir->i_mtime = ctime;
9663 new_dir->i_ctime = new_dir->i_mtime = ctime;
9664 old_inode->i_ctime = ctime;
9665 new_inode->i_ctime = ctime;
9666
9667 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9668 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9669 BTRFS_I(old_inode), 1);
9670 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9671 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9672 }
9673
9674 /* src is a subvolume */
9675 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9676 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9677 ret = btrfs_unlink_subvol(trans, root, old_dir,
9678 root_objectid,
9679 old_dentry->d_name.name,
9680 old_dentry->d_name.len);
9681 } else { /* src is an inode */
4ec5934e
NB
9682 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9683 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9684 old_dentry->d_name.name,
9685 old_dentry->d_name.len);
9686 if (!ret)
9687 ret = btrfs_update_inode(trans, root, old_inode);
9688 }
9689 if (ret) {
66642832 9690 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9691 goto out_fail;
9692 }
9693
9694 /* dest is a subvolume */
9695 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9696 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9697 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9698 root_objectid,
9699 new_dentry->d_name.name,
9700 new_dentry->d_name.len);
9701 } else { /* dest is an inode */
4ec5934e
NB
9702 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9703 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9704 new_dentry->d_name.name,
9705 new_dentry->d_name.len);
9706 if (!ret)
9707 ret = btrfs_update_inode(trans, dest, new_inode);
9708 }
9709 if (ret) {
66642832 9710 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9711 goto out_fail;
9712 }
9713
db0a669f 9714 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9715 new_dentry->d_name.name,
9716 new_dentry->d_name.len, 0, old_idx);
9717 if (ret) {
66642832 9718 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9719 goto out_fail;
9720 }
9721
db0a669f 9722 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9723 old_dentry->d_name.name,
9724 old_dentry->d_name.len, 0, new_idx);
9725 if (ret) {
66642832 9726 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9727 goto out_fail;
9728 }
9729
9730 if (old_inode->i_nlink == 1)
9731 BTRFS_I(old_inode)->dir_index = old_idx;
9732 if (new_inode->i_nlink == 1)
9733 BTRFS_I(new_inode)->dir_index = new_idx;
9734
86e8aa0e 9735 if (root_log_pinned) {
cdd1fedf 9736 parent = new_dentry->d_parent;
f85b7379
DS
9737 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9738 parent);
cdd1fedf 9739 btrfs_end_log_trans(root);
86e8aa0e 9740 root_log_pinned = false;
cdd1fedf 9741 }
86e8aa0e 9742 if (dest_log_pinned) {
cdd1fedf 9743 parent = old_dentry->d_parent;
f85b7379
DS
9744 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9745 parent);
cdd1fedf 9746 btrfs_end_log_trans(dest);
86e8aa0e 9747 dest_log_pinned = false;
cdd1fedf
DF
9748 }
9749out_fail:
86e8aa0e
FM
9750 /*
9751 * If we have pinned a log and an error happened, we unpin tasks
9752 * trying to sync the log and force them to fallback to a transaction
9753 * commit if the log currently contains any of the inodes involved in
9754 * this rename operation (to ensure we do not persist a log with an
9755 * inconsistent state for any of these inodes or leading to any
9756 * inconsistencies when replayed). If the transaction was aborted, the
9757 * abortion reason is propagated to userspace when attempting to commit
9758 * the transaction. If the log does not contain any of these inodes, we
9759 * allow the tasks to sync it.
9760 */
9761 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9762 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9763 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9764 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9765 (new_inode &&
0f8939b8 9766 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9767 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9768
9769 if (root_log_pinned) {
9770 btrfs_end_log_trans(root);
9771 root_log_pinned = false;
9772 }
9773 if (dest_log_pinned) {
9774 btrfs_end_log_trans(dest);
9775 dest_log_pinned = false;
9776 }
9777 }
3a45bb20 9778 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9779out_notrans:
9780 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9781 up_read(&fs_info->subvol_sem);
cdd1fedf 9782 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9783 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9784
9785 return ret;
9786}
9787
9788static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9789 struct btrfs_root *root,
9790 struct inode *dir,
9791 struct dentry *dentry)
9792{
9793 int ret;
9794 struct inode *inode;
9795 u64 objectid;
9796 u64 index;
9797
9798 ret = btrfs_find_free_ino(root, &objectid);
9799 if (ret)
9800 return ret;
9801
9802 inode = btrfs_new_inode(trans, root, dir,
9803 dentry->d_name.name,
9804 dentry->d_name.len,
4a0cc7ca 9805 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9806 objectid,
9807 S_IFCHR | WHITEOUT_MODE,
9808 &index);
9809
9810 if (IS_ERR(inode)) {
9811 ret = PTR_ERR(inode);
9812 return ret;
9813 }
9814
9815 inode->i_op = &btrfs_special_inode_operations;
9816 init_special_inode(inode, inode->i_mode,
9817 WHITEOUT_DEV);
9818
9819 ret = btrfs_init_inode_security(trans, inode, dir,
9820 &dentry->d_name);
9821 if (ret)
c9901618 9822 goto out;
cdd1fedf 9823
cef415af
NB
9824 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9825 BTRFS_I(inode), 0, index);
cdd1fedf 9826 if (ret)
c9901618 9827 goto out;
cdd1fedf
DF
9828
9829 ret = btrfs_update_inode(trans, root, inode);
c9901618 9830out:
cdd1fedf 9831 unlock_new_inode(inode);
c9901618
FM
9832 if (ret)
9833 inode_dec_link_count(inode);
cdd1fedf
DF
9834 iput(inode);
9835
c9901618 9836 return ret;
cdd1fedf
DF
9837}
9838
d397712b 9839static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9840 struct inode *new_dir, struct dentry *new_dentry,
9841 unsigned int flags)
39279cc3 9842{
0b246afa 9843 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9844 struct btrfs_trans_handle *trans;
5062af35 9845 unsigned int trans_num_items;
39279cc3 9846 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9847 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9848 struct inode *new_inode = d_inode(new_dentry);
9849 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9850 u64 index = 0;
4df27c4d 9851 u64 root_objectid;
39279cc3 9852 int ret;
4a0cc7ca 9853 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9854 bool log_pinned = false;
39279cc3 9855
4a0cc7ca 9856 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9857 return -EPERM;
9858
4df27c4d 9859 /* we only allow rename subvolume link between subvolumes */
33345d01 9860 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9861 return -EXDEV;
9862
33345d01 9863 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9864 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9865 return -ENOTEMPTY;
5f39d397 9866
4df27c4d
YZ
9867 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9868 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9869 return -ENOTEMPTY;
9c52057c
CM
9870
9871
9872 /* check for collisions, even if the name isn't there */
4871c158 9873 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9874 new_dentry->d_name.name,
9875 new_dentry->d_name.len);
9876
9877 if (ret) {
9878 if (ret == -EEXIST) {
9879 /* we shouldn't get
9880 * eexist without a new_inode */
fae7f21c 9881 if (WARN_ON(!new_inode)) {
9c52057c
CM
9882 return ret;
9883 }
9884 } else {
9885 /* maybe -EOVERFLOW */
9886 return ret;
9887 }
9888 }
9889 ret = 0;
9890
5a3f23d5 9891 /*
8d875f95
CM
9892 * we're using rename to replace one file with another. Start IO on it
9893 * now so we don't add too much work to the end of the transaction
5a3f23d5 9894 */
8d875f95 9895 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9896 filemap_flush(old_inode->i_mapping);
9897
76dda93c 9898 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9899 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9900 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9901 /*
9902 * We want to reserve the absolute worst case amount of items. So if
9903 * both inodes are subvols and we need to unlink them then that would
9904 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9905 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9906 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9907 * should cover the worst case number of items we'll modify.
5062af35
FM
9908 * If our rename has the whiteout flag, we need more 5 units for the
9909 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9910 * when selinux is enabled).
a22285a6 9911 */
5062af35
FM
9912 trans_num_items = 11;
9913 if (flags & RENAME_WHITEOUT)
9914 trans_num_items += 5;
9915 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9916 if (IS_ERR(trans)) {
cdd1fedf
DF
9917 ret = PTR_ERR(trans);
9918 goto out_notrans;
9919 }
76dda93c 9920
4df27c4d
YZ
9921 if (dest != root)
9922 btrfs_record_root_in_trans(trans, dest);
5f39d397 9923
877574e2 9924 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9925 if (ret)
9926 goto out_fail;
5a3f23d5 9927
67de1176 9928 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9929 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9930 /* force full log commit if subvolume involved. */
0b246afa 9931 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9932 } else {
c4aba954
FM
9933 btrfs_pin_log_trans(root);
9934 log_pinned = true;
a5719521
YZ
9935 ret = btrfs_insert_inode_ref(trans, dest,
9936 new_dentry->d_name.name,
9937 new_dentry->d_name.len,
33345d01 9938 old_ino,
4a0cc7ca 9939 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9940 if (ret)
9941 goto out_fail;
4df27c4d 9942 }
5a3f23d5 9943
0c4d2d95
JB
9944 inode_inc_iversion(old_dir);
9945 inode_inc_iversion(new_dir);
9946 inode_inc_iversion(old_inode);
04b285f3
DD
9947 old_dir->i_ctime = old_dir->i_mtime =
9948 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9949 old_inode->i_ctime = current_time(old_dir);
5f39d397 9950
12fcfd22 9951 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9952 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9953 BTRFS_I(old_inode), 1);
12fcfd22 9954
33345d01 9955 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9956 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9957 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9958 old_dentry->d_name.name,
9959 old_dentry->d_name.len);
9960 } else {
4ec5934e
NB
9961 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9962 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9963 old_dentry->d_name.name,
9964 old_dentry->d_name.len);
9965 if (!ret)
9966 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9967 }
79787eaa 9968 if (ret) {
66642832 9969 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9970 goto out_fail;
9971 }
39279cc3
CM
9972
9973 if (new_inode) {
0c4d2d95 9974 inode_inc_iversion(new_inode);
c2050a45 9975 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9976 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9977 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9978 root_objectid = BTRFS_I(new_inode)->location.objectid;
9979 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9980 root_objectid,
9981 new_dentry->d_name.name,
9982 new_dentry->d_name.len);
9983 BUG_ON(new_inode->i_nlink == 0);
9984 } else {
4ec5934e
NB
9985 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9986 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9987 new_dentry->d_name.name,
9988 new_dentry->d_name.len);
9989 }
4ef31a45 9990 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9991 ret = btrfs_orphan_add(trans,
9992 BTRFS_I(d_inode(new_dentry)));
79787eaa 9993 if (ret) {
66642832 9994 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9995 goto out_fail;
9996 }
39279cc3 9997 }
aec7477b 9998
db0a669f 9999 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10000 new_dentry->d_name.name,
a5719521 10001 new_dentry->d_name.len, 0, index);
79787eaa 10002 if (ret) {
66642832 10003 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10004 goto out_fail;
10005 }
39279cc3 10006
67de1176
MX
10007 if (old_inode->i_nlink == 1)
10008 BTRFS_I(old_inode)->dir_index = index;
10009
3dc9e8f7 10010 if (log_pinned) {
10d9f309 10011 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10012
f85b7379
DS
10013 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10014 parent);
4df27c4d 10015 btrfs_end_log_trans(root);
3dc9e8f7 10016 log_pinned = false;
4df27c4d 10017 }
cdd1fedf
DF
10018
10019 if (flags & RENAME_WHITEOUT) {
10020 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10021 old_dentry);
10022
10023 if (ret) {
66642832 10024 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10025 goto out_fail;
10026 }
4df27c4d 10027 }
39279cc3 10028out_fail:
3dc9e8f7
FM
10029 /*
10030 * If we have pinned the log and an error happened, we unpin tasks
10031 * trying to sync the log and force them to fallback to a transaction
10032 * commit if the log currently contains any of the inodes involved in
10033 * this rename operation (to ensure we do not persist a log with an
10034 * inconsistent state for any of these inodes or leading to any
10035 * inconsistencies when replayed). If the transaction was aborted, the
10036 * abortion reason is propagated to userspace when attempting to commit
10037 * the transaction. If the log does not contain any of these inodes, we
10038 * allow the tasks to sync it.
10039 */
10040 if (ret && log_pinned) {
0f8939b8
NB
10041 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10042 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10043 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10044 (new_inode &&
0f8939b8 10045 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10046 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10047
10048 btrfs_end_log_trans(root);
10049 log_pinned = false;
10050 }
3a45bb20 10051 btrfs_end_transaction(trans);
b44c59a8 10052out_notrans:
33345d01 10053 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10054 up_read(&fs_info->subvol_sem);
9ed74f2d 10055
39279cc3
CM
10056 return ret;
10057}
10058
80ace85c
MS
10059static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10060 struct inode *new_dir, struct dentry *new_dentry,
10061 unsigned int flags)
10062{
cdd1fedf 10063 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10064 return -EINVAL;
10065
cdd1fedf
DF
10066 if (flags & RENAME_EXCHANGE)
10067 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10068 new_dentry);
10069
10070 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10071}
10072
8ccf6f19
MX
10073static void btrfs_run_delalloc_work(struct btrfs_work *work)
10074{
10075 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10076 struct inode *inode;
8ccf6f19
MX
10077
10078 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10079 work);
9f23e289 10080 inode = delalloc_work->inode;
30424601
DS
10081 filemap_flush(inode->i_mapping);
10082 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10083 &BTRFS_I(inode)->runtime_flags))
9f23e289 10084 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10085
10086 if (delalloc_work->delay_iput)
9f23e289 10087 btrfs_add_delayed_iput(inode);
8ccf6f19 10088 else
9f23e289 10089 iput(inode);
8ccf6f19
MX
10090 complete(&delalloc_work->completion);
10091}
10092
10093struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10094 int delay_iput)
8ccf6f19
MX
10095{
10096 struct btrfs_delalloc_work *work;
10097
100d5702 10098 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10099 if (!work)
10100 return NULL;
10101
10102 init_completion(&work->completion);
10103 INIT_LIST_HEAD(&work->list);
10104 work->inode = inode;
8ccf6f19 10105 work->delay_iput = delay_iput;
9e0af237
LB
10106 WARN_ON_ONCE(!inode);
10107 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10108 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10109
10110 return work;
10111}
10112
10113void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10114{
10115 wait_for_completion(&work->completion);
100d5702 10116 kfree(work);
8ccf6f19
MX
10117}
10118
d352ac68
CM
10119/*
10120 * some fairly slow code that needs optimization. This walks the list
10121 * of all the inodes with pending delalloc and forces them to disk.
10122 */
6c255e67
MX
10123static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10124 int nr)
ea8c2819 10125{
ea8c2819 10126 struct btrfs_inode *binode;
5b21f2ed 10127 struct inode *inode;
8ccf6f19
MX
10128 struct btrfs_delalloc_work *work, *next;
10129 struct list_head works;
1eafa6c7 10130 struct list_head splice;
8ccf6f19 10131 int ret = 0;
ea8c2819 10132
8ccf6f19 10133 INIT_LIST_HEAD(&works);
1eafa6c7 10134 INIT_LIST_HEAD(&splice);
63607cc8 10135
573bfb72 10136 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10137 spin_lock(&root->delalloc_lock);
10138 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10139 while (!list_empty(&splice)) {
10140 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10141 delalloc_inodes);
1eafa6c7 10142
eb73c1b7
MX
10143 list_move_tail(&binode->delalloc_inodes,
10144 &root->delalloc_inodes);
5b21f2ed 10145 inode = igrab(&binode->vfs_inode);
df0af1a5 10146 if (!inode) {
eb73c1b7 10147 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10148 continue;
df0af1a5 10149 }
eb73c1b7 10150 spin_unlock(&root->delalloc_lock);
1eafa6c7 10151
651d494a 10152 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10153 if (!work) {
f4ab9ea7
JB
10154 if (delay_iput)
10155 btrfs_add_delayed_iput(inode);
10156 else
10157 iput(inode);
1eafa6c7 10158 ret = -ENOMEM;
a1ecaabb 10159 goto out;
5b21f2ed 10160 }
1eafa6c7 10161 list_add_tail(&work->list, &works);
a44903ab
QW
10162 btrfs_queue_work(root->fs_info->flush_workers,
10163 &work->work);
6c255e67
MX
10164 ret++;
10165 if (nr != -1 && ret >= nr)
a1ecaabb 10166 goto out;
5b21f2ed 10167 cond_resched();
eb73c1b7 10168 spin_lock(&root->delalloc_lock);
ea8c2819 10169 }
eb73c1b7 10170 spin_unlock(&root->delalloc_lock);
8c8bee1d 10171
a1ecaabb 10172out:
eb73c1b7
MX
10173 list_for_each_entry_safe(work, next, &works, list) {
10174 list_del_init(&work->list);
10175 btrfs_wait_and_free_delalloc_work(work);
10176 }
10177
10178 if (!list_empty_careful(&splice)) {
10179 spin_lock(&root->delalloc_lock);
10180 list_splice_tail(&splice, &root->delalloc_inodes);
10181 spin_unlock(&root->delalloc_lock);
10182 }
573bfb72 10183 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10184 return ret;
10185}
1eafa6c7 10186
eb73c1b7
MX
10187int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10188{
0b246afa 10189 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10190 int ret;
1eafa6c7 10191
0b246afa 10192 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10193 return -EROFS;
10194
6c255e67
MX
10195 ret = __start_delalloc_inodes(root, delay_iput, -1);
10196 if (ret > 0)
10197 ret = 0;
eb73c1b7
MX
10198 return ret;
10199}
10200
6c255e67
MX
10201int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10202 int nr)
eb73c1b7
MX
10203{
10204 struct btrfs_root *root;
10205 struct list_head splice;
10206 int ret;
10207
2c21b4d7 10208 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10209 return -EROFS;
10210
10211 INIT_LIST_HEAD(&splice);
10212
573bfb72 10213 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10214 spin_lock(&fs_info->delalloc_root_lock);
10215 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10216 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10217 root = list_first_entry(&splice, struct btrfs_root,
10218 delalloc_root);
10219 root = btrfs_grab_fs_root(root);
10220 BUG_ON(!root);
10221 list_move_tail(&root->delalloc_root,
10222 &fs_info->delalloc_roots);
10223 spin_unlock(&fs_info->delalloc_root_lock);
10224
6c255e67 10225 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10226 btrfs_put_fs_root(root);
6c255e67 10227 if (ret < 0)
eb73c1b7
MX
10228 goto out;
10229
6c255e67
MX
10230 if (nr != -1) {
10231 nr -= ret;
10232 WARN_ON(nr < 0);
10233 }
eb73c1b7 10234 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10235 }
eb73c1b7 10236 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10237
6c255e67 10238 ret = 0;
eb73c1b7 10239out:
1eafa6c7 10240 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10241 spin_lock(&fs_info->delalloc_root_lock);
10242 list_splice_tail(&splice, &fs_info->delalloc_roots);
10243 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10244 }
573bfb72 10245 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10246 return ret;
ea8c2819
CM
10247}
10248
39279cc3
CM
10249static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10250 const char *symname)
10251{
0b246afa 10252 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10253 struct btrfs_trans_handle *trans;
10254 struct btrfs_root *root = BTRFS_I(dir)->root;
10255 struct btrfs_path *path;
10256 struct btrfs_key key;
1832a6d5 10257 struct inode *inode = NULL;
39279cc3
CM
10258 int err;
10259 int drop_inode = 0;
10260 u64 objectid;
67871254 10261 u64 index = 0;
39279cc3
CM
10262 int name_len;
10263 int datasize;
5f39d397 10264 unsigned long ptr;
39279cc3 10265 struct btrfs_file_extent_item *ei;
5f39d397 10266 struct extent_buffer *leaf;
39279cc3 10267
f06becc4 10268 name_len = strlen(symname);
0b246afa 10269 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10270 return -ENAMETOOLONG;
1832a6d5 10271
9ed74f2d
JB
10272 /*
10273 * 2 items for inode item and ref
10274 * 2 items for dir items
9269d12b
FM
10275 * 1 item for updating parent inode item
10276 * 1 item for the inline extent item
9ed74f2d
JB
10277 * 1 item for xattr if selinux is on
10278 */
9269d12b 10279 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10280 if (IS_ERR(trans))
10281 return PTR_ERR(trans);
1832a6d5 10282
581bb050
LZ
10283 err = btrfs_find_free_ino(root, &objectid);
10284 if (err)
10285 goto out_unlock;
10286
aec7477b 10287 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10288 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10289 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10290 if (IS_ERR(inode)) {
10291 err = PTR_ERR(inode);
39279cc3 10292 goto out_unlock;
7cf96da3 10293 }
39279cc3 10294
ad19db71
CS
10295 /*
10296 * If the active LSM wants to access the inode during
10297 * d_instantiate it needs these. Smack checks to see
10298 * if the filesystem supports xattrs by looking at the
10299 * ops vector.
10300 */
10301 inode->i_fop = &btrfs_file_operations;
10302 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10303 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10304 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10305
10306 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10307 if (err)
10308 goto out_unlock_inode;
ad19db71 10309
39279cc3 10310 path = btrfs_alloc_path();
d8926bb3
MF
10311 if (!path) {
10312 err = -ENOMEM;
b0d5d10f 10313 goto out_unlock_inode;
d8926bb3 10314 }
4a0cc7ca 10315 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10316 key.offset = 0;
962a298f 10317 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10318 datasize = btrfs_file_extent_calc_inline_size(name_len);
10319 err = btrfs_insert_empty_item(trans, root, path, &key,
10320 datasize);
54aa1f4d 10321 if (err) {
b0839166 10322 btrfs_free_path(path);
b0d5d10f 10323 goto out_unlock_inode;
54aa1f4d 10324 }
5f39d397
CM
10325 leaf = path->nodes[0];
10326 ei = btrfs_item_ptr(leaf, path->slots[0],
10327 struct btrfs_file_extent_item);
10328 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10329 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10330 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10331 btrfs_set_file_extent_encryption(leaf, ei, 0);
10332 btrfs_set_file_extent_compression(leaf, ei, 0);
10333 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10334 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10335
39279cc3 10336 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10337 write_extent_buffer(leaf, symname, ptr, name_len);
10338 btrfs_mark_buffer_dirty(leaf);
39279cc3 10339 btrfs_free_path(path);
5f39d397 10340
39279cc3 10341 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10342 inode_nohighmem(inode);
39279cc3 10343 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10344 inode_set_bytes(inode, name_len);
6ef06d27 10345 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10346 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10347 /*
10348 * Last step, add directory indexes for our symlink inode. This is the
10349 * last step to avoid extra cleanup of these indexes if an error happens
10350 * elsewhere above.
10351 */
10352 if (!err)
cef415af
NB
10353 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10354 BTRFS_I(inode), 0, index);
b0d5d10f 10355 if (err) {
54aa1f4d 10356 drop_inode = 1;
b0d5d10f
CM
10357 goto out_unlock_inode;
10358 }
10359
10360 unlock_new_inode(inode);
10361 d_instantiate(dentry, inode);
39279cc3
CM
10362
10363out_unlock:
3a45bb20 10364 btrfs_end_transaction(trans);
39279cc3
CM
10365 if (drop_inode) {
10366 inode_dec_link_count(inode);
10367 iput(inode);
10368 }
2ff7e61e 10369 btrfs_btree_balance_dirty(fs_info);
39279cc3 10370 return err;
b0d5d10f
CM
10371
10372out_unlock_inode:
10373 drop_inode = 1;
10374 unlock_new_inode(inode);
10375 goto out_unlock;
39279cc3 10376}
16432985 10377
0af3d00b
JB
10378static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10379 u64 start, u64 num_bytes, u64 min_size,
10380 loff_t actual_len, u64 *alloc_hint,
10381 struct btrfs_trans_handle *trans)
d899e052 10382{
0b246afa 10383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10384 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10385 struct extent_map *em;
d899e052
YZ
10386 struct btrfs_root *root = BTRFS_I(inode)->root;
10387 struct btrfs_key ins;
d899e052 10388 u64 cur_offset = start;
55a61d1d 10389 u64 i_size;
154ea289 10390 u64 cur_bytes;
0b670dc4 10391 u64 last_alloc = (u64)-1;
d899e052 10392 int ret = 0;
0af3d00b 10393 bool own_trans = true;
18513091 10394 u64 end = start + num_bytes - 1;
d899e052 10395
0af3d00b
JB
10396 if (trans)
10397 own_trans = false;
d899e052 10398 while (num_bytes > 0) {
0af3d00b
JB
10399 if (own_trans) {
10400 trans = btrfs_start_transaction(root, 3);
10401 if (IS_ERR(trans)) {
10402 ret = PTR_ERR(trans);
10403 break;
10404 }
5a303d5d
YZ
10405 }
10406
ee22184b 10407 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10408 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10409 /*
10410 * If we are severely fragmented we could end up with really
10411 * small allocations, so if the allocator is returning small
10412 * chunks lets make its job easier by only searching for those
10413 * sized chunks.
10414 */
10415 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10416 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10417 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10418 if (ret) {
0af3d00b 10419 if (own_trans)
3a45bb20 10420 btrfs_end_transaction(trans);
a22285a6 10421 break;
d899e052 10422 }
0b246afa 10423 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10424
0b670dc4 10425 last_alloc = ins.offset;
d899e052
YZ
10426 ret = insert_reserved_file_extent(trans, inode,
10427 cur_offset, ins.objectid,
10428 ins.offset, ins.offset,
920bbbfb 10429 ins.offset, 0, 0, 0,
d899e052 10430 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10431 if (ret) {
2ff7e61e 10432 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10433 ins.offset, 0);
66642832 10434 btrfs_abort_transaction(trans, ret);
79787eaa 10435 if (own_trans)
3a45bb20 10436 btrfs_end_transaction(trans);
79787eaa
JM
10437 break;
10438 }
31193213 10439
dcdbc059 10440 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10441 cur_offset + ins.offset -1, 0);
5a303d5d 10442
5dc562c5
JB
10443 em = alloc_extent_map();
10444 if (!em) {
10445 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10446 &BTRFS_I(inode)->runtime_flags);
10447 goto next;
10448 }
10449
10450 em->start = cur_offset;
10451 em->orig_start = cur_offset;
10452 em->len = ins.offset;
10453 em->block_start = ins.objectid;
10454 em->block_len = ins.offset;
b4939680 10455 em->orig_block_len = ins.offset;
cc95bef6 10456 em->ram_bytes = ins.offset;
0b246afa 10457 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10458 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10459 em->generation = trans->transid;
10460
10461 while (1) {
10462 write_lock(&em_tree->lock);
09a2a8f9 10463 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10464 write_unlock(&em_tree->lock);
10465 if (ret != -EEXIST)
10466 break;
dcdbc059 10467 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10468 cur_offset + ins.offset - 1,
10469 0);
10470 }
10471 free_extent_map(em);
10472next:
d899e052
YZ
10473 num_bytes -= ins.offset;
10474 cur_offset += ins.offset;
efa56464 10475 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10476
0c4d2d95 10477 inode_inc_iversion(inode);
c2050a45 10478 inode->i_ctime = current_time(inode);
6cbff00f 10479 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10480 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10481 (actual_len > inode->i_size) &&
10482 (cur_offset > inode->i_size)) {
d1ea6a61 10483 if (cur_offset > actual_len)
55a61d1d 10484 i_size = actual_len;
d1ea6a61 10485 else
55a61d1d
JB
10486 i_size = cur_offset;
10487 i_size_write(inode, i_size);
10488 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10489 }
10490
d899e052 10491 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10492
10493 if (ret) {
66642832 10494 btrfs_abort_transaction(trans, ret);
79787eaa 10495 if (own_trans)
3a45bb20 10496 btrfs_end_transaction(trans);
79787eaa
JM
10497 break;
10498 }
d899e052 10499
0af3d00b 10500 if (own_trans)
3a45bb20 10501 btrfs_end_transaction(trans);
5a303d5d 10502 }
18513091 10503 if (cur_offset < end)
bc42bda2 10504 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10505 end - cur_offset + 1);
d899e052
YZ
10506 return ret;
10507}
10508
0af3d00b
JB
10509int btrfs_prealloc_file_range(struct inode *inode, int mode,
10510 u64 start, u64 num_bytes, u64 min_size,
10511 loff_t actual_len, u64 *alloc_hint)
10512{
10513 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10514 min_size, actual_len, alloc_hint,
10515 NULL);
10516}
10517
10518int btrfs_prealloc_file_range_trans(struct inode *inode,
10519 struct btrfs_trans_handle *trans, int mode,
10520 u64 start, u64 num_bytes, u64 min_size,
10521 loff_t actual_len, u64 *alloc_hint)
10522{
10523 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10524 min_size, actual_len, alloc_hint, trans);
10525}
10526
e6dcd2dc
CM
10527static int btrfs_set_page_dirty(struct page *page)
10528{
e6dcd2dc
CM
10529 return __set_page_dirty_nobuffers(page);
10530}
10531
10556cb2 10532static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10533{
b83cc969 10534 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10535 umode_t mode = inode->i_mode;
b83cc969 10536
cb6db4e5
JM
10537 if (mask & MAY_WRITE &&
10538 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10539 if (btrfs_root_readonly(root))
10540 return -EROFS;
10541 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10542 return -EACCES;
10543 }
2830ba7f 10544 return generic_permission(inode, mask);
fdebe2bd 10545}
39279cc3 10546
ef3b9af5
FM
10547static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10548{
2ff7e61e 10549 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10550 struct btrfs_trans_handle *trans;
10551 struct btrfs_root *root = BTRFS_I(dir)->root;
10552 struct inode *inode = NULL;
10553 u64 objectid;
10554 u64 index;
10555 int ret = 0;
10556
10557 /*
10558 * 5 units required for adding orphan entry
10559 */
10560 trans = btrfs_start_transaction(root, 5);
10561 if (IS_ERR(trans))
10562 return PTR_ERR(trans);
10563
10564 ret = btrfs_find_free_ino(root, &objectid);
10565 if (ret)
10566 goto out;
10567
10568 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10569 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10570 if (IS_ERR(inode)) {
10571 ret = PTR_ERR(inode);
10572 inode = NULL;
10573 goto out;
10574 }
10575
ef3b9af5
FM
10576 inode->i_fop = &btrfs_file_operations;
10577 inode->i_op = &btrfs_file_inode_operations;
10578
10579 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10580 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10581
b0d5d10f
CM
10582 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10583 if (ret)
10584 goto out_inode;
10585
10586 ret = btrfs_update_inode(trans, root, inode);
10587 if (ret)
10588 goto out_inode;
73f2e545 10589 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10590 if (ret)
b0d5d10f 10591 goto out_inode;
ef3b9af5 10592
5762b5c9
FM
10593 /*
10594 * We set number of links to 0 in btrfs_new_inode(), and here we set
10595 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10596 * through:
10597 *
10598 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10599 */
10600 set_nlink(inode, 1);
b0d5d10f 10601 unlock_new_inode(inode);
ef3b9af5
FM
10602 d_tmpfile(dentry, inode);
10603 mark_inode_dirty(inode);
10604
10605out:
3a45bb20 10606 btrfs_end_transaction(trans);
ef3b9af5
FM
10607 if (ret)
10608 iput(inode);
2ff7e61e 10609 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10610 return ret;
b0d5d10f
CM
10611
10612out_inode:
10613 unlock_new_inode(inode);
10614 goto out;
10615
ef3b9af5
FM
10616}
10617
20a7db8a 10618__attribute__((const))
9d0d1c8b 10619static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10620{
9d0d1c8b 10621 return -EAGAIN;
20a7db8a
DS
10622}
10623
c6100a4b
JB
10624static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10625{
10626 struct inode *inode = private_data;
10627 return btrfs_sb(inode->i_sb);
10628}
10629
10630static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10631 u64 start, u64 end)
10632{
10633 struct inode *inode = private_data;
10634 u64 isize;
10635
10636 isize = i_size_read(inode);
10637 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10638 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10639 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10640 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10641 }
10642}
10643
10644void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10645{
10646 struct inode *inode = private_data;
10647 unsigned long index = start >> PAGE_SHIFT;
10648 unsigned long end_index = end >> PAGE_SHIFT;
10649 struct page *page;
10650
10651 while (index <= end_index) {
10652 page = find_get_page(inode->i_mapping, index);
10653 ASSERT(page); /* Pages should be in the extent_io_tree */
10654 set_page_writeback(page);
10655 put_page(page);
10656 index++;
10657 }
10658}
10659
6e1d5dcc 10660static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10661 .getattr = btrfs_getattr,
39279cc3
CM
10662 .lookup = btrfs_lookup,
10663 .create = btrfs_create,
10664 .unlink = btrfs_unlink,
10665 .link = btrfs_link,
10666 .mkdir = btrfs_mkdir,
10667 .rmdir = btrfs_rmdir,
2773bf00 10668 .rename = btrfs_rename2,
39279cc3
CM
10669 .symlink = btrfs_symlink,
10670 .setattr = btrfs_setattr,
618e21d5 10671 .mknod = btrfs_mknod,
5103e947 10672 .listxattr = btrfs_listxattr,
fdebe2bd 10673 .permission = btrfs_permission,
4e34e719 10674 .get_acl = btrfs_get_acl,
996a710d 10675 .set_acl = btrfs_set_acl,
93fd63c2 10676 .update_time = btrfs_update_time,
ef3b9af5 10677 .tmpfile = btrfs_tmpfile,
39279cc3 10678};
6e1d5dcc 10679static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10680 .lookup = btrfs_lookup,
fdebe2bd 10681 .permission = btrfs_permission,
93fd63c2 10682 .update_time = btrfs_update_time,
39279cc3 10683};
76dda93c 10684
828c0950 10685static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10686 .llseek = generic_file_llseek,
10687 .read = generic_read_dir,
02dbfc99 10688 .iterate_shared = btrfs_real_readdir,
23b5ec74 10689 .open = btrfs_opendir,
34287aa3 10690 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10691#ifdef CONFIG_COMPAT
4c63c245 10692 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10693#endif
6bf13c0c 10694 .release = btrfs_release_file,
e02119d5 10695 .fsync = btrfs_sync_file,
39279cc3
CM
10696};
10697
20e5506b 10698static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10699 /* mandatory callbacks */
065631f6 10700 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10701 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10702 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10703 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10704 .tree_fs_info = iotree_fs_info,
10705 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10706
10707 /* optional callbacks */
10708 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10709 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10710 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10711 .set_bit_hook = btrfs_set_bit_hook,
10712 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10713 .merge_extent_hook = btrfs_merge_extent_hook,
10714 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10715 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10716};
10717
35054394
CM
10718/*
10719 * btrfs doesn't support the bmap operation because swapfiles
10720 * use bmap to make a mapping of extents in the file. They assume
10721 * these extents won't change over the life of the file and they
10722 * use the bmap result to do IO directly to the drive.
10723 *
10724 * the btrfs bmap call would return logical addresses that aren't
10725 * suitable for IO and they also will change frequently as COW
10726 * operations happen. So, swapfile + btrfs == corruption.
10727 *
10728 * For now we're avoiding this by dropping bmap.
10729 */
7f09410b 10730static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10731 .readpage = btrfs_readpage,
10732 .writepage = btrfs_writepage,
b293f02e 10733 .writepages = btrfs_writepages,
3ab2fb5a 10734 .readpages = btrfs_readpages,
16432985 10735 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10736 .invalidatepage = btrfs_invalidatepage,
10737 .releasepage = btrfs_releasepage,
e6dcd2dc 10738 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10739 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10740};
10741
7f09410b 10742static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10743 .readpage = btrfs_readpage,
10744 .writepage = btrfs_writepage,
2bf5a725
CM
10745 .invalidatepage = btrfs_invalidatepage,
10746 .releasepage = btrfs_releasepage,
39279cc3
CM
10747};
10748
6e1d5dcc 10749static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10750 .getattr = btrfs_getattr,
10751 .setattr = btrfs_setattr,
5103e947 10752 .listxattr = btrfs_listxattr,
fdebe2bd 10753 .permission = btrfs_permission,
1506fcc8 10754 .fiemap = btrfs_fiemap,
4e34e719 10755 .get_acl = btrfs_get_acl,
996a710d 10756 .set_acl = btrfs_set_acl,
e41f941a 10757 .update_time = btrfs_update_time,
39279cc3 10758};
6e1d5dcc 10759static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10760 .getattr = btrfs_getattr,
10761 .setattr = btrfs_setattr,
fdebe2bd 10762 .permission = btrfs_permission,
33268eaf 10763 .listxattr = btrfs_listxattr,
4e34e719 10764 .get_acl = btrfs_get_acl,
996a710d 10765 .set_acl = btrfs_set_acl,
e41f941a 10766 .update_time = btrfs_update_time,
618e21d5 10767};
6e1d5dcc 10768static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10769 .get_link = page_get_link,
f209561a 10770 .getattr = btrfs_getattr,
22c44fe6 10771 .setattr = btrfs_setattr,
fdebe2bd 10772 .permission = btrfs_permission,
0279b4cd 10773 .listxattr = btrfs_listxattr,
e41f941a 10774 .update_time = btrfs_update_time,
39279cc3 10775};
76dda93c 10776
82d339d9 10777const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10778 .d_delete = btrfs_dentry_delete,
b4aff1f8 10779 .d_release = btrfs_dentry_release,
76dda93c 10780};