Btrfs: fix race between fsync and direct IO writes for prealloc extents
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74};
75
6e1d5dcc
AD
76static const struct inode_operations btrfs_dir_inode_operations;
77static const struct inode_operations btrfs_symlink_inode_operations;
78static const struct inode_operations btrfs_dir_ro_inode_operations;
79static const struct inode_operations btrfs_special_inode_operations;
80static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
81static const struct address_space_operations btrfs_aops;
82static const struct address_space_operations btrfs_symlink_aops;
828c0950 83static const struct file_operations btrfs_dir_file_operations;
20e5506b 84static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
85
86static struct kmem_cache *btrfs_inode_cachep;
87struct kmem_cache *btrfs_trans_handle_cachep;
88struct kmem_cache *btrfs_transaction_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
70c8a91c
JB
110static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
cc95bef6
JB
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
7b128766 115
48a3b636 116static int btrfs_dirty_inode(struct inode *inode);
7b128766 117
6a3891c5
JB
118#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119void btrfs_test_inode_set_ops(struct inode *inode)
120{
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122}
123#endif
124
f34f57a3 125static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
0279b4cd
JO
128{
129 int err;
130
f34f57a3 131 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 132 if (!err)
2a7dba39 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
134 return err;
135}
136
c8b97818
CM
137/*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
40f76580 142static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 143 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
fe3f566c 146 int compress_type,
c8b97818
CM
147 struct page **compressed_pages)
148{
c8b97818
CM
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
c8b97818 157 unsigned long offset;
c8b97818 158
fe3f566c 159 if (compressed_size && compressed_pages)
c8b97818 160 cur_size = compressed_size;
c8b97818 161
1acae57b 162 inode_add_bytes(inode, size);
c8b97818 163
1acae57b
FDBM
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
c8b97818 167
1acae57b
FDBM
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
962a298f 170 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 171
1acae57b
FDBM
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
c8b97818
CM
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
261507a0 191 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
192 struct page *cpage;
193 int i = 0;
d397712b 194 while (compressed_size > 0) {
c8b97818 195 cpage = compressed_pages[i];
5b050f04 196 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 197 PAGE_SIZE);
c8b97818 198
7ac687d9 199 kaddr = kmap_atomic(cpage);
c8b97818 200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
261507a0 208 compress_type);
c8b97818
CM
209 } else {
210 page = find_get_page(inode->i_mapping,
09cbfeaf 211 start >> PAGE_SHIFT);
c8b97818 212 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 213 kaddr = kmap_atomic(page);
09cbfeaf 214 offset = start & (PAGE_SIZE - 1);
c8b97818 215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 216 kunmap_atomic(kaddr);
09cbfeaf 217 put_page(page);
c8b97818
CM
218 }
219 btrfs_mark_buffer_dirty(leaf);
1acae57b 220 btrfs_release_path(path);
c8b97818 221
c2167754
YZ
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
c8b97818 231 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 232 ret = btrfs_update_inode(trans, root, inode);
c2167754 233
79787eaa 234 return ret;
c8b97818 235fail:
c8b97818
CM
236 return err;
237}
238
239
240/*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
00361589
JB
245static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
c8b97818 250{
00361589 251 struct btrfs_trans_handle *trans;
c8b97818
CM
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
fda2832f 255 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
256 u64 data_len = inline_len;
257 int ret;
1acae57b
FDBM
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
c8b97818
CM
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
0c29ba99 266 actual_end > root->sectorsize ||
354877be 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
1acae57b
FDBM
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
00361589 279 trans = btrfs_join_transaction(root);
1acae57b
FDBM
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
00361589 282 return PTR_ERR(trans);
1acae57b 283 }
00361589
JB
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
1acae57b
FDBM
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
00361589
JB
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
c8b97818
CM
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
c8b97818 305 inline_len, compressed_size,
fe3f566c 306 compress_type, compressed_pages);
2adcac1a 307 if (ret && ret != -ENOSPC) {
79787eaa 308 btrfs_abort_transaction(trans, root, ret);
00361589 309 goto out;
2adcac1a 310 } else if (ret == -ENOSPC) {
00361589
JB
311 ret = 1;
312 goto out;
79787eaa 313 }
2adcac1a 314
bdc20e67 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 318out:
94ed938a
QW
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
09cbfeaf 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 326 btrfs_free_path(path);
00361589
JB
327 btrfs_end_transaction(trans, root);
328 return ret;
c8b97818
CM
329}
330
771ed689
CM
331struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
261507a0 337 int compress_type;
771ed689
CM
338 struct list_head list;
339};
340
341struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349};
350
351static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
261507a0
LZ
355 unsigned long nr_pages,
356 int compress_type)
771ed689
CM
357{
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 361 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
261507a0 367 async_extent->compress_type = compress_type;
771ed689
CM
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370}
371
f79707b0
WS
372static inline int inode_need_compress(struct inode *inode)
373{
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387}
388
d352ac68 389/*
771ed689
CM
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
c8b97818 393 *
771ed689
CM
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
c8b97818 399 *
771ed689
CM
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
403 * are written in the same order that the flusher thread sent them
404 * down.
d352ac68 405 */
c44f649e 406static noinline void compress_file_range(struct inode *inode,
771ed689
CM
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
b888db2b
CM
411{
412 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 413 u64 num_bytes;
db94535d 414 u64 blocksize = root->sectorsize;
c8b97818 415 u64 actual_end;
42dc7bab 416 u64 isize = i_size_read(inode);
e6dcd2dc 417 int ret = 0;
c8b97818
CM
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
ee22184b
BL
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
425 int i;
426 int will_compress;
261507a0 427 int compress_type = root->fs_info->compress_type;
4adaa611 428 int redirty = 0;
b888db2b 429
4cb13e5d 430 /* if this is a small write inside eof, kick off a defrag */
ee22184b 431 if ((end - start + 1) < SZ_16K &&
4cb13e5d 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
433 btrfs_add_inode_defrag(NULL, inode);
434
42dc7bab 435 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
436again:
437 will_compress = 0;
09cbfeaf
KS
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 440
f03d9301
CM
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
c8b97818
CM
454 total_compressed = actual_end - start;
455
4bcbb332
SW
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
c8b97818
CM
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
c8b97818
CM
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 475 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 476 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
477 total_in = 0;
478 ret = 0;
db94535d 479
771ed689
CM
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
c8b97818 484 */
f79707b0 485 if (inode_need_compress(inode)) {
c8b97818 486 WARN_ON(pages);
31e818fe 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
c8b97818 492
261507a0
LZ
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
4adaa611
CM
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
261507a0
LZ
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
c8b97818
CM
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
09cbfeaf 517 (PAGE_SIZE - 1);
c8b97818
CM
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
7ac687d9 525 kaddr = kmap_atomic(page);
c8b97818 526 memset(kaddr + offset, 0,
09cbfeaf 527 PAGE_SIZE - offset);
7ac687d9 528 kunmap_atomic(kaddr);
c8b97818
CM
529 }
530 will_compress = 1;
531 }
532 }
560f7d75 533cont:
c8b97818
CM
534 if (start == 0) {
535 /* lets try to make an inline extent */
771ed689 536 if (ret || total_in < (actual_end - start)) {
c8b97818 537 /* we didn't compress the entire range, try
771ed689 538 * to make an uncompressed inline extent.
c8b97818 539 */
00361589
JB
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
c8b97818 542 } else {
771ed689 543 /* try making a compressed inline extent */
00361589 544 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
545 total_compressed,
546 compress_type, pages);
c8b97818 547 }
79787eaa 548 if (ret <= 0) {
151a41bc
JB
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
e6eb4314
FM
551 unsigned long page_error_op;
552
151a41bc 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 555
771ed689 556 /*
79787eaa
JM
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
771ed689 560 */
c2790a2e 561 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 562 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
e6eb4314 565 page_error_op |
c2790a2e 566 PAGE_END_WRITEBACK);
c8b97818
CM
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
fda2832f 577 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
09cbfeaf 583 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
c8b97818
CM
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 596 WARN_ON(pages[i]->mapping);
09cbfeaf 597 put_page(pages[i]);
c8b97818
CM
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
1e701a32
CM
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
a555f810 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 608 }
c8b97818 609 }
771ed689
CM
610 if (will_compress) {
611 *num_added += 1;
c8b97818 612
771ed689
CM
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
179e29e4 620
24ae6365 621 if (start + num_bytes < end) {
771ed689
CM
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
f03d9301 628cleanup_and_bail_uncompressed:
771ed689
CM
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
4adaa611
CM
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
645 *num_added += 1;
646 }
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
771ed689 716
79787eaa
JM
717 /* JDM XXX */
718
771ed689
CM
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
f5a84ee3 725 if (!page_started && !ret)
771ed689
CM
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
d397712b 728 async_extent->start +
771ed689
CM
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
3e04e7f1
JB
732 else if (ret)
733 unlock_page(async_cow->locked_page);
771ed689
CM
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
d0082371 740 async_extent->start + async_extent->ram_size - 1);
771ed689 741
00361589 742 ret = btrfs_reserve_extent(root,
771ed689
CM
743 async_extent->compressed_size,
744 async_extent->compressed_size,
e570fd27 745 0, alloc_hint, &ins, 1, 1);
f5a84ee3 746 if (ret) {
40ae837b 747 free_async_extent_pages(async_extent);
3e04e7f1 748
fdf8e2ea
JB
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
ce62003f
LB
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
79787eaa 765 goto retry;
fdf8e2ea 766 }
3e04e7f1 767 goto out_free;
f5a84ee3 768 }
c2167754
YZ
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
172ddd60 777 em = alloc_extent_map();
b9aa55be
LB
778 if (!em) {
779 ret = -ENOMEM;
3e04e7f1 780 goto out_free_reserve;
b9aa55be 781 }
771ed689
CM
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
445a6944 784 em->orig_start = em->start;
2ab28f32
JB
785 em->mod_start = em->start;
786 em->mod_len = em->len;
c8b97818 787
771ed689
CM
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
b4939680 790 em->orig_block_len = ins.offset;
cc95bef6 791 em->ram_bytes = async_extent->ram_size;
771ed689 792 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 793 em->compress_type = async_extent->compress_type;
771ed689
CM
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 796 em->generation = -1;
771ed689 797
d397712b 798 while (1) {
890871be 799 write_lock(&em_tree->lock);
09a2a8f9 800 ret = add_extent_mapping(em_tree, em, 1);
890871be 801 write_unlock(&em_tree->lock);
771ed689
CM
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
3e04e7f1
JB
811 if (ret)
812 goto out_free_reserve;
813
261507a0
LZ
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
d9f85963
FM
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
3e04e7f1 825 goto out_free_reserve;
d9f85963 826 }
9cfa3e34 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 828
771ed689
CM
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
c2790a2e 832 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
833 async_extent->start +
834 async_extent->ram_size - 1,
151a41bc
JB
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 837 PAGE_SET_WRITEBACK);
771ed689 838 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
fce2a4e6
FM
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
40ae837b 857 free_async_extent_pages(async_extent);
fce2a4e6 858 }
771ed689
CM
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
dec8f175 863 return;
3e04e7f1 864out_free_reserve:
9cfa3e34 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 867out_free:
c2790a2e 868 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
869 async_extent->start +
870 async_extent->ram_size - 1,
c2790a2e 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
40ae837b 876 free_async_extent_pages(async_extent);
79787eaa 877 kfree(async_extent);
3e04e7f1 878 goto again;
771ed689
CM
879}
880
4b46fce2
JB
881static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883{
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911}
912
771ed689
CM
913/*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
00361589
JB
926static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
771ed689 931{
00361589 932 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
771ed689
CM
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
02ecd2c2
JB
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
29bce2f3
JB
946 ret = -EINVAL;
947 goto out_unlock;
02ecd2c2 948 }
771ed689 949
fda2832f 950 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
771ed689 953
4cb5300b 954 /* if this is a small write inside eof, kick off defrag */
ee22184b 955 if (num_bytes < SZ_64K &&
4cb13e5d 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 957 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 958
771ed689
CM
959 if (start == 0) {
960 /* lets try to make an inline extent */
00361589
JB
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
771ed689 963 if (ret == 0) {
c2790a2e
JB
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 966 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
c2167754 969
771ed689 970 *nr_written = *nr_written +
09cbfeaf 971 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 972 *page_started = 1;
771ed689 973 goto out;
79787eaa 974 } else if (ret < 0) {
79787eaa 975 goto out_unlock;
771ed689
CM
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
6c41761f 980 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 981
4b46fce2 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
d397712b 985 while (disk_num_bytes > 0) {
a791e35e
CM
986 unsigned long op;
987
287a0ab9 988 cur_alloc_size = disk_num_bytes;
00361589 989 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 990 root->sectorsize, 0, alloc_hint,
e570fd27 991 &ins, 1, 1);
00361589 992 if (ret < 0)
79787eaa 993 goto out_unlock;
d397712b 994
172ddd60 995 em = alloc_extent_map();
b9aa55be
LB
996 if (!em) {
997 ret = -ENOMEM;
ace68bac 998 goto out_reserve;
b9aa55be 999 }
e6dcd2dc 1000 em->start = start;
445a6944 1001 em->orig_start = em->start;
771ed689
CM
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
2ab28f32
JB
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
c8b97818 1006
e6dcd2dc 1007 em->block_start = ins.objectid;
c8b97818 1008 em->block_len = ins.offset;
b4939680 1009 em->orig_block_len = ins.offset;
cc95bef6 1010 em->ram_bytes = ram_size;
e6dcd2dc 1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1013 em->generation = -1;
c8b97818 1014
d397712b 1015 while (1) {
890871be 1016 write_lock(&em_tree->lock);
09a2a8f9 1017 ret = add_extent_mapping(em_tree, em, 1);
890871be 1018 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
c8b97818 1024 start + ram_size - 1, 0);
e6dcd2dc 1025 }
ace68bac
LB
1026 if (ret)
1027 goto out_reserve;
e6dcd2dc 1028
98d20f67 1029 cur_alloc_size = ins.offset;
e6dcd2dc 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1031 ram_size, cur_alloc_size, 0);
ace68bac 1032 if (ret)
d9f85963 1033 goto out_drop_extent_cache;
c8b97818 1034
17d217fe
YZ
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
00361589 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
17d217fe
YZ
1041 }
1042
9cfa3e34
FM
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
d397712b 1045 if (disk_num_bytes < cur_alloc_size)
3b951516 1046 break;
d397712b 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
c2790a2e
JB
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e
JB
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
c8b97818 1062 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
b888db2b 1066 }
79787eaa 1067out:
be20aa9d 1068 return ret;
b7d5b0a8 1069
d9f85963
FM
1070out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1072out_reserve:
9cfa3e34 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1075out_unlock:
c2790a2e 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1081 goto out;
771ed689 1082}
c8b97818 1083
771ed689
CM
1084/*
1085 * work queue call back to started compression on a file and pages
1086 */
1087static noinline void async_cow_start(struct btrfs_work *work)
1088{
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
8180ef88 1096 if (num_added == 0) {
cb77fcd8 1097 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1098 async_cow->inode = NULL;
8180ef88 1099 }
771ed689
CM
1100}
1101
1102/*
1103 * work queue call back to submit previously compressed pages
1104 */
1105static noinline void async_cow_submit(struct btrfs_work *work)
1106{
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
09cbfeaf
KS
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
771ed689 1116
ee863954
DS
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
66657b31 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1121 5 * SZ_1M &&
771ed689
CM
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
d397712b 1125 if (async_cow->inode)
771ed689 1126 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1127}
c8b97818 1128
771ed689
CM
1129static noinline void async_cow_free(struct btrfs_work *work)
1130{
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
8180ef88 1133 if (async_cow->inode)
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1135 kfree(async_cow);
1136}
1137
1138static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141{
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
ee22184b 1146 int limit = 10 * SZ_1M;
771ed689 1147
a3429ab7
CM
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
d397712b 1150 while (start < end) {
771ed689 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1152 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1153 async_cow->inode = igrab(inode);
771ed689
CM
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
f79707b0
WS
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1160 cur_end = end;
1161 else
ee22184b 1162 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
9e0af237
LB
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
771ed689 1171
09cbfeaf
KS
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
771ed689
CM
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
afe3d242
QW
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
771ed689
CM
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
d397712b 1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
be20aa9d
CM
1197}
1198
d397712b 1199static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1200 u64 bytenr, u64 num_bytes)
1201{
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
07d400a6 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1207 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217}
1218
d352ac68
CM
1219/*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
7f366cfe
CM
1226static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
771ed689
CM
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
be20aa9d 1230{
be20aa9d 1231 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1232 struct btrfs_trans_handle *trans;
be20aa9d 1233 struct extent_buffer *leaf;
be20aa9d 1234 struct btrfs_path *path;
80ff3856 1235 struct btrfs_file_extent_item *fi;
be20aa9d 1236 struct btrfs_key found_key;
80ff3856
YZ
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
5d4f98a2 1240 u64 extent_offset;
80ff3856
YZ
1241 u64 disk_bytenr;
1242 u64 num_bytes;
b4939680 1243 u64 disk_num_bytes;
cc95bef6 1244 u64 ram_bytes;
80ff3856 1245 int extent_type;
79787eaa 1246 int ret, err;
d899e052 1247 int type;
80ff3856
YZ
1248 int nocow;
1249 int check_prev = 1;
82d5902d 1250 bool nolock;
33345d01 1251 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1252
1253 path = btrfs_alloc_path();
17ca04af 1254 if (!path) {
c2790a2e
JB
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
d8926bb3 1262 return -ENOMEM;
17ca04af 1263 }
82d5902d 1264
83eea1f1 1265 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1266
1267 if (nolock)
7a7eaa40 1268 trans = btrfs_join_transaction_nolock(root);
82d5902d 1269 else
7a7eaa40 1270 trans = btrfs_join_transaction(root);
ff5714cc 1271
79787eaa 1272 if (IS_ERR(trans)) {
c2790a2e
JB
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
79787eaa
JM
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
74b21075 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1285
80ff3856
YZ
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
33345d01 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1290 cur_offset, 0);
d788a349 1291 if (ret < 0)
79787eaa 1292 goto error;
80ff3856
YZ
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
33345d01 1297 if (found_key.objectid == ino &&
80ff3856
YZ
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
be20aa9d 1312
80ff3856
YZ
1313 nocow = 0;
1314 disk_bytenr = 0;
17d217fe 1315 num_bytes = 0;
80ff3856
YZ
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1d512cb7
FM
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
e9061e21 1331 extent_type = 0;
80ff3856
YZ
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
cc95bef6 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
17d217fe
YZ
1352 if (disk_bytenr == 0)
1353 goto out_check;
80ff3856
YZ
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
d899e052
YZ
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
d2fb3437 1360 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1361 goto out_check;
33345d01 1362 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
17d217fe 1365 goto out_check;
5d4f98a2 1366 disk_bytenr += extent_offset;
17d217fe
YZ
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
9ea24bbe 1374 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1375 if (!err)
1376 goto out_check;
1377 }
17d217fe
YZ
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
80ff3856
YZ
1385 nocow = 1;
1386 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1387 extent_end = found_key.offset +
514ac8ad
CM
1388 btrfs_file_extent_inline_len(leaf,
1389 path->slots[0], fi);
80ff3856
YZ
1390 extent_end = ALIGN(extent_end, root->sectorsize);
1391 } else {
1392 BUG_ON(1);
1393 }
1394out_check:
1395 if (extent_end <= start) {
1396 path->slots[0]++;
e9894fd3 1397 if (!nolock && nocow)
9ea24bbe 1398 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1399 goto next_slot;
1400 }
1401 if (!nocow) {
1402 if (cow_start == (u64)-1)
1403 cow_start = cur_offset;
1404 cur_offset = extent_end;
1405 if (cur_offset > end)
1406 break;
1407 path->slots[0]++;
1408 goto next_slot;
7ea394f1
YZ
1409 }
1410
b3b4aa74 1411 btrfs_release_path(path);
80ff3856 1412 if (cow_start != (u64)-1) {
00361589
JB
1413 ret = cow_file_range(inode, locked_page,
1414 cow_start, found_key.offset - 1,
1415 page_started, nr_written, 1);
e9894fd3
WS
1416 if (ret) {
1417 if (!nolock && nocow)
9ea24bbe 1418 btrfs_end_write_no_snapshoting(root);
79787eaa 1419 goto error;
e9894fd3 1420 }
80ff3856 1421 cow_start = (u64)-1;
7ea394f1 1422 }
80ff3856 1423
d899e052
YZ
1424 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1425 struct extent_map *em;
1426 struct extent_map_tree *em_tree;
1427 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1428 em = alloc_extent_map();
79787eaa 1429 BUG_ON(!em); /* -ENOMEM */
d899e052 1430 em->start = cur_offset;
70c8a91c 1431 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1432 em->len = num_bytes;
1433 em->block_len = num_bytes;
1434 em->block_start = disk_bytenr;
b4939680 1435 em->orig_block_len = disk_num_bytes;
cc95bef6 1436 em->ram_bytes = ram_bytes;
d899e052 1437 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1438 em->mod_start = em->start;
1439 em->mod_len = em->len;
d899e052 1440 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1441 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1442 em->generation = -1;
d899e052 1443 while (1) {
890871be 1444 write_lock(&em_tree->lock);
09a2a8f9 1445 ret = add_extent_mapping(em_tree, em, 1);
890871be 1446 write_unlock(&em_tree->lock);
d899e052
YZ
1447 if (ret != -EEXIST) {
1448 free_extent_map(em);
1449 break;
1450 }
1451 btrfs_drop_extent_cache(inode, em->start,
1452 em->start + em->len - 1, 0);
1453 }
1454 type = BTRFS_ORDERED_PREALLOC;
1455 } else {
1456 type = BTRFS_ORDERED_NOCOW;
1457 }
80ff3856
YZ
1458
1459 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1460 num_bytes, num_bytes, type);
79787eaa 1461 BUG_ON(ret); /* -ENOMEM */
771ed689 1462
efa56464
YZ
1463 if (root->root_key.objectid ==
1464 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1465 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1466 num_bytes);
e9894fd3
WS
1467 if (ret) {
1468 if (!nolock && nocow)
9ea24bbe 1469 btrfs_end_write_no_snapshoting(root);
79787eaa 1470 goto error;
e9894fd3 1471 }
efa56464
YZ
1472 }
1473
c2790a2e
JB
1474 extent_clear_unlock_delalloc(inode, cur_offset,
1475 cur_offset + num_bytes - 1,
1476 locked_page, EXTENT_LOCKED |
1477 EXTENT_DELALLOC, PAGE_UNLOCK |
1478 PAGE_SET_PRIVATE2);
e9894fd3 1479 if (!nolock && nocow)
9ea24bbe 1480 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1481 cur_offset = extent_end;
1482 if (cur_offset > end)
1483 break;
be20aa9d 1484 }
b3b4aa74 1485 btrfs_release_path(path);
80ff3856 1486
17ca04af 1487 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1488 cow_start = cur_offset;
17ca04af
JB
1489 cur_offset = end;
1490 }
1491
80ff3856 1492 if (cow_start != (u64)-1) {
00361589
JB
1493 ret = cow_file_range(inode, locked_page, cow_start, end,
1494 page_started, nr_written, 1);
d788a349 1495 if (ret)
79787eaa 1496 goto error;
80ff3856
YZ
1497 }
1498
79787eaa 1499error:
a698d075 1500 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1501 if (!ret)
1502 ret = err;
1503
17ca04af 1504 if (ret && cur_offset < end)
c2790a2e
JB
1505 extent_clear_unlock_delalloc(inode, cur_offset, end,
1506 locked_page, EXTENT_LOCKED |
151a41bc
JB
1507 EXTENT_DELALLOC | EXTENT_DEFRAG |
1508 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1509 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1510 PAGE_SET_WRITEBACK |
1511 PAGE_END_WRITEBACK);
7ea394f1 1512 btrfs_free_path(path);
79787eaa 1513 return ret;
be20aa9d
CM
1514}
1515
47059d93
WS
1516static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1517{
1518
1519 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1520 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1521 return 0;
1522
1523 /*
1524 * @defrag_bytes is a hint value, no spinlock held here,
1525 * if is not zero, it means the file is defragging.
1526 * Force cow if given extent needs to be defragged.
1527 */
1528 if (BTRFS_I(inode)->defrag_bytes &&
1529 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1530 EXTENT_DEFRAG, 0, NULL))
1531 return 1;
1532
1533 return 0;
1534}
1535
d352ac68
CM
1536/*
1537 * extent_io.c call back to do delayed allocation processing
1538 */
c8b97818 1539static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1540 u64 start, u64 end, int *page_started,
1541 unsigned long *nr_written)
be20aa9d 1542{
be20aa9d 1543 int ret;
47059d93 1544 int force_cow = need_force_cow(inode, start, end);
a2135011 1545
47059d93 1546 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1547 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1548 page_started, 1, nr_written);
47059d93 1549 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1550 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1551 page_started, 0, nr_written);
7816030e 1552 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1553 ret = cow_file_range(inode, locked_page, start, end,
1554 page_started, nr_written, 1);
7ddf5a42
JB
1555 } else {
1556 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1557 &BTRFS_I(inode)->runtime_flags);
771ed689 1558 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1559 page_started, nr_written);
7ddf5a42 1560 }
b888db2b
CM
1561 return ret;
1562}
1563
1bf85046
JM
1564static void btrfs_split_extent_hook(struct inode *inode,
1565 struct extent_state *orig, u64 split)
9ed74f2d 1566{
dcab6a3b
JB
1567 u64 size;
1568
0ca1f7ce 1569 /* not delalloc, ignore it */
9ed74f2d 1570 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1571 return;
9ed74f2d 1572
dcab6a3b
JB
1573 size = orig->end - orig->start + 1;
1574 if (size > BTRFS_MAX_EXTENT_SIZE) {
1575 u64 num_extents;
1576 u64 new_size;
1577
1578 /*
ba117213
JB
1579 * See the explanation in btrfs_merge_extent_hook, the same
1580 * applies here, just in reverse.
dcab6a3b
JB
1581 */
1582 new_size = orig->end - split + 1;
ba117213 1583 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1584 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1585 new_size = split - orig->start;
1586 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1587 BTRFS_MAX_EXTENT_SIZE);
1588 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1589 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1590 return;
1591 }
1592
9e0baf60
JB
1593 spin_lock(&BTRFS_I(inode)->lock);
1594 BTRFS_I(inode)->outstanding_extents++;
1595 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1596}
1597
1598/*
1599 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1600 * extents so we can keep track of new extents that are just merged onto old
1601 * extents, such as when we are doing sequential writes, so we can properly
1602 * account for the metadata space we'll need.
1603 */
1bf85046
JM
1604static void btrfs_merge_extent_hook(struct inode *inode,
1605 struct extent_state *new,
1606 struct extent_state *other)
9ed74f2d 1607{
dcab6a3b
JB
1608 u64 new_size, old_size;
1609 u64 num_extents;
1610
9ed74f2d
JB
1611 /* not delalloc, ignore it */
1612 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1613 return;
9ed74f2d 1614
8461a3de
JB
1615 if (new->start > other->start)
1616 new_size = new->end - other->start + 1;
1617 else
1618 new_size = other->end - new->start + 1;
dcab6a3b
JB
1619
1620 /* we're not bigger than the max, unreserve the space and go */
1621 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1622 spin_lock(&BTRFS_I(inode)->lock);
1623 BTRFS_I(inode)->outstanding_extents--;
1624 spin_unlock(&BTRFS_I(inode)->lock);
1625 return;
1626 }
1627
1628 /*
ba117213
JB
1629 * We have to add up either side to figure out how many extents were
1630 * accounted for before we merged into one big extent. If the number of
1631 * extents we accounted for is <= the amount we need for the new range
1632 * then we can return, otherwise drop. Think of it like this
1633 *
1634 * [ 4k][MAX_SIZE]
1635 *
1636 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1637 * need 2 outstanding extents, on one side we have 1 and the other side
1638 * we have 1 so they are == and we can return. But in this case
1639 *
1640 * [MAX_SIZE+4k][MAX_SIZE+4k]
1641 *
1642 * Each range on their own accounts for 2 extents, but merged together
1643 * they are only 3 extents worth of accounting, so we need to drop in
1644 * this case.
dcab6a3b 1645 */
ba117213 1646 old_size = other->end - other->start + 1;
dcab6a3b
JB
1647 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1648 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1649 old_size = new->end - new->start + 1;
1650 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1651 BTRFS_MAX_EXTENT_SIZE);
1652
dcab6a3b 1653 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1654 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1655 return;
1656
9e0baf60
JB
1657 spin_lock(&BTRFS_I(inode)->lock);
1658 BTRFS_I(inode)->outstanding_extents--;
1659 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1660}
1661
eb73c1b7
MX
1662static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1663 struct inode *inode)
1664{
1665 spin_lock(&root->delalloc_lock);
1666 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1667 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1668 &root->delalloc_inodes);
1669 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1670 &BTRFS_I(inode)->runtime_flags);
1671 root->nr_delalloc_inodes++;
1672 if (root->nr_delalloc_inodes == 1) {
1673 spin_lock(&root->fs_info->delalloc_root_lock);
1674 BUG_ON(!list_empty(&root->delalloc_root));
1675 list_add_tail(&root->delalloc_root,
1676 &root->fs_info->delalloc_roots);
1677 spin_unlock(&root->fs_info->delalloc_root_lock);
1678 }
1679 }
1680 spin_unlock(&root->delalloc_lock);
1681}
1682
1683static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1684 struct inode *inode)
1685{
1686 spin_lock(&root->delalloc_lock);
1687 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1688 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1689 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1690 &BTRFS_I(inode)->runtime_flags);
1691 root->nr_delalloc_inodes--;
1692 if (!root->nr_delalloc_inodes) {
1693 spin_lock(&root->fs_info->delalloc_root_lock);
1694 BUG_ON(list_empty(&root->delalloc_root));
1695 list_del_init(&root->delalloc_root);
1696 spin_unlock(&root->fs_info->delalloc_root_lock);
1697 }
1698 }
1699 spin_unlock(&root->delalloc_lock);
1700}
1701
d352ac68
CM
1702/*
1703 * extent_io.c set_bit_hook, used to track delayed allocation
1704 * bytes in this file, and to maintain the list of inodes that
1705 * have pending delalloc work to be done.
1706 */
1bf85046 1707static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1708 struct extent_state *state, unsigned *bits)
291d673e 1709{
9ed74f2d 1710
47059d93
WS
1711 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1712 WARN_ON(1);
75eff68e
CM
1713 /*
1714 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1715 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1716 * bit, which is only set or cleared with irqs on
1717 */
0ca1f7ce 1718 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1719 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1720 u64 len = state->end + 1 - state->start;
83eea1f1 1721 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1722
9e0baf60 1723 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1724 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1725 } else {
1726 spin_lock(&BTRFS_I(inode)->lock);
1727 BTRFS_I(inode)->outstanding_extents++;
1728 spin_unlock(&BTRFS_I(inode)->lock);
1729 }
287a0ab9 1730
6a3891c5
JB
1731 /* For sanity tests */
1732 if (btrfs_test_is_dummy_root(root))
1733 return;
1734
963d678b
MX
1735 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1736 root->fs_info->delalloc_batch);
df0af1a5 1737 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1738 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1739 if (*bits & EXTENT_DEFRAG)
1740 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1741 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1742 &BTRFS_I(inode)->runtime_flags))
1743 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1744 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1745 }
291d673e
CM
1746}
1747
d352ac68
CM
1748/*
1749 * extent_io.c clear_bit_hook, see set_bit_hook for why
1750 */
1bf85046 1751static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1752 struct extent_state *state,
9ee49a04 1753 unsigned *bits)
291d673e 1754{
47059d93 1755 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1756 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1757 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1758
1759 spin_lock(&BTRFS_I(inode)->lock);
1760 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1761 BTRFS_I(inode)->defrag_bytes -= len;
1762 spin_unlock(&BTRFS_I(inode)->lock);
1763
75eff68e
CM
1764 /*
1765 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1766 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1767 * bit, which is only set or cleared with irqs on
1768 */
0ca1f7ce 1769 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1770 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1771 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1772
9e0baf60 1773 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1774 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1775 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1776 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1777 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1778 spin_unlock(&BTRFS_I(inode)->lock);
1779 }
0ca1f7ce 1780
b6d08f06
JB
1781 /*
1782 * We don't reserve metadata space for space cache inodes so we
1783 * don't need to call dellalloc_release_metadata if there is an
1784 * error.
1785 */
1786 if (*bits & EXTENT_DO_ACCOUNTING &&
1787 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1788 btrfs_delalloc_release_metadata(inode, len);
1789
6a3891c5
JB
1790 /* For sanity tests. */
1791 if (btrfs_test_is_dummy_root(root))
1792 return;
1793
0cb59c99 1794 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1795 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1796 btrfs_free_reserved_data_space_noquota(inode,
1797 state->start, len);
9ed74f2d 1798
963d678b
MX
1799 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1800 root->fs_info->delalloc_batch);
df0af1a5 1801 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1802 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1803 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1804 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1805 &BTRFS_I(inode)->runtime_flags))
1806 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1807 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1808 }
291d673e
CM
1809}
1810
d352ac68
CM
1811/*
1812 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1813 * we don't create bios that span stripes or chunks
1814 */
64a16701 1815int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1816 size_t size, struct bio *bio,
1817 unsigned long bio_flags)
239b14b3
CM
1818{
1819 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1820 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1821 u64 length = 0;
1822 u64 map_length;
239b14b3
CM
1823 int ret;
1824
771ed689
CM
1825 if (bio_flags & EXTENT_BIO_COMPRESSED)
1826 return 0;
1827
4f024f37 1828 length = bio->bi_iter.bi_size;
239b14b3 1829 map_length = length;
64a16701 1830 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1831 &map_length, NULL, 0);
3ec706c8 1832 /* Will always return 0 with map_multi == NULL */
3444a972 1833 BUG_ON(ret < 0);
d397712b 1834 if (map_length < length + size)
239b14b3 1835 return 1;
3444a972 1836 return 0;
239b14b3
CM
1837}
1838
d352ac68
CM
1839/*
1840 * in order to insert checksums into the metadata in large chunks,
1841 * we wait until bio submission time. All the pages in the bio are
1842 * checksummed and sums are attached onto the ordered extent record.
1843 *
1844 * At IO completion time the cums attached on the ordered extent record
1845 * are inserted into the btree
1846 */
d397712b
CM
1847static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1848 struct bio *bio, int mirror_num,
eaf25d93
CM
1849 unsigned long bio_flags,
1850 u64 bio_offset)
065631f6 1851{
065631f6 1852 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1853 int ret = 0;
e015640f 1854
d20f7043 1855 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1856 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1857 return 0;
1858}
e015640f 1859
4a69a410
CM
1860/*
1861 * in order to insert checksums into the metadata in large chunks,
1862 * we wait until bio submission time. All the pages in the bio are
1863 * checksummed and sums are attached onto the ordered extent record.
1864 *
1865 * At IO completion time the cums attached on the ordered extent record
1866 * are inserted into the btree
1867 */
b2950863 1868static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1869 int mirror_num, unsigned long bio_flags,
1870 u64 bio_offset)
4a69a410
CM
1871{
1872 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1873 int ret;
1874
1875 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1876 if (ret) {
1877 bio->bi_error = ret;
1878 bio_endio(bio);
1879 }
61891923 1880 return ret;
44b8bd7e
CM
1881}
1882
d352ac68 1883/*
cad321ad
CM
1884 * extent_io.c submission hook. This does the right thing for csum calculation
1885 * on write, or reading the csums from the tree before a read
d352ac68 1886 */
b2950863 1887static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1888 int mirror_num, unsigned long bio_flags,
1889 u64 bio_offset)
44b8bd7e
CM
1890{
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1892 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1893 int ret = 0;
19b9bdb0 1894 int skip_sum;
b812ce28 1895 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1896
6cbff00f 1897 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1898
83eea1f1 1899 if (btrfs_is_free_space_inode(inode))
0d51e28a 1900 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1901
7b6d91da 1902 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1903 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1904 if (ret)
61891923 1905 goto out;
5fd02043 1906
d20f7043 1907 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1908 ret = btrfs_submit_compressed_read(inode, bio,
1909 mirror_num,
1910 bio_flags);
1911 goto out;
c2db1073
TI
1912 } else if (!skip_sum) {
1913 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1914 if (ret)
61891923 1915 goto out;
c2db1073 1916 }
4d1b5fb4 1917 goto mapit;
b812ce28 1918 } else if (async && !skip_sum) {
17d217fe
YZ
1919 /* csum items have already been cloned */
1920 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1921 goto mapit;
19b9bdb0 1922 /* we're doing a write, do the async checksumming */
61891923 1923 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1924 inode, rw, bio, mirror_num,
eaf25d93
CM
1925 bio_flags, bio_offset,
1926 __btrfs_submit_bio_start,
4a69a410 1927 __btrfs_submit_bio_done);
61891923 1928 goto out;
b812ce28
JB
1929 } else if (!skip_sum) {
1930 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1931 if (ret)
1932 goto out;
19b9bdb0
CM
1933 }
1934
0b86a832 1935mapit:
61891923
SB
1936 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1937
1938out:
4246a0b6
CH
1939 if (ret < 0) {
1940 bio->bi_error = ret;
1941 bio_endio(bio);
1942 }
61891923 1943 return ret;
065631f6 1944}
6885f308 1945
d352ac68
CM
1946/*
1947 * given a list of ordered sums record them in the inode. This happens
1948 * at IO completion time based on sums calculated at bio submission time.
1949 */
ba1da2f4 1950static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1951 struct inode *inode, u64 file_offset,
1952 struct list_head *list)
1953{
e6dcd2dc
CM
1954 struct btrfs_ordered_sum *sum;
1955
c6e30871 1956 list_for_each_entry(sum, list, list) {
39847c4d 1957 trans->adding_csums = 1;
d20f7043
CM
1958 btrfs_csum_file_blocks(trans,
1959 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1960 trans->adding_csums = 0;
e6dcd2dc
CM
1961 }
1962 return 0;
1963}
1964
2ac55d41
JB
1965int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1966 struct extent_state **cached_state)
ea8c2819 1967{
09cbfeaf 1968 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1969 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1970 cached_state, GFP_NOFS);
ea8c2819
CM
1971}
1972
d352ac68 1973/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1974struct btrfs_writepage_fixup {
1975 struct page *page;
1976 struct btrfs_work work;
1977};
1978
b2950863 1979static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1980{
1981 struct btrfs_writepage_fixup *fixup;
1982 struct btrfs_ordered_extent *ordered;
2ac55d41 1983 struct extent_state *cached_state = NULL;
247e743c
CM
1984 struct page *page;
1985 struct inode *inode;
1986 u64 page_start;
1987 u64 page_end;
87826df0 1988 int ret;
247e743c
CM
1989
1990 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1991 page = fixup->page;
4a096752 1992again:
247e743c
CM
1993 lock_page(page);
1994 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1995 ClearPageChecked(page);
1996 goto out_page;
1997 }
1998
1999 inode = page->mapping->host;
2000 page_start = page_offset(page);
09cbfeaf 2001 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2002
ff13db41 2003 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2004 &cached_state);
4a096752
CM
2005
2006 /* already ordered? We're done */
8b62b72b 2007 if (PagePrivate2(page))
247e743c 2008 goto out;
4a096752 2009
dbfdb6d1 2010 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2011 PAGE_SIZE);
4a096752 2012 if (ordered) {
2ac55d41
JB
2013 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2014 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2015 unlock_page(page);
2016 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2017 btrfs_put_ordered_extent(ordered);
4a096752
CM
2018 goto again;
2019 }
247e743c 2020
7cf5b976 2021 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2022 PAGE_SIZE);
87826df0
JM
2023 if (ret) {
2024 mapping_set_error(page->mapping, ret);
2025 end_extent_writepage(page, ret, page_start, page_end);
2026 ClearPageChecked(page);
2027 goto out;
2028 }
2029
2ac55d41 2030 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2031 ClearPageChecked(page);
87826df0 2032 set_page_dirty(page);
247e743c 2033out:
2ac55d41
JB
2034 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2035 &cached_state, GFP_NOFS);
247e743c
CM
2036out_page:
2037 unlock_page(page);
09cbfeaf 2038 put_page(page);
b897abec 2039 kfree(fixup);
247e743c
CM
2040}
2041
2042/*
2043 * There are a few paths in the higher layers of the kernel that directly
2044 * set the page dirty bit without asking the filesystem if it is a
2045 * good idea. This causes problems because we want to make sure COW
2046 * properly happens and the data=ordered rules are followed.
2047 *
c8b97818 2048 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2049 * hasn't been properly setup for IO. We kick off an async process
2050 * to fix it up. The async helper will wait for ordered extents, set
2051 * the delalloc bit and make it safe to write the page.
2052 */
b2950863 2053static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2054{
2055 struct inode *inode = page->mapping->host;
2056 struct btrfs_writepage_fixup *fixup;
2057 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2058
8b62b72b
CM
2059 /* this page is properly in the ordered list */
2060 if (TestClearPagePrivate2(page))
247e743c
CM
2061 return 0;
2062
2063 if (PageChecked(page))
2064 return -EAGAIN;
2065
2066 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2067 if (!fixup)
2068 return -EAGAIN;
f421950f 2069
247e743c 2070 SetPageChecked(page);
09cbfeaf 2071 get_page(page);
9e0af237
LB
2072 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2073 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2074 fixup->page = page;
dc6e3209 2075 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2076 return -EBUSY;
247e743c
CM
2077}
2078
d899e052
YZ
2079static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2080 struct inode *inode, u64 file_pos,
2081 u64 disk_bytenr, u64 disk_num_bytes,
2082 u64 num_bytes, u64 ram_bytes,
2083 u8 compression, u8 encryption,
2084 u16 other_encoding, int extent_type)
2085{
2086 struct btrfs_root *root = BTRFS_I(inode)->root;
2087 struct btrfs_file_extent_item *fi;
2088 struct btrfs_path *path;
2089 struct extent_buffer *leaf;
2090 struct btrfs_key ins;
1acae57b 2091 int extent_inserted = 0;
d899e052
YZ
2092 int ret;
2093
2094 path = btrfs_alloc_path();
d8926bb3
MF
2095 if (!path)
2096 return -ENOMEM;
d899e052 2097
a1ed835e
CM
2098 /*
2099 * we may be replacing one extent in the tree with another.
2100 * The new extent is pinned in the extent map, and we don't want
2101 * to drop it from the cache until it is completely in the btree.
2102 *
2103 * So, tell btrfs_drop_extents to leave this extent in the cache.
2104 * the caller is expected to unpin it and allow it to be merged
2105 * with the others.
2106 */
1acae57b
FDBM
2107 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2108 file_pos + num_bytes, NULL, 0,
2109 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2110 if (ret)
2111 goto out;
d899e052 2112
1acae57b
FDBM
2113 if (!extent_inserted) {
2114 ins.objectid = btrfs_ino(inode);
2115 ins.offset = file_pos;
2116 ins.type = BTRFS_EXTENT_DATA_KEY;
2117
2118 path->leave_spinning = 1;
2119 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2120 sizeof(*fi));
2121 if (ret)
2122 goto out;
2123 }
d899e052
YZ
2124 leaf = path->nodes[0];
2125 fi = btrfs_item_ptr(leaf, path->slots[0],
2126 struct btrfs_file_extent_item);
2127 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2128 btrfs_set_file_extent_type(leaf, fi, extent_type);
2129 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2130 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2131 btrfs_set_file_extent_offset(leaf, fi, 0);
2132 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2133 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2134 btrfs_set_file_extent_compression(leaf, fi, compression);
2135 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2136 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2137
d899e052 2138 btrfs_mark_buffer_dirty(leaf);
ce195332 2139 btrfs_release_path(path);
d899e052
YZ
2140
2141 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2142
2143 ins.objectid = disk_bytenr;
2144 ins.offset = disk_num_bytes;
2145 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2146 ret = btrfs_alloc_reserved_file_extent(trans, root,
2147 root->root_key.objectid,
5846a3c2
QW
2148 btrfs_ino(inode), file_pos,
2149 ram_bytes, &ins);
297d750b 2150 /*
5846a3c2
QW
2151 * Release the reserved range from inode dirty range map, as it is
2152 * already moved into delayed_ref_head
297d750b
QW
2153 */
2154 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2155out:
d899e052 2156 btrfs_free_path(path);
b9473439 2157
79787eaa 2158 return ret;
d899e052
YZ
2159}
2160
38c227d8
LB
2161/* snapshot-aware defrag */
2162struct sa_defrag_extent_backref {
2163 struct rb_node node;
2164 struct old_sa_defrag_extent *old;
2165 u64 root_id;
2166 u64 inum;
2167 u64 file_pos;
2168 u64 extent_offset;
2169 u64 num_bytes;
2170 u64 generation;
2171};
2172
2173struct old_sa_defrag_extent {
2174 struct list_head list;
2175 struct new_sa_defrag_extent *new;
2176
2177 u64 extent_offset;
2178 u64 bytenr;
2179 u64 offset;
2180 u64 len;
2181 int count;
2182};
2183
2184struct new_sa_defrag_extent {
2185 struct rb_root root;
2186 struct list_head head;
2187 struct btrfs_path *path;
2188 struct inode *inode;
2189 u64 file_pos;
2190 u64 len;
2191 u64 bytenr;
2192 u64 disk_len;
2193 u8 compress_type;
2194};
2195
2196static int backref_comp(struct sa_defrag_extent_backref *b1,
2197 struct sa_defrag_extent_backref *b2)
2198{
2199 if (b1->root_id < b2->root_id)
2200 return -1;
2201 else if (b1->root_id > b2->root_id)
2202 return 1;
2203
2204 if (b1->inum < b2->inum)
2205 return -1;
2206 else if (b1->inum > b2->inum)
2207 return 1;
2208
2209 if (b1->file_pos < b2->file_pos)
2210 return -1;
2211 else if (b1->file_pos > b2->file_pos)
2212 return 1;
2213
2214 /*
2215 * [------------------------------] ===> (a range of space)
2216 * |<--->| |<---->| =============> (fs/file tree A)
2217 * |<---------------------------->| ===> (fs/file tree B)
2218 *
2219 * A range of space can refer to two file extents in one tree while
2220 * refer to only one file extent in another tree.
2221 *
2222 * So we may process a disk offset more than one time(two extents in A)
2223 * and locate at the same extent(one extent in B), then insert two same
2224 * backrefs(both refer to the extent in B).
2225 */
2226 return 0;
2227}
2228
2229static void backref_insert(struct rb_root *root,
2230 struct sa_defrag_extent_backref *backref)
2231{
2232 struct rb_node **p = &root->rb_node;
2233 struct rb_node *parent = NULL;
2234 struct sa_defrag_extent_backref *entry;
2235 int ret;
2236
2237 while (*p) {
2238 parent = *p;
2239 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2240
2241 ret = backref_comp(backref, entry);
2242 if (ret < 0)
2243 p = &(*p)->rb_left;
2244 else
2245 p = &(*p)->rb_right;
2246 }
2247
2248 rb_link_node(&backref->node, parent, p);
2249 rb_insert_color(&backref->node, root);
2250}
2251
2252/*
2253 * Note the backref might has changed, and in this case we just return 0.
2254 */
2255static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2256 void *ctx)
2257{
2258 struct btrfs_file_extent_item *extent;
2259 struct btrfs_fs_info *fs_info;
2260 struct old_sa_defrag_extent *old = ctx;
2261 struct new_sa_defrag_extent *new = old->new;
2262 struct btrfs_path *path = new->path;
2263 struct btrfs_key key;
2264 struct btrfs_root *root;
2265 struct sa_defrag_extent_backref *backref;
2266 struct extent_buffer *leaf;
2267 struct inode *inode = new->inode;
2268 int slot;
2269 int ret;
2270 u64 extent_offset;
2271 u64 num_bytes;
2272
2273 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2274 inum == btrfs_ino(inode))
2275 return 0;
2276
2277 key.objectid = root_id;
2278 key.type = BTRFS_ROOT_ITEM_KEY;
2279 key.offset = (u64)-1;
2280
2281 fs_info = BTRFS_I(inode)->root->fs_info;
2282 root = btrfs_read_fs_root_no_name(fs_info, &key);
2283 if (IS_ERR(root)) {
2284 if (PTR_ERR(root) == -ENOENT)
2285 return 0;
2286 WARN_ON(1);
2287 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2288 inum, offset, root_id);
2289 return PTR_ERR(root);
2290 }
2291
2292 key.objectid = inum;
2293 key.type = BTRFS_EXTENT_DATA_KEY;
2294 if (offset > (u64)-1 << 32)
2295 key.offset = 0;
2296 else
2297 key.offset = offset;
2298
2299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2300 if (WARN_ON(ret < 0))
38c227d8 2301 return ret;
50f1319c 2302 ret = 0;
38c227d8
LB
2303
2304 while (1) {
2305 cond_resched();
2306
2307 leaf = path->nodes[0];
2308 slot = path->slots[0];
2309
2310 if (slot >= btrfs_header_nritems(leaf)) {
2311 ret = btrfs_next_leaf(root, path);
2312 if (ret < 0) {
2313 goto out;
2314 } else if (ret > 0) {
2315 ret = 0;
2316 goto out;
2317 }
2318 continue;
2319 }
2320
2321 path->slots[0]++;
2322
2323 btrfs_item_key_to_cpu(leaf, &key, slot);
2324
2325 if (key.objectid > inum)
2326 goto out;
2327
2328 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2329 continue;
2330
2331 extent = btrfs_item_ptr(leaf, slot,
2332 struct btrfs_file_extent_item);
2333
2334 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2335 continue;
2336
e68afa49
LB
2337 /*
2338 * 'offset' refers to the exact key.offset,
2339 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2340 * (key.offset - extent_offset).
2341 */
2342 if (key.offset != offset)
38c227d8
LB
2343 continue;
2344
e68afa49 2345 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2346 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2347
38c227d8
LB
2348 if (extent_offset >= old->extent_offset + old->offset +
2349 old->len || extent_offset + num_bytes <=
2350 old->extent_offset + old->offset)
2351 continue;
38c227d8
LB
2352 break;
2353 }
2354
2355 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2356 if (!backref) {
2357 ret = -ENOENT;
2358 goto out;
2359 }
2360
2361 backref->root_id = root_id;
2362 backref->inum = inum;
e68afa49 2363 backref->file_pos = offset;
38c227d8
LB
2364 backref->num_bytes = num_bytes;
2365 backref->extent_offset = extent_offset;
2366 backref->generation = btrfs_file_extent_generation(leaf, extent);
2367 backref->old = old;
2368 backref_insert(&new->root, backref);
2369 old->count++;
2370out:
2371 btrfs_release_path(path);
2372 WARN_ON(ret);
2373 return ret;
2374}
2375
2376static noinline bool record_extent_backrefs(struct btrfs_path *path,
2377 struct new_sa_defrag_extent *new)
2378{
2379 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2380 struct old_sa_defrag_extent *old, *tmp;
2381 int ret;
2382
2383 new->path = path;
2384
2385 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2386 ret = iterate_inodes_from_logical(old->bytenr +
2387 old->extent_offset, fs_info,
38c227d8
LB
2388 path, record_one_backref,
2389 old);
4724b106
JB
2390 if (ret < 0 && ret != -ENOENT)
2391 return false;
38c227d8
LB
2392
2393 /* no backref to be processed for this extent */
2394 if (!old->count) {
2395 list_del(&old->list);
2396 kfree(old);
2397 }
2398 }
2399
2400 if (list_empty(&new->head))
2401 return false;
2402
2403 return true;
2404}
2405
2406static int relink_is_mergable(struct extent_buffer *leaf,
2407 struct btrfs_file_extent_item *fi,
116e0024 2408 struct new_sa_defrag_extent *new)
38c227d8 2409{
116e0024 2410 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2411 return 0;
2412
2413 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2414 return 0;
2415
116e0024
LB
2416 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2417 return 0;
2418
2419 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2420 btrfs_file_extent_other_encoding(leaf, fi))
2421 return 0;
2422
2423 return 1;
2424}
2425
2426/*
2427 * Note the backref might has changed, and in this case we just return 0.
2428 */
2429static noinline int relink_extent_backref(struct btrfs_path *path,
2430 struct sa_defrag_extent_backref *prev,
2431 struct sa_defrag_extent_backref *backref)
2432{
2433 struct btrfs_file_extent_item *extent;
2434 struct btrfs_file_extent_item *item;
2435 struct btrfs_ordered_extent *ordered;
2436 struct btrfs_trans_handle *trans;
2437 struct btrfs_fs_info *fs_info;
2438 struct btrfs_root *root;
2439 struct btrfs_key key;
2440 struct extent_buffer *leaf;
2441 struct old_sa_defrag_extent *old = backref->old;
2442 struct new_sa_defrag_extent *new = old->new;
2443 struct inode *src_inode = new->inode;
2444 struct inode *inode;
2445 struct extent_state *cached = NULL;
2446 int ret = 0;
2447 u64 start;
2448 u64 len;
2449 u64 lock_start;
2450 u64 lock_end;
2451 bool merge = false;
2452 int index;
2453
2454 if (prev && prev->root_id == backref->root_id &&
2455 prev->inum == backref->inum &&
2456 prev->file_pos + prev->num_bytes == backref->file_pos)
2457 merge = true;
2458
2459 /* step 1: get root */
2460 key.objectid = backref->root_id;
2461 key.type = BTRFS_ROOT_ITEM_KEY;
2462 key.offset = (u64)-1;
2463
2464 fs_info = BTRFS_I(src_inode)->root->fs_info;
2465 index = srcu_read_lock(&fs_info->subvol_srcu);
2466
2467 root = btrfs_read_fs_root_no_name(fs_info, &key);
2468 if (IS_ERR(root)) {
2469 srcu_read_unlock(&fs_info->subvol_srcu, index);
2470 if (PTR_ERR(root) == -ENOENT)
2471 return 0;
2472 return PTR_ERR(root);
2473 }
38c227d8 2474
bcbba5e6
WS
2475 if (btrfs_root_readonly(root)) {
2476 srcu_read_unlock(&fs_info->subvol_srcu, index);
2477 return 0;
2478 }
2479
38c227d8
LB
2480 /* step 2: get inode */
2481 key.objectid = backref->inum;
2482 key.type = BTRFS_INODE_ITEM_KEY;
2483 key.offset = 0;
2484
2485 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2486 if (IS_ERR(inode)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 return 0;
2489 }
2490
2491 srcu_read_unlock(&fs_info->subvol_srcu, index);
2492
2493 /* step 3: relink backref */
2494 lock_start = backref->file_pos;
2495 lock_end = backref->file_pos + backref->num_bytes - 1;
2496 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2497 &cached);
38c227d8
LB
2498
2499 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2500 if (ordered) {
2501 btrfs_put_ordered_extent(ordered);
2502 goto out_unlock;
2503 }
2504
2505 trans = btrfs_join_transaction(root);
2506 if (IS_ERR(trans)) {
2507 ret = PTR_ERR(trans);
2508 goto out_unlock;
2509 }
2510
2511 key.objectid = backref->inum;
2512 key.type = BTRFS_EXTENT_DATA_KEY;
2513 key.offset = backref->file_pos;
2514
2515 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2516 if (ret < 0) {
2517 goto out_free_path;
2518 } else if (ret > 0) {
2519 ret = 0;
2520 goto out_free_path;
2521 }
2522
2523 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2524 struct btrfs_file_extent_item);
2525
2526 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2527 backref->generation)
2528 goto out_free_path;
2529
2530 btrfs_release_path(path);
2531
2532 start = backref->file_pos;
2533 if (backref->extent_offset < old->extent_offset + old->offset)
2534 start += old->extent_offset + old->offset -
2535 backref->extent_offset;
2536
2537 len = min(backref->extent_offset + backref->num_bytes,
2538 old->extent_offset + old->offset + old->len);
2539 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2540
2541 ret = btrfs_drop_extents(trans, root, inode, start,
2542 start + len, 1);
2543 if (ret)
2544 goto out_free_path;
2545again:
2546 key.objectid = btrfs_ino(inode);
2547 key.type = BTRFS_EXTENT_DATA_KEY;
2548 key.offset = start;
2549
a09a0a70 2550 path->leave_spinning = 1;
38c227d8
LB
2551 if (merge) {
2552 struct btrfs_file_extent_item *fi;
2553 u64 extent_len;
2554 struct btrfs_key found_key;
2555
3c9665df 2556 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2557 if (ret < 0)
2558 goto out_free_path;
2559
2560 path->slots[0]--;
2561 leaf = path->nodes[0];
2562 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2563
2564 fi = btrfs_item_ptr(leaf, path->slots[0],
2565 struct btrfs_file_extent_item);
2566 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2567
116e0024
LB
2568 if (extent_len + found_key.offset == start &&
2569 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2570 btrfs_set_file_extent_num_bytes(leaf, fi,
2571 extent_len + len);
2572 btrfs_mark_buffer_dirty(leaf);
2573 inode_add_bytes(inode, len);
2574
2575 ret = 1;
2576 goto out_free_path;
2577 } else {
2578 merge = false;
2579 btrfs_release_path(path);
2580 goto again;
2581 }
2582 }
2583
2584 ret = btrfs_insert_empty_item(trans, root, path, &key,
2585 sizeof(*extent));
2586 if (ret) {
2587 btrfs_abort_transaction(trans, root, ret);
2588 goto out_free_path;
2589 }
2590
2591 leaf = path->nodes[0];
2592 item = btrfs_item_ptr(leaf, path->slots[0],
2593 struct btrfs_file_extent_item);
2594 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2595 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2596 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2597 btrfs_set_file_extent_num_bytes(leaf, item, len);
2598 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2599 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2600 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2601 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2602 btrfs_set_file_extent_encryption(leaf, item, 0);
2603 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2604
2605 btrfs_mark_buffer_dirty(leaf);
2606 inode_add_bytes(inode, len);
a09a0a70 2607 btrfs_release_path(path);
38c227d8
LB
2608
2609 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2610 new->disk_len, 0,
2611 backref->root_id, backref->inum,
b06c4bf5 2612 new->file_pos); /* start - extent_offset */
38c227d8
LB
2613 if (ret) {
2614 btrfs_abort_transaction(trans, root, ret);
2615 goto out_free_path;
2616 }
2617
2618 ret = 1;
2619out_free_path:
2620 btrfs_release_path(path);
a09a0a70 2621 path->leave_spinning = 0;
38c227d8
LB
2622 btrfs_end_transaction(trans, root);
2623out_unlock:
2624 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2625 &cached, GFP_NOFS);
2626 iput(inode);
2627 return ret;
2628}
2629
6f519564
LB
2630static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2631{
2632 struct old_sa_defrag_extent *old, *tmp;
2633
2634 if (!new)
2635 return;
2636
2637 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2638 kfree(old);
2639 }
2640 kfree(new);
2641}
2642
38c227d8
LB
2643static void relink_file_extents(struct new_sa_defrag_extent *new)
2644{
2645 struct btrfs_path *path;
38c227d8
LB
2646 struct sa_defrag_extent_backref *backref;
2647 struct sa_defrag_extent_backref *prev = NULL;
2648 struct inode *inode;
2649 struct btrfs_root *root;
2650 struct rb_node *node;
2651 int ret;
2652
2653 inode = new->inode;
2654 root = BTRFS_I(inode)->root;
2655
2656 path = btrfs_alloc_path();
2657 if (!path)
2658 return;
2659
2660 if (!record_extent_backrefs(path, new)) {
2661 btrfs_free_path(path);
2662 goto out;
2663 }
2664 btrfs_release_path(path);
2665
2666 while (1) {
2667 node = rb_first(&new->root);
2668 if (!node)
2669 break;
2670 rb_erase(node, &new->root);
2671
2672 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2673
2674 ret = relink_extent_backref(path, prev, backref);
2675 WARN_ON(ret < 0);
2676
2677 kfree(prev);
2678
2679 if (ret == 1)
2680 prev = backref;
2681 else
2682 prev = NULL;
2683 cond_resched();
2684 }
2685 kfree(prev);
2686
2687 btrfs_free_path(path);
38c227d8 2688out:
6f519564
LB
2689 free_sa_defrag_extent(new);
2690
38c227d8
LB
2691 atomic_dec(&root->fs_info->defrag_running);
2692 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2693}
2694
2695static struct new_sa_defrag_extent *
2696record_old_file_extents(struct inode *inode,
2697 struct btrfs_ordered_extent *ordered)
2698{
2699 struct btrfs_root *root = BTRFS_I(inode)->root;
2700 struct btrfs_path *path;
2701 struct btrfs_key key;
6f519564 2702 struct old_sa_defrag_extent *old;
38c227d8
LB
2703 struct new_sa_defrag_extent *new;
2704 int ret;
2705
2706 new = kmalloc(sizeof(*new), GFP_NOFS);
2707 if (!new)
2708 return NULL;
2709
2710 new->inode = inode;
2711 new->file_pos = ordered->file_offset;
2712 new->len = ordered->len;
2713 new->bytenr = ordered->start;
2714 new->disk_len = ordered->disk_len;
2715 new->compress_type = ordered->compress_type;
2716 new->root = RB_ROOT;
2717 INIT_LIST_HEAD(&new->head);
2718
2719 path = btrfs_alloc_path();
2720 if (!path)
2721 goto out_kfree;
2722
2723 key.objectid = btrfs_ino(inode);
2724 key.type = BTRFS_EXTENT_DATA_KEY;
2725 key.offset = new->file_pos;
2726
2727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2728 if (ret < 0)
2729 goto out_free_path;
2730 if (ret > 0 && path->slots[0] > 0)
2731 path->slots[0]--;
2732
2733 /* find out all the old extents for the file range */
2734 while (1) {
2735 struct btrfs_file_extent_item *extent;
2736 struct extent_buffer *l;
2737 int slot;
2738 u64 num_bytes;
2739 u64 offset;
2740 u64 end;
2741 u64 disk_bytenr;
2742 u64 extent_offset;
2743
2744 l = path->nodes[0];
2745 slot = path->slots[0];
2746
2747 if (slot >= btrfs_header_nritems(l)) {
2748 ret = btrfs_next_leaf(root, path);
2749 if (ret < 0)
6f519564 2750 goto out_free_path;
38c227d8
LB
2751 else if (ret > 0)
2752 break;
2753 continue;
2754 }
2755
2756 btrfs_item_key_to_cpu(l, &key, slot);
2757
2758 if (key.objectid != btrfs_ino(inode))
2759 break;
2760 if (key.type != BTRFS_EXTENT_DATA_KEY)
2761 break;
2762 if (key.offset >= new->file_pos + new->len)
2763 break;
2764
2765 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2766
2767 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2768 if (key.offset + num_bytes < new->file_pos)
2769 goto next;
2770
2771 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2772 if (!disk_bytenr)
2773 goto next;
2774
2775 extent_offset = btrfs_file_extent_offset(l, extent);
2776
2777 old = kmalloc(sizeof(*old), GFP_NOFS);
2778 if (!old)
6f519564 2779 goto out_free_path;
38c227d8
LB
2780
2781 offset = max(new->file_pos, key.offset);
2782 end = min(new->file_pos + new->len, key.offset + num_bytes);
2783
2784 old->bytenr = disk_bytenr;
2785 old->extent_offset = extent_offset;
2786 old->offset = offset - key.offset;
2787 old->len = end - offset;
2788 old->new = new;
2789 old->count = 0;
2790 list_add_tail(&old->list, &new->head);
2791next:
2792 path->slots[0]++;
2793 cond_resched();
2794 }
2795
2796 btrfs_free_path(path);
2797 atomic_inc(&root->fs_info->defrag_running);
2798
2799 return new;
2800
38c227d8
LB
2801out_free_path:
2802 btrfs_free_path(path);
2803out_kfree:
6f519564 2804 free_sa_defrag_extent(new);
38c227d8
LB
2805 return NULL;
2806}
2807
e570fd27
MX
2808static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2809 u64 start, u64 len)
2810{
2811 struct btrfs_block_group_cache *cache;
2812
2813 cache = btrfs_lookup_block_group(root->fs_info, start);
2814 ASSERT(cache);
2815
2816 spin_lock(&cache->lock);
2817 cache->delalloc_bytes -= len;
2818 spin_unlock(&cache->lock);
2819
2820 btrfs_put_block_group(cache);
2821}
2822
d352ac68
CM
2823/* as ordered data IO finishes, this gets called so we can finish
2824 * an ordered extent if the range of bytes in the file it covers are
2825 * fully written.
2826 */
5fd02043 2827static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2828{
5fd02043 2829 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2830 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2831 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2832 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2833 struct extent_state *cached_state = NULL;
38c227d8 2834 struct new_sa_defrag_extent *new = NULL;
261507a0 2835 int compress_type = 0;
77cef2ec
JB
2836 int ret = 0;
2837 u64 logical_len = ordered_extent->len;
82d5902d 2838 bool nolock;
77cef2ec 2839 bool truncated = false;
e6dcd2dc 2840
83eea1f1 2841 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2842
5fd02043
JB
2843 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2844 ret = -EIO;
2845 goto out;
2846 }
2847
f612496b
MX
2848 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2849 ordered_extent->file_offset +
2850 ordered_extent->len - 1);
2851
77cef2ec
JB
2852 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2853 truncated = true;
2854 logical_len = ordered_extent->truncated_len;
2855 /* Truncated the entire extent, don't bother adding */
2856 if (!logical_len)
2857 goto out;
2858 }
2859
c2167754 2860 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2861 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2862
2863 /*
2864 * For mwrite(mmap + memset to write) case, we still reserve
2865 * space for NOCOW range.
2866 * As NOCOW won't cause a new delayed ref, just free the space
2867 */
2868 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2869 ordered_extent->len);
6c760c07
JB
2870 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2871 if (nolock)
2872 trans = btrfs_join_transaction_nolock(root);
2873 else
2874 trans = btrfs_join_transaction(root);
2875 if (IS_ERR(trans)) {
2876 ret = PTR_ERR(trans);
2877 trans = NULL;
2878 goto out;
c2167754 2879 }
6c760c07
JB
2880 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2881 ret = btrfs_update_inode_fallback(trans, root, inode);
2882 if (ret) /* -ENOMEM or corruption */
2883 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2884 goto out;
2885 }
e6dcd2dc 2886
2ac55d41
JB
2887 lock_extent_bits(io_tree, ordered_extent->file_offset,
2888 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2889 &cached_state);
e6dcd2dc 2890
38c227d8
LB
2891 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2892 ordered_extent->file_offset + ordered_extent->len - 1,
2893 EXTENT_DEFRAG, 1, cached_state);
2894 if (ret) {
2895 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2896 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2897 /* the inode is shared */
2898 new = record_old_file_extents(inode, ordered_extent);
2899
2900 clear_extent_bit(io_tree, ordered_extent->file_offset,
2901 ordered_extent->file_offset + ordered_extent->len - 1,
2902 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2903 }
2904
0cb59c99 2905 if (nolock)
7a7eaa40 2906 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2907 else
7a7eaa40 2908 trans = btrfs_join_transaction(root);
79787eaa
JM
2909 if (IS_ERR(trans)) {
2910 ret = PTR_ERR(trans);
2911 trans = NULL;
2912 goto out_unlock;
2913 }
a79b7d4b 2914
0ca1f7ce 2915 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2916
c8b97818 2917 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2918 compress_type = ordered_extent->compress_type;
d899e052 2919 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2920 BUG_ON(compress_type);
920bbbfb 2921 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2922 ordered_extent->file_offset,
2923 ordered_extent->file_offset +
77cef2ec 2924 logical_len);
d899e052 2925 } else {
0af3d00b 2926 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2927 ret = insert_reserved_file_extent(trans, inode,
2928 ordered_extent->file_offset,
2929 ordered_extent->start,
2930 ordered_extent->disk_len,
77cef2ec 2931 logical_len, logical_len,
261507a0 2932 compress_type, 0, 0,
d899e052 2933 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2934 if (!ret)
2935 btrfs_release_delalloc_bytes(root,
2936 ordered_extent->start,
2937 ordered_extent->disk_len);
d899e052 2938 }
5dc562c5
JB
2939 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2940 ordered_extent->file_offset, ordered_extent->len,
2941 trans->transid);
79787eaa
JM
2942 if (ret < 0) {
2943 btrfs_abort_transaction(trans, root, ret);
5fd02043 2944 goto out_unlock;
79787eaa 2945 }
2ac55d41 2946
e6dcd2dc
CM
2947 add_pending_csums(trans, inode, ordered_extent->file_offset,
2948 &ordered_extent->list);
2949
6c760c07
JB
2950 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2951 ret = btrfs_update_inode_fallback(trans, root, inode);
2952 if (ret) { /* -ENOMEM or corruption */
2953 btrfs_abort_transaction(trans, root, ret);
2954 goto out_unlock;
1ef30be1
JB
2955 }
2956 ret = 0;
5fd02043
JB
2957out_unlock:
2958 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2959 ordered_extent->file_offset +
2960 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2961out:
5b0e95bf 2962 if (root != root->fs_info->tree_root)
0cb59c99 2963 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2964 if (trans)
2965 btrfs_end_transaction(trans, root);
0cb59c99 2966
77cef2ec
JB
2967 if (ret || truncated) {
2968 u64 start, end;
2969
2970 if (truncated)
2971 start = ordered_extent->file_offset + logical_len;
2972 else
2973 start = ordered_extent->file_offset;
2974 end = ordered_extent->file_offset + ordered_extent->len - 1;
2975 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2976
2977 /* Drop the cache for the part of the extent we didn't write. */
2978 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2979
0bec9ef5
JB
2980 /*
2981 * If the ordered extent had an IOERR or something else went
2982 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2983 * back to the allocator. We only free the extent in the
2984 * truncated case if we didn't write out the extent at all.
0bec9ef5 2985 */
77cef2ec
JB
2986 if ((ret || !logical_len) &&
2987 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2988 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2989 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2990 ordered_extent->disk_len, 1);
0bec9ef5
JB
2991 }
2992
2993
5fd02043 2994 /*
8bad3c02
LB
2995 * This needs to be done to make sure anybody waiting knows we are done
2996 * updating everything for this ordered extent.
5fd02043
JB
2997 */
2998 btrfs_remove_ordered_extent(inode, ordered_extent);
2999
38c227d8 3000 /* for snapshot-aware defrag */
6f519564
LB
3001 if (new) {
3002 if (ret) {
3003 free_sa_defrag_extent(new);
3004 atomic_dec(&root->fs_info->defrag_running);
3005 } else {
3006 relink_file_extents(new);
3007 }
3008 }
38c227d8 3009
e6dcd2dc
CM
3010 /* once for us */
3011 btrfs_put_ordered_extent(ordered_extent);
3012 /* once for the tree */
3013 btrfs_put_ordered_extent(ordered_extent);
3014
5fd02043
JB
3015 return ret;
3016}
3017
3018static void finish_ordered_fn(struct btrfs_work *work)
3019{
3020 struct btrfs_ordered_extent *ordered_extent;
3021 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3022 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3023}
3024
b2950863 3025static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3026 struct extent_state *state, int uptodate)
3027{
5fd02043
JB
3028 struct inode *inode = page->mapping->host;
3029 struct btrfs_root *root = BTRFS_I(inode)->root;
3030 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3031 struct btrfs_workqueue *wq;
3032 btrfs_work_func_t func;
5fd02043 3033
1abe9b8a 3034 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3035
8b62b72b 3036 ClearPagePrivate2(page);
5fd02043
JB
3037 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3038 end - start + 1, uptodate))
3039 return 0;
3040
9e0af237
LB
3041 if (btrfs_is_free_space_inode(inode)) {
3042 wq = root->fs_info->endio_freespace_worker;
3043 func = btrfs_freespace_write_helper;
3044 } else {
3045 wq = root->fs_info->endio_write_workers;
3046 func = btrfs_endio_write_helper;
3047 }
5fd02043 3048
9e0af237
LB
3049 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3050 NULL);
3051 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3052
3053 return 0;
211f90e6
CM
3054}
3055
dc380aea
MX
3056static int __readpage_endio_check(struct inode *inode,
3057 struct btrfs_io_bio *io_bio,
3058 int icsum, struct page *page,
3059 int pgoff, u64 start, size_t len)
3060{
3061 char *kaddr;
3062 u32 csum_expected;
3063 u32 csum = ~(u32)0;
dc380aea
MX
3064
3065 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3066
3067 kaddr = kmap_atomic(page);
3068 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3069 btrfs_csum_final(csum, (char *)&csum);
3070 if (csum != csum_expected)
3071 goto zeroit;
3072
3073 kunmap_atomic(kaddr);
3074 return 0;
3075zeroit:
94647322
DS
3076 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3077 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3078 btrfs_ino(inode), start, csum, csum_expected);
3079 memset(kaddr + pgoff, 1, len);
3080 flush_dcache_page(page);
3081 kunmap_atomic(kaddr);
3082 if (csum_expected == 0)
3083 return 0;
3084 return -EIO;
3085}
3086
d352ac68
CM
3087/*
3088 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3089 * if there's a match, we allow the bio to finish. If not, the code in
3090 * extent_io.c will try to find good copies for us.
d352ac68 3091 */
facc8a22
MX
3092static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3093 u64 phy_offset, struct page *page,
3094 u64 start, u64 end, int mirror)
07157aac 3095{
4eee4fa4 3096 size_t offset = start - page_offset(page);
07157aac 3097 struct inode *inode = page->mapping->host;
d1310b2e 3098 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3099 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3100
d20f7043
CM
3101 if (PageChecked(page)) {
3102 ClearPageChecked(page);
dc380aea 3103 return 0;
d20f7043 3104 }
6cbff00f
CH
3105
3106 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3107 return 0;
17d217fe
YZ
3108
3109 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3110 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3111 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3112 GFP_NOFS);
b6cda9bc 3113 return 0;
17d217fe 3114 }
d20f7043 3115
facc8a22 3116 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3117 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3118 start, (size_t)(end - start + 1));
07157aac 3119}
b888db2b 3120
24bbcf04
YZ
3121void btrfs_add_delayed_iput(struct inode *inode)
3122{
3123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3124 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3125
3126 if (atomic_add_unless(&inode->i_count, -1, 1))
3127 return;
3128
24bbcf04 3129 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3130 if (binode->delayed_iput_count == 0) {
3131 ASSERT(list_empty(&binode->delayed_iput));
3132 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3133 } else {
3134 binode->delayed_iput_count++;
3135 }
24bbcf04
YZ
3136 spin_unlock(&fs_info->delayed_iput_lock);
3137}
3138
3139void btrfs_run_delayed_iputs(struct btrfs_root *root)
3140{
24bbcf04 3141 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3142
24bbcf04 3143 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3144 while (!list_empty(&fs_info->delayed_iputs)) {
3145 struct btrfs_inode *inode;
3146
3147 inode = list_first_entry(&fs_info->delayed_iputs,
3148 struct btrfs_inode, delayed_iput);
3149 if (inode->delayed_iput_count) {
3150 inode->delayed_iput_count--;
3151 list_move_tail(&inode->delayed_iput,
3152 &fs_info->delayed_iputs);
3153 } else {
3154 list_del_init(&inode->delayed_iput);
3155 }
3156 spin_unlock(&fs_info->delayed_iput_lock);
3157 iput(&inode->vfs_inode);
3158 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3159 }
8089fe62 3160 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3161}
3162
d68fc57b 3163/*
42b2aa86 3164 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3165 * files in the subvolume, it removes orphan item and frees block_rsv
3166 * structure.
3167 */
3168void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3169 struct btrfs_root *root)
3170{
90290e19 3171 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3172 int ret;
3173
8a35d95f 3174 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3175 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3176 return;
3177
90290e19 3178 spin_lock(&root->orphan_lock);
8a35d95f 3179 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3180 spin_unlock(&root->orphan_lock);
3181 return;
3182 }
3183
3184 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3185 spin_unlock(&root->orphan_lock);
3186 return;
3187 }
3188
3189 block_rsv = root->orphan_block_rsv;
3190 root->orphan_block_rsv = NULL;
3191 spin_unlock(&root->orphan_lock);
3192
27cdeb70 3193 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3194 btrfs_root_refs(&root->root_item) > 0) {
3195 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3196 root->root_key.objectid);
4ef31a45
JB
3197 if (ret)
3198 btrfs_abort_transaction(trans, root, ret);
3199 else
27cdeb70
MX
3200 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3201 &root->state);
d68fc57b
YZ
3202 }
3203
90290e19
JB
3204 if (block_rsv) {
3205 WARN_ON(block_rsv->size > 0);
3206 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3207 }
3208}
3209
7b128766
JB
3210/*
3211 * This creates an orphan entry for the given inode in case something goes
3212 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3213 *
3214 * NOTE: caller of this function should reserve 5 units of metadata for
3215 * this function.
7b128766
JB
3216 */
3217int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3218{
3219 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3220 struct btrfs_block_rsv *block_rsv = NULL;
3221 int reserve = 0;
3222 int insert = 0;
3223 int ret;
7b128766 3224
d68fc57b 3225 if (!root->orphan_block_rsv) {
66d8f3dd 3226 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3227 if (!block_rsv)
3228 return -ENOMEM;
d68fc57b 3229 }
7b128766 3230
d68fc57b
YZ
3231 spin_lock(&root->orphan_lock);
3232 if (!root->orphan_block_rsv) {
3233 root->orphan_block_rsv = block_rsv;
3234 } else if (block_rsv) {
3235 btrfs_free_block_rsv(root, block_rsv);
3236 block_rsv = NULL;
7b128766 3237 }
7b128766 3238
8a35d95f
JB
3239 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3240 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3241#if 0
3242 /*
3243 * For proper ENOSPC handling, we should do orphan
3244 * cleanup when mounting. But this introduces backward
3245 * compatibility issue.
3246 */
3247 if (!xchg(&root->orphan_item_inserted, 1))
3248 insert = 2;
3249 else
3250 insert = 1;
3251#endif
3252 insert = 1;
321f0e70 3253 atomic_inc(&root->orphan_inodes);
7b128766
JB
3254 }
3255
72ac3c0d
JB
3256 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3257 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3258 reserve = 1;
d68fc57b 3259 spin_unlock(&root->orphan_lock);
7b128766 3260
d68fc57b
YZ
3261 /* grab metadata reservation from transaction handle */
3262 if (reserve) {
3263 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3264 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3265 }
7b128766 3266
d68fc57b
YZ
3267 /* insert an orphan item to track this unlinked/truncated file */
3268 if (insert >= 1) {
33345d01 3269 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3270 if (ret) {
703c88e0 3271 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3272 if (reserve) {
3273 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3274 &BTRFS_I(inode)->runtime_flags);
3275 btrfs_orphan_release_metadata(inode);
3276 }
3277 if (ret != -EEXIST) {
e8e7cff6
JB
3278 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3279 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3280 btrfs_abort_transaction(trans, root, ret);
3281 return ret;
3282 }
79787eaa
JM
3283 }
3284 ret = 0;
d68fc57b
YZ
3285 }
3286
3287 /* insert an orphan item to track subvolume contains orphan files */
3288 if (insert >= 2) {
3289 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3290 root->root_key.objectid);
79787eaa
JM
3291 if (ret && ret != -EEXIST) {
3292 btrfs_abort_transaction(trans, root, ret);
3293 return ret;
3294 }
d68fc57b
YZ
3295 }
3296 return 0;
7b128766
JB
3297}
3298
3299/*
3300 * We have done the truncate/delete so we can go ahead and remove the orphan
3301 * item for this particular inode.
3302 */
48a3b636
ES
3303static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3304 struct inode *inode)
7b128766
JB
3305{
3306 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3307 int delete_item = 0;
3308 int release_rsv = 0;
7b128766
JB
3309 int ret = 0;
3310
d68fc57b 3311 spin_lock(&root->orphan_lock);
8a35d95f
JB
3312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3314 delete_item = 1;
7b128766 3315
72ac3c0d
JB
3316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3317 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3318 release_rsv = 1;
d68fc57b 3319 spin_unlock(&root->orphan_lock);
7b128766 3320
703c88e0 3321 if (delete_item) {
8a35d95f 3322 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3323 if (trans)
3324 ret = btrfs_del_orphan_item(trans, root,
3325 btrfs_ino(inode));
8a35d95f 3326 }
7b128766 3327
703c88e0
FDBM
3328 if (release_rsv)
3329 btrfs_orphan_release_metadata(inode);
3330
4ef31a45 3331 return ret;
7b128766
JB
3332}
3333
3334/*
3335 * this cleans up any orphans that may be left on the list from the last use
3336 * of this root.
3337 */
66b4ffd1 3338int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3339{
3340 struct btrfs_path *path;
3341 struct extent_buffer *leaf;
7b128766
JB
3342 struct btrfs_key key, found_key;
3343 struct btrfs_trans_handle *trans;
3344 struct inode *inode;
8f6d7f4f 3345 u64 last_objectid = 0;
7b128766
JB
3346 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3347
d68fc57b 3348 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3349 return 0;
c71bf099
YZ
3350
3351 path = btrfs_alloc_path();
66b4ffd1
JB
3352 if (!path) {
3353 ret = -ENOMEM;
3354 goto out;
3355 }
e4058b54 3356 path->reada = READA_BACK;
7b128766
JB
3357
3358 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3359 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3360 key.offset = (u64)-1;
3361
7b128766
JB
3362 while (1) {
3363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3364 if (ret < 0)
3365 goto out;
7b128766
JB
3366
3367 /*
3368 * if ret == 0 means we found what we were searching for, which
25985edc 3369 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3370 * find the key and see if we have stuff that matches
3371 */
3372 if (ret > 0) {
66b4ffd1 3373 ret = 0;
7b128766
JB
3374 if (path->slots[0] == 0)
3375 break;
3376 path->slots[0]--;
3377 }
3378
3379 /* pull out the item */
3380 leaf = path->nodes[0];
7b128766
JB
3381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3382
3383 /* make sure the item matches what we want */
3384 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3385 break;
962a298f 3386 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3387 break;
3388
3389 /* release the path since we're done with it */
b3b4aa74 3390 btrfs_release_path(path);
7b128766
JB
3391
3392 /*
3393 * this is where we are basically btrfs_lookup, without the
3394 * crossing root thing. we store the inode number in the
3395 * offset of the orphan item.
3396 */
8f6d7f4f
JB
3397
3398 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3399 btrfs_err(root->fs_info,
3400 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3401 ret = -EINVAL;
3402 goto out;
3403 }
3404
3405 last_objectid = found_key.offset;
3406
5d4f98a2
YZ
3407 found_key.objectid = found_key.offset;
3408 found_key.type = BTRFS_INODE_ITEM_KEY;
3409 found_key.offset = 0;
73f73415 3410 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3411 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3412 if (ret && ret != -ESTALE)
66b4ffd1 3413 goto out;
7b128766 3414
f8e9e0b0
AJ
3415 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3416 struct btrfs_root *dead_root;
3417 struct btrfs_fs_info *fs_info = root->fs_info;
3418 int is_dead_root = 0;
3419
3420 /*
3421 * this is an orphan in the tree root. Currently these
3422 * could come from 2 sources:
3423 * a) a snapshot deletion in progress
3424 * b) a free space cache inode
3425 * We need to distinguish those two, as the snapshot
3426 * orphan must not get deleted.
3427 * find_dead_roots already ran before us, so if this
3428 * is a snapshot deletion, we should find the root
3429 * in the dead_roots list
3430 */
3431 spin_lock(&fs_info->trans_lock);
3432 list_for_each_entry(dead_root, &fs_info->dead_roots,
3433 root_list) {
3434 if (dead_root->root_key.objectid ==
3435 found_key.objectid) {
3436 is_dead_root = 1;
3437 break;
3438 }
3439 }
3440 spin_unlock(&fs_info->trans_lock);
3441 if (is_dead_root) {
3442 /* prevent this orphan from being found again */
3443 key.offset = found_key.objectid - 1;
3444 continue;
3445 }
3446 }
7b128766 3447 /*
a8c9e576
JB
3448 * Inode is already gone but the orphan item is still there,
3449 * kill the orphan item.
7b128766 3450 */
a8c9e576
JB
3451 if (ret == -ESTALE) {
3452 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3453 if (IS_ERR(trans)) {
3454 ret = PTR_ERR(trans);
3455 goto out;
3456 }
c2cf52eb
SK
3457 btrfs_debug(root->fs_info, "auto deleting %Lu",
3458 found_key.objectid);
a8c9e576
JB
3459 ret = btrfs_del_orphan_item(trans, root,
3460 found_key.objectid);
5b21f2ed 3461 btrfs_end_transaction(trans, root);
4ef31a45
JB
3462 if (ret)
3463 goto out;
7b128766
JB
3464 continue;
3465 }
3466
a8c9e576
JB
3467 /*
3468 * add this inode to the orphan list so btrfs_orphan_del does
3469 * the proper thing when we hit it
3470 */
8a35d95f
JB
3471 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3472 &BTRFS_I(inode)->runtime_flags);
925396ec 3473 atomic_inc(&root->orphan_inodes);
a8c9e576 3474
7b128766
JB
3475 /* if we have links, this was a truncate, lets do that */
3476 if (inode->i_nlink) {
fae7f21c 3477 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3478 iput(inode);
3479 continue;
3480 }
7b128766 3481 nr_truncate++;
f3fe820c
JB
3482
3483 /* 1 for the orphan item deletion. */
3484 trans = btrfs_start_transaction(root, 1);
3485 if (IS_ERR(trans)) {
c69b26b0 3486 iput(inode);
f3fe820c
JB
3487 ret = PTR_ERR(trans);
3488 goto out;
3489 }
3490 ret = btrfs_orphan_add(trans, inode);
3491 btrfs_end_transaction(trans, root);
c69b26b0
JB
3492 if (ret) {
3493 iput(inode);
f3fe820c 3494 goto out;
c69b26b0 3495 }
f3fe820c 3496
66b4ffd1 3497 ret = btrfs_truncate(inode);
4a7d0f68
JB
3498 if (ret)
3499 btrfs_orphan_del(NULL, inode);
7b128766
JB
3500 } else {
3501 nr_unlink++;
3502 }
3503
3504 /* this will do delete_inode and everything for us */
3505 iput(inode);
66b4ffd1
JB
3506 if (ret)
3507 goto out;
7b128766 3508 }
3254c876
MX
3509 /* release the path since we're done with it */
3510 btrfs_release_path(path);
3511
d68fc57b
YZ
3512 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3513
3514 if (root->orphan_block_rsv)
3515 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3516 (u64)-1);
3517
27cdeb70
MX
3518 if (root->orphan_block_rsv ||
3519 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3520 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3521 if (!IS_ERR(trans))
3522 btrfs_end_transaction(trans, root);
d68fc57b 3523 }
7b128766
JB
3524
3525 if (nr_unlink)
4884b476 3526 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3527 if (nr_truncate)
4884b476 3528 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3529
3530out:
3531 if (ret)
68b663d1 3532 btrfs_err(root->fs_info,
c2cf52eb 3533 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3534 btrfs_free_path(path);
3535 return ret;
7b128766
JB
3536}
3537
46a53cca
CM
3538/*
3539 * very simple check to peek ahead in the leaf looking for xattrs. If we
3540 * don't find any xattrs, we know there can't be any acls.
3541 *
3542 * slot is the slot the inode is in, objectid is the objectid of the inode
3543 */
3544static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3545 int slot, u64 objectid,
3546 int *first_xattr_slot)
46a53cca
CM
3547{
3548 u32 nritems = btrfs_header_nritems(leaf);
3549 struct btrfs_key found_key;
f23b5a59
JB
3550 static u64 xattr_access = 0;
3551 static u64 xattr_default = 0;
46a53cca
CM
3552 int scanned = 0;
3553
f23b5a59 3554 if (!xattr_access) {
97d79299
AG
3555 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3556 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3557 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3558 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3559 }
3560
46a53cca 3561 slot++;
63541927 3562 *first_xattr_slot = -1;
46a53cca
CM
3563 while (slot < nritems) {
3564 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3565
3566 /* we found a different objectid, there must not be acls */
3567 if (found_key.objectid != objectid)
3568 return 0;
3569
3570 /* we found an xattr, assume we've got an acl */
f23b5a59 3571 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3572 if (*first_xattr_slot == -1)
3573 *first_xattr_slot = slot;
f23b5a59
JB
3574 if (found_key.offset == xattr_access ||
3575 found_key.offset == xattr_default)
3576 return 1;
3577 }
46a53cca
CM
3578
3579 /*
3580 * we found a key greater than an xattr key, there can't
3581 * be any acls later on
3582 */
3583 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3584 return 0;
3585
3586 slot++;
3587 scanned++;
3588
3589 /*
3590 * it goes inode, inode backrefs, xattrs, extents,
3591 * so if there are a ton of hard links to an inode there can
3592 * be a lot of backrefs. Don't waste time searching too hard,
3593 * this is just an optimization
3594 */
3595 if (scanned >= 8)
3596 break;
3597 }
3598 /* we hit the end of the leaf before we found an xattr or
3599 * something larger than an xattr. We have to assume the inode
3600 * has acls
3601 */
63541927
FDBM
3602 if (*first_xattr_slot == -1)
3603 *first_xattr_slot = slot;
46a53cca
CM
3604 return 1;
3605}
3606
d352ac68
CM
3607/*
3608 * read an inode from the btree into the in-memory inode
3609 */
5d4f98a2 3610static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3611{
3612 struct btrfs_path *path;
5f39d397 3613 struct extent_buffer *leaf;
39279cc3
CM
3614 struct btrfs_inode_item *inode_item;
3615 struct btrfs_root *root = BTRFS_I(inode)->root;
3616 struct btrfs_key location;
67de1176 3617 unsigned long ptr;
46a53cca 3618 int maybe_acls;
618e21d5 3619 u32 rdev;
39279cc3 3620 int ret;
2f7e33d4 3621 bool filled = false;
63541927 3622 int first_xattr_slot;
2f7e33d4
MX
3623
3624 ret = btrfs_fill_inode(inode, &rdev);
3625 if (!ret)
3626 filled = true;
39279cc3
CM
3627
3628 path = btrfs_alloc_path();
1748f843
MF
3629 if (!path)
3630 goto make_bad;
3631
39279cc3 3632 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3633
39279cc3 3634 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3635 if (ret)
39279cc3 3636 goto make_bad;
39279cc3 3637
5f39d397 3638 leaf = path->nodes[0];
2f7e33d4
MX
3639
3640 if (filled)
67de1176 3641 goto cache_index;
2f7e33d4 3642
5f39d397
CM
3643 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3644 struct btrfs_inode_item);
5f39d397 3645 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3646 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3647 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3648 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3649 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3650
a937b979
DS
3651 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3652 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3653
a937b979
DS
3654 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3655 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3656
a937b979
DS
3657 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3658 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3659
9cc97d64 3660 BTRFS_I(inode)->i_otime.tv_sec =
3661 btrfs_timespec_sec(leaf, &inode_item->otime);
3662 BTRFS_I(inode)->i_otime.tv_nsec =
3663 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3664
a76a3cd4 3665 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3666 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3667 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3668
6e17d30b
YD
3669 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3670 inode->i_generation = BTRFS_I(inode)->generation;
3671 inode->i_rdev = 0;
3672 rdev = btrfs_inode_rdev(leaf, inode_item);
3673
3674 BTRFS_I(inode)->index_cnt = (u64)-1;
3675 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3676
3677cache_index:
5dc562c5
JB
3678 /*
3679 * If we were modified in the current generation and evicted from memory
3680 * and then re-read we need to do a full sync since we don't have any
3681 * idea about which extents were modified before we were evicted from
3682 * cache.
6e17d30b
YD
3683 *
3684 * This is required for both inode re-read from disk and delayed inode
3685 * in delayed_nodes_tree.
5dc562c5
JB
3686 */
3687 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3688 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3689 &BTRFS_I(inode)->runtime_flags);
3690
bde6c242
FM
3691 /*
3692 * We don't persist the id of the transaction where an unlink operation
3693 * against the inode was last made. So here we assume the inode might
3694 * have been evicted, and therefore the exact value of last_unlink_trans
3695 * lost, and set it to last_trans to avoid metadata inconsistencies
3696 * between the inode and its parent if the inode is fsync'ed and the log
3697 * replayed. For example, in the scenario:
3698 *
3699 * touch mydir/foo
3700 * ln mydir/foo mydir/bar
3701 * sync
3702 * unlink mydir/bar
3703 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3704 * xfs_io -c fsync mydir/foo
3705 * <power failure>
3706 * mount fs, triggers fsync log replay
3707 *
3708 * We must make sure that when we fsync our inode foo we also log its
3709 * parent inode, otherwise after log replay the parent still has the
3710 * dentry with the "bar" name but our inode foo has a link count of 1
3711 * and doesn't have an inode ref with the name "bar" anymore.
3712 *
3713 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3714 * but it guarantees correctness at the expense of ocassional full
3715 * transaction commits on fsync if our inode is a directory, or if our
3716 * inode is not a directory, logging its parent unnecessarily.
3717 */
3718 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3719
67de1176
MX
3720 path->slots[0]++;
3721 if (inode->i_nlink != 1 ||
3722 path->slots[0] >= btrfs_header_nritems(leaf))
3723 goto cache_acl;
3724
3725 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3726 if (location.objectid != btrfs_ino(inode))
3727 goto cache_acl;
3728
3729 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3730 if (location.type == BTRFS_INODE_REF_KEY) {
3731 struct btrfs_inode_ref *ref;
3732
3733 ref = (struct btrfs_inode_ref *)ptr;
3734 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3735 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3736 struct btrfs_inode_extref *extref;
3737
3738 extref = (struct btrfs_inode_extref *)ptr;
3739 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3740 extref);
3741 }
2f7e33d4 3742cache_acl:
46a53cca
CM
3743 /*
3744 * try to precache a NULL acl entry for files that don't have
3745 * any xattrs or acls
3746 */
33345d01 3747 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3748 btrfs_ino(inode), &first_xattr_slot);
3749 if (first_xattr_slot != -1) {
3750 path->slots[0] = first_xattr_slot;
3751 ret = btrfs_load_inode_props(inode, path);
3752 if (ret)
3753 btrfs_err(root->fs_info,
351fd353 3754 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3755 btrfs_ino(inode),
3756 root->root_key.objectid, ret);
3757 }
3758 btrfs_free_path(path);
3759
72c04902
AV
3760 if (!maybe_acls)
3761 cache_no_acl(inode);
46a53cca 3762
39279cc3 3763 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3764 case S_IFREG:
3765 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3766 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3767 inode->i_fop = &btrfs_file_operations;
3768 inode->i_op = &btrfs_file_inode_operations;
3769 break;
3770 case S_IFDIR:
3771 inode->i_fop = &btrfs_dir_file_operations;
3772 if (root == root->fs_info->tree_root)
3773 inode->i_op = &btrfs_dir_ro_inode_operations;
3774 else
3775 inode->i_op = &btrfs_dir_inode_operations;
3776 break;
3777 case S_IFLNK:
3778 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3779 inode_nohighmem(inode);
39279cc3
CM
3780 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3781 break;
618e21d5 3782 default:
0279b4cd 3783 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3784 init_special_inode(inode, inode->i_mode, rdev);
3785 break;
39279cc3 3786 }
6cbff00f
CH
3787
3788 btrfs_update_iflags(inode);
39279cc3
CM
3789 return;
3790
3791make_bad:
39279cc3 3792 btrfs_free_path(path);
39279cc3
CM
3793 make_bad_inode(inode);
3794}
3795
d352ac68
CM
3796/*
3797 * given a leaf and an inode, copy the inode fields into the leaf
3798 */
e02119d5
CM
3799static void fill_inode_item(struct btrfs_trans_handle *trans,
3800 struct extent_buffer *leaf,
5f39d397 3801 struct btrfs_inode_item *item,
39279cc3
CM
3802 struct inode *inode)
3803{
51fab693
LB
3804 struct btrfs_map_token token;
3805
3806 btrfs_init_map_token(&token);
5f39d397 3807
51fab693
LB
3808 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3809 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3810 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3811 &token);
3812 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3813 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3814
a937b979 3815 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3816 inode->i_atime.tv_sec, &token);
a937b979 3817 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3818 inode->i_atime.tv_nsec, &token);
5f39d397 3819
a937b979 3820 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3821 inode->i_mtime.tv_sec, &token);
a937b979 3822 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3823 inode->i_mtime.tv_nsec, &token);
5f39d397 3824
a937b979 3825 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3826 inode->i_ctime.tv_sec, &token);
a937b979 3827 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3828 inode->i_ctime.tv_nsec, &token);
5f39d397 3829
9cc97d64 3830 btrfs_set_token_timespec_sec(leaf, &item->otime,
3831 BTRFS_I(inode)->i_otime.tv_sec, &token);
3832 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3833 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3834
51fab693
LB
3835 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3836 &token);
3837 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3838 &token);
3839 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3840 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3841 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3842 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3843 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3844}
3845
d352ac68
CM
3846/*
3847 * copy everything in the in-memory inode into the btree.
3848 */
2115133f 3849static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3850 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3851{
3852 struct btrfs_inode_item *inode_item;
3853 struct btrfs_path *path;
5f39d397 3854 struct extent_buffer *leaf;
39279cc3
CM
3855 int ret;
3856
3857 path = btrfs_alloc_path();
16cdcec7
MX
3858 if (!path)
3859 return -ENOMEM;
3860
b9473439 3861 path->leave_spinning = 1;
16cdcec7
MX
3862 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3863 1);
39279cc3
CM
3864 if (ret) {
3865 if (ret > 0)
3866 ret = -ENOENT;
3867 goto failed;
3868 }
3869
5f39d397
CM
3870 leaf = path->nodes[0];
3871 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3872 struct btrfs_inode_item);
39279cc3 3873
e02119d5 3874 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3875 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3876 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3877 ret = 0;
3878failed:
39279cc3
CM
3879 btrfs_free_path(path);
3880 return ret;
3881}
3882
2115133f
CM
3883/*
3884 * copy everything in the in-memory inode into the btree.
3885 */
3886noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3887 struct btrfs_root *root, struct inode *inode)
3888{
3889 int ret;
3890
3891 /*
3892 * If the inode is a free space inode, we can deadlock during commit
3893 * if we put it into the delayed code.
3894 *
3895 * The data relocation inode should also be directly updated
3896 * without delay
3897 */
83eea1f1 3898 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3899 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3900 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3901 btrfs_update_root_times(trans, root);
3902
2115133f
CM
3903 ret = btrfs_delayed_update_inode(trans, root, inode);
3904 if (!ret)
3905 btrfs_set_inode_last_trans(trans, inode);
3906 return ret;
3907 }
3908
3909 return btrfs_update_inode_item(trans, root, inode);
3910}
3911
be6aef60
JB
3912noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3913 struct btrfs_root *root,
3914 struct inode *inode)
2115133f
CM
3915{
3916 int ret;
3917
3918 ret = btrfs_update_inode(trans, root, inode);
3919 if (ret == -ENOSPC)
3920 return btrfs_update_inode_item(trans, root, inode);
3921 return ret;
3922}
3923
d352ac68
CM
3924/*
3925 * unlink helper that gets used here in inode.c and in the tree logging
3926 * recovery code. It remove a link in a directory with a given name, and
3927 * also drops the back refs in the inode to the directory
3928 */
92986796
AV
3929static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3930 struct btrfs_root *root,
3931 struct inode *dir, struct inode *inode,
3932 const char *name, int name_len)
39279cc3
CM
3933{
3934 struct btrfs_path *path;
39279cc3 3935 int ret = 0;
5f39d397 3936 struct extent_buffer *leaf;
39279cc3 3937 struct btrfs_dir_item *di;
5f39d397 3938 struct btrfs_key key;
aec7477b 3939 u64 index;
33345d01
LZ
3940 u64 ino = btrfs_ino(inode);
3941 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3942
3943 path = btrfs_alloc_path();
54aa1f4d
CM
3944 if (!path) {
3945 ret = -ENOMEM;
554233a6 3946 goto out;
54aa1f4d
CM
3947 }
3948
b9473439 3949 path->leave_spinning = 1;
33345d01 3950 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3951 name, name_len, -1);
3952 if (IS_ERR(di)) {
3953 ret = PTR_ERR(di);
3954 goto err;
3955 }
3956 if (!di) {
3957 ret = -ENOENT;
3958 goto err;
3959 }
5f39d397
CM
3960 leaf = path->nodes[0];
3961 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3962 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3963 if (ret)
3964 goto err;
b3b4aa74 3965 btrfs_release_path(path);
39279cc3 3966
67de1176
MX
3967 /*
3968 * If we don't have dir index, we have to get it by looking up
3969 * the inode ref, since we get the inode ref, remove it directly,
3970 * it is unnecessary to do delayed deletion.
3971 *
3972 * But if we have dir index, needn't search inode ref to get it.
3973 * Since the inode ref is close to the inode item, it is better
3974 * that we delay to delete it, and just do this deletion when
3975 * we update the inode item.
3976 */
3977 if (BTRFS_I(inode)->dir_index) {
3978 ret = btrfs_delayed_delete_inode_ref(inode);
3979 if (!ret) {
3980 index = BTRFS_I(inode)->dir_index;
3981 goto skip_backref;
3982 }
3983 }
3984
33345d01
LZ
3985 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3986 dir_ino, &index);
aec7477b 3987 if (ret) {
c2cf52eb
SK
3988 btrfs_info(root->fs_info,
3989 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3990 name_len, name, ino, dir_ino);
79787eaa 3991 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3992 goto err;
3993 }
67de1176 3994skip_backref:
16cdcec7 3995 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3996 if (ret) {
3997 btrfs_abort_transaction(trans, root, ret);
39279cc3 3998 goto err;
79787eaa 3999 }
39279cc3 4000
e02119d5 4001 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4002 inode, dir_ino);
79787eaa
JM
4003 if (ret != 0 && ret != -ENOENT) {
4004 btrfs_abort_transaction(trans, root, ret);
4005 goto err;
4006 }
e02119d5
CM
4007
4008 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4009 dir, index);
6418c961
CM
4010 if (ret == -ENOENT)
4011 ret = 0;
d4e3991b
ZB
4012 else if (ret)
4013 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4014err:
4015 btrfs_free_path(path);
e02119d5
CM
4016 if (ret)
4017 goto out;
4018
4019 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4020 inode_inc_iversion(inode);
4021 inode_inc_iversion(dir);
04b285f3
DD
4022 inode->i_ctime = dir->i_mtime =
4023 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4024 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4025out:
39279cc3
CM
4026 return ret;
4027}
4028
92986796
AV
4029int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4031 struct inode *dir, struct inode *inode,
4032 const char *name, int name_len)
4033{
4034 int ret;
4035 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4036 if (!ret) {
8b558c5f 4037 drop_nlink(inode);
92986796
AV
4038 ret = btrfs_update_inode(trans, root, inode);
4039 }
4040 return ret;
4041}
39279cc3 4042
a22285a6
YZ
4043/*
4044 * helper to start transaction for unlink and rmdir.
4045 *
d52be818
JB
4046 * unlink and rmdir are special in btrfs, they do not always free space, so
4047 * if we cannot make our reservations the normal way try and see if there is
4048 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4049 * allow the unlink to occur.
a22285a6 4050 */
d52be818 4051static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4052{
a22285a6 4053 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4054
e70bea5f
JB
4055 /*
4056 * 1 for the possible orphan item
4057 * 1 for the dir item
4058 * 1 for the dir index
4059 * 1 for the inode ref
e70bea5f
JB
4060 * 1 for the inode
4061 */
8eab77ff 4062 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4063}
4064
4065static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4066{
4067 struct btrfs_root *root = BTRFS_I(dir)->root;
4068 struct btrfs_trans_handle *trans;
2b0143b5 4069 struct inode *inode = d_inode(dentry);
a22285a6 4070 int ret;
a22285a6 4071
d52be818 4072 trans = __unlink_start_trans(dir);
a22285a6
YZ
4073 if (IS_ERR(trans))
4074 return PTR_ERR(trans);
5f39d397 4075
2b0143b5 4076 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4077
2b0143b5 4078 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4079 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4080 if (ret)
4081 goto out;
7b128766 4082
a22285a6 4083 if (inode->i_nlink == 0) {
7b128766 4084 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4085 if (ret)
4086 goto out;
a22285a6 4087 }
7b128766 4088
b532402e 4089out:
d52be818 4090 btrfs_end_transaction(trans, root);
b53d3f5d 4091 btrfs_btree_balance_dirty(root);
39279cc3
CM
4092 return ret;
4093}
4094
4df27c4d
YZ
4095int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4096 struct btrfs_root *root,
4097 struct inode *dir, u64 objectid,
4098 const char *name, int name_len)
4099{
4100 struct btrfs_path *path;
4101 struct extent_buffer *leaf;
4102 struct btrfs_dir_item *di;
4103 struct btrfs_key key;
4104 u64 index;
4105 int ret;
33345d01 4106 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4107
4108 path = btrfs_alloc_path();
4109 if (!path)
4110 return -ENOMEM;
4111
33345d01 4112 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4113 name, name_len, -1);
79787eaa
JM
4114 if (IS_ERR_OR_NULL(di)) {
4115 if (!di)
4116 ret = -ENOENT;
4117 else
4118 ret = PTR_ERR(di);
4119 goto out;
4120 }
4df27c4d
YZ
4121
4122 leaf = path->nodes[0];
4123 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4124 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4125 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4126 if (ret) {
4127 btrfs_abort_transaction(trans, root, ret);
4128 goto out;
4129 }
b3b4aa74 4130 btrfs_release_path(path);
4df27c4d
YZ
4131
4132 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4133 objectid, root->root_key.objectid,
33345d01 4134 dir_ino, &index, name, name_len);
4df27c4d 4135 if (ret < 0) {
79787eaa
JM
4136 if (ret != -ENOENT) {
4137 btrfs_abort_transaction(trans, root, ret);
4138 goto out;
4139 }
33345d01 4140 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4141 name, name_len);
79787eaa
JM
4142 if (IS_ERR_OR_NULL(di)) {
4143 if (!di)
4144 ret = -ENOENT;
4145 else
4146 ret = PTR_ERR(di);
4147 btrfs_abort_transaction(trans, root, ret);
4148 goto out;
4149 }
4df27c4d
YZ
4150
4151 leaf = path->nodes[0];
4152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4153 btrfs_release_path(path);
4df27c4d
YZ
4154 index = key.offset;
4155 }
945d8962 4156 btrfs_release_path(path);
4df27c4d 4157
16cdcec7 4158 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4159 if (ret) {
4160 btrfs_abort_transaction(trans, root, ret);
4161 goto out;
4162 }
4df27c4d
YZ
4163
4164 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4165 inode_inc_iversion(dir);
04b285f3 4166 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4167 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4168 if (ret)
4169 btrfs_abort_transaction(trans, root, ret);
4170out:
71d7aed0 4171 btrfs_free_path(path);
79787eaa 4172 return ret;
4df27c4d
YZ
4173}
4174
39279cc3
CM
4175static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4176{
2b0143b5 4177 struct inode *inode = d_inode(dentry);
1832a6d5 4178 int err = 0;
39279cc3 4179 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4180 struct btrfs_trans_handle *trans;
39279cc3 4181
b3ae244e 4182 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4183 return -ENOTEMPTY;
b3ae244e
DS
4184 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4185 return -EPERM;
134d4512 4186
d52be818 4187 trans = __unlink_start_trans(dir);
a22285a6 4188 if (IS_ERR(trans))
5df6a9f6 4189 return PTR_ERR(trans);
5df6a9f6 4190
33345d01 4191 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4192 err = btrfs_unlink_subvol(trans, root, dir,
4193 BTRFS_I(inode)->location.objectid,
4194 dentry->d_name.name,
4195 dentry->d_name.len);
4196 goto out;
4197 }
4198
7b128766
JB
4199 err = btrfs_orphan_add(trans, inode);
4200 if (err)
4df27c4d 4201 goto out;
7b128766 4202
39279cc3 4203 /* now the directory is empty */
2b0143b5 4204 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4205 dentry->d_name.name, dentry->d_name.len);
d397712b 4206 if (!err)
dbe674a9 4207 btrfs_i_size_write(inode, 0);
4df27c4d 4208out:
d52be818 4209 btrfs_end_transaction(trans, root);
b53d3f5d 4210 btrfs_btree_balance_dirty(root);
3954401f 4211
39279cc3
CM
4212 return err;
4213}
4214
28f75a0e
CM
4215static int truncate_space_check(struct btrfs_trans_handle *trans,
4216 struct btrfs_root *root,
4217 u64 bytes_deleted)
4218{
4219 int ret;
4220
dc95f7bf
JB
4221 /*
4222 * This is only used to apply pressure to the enospc system, we don't
4223 * intend to use this reservation at all.
4224 */
28f75a0e 4225 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4226 bytes_deleted *= root->nodesize;
28f75a0e
CM
4227 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4228 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4229 if (!ret) {
4230 trace_btrfs_space_reservation(root->fs_info, "transaction",
4231 trans->transid,
4232 bytes_deleted, 1);
28f75a0e 4233 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4234 }
28f75a0e
CM
4235 return ret;
4236
4237}
4238
0305cd5f
FM
4239static int truncate_inline_extent(struct inode *inode,
4240 struct btrfs_path *path,
4241 struct btrfs_key *found_key,
4242 const u64 item_end,
4243 const u64 new_size)
4244{
4245 struct extent_buffer *leaf = path->nodes[0];
4246 int slot = path->slots[0];
4247 struct btrfs_file_extent_item *fi;
4248 u32 size = (u32)(new_size - found_key->offset);
4249 struct btrfs_root *root = BTRFS_I(inode)->root;
4250
4251 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4252
4253 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4254 loff_t offset = new_size;
09cbfeaf 4255 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4256
4257 /*
4258 * Zero out the remaining of the last page of our inline extent,
4259 * instead of directly truncating our inline extent here - that
4260 * would be much more complex (decompressing all the data, then
4261 * compressing the truncated data, which might be bigger than
4262 * the size of the inline extent, resize the extent, etc).
4263 * We release the path because to get the page we might need to
4264 * read the extent item from disk (data not in the page cache).
4265 */
4266 btrfs_release_path(path);
9703fefe
CR
4267 return btrfs_truncate_block(inode, offset, page_end - offset,
4268 0);
0305cd5f
FM
4269 }
4270
4271 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4272 size = btrfs_file_extent_calc_inline_size(size);
4273 btrfs_truncate_item(root, path, size, 1);
4274
4275 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4276 inode_sub_bytes(inode, item_end + 1 - new_size);
4277
4278 return 0;
4279}
4280
39279cc3
CM
4281/*
4282 * this can truncate away extent items, csum items and directory items.
4283 * It starts at a high offset and removes keys until it can't find
d352ac68 4284 * any higher than new_size
39279cc3
CM
4285 *
4286 * csum items that cross the new i_size are truncated to the new size
4287 * as well.
7b128766
JB
4288 *
4289 * min_type is the minimum key type to truncate down to. If set to 0, this
4290 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4291 */
8082510e
YZ
4292int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4293 struct btrfs_root *root,
4294 struct inode *inode,
4295 u64 new_size, u32 min_type)
39279cc3 4296{
39279cc3 4297 struct btrfs_path *path;
5f39d397 4298 struct extent_buffer *leaf;
39279cc3 4299 struct btrfs_file_extent_item *fi;
8082510e
YZ
4300 struct btrfs_key key;
4301 struct btrfs_key found_key;
39279cc3 4302 u64 extent_start = 0;
db94535d 4303 u64 extent_num_bytes = 0;
5d4f98a2 4304 u64 extent_offset = 0;
39279cc3 4305 u64 item_end = 0;
c1aa4575 4306 u64 last_size = new_size;
8082510e 4307 u32 found_type = (u8)-1;
39279cc3
CM
4308 int found_extent;
4309 int del_item;
85e21bac
CM
4310 int pending_del_nr = 0;
4311 int pending_del_slot = 0;
179e29e4 4312 int extent_type = -1;
8082510e
YZ
4313 int ret;
4314 int err = 0;
33345d01 4315 u64 ino = btrfs_ino(inode);
28ed1345 4316 u64 bytes_deleted = 0;
1262133b
JB
4317 bool be_nice = 0;
4318 bool should_throttle = 0;
28f75a0e 4319 bool should_end = 0;
8082510e
YZ
4320
4321 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4322
28ed1345
CM
4323 /*
4324 * for non-free space inodes and ref cows, we want to back off from
4325 * time to time
4326 */
4327 if (!btrfs_is_free_space_inode(inode) &&
4328 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4329 be_nice = 1;
4330
0eb0e19c
MF
4331 path = btrfs_alloc_path();
4332 if (!path)
4333 return -ENOMEM;
e4058b54 4334 path->reada = READA_BACK;
0eb0e19c 4335
5dc562c5
JB
4336 /*
4337 * We want to drop from the next block forward in case this new size is
4338 * not block aligned since we will be keeping the last block of the
4339 * extent just the way it is.
4340 */
27cdeb70
MX
4341 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4342 root == root->fs_info->tree_root)
fda2832f
QW
4343 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4344 root->sectorsize), (u64)-1, 0);
8082510e 4345
16cdcec7
MX
4346 /*
4347 * This function is also used to drop the items in the log tree before
4348 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4349 * it is used to drop the loged items. So we shouldn't kill the delayed
4350 * items.
4351 */
4352 if (min_type == 0 && root == BTRFS_I(inode)->root)
4353 btrfs_kill_delayed_inode_items(inode);
4354
33345d01 4355 key.objectid = ino;
39279cc3 4356 key.offset = (u64)-1;
5f39d397
CM
4357 key.type = (u8)-1;
4358
85e21bac 4359search_again:
28ed1345
CM
4360 /*
4361 * with a 16K leaf size and 128MB extents, you can actually queue
4362 * up a huge file in a single leaf. Most of the time that
4363 * bytes_deleted is > 0, it will be huge by the time we get here
4364 */
ee22184b 4365 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4366 if (btrfs_should_end_transaction(trans, root)) {
4367 err = -EAGAIN;
4368 goto error;
4369 }
4370 }
4371
4372
b9473439 4373 path->leave_spinning = 1;
85e21bac 4374 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4375 if (ret < 0) {
4376 err = ret;
4377 goto out;
4378 }
d397712b 4379
85e21bac 4380 if (ret > 0) {
e02119d5
CM
4381 /* there are no items in the tree for us to truncate, we're
4382 * done
4383 */
8082510e
YZ
4384 if (path->slots[0] == 0)
4385 goto out;
85e21bac
CM
4386 path->slots[0]--;
4387 }
4388
d397712b 4389 while (1) {
39279cc3 4390 fi = NULL;
5f39d397
CM
4391 leaf = path->nodes[0];
4392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4393 found_type = found_key.type;
39279cc3 4394
33345d01 4395 if (found_key.objectid != ino)
39279cc3 4396 break;
5f39d397 4397
85e21bac 4398 if (found_type < min_type)
39279cc3
CM
4399 break;
4400
5f39d397 4401 item_end = found_key.offset;
39279cc3 4402 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4403 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4404 struct btrfs_file_extent_item);
179e29e4
CM
4405 extent_type = btrfs_file_extent_type(leaf, fi);
4406 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4407 item_end +=
db94535d 4408 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4409 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4410 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4411 path->slots[0], fi);
39279cc3 4412 }
008630c1 4413 item_end--;
39279cc3 4414 }
8082510e
YZ
4415 if (found_type > min_type) {
4416 del_item = 1;
4417 } else {
4418 if (item_end < new_size)
b888db2b 4419 break;
8082510e
YZ
4420 if (found_key.offset >= new_size)
4421 del_item = 1;
4422 else
4423 del_item = 0;
39279cc3 4424 }
39279cc3 4425 found_extent = 0;
39279cc3 4426 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4427 if (found_type != BTRFS_EXTENT_DATA_KEY)
4428 goto delete;
4429
7f4f6e0a
JB
4430 if (del_item)
4431 last_size = found_key.offset;
4432 else
4433 last_size = new_size;
4434
179e29e4 4435 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4436 u64 num_dec;
db94535d 4437 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4438 if (!del_item) {
db94535d
CM
4439 u64 orig_num_bytes =
4440 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4441 extent_num_bytes = ALIGN(new_size -
4442 found_key.offset,
4443 root->sectorsize);
db94535d
CM
4444 btrfs_set_file_extent_num_bytes(leaf, fi,
4445 extent_num_bytes);
4446 num_dec = (orig_num_bytes -
9069218d 4447 extent_num_bytes);
27cdeb70
MX
4448 if (test_bit(BTRFS_ROOT_REF_COWS,
4449 &root->state) &&
4450 extent_start != 0)
a76a3cd4 4451 inode_sub_bytes(inode, num_dec);
5f39d397 4452 btrfs_mark_buffer_dirty(leaf);
39279cc3 4453 } else {
db94535d
CM
4454 extent_num_bytes =
4455 btrfs_file_extent_disk_num_bytes(leaf,
4456 fi);
5d4f98a2
YZ
4457 extent_offset = found_key.offset -
4458 btrfs_file_extent_offset(leaf, fi);
4459
39279cc3 4460 /* FIXME blocksize != 4096 */
9069218d 4461 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4462 if (extent_start != 0) {
4463 found_extent = 1;
27cdeb70
MX
4464 if (test_bit(BTRFS_ROOT_REF_COWS,
4465 &root->state))
a76a3cd4 4466 inode_sub_bytes(inode, num_dec);
e02119d5 4467 }
39279cc3 4468 }
9069218d 4469 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4470 /*
4471 * we can't truncate inline items that have had
4472 * special encodings
4473 */
4474 if (!del_item &&
c8b97818
CM
4475 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4476 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4477
4478 /*
0305cd5f
FM
4479 * Need to release path in order to truncate a
4480 * compressed extent. So delete any accumulated
4481 * extent items so far.
514ac8ad 4482 */
0305cd5f
FM
4483 if (btrfs_file_extent_compression(leaf, fi) !=
4484 BTRFS_COMPRESS_NONE && pending_del_nr) {
4485 err = btrfs_del_items(trans, root, path,
4486 pending_del_slot,
4487 pending_del_nr);
4488 if (err) {
4489 btrfs_abort_transaction(trans,
4490 root,
4491 err);
4492 goto error;
4493 }
4494 pending_del_nr = 0;
4495 }
4496
4497 err = truncate_inline_extent(inode, path,
4498 &found_key,
4499 item_end,
4500 new_size);
4501 if (err) {
4502 btrfs_abort_transaction(trans,
4503 root, err);
4504 goto error;
4505 }
27cdeb70
MX
4506 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4507 &root->state)) {
0305cd5f 4508 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4509 }
39279cc3 4510 }
179e29e4 4511delete:
39279cc3 4512 if (del_item) {
85e21bac
CM
4513 if (!pending_del_nr) {
4514 /* no pending yet, add ourselves */
4515 pending_del_slot = path->slots[0];
4516 pending_del_nr = 1;
4517 } else if (pending_del_nr &&
4518 path->slots[0] + 1 == pending_del_slot) {
4519 /* hop on the pending chunk */
4520 pending_del_nr++;
4521 pending_del_slot = path->slots[0];
4522 } else {
d397712b 4523 BUG();
85e21bac 4524 }
39279cc3
CM
4525 } else {
4526 break;
4527 }
28f75a0e
CM
4528 should_throttle = 0;
4529
27cdeb70
MX
4530 if (found_extent &&
4531 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4532 root == root->fs_info->tree_root)) {
b9473439 4533 btrfs_set_path_blocking(path);
28ed1345 4534 bytes_deleted += extent_num_bytes;
39279cc3 4535 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4536 extent_num_bytes, 0,
4537 btrfs_header_owner(leaf),
b06c4bf5 4538 ino, extent_offset);
39279cc3 4539 BUG_ON(ret);
1262133b 4540 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4541 btrfs_async_run_delayed_refs(root,
4542 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4543 if (be_nice) {
4544 if (truncate_space_check(trans, root,
4545 extent_num_bytes)) {
4546 should_end = 1;
4547 }
4548 if (btrfs_should_throttle_delayed_refs(trans,
4549 root)) {
4550 should_throttle = 1;
4551 }
4552 }
39279cc3 4553 }
85e21bac 4554
8082510e
YZ
4555 if (found_type == BTRFS_INODE_ITEM_KEY)
4556 break;
4557
4558 if (path->slots[0] == 0 ||
1262133b 4559 path->slots[0] != pending_del_slot ||
28f75a0e 4560 should_throttle || should_end) {
8082510e
YZ
4561 if (pending_del_nr) {
4562 ret = btrfs_del_items(trans, root, path,
4563 pending_del_slot,
4564 pending_del_nr);
79787eaa
JM
4565 if (ret) {
4566 btrfs_abort_transaction(trans,
4567 root, ret);
4568 goto error;
4569 }
8082510e
YZ
4570 pending_del_nr = 0;
4571 }
b3b4aa74 4572 btrfs_release_path(path);
28f75a0e 4573 if (should_throttle) {
1262133b
JB
4574 unsigned long updates = trans->delayed_ref_updates;
4575 if (updates) {
4576 trans->delayed_ref_updates = 0;
4577 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4578 if (ret && !err)
4579 err = ret;
4580 }
4581 }
28f75a0e
CM
4582 /*
4583 * if we failed to refill our space rsv, bail out
4584 * and let the transaction restart
4585 */
4586 if (should_end) {
4587 err = -EAGAIN;
4588 goto error;
4589 }
85e21bac 4590 goto search_again;
8082510e
YZ
4591 } else {
4592 path->slots[0]--;
85e21bac 4593 }
39279cc3 4594 }
8082510e 4595out:
85e21bac
CM
4596 if (pending_del_nr) {
4597 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4598 pending_del_nr);
79787eaa
JM
4599 if (ret)
4600 btrfs_abort_transaction(trans, root, ret);
85e21bac 4601 }
79787eaa 4602error:
c1aa4575 4603 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4604 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4605
39279cc3 4606 btrfs_free_path(path);
28ed1345 4607
ee22184b 4608 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4609 unsigned long updates = trans->delayed_ref_updates;
4610 if (updates) {
4611 trans->delayed_ref_updates = 0;
4612 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4613 if (ret && !err)
4614 err = ret;
4615 }
4616 }
8082510e 4617 return err;
39279cc3
CM
4618}
4619
4620/*
9703fefe 4621 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4622 * @inode - inode that we're zeroing
4623 * @from - the offset to start zeroing
4624 * @len - the length to zero, 0 to zero the entire range respective to the
4625 * offset
4626 * @front - zero up to the offset instead of from the offset on
4627 *
9703fefe 4628 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4629 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4630 */
9703fefe 4631int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4632 int front)
39279cc3 4633{
2aaa6655 4634 struct address_space *mapping = inode->i_mapping;
db94535d 4635 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4636 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4637 struct btrfs_ordered_extent *ordered;
2ac55d41 4638 struct extent_state *cached_state = NULL;
e6dcd2dc 4639 char *kaddr;
db94535d 4640 u32 blocksize = root->sectorsize;
09cbfeaf 4641 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4642 unsigned offset = from & (blocksize - 1);
39279cc3 4643 struct page *page;
3b16a4e3 4644 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4645 int ret = 0;
9703fefe
CR
4646 u64 block_start;
4647 u64 block_end;
39279cc3 4648
2aaa6655
JB
4649 if ((offset & (blocksize - 1)) == 0 &&
4650 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4651 goto out;
9703fefe 4652
7cf5b976 4653 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4654 round_down(from, blocksize), blocksize);
5d5e103a
JB
4655 if (ret)
4656 goto out;
39279cc3 4657
211c17f5 4658again:
3b16a4e3 4659 page = find_or_create_page(mapping, index, mask);
5d5e103a 4660 if (!page) {
7cf5b976 4661 btrfs_delalloc_release_space(inode,
9703fefe
CR
4662 round_down(from, blocksize),
4663 blocksize);
ac6a2b36 4664 ret = -ENOMEM;
39279cc3 4665 goto out;
5d5e103a 4666 }
e6dcd2dc 4667
9703fefe
CR
4668 block_start = round_down(from, blocksize);
4669 block_end = block_start + blocksize - 1;
e6dcd2dc 4670
39279cc3 4671 if (!PageUptodate(page)) {
9ebefb18 4672 ret = btrfs_readpage(NULL, page);
39279cc3 4673 lock_page(page);
211c17f5
CM
4674 if (page->mapping != mapping) {
4675 unlock_page(page);
09cbfeaf 4676 put_page(page);
211c17f5
CM
4677 goto again;
4678 }
39279cc3
CM
4679 if (!PageUptodate(page)) {
4680 ret = -EIO;
89642229 4681 goto out_unlock;
39279cc3
CM
4682 }
4683 }
211c17f5 4684 wait_on_page_writeback(page);
e6dcd2dc 4685
9703fefe 4686 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4687 set_page_extent_mapped(page);
4688
9703fefe 4689 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4690 if (ordered) {
9703fefe 4691 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4692 &cached_state, GFP_NOFS);
e6dcd2dc 4693 unlock_page(page);
09cbfeaf 4694 put_page(page);
eb84ae03 4695 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4696 btrfs_put_ordered_extent(ordered);
4697 goto again;
4698 }
4699
9703fefe 4700 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4701 EXTENT_DIRTY | EXTENT_DELALLOC |
4702 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4703 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4704
9703fefe 4705 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4706 &cached_state);
9ed74f2d 4707 if (ret) {
9703fefe 4708 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4709 &cached_state, GFP_NOFS);
9ed74f2d
JB
4710 goto out_unlock;
4711 }
4712
9703fefe 4713 if (offset != blocksize) {
2aaa6655 4714 if (!len)
9703fefe 4715 len = blocksize - offset;
e6dcd2dc 4716 kaddr = kmap(page);
2aaa6655 4717 if (front)
9703fefe
CR
4718 memset(kaddr + (block_start - page_offset(page)),
4719 0, offset);
2aaa6655 4720 else
9703fefe
CR
4721 memset(kaddr + (block_start - page_offset(page)) + offset,
4722 0, len);
e6dcd2dc
CM
4723 flush_dcache_page(page);
4724 kunmap(page);
4725 }
247e743c 4726 ClearPageChecked(page);
e6dcd2dc 4727 set_page_dirty(page);
9703fefe 4728 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4729 GFP_NOFS);
39279cc3 4730
89642229 4731out_unlock:
5d5e103a 4732 if (ret)
9703fefe
CR
4733 btrfs_delalloc_release_space(inode, block_start,
4734 blocksize);
39279cc3 4735 unlock_page(page);
09cbfeaf 4736 put_page(page);
39279cc3
CM
4737out:
4738 return ret;
4739}
4740
16e7549f
JB
4741static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4742 u64 offset, u64 len)
4743{
4744 struct btrfs_trans_handle *trans;
4745 int ret;
4746
4747 /*
4748 * Still need to make sure the inode looks like it's been updated so
4749 * that any holes get logged if we fsync.
4750 */
4751 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4752 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4753 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4754 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4755 return 0;
4756 }
4757
4758 /*
4759 * 1 - for the one we're dropping
4760 * 1 - for the one we're adding
4761 * 1 - for updating the inode.
4762 */
4763 trans = btrfs_start_transaction(root, 3);
4764 if (IS_ERR(trans))
4765 return PTR_ERR(trans);
4766
4767 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4768 if (ret) {
4769 btrfs_abort_transaction(trans, root, ret);
4770 btrfs_end_transaction(trans, root);
4771 return ret;
4772 }
4773
4774 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4775 0, 0, len, 0, len, 0, 0, 0);
4776 if (ret)
4777 btrfs_abort_transaction(trans, root, ret);
4778 else
4779 btrfs_update_inode(trans, root, inode);
4780 btrfs_end_transaction(trans, root);
4781 return ret;
4782}
4783
695a0d0d
JB
4784/*
4785 * This function puts in dummy file extents for the area we're creating a hole
4786 * for. So if we are truncating this file to a larger size we need to insert
4787 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4788 * the range between oldsize and size
4789 */
a41ad394 4790int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4791{
9036c102
YZ
4792 struct btrfs_root *root = BTRFS_I(inode)->root;
4793 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4794 struct extent_map *em = NULL;
2ac55d41 4795 struct extent_state *cached_state = NULL;
5dc562c5 4796 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4797 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4798 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4799 u64 last_byte;
4800 u64 cur_offset;
4801 u64 hole_size;
9ed74f2d 4802 int err = 0;
39279cc3 4803
a71754fc 4804 /*
9703fefe
CR
4805 * If our size started in the middle of a block we need to zero out the
4806 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4807 * expose stale data.
4808 */
9703fefe 4809 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4810 if (err)
4811 return err;
4812
9036c102
YZ
4813 if (size <= hole_start)
4814 return 0;
4815
9036c102
YZ
4816 while (1) {
4817 struct btrfs_ordered_extent *ordered;
fa7c1494 4818
ff13db41 4819 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4820 &cached_state);
fa7c1494
MX
4821 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4822 block_end - hole_start);
9036c102
YZ
4823 if (!ordered)
4824 break;
2ac55d41
JB
4825 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4826 &cached_state, GFP_NOFS);
fa7c1494 4827 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4828 btrfs_put_ordered_extent(ordered);
4829 }
39279cc3 4830
9036c102
YZ
4831 cur_offset = hole_start;
4832 while (1) {
4833 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4834 block_end - cur_offset, 0);
79787eaa
JM
4835 if (IS_ERR(em)) {
4836 err = PTR_ERR(em);
f2767956 4837 em = NULL;
79787eaa
JM
4838 break;
4839 }
9036c102 4840 last_byte = min(extent_map_end(em), block_end);
fda2832f 4841 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4842 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4843 struct extent_map *hole_em;
9036c102 4844 hole_size = last_byte - cur_offset;
9ed74f2d 4845
16e7549f
JB
4846 err = maybe_insert_hole(root, inode, cur_offset,
4847 hole_size);
4848 if (err)
3893e33b 4849 break;
5dc562c5
JB
4850 btrfs_drop_extent_cache(inode, cur_offset,
4851 cur_offset + hole_size - 1, 0);
4852 hole_em = alloc_extent_map();
4853 if (!hole_em) {
4854 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4855 &BTRFS_I(inode)->runtime_flags);
4856 goto next;
4857 }
4858 hole_em->start = cur_offset;
4859 hole_em->len = hole_size;
4860 hole_em->orig_start = cur_offset;
8082510e 4861
5dc562c5
JB
4862 hole_em->block_start = EXTENT_MAP_HOLE;
4863 hole_em->block_len = 0;
b4939680 4864 hole_em->orig_block_len = 0;
cc95bef6 4865 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4866 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4867 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4868 hole_em->generation = root->fs_info->generation;
8082510e 4869
5dc562c5
JB
4870 while (1) {
4871 write_lock(&em_tree->lock);
09a2a8f9 4872 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4873 write_unlock(&em_tree->lock);
4874 if (err != -EEXIST)
4875 break;
4876 btrfs_drop_extent_cache(inode, cur_offset,
4877 cur_offset +
4878 hole_size - 1, 0);
4879 }
4880 free_extent_map(hole_em);
9036c102 4881 }
16e7549f 4882next:
9036c102 4883 free_extent_map(em);
a22285a6 4884 em = NULL;
9036c102 4885 cur_offset = last_byte;
8082510e 4886 if (cur_offset >= block_end)
9036c102
YZ
4887 break;
4888 }
a22285a6 4889 free_extent_map(em);
2ac55d41
JB
4890 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4891 GFP_NOFS);
9036c102
YZ
4892 return err;
4893}
39279cc3 4894
3972f260 4895static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4896{
f4a2f4c5
MX
4897 struct btrfs_root *root = BTRFS_I(inode)->root;
4898 struct btrfs_trans_handle *trans;
a41ad394 4899 loff_t oldsize = i_size_read(inode);
3972f260
ES
4900 loff_t newsize = attr->ia_size;
4901 int mask = attr->ia_valid;
8082510e
YZ
4902 int ret;
4903
3972f260
ES
4904 /*
4905 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4906 * special case where we need to update the times despite not having
4907 * these flags set. For all other operations the VFS set these flags
4908 * explicitly if it wants a timestamp update.
4909 */
dff6efc3
CH
4910 if (newsize != oldsize) {
4911 inode_inc_iversion(inode);
4912 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4913 inode->i_ctime = inode->i_mtime =
4914 current_fs_time(inode->i_sb);
4915 }
3972f260 4916
a41ad394 4917 if (newsize > oldsize) {
9ea24bbe
FM
4918 /*
4919 * Don't do an expanding truncate while snapshoting is ongoing.
4920 * This is to ensure the snapshot captures a fully consistent
4921 * state of this file - if the snapshot captures this expanding
4922 * truncation, it must capture all writes that happened before
4923 * this truncation.
4924 */
0bc19f90 4925 btrfs_wait_for_snapshot_creation(root);
a41ad394 4926 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4927 if (ret) {
4928 btrfs_end_write_no_snapshoting(root);
8082510e 4929 return ret;
9ea24bbe 4930 }
8082510e 4931
f4a2f4c5 4932 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4933 if (IS_ERR(trans)) {
4934 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4935 return PTR_ERR(trans);
9ea24bbe 4936 }
f4a2f4c5
MX
4937
4938 i_size_write(inode, newsize);
4939 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4940 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4941 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4942 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4943 btrfs_end_transaction(trans, root);
a41ad394 4944 } else {
8082510e 4945
a41ad394
JB
4946 /*
4947 * We're truncating a file that used to have good data down to
4948 * zero. Make sure it gets into the ordered flush list so that
4949 * any new writes get down to disk quickly.
4950 */
4951 if (newsize == 0)
72ac3c0d
JB
4952 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4953 &BTRFS_I(inode)->runtime_flags);
8082510e 4954
f3fe820c
JB
4955 /*
4956 * 1 for the orphan item we're going to add
4957 * 1 for the orphan item deletion.
4958 */
4959 trans = btrfs_start_transaction(root, 2);
4960 if (IS_ERR(trans))
4961 return PTR_ERR(trans);
4962
4963 /*
4964 * We need to do this in case we fail at _any_ point during the
4965 * actual truncate. Once we do the truncate_setsize we could
4966 * invalidate pages which forces any outstanding ordered io to
4967 * be instantly completed which will give us extents that need
4968 * to be truncated. If we fail to get an orphan inode down we
4969 * could have left over extents that were never meant to live,
4970 * so we need to garuntee from this point on that everything
4971 * will be consistent.
4972 */
4973 ret = btrfs_orphan_add(trans, inode);
4974 btrfs_end_transaction(trans, root);
4975 if (ret)
4976 return ret;
4977
a41ad394
JB
4978 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4979 truncate_setsize(inode, newsize);
2e60a51e
MX
4980
4981 /* Disable nonlocked read DIO to avoid the end less truncate */
4982 btrfs_inode_block_unlocked_dio(inode);
4983 inode_dio_wait(inode);
4984 btrfs_inode_resume_unlocked_dio(inode);
4985
a41ad394 4986 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4987 if (ret && inode->i_nlink) {
4988 int err;
4989
4990 /*
4991 * failed to truncate, disk_i_size is only adjusted down
4992 * as we remove extents, so it should represent the true
4993 * size of the inode, so reset the in memory size and
4994 * delete our orphan entry.
4995 */
4996 trans = btrfs_join_transaction(root);
4997 if (IS_ERR(trans)) {
4998 btrfs_orphan_del(NULL, inode);
4999 return ret;
5000 }
5001 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5002 err = btrfs_orphan_del(trans, inode);
5003 if (err)
5004 btrfs_abort_transaction(trans, root, err);
5005 btrfs_end_transaction(trans, root);
5006 }
8082510e
YZ
5007 }
5008
a41ad394 5009 return ret;
8082510e
YZ
5010}
5011
9036c102
YZ
5012static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5013{
2b0143b5 5014 struct inode *inode = d_inode(dentry);
b83cc969 5015 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5016 int err;
39279cc3 5017
b83cc969
LZ
5018 if (btrfs_root_readonly(root))
5019 return -EROFS;
5020
9036c102
YZ
5021 err = inode_change_ok(inode, attr);
5022 if (err)
5023 return err;
2bf5a725 5024
5a3f23d5 5025 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5026 err = btrfs_setsize(inode, attr);
8082510e
YZ
5027 if (err)
5028 return err;
39279cc3 5029 }
9036c102 5030
1025774c
CH
5031 if (attr->ia_valid) {
5032 setattr_copy(inode, attr);
0c4d2d95 5033 inode_inc_iversion(inode);
22c44fe6 5034 err = btrfs_dirty_inode(inode);
1025774c 5035
22c44fe6 5036 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5037 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5038 }
33268eaf 5039
39279cc3
CM
5040 return err;
5041}
61295eb8 5042
131e404a
FDBM
5043/*
5044 * While truncating the inode pages during eviction, we get the VFS calling
5045 * btrfs_invalidatepage() against each page of the inode. This is slow because
5046 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5047 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5048 * extent_state structures over and over, wasting lots of time.
5049 *
5050 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5051 * those expensive operations on a per page basis and do only the ordered io
5052 * finishing, while we release here the extent_map and extent_state structures,
5053 * without the excessive merging and splitting.
5054 */
5055static void evict_inode_truncate_pages(struct inode *inode)
5056{
5057 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5058 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5059 struct rb_node *node;
5060
5061 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5062 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5063
5064 write_lock(&map_tree->lock);
5065 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5066 struct extent_map *em;
5067
5068 node = rb_first(&map_tree->map);
5069 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5070 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5071 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5072 remove_extent_mapping(map_tree, em);
5073 free_extent_map(em);
7064dd5c
FM
5074 if (need_resched()) {
5075 write_unlock(&map_tree->lock);
5076 cond_resched();
5077 write_lock(&map_tree->lock);
5078 }
131e404a
FDBM
5079 }
5080 write_unlock(&map_tree->lock);
5081
6ca07097
FM
5082 /*
5083 * Keep looping until we have no more ranges in the io tree.
5084 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5085 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5086 * still in progress (unlocked the pages in the bio but did not yet
5087 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5088 * ranges can still be locked and eviction started because before
5089 * submitting those bios, which are executed by a separate task (work
5090 * queue kthread), inode references (inode->i_count) were not taken
5091 * (which would be dropped in the end io callback of each bio).
5092 * Therefore here we effectively end up waiting for those bios and
5093 * anyone else holding locked ranges without having bumped the inode's
5094 * reference count - if we don't do it, when they access the inode's
5095 * io_tree to unlock a range it may be too late, leading to an
5096 * use-after-free issue.
5097 */
131e404a
FDBM
5098 spin_lock(&io_tree->lock);
5099 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5100 struct extent_state *state;
5101 struct extent_state *cached_state = NULL;
6ca07097
FM
5102 u64 start;
5103 u64 end;
131e404a
FDBM
5104
5105 node = rb_first(&io_tree->state);
5106 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5107 start = state->start;
5108 end = state->end;
131e404a
FDBM
5109 spin_unlock(&io_tree->lock);
5110
ff13db41 5111 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5112
5113 /*
5114 * If still has DELALLOC flag, the extent didn't reach disk,
5115 * and its reserved space won't be freed by delayed_ref.
5116 * So we need to free its reserved space here.
5117 * (Refer to comment in btrfs_invalidatepage, case 2)
5118 *
5119 * Note, end is the bytenr of last byte, so we need + 1 here.
5120 */
5121 if (state->state & EXTENT_DELALLOC)
5122 btrfs_qgroup_free_data(inode, start, end - start + 1);
5123
6ca07097 5124 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5125 EXTENT_LOCKED | EXTENT_DIRTY |
5126 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5127 EXTENT_DEFRAG, 1, 1,
5128 &cached_state, GFP_NOFS);
131e404a 5129
7064dd5c 5130 cond_resched();
131e404a
FDBM
5131 spin_lock(&io_tree->lock);
5132 }
5133 spin_unlock(&io_tree->lock);
5134}
5135
bd555975 5136void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5137{
5138 struct btrfs_trans_handle *trans;
5139 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5140 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5141 int steal_from_global = 0;
07127184 5142 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5143 int ret;
5144
1abe9b8a 5145 trace_btrfs_inode_evict(inode);
5146
131e404a
FDBM
5147 evict_inode_truncate_pages(inode);
5148
69e9c6c6
SB
5149 if (inode->i_nlink &&
5150 ((btrfs_root_refs(&root->root_item) != 0 &&
5151 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5152 btrfs_is_free_space_inode(inode)))
bd555975
AV
5153 goto no_delete;
5154
39279cc3 5155 if (is_bad_inode(inode)) {
7b128766 5156 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5157 goto no_delete;
5158 }
bd555975 5159 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5160 if (!special_file(inode->i_mode))
5161 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5162
f612496b
MX
5163 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5164
c71bf099 5165 if (root->fs_info->log_root_recovering) {
6bf02314 5166 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5167 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5168 goto no_delete;
5169 }
5170
76dda93c 5171 if (inode->i_nlink > 0) {
69e9c6c6
SB
5172 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5173 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5174 goto no_delete;
5175 }
5176
0e8c36a9
MX
5177 ret = btrfs_commit_inode_delayed_inode(inode);
5178 if (ret) {
5179 btrfs_orphan_del(NULL, inode);
5180 goto no_delete;
5181 }
5182
66d8f3dd 5183 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5184 if (!rsv) {
5185 btrfs_orphan_del(NULL, inode);
5186 goto no_delete;
5187 }
4a338542 5188 rsv->size = min_size;
ca7e70f5 5189 rsv->failfast = 1;
726c35fa 5190 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5191
dbe674a9 5192 btrfs_i_size_write(inode, 0);
5f39d397 5193
4289a667 5194 /*
8407aa46
MX
5195 * This is a bit simpler than btrfs_truncate since we've already
5196 * reserved our space for our orphan item in the unlink, so we just
5197 * need to reserve some slack space in case we add bytes and update
5198 * inode item when doing the truncate.
4289a667 5199 */
8082510e 5200 while (1) {
08e007d2
MX
5201 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5202 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5203
5204 /*
5205 * Try and steal from the global reserve since we will
5206 * likely not use this space anyway, we want to try as
5207 * hard as possible to get this to work.
5208 */
5209 if (ret)
3bce876f
JB
5210 steal_from_global++;
5211 else
5212 steal_from_global = 0;
5213 ret = 0;
d68fc57b 5214
3bce876f
JB
5215 /*
5216 * steal_from_global == 0: we reserved stuff, hooray!
5217 * steal_from_global == 1: we didn't reserve stuff, boo!
5218 * steal_from_global == 2: we've committed, still not a lot of
5219 * room but maybe we'll have room in the global reserve this
5220 * time.
5221 * steal_from_global == 3: abandon all hope!
5222 */
5223 if (steal_from_global > 2) {
c2cf52eb
SK
5224 btrfs_warn(root->fs_info,
5225 "Could not get space for a delete, will truncate on mount %d",
5226 ret);
4289a667
JB
5227 btrfs_orphan_del(NULL, inode);
5228 btrfs_free_block_rsv(root, rsv);
5229 goto no_delete;
d68fc57b 5230 }
7b128766 5231
0e8c36a9 5232 trans = btrfs_join_transaction(root);
4289a667
JB
5233 if (IS_ERR(trans)) {
5234 btrfs_orphan_del(NULL, inode);
5235 btrfs_free_block_rsv(root, rsv);
5236 goto no_delete;
d68fc57b 5237 }
7b128766 5238
3bce876f
JB
5239 /*
5240 * We can't just steal from the global reserve, we need tomake
5241 * sure there is room to do it, if not we need to commit and try
5242 * again.
5243 */
5244 if (steal_from_global) {
5245 if (!btrfs_check_space_for_delayed_refs(trans, root))
5246 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5247 min_size);
5248 else
5249 ret = -ENOSPC;
5250 }
5251
5252 /*
5253 * Couldn't steal from the global reserve, we have too much
5254 * pending stuff built up, commit the transaction and try it
5255 * again.
5256 */
5257 if (ret) {
5258 ret = btrfs_commit_transaction(trans, root);
5259 if (ret) {
5260 btrfs_orphan_del(NULL, inode);
5261 btrfs_free_block_rsv(root, rsv);
5262 goto no_delete;
5263 }
5264 continue;
5265 } else {
5266 steal_from_global = 0;
5267 }
5268
4289a667
JB
5269 trans->block_rsv = rsv;
5270
d68fc57b 5271 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5272 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5273 break;
85e21bac 5274
8407aa46 5275 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5276 btrfs_end_transaction(trans, root);
5277 trans = NULL;
b53d3f5d 5278 btrfs_btree_balance_dirty(root);
8082510e 5279 }
5f39d397 5280
4289a667
JB
5281 btrfs_free_block_rsv(root, rsv);
5282
4ef31a45
JB
5283 /*
5284 * Errors here aren't a big deal, it just means we leave orphan items
5285 * in the tree. They will be cleaned up on the next mount.
5286 */
8082510e 5287 if (ret == 0) {
4289a667 5288 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5289 btrfs_orphan_del(trans, inode);
5290 } else {
5291 btrfs_orphan_del(NULL, inode);
8082510e 5292 }
54aa1f4d 5293
4289a667 5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5295 if (!(root == root->fs_info->tree_root ||
5296 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5297 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5298
54aa1f4d 5299 btrfs_end_transaction(trans, root);
b53d3f5d 5300 btrfs_btree_balance_dirty(root);
39279cc3 5301no_delete:
89042e5a 5302 btrfs_remove_delayed_node(inode);
dbd5768f 5303 clear_inode(inode);
39279cc3
CM
5304}
5305
5306/*
5307 * this returns the key found in the dir entry in the location pointer.
5308 * If no dir entries were found, location->objectid is 0.
5309 */
5310static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5311 struct btrfs_key *location)
5312{
5313 const char *name = dentry->d_name.name;
5314 int namelen = dentry->d_name.len;
5315 struct btrfs_dir_item *di;
5316 struct btrfs_path *path;
5317 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5318 int ret = 0;
39279cc3
CM
5319
5320 path = btrfs_alloc_path();
d8926bb3
MF
5321 if (!path)
5322 return -ENOMEM;
3954401f 5323
33345d01 5324 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5325 namelen, 0);
0d9f7f3e
Y
5326 if (IS_ERR(di))
5327 ret = PTR_ERR(di);
d397712b 5328
c704005d 5329 if (IS_ERR_OR_NULL(di))
3954401f 5330 goto out_err;
d397712b 5331
5f39d397 5332 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5333out:
39279cc3
CM
5334 btrfs_free_path(path);
5335 return ret;
3954401f
CM
5336out_err:
5337 location->objectid = 0;
5338 goto out;
39279cc3
CM
5339}
5340
5341/*
5342 * when we hit a tree root in a directory, the btrfs part of the inode
5343 * needs to be changed to reflect the root directory of the tree root. This
5344 * is kind of like crossing a mount point.
5345 */
5346static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5347 struct inode *dir,
5348 struct dentry *dentry,
5349 struct btrfs_key *location,
5350 struct btrfs_root **sub_root)
39279cc3 5351{
4df27c4d
YZ
5352 struct btrfs_path *path;
5353 struct btrfs_root *new_root;
5354 struct btrfs_root_ref *ref;
5355 struct extent_buffer *leaf;
1d4c08e0 5356 struct btrfs_key key;
4df27c4d
YZ
5357 int ret;
5358 int err = 0;
39279cc3 5359
4df27c4d
YZ
5360 path = btrfs_alloc_path();
5361 if (!path) {
5362 err = -ENOMEM;
5363 goto out;
5364 }
39279cc3 5365
4df27c4d 5366 err = -ENOENT;
1d4c08e0
DS
5367 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5368 key.type = BTRFS_ROOT_REF_KEY;
5369 key.offset = location->objectid;
5370
5371 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5372 0, 0);
4df27c4d
YZ
5373 if (ret) {
5374 if (ret < 0)
5375 err = ret;
5376 goto out;
5377 }
39279cc3 5378
4df27c4d
YZ
5379 leaf = path->nodes[0];
5380 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5381 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5382 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5383 goto out;
39279cc3 5384
4df27c4d
YZ
5385 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5386 (unsigned long)(ref + 1),
5387 dentry->d_name.len);
5388 if (ret)
5389 goto out;
5390
b3b4aa74 5391 btrfs_release_path(path);
4df27c4d
YZ
5392
5393 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5394 if (IS_ERR(new_root)) {
5395 err = PTR_ERR(new_root);
5396 goto out;
5397 }
5398
4df27c4d
YZ
5399 *sub_root = new_root;
5400 location->objectid = btrfs_root_dirid(&new_root->root_item);
5401 location->type = BTRFS_INODE_ITEM_KEY;
5402 location->offset = 0;
5403 err = 0;
5404out:
5405 btrfs_free_path(path);
5406 return err;
39279cc3
CM
5407}
5408
5d4f98a2
YZ
5409static void inode_tree_add(struct inode *inode)
5410{
5411 struct btrfs_root *root = BTRFS_I(inode)->root;
5412 struct btrfs_inode *entry;
03e860bd
FNP
5413 struct rb_node **p;
5414 struct rb_node *parent;
cef21937 5415 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5416 u64 ino = btrfs_ino(inode);
5d4f98a2 5417
1d3382cb 5418 if (inode_unhashed(inode))
76dda93c 5419 return;
e1409cef 5420 parent = NULL;
5d4f98a2 5421 spin_lock(&root->inode_lock);
e1409cef 5422 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5423 while (*p) {
5424 parent = *p;
5425 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5426
33345d01 5427 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5428 p = &parent->rb_left;
33345d01 5429 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5430 p = &parent->rb_right;
5d4f98a2
YZ
5431 else {
5432 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5433 (I_WILL_FREE | I_FREEING)));
cef21937 5434 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5435 RB_CLEAR_NODE(parent);
5436 spin_unlock(&root->inode_lock);
cef21937 5437 return;
5d4f98a2
YZ
5438 }
5439 }
cef21937
FDBM
5440 rb_link_node(new, parent, p);
5441 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5442 spin_unlock(&root->inode_lock);
5443}
5444
5445static void inode_tree_del(struct inode *inode)
5446{
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5448 int empty = 0;
5d4f98a2 5449
03e860bd 5450 spin_lock(&root->inode_lock);
5d4f98a2 5451 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5452 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5453 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5454 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5455 }
03e860bd 5456 spin_unlock(&root->inode_lock);
76dda93c 5457
69e9c6c6 5458 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5459 synchronize_srcu(&root->fs_info->subvol_srcu);
5460 spin_lock(&root->inode_lock);
5461 empty = RB_EMPTY_ROOT(&root->inode_tree);
5462 spin_unlock(&root->inode_lock);
5463 if (empty)
5464 btrfs_add_dead_root(root);
5465 }
5466}
5467
143bede5 5468void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5469{
5470 struct rb_node *node;
5471 struct rb_node *prev;
5472 struct btrfs_inode *entry;
5473 struct inode *inode;
5474 u64 objectid = 0;
5475
7813b3db
LB
5476 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5477 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5478
5479 spin_lock(&root->inode_lock);
5480again:
5481 node = root->inode_tree.rb_node;
5482 prev = NULL;
5483 while (node) {
5484 prev = node;
5485 entry = rb_entry(node, struct btrfs_inode, rb_node);
5486
33345d01 5487 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5488 node = node->rb_left;
33345d01 5489 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5490 node = node->rb_right;
5491 else
5492 break;
5493 }
5494 if (!node) {
5495 while (prev) {
5496 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5497 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5498 node = prev;
5499 break;
5500 }
5501 prev = rb_next(prev);
5502 }
5503 }
5504 while (node) {
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5506 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5507 inode = igrab(&entry->vfs_inode);
5508 if (inode) {
5509 spin_unlock(&root->inode_lock);
5510 if (atomic_read(&inode->i_count) > 1)
5511 d_prune_aliases(inode);
5512 /*
45321ac5 5513 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5514 * the inode cache when its usage count
5515 * hits zero.
5516 */
5517 iput(inode);
5518 cond_resched();
5519 spin_lock(&root->inode_lock);
5520 goto again;
5521 }
5522
5523 if (cond_resched_lock(&root->inode_lock))
5524 goto again;
5525
5526 node = rb_next(node);
5527 }
5528 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5529}
5530
e02119d5
CM
5531static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532{
5533 struct btrfs_iget_args *args = p;
90d3e592
CM
5534 inode->i_ino = args->location->objectid;
5535 memcpy(&BTRFS_I(inode)->location, args->location,
5536 sizeof(*args->location));
e02119d5 5537 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5538 return 0;
5539}
5540
5541static int btrfs_find_actor(struct inode *inode, void *opaque)
5542{
5543 struct btrfs_iget_args *args = opaque;
90d3e592 5544 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5545 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5546}
5547
5d4f98a2 5548static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5549 struct btrfs_key *location,
5d4f98a2 5550 struct btrfs_root *root)
39279cc3
CM
5551{
5552 struct inode *inode;
5553 struct btrfs_iget_args args;
90d3e592 5554 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5555
90d3e592 5556 args.location = location;
39279cc3
CM
5557 args.root = root;
5558
778ba82b 5559 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5560 btrfs_init_locked_inode,
5561 (void *)&args);
5562 return inode;
5563}
5564
1a54ef8c
BR
5565/* Get an inode object given its location and corresponding root.
5566 * Returns in *is_new if the inode was read from disk
5567 */
5568struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5569 struct btrfs_root *root, int *new)
1a54ef8c
BR
5570{
5571 struct inode *inode;
5572
90d3e592 5573 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5574 if (!inode)
5d4f98a2 5575 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5576
5577 if (inode->i_state & I_NEW) {
1a54ef8c 5578 btrfs_read_locked_inode(inode);
1748f843
MF
5579 if (!is_bad_inode(inode)) {
5580 inode_tree_add(inode);
5581 unlock_new_inode(inode);
5582 if (new)
5583 *new = 1;
5584 } else {
e0b6d65b
ST
5585 unlock_new_inode(inode);
5586 iput(inode);
5587 inode = ERR_PTR(-ESTALE);
1748f843
MF
5588 }
5589 }
5590
1a54ef8c
BR
5591 return inode;
5592}
5593
4df27c4d
YZ
5594static struct inode *new_simple_dir(struct super_block *s,
5595 struct btrfs_key *key,
5596 struct btrfs_root *root)
5597{
5598 struct inode *inode = new_inode(s);
5599
5600 if (!inode)
5601 return ERR_PTR(-ENOMEM);
5602
4df27c4d
YZ
5603 BTRFS_I(inode)->root = root;
5604 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5605 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5606
5607 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5608 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5609 inode->i_fop = &simple_dir_operations;
5610 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5611 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5612 inode->i_atime = inode->i_mtime;
5613 inode->i_ctime = inode->i_mtime;
5614 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5615
5616 return inode;
5617}
5618
3de4586c 5619struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5620{
d397712b 5621 struct inode *inode;
4df27c4d 5622 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5623 struct btrfs_root *sub_root = root;
5624 struct btrfs_key location;
76dda93c 5625 int index;
b4aff1f8 5626 int ret = 0;
39279cc3
CM
5627
5628 if (dentry->d_name.len > BTRFS_NAME_LEN)
5629 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5630
39e3c955 5631 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5632 if (ret < 0)
5633 return ERR_PTR(ret);
5f39d397 5634
4df27c4d 5635 if (location.objectid == 0)
5662344b 5636 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5637
5638 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5639 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5640 return inode;
5641 }
5642
5643 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5644
76dda93c 5645 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5646 ret = fixup_tree_root_location(root, dir, dentry,
5647 &location, &sub_root);
5648 if (ret < 0) {
5649 if (ret != -ENOENT)
5650 inode = ERR_PTR(ret);
5651 else
5652 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5653 } else {
73f73415 5654 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5655 }
76dda93c
YZ
5656 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5657
34d19bad 5658 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5659 down_read(&root->fs_info->cleanup_work_sem);
5660 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5661 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5662 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5663 if (ret) {
5664 iput(inode);
66b4ffd1 5665 inode = ERR_PTR(ret);
01cd3367 5666 }
c71bf099
YZ
5667 }
5668
3de4586c
CM
5669 return inode;
5670}
5671
fe15ce44 5672static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5673{
5674 struct btrfs_root *root;
2b0143b5 5675 struct inode *inode = d_inode(dentry);
76dda93c 5676
848cce0d 5677 if (!inode && !IS_ROOT(dentry))
2b0143b5 5678 inode = d_inode(dentry->d_parent);
76dda93c 5679
848cce0d
LZ
5680 if (inode) {
5681 root = BTRFS_I(inode)->root;
efefb143
YZ
5682 if (btrfs_root_refs(&root->root_item) == 0)
5683 return 1;
848cce0d
LZ
5684
5685 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5686 return 1;
efefb143 5687 }
76dda93c
YZ
5688 return 0;
5689}
5690
b4aff1f8
JB
5691static void btrfs_dentry_release(struct dentry *dentry)
5692{
944a4515 5693 kfree(dentry->d_fsdata);
b4aff1f8
JB
5694}
5695
3de4586c 5696static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5697 unsigned int flags)
3de4586c 5698{
5662344b 5699 struct inode *inode;
a66e7cc6 5700
5662344b
TI
5701 inode = btrfs_lookup_dentry(dir, dentry);
5702 if (IS_ERR(inode)) {
5703 if (PTR_ERR(inode) == -ENOENT)
5704 inode = NULL;
5705 else
5706 return ERR_CAST(inode);
5707 }
5708
41d28bca 5709 return d_splice_alias(inode, dentry);
39279cc3
CM
5710}
5711
16cdcec7 5712unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5713 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5714};
5715
9cdda8d3 5716static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5717{
9cdda8d3 5718 struct inode *inode = file_inode(file);
39279cc3
CM
5719 struct btrfs_root *root = BTRFS_I(inode)->root;
5720 struct btrfs_item *item;
5721 struct btrfs_dir_item *di;
5722 struct btrfs_key key;
5f39d397 5723 struct btrfs_key found_key;
39279cc3 5724 struct btrfs_path *path;
16cdcec7
MX
5725 struct list_head ins_list;
5726 struct list_head del_list;
39279cc3 5727 int ret;
5f39d397 5728 struct extent_buffer *leaf;
39279cc3 5729 int slot;
39279cc3
CM
5730 unsigned char d_type;
5731 int over = 0;
5732 u32 di_cur;
5733 u32 di_total;
5734 u32 di_len;
5735 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5736 char tmp_name[32];
5737 char *name_ptr;
5738 int name_len;
9cdda8d3 5739 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5740 bool emitted;
39279cc3
CM
5741
5742 /* FIXME, use a real flag for deciding about the key type */
5743 if (root->fs_info->tree_root == root)
5744 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5745
9cdda8d3
AV
5746 if (!dir_emit_dots(file, ctx))
5747 return 0;
5748
49593bfa 5749 path = btrfs_alloc_path();
16cdcec7
MX
5750 if (!path)
5751 return -ENOMEM;
ff5714cc 5752
e4058b54 5753 path->reada = READA_FORWARD;
49593bfa 5754
16cdcec7
MX
5755 if (key_type == BTRFS_DIR_INDEX_KEY) {
5756 INIT_LIST_HEAD(&ins_list);
5757 INIT_LIST_HEAD(&del_list);
5758 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5759 }
5760
962a298f 5761 key.type = key_type;
9cdda8d3 5762 key.offset = ctx->pos;
33345d01 5763 key.objectid = btrfs_ino(inode);
5f39d397 5764
39279cc3
CM
5765 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5766 if (ret < 0)
5767 goto err;
49593bfa 5768
bc4ef759 5769 emitted = false;
49593bfa 5770 while (1) {
5f39d397 5771 leaf = path->nodes[0];
39279cc3 5772 slot = path->slots[0];
b9e03af0
LZ
5773 if (slot >= btrfs_header_nritems(leaf)) {
5774 ret = btrfs_next_leaf(root, path);
5775 if (ret < 0)
5776 goto err;
5777 else if (ret > 0)
5778 break;
5779 continue;
39279cc3 5780 }
3de4586c 5781
dd3cc16b 5782 item = btrfs_item_nr(slot);
5f39d397
CM
5783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5784
5785 if (found_key.objectid != key.objectid)
39279cc3 5786 break;
962a298f 5787 if (found_key.type != key_type)
39279cc3 5788 break;
9cdda8d3 5789 if (found_key.offset < ctx->pos)
b9e03af0 5790 goto next;
16cdcec7
MX
5791 if (key_type == BTRFS_DIR_INDEX_KEY &&
5792 btrfs_should_delete_dir_index(&del_list,
5793 found_key.offset))
5794 goto next;
5f39d397 5795
9cdda8d3 5796 ctx->pos = found_key.offset;
16cdcec7 5797 is_curr = 1;
49593bfa 5798
39279cc3
CM
5799 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5800 di_cur = 0;
5f39d397 5801 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5802
5803 while (di_cur < di_total) {
5f39d397
CM
5804 struct btrfs_key location;
5805
22a94d44
JB
5806 if (verify_dir_item(root, leaf, di))
5807 break;
5808
5f39d397 5809 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5810 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5811 name_ptr = tmp_name;
5812 } else {
49e350a4 5813 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5814 if (!name_ptr) {
5815 ret = -ENOMEM;
5816 goto err;
5817 }
5f39d397
CM
5818 }
5819 read_extent_buffer(leaf, name_ptr,
5820 (unsigned long)(di + 1), name_len);
5821
5822 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5823 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5824
fede766f 5825
3de4586c 5826 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5827 * skip it.
5828 *
5829 * In contrast to old kernels, we insert the snapshot's
5830 * dir item and dir index after it has been created, so
5831 * we won't find a reference to our own snapshot. We
5832 * still keep the following code for backward
5833 * compatibility.
3de4586c
CM
5834 */
5835 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5836 location.objectid == root->root_key.objectid) {
5837 over = 0;
5838 goto skip;
5839 }
9cdda8d3
AV
5840 over = !dir_emit(ctx, name_ptr, name_len,
5841 location.objectid, d_type);
5f39d397 5842
3de4586c 5843skip:
5f39d397
CM
5844 if (name_ptr != tmp_name)
5845 kfree(name_ptr);
5846
39279cc3
CM
5847 if (over)
5848 goto nopos;
bc4ef759 5849 emitted = true;
5103e947 5850 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5851 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5852 di_cur += di_len;
5853 di = (struct btrfs_dir_item *)((char *)di + di_len);
5854 }
b9e03af0
LZ
5855next:
5856 path->slots[0]++;
39279cc3 5857 }
49593bfa 5858
16cdcec7
MX
5859 if (key_type == BTRFS_DIR_INDEX_KEY) {
5860 if (is_curr)
9cdda8d3 5861 ctx->pos++;
bc4ef759 5862 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5863 if (ret)
5864 goto nopos;
5865 }
5866
bc4ef759
DS
5867 /*
5868 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5869 * it was was set to the termination value in previous call. We assume
5870 * that "." and ".." were emitted if we reach this point and set the
5871 * termination value as well for an empty directory.
5872 */
5873 if (ctx->pos > 2 && !emitted)
5874 goto nopos;
5875
49593bfa 5876 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5877 ctx->pos++;
5878
5879 /*
5880 * Stop new entries from being returned after we return the last
5881 * entry.
5882 *
5883 * New directory entries are assigned a strictly increasing
5884 * offset. This means that new entries created during readdir
5885 * are *guaranteed* to be seen in the future by that readdir.
5886 * This has broken buggy programs which operate on names as
5887 * they're returned by readdir. Until we re-use freed offsets
5888 * we have this hack to stop new entries from being returned
5889 * under the assumption that they'll never reach this huge
5890 * offset.
5891 *
5892 * This is being careful not to overflow 32bit loff_t unless the
5893 * last entry requires it because doing so has broken 32bit apps
5894 * in the past.
5895 */
5896 if (key_type == BTRFS_DIR_INDEX_KEY) {
5897 if (ctx->pos >= INT_MAX)
5898 ctx->pos = LLONG_MAX;
5899 else
5900 ctx->pos = INT_MAX;
5901 }
39279cc3
CM
5902nopos:
5903 ret = 0;
5904err:
16cdcec7
MX
5905 if (key_type == BTRFS_DIR_INDEX_KEY)
5906 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5907 btrfs_free_path(path);
39279cc3
CM
5908 return ret;
5909}
5910
a9185b41 5911int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5912{
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_trans_handle *trans;
5915 int ret = 0;
0af3d00b 5916 bool nolock = false;
39279cc3 5917
72ac3c0d 5918 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5919 return 0;
5920
83eea1f1 5921 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5922 nolock = true;
0af3d00b 5923
a9185b41 5924 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5925 if (nolock)
7a7eaa40 5926 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5927 else
7a7eaa40 5928 trans = btrfs_join_transaction(root);
3612b495
TI
5929 if (IS_ERR(trans))
5930 return PTR_ERR(trans);
a698d075 5931 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5932 }
5933 return ret;
5934}
5935
5936/*
54aa1f4d 5937 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5938 * inode changes. But, it is most likely to find the inode in cache.
5939 * FIXME, needs more benchmarking...there are no reasons other than performance
5940 * to keep or drop this code.
5941 */
48a3b636 5942static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5943{
5944 struct btrfs_root *root = BTRFS_I(inode)->root;
5945 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5946 int ret;
5947
72ac3c0d 5948 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5949 return 0;
39279cc3 5950
7a7eaa40 5951 trans = btrfs_join_transaction(root);
22c44fe6
JB
5952 if (IS_ERR(trans))
5953 return PTR_ERR(trans);
8929ecfa
YZ
5954
5955 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5956 if (ret && ret == -ENOSPC) {
5957 /* whoops, lets try again with the full transaction */
5958 btrfs_end_transaction(trans, root);
5959 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
8929ecfa 5962
94b60442 5963 ret = btrfs_update_inode(trans, root, inode);
94b60442 5964 }
39279cc3 5965 btrfs_end_transaction(trans, root);
16cdcec7
MX
5966 if (BTRFS_I(inode)->delayed_node)
5967 btrfs_balance_delayed_items(root);
22c44fe6
JB
5968
5969 return ret;
5970}
5971
5972/*
5973 * This is a copy of file_update_time. We need this so we can return error on
5974 * ENOSPC for updating the inode in the case of file write and mmap writes.
5975 */
e41f941a
JB
5976static int btrfs_update_time(struct inode *inode, struct timespec *now,
5977 int flags)
22c44fe6 5978{
2bc55652
AB
5979 struct btrfs_root *root = BTRFS_I(inode)->root;
5980
5981 if (btrfs_root_readonly(root))
5982 return -EROFS;
5983
e41f941a 5984 if (flags & S_VERSION)
22c44fe6 5985 inode_inc_iversion(inode);
e41f941a
JB
5986 if (flags & S_CTIME)
5987 inode->i_ctime = *now;
5988 if (flags & S_MTIME)
5989 inode->i_mtime = *now;
5990 if (flags & S_ATIME)
5991 inode->i_atime = *now;
5992 return btrfs_dirty_inode(inode);
39279cc3
CM
5993}
5994
d352ac68
CM
5995/*
5996 * find the highest existing sequence number in a directory
5997 * and then set the in-memory index_cnt variable to reflect
5998 * free sequence numbers
5999 */
aec7477b
JB
6000static int btrfs_set_inode_index_count(struct inode *inode)
6001{
6002 struct btrfs_root *root = BTRFS_I(inode)->root;
6003 struct btrfs_key key, found_key;
6004 struct btrfs_path *path;
6005 struct extent_buffer *leaf;
6006 int ret;
6007
33345d01 6008 key.objectid = btrfs_ino(inode);
962a298f 6009 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6010 key.offset = (u64)-1;
6011
6012 path = btrfs_alloc_path();
6013 if (!path)
6014 return -ENOMEM;
6015
6016 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6017 if (ret < 0)
6018 goto out;
6019 /* FIXME: we should be able to handle this */
6020 if (ret == 0)
6021 goto out;
6022 ret = 0;
6023
6024 /*
6025 * MAGIC NUMBER EXPLANATION:
6026 * since we search a directory based on f_pos we have to start at 2
6027 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6028 * else has to start at 2
6029 */
6030 if (path->slots[0] == 0) {
6031 BTRFS_I(inode)->index_cnt = 2;
6032 goto out;
6033 }
6034
6035 path->slots[0]--;
6036
6037 leaf = path->nodes[0];
6038 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6039
33345d01 6040 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6041 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6042 BTRFS_I(inode)->index_cnt = 2;
6043 goto out;
6044 }
6045
6046 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6047out:
6048 btrfs_free_path(path);
6049 return ret;
6050}
6051
d352ac68
CM
6052/*
6053 * helper to find a free sequence number in a given directory. This current
6054 * code is very simple, later versions will do smarter things in the btree
6055 */
3de4586c 6056int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6057{
6058 int ret = 0;
6059
6060 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6061 ret = btrfs_inode_delayed_dir_index_count(dir);
6062 if (ret) {
6063 ret = btrfs_set_inode_index_count(dir);
6064 if (ret)
6065 return ret;
6066 }
aec7477b
JB
6067 }
6068
00e4e6b3 6069 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6070 BTRFS_I(dir)->index_cnt++;
6071
6072 return ret;
6073}
6074
b0d5d10f
CM
6075static int btrfs_insert_inode_locked(struct inode *inode)
6076{
6077 struct btrfs_iget_args args;
6078 args.location = &BTRFS_I(inode)->location;
6079 args.root = BTRFS_I(inode)->root;
6080
6081 return insert_inode_locked4(inode,
6082 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6083 btrfs_find_actor, &args);
6084}
6085
39279cc3
CM
6086static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6087 struct btrfs_root *root,
aec7477b 6088 struct inode *dir,
9c58309d 6089 const char *name, int name_len,
175a4eb7
AV
6090 u64 ref_objectid, u64 objectid,
6091 umode_t mode, u64 *index)
39279cc3
CM
6092{
6093 struct inode *inode;
5f39d397 6094 struct btrfs_inode_item *inode_item;
39279cc3 6095 struct btrfs_key *location;
5f39d397 6096 struct btrfs_path *path;
9c58309d
CM
6097 struct btrfs_inode_ref *ref;
6098 struct btrfs_key key[2];
6099 u32 sizes[2];
ef3b9af5 6100 int nitems = name ? 2 : 1;
9c58309d 6101 unsigned long ptr;
39279cc3 6102 int ret;
39279cc3 6103
5f39d397 6104 path = btrfs_alloc_path();
d8926bb3
MF
6105 if (!path)
6106 return ERR_PTR(-ENOMEM);
5f39d397 6107
39279cc3 6108 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6109 if (!inode) {
6110 btrfs_free_path(path);
39279cc3 6111 return ERR_PTR(-ENOMEM);
8fb27640 6112 }
39279cc3 6113
5762b5c9
FM
6114 /*
6115 * O_TMPFILE, set link count to 0, so that after this point,
6116 * we fill in an inode item with the correct link count.
6117 */
6118 if (!name)
6119 set_nlink(inode, 0);
6120
581bb050
LZ
6121 /*
6122 * we have to initialize this early, so we can reclaim the inode
6123 * number if we fail afterwards in this function.
6124 */
6125 inode->i_ino = objectid;
6126
ef3b9af5 6127 if (dir && name) {
1abe9b8a 6128 trace_btrfs_inode_request(dir);
6129
3de4586c 6130 ret = btrfs_set_inode_index(dir, index);
09771430 6131 if (ret) {
8fb27640 6132 btrfs_free_path(path);
09771430 6133 iput(inode);
aec7477b 6134 return ERR_PTR(ret);
09771430 6135 }
ef3b9af5
FM
6136 } else if (dir) {
6137 *index = 0;
aec7477b
JB
6138 }
6139 /*
6140 * index_cnt is ignored for everything but a dir,
6141 * btrfs_get_inode_index_count has an explanation for the magic
6142 * number
6143 */
6144 BTRFS_I(inode)->index_cnt = 2;
67de1176 6145 BTRFS_I(inode)->dir_index = *index;
39279cc3 6146 BTRFS_I(inode)->root = root;
e02119d5 6147 BTRFS_I(inode)->generation = trans->transid;
76195853 6148 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6149
5dc562c5
JB
6150 /*
6151 * We could have gotten an inode number from somebody who was fsynced
6152 * and then removed in this same transaction, so let's just set full
6153 * sync since it will be a full sync anyway and this will blow away the
6154 * old info in the log.
6155 */
6156 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6157
9c58309d 6158 key[0].objectid = objectid;
962a298f 6159 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6160 key[0].offset = 0;
6161
9c58309d 6162 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6163
6164 if (name) {
6165 /*
6166 * Start new inodes with an inode_ref. This is slightly more
6167 * efficient for small numbers of hard links since they will
6168 * be packed into one item. Extended refs will kick in if we
6169 * add more hard links than can fit in the ref item.
6170 */
6171 key[1].objectid = objectid;
962a298f 6172 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6173 key[1].offset = ref_objectid;
6174
6175 sizes[1] = name_len + sizeof(*ref);
6176 }
9c58309d 6177
b0d5d10f
CM
6178 location = &BTRFS_I(inode)->location;
6179 location->objectid = objectid;
6180 location->offset = 0;
962a298f 6181 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6182
6183 ret = btrfs_insert_inode_locked(inode);
6184 if (ret < 0)
6185 goto fail;
6186
b9473439 6187 path->leave_spinning = 1;
ef3b9af5 6188 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6189 if (ret != 0)
b0d5d10f 6190 goto fail_unlock;
5f39d397 6191
ecc11fab 6192 inode_init_owner(inode, dir, mode);
a76a3cd4 6193 inode_set_bytes(inode, 0);
9cc97d64 6194
04b285f3 6195 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6196 inode->i_atime = inode->i_mtime;
6197 inode->i_ctime = inode->i_mtime;
6198 BTRFS_I(inode)->i_otime = inode->i_mtime;
6199
5f39d397
CM
6200 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6201 struct btrfs_inode_item);
293f7e07
LZ
6202 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6203 sizeof(*inode_item));
e02119d5 6204 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6205
ef3b9af5
FM
6206 if (name) {
6207 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6208 struct btrfs_inode_ref);
6209 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6210 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6211 ptr = (unsigned long)(ref + 1);
6212 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6213 }
9c58309d 6214
5f39d397
CM
6215 btrfs_mark_buffer_dirty(path->nodes[0]);
6216 btrfs_free_path(path);
6217
6cbff00f
CH
6218 btrfs_inherit_iflags(inode, dir);
6219
569254b0 6220 if (S_ISREG(mode)) {
94272164
CM
6221 if (btrfs_test_opt(root, NODATASUM))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6223 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6225 BTRFS_INODE_NODATASUM;
94272164
CM
6226 }
6227
5d4f98a2 6228 inode_tree_add(inode);
1abe9b8a 6229
6230 trace_btrfs_inode_new(inode);
1973f0fa 6231 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6232
8ea05e3a
AB
6233 btrfs_update_root_times(trans, root);
6234
63541927
FDBM
6235 ret = btrfs_inode_inherit_props(trans, inode, dir);
6236 if (ret)
6237 btrfs_err(root->fs_info,
6238 "error inheriting props for ino %llu (root %llu): %d",
6239 btrfs_ino(inode), root->root_key.objectid, ret);
6240
39279cc3 6241 return inode;
b0d5d10f
CM
6242
6243fail_unlock:
6244 unlock_new_inode(inode);
5f39d397 6245fail:
ef3b9af5 6246 if (dir && name)
aec7477b 6247 BTRFS_I(dir)->index_cnt--;
5f39d397 6248 btrfs_free_path(path);
09771430 6249 iput(inode);
5f39d397 6250 return ERR_PTR(ret);
39279cc3
CM
6251}
6252
6253static inline u8 btrfs_inode_type(struct inode *inode)
6254{
6255 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6256}
6257
d352ac68
CM
6258/*
6259 * utility function to add 'inode' into 'parent_inode' with
6260 * a give name and a given sequence number.
6261 * if 'add_backref' is true, also insert a backref from the
6262 * inode to the parent directory.
6263 */
e02119d5
CM
6264int btrfs_add_link(struct btrfs_trans_handle *trans,
6265 struct inode *parent_inode, struct inode *inode,
6266 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6267{
4df27c4d 6268 int ret = 0;
39279cc3 6269 struct btrfs_key key;
e02119d5 6270 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6271 u64 ino = btrfs_ino(inode);
6272 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6273
33345d01 6274 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6275 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6276 } else {
33345d01 6277 key.objectid = ino;
962a298f 6278 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6279 key.offset = 0;
6280 }
6281
33345d01 6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6283 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6284 key.objectid, root->root_key.objectid,
33345d01 6285 parent_ino, index, name, name_len);
4df27c4d 6286 } else if (add_backref) {
33345d01
LZ
6287 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6288 parent_ino, index);
4df27c4d 6289 }
39279cc3 6290
79787eaa
JM
6291 /* Nothing to clean up yet */
6292 if (ret)
6293 return ret;
4df27c4d 6294
79787eaa
JM
6295 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6296 parent_inode, &key,
6297 btrfs_inode_type(inode), index);
9c52057c 6298 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6299 goto fail_dir_item;
6300 else if (ret) {
6301 btrfs_abort_transaction(trans, root, ret);
6302 return ret;
39279cc3 6303 }
79787eaa
JM
6304
6305 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6306 name_len * 2);
0c4d2d95 6307 inode_inc_iversion(parent_inode);
04b285f3
DD
6308 parent_inode->i_mtime = parent_inode->i_ctime =
6309 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6310 ret = btrfs_update_inode(trans, root, parent_inode);
6311 if (ret)
6312 btrfs_abort_transaction(trans, root, ret);
39279cc3 6313 return ret;
fe66a05a
CM
6314
6315fail_dir_item:
6316 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6317 u64 local_index;
6318 int err;
6319 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6320 key.objectid, root->root_key.objectid,
6321 parent_ino, &local_index, name, name_len);
6322
6323 } else if (add_backref) {
6324 u64 local_index;
6325 int err;
6326
6327 err = btrfs_del_inode_ref(trans, root, name, name_len,
6328 ino, parent_ino, &local_index);
6329 }
6330 return ret;
39279cc3
CM
6331}
6332
6333static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6334 struct inode *dir, struct dentry *dentry,
6335 struct inode *inode, int backref, u64 index)
39279cc3 6336{
a1b075d2
JB
6337 int err = btrfs_add_link(trans, dir, inode,
6338 dentry->d_name.name, dentry->d_name.len,
6339 backref, index);
39279cc3
CM
6340 if (err > 0)
6341 err = -EEXIST;
6342 return err;
6343}
6344
618e21d5 6345static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6346 umode_t mode, dev_t rdev)
618e21d5
JB
6347{
6348 struct btrfs_trans_handle *trans;
6349 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6350 struct inode *inode = NULL;
618e21d5
JB
6351 int err;
6352 int drop_inode = 0;
6353 u64 objectid;
00e4e6b3 6354 u64 index = 0;
618e21d5 6355
9ed74f2d
JB
6356 /*
6357 * 2 for inode item and ref
6358 * 2 for dir items
6359 * 1 for xattr if selinux is on
6360 */
a22285a6
YZ
6361 trans = btrfs_start_transaction(root, 5);
6362 if (IS_ERR(trans))
6363 return PTR_ERR(trans);
1832a6d5 6364
581bb050
LZ
6365 err = btrfs_find_free_ino(root, &objectid);
6366 if (err)
6367 goto out_unlock;
6368
aec7477b 6369 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6370 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6371 mode, &index);
7cf96da3
TI
6372 if (IS_ERR(inode)) {
6373 err = PTR_ERR(inode);
618e21d5 6374 goto out_unlock;
7cf96da3 6375 }
618e21d5 6376
ad19db71
CS
6377 /*
6378 * If the active LSM wants to access the inode during
6379 * d_instantiate it needs these. Smack checks to see
6380 * if the filesystem supports xattrs by looking at the
6381 * ops vector.
6382 */
ad19db71 6383 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6384 init_special_inode(inode, inode->i_mode, rdev);
6385
6386 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6387 if (err)
b0d5d10f
CM
6388 goto out_unlock_inode;
6389
6390 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6391 if (err) {
6392 goto out_unlock_inode;
6393 } else {
1b4ab1bb 6394 btrfs_update_inode(trans, root, inode);
b0d5d10f 6395 unlock_new_inode(inode);
08c422c2 6396 d_instantiate(dentry, inode);
618e21d5 6397 }
b0d5d10f 6398
618e21d5 6399out_unlock:
7ad85bb7 6400 btrfs_end_transaction(trans, root);
c581afc8 6401 btrfs_balance_delayed_items(root);
b53d3f5d 6402 btrfs_btree_balance_dirty(root);
618e21d5
JB
6403 if (drop_inode) {
6404 inode_dec_link_count(inode);
6405 iput(inode);
6406 }
618e21d5 6407 return err;
b0d5d10f
CM
6408
6409out_unlock_inode:
6410 drop_inode = 1;
6411 unlock_new_inode(inode);
6412 goto out_unlock;
6413
618e21d5
JB
6414}
6415
39279cc3 6416static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6417 umode_t mode, bool excl)
39279cc3
CM
6418{
6419 struct btrfs_trans_handle *trans;
6420 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6421 struct inode *inode = NULL;
43baa579 6422 int drop_inode_on_err = 0;
a22285a6 6423 int err;
39279cc3 6424 u64 objectid;
00e4e6b3 6425 u64 index = 0;
39279cc3 6426
9ed74f2d
JB
6427 /*
6428 * 2 for inode item and ref
6429 * 2 for dir items
6430 * 1 for xattr if selinux is on
6431 */
a22285a6
YZ
6432 trans = btrfs_start_transaction(root, 5);
6433 if (IS_ERR(trans))
6434 return PTR_ERR(trans);
9ed74f2d 6435
581bb050
LZ
6436 err = btrfs_find_free_ino(root, &objectid);
6437 if (err)
6438 goto out_unlock;
6439
aec7477b 6440 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6441 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6442 mode, &index);
7cf96da3
TI
6443 if (IS_ERR(inode)) {
6444 err = PTR_ERR(inode);
39279cc3 6445 goto out_unlock;
7cf96da3 6446 }
43baa579 6447 drop_inode_on_err = 1;
ad19db71
CS
6448 /*
6449 * If the active LSM wants to access the inode during
6450 * d_instantiate it needs these. Smack checks to see
6451 * if the filesystem supports xattrs by looking at the
6452 * ops vector.
6453 */
6454 inode->i_fop = &btrfs_file_operations;
6455 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6456 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6457
6458 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6459 if (err)
6460 goto out_unlock_inode;
6461
6462 err = btrfs_update_inode(trans, root, inode);
6463 if (err)
6464 goto out_unlock_inode;
ad19db71 6465
a1b075d2 6466 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6467 if (err)
b0d5d10f 6468 goto out_unlock_inode;
43baa579 6469
43baa579 6470 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6471 unlock_new_inode(inode);
43baa579
FB
6472 d_instantiate(dentry, inode);
6473
39279cc3 6474out_unlock:
7ad85bb7 6475 btrfs_end_transaction(trans, root);
43baa579 6476 if (err && drop_inode_on_err) {
39279cc3
CM
6477 inode_dec_link_count(inode);
6478 iput(inode);
6479 }
c581afc8 6480 btrfs_balance_delayed_items(root);
b53d3f5d 6481 btrfs_btree_balance_dirty(root);
39279cc3 6482 return err;
b0d5d10f
CM
6483
6484out_unlock_inode:
6485 unlock_new_inode(inode);
6486 goto out_unlock;
6487
39279cc3
CM
6488}
6489
6490static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6491 struct dentry *dentry)
6492{
271dba45 6493 struct btrfs_trans_handle *trans = NULL;
39279cc3 6494 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6495 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6496 u64 index;
39279cc3
CM
6497 int err;
6498 int drop_inode = 0;
6499
4a8be425
TH
6500 /* do not allow sys_link's with other subvols of the same device */
6501 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6502 return -EXDEV;
4a8be425 6503
f186373f 6504 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6505 return -EMLINK;
4a8be425 6506
3de4586c 6507 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6508 if (err)
6509 goto fail;
6510
a22285a6 6511 /*
7e6b6465 6512 * 2 items for inode and inode ref
a22285a6 6513 * 2 items for dir items
7e6b6465 6514 * 1 item for parent inode
a22285a6 6515 */
7e6b6465 6516 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6517 if (IS_ERR(trans)) {
6518 err = PTR_ERR(trans);
271dba45 6519 trans = NULL;
a22285a6
YZ
6520 goto fail;
6521 }
5f39d397 6522
67de1176
MX
6523 /* There are several dir indexes for this inode, clear the cache. */
6524 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6525 inc_nlink(inode);
0c4d2d95 6526 inode_inc_iversion(inode);
04b285f3 6527 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6528 ihold(inode);
e9976151 6529 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6530
a1b075d2 6531 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6532
a5719521 6533 if (err) {
54aa1f4d 6534 drop_inode = 1;
a5719521 6535 } else {
10d9f309 6536 struct dentry *parent = dentry->d_parent;
a5719521 6537 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6538 if (err)
6539 goto fail;
ef3b9af5
FM
6540 if (inode->i_nlink == 1) {
6541 /*
6542 * If new hard link count is 1, it's a file created
6543 * with open(2) O_TMPFILE flag.
6544 */
6545 err = btrfs_orphan_del(trans, inode);
6546 if (err)
6547 goto fail;
6548 }
08c422c2 6549 d_instantiate(dentry, inode);
6a912213 6550 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6551 }
39279cc3 6552
c581afc8 6553 btrfs_balance_delayed_items(root);
1832a6d5 6554fail:
271dba45
FM
6555 if (trans)
6556 btrfs_end_transaction(trans, root);
39279cc3
CM
6557 if (drop_inode) {
6558 inode_dec_link_count(inode);
6559 iput(inode);
6560 }
b53d3f5d 6561 btrfs_btree_balance_dirty(root);
39279cc3
CM
6562 return err;
6563}
6564
18bb1db3 6565static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6566{
b9d86667 6567 struct inode *inode = NULL;
39279cc3
CM
6568 struct btrfs_trans_handle *trans;
6569 struct btrfs_root *root = BTRFS_I(dir)->root;
6570 int err = 0;
6571 int drop_on_err = 0;
b9d86667 6572 u64 objectid = 0;
00e4e6b3 6573 u64 index = 0;
39279cc3 6574
9ed74f2d
JB
6575 /*
6576 * 2 items for inode and ref
6577 * 2 items for dir items
6578 * 1 for xattr if selinux is on
6579 */
a22285a6
YZ
6580 trans = btrfs_start_transaction(root, 5);
6581 if (IS_ERR(trans))
6582 return PTR_ERR(trans);
39279cc3 6583
581bb050
LZ
6584 err = btrfs_find_free_ino(root, &objectid);
6585 if (err)
6586 goto out_fail;
6587
aec7477b 6588 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6589 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6590 S_IFDIR | mode, &index);
39279cc3
CM
6591 if (IS_ERR(inode)) {
6592 err = PTR_ERR(inode);
6593 goto out_fail;
6594 }
5f39d397 6595
39279cc3 6596 drop_on_err = 1;
b0d5d10f
CM
6597 /* these must be set before we unlock the inode */
6598 inode->i_op = &btrfs_dir_inode_operations;
6599 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6600
2a7dba39 6601 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6602 if (err)
b0d5d10f 6603 goto out_fail_inode;
39279cc3 6604
dbe674a9 6605 btrfs_i_size_write(inode, 0);
39279cc3
CM
6606 err = btrfs_update_inode(trans, root, inode);
6607 if (err)
b0d5d10f 6608 goto out_fail_inode;
5f39d397 6609
a1b075d2
JB
6610 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6611 dentry->d_name.len, 0, index);
39279cc3 6612 if (err)
b0d5d10f 6613 goto out_fail_inode;
5f39d397 6614
39279cc3 6615 d_instantiate(dentry, inode);
b0d5d10f
CM
6616 /*
6617 * mkdir is special. We're unlocking after we call d_instantiate
6618 * to avoid a race with nfsd calling d_instantiate.
6619 */
6620 unlock_new_inode(inode);
39279cc3 6621 drop_on_err = 0;
39279cc3
CM
6622
6623out_fail:
7ad85bb7 6624 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6625 if (drop_on_err) {
6626 inode_dec_link_count(inode);
39279cc3 6627 iput(inode);
c7cfb8a5 6628 }
c581afc8 6629 btrfs_balance_delayed_items(root);
b53d3f5d 6630 btrfs_btree_balance_dirty(root);
39279cc3 6631 return err;
b0d5d10f
CM
6632
6633out_fail_inode:
6634 unlock_new_inode(inode);
6635 goto out_fail;
39279cc3
CM
6636}
6637
e6c4efd8
QW
6638/* Find next extent map of a given extent map, caller needs to ensure locks */
6639static struct extent_map *next_extent_map(struct extent_map *em)
6640{
6641 struct rb_node *next;
6642
6643 next = rb_next(&em->rb_node);
6644 if (!next)
6645 return NULL;
6646 return container_of(next, struct extent_map, rb_node);
6647}
6648
6649static struct extent_map *prev_extent_map(struct extent_map *em)
6650{
6651 struct rb_node *prev;
6652
6653 prev = rb_prev(&em->rb_node);
6654 if (!prev)
6655 return NULL;
6656 return container_of(prev, struct extent_map, rb_node);
6657}
6658
d352ac68 6659/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6660 * the existing extent is the nearest extent to map_start,
d352ac68 6661 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6662 * the best fitted new extent into the tree.
d352ac68 6663 */
3b951516
CM
6664static int merge_extent_mapping(struct extent_map_tree *em_tree,
6665 struct extent_map *existing,
e6dcd2dc 6666 struct extent_map *em,
51f395ad 6667 u64 map_start)
3b951516 6668{
e6c4efd8
QW
6669 struct extent_map *prev;
6670 struct extent_map *next;
6671 u64 start;
6672 u64 end;
3b951516 6673 u64 start_diff;
3b951516 6674
e6dcd2dc 6675 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6676
6677 if (existing->start > map_start) {
6678 next = existing;
6679 prev = prev_extent_map(next);
6680 } else {
6681 prev = existing;
6682 next = next_extent_map(prev);
6683 }
6684
6685 start = prev ? extent_map_end(prev) : em->start;
6686 start = max_t(u64, start, em->start);
6687 end = next ? next->start : extent_map_end(em);
6688 end = min_t(u64, end, extent_map_end(em));
6689 start_diff = start - em->start;
6690 em->start = start;
6691 em->len = end - start;
c8b97818
CM
6692 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6693 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6694 em->block_start += start_diff;
c8b97818
CM
6695 em->block_len -= start_diff;
6696 }
09a2a8f9 6697 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6698}
6699
c8b97818 6700static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6701 struct page *page,
c8b97818
CM
6702 size_t pg_offset, u64 extent_offset,
6703 struct btrfs_file_extent_item *item)
6704{
6705 int ret;
6706 struct extent_buffer *leaf = path->nodes[0];
6707 char *tmp;
6708 size_t max_size;
6709 unsigned long inline_size;
6710 unsigned long ptr;
261507a0 6711 int compress_type;
c8b97818
CM
6712
6713 WARN_ON(pg_offset != 0);
261507a0 6714 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6715 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6716 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6717 btrfs_item_nr(path->slots[0]));
c8b97818 6718 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6719 if (!tmp)
6720 return -ENOMEM;
c8b97818
CM
6721 ptr = btrfs_file_extent_inline_start(item);
6722
6723 read_extent_buffer(leaf, tmp, ptr, inline_size);
6724
09cbfeaf 6725 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6726 ret = btrfs_decompress(compress_type, tmp, page,
6727 extent_offset, inline_size, max_size);
c8b97818 6728 kfree(tmp);
166ae5a4 6729 return ret;
c8b97818
CM
6730}
6731
d352ac68
CM
6732/*
6733 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6734 * the ugly parts come from merging extents from the disk with the in-ram
6735 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6736 * where the in-ram extents might be locked pending data=ordered completion.
6737 *
6738 * This also copies inline extents directly into the page.
6739 */
d397712b 6740
a52d9a80 6741struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6742 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6743 int create)
6744{
6745 int ret;
6746 int err = 0;
a52d9a80
CM
6747 u64 extent_start = 0;
6748 u64 extent_end = 0;
33345d01 6749 u64 objectid = btrfs_ino(inode);
a52d9a80 6750 u32 found_type;
f421950f 6751 struct btrfs_path *path = NULL;
a52d9a80
CM
6752 struct btrfs_root *root = BTRFS_I(inode)->root;
6753 struct btrfs_file_extent_item *item;
5f39d397
CM
6754 struct extent_buffer *leaf;
6755 struct btrfs_key found_key;
a52d9a80
CM
6756 struct extent_map *em = NULL;
6757 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6759 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6760 const bool new_inline = !page || create;
a52d9a80 6761
a52d9a80 6762again:
890871be 6763 read_lock(&em_tree->lock);
d1310b2e 6764 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6765 if (em)
6766 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6767 read_unlock(&em_tree->lock);
d1310b2e 6768
a52d9a80 6769 if (em) {
e1c4b745
CM
6770 if (em->start > start || em->start + em->len <= start)
6771 free_extent_map(em);
6772 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6773 free_extent_map(em);
6774 else
6775 goto out;
a52d9a80 6776 }
172ddd60 6777 em = alloc_extent_map();
a52d9a80 6778 if (!em) {
d1310b2e
CM
6779 err = -ENOMEM;
6780 goto out;
a52d9a80 6781 }
e6dcd2dc 6782 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6783 em->start = EXTENT_MAP_HOLE;
445a6944 6784 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6785 em->len = (u64)-1;
c8b97818 6786 em->block_len = (u64)-1;
f421950f
CM
6787
6788 if (!path) {
6789 path = btrfs_alloc_path();
026fd317
JB
6790 if (!path) {
6791 err = -ENOMEM;
6792 goto out;
6793 }
6794 /*
6795 * Chances are we'll be called again, so go ahead and do
6796 * readahead
6797 */
e4058b54 6798 path->reada = READA_FORWARD;
f421950f
CM
6799 }
6800
179e29e4
CM
6801 ret = btrfs_lookup_file_extent(trans, root, path,
6802 objectid, start, trans != NULL);
a52d9a80
CM
6803 if (ret < 0) {
6804 err = ret;
6805 goto out;
6806 }
6807
6808 if (ret != 0) {
6809 if (path->slots[0] == 0)
6810 goto not_found;
6811 path->slots[0]--;
6812 }
6813
5f39d397
CM
6814 leaf = path->nodes[0];
6815 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6816 struct btrfs_file_extent_item);
a52d9a80 6817 /* are we inside the extent that was found? */
5f39d397 6818 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6819 found_type = found_key.type;
5f39d397 6820 if (found_key.objectid != objectid ||
a52d9a80 6821 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6822 /*
6823 * If we backup past the first extent we want to move forward
6824 * and see if there is an extent in front of us, otherwise we'll
6825 * say there is a hole for our whole search range which can
6826 * cause problems.
6827 */
6828 extent_end = start;
6829 goto next;
a52d9a80
CM
6830 }
6831
5f39d397
CM
6832 found_type = btrfs_file_extent_type(leaf, item);
6833 extent_start = found_key.offset;
d899e052
YZ
6834 if (found_type == BTRFS_FILE_EXTENT_REG ||
6835 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6836 extent_end = extent_start +
db94535d 6837 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6838 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6839 size_t size;
514ac8ad 6840 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6841 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6842 }
25a50341 6843next:
9036c102
YZ
6844 if (start >= extent_end) {
6845 path->slots[0]++;
6846 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6847 ret = btrfs_next_leaf(root, path);
6848 if (ret < 0) {
6849 err = ret;
6850 goto out;
a52d9a80 6851 }
9036c102
YZ
6852 if (ret > 0)
6853 goto not_found;
6854 leaf = path->nodes[0];
a52d9a80 6855 }
9036c102
YZ
6856 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6857 if (found_key.objectid != objectid ||
6858 found_key.type != BTRFS_EXTENT_DATA_KEY)
6859 goto not_found;
6860 if (start + len <= found_key.offset)
6861 goto not_found;
e2eca69d
WS
6862 if (start > found_key.offset)
6863 goto next;
9036c102 6864 em->start = start;
70c8a91c 6865 em->orig_start = start;
9036c102
YZ
6866 em->len = found_key.offset - start;
6867 goto not_found_em;
6868 }
6869
7ffbb598
FM
6870 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6871
d899e052
YZ
6872 if (found_type == BTRFS_FILE_EXTENT_REG ||
6873 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6874 goto insert;
6875 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6876 unsigned long ptr;
a52d9a80 6877 char *map;
3326d1b0
CM
6878 size_t size;
6879 size_t extent_offset;
6880 size_t copy_size;
a52d9a80 6881
7ffbb598 6882 if (new_inline)
689f9346 6883 goto out;
5f39d397 6884
514ac8ad 6885 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6886 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6887 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6888 size - extent_offset);
3326d1b0 6889 em->start = extent_start + extent_offset;
fda2832f 6890 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6891 em->orig_block_len = em->len;
70c8a91c 6892 em->orig_start = em->start;
689f9346 6893 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6894 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6895 if (btrfs_file_extent_compression(leaf, item) !=
6896 BTRFS_COMPRESS_NONE) {
e40da0e5 6897 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6898 extent_offset, item);
166ae5a4
ZB
6899 if (ret) {
6900 err = ret;
6901 goto out;
6902 }
c8b97818
CM
6903 } else {
6904 map = kmap(page);
6905 read_extent_buffer(leaf, map + pg_offset, ptr,
6906 copy_size);
09cbfeaf 6907 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6908 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6909 PAGE_SIZE - pg_offset -
93c82d57
CM
6910 copy_size);
6911 }
c8b97818
CM
6912 kunmap(page);
6913 }
179e29e4
CM
6914 flush_dcache_page(page);
6915 } else if (create && PageUptodate(page)) {
6bf7e080 6916 BUG();
179e29e4
CM
6917 if (!trans) {
6918 kunmap(page);
6919 free_extent_map(em);
6920 em = NULL;
ff5714cc 6921
b3b4aa74 6922 btrfs_release_path(path);
7a7eaa40 6923 trans = btrfs_join_transaction(root);
ff5714cc 6924
3612b495
TI
6925 if (IS_ERR(trans))
6926 return ERR_CAST(trans);
179e29e4
CM
6927 goto again;
6928 }
c8b97818 6929 map = kmap(page);
70dec807 6930 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6931 copy_size);
c8b97818 6932 kunmap(page);
179e29e4 6933 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6934 }
d1310b2e 6935 set_extent_uptodate(io_tree, em->start,
507903b8 6936 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6937 goto insert;
a52d9a80
CM
6938 }
6939not_found:
6940 em->start = start;
70c8a91c 6941 em->orig_start = start;
d1310b2e 6942 em->len = len;
a52d9a80 6943not_found_em:
5f39d397 6944 em->block_start = EXTENT_MAP_HOLE;
9036c102 6945 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6946insert:
b3b4aa74 6947 btrfs_release_path(path);
d1310b2e 6948 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6949 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6950 em->start, em->len, start, len);
a52d9a80
CM
6951 err = -EIO;
6952 goto out;
6953 }
d1310b2e
CM
6954
6955 err = 0;
890871be 6956 write_lock(&em_tree->lock);
09a2a8f9 6957 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6958 /* it is possible that someone inserted the extent into the tree
6959 * while we had the lock dropped. It is also possible that
6960 * an overlapping map exists in the tree
6961 */
a52d9a80 6962 if (ret == -EEXIST) {
3b951516 6963 struct extent_map *existing;
e6dcd2dc
CM
6964
6965 ret = 0;
6966
e6c4efd8
QW
6967 existing = search_extent_mapping(em_tree, start, len);
6968 /*
6969 * existing will always be non-NULL, since there must be
6970 * extent causing the -EEXIST.
6971 */
6972 if (start >= extent_map_end(existing) ||
32be3a1a 6973 start <= existing->start) {
e6c4efd8
QW
6974 /*
6975 * The existing extent map is the one nearest to
6976 * the [start, start + len) range which overlaps
6977 */
6978 err = merge_extent_mapping(em_tree, existing,
6979 em, start);
e1c4b745 6980 free_extent_map(existing);
e6c4efd8 6981 if (err) {
3b951516
CM
6982 free_extent_map(em);
6983 em = NULL;
6984 }
6985 } else {
6986 free_extent_map(em);
6987 em = existing;
e6dcd2dc 6988 err = 0;
a52d9a80 6989 }
a52d9a80 6990 }
890871be 6991 write_unlock(&em_tree->lock);
a52d9a80 6992out:
1abe9b8a 6993
4cd8587c 6994 trace_btrfs_get_extent(root, em);
1abe9b8a 6995
527afb44 6996 btrfs_free_path(path);
a52d9a80
CM
6997 if (trans) {
6998 ret = btrfs_end_transaction(trans, root);
d397712b 6999 if (!err)
a52d9a80
CM
7000 err = ret;
7001 }
a52d9a80
CM
7002 if (err) {
7003 free_extent_map(em);
a52d9a80
CM
7004 return ERR_PTR(err);
7005 }
79787eaa 7006 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7007 return em;
7008}
7009
ec29ed5b
CM
7010struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7011 size_t pg_offset, u64 start, u64 len,
7012 int create)
7013{
7014 struct extent_map *em;
7015 struct extent_map *hole_em = NULL;
7016 u64 range_start = start;
7017 u64 end;
7018 u64 found;
7019 u64 found_end;
7020 int err = 0;
7021
7022 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7023 if (IS_ERR(em))
7024 return em;
7025 if (em) {
7026 /*
f9e4fb53
LB
7027 * if our em maps to
7028 * - a hole or
7029 * - a pre-alloc extent,
7030 * there might actually be delalloc bytes behind it.
ec29ed5b 7031 */
f9e4fb53
LB
7032 if (em->block_start != EXTENT_MAP_HOLE &&
7033 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7034 return em;
7035 else
7036 hole_em = em;
7037 }
7038
7039 /* check to see if we've wrapped (len == -1 or similar) */
7040 end = start + len;
7041 if (end < start)
7042 end = (u64)-1;
7043 else
7044 end -= 1;
7045
7046 em = NULL;
7047
7048 /* ok, we didn't find anything, lets look for delalloc */
7049 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7050 end, len, EXTENT_DELALLOC, 1);
7051 found_end = range_start + found;
7052 if (found_end < range_start)
7053 found_end = (u64)-1;
7054
7055 /*
7056 * we didn't find anything useful, return
7057 * the original results from get_extent()
7058 */
7059 if (range_start > end || found_end <= start) {
7060 em = hole_em;
7061 hole_em = NULL;
7062 goto out;
7063 }
7064
7065 /* adjust the range_start to make sure it doesn't
7066 * go backwards from the start they passed in
7067 */
67871254 7068 range_start = max(start, range_start);
ec29ed5b
CM
7069 found = found_end - range_start;
7070
7071 if (found > 0) {
7072 u64 hole_start = start;
7073 u64 hole_len = len;
7074
172ddd60 7075 em = alloc_extent_map();
ec29ed5b
CM
7076 if (!em) {
7077 err = -ENOMEM;
7078 goto out;
7079 }
7080 /*
7081 * when btrfs_get_extent can't find anything it
7082 * returns one huge hole
7083 *
7084 * make sure what it found really fits our range, and
7085 * adjust to make sure it is based on the start from
7086 * the caller
7087 */
7088 if (hole_em) {
7089 u64 calc_end = extent_map_end(hole_em);
7090
7091 if (calc_end <= start || (hole_em->start > end)) {
7092 free_extent_map(hole_em);
7093 hole_em = NULL;
7094 } else {
7095 hole_start = max(hole_em->start, start);
7096 hole_len = calc_end - hole_start;
7097 }
7098 }
7099 em->bdev = NULL;
7100 if (hole_em && range_start > hole_start) {
7101 /* our hole starts before our delalloc, so we
7102 * have to return just the parts of the hole
7103 * that go until the delalloc starts
7104 */
7105 em->len = min(hole_len,
7106 range_start - hole_start);
7107 em->start = hole_start;
7108 em->orig_start = hole_start;
7109 /*
7110 * don't adjust block start at all,
7111 * it is fixed at EXTENT_MAP_HOLE
7112 */
7113 em->block_start = hole_em->block_start;
7114 em->block_len = hole_len;
f9e4fb53
LB
7115 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7116 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7117 } else {
7118 em->start = range_start;
7119 em->len = found;
7120 em->orig_start = range_start;
7121 em->block_start = EXTENT_MAP_DELALLOC;
7122 em->block_len = found;
7123 }
7124 } else if (hole_em) {
7125 return hole_em;
7126 }
7127out:
7128
7129 free_extent_map(hole_em);
7130 if (err) {
7131 free_extent_map(em);
7132 return ERR_PTR(err);
7133 }
7134 return em;
7135}
7136
4b46fce2
JB
7137static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7138 u64 start, u64 len)
7139{
7140 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7141 struct extent_map *em;
4b46fce2
JB
7142 struct btrfs_key ins;
7143 u64 alloc_hint;
7144 int ret;
4b46fce2 7145
4b46fce2 7146 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7147 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7148 alloc_hint, &ins, 1, 1);
00361589
JB
7149 if (ret)
7150 return ERR_PTR(ret);
4b46fce2 7151
de0ee0ed
FM
7152 /*
7153 * Create the ordered extent before the extent map. This is to avoid
7154 * races with the fast fsync path that would lead to it logging file
7155 * extent items that point to disk extents that were not yet written to.
7156 * The fast fsync path collects ordered extents into a local list and
7157 * then collects all the new extent maps, so we must create the ordered
7158 * extent first and make sure the fast fsync path collects any new
7159 * ordered extents after collecting new extent maps as well.
7160 * The fsync path simply can not rely on inode_dio_wait() because it
7161 * causes deadlock with AIO.
7162 */
4b46fce2
JB
7163 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7164 ins.offset, ins.offset, 0);
7165 if (ret) {
e570fd27 7166 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589 7167 return ERR_PTR(ret);
4b46fce2 7168 }
00361589 7169
9cfa3e34
FM
7170 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7171
de0ee0ed
FM
7172 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7173 ins.offset, ins.offset, ins.offset, 0);
7174 if (IS_ERR(em)) {
7175 struct btrfs_ordered_extent *oe;
7176
7177 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7178 oe = btrfs_lookup_ordered_extent(inode, start);
7179 ASSERT(oe);
7180 if (WARN_ON(!oe))
7181 return em;
7182 set_bit(BTRFS_ORDERED_IOERR, &oe->flags);
7183 set_bit(BTRFS_ORDERED_IO_DONE, &oe->flags);
7184 btrfs_remove_ordered_extent(inode, oe);
7185 /* Once for our lookup and once for the ordered extents tree. */
7186 btrfs_put_ordered_extent(oe);
7187 btrfs_put_ordered_extent(oe);
7188 }
4b46fce2
JB
7189 return em;
7190}
7191
46bfbb5c
CM
7192/*
7193 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7194 * block must be cow'd
7195 */
00361589 7196noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7197 u64 *orig_start, u64 *orig_block_len,
7198 u64 *ram_bytes)
46bfbb5c 7199{
00361589 7200 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7201 struct btrfs_path *path;
7202 int ret;
7203 struct extent_buffer *leaf;
7204 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7205 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7206 struct btrfs_file_extent_item *fi;
7207 struct btrfs_key key;
7208 u64 disk_bytenr;
7209 u64 backref_offset;
7210 u64 extent_end;
7211 u64 num_bytes;
7212 int slot;
7213 int found_type;
7ee9e440 7214 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7215
46bfbb5c
CM
7216 path = btrfs_alloc_path();
7217 if (!path)
7218 return -ENOMEM;
7219
00361589 7220 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7221 offset, 0);
7222 if (ret < 0)
7223 goto out;
7224
7225 slot = path->slots[0];
7226 if (ret == 1) {
7227 if (slot == 0) {
7228 /* can't find the item, must cow */
7229 ret = 0;
7230 goto out;
7231 }
7232 slot--;
7233 }
7234 ret = 0;
7235 leaf = path->nodes[0];
7236 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7237 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7238 key.type != BTRFS_EXTENT_DATA_KEY) {
7239 /* not our file or wrong item type, must cow */
7240 goto out;
7241 }
7242
7243 if (key.offset > offset) {
7244 /* Wrong offset, must cow */
7245 goto out;
7246 }
7247
7248 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7249 found_type = btrfs_file_extent_type(leaf, fi);
7250 if (found_type != BTRFS_FILE_EXTENT_REG &&
7251 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7252 /* not a regular extent, must cow */
7253 goto out;
7254 }
7ee9e440
JB
7255
7256 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7257 goto out;
7258
e77751aa
MX
7259 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7260 if (extent_end <= offset)
7261 goto out;
7262
46bfbb5c 7263 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7264 if (disk_bytenr == 0)
7265 goto out;
7266
7267 if (btrfs_file_extent_compression(leaf, fi) ||
7268 btrfs_file_extent_encryption(leaf, fi) ||
7269 btrfs_file_extent_other_encoding(leaf, fi))
7270 goto out;
7271
46bfbb5c
CM
7272 backref_offset = btrfs_file_extent_offset(leaf, fi);
7273
7ee9e440
JB
7274 if (orig_start) {
7275 *orig_start = key.offset - backref_offset;
7276 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7277 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7278 }
eb384b55 7279
46bfbb5c
CM
7280 if (btrfs_extent_readonly(root, disk_bytenr))
7281 goto out;
7b2b7085
MX
7282
7283 num_bytes = min(offset + *len, extent_end) - offset;
7284 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7285 u64 range_end;
7286
7287 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7288 ret = test_range_bit(io_tree, offset, range_end,
7289 EXTENT_DELALLOC, 0, NULL);
7290 if (ret) {
7291 ret = -EAGAIN;
7292 goto out;
7293 }
7294 }
7295
1bda19eb 7296 btrfs_release_path(path);
46bfbb5c
CM
7297
7298 /*
7299 * look for other files referencing this extent, if we
7300 * find any we must cow
7301 */
00361589
JB
7302 trans = btrfs_join_transaction(root);
7303 if (IS_ERR(trans)) {
7304 ret = 0;
46bfbb5c 7305 goto out;
00361589
JB
7306 }
7307
7308 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7309 key.offset - backref_offset, disk_bytenr);
7310 btrfs_end_transaction(trans, root);
7311 if (ret) {
7312 ret = 0;
7313 goto out;
7314 }
46bfbb5c
CM
7315
7316 /*
7317 * adjust disk_bytenr and num_bytes to cover just the bytes
7318 * in this extent we are about to write. If there
7319 * are any csums in that range we have to cow in order
7320 * to keep the csums correct
7321 */
7322 disk_bytenr += backref_offset;
7323 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7324 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7325 goto out;
7326 /*
7327 * all of the above have passed, it is safe to overwrite this extent
7328 * without cow
7329 */
eb384b55 7330 *len = num_bytes;
46bfbb5c
CM
7331 ret = 1;
7332out:
7333 btrfs_free_path(path);
7334 return ret;
7335}
7336
fc4adbff
AG
7337bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7338{
7339 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7340 int found = false;
7341 void **pagep = NULL;
7342 struct page *page = NULL;
7343 int start_idx;
7344 int end_idx;
7345
09cbfeaf 7346 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7347
7348 /*
7349 * end is the last byte in the last page. end == start is legal
7350 */
09cbfeaf 7351 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7352
7353 rcu_read_lock();
7354
7355 /* Most of the code in this while loop is lifted from
7356 * find_get_page. It's been modified to begin searching from a
7357 * page and return just the first page found in that range. If the
7358 * found idx is less than or equal to the end idx then we know that
7359 * a page exists. If no pages are found or if those pages are
7360 * outside of the range then we're fine (yay!) */
7361 while (page == NULL &&
7362 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7363 page = radix_tree_deref_slot(pagep);
7364 if (unlikely(!page))
7365 break;
7366
7367 if (radix_tree_exception(page)) {
809f9016
FM
7368 if (radix_tree_deref_retry(page)) {
7369 page = NULL;
fc4adbff 7370 continue;
809f9016 7371 }
fc4adbff
AG
7372 /*
7373 * Otherwise, shmem/tmpfs must be storing a swap entry
7374 * here as an exceptional entry: so return it without
7375 * attempting to raise page count.
7376 */
6fdef6d4 7377 page = NULL;
fc4adbff
AG
7378 break; /* TODO: Is this relevant for this use case? */
7379 }
7380
91405151
FM
7381 if (!page_cache_get_speculative(page)) {
7382 page = NULL;
fc4adbff 7383 continue;
91405151 7384 }
fc4adbff
AG
7385
7386 /*
7387 * Has the page moved?
7388 * This is part of the lockless pagecache protocol. See
7389 * include/linux/pagemap.h for details.
7390 */
7391 if (unlikely(page != *pagep)) {
09cbfeaf 7392 put_page(page);
fc4adbff
AG
7393 page = NULL;
7394 }
7395 }
7396
7397 if (page) {
7398 if (page->index <= end_idx)
7399 found = true;
09cbfeaf 7400 put_page(page);
fc4adbff
AG
7401 }
7402
7403 rcu_read_unlock();
7404 return found;
7405}
7406
eb838e73
JB
7407static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7408 struct extent_state **cached_state, int writing)
7409{
7410 struct btrfs_ordered_extent *ordered;
7411 int ret = 0;
7412
7413 while (1) {
7414 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7415 cached_state);
eb838e73
JB
7416 /*
7417 * We're concerned with the entire range that we're going to be
7418 * doing DIO to, so we need to make sure theres no ordered
7419 * extents in this range.
7420 */
7421 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7422 lockend - lockstart + 1);
7423
7424 /*
7425 * We need to make sure there are no buffered pages in this
7426 * range either, we could have raced between the invalidate in
7427 * generic_file_direct_write and locking the extent. The
7428 * invalidate needs to happen so that reads after a write do not
7429 * get stale data.
7430 */
fc4adbff
AG
7431 if (!ordered &&
7432 (!writing ||
7433 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7434 break;
7435
7436 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7437 cached_state, GFP_NOFS);
7438
7439 if (ordered) {
ade77029
FM
7440 /*
7441 * If we are doing a DIO read and the ordered extent we
7442 * found is for a buffered write, we can not wait for it
7443 * to complete and retry, because if we do so we can
7444 * deadlock with concurrent buffered writes on page
7445 * locks. This happens only if our DIO read covers more
7446 * than one extent map, if at this point has already
7447 * created an ordered extent for a previous extent map
7448 * and locked its range in the inode's io tree, and a
7449 * concurrent write against that previous extent map's
7450 * range and this range started (we unlock the ranges
7451 * in the io tree only when the bios complete and
7452 * buffered writes always lock pages before attempting
7453 * to lock range in the io tree).
7454 */
7455 if (writing ||
7456 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7457 btrfs_start_ordered_extent(inode, ordered, 1);
7458 else
7459 ret = -ENOTBLK;
eb838e73
JB
7460 btrfs_put_ordered_extent(ordered);
7461 } else {
eb838e73 7462 /*
b850ae14
FM
7463 * We could trigger writeback for this range (and wait
7464 * for it to complete) and then invalidate the pages for
7465 * this range (through invalidate_inode_pages2_range()),
7466 * but that can lead us to a deadlock with a concurrent
7467 * call to readpages() (a buffered read or a defrag call
7468 * triggered a readahead) on a page lock due to an
7469 * ordered dio extent we created before but did not have
7470 * yet a corresponding bio submitted (whence it can not
7471 * complete), which makes readpages() wait for that
7472 * ordered extent to complete while holding a lock on
7473 * that page.
eb838e73 7474 */
b850ae14 7475 ret = -ENOTBLK;
eb838e73
JB
7476 }
7477
ade77029
FM
7478 if (ret)
7479 break;
7480
eb838e73
JB
7481 cond_resched();
7482 }
7483
7484 return ret;
7485}
7486
69ffb543
JB
7487static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7488 u64 len, u64 orig_start,
7489 u64 block_start, u64 block_len,
cc95bef6
JB
7490 u64 orig_block_len, u64 ram_bytes,
7491 int type)
69ffb543
JB
7492{
7493 struct extent_map_tree *em_tree;
7494 struct extent_map *em;
7495 struct btrfs_root *root = BTRFS_I(inode)->root;
7496 int ret;
7497
7498 em_tree = &BTRFS_I(inode)->extent_tree;
7499 em = alloc_extent_map();
7500 if (!em)
7501 return ERR_PTR(-ENOMEM);
7502
7503 em->start = start;
7504 em->orig_start = orig_start;
2ab28f32
JB
7505 em->mod_start = start;
7506 em->mod_len = len;
69ffb543
JB
7507 em->len = len;
7508 em->block_len = block_len;
7509 em->block_start = block_start;
7510 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7511 em->orig_block_len = orig_block_len;
cc95bef6 7512 em->ram_bytes = ram_bytes;
70c8a91c 7513 em->generation = -1;
69ffb543
JB
7514 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7515 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7516 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7517
7518 do {
7519 btrfs_drop_extent_cache(inode, em->start,
7520 em->start + em->len - 1, 0);
7521 write_lock(&em_tree->lock);
09a2a8f9 7522 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7523 write_unlock(&em_tree->lock);
7524 } while (ret == -EEXIST);
7525
7526 if (ret) {
7527 free_extent_map(em);
7528 return ERR_PTR(ret);
7529 }
7530
7531 return em;
7532}
7533
9c9464cc
FM
7534static void adjust_dio_outstanding_extents(struct inode *inode,
7535 struct btrfs_dio_data *dio_data,
7536 const u64 len)
7537{
7538 unsigned num_extents;
7539
7540 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7541 BTRFS_MAX_EXTENT_SIZE);
7542 /*
7543 * If we have an outstanding_extents count still set then we're
7544 * within our reservation, otherwise we need to adjust our inode
7545 * counter appropriately.
7546 */
7547 if (dio_data->outstanding_extents) {
7548 dio_data->outstanding_extents -= num_extents;
7549 } else {
7550 spin_lock(&BTRFS_I(inode)->lock);
7551 BTRFS_I(inode)->outstanding_extents += num_extents;
7552 spin_unlock(&BTRFS_I(inode)->lock);
7553 }
7554}
7555
4b46fce2
JB
7556static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7557 struct buffer_head *bh_result, int create)
7558{
7559 struct extent_map *em;
7560 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7561 struct extent_state *cached_state = NULL;
50745b0a 7562 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7563 u64 start = iblock << inode->i_blkbits;
eb838e73 7564 u64 lockstart, lockend;
4b46fce2 7565 u64 len = bh_result->b_size;
eb838e73 7566 int unlock_bits = EXTENT_LOCKED;
0934856d 7567 int ret = 0;
eb838e73 7568
172a5049 7569 if (create)
3266789f 7570 unlock_bits |= EXTENT_DIRTY;
172a5049 7571 else
c329861d 7572 len = min_t(u64, len, root->sectorsize);
eb838e73 7573
c329861d
JB
7574 lockstart = start;
7575 lockend = start + len - 1;
7576
e1cbbfa5
JB
7577 if (current->journal_info) {
7578 /*
7579 * Need to pull our outstanding extents and set journal_info to NULL so
7580 * that anything that needs to check if there's a transction doesn't get
7581 * confused.
7582 */
50745b0a 7583 dio_data = current->journal_info;
e1cbbfa5
JB
7584 current->journal_info = NULL;
7585 }
7586
eb838e73
JB
7587 /*
7588 * If this errors out it's because we couldn't invalidate pagecache for
7589 * this range and we need to fallback to buffered.
7590 */
9c9464cc
FM
7591 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7592 create)) {
7593 ret = -ENOTBLK;
7594 goto err;
7595 }
eb838e73 7596
4b46fce2 7597 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7598 if (IS_ERR(em)) {
7599 ret = PTR_ERR(em);
7600 goto unlock_err;
7601 }
4b46fce2
JB
7602
7603 /*
7604 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7605 * io. INLINE is special, and we could probably kludge it in here, but
7606 * it's still buffered so for safety lets just fall back to the generic
7607 * buffered path.
7608 *
7609 * For COMPRESSED we _have_ to read the entire extent in so we can
7610 * decompress it, so there will be buffering required no matter what we
7611 * do, so go ahead and fallback to buffered.
7612 *
7613 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7614 * to buffered IO. Don't blame me, this is the price we pay for using
7615 * the generic code.
7616 */
7617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7618 em->block_start == EXTENT_MAP_INLINE) {
7619 free_extent_map(em);
eb838e73
JB
7620 ret = -ENOTBLK;
7621 goto unlock_err;
4b46fce2
JB
7622 }
7623
7624 /* Just a good old fashioned hole, return */
7625 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7626 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7627 free_extent_map(em);
eb838e73 7628 goto unlock_err;
4b46fce2
JB
7629 }
7630
7631 /*
7632 * We don't allocate a new extent in the following cases
7633 *
7634 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7635 * existing extent.
7636 * 2) The extent is marked as PREALLOC. We're good to go here and can
7637 * just use the extent.
7638 *
7639 */
46bfbb5c 7640 if (!create) {
eb838e73
JB
7641 len = min(len, em->len - (start - em->start));
7642 lockstart = start + len;
7643 goto unlock;
46bfbb5c 7644 }
4b46fce2
JB
7645
7646 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7647 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7648 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7649 int type;
eb384b55 7650 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7651
7652 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7653 type = BTRFS_ORDERED_PREALLOC;
7654 else
7655 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7656 len = min(len, em->len - (start - em->start));
4b46fce2 7657 block_start = em->block_start + (start - em->start);
46bfbb5c 7658
00361589 7659 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7660 &orig_block_len, &ram_bytes) == 1) {
0b901916
FM
7661
7662 /*
7663 * Create the ordered extent before the extent map. This
7664 * is to avoid races with the fast fsync path because it
7665 * collects ordered extents into a local list and then
7666 * collects all the new extent maps, so we must create
7667 * the ordered extent first and make sure the fast fsync
7668 * path collects any new ordered extents after
7669 * collecting new extent maps as well. The fsync path
7670 * simply can not rely on inode_dio_wait() because it
7671 * causes deadlock with AIO.
7672 */
7673 ret = btrfs_add_ordered_extent_dio(inode, start,
7674 block_start, len, len, type);
7675 if (ret) {
7676 free_extent_map(em);
7677 goto unlock_err;
7678 }
7679
69ffb543
JB
7680 if (type == BTRFS_ORDERED_PREALLOC) {
7681 free_extent_map(em);
7682 em = create_pinned_em(inode, start, len,
7683 orig_start,
b4939680 7684 block_start, len,
cc95bef6
JB
7685 orig_block_len,
7686 ram_bytes, type);
555e1286 7687 if (IS_ERR(em)) {
0b901916
FM
7688 struct btrfs_ordered_extent *oe;
7689
555e1286 7690 ret = PTR_ERR(em);
0b901916
FM
7691 oe = btrfs_lookup_ordered_extent(inode,
7692 start);
7693 ASSERT(oe);
7694 if (WARN_ON(!oe))
7695 goto unlock_err;
7696 set_bit(BTRFS_ORDERED_IOERR,
7697 &oe->flags);
7698 set_bit(BTRFS_ORDERED_IO_DONE,
7699 &oe->flags);
7700 btrfs_remove_ordered_extent(inode, oe);
7701 /*
7702 * Once for our lookup and once for the
7703 * ordered extents tree.
7704 */
7705 btrfs_put_ordered_extent(oe);
7706 btrfs_put_ordered_extent(oe);
69ffb543 7707 goto unlock_err;
555e1286 7708 }
69ffb543
JB
7709 }
7710
46bfbb5c 7711 goto unlock;
4b46fce2 7712 }
4b46fce2 7713 }
00361589 7714
46bfbb5c
CM
7715 /*
7716 * this will cow the extent, reset the len in case we changed
7717 * it above
7718 */
7719 len = bh_result->b_size;
70c8a91c
JB
7720 free_extent_map(em);
7721 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7722 if (IS_ERR(em)) {
7723 ret = PTR_ERR(em);
7724 goto unlock_err;
7725 }
46bfbb5c
CM
7726 len = min(len, em->len - (start - em->start));
7727unlock:
4b46fce2
JB
7728 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7729 inode->i_blkbits;
46bfbb5c 7730 bh_result->b_size = len;
4b46fce2
JB
7731 bh_result->b_bdev = em->bdev;
7732 set_buffer_mapped(bh_result);
c3473e83
JB
7733 if (create) {
7734 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7735 set_buffer_new(bh_result);
7736
7737 /*
7738 * Need to update the i_size under the extent lock so buffered
7739 * readers will get the updated i_size when we unlock.
7740 */
7741 if (start + len > i_size_read(inode))
7742 i_size_write(inode, start + len);
0934856d 7743
9c9464cc 7744 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7745 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7746 WARN_ON(dio_data->reserve < len);
7747 dio_data->reserve -= len;
f28a4928 7748 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7749 current->journal_info = dio_data;
c3473e83 7750 }
4b46fce2 7751
eb838e73
JB
7752 /*
7753 * In the case of write we need to clear and unlock the entire range,
7754 * in the case of read we need to unlock only the end area that we
7755 * aren't using if there is any left over space.
7756 */
24c03fa5 7757 if (lockstart < lockend) {
0934856d
MX
7758 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7759 lockend, unlock_bits, 1, 0,
7760 &cached_state, GFP_NOFS);
24c03fa5 7761 } else {
eb838e73 7762 free_extent_state(cached_state);
24c03fa5 7763 }
eb838e73 7764
4b46fce2
JB
7765 free_extent_map(em);
7766
7767 return 0;
eb838e73
JB
7768
7769unlock_err:
eb838e73
JB
7770 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7771 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7772err:
50745b0a 7773 if (dio_data)
7774 current->journal_info = dio_data;
9c9464cc
FM
7775 /*
7776 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7777 * write less data then expected, so that we don't underflow our inode's
7778 * outstanding extents counter.
7779 */
7780 if (create && dio_data)
7781 adjust_dio_outstanding_extents(inode, dio_data, len);
7782
eb838e73 7783 return ret;
4b46fce2
JB
7784}
7785
8b110e39
MX
7786static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7787 int rw, int mirror_num)
7788{
7789 struct btrfs_root *root = BTRFS_I(inode)->root;
7790 int ret;
7791
7792 BUG_ON(rw & REQ_WRITE);
7793
7794 bio_get(bio);
7795
7796 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7797 BTRFS_WQ_ENDIO_DIO_REPAIR);
7798 if (ret)
7799 goto err;
7800
7801 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7802err:
7803 bio_put(bio);
7804 return ret;
7805}
7806
7807static int btrfs_check_dio_repairable(struct inode *inode,
7808 struct bio *failed_bio,
7809 struct io_failure_record *failrec,
7810 int failed_mirror)
7811{
7812 int num_copies;
7813
7814 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7815 failrec->logical, failrec->len);
7816 if (num_copies == 1) {
7817 /*
7818 * we only have a single copy of the data, so don't bother with
7819 * all the retry and error correction code that follows. no
7820 * matter what the error is, it is very likely to persist.
7821 */
7822 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7823 num_copies, failrec->this_mirror, failed_mirror);
7824 return 0;
7825 }
7826
7827 failrec->failed_mirror = failed_mirror;
7828 failrec->this_mirror++;
7829 if (failrec->this_mirror == failed_mirror)
7830 failrec->this_mirror++;
7831
7832 if (failrec->this_mirror > num_copies) {
7833 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7834 num_copies, failrec->this_mirror, failed_mirror);
7835 return 0;
7836 }
7837
7838 return 1;
7839}
7840
7841static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7842 struct page *page, unsigned int pgoff,
7843 u64 start, u64 end, int failed_mirror,
7844 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7845{
7846 struct io_failure_record *failrec;
7847 struct bio *bio;
7848 int isector;
7849 int read_mode;
7850 int ret;
7851
7852 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7853
7854 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7855 if (ret)
7856 return ret;
7857
7858 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7859 failed_mirror);
7860 if (!ret) {
7861 free_io_failure(inode, failrec);
7862 return -EIO;
7863 }
7864
2dabb324
CR
7865 if ((failed_bio->bi_vcnt > 1)
7866 || (failed_bio->bi_io_vec->bv_len
7867 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7868 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7869 else
7870 read_mode = READ_SYNC;
7871
7872 isector = start - btrfs_io_bio(failed_bio)->logical;
7873 isector >>= inode->i_sb->s_blocksize_bits;
7874 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7875 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7876 if (!bio) {
7877 free_io_failure(inode, failrec);
7878 return -EIO;
7879 }
7880
7881 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7882 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7883 read_mode, failrec->this_mirror, failrec->in_validation);
7884
7885 ret = submit_dio_repair_bio(inode, bio, read_mode,
7886 failrec->this_mirror);
7887 if (ret) {
7888 free_io_failure(inode, failrec);
7889 bio_put(bio);
7890 }
7891
7892 return ret;
7893}
7894
7895struct btrfs_retry_complete {
7896 struct completion done;
7897 struct inode *inode;
7898 u64 start;
7899 int uptodate;
7900};
7901
4246a0b6 7902static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7903{
7904 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7905 struct inode *inode;
8b110e39
MX
7906 struct bio_vec *bvec;
7907 int i;
7908
4246a0b6 7909 if (bio->bi_error)
8b110e39
MX
7910 goto end;
7911
2dabb324
CR
7912 ASSERT(bio->bi_vcnt == 1);
7913 inode = bio->bi_io_vec->bv_page->mapping->host;
7914 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7915
8b110e39
MX
7916 done->uptodate = 1;
7917 bio_for_each_segment_all(bvec, bio, i)
7918 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7919end:
7920 complete(&done->done);
7921 bio_put(bio);
7922}
7923
7924static int __btrfs_correct_data_nocsum(struct inode *inode,
7925 struct btrfs_io_bio *io_bio)
4b46fce2 7926{
2dabb324 7927 struct btrfs_fs_info *fs_info;
2c30c71b 7928 struct bio_vec *bvec;
8b110e39 7929 struct btrfs_retry_complete done;
4b46fce2 7930 u64 start;
2dabb324
CR
7931 unsigned int pgoff;
7932 u32 sectorsize;
7933 int nr_sectors;
2c30c71b 7934 int i;
c1dc0896 7935 int ret;
4b46fce2 7936
2dabb324
CR
7937 fs_info = BTRFS_I(inode)->root->fs_info;
7938 sectorsize = BTRFS_I(inode)->root->sectorsize;
7939
8b110e39
MX
7940 start = io_bio->logical;
7941 done.inode = inode;
7942
7943 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7944 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7945 pgoff = bvec->bv_offset;
7946
7947next_block_or_try_again:
8b110e39
MX
7948 done.uptodate = 0;
7949 done.start = start;
7950 init_completion(&done.done);
7951
2dabb324
CR
7952 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7953 pgoff, start, start + sectorsize - 1,
7954 io_bio->mirror_num,
7955 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7956 if (ret)
7957 return ret;
7958
7959 wait_for_completion(&done.done);
7960
7961 if (!done.uptodate) {
7962 /* We might have another mirror, so try again */
2dabb324 7963 goto next_block_or_try_again;
8b110e39
MX
7964 }
7965
2dabb324
CR
7966 start += sectorsize;
7967
7968 if (nr_sectors--) {
7969 pgoff += sectorsize;
7970 goto next_block_or_try_again;
7971 }
8b110e39
MX
7972 }
7973
7974 return 0;
7975}
7976
4246a0b6 7977static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7978{
7979 struct btrfs_retry_complete *done = bio->bi_private;
7980 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 7981 struct inode *inode;
8b110e39 7982 struct bio_vec *bvec;
2dabb324 7983 u64 start;
8b110e39
MX
7984 int uptodate;
7985 int ret;
7986 int i;
7987
4246a0b6 7988 if (bio->bi_error)
8b110e39
MX
7989 goto end;
7990
7991 uptodate = 1;
2dabb324
CR
7992
7993 start = done->start;
7994
7995 ASSERT(bio->bi_vcnt == 1);
7996 inode = bio->bi_io_vec->bv_page->mapping->host;
7997 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7998
8b110e39
MX
7999 bio_for_each_segment_all(bvec, bio, i) {
8000 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8001 bvec->bv_page, bvec->bv_offset,
8002 done->start, bvec->bv_len);
8b110e39
MX
8003 if (!ret)
8004 clean_io_failure(done->inode, done->start,
2dabb324 8005 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8006 else
8007 uptodate = 0;
8008 }
8009
8010 done->uptodate = uptodate;
8011end:
8012 complete(&done->done);
8013 bio_put(bio);
8014}
8015
8016static int __btrfs_subio_endio_read(struct inode *inode,
8017 struct btrfs_io_bio *io_bio, int err)
8018{
2dabb324 8019 struct btrfs_fs_info *fs_info;
8b110e39
MX
8020 struct bio_vec *bvec;
8021 struct btrfs_retry_complete done;
8022 u64 start;
8023 u64 offset = 0;
2dabb324
CR
8024 u32 sectorsize;
8025 int nr_sectors;
8026 unsigned int pgoff;
8027 int csum_pos;
8b110e39
MX
8028 int i;
8029 int ret;
dc380aea 8030
2dabb324
CR
8031 fs_info = BTRFS_I(inode)->root->fs_info;
8032 sectorsize = BTRFS_I(inode)->root->sectorsize;
8033
8b110e39 8034 err = 0;
c1dc0896 8035 start = io_bio->logical;
8b110e39
MX
8036 done.inode = inode;
8037
c1dc0896 8038 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8039 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8040
8041 pgoff = bvec->bv_offset;
8042next_block:
8043 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8044 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8045 bvec->bv_page, pgoff, start,
8046 sectorsize);
8b110e39
MX
8047 if (likely(!ret))
8048 goto next;
8049try_again:
8050 done.uptodate = 0;
8051 done.start = start;
8052 init_completion(&done.done);
8053
2dabb324
CR
8054 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8055 pgoff, start, start + sectorsize - 1,
8056 io_bio->mirror_num,
8057 btrfs_retry_endio, &done);
8b110e39
MX
8058 if (ret) {
8059 err = ret;
8060 goto next;
8061 }
8062
8063 wait_for_completion(&done.done);
8064
8065 if (!done.uptodate) {
8066 /* We might have another mirror, so try again */
8067 goto try_again;
8068 }
8069next:
2dabb324
CR
8070 offset += sectorsize;
8071 start += sectorsize;
8072
8073 ASSERT(nr_sectors);
8074
8075 if (--nr_sectors) {
8076 pgoff += sectorsize;
8077 goto next_block;
8078 }
2c30c71b 8079 }
c1dc0896
MX
8080
8081 return err;
8082}
8083
8b110e39
MX
8084static int btrfs_subio_endio_read(struct inode *inode,
8085 struct btrfs_io_bio *io_bio, int err)
8086{
8087 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8088
8089 if (skip_csum) {
8090 if (unlikely(err))
8091 return __btrfs_correct_data_nocsum(inode, io_bio);
8092 else
8093 return 0;
8094 } else {
8095 return __btrfs_subio_endio_read(inode, io_bio, err);
8096 }
8097}
8098
4246a0b6 8099static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8100{
8101 struct btrfs_dio_private *dip = bio->bi_private;
8102 struct inode *inode = dip->inode;
8103 struct bio *dio_bio;
8104 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8105 int err = bio->bi_error;
c1dc0896 8106
8b110e39
MX
8107 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8108 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8109
4b46fce2 8110 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8111 dip->logical_offset + dip->bytes - 1);
9be3395b 8112 dio_bio = dip->dio_bio;
4b46fce2 8113
4b46fce2 8114 kfree(dip);
c0da7aa1 8115
1636d1d7 8116 dio_bio->bi_error = bio->bi_error;
4246a0b6 8117 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8118
8119 if (io_bio->end_io)
8120 io_bio->end_io(io_bio, err);
9be3395b 8121 bio_put(bio);
4b46fce2
JB
8122}
8123
14543774
FM
8124static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8125 const u64 offset,
8126 const u64 bytes,
8127 const int uptodate)
4b46fce2 8128{
4b46fce2 8129 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8130 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8131 u64 ordered_offset = offset;
8132 u64 ordered_bytes = bytes;
4b46fce2
JB
8133 int ret;
8134
163cf09c
CM
8135again:
8136 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8137 &ordered_offset,
4246a0b6 8138 ordered_bytes,
14543774 8139 uptodate);
4b46fce2 8140 if (!ret)
163cf09c 8141 goto out_test;
4b46fce2 8142
9e0af237
LB
8143 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8144 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8145 btrfs_queue_work(root->fs_info->endio_write_workers,
8146 &ordered->work);
163cf09c
CM
8147out_test:
8148 /*
8149 * our bio might span multiple ordered extents. If we haven't
8150 * completed the accounting for the whole dio, go back and try again
8151 */
14543774
FM
8152 if (ordered_offset < offset + bytes) {
8153 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8154 ordered = NULL;
163cf09c
CM
8155 goto again;
8156 }
14543774
FM
8157}
8158
8159static void btrfs_endio_direct_write(struct bio *bio)
8160{
8161 struct btrfs_dio_private *dip = bio->bi_private;
8162 struct bio *dio_bio = dip->dio_bio;
8163
8164 btrfs_endio_direct_write_update_ordered(dip->inode,
8165 dip->logical_offset,
8166 dip->bytes,
8167 !bio->bi_error);
4b46fce2 8168
4b46fce2 8169 kfree(dip);
c0da7aa1 8170
1636d1d7 8171 dio_bio->bi_error = bio->bi_error;
4246a0b6 8172 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8173 bio_put(bio);
4b46fce2
JB
8174}
8175
eaf25d93
CM
8176static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8177 struct bio *bio, int mirror_num,
8178 unsigned long bio_flags, u64 offset)
8179{
8180 int ret;
8181 struct btrfs_root *root = BTRFS_I(inode)->root;
8182 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8183 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8184 return 0;
8185}
8186
4246a0b6 8187static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8188{
8189 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8190 int err = bio->bi_error;
e65e1535 8191
8b110e39
MX
8192 if (err)
8193 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8194 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8195 btrfs_ino(dip->inode), bio->bi_rw,
8196 (unsigned long long)bio->bi_iter.bi_sector,
8197 bio->bi_iter.bi_size, err);
8198
8199 if (dip->subio_endio)
8200 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8201
8202 if (err) {
e65e1535
MX
8203 dip->errors = 1;
8204
8205 /*
8206 * before atomic variable goto zero, we must make sure
8207 * dip->errors is perceived to be set.
8208 */
4e857c58 8209 smp_mb__before_atomic();
e65e1535
MX
8210 }
8211
8212 /* if there are more bios still pending for this dio, just exit */
8213 if (!atomic_dec_and_test(&dip->pending_bios))
8214 goto out;
8215
9be3395b 8216 if (dip->errors) {
e65e1535 8217 bio_io_error(dip->orig_bio);
9be3395b 8218 } else {
4246a0b6
CH
8219 dip->dio_bio->bi_error = 0;
8220 bio_endio(dip->orig_bio);
e65e1535
MX
8221 }
8222out:
8223 bio_put(bio);
8224}
8225
8226static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8227 u64 first_sector, gfp_t gfp_flags)
8228{
da2f0f74 8229 struct bio *bio;
22365979 8230 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8231 if (bio)
8232 bio_associate_current(bio);
8233 return bio;
e65e1535
MX
8234}
8235
c1dc0896
MX
8236static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8237 struct inode *inode,
8238 struct btrfs_dio_private *dip,
8239 struct bio *bio,
8240 u64 file_offset)
8241{
8242 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8243 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8244 int ret;
8245
8246 /*
8247 * We load all the csum data we need when we submit
8248 * the first bio to reduce the csum tree search and
8249 * contention.
8250 */
8251 if (dip->logical_offset == file_offset) {
8252 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8253 file_offset);
8254 if (ret)
8255 return ret;
8256 }
8257
8258 if (bio == dip->orig_bio)
8259 return 0;
8260
8261 file_offset -= dip->logical_offset;
8262 file_offset >>= inode->i_sb->s_blocksize_bits;
8263 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8264
8265 return 0;
8266}
8267
e65e1535
MX
8268static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8269 int rw, u64 file_offset, int skip_sum,
c329861d 8270 int async_submit)
e65e1535 8271{
facc8a22 8272 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8273 int write = rw & REQ_WRITE;
8274 struct btrfs_root *root = BTRFS_I(inode)->root;
8275 int ret;
8276
b812ce28
JB
8277 if (async_submit)
8278 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8279
e65e1535 8280 bio_get(bio);
5fd02043
JB
8281
8282 if (!write) {
bfebd8b5
DS
8283 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8284 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8285 if (ret)
8286 goto err;
8287 }
e65e1535 8288
1ae39938
JB
8289 if (skip_sum)
8290 goto map;
8291
8292 if (write && async_submit) {
e65e1535
MX
8293 ret = btrfs_wq_submit_bio(root->fs_info,
8294 inode, rw, bio, 0, 0,
8295 file_offset,
8296 __btrfs_submit_bio_start_direct_io,
8297 __btrfs_submit_bio_done);
8298 goto err;
1ae39938
JB
8299 } else if (write) {
8300 /*
8301 * If we aren't doing async submit, calculate the csum of the
8302 * bio now.
8303 */
8304 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8305 if (ret)
8306 goto err;
23ea8e5a 8307 } else {
c1dc0896
MX
8308 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8309 file_offset);
c2db1073
TI
8310 if (ret)
8311 goto err;
8312 }
1ae39938
JB
8313map:
8314 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8315err:
8316 bio_put(bio);
8317 return ret;
8318}
8319
8320static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8321 int skip_sum)
8322{
8323 struct inode *inode = dip->inode;
8324 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8325 struct bio *bio;
8326 struct bio *orig_bio = dip->orig_bio;
8327 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8328 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8329 u64 file_offset = dip->logical_offset;
8330 u64 submit_len = 0;
8331 u64 map_length;
5f4dc8fc 8332 u32 blocksize = root->sectorsize;
1ae39938 8333 int async_submit = 0;
5f4dc8fc
CR
8334 int nr_sectors;
8335 int ret;
8336 int i;
e65e1535 8337
4f024f37 8338 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8339 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8340 &map_length, NULL, 0);
7a5c3c9b 8341 if (ret)
e65e1535 8342 return -EIO;
facc8a22 8343
4f024f37 8344 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8345 bio = orig_bio;
c1dc0896 8346 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8347 goto submit;
8348 }
8349
53b381b3 8350 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8351 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8352 async_submit = 0;
8353 else
8354 async_submit = 1;
8355
02f57c7a
JB
8356 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8357 if (!bio)
8358 return -ENOMEM;
7a5c3c9b 8359
02f57c7a
JB
8360 bio->bi_private = dip;
8361 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8362 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8363 atomic_inc(&dip->pending_bios);
8364
e65e1535 8365 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8366 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8367 i = 0;
8368next_block:
8369 if (unlikely(map_length < submit_len + blocksize ||
8370 bio_add_page(bio, bvec->bv_page, blocksize,
8371 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8372 /*
8373 * inc the count before we submit the bio so
8374 * we know the end IO handler won't happen before
8375 * we inc the count. Otherwise, the dip might get freed
8376 * before we're done setting it up
8377 */
8378 atomic_inc(&dip->pending_bios);
8379 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8380 file_offset, skip_sum,
c329861d 8381 async_submit);
e65e1535
MX
8382 if (ret) {
8383 bio_put(bio);
8384 atomic_dec(&dip->pending_bios);
8385 goto out_err;
8386 }
8387
e65e1535
MX
8388 start_sector += submit_len >> 9;
8389 file_offset += submit_len;
8390
8391 submit_len = 0;
e65e1535
MX
8392
8393 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8394 start_sector, GFP_NOFS);
8395 if (!bio)
8396 goto out_err;
8397 bio->bi_private = dip;
8398 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8399 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8400
4f024f37 8401 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8402 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8403 start_sector << 9,
e65e1535
MX
8404 &map_length, NULL, 0);
8405 if (ret) {
8406 bio_put(bio);
8407 goto out_err;
8408 }
5f4dc8fc
CR
8409
8410 goto next_block;
e65e1535 8411 } else {
5f4dc8fc
CR
8412 submit_len += blocksize;
8413 if (--nr_sectors) {
8414 i++;
8415 goto next_block;
8416 }
e65e1535
MX
8417 bvec++;
8418 }
8419 }
8420
02f57c7a 8421submit:
e65e1535 8422 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8423 async_submit);
e65e1535
MX
8424 if (!ret)
8425 return 0;
8426
8427 bio_put(bio);
8428out_err:
8429 dip->errors = 1;
8430 /*
8431 * before atomic variable goto zero, we must
8432 * make sure dip->errors is perceived to be set.
8433 */
4e857c58 8434 smp_mb__before_atomic();
e65e1535
MX
8435 if (atomic_dec_and_test(&dip->pending_bios))
8436 bio_io_error(dip->orig_bio);
8437
8438 /* bio_end_io() will handle error, so we needn't return it */
8439 return 0;
8440}
8441
9be3395b
CM
8442static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8443 struct inode *inode, loff_t file_offset)
4b46fce2 8444{
61de718f
FM
8445 struct btrfs_dio_private *dip = NULL;
8446 struct bio *io_bio = NULL;
23ea8e5a 8447 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8448 int skip_sum;
7b6d91da 8449 int write = rw & REQ_WRITE;
4b46fce2
JB
8450 int ret = 0;
8451
8452 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8453
9be3395b 8454 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8455 if (!io_bio) {
8456 ret = -ENOMEM;
8457 goto free_ordered;
8458 }
8459
c1dc0896 8460 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8461 if (!dip) {
8462 ret = -ENOMEM;
61de718f 8463 goto free_ordered;
4b46fce2 8464 }
4b46fce2 8465
9be3395b 8466 dip->private = dio_bio->bi_private;
4b46fce2
JB
8467 dip->inode = inode;
8468 dip->logical_offset = file_offset;
4f024f37
KO
8469 dip->bytes = dio_bio->bi_iter.bi_size;
8470 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8471 io_bio->bi_private = dip;
9be3395b
CM
8472 dip->orig_bio = io_bio;
8473 dip->dio_bio = dio_bio;
e65e1535 8474 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8475 btrfs_bio = btrfs_io_bio(io_bio);
8476 btrfs_bio->logical = file_offset;
4b46fce2 8477
c1dc0896 8478 if (write) {
9be3395b 8479 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8480 } else {
9be3395b 8481 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8482 dip->subio_endio = btrfs_subio_endio_read;
8483 }
4b46fce2 8484
f28a4928
FM
8485 /*
8486 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8487 * even if we fail to submit a bio, because in such case we do the
8488 * corresponding error handling below and it must not be done a second
8489 * time by btrfs_direct_IO().
8490 */
8491 if (write) {
8492 struct btrfs_dio_data *dio_data = current->journal_info;
8493
8494 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8495 dip->bytes;
8496 dio_data->unsubmitted_oe_range_start =
8497 dio_data->unsubmitted_oe_range_end;
8498 }
8499
e65e1535
MX
8500 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8501 if (!ret)
eaf25d93 8502 return;
9be3395b 8503
23ea8e5a
MX
8504 if (btrfs_bio->end_io)
8505 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8506
4b46fce2
JB
8507free_ordered:
8508 /*
61de718f
FM
8509 * If we arrived here it means either we failed to submit the dip
8510 * or we either failed to clone the dio_bio or failed to allocate the
8511 * dip. If we cloned the dio_bio and allocated the dip, we can just
8512 * call bio_endio against our io_bio so that we get proper resource
8513 * cleanup if we fail to submit the dip, otherwise, we must do the
8514 * same as btrfs_endio_direct_[write|read] because we can't call these
8515 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8516 */
61de718f 8517 if (io_bio && dip) {
4246a0b6
CH
8518 io_bio->bi_error = -EIO;
8519 bio_endio(io_bio);
61de718f
FM
8520 /*
8521 * The end io callbacks free our dip, do the final put on io_bio
8522 * and all the cleanup and final put for dio_bio (through
8523 * dio_end_io()).
8524 */
8525 dip = NULL;
8526 io_bio = NULL;
8527 } else {
14543774
FM
8528 if (write)
8529 btrfs_endio_direct_write_update_ordered(inode,
8530 file_offset,
8531 dio_bio->bi_iter.bi_size,
8532 0);
8533 else
61de718f
FM
8534 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8535 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8536
4246a0b6 8537 dio_bio->bi_error = -EIO;
61de718f
FM
8538 /*
8539 * Releases and cleans up our dio_bio, no need to bio_put()
8540 * nor bio_endio()/bio_io_error() against dio_bio.
8541 */
8542 dio_end_io(dio_bio, ret);
4b46fce2 8543 }
61de718f
FM
8544 if (io_bio)
8545 bio_put(io_bio);
8546 kfree(dip);
4b46fce2
JB
8547}
8548
6f673763 8549static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8550 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8551{
8552 int seg;
a1b75f7d 8553 int i;
5a5f79b5
CM
8554 unsigned blocksize_mask = root->sectorsize - 1;
8555 ssize_t retval = -EINVAL;
5a5f79b5
CM
8556
8557 if (offset & blocksize_mask)
8558 goto out;
8559
28060d5d
AV
8560 if (iov_iter_alignment(iter) & blocksize_mask)
8561 goto out;
a1b75f7d 8562
28060d5d 8563 /* If this is a write we don't need to check anymore */
6f673763 8564 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8565 return 0;
8566 /*
8567 * Check to make sure we don't have duplicate iov_base's in this
8568 * iovec, if so return EINVAL, otherwise we'll get csum errors
8569 * when reading back.
8570 */
8571 for (seg = 0; seg < iter->nr_segs; seg++) {
8572 for (i = seg + 1; i < iter->nr_segs; i++) {
8573 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8574 goto out;
8575 }
5a5f79b5
CM
8576 }
8577 retval = 0;
8578out:
8579 return retval;
8580}
eb838e73 8581
22c6186e
OS
8582static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8583 loff_t offset)
16432985 8584{
4b46fce2
JB
8585 struct file *file = iocb->ki_filp;
8586 struct inode *inode = file->f_mapping->host;
50745b0a 8587 struct btrfs_root *root = BTRFS_I(inode)->root;
8588 struct btrfs_dio_data dio_data = { 0 };
0934856d 8589 size_t count = 0;
2e60a51e 8590 int flags = 0;
38851cc1
MX
8591 bool wakeup = true;
8592 bool relock = false;
0934856d 8593 ssize_t ret;
4b46fce2 8594
6f673763 8595 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8596 return 0;
3f7c579c 8597
fe0f07d0 8598 inode_dio_begin(inode);
4e857c58 8599 smp_mb__after_atomic();
38851cc1 8600
0e267c44 8601 /*
41bd9ca4
MX
8602 * The generic stuff only does filemap_write_and_wait_range, which
8603 * isn't enough if we've written compressed pages to this area, so
8604 * we need to flush the dirty pages again to make absolutely sure
8605 * that any outstanding dirty pages are on disk.
0e267c44 8606 */
a6cbcd4a 8607 count = iov_iter_count(iter);
41bd9ca4
MX
8608 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8609 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8610 filemap_fdatawrite_range(inode->i_mapping, offset,
8611 offset + count - 1);
0e267c44 8612
6f673763 8613 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8614 /*
8615 * If the write DIO is beyond the EOF, we need update
8616 * the isize, but it is protected by i_mutex. So we can
8617 * not unlock the i_mutex at this case.
8618 */
8619 if (offset + count <= inode->i_size) {
5955102c 8620 inode_unlock(inode);
38851cc1
MX
8621 relock = true;
8622 }
7cf5b976 8623 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8624 if (ret)
38851cc1 8625 goto out;
50745b0a 8626 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8627 BTRFS_MAX_EXTENT_SIZE - 1,
8628 BTRFS_MAX_EXTENT_SIZE);
8629
8630 /*
8631 * We need to know how many extents we reserved so that we can
8632 * do the accounting properly if we go over the number we
8633 * originally calculated. Abuse current->journal_info for this.
8634 */
50745b0a 8635 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8636 dio_data.unsubmitted_oe_range_start = (u64)offset;
8637 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8638 current->journal_info = &dio_data;
ee39b432
DS
8639 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8640 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8641 inode_dio_end(inode);
38851cc1
MX
8642 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8643 wakeup = false;
0934856d
MX
8644 }
8645
17f8c842
OS
8646 ret = __blockdev_direct_IO(iocb, inode,
8647 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8648 iter, offset, btrfs_get_blocks_direct, NULL,
8649 btrfs_submit_direct, flags);
6f673763 8650 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8651 current->journal_info = NULL;
ddba1bfc 8652 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8653 if (dio_data.reserve)
7cf5b976
QW
8654 btrfs_delalloc_release_space(inode, offset,
8655 dio_data.reserve);
f28a4928
FM
8656 /*
8657 * On error we might have left some ordered extents
8658 * without submitting corresponding bios for them, so
8659 * cleanup them up to avoid other tasks getting them
8660 * and waiting for them to complete forever.
8661 */
8662 if (dio_data.unsubmitted_oe_range_start <
8663 dio_data.unsubmitted_oe_range_end)
8664 btrfs_endio_direct_write_update_ordered(inode,
8665 dio_data.unsubmitted_oe_range_start,
8666 dio_data.unsubmitted_oe_range_end -
8667 dio_data.unsubmitted_oe_range_start,
8668 0);
ddba1bfc 8669 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8670 btrfs_delalloc_release_space(inode, offset,
8671 count - (size_t)ret);
0934856d 8672 }
38851cc1 8673out:
2e60a51e 8674 if (wakeup)
fe0f07d0 8675 inode_dio_end(inode);
38851cc1 8676 if (relock)
5955102c 8677 inode_lock(inode);
0934856d
MX
8678
8679 return ret;
16432985
CM
8680}
8681
05dadc09
TI
8682#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8683
1506fcc8
YS
8684static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8685 __u64 start, __u64 len)
8686{
05dadc09
TI
8687 int ret;
8688
8689 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8690 if (ret)
8691 return ret;
8692
ec29ed5b 8693 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8694}
8695
a52d9a80 8696int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8697{
d1310b2e
CM
8698 struct extent_io_tree *tree;
8699 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8700 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8701}
1832a6d5 8702
a52d9a80 8703static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8704{
d1310b2e 8705 struct extent_io_tree *tree;
be7bd730
JB
8706 struct inode *inode = page->mapping->host;
8707 int ret;
b888db2b
CM
8708
8709 if (current->flags & PF_MEMALLOC) {
8710 redirty_page_for_writepage(wbc, page);
8711 unlock_page(page);
8712 return 0;
8713 }
be7bd730
JB
8714
8715 /*
8716 * If we are under memory pressure we will call this directly from the
8717 * VM, we need to make sure we have the inode referenced for the ordered
8718 * extent. If not just return like we didn't do anything.
8719 */
8720 if (!igrab(inode)) {
8721 redirty_page_for_writepage(wbc, page);
8722 return AOP_WRITEPAGE_ACTIVATE;
8723 }
d1310b2e 8724 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8725 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8726 btrfs_add_delayed_iput(inode);
8727 return ret;
9ebefb18
CM
8728}
8729
48a3b636
ES
8730static int btrfs_writepages(struct address_space *mapping,
8731 struct writeback_control *wbc)
b293f02e 8732{
d1310b2e 8733 struct extent_io_tree *tree;
771ed689 8734
d1310b2e 8735 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8736 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8737}
8738
3ab2fb5a
CM
8739static int
8740btrfs_readpages(struct file *file, struct address_space *mapping,
8741 struct list_head *pages, unsigned nr_pages)
8742{
d1310b2e
CM
8743 struct extent_io_tree *tree;
8744 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8745 return extent_readpages(tree, mapping, pages, nr_pages,
8746 btrfs_get_extent);
8747}
e6dcd2dc 8748static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8749{
d1310b2e
CM
8750 struct extent_io_tree *tree;
8751 struct extent_map_tree *map;
a52d9a80 8752 int ret;
8c2383c3 8753
d1310b2e
CM
8754 tree = &BTRFS_I(page->mapping->host)->io_tree;
8755 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8756 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8757 if (ret == 1) {
8758 ClearPagePrivate(page);
8759 set_page_private(page, 0);
09cbfeaf 8760 put_page(page);
39279cc3 8761 }
a52d9a80 8762 return ret;
39279cc3
CM
8763}
8764
e6dcd2dc
CM
8765static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8766{
98509cfc
CM
8767 if (PageWriteback(page) || PageDirty(page))
8768 return 0;
b335b003 8769 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8770}
8771
d47992f8
LC
8772static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8773 unsigned int length)
39279cc3 8774{
5fd02043 8775 struct inode *inode = page->mapping->host;
d1310b2e 8776 struct extent_io_tree *tree;
e6dcd2dc 8777 struct btrfs_ordered_extent *ordered;
2ac55d41 8778 struct extent_state *cached_state = NULL;
e6dcd2dc 8779 u64 page_start = page_offset(page);
09cbfeaf 8780 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8781 u64 start;
8782 u64 end;
131e404a 8783 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8784
8b62b72b
CM
8785 /*
8786 * we have the page locked, so new writeback can't start,
8787 * and the dirty bit won't be cleared while we are here.
8788 *
8789 * Wait for IO on this page so that we can safely clear
8790 * the PagePrivate2 bit and do ordered accounting
8791 */
e6dcd2dc 8792 wait_on_page_writeback(page);
8b62b72b 8793
5fd02043 8794 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8795 if (offset) {
8796 btrfs_releasepage(page, GFP_NOFS);
8797 return;
8798 }
131e404a
FDBM
8799
8800 if (!inode_evicting)
ff13db41 8801 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8802again:
8803 start = page_start;
8804 ordered = btrfs_lookup_ordered_range(inode, start,
8805 page_end - start + 1);
e6dcd2dc 8806 if (ordered) {
dbfdb6d1 8807 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8808 /*
8809 * IO on this page will never be started, so we need
8810 * to account for any ordered extents now
8811 */
131e404a 8812 if (!inode_evicting)
dbfdb6d1 8813 clear_extent_bit(tree, start, end,
131e404a
FDBM
8814 EXTENT_DIRTY | EXTENT_DELALLOC |
8815 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8816 EXTENT_DEFRAG, 1, 0, &cached_state,
8817 GFP_NOFS);
8b62b72b
CM
8818 /*
8819 * whoever cleared the private bit is responsible
8820 * for the finish_ordered_io
8821 */
77cef2ec
JB
8822 if (TestClearPagePrivate2(page)) {
8823 struct btrfs_ordered_inode_tree *tree;
8824 u64 new_len;
8825
8826 tree = &BTRFS_I(inode)->ordered_tree;
8827
8828 spin_lock_irq(&tree->lock);
8829 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8830 new_len = start - ordered->file_offset;
77cef2ec
JB
8831 if (new_len < ordered->truncated_len)
8832 ordered->truncated_len = new_len;
8833 spin_unlock_irq(&tree->lock);
8834
8835 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8836 start,
8837 end - start + 1, 1))
77cef2ec 8838 btrfs_finish_ordered_io(ordered);
8b62b72b 8839 }
e6dcd2dc 8840 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8841 if (!inode_evicting) {
8842 cached_state = NULL;
dbfdb6d1 8843 lock_extent_bits(tree, start, end,
131e404a
FDBM
8844 &cached_state);
8845 }
dbfdb6d1
CR
8846
8847 start = end + 1;
8848 if (start < page_end)
8849 goto again;
131e404a
FDBM
8850 }
8851
b9d0b389
QW
8852 /*
8853 * Qgroup reserved space handler
8854 * Page here will be either
8855 * 1) Already written to disk
8856 * In this case, its reserved space is released from data rsv map
8857 * and will be freed by delayed_ref handler finally.
8858 * So even we call qgroup_free_data(), it won't decrease reserved
8859 * space.
8860 * 2) Not written to disk
8861 * This means the reserved space should be freed here.
8862 */
09cbfeaf 8863 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8864 if (!inode_evicting) {
8865 clear_extent_bit(tree, page_start, page_end,
8866 EXTENT_LOCKED | EXTENT_DIRTY |
8867 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8868 EXTENT_DEFRAG, 1, 1,
8869 &cached_state, GFP_NOFS);
8870
8871 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8872 }
e6dcd2dc 8873
4a096752 8874 ClearPageChecked(page);
9ad6b7bc 8875 if (PagePrivate(page)) {
9ad6b7bc
CM
8876 ClearPagePrivate(page);
8877 set_page_private(page, 0);
09cbfeaf 8878 put_page(page);
9ad6b7bc 8879 }
39279cc3
CM
8880}
8881
9ebefb18
CM
8882/*
8883 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8884 * called from a page fault handler when a page is first dirtied. Hence we must
8885 * be careful to check for EOF conditions here. We set the page up correctly
8886 * for a written page which means we get ENOSPC checking when writing into
8887 * holes and correct delalloc and unwritten extent mapping on filesystems that
8888 * support these features.
8889 *
8890 * We are not allowed to take the i_mutex here so we have to play games to
8891 * protect against truncate races as the page could now be beyond EOF. Because
8892 * vmtruncate() writes the inode size before removing pages, once we have the
8893 * page lock we can determine safely if the page is beyond EOF. If it is not
8894 * beyond EOF, then the page is guaranteed safe against truncation until we
8895 * unlock the page.
8896 */
c2ec175c 8897int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8898{
c2ec175c 8899 struct page *page = vmf->page;
496ad9aa 8900 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8901 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8903 struct btrfs_ordered_extent *ordered;
2ac55d41 8904 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8905 char *kaddr;
8906 unsigned long zero_start;
9ebefb18 8907 loff_t size;
1832a6d5 8908 int ret;
9998eb70 8909 int reserved = 0;
d0b7da88 8910 u64 reserved_space;
a52d9a80 8911 u64 page_start;
e6dcd2dc 8912 u64 page_end;
d0b7da88
CR
8913 u64 end;
8914
09cbfeaf 8915 reserved_space = PAGE_SIZE;
9ebefb18 8916
b2b5ef5c 8917 sb_start_pagefault(inode->i_sb);
df480633 8918 page_start = page_offset(page);
09cbfeaf 8919 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8920 end = page_end;
df480633 8921
d0b7da88
CR
8922 /*
8923 * Reserving delalloc space after obtaining the page lock can lead to
8924 * deadlock. For example, if a dirty page is locked by this function
8925 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8926 * dirty page write out, then the btrfs_writepage() function could
8927 * end up waiting indefinitely to get a lock on the page currently
8928 * being processed by btrfs_page_mkwrite() function.
8929 */
7cf5b976 8930 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8931 reserved_space);
9998eb70 8932 if (!ret) {
e41f941a 8933 ret = file_update_time(vma->vm_file);
9998eb70
CM
8934 reserved = 1;
8935 }
56a76f82
NP
8936 if (ret) {
8937 if (ret == -ENOMEM)
8938 ret = VM_FAULT_OOM;
8939 else /* -ENOSPC, -EIO, etc */
8940 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8941 if (reserved)
8942 goto out;
8943 goto out_noreserve;
56a76f82 8944 }
1832a6d5 8945
56a76f82 8946 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8947again:
9ebefb18 8948 lock_page(page);
9ebefb18 8949 size = i_size_read(inode);
a52d9a80 8950
9ebefb18 8951 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8952 (page_start >= size)) {
9ebefb18
CM
8953 /* page got truncated out from underneath us */
8954 goto out_unlock;
8955 }
e6dcd2dc
CM
8956 wait_on_page_writeback(page);
8957
ff13db41 8958 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8959 set_page_extent_mapped(page);
8960
eb84ae03
CM
8961 /*
8962 * we can't set the delalloc bits if there are pending ordered
8963 * extents. Drop our locks and wait for them to finish
8964 */
d0b7da88 8965 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8966 if (ordered) {
2ac55d41
JB
8967 unlock_extent_cached(io_tree, page_start, page_end,
8968 &cached_state, GFP_NOFS);
e6dcd2dc 8969 unlock_page(page);
eb84ae03 8970 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8971 btrfs_put_ordered_extent(ordered);
8972 goto again;
8973 }
8974
09cbfeaf 8975 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8976 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8977 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8978 end = page_start + reserved_space - 1;
8979 spin_lock(&BTRFS_I(inode)->lock);
8980 BTRFS_I(inode)->outstanding_extents++;
8981 spin_unlock(&BTRFS_I(inode)->lock);
8982 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 8983 PAGE_SIZE - reserved_space);
d0b7da88
CR
8984 }
8985 }
8986
fbf19087
JB
8987 /*
8988 * XXX - page_mkwrite gets called every time the page is dirtied, even
8989 * if it was already dirty, so for space accounting reasons we need to
8990 * clear any delalloc bits for the range we are fixing to save. There
8991 * is probably a better way to do this, but for now keep consistent with
8992 * prepare_pages in the normal write path.
8993 */
d0b7da88 8994 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8995 EXTENT_DIRTY | EXTENT_DELALLOC |
8996 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8997 0, 0, &cached_state, GFP_NOFS);
fbf19087 8998
d0b7da88 8999 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9000 &cached_state);
9ed74f2d 9001 if (ret) {
2ac55d41
JB
9002 unlock_extent_cached(io_tree, page_start, page_end,
9003 &cached_state, GFP_NOFS);
9ed74f2d
JB
9004 ret = VM_FAULT_SIGBUS;
9005 goto out_unlock;
9006 }
e6dcd2dc 9007 ret = 0;
9ebefb18
CM
9008
9009 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9010 if (page_start + PAGE_SIZE > size)
9011 zero_start = size & ~PAGE_MASK;
9ebefb18 9012 else
09cbfeaf 9013 zero_start = PAGE_SIZE;
9ebefb18 9014
09cbfeaf 9015 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9016 kaddr = kmap(page);
09cbfeaf 9017 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9018 flush_dcache_page(page);
9019 kunmap(page);
9020 }
247e743c 9021 ClearPageChecked(page);
e6dcd2dc 9022 set_page_dirty(page);
50a9b214 9023 SetPageUptodate(page);
5a3f23d5 9024
257c62e1
CM
9025 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9026 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9027 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9028
2ac55d41 9029 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9030
9031out_unlock:
b2b5ef5c
JK
9032 if (!ret) {
9033 sb_end_pagefault(inode->i_sb);
50a9b214 9034 return VM_FAULT_LOCKED;
b2b5ef5c 9035 }
9ebefb18 9036 unlock_page(page);
1832a6d5 9037out:
d0b7da88 9038 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9039out_noreserve:
b2b5ef5c 9040 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9041 return ret;
9042}
9043
a41ad394 9044static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9045{
9046 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9047 struct btrfs_block_rsv *rsv;
a71754fc 9048 int ret = 0;
3893e33b 9049 int err = 0;
39279cc3 9050 struct btrfs_trans_handle *trans;
dbe674a9 9051 u64 mask = root->sectorsize - 1;
07127184 9052 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9053
0ef8b726
JB
9054 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9055 (u64)-1);
9056 if (ret)
9057 return ret;
39279cc3 9058
fcb80c2a
JB
9059 /*
9060 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
9061 * 3 things going on here
9062 *
9063 * 1) We need to reserve space for our orphan item and the space to
9064 * delete our orphan item. Lord knows we don't want to have a dangling
9065 * orphan item because we didn't reserve space to remove it.
9066 *
9067 * 2) We need to reserve space to update our inode.
9068 *
9069 * 3) We need to have something to cache all the space that is going to
9070 * be free'd up by the truncate operation, but also have some slack
9071 * space reserved in case it uses space during the truncate (thank you
9072 * very much snapshotting).
9073 *
9074 * And we need these to all be seperate. The fact is we can use alot of
9075 * space doing the truncate, and we have no earthly idea how much space
9076 * we will use, so we need the truncate reservation to be seperate so it
9077 * doesn't end up using space reserved for updating the inode or
9078 * removing the orphan item. We also need to be able to stop the
9079 * transaction and start a new one, which means we need to be able to
9080 * update the inode several times, and we have no idea of knowing how
9081 * many times that will be, so we can't just reserve 1 item for the
9082 * entirety of the opration, so that has to be done seperately as well.
9083 * Then there is the orphan item, which does indeed need to be held on
9084 * to for the whole operation, and we need nobody to touch this reserved
9085 * space except the orphan code.
9086 *
9087 * So that leaves us with
9088 *
9089 * 1) root->orphan_block_rsv - for the orphan deletion.
9090 * 2) rsv - for the truncate reservation, which we will steal from the
9091 * transaction reservation.
9092 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9093 * updating the inode.
9094 */
66d8f3dd 9095 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9096 if (!rsv)
9097 return -ENOMEM;
4a338542 9098 rsv->size = min_size;
ca7e70f5 9099 rsv->failfast = 1;
f0cd846e 9100
907cbceb 9101 /*
07127184 9102 * 1 for the truncate slack space
907cbceb
JB
9103 * 1 for updating the inode.
9104 */
f3fe820c 9105 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9106 if (IS_ERR(trans)) {
9107 err = PTR_ERR(trans);
9108 goto out;
9109 }
f0cd846e 9110
907cbceb
JB
9111 /* Migrate the slack space for the truncate to our reserve */
9112 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9113 min_size);
fcb80c2a 9114 BUG_ON(ret);
f0cd846e 9115
5dc562c5
JB
9116 /*
9117 * So if we truncate and then write and fsync we normally would just
9118 * write the extents that changed, which is a problem if we need to
9119 * first truncate that entire inode. So set this flag so we write out
9120 * all of the extents in the inode to the sync log so we're completely
9121 * safe.
9122 */
9123 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9124 trans->block_rsv = rsv;
907cbceb 9125
8082510e
YZ
9126 while (1) {
9127 ret = btrfs_truncate_inode_items(trans, root, inode,
9128 inode->i_size,
9129 BTRFS_EXTENT_DATA_KEY);
28ed1345 9130 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9131 err = ret;
8082510e 9132 break;
3893e33b 9133 }
39279cc3 9134
fcb80c2a 9135 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9136 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9137 if (ret) {
9138 err = ret;
9139 break;
9140 }
ca7e70f5 9141
8082510e 9142 btrfs_end_transaction(trans, root);
b53d3f5d 9143 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9144
9145 trans = btrfs_start_transaction(root, 2);
9146 if (IS_ERR(trans)) {
9147 ret = err = PTR_ERR(trans);
9148 trans = NULL;
9149 break;
9150 }
9151
9152 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9153 rsv, min_size);
9154 BUG_ON(ret); /* shouldn't happen */
9155 trans->block_rsv = rsv;
8082510e
YZ
9156 }
9157
9158 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9159 trans->block_rsv = root->orphan_block_rsv;
8082510e 9160 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9161 if (ret)
9162 err = ret;
8082510e
YZ
9163 }
9164
917c16b2
CM
9165 if (trans) {
9166 trans->block_rsv = &root->fs_info->trans_block_rsv;
9167 ret = btrfs_update_inode(trans, root, inode);
9168 if (ret && !err)
9169 err = ret;
7b128766 9170
7ad85bb7 9171 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9172 btrfs_btree_balance_dirty(root);
917c16b2 9173 }
fcb80c2a
JB
9174
9175out:
9176 btrfs_free_block_rsv(root, rsv);
9177
3893e33b
JB
9178 if (ret && !err)
9179 err = ret;
a41ad394 9180
3893e33b 9181 return err;
39279cc3
CM
9182}
9183
d352ac68
CM
9184/*
9185 * create a new subvolume directory/inode (helper for the ioctl).
9186 */
d2fb3437 9187int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9188 struct btrfs_root *new_root,
9189 struct btrfs_root *parent_root,
9190 u64 new_dirid)
39279cc3 9191{
39279cc3 9192 struct inode *inode;
76dda93c 9193 int err;
00e4e6b3 9194 u64 index = 0;
39279cc3 9195
12fc9d09
FA
9196 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9197 new_dirid, new_dirid,
9198 S_IFDIR | (~current_umask() & S_IRWXUGO),
9199 &index);
54aa1f4d 9200 if (IS_ERR(inode))
f46b5a66 9201 return PTR_ERR(inode);
39279cc3
CM
9202 inode->i_op = &btrfs_dir_inode_operations;
9203 inode->i_fop = &btrfs_dir_file_operations;
9204
bfe86848 9205 set_nlink(inode, 1);
dbe674a9 9206 btrfs_i_size_write(inode, 0);
b0d5d10f 9207 unlock_new_inode(inode);
3b96362c 9208
63541927
FDBM
9209 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9210 if (err)
9211 btrfs_err(new_root->fs_info,
351fd353 9212 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9213 new_root->root_key.objectid, err);
9214
76dda93c 9215 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9216
76dda93c 9217 iput(inode);
ce598979 9218 return err;
39279cc3
CM
9219}
9220
39279cc3
CM
9221struct inode *btrfs_alloc_inode(struct super_block *sb)
9222{
9223 struct btrfs_inode *ei;
2ead6ae7 9224 struct inode *inode;
39279cc3
CM
9225
9226 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9227 if (!ei)
9228 return NULL;
2ead6ae7
YZ
9229
9230 ei->root = NULL;
2ead6ae7 9231 ei->generation = 0;
15ee9bc7 9232 ei->last_trans = 0;
257c62e1 9233 ei->last_sub_trans = 0;
e02119d5 9234 ei->logged_trans = 0;
2ead6ae7 9235 ei->delalloc_bytes = 0;
47059d93 9236 ei->defrag_bytes = 0;
2ead6ae7
YZ
9237 ei->disk_i_size = 0;
9238 ei->flags = 0;
7709cde3 9239 ei->csum_bytes = 0;
2ead6ae7 9240 ei->index_cnt = (u64)-1;
67de1176 9241 ei->dir_index = 0;
2ead6ae7 9242 ei->last_unlink_trans = 0;
46d8bc34 9243 ei->last_log_commit = 0;
8089fe62 9244 ei->delayed_iput_count = 0;
2ead6ae7 9245
9e0baf60
JB
9246 spin_lock_init(&ei->lock);
9247 ei->outstanding_extents = 0;
9248 ei->reserved_extents = 0;
2ead6ae7 9249
72ac3c0d 9250 ei->runtime_flags = 0;
261507a0 9251 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9252
16cdcec7
MX
9253 ei->delayed_node = NULL;
9254
9cc97d64 9255 ei->i_otime.tv_sec = 0;
9256 ei->i_otime.tv_nsec = 0;
9257
2ead6ae7 9258 inode = &ei->vfs_inode;
a8067e02 9259 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9260 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9261 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9262 ei->io_tree.track_uptodate = 1;
9263 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9264 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9265 mutex_init(&ei->log_mutex);
f248679e 9266 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9267 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9268 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9269 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7
YZ
9270 RB_CLEAR_NODE(&ei->rb_node);
9271
9272 return inode;
39279cc3
CM
9273}
9274
aaedb55b
JB
9275#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9276void btrfs_test_destroy_inode(struct inode *inode)
9277{
9278 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9279 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9280}
9281#endif
9282
fa0d7e3d
NP
9283static void btrfs_i_callback(struct rcu_head *head)
9284{
9285 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9286 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287}
9288
39279cc3
CM
9289void btrfs_destroy_inode(struct inode *inode)
9290{
e6dcd2dc 9291 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9292 struct btrfs_root *root = BTRFS_I(inode)->root;
9293
b3d9b7a3 9294 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9295 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9296 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9297 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9298 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9299 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9300 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9301
a6dbd429
JB
9302 /*
9303 * This can happen where we create an inode, but somebody else also
9304 * created the same inode and we need to destroy the one we already
9305 * created.
9306 */
9307 if (!root)
9308 goto free;
9309
8a35d95f
JB
9310 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9311 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9312 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9313 btrfs_ino(inode));
8a35d95f 9314 atomic_dec(&root->orphan_inodes);
7b128766 9315 }
7b128766 9316
d397712b 9317 while (1) {
e6dcd2dc
CM
9318 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9319 if (!ordered)
9320 break;
9321 else {
c2cf52eb 9322 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9323 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9324 btrfs_remove_ordered_extent(inode, ordered);
9325 btrfs_put_ordered_extent(ordered);
9326 btrfs_put_ordered_extent(ordered);
9327 }
9328 }
56fa9d07 9329 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9330 inode_tree_del(inode);
5b21f2ed 9331 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9332free:
fa0d7e3d 9333 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9334}
9335
45321ac5 9336int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9337{
9338 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9339
6379ef9f
NA
9340 if (root == NULL)
9341 return 1;
9342
fa6ac876 9343 /* the snap/subvol tree is on deleting */
69e9c6c6 9344 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9345 return 1;
76dda93c 9346 else
45321ac5 9347 return generic_drop_inode(inode);
76dda93c
YZ
9348}
9349
0ee0fda0 9350static void init_once(void *foo)
39279cc3
CM
9351{
9352 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9353
9354 inode_init_once(&ei->vfs_inode);
9355}
9356
9357void btrfs_destroy_cachep(void)
9358{
8c0a8537
KS
9359 /*
9360 * Make sure all delayed rcu free inodes are flushed before we
9361 * destroy cache.
9362 */
9363 rcu_barrier();
5598e900
KM
9364 kmem_cache_destroy(btrfs_inode_cachep);
9365 kmem_cache_destroy(btrfs_trans_handle_cachep);
9366 kmem_cache_destroy(btrfs_transaction_cachep);
9367 kmem_cache_destroy(btrfs_path_cachep);
9368 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9369}
9370
9371int btrfs_init_cachep(void)
9372{
837e1972 9373 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9374 sizeof(struct btrfs_inode), 0,
5d097056
VD
9375 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9376 init_once);
39279cc3
CM
9377 if (!btrfs_inode_cachep)
9378 goto fail;
9601e3f6 9379
837e1972 9380 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9381 sizeof(struct btrfs_trans_handle), 0,
9382 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9383 if (!btrfs_trans_handle_cachep)
9384 goto fail;
9601e3f6 9385
837e1972 9386 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9387 sizeof(struct btrfs_transaction), 0,
9388 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9389 if (!btrfs_transaction_cachep)
9390 goto fail;
9601e3f6 9391
837e1972 9392 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9393 sizeof(struct btrfs_path), 0,
9394 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9395 if (!btrfs_path_cachep)
9396 goto fail;
9601e3f6 9397
837e1972 9398 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9399 sizeof(struct btrfs_free_space), 0,
9400 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9401 if (!btrfs_free_space_cachep)
9402 goto fail;
9403
39279cc3
CM
9404 return 0;
9405fail:
9406 btrfs_destroy_cachep();
9407 return -ENOMEM;
9408}
9409
9410static int btrfs_getattr(struct vfsmount *mnt,
9411 struct dentry *dentry, struct kstat *stat)
9412{
df0af1a5 9413 u64 delalloc_bytes;
2b0143b5 9414 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9415 u32 blocksize = inode->i_sb->s_blocksize;
9416
39279cc3 9417 generic_fillattr(inode, stat);
0ee5dc67 9418 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9419
9420 spin_lock(&BTRFS_I(inode)->lock);
9421 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9422 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9423 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9424 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9425 return 0;
9426}
9427
cdd1fedf
DF
9428static int btrfs_rename_exchange(struct inode *old_dir,
9429 struct dentry *old_dentry,
9430 struct inode *new_dir,
9431 struct dentry *new_dentry)
9432{
9433 struct btrfs_trans_handle *trans;
9434 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9435 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9436 struct inode *new_inode = new_dentry->d_inode;
9437 struct inode *old_inode = old_dentry->d_inode;
9438 struct timespec ctime = CURRENT_TIME;
9439 struct dentry *parent;
9440 u64 old_ino = btrfs_ino(old_inode);
9441 u64 new_ino = btrfs_ino(new_inode);
9442 u64 old_idx = 0;
9443 u64 new_idx = 0;
9444 u64 root_objectid;
9445 int ret;
86e8aa0e
FM
9446 bool root_log_pinned = false;
9447 bool dest_log_pinned = false;
cdd1fedf
DF
9448
9449 /* we only allow rename subvolume link between subvolumes */
9450 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9451 return -EXDEV;
9452
9453 /* close the race window with snapshot create/destroy ioctl */
9454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9455 down_read(&root->fs_info->subvol_sem);
9456 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9457 down_read(&dest->fs_info->subvol_sem);
9458
9459 /*
9460 * We want to reserve the absolute worst case amount of items. So if
9461 * both inodes are subvols and we need to unlink them then that would
9462 * require 4 item modifications, but if they are both normal inodes it
9463 * would require 5 item modifications, so we'll assume their normal
9464 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9465 * should cover the worst case number of items we'll modify.
9466 */
9467 trans = btrfs_start_transaction(root, 12);
9468 if (IS_ERR(trans)) {
9469 ret = PTR_ERR(trans);
9470 goto out_notrans;
9471 }
9472
9473 /*
9474 * We need to find a free sequence number both in the source and
9475 * in the destination directory for the exchange.
9476 */
9477 ret = btrfs_set_inode_index(new_dir, &old_idx);
9478 if (ret)
9479 goto out_fail;
9480 ret = btrfs_set_inode_index(old_dir, &new_idx);
9481 if (ret)
9482 goto out_fail;
9483
9484 BTRFS_I(old_inode)->dir_index = 0ULL;
9485 BTRFS_I(new_inode)->dir_index = 0ULL;
9486
9487 /* Reference for the source. */
9488 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9489 /* force full log commit if subvolume involved. */
9490 btrfs_set_log_full_commit(root->fs_info, trans);
9491 } else {
376e5a57
FM
9492 btrfs_pin_log_trans(root);
9493 root_log_pinned = true;
cdd1fedf
DF
9494 ret = btrfs_insert_inode_ref(trans, dest,
9495 new_dentry->d_name.name,
9496 new_dentry->d_name.len,
9497 old_ino,
9498 btrfs_ino(new_dir), old_idx);
9499 if (ret)
9500 goto out_fail;
cdd1fedf
DF
9501 }
9502
9503 /* And now for the dest. */
9504 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9505 /* force full log commit if subvolume involved. */
9506 btrfs_set_log_full_commit(dest->fs_info, trans);
9507 } else {
376e5a57
FM
9508 btrfs_pin_log_trans(dest);
9509 dest_log_pinned = true;
cdd1fedf
DF
9510 ret = btrfs_insert_inode_ref(trans, root,
9511 old_dentry->d_name.name,
9512 old_dentry->d_name.len,
9513 new_ino,
9514 btrfs_ino(old_dir), new_idx);
9515 if (ret)
9516 goto out_fail;
cdd1fedf
DF
9517 }
9518
9519 /* Update inode version and ctime/mtime. */
9520 inode_inc_iversion(old_dir);
9521 inode_inc_iversion(new_dir);
9522 inode_inc_iversion(old_inode);
9523 inode_inc_iversion(new_inode);
9524 old_dir->i_ctime = old_dir->i_mtime = ctime;
9525 new_dir->i_ctime = new_dir->i_mtime = ctime;
9526 old_inode->i_ctime = ctime;
9527 new_inode->i_ctime = ctime;
9528
9529 if (old_dentry->d_parent != new_dentry->d_parent) {
9530 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9531 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9532 }
9533
9534 /* src is a subvolume */
9535 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9536 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9537 ret = btrfs_unlink_subvol(trans, root, old_dir,
9538 root_objectid,
9539 old_dentry->d_name.name,
9540 old_dentry->d_name.len);
9541 } else { /* src is an inode */
9542 ret = __btrfs_unlink_inode(trans, root, old_dir,
9543 old_dentry->d_inode,
9544 old_dentry->d_name.name,
9545 old_dentry->d_name.len);
9546 if (!ret)
9547 ret = btrfs_update_inode(trans, root, old_inode);
9548 }
9549 if (ret) {
9550 btrfs_abort_transaction(trans, root, ret);
9551 goto out_fail;
9552 }
9553
9554 /* dest is a subvolume */
9555 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9556 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9557 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9558 root_objectid,
9559 new_dentry->d_name.name,
9560 new_dentry->d_name.len);
9561 } else { /* dest is an inode */
9562 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9563 new_dentry->d_inode,
9564 new_dentry->d_name.name,
9565 new_dentry->d_name.len);
9566 if (!ret)
9567 ret = btrfs_update_inode(trans, dest, new_inode);
9568 }
9569 if (ret) {
9570 btrfs_abort_transaction(trans, root, ret);
9571 goto out_fail;
9572 }
9573
9574 ret = btrfs_add_link(trans, new_dir, old_inode,
9575 new_dentry->d_name.name,
9576 new_dentry->d_name.len, 0, old_idx);
9577 if (ret) {
9578 btrfs_abort_transaction(trans, root, ret);
9579 goto out_fail;
9580 }
9581
9582 ret = btrfs_add_link(trans, old_dir, new_inode,
9583 old_dentry->d_name.name,
9584 old_dentry->d_name.len, 0, new_idx);
9585 if (ret) {
9586 btrfs_abort_transaction(trans, root, ret);
9587 goto out_fail;
9588 }
9589
9590 if (old_inode->i_nlink == 1)
9591 BTRFS_I(old_inode)->dir_index = old_idx;
9592 if (new_inode->i_nlink == 1)
9593 BTRFS_I(new_inode)->dir_index = new_idx;
9594
86e8aa0e 9595 if (root_log_pinned) {
cdd1fedf
DF
9596 parent = new_dentry->d_parent;
9597 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9598 btrfs_end_log_trans(root);
86e8aa0e 9599 root_log_pinned = false;
cdd1fedf 9600 }
86e8aa0e 9601 if (dest_log_pinned) {
cdd1fedf
DF
9602 parent = old_dentry->d_parent;
9603 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9604 btrfs_end_log_trans(dest);
86e8aa0e 9605 dest_log_pinned = false;
cdd1fedf
DF
9606 }
9607out_fail:
86e8aa0e
FM
9608 /*
9609 * If we have pinned a log and an error happened, we unpin tasks
9610 * trying to sync the log and force them to fallback to a transaction
9611 * commit if the log currently contains any of the inodes involved in
9612 * this rename operation (to ensure we do not persist a log with an
9613 * inconsistent state for any of these inodes or leading to any
9614 * inconsistencies when replayed). If the transaction was aborted, the
9615 * abortion reason is propagated to userspace when attempting to commit
9616 * the transaction. If the log does not contain any of these inodes, we
9617 * allow the tasks to sync it.
9618 */
9619 if (ret && (root_log_pinned || dest_log_pinned)) {
9620 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9621 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9622 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9623 (new_inode &&
9624 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9625 btrfs_set_log_full_commit(root->fs_info, trans);
9626
9627 if (root_log_pinned) {
9628 btrfs_end_log_trans(root);
9629 root_log_pinned = false;
9630 }
9631 if (dest_log_pinned) {
9632 btrfs_end_log_trans(dest);
9633 dest_log_pinned = false;
9634 }
9635 }
cdd1fedf
DF
9636 ret = btrfs_end_transaction(trans, root);
9637out_notrans:
9638 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9639 up_read(&dest->fs_info->subvol_sem);
9640 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9641 up_read(&root->fs_info->subvol_sem);
9642
9643 return ret;
9644}
9645
9646static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9647 struct btrfs_root *root,
9648 struct inode *dir,
9649 struct dentry *dentry)
9650{
9651 int ret;
9652 struct inode *inode;
9653 u64 objectid;
9654 u64 index;
9655
9656 ret = btrfs_find_free_ino(root, &objectid);
9657 if (ret)
9658 return ret;
9659
9660 inode = btrfs_new_inode(trans, root, dir,
9661 dentry->d_name.name,
9662 dentry->d_name.len,
9663 btrfs_ino(dir),
9664 objectid,
9665 S_IFCHR | WHITEOUT_MODE,
9666 &index);
9667
9668 if (IS_ERR(inode)) {
9669 ret = PTR_ERR(inode);
9670 return ret;
9671 }
9672
9673 inode->i_op = &btrfs_special_inode_operations;
9674 init_special_inode(inode, inode->i_mode,
9675 WHITEOUT_DEV);
9676
9677 ret = btrfs_init_inode_security(trans, inode, dir,
9678 &dentry->d_name);
9679 if (ret)
c9901618 9680 goto out;
cdd1fedf
DF
9681
9682 ret = btrfs_add_nondir(trans, dir, dentry,
9683 inode, 0, index);
9684 if (ret)
c9901618 9685 goto out;
cdd1fedf
DF
9686
9687 ret = btrfs_update_inode(trans, root, inode);
c9901618 9688out:
cdd1fedf 9689 unlock_new_inode(inode);
c9901618
FM
9690 if (ret)
9691 inode_dec_link_count(inode);
cdd1fedf
DF
9692 iput(inode);
9693
c9901618 9694 return ret;
cdd1fedf
DF
9695}
9696
d397712b 9697static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9698 struct inode *new_dir, struct dentry *new_dentry,
9699 unsigned int flags)
39279cc3
CM
9700{
9701 struct btrfs_trans_handle *trans;
5062af35 9702 unsigned int trans_num_items;
39279cc3 9703 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9704 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9705 struct inode *new_inode = d_inode(new_dentry);
9706 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9707 u64 index = 0;
4df27c4d 9708 u64 root_objectid;
39279cc3 9709 int ret;
33345d01 9710 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9711 bool log_pinned = false;
39279cc3 9712
33345d01 9713 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9714 return -EPERM;
9715
4df27c4d 9716 /* we only allow rename subvolume link between subvolumes */
33345d01 9717 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9718 return -EXDEV;
9719
33345d01
LZ
9720 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9721 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9722 return -ENOTEMPTY;
5f39d397 9723
4df27c4d
YZ
9724 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9725 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9726 return -ENOTEMPTY;
9c52057c
CM
9727
9728
9729 /* check for collisions, even if the name isn't there */
4871c158 9730 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9731 new_dentry->d_name.name,
9732 new_dentry->d_name.len);
9733
9734 if (ret) {
9735 if (ret == -EEXIST) {
9736 /* we shouldn't get
9737 * eexist without a new_inode */
fae7f21c 9738 if (WARN_ON(!new_inode)) {
9c52057c
CM
9739 return ret;
9740 }
9741 } else {
9742 /* maybe -EOVERFLOW */
9743 return ret;
9744 }
9745 }
9746 ret = 0;
9747
5a3f23d5 9748 /*
8d875f95
CM
9749 * we're using rename to replace one file with another. Start IO on it
9750 * now so we don't add too much work to the end of the transaction
5a3f23d5 9751 */
8d875f95 9752 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9753 filemap_flush(old_inode->i_mapping);
9754
76dda93c 9755 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9756 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9757 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9758 /*
9759 * We want to reserve the absolute worst case amount of items. So if
9760 * both inodes are subvols and we need to unlink them then that would
9761 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9762 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9763 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9764 * should cover the worst case number of items we'll modify.
5062af35
FM
9765 * If our rename has the whiteout flag, we need more 5 units for the
9766 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9767 * when selinux is enabled).
a22285a6 9768 */
5062af35
FM
9769 trans_num_items = 11;
9770 if (flags & RENAME_WHITEOUT)
9771 trans_num_items += 5;
9772 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9773 if (IS_ERR(trans)) {
cdd1fedf
DF
9774 ret = PTR_ERR(trans);
9775 goto out_notrans;
9776 }
76dda93c 9777
4df27c4d
YZ
9778 if (dest != root)
9779 btrfs_record_root_in_trans(trans, dest);
5f39d397 9780
a5719521
YZ
9781 ret = btrfs_set_inode_index(new_dir, &index);
9782 if (ret)
9783 goto out_fail;
5a3f23d5 9784
67de1176 9785 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9786 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9787 /* force full log commit if subvolume involved. */
995946dd 9788 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9789 } else {
c4aba954
FM
9790 btrfs_pin_log_trans(root);
9791 log_pinned = true;
a5719521
YZ
9792 ret = btrfs_insert_inode_ref(trans, dest,
9793 new_dentry->d_name.name,
9794 new_dentry->d_name.len,
33345d01
LZ
9795 old_ino,
9796 btrfs_ino(new_dir), index);
a5719521
YZ
9797 if (ret)
9798 goto out_fail;
4df27c4d 9799 }
5a3f23d5 9800
0c4d2d95
JB
9801 inode_inc_iversion(old_dir);
9802 inode_inc_iversion(new_dir);
9803 inode_inc_iversion(old_inode);
04b285f3
DD
9804 old_dir->i_ctime = old_dir->i_mtime =
9805 new_dir->i_ctime = new_dir->i_mtime =
9806 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9807
12fcfd22
CM
9808 if (old_dentry->d_parent != new_dentry->d_parent)
9809 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9810
33345d01 9811 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9812 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9813 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9814 old_dentry->d_name.name,
9815 old_dentry->d_name.len);
9816 } else {
92986796 9817 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9818 d_inode(old_dentry),
92986796
AV
9819 old_dentry->d_name.name,
9820 old_dentry->d_name.len);
9821 if (!ret)
9822 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9823 }
79787eaa
JM
9824 if (ret) {
9825 btrfs_abort_transaction(trans, root, ret);
9826 goto out_fail;
9827 }
39279cc3
CM
9828
9829 if (new_inode) {
0c4d2d95 9830 inode_inc_iversion(new_inode);
04b285f3 9831 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9832 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9833 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9834 root_objectid = BTRFS_I(new_inode)->location.objectid;
9835 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9836 root_objectid,
9837 new_dentry->d_name.name,
9838 new_dentry->d_name.len);
9839 BUG_ON(new_inode->i_nlink == 0);
9840 } else {
9841 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9842 d_inode(new_dentry),
4df27c4d
YZ
9843 new_dentry->d_name.name,
9844 new_dentry->d_name.len);
9845 }
4ef31a45 9846 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9847 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9848 if (ret) {
9849 btrfs_abort_transaction(trans, root, ret);
9850 goto out_fail;
9851 }
39279cc3 9852 }
aec7477b 9853
4df27c4d
YZ
9854 ret = btrfs_add_link(trans, new_dir, old_inode,
9855 new_dentry->d_name.name,
a5719521 9856 new_dentry->d_name.len, 0, index);
79787eaa
JM
9857 if (ret) {
9858 btrfs_abort_transaction(trans, root, ret);
9859 goto out_fail;
9860 }
39279cc3 9861
67de1176
MX
9862 if (old_inode->i_nlink == 1)
9863 BTRFS_I(old_inode)->dir_index = index;
9864
3dc9e8f7 9865 if (log_pinned) {
10d9f309 9866 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9867
6a912213 9868 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9869 btrfs_end_log_trans(root);
3dc9e8f7 9870 log_pinned = false;
4df27c4d 9871 }
cdd1fedf
DF
9872
9873 if (flags & RENAME_WHITEOUT) {
9874 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9875 old_dentry);
9876
9877 if (ret) {
9878 btrfs_abort_transaction(trans, root, ret);
9879 goto out_fail;
9880 }
9881 }
39279cc3 9882out_fail:
3dc9e8f7
FM
9883 /*
9884 * If we have pinned the log and an error happened, we unpin tasks
9885 * trying to sync the log and force them to fallback to a transaction
9886 * commit if the log currently contains any of the inodes involved in
9887 * this rename operation (to ensure we do not persist a log with an
9888 * inconsistent state for any of these inodes or leading to any
9889 * inconsistencies when replayed). If the transaction was aborted, the
9890 * abortion reason is propagated to userspace when attempting to commit
9891 * the transaction. If the log does not contain any of these inodes, we
9892 * allow the tasks to sync it.
9893 */
9894 if (ret && log_pinned) {
9895 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9896 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9897 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9898 (new_inode &&
9899 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9900 btrfs_set_log_full_commit(root->fs_info, trans);
9901
9902 btrfs_end_log_trans(root);
9903 log_pinned = false;
9904 }
7ad85bb7 9905 btrfs_end_transaction(trans, root);
b44c59a8 9906out_notrans:
33345d01 9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9908 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9909
39279cc3
CM
9910 return ret;
9911}
9912
80ace85c
MS
9913static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9914 struct inode *new_dir, struct dentry *new_dentry,
9915 unsigned int flags)
9916{
cdd1fedf 9917 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9918 return -EINVAL;
9919
cdd1fedf
DF
9920 if (flags & RENAME_EXCHANGE)
9921 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9922 new_dentry);
9923
9924 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9925}
9926
8ccf6f19
MX
9927static void btrfs_run_delalloc_work(struct btrfs_work *work)
9928{
9929 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9930 struct inode *inode;
8ccf6f19
MX
9931
9932 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9933 work);
9f23e289 9934 inode = delalloc_work->inode;
30424601
DS
9935 filemap_flush(inode->i_mapping);
9936 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9937 &BTRFS_I(inode)->runtime_flags))
9f23e289 9938 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9939
9940 if (delalloc_work->delay_iput)
9f23e289 9941 btrfs_add_delayed_iput(inode);
8ccf6f19 9942 else
9f23e289 9943 iput(inode);
8ccf6f19
MX
9944 complete(&delalloc_work->completion);
9945}
9946
9947struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9948 int delay_iput)
8ccf6f19
MX
9949{
9950 struct btrfs_delalloc_work *work;
9951
100d5702 9952 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9953 if (!work)
9954 return NULL;
9955
9956 init_completion(&work->completion);
9957 INIT_LIST_HEAD(&work->list);
9958 work->inode = inode;
8ccf6f19 9959 work->delay_iput = delay_iput;
9e0af237
LB
9960 WARN_ON_ONCE(!inode);
9961 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9962 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9963
9964 return work;
9965}
9966
9967void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9968{
9969 wait_for_completion(&work->completion);
100d5702 9970 kfree(work);
8ccf6f19
MX
9971}
9972
d352ac68
CM
9973/*
9974 * some fairly slow code that needs optimization. This walks the list
9975 * of all the inodes with pending delalloc and forces them to disk.
9976 */
6c255e67
MX
9977static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9978 int nr)
ea8c2819 9979{
ea8c2819 9980 struct btrfs_inode *binode;
5b21f2ed 9981 struct inode *inode;
8ccf6f19
MX
9982 struct btrfs_delalloc_work *work, *next;
9983 struct list_head works;
1eafa6c7 9984 struct list_head splice;
8ccf6f19 9985 int ret = 0;
ea8c2819 9986
8ccf6f19 9987 INIT_LIST_HEAD(&works);
1eafa6c7 9988 INIT_LIST_HEAD(&splice);
63607cc8 9989
573bfb72 9990 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9991 spin_lock(&root->delalloc_lock);
9992 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9993 while (!list_empty(&splice)) {
9994 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9995 delalloc_inodes);
1eafa6c7 9996
eb73c1b7
MX
9997 list_move_tail(&binode->delalloc_inodes,
9998 &root->delalloc_inodes);
5b21f2ed 9999 inode = igrab(&binode->vfs_inode);
df0af1a5 10000 if (!inode) {
eb73c1b7 10001 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10002 continue;
df0af1a5 10003 }
eb73c1b7 10004 spin_unlock(&root->delalloc_lock);
1eafa6c7 10005
651d494a 10006 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10007 if (!work) {
f4ab9ea7
JB
10008 if (delay_iput)
10009 btrfs_add_delayed_iput(inode);
10010 else
10011 iput(inode);
1eafa6c7 10012 ret = -ENOMEM;
a1ecaabb 10013 goto out;
5b21f2ed 10014 }
1eafa6c7 10015 list_add_tail(&work->list, &works);
a44903ab
QW
10016 btrfs_queue_work(root->fs_info->flush_workers,
10017 &work->work);
6c255e67
MX
10018 ret++;
10019 if (nr != -1 && ret >= nr)
a1ecaabb 10020 goto out;
5b21f2ed 10021 cond_resched();
eb73c1b7 10022 spin_lock(&root->delalloc_lock);
ea8c2819 10023 }
eb73c1b7 10024 spin_unlock(&root->delalloc_lock);
8c8bee1d 10025
a1ecaabb 10026out:
eb73c1b7
MX
10027 list_for_each_entry_safe(work, next, &works, list) {
10028 list_del_init(&work->list);
10029 btrfs_wait_and_free_delalloc_work(work);
10030 }
10031
10032 if (!list_empty_careful(&splice)) {
10033 spin_lock(&root->delalloc_lock);
10034 list_splice_tail(&splice, &root->delalloc_inodes);
10035 spin_unlock(&root->delalloc_lock);
10036 }
573bfb72 10037 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10038 return ret;
10039}
1eafa6c7 10040
eb73c1b7
MX
10041int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10042{
10043 int ret;
1eafa6c7 10044
2c21b4d7 10045 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10046 return -EROFS;
10047
6c255e67
MX
10048 ret = __start_delalloc_inodes(root, delay_iput, -1);
10049 if (ret > 0)
10050 ret = 0;
eb73c1b7
MX
10051 /*
10052 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10053 * we have to make sure the IO is actually started and that
10054 * ordered extents get created before we return
10055 */
10056 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10057 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10058 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10059 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10060 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10061 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10062 }
10063 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10064 return ret;
10065}
10066
6c255e67
MX
10067int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10068 int nr)
eb73c1b7
MX
10069{
10070 struct btrfs_root *root;
10071 struct list_head splice;
10072 int ret;
10073
2c21b4d7 10074 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10075 return -EROFS;
10076
10077 INIT_LIST_HEAD(&splice);
10078
573bfb72 10079 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10080 spin_lock(&fs_info->delalloc_root_lock);
10081 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10082 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10083 root = list_first_entry(&splice, struct btrfs_root,
10084 delalloc_root);
10085 root = btrfs_grab_fs_root(root);
10086 BUG_ON(!root);
10087 list_move_tail(&root->delalloc_root,
10088 &fs_info->delalloc_roots);
10089 spin_unlock(&fs_info->delalloc_root_lock);
10090
6c255e67 10091 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10092 btrfs_put_fs_root(root);
6c255e67 10093 if (ret < 0)
eb73c1b7
MX
10094 goto out;
10095
6c255e67
MX
10096 if (nr != -1) {
10097 nr -= ret;
10098 WARN_ON(nr < 0);
10099 }
eb73c1b7 10100 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10101 }
eb73c1b7 10102 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10103
6c255e67 10104 ret = 0;
eb73c1b7
MX
10105 atomic_inc(&fs_info->async_submit_draining);
10106 while (atomic_read(&fs_info->nr_async_submits) ||
10107 atomic_read(&fs_info->async_delalloc_pages)) {
10108 wait_event(fs_info->async_submit_wait,
10109 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10110 atomic_read(&fs_info->async_delalloc_pages) == 0));
10111 }
10112 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10113out:
1eafa6c7 10114 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10115 spin_lock(&fs_info->delalloc_root_lock);
10116 list_splice_tail(&splice, &fs_info->delalloc_roots);
10117 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10118 }
573bfb72 10119 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10120 return ret;
ea8c2819
CM
10121}
10122
39279cc3
CM
10123static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10124 const char *symname)
10125{
10126 struct btrfs_trans_handle *trans;
10127 struct btrfs_root *root = BTRFS_I(dir)->root;
10128 struct btrfs_path *path;
10129 struct btrfs_key key;
1832a6d5 10130 struct inode *inode = NULL;
39279cc3
CM
10131 int err;
10132 int drop_inode = 0;
10133 u64 objectid;
67871254 10134 u64 index = 0;
39279cc3
CM
10135 int name_len;
10136 int datasize;
5f39d397 10137 unsigned long ptr;
39279cc3 10138 struct btrfs_file_extent_item *ei;
5f39d397 10139 struct extent_buffer *leaf;
39279cc3 10140
f06becc4 10141 name_len = strlen(symname);
39279cc3
CM
10142 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10143 return -ENAMETOOLONG;
1832a6d5 10144
9ed74f2d
JB
10145 /*
10146 * 2 items for inode item and ref
10147 * 2 items for dir items
9269d12b
FM
10148 * 1 item for updating parent inode item
10149 * 1 item for the inline extent item
9ed74f2d
JB
10150 * 1 item for xattr if selinux is on
10151 */
9269d12b 10152 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10153 if (IS_ERR(trans))
10154 return PTR_ERR(trans);
1832a6d5 10155
581bb050
LZ
10156 err = btrfs_find_free_ino(root, &objectid);
10157 if (err)
10158 goto out_unlock;
10159
aec7477b 10160 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10161 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10162 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10163 if (IS_ERR(inode)) {
10164 err = PTR_ERR(inode);
39279cc3 10165 goto out_unlock;
7cf96da3 10166 }
39279cc3 10167
ad19db71
CS
10168 /*
10169 * If the active LSM wants to access the inode during
10170 * d_instantiate it needs these. Smack checks to see
10171 * if the filesystem supports xattrs by looking at the
10172 * ops vector.
10173 */
10174 inode->i_fop = &btrfs_file_operations;
10175 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10176 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10177 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10178
10179 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10180 if (err)
10181 goto out_unlock_inode;
ad19db71 10182
39279cc3 10183 path = btrfs_alloc_path();
d8926bb3
MF
10184 if (!path) {
10185 err = -ENOMEM;
b0d5d10f 10186 goto out_unlock_inode;
d8926bb3 10187 }
33345d01 10188 key.objectid = btrfs_ino(inode);
39279cc3 10189 key.offset = 0;
962a298f 10190 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10191 datasize = btrfs_file_extent_calc_inline_size(name_len);
10192 err = btrfs_insert_empty_item(trans, root, path, &key,
10193 datasize);
54aa1f4d 10194 if (err) {
b0839166 10195 btrfs_free_path(path);
b0d5d10f 10196 goto out_unlock_inode;
54aa1f4d 10197 }
5f39d397
CM
10198 leaf = path->nodes[0];
10199 ei = btrfs_item_ptr(leaf, path->slots[0],
10200 struct btrfs_file_extent_item);
10201 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10202 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10203 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10204 btrfs_set_file_extent_encryption(leaf, ei, 0);
10205 btrfs_set_file_extent_compression(leaf, ei, 0);
10206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10207 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10208
39279cc3 10209 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10210 write_extent_buffer(leaf, symname, ptr, name_len);
10211 btrfs_mark_buffer_dirty(leaf);
39279cc3 10212 btrfs_free_path(path);
5f39d397 10213
39279cc3 10214 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10215 inode_nohighmem(inode);
39279cc3 10216 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10217 inode_set_bytes(inode, name_len);
f06becc4 10218 btrfs_i_size_write(inode, name_len);
54aa1f4d 10219 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10220 /*
10221 * Last step, add directory indexes for our symlink inode. This is the
10222 * last step to avoid extra cleanup of these indexes if an error happens
10223 * elsewhere above.
10224 */
10225 if (!err)
10226 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10227 if (err) {
54aa1f4d 10228 drop_inode = 1;
b0d5d10f
CM
10229 goto out_unlock_inode;
10230 }
10231
10232 unlock_new_inode(inode);
10233 d_instantiate(dentry, inode);
39279cc3
CM
10234
10235out_unlock:
7ad85bb7 10236 btrfs_end_transaction(trans, root);
39279cc3
CM
10237 if (drop_inode) {
10238 inode_dec_link_count(inode);
10239 iput(inode);
10240 }
b53d3f5d 10241 btrfs_btree_balance_dirty(root);
39279cc3 10242 return err;
b0d5d10f
CM
10243
10244out_unlock_inode:
10245 drop_inode = 1;
10246 unlock_new_inode(inode);
10247 goto out_unlock;
39279cc3 10248}
16432985 10249
0af3d00b
JB
10250static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10251 u64 start, u64 num_bytes, u64 min_size,
10252 loff_t actual_len, u64 *alloc_hint,
10253 struct btrfs_trans_handle *trans)
d899e052 10254{
5dc562c5
JB
10255 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10256 struct extent_map *em;
d899e052
YZ
10257 struct btrfs_root *root = BTRFS_I(inode)->root;
10258 struct btrfs_key ins;
d899e052 10259 u64 cur_offset = start;
55a61d1d 10260 u64 i_size;
154ea289 10261 u64 cur_bytes;
0b670dc4 10262 u64 last_alloc = (u64)-1;
d899e052 10263 int ret = 0;
0af3d00b 10264 bool own_trans = true;
d899e052 10265
0af3d00b
JB
10266 if (trans)
10267 own_trans = false;
d899e052 10268 while (num_bytes > 0) {
0af3d00b
JB
10269 if (own_trans) {
10270 trans = btrfs_start_transaction(root, 3);
10271 if (IS_ERR(trans)) {
10272 ret = PTR_ERR(trans);
10273 break;
10274 }
5a303d5d
YZ
10275 }
10276
ee22184b 10277 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10278 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10279 /*
10280 * If we are severely fragmented we could end up with really
10281 * small allocations, so if the allocator is returning small
10282 * chunks lets make its job easier by only searching for those
10283 * sized chunks.
10284 */
10285 cur_bytes = min(cur_bytes, last_alloc);
00361589 10286 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10287 *alloc_hint, &ins, 1, 0);
5a303d5d 10288 if (ret) {
0af3d00b
JB
10289 if (own_trans)
10290 btrfs_end_transaction(trans, root);
a22285a6 10291 break;
d899e052 10292 }
9cfa3e34 10293 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10294
0b670dc4 10295 last_alloc = ins.offset;
d899e052
YZ
10296 ret = insert_reserved_file_extent(trans, inode,
10297 cur_offset, ins.objectid,
10298 ins.offset, ins.offset,
920bbbfb 10299 ins.offset, 0, 0, 0,
d899e052 10300 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10301 if (ret) {
857cc2fc 10302 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10303 ins.offset, 0);
79787eaa
JM
10304 btrfs_abort_transaction(trans, root, ret);
10305 if (own_trans)
10306 btrfs_end_transaction(trans, root);
10307 break;
10308 }
31193213 10309
a1ed835e
CM
10310 btrfs_drop_extent_cache(inode, cur_offset,
10311 cur_offset + ins.offset -1, 0);
5a303d5d 10312
5dc562c5
JB
10313 em = alloc_extent_map();
10314 if (!em) {
10315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10316 &BTRFS_I(inode)->runtime_flags);
10317 goto next;
10318 }
10319
10320 em->start = cur_offset;
10321 em->orig_start = cur_offset;
10322 em->len = ins.offset;
10323 em->block_start = ins.objectid;
10324 em->block_len = ins.offset;
b4939680 10325 em->orig_block_len = ins.offset;
cc95bef6 10326 em->ram_bytes = ins.offset;
5dc562c5
JB
10327 em->bdev = root->fs_info->fs_devices->latest_bdev;
10328 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10329 em->generation = trans->transid;
10330
10331 while (1) {
10332 write_lock(&em_tree->lock);
09a2a8f9 10333 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10334 write_unlock(&em_tree->lock);
10335 if (ret != -EEXIST)
10336 break;
10337 btrfs_drop_extent_cache(inode, cur_offset,
10338 cur_offset + ins.offset - 1,
10339 0);
10340 }
10341 free_extent_map(em);
10342next:
d899e052
YZ
10343 num_bytes -= ins.offset;
10344 cur_offset += ins.offset;
efa56464 10345 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10346
0c4d2d95 10347 inode_inc_iversion(inode);
04b285f3 10348 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10349 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10350 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10351 (actual_len > inode->i_size) &&
10352 (cur_offset > inode->i_size)) {
d1ea6a61 10353 if (cur_offset > actual_len)
55a61d1d 10354 i_size = actual_len;
d1ea6a61 10355 else
55a61d1d
JB
10356 i_size = cur_offset;
10357 i_size_write(inode, i_size);
10358 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10359 }
10360
d899e052 10361 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10362
10363 if (ret) {
10364 btrfs_abort_transaction(trans, root, ret);
10365 if (own_trans)
10366 btrfs_end_transaction(trans, root);
10367 break;
10368 }
d899e052 10369
0af3d00b
JB
10370 if (own_trans)
10371 btrfs_end_transaction(trans, root);
5a303d5d 10372 }
d899e052
YZ
10373 return ret;
10374}
10375
0af3d00b
JB
10376int btrfs_prealloc_file_range(struct inode *inode, int mode,
10377 u64 start, u64 num_bytes, u64 min_size,
10378 loff_t actual_len, u64 *alloc_hint)
10379{
10380 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10381 min_size, actual_len, alloc_hint,
10382 NULL);
10383}
10384
10385int btrfs_prealloc_file_range_trans(struct inode *inode,
10386 struct btrfs_trans_handle *trans, int mode,
10387 u64 start, u64 num_bytes, u64 min_size,
10388 loff_t actual_len, u64 *alloc_hint)
10389{
10390 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10391 min_size, actual_len, alloc_hint, trans);
10392}
10393
e6dcd2dc
CM
10394static int btrfs_set_page_dirty(struct page *page)
10395{
e6dcd2dc
CM
10396 return __set_page_dirty_nobuffers(page);
10397}
10398
10556cb2 10399static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10400{
b83cc969 10401 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10402 umode_t mode = inode->i_mode;
b83cc969 10403
cb6db4e5
JM
10404 if (mask & MAY_WRITE &&
10405 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10406 if (btrfs_root_readonly(root))
10407 return -EROFS;
10408 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10409 return -EACCES;
10410 }
2830ba7f 10411 return generic_permission(inode, mask);
fdebe2bd 10412}
39279cc3 10413
ef3b9af5
FM
10414static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10415{
10416 struct btrfs_trans_handle *trans;
10417 struct btrfs_root *root = BTRFS_I(dir)->root;
10418 struct inode *inode = NULL;
10419 u64 objectid;
10420 u64 index;
10421 int ret = 0;
10422
10423 /*
10424 * 5 units required for adding orphan entry
10425 */
10426 trans = btrfs_start_transaction(root, 5);
10427 if (IS_ERR(trans))
10428 return PTR_ERR(trans);
10429
10430 ret = btrfs_find_free_ino(root, &objectid);
10431 if (ret)
10432 goto out;
10433
10434 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10435 btrfs_ino(dir), objectid, mode, &index);
10436 if (IS_ERR(inode)) {
10437 ret = PTR_ERR(inode);
10438 inode = NULL;
10439 goto out;
10440 }
10441
ef3b9af5
FM
10442 inode->i_fop = &btrfs_file_operations;
10443 inode->i_op = &btrfs_file_inode_operations;
10444
10445 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10446 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10447
b0d5d10f
CM
10448 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10449 if (ret)
10450 goto out_inode;
10451
10452 ret = btrfs_update_inode(trans, root, inode);
10453 if (ret)
10454 goto out_inode;
ef3b9af5
FM
10455 ret = btrfs_orphan_add(trans, inode);
10456 if (ret)
b0d5d10f 10457 goto out_inode;
ef3b9af5 10458
5762b5c9
FM
10459 /*
10460 * We set number of links to 0 in btrfs_new_inode(), and here we set
10461 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10462 * through:
10463 *
10464 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10465 */
10466 set_nlink(inode, 1);
b0d5d10f 10467 unlock_new_inode(inode);
ef3b9af5
FM
10468 d_tmpfile(dentry, inode);
10469 mark_inode_dirty(inode);
10470
10471out:
10472 btrfs_end_transaction(trans, root);
10473 if (ret)
10474 iput(inode);
10475 btrfs_balance_delayed_items(root);
10476 btrfs_btree_balance_dirty(root);
ef3b9af5 10477 return ret;
b0d5d10f
CM
10478
10479out_inode:
10480 unlock_new_inode(inode);
10481 goto out;
10482
ef3b9af5
FM
10483}
10484
b38ef71c
FM
10485/* Inspired by filemap_check_errors() */
10486int btrfs_inode_check_errors(struct inode *inode)
10487{
10488 int ret = 0;
10489
10490 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10491 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10492 ret = -ENOSPC;
10493 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10494 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10495 ret = -EIO;
10496
10497 return ret;
10498}
10499
6e1d5dcc 10500static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10501 .getattr = btrfs_getattr,
39279cc3
CM
10502 .lookup = btrfs_lookup,
10503 .create = btrfs_create,
10504 .unlink = btrfs_unlink,
10505 .link = btrfs_link,
10506 .mkdir = btrfs_mkdir,
10507 .rmdir = btrfs_rmdir,
80ace85c 10508 .rename2 = btrfs_rename2,
39279cc3
CM
10509 .symlink = btrfs_symlink,
10510 .setattr = btrfs_setattr,
618e21d5 10511 .mknod = btrfs_mknod,
95819c05 10512 .setxattr = btrfs_setxattr,
9172abbc 10513 .getxattr = generic_getxattr,
5103e947 10514 .listxattr = btrfs_listxattr,
95819c05 10515 .removexattr = btrfs_removexattr,
fdebe2bd 10516 .permission = btrfs_permission,
4e34e719 10517 .get_acl = btrfs_get_acl,
996a710d 10518 .set_acl = btrfs_set_acl,
93fd63c2 10519 .update_time = btrfs_update_time,
ef3b9af5 10520 .tmpfile = btrfs_tmpfile,
39279cc3 10521};
6e1d5dcc 10522static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10523 .lookup = btrfs_lookup,
fdebe2bd 10524 .permission = btrfs_permission,
4e34e719 10525 .get_acl = btrfs_get_acl,
996a710d 10526 .set_acl = btrfs_set_acl,
93fd63c2 10527 .update_time = btrfs_update_time,
39279cc3 10528};
76dda93c 10529
828c0950 10530static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10531 .llseek = generic_file_llseek,
10532 .read = generic_read_dir,
9cdda8d3 10533 .iterate = btrfs_real_readdir,
34287aa3 10534 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10535#ifdef CONFIG_COMPAT
34287aa3 10536 .compat_ioctl = btrfs_ioctl,
39279cc3 10537#endif
6bf13c0c 10538 .release = btrfs_release_file,
e02119d5 10539 .fsync = btrfs_sync_file,
39279cc3
CM
10540};
10541
20e5506b 10542static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10543 .fill_delalloc = run_delalloc_range,
065631f6 10544 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10545 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10546 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10547 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10548 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10549 .set_bit_hook = btrfs_set_bit_hook,
10550 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10551 .merge_extent_hook = btrfs_merge_extent_hook,
10552 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10553};
10554
35054394
CM
10555/*
10556 * btrfs doesn't support the bmap operation because swapfiles
10557 * use bmap to make a mapping of extents in the file. They assume
10558 * these extents won't change over the life of the file and they
10559 * use the bmap result to do IO directly to the drive.
10560 *
10561 * the btrfs bmap call would return logical addresses that aren't
10562 * suitable for IO and they also will change frequently as COW
10563 * operations happen. So, swapfile + btrfs == corruption.
10564 *
10565 * For now we're avoiding this by dropping bmap.
10566 */
7f09410b 10567static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10568 .readpage = btrfs_readpage,
10569 .writepage = btrfs_writepage,
b293f02e 10570 .writepages = btrfs_writepages,
3ab2fb5a 10571 .readpages = btrfs_readpages,
16432985 10572 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10573 .invalidatepage = btrfs_invalidatepage,
10574 .releasepage = btrfs_releasepage,
e6dcd2dc 10575 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10576 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10577};
10578
7f09410b 10579static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10580 .readpage = btrfs_readpage,
10581 .writepage = btrfs_writepage,
2bf5a725
CM
10582 .invalidatepage = btrfs_invalidatepage,
10583 .releasepage = btrfs_releasepage,
39279cc3
CM
10584};
10585
6e1d5dcc 10586static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10587 .getattr = btrfs_getattr,
10588 .setattr = btrfs_setattr,
95819c05 10589 .setxattr = btrfs_setxattr,
9172abbc 10590 .getxattr = generic_getxattr,
5103e947 10591 .listxattr = btrfs_listxattr,
95819c05 10592 .removexattr = btrfs_removexattr,
fdebe2bd 10593 .permission = btrfs_permission,
1506fcc8 10594 .fiemap = btrfs_fiemap,
4e34e719 10595 .get_acl = btrfs_get_acl,
996a710d 10596 .set_acl = btrfs_set_acl,
e41f941a 10597 .update_time = btrfs_update_time,
39279cc3 10598};
6e1d5dcc 10599static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10600 .getattr = btrfs_getattr,
10601 .setattr = btrfs_setattr,
fdebe2bd 10602 .permission = btrfs_permission,
95819c05 10603 .setxattr = btrfs_setxattr,
9172abbc 10604 .getxattr = generic_getxattr,
33268eaf 10605 .listxattr = btrfs_listxattr,
95819c05 10606 .removexattr = btrfs_removexattr,
4e34e719 10607 .get_acl = btrfs_get_acl,
996a710d 10608 .set_acl = btrfs_set_acl,
e41f941a 10609 .update_time = btrfs_update_time,
618e21d5 10610};
6e1d5dcc 10611static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10612 .readlink = generic_readlink,
6b255391 10613 .get_link = page_get_link,
f209561a 10614 .getattr = btrfs_getattr,
22c44fe6 10615 .setattr = btrfs_setattr,
fdebe2bd 10616 .permission = btrfs_permission,
0279b4cd 10617 .setxattr = btrfs_setxattr,
9172abbc 10618 .getxattr = generic_getxattr,
0279b4cd
JO
10619 .listxattr = btrfs_listxattr,
10620 .removexattr = btrfs_removexattr,
e41f941a 10621 .update_time = btrfs_update_time,
39279cc3 10622};
76dda93c 10623
82d339d9 10624const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10625 .d_delete = btrfs_dentry_delete,
b4aff1f8 10626 .d_release = btrfs_dentry_release,
76dda93c 10627};