btrfs: adjust return values of btrfs_inode_by_name
[linux-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
ae5e165d 46#include <linux/iversion.h>
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 104static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
d02c0e20 279static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
280 u64 end, size_t compressed_size,
281 int compress_type,
282 struct page **compressed_pages)
c8b97818 283{
d02c0e20 284 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
f82b7359 381 unsigned int write_flags;
771ed689
CM
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
c2fcdcdf 407static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 413 return 1;
eec63c65
DS
414 /* defrag ioctl */
415 if (BTRFS_I(inode)->defrag_compress)
416 return 1;
f79707b0
WS
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 return 0;
0b246afa 420 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 422 BTRFS_I(inode)->prop_compress)
c2fcdcdf 423 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
424 return 0;
425}
426
6158e1ce 427static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
429{
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
6158e1ce 432 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
433 btrfs_add_inode_defrag(NULL, inode);
434}
435
d352ac68 436/*
771ed689
CM
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
c8b97818 440 *
771ed689
CM
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
c8b97818 446 *
771ed689
CM
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
450 * are written in the same order that the flusher thread sent them
451 * down.
d352ac68 452 */
c44f649e 453static noinline void compress_file_range(struct inode *inode,
771ed689
CM
454 struct page *locked_page,
455 u64 start, u64 end,
456 struct async_cow *async_cow,
457 int *num_added)
b888db2b 458{
0b246afa 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 460 u64 blocksize = fs_info->sectorsize;
c8b97818 461 u64 actual_end;
42dc7bab 462 u64 isize = i_size_read(inode);
e6dcd2dc 463 int ret = 0;
c8b97818
CM
464 struct page **pages = NULL;
465 unsigned long nr_pages;
c8b97818
CM
466 unsigned long total_compressed = 0;
467 unsigned long total_in = 0;
c8b97818
CM
468 int i;
469 int will_compress;
0b246afa 470 int compress_type = fs_info->compress_type;
4adaa611 471 int redirty = 0;
b888db2b 472
6158e1ce
NB
473 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
474 SZ_16K);
4cb5300b 475
42dc7bab 476 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
477again:
478 will_compress = 0;
09cbfeaf 479 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
480 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
481 nr_pages = min_t(unsigned long, nr_pages,
482 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 483
f03d9301
CM
484 /*
485 * we don't want to send crud past the end of i_size through
486 * compression, that's just a waste of CPU time. So, if the
487 * end of the file is before the start of our current
488 * requested range of bytes, we bail out to the uncompressed
489 * cleanup code that can deal with all of this.
490 *
491 * It isn't really the fastest way to fix things, but this is a
492 * very uncommon corner.
493 */
494 if (actual_end <= start)
495 goto cleanup_and_bail_uncompressed;
496
c8b97818
CM
497 total_compressed = actual_end - start;
498
4bcbb332
SW
499 /*
500 * skip compression for a small file range(<=blocksize) that
01327610 501 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
502 */
503 if (total_compressed <= blocksize &&
504 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
505 goto cleanup_and_bail_uncompressed;
506
069eac78
DS
507 total_compressed = min_t(unsigned long, total_compressed,
508 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
509 total_in = 0;
510 ret = 0;
db94535d 511
771ed689
CM
512 /*
513 * we do compression for mount -o compress and when the
514 * inode has not been flagged as nocompress. This flag can
515 * change at any time if we discover bad compression ratios.
c8b97818 516 */
c2fcdcdf 517 if (inode_need_compress(inode, start, end)) {
c8b97818 518 WARN_ON(pages);
31e818fe 519 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
520 if (!pages) {
521 /* just bail out to the uncompressed code */
522 goto cont;
523 }
c8b97818 524
eec63c65
DS
525 if (BTRFS_I(inode)->defrag_compress)
526 compress_type = BTRFS_I(inode)->defrag_compress;
527 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 528 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 529
4adaa611
CM
530 /*
531 * we need to call clear_page_dirty_for_io on each
532 * page in the range. Otherwise applications with the file
533 * mmap'd can wander in and change the page contents while
534 * we are compressing them.
535 *
536 * If the compression fails for any reason, we set the pages
537 * dirty again later on.
e9679de3
TT
538 *
539 * Note that the remaining part is redirtied, the start pointer
540 * has moved, the end is the original one.
4adaa611 541 */
e9679de3
TT
542 if (!redirty) {
543 extent_range_clear_dirty_for_io(inode, start, end);
544 redirty = 1;
545 }
f51d2b59
DS
546
547 /* Compression level is applied here and only here */
548 ret = btrfs_compress_pages(
549 compress_type | (fs_info->compress_level << 4),
261507a0 550 inode->i_mapping, start,
38c31464 551 pages,
4d3a800e 552 &nr_pages,
261507a0 553 &total_in,
e5d74902 554 &total_compressed);
c8b97818
CM
555
556 if (!ret) {
557 unsigned long offset = total_compressed &
09cbfeaf 558 (PAGE_SIZE - 1);
4d3a800e 559 struct page *page = pages[nr_pages - 1];
c8b97818
CM
560 char *kaddr;
561
562 /* zero the tail end of the last page, we might be
563 * sending it down to disk
564 */
565 if (offset) {
7ac687d9 566 kaddr = kmap_atomic(page);
c8b97818 567 memset(kaddr + offset, 0,
09cbfeaf 568 PAGE_SIZE - offset);
7ac687d9 569 kunmap_atomic(kaddr);
c8b97818
CM
570 }
571 will_compress = 1;
572 }
573 }
560f7d75 574cont:
c8b97818
CM
575 if (start == 0) {
576 /* lets try to make an inline extent */
6018ba0a 577 if (ret || total_in < actual_end) {
c8b97818 578 /* we didn't compress the entire range, try
771ed689 579 * to make an uncompressed inline extent.
c8b97818 580 */
d02c0e20
NB
581 ret = cow_file_range_inline(inode, start, end, 0,
582 BTRFS_COMPRESS_NONE, NULL);
c8b97818 583 } else {
771ed689 584 /* try making a compressed inline extent */
d02c0e20 585 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
586 total_compressed,
587 compress_type, pages);
c8b97818 588 }
79787eaa 589 if (ret <= 0) {
151a41bc 590 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
591 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
592 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
593 unsigned long page_error_op;
594
e6eb4314 595 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 596
771ed689 597 /*
79787eaa
JM
598 * inline extent creation worked or returned error,
599 * we don't need to create any more async work items.
600 * Unlock and free up our temp pages.
8b62f87b
JB
601 *
602 * We use DO_ACCOUNTING here because we need the
603 * delalloc_release_metadata to be done _after_ we drop
604 * our outstanding extent for clearing delalloc for this
605 * range.
771ed689 606 */
ba8b04c1
QW
607 extent_clear_unlock_delalloc(inode, start, end, end,
608 NULL, clear_flags,
609 PAGE_UNLOCK |
c2790a2e
JB
610 PAGE_CLEAR_DIRTY |
611 PAGE_SET_WRITEBACK |
e6eb4314 612 page_error_op |
c2790a2e 613 PAGE_END_WRITEBACK);
c8b97818
CM
614 goto free_pages_out;
615 }
616 }
617
618 if (will_compress) {
619 /*
620 * we aren't doing an inline extent round the compressed size
621 * up to a block size boundary so the allocator does sane
622 * things
623 */
fda2832f 624 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
625
626 /*
627 * one last check to make sure the compression is really a
170607eb
TT
628 * win, compare the page count read with the blocks on disk,
629 * compression must free at least one sector size
c8b97818 630 */
09cbfeaf 631 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 632 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
633 *num_added += 1;
634
635 /*
636 * The async work queues will take care of doing actual
637 * allocation on disk for these compressed pages, and
638 * will submit them to the elevator.
639 */
1170862d 640 add_async_extent(async_cow, start, total_in,
4d3a800e 641 total_compressed, pages, nr_pages,
c8bb0c8b
AS
642 compress_type);
643
1170862d
TT
644 if (start + total_in < end) {
645 start += total_in;
c8bb0c8b
AS
646 pages = NULL;
647 cond_resched();
648 goto again;
649 }
650 return;
c8b97818
CM
651 }
652 }
c8bb0c8b 653 if (pages) {
c8b97818
CM
654 /*
655 * the compression code ran but failed to make things smaller,
656 * free any pages it allocated and our page pointer array
657 */
4d3a800e 658 for (i = 0; i < nr_pages; i++) {
70b99e69 659 WARN_ON(pages[i]->mapping);
09cbfeaf 660 put_page(pages[i]);
c8b97818
CM
661 }
662 kfree(pages);
663 pages = NULL;
664 total_compressed = 0;
4d3a800e 665 nr_pages = 0;
c8b97818
CM
666
667 /* flag the file so we don't compress in the future */
0b246afa 668 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 669 !(BTRFS_I(inode)->prop_compress)) {
a555f810 670 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 671 }
c8b97818 672 }
f03d9301 673cleanup_and_bail_uncompressed:
c8bb0c8b
AS
674 /*
675 * No compression, but we still need to write the pages in the file
676 * we've been given so far. redirty the locked page if it corresponds
677 * to our extent and set things up for the async work queue to run
678 * cow_file_range to do the normal delalloc dance.
679 */
680 if (page_offset(locked_page) >= start &&
681 page_offset(locked_page) <= end)
682 __set_page_dirty_nobuffers(locked_page);
683 /* unlocked later on in the async handlers */
684
685 if (redirty)
686 extent_range_redirty_for_io(inode, start, end);
687 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
688 BTRFS_COMPRESS_NONE);
689 *num_added += 1;
3b951516 690
c44f649e 691 return;
771ed689
CM
692
693free_pages_out:
4d3a800e 694 for (i = 0; i < nr_pages; i++) {
771ed689 695 WARN_ON(pages[i]->mapping);
09cbfeaf 696 put_page(pages[i]);
771ed689 697 }
d397712b 698 kfree(pages);
771ed689 699}
771ed689 700
40ae837b
FM
701static void free_async_extent_pages(struct async_extent *async_extent)
702{
703 int i;
704
705 if (!async_extent->pages)
706 return;
707
708 for (i = 0; i < async_extent->nr_pages; i++) {
709 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 710 put_page(async_extent->pages[i]);
40ae837b
FM
711 }
712 kfree(async_extent->pages);
713 async_extent->nr_pages = 0;
714 async_extent->pages = NULL;
771ed689
CM
715}
716
717/*
718 * phase two of compressed writeback. This is the ordered portion
719 * of the code, which only gets called in the order the work was
720 * queued. We walk all the async extents created by compress_file_range
721 * and send them down to the disk.
722 */
dec8f175 723static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
724 struct async_cow *async_cow)
725{
0b246afa 726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
727 struct async_extent *async_extent;
728 u64 alloc_hint = 0;
771ed689
CM
729 struct btrfs_key ins;
730 struct extent_map *em;
731 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 732 struct extent_io_tree *io_tree;
f5a84ee3 733 int ret = 0;
771ed689 734
3e04e7f1 735again:
d397712b 736 while (!list_empty(&async_cow->extents)) {
771ed689
CM
737 async_extent = list_entry(async_cow->extents.next,
738 struct async_extent, list);
739 list_del(&async_extent->list);
c8b97818 740
771ed689
CM
741 io_tree = &BTRFS_I(inode)->io_tree;
742
f5a84ee3 743retry:
771ed689
CM
744 /* did the compression code fall back to uncompressed IO? */
745 if (!async_extent->pages) {
746 int page_started = 0;
747 unsigned long nr_written = 0;
748
749 lock_extent(io_tree, async_extent->start,
2ac55d41 750 async_extent->start +
d0082371 751 async_extent->ram_size - 1);
771ed689
CM
752
753 /* allocate blocks */
f5a84ee3
JB
754 ret = cow_file_range(inode, async_cow->locked_page,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1,
dda3245e
WX
758 async_extent->start +
759 async_extent->ram_size - 1,
760 &page_started, &nr_written, 0,
761 NULL);
771ed689 762
79787eaa
JM
763 /* JDM XXX */
764
771ed689
CM
765 /*
766 * if page_started, cow_file_range inserted an
767 * inline extent and took care of all the unlocking
768 * and IO for us. Otherwise, we need to submit
769 * all those pages down to the drive.
770 */
f5a84ee3 771 if (!page_started && !ret)
5e3ee236
NB
772 extent_write_locked_range(inode,
773 async_extent->start,
d397712b 774 async_extent->start +
771ed689 775 async_extent->ram_size - 1,
771ed689 776 WB_SYNC_ALL);
3e04e7f1
JB
777 else if (ret)
778 unlock_page(async_cow->locked_page);
771ed689
CM
779 kfree(async_extent);
780 cond_resched();
781 continue;
782 }
783
784 lock_extent(io_tree, async_extent->start,
d0082371 785 async_extent->start + async_extent->ram_size - 1);
771ed689 786
18513091 787 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
788 async_extent->compressed_size,
789 async_extent->compressed_size,
e570fd27 790 0, alloc_hint, &ins, 1, 1);
f5a84ee3 791 if (ret) {
40ae837b 792 free_async_extent_pages(async_extent);
3e04e7f1 793
fdf8e2ea
JB
794 if (ret == -ENOSPC) {
795 unlock_extent(io_tree, async_extent->start,
796 async_extent->start +
797 async_extent->ram_size - 1);
ce62003f
LB
798
799 /*
800 * we need to redirty the pages if we decide to
801 * fallback to uncompressed IO, otherwise we
802 * will not submit these pages down to lower
803 * layers.
804 */
805 extent_range_redirty_for_io(inode,
806 async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1);
809
79787eaa 810 goto retry;
fdf8e2ea 811 }
3e04e7f1 812 goto out_free;
f5a84ee3 813 }
c2167754
YZ
814 /*
815 * here we're doing allocation and writeback of the
816 * compressed pages
817 */
6f9994db
LB
818 em = create_io_em(inode, async_extent->start,
819 async_extent->ram_size, /* len */
820 async_extent->start, /* orig_start */
821 ins.objectid, /* block_start */
822 ins.offset, /* block_len */
823 ins.offset, /* orig_block_len */
824 async_extent->ram_size, /* ram_bytes */
825 async_extent->compress_type,
826 BTRFS_ORDERED_COMPRESSED);
827 if (IS_ERR(em))
828 /* ret value is not necessary due to void function */
3e04e7f1 829 goto out_free_reserve;
6f9994db 830 free_extent_map(em);
3e04e7f1 831
261507a0
LZ
832 ret = btrfs_add_ordered_extent_compress(inode,
833 async_extent->start,
834 ins.objectid,
835 async_extent->ram_size,
836 ins.offset,
837 BTRFS_ORDERED_COMPRESSED,
838 async_extent->compress_type);
d9f85963 839 if (ret) {
dcdbc059
NB
840 btrfs_drop_extent_cache(BTRFS_I(inode),
841 async_extent->start,
d9f85963
FM
842 async_extent->start +
843 async_extent->ram_size - 1, 0);
3e04e7f1 844 goto out_free_reserve;
d9f85963 845 }
0b246afa 846 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 847
771ed689
CM
848 /*
849 * clear dirty, set writeback and unlock the pages.
850 */
c2790a2e 851 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
852 async_extent->start +
853 async_extent->ram_size - 1,
a791e35e
CM
854 async_extent->start +
855 async_extent->ram_size - 1,
151a41bc
JB
856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
857 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 858 PAGE_SET_WRITEBACK);
4e4cbee9 859 if (btrfs_submit_compressed_write(inode,
d397712b
CM
860 async_extent->start,
861 async_extent->ram_size,
862 ins.objectid,
863 ins.offset, async_extent->pages,
f82b7359
LB
864 async_extent->nr_pages,
865 async_cow->write_flags)) {
fce2a4e6
FM
866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
867 struct page *p = async_extent->pages[0];
868 const u64 start = async_extent->start;
869 const u64 end = start + async_extent->ram_size - 1;
870
871 p->mapping = inode->i_mapping;
872 tree->ops->writepage_end_io_hook(p, start, end,
873 NULL, 0);
874 p->mapping = NULL;
ba8b04c1
QW
875 extent_clear_unlock_delalloc(inode, start, end, end,
876 NULL, 0,
fce2a4e6
FM
877 PAGE_END_WRITEBACK |
878 PAGE_SET_ERROR);
40ae837b 879 free_async_extent_pages(async_extent);
fce2a4e6 880 }
771ed689
CM
881 alloc_hint = ins.objectid + ins.offset;
882 kfree(async_extent);
883 cond_resched();
884 }
dec8f175 885 return;
3e04e7f1 886out_free_reserve:
0b246afa 887 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 888 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 889out_free:
c2790a2e 890 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
891 async_extent->start +
892 async_extent->ram_size - 1,
3e04e7f1
JB
893 async_extent->start +
894 async_extent->ram_size - 1,
c2790a2e 895 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 896 EXTENT_DELALLOC_NEW |
151a41bc
JB
897 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
898 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
899 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
900 PAGE_SET_ERROR);
40ae837b 901 free_async_extent_pages(async_extent);
79787eaa 902 kfree(async_extent);
3e04e7f1 903 goto again;
771ed689
CM
904}
905
4b46fce2
JB
906static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
907 u64 num_bytes)
908{
909 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
910 struct extent_map *em;
911 u64 alloc_hint = 0;
912
913 read_lock(&em_tree->lock);
914 em = search_extent_mapping(em_tree, start, num_bytes);
915 if (em) {
916 /*
917 * if block start isn't an actual block number then find the
918 * first block in this inode and use that as a hint. If that
919 * block is also bogus then just don't worry about it.
920 */
921 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
922 free_extent_map(em);
923 em = search_extent_mapping(em_tree, 0, 0);
924 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
925 alloc_hint = em->block_start;
926 if (em)
927 free_extent_map(em);
928 } else {
929 alloc_hint = em->block_start;
930 free_extent_map(em);
931 }
932 }
933 read_unlock(&em_tree->lock);
934
935 return alloc_hint;
936}
937
771ed689
CM
938/*
939 * when extent_io.c finds a delayed allocation range in the file,
940 * the call backs end up in this code. The basic idea is to
941 * allocate extents on disk for the range, and create ordered data structs
942 * in ram to track those extents.
943 *
944 * locked_page is the page that writepage had locked already. We use
945 * it to make sure we don't do extra locks or unlocks.
946 *
947 * *page_started is set to one if we unlock locked_page and do everything
948 * required to start IO on it. It may be clean and already done with
949 * IO when we return.
950 */
00361589
JB
951static noinline int cow_file_range(struct inode *inode,
952 struct page *locked_page,
dda3245e
WX
953 u64 start, u64 end, u64 delalloc_end,
954 int *page_started, unsigned long *nr_written,
955 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 956{
0b246afa 957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 958 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
959 u64 alloc_hint = 0;
960 u64 num_bytes;
961 unsigned long ram_size;
a315e68f 962 u64 cur_alloc_size = 0;
0b246afa 963 u64 blocksize = fs_info->sectorsize;
771ed689
CM
964 struct btrfs_key ins;
965 struct extent_map *em;
a315e68f
FM
966 unsigned clear_bits;
967 unsigned long page_ops;
968 bool extent_reserved = false;
771ed689
CM
969 int ret = 0;
970
70ddc553 971 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 972 WARN_ON_ONCE(1);
29bce2f3
JB
973 ret = -EINVAL;
974 goto out_unlock;
02ecd2c2 975 }
771ed689 976
fda2832f 977 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 978 num_bytes = max(blocksize, num_bytes);
566b1760 979 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 980
6158e1ce 981 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 982
771ed689
CM
983 if (start == 0) {
984 /* lets try to make an inline extent */
d02c0e20
NB
985 ret = cow_file_range_inline(inode, start, end, 0,
986 BTRFS_COMPRESS_NONE, NULL);
771ed689 987 if (ret == 0) {
8b62f87b
JB
988 /*
989 * We use DO_ACCOUNTING here because we need the
990 * delalloc_release_metadata to be run _after_ we drop
991 * our outstanding extent for clearing delalloc for this
992 * range.
993 */
ba8b04c1
QW
994 extent_clear_unlock_delalloc(inode, start, end,
995 delalloc_end, NULL,
c2790a2e 996 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
997 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
998 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
999 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1000 PAGE_END_WRITEBACK);
771ed689 1001 *nr_written = *nr_written +
09cbfeaf 1002 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1003 *page_started = 1;
771ed689 1004 goto out;
79787eaa 1005 } else if (ret < 0) {
79787eaa 1006 goto out_unlock;
771ed689
CM
1007 }
1008 }
1009
4b46fce2 1010 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1011 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1012 start + num_bytes - 1, 0);
771ed689 1013
3752d22f
AJ
1014 while (num_bytes > 0) {
1015 cur_alloc_size = num_bytes;
18513091 1016 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1017 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1018 &ins, 1, 1);
00361589 1019 if (ret < 0)
79787eaa 1020 goto out_unlock;
a315e68f
FM
1021 cur_alloc_size = ins.offset;
1022 extent_reserved = true;
d397712b 1023
771ed689 1024 ram_size = ins.offset;
6f9994db
LB
1025 em = create_io_em(inode, start, ins.offset, /* len */
1026 start, /* orig_start */
1027 ins.objectid, /* block_start */
1028 ins.offset, /* block_len */
1029 ins.offset, /* orig_block_len */
1030 ram_size, /* ram_bytes */
1031 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1032 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1033 if (IS_ERR(em))
ace68bac 1034 goto out_reserve;
6f9994db 1035 free_extent_map(em);
e6dcd2dc 1036
e6dcd2dc 1037 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1038 ram_size, cur_alloc_size, 0);
ace68bac 1039 if (ret)
d9f85963 1040 goto out_drop_extent_cache;
c8b97818 1041
17d217fe
YZ
1042 if (root->root_key.objectid ==
1043 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1044 ret = btrfs_reloc_clone_csums(inode, start,
1045 cur_alloc_size);
4dbd80fb
QW
1046 /*
1047 * Only drop cache here, and process as normal.
1048 *
1049 * We must not allow extent_clear_unlock_delalloc()
1050 * at out_unlock label to free meta of this ordered
1051 * extent, as its meta should be freed by
1052 * btrfs_finish_ordered_io().
1053 *
1054 * So we must continue until @start is increased to
1055 * skip current ordered extent.
1056 */
00361589 1057 if (ret)
4dbd80fb
QW
1058 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1059 start + ram_size - 1, 0);
17d217fe
YZ
1060 }
1061
0b246afa 1062 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1063
c8b97818
CM
1064 /* we're not doing compressed IO, don't unlock the first
1065 * page (which the caller expects to stay locked), don't
1066 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1067 *
1068 * Do set the Private2 bit so we know this page was properly
1069 * setup for writepage
c8b97818 1070 */
a315e68f
FM
1071 page_ops = unlock ? PAGE_UNLOCK : 0;
1072 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1073
c2790a2e 1074 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1075 start + ram_size - 1,
1076 delalloc_end, locked_page,
c2790a2e 1077 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1078 page_ops);
3752d22f
AJ
1079 if (num_bytes < cur_alloc_size)
1080 num_bytes = 0;
4dbd80fb 1081 else
3752d22f 1082 num_bytes -= cur_alloc_size;
c59f8951
CM
1083 alloc_hint = ins.objectid + ins.offset;
1084 start += cur_alloc_size;
a315e68f 1085 extent_reserved = false;
4dbd80fb
QW
1086
1087 /*
1088 * btrfs_reloc_clone_csums() error, since start is increased
1089 * extent_clear_unlock_delalloc() at out_unlock label won't
1090 * free metadata of current ordered extent, we're OK to exit.
1091 */
1092 if (ret)
1093 goto out_unlock;
b888db2b 1094 }
79787eaa 1095out:
be20aa9d 1096 return ret;
b7d5b0a8 1097
d9f85963 1098out_drop_extent_cache:
dcdbc059 1099 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1100out_reserve:
0b246afa 1101 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1102 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1103out_unlock:
a7e3b975
FM
1104 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1105 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1106 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1107 PAGE_END_WRITEBACK;
1108 /*
1109 * If we reserved an extent for our delalloc range (or a subrange) and
1110 * failed to create the respective ordered extent, then it means that
1111 * when we reserved the extent we decremented the extent's size from
1112 * the data space_info's bytes_may_use counter and incremented the
1113 * space_info's bytes_reserved counter by the same amount. We must make
1114 * sure extent_clear_unlock_delalloc() does not try to decrement again
1115 * the data space_info's bytes_may_use counter, therefore we do not pass
1116 * it the flag EXTENT_CLEAR_DATA_RESV.
1117 */
1118 if (extent_reserved) {
1119 extent_clear_unlock_delalloc(inode, start,
1120 start + cur_alloc_size,
1121 start + cur_alloc_size,
1122 locked_page,
1123 clear_bits,
1124 page_ops);
1125 start += cur_alloc_size;
1126 if (start >= end)
1127 goto out;
1128 }
ba8b04c1
QW
1129 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1130 locked_page,
a315e68f
FM
1131 clear_bits | EXTENT_CLEAR_DATA_RESV,
1132 page_ops);
79787eaa 1133 goto out;
771ed689 1134}
c8b97818 1135
771ed689
CM
1136/*
1137 * work queue call back to started compression on a file and pages
1138 */
1139static noinline void async_cow_start(struct btrfs_work *work)
1140{
1141 struct async_cow *async_cow;
1142 int num_added = 0;
1143 async_cow = container_of(work, struct async_cow, work);
1144
1145 compress_file_range(async_cow->inode, async_cow->locked_page,
1146 async_cow->start, async_cow->end, async_cow,
1147 &num_added);
8180ef88 1148 if (num_added == 0) {
cb77fcd8 1149 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1150 async_cow->inode = NULL;
8180ef88 1151 }
771ed689
CM
1152}
1153
1154/*
1155 * work queue call back to submit previously compressed pages
1156 */
1157static noinline void async_cow_submit(struct btrfs_work *work)
1158{
0b246afa 1159 struct btrfs_fs_info *fs_info;
771ed689
CM
1160 struct async_cow *async_cow;
1161 struct btrfs_root *root;
1162 unsigned long nr_pages;
1163
1164 async_cow = container_of(work, struct async_cow, work);
1165
1166 root = async_cow->root;
0b246afa 1167 fs_info = root->fs_info;
09cbfeaf
KS
1168 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1169 PAGE_SHIFT;
771ed689 1170
ee863954
DS
1171 /*
1172 * atomic_sub_return implies a barrier for waitqueue_active
1173 */
0b246afa 1174 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1175 5 * SZ_1M &&
0b246afa
JM
1176 waitqueue_active(&fs_info->async_submit_wait))
1177 wake_up(&fs_info->async_submit_wait);
771ed689 1178
d397712b 1179 if (async_cow->inode)
771ed689 1180 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1181}
c8b97818 1182
771ed689
CM
1183static noinline void async_cow_free(struct btrfs_work *work)
1184{
1185 struct async_cow *async_cow;
1186 async_cow = container_of(work, struct async_cow, work);
8180ef88 1187 if (async_cow->inode)
cb77fcd8 1188 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1189 kfree(async_cow);
1190}
1191
1192static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1193 u64 start, u64 end, int *page_started,
f82b7359
LB
1194 unsigned long *nr_written,
1195 unsigned int write_flags)
771ed689 1196{
0b246afa 1197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1198 struct async_cow *async_cow;
1199 struct btrfs_root *root = BTRFS_I(inode)->root;
1200 unsigned long nr_pages;
1201 u64 cur_end;
771ed689 1202
a3429ab7 1203 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1204 1, 0, NULL);
d397712b 1205 while (start < end) {
771ed689 1206 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1207 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1208 async_cow->inode = igrab(inode);
771ed689
CM
1209 async_cow->root = root;
1210 async_cow->locked_page = locked_page;
1211 async_cow->start = start;
f82b7359 1212 async_cow->write_flags = write_flags;
771ed689 1213
f79707b0 1214 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1215 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1216 cur_end = end;
1217 else
ee22184b 1218 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1219
1220 async_cow->end = cur_end;
1221 INIT_LIST_HEAD(&async_cow->extents);
1222
9e0af237
LB
1223 btrfs_init_work(&async_cow->work,
1224 btrfs_delalloc_helper,
1225 async_cow_start, async_cow_submit,
1226 async_cow_free);
771ed689 1227
09cbfeaf
KS
1228 nr_pages = (cur_end - start + PAGE_SIZE) >>
1229 PAGE_SHIFT;
0b246afa 1230 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1231
0b246afa 1232 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1233
771ed689
CM
1234 *nr_written += nr_pages;
1235 start = cur_end + 1;
1236 }
1237 *page_started = 1;
1238 return 0;
be20aa9d
CM
1239}
1240
2ff7e61e 1241static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1242 u64 bytenr, u64 num_bytes)
1243{
1244 int ret;
1245 struct btrfs_ordered_sum *sums;
1246 LIST_HEAD(list);
1247
0b246afa 1248 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1249 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1250 if (ret == 0 && list_empty(&list))
1251 return 0;
1252
1253 while (!list_empty(&list)) {
1254 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1255 list_del(&sums->list);
1256 kfree(sums);
1257 }
58113753
LB
1258 if (ret < 0)
1259 return ret;
17d217fe
YZ
1260 return 1;
1261}
1262
d352ac68
CM
1263/*
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1266 *
1267 * If no cow copies or snapshots exist, we write directly to the existing
1268 * blocks on disk
1269 */
7f366cfe
CM
1270static noinline int run_delalloc_nocow(struct inode *inode,
1271 struct page *locked_page,
771ed689
CM
1272 u64 start, u64 end, int *page_started, int force,
1273 unsigned long *nr_written)
be20aa9d 1274{
0b246afa 1275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 struct extent_buffer *leaf;
be20aa9d 1278 struct btrfs_path *path;
80ff3856 1279 struct btrfs_file_extent_item *fi;
be20aa9d 1280 struct btrfs_key found_key;
6f9994db 1281 struct extent_map *em;
80ff3856
YZ
1282 u64 cow_start;
1283 u64 cur_offset;
1284 u64 extent_end;
5d4f98a2 1285 u64 extent_offset;
80ff3856
YZ
1286 u64 disk_bytenr;
1287 u64 num_bytes;
b4939680 1288 u64 disk_num_bytes;
cc95bef6 1289 u64 ram_bytes;
80ff3856 1290 int extent_type;
79787eaa 1291 int ret, err;
d899e052 1292 int type;
80ff3856
YZ
1293 int nocow;
1294 int check_prev = 1;
82d5902d 1295 bool nolock;
4a0cc7ca 1296 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1297
1298 path = btrfs_alloc_path();
17ca04af 1299 if (!path) {
ba8b04c1
QW
1300 extent_clear_unlock_delalloc(inode, start, end, end,
1301 locked_page,
c2790a2e 1302 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1303 EXTENT_DO_ACCOUNTING |
1304 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1305 PAGE_CLEAR_DIRTY |
1306 PAGE_SET_WRITEBACK |
1307 PAGE_END_WRITEBACK);
d8926bb3 1308 return -ENOMEM;
17ca04af 1309 }
82d5902d 1310
70ddc553 1311 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1312
80ff3856
YZ
1313 cow_start = (u64)-1;
1314 cur_offset = start;
1315 while (1) {
e4c3b2dc 1316 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1317 cur_offset, 0);
d788a349 1318 if (ret < 0)
79787eaa 1319 goto error;
80ff3856
YZ
1320 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1321 leaf = path->nodes[0];
1322 btrfs_item_key_to_cpu(leaf, &found_key,
1323 path->slots[0] - 1);
33345d01 1324 if (found_key.objectid == ino &&
80ff3856
YZ
1325 found_key.type == BTRFS_EXTENT_DATA_KEY)
1326 path->slots[0]--;
1327 }
1328 check_prev = 0;
1329next_slot:
1330 leaf = path->nodes[0];
1331 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1332 ret = btrfs_next_leaf(root, path);
e8916699
LB
1333 if (ret < 0) {
1334 if (cow_start != (u64)-1)
1335 cur_offset = cow_start;
79787eaa 1336 goto error;
e8916699 1337 }
80ff3856
YZ
1338 if (ret > 0)
1339 break;
1340 leaf = path->nodes[0];
1341 }
be20aa9d 1342
80ff3856
YZ
1343 nocow = 0;
1344 disk_bytenr = 0;
17d217fe 1345 num_bytes = 0;
80ff3856
YZ
1346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1347
1d512cb7
FM
1348 if (found_key.objectid > ino)
1349 break;
1350 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1351 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1352 path->slots[0]++;
1353 goto next_slot;
1354 }
1355 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1356 found_key.offset > end)
1357 break;
1358
1359 if (found_key.offset > cur_offset) {
1360 extent_end = found_key.offset;
e9061e21 1361 extent_type = 0;
80ff3856
YZ
1362 goto out_check;
1363 }
1364
1365 fi = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_file_extent_item);
1367 extent_type = btrfs_file_extent_type(leaf, fi);
1368
cc95bef6 1369 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1370 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1371 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1372 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1373 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1374 extent_end = found_key.offset +
1375 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1376 disk_num_bytes =
1377 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1378 if (extent_end <= start) {
1379 path->slots[0]++;
1380 goto next_slot;
1381 }
17d217fe
YZ
1382 if (disk_bytenr == 0)
1383 goto out_check;
80ff3856
YZ
1384 if (btrfs_file_extent_compression(leaf, fi) ||
1385 btrfs_file_extent_encryption(leaf, fi) ||
1386 btrfs_file_extent_other_encoding(leaf, fi))
1387 goto out_check;
d899e052
YZ
1388 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1389 goto out_check;
2ff7e61e 1390 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1391 goto out_check;
58113753
LB
1392 ret = btrfs_cross_ref_exist(root, ino,
1393 found_key.offset -
1394 extent_offset, disk_bytenr);
1395 if (ret) {
1396 /*
1397 * ret could be -EIO if the above fails to read
1398 * metadata.
1399 */
1400 if (ret < 0) {
1401 if (cow_start != (u64)-1)
1402 cur_offset = cow_start;
1403 goto error;
1404 }
1405
1406 WARN_ON_ONCE(nolock);
17d217fe 1407 goto out_check;
58113753 1408 }
5d4f98a2 1409 disk_bytenr += extent_offset;
17d217fe
YZ
1410 disk_bytenr += cur_offset - found_key.offset;
1411 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1412 /*
1413 * if there are pending snapshots for this root,
1414 * we fall into common COW way.
1415 */
1416 if (!nolock) {
ea14b57f 1417 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1418 if (!err)
1419 goto out_check;
1420 }
17d217fe
YZ
1421 /*
1422 * force cow if csum exists in the range.
1423 * this ensure that csum for a given extent are
1424 * either valid or do not exist.
1425 */
58113753
LB
1426 ret = csum_exist_in_range(fs_info, disk_bytenr,
1427 num_bytes);
1428 if (ret) {
91e1f56a 1429 if (!nolock)
ea14b57f 1430 btrfs_end_write_no_snapshotting(root);
58113753
LB
1431
1432 /*
1433 * ret could be -EIO if the above fails to read
1434 * metadata.
1435 */
1436 if (ret < 0) {
1437 if (cow_start != (u64)-1)
1438 cur_offset = cow_start;
1439 goto error;
1440 }
1441 WARN_ON_ONCE(nolock);
17d217fe 1442 goto out_check;
91e1f56a
RK
1443 }
1444 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1445 if (!nolock)
ea14b57f 1446 btrfs_end_write_no_snapshotting(root);
f78c436c 1447 goto out_check;
91e1f56a 1448 }
80ff3856
YZ
1449 nocow = 1;
1450 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1451 extent_end = found_key.offset +
514ac8ad
CM
1452 btrfs_file_extent_inline_len(leaf,
1453 path->slots[0], fi);
da17066c 1454 extent_end = ALIGN(extent_end,
0b246afa 1455 fs_info->sectorsize);
80ff3856
YZ
1456 } else {
1457 BUG_ON(1);
1458 }
1459out_check:
1460 if (extent_end <= start) {
1461 path->slots[0]++;
e9894fd3 1462 if (!nolock && nocow)
ea14b57f 1463 btrfs_end_write_no_snapshotting(root);
f78c436c 1464 if (nocow)
0b246afa 1465 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1466 goto next_slot;
1467 }
1468 if (!nocow) {
1469 if (cow_start == (u64)-1)
1470 cow_start = cur_offset;
1471 cur_offset = extent_end;
1472 if (cur_offset > end)
1473 break;
1474 path->slots[0]++;
1475 goto next_slot;
7ea394f1
YZ
1476 }
1477
b3b4aa74 1478 btrfs_release_path(path);
80ff3856 1479 if (cow_start != (u64)-1) {
00361589
JB
1480 ret = cow_file_range(inode, locked_page,
1481 cow_start, found_key.offset - 1,
dda3245e
WX
1482 end, page_started, nr_written, 1,
1483 NULL);
e9894fd3
WS
1484 if (ret) {
1485 if (!nolock && nocow)
ea14b57f 1486 btrfs_end_write_no_snapshotting(root);
f78c436c 1487 if (nocow)
0b246afa 1488 btrfs_dec_nocow_writers(fs_info,
f78c436c 1489 disk_bytenr);
79787eaa 1490 goto error;
e9894fd3 1491 }
80ff3856 1492 cow_start = (u64)-1;
7ea394f1 1493 }
80ff3856 1494
d899e052 1495 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1496 u64 orig_start = found_key.offset - extent_offset;
1497
1498 em = create_io_em(inode, cur_offset, num_bytes,
1499 orig_start,
1500 disk_bytenr, /* block_start */
1501 num_bytes, /* block_len */
1502 disk_num_bytes, /* orig_block_len */
1503 ram_bytes, BTRFS_COMPRESS_NONE,
1504 BTRFS_ORDERED_PREALLOC);
1505 if (IS_ERR(em)) {
1506 if (!nolock && nocow)
ea14b57f 1507 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1508 if (nocow)
1509 btrfs_dec_nocow_writers(fs_info,
1510 disk_bytenr);
1511 ret = PTR_ERR(em);
1512 goto error;
d899e052 1513 }
6f9994db
LB
1514 free_extent_map(em);
1515 }
1516
1517 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1518 type = BTRFS_ORDERED_PREALLOC;
1519 } else {
1520 type = BTRFS_ORDERED_NOCOW;
1521 }
80ff3856
YZ
1522
1523 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1524 num_bytes, num_bytes, type);
f78c436c 1525 if (nocow)
0b246afa 1526 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1527 BUG_ON(ret); /* -ENOMEM */
771ed689 1528
efa56464 1529 if (root->root_key.objectid ==
4dbd80fb
QW
1530 BTRFS_DATA_RELOC_TREE_OBJECTID)
1531 /*
1532 * Error handled later, as we must prevent
1533 * extent_clear_unlock_delalloc() in error handler
1534 * from freeing metadata of created ordered extent.
1535 */
efa56464
YZ
1536 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1537 num_bytes);
efa56464 1538
c2790a2e 1539 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1540 cur_offset + num_bytes - 1, end,
c2790a2e 1541 locked_page, EXTENT_LOCKED |
18513091
WX
1542 EXTENT_DELALLOC |
1543 EXTENT_CLEAR_DATA_RESV,
1544 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1545
e9894fd3 1546 if (!nolock && nocow)
ea14b57f 1547 btrfs_end_write_no_snapshotting(root);
80ff3856 1548 cur_offset = extent_end;
4dbd80fb
QW
1549
1550 /*
1551 * btrfs_reloc_clone_csums() error, now we're OK to call error
1552 * handler, as metadata for created ordered extent will only
1553 * be freed by btrfs_finish_ordered_io().
1554 */
1555 if (ret)
1556 goto error;
80ff3856
YZ
1557 if (cur_offset > end)
1558 break;
be20aa9d 1559 }
b3b4aa74 1560 btrfs_release_path(path);
80ff3856 1561
17ca04af 1562 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1563 cow_start = cur_offset;
17ca04af
JB
1564 cur_offset = end;
1565 }
1566
80ff3856 1567 if (cow_start != (u64)-1) {
dda3245e
WX
1568 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1569 page_started, nr_written, 1, NULL);
d788a349 1570 if (ret)
79787eaa 1571 goto error;
80ff3856
YZ
1572 }
1573
79787eaa 1574error:
17ca04af 1575 if (ret && cur_offset < end)
ba8b04c1 1576 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1577 locked_page, EXTENT_LOCKED |
151a41bc
JB
1578 EXTENT_DELALLOC | EXTENT_DEFRAG |
1579 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1580 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1581 PAGE_SET_WRITEBACK |
1582 PAGE_END_WRITEBACK);
7ea394f1 1583 btrfs_free_path(path);
79787eaa 1584 return ret;
be20aa9d
CM
1585}
1586
47059d93
WS
1587static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1588{
1589
1590 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1591 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1592 return 0;
1593
1594 /*
1595 * @defrag_bytes is a hint value, no spinlock held here,
1596 * if is not zero, it means the file is defragging.
1597 * Force cow if given extent needs to be defragged.
1598 */
1599 if (BTRFS_I(inode)->defrag_bytes &&
1600 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1601 EXTENT_DEFRAG, 0, NULL))
1602 return 1;
1603
1604 return 0;
1605}
1606
d352ac68
CM
1607/*
1608 * extent_io.c call back to do delayed allocation processing
1609 */
c6100a4b 1610static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1611 u64 start, u64 end, int *page_started,
f82b7359
LB
1612 unsigned long *nr_written,
1613 struct writeback_control *wbc)
be20aa9d 1614{
c6100a4b 1615 struct inode *inode = private_data;
be20aa9d 1616 int ret;
47059d93 1617 int force_cow = need_force_cow(inode, start, end);
f82b7359 1618 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1619
47059d93 1620 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1621 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1622 page_started, 1, nr_written);
47059d93 1623 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1624 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1625 page_started, 0, nr_written);
c2fcdcdf 1626 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1627 ret = cow_file_range(inode, locked_page, start, end, end,
1628 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1629 } else {
1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1631 &BTRFS_I(inode)->runtime_flags);
771ed689 1632 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1633 page_started, nr_written,
1634 write_flags);
7ddf5a42 1635 }
52427260
QW
1636 if (ret)
1637 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1638 return ret;
1639}
1640
c6100a4b 1641static void btrfs_split_extent_hook(void *private_data,
1bf85046 1642 struct extent_state *orig, u64 split)
9ed74f2d 1643{
c6100a4b 1644 struct inode *inode = private_data;
dcab6a3b
JB
1645 u64 size;
1646
0ca1f7ce 1647 /* not delalloc, ignore it */
9ed74f2d 1648 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1649 return;
9ed74f2d 1650
dcab6a3b
JB
1651 size = orig->end - orig->start + 1;
1652 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1653 u32 num_extents;
dcab6a3b
JB
1654 u64 new_size;
1655
1656 /*
ba117213
JB
1657 * See the explanation in btrfs_merge_extent_hook, the same
1658 * applies here, just in reverse.
dcab6a3b
JB
1659 */
1660 new_size = orig->end - split + 1;
823bb20a 1661 num_extents = count_max_extents(new_size);
ba117213 1662 new_size = split - orig->start;
823bb20a
DS
1663 num_extents += count_max_extents(new_size);
1664 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1665 return;
1666 }
1667
9e0baf60 1668 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1669 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1670 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1671}
1672
1673/*
1674 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1675 * extents so we can keep track of new extents that are just merged onto old
1676 * extents, such as when we are doing sequential writes, so we can properly
1677 * account for the metadata space we'll need.
1678 */
c6100a4b 1679static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1680 struct extent_state *new,
1681 struct extent_state *other)
9ed74f2d 1682{
c6100a4b 1683 struct inode *inode = private_data;
dcab6a3b 1684 u64 new_size, old_size;
823bb20a 1685 u32 num_extents;
dcab6a3b 1686
9ed74f2d
JB
1687 /* not delalloc, ignore it */
1688 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1689 return;
9ed74f2d 1690
8461a3de
JB
1691 if (new->start > other->start)
1692 new_size = new->end - other->start + 1;
1693 else
1694 new_size = other->end - new->start + 1;
dcab6a3b
JB
1695
1696 /* we're not bigger than the max, unreserve the space and go */
1697 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1698 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1699 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1700 spin_unlock(&BTRFS_I(inode)->lock);
1701 return;
1702 }
1703
1704 /*
ba117213
JB
1705 * We have to add up either side to figure out how many extents were
1706 * accounted for before we merged into one big extent. If the number of
1707 * extents we accounted for is <= the amount we need for the new range
1708 * then we can return, otherwise drop. Think of it like this
1709 *
1710 * [ 4k][MAX_SIZE]
1711 *
1712 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1713 * need 2 outstanding extents, on one side we have 1 and the other side
1714 * we have 1 so they are == and we can return. But in this case
1715 *
1716 * [MAX_SIZE+4k][MAX_SIZE+4k]
1717 *
1718 * Each range on their own accounts for 2 extents, but merged together
1719 * they are only 3 extents worth of accounting, so we need to drop in
1720 * this case.
dcab6a3b 1721 */
ba117213 1722 old_size = other->end - other->start + 1;
823bb20a 1723 num_extents = count_max_extents(old_size);
ba117213 1724 old_size = new->end - new->start + 1;
823bb20a
DS
1725 num_extents += count_max_extents(old_size);
1726 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1727 return;
1728
9e0baf60 1729 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1730 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1731 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1732}
1733
eb73c1b7
MX
1734static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1735 struct inode *inode)
1736{
0b246afa
JM
1737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1738
eb73c1b7
MX
1739 spin_lock(&root->delalloc_lock);
1740 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1741 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1742 &root->delalloc_inodes);
1743 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1744 &BTRFS_I(inode)->runtime_flags);
1745 root->nr_delalloc_inodes++;
1746 if (root->nr_delalloc_inodes == 1) {
0b246afa 1747 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1748 BUG_ON(!list_empty(&root->delalloc_root));
1749 list_add_tail(&root->delalloc_root,
0b246afa
JM
1750 &fs_info->delalloc_roots);
1751 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1752 }
1753 }
1754 spin_unlock(&root->delalloc_lock);
1755}
1756
1757static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1758 struct btrfs_inode *inode)
eb73c1b7 1759{
9e3e97f4 1760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1761
eb73c1b7 1762 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1763 if (!list_empty(&inode->delalloc_inodes)) {
1764 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1765 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1766 &inode->runtime_flags);
eb73c1b7
MX
1767 root->nr_delalloc_inodes--;
1768 if (!root->nr_delalloc_inodes) {
0b246afa 1769 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1770 BUG_ON(list_empty(&root->delalloc_root));
1771 list_del_init(&root->delalloc_root);
0b246afa 1772 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1773 }
1774 }
1775 spin_unlock(&root->delalloc_lock);
1776}
1777
d352ac68
CM
1778/*
1779 * extent_io.c set_bit_hook, used to track delayed allocation
1780 * bytes in this file, and to maintain the list of inodes that
1781 * have pending delalloc work to be done.
1782 */
c6100a4b 1783static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1784 struct extent_state *state, unsigned *bits)
291d673e 1785{
c6100a4b 1786 struct inode *inode = private_data;
9ed74f2d 1787
0b246afa
JM
1788 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1789
47059d93
WS
1790 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1791 WARN_ON(1);
75eff68e
CM
1792 /*
1793 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1794 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1795 * bit, which is only set or cleared with irqs on
1796 */
0ca1f7ce 1797 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1798 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1799 u64 len = state->end + 1 - state->start;
8b62f87b 1800 u32 num_extents = count_max_extents(len);
70ddc553 1801 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1802
8b62f87b
JB
1803 spin_lock(&BTRFS_I(inode)->lock);
1804 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1805 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1806
6a3891c5 1807 /* For sanity tests */
0b246afa 1808 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1809 return;
1810
104b4e51
NB
1811 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1812 fs_info->delalloc_batch);
df0af1a5 1813 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1814 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1815 if (*bits & EXTENT_DEFRAG)
1816 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1817 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1818 &BTRFS_I(inode)->runtime_flags))
1819 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1820 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1821 }
a7e3b975
FM
1822
1823 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1824 (*bits & EXTENT_DELALLOC_NEW)) {
1825 spin_lock(&BTRFS_I(inode)->lock);
1826 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1827 state->start;
1828 spin_unlock(&BTRFS_I(inode)->lock);
1829 }
291d673e
CM
1830}
1831
d352ac68
CM
1832/*
1833 * extent_io.c clear_bit_hook, see set_bit_hook for why
1834 */
c6100a4b 1835static void btrfs_clear_bit_hook(void *private_data,
41074888 1836 struct extent_state *state,
9ee49a04 1837 unsigned *bits)
291d673e 1838{
c6100a4b 1839 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1841 u64 len = state->end + 1 - state->start;
823bb20a 1842 u32 num_extents = count_max_extents(len);
47059d93 1843
4a4b964f
FM
1844 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1845 spin_lock(&inode->lock);
6fc0ef68 1846 inode->defrag_bytes -= len;
4a4b964f
FM
1847 spin_unlock(&inode->lock);
1848 }
47059d93 1849
75eff68e
CM
1850 /*
1851 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1852 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1853 * bit, which is only set or cleared with irqs on
1854 */
0ca1f7ce 1855 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1856 struct btrfs_root *root = inode->root;
83eea1f1 1857 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1858
8b62f87b
JB
1859 spin_lock(&inode->lock);
1860 btrfs_mod_outstanding_extents(inode, -num_extents);
1861 spin_unlock(&inode->lock);
0ca1f7ce 1862
b6d08f06
JB
1863 /*
1864 * We don't reserve metadata space for space cache inodes so we
1865 * don't need to call dellalloc_release_metadata if there is an
1866 * error.
1867 */
a315e68f 1868 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1869 root != fs_info->tree_root)
0ca1f7ce
YZ
1870 btrfs_delalloc_release_metadata(inode, len);
1871
6a3891c5 1872 /* For sanity tests. */
0b246afa 1873 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1874 return;
1875
a315e68f
FM
1876 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1877 do_list && !(state->state & EXTENT_NORESERVE) &&
1878 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1879 btrfs_free_reserved_data_space_noquota(
1880 &inode->vfs_inode,
51773bec 1881 state->start, len);
9ed74f2d 1882
104b4e51
NB
1883 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1884 fs_info->delalloc_batch);
6fc0ef68
NB
1885 spin_lock(&inode->lock);
1886 inode->delalloc_bytes -= len;
1887 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1888 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1889 &inode->runtime_flags))
eb73c1b7 1890 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1891 spin_unlock(&inode->lock);
291d673e 1892 }
a7e3b975
FM
1893
1894 if ((state->state & EXTENT_DELALLOC_NEW) &&
1895 (*bits & EXTENT_DELALLOC_NEW)) {
1896 spin_lock(&inode->lock);
1897 ASSERT(inode->new_delalloc_bytes >= len);
1898 inode->new_delalloc_bytes -= len;
1899 spin_unlock(&inode->lock);
1900 }
291d673e
CM
1901}
1902
d352ac68
CM
1903/*
1904 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1905 * we don't create bios that span stripes or chunks
6f034ece
LB
1906 *
1907 * return 1 if page cannot be merged to bio
1908 * return 0 if page can be merged to bio
1909 * return error otherwise
d352ac68 1910 */
81a75f67 1911int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1912 size_t size, struct bio *bio,
1913 unsigned long bio_flags)
239b14b3 1914{
0b246afa
JM
1915 struct inode *inode = page->mapping->host;
1916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1917 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1918 u64 length = 0;
1919 u64 map_length;
239b14b3
CM
1920 int ret;
1921
771ed689
CM
1922 if (bio_flags & EXTENT_BIO_COMPRESSED)
1923 return 0;
1924
4f024f37 1925 length = bio->bi_iter.bi_size;
239b14b3 1926 map_length = length;
0b246afa
JM
1927 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1928 NULL, 0);
6f034ece
LB
1929 if (ret < 0)
1930 return ret;
d397712b 1931 if (map_length < length + size)
239b14b3 1932 return 1;
3444a972 1933 return 0;
239b14b3
CM
1934}
1935
d352ac68
CM
1936/*
1937 * in order to insert checksums into the metadata in large chunks,
1938 * we wait until bio submission time. All the pages in the bio are
1939 * checksummed and sums are attached onto the ordered extent record.
1940 *
1941 * At IO completion time the cums attached on the ordered extent record
1942 * are inserted into the btree
1943 */
8c27cb35 1944static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1945 int mirror_num, unsigned long bio_flags,
eaf25d93 1946 u64 bio_offset)
065631f6 1947{
c6100a4b 1948 struct inode *inode = private_data;
4e4cbee9 1949 blk_status_t ret = 0;
e015640f 1950
2ff7e61e 1951 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1952 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1953 return 0;
1954}
e015640f 1955
4a69a410
CM
1956/*
1957 * in order to insert checksums into the metadata in large chunks,
1958 * we wait until bio submission time. All the pages in the bio are
1959 * checksummed and sums are attached onto the ordered extent record.
1960 *
1961 * At IO completion time the cums attached on the ordered extent record
1962 * are inserted into the btree
1963 */
8c27cb35 1964static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1965 int mirror_num, unsigned long bio_flags,
1966 u64 bio_offset)
4a69a410 1967{
c6100a4b 1968 struct inode *inode = private_data;
2ff7e61e 1969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1970 blk_status_t ret;
61891923 1971
2ff7e61e 1972 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1973 if (ret) {
4e4cbee9 1974 bio->bi_status = ret;
4246a0b6
CH
1975 bio_endio(bio);
1976 }
61891923 1977 return ret;
44b8bd7e
CM
1978}
1979
d352ac68 1980/*
cad321ad 1981 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1982 * on write, or reading the csums from the tree before a read.
1983 *
1984 * Rules about async/sync submit,
1985 * a) read: sync submit
1986 *
1987 * b) write without checksum: sync submit
1988 *
1989 * c) write with checksum:
1990 * c-1) if bio is issued by fsync: sync submit
1991 * (sync_writers != 0)
1992 *
1993 * c-2) if root is reloc root: sync submit
1994 * (only in case of buffered IO)
1995 *
1996 * c-3) otherwise: async submit
d352ac68 1997 */
8c27cb35 1998static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1999 int mirror_num, unsigned long bio_flags,
2000 u64 bio_offset)
44b8bd7e 2001{
c6100a4b 2002 struct inode *inode = private_data;
0b246afa 2003 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2004 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2005 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2006 blk_status_t ret = 0;
19b9bdb0 2007 int skip_sum;
b812ce28 2008 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2009
6cbff00f 2010 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2011
70ddc553 2012 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2013 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2014
37226b21 2015 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2016 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2017 if (ret)
61891923 2018 goto out;
5fd02043 2019
d20f7043 2020 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2021 ret = btrfs_submit_compressed_read(inode, bio,
2022 mirror_num,
2023 bio_flags);
2024 goto out;
c2db1073 2025 } else if (!skip_sum) {
2ff7e61e 2026 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2027 if (ret)
61891923 2028 goto out;
c2db1073 2029 }
4d1b5fb4 2030 goto mapit;
b812ce28 2031 } else if (async && !skip_sum) {
17d217fe
YZ
2032 /* csum items have already been cloned */
2033 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2034 goto mapit;
19b9bdb0 2035 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2036 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2037 bio_offset, inode,
0b246afa
JM
2038 __btrfs_submit_bio_start,
2039 __btrfs_submit_bio_done);
61891923 2040 goto out;
b812ce28 2041 } else if (!skip_sum) {
2ff7e61e 2042 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2043 if (ret)
2044 goto out;
19b9bdb0
CM
2045 }
2046
0b86a832 2047mapit:
2ff7e61e 2048 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2049
2050out:
4e4cbee9
CH
2051 if (ret) {
2052 bio->bi_status = ret;
4246a0b6
CH
2053 bio_endio(bio);
2054 }
61891923 2055 return ret;
065631f6 2056}
6885f308 2057
d352ac68
CM
2058/*
2059 * given a list of ordered sums record them in the inode. This happens
2060 * at IO completion time based on sums calculated at bio submission time.
2061 */
ba1da2f4 2062static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2063 struct inode *inode, struct list_head *list)
e6dcd2dc 2064{
e6dcd2dc 2065 struct btrfs_ordered_sum *sum;
ac01f26a 2066 int ret;
e6dcd2dc 2067
c6e30871 2068 list_for_each_entry(sum, list, list) {
7c2871a2 2069 trans->adding_csums = true;
ac01f26a 2070 ret = btrfs_csum_file_blocks(trans,
d20f7043 2071 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2072 trans->adding_csums = false;
ac01f26a
NB
2073 if (ret)
2074 return ret;
e6dcd2dc
CM
2075 }
2076 return 0;
2077}
2078
2ac55d41 2079int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2080 unsigned int extra_bits,
ba8b04c1 2081 struct extent_state **cached_state, int dedupe)
ea8c2819 2082{
09cbfeaf 2083 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2084 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2085 extra_bits, cached_state);
ea8c2819
CM
2086}
2087
d352ac68 2088/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2089struct btrfs_writepage_fixup {
2090 struct page *page;
2091 struct btrfs_work work;
2092};
2093
b2950863 2094static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2095{
2096 struct btrfs_writepage_fixup *fixup;
2097 struct btrfs_ordered_extent *ordered;
2ac55d41 2098 struct extent_state *cached_state = NULL;
364ecf36 2099 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2100 struct page *page;
2101 struct inode *inode;
2102 u64 page_start;
2103 u64 page_end;
87826df0 2104 int ret;
247e743c
CM
2105
2106 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2107 page = fixup->page;
4a096752 2108again:
247e743c
CM
2109 lock_page(page);
2110 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2111 ClearPageChecked(page);
2112 goto out_page;
2113 }
2114
2115 inode = page->mapping->host;
2116 page_start = page_offset(page);
09cbfeaf 2117 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2118
ff13db41 2119 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2120 &cached_state);
4a096752
CM
2121
2122 /* already ordered? We're done */
8b62b72b 2123 if (PagePrivate2(page))
247e743c 2124 goto out;
4a096752 2125
a776c6fa 2126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2127 PAGE_SIZE);
4a096752 2128 if (ordered) {
2ac55d41 2129 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2130 page_end, &cached_state);
4a096752
CM
2131 unlock_page(page);
2132 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2133 btrfs_put_ordered_extent(ordered);
4a096752
CM
2134 goto again;
2135 }
247e743c 2136
364ecf36 2137 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2138 PAGE_SIZE);
87826df0
JM
2139 if (ret) {
2140 mapping_set_error(page->mapping, ret);
2141 end_extent_writepage(page, ret, page_start, page_end);
2142 ClearPageChecked(page);
2143 goto out;
2144 }
2145
f3038ee3
NB
2146 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2147 &cached_state, 0);
2148 if (ret) {
2149 mapping_set_error(page->mapping, ret);
2150 end_extent_writepage(page, ret, page_start, page_end);
2151 ClearPageChecked(page);
2152 goto out;
2153 }
2154
247e743c 2155 ClearPageChecked(page);
87826df0 2156 set_page_dirty(page);
8b62f87b 2157 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2158out:
2ac55d41 2159 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2160 &cached_state);
247e743c
CM
2161out_page:
2162 unlock_page(page);
09cbfeaf 2163 put_page(page);
b897abec 2164 kfree(fixup);
364ecf36 2165 extent_changeset_free(data_reserved);
247e743c
CM
2166}
2167
2168/*
2169 * There are a few paths in the higher layers of the kernel that directly
2170 * set the page dirty bit without asking the filesystem if it is a
2171 * good idea. This causes problems because we want to make sure COW
2172 * properly happens and the data=ordered rules are followed.
2173 *
c8b97818 2174 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2175 * hasn't been properly setup for IO. We kick off an async process
2176 * to fix it up. The async helper will wait for ordered extents, set
2177 * the delalloc bit and make it safe to write the page.
2178 */
b2950863 2179static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2180{
2181 struct inode *inode = page->mapping->host;
0b246afa 2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2183 struct btrfs_writepage_fixup *fixup;
247e743c 2184
8b62b72b
CM
2185 /* this page is properly in the ordered list */
2186 if (TestClearPagePrivate2(page))
247e743c
CM
2187 return 0;
2188
2189 if (PageChecked(page))
2190 return -EAGAIN;
2191
2192 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2193 if (!fixup)
2194 return -EAGAIN;
f421950f 2195
247e743c 2196 SetPageChecked(page);
09cbfeaf 2197 get_page(page);
9e0af237
LB
2198 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2199 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2200 fixup->page = page;
0b246afa 2201 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2202 return -EBUSY;
247e743c
CM
2203}
2204
d899e052
YZ
2205static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2206 struct inode *inode, u64 file_pos,
2207 u64 disk_bytenr, u64 disk_num_bytes,
2208 u64 num_bytes, u64 ram_bytes,
2209 u8 compression, u8 encryption,
2210 u16 other_encoding, int extent_type)
2211{
2212 struct btrfs_root *root = BTRFS_I(inode)->root;
2213 struct btrfs_file_extent_item *fi;
2214 struct btrfs_path *path;
2215 struct extent_buffer *leaf;
2216 struct btrfs_key ins;
a12b877b 2217 u64 qg_released;
1acae57b 2218 int extent_inserted = 0;
d899e052
YZ
2219 int ret;
2220
2221 path = btrfs_alloc_path();
d8926bb3
MF
2222 if (!path)
2223 return -ENOMEM;
d899e052 2224
a1ed835e
CM
2225 /*
2226 * we may be replacing one extent in the tree with another.
2227 * The new extent is pinned in the extent map, and we don't want
2228 * to drop it from the cache until it is completely in the btree.
2229 *
2230 * So, tell btrfs_drop_extents to leave this extent in the cache.
2231 * the caller is expected to unpin it and allow it to be merged
2232 * with the others.
2233 */
1acae57b
FDBM
2234 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2235 file_pos + num_bytes, NULL, 0,
2236 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2237 if (ret)
2238 goto out;
d899e052 2239
1acae57b 2240 if (!extent_inserted) {
4a0cc7ca 2241 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2242 ins.offset = file_pos;
2243 ins.type = BTRFS_EXTENT_DATA_KEY;
2244
2245 path->leave_spinning = 1;
2246 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2247 sizeof(*fi));
2248 if (ret)
2249 goto out;
2250 }
d899e052
YZ
2251 leaf = path->nodes[0];
2252 fi = btrfs_item_ptr(leaf, path->slots[0],
2253 struct btrfs_file_extent_item);
2254 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2255 btrfs_set_file_extent_type(leaf, fi, extent_type);
2256 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2257 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2258 btrfs_set_file_extent_offset(leaf, fi, 0);
2259 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2260 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2261 btrfs_set_file_extent_compression(leaf, fi, compression);
2262 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2263 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2264
d899e052 2265 btrfs_mark_buffer_dirty(leaf);
ce195332 2266 btrfs_release_path(path);
d899e052
YZ
2267
2268 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2269
2270 ins.objectid = disk_bytenr;
2271 ins.offset = disk_num_bytes;
2272 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2273
297d750b 2274 /*
5846a3c2
QW
2275 * Release the reserved range from inode dirty range map, as it is
2276 * already moved into delayed_ref_head
297d750b 2277 */
a12b877b
QW
2278 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2279 if (ret < 0)
2280 goto out;
2281 qg_released = ret;
84f7d8e6
JB
2282 ret = btrfs_alloc_reserved_file_extent(trans, root,
2283 btrfs_ino(BTRFS_I(inode)),
2284 file_pos, qg_released, &ins);
79787eaa 2285out:
d899e052 2286 btrfs_free_path(path);
b9473439 2287
79787eaa 2288 return ret;
d899e052
YZ
2289}
2290
38c227d8
LB
2291/* snapshot-aware defrag */
2292struct sa_defrag_extent_backref {
2293 struct rb_node node;
2294 struct old_sa_defrag_extent *old;
2295 u64 root_id;
2296 u64 inum;
2297 u64 file_pos;
2298 u64 extent_offset;
2299 u64 num_bytes;
2300 u64 generation;
2301};
2302
2303struct old_sa_defrag_extent {
2304 struct list_head list;
2305 struct new_sa_defrag_extent *new;
2306
2307 u64 extent_offset;
2308 u64 bytenr;
2309 u64 offset;
2310 u64 len;
2311 int count;
2312};
2313
2314struct new_sa_defrag_extent {
2315 struct rb_root root;
2316 struct list_head head;
2317 struct btrfs_path *path;
2318 struct inode *inode;
2319 u64 file_pos;
2320 u64 len;
2321 u64 bytenr;
2322 u64 disk_len;
2323 u8 compress_type;
2324};
2325
2326static int backref_comp(struct sa_defrag_extent_backref *b1,
2327 struct sa_defrag_extent_backref *b2)
2328{
2329 if (b1->root_id < b2->root_id)
2330 return -1;
2331 else if (b1->root_id > b2->root_id)
2332 return 1;
2333
2334 if (b1->inum < b2->inum)
2335 return -1;
2336 else if (b1->inum > b2->inum)
2337 return 1;
2338
2339 if (b1->file_pos < b2->file_pos)
2340 return -1;
2341 else if (b1->file_pos > b2->file_pos)
2342 return 1;
2343
2344 /*
2345 * [------------------------------] ===> (a range of space)
2346 * |<--->| |<---->| =============> (fs/file tree A)
2347 * |<---------------------------->| ===> (fs/file tree B)
2348 *
2349 * A range of space can refer to two file extents in one tree while
2350 * refer to only one file extent in another tree.
2351 *
2352 * So we may process a disk offset more than one time(two extents in A)
2353 * and locate at the same extent(one extent in B), then insert two same
2354 * backrefs(both refer to the extent in B).
2355 */
2356 return 0;
2357}
2358
2359static void backref_insert(struct rb_root *root,
2360 struct sa_defrag_extent_backref *backref)
2361{
2362 struct rb_node **p = &root->rb_node;
2363 struct rb_node *parent = NULL;
2364 struct sa_defrag_extent_backref *entry;
2365 int ret;
2366
2367 while (*p) {
2368 parent = *p;
2369 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2370
2371 ret = backref_comp(backref, entry);
2372 if (ret < 0)
2373 p = &(*p)->rb_left;
2374 else
2375 p = &(*p)->rb_right;
2376 }
2377
2378 rb_link_node(&backref->node, parent, p);
2379 rb_insert_color(&backref->node, root);
2380}
2381
2382/*
2383 * Note the backref might has changed, and in this case we just return 0.
2384 */
2385static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2386 void *ctx)
2387{
2388 struct btrfs_file_extent_item *extent;
38c227d8
LB
2389 struct old_sa_defrag_extent *old = ctx;
2390 struct new_sa_defrag_extent *new = old->new;
2391 struct btrfs_path *path = new->path;
2392 struct btrfs_key key;
2393 struct btrfs_root *root;
2394 struct sa_defrag_extent_backref *backref;
2395 struct extent_buffer *leaf;
2396 struct inode *inode = new->inode;
0b246afa 2397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2398 int slot;
2399 int ret;
2400 u64 extent_offset;
2401 u64 num_bytes;
2402
2403 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2404 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2405 return 0;
2406
2407 key.objectid = root_id;
2408 key.type = BTRFS_ROOT_ITEM_KEY;
2409 key.offset = (u64)-1;
2410
38c227d8
LB
2411 root = btrfs_read_fs_root_no_name(fs_info, &key);
2412 if (IS_ERR(root)) {
2413 if (PTR_ERR(root) == -ENOENT)
2414 return 0;
2415 WARN_ON(1);
ab8d0fc4 2416 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2417 inum, offset, root_id);
2418 return PTR_ERR(root);
2419 }
2420
2421 key.objectid = inum;
2422 key.type = BTRFS_EXTENT_DATA_KEY;
2423 if (offset > (u64)-1 << 32)
2424 key.offset = 0;
2425 else
2426 key.offset = offset;
2427
2428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2429 if (WARN_ON(ret < 0))
38c227d8 2430 return ret;
50f1319c 2431 ret = 0;
38c227d8
LB
2432
2433 while (1) {
2434 cond_resched();
2435
2436 leaf = path->nodes[0];
2437 slot = path->slots[0];
2438
2439 if (slot >= btrfs_header_nritems(leaf)) {
2440 ret = btrfs_next_leaf(root, path);
2441 if (ret < 0) {
2442 goto out;
2443 } else if (ret > 0) {
2444 ret = 0;
2445 goto out;
2446 }
2447 continue;
2448 }
2449
2450 path->slots[0]++;
2451
2452 btrfs_item_key_to_cpu(leaf, &key, slot);
2453
2454 if (key.objectid > inum)
2455 goto out;
2456
2457 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2458 continue;
2459
2460 extent = btrfs_item_ptr(leaf, slot,
2461 struct btrfs_file_extent_item);
2462
2463 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2464 continue;
2465
e68afa49
LB
2466 /*
2467 * 'offset' refers to the exact key.offset,
2468 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2469 * (key.offset - extent_offset).
2470 */
2471 if (key.offset != offset)
38c227d8
LB
2472 continue;
2473
e68afa49 2474 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2475 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2476
38c227d8
LB
2477 if (extent_offset >= old->extent_offset + old->offset +
2478 old->len || extent_offset + num_bytes <=
2479 old->extent_offset + old->offset)
2480 continue;
38c227d8
LB
2481 break;
2482 }
2483
2484 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2485 if (!backref) {
2486 ret = -ENOENT;
2487 goto out;
2488 }
2489
2490 backref->root_id = root_id;
2491 backref->inum = inum;
e68afa49 2492 backref->file_pos = offset;
38c227d8
LB
2493 backref->num_bytes = num_bytes;
2494 backref->extent_offset = extent_offset;
2495 backref->generation = btrfs_file_extent_generation(leaf, extent);
2496 backref->old = old;
2497 backref_insert(&new->root, backref);
2498 old->count++;
2499out:
2500 btrfs_release_path(path);
2501 WARN_ON(ret);
2502 return ret;
2503}
2504
2505static noinline bool record_extent_backrefs(struct btrfs_path *path,
2506 struct new_sa_defrag_extent *new)
2507{
0b246afa 2508 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2509 struct old_sa_defrag_extent *old, *tmp;
2510 int ret;
2511
2512 new->path = path;
2513
2514 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2515 ret = iterate_inodes_from_logical(old->bytenr +
2516 old->extent_offset, fs_info,
38c227d8 2517 path, record_one_backref,
c995ab3c 2518 old, false);
4724b106
JB
2519 if (ret < 0 && ret != -ENOENT)
2520 return false;
38c227d8
LB
2521
2522 /* no backref to be processed for this extent */
2523 if (!old->count) {
2524 list_del(&old->list);
2525 kfree(old);
2526 }
2527 }
2528
2529 if (list_empty(&new->head))
2530 return false;
2531
2532 return true;
2533}
2534
2535static int relink_is_mergable(struct extent_buffer *leaf,
2536 struct btrfs_file_extent_item *fi,
116e0024 2537 struct new_sa_defrag_extent *new)
38c227d8 2538{
116e0024 2539 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2540 return 0;
2541
2542 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2543 return 0;
2544
116e0024
LB
2545 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2546 return 0;
2547
2548 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2549 btrfs_file_extent_other_encoding(leaf, fi))
2550 return 0;
2551
2552 return 1;
2553}
2554
2555/*
2556 * Note the backref might has changed, and in this case we just return 0.
2557 */
2558static noinline int relink_extent_backref(struct btrfs_path *path,
2559 struct sa_defrag_extent_backref *prev,
2560 struct sa_defrag_extent_backref *backref)
2561{
2562 struct btrfs_file_extent_item *extent;
2563 struct btrfs_file_extent_item *item;
2564 struct btrfs_ordered_extent *ordered;
2565 struct btrfs_trans_handle *trans;
38c227d8
LB
2566 struct btrfs_root *root;
2567 struct btrfs_key key;
2568 struct extent_buffer *leaf;
2569 struct old_sa_defrag_extent *old = backref->old;
2570 struct new_sa_defrag_extent *new = old->new;
0b246afa 2571 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2572 struct inode *inode;
2573 struct extent_state *cached = NULL;
2574 int ret = 0;
2575 u64 start;
2576 u64 len;
2577 u64 lock_start;
2578 u64 lock_end;
2579 bool merge = false;
2580 int index;
2581
2582 if (prev && prev->root_id == backref->root_id &&
2583 prev->inum == backref->inum &&
2584 prev->file_pos + prev->num_bytes == backref->file_pos)
2585 merge = true;
2586
2587 /* step 1: get root */
2588 key.objectid = backref->root_id;
2589 key.type = BTRFS_ROOT_ITEM_KEY;
2590 key.offset = (u64)-1;
2591
38c227d8
LB
2592 index = srcu_read_lock(&fs_info->subvol_srcu);
2593
2594 root = btrfs_read_fs_root_no_name(fs_info, &key);
2595 if (IS_ERR(root)) {
2596 srcu_read_unlock(&fs_info->subvol_srcu, index);
2597 if (PTR_ERR(root) == -ENOENT)
2598 return 0;
2599 return PTR_ERR(root);
2600 }
38c227d8 2601
bcbba5e6
WS
2602 if (btrfs_root_readonly(root)) {
2603 srcu_read_unlock(&fs_info->subvol_srcu, index);
2604 return 0;
2605 }
2606
38c227d8
LB
2607 /* step 2: get inode */
2608 key.objectid = backref->inum;
2609 key.type = BTRFS_INODE_ITEM_KEY;
2610 key.offset = 0;
2611
2612 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2613 if (IS_ERR(inode)) {
2614 srcu_read_unlock(&fs_info->subvol_srcu, index);
2615 return 0;
2616 }
2617
2618 srcu_read_unlock(&fs_info->subvol_srcu, index);
2619
2620 /* step 3: relink backref */
2621 lock_start = backref->file_pos;
2622 lock_end = backref->file_pos + backref->num_bytes - 1;
2623 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2624 &cached);
38c227d8
LB
2625
2626 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2627 if (ordered) {
2628 btrfs_put_ordered_extent(ordered);
2629 goto out_unlock;
2630 }
2631
2632 trans = btrfs_join_transaction(root);
2633 if (IS_ERR(trans)) {
2634 ret = PTR_ERR(trans);
2635 goto out_unlock;
2636 }
2637
2638 key.objectid = backref->inum;
2639 key.type = BTRFS_EXTENT_DATA_KEY;
2640 key.offset = backref->file_pos;
2641
2642 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2643 if (ret < 0) {
2644 goto out_free_path;
2645 } else if (ret > 0) {
2646 ret = 0;
2647 goto out_free_path;
2648 }
2649
2650 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2651 struct btrfs_file_extent_item);
2652
2653 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2654 backref->generation)
2655 goto out_free_path;
2656
2657 btrfs_release_path(path);
2658
2659 start = backref->file_pos;
2660 if (backref->extent_offset < old->extent_offset + old->offset)
2661 start += old->extent_offset + old->offset -
2662 backref->extent_offset;
2663
2664 len = min(backref->extent_offset + backref->num_bytes,
2665 old->extent_offset + old->offset + old->len);
2666 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2667
2668 ret = btrfs_drop_extents(trans, root, inode, start,
2669 start + len, 1);
2670 if (ret)
2671 goto out_free_path;
2672again:
4a0cc7ca 2673 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2674 key.type = BTRFS_EXTENT_DATA_KEY;
2675 key.offset = start;
2676
a09a0a70 2677 path->leave_spinning = 1;
38c227d8
LB
2678 if (merge) {
2679 struct btrfs_file_extent_item *fi;
2680 u64 extent_len;
2681 struct btrfs_key found_key;
2682
3c9665df 2683 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2684 if (ret < 0)
2685 goto out_free_path;
2686
2687 path->slots[0]--;
2688 leaf = path->nodes[0];
2689 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2690
2691 fi = btrfs_item_ptr(leaf, path->slots[0],
2692 struct btrfs_file_extent_item);
2693 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2694
116e0024
LB
2695 if (extent_len + found_key.offset == start &&
2696 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2697 btrfs_set_file_extent_num_bytes(leaf, fi,
2698 extent_len + len);
2699 btrfs_mark_buffer_dirty(leaf);
2700 inode_add_bytes(inode, len);
2701
2702 ret = 1;
2703 goto out_free_path;
2704 } else {
2705 merge = false;
2706 btrfs_release_path(path);
2707 goto again;
2708 }
2709 }
2710
2711 ret = btrfs_insert_empty_item(trans, root, path, &key,
2712 sizeof(*extent));
2713 if (ret) {
66642832 2714 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2715 goto out_free_path;
2716 }
2717
2718 leaf = path->nodes[0];
2719 item = btrfs_item_ptr(leaf, path->slots[0],
2720 struct btrfs_file_extent_item);
2721 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2722 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2723 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2724 btrfs_set_file_extent_num_bytes(leaf, item, len);
2725 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2726 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2727 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2728 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2729 btrfs_set_file_extent_encryption(leaf, item, 0);
2730 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2731
2732 btrfs_mark_buffer_dirty(leaf);
2733 inode_add_bytes(inode, len);
a09a0a70 2734 btrfs_release_path(path);
38c227d8 2735
84f7d8e6 2736 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2737 new->disk_len, 0,
2738 backref->root_id, backref->inum,
b06c4bf5 2739 new->file_pos); /* start - extent_offset */
38c227d8 2740 if (ret) {
66642832 2741 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2742 goto out_free_path;
2743 }
2744
2745 ret = 1;
2746out_free_path:
2747 btrfs_release_path(path);
a09a0a70 2748 path->leave_spinning = 0;
3a45bb20 2749 btrfs_end_transaction(trans);
38c227d8
LB
2750out_unlock:
2751 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2752 &cached);
38c227d8
LB
2753 iput(inode);
2754 return ret;
2755}
2756
6f519564
LB
2757static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2758{
2759 struct old_sa_defrag_extent *old, *tmp;
2760
2761 if (!new)
2762 return;
2763
2764 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2765 kfree(old);
2766 }
2767 kfree(new);
2768}
2769
38c227d8
LB
2770static void relink_file_extents(struct new_sa_defrag_extent *new)
2771{
0b246afa 2772 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2773 struct btrfs_path *path;
38c227d8
LB
2774 struct sa_defrag_extent_backref *backref;
2775 struct sa_defrag_extent_backref *prev = NULL;
2776 struct inode *inode;
2777 struct btrfs_root *root;
2778 struct rb_node *node;
2779 int ret;
2780
2781 inode = new->inode;
2782 root = BTRFS_I(inode)->root;
2783
2784 path = btrfs_alloc_path();
2785 if (!path)
2786 return;
2787
2788 if (!record_extent_backrefs(path, new)) {
2789 btrfs_free_path(path);
2790 goto out;
2791 }
2792 btrfs_release_path(path);
2793
2794 while (1) {
2795 node = rb_first(&new->root);
2796 if (!node)
2797 break;
2798 rb_erase(node, &new->root);
2799
2800 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2801
2802 ret = relink_extent_backref(path, prev, backref);
2803 WARN_ON(ret < 0);
2804
2805 kfree(prev);
2806
2807 if (ret == 1)
2808 prev = backref;
2809 else
2810 prev = NULL;
2811 cond_resched();
2812 }
2813 kfree(prev);
2814
2815 btrfs_free_path(path);
38c227d8 2816out:
6f519564
LB
2817 free_sa_defrag_extent(new);
2818
0b246afa
JM
2819 atomic_dec(&fs_info->defrag_running);
2820 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2821}
2822
2823static struct new_sa_defrag_extent *
2824record_old_file_extents(struct inode *inode,
2825 struct btrfs_ordered_extent *ordered)
2826{
0b246afa 2827 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2828 struct btrfs_root *root = BTRFS_I(inode)->root;
2829 struct btrfs_path *path;
2830 struct btrfs_key key;
6f519564 2831 struct old_sa_defrag_extent *old;
38c227d8
LB
2832 struct new_sa_defrag_extent *new;
2833 int ret;
2834
2835 new = kmalloc(sizeof(*new), GFP_NOFS);
2836 if (!new)
2837 return NULL;
2838
2839 new->inode = inode;
2840 new->file_pos = ordered->file_offset;
2841 new->len = ordered->len;
2842 new->bytenr = ordered->start;
2843 new->disk_len = ordered->disk_len;
2844 new->compress_type = ordered->compress_type;
2845 new->root = RB_ROOT;
2846 INIT_LIST_HEAD(&new->head);
2847
2848 path = btrfs_alloc_path();
2849 if (!path)
2850 goto out_kfree;
2851
4a0cc7ca 2852 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2853 key.type = BTRFS_EXTENT_DATA_KEY;
2854 key.offset = new->file_pos;
2855
2856 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2857 if (ret < 0)
2858 goto out_free_path;
2859 if (ret > 0 && path->slots[0] > 0)
2860 path->slots[0]--;
2861
2862 /* find out all the old extents for the file range */
2863 while (1) {
2864 struct btrfs_file_extent_item *extent;
2865 struct extent_buffer *l;
2866 int slot;
2867 u64 num_bytes;
2868 u64 offset;
2869 u64 end;
2870 u64 disk_bytenr;
2871 u64 extent_offset;
2872
2873 l = path->nodes[0];
2874 slot = path->slots[0];
2875
2876 if (slot >= btrfs_header_nritems(l)) {
2877 ret = btrfs_next_leaf(root, path);
2878 if (ret < 0)
6f519564 2879 goto out_free_path;
38c227d8
LB
2880 else if (ret > 0)
2881 break;
2882 continue;
2883 }
2884
2885 btrfs_item_key_to_cpu(l, &key, slot);
2886
4a0cc7ca 2887 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2888 break;
2889 if (key.type != BTRFS_EXTENT_DATA_KEY)
2890 break;
2891 if (key.offset >= new->file_pos + new->len)
2892 break;
2893
2894 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2895
2896 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2897 if (key.offset + num_bytes < new->file_pos)
2898 goto next;
2899
2900 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2901 if (!disk_bytenr)
2902 goto next;
2903
2904 extent_offset = btrfs_file_extent_offset(l, extent);
2905
2906 old = kmalloc(sizeof(*old), GFP_NOFS);
2907 if (!old)
6f519564 2908 goto out_free_path;
38c227d8
LB
2909
2910 offset = max(new->file_pos, key.offset);
2911 end = min(new->file_pos + new->len, key.offset + num_bytes);
2912
2913 old->bytenr = disk_bytenr;
2914 old->extent_offset = extent_offset;
2915 old->offset = offset - key.offset;
2916 old->len = end - offset;
2917 old->new = new;
2918 old->count = 0;
2919 list_add_tail(&old->list, &new->head);
2920next:
2921 path->slots[0]++;
2922 cond_resched();
2923 }
2924
2925 btrfs_free_path(path);
0b246afa 2926 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2927
2928 return new;
2929
38c227d8
LB
2930out_free_path:
2931 btrfs_free_path(path);
2932out_kfree:
6f519564 2933 free_sa_defrag_extent(new);
38c227d8
LB
2934 return NULL;
2935}
2936
2ff7e61e 2937static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2938 u64 start, u64 len)
2939{
2940 struct btrfs_block_group_cache *cache;
2941
0b246afa 2942 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2943 ASSERT(cache);
2944
2945 spin_lock(&cache->lock);
2946 cache->delalloc_bytes -= len;
2947 spin_unlock(&cache->lock);
2948
2949 btrfs_put_block_group(cache);
2950}
2951
d352ac68
CM
2952/* as ordered data IO finishes, this gets called so we can finish
2953 * an ordered extent if the range of bytes in the file it covers are
2954 * fully written.
2955 */
5fd02043 2956static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2957{
5fd02043 2958 struct inode *inode = ordered_extent->inode;
0b246afa 2959 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2960 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2961 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2962 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2963 struct extent_state *cached_state = NULL;
38c227d8 2964 struct new_sa_defrag_extent *new = NULL;
261507a0 2965 int compress_type = 0;
77cef2ec
JB
2966 int ret = 0;
2967 u64 logical_len = ordered_extent->len;
82d5902d 2968 bool nolock;
77cef2ec 2969 bool truncated = false;
a7e3b975
FM
2970 bool range_locked = false;
2971 bool clear_new_delalloc_bytes = false;
2972
2973 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2974 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2975 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2976 clear_new_delalloc_bytes = true;
e6dcd2dc 2977
70ddc553 2978 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2979
5fd02043
JB
2980 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2981 ret = -EIO;
2982 goto out;
2983 }
2984
7ab7956e
NB
2985 btrfs_free_io_failure_record(BTRFS_I(inode),
2986 ordered_extent->file_offset,
2987 ordered_extent->file_offset +
2988 ordered_extent->len - 1);
f612496b 2989
77cef2ec
JB
2990 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2991 truncated = true;
2992 logical_len = ordered_extent->truncated_len;
2993 /* Truncated the entire extent, don't bother adding */
2994 if (!logical_len)
2995 goto out;
2996 }
2997
c2167754 2998 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2999 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
3000
3001 /*
3002 * For mwrite(mmap + memset to write) case, we still reserve
3003 * space for NOCOW range.
3004 * As NOCOW won't cause a new delayed ref, just free the space
3005 */
bc42bda2 3006 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 3007 ordered_extent->len);
6c760c07
JB
3008 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3009 if (nolock)
3010 trans = btrfs_join_transaction_nolock(root);
3011 else
3012 trans = btrfs_join_transaction(root);
3013 if (IS_ERR(trans)) {
3014 ret = PTR_ERR(trans);
3015 trans = NULL;
3016 goto out;
c2167754 3017 }
69fe2d75 3018 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
3019 ret = btrfs_update_inode_fallback(trans, root, inode);
3020 if (ret) /* -ENOMEM or corruption */
66642832 3021 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3022 goto out;
3023 }
e6dcd2dc 3024
a7e3b975 3025 range_locked = true;
2ac55d41
JB
3026 lock_extent_bits(io_tree, ordered_extent->file_offset,
3027 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3028 &cached_state);
e6dcd2dc 3029
38c227d8
LB
3030 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3031 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3032 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3033 if (ret) {
3034 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3035 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3036 /* the inode is shared */
3037 new = record_old_file_extents(inode, ordered_extent);
3038
3039 clear_extent_bit(io_tree, ordered_extent->file_offset,
3040 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3041 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3042 }
3043
0cb59c99 3044 if (nolock)
7a7eaa40 3045 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3046 else
7a7eaa40 3047 trans = btrfs_join_transaction(root);
79787eaa
JM
3048 if (IS_ERR(trans)) {
3049 ret = PTR_ERR(trans);
3050 trans = NULL;
a7e3b975 3051 goto out;
79787eaa 3052 }
a79b7d4b 3053
69fe2d75 3054 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3055
c8b97818 3056 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3057 compress_type = ordered_extent->compress_type;
d899e052 3058 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3059 BUG_ON(compress_type);
b430b775
JM
3060 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3061 ordered_extent->len);
7a6d7067 3062 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3063 ordered_extent->file_offset,
3064 ordered_extent->file_offset +
77cef2ec 3065 logical_len);
d899e052 3066 } else {
0b246afa 3067 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3068 ret = insert_reserved_file_extent(trans, inode,
3069 ordered_extent->file_offset,
3070 ordered_extent->start,
3071 ordered_extent->disk_len,
77cef2ec 3072 logical_len, logical_len,
261507a0 3073 compress_type, 0, 0,
d899e052 3074 BTRFS_FILE_EXTENT_REG);
e570fd27 3075 if (!ret)
2ff7e61e 3076 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3077 ordered_extent->start,
3078 ordered_extent->disk_len);
d899e052 3079 }
5dc562c5
JB
3080 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3081 ordered_extent->file_offset, ordered_extent->len,
3082 trans->transid);
79787eaa 3083 if (ret < 0) {
66642832 3084 btrfs_abort_transaction(trans, ret);
a7e3b975 3085 goto out;
79787eaa 3086 }
2ac55d41 3087
ac01f26a
NB
3088 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3089 if (ret) {
3090 btrfs_abort_transaction(trans, ret);
3091 goto out;
3092 }
e6dcd2dc 3093
6c760c07
JB
3094 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3095 ret = btrfs_update_inode_fallback(trans, root, inode);
3096 if (ret) { /* -ENOMEM or corruption */
66642832 3097 btrfs_abort_transaction(trans, ret);
a7e3b975 3098 goto out;
1ef30be1
JB
3099 }
3100 ret = 0;
c2167754 3101out:
a7e3b975
FM
3102 if (range_locked || clear_new_delalloc_bytes) {
3103 unsigned int clear_bits = 0;
3104
3105 if (range_locked)
3106 clear_bits |= EXTENT_LOCKED;
3107 if (clear_new_delalloc_bytes)
3108 clear_bits |= EXTENT_DELALLOC_NEW;
3109 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3110 ordered_extent->file_offset,
3111 ordered_extent->file_offset +
3112 ordered_extent->len - 1,
3113 clear_bits,
3114 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3115 0, &cached_state);
a7e3b975
FM
3116 }
3117
a698d075 3118 if (trans)
3a45bb20 3119 btrfs_end_transaction(trans);
0cb59c99 3120
77cef2ec
JB
3121 if (ret || truncated) {
3122 u64 start, end;
3123
3124 if (truncated)
3125 start = ordered_extent->file_offset + logical_len;
3126 else
3127 start = ordered_extent->file_offset;
3128 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3129 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3130
3131 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3132 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3133
0bec9ef5
JB
3134 /*
3135 * If the ordered extent had an IOERR or something else went
3136 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3137 * back to the allocator. We only free the extent in the
3138 * truncated case if we didn't write out the extent at all.
0bec9ef5 3139 */
77cef2ec
JB
3140 if ((ret || !logical_len) &&
3141 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3142 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3143 btrfs_free_reserved_extent(fs_info,
3144 ordered_extent->start,
e570fd27 3145 ordered_extent->disk_len, 1);
0bec9ef5
JB
3146 }
3147
3148
5fd02043 3149 /*
8bad3c02
LB
3150 * This needs to be done to make sure anybody waiting knows we are done
3151 * updating everything for this ordered extent.
5fd02043
JB
3152 */
3153 btrfs_remove_ordered_extent(inode, ordered_extent);
3154
38c227d8 3155 /* for snapshot-aware defrag */
6f519564
LB
3156 if (new) {
3157 if (ret) {
3158 free_sa_defrag_extent(new);
0b246afa 3159 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3160 } else {
3161 relink_file_extents(new);
3162 }
3163 }
38c227d8 3164
e6dcd2dc
CM
3165 /* once for us */
3166 btrfs_put_ordered_extent(ordered_extent);
3167 /* once for the tree */
3168 btrfs_put_ordered_extent(ordered_extent);
3169
5fd02043
JB
3170 return ret;
3171}
3172
3173static void finish_ordered_fn(struct btrfs_work *work)
3174{
3175 struct btrfs_ordered_extent *ordered_extent;
3176 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3177 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3178}
3179
c3988d63 3180static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3181 struct extent_state *state, int uptodate)
3182{
5fd02043 3183 struct inode *inode = page->mapping->host;
0b246afa 3184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3185 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3186 struct btrfs_workqueue *wq;
3187 btrfs_work_func_t func;
5fd02043 3188
1abe9b8a 3189 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3190
8b62b72b 3191 ClearPagePrivate2(page);
5fd02043
JB
3192 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3193 end - start + 1, uptodate))
c3988d63 3194 return;
5fd02043 3195
70ddc553 3196 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3197 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3198 func = btrfs_freespace_write_helper;
3199 } else {
0b246afa 3200 wq = fs_info->endio_write_workers;
9e0af237
LB
3201 func = btrfs_endio_write_helper;
3202 }
5fd02043 3203
9e0af237
LB
3204 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3205 NULL);
3206 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3207}
3208
dc380aea
MX
3209static int __readpage_endio_check(struct inode *inode,
3210 struct btrfs_io_bio *io_bio,
3211 int icsum, struct page *page,
3212 int pgoff, u64 start, size_t len)
3213{
3214 char *kaddr;
3215 u32 csum_expected;
3216 u32 csum = ~(u32)0;
dc380aea
MX
3217
3218 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3219
3220 kaddr = kmap_atomic(page);
3221 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3222 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3223 if (csum != csum_expected)
3224 goto zeroit;
3225
3226 kunmap_atomic(kaddr);
3227 return 0;
3228zeroit:
0970a22e 3229 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3230 io_bio->mirror_num);
dc380aea
MX
3231 memset(kaddr + pgoff, 1, len);
3232 flush_dcache_page(page);
3233 kunmap_atomic(kaddr);
dc380aea
MX
3234 return -EIO;
3235}
3236
d352ac68
CM
3237/*
3238 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3239 * if there's a match, we allow the bio to finish. If not, the code in
3240 * extent_io.c will try to find good copies for us.
d352ac68 3241 */
facc8a22
MX
3242static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3243 u64 phy_offset, struct page *page,
3244 u64 start, u64 end, int mirror)
07157aac 3245{
4eee4fa4 3246 size_t offset = start - page_offset(page);
07157aac 3247 struct inode *inode = page->mapping->host;
d1310b2e 3248 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3249 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3250
d20f7043
CM
3251 if (PageChecked(page)) {
3252 ClearPageChecked(page);
dc380aea 3253 return 0;
d20f7043 3254 }
6cbff00f
CH
3255
3256 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3257 return 0;
17d217fe
YZ
3258
3259 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3260 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3261 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3262 return 0;
17d217fe 3263 }
d20f7043 3264
facc8a22 3265 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3266 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3267 start, (size_t)(end - start + 1));
07157aac 3268}
b888db2b 3269
c1c3fac2
NB
3270/*
3271 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3272 *
3273 * @inode: The inode we want to perform iput on
3274 *
3275 * This function uses the generic vfs_inode::i_count to track whether we should
3276 * just decrement it (in case it's > 1) or if this is the last iput then link
3277 * the inode to the delayed iput machinery. Delayed iputs are processed at
3278 * transaction commit time/superblock commit/cleaner kthread.
3279 */
24bbcf04
YZ
3280void btrfs_add_delayed_iput(struct inode *inode)
3281{
0b246afa 3282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3283 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3284
3285 if (atomic_add_unless(&inode->i_count, -1, 1))
3286 return;
3287
24bbcf04 3288 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3289 ASSERT(list_empty(&binode->delayed_iput));
3290 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3291 spin_unlock(&fs_info->delayed_iput_lock);
3292}
3293
2ff7e61e 3294void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3295{
24bbcf04 3296
24bbcf04 3297 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3298 while (!list_empty(&fs_info->delayed_iputs)) {
3299 struct btrfs_inode *inode;
3300
3301 inode = list_first_entry(&fs_info->delayed_iputs,
3302 struct btrfs_inode, delayed_iput);
c1c3fac2 3303 list_del_init(&inode->delayed_iput);
8089fe62
DS
3304 spin_unlock(&fs_info->delayed_iput_lock);
3305 iput(&inode->vfs_inode);
3306 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3307 }
8089fe62 3308 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3309}
3310
d68fc57b 3311/*
42b2aa86 3312 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3313 * files in the subvolume, it removes orphan item and frees block_rsv
3314 * structure.
3315 */
3316void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3317 struct btrfs_root *root)
3318{
0b246afa 3319 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3320 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3321 int ret;
3322
8a35d95f 3323 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3324 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3325 return;
3326
90290e19 3327 spin_lock(&root->orphan_lock);
8a35d95f 3328 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3329 spin_unlock(&root->orphan_lock);
3330 return;
3331 }
3332
3333 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3334 spin_unlock(&root->orphan_lock);
3335 return;
3336 }
3337
3338 block_rsv = root->orphan_block_rsv;
3339 root->orphan_block_rsv = NULL;
3340 spin_unlock(&root->orphan_lock);
3341
27cdeb70 3342 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3343 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3344 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3345 root->root_key.objectid);
4ef31a45 3346 if (ret)
66642832 3347 btrfs_abort_transaction(trans, ret);
4ef31a45 3348 else
27cdeb70
MX
3349 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3350 &root->state);
d68fc57b
YZ
3351 }
3352
90290e19
JB
3353 if (block_rsv) {
3354 WARN_ON(block_rsv->size > 0);
2ff7e61e 3355 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3356 }
3357}
3358
7b128766
JB
3359/*
3360 * This creates an orphan entry for the given inode in case something goes
3361 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3362 *
3363 * NOTE: caller of this function should reserve 5 units of metadata for
3364 * this function.
7b128766 3365 */
73f2e545
NB
3366int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3367 struct btrfs_inode *inode)
7b128766 3368{
73f2e545
NB
3369 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3370 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3371 struct btrfs_block_rsv *block_rsv = NULL;
3372 int reserve = 0;
3373 int insert = 0;
3374 int ret;
7b128766 3375
d68fc57b 3376 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3377 block_rsv = btrfs_alloc_block_rsv(fs_info,
3378 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3379 if (!block_rsv)
3380 return -ENOMEM;
d68fc57b 3381 }
7b128766 3382
8a35d95f 3383 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3384 &inode->runtime_flags)) {
d68fc57b
YZ
3385#if 0
3386 /*
3387 * For proper ENOSPC handling, we should do orphan
3388 * cleanup when mounting. But this introduces backward
3389 * compatibility issue.
3390 */
3391 if (!xchg(&root->orphan_item_inserted, 1))
3392 insert = 2;
3393 else
3394 insert = 1;
3395#endif
3396 insert = 1;
7b128766
JB
3397 }
3398
72ac3c0d 3399 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3400 &inode->runtime_flags))
d68fc57b 3401 reserve = 1;
3d5addaf
LB
3402
3403 spin_lock(&root->orphan_lock);
3404 /* If someone has created ->orphan_block_rsv, be happy to use it. */
3405 if (!root->orphan_block_rsv) {
3406 root->orphan_block_rsv = block_rsv;
3407 } else if (block_rsv) {
3408 btrfs_free_block_rsv(fs_info, block_rsv);
3409 block_rsv = NULL;
3410 }
3411
3412 if (insert)
3413 atomic_inc(&root->orphan_inodes);
d68fc57b 3414 spin_unlock(&root->orphan_lock);
7b128766 3415
d68fc57b
YZ
3416 /* grab metadata reservation from transaction handle */
3417 if (reserve) {
3418 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3419 ASSERT(!ret);
3420 if (ret) {
1a932ef4
LB
3421 /*
3422 * dec doesn't need spin_lock as ->orphan_block_rsv
3423 * would be released only if ->orphan_inodes is
3424 * zero.
3425 */
3b6571c1
JB
3426 atomic_dec(&root->orphan_inodes);
3427 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3428 &inode->runtime_flags);
3b6571c1
JB
3429 if (insert)
3430 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3431 &inode->runtime_flags);
3b6571c1
JB
3432 return ret;
3433 }
d68fc57b 3434 }
7b128766 3435
d68fc57b
YZ
3436 /* insert an orphan item to track this unlinked/truncated file */
3437 if (insert >= 1) {
73f2e545 3438 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3439 if (ret) {
4ef31a45
JB
3440 if (reserve) {
3441 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3442 &inode->runtime_flags);
4ef31a45
JB
3443 btrfs_orphan_release_metadata(inode);
3444 }
1a932ef4
LB
3445 /*
3446 * btrfs_orphan_commit_root may race with us and set
3447 * ->orphan_block_rsv to zero, in order to avoid that,
3448 * decrease ->orphan_inodes after everything is done.
3449 */
3450 atomic_dec(&root->orphan_inodes);
4ef31a45 3451 if (ret != -EEXIST) {
e8e7cff6 3452 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3453 &inode->runtime_flags);
66642832 3454 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3455 return ret;
3456 }
79787eaa
JM
3457 }
3458 ret = 0;
d68fc57b
YZ
3459 }
3460
3461 /* insert an orphan item to track subvolume contains orphan files */
3462 if (insert >= 2) {
0b246afa 3463 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3464 root->root_key.objectid);
79787eaa 3465 if (ret && ret != -EEXIST) {
66642832 3466 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3467 return ret;
3468 }
d68fc57b
YZ
3469 }
3470 return 0;
7b128766
JB
3471}
3472
3473/*
3474 * We have done the truncate/delete so we can go ahead and remove the orphan
3475 * item for this particular inode.
3476 */
48a3b636 3477static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3478 struct btrfs_inode *inode)
7b128766 3479{
3d6ae7bb 3480 struct btrfs_root *root = inode->root;
d68fc57b 3481 int delete_item = 0;
7b128766
JB
3482 int ret = 0;
3483
8a35d95f 3484 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3485 &inode->runtime_flags))
d68fc57b 3486 delete_item = 1;
7b128766 3487
1a932ef4
LB
3488 if (delete_item && trans)
3489 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3490
72ac3c0d 3491 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3492 &inode->runtime_flags))
1a932ef4 3493 btrfs_orphan_release_metadata(inode);
7b128766 3494
1a932ef4
LB
3495 /*
3496 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3497 * to zero, in order to avoid that, decrease ->orphan_inodes after
3498 * everything is done.
3499 */
3500 if (delete_item)
8a35d95f 3501 atomic_dec(&root->orphan_inodes);
703c88e0 3502
4ef31a45 3503 return ret;
7b128766
JB
3504}
3505
3506/*
3507 * this cleans up any orphans that may be left on the list from the last use
3508 * of this root.
3509 */
66b4ffd1 3510int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3511{
0b246afa 3512 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3513 struct btrfs_path *path;
3514 struct extent_buffer *leaf;
7b128766
JB
3515 struct btrfs_key key, found_key;
3516 struct btrfs_trans_handle *trans;
3517 struct inode *inode;
8f6d7f4f 3518 u64 last_objectid = 0;
7b128766
JB
3519 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3520
d68fc57b 3521 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3522 return 0;
c71bf099
YZ
3523
3524 path = btrfs_alloc_path();
66b4ffd1
JB
3525 if (!path) {
3526 ret = -ENOMEM;
3527 goto out;
3528 }
e4058b54 3529 path->reada = READA_BACK;
7b128766
JB
3530
3531 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3532 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3533 key.offset = (u64)-1;
3534
7b128766
JB
3535 while (1) {
3536 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3537 if (ret < 0)
3538 goto out;
7b128766
JB
3539
3540 /*
3541 * if ret == 0 means we found what we were searching for, which
25985edc 3542 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3543 * find the key and see if we have stuff that matches
3544 */
3545 if (ret > 0) {
66b4ffd1 3546 ret = 0;
7b128766
JB
3547 if (path->slots[0] == 0)
3548 break;
3549 path->slots[0]--;
3550 }
3551
3552 /* pull out the item */
3553 leaf = path->nodes[0];
7b128766
JB
3554 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3555
3556 /* make sure the item matches what we want */
3557 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3558 break;
962a298f 3559 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3560 break;
3561
3562 /* release the path since we're done with it */
b3b4aa74 3563 btrfs_release_path(path);
7b128766
JB
3564
3565 /*
3566 * this is where we are basically btrfs_lookup, without the
3567 * crossing root thing. we store the inode number in the
3568 * offset of the orphan item.
3569 */
8f6d7f4f
JB
3570
3571 if (found_key.offset == last_objectid) {
0b246afa
JM
3572 btrfs_err(fs_info,
3573 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3574 ret = -EINVAL;
3575 goto out;
3576 }
3577
3578 last_objectid = found_key.offset;
3579
5d4f98a2
YZ
3580 found_key.objectid = found_key.offset;
3581 found_key.type = BTRFS_INODE_ITEM_KEY;
3582 found_key.offset = 0;
0b246afa 3583 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3584 ret = PTR_ERR_OR_ZERO(inode);
67710892 3585 if (ret && ret != -ENOENT)
66b4ffd1 3586 goto out;
7b128766 3587
0b246afa 3588 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3589 struct btrfs_root *dead_root;
3590 struct btrfs_fs_info *fs_info = root->fs_info;
3591 int is_dead_root = 0;
3592
3593 /*
3594 * this is an orphan in the tree root. Currently these
3595 * could come from 2 sources:
3596 * a) a snapshot deletion in progress
3597 * b) a free space cache inode
3598 * We need to distinguish those two, as the snapshot
3599 * orphan must not get deleted.
3600 * find_dead_roots already ran before us, so if this
3601 * is a snapshot deletion, we should find the root
3602 * in the dead_roots list
3603 */
3604 spin_lock(&fs_info->trans_lock);
3605 list_for_each_entry(dead_root, &fs_info->dead_roots,
3606 root_list) {
3607 if (dead_root->root_key.objectid ==
3608 found_key.objectid) {
3609 is_dead_root = 1;
3610 break;
3611 }
3612 }
3613 spin_unlock(&fs_info->trans_lock);
3614 if (is_dead_root) {
3615 /* prevent this orphan from being found again */
3616 key.offset = found_key.objectid - 1;
3617 continue;
3618 }
3619 }
7b128766 3620 /*
a8c9e576
JB
3621 * Inode is already gone but the orphan item is still there,
3622 * kill the orphan item.
7b128766 3623 */
67710892 3624 if (ret == -ENOENT) {
a8c9e576 3625 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3626 if (IS_ERR(trans)) {
3627 ret = PTR_ERR(trans);
3628 goto out;
3629 }
0b246afa
JM
3630 btrfs_debug(fs_info, "auto deleting %Lu",
3631 found_key.objectid);
a8c9e576
JB
3632 ret = btrfs_del_orphan_item(trans, root,
3633 found_key.objectid);
3a45bb20 3634 btrfs_end_transaction(trans);
4ef31a45
JB
3635 if (ret)
3636 goto out;
7b128766
JB
3637 continue;
3638 }
3639
a8c9e576
JB
3640 /*
3641 * add this inode to the orphan list so btrfs_orphan_del does
3642 * the proper thing when we hit it
3643 */
8a35d95f
JB
3644 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3645 &BTRFS_I(inode)->runtime_flags);
925396ec 3646 atomic_inc(&root->orphan_inodes);
a8c9e576 3647
7b128766
JB
3648 /* if we have links, this was a truncate, lets do that */
3649 if (inode->i_nlink) {
fae7f21c 3650 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3651 iput(inode);
3652 continue;
3653 }
7b128766 3654 nr_truncate++;
f3fe820c
JB
3655
3656 /* 1 for the orphan item deletion. */
3657 trans = btrfs_start_transaction(root, 1);
3658 if (IS_ERR(trans)) {
c69b26b0 3659 iput(inode);
f3fe820c
JB
3660 ret = PTR_ERR(trans);
3661 goto out;
3662 }
73f2e545 3663 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3664 btrfs_end_transaction(trans);
c69b26b0
JB
3665 if (ret) {
3666 iput(inode);
f3fe820c 3667 goto out;
c69b26b0 3668 }
f3fe820c 3669
213e8c55 3670 ret = btrfs_truncate(inode, false);
4a7d0f68 3671 if (ret)
3d6ae7bb 3672 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3673 } else {
3674 nr_unlink++;
3675 }
3676
3677 /* this will do delete_inode and everything for us */
3678 iput(inode);
66b4ffd1
JB
3679 if (ret)
3680 goto out;
7b128766 3681 }
3254c876
MX
3682 /* release the path since we're done with it */
3683 btrfs_release_path(path);
3684
d68fc57b
YZ
3685 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3686
3687 if (root->orphan_block_rsv)
2ff7e61e 3688 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3689 (u64)-1);
3690
27cdeb70
MX
3691 if (root->orphan_block_rsv ||
3692 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3693 trans = btrfs_join_transaction(root);
66b4ffd1 3694 if (!IS_ERR(trans))
3a45bb20 3695 btrfs_end_transaction(trans);
d68fc57b 3696 }
7b128766
JB
3697
3698 if (nr_unlink)
0b246afa 3699 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3700 if (nr_truncate)
0b246afa 3701 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3702
3703out:
3704 if (ret)
0b246afa 3705 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3706 btrfs_free_path(path);
3707 return ret;
7b128766
JB
3708}
3709
46a53cca
CM
3710/*
3711 * very simple check to peek ahead in the leaf looking for xattrs. If we
3712 * don't find any xattrs, we know there can't be any acls.
3713 *
3714 * slot is the slot the inode is in, objectid is the objectid of the inode
3715 */
3716static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3717 int slot, u64 objectid,
3718 int *first_xattr_slot)
46a53cca
CM
3719{
3720 u32 nritems = btrfs_header_nritems(leaf);
3721 struct btrfs_key found_key;
f23b5a59
JB
3722 static u64 xattr_access = 0;
3723 static u64 xattr_default = 0;
46a53cca
CM
3724 int scanned = 0;
3725
f23b5a59 3726 if (!xattr_access) {
97d79299
AG
3727 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3728 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3729 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3730 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3731 }
3732
46a53cca 3733 slot++;
63541927 3734 *first_xattr_slot = -1;
46a53cca
CM
3735 while (slot < nritems) {
3736 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3737
3738 /* we found a different objectid, there must not be acls */
3739 if (found_key.objectid != objectid)
3740 return 0;
3741
3742 /* we found an xattr, assume we've got an acl */
f23b5a59 3743 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3744 if (*first_xattr_slot == -1)
3745 *first_xattr_slot = slot;
f23b5a59
JB
3746 if (found_key.offset == xattr_access ||
3747 found_key.offset == xattr_default)
3748 return 1;
3749 }
46a53cca
CM
3750
3751 /*
3752 * we found a key greater than an xattr key, there can't
3753 * be any acls later on
3754 */
3755 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3756 return 0;
3757
3758 slot++;
3759 scanned++;
3760
3761 /*
3762 * it goes inode, inode backrefs, xattrs, extents,
3763 * so if there are a ton of hard links to an inode there can
3764 * be a lot of backrefs. Don't waste time searching too hard,
3765 * this is just an optimization
3766 */
3767 if (scanned >= 8)
3768 break;
3769 }
3770 /* we hit the end of the leaf before we found an xattr or
3771 * something larger than an xattr. We have to assume the inode
3772 * has acls
3773 */
63541927
FDBM
3774 if (*first_xattr_slot == -1)
3775 *first_xattr_slot = slot;
46a53cca
CM
3776 return 1;
3777}
3778
d352ac68
CM
3779/*
3780 * read an inode from the btree into the in-memory inode
3781 */
67710892 3782static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3783{
0b246afa 3784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3785 struct btrfs_path *path;
5f39d397 3786 struct extent_buffer *leaf;
39279cc3
CM
3787 struct btrfs_inode_item *inode_item;
3788 struct btrfs_root *root = BTRFS_I(inode)->root;
3789 struct btrfs_key location;
67de1176 3790 unsigned long ptr;
46a53cca 3791 int maybe_acls;
618e21d5 3792 u32 rdev;
39279cc3 3793 int ret;
2f7e33d4 3794 bool filled = false;
63541927 3795 int first_xattr_slot;
2f7e33d4
MX
3796
3797 ret = btrfs_fill_inode(inode, &rdev);
3798 if (!ret)
3799 filled = true;
39279cc3
CM
3800
3801 path = btrfs_alloc_path();
67710892
FM
3802 if (!path) {
3803 ret = -ENOMEM;
1748f843 3804 goto make_bad;
67710892 3805 }
1748f843 3806
39279cc3 3807 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3808
39279cc3 3809 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3810 if (ret) {
3811 if (ret > 0)
3812 ret = -ENOENT;
39279cc3 3813 goto make_bad;
67710892 3814 }
39279cc3 3815
5f39d397 3816 leaf = path->nodes[0];
2f7e33d4
MX
3817
3818 if (filled)
67de1176 3819 goto cache_index;
2f7e33d4 3820
5f39d397
CM
3821 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3822 struct btrfs_inode_item);
5f39d397 3823 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3824 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3825 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3826 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3827 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3828
a937b979
DS
3829 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3830 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3831
a937b979
DS
3832 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3833 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3834
a937b979
DS
3835 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3836 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3837
9cc97d64 3838 BTRFS_I(inode)->i_otime.tv_sec =
3839 btrfs_timespec_sec(leaf, &inode_item->otime);
3840 BTRFS_I(inode)->i_otime.tv_nsec =
3841 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3842
a76a3cd4 3843 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3844 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3845 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3846
c7f88c4e
JL
3847 inode_set_iversion_queried(inode,
3848 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3849 inode->i_generation = BTRFS_I(inode)->generation;
3850 inode->i_rdev = 0;
3851 rdev = btrfs_inode_rdev(leaf, inode_item);
3852
3853 BTRFS_I(inode)->index_cnt = (u64)-1;
3854 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3855
3856cache_index:
5dc562c5
JB
3857 /*
3858 * If we were modified in the current generation and evicted from memory
3859 * and then re-read we need to do a full sync since we don't have any
3860 * idea about which extents were modified before we were evicted from
3861 * cache.
6e17d30b
YD
3862 *
3863 * This is required for both inode re-read from disk and delayed inode
3864 * in delayed_nodes_tree.
5dc562c5 3865 */
0b246afa 3866 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3867 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3868 &BTRFS_I(inode)->runtime_flags);
3869
bde6c242
FM
3870 /*
3871 * We don't persist the id of the transaction where an unlink operation
3872 * against the inode was last made. So here we assume the inode might
3873 * have been evicted, and therefore the exact value of last_unlink_trans
3874 * lost, and set it to last_trans to avoid metadata inconsistencies
3875 * between the inode and its parent if the inode is fsync'ed and the log
3876 * replayed. For example, in the scenario:
3877 *
3878 * touch mydir/foo
3879 * ln mydir/foo mydir/bar
3880 * sync
3881 * unlink mydir/bar
3882 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3883 * xfs_io -c fsync mydir/foo
3884 * <power failure>
3885 * mount fs, triggers fsync log replay
3886 *
3887 * We must make sure that when we fsync our inode foo we also log its
3888 * parent inode, otherwise after log replay the parent still has the
3889 * dentry with the "bar" name but our inode foo has a link count of 1
3890 * and doesn't have an inode ref with the name "bar" anymore.
3891 *
3892 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3893 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3894 * transaction commits on fsync if our inode is a directory, or if our
3895 * inode is not a directory, logging its parent unnecessarily.
3896 */
3897 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3898
67de1176
MX
3899 path->slots[0]++;
3900 if (inode->i_nlink != 1 ||
3901 path->slots[0] >= btrfs_header_nritems(leaf))
3902 goto cache_acl;
3903
3904 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3905 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3906 goto cache_acl;
3907
3908 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3909 if (location.type == BTRFS_INODE_REF_KEY) {
3910 struct btrfs_inode_ref *ref;
3911
3912 ref = (struct btrfs_inode_ref *)ptr;
3913 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3914 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3915 struct btrfs_inode_extref *extref;
3916
3917 extref = (struct btrfs_inode_extref *)ptr;
3918 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3919 extref);
3920 }
2f7e33d4 3921cache_acl:
46a53cca
CM
3922 /*
3923 * try to precache a NULL acl entry for files that don't have
3924 * any xattrs or acls
3925 */
33345d01 3926 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3927 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3928 if (first_xattr_slot != -1) {
3929 path->slots[0] = first_xattr_slot;
3930 ret = btrfs_load_inode_props(inode, path);
3931 if (ret)
0b246afa 3932 btrfs_err(fs_info,
351fd353 3933 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3934 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3935 root->root_key.objectid, ret);
3936 }
3937 btrfs_free_path(path);
3938
72c04902
AV
3939 if (!maybe_acls)
3940 cache_no_acl(inode);
46a53cca 3941
39279cc3 3942 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3943 case S_IFREG:
3944 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3945 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3946 inode->i_fop = &btrfs_file_operations;
3947 inode->i_op = &btrfs_file_inode_operations;
3948 break;
3949 case S_IFDIR:
3950 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3951 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3952 break;
3953 case S_IFLNK:
3954 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3955 inode_nohighmem(inode);
39279cc3
CM
3956 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3957 break;
618e21d5 3958 default:
0279b4cd 3959 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3960 init_special_inode(inode, inode->i_mode, rdev);
3961 break;
39279cc3 3962 }
6cbff00f
CH
3963
3964 btrfs_update_iflags(inode);
67710892 3965 return 0;
39279cc3
CM
3966
3967make_bad:
39279cc3 3968 btrfs_free_path(path);
39279cc3 3969 make_bad_inode(inode);
67710892 3970 return ret;
39279cc3
CM
3971}
3972
d352ac68
CM
3973/*
3974 * given a leaf and an inode, copy the inode fields into the leaf
3975 */
e02119d5
CM
3976static void fill_inode_item(struct btrfs_trans_handle *trans,
3977 struct extent_buffer *leaf,
5f39d397 3978 struct btrfs_inode_item *item,
39279cc3
CM
3979 struct inode *inode)
3980{
51fab693
LB
3981 struct btrfs_map_token token;
3982
3983 btrfs_init_map_token(&token);
5f39d397 3984
51fab693
LB
3985 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3986 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3987 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3988 &token);
3989 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3990 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3991
a937b979 3992 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3993 inode->i_atime.tv_sec, &token);
a937b979 3994 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3995 inode->i_atime.tv_nsec, &token);
5f39d397 3996
a937b979 3997 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3998 inode->i_mtime.tv_sec, &token);
a937b979 3999 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 4000 inode->i_mtime.tv_nsec, &token);
5f39d397 4001
a937b979 4002 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 4003 inode->i_ctime.tv_sec, &token);
a937b979 4004 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 4005 inode->i_ctime.tv_nsec, &token);
5f39d397 4006
9cc97d64 4007 btrfs_set_token_timespec_sec(leaf, &item->otime,
4008 BTRFS_I(inode)->i_otime.tv_sec, &token);
4009 btrfs_set_token_timespec_nsec(leaf, &item->otime,
4010 BTRFS_I(inode)->i_otime.tv_nsec, &token);
4011
51fab693
LB
4012 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
4013 &token);
4014 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
4015 &token);
c7f88c4e
JL
4016 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
4017 &token);
51fab693
LB
4018 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
4019 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
4020 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
4021 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
4022}
4023
d352ac68
CM
4024/*
4025 * copy everything in the in-memory inode into the btree.
4026 */
2115133f 4027static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 4028 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
4029{
4030 struct btrfs_inode_item *inode_item;
4031 struct btrfs_path *path;
5f39d397 4032 struct extent_buffer *leaf;
39279cc3
CM
4033 int ret;
4034
4035 path = btrfs_alloc_path();
16cdcec7
MX
4036 if (!path)
4037 return -ENOMEM;
4038
b9473439 4039 path->leave_spinning = 1;
16cdcec7
MX
4040 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4041 1);
39279cc3
CM
4042 if (ret) {
4043 if (ret > 0)
4044 ret = -ENOENT;
4045 goto failed;
4046 }
4047
5f39d397
CM
4048 leaf = path->nodes[0];
4049 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4050 struct btrfs_inode_item);
39279cc3 4051
e02119d5 4052 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4053 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4054 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4055 ret = 0;
4056failed:
39279cc3
CM
4057 btrfs_free_path(path);
4058 return ret;
4059}
4060
2115133f
CM
4061/*
4062 * copy everything in the in-memory inode into the btree.
4063 */
4064noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4065 struct btrfs_root *root, struct inode *inode)
4066{
0b246afa 4067 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4068 int ret;
4069
4070 /*
4071 * If the inode is a free space inode, we can deadlock during commit
4072 * if we put it into the delayed code.
4073 *
4074 * The data relocation inode should also be directly updated
4075 * without delay
4076 */
70ddc553 4077 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4078 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4079 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4080 btrfs_update_root_times(trans, root);
4081
2115133f
CM
4082 ret = btrfs_delayed_update_inode(trans, root, inode);
4083 if (!ret)
4084 btrfs_set_inode_last_trans(trans, inode);
4085 return ret;
4086 }
4087
4088 return btrfs_update_inode_item(trans, root, inode);
4089}
4090
be6aef60
JB
4091noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4092 struct btrfs_root *root,
4093 struct inode *inode)
2115133f
CM
4094{
4095 int ret;
4096
4097 ret = btrfs_update_inode(trans, root, inode);
4098 if (ret == -ENOSPC)
4099 return btrfs_update_inode_item(trans, root, inode);
4100 return ret;
4101}
4102
d352ac68
CM
4103/*
4104 * unlink helper that gets used here in inode.c and in the tree logging
4105 * recovery code. It remove a link in a directory with a given name, and
4106 * also drops the back refs in the inode to the directory
4107 */
92986796
AV
4108static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4109 struct btrfs_root *root,
4ec5934e
NB
4110 struct btrfs_inode *dir,
4111 struct btrfs_inode *inode,
92986796 4112 const char *name, int name_len)
39279cc3 4113{
0b246afa 4114 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4115 struct btrfs_path *path;
39279cc3 4116 int ret = 0;
5f39d397 4117 struct extent_buffer *leaf;
39279cc3 4118 struct btrfs_dir_item *di;
5f39d397 4119 struct btrfs_key key;
aec7477b 4120 u64 index;
33345d01
LZ
4121 u64 ino = btrfs_ino(inode);
4122 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4123
4124 path = btrfs_alloc_path();
54aa1f4d
CM
4125 if (!path) {
4126 ret = -ENOMEM;
554233a6 4127 goto out;
54aa1f4d
CM
4128 }
4129
b9473439 4130 path->leave_spinning = 1;
33345d01 4131 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4132 name, name_len, -1);
4133 if (IS_ERR(di)) {
4134 ret = PTR_ERR(di);
4135 goto err;
4136 }
4137 if (!di) {
4138 ret = -ENOENT;
4139 goto err;
4140 }
5f39d397
CM
4141 leaf = path->nodes[0];
4142 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4143 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4144 if (ret)
4145 goto err;
b3b4aa74 4146 btrfs_release_path(path);
39279cc3 4147
67de1176
MX
4148 /*
4149 * If we don't have dir index, we have to get it by looking up
4150 * the inode ref, since we get the inode ref, remove it directly,
4151 * it is unnecessary to do delayed deletion.
4152 *
4153 * But if we have dir index, needn't search inode ref to get it.
4154 * Since the inode ref is close to the inode item, it is better
4155 * that we delay to delete it, and just do this deletion when
4156 * we update the inode item.
4157 */
4ec5934e 4158 if (inode->dir_index) {
67de1176
MX
4159 ret = btrfs_delayed_delete_inode_ref(inode);
4160 if (!ret) {
4ec5934e 4161 index = inode->dir_index;
67de1176
MX
4162 goto skip_backref;
4163 }
4164 }
4165
33345d01
LZ
4166 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4167 dir_ino, &index);
aec7477b 4168 if (ret) {
0b246afa 4169 btrfs_info(fs_info,
c2cf52eb 4170 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4171 name_len, name, ino, dir_ino);
66642832 4172 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4173 goto err;
4174 }
67de1176 4175skip_backref:
2ff7e61e 4176 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4177 if (ret) {
66642832 4178 btrfs_abort_transaction(trans, ret);
39279cc3 4179 goto err;
79787eaa 4180 }
39279cc3 4181
4ec5934e
NB
4182 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4183 dir_ino);
79787eaa 4184 if (ret != 0 && ret != -ENOENT) {
66642832 4185 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4186 goto err;
4187 }
e02119d5 4188
4ec5934e
NB
4189 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4190 index);
6418c961
CM
4191 if (ret == -ENOENT)
4192 ret = 0;
d4e3991b 4193 else if (ret)
66642832 4194 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4195err:
4196 btrfs_free_path(path);
e02119d5
CM
4197 if (ret)
4198 goto out;
4199
6ef06d27 4200 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4201 inode_inc_iversion(&inode->vfs_inode);
4202 inode_inc_iversion(&dir->vfs_inode);
4203 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4204 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4205 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4206out:
39279cc3
CM
4207 return ret;
4208}
4209
92986796
AV
4210int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4211 struct btrfs_root *root,
4ec5934e 4212 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4213 const char *name, int name_len)
4214{
4215 int ret;
4216 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4217 if (!ret) {
4ec5934e
NB
4218 drop_nlink(&inode->vfs_inode);
4219 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4220 }
4221 return ret;
4222}
39279cc3 4223
a22285a6
YZ
4224/*
4225 * helper to start transaction for unlink and rmdir.
4226 *
d52be818
JB
4227 * unlink and rmdir are special in btrfs, they do not always free space, so
4228 * if we cannot make our reservations the normal way try and see if there is
4229 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4230 * allow the unlink to occur.
a22285a6 4231 */
d52be818 4232static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4233{
a22285a6 4234 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4235
e70bea5f
JB
4236 /*
4237 * 1 for the possible orphan item
4238 * 1 for the dir item
4239 * 1 for the dir index
4240 * 1 for the inode ref
e70bea5f
JB
4241 * 1 for the inode
4242 */
8eab77ff 4243 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4244}
4245
4246static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4247{
4248 struct btrfs_root *root = BTRFS_I(dir)->root;
4249 struct btrfs_trans_handle *trans;
2b0143b5 4250 struct inode *inode = d_inode(dentry);
a22285a6 4251 int ret;
a22285a6 4252
d52be818 4253 trans = __unlink_start_trans(dir);
a22285a6
YZ
4254 if (IS_ERR(trans))
4255 return PTR_ERR(trans);
5f39d397 4256
4ec5934e
NB
4257 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4258 0);
12fcfd22 4259
4ec5934e
NB
4260 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4261 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4262 dentry->d_name.len);
b532402e
TI
4263 if (ret)
4264 goto out;
7b128766 4265
a22285a6 4266 if (inode->i_nlink == 0) {
73f2e545 4267 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4268 if (ret)
4269 goto out;
a22285a6 4270 }
7b128766 4271
b532402e 4272out:
3a45bb20 4273 btrfs_end_transaction(trans);
2ff7e61e 4274 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4275 return ret;
4276}
4277
4df27c4d
YZ
4278int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4279 struct btrfs_root *root,
4280 struct inode *dir, u64 objectid,
4281 const char *name, int name_len)
4282{
0b246afa 4283 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4284 struct btrfs_path *path;
4285 struct extent_buffer *leaf;
4286 struct btrfs_dir_item *di;
4287 struct btrfs_key key;
4288 u64 index;
4289 int ret;
4a0cc7ca 4290 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4291
4292 path = btrfs_alloc_path();
4293 if (!path)
4294 return -ENOMEM;
4295
33345d01 4296 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4297 name, name_len, -1);
79787eaa
JM
4298 if (IS_ERR_OR_NULL(di)) {
4299 if (!di)
4300 ret = -ENOENT;
4301 else
4302 ret = PTR_ERR(di);
4303 goto out;
4304 }
4df27c4d
YZ
4305
4306 leaf = path->nodes[0];
4307 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4308 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4309 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4310 if (ret) {
66642832 4311 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4312 goto out;
4313 }
b3b4aa74 4314 btrfs_release_path(path);
4df27c4d 4315
0b246afa
JM
4316 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4317 root->root_key.objectid, dir_ino,
4318 &index, name, name_len);
4df27c4d 4319 if (ret < 0) {
79787eaa 4320 if (ret != -ENOENT) {
66642832 4321 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4322 goto out;
4323 }
33345d01 4324 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4325 name, name_len);
79787eaa
JM
4326 if (IS_ERR_OR_NULL(di)) {
4327 if (!di)
4328 ret = -ENOENT;
4329 else
4330 ret = PTR_ERR(di);
66642832 4331 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4332 goto out;
4333 }
4df27c4d
YZ
4334
4335 leaf = path->nodes[0];
4336 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4337 btrfs_release_path(path);
4df27c4d
YZ
4338 index = key.offset;
4339 }
945d8962 4340 btrfs_release_path(path);
4df27c4d 4341
e67bbbb9 4342 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4343 if (ret) {
66642832 4344 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4345 goto out;
4346 }
4df27c4d 4347
6ef06d27 4348 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4349 inode_inc_iversion(dir);
c2050a45 4350 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4351 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4352 if (ret)
66642832 4353 btrfs_abort_transaction(trans, ret);
79787eaa 4354out:
71d7aed0 4355 btrfs_free_path(path);
79787eaa 4356 return ret;
4df27c4d
YZ
4357}
4358
39279cc3
CM
4359static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4360{
2b0143b5 4361 struct inode *inode = d_inode(dentry);
1832a6d5 4362 int err = 0;
39279cc3 4363 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4364 struct btrfs_trans_handle *trans;
44f714da 4365 u64 last_unlink_trans;
39279cc3 4366
b3ae244e 4367 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4368 return -ENOTEMPTY;
4a0cc7ca 4369 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4370 return -EPERM;
134d4512 4371
d52be818 4372 trans = __unlink_start_trans(dir);
a22285a6 4373 if (IS_ERR(trans))
5df6a9f6 4374 return PTR_ERR(trans);
5df6a9f6 4375
4a0cc7ca 4376 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4377 err = btrfs_unlink_subvol(trans, root, dir,
4378 BTRFS_I(inode)->location.objectid,
4379 dentry->d_name.name,
4380 dentry->d_name.len);
4381 goto out;
4382 }
4383
73f2e545 4384 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4385 if (err)
4df27c4d 4386 goto out;
7b128766 4387
44f714da
FM
4388 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4389
39279cc3 4390 /* now the directory is empty */
4ec5934e
NB
4391 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4392 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4393 dentry->d_name.len);
44f714da 4394 if (!err) {
6ef06d27 4395 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4396 /*
4397 * Propagate the last_unlink_trans value of the deleted dir to
4398 * its parent directory. This is to prevent an unrecoverable
4399 * log tree in the case we do something like this:
4400 * 1) create dir foo
4401 * 2) create snapshot under dir foo
4402 * 3) delete the snapshot
4403 * 4) rmdir foo
4404 * 5) mkdir foo
4405 * 6) fsync foo or some file inside foo
4406 */
4407 if (last_unlink_trans >= trans->transid)
4408 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4409 }
4df27c4d 4410out:
3a45bb20 4411 btrfs_end_transaction(trans);
2ff7e61e 4412 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4413
39279cc3
CM
4414 return err;
4415}
4416
28f75a0e
CM
4417static int truncate_space_check(struct btrfs_trans_handle *trans,
4418 struct btrfs_root *root,
4419 u64 bytes_deleted)
4420{
0b246afa 4421 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4422 int ret;
4423
dc95f7bf
JB
4424 /*
4425 * This is only used to apply pressure to the enospc system, we don't
4426 * intend to use this reservation at all.
4427 */
2ff7e61e 4428 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4429 bytes_deleted *= fs_info->nodesize;
4430 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4431 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4432 if (!ret) {
0b246afa 4433 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4434 trans->transid,
4435 bytes_deleted, 1);
28f75a0e 4436 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4437 }
28f75a0e
CM
4438 return ret;
4439
4440}
4441
ddfae63c
JB
4442/*
4443 * Return this if we need to call truncate_block for the last bit of the
4444 * truncate.
4445 */
4446#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4447
39279cc3
CM
4448/*
4449 * this can truncate away extent items, csum items and directory items.
4450 * It starts at a high offset and removes keys until it can't find
d352ac68 4451 * any higher than new_size
39279cc3
CM
4452 *
4453 * csum items that cross the new i_size are truncated to the new size
4454 * as well.
7b128766
JB
4455 *
4456 * min_type is the minimum key type to truncate down to. If set to 0, this
4457 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4458 */
8082510e
YZ
4459int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4460 struct btrfs_root *root,
4461 struct inode *inode,
4462 u64 new_size, u32 min_type)
39279cc3 4463{
0b246afa 4464 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4465 struct btrfs_path *path;
5f39d397 4466 struct extent_buffer *leaf;
39279cc3 4467 struct btrfs_file_extent_item *fi;
8082510e
YZ
4468 struct btrfs_key key;
4469 struct btrfs_key found_key;
39279cc3 4470 u64 extent_start = 0;
db94535d 4471 u64 extent_num_bytes = 0;
5d4f98a2 4472 u64 extent_offset = 0;
39279cc3 4473 u64 item_end = 0;
c1aa4575 4474 u64 last_size = new_size;
8082510e 4475 u32 found_type = (u8)-1;
39279cc3
CM
4476 int found_extent;
4477 int del_item;
85e21bac
CM
4478 int pending_del_nr = 0;
4479 int pending_del_slot = 0;
179e29e4 4480 int extent_type = -1;
8082510e
YZ
4481 int ret;
4482 int err = 0;
4a0cc7ca 4483 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4484 u64 bytes_deleted = 0;
897ca819
TM
4485 bool be_nice = false;
4486 bool should_throttle = false;
4487 bool should_end = false;
8082510e
YZ
4488
4489 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4490
28ed1345
CM
4491 /*
4492 * for non-free space inodes and ref cows, we want to back off from
4493 * time to time
4494 */
70ddc553 4495 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4496 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4497 be_nice = true;
28ed1345 4498
0eb0e19c
MF
4499 path = btrfs_alloc_path();
4500 if (!path)
4501 return -ENOMEM;
e4058b54 4502 path->reada = READA_BACK;
0eb0e19c 4503
5dc562c5
JB
4504 /*
4505 * We want to drop from the next block forward in case this new size is
4506 * not block aligned since we will be keeping the last block of the
4507 * extent just the way it is.
4508 */
27cdeb70 4509 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4510 root == fs_info->tree_root)
dcdbc059 4511 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4512 fs_info->sectorsize),
da17066c 4513 (u64)-1, 0);
8082510e 4514
16cdcec7
MX
4515 /*
4516 * This function is also used to drop the items in the log tree before
4517 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4518 * it is used to drop the loged items. So we shouldn't kill the delayed
4519 * items.
4520 */
4521 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4522 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4523
33345d01 4524 key.objectid = ino;
39279cc3 4525 key.offset = (u64)-1;
5f39d397
CM
4526 key.type = (u8)-1;
4527
85e21bac 4528search_again:
28ed1345
CM
4529 /*
4530 * with a 16K leaf size and 128MB extents, you can actually queue
4531 * up a huge file in a single leaf. Most of the time that
4532 * bytes_deleted is > 0, it will be huge by the time we get here
4533 */
ee22184b 4534 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4535 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4536 err = -EAGAIN;
4537 goto error;
4538 }
4539 }
4540
4541
b9473439 4542 path->leave_spinning = 1;
85e21bac 4543 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4544 if (ret < 0) {
4545 err = ret;
4546 goto out;
4547 }
d397712b 4548
85e21bac 4549 if (ret > 0) {
e02119d5
CM
4550 /* there are no items in the tree for us to truncate, we're
4551 * done
4552 */
8082510e
YZ
4553 if (path->slots[0] == 0)
4554 goto out;
85e21bac
CM
4555 path->slots[0]--;
4556 }
4557
d397712b 4558 while (1) {
39279cc3 4559 fi = NULL;
5f39d397
CM
4560 leaf = path->nodes[0];
4561 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4562 found_type = found_key.type;
39279cc3 4563
33345d01 4564 if (found_key.objectid != ino)
39279cc3 4565 break;
5f39d397 4566
85e21bac 4567 if (found_type < min_type)
39279cc3
CM
4568 break;
4569
5f39d397 4570 item_end = found_key.offset;
39279cc3 4571 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4572 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4573 struct btrfs_file_extent_item);
179e29e4
CM
4574 extent_type = btrfs_file_extent_type(leaf, fi);
4575 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4576 item_end +=
db94535d 4577 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4578
4579 trace_btrfs_truncate_show_fi_regular(
4580 BTRFS_I(inode), leaf, fi,
4581 found_key.offset);
179e29e4 4582 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4583 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4584 path->slots[0], fi);
09ed2f16
LB
4585
4586 trace_btrfs_truncate_show_fi_inline(
4587 BTRFS_I(inode), leaf, fi, path->slots[0],
4588 found_key.offset);
39279cc3 4589 }
008630c1 4590 item_end--;
39279cc3 4591 }
8082510e
YZ
4592 if (found_type > min_type) {
4593 del_item = 1;
4594 } else {
76b42abb 4595 if (item_end < new_size)
b888db2b 4596 break;
8082510e
YZ
4597 if (found_key.offset >= new_size)
4598 del_item = 1;
4599 else
4600 del_item = 0;
39279cc3 4601 }
39279cc3 4602 found_extent = 0;
39279cc3 4603 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4604 if (found_type != BTRFS_EXTENT_DATA_KEY)
4605 goto delete;
4606
4607 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4608 u64 num_dec;
db94535d 4609 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4610 if (!del_item) {
db94535d
CM
4611 u64 orig_num_bytes =
4612 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4613 extent_num_bytes = ALIGN(new_size -
4614 found_key.offset,
0b246afa 4615 fs_info->sectorsize);
db94535d
CM
4616 btrfs_set_file_extent_num_bytes(leaf, fi,
4617 extent_num_bytes);
4618 num_dec = (orig_num_bytes -
9069218d 4619 extent_num_bytes);
27cdeb70
MX
4620 if (test_bit(BTRFS_ROOT_REF_COWS,
4621 &root->state) &&
4622 extent_start != 0)
a76a3cd4 4623 inode_sub_bytes(inode, num_dec);
5f39d397 4624 btrfs_mark_buffer_dirty(leaf);
39279cc3 4625 } else {
db94535d
CM
4626 extent_num_bytes =
4627 btrfs_file_extent_disk_num_bytes(leaf,
4628 fi);
5d4f98a2
YZ
4629 extent_offset = found_key.offset -
4630 btrfs_file_extent_offset(leaf, fi);
4631
39279cc3 4632 /* FIXME blocksize != 4096 */
9069218d 4633 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4634 if (extent_start != 0) {
4635 found_extent = 1;
27cdeb70
MX
4636 if (test_bit(BTRFS_ROOT_REF_COWS,
4637 &root->state))
a76a3cd4 4638 inode_sub_bytes(inode, num_dec);
e02119d5 4639 }
39279cc3 4640 }
9069218d 4641 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4642 /*
4643 * we can't truncate inline items that have had
4644 * special encodings
4645 */
4646 if (!del_item &&
c8b97818 4647 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4648 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4649 btrfs_file_extent_compression(leaf, fi) == 0) {
4650 u32 size = (u32)(new_size - found_key.offset);
4651
4652 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4653 size = btrfs_file_extent_calc_inline_size(size);
4654 btrfs_truncate_item(root->fs_info, path, size, 1);
4655 } else if (!del_item) {
514ac8ad 4656 /*
ddfae63c
JB
4657 * We have to bail so the last_size is set to
4658 * just before this extent.
514ac8ad 4659 */
ddfae63c
JB
4660 err = NEED_TRUNCATE_BLOCK;
4661 break;
4662 }
0305cd5f 4663
ddfae63c 4664 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4665 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4666 }
179e29e4 4667delete:
ddfae63c
JB
4668 if (del_item)
4669 last_size = found_key.offset;
4670 else
4671 last_size = new_size;
39279cc3 4672 if (del_item) {
85e21bac
CM
4673 if (!pending_del_nr) {
4674 /* no pending yet, add ourselves */
4675 pending_del_slot = path->slots[0];
4676 pending_del_nr = 1;
4677 } else if (pending_del_nr &&
4678 path->slots[0] + 1 == pending_del_slot) {
4679 /* hop on the pending chunk */
4680 pending_del_nr++;
4681 pending_del_slot = path->slots[0];
4682 } else {
d397712b 4683 BUG();
85e21bac 4684 }
39279cc3
CM
4685 } else {
4686 break;
4687 }
897ca819 4688 should_throttle = false;
28f75a0e 4689
27cdeb70
MX
4690 if (found_extent &&
4691 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4692 root == fs_info->tree_root)) {
b9473439 4693 btrfs_set_path_blocking(path);
28ed1345 4694 bytes_deleted += extent_num_bytes;
84f7d8e6 4695 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4696 extent_num_bytes, 0,
4697 btrfs_header_owner(leaf),
b06c4bf5 4698 ino, extent_offset);
39279cc3 4699 BUG_ON(ret);
2ff7e61e
JM
4700 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4701 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4702 trans->delayed_ref_updates * 2,
4703 trans->transid, 0);
28f75a0e
CM
4704 if (be_nice) {
4705 if (truncate_space_check(trans, root,
4706 extent_num_bytes)) {
897ca819 4707 should_end = true;
28f75a0e
CM
4708 }
4709 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4710 fs_info))
897ca819 4711 should_throttle = true;
28f75a0e 4712 }
39279cc3 4713 }
85e21bac 4714
8082510e
YZ
4715 if (found_type == BTRFS_INODE_ITEM_KEY)
4716 break;
4717
4718 if (path->slots[0] == 0 ||
1262133b 4719 path->slots[0] != pending_del_slot ||
28f75a0e 4720 should_throttle || should_end) {
8082510e
YZ
4721 if (pending_del_nr) {
4722 ret = btrfs_del_items(trans, root, path,
4723 pending_del_slot,
4724 pending_del_nr);
79787eaa 4725 if (ret) {
66642832 4726 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4727 goto error;
4728 }
8082510e
YZ
4729 pending_del_nr = 0;
4730 }
b3b4aa74 4731 btrfs_release_path(path);
28f75a0e 4732 if (should_throttle) {
1262133b
JB
4733 unsigned long updates = trans->delayed_ref_updates;
4734 if (updates) {
4735 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4736 ret = btrfs_run_delayed_refs(trans,
4737 fs_info,
4738 updates * 2);
1262133b
JB
4739 if (ret && !err)
4740 err = ret;
4741 }
4742 }
28f75a0e
CM
4743 /*
4744 * if we failed to refill our space rsv, bail out
4745 * and let the transaction restart
4746 */
4747 if (should_end) {
4748 err = -EAGAIN;
4749 goto error;
4750 }
85e21bac 4751 goto search_again;
8082510e
YZ
4752 } else {
4753 path->slots[0]--;
85e21bac 4754 }
39279cc3 4755 }
8082510e 4756out:
85e21bac
CM
4757 if (pending_del_nr) {
4758 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4759 pending_del_nr);
79787eaa 4760 if (ret)
66642832 4761 btrfs_abort_transaction(trans, ret);
85e21bac 4762 }
79787eaa 4763error:
76b42abb
FM
4764 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4765 ASSERT(last_size >= new_size);
4766 if (!err && last_size > new_size)
4767 last_size = new_size;
7f4f6e0a 4768 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4769 }
28ed1345 4770
39279cc3 4771 btrfs_free_path(path);
28ed1345 4772
ee22184b 4773 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4774 unsigned long updates = trans->delayed_ref_updates;
4775 if (updates) {
4776 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4777 ret = btrfs_run_delayed_refs(trans, fs_info,
4778 updates * 2);
28ed1345
CM
4779 if (ret && !err)
4780 err = ret;
4781 }
4782 }
8082510e 4783 return err;
39279cc3
CM
4784}
4785
4786/*
9703fefe 4787 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4788 * @inode - inode that we're zeroing
4789 * @from - the offset to start zeroing
4790 * @len - the length to zero, 0 to zero the entire range respective to the
4791 * offset
4792 * @front - zero up to the offset instead of from the offset on
4793 *
9703fefe 4794 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4795 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4796 */
9703fefe 4797int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4798 int front)
39279cc3 4799{
0b246afa 4800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4801 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4802 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4803 struct btrfs_ordered_extent *ordered;
2ac55d41 4804 struct extent_state *cached_state = NULL;
364ecf36 4805 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4806 char *kaddr;
0b246afa 4807 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4808 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4809 unsigned offset = from & (blocksize - 1);
39279cc3 4810 struct page *page;
3b16a4e3 4811 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4812 int ret = 0;
9703fefe
CR
4813 u64 block_start;
4814 u64 block_end;
39279cc3 4815
b03ebd99
NB
4816 if (IS_ALIGNED(offset, blocksize) &&
4817 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4818 goto out;
9703fefe 4819
8b62f87b
JB
4820 block_start = round_down(from, blocksize);
4821 block_end = block_start + blocksize - 1;
4822
364ecf36 4823 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4824 block_start, blocksize);
5d5e103a
JB
4825 if (ret)
4826 goto out;
39279cc3 4827
211c17f5 4828again:
3b16a4e3 4829 page = find_or_create_page(mapping, index, mask);
5d5e103a 4830 if (!page) {
bc42bda2 4831 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4832 block_start, blocksize);
4833 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4834 ret = -ENOMEM;
39279cc3 4835 goto out;
5d5e103a 4836 }
e6dcd2dc 4837
39279cc3 4838 if (!PageUptodate(page)) {
9ebefb18 4839 ret = btrfs_readpage(NULL, page);
39279cc3 4840 lock_page(page);
211c17f5
CM
4841 if (page->mapping != mapping) {
4842 unlock_page(page);
09cbfeaf 4843 put_page(page);
211c17f5
CM
4844 goto again;
4845 }
39279cc3
CM
4846 if (!PageUptodate(page)) {
4847 ret = -EIO;
89642229 4848 goto out_unlock;
39279cc3
CM
4849 }
4850 }
211c17f5 4851 wait_on_page_writeback(page);
e6dcd2dc 4852
9703fefe 4853 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4854 set_page_extent_mapped(page);
4855
9703fefe 4856 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4857 if (ordered) {
9703fefe 4858 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4859 &cached_state);
e6dcd2dc 4860 unlock_page(page);
09cbfeaf 4861 put_page(page);
eb84ae03 4862 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4863 btrfs_put_ordered_extent(ordered);
4864 goto again;
4865 }
4866
9703fefe 4867 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4868 EXTENT_DIRTY | EXTENT_DELALLOC |
4869 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4870 0, 0, &cached_state);
5d5e103a 4871
e3b8a485 4872 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4873 &cached_state, 0);
9ed74f2d 4874 if (ret) {
9703fefe 4875 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4876 &cached_state);
9ed74f2d
JB
4877 goto out_unlock;
4878 }
4879
9703fefe 4880 if (offset != blocksize) {
2aaa6655 4881 if (!len)
9703fefe 4882 len = blocksize - offset;
e6dcd2dc 4883 kaddr = kmap(page);
2aaa6655 4884 if (front)
9703fefe
CR
4885 memset(kaddr + (block_start - page_offset(page)),
4886 0, offset);
2aaa6655 4887 else
9703fefe
CR
4888 memset(kaddr + (block_start - page_offset(page)) + offset,
4889 0, len);
e6dcd2dc
CM
4890 flush_dcache_page(page);
4891 kunmap(page);
4892 }
247e743c 4893 ClearPageChecked(page);
e6dcd2dc 4894 set_page_dirty(page);
e43bbe5e 4895 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4896
89642229 4897out_unlock:
5d5e103a 4898 if (ret)
bc42bda2 4899 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4900 blocksize);
8b62f87b 4901 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4902 unlock_page(page);
09cbfeaf 4903 put_page(page);
39279cc3 4904out:
364ecf36 4905 extent_changeset_free(data_reserved);
39279cc3
CM
4906 return ret;
4907}
4908
16e7549f
JB
4909static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4910 u64 offset, u64 len)
4911{
0b246afa 4912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4913 struct btrfs_trans_handle *trans;
4914 int ret;
4915
4916 /*
4917 * Still need to make sure the inode looks like it's been updated so
4918 * that any holes get logged if we fsync.
4919 */
0b246afa
JM
4920 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4921 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4922 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4923 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4924 return 0;
4925 }
4926
4927 /*
4928 * 1 - for the one we're dropping
4929 * 1 - for the one we're adding
4930 * 1 - for updating the inode.
4931 */
4932 trans = btrfs_start_transaction(root, 3);
4933 if (IS_ERR(trans))
4934 return PTR_ERR(trans);
4935
4936 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4937 if (ret) {
66642832 4938 btrfs_abort_transaction(trans, ret);
3a45bb20 4939 btrfs_end_transaction(trans);
16e7549f
JB
4940 return ret;
4941 }
4942
f85b7379
DS
4943 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4944 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4945 if (ret)
66642832 4946 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4947 else
4948 btrfs_update_inode(trans, root, inode);
3a45bb20 4949 btrfs_end_transaction(trans);
16e7549f
JB
4950 return ret;
4951}
4952
695a0d0d
JB
4953/*
4954 * This function puts in dummy file extents for the area we're creating a hole
4955 * for. So if we are truncating this file to a larger size we need to insert
4956 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4957 * the range between oldsize and size
4958 */
a41ad394 4959int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4960{
0b246afa 4961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4962 struct btrfs_root *root = BTRFS_I(inode)->root;
4963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4964 struct extent_map *em = NULL;
2ac55d41 4965 struct extent_state *cached_state = NULL;
5dc562c5 4966 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4967 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4968 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4969 u64 last_byte;
4970 u64 cur_offset;
4971 u64 hole_size;
9ed74f2d 4972 int err = 0;
39279cc3 4973
a71754fc 4974 /*
9703fefe
CR
4975 * If our size started in the middle of a block we need to zero out the
4976 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4977 * expose stale data.
4978 */
9703fefe 4979 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4980 if (err)
4981 return err;
4982
9036c102
YZ
4983 if (size <= hole_start)
4984 return 0;
4985
9036c102
YZ
4986 while (1) {
4987 struct btrfs_ordered_extent *ordered;
fa7c1494 4988
ff13db41 4989 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4990 &cached_state);
a776c6fa 4991 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4992 block_end - hole_start);
9036c102
YZ
4993 if (!ordered)
4994 break;
2ac55d41 4995 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 4996 &cached_state);
fa7c1494 4997 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4998 btrfs_put_ordered_extent(ordered);
4999 }
39279cc3 5000
9036c102
YZ
5001 cur_offset = hole_start;
5002 while (1) {
fc4f21b1 5003 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5004 block_end - cur_offset, 0);
79787eaa
JM
5005 if (IS_ERR(em)) {
5006 err = PTR_ERR(em);
f2767956 5007 em = NULL;
79787eaa
JM
5008 break;
5009 }
9036c102 5010 last_byte = min(extent_map_end(em), block_end);
0b246afa 5011 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5012 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5013 struct extent_map *hole_em;
9036c102 5014 hole_size = last_byte - cur_offset;
9ed74f2d 5015
16e7549f
JB
5016 err = maybe_insert_hole(root, inode, cur_offset,
5017 hole_size);
5018 if (err)
3893e33b 5019 break;
dcdbc059 5020 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5021 cur_offset + hole_size - 1, 0);
5022 hole_em = alloc_extent_map();
5023 if (!hole_em) {
5024 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5025 &BTRFS_I(inode)->runtime_flags);
5026 goto next;
5027 }
5028 hole_em->start = cur_offset;
5029 hole_em->len = hole_size;
5030 hole_em->orig_start = cur_offset;
8082510e 5031
5dc562c5
JB
5032 hole_em->block_start = EXTENT_MAP_HOLE;
5033 hole_em->block_len = 0;
b4939680 5034 hole_em->orig_block_len = 0;
cc95bef6 5035 hole_em->ram_bytes = hole_size;
0b246afa 5036 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5037 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5038 hole_em->generation = fs_info->generation;
8082510e 5039
5dc562c5
JB
5040 while (1) {
5041 write_lock(&em_tree->lock);
09a2a8f9 5042 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5043 write_unlock(&em_tree->lock);
5044 if (err != -EEXIST)
5045 break;
dcdbc059
NB
5046 btrfs_drop_extent_cache(BTRFS_I(inode),
5047 cur_offset,
5dc562c5
JB
5048 cur_offset +
5049 hole_size - 1, 0);
5050 }
5051 free_extent_map(hole_em);
9036c102 5052 }
16e7549f 5053next:
9036c102 5054 free_extent_map(em);
a22285a6 5055 em = NULL;
9036c102 5056 cur_offset = last_byte;
8082510e 5057 if (cur_offset >= block_end)
9036c102
YZ
5058 break;
5059 }
a22285a6 5060 free_extent_map(em);
e43bbe5e 5061 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5062 return err;
5063}
39279cc3 5064
3972f260 5065static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5066{
f4a2f4c5
MX
5067 struct btrfs_root *root = BTRFS_I(inode)->root;
5068 struct btrfs_trans_handle *trans;
a41ad394 5069 loff_t oldsize = i_size_read(inode);
3972f260
ES
5070 loff_t newsize = attr->ia_size;
5071 int mask = attr->ia_valid;
8082510e
YZ
5072 int ret;
5073
3972f260
ES
5074 /*
5075 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5076 * special case where we need to update the times despite not having
5077 * these flags set. For all other operations the VFS set these flags
5078 * explicitly if it wants a timestamp update.
5079 */
dff6efc3
CH
5080 if (newsize != oldsize) {
5081 inode_inc_iversion(inode);
5082 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5083 inode->i_ctime = inode->i_mtime =
c2050a45 5084 current_time(inode);
dff6efc3 5085 }
3972f260 5086
a41ad394 5087 if (newsize > oldsize) {
9ea24bbe 5088 /*
ea14b57f 5089 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5090 * This is to ensure the snapshot captures a fully consistent
5091 * state of this file - if the snapshot captures this expanding
5092 * truncation, it must capture all writes that happened before
5093 * this truncation.
5094 */
0bc19f90 5095 btrfs_wait_for_snapshot_creation(root);
a41ad394 5096 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5097 if (ret) {
ea14b57f 5098 btrfs_end_write_no_snapshotting(root);
8082510e 5099 return ret;
9ea24bbe 5100 }
8082510e 5101
f4a2f4c5 5102 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5103 if (IS_ERR(trans)) {
ea14b57f 5104 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5105 return PTR_ERR(trans);
9ea24bbe 5106 }
f4a2f4c5
MX
5107
5108 i_size_write(inode, newsize);
5109 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5110 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5111 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5112 btrfs_end_write_no_snapshotting(root);
3a45bb20 5113 btrfs_end_transaction(trans);
a41ad394 5114 } else {
8082510e 5115
a41ad394
JB
5116 /*
5117 * We're truncating a file that used to have good data down to
5118 * zero. Make sure it gets into the ordered flush list so that
5119 * any new writes get down to disk quickly.
5120 */
5121 if (newsize == 0)
72ac3c0d
JB
5122 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5123 &BTRFS_I(inode)->runtime_flags);
8082510e 5124
f3fe820c
JB
5125 /*
5126 * 1 for the orphan item we're going to add
5127 * 1 for the orphan item deletion.
5128 */
5129 trans = btrfs_start_transaction(root, 2);
5130 if (IS_ERR(trans))
5131 return PTR_ERR(trans);
5132
5133 /*
5134 * We need to do this in case we fail at _any_ point during the
5135 * actual truncate. Once we do the truncate_setsize we could
5136 * invalidate pages which forces any outstanding ordered io to
5137 * be instantly completed which will give us extents that need
5138 * to be truncated. If we fail to get an orphan inode down we
5139 * could have left over extents that were never meant to live,
01327610 5140 * so we need to guarantee from this point on that everything
f3fe820c
JB
5141 * will be consistent.
5142 */
73f2e545 5143 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5144 btrfs_end_transaction(trans);
f3fe820c
JB
5145 if (ret)
5146 return ret;
5147
a41ad394
JB
5148 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5149 truncate_setsize(inode, newsize);
2e60a51e
MX
5150
5151 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5152 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5153 inode_dio_wait(inode);
0b581701 5154 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5155
213e8c55 5156 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5157 if (ret && inode->i_nlink) {
5158 int err;
5159
19fd2df5
LB
5160 /* To get a stable disk_i_size */
5161 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5162 if (err) {
3d6ae7bb 5163 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5164 return err;
5165 }
5166
7f4f6e0a
JB
5167 /*
5168 * failed to truncate, disk_i_size is only adjusted down
5169 * as we remove extents, so it should represent the true
5170 * size of the inode, so reset the in memory size and
5171 * delete our orphan entry.
5172 */
5173 trans = btrfs_join_transaction(root);
5174 if (IS_ERR(trans)) {
3d6ae7bb 5175 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5176 return ret;
5177 }
5178 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5179 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5180 if (err)
66642832 5181 btrfs_abort_transaction(trans, err);
3a45bb20 5182 btrfs_end_transaction(trans);
7f4f6e0a 5183 }
8082510e
YZ
5184 }
5185
a41ad394 5186 return ret;
8082510e
YZ
5187}
5188
9036c102
YZ
5189static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5190{
2b0143b5 5191 struct inode *inode = d_inode(dentry);
b83cc969 5192 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5193 int err;
39279cc3 5194
b83cc969
LZ
5195 if (btrfs_root_readonly(root))
5196 return -EROFS;
5197
31051c85 5198 err = setattr_prepare(dentry, attr);
9036c102
YZ
5199 if (err)
5200 return err;
2bf5a725 5201
5a3f23d5 5202 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5203 err = btrfs_setsize(inode, attr);
8082510e
YZ
5204 if (err)
5205 return err;
39279cc3 5206 }
9036c102 5207
1025774c
CH
5208 if (attr->ia_valid) {
5209 setattr_copy(inode, attr);
0c4d2d95 5210 inode_inc_iversion(inode);
22c44fe6 5211 err = btrfs_dirty_inode(inode);
1025774c 5212
22c44fe6 5213 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5214 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5215 }
33268eaf 5216
39279cc3
CM
5217 return err;
5218}
61295eb8 5219
131e404a
FDBM
5220/*
5221 * While truncating the inode pages during eviction, we get the VFS calling
5222 * btrfs_invalidatepage() against each page of the inode. This is slow because
5223 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5224 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5225 * extent_state structures over and over, wasting lots of time.
5226 *
5227 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5228 * those expensive operations on a per page basis and do only the ordered io
5229 * finishing, while we release here the extent_map and extent_state structures,
5230 * without the excessive merging and splitting.
5231 */
5232static void evict_inode_truncate_pages(struct inode *inode)
5233{
5234 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5235 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5236 struct rb_node *node;
5237
5238 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5239 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5240
5241 write_lock(&map_tree->lock);
5242 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5243 struct extent_map *em;
5244
5245 node = rb_first(&map_tree->map);
5246 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5247 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5248 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5249 remove_extent_mapping(map_tree, em);
5250 free_extent_map(em);
7064dd5c
FM
5251 if (need_resched()) {
5252 write_unlock(&map_tree->lock);
5253 cond_resched();
5254 write_lock(&map_tree->lock);
5255 }
131e404a
FDBM
5256 }
5257 write_unlock(&map_tree->lock);
5258
6ca07097
FM
5259 /*
5260 * Keep looping until we have no more ranges in the io tree.
5261 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5262 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5263 * still in progress (unlocked the pages in the bio but did not yet
5264 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5265 * ranges can still be locked and eviction started because before
5266 * submitting those bios, which are executed by a separate task (work
5267 * queue kthread), inode references (inode->i_count) were not taken
5268 * (which would be dropped in the end io callback of each bio).
5269 * Therefore here we effectively end up waiting for those bios and
5270 * anyone else holding locked ranges without having bumped the inode's
5271 * reference count - if we don't do it, when they access the inode's
5272 * io_tree to unlock a range it may be too late, leading to an
5273 * use-after-free issue.
5274 */
131e404a
FDBM
5275 spin_lock(&io_tree->lock);
5276 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5277 struct extent_state *state;
5278 struct extent_state *cached_state = NULL;
6ca07097
FM
5279 u64 start;
5280 u64 end;
131e404a
FDBM
5281
5282 node = rb_first(&io_tree->state);
5283 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5284 start = state->start;
5285 end = state->end;
131e404a
FDBM
5286 spin_unlock(&io_tree->lock);
5287
ff13db41 5288 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5289
5290 /*
5291 * If still has DELALLOC flag, the extent didn't reach disk,
5292 * and its reserved space won't be freed by delayed_ref.
5293 * So we need to free its reserved space here.
5294 * (Refer to comment in btrfs_invalidatepage, case 2)
5295 *
5296 * Note, end is the bytenr of last byte, so we need + 1 here.
5297 */
5298 if (state->state & EXTENT_DELALLOC)
bc42bda2 5299 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5300
6ca07097 5301 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5302 EXTENT_LOCKED | EXTENT_DIRTY |
5303 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5304 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5305
7064dd5c 5306 cond_resched();
131e404a
FDBM
5307 spin_lock(&io_tree->lock);
5308 }
5309 spin_unlock(&io_tree->lock);
5310}
5311
bd555975 5312void btrfs_evict_inode(struct inode *inode)
39279cc3 5313{
0b246afa 5314 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5315 struct btrfs_trans_handle *trans;
5316 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5317 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5318 int steal_from_global = 0;
3d48d981 5319 u64 min_size;
39279cc3
CM
5320 int ret;
5321
1abe9b8a 5322 trace_btrfs_inode_evict(inode);
5323
3d48d981 5324 if (!root) {
e8f1bc14 5325 clear_inode(inode);
3d48d981
NB
5326 return;
5327 }
5328
0b246afa 5329 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5330
131e404a
FDBM
5331 evict_inode_truncate_pages(inode);
5332
69e9c6c6
SB
5333 if (inode->i_nlink &&
5334 ((btrfs_root_refs(&root->root_item) != 0 &&
5335 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5336 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5337 goto no_delete;
5338
39279cc3 5339 if (is_bad_inode(inode)) {
3d6ae7bb 5340 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5341 goto no_delete;
5342 }
bd555975 5343 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5344 if (!special_file(inode->i_mode))
5345 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5346
7ab7956e 5347 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5348
0b246afa 5349 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5350 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5351 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5352 goto no_delete;
5353 }
5354
76dda93c 5355 if (inode->i_nlink > 0) {
69e9c6c6
SB
5356 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5357 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5358 goto no_delete;
5359 }
5360
aa79021f 5361 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5362 if (ret) {
3d6ae7bb 5363 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5364 goto no_delete;
5365 }
5366
2ff7e61e 5367 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5368 if (!rsv) {
3d6ae7bb 5369 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5370 goto no_delete;
5371 }
4a338542 5372 rsv->size = min_size;
ca7e70f5 5373 rsv->failfast = 1;
0b246afa 5374 global_rsv = &fs_info->global_block_rsv;
4289a667 5375
6ef06d27 5376 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5377
4289a667 5378 /*
8407aa46
MX
5379 * This is a bit simpler than btrfs_truncate since we've already
5380 * reserved our space for our orphan item in the unlink, so we just
5381 * need to reserve some slack space in case we add bytes and update
5382 * inode item when doing the truncate.
4289a667 5383 */
8082510e 5384 while (1) {
08e007d2
MX
5385 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5386 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5387
5388 /*
5389 * Try and steal from the global reserve since we will
5390 * likely not use this space anyway, we want to try as
5391 * hard as possible to get this to work.
5392 */
5393 if (ret)
3bce876f
JB
5394 steal_from_global++;
5395 else
5396 steal_from_global = 0;
5397 ret = 0;
d68fc57b 5398
3bce876f
JB
5399 /*
5400 * steal_from_global == 0: we reserved stuff, hooray!
5401 * steal_from_global == 1: we didn't reserve stuff, boo!
5402 * steal_from_global == 2: we've committed, still not a lot of
5403 * room but maybe we'll have room in the global reserve this
5404 * time.
5405 * steal_from_global == 3: abandon all hope!
5406 */
5407 if (steal_from_global > 2) {
0b246afa
JM
5408 btrfs_warn(fs_info,
5409 "Could not get space for a delete, will truncate on mount %d",
5410 ret);
3d6ae7bb 5411 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5412 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5413 goto no_delete;
d68fc57b 5414 }
7b128766 5415
0e8c36a9 5416 trans = btrfs_join_transaction(root);
4289a667 5417 if (IS_ERR(trans)) {
3d6ae7bb 5418 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5419 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5420 goto no_delete;
d68fc57b 5421 }
7b128766 5422
3bce876f 5423 /*
01327610 5424 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5425 * sure there is room to do it, if not we need to commit and try
5426 * again.
5427 */
5428 if (steal_from_global) {
2ff7e61e 5429 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5430 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5431 min_size, 0);
3bce876f
JB
5432 else
5433 ret = -ENOSPC;
5434 }
5435
5436 /*
5437 * Couldn't steal from the global reserve, we have too much
5438 * pending stuff built up, commit the transaction and try it
5439 * again.
5440 */
5441 if (ret) {
3a45bb20 5442 ret = btrfs_commit_transaction(trans);
3bce876f 5443 if (ret) {
3d6ae7bb 5444 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5445 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5446 goto no_delete;
5447 }
5448 continue;
5449 } else {
5450 steal_from_global = 0;
5451 }
5452
4289a667
JB
5453 trans->block_rsv = rsv;
5454
d68fc57b 5455 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5456 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5457 break;
85e21bac 5458
0b246afa 5459 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5460 btrfs_end_transaction(trans);
8082510e 5461 trans = NULL;
2ff7e61e 5462 btrfs_btree_balance_dirty(fs_info);
8082510e 5463 }
5f39d397 5464
2ff7e61e 5465 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5466
4ef31a45
JB
5467 /*
5468 * Errors here aren't a big deal, it just means we leave orphan items
5469 * in the tree. They will be cleaned up on the next mount.
5470 */
8082510e 5471 if (ret == 0) {
4289a667 5472 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5473 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5474 } else {
3d6ae7bb 5475 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5476 }
54aa1f4d 5477
0b246afa
JM
5478 trans->block_rsv = &fs_info->trans_block_rsv;
5479 if (!(root == fs_info->tree_root ||
581bb050 5480 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5481 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5482
3a45bb20 5483 btrfs_end_transaction(trans);
2ff7e61e 5484 btrfs_btree_balance_dirty(fs_info);
39279cc3 5485no_delete:
f48d1cf5 5486 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5487 clear_inode(inode);
39279cc3
CM
5488}
5489
5490/*
5491 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5492 * If no dir entries were found, returns -ENOENT.
5493 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5494 */
5495static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5496 struct btrfs_key *location)
5497{
5498 const char *name = dentry->d_name.name;
5499 int namelen = dentry->d_name.len;
5500 struct btrfs_dir_item *di;
5501 struct btrfs_path *path;
5502 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5503 int ret = 0;
39279cc3
CM
5504
5505 path = btrfs_alloc_path();
d8926bb3
MF
5506 if (!path)
5507 return -ENOMEM;
3954401f 5508
f85b7379
DS
5509 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5510 name, namelen, 0);
005d6712
SY
5511 if (!di) {
5512 ret = -ENOENT;
5513 goto out;
5514 }
5515 if (IS_ERR(di)) {
0d9f7f3e 5516 ret = PTR_ERR(di);
005d6712
SY
5517 goto out;
5518 }
d397712b 5519
5f39d397 5520 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5521 if (location->type != BTRFS_INODE_ITEM_KEY &&
5522 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5523 ret = -EUCLEAN;
56a0e706
LB
5524 btrfs_warn(root->fs_info,
5525"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5526 __func__, name, btrfs_ino(BTRFS_I(dir)),
5527 location->objectid, location->type, location->offset);
56a0e706 5528 }
39279cc3 5529out:
39279cc3
CM
5530 btrfs_free_path(path);
5531 return ret;
5532}
5533
5534/*
5535 * when we hit a tree root in a directory, the btrfs part of the inode
5536 * needs to be changed to reflect the root directory of the tree root. This
5537 * is kind of like crossing a mount point.
5538 */
2ff7e61e 5539static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5540 struct inode *dir,
5541 struct dentry *dentry,
5542 struct btrfs_key *location,
5543 struct btrfs_root **sub_root)
39279cc3 5544{
4df27c4d
YZ
5545 struct btrfs_path *path;
5546 struct btrfs_root *new_root;
5547 struct btrfs_root_ref *ref;
5548 struct extent_buffer *leaf;
1d4c08e0 5549 struct btrfs_key key;
4df27c4d
YZ
5550 int ret;
5551 int err = 0;
39279cc3 5552
4df27c4d
YZ
5553 path = btrfs_alloc_path();
5554 if (!path) {
5555 err = -ENOMEM;
5556 goto out;
5557 }
39279cc3 5558
4df27c4d 5559 err = -ENOENT;
1d4c08e0
DS
5560 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5561 key.type = BTRFS_ROOT_REF_KEY;
5562 key.offset = location->objectid;
5563
0b246afa 5564 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5565 if (ret) {
5566 if (ret < 0)
5567 err = ret;
5568 goto out;
5569 }
39279cc3 5570
4df27c4d
YZ
5571 leaf = path->nodes[0];
5572 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5573 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5574 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5575 goto out;
39279cc3 5576
4df27c4d
YZ
5577 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5578 (unsigned long)(ref + 1),
5579 dentry->d_name.len);
5580 if (ret)
5581 goto out;
5582
b3b4aa74 5583 btrfs_release_path(path);
4df27c4d 5584
0b246afa 5585 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5586 if (IS_ERR(new_root)) {
5587 err = PTR_ERR(new_root);
5588 goto out;
5589 }
5590
4df27c4d
YZ
5591 *sub_root = new_root;
5592 location->objectid = btrfs_root_dirid(&new_root->root_item);
5593 location->type = BTRFS_INODE_ITEM_KEY;
5594 location->offset = 0;
5595 err = 0;
5596out:
5597 btrfs_free_path(path);
5598 return err;
39279cc3
CM
5599}
5600
5d4f98a2
YZ
5601static void inode_tree_add(struct inode *inode)
5602{
5603 struct btrfs_root *root = BTRFS_I(inode)->root;
5604 struct btrfs_inode *entry;
03e860bd
FNP
5605 struct rb_node **p;
5606 struct rb_node *parent;
cef21937 5607 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5608 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5609
1d3382cb 5610 if (inode_unhashed(inode))
76dda93c 5611 return;
e1409cef 5612 parent = NULL;
5d4f98a2 5613 spin_lock(&root->inode_lock);
e1409cef 5614 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5615 while (*p) {
5616 parent = *p;
5617 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5618
4a0cc7ca 5619 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5620 p = &parent->rb_left;
4a0cc7ca 5621 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5622 p = &parent->rb_right;
5d4f98a2
YZ
5623 else {
5624 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5625 (I_WILL_FREE | I_FREEING)));
cef21937 5626 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5627 RB_CLEAR_NODE(parent);
5628 spin_unlock(&root->inode_lock);
cef21937 5629 return;
5d4f98a2
YZ
5630 }
5631 }
cef21937
FDBM
5632 rb_link_node(new, parent, p);
5633 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5634 spin_unlock(&root->inode_lock);
5635}
5636
5637static void inode_tree_del(struct inode *inode)
5638{
0b246afa 5639 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5640 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5641 int empty = 0;
5d4f98a2 5642
03e860bd 5643 spin_lock(&root->inode_lock);
5d4f98a2 5644 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5645 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5646 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5647 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5648 }
03e860bd 5649 spin_unlock(&root->inode_lock);
76dda93c 5650
69e9c6c6 5651 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5652 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5653 spin_lock(&root->inode_lock);
5654 empty = RB_EMPTY_ROOT(&root->inode_tree);
5655 spin_unlock(&root->inode_lock);
5656 if (empty)
5657 btrfs_add_dead_root(root);
5658 }
5659}
5660
143bede5 5661void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5662{
0b246afa 5663 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5664 struct rb_node *node;
5665 struct rb_node *prev;
5666 struct btrfs_inode *entry;
5667 struct inode *inode;
5668 u64 objectid = 0;
5669
0b246afa 5670 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5671 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5672
5673 spin_lock(&root->inode_lock);
5674again:
5675 node = root->inode_tree.rb_node;
5676 prev = NULL;
5677 while (node) {
5678 prev = node;
5679 entry = rb_entry(node, struct btrfs_inode, rb_node);
5680
4a0cc7ca 5681 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5682 node = node->rb_left;
4a0cc7ca 5683 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5684 node = node->rb_right;
5685 else
5686 break;
5687 }
5688 if (!node) {
5689 while (prev) {
5690 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5691 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5692 node = prev;
5693 break;
5694 }
5695 prev = rb_next(prev);
5696 }
5697 }
5698 while (node) {
5699 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5700 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5701 inode = igrab(&entry->vfs_inode);
5702 if (inode) {
5703 spin_unlock(&root->inode_lock);
5704 if (atomic_read(&inode->i_count) > 1)
5705 d_prune_aliases(inode);
5706 /*
45321ac5 5707 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5708 * the inode cache when its usage count
5709 * hits zero.
5710 */
5711 iput(inode);
5712 cond_resched();
5713 spin_lock(&root->inode_lock);
5714 goto again;
5715 }
5716
5717 if (cond_resched_lock(&root->inode_lock))
5718 goto again;
5719
5720 node = rb_next(node);
5721 }
5722 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5723}
5724
e02119d5
CM
5725static int btrfs_init_locked_inode(struct inode *inode, void *p)
5726{
5727 struct btrfs_iget_args *args = p;
90d3e592
CM
5728 inode->i_ino = args->location->objectid;
5729 memcpy(&BTRFS_I(inode)->location, args->location,
5730 sizeof(*args->location));
e02119d5 5731 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5732 return 0;
5733}
5734
5735static int btrfs_find_actor(struct inode *inode, void *opaque)
5736{
5737 struct btrfs_iget_args *args = opaque;
90d3e592 5738 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5739 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5740}
5741
5d4f98a2 5742static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5743 struct btrfs_key *location,
5d4f98a2 5744 struct btrfs_root *root)
39279cc3
CM
5745{
5746 struct inode *inode;
5747 struct btrfs_iget_args args;
90d3e592 5748 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5749
90d3e592 5750 args.location = location;
39279cc3
CM
5751 args.root = root;
5752
778ba82b 5753 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5754 btrfs_init_locked_inode,
5755 (void *)&args);
5756 return inode;
5757}
5758
1a54ef8c
BR
5759/* Get an inode object given its location and corresponding root.
5760 * Returns in *is_new if the inode was read from disk
5761 */
5762struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5763 struct btrfs_root *root, int *new)
1a54ef8c
BR
5764{
5765 struct inode *inode;
5766
90d3e592 5767 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5768 if (!inode)
5d4f98a2 5769 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5770
5771 if (inode->i_state & I_NEW) {
67710892
FM
5772 int ret;
5773
5774 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5775 if (!is_bad_inode(inode)) {
5776 inode_tree_add(inode);
5777 unlock_new_inode(inode);
5778 if (new)
5779 *new = 1;
5780 } else {
e0b6d65b
ST
5781 unlock_new_inode(inode);
5782 iput(inode);
67710892
FM
5783 ASSERT(ret < 0);
5784 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5785 }
5786 }
5787
1a54ef8c
BR
5788 return inode;
5789}
5790
4df27c4d
YZ
5791static struct inode *new_simple_dir(struct super_block *s,
5792 struct btrfs_key *key,
5793 struct btrfs_root *root)
5794{
5795 struct inode *inode = new_inode(s);
5796
5797 if (!inode)
5798 return ERR_PTR(-ENOMEM);
5799
4df27c4d
YZ
5800 BTRFS_I(inode)->root = root;
5801 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5802 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5803
5804 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5805 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5806 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5807 inode->i_fop = &simple_dir_operations;
5808 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5809 inode->i_mtime = current_time(inode);
9cc97d64 5810 inode->i_atime = inode->i_mtime;
5811 inode->i_ctime = inode->i_mtime;
5812 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5813
5814 return inode;
5815}
5816
3de4586c 5817struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5818{
0b246afa 5819 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5820 struct inode *inode;
4df27c4d 5821 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5822 struct btrfs_root *sub_root = root;
5823 struct btrfs_key location;
76dda93c 5824 int index;
b4aff1f8 5825 int ret = 0;
39279cc3
CM
5826
5827 if (dentry->d_name.len > BTRFS_NAME_LEN)
5828 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5829
39e3c955 5830 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5831 if (ret < 0)
5832 return ERR_PTR(ret);
5f39d397 5833
4df27c4d 5834 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5835 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5836 return inode;
5837 }
5838
0b246afa 5839 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5840 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5841 &location, &sub_root);
5842 if (ret < 0) {
5843 if (ret != -ENOENT)
5844 inode = ERR_PTR(ret);
5845 else
5846 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5847 } else {
73f73415 5848 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5849 }
0b246afa 5850 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5851
34d19bad 5852 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5853 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5854 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5855 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5856 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5857 if (ret) {
5858 iput(inode);
66b4ffd1 5859 inode = ERR_PTR(ret);
01cd3367 5860 }
c71bf099
YZ
5861 }
5862
3de4586c
CM
5863 return inode;
5864}
5865
fe15ce44 5866static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5867{
5868 struct btrfs_root *root;
2b0143b5 5869 struct inode *inode = d_inode(dentry);
76dda93c 5870
848cce0d 5871 if (!inode && !IS_ROOT(dentry))
2b0143b5 5872 inode = d_inode(dentry->d_parent);
76dda93c 5873
848cce0d
LZ
5874 if (inode) {
5875 root = BTRFS_I(inode)->root;
efefb143
YZ
5876 if (btrfs_root_refs(&root->root_item) == 0)
5877 return 1;
848cce0d 5878
4a0cc7ca 5879 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5880 return 1;
efefb143 5881 }
76dda93c
YZ
5882 return 0;
5883}
5884
b4aff1f8
JB
5885static void btrfs_dentry_release(struct dentry *dentry)
5886{
944a4515 5887 kfree(dentry->d_fsdata);
b4aff1f8
JB
5888}
5889
3de4586c 5890static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5891 unsigned int flags)
3de4586c 5892{
5662344b 5893 struct inode *inode;
a66e7cc6 5894
5662344b
TI
5895 inode = btrfs_lookup_dentry(dir, dentry);
5896 if (IS_ERR(inode)) {
5897 if (PTR_ERR(inode) == -ENOENT)
5898 inode = NULL;
5899 else
5900 return ERR_CAST(inode);
5901 }
5902
41d28bca 5903 return d_splice_alias(inode, dentry);
39279cc3
CM
5904}
5905
16cdcec7 5906unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5907 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5908};
5909
23b5ec74
JB
5910/*
5911 * All this infrastructure exists because dir_emit can fault, and we are holding
5912 * the tree lock when doing readdir. For now just allocate a buffer and copy
5913 * our information into that, and then dir_emit from the buffer. This is
5914 * similar to what NFS does, only we don't keep the buffer around in pagecache
5915 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5916 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5917 * tree lock.
5918 */
5919static int btrfs_opendir(struct inode *inode, struct file *file)
5920{
5921 struct btrfs_file_private *private;
5922
5923 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5924 if (!private)
5925 return -ENOMEM;
5926 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5927 if (!private->filldir_buf) {
5928 kfree(private);
5929 return -ENOMEM;
5930 }
5931 file->private_data = private;
5932 return 0;
5933}
5934
5935struct dir_entry {
5936 u64 ino;
5937 u64 offset;
5938 unsigned type;
5939 int name_len;
5940};
5941
5942static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5943{
5944 while (entries--) {
5945 struct dir_entry *entry = addr;
5946 char *name = (char *)(entry + 1);
5947
5948 ctx->pos = entry->offset;
5949 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5950 entry->type))
5951 return 1;
5952 addr += sizeof(struct dir_entry) + entry->name_len;
5953 ctx->pos++;
5954 }
5955 return 0;
5956}
5957
9cdda8d3 5958static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5959{
9cdda8d3 5960 struct inode *inode = file_inode(file);
39279cc3 5961 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5962 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5963 struct btrfs_dir_item *di;
5964 struct btrfs_key key;
5f39d397 5965 struct btrfs_key found_key;
39279cc3 5966 struct btrfs_path *path;
23b5ec74 5967 void *addr;
16cdcec7
MX
5968 struct list_head ins_list;
5969 struct list_head del_list;
39279cc3 5970 int ret;
5f39d397 5971 struct extent_buffer *leaf;
39279cc3 5972 int slot;
5f39d397
CM
5973 char *name_ptr;
5974 int name_len;
23b5ec74
JB
5975 int entries = 0;
5976 int total_len = 0;
02dbfc99 5977 bool put = false;
c2951f32 5978 struct btrfs_key location;
5f39d397 5979
9cdda8d3
AV
5980 if (!dir_emit_dots(file, ctx))
5981 return 0;
5982
49593bfa 5983 path = btrfs_alloc_path();
16cdcec7
MX
5984 if (!path)
5985 return -ENOMEM;
ff5714cc 5986
23b5ec74 5987 addr = private->filldir_buf;
e4058b54 5988 path->reada = READA_FORWARD;
49593bfa 5989
c2951f32
JM
5990 INIT_LIST_HEAD(&ins_list);
5991 INIT_LIST_HEAD(&del_list);
5992 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5993
23b5ec74 5994again:
c2951f32 5995 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5996 key.offset = ctx->pos;
4a0cc7ca 5997 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5998
39279cc3
CM
5999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6000 if (ret < 0)
6001 goto err;
49593bfa
DW
6002
6003 while (1) {
23b5ec74
JB
6004 struct dir_entry *entry;
6005
5f39d397 6006 leaf = path->nodes[0];
39279cc3 6007 slot = path->slots[0];
b9e03af0
LZ
6008 if (slot >= btrfs_header_nritems(leaf)) {
6009 ret = btrfs_next_leaf(root, path);
6010 if (ret < 0)
6011 goto err;
6012 else if (ret > 0)
6013 break;
6014 continue;
39279cc3 6015 }
3de4586c 6016
5f39d397
CM
6017 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6018
6019 if (found_key.objectid != key.objectid)
39279cc3 6020 break;
c2951f32 6021 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6022 break;
9cdda8d3 6023 if (found_key.offset < ctx->pos)
b9e03af0 6024 goto next;
c2951f32 6025 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 6026 goto next;
39279cc3 6027 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 6028 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6029 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6030 PAGE_SIZE) {
6031 btrfs_release_path(path);
6032 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6033 if (ret)
6034 goto nopos;
6035 addr = private->filldir_buf;
6036 entries = 0;
6037 total_len = 0;
6038 goto again;
c2951f32 6039 }
23b5ec74
JB
6040
6041 entry = addr;
6042 entry->name_len = name_len;
6043 name_ptr = (char *)(entry + 1);
c2951f32
JM
6044 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6045 name_len);
23b5ec74 6046 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 6047 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
6048 entry->ino = location.objectid;
6049 entry->offset = found_key.offset;
6050 entries++;
6051 addr += sizeof(struct dir_entry) + name_len;
6052 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6053next:
6054 path->slots[0]++;
39279cc3 6055 }
23b5ec74
JB
6056 btrfs_release_path(path);
6057
6058 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6059 if (ret)
6060 goto nopos;
49593bfa 6061
d2fbb2b5 6062 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6063 if (ret)
bc4ef759
DS
6064 goto nopos;
6065
db62efbb
ZB
6066 /*
6067 * Stop new entries from being returned after we return the last
6068 * entry.
6069 *
6070 * New directory entries are assigned a strictly increasing
6071 * offset. This means that new entries created during readdir
6072 * are *guaranteed* to be seen in the future by that readdir.
6073 * This has broken buggy programs which operate on names as
6074 * they're returned by readdir. Until we re-use freed offsets
6075 * we have this hack to stop new entries from being returned
6076 * under the assumption that they'll never reach this huge
6077 * offset.
6078 *
6079 * This is being careful not to overflow 32bit loff_t unless the
6080 * last entry requires it because doing so has broken 32bit apps
6081 * in the past.
6082 */
c2951f32
JM
6083 if (ctx->pos >= INT_MAX)
6084 ctx->pos = LLONG_MAX;
6085 else
6086 ctx->pos = INT_MAX;
39279cc3
CM
6087nopos:
6088 ret = 0;
6089err:
02dbfc99
OS
6090 if (put)
6091 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6092 btrfs_free_path(path);
39279cc3
CM
6093 return ret;
6094}
6095
a9185b41 6096int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6097{
6098 struct btrfs_root *root = BTRFS_I(inode)->root;
6099 struct btrfs_trans_handle *trans;
6100 int ret = 0;
0af3d00b 6101 bool nolock = false;
39279cc3 6102
72ac3c0d 6103 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6104 return 0;
6105
70ddc553
NB
6106 if (btrfs_fs_closing(root->fs_info) &&
6107 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6108 nolock = true;
0af3d00b 6109
a9185b41 6110 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6111 if (nolock)
7a7eaa40 6112 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6113 else
7a7eaa40 6114 trans = btrfs_join_transaction(root);
3612b495
TI
6115 if (IS_ERR(trans))
6116 return PTR_ERR(trans);
3a45bb20 6117 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6118 }
6119 return ret;
6120}
6121
6122/*
54aa1f4d 6123 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6124 * inode changes. But, it is most likely to find the inode in cache.
6125 * FIXME, needs more benchmarking...there are no reasons other than performance
6126 * to keep or drop this code.
6127 */
48a3b636 6128static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6129{
2ff7e61e 6130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6131 struct btrfs_root *root = BTRFS_I(inode)->root;
6132 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6133 int ret;
6134
72ac3c0d 6135 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6136 return 0;
39279cc3 6137
7a7eaa40 6138 trans = btrfs_join_transaction(root);
22c44fe6
JB
6139 if (IS_ERR(trans))
6140 return PTR_ERR(trans);
8929ecfa
YZ
6141
6142 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6143 if (ret && ret == -ENOSPC) {
6144 /* whoops, lets try again with the full transaction */
3a45bb20 6145 btrfs_end_transaction(trans);
94b60442 6146 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6147 if (IS_ERR(trans))
6148 return PTR_ERR(trans);
8929ecfa 6149
94b60442 6150 ret = btrfs_update_inode(trans, root, inode);
94b60442 6151 }
3a45bb20 6152 btrfs_end_transaction(trans);
16cdcec7 6153 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6154 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6155
6156 return ret;
6157}
6158
6159/*
6160 * This is a copy of file_update_time. We need this so we can return error on
6161 * ENOSPC for updating the inode in the case of file write and mmap writes.
6162 */
e41f941a
JB
6163static int btrfs_update_time(struct inode *inode, struct timespec *now,
6164 int flags)
22c44fe6 6165{
2bc55652 6166 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6167 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6168
6169 if (btrfs_root_readonly(root))
6170 return -EROFS;
6171
e41f941a 6172 if (flags & S_VERSION)
3a8c7231 6173 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6174 if (flags & S_CTIME)
6175 inode->i_ctime = *now;
6176 if (flags & S_MTIME)
6177 inode->i_mtime = *now;
6178 if (flags & S_ATIME)
6179 inode->i_atime = *now;
3a8c7231 6180 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6181}
6182
d352ac68
CM
6183/*
6184 * find the highest existing sequence number in a directory
6185 * and then set the in-memory index_cnt variable to reflect
6186 * free sequence numbers
6187 */
4c570655 6188static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6189{
4c570655 6190 struct btrfs_root *root = inode->root;
aec7477b
JB
6191 struct btrfs_key key, found_key;
6192 struct btrfs_path *path;
6193 struct extent_buffer *leaf;
6194 int ret;
6195
4c570655 6196 key.objectid = btrfs_ino(inode);
962a298f 6197 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6198 key.offset = (u64)-1;
6199
6200 path = btrfs_alloc_path();
6201 if (!path)
6202 return -ENOMEM;
6203
6204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6205 if (ret < 0)
6206 goto out;
6207 /* FIXME: we should be able to handle this */
6208 if (ret == 0)
6209 goto out;
6210 ret = 0;
6211
6212 /*
6213 * MAGIC NUMBER EXPLANATION:
6214 * since we search a directory based on f_pos we have to start at 2
6215 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6216 * else has to start at 2
6217 */
6218 if (path->slots[0] == 0) {
4c570655 6219 inode->index_cnt = 2;
aec7477b
JB
6220 goto out;
6221 }
6222
6223 path->slots[0]--;
6224
6225 leaf = path->nodes[0];
6226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6227
4c570655 6228 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6229 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6230 inode->index_cnt = 2;
aec7477b
JB
6231 goto out;
6232 }
6233
4c570655 6234 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6235out:
6236 btrfs_free_path(path);
6237 return ret;
6238}
6239
d352ac68
CM
6240/*
6241 * helper to find a free sequence number in a given directory. This current
6242 * code is very simple, later versions will do smarter things in the btree
6243 */
877574e2 6244int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6245{
6246 int ret = 0;
6247
877574e2
NB
6248 if (dir->index_cnt == (u64)-1) {
6249 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6250 if (ret) {
6251 ret = btrfs_set_inode_index_count(dir);
6252 if (ret)
6253 return ret;
6254 }
aec7477b
JB
6255 }
6256
877574e2
NB
6257 *index = dir->index_cnt;
6258 dir->index_cnt++;
aec7477b
JB
6259
6260 return ret;
6261}
6262
b0d5d10f
CM
6263static int btrfs_insert_inode_locked(struct inode *inode)
6264{
6265 struct btrfs_iget_args args;
6266 args.location = &BTRFS_I(inode)->location;
6267 args.root = BTRFS_I(inode)->root;
6268
6269 return insert_inode_locked4(inode,
6270 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6271 btrfs_find_actor, &args);
6272}
6273
19aee8de
AJ
6274/*
6275 * Inherit flags from the parent inode.
6276 *
6277 * Currently only the compression flags and the cow flags are inherited.
6278 */
6279static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6280{
6281 unsigned int flags;
6282
6283 if (!dir)
6284 return;
6285
6286 flags = BTRFS_I(dir)->flags;
6287
6288 if (flags & BTRFS_INODE_NOCOMPRESS) {
6289 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6290 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6291 } else if (flags & BTRFS_INODE_COMPRESS) {
6292 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6293 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6294 }
6295
6296 if (flags & BTRFS_INODE_NODATACOW) {
6297 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6298 if (S_ISREG(inode->i_mode))
6299 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6300 }
6301
6302 btrfs_update_iflags(inode);
6303}
6304
39279cc3
CM
6305static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6306 struct btrfs_root *root,
aec7477b 6307 struct inode *dir,
9c58309d 6308 const char *name, int name_len,
175a4eb7
AV
6309 u64 ref_objectid, u64 objectid,
6310 umode_t mode, u64 *index)
39279cc3 6311{
0b246afa 6312 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6313 struct inode *inode;
5f39d397 6314 struct btrfs_inode_item *inode_item;
39279cc3 6315 struct btrfs_key *location;
5f39d397 6316 struct btrfs_path *path;
9c58309d
CM
6317 struct btrfs_inode_ref *ref;
6318 struct btrfs_key key[2];
6319 u32 sizes[2];
ef3b9af5 6320 int nitems = name ? 2 : 1;
9c58309d 6321 unsigned long ptr;
39279cc3 6322 int ret;
39279cc3 6323
5f39d397 6324 path = btrfs_alloc_path();
d8926bb3
MF
6325 if (!path)
6326 return ERR_PTR(-ENOMEM);
5f39d397 6327
0b246afa 6328 inode = new_inode(fs_info->sb);
8fb27640
YS
6329 if (!inode) {
6330 btrfs_free_path(path);
39279cc3 6331 return ERR_PTR(-ENOMEM);
8fb27640 6332 }
39279cc3 6333
5762b5c9
FM
6334 /*
6335 * O_TMPFILE, set link count to 0, so that after this point,
6336 * we fill in an inode item with the correct link count.
6337 */
6338 if (!name)
6339 set_nlink(inode, 0);
6340
581bb050
LZ
6341 /*
6342 * we have to initialize this early, so we can reclaim the inode
6343 * number if we fail afterwards in this function.
6344 */
6345 inode->i_ino = objectid;
6346
ef3b9af5 6347 if (dir && name) {
1abe9b8a 6348 trace_btrfs_inode_request(dir);
6349
877574e2 6350 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6351 if (ret) {
8fb27640 6352 btrfs_free_path(path);
09771430 6353 iput(inode);
aec7477b 6354 return ERR_PTR(ret);
09771430 6355 }
ef3b9af5
FM
6356 } else if (dir) {
6357 *index = 0;
aec7477b
JB
6358 }
6359 /*
6360 * index_cnt is ignored for everything but a dir,
df6703e1 6361 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6362 * number
6363 */
6364 BTRFS_I(inode)->index_cnt = 2;
67de1176 6365 BTRFS_I(inode)->dir_index = *index;
39279cc3 6366 BTRFS_I(inode)->root = root;
e02119d5 6367 BTRFS_I(inode)->generation = trans->transid;
76195853 6368 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6369
5dc562c5
JB
6370 /*
6371 * We could have gotten an inode number from somebody who was fsynced
6372 * and then removed in this same transaction, so let's just set full
6373 * sync since it will be a full sync anyway and this will blow away the
6374 * old info in the log.
6375 */
6376 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6377
9c58309d 6378 key[0].objectid = objectid;
962a298f 6379 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6380 key[0].offset = 0;
6381
9c58309d 6382 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6383
6384 if (name) {
6385 /*
6386 * Start new inodes with an inode_ref. This is slightly more
6387 * efficient for small numbers of hard links since they will
6388 * be packed into one item. Extended refs will kick in if we
6389 * add more hard links than can fit in the ref item.
6390 */
6391 key[1].objectid = objectid;
962a298f 6392 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6393 key[1].offset = ref_objectid;
6394
6395 sizes[1] = name_len + sizeof(*ref);
6396 }
9c58309d 6397
b0d5d10f
CM
6398 location = &BTRFS_I(inode)->location;
6399 location->objectid = objectid;
6400 location->offset = 0;
962a298f 6401 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6402
6403 ret = btrfs_insert_inode_locked(inode);
6404 if (ret < 0)
6405 goto fail;
6406
b9473439 6407 path->leave_spinning = 1;
ef3b9af5 6408 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6409 if (ret != 0)
b0d5d10f 6410 goto fail_unlock;
5f39d397 6411
ecc11fab 6412 inode_init_owner(inode, dir, mode);
a76a3cd4 6413 inode_set_bytes(inode, 0);
9cc97d64 6414
c2050a45 6415 inode->i_mtime = current_time(inode);
9cc97d64 6416 inode->i_atime = inode->i_mtime;
6417 inode->i_ctime = inode->i_mtime;
6418 BTRFS_I(inode)->i_otime = inode->i_mtime;
6419
5f39d397
CM
6420 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6421 struct btrfs_inode_item);
b159fa28 6422 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6423 sizeof(*inode_item));
e02119d5 6424 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6425
ef3b9af5
FM
6426 if (name) {
6427 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6428 struct btrfs_inode_ref);
6429 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6430 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6431 ptr = (unsigned long)(ref + 1);
6432 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6433 }
9c58309d 6434
5f39d397
CM
6435 btrfs_mark_buffer_dirty(path->nodes[0]);
6436 btrfs_free_path(path);
6437
6cbff00f
CH
6438 btrfs_inherit_iflags(inode, dir);
6439
569254b0 6440 if (S_ISREG(mode)) {
0b246afa 6441 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6442 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6443 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6444 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6445 BTRFS_INODE_NODATASUM;
94272164
CM
6446 }
6447
5d4f98a2 6448 inode_tree_add(inode);
1abe9b8a 6449
6450 trace_btrfs_inode_new(inode);
1973f0fa 6451 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6452
8ea05e3a
AB
6453 btrfs_update_root_times(trans, root);
6454
63541927
FDBM
6455 ret = btrfs_inode_inherit_props(trans, inode, dir);
6456 if (ret)
0b246afa 6457 btrfs_err(fs_info,
63541927 6458 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6459 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6460
39279cc3 6461 return inode;
b0d5d10f
CM
6462
6463fail_unlock:
6464 unlock_new_inode(inode);
5f39d397 6465fail:
ef3b9af5 6466 if (dir && name)
aec7477b 6467 BTRFS_I(dir)->index_cnt--;
5f39d397 6468 btrfs_free_path(path);
09771430 6469 iput(inode);
5f39d397 6470 return ERR_PTR(ret);
39279cc3
CM
6471}
6472
6473static inline u8 btrfs_inode_type(struct inode *inode)
6474{
6475 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6476}
6477
d352ac68
CM
6478/*
6479 * utility function to add 'inode' into 'parent_inode' with
6480 * a give name and a given sequence number.
6481 * if 'add_backref' is true, also insert a backref from the
6482 * inode to the parent directory.
6483 */
e02119d5 6484int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6485 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6486 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6487{
db0a669f 6488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6489 int ret = 0;
39279cc3 6490 struct btrfs_key key;
db0a669f
NB
6491 struct btrfs_root *root = parent_inode->root;
6492 u64 ino = btrfs_ino(inode);
6493 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6494
33345d01 6495 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6496 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6497 } else {
33345d01 6498 key.objectid = ino;
962a298f 6499 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6500 key.offset = 0;
6501 }
6502
33345d01 6503 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6504 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6505 root->root_key.objectid, parent_ino,
6506 index, name, name_len);
4df27c4d 6507 } else if (add_backref) {
33345d01
LZ
6508 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6509 parent_ino, index);
4df27c4d 6510 }
39279cc3 6511
79787eaa
JM
6512 /* Nothing to clean up yet */
6513 if (ret)
6514 return ret;
4df27c4d 6515
79787eaa
JM
6516 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6517 parent_inode, &key,
db0a669f 6518 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6519 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6520 goto fail_dir_item;
6521 else if (ret) {
66642832 6522 btrfs_abort_transaction(trans, ret);
79787eaa 6523 return ret;
39279cc3 6524 }
79787eaa 6525
db0a669f 6526 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6527 name_len * 2);
db0a669f
NB
6528 inode_inc_iversion(&parent_inode->vfs_inode);
6529 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6530 current_time(&parent_inode->vfs_inode);
6531 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6532 if (ret)
66642832 6533 btrfs_abort_transaction(trans, ret);
39279cc3 6534 return ret;
fe66a05a
CM
6535
6536fail_dir_item:
6537 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6538 u64 local_index;
6539 int err;
0b246afa
JM
6540 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6541 root->root_key.objectid, parent_ino,
6542 &local_index, name, name_len);
fe66a05a
CM
6543
6544 } else if (add_backref) {
6545 u64 local_index;
6546 int err;
6547
6548 err = btrfs_del_inode_ref(trans, root, name, name_len,
6549 ino, parent_ino, &local_index);
6550 }
6551 return ret;
39279cc3
CM
6552}
6553
6554static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6555 struct btrfs_inode *dir, struct dentry *dentry,
6556 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6557{
a1b075d2
JB
6558 int err = btrfs_add_link(trans, dir, inode,
6559 dentry->d_name.name, dentry->d_name.len,
6560 backref, index);
39279cc3
CM
6561 if (err > 0)
6562 err = -EEXIST;
6563 return err;
6564}
6565
618e21d5 6566static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6567 umode_t mode, dev_t rdev)
618e21d5 6568{
2ff7e61e 6569 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6570 struct btrfs_trans_handle *trans;
6571 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6572 struct inode *inode = NULL;
618e21d5
JB
6573 int err;
6574 int drop_inode = 0;
6575 u64 objectid;
00e4e6b3 6576 u64 index = 0;
618e21d5 6577
9ed74f2d
JB
6578 /*
6579 * 2 for inode item and ref
6580 * 2 for dir items
6581 * 1 for xattr if selinux is on
6582 */
a22285a6
YZ
6583 trans = btrfs_start_transaction(root, 5);
6584 if (IS_ERR(trans))
6585 return PTR_ERR(trans);
1832a6d5 6586
581bb050
LZ
6587 err = btrfs_find_free_ino(root, &objectid);
6588 if (err)
6589 goto out_unlock;
6590
aec7477b 6591 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6592 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6593 mode, &index);
7cf96da3
TI
6594 if (IS_ERR(inode)) {
6595 err = PTR_ERR(inode);
618e21d5 6596 goto out_unlock;
7cf96da3 6597 }
618e21d5 6598
ad19db71
CS
6599 /*
6600 * If the active LSM wants to access the inode during
6601 * d_instantiate it needs these. Smack checks to see
6602 * if the filesystem supports xattrs by looking at the
6603 * ops vector.
6604 */
ad19db71 6605 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6606 init_special_inode(inode, inode->i_mode, rdev);
6607
6608 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6609 if (err)
b0d5d10f
CM
6610 goto out_unlock_inode;
6611
cef415af
NB
6612 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6613 0, index);
b0d5d10f
CM
6614 if (err) {
6615 goto out_unlock_inode;
6616 } else {
1b4ab1bb 6617 btrfs_update_inode(trans, root, inode);
b0d5d10f 6618 unlock_new_inode(inode);
08c422c2 6619 d_instantiate(dentry, inode);
618e21d5 6620 }
b0d5d10f 6621
618e21d5 6622out_unlock:
3a45bb20 6623 btrfs_end_transaction(trans);
2ff7e61e 6624 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6625 if (drop_inode) {
6626 inode_dec_link_count(inode);
6627 iput(inode);
6628 }
618e21d5 6629 return err;
b0d5d10f
CM
6630
6631out_unlock_inode:
6632 drop_inode = 1;
6633 unlock_new_inode(inode);
6634 goto out_unlock;
6635
618e21d5
JB
6636}
6637
39279cc3 6638static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6639 umode_t mode, bool excl)
39279cc3 6640{
2ff7e61e 6641 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6642 struct btrfs_trans_handle *trans;
6643 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6644 struct inode *inode = NULL;
43baa579 6645 int drop_inode_on_err = 0;
a22285a6 6646 int err;
39279cc3 6647 u64 objectid;
00e4e6b3 6648 u64 index = 0;
39279cc3 6649
9ed74f2d
JB
6650 /*
6651 * 2 for inode item and ref
6652 * 2 for dir items
6653 * 1 for xattr if selinux is on
6654 */
a22285a6
YZ
6655 trans = btrfs_start_transaction(root, 5);
6656 if (IS_ERR(trans))
6657 return PTR_ERR(trans);
9ed74f2d 6658
581bb050
LZ
6659 err = btrfs_find_free_ino(root, &objectid);
6660 if (err)
6661 goto out_unlock;
6662
aec7477b 6663 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6664 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6665 mode, &index);
7cf96da3
TI
6666 if (IS_ERR(inode)) {
6667 err = PTR_ERR(inode);
39279cc3 6668 goto out_unlock;
7cf96da3 6669 }
43baa579 6670 drop_inode_on_err = 1;
ad19db71
CS
6671 /*
6672 * If the active LSM wants to access the inode during
6673 * d_instantiate it needs these. Smack checks to see
6674 * if the filesystem supports xattrs by looking at the
6675 * ops vector.
6676 */
6677 inode->i_fop = &btrfs_file_operations;
6678 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6679 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6680
6681 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6682 if (err)
6683 goto out_unlock_inode;
6684
6685 err = btrfs_update_inode(trans, root, inode);
6686 if (err)
6687 goto out_unlock_inode;
ad19db71 6688
cef415af
NB
6689 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6690 0, index);
39279cc3 6691 if (err)
b0d5d10f 6692 goto out_unlock_inode;
43baa579 6693
43baa579 6694 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6695 unlock_new_inode(inode);
43baa579
FB
6696 d_instantiate(dentry, inode);
6697
39279cc3 6698out_unlock:
3a45bb20 6699 btrfs_end_transaction(trans);
43baa579 6700 if (err && drop_inode_on_err) {
39279cc3
CM
6701 inode_dec_link_count(inode);
6702 iput(inode);
6703 }
2ff7e61e 6704 btrfs_btree_balance_dirty(fs_info);
39279cc3 6705 return err;
b0d5d10f
CM
6706
6707out_unlock_inode:
6708 unlock_new_inode(inode);
6709 goto out_unlock;
6710
39279cc3
CM
6711}
6712
6713static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6714 struct dentry *dentry)
6715{
271dba45 6716 struct btrfs_trans_handle *trans = NULL;
39279cc3 6717 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6718 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6719 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6720 u64 index;
39279cc3
CM
6721 int err;
6722 int drop_inode = 0;
6723
4a8be425
TH
6724 /* do not allow sys_link's with other subvols of the same device */
6725 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6726 return -EXDEV;
4a8be425 6727
f186373f 6728 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6729 return -EMLINK;
4a8be425 6730
877574e2 6731 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6732 if (err)
6733 goto fail;
6734
a22285a6 6735 /*
7e6b6465 6736 * 2 items for inode and inode ref
a22285a6 6737 * 2 items for dir items
7e6b6465 6738 * 1 item for parent inode
a22285a6 6739 */
7e6b6465 6740 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6741 if (IS_ERR(trans)) {
6742 err = PTR_ERR(trans);
271dba45 6743 trans = NULL;
a22285a6
YZ
6744 goto fail;
6745 }
5f39d397 6746
67de1176
MX
6747 /* There are several dir indexes for this inode, clear the cache. */
6748 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6749 inc_nlink(inode);
0c4d2d95 6750 inode_inc_iversion(inode);
c2050a45 6751 inode->i_ctime = current_time(inode);
7de9c6ee 6752 ihold(inode);
e9976151 6753 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6754
cef415af
NB
6755 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6756 1, index);
5f39d397 6757
a5719521 6758 if (err) {
54aa1f4d 6759 drop_inode = 1;
a5719521 6760 } else {
10d9f309 6761 struct dentry *parent = dentry->d_parent;
a5719521 6762 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6763 if (err)
6764 goto fail;
ef3b9af5
FM
6765 if (inode->i_nlink == 1) {
6766 /*
6767 * If new hard link count is 1, it's a file created
6768 * with open(2) O_TMPFILE flag.
6769 */
3d6ae7bb 6770 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6771 if (err)
6772 goto fail;
6773 }
08c422c2 6774 d_instantiate(dentry, inode);
9ca5fbfb 6775 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6776 }
39279cc3 6777
1832a6d5 6778fail:
271dba45 6779 if (trans)
3a45bb20 6780 btrfs_end_transaction(trans);
39279cc3
CM
6781 if (drop_inode) {
6782 inode_dec_link_count(inode);
6783 iput(inode);
6784 }
2ff7e61e 6785 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6786 return err;
6787}
6788
18bb1db3 6789static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6790{
2ff7e61e 6791 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6792 struct inode *inode = NULL;
39279cc3
CM
6793 struct btrfs_trans_handle *trans;
6794 struct btrfs_root *root = BTRFS_I(dir)->root;
6795 int err = 0;
6796 int drop_on_err = 0;
b9d86667 6797 u64 objectid = 0;
00e4e6b3 6798 u64 index = 0;
39279cc3 6799
9ed74f2d
JB
6800 /*
6801 * 2 items for inode and ref
6802 * 2 items for dir items
6803 * 1 for xattr if selinux is on
6804 */
a22285a6
YZ
6805 trans = btrfs_start_transaction(root, 5);
6806 if (IS_ERR(trans))
6807 return PTR_ERR(trans);
39279cc3 6808
581bb050
LZ
6809 err = btrfs_find_free_ino(root, &objectid);
6810 if (err)
6811 goto out_fail;
6812
aec7477b 6813 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6814 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6815 S_IFDIR | mode, &index);
39279cc3
CM
6816 if (IS_ERR(inode)) {
6817 err = PTR_ERR(inode);
6818 goto out_fail;
6819 }
5f39d397 6820
39279cc3 6821 drop_on_err = 1;
b0d5d10f
CM
6822 /* these must be set before we unlock the inode */
6823 inode->i_op = &btrfs_dir_inode_operations;
6824 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6825
2a7dba39 6826 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6827 if (err)
b0d5d10f 6828 goto out_fail_inode;
39279cc3 6829
6ef06d27 6830 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6831 err = btrfs_update_inode(trans, root, inode);
6832 if (err)
b0d5d10f 6833 goto out_fail_inode;
5f39d397 6834
db0a669f
NB
6835 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6836 dentry->d_name.name,
6837 dentry->d_name.len, 0, index);
39279cc3 6838 if (err)
b0d5d10f 6839 goto out_fail_inode;
5f39d397 6840
39279cc3 6841 d_instantiate(dentry, inode);
b0d5d10f
CM
6842 /*
6843 * mkdir is special. We're unlocking after we call d_instantiate
6844 * to avoid a race with nfsd calling d_instantiate.
6845 */
6846 unlock_new_inode(inode);
39279cc3 6847 drop_on_err = 0;
39279cc3
CM
6848
6849out_fail:
3a45bb20 6850 btrfs_end_transaction(trans);
c7cfb8a5
WS
6851 if (drop_on_err) {
6852 inode_dec_link_count(inode);
39279cc3 6853 iput(inode);
c7cfb8a5 6854 }
2ff7e61e 6855 btrfs_btree_balance_dirty(fs_info);
39279cc3 6856 return err;
b0d5d10f
CM
6857
6858out_fail_inode:
6859 unlock_new_inode(inode);
6860 goto out_fail;
39279cc3
CM
6861}
6862
c8b97818 6863static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6864 struct page *page,
c8b97818
CM
6865 size_t pg_offset, u64 extent_offset,
6866 struct btrfs_file_extent_item *item)
6867{
6868 int ret;
6869 struct extent_buffer *leaf = path->nodes[0];
6870 char *tmp;
6871 size_t max_size;
6872 unsigned long inline_size;
6873 unsigned long ptr;
261507a0 6874 int compress_type;
c8b97818
CM
6875
6876 WARN_ON(pg_offset != 0);
261507a0 6877 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6878 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6879 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6880 btrfs_item_nr(path->slots[0]));
c8b97818 6881 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6882 if (!tmp)
6883 return -ENOMEM;
c8b97818
CM
6884 ptr = btrfs_file_extent_inline_start(item);
6885
6886 read_extent_buffer(leaf, tmp, ptr, inline_size);
6887
09cbfeaf 6888 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6889 ret = btrfs_decompress(compress_type, tmp, page,
6890 extent_offset, inline_size, max_size);
e1699d2d
ZB
6891
6892 /*
6893 * decompression code contains a memset to fill in any space between the end
6894 * of the uncompressed data and the end of max_size in case the decompressed
6895 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6896 * the end of an inline extent and the beginning of the next block, so we
6897 * cover that region here.
6898 */
6899
6900 if (max_size + pg_offset < PAGE_SIZE) {
6901 char *map = kmap(page);
6902 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6903 kunmap(page);
6904 }
c8b97818 6905 kfree(tmp);
166ae5a4 6906 return ret;
c8b97818
CM
6907}
6908
d352ac68
CM
6909/*
6910 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6911 * the ugly parts come from merging extents from the disk with the in-ram
6912 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6913 * where the in-ram extents might be locked pending data=ordered completion.
6914 *
6915 * This also copies inline extents directly into the page.
6916 */
fc4f21b1
NB
6917struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6918 struct page *page,
6919 size_t pg_offset, u64 start, u64 len,
6920 int create)
a52d9a80 6921{
fc4f21b1 6922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6923 int ret;
6924 int err = 0;
a52d9a80
CM
6925 u64 extent_start = 0;
6926 u64 extent_end = 0;
fc4f21b1 6927 u64 objectid = btrfs_ino(inode);
a52d9a80 6928 u32 found_type;
f421950f 6929 struct btrfs_path *path = NULL;
fc4f21b1 6930 struct btrfs_root *root = inode->root;
a52d9a80 6931 struct btrfs_file_extent_item *item;
5f39d397
CM
6932 struct extent_buffer *leaf;
6933 struct btrfs_key found_key;
a52d9a80 6934 struct extent_map *em = NULL;
fc4f21b1
NB
6935 struct extent_map_tree *em_tree = &inode->extent_tree;
6936 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6937 const bool new_inline = !page || create;
a52d9a80 6938
890871be 6939 read_lock(&em_tree->lock);
d1310b2e 6940 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6941 if (em)
0b246afa 6942 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6943 read_unlock(&em_tree->lock);
d1310b2e 6944
a52d9a80 6945 if (em) {
e1c4b745
CM
6946 if (em->start > start || em->start + em->len <= start)
6947 free_extent_map(em);
6948 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6949 free_extent_map(em);
6950 else
6951 goto out;
a52d9a80 6952 }
172ddd60 6953 em = alloc_extent_map();
a52d9a80 6954 if (!em) {
d1310b2e
CM
6955 err = -ENOMEM;
6956 goto out;
a52d9a80 6957 }
0b246afa 6958 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6959 em->start = EXTENT_MAP_HOLE;
445a6944 6960 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6961 em->len = (u64)-1;
c8b97818 6962 em->block_len = (u64)-1;
f421950f
CM
6963
6964 if (!path) {
6965 path = btrfs_alloc_path();
026fd317
JB
6966 if (!path) {
6967 err = -ENOMEM;
6968 goto out;
6969 }
6970 /*
6971 * Chances are we'll be called again, so go ahead and do
6972 * readahead
6973 */
e4058b54 6974 path->reada = READA_FORWARD;
f421950f
CM
6975 }
6976
5c9a702e 6977 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6978 if (ret < 0) {
6979 err = ret;
6980 goto out;
6981 }
6982
6983 if (ret != 0) {
6984 if (path->slots[0] == 0)
6985 goto not_found;
6986 path->slots[0]--;
6987 }
6988
5f39d397
CM
6989 leaf = path->nodes[0];
6990 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6991 struct btrfs_file_extent_item);
a52d9a80 6992 /* are we inside the extent that was found? */
5f39d397 6993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6994 found_type = found_key.type;
5f39d397 6995 if (found_key.objectid != objectid ||
a52d9a80 6996 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6997 /*
6998 * If we backup past the first extent we want to move forward
6999 * and see if there is an extent in front of us, otherwise we'll
7000 * say there is a hole for our whole search range which can
7001 * cause problems.
7002 */
7003 extent_end = start;
7004 goto next;
a52d9a80
CM
7005 }
7006
5f39d397
CM
7007 found_type = btrfs_file_extent_type(leaf, item);
7008 extent_start = found_key.offset;
d899e052
YZ
7009 if (found_type == BTRFS_FILE_EXTENT_REG ||
7010 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7011 extent_end = extent_start +
db94535d 7012 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7013
7014 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7015 extent_start);
9036c102
YZ
7016 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7017 size_t size;
514ac8ad 7018 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7019 extent_end = ALIGN(extent_start + size,
0b246afa 7020 fs_info->sectorsize);
09ed2f16
LB
7021
7022 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7023 path->slots[0],
7024 extent_start);
9036c102 7025 }
25a50341 7026next:
9036c102
YZ
7027 if (start >= extent_end) {
7028 path->slots[0]++;
7029 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7030 ret = btrfs_next_leaf(root, path);
7031 if (ret < 0) {
7032 err = ret;
7033 goto out;
a52d9a80 7034 }
9036c102
YZ
7035 if (ret > 0)
7036 goto not_found;
7037 leaf = path->nodes[0];
a52d9a80 7038 }
9036c102
YZ
7039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7040 if (found_key.objectid != objectid ||
7041 found_key.type != BTRFS_EXTENT_DATA_KEY)
7042 goto not_found;
7043 if (start + len <= found_key.offset)
7044 goto not_found;
e2eca69d
WS
7045 if (start > found_key.offset)
7046 goto next;
9036c102 7047 em->start = start;
70c8a91c 7048 em->orig_start = start;
9036c102
YZ
7049 em->len = found_key.offset - start;
7050 goto not_found_em;
7051 }
7052
fc4f21b1 7053 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7054 new_inline, em);
7ffbb598 7055
d899e052
YZ
7056 if (found_type == BTRFS_FILE_EXTENT_REG ||
7057 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7058 goto insert;
7059 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7060 unsigned long ptr;
a52d9a80 7061 char *map;
3326d1b0
CM
7062 size_t size;
7063 size_t extent_offset;
7064 size_t copy_size;
a52d9a80 7065
7ffbb598 7066 if (new_inline)
689f9346 7067 goto out;
5f39d397 7068
514ac8ad 7069 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7070 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7071 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7072 size - extent_offset);
3326d1b0 7073 em->start = extent_start + extent_offset;
0b246afa 7074 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7075 em->orig_block_len = em->len;
70c8a91c 7076 em->orig_start = em->start;
689f9346 7077 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7078 if (!PageUptodate(page)) {
261507a0
LZ
7079 if (btrfs_file_extent_compression(leaf, item) !=
7080 BTRFS_COMPRESS_NONE) {
e40da0e5 7081 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7082 extent_offset, item);
166ae5a4
ZB
7083 if (ret) {
7084 err = ret;
7085 goto out;
7086 }
c8b97818
CM
7087 } else {
7088 map = kmap(page);
7089 read_extent_buffer(leaf, map + pg_offset, ptr,
7090 copy_size);
09cbfeaf 7091 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7092 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7093 PAGE_SIZE - pg_offset -
93c82d57
CM
7094 copy_size);
7095 }
c8b97818
CM
7096 kunmap(page);
7097 }
179e29e4 7098 flush_dcache_page(page);
a52d9a80 7099 }
d1310b2e 7100 set_extent_uptodate(io_tree, em->start,
507903b8 7101 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7102 goto insert;
a52d9a80
CM
7103 }
7104not_found:
7105 em->start = start;
70c8a91c 7106 em->orig_start = start;
d1310b2e 7107 em->len = len;
a52d9a80 7108not_found_em:
5f39d397 7109 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7110insert:
b3b4aa74 7111 btrfs_release_path(path);
d1310b2e 7112 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7113 btrfs_err(fs_info,
5d163e0e
JM
7114 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7115 em->start, em->len, start, len);
a52d9a80
CM
7116 err = -EIO;
7117 goto out;
7118 }
d1310b2e
CM
7119
7120 err = 0;
890871be 7121 write_lock(&em_tree->lock);
7b4df058 7122 err = btrfs_add_extent_mapping(em_tree, &em, start, len);
890871be 7123 write_unlock(&em_tree->lock);
a52d9a80 7124out:
1abe9b8a 7125
fc4f21b1 7126 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7127
527afb44 7128 btrfs_free_path(path);
a52d9a80
CM
7129 if (err) {
7130 free_extent_map(em);
a52d9a80
CM
7131 return ERR_PTR(err);
7132 }
79787eaa 7133 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7134 return em;
7135}
7136
fc4f21b1
NB
7137struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7138 struct page *page,
7139 size_t pg_offset, u64 start, u64 len,
7140 int create)
ec29ed5b
CM
7141{
7142 struct extent_map *em;
7143 struct extent_map *hole_em = NULL;
7144 u64 range_start = start;
7145 u64 end;
7146 u64 found;
7147 u64 found_end;
7148 int err = 0;
7149
7150 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7151 if (IS_ERR(em))
7152 return em;
9986277e
DC
7153 /*
7154 * If our em maps to:
7155 * - a hole or
7156 * - a pre-alloc extent,
7157 * there might actually be delalloc bytes behind it.
7158 */
7159 if (em->block_start != EXTENT_MAP_HOLE &&
7160 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7161 return em;
7162 else
7163 hole_em = em;
ec29ed5b
CM
7164
7165 /* check to see if we've wrapped (len == -1 or similar) */
7166 end = start + len;
7167 if (end < start)
7168 end = (u64)-1;
7169 else
7170 end -= 1;
7171
7172 em = NULL;
7173
7174 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7175 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7176 end, len, EXTENT_DELALLOC, 1);
7177 found_end = range_start + found;
7178 if (found_end < range_start)
7179 found_end = (u64)-1;
7180
7181 /*
7182 * we didn't find anything useful, return
7183 * the original results from get_extent()
7184 */
7185 if (range_start > end || found_end <= start) {
7186 em = hole_em;
7187 hole_em = NULL;
7188 goto out;
7189 }
7190
7191 /* adjust the range_start to make sure it doesn't
7192 * go backwards from the start they passed in
7193 */
67871254 7194 range_start = max(start, range_start);
ec29ed5b
CM
7195 found = found_end - range_start;
7196
7197 if (found > 0) {
7198 u64 hole_start = start;
7199 u64 hole_len = len;
7200
172ddd60 7201 em = alloc_extent_map();
ec29ed5b
CM
7202 if (!em) {
7203 err = -ENOMEM;
7204 goto out;
7205 }
7206 /*
7207 * when btrfs_get_extent can't find anything it
7208 * returns one huge hole
7209 *
7210 * make sure what it found really fits our range, and
7211 * adjust to make sure it is based on the start from
7212 * the caller
7213 */
7214 if (hole_em) {
7215 u64 calc_end = extent_map_end(hole_em);
7216
7217 if (calc_end <= start || (hole_em->start > end)) {
7218 free_extent_map(hole_em);
7219 hole_em = NULL;
7220 } else {
7221 hole_start = max(hole_em->start, start);
7222 hole_len = calc_end - hole_start;
7223 }
7224 }
7225 em->bdev = NULL;
7226 if (hole_em && range_start > hole_start) {
7227 /* our hole starts before our delalloc, so we
7228 * have to return just the parts of the hole
7229 * that go until the delalloc starts
7230 */
7231 em->len = min(hole_len,
7232 range_start - hole_start);
7233 em->start = hole_start;
7234 em->orig_start = hole_start;
7235 /*
7236 * don't adjust block start at all,
7237 * it is fixed at EXTENT_MAP_HOLE
7238 */
7239 em->block_start = hole_em->block_start;
7240 em->block_len = hole_len;
f9e4fb53
LB
7241 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7242 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7243 } else {
7244 em->start = range_start;
7245 em->len = found;
7246 em->orig_start = range_start;
7247 em->block_start = EXTENT_MAP_DELALLOC;
7248 em->block_len = found;
7249 }
bf8d32b9 7250 } else {
ec29ed5b
CM
7251 return hole_em;
7252 }
7253out:
7254
7255 free_extent_map(hole_em);
7256 if (err) {
7257 free_extent_map(em);
7258 return ERR_PTR(err);
7259 }
7260 return em;
7261}
7262
5f9a8a51
FM
7263static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7264 const u64 start,
7265 const u64 len,
7266 const u64 orig_start,
7267 const u64 block_start,
7268 const u64 block_len,
7269 const u64 orig_block_len,
7270 const u64 ram_bytes,
7271 const int type)
7272{
7273 struct extent_map *em = NULL;
7274 int ret;
7275
5f9a8a51 7276 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7277 em = create_io_em(inode, start, len, orig_start,
7278 block_start, block_len, orig_block_len,
7279 ram_bytes,
7280 BTRFS_COMPRESS_NONE, /* compress_type */
7281 type);
5f9a8a51
FM
7282 if (IS_ERR(em))
7283 goto out;
7284 }
7285 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7286 len, block_len, type);
7287 if (ret) {
7288 if (em) {
7289 free_extent_map(em);
dcdbc059 7290 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7291 start + len - 1, 0);
7292 }
7293 em = ERR_PTR(ret);
7294 }
7295 out:
5f9a8a51
FM
7296
7297 return em;
7298}
7299
4b46fce2
JB
7300static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7301 u64 start, u64 len)
7302{
0b246afa 7303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7304 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7305 struct extent_map *em;
4b46fce2
JB
7306 struct btrfs_key ins;
7307 u64 alloc_hint;
7308 int ret;
4b46fce2 7309
4b46fce2 7310 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7311 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7312 0, alloc_hint, &ins, 1, 1);
00361589
JB
7313 if (ret)
7314 return ERR_PTR(ret);
4b46fce2 7315
5f9a8a51
FM
7316 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7317 ins.objectid, ins.offset, ins.offset,
6288d6ea 7318 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7319 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7320 if (IS_ERR(em))
2ff7e61e
JM
7321 btrfs_free_reserved_extent(fs_info, ins.objectid,
7322 ins.offset, 1);
de0ee0ed 7323
4b46fce2
JB
7324 return em;
7325}
7326
46bfbb5c
CM
7327/*
7328 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7329 * block must be cow'd
7330 */
00361589 7331noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7332 u64 *orig_start, u64 *orig_block_len,
7333 u64 *ram_bytes)
46bfbb5c 7334{
2ff7e61e 7335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7336 struct btrfs_path *path;
7337 int ret;
7338 struct extent_buffer *leaf;
7339 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7340 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7341 struct btrfs_file_extent_item *fi;
7342 struct btrfs_key key;
7343 u64 disk_bytenr;
7344 u64 backref_offset;
7345 u64 extent_end;
7346 u64 num_bytes;
7347 int slot;
7348 int found_type;
7ee9e440 7349 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7350
46bfbb5c
CM
7351 path = btrfs_alloc_path();
7352 if (!path)
7353 return -ENOMEM;
7354
f85b7379
DS
7355 ret = btrfs_lookup_file_extent(NULL, root, path,
7356 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7357 if (ret < 0)
7358 goto out;
7359
7360 slot = path->slots[0];
7361 if (ret == 1) {
7362 if (slot == 0) {
7363 /* can't find the item, must cow */
7364 ret = 0;
7365 goto out;
7366 }
7367 slot--;
7368 }
7369 ret = 0;
7370 leaf = path->nodes[0];
7371 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7372 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7373 key.type != BTRFS_EXTENT_DATA_KEY) {
7374 /* not our file or wrong item type, must cow */
7375 goto out;
7376 }
7377
7378 if (key.offset > offset) {
7379 /* Wrong offset, must cow */
7380 goto out;
7381 }
7382
7383 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7384 found_type = btrfs_file_extent_type(leaf, fi);
7385 if (found_type != BTRFS_FILE_EXTENT_REG &&
7386 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7387 /* not a regular extent, must cow */
7388 goto out;
7389 }
7ee9e440
JB
7390
7391 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7392 goto out;
7393
e77751aa
MX
7394 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7395 if (extent_end <= offset)
7396 goto out;
7397
46bfbb5c 7398 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7399 if (disk_bytenr == 0)
7400 goto out;
7401
7402 if (btrfs_file_extent_compression(leaf, fi) ||
7403 btrfs_file_extent_encryption(leaf, fi) ||
7404 btrfs_file_extent_other_encoding(leaf, fi))
7405 goto out;
7406
46bfbb5c
CM
7407 backref_offset = btrfs_file_extent_offset(leaf, fi);
7408
7ee9e440
JB
7409 if (orig_start) {
7410 *orig_start = key.offset - backref_offset;
7411 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7412 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7413 }
eb384b55 7414
2ff7e61e 7415 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7416 goto out;
7b2b7085
MX
7417
7418 num_bytes = min(offset + *len, extent_end) - offset;
7419 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7420 u64 range_end;
7421
da17066c
JM
7422 range_end = round_up(offset + num_bytes,
7423 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7424 ret = test_range_bit(io_tree, offset, range_end,
7425 EXTENT_DELALLOC, 0, NULL);
7426 if (ret) {
7427 ret = -EAGAIN;
7428 goto out;
7429 }
7430 }
7431
1bda19eb 7432 btrfs_release_path(path);
46bfbb5c
CM
7433
7434 /*
7435 * look for other files referencing this extent, if we
7436 * find any we must cow
7437 */
00361589 7438
e4c3b2dc 7439 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7440 key.offset - backref_offset, disk_bytenr);
00361589
JB
7441 if (ret) {
7442 ret = 0;
7443 goto out;
7444 }
46bfbb5c
CM
7445
7446 /*
7447 * adjust disk_bytenr and num_bytes to cover just the bytes
7448 * in this extent we are about to write. If there
7449 * are any csums in that range we have to cow in order
7450 * to keep the csums correct
7451 */
7452 disk_bytenr += backref_offset;
7453 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7454 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7455 goto out;
46bfbb5c
CM
7456 /*
7457 * all of the above have passed, it is safe to overwrite this extent
7458 * without cow
7459 */
eb384b55 7460 *len = num_bytes;
46bfbb5c
CM
7461 ret = 1;
7462out:
7463 btrfs_free_path(path);
7464 return ret;
7465}
7466
fc4adbff
AG
7467bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7468{
7469 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7470 bool found = false;
fc4adbff
AG
7471 void **pagep = NULL;
7472 struct page *page = NULL;
cc2b702c
DS
7473 unsigned long start_idx;
7474 unsigned long end_idx;
fc4adbff 7475
09cbfeaf 7476 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7477
7478 /*
7479 * end is the last byte in the last page. end == start is legal
7480 */
09cbfeaf 7481 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7482
7483 rcu_read_lock();
7484
7485 /* Most of the code in this while loop is lifted from
7486 * find_get_page. It's been modified to begin searching from a
7487 * page and return just the first page found in that range. If the
7488 * found idx is less than or equal to the end idx then we know that
7489 * a page exists. If no pages are found or if those pages are
7490 * outside of the range then we're fine (yay!) */
7491 while (page == NULL &&
7492 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7493 page = radix_tree_deref_slot(pagep);
7494 if (unlikely(!page))
7495 break;
7496
7497 if (radix_tree_exception(page)) {
809f9016
FM
7498 if (radix_tree_deref_retry(page)) {
7499 page = NULL;
fc4adbff 7500 continue;
809f9016 7501 }
fc4adbff
AG
7502 /*
7503 * Otherwise, shmem/tmpfs must be storing a swap entry
7504 * here as an exceptional entry: so return it without
7505 * attempting to raise page count.
7506 */
6fdef6d4 7507 page = NULL;
fc4adbff
AG
7508 break; /* TODO: Is this relevant for this use case? */
7509 }
7510
91405151
FM
7511 if (!page_cache_get_speculative(page)) {
7512 page = NULL;
fc4adbff 7513 continue;
91405151 7514 }
fc4adbff
AG
7515
7516 /*
7517 * Has the page moved?
7518 * This is part of the lockless pagecache protocol. See
7519 * include/linux/pagemap.h for details.
7520 */
7521 if (unlikely(page != *pagep)) {
09cbfeaf 7522 put_page(page);
fc4adbff
AG
7523 page = NULL;
7524 }
7525 }
7526
7527 if (page) {
7528 if (page->index <= end_idx)
7529 found = true;
09cbfeaf 7530 put_page(page);
fc4adbff
AG
7531 }
7532
7533 rcu_read_unlock();
7534 return found;
7535}
7536
eb838e73
JB
7537static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7538 struct extent_state **cached_state, int writing)
7539{
7540 struct btrfs_ordered_extent *ordered;
7541 int ret = 0;
7542
7543 while (1) {
7544 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7545 cached_state);
eb838e73
JB
7546 /*
7547 * We're concerned with the entire range that we're going to be
01327610 7548 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7549 * extents in this range.
7550 */
a776c6fa 7551 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7552 lockend - lockstart + 1);
7553
7554 /*
7555 * We need to make sure there are no buffered pages in this
7556 * range either, we could have raced between the invalidate in
7557 * generic_file_direct_write and locking the extent. The
7558 * invalidate needs to happen so that reads after a write do not
7559 * get stale data.
7560 */
fc4adbff
AG
7561 if (!ordered &&
7562 (!writing ||
7563 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7564 break;
7565
7566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7567 cached_state);
eb838e73
JB
7568
7569 if (ordered) {
ade77029
FM
7570 /*
7571 * If we are doing a DIO read and the ordered extent we
7572 * found is for a buffered write, we can not wait for it
7573 * to complete and retry, because if we do so we can
7574 * deadlock with concurrent buffered writes on page
7575 * locks. This happens only if our DIO read covers more
7576 * than one extent map, if at this point has already
7577 * created an ordered extent for a previous extent map
7578 * and locked its range in the inode's io tree, and a
7579 * concurrent write against that previous extent map's
7580 * range and this range started (we unlock the ranges
7581 * in the io tree only when the bios complete and
7582 * buffered writes always lock pages before attempting
7583 * to lock range in the io tree).
7584 */
7585 if (writing ||
7586 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7587 btrfs_start_ordered_extent(inode, ordered, 1);
7588 else
7589 ret = -ENOTBLK;
eb838e73
JB
7590 btrfs_put_ordered_extent(ordered);
7591 } else {
eb838e73 7592 /*
b850ae14
FM
7593 * We could trigger writeback for this range (and wait
7594 * for it to complete) and then invalidate the pages for
7595 * this range (through invalidate_inode_pages2_range()),
7596 * but that can lead us to a deadlock with a concurrent
7597 * call to readpages() (a buffered read or a defrag call
7598 * triggered a readahead) on a page lock due to an
7599 * ordered dio extent we created before but did not have
7600 * yet a corresponding bio submitted (whence it can not
7601 * complete), which makes readpages() wait for that
7602 * ordered extent to complete while holding a lock on
7603 * that page.
eb838e73 7604 */
b850ae14 7605 ret = -ENOTBLK;
eb838e73
JB
7606 }
7607
ade77029
FM
7608 if (ret)
7609 break;
7610
eb838e73
JB
7611 cond_resched();
7612 }
7613
7614 return ret;
7615}
7616
6f9994db
LB
7617/* The callers of this must take lock_extent() */
7618static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7619 u64 orig_start, u64 block_start,
7620 u64 block_len, u64 orig_block_len,
7621 u64 ram_bytes, int compress_type,
7622 int type)
69ffb543
JB
7623{
7624 struct extent_map_tree *em_tree;
7625 struct extent_map *em;
7626 struct btrfs_root *root = BTRFS_I(inode)->root;
7627 int ret;
7628
6f9994db
LB
7629 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7630 type == BTRFS_ORDERED_COMPRESSED ||
7631 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7632 type == BTRFS_ORDERED_REGULAR);
6f9994db 7633
69ffb543
JB
7634 em_tree = &BTRFS_I(inode)->extent_tree;
7635 em = alloc_extent_map();
7636 if (!em)
7637 return ERR_PTR(-ENOMEM);
7638
7639 em->start = start;
7640 em->orig_start = orig_start;
7641 em->len = len;
7642 em->block_len = block_len;
7643 em->block_start = block_start;
7644 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7645 em->orig_block_len = orig_block_len;
cc95bef6 7646 em->ram_bytes = ram_bytes;
70c8a91c 7647 em->generation = -1;
69ffb543 7648 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7649 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7650 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7651 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7652 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7653 em->compress_type = compress_type;
7654 }
69ffb543
JB
7655
7656 do {
dcdbc059 7657 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7658 em->start + em->len - 1, 0);
7659 write_lock(&em_tree->lock);
09a2a8f9 7660 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7661 write_unlock(&em_tree->lock);
6f9994db
LB
7662 /*
7663 * The caller has taken lock_extent(), who could race with us
7664 * to add em?
7665 */
69ffb543
JB
7666 } while (ret == -EEXIST);
7667
7668 if (ret) {
7669 free_extent_map(em);
7670 return ERR_PTR(ret);
7671 }
7672
6f9994db 7673 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7674 return em;
7675}
7676
4b46fce2
JB
7677static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7678 struct buffer_head *bh_result, int create)
7679{
0b246afa 7680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7681 struct extent_map *em;
eb838e73 7682 struct extent_state *cached_state = NULL;
50745b0a 7683 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7684 u64 start = iblock << inode->i_blkbits;
eb838e73 7685 u64 lockstart, lockend;
4b46fce2 7686 u64 len = bh_result->b_size;
eb838e73 7687 int unlock_bits = EXTENT_LOCKED;
0934856d 7688 int ret = 0;
eb838e73 7689
172a5049 7690 if (create)
3266789f 7691 unlock_bits |= EXTENT_DIRTY;
172a5049 7692 else
0b246afa 7693 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7694
c329861d
JB
7695 lockstart = start;
7696 lockend = start + len - 1;
7697
e1cbbfa5
JB
7698 if (current->journal_info) {
7699 /*
7700 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7701 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7702 * confused.
7703 */
50745b0a 7704 dio_data = current->journal_info;
e1cbbfa5
JB
7705 current->journal_info = NULL;
7706 }
7707
eb838e73
JB
7708 /*
7709 * If this errors out it's because we couldn't invalidate pagecache for
7710 * this range and we need to fallback to buffered.
7711 */
9c9464cc
FM
7712 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7713 create)) {
7714 ret = -ENOTBLK;
7715 goto err;
7716 }
eb838e73 7717
fc4f21b1 7718 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7719 if (IS_ERR(em)) {
7720 ret = PTR_ERR(em);
7721 goto unlock_err;
7722 }
4b46fce2
JB
7723
7724 /*
7725 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7726 * io. INLINE is special, and we could probably kludge it in here, but
7727 * it's still buffered so for safety lets just fall back to the generic
7728 * buffered path.
7729 *
7730 * For COMPRESSED we _have_ to read the entire extent in so we can
7731 * decompress it, so there will be buffering required no matter what we
7732 * do, so go ahead and fallback to buffered.
7733 *
01327610 7734 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7735 * to buffered IO. Don't blame me, this is the price we pay for using
7736 * the generic code.
7737 */
7738 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7739 em->block_start == EXTENT_MAP_INLINE) {
7740 free_extent_map(em);
eb838e73
JB
7741 ret = -ENOTBLK;
7742 goto unlock_err;
4b46fce2
JB
7743 }
7744
7745 /* Just a good old fashioned hole, return */
7746 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7747 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7748 free_extent_map(em);
eb838e73 7749 goto unlock_err;
4b46fce2
JB
7750 }
7751
7752 /*
7753 * We don't allocate a new extent in the following cases
7754 *
7755 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7756 * existing extent.
7757 * 2) The extent is marked as PREALLOC. We're good to go here and can
7758 * just use the extent.
7759 *
7760 */
46bfbb5c 7761 if (!create) {
eb838e73
JB
7762 len = min(len, em->len - (start - em->start));
7763 lockstart = start + len;
7764 goto unlock;
46bfbb5c 7765 }
4b46fce2
JB
7766
7767 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7768 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7769 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7770 int type;
eb384b55 7771 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7772
7773 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7774 type = BTRFS_ORDERED_PREALLOC;
7775 else
7776 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7777 len = min(len, em->len - (start - em->start));
4b46fce2 7778 block_start = em->block_start + (start - em->start);
46bfbb5c 7779
00361589 7780 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7781 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7782 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7783 struct extent_map *em2;
0b901916 7784
5f9a8a51
FM
7785 em2 = btrfs_create_dio_extent(inode, start, len,
7786 orig_start, block_start,
7787 len, orig_block_len,
7788 ram_bytes, type);
0b246afa 7789 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7790 if (type == BTRFS_ORDERED_PREALLOC) {
7791 free_extent_map(em);
5f9a8a51 7792 em = em2;
69ffb543 7793 }
5f9a8a51
FM
7794 if (em2 && IS_ERR(em2)) {
7795 ret = PTR_ERR(em2);
eb838e73 7796 goto unlock_err;
46bfbb5c 7797 }
18513091
WX
7798 /*
7799 * For inode marked NODATACOW or extent marked PREALLOC,
7800 * use the existing or preallocated extent, so does not
7801 * need to adjust btrfs_space_info's bytes_may_use.
7802 */
7803 btrfs_free_reserved_data_space_noquota(inode,
7804 start, len);
46bfbb5c 7805 goto unlock;
4b46fce2 7806 }
4b46fce2 7807 }
00361589 7808
46bfbb5c
CM
7809 /*
7810 * this will cow the extent, reset the len in case we changed
7811 * it above
7812 */
7813 len = bh_result->b_size;
70c8a91c
JB
7814 free_extent_map(em);
7815 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7816 if (IS_ERR(em)) {
7817 ret = PTR_ERR(em);
7818 goto unlock_err;
7819 }
46bfbb5c
CM
7820 len = min(len, em->len - (start - em->start));
7821unlock:
4b46fce2
JB
7822 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7823 inode->i_blkbits;
46bfbb5c 7824 bh_result->b_size = len;
4b46fce2
JB
7825 bh_result->b_bdev = em->bdev;
7826 set_buffer_mapped(bh_result);
c3473e83
JB
7827 if (create) {
7828 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7829 set_buffer_new(bh_result);
7830
7831 /*
7832 * Need to update the i_size under the extent lock so buffered
7833 * readers will get the updated i_size when we unlock.
7834 */
4aaedfb0 7835 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7836 i_size_write(inode, start + len);
0934856d 7837
50745b0a 7838 WARN_ON(dio_data->reserve < len);
7839 dio_data->reserve -= len;
f28a4928 7840 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7841 current->journal_info = dio_data;
c3473e83 7842 }
4b46fce2 7843
eb838e73
JB
7844 /*
7845 * In the case of write we need to clear and unlock the entire range,
7846 * in the case of read we need to unlock only the end area that we
7847 * aren't using if there is any left over space.
7848 */
24c03fa5 7849 if (lockstart < lockend) {
0934856d
MX
7850 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7851 lockend, unlock_bits, 1, 0,
ae0f1625 7852 &cached_state);
24c03fa5 7853 } else {
eb838e73 7854 free_extent_state(cached_state);
24c03fa5 7855 }
eb838e73 7856
4b46fce2
JB
7857 free_extent_map(em);
7858
7859 return 0;
eb838e73
JB
7860
7861unlock_err:
eb838e73 7862 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7863 unlock_bits, 1, 0, &cached_state);
9c9464cc 7864err:
50745b0a 7865 if (dio_data)
7866 current->journal_info = dio_data;
eb838e73 7867 return ret;
4b46fce2
JB
7868}
7869
58efbc9f
OS
7870static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7871 struct bio *bio,
7872 int mirror_num)
8b110e39 7873{
2ff7e61e 7874 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7875 blk_status_t ret;
8b110e39 7876
37226b21 7877 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7878
2ff7e61e 7879 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7880 if (ret)
ea057f6d 7881 return ret;
8b110e39 7882
2ff7e61e 7883 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7884
8b110e39
MX
7885 return ret;
7886}
7887
7888static int btrfs_check_dio_repairable(struct inode *inode,
7889 struct bio *failed_bio,
7890 struct io_failure_record *failrec,
7891 int failed_mirror)
7892{
ab8d0fc4 7893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7894 int num_copies;
7895
ab8d0fc4 7896 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7897 if (num_copies == 1) {
7898 /*
7899 * we only have a single copy of the data, so don't bother with
7900 * all the retry and error correction code that follows. no
7901 * matter what the error is, it is very likely to persist.
7902 */
ab8d0fc4
JM
7903 btrfs_debug(fs_info,
7904 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7905 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7906 return 0;
7907 }
7908
7909 failrec->failed_mirror = failed_mirror;
7910 failrec->this_mirror++;
7911 if (failrec->this_mirror == failed_mirror)
7912 failrec->this_mirror++;
7913
7914 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7915 btrfs_debug(fs_info,
7916 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7917 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7918 return 0;
7919 }
7920
7921 return 1;
7922}
7923
58efbc9f
OS
7924static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7925 struct page *page, unsigned int pgoff,
7926 u64 start, u64 end, int failed_mirror,
7927 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7928{
7929 struct io_failure_record *failrec;
7870d082
JB
7930 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7931 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7932 struct bio *bio;
7933 int isector;
f1c77c55 7934 unsigned int read_mode = 0;
17347cec 7935 int segs;
8b110e39 7936 int ret;
58efbc9f 7937 blk_status_t status;
c16a8ac3 7938 struct bio_vec bvec;
8b110e39 7939
37226b21 7940 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7941
7942 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7943 if (ret)
58efbc9f 7944 return errno_to_blk_status(ret);
8b110e39
MX
7945
7946 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7947 failed_mirror);
7948 if (!ret) {
7870d082 7949 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7950 return BLK_STS_IOERR;
8b110e39
MX
7951 }
7952
17347cec 7953 segs = bio_segments(failed_bio);
c16a8ac3 7954 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7955 if (segs > 1 ||
c16a8ac3 7956 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7957 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7958
7959 isector = start - btrfs_io_bio(failed_bio)->logical;
7960 isector >>= inode->i_sb->s_blocksize_bits;
7961 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7962 pgoff, isector, repair_endio, repair_arg);
37226b21 7963 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7964
7965 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7966 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7967 read_mode, failrec->this_mirror, failrec->in_validation);
7968
58efbc9f
OS
7969 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7970 if (status) {
7870d082 7971 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7972 bio_put(bio);
7973 }
7974
58efbc9f 7975 return status;
8b110e39
MX
7976}
7977
7978struct btrfs_retry_complete {
7979 struct completion done;
7980 struct inode *inode;
7981 u64 start;
7982 int uptodate;
7983};
7984
4246a0b6 7985static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7986{
7987 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7988 struct inode *inode = done->inode;
8b110e39 7989 struct bio_vec *bvec;
7870d082 7990 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7991 int i;
7992
4e4cbee9 7993 if (bio->bi_status)
8b110e39
MX
7994 goto end;
7995
2dabb324 7996 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7997 io_tree = &BTRFS_I(inode)->io_tree;
7998 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7999 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8000
8b110e39 8001 done->uptodate = 1;
c09abff8 8002 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8003 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8004 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8005 io_tree, done->start, bvec->bv_page,
8006 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8007end:
8008 complete(&done->done);
8009 bio_put(bio);
8010}
8011
58efbc9f
OS
8012static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8013 struct btrfs_io_bio *io_bio)
4b46fce2 8014{
2dabb324 8015 struct btrfs_fs_info *fs_info;
17347cec
LB
8016 struct bio_vec bvec;
8017 struct bvec_iter iter;
8b110e39 8018 struct btrfs_retry_complete done;
4b46fce2 8019 u64 start;
2dabb324
CR
8020 unsigned int pgoff;
8021 u32 sectorsize;
8022 int nr_sectors;
58efbc9f
OS
8023 blk_status_t ret;
8024 blk_status_t err = BLK_STS_OK;
4b46fce2 8025
2dabb324 8026 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8027 sectorsize = fs_info->sectorsize;
2dabb324 8028
8b110e39
MX
8029 start = io_bio->logical;
8030 done.inode = inode;
17347cec 8031 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8032
17347cec
LB
8033 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8034 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8035 pgoff = bvec.bv_offset;
2dabb324
CR
8036
8037next_block_or_try_again:
8b110e39
MX
8038 done.uptodate = 0;
8039 done.start = start;
8040 init_completion(&done.done);
8041
17347cec 8042 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8043 pgoff, start, start + sectorsize - 1,
8044 io_bio->mirror_num,
8045 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8046 if (ret) {
8047 err = ret;
8048 goto next;
8049 }
8b110e39 8050
9c17f6cd 8051 wait_for_completion_io(&done.done);
8b110e39
MX
8052
8053 if (!done.uptodate) {
8054 /* We might have another mirror, so try again */
2dabb324 8055 goto next_block_or_try_again;
8b110e39
MX
8056 }
8057
629ebf4f 8058next:
2dabb324
CR
8059 start += sectorsize;
8060
97bf5a55
LB
8061 nr_sectors--;
8062 if (nr_sectors) {
2dabb324 8063 pgoff += sectorsize;
97bf5a55 8064 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8065 goto next_block_or_try_again;
8066 }
8b110e39
MX
8067 }
8068
629ebf4f 8069 return err;
8b110e39
MX
8070}
8071
4246a0b6 8072static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8073{
8074 struct btrfs_retry_complete *done = bio->bi_private;
8075 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8076 struct extent_io_tree *io_tree, *failure_tree;
8077 struct inode *inode = done->inode;
8b110e39
MX
8078 struct bio_vec *bvec;
8079 int uptodate;
8080 int ret;
8081 int i;
8082
4e4cbee9 8083 if (bio->bi_status)
8b110e39
MX
8084 goto end;
8085
8086 uptodate = 1;
2dabb324 8087
2dabb324 8088 ASSERT(bio->bi_vcnt == 1);
263663cd 8089 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8090
7870d082
JB
8091 io_tree = &BTRFS_I(inode)->io_tree;
8092 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8093
c09abff8 8094 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8095 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8096 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8097 bvec->bv_offset, done->start,
8098 bvec->bv_len);
8b110e39 8099 if (!ret)
7870d082
JB
8100 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8101 failure_tree, io_tree, done->start,
8102 bvec->bv_page,
8103 btrfs_ino(BTRFS_I(inode)),
8104 bvec->bv_offset);
8b110e39
MX
8105 else
8106 uptodate = 0;
8107 }
8108
8109 done->uptodate = uptodate;
8110end:
8111 complete(&done->done);
8112 bio_put(bio);
8113}
8114
4e4cbee9
CH
8115static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8116 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8117{
2dabb324 8118 struct btrfs_fs_info *fs_info;
17347cec
LB
8119 struct bio_vec bvec;
8120 struct bvec_iter iter;
8b110e39
MX
8121 struct btrfs_retry_complete done;
8122 u64 start;
8123 u64 offset = 0;
2dabb324
CR
8124 u32 sectorsize;
8125 int nr_sectors;
8126 unsigned int pgoff;
8127 int csum_pos;
ef7cdac1 8128 bool uptodate = (err == 0);
8b110e39 8129 int ret;
58efbc9f 8130 blk_status_t status;
dc380aea 8131
2dabb324 8132 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8133 sectorsize = fs_info->sectorsize;
2dabb324 8134
58efbc9f 8135 err = BLK_STS_OK;
c1dc0896 8136 start = io_bio->logical;
8b110e39 8137 done.inode = inode;
17347cec 8138 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8139
17347cec
LB
8140 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8141 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8142
17347cec 8143 pgoff = bvec.bv_offset;
2dabb324 8144next_block:
ef7cdac1
LB
8145 if (uptodate) {
8146 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8147 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8148 bvec.bv_page, pgoff, start, sectorsize);
8149 if (likely(!ret))
8150 goto next;
8151 }
8b110e39
MX
8152try_again:
8153 done.uptodate = 0;
8154 done.start = start;
8155 init_completion(&done.done);
8156
58efbc9f
OS
8157 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8158 pgoff, start, start + sectorsize - 1,
8159 io_bio->mirror_num, btrfs_retry_endio,
8160 &done);
8161 if (status) {
8162 err = status;
8b110e39
MX
8163 goto next;
8164 }
8165
9c17f6cd 8166 wait_for_completion_io(&done.done);
8b110e39
MX
8167
8168 if (!done.uptodate) {
8169 /* We might have another mirror, so try again */
8170 goto try_again;
8171 }
8172next:
2dabb324
CR
8173 offset += sectorsize;
8174 start += sectorsize;
8175
8176 ASSERT(nr_sectors);
8177
97bf5a55
LB
8178 nr_sectors--;
8179 if (nr_sectors) {
2dabb324 8180 pgoff += sectorsize;
97bf5a55 8181 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8182 goto next_block;
8183 }
2c30c71b 8184 }
c1dc0896
MX
8185
8186 return err;
8187}
8188
4e4cbee9
CH
8189static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8190 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8191{
8192 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8193
8194 if (skip_csum) {
8195 if (unlikely(err))
8196 return __btrfs_correct_data_nocsum(inode, io_bio);
8197 else
58efbc9f 8198 return BLK_STS_OK;
8b110e39
MX
8199 } else {
8200 return __btrfs_subio_endio_read(inode, io_bio, err);
8201 }
8202}
8203
4246a0b6 8204static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8205{
8206 struct btrfs_dio_private *dip = bio->bi_private;
8207 struct inode *inode = dip->inode;
8208 struct bio *dio_bio;
8209 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8210 blk_status_t err = bio->bi_status;
c1dc0896 8211
99c4e3b9 8212 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8213 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8214
4b46fce2 8215 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8216 dip->logical_offset + dip->bytes - 1);
9be3395b 8217 dio_bio = dip->dio_bio;
4b46fce2 8218
4b46fce2 8219 kfree(dip);
c0da7aa1 8220
99c4e3b9 8221 dio_bio->bi_status = err;
4055351c 8222 dio_end_io(dio_bio);
23ea8e5a
MX
8223
8224 if (io_bio->end_io)
4e4cbee9 8225 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8226 bio_put(bio);
4b46fce2
JB
8227}
8228
52427260
QW
8229static void __endio_write_update_ordered(struct inode *inode,
8230 const u64 offset, const u64 bytes,
8231 const bool uptodate)
4b46fce2 8232{
0b246afa 8233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8234 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8235 struct btrfs_workqueue *wq;
8236 btrfs_work_func_t func;
14543774
FM
8237 u64 ordered_offset = offset;
8238 u64 ordered_bytes = bytes;
67c003f9 8239 u64 last_offset;
4b46fce2
JB
8240 int ret;
8241
52427260
QW
8242 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8243 wq = fs_info->endio_freespace_worker;
8244 func = btrfs_freespace_write_helper;
8245 } else {
8246 wq = fs_info->endio_write_workers;
8247 func = btrfs_endio_write_helper;
8248 }
8249
163cf09c 8250again:
67c003f9 8251 last_offset = ordered_offset;
163cf09c
CM
8252 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8253 &ordered_offset,
4246a0b6 8254 ordered_bytes,
14543774 8255 uptodate);
4b46fce2 8256 if (!ret)
163cf09c 8257 goto out_test;
4b46fce2 8258
52427260
QW
8259 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8260 btrfs_queue_work(wq, &ordered->work);
163cf09c 8261out_test:
67c003f9
NA
8262 /*
8263 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8264 * in the range, we can exit.
8265 */
8266 if (ordered_offset == last_offset)
8267 return;
163cf09c
CM
8268 /*
8269 * our bio might span multiple ordered extents. If we haven't
8270 * completed the accounting for the whole dio, go back and try again
8271 */
14543774
FM
8272 if (ordered_offset < offset + bytes) {
8273 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8274 ordered = NULL;
163cf09c
CM
8275 goto again;
8276 }
14543774
FM
8277}
8278
8279static void btrfs_endio_direct_write(struct bio *bio)
8280{
8281 struct btrfs_dio_private *dip = bio->bi_private;
8282 struct bio *dio_bio = dip->dio_bio;
8283
52427260 8284 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8285 dip->bytes, !bio->bi_status);
4b46fce2 8286
4b46fce2 8287 kfree(dip);
c0da7aa1 8288
4e4cbee9 8289 dio_bio->bi_status = bio->bi_status;
4055351c 8290 dio_end_io(dio_bio);
9be3395b 8291 bio_put(bio);
4b46fce2
JB
8292}
8293
8c27cb35 8294static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8295 struct bio *bio, int mirror_num,
8296 unsigned long bio_flags, u64 offset)
8297{
c6100a4b 8298 struct inode *inode = private_data;
4e4cbee9 8299 blk_status_t ret;
2ff7e61e 8300 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8301 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8302 return 0;
8303}
8304
4246a0b6 8305static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8306{
8307 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8308 blk_status_t err = bio->bi_status;
e65e1535 8309
8b110e39
MX
8310 if (err)
8311 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8312 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8313 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8314 bio->bi_opf,
8b110e39
MX
8315 (unsigned long long)bio->bi_iter.bi_sector,
8316 bio->bi_iter.bi_size, err);
8317
8318 if (dip->subio_endio)
8319 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8320
8321 if (err) {
e65e1535 8322 /*
de224b7c
NB
8323 * We want to perceive the errors flag being set before
8324 * decrementing the reference count. We don't need a barrier
8325 * since atomic operations with a return value are fully
8326 * ordered as per atomic_t.txt
e65e1535 8327 */
de224b7c 8328 dip->errors = 1;
e65e1535
MX
8329 }
8330
8331 /* if there are more bios still pending for this dio, just exit */
8332 if (!atomic_dec_and_test(&dip->pending_bios))
8333 goto out;
8334
9be3395b 8335 if (dip->errors) {
e65e1535 8336 bio_io_error(dip->orig_bio);
9be3395b 8337 } else {
2dbe0c77 8338 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8339 bio_endio(dip->orig_bio);
e65e1535
MX
8340 }
8341out:
8342 bio_put(bio);
8343}
8344
4e4cbee9 8345static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8346 struct btrfs_dio_private *dip,
8347 struct bio *bio,
8348 u64 file_offset)
8349{
8350 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8351 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8352 blk_status_t ret;
c1dc0896
MX
8353
8354 /*
8355 * We load all the csum data we need when we submit
8356 * the first bio to reduce the csum tree search and
8357 * contention.
8358 */
8359 if (dip->logical_offset == file_offset) {
2ff7e61e 8360 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8361 file_offset);
8362 if (ret)
8363 return ret;
8364 }
8365
8366 if (bio == dip->orig_bio)
8367 return 0;
8368
8369 file_offset -= dip->logical_offset;
8370 file_offset >>= inode->i_sb->s_blocksize_bits;
8371 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8372
8373 return 0;
8374}
8375
58efbc9f
OS
8376static inline blk_status_t
8377__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8378 int async_submit)
e65e1535 8379{
0b246afa 8380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8381 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8382 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8383 blk_status_t ret;
e65e1535 8384
4c274bc6 8385 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8386 if (async_submit)
8387 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8388
5fd02043 8389 if (!write) {
0b246afa 8390 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8391 if (ret)
8392 goto err;
8393 }
e65e1535 8394
e6961cac 8395 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8396 goto map;
8397
8398 if (write && async_submit) {
c6100a4b
JB
8399 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8400 file_offset, inode,
0b246afa
JM
8401 __btrfs_submit_bio_start_direct_io,
8402 __btrfs_submit_bio_done);
e65e1535 8403 goto err;
1ae39938
JB
8404 } else if (write) {
8405 /*
8406 * If we aren't doing async submit, calculate the csum of the
8407 * bio now.
8408 */
2ff7e61e 8409 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8410 if (ret)
8411 goto err;
23ea8e5a 8412 } else {
2ff7e61e 8413 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8414 file_offset);
c2db1073
TI
8415 if (ret)
8416 goto err;
8417 }
1ae39938 8418map:
9b4a9b28 8419 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8420err:
e65e1535
MX
8421 return ret;
8422}
8423
e6961cac 8424static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8425{
8426 struct inode *inode = dip->inode;
0b246afa 8427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8428 struct bio *bio;
8429 struct bio *orig_bio = dip->orig_bio;
4f024f37 8430 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8431 u64 file_offset = dip->logical_offset;
e65e1535 8432 u64 map_length;
1ae39938 8433 int async_submit = 0;
725130ba
LB
8434 u64 submit_len;
8435 int clone_offset = 0;
8436 int clone_len;
5f4dc8fc 8437 int ret;
58efbc9f 8438 blk_status_t status;
e65e1535 8439
4f024f37 8440 map_length = orig_bio->bi_iter.bi_size;
725130ba 8441 submit_len = map_length;
0b246afa
JM
8442 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8443 &map_length, NULL, 0);
7a5c3c9b 8444 if (ret)
e65e1535 8445 return -EIO;
facc8a22 8446
725130ba 8447 if (map_length >= submit_len) {
02f57c7a 8448 bio = orig_bio;
c1dc0896 8449 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8450 goto submit;
8451 }
8452
53b381b3 8453 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8454 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8455 async_submit = 0;
8456 else
8457 async_submit = 1;
8458
725130ba
LB
8459 /* bio split */
8460 ASSERT(map_length <= INT_MAX);
02f57c7a 8461 atomic_inc(&dip->pending_bios);
3c91ee69 8462 do {
725130ba 8463 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8464
725130ba
LB
8465 /*
8466 * This will never fail as it's passing GPF_NOFS and
8467 * the allocation is backed by btrfs_bioset.
8468 */
e477094f 8469 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8470 clone_len);
8471 bio->bi_private = dip;
8472 bio->bi_end_io = btrfs_end_dio_bio;
8473 btrfs_io_bio(bio)->logical = file_offset;
8474
8475 ASSERT(submit_len >= clone_len);
8476 submit_len -= clone_len;
8477 if (submit_len == 0)
8478 break;
e65e1535 8479
725130ba
LB
8480 /*
8481 * Increase the count before we submit the bio so we know
8482 * the end IO handler won't happen before we increase the
8483 * count. Otherwise, the dip might get freed before we're
8484 * done setting it up.
8485 */
8486 atomic_inc(&dip->pending_bios);
e65e1535 8487
66ba772e 8488 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8489 async_submit);
8490 if (status) {
725130ba
LB
8491 bio_put(bio);
8492 atomic_dec(&dip->pending_bios);
8493 goto out_err;
8494 }
e65e1535 8495
725130ba
LB
8496 clone_offset += clone_len;
8497 start_sector += clone_len >> 9;
8498 file_offset += clone_len;
5f4dc8fc 8499
725130ba
LB
8500 map_length = submit_len;
8501 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8502 start_sector << 9, &map_length, NULL, 0);
8503 if (ret)
8504 goto out_err;
3c91ee69 8505 } while (submit_len > 0);
e65e1535 8506
02f57c7a 8507submit:
66ba772e 8508 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8509 if (!status)
e65e1535
MX
8510 return 0;
8511
8512 bio_put(bio);
8513out_err:
8514 dip->errors = 1;
8515 /*
de224b7c
NB
8516 * Before atomic variable goto zero, we must make sure dip->errors is
8517 * perceived to be set. This ordering is ensured by the fact that an
8518 * atomic operations with a return value are fully ordered as per
8519 * atomic_t.txt
e65e1535 8520 */
e65e1535
MX
8521 if (atomic_dec_and_test(&dip->pending_bios))
8522 bio_io_error(dip->orig_bio);
8523
8524 /* bio_end_io() will handle error, so we needn't return it */
8525 return 0;
8526}
8527
8a4c1e42
MC
8528static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8529 loff_t file_offset)
4b46fce2 8530{
61de718f 8531 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8532 struct bio *bio = NULL;
8533 struct btrfs_io_bio *io_bio;
8a4c1e42 8534 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8535 int ret = 0;
8536
8b6c1d56 8537 bio = btrfs_bio_clone(dio_bio);
9be3395b 8538
c1dc0896 8539 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8540 if (!dip) {
8541 ret = -ENOMEM;
61de718f 8542 goto free_ordered;
4b46fce2 8543 }
4b46fce2 8544
9be3395b 8545 dip->private = dio_bio->bi_private;
4b46fce2
JB
8546 dip->inode = inode;
8547 dip->logical_offset = file_offset;
4f024f37
KO
8548 dip->bytes = dio_bio->bi_iter.bi_size;
8549 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8550 bio->bi_private = dip;
8551 dip->orig_bio = bio;
9be3395b 8552 dip->dio_bio = dio_bio;
e65e1535 8553 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8554 io_bio = btrfs_io_bio(bio);
8555 io_bio->logical = file_offset;
4b46fce2 8556
c1dc0896 8557 if (write) {
3892ac90 8558 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8559 } else {
3892ac90 8560 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8561 dip->subio_endio = btrfs_subio_endio_read;
8562 }
4b46fce2 8563
f28a4928
FM
8564 /*
8565 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8566 * even if we fail to submit a bio, because in such case we do the
8567 * corresponding error handling below and it must not be done a second
8568 * time by btrfs_direct_IO().
8569 */
8570 if (write) {
8571 struct btrfs_dio_data *dio_data = current->journal_info;
8572
8573 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8574 dip->bytes;
8575 dio_data->unsubmitted_oe_range_start =
8576 dio_data->unsubmitted_oe_range_end;
8577 }
8578
e6961cac 8579 ret = btrfs_submit_direct_hook(dip);
e65e1535 8580 if (!ret)
eaf25d93 8581 return;
9be3395b 8582
3892ac90
LB
8583 if (io_bio->end_io)
8584 io_bio->end_io(io_bio, ret);
9be3395b 8585
4b46fce2
JB
8586free_ordered:
8587 /*
61de718f
FM
8588 * If we arrived here it means either we failed to submit the dip
8589 * or we either failed to clone the dio_bio or failed to allocate the
8590 * dip. If we cloned the dio_bio and allocated the dip, we can just
8591 * call bio_endio against our io_bio so that we get proper resource
8592 * cleanup if we fail to submit the dip, otherwise, we must do the
8593 * same as btrfs_endio_direct_[write|read] because we can't call these
8594 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8595 */
3892ac90 8596 if (bio && dip) {
054ec2f6 8597 bio_io_error(bio);
61de718f 8598 /*
3892ac90 8599 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8600 * and all the cleanup and final put for dio_bio (through
8601 * dio_end_io()).
8602 */
8603 dip = NULL;
3892ac90 8604 bio = NULL;
61de718f 8605 } else {
14543774 8606 if (write)
52427260 8607 __endio_write_update_ordered(inode,
14543774
FM
8608 file_offset,
8609 dio_bio->bi_iter.bi_size,
52427260 8610 false);
14543774 8611 else
61de718f
FM
8612 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8613 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8614
4e4cbee9 8615 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8616 /*
8617 * Releases and cleans up our dio_bio, no need to bio_put()
8618 * nor bio_endio()/bio_io_error() against dio_bio.
8619 */
4055351c 8620 dio_end_io(dio_bio);
4b46fce2 8621 }
3892ac90
LB
8622 if (bio)
8623 bio_put(bio);
61de718f 8624 kfree(dip);
4b46fce2
JB
8625}
8626
2ff7e61e 8627static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8628 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8629{
8630 int seg;
a1b75f7d 8631 int i;
0b246afa 8632 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8633 ssize_t retval = -EINVAL;
5a5f79b5
CM
8634
8635 if (offset & blocksize_mask)
8636 goto out;
8637
28060d5d
AV
8638 if (iov_iter_alignment(iter) & blocksize_mask)
8639 goto out;
a1b75f7d 8640
28060d5d 8641 /* If this is a write we don't need to check anymore */
cd27e455 8642 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8643 return 0;
8644 /*
8645 * Check to make sure we don't have duplicate iov_base's in this
8646 * iovec, if so return EINVAL, otherwise we'll get csum errors
8647 * when reading back.
8648 */
8649 for (seg = 0; seg < iter->nr_segs; seg++) {
8650 for (i = seg + 1; i < iter->nr_segs; i++) {
8651 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8652 goto out;
8653 }
5a5f79b5
CM
8654 }
8655 retval = 0;
8656out:
8657 return retval;
8658}
eb838e73 8659
c8b8e32d 8660static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8661{
4b46fce2
JB
8662 struct file *file = iocb->ki_filp;
8663 struct inode *inode = file->f_mapping->host;
0b246afa 8664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8665 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8666 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8667 loff_t offset = iocb->ki_pos;
0934856d 8668 size_t count = 0;
2e60a51e 8669 int flags = 0;
38851cc1
MX
8670 bool wakeup = true;
8671 bool relock = false;
0934856d 8672 ssize_t ret;
4b46fce2 8673
8c70c9f8 8674 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8675 return 0;
3f7c579c 8676
fe0f07d0 8677 inode_dio_begin(inode);
38851cc1 8678
0e267c44 8679 /*
41bd9ca4
MX
8680 * The generic stuff only does filemap_write_and_wait_range, which
8681 * isn't enough if we've written compressed pages to this area, so
8682 * we need to flush the dirty pages again to make absolutely sure
8683 * that any outstanding dirty pages are on disk.
0e267c44 8684 */
a6cbcd4a 8685 count = iov_iter_count(iter);
41bd9ca4
MX
8686 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8687 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8688 filemap_fdatawrite_range(inode->i_mapping, offset,
8689 offset + count - 1);
0e267c44 8690
6f673763 8691 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8692 /*
8693 * If the write DIO is beyond the EOF, we need update
8694 * the isize, but it is protected by i_mutex. So we can
8695 * not unlock the i_mutex at this case.
8696 */
8697 if (offset + count <= inode->i_size) {
4aaedfb0 8698 dio_data.overwrite = 1;
5955102c 8699 inode_unlock(inode);
38851cc1 8700 relock = true;
edf064e7
GR
8701 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8702 ret = -EAGAIN;
8703 goto out;
38851cc1 8704 }
364ecf36
QW
8705 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8706 offset, count);
0934856d 8707 if (ret)
38851cc1 8708 goto out;
e1cbbfa5
JB
8709
8710 /*
8711 * We need to know how many extents we reserved so that we can
8712 * do the accounting properly if we go over the number we
8713 * originally calculated. Abuse current->journal_info for this.
8714 */
da17066c 8715 dio_data.reserve = round_up(count,
0b246afa 8716 fs_info->sectorsize);
f28a4928
FM
8717 dio_data.unsubmitted_oe_range_start = (u64)offset;
8718 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8719 current->journal_info = &dio_data;
97dcdea0 8720 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8721 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8722 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8723 inode_dio_end(inode);
38851cc1
MX
8724 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8725 wakeup = false;
0934856d
MX
8726 }
8727
17f8c842 8728 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8729 fs_info->fs_devices->latest_bdev,
c8b8e32d 8730 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8731 btrfs_submit_direct, flags);
6f673763 8732 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8733 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8734 current->journal_info = NULL;
ddba1bfc 8735 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8736 if (dio_data.reserve)
bc42bda2
QW
8737 btrfs_delalloc_release_space(inode, data_reserved,
8738 offset, dio_data.reserve);
f28a4928
FM
8739 /*
8740 * On error we might have left some ordered extents
8741 * without submitting corresponding bios for them, so
8742 * cleanup them up to avoid other tasks getting them
8743 * and waiting for them to complete forever.
8744 */
8745 if (dio_data.unsubmitted_oe_range_start <
8746 dio_data.unsubmitted_oe_range_end)
52427260 8747 __endio_write_update_ordered(inode,
f28a4928
FM
8748 dio_data.unsubmitted_oe_range_start,
8749 dio_data.unsubmitted_oe_range_end -
8750 dio_data.unsubmitted_oe_range_start,
52427260 8751 false);
ddba1bfc 8752 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8753 btrfs_delalloc_release_space(inode, data_reserved,
8754 offset, count - (size_t)ret);
69fe2d75 8755 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8756 }
38851cc1 8757out:
2e60a51e 8758 if (wakeup)
fe0f07d0 8759 inode_dio_end(inode);
38851cc1 8760 if (relock)
5955102c 8761 inode_lock(inode);
0934856d 8762
364ecf36 8763 extent_changeset_free(data_reserved);
0934856d 8764 return ret;
16432985
CM
8765}
8766
05dadc09
TI
8767#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8768
1506fcc8
YS
8769static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8770 __u64 start, __u64 len)
8771{
05dadc09
TI
8772 int ret;
8773
8774 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8775 if (ret)
8776 return ret;
8777
2135fb9b 8778 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8779}
8780
a52d9a80 8781int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8782{
d1310b2e
CM
8783 struct extent_io_tree *tree;
8784 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8785 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8786}
1832a6d5 8787
a52d9a80 8788static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8789{
be7bd730
JB
8790 struct inode *inode = page->mapping->host;
8791 int ret;
b888db2b
CM
8792
8793 if (current->flags & PF_MEMALLOC) {
8794 redirty_page_for_writepage(wbc, page);
8795 unlock_page(page);
8796 return 0;
8797 }
be7bd730
JB
8798
8799 /*
8800 * If we are under memory pressure we will call this directly from the
8801 * VM, we need to make sure we have the inode referenced for the ordered
8802 * extent. If not just return like we didn't do anything.
8803 */
8804 if (!igrab(inode)) {
8805 redirty_page_for_writepage(wbc, page);
8806 return AOP_WRITEPAGE_ACTIVATE;
8807 }
0a9b0e53 8808 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8809 btrfs_add_delayed_iput(inode);
8810 return ret;
9ebefb18
CM
8811}
8812
48a3b636
ES
8813static int btrfs_writepages(struct address_space *mapping,
8814 struct writeback_control *wbc)
b293f02e 8815{
d1310b2e 8816 struct extent_io_tree *tree;
771ed689 8817
d1310b2e 8818 tree = &BTRFS_I(mapping->host)->io_tree;
43317599 8819 return extent_writepages(tree, mapping, wbc);
b293f02e
CM
8820}
8821
3ab2fb5a
CM
8822static int
8823btrfs_readpages(struct file *file, struct address_space *mapping,
8824 struct list_head *pages, unsigned nr_pages)
8825{
d1310b2e
CM
8826 struct extent_io_tree *tree;
8827 tree = &BTRFS_I(mapping->host)->io_tree;
0932584b 8828 return extent_readpages(tree, mapping, pages, nr_pages);
3ab2fb5a 8829}
e6dcd2dc 8830static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8831{
d1310b2e
CM
8832 struct extent_io_tree *tree;
8833 struct extent_map_tree *map;
a52d9a80 8834 int ret;
8c2383c3 8835
d1310b2e
CM
8836 tree = &BTRFS_I(page->mapping->host)->io_tree;
8837 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8838 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8839 if (ret == 1) {
8840 ClearPagePrivate(page);
8841 set_page_private(page, 0);
09cbfeaf 8842 put_page(page);
39279cc3 8843 }
a52d9a80 8844 return ret;
39279cc3
CM
8845}
8846
e6dcd2dc
CM
8847static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8848{
98509cfc
CM
8849 if (PageWriteback(page) || PageDirty(page))
8850 return 0;
3ba7ab22 8851 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8852}
8853
d47992f8
LC
8854static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8855 unsigned int length)
39279cc3 8856{
5fd02043 8857 struct inode *inode = page->mapping->host;
d1310b2e 8858 struct extent_io_tree *tree;
e6dcd2dc 8859 struct btrfs_ordered_extent *ordered;
2ac55d41 8860 struct extent_state *cached_state = NULL;
e6dcd2dc 8861 u64 page_start = page_offset(page);
09cbfeaf 8862 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8863 u64 start;
8864 u64 end;
131e404a 8865 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8866
8b62b72b
CM
8867 /*
8868 * we have the page locked, so new writeback can't start,
8869 * and the dirty bit won't be cleared while we are here.
8870 *
8871 * Wait for IO on this page so that we can safely clear
8872 * the PagePrivate2 bit and do ordered accounting
8873 */
e6dcd2dc 8874 wait_on_page_writeback(page);
8b62b72b 8875
5fd02043 8876 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8877 if (offset) {
8878 btrfs_releasepage(page, GFP_NOFS);
8879 return;
8880 }
131e404a
FDBM
8881
8882 if (!inode_evicting)
ff13db41 8883 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8884again:
8885 start = page_start;
a776c6fa 8886 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8887 page_end - start + 1);
e6dcd2dc 8888 if (ordered) {
dbfdb6d1 8889 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8890 /*
8891 * IO on this page will never be started, so we need
8892 * to account for any ordered extents now
8893 */
131e404a 8894 if (!inode_evicting)
dbfdb6d1 8895 clear_extent_bit(tree, start, end,
131e404a 8896 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8897 EXTENT_DELALLOC_NEW |
131e404a 8898 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8899 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8900 /*
8901 * whoever cleared the private bit is responsible
8902 * for the finish_ordered_io
8903 */
77cef2ec
JB
8904 if (TestClearPagePrivate2(page)) {
8905 struct btrfs_ordered_inode_tree *tree;
8906 u64 new_len;
8907
8908 tree = &BTRFS_I(inode)->ordered_tree;
8909
8910 spin_lock_irq(&tree->lock);
8911 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8912 new_len = start - ordered->file_offset;
77cef2ec
JB
8913 if (new_len < ordered->truncated_len)
8914 ordered->truncated_len = new_len;
8915 spin_unlock_irq(&tree->lock);
8916
8917 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8918 start,
8919 end - start + 1, 1))
77cef2ec 8920 btrfs_finish_ordered_io(ordered);
8b62b72b 8921 }
e6dcd2dc 8922 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8923 if (!inode_evicting) {
8924 cached_state = NULL;
dbfdb6d1 8925 lock_extent_bits(tree, start, end,
131e404a
FDBM
8926 &cached_state);
8927 }
dbfdb6d1
CR
8928
8929 start = end + 1;
8930 if (start < page_end)
8931 goto again;
131e404a
FDBM
8932 }
8933
b9d0b389
QW
8934 /*
8935 * Qgroup reserved space handler
8936 * Page here will be either
8937 * 1) Already written to disk
8938 * In this case, its reserved space is released from data rsv map
8939 * and will be freed by delayed_ref handler finally.
8940 * So even we call qgroup_free_data(), it won't decrease reserved
8941 * space.
8942 * 2) Not written to disk
0b34c261
GR
8943 * This means the reserved space should be freed here. However,
8944 * if a truncate invalidates the page (by clearing PageDirty)
8945 * and the page is accounted for while allocating extent
8946 * in btrfs_check_data_free_space() we let delayed_ref to
8947 * free the entire extent.
b9d0b389 8948 */
0b34c261 8949 if (PageDirty(page))
bc42bda2 8950 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8951 if (!inode_evicting) {
8952 clear_extent_bit(tree, page_start, page_end,
8953 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8954 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8955 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8956 &cached_state);
131e404a
FDBM
8957
8958 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8959 }
e6dcd2dc 8960
4a096752 8961 ClearPageChecked(page);
9ad6b7bc 8962 if (PagePrivate(page)) {
9ad6b7bc
CM
8963 ClearPagePrivate(page);
8964 set_page_private(page, 0);
09cbfeaf 8965 put_page(page);
9ad6b7bc 8966 }
39279cc3
CM
8967}
8968
9ebefb18
CM
8969/*
8970 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8971 * called from a page fault handler when a page is first dirtied. Hence we must
8972 * be careful to check for EOF conditions here. We set the page up correctly
8973 * for a written page which means we get ENOSPC checking when writing into
8974 * holes and correct delalloc and unwritten extent mapping on filesystems that
8975 * support these features.
8976 *
8977 * We are not allowed to take the i_mutex here so we have to play games to
8978 * protect against truncate races as the page could now be beyond EOF. Because
8979 * vmtruncate() writes the inode size before removing pages, once we have the
8980 * page lock we can determine safely if the page is beyond EOF. If it is not
8981 * beyond EOF, then the page is guaranteed safe against truncation until we
8982 * unlock the page.
8983 */
11bac800 8984int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8985{
c2ec175c 8986 struct page *page = vmf->page;
11bac800 8987 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8988 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8989 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8990 struct btrfs_ordered_extent *ordered;
2ac55d41 8991 struct extent_state *cached_state = NULL;
364ecf36 8992 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8993 char *kaddr;
8994 unsigned long zero_start;
9ebefb18 8995 loff_t size;
1832a6d5 8996 int ret;
9998eb70 8997 int reserved = 0;
d0b7da88 8998 u64 reserved_space;
a52d9a80 8999 u64 page_start;
e6dcd2dc 9000 u64 page_end;
d0b7da88
CR
9001 u64 end;
9002
09cbfeaf 9003 reserved_space = PAGE_SIZE;
9ebefb18 9004
b2b5ef5c 9005 sb_start_pagefault(inode->i_sb);
df480633 9006 page_start = page_offset(page);
09cbfeaf 9007 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9008 end = page_end;
df480633 9009
d0b7da88
CR
9010 /*
9011 * Reserving delalloc space after obtaining the page lock can lead to
9012 * deadlock. For example, if a dirty page is locked by this function
9013 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9014 * dirty page write out, then the btrfs_writepage() function could
9015 * end up waiting indefinitely to get a lock on the page currently
9016 * being processed by btrfs_page_mkwrite() function.
9017 */
364ecf36 9018 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9019 reserved_space);
9998eb70 9020 if (!ret) {
11bac800 9021 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9022 reserved = 1;
9023 }
56a76f82
NP
9024 if (ret) {
9025 if (ret == -ENOMEM)
9026 ret = VM_FAULT_OOM;
9027 else /* -ENOSPC, -EIO, etc */
9028 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9029 if (reserved)
9030 goto out;
9031 goto out_noreserve;
56a76f82 9032 }
1832a6d5 9033
56a76f82 9034 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9035again:
9ebefb18 9036 lock_page(page);
9ebefb18 9037 size = i_size_read(inode);
a52d9a80 9038
9ebefb18 9039 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9040 (page_start >= size)) {
9ebefb18
CM
9041 /* page got truncated out from underneath us */
9042 goto out_unlock;
9043 }
e6dcd2dc
CM
9044 wait_on_page_writeback(page);
9045
ff13db41 9046 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9047 set_page_extent_mapped(page);
9048
eb84ae03
CM
9049 /*
9050 * we can't set the delalloc bits if there are pending ordered
9051 * extents. Drop our locks and wait for them to finish
9052 */
a776c6fa
NB
9053 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9054 PAGE_SIZE);
e6dcd2dc 9055 if (ordered) {
2ac55d41 9056 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9057 &cached_state);
e6dcd2dc 9058 unlock_page(page);
eb84ae03 9059 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9060 btrfs_put_ordered_extent(ordered);
9061 goto again;
9062 }
9063
09cbfeaf 9064 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9065 reserved_space = round_up(size - page_start,
0b246afa 9066 fs_info->sectorsize);
09cbfeaf 9067 if (reserved_space < PAGE_SIZE) {
d0b7da88 9068 end = page_start + reserved_space - 1;
bc42bda2
QW
9069 btrfs_delalloc_release_space(inode, data_reserved,
9070 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9071 }
9072 }
9073
fbf19087 9074 /*
5416034f
LB
9075 * page_mkwrite gets called when the page is firstly dirtied after it's
9076 * faulted in, but write(2) could also dirty a page and set delalloc
9077 * bits, thus in this case for space account reason, we still need to
9078 * clear any delalloc bits within this page range since we have to
9079 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9080 */
d0b7da88 9081 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9082 EXTENT_DIRTY | EXTENT_DELALLOC |
9083 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 9084 0, 0, &cached_state);
fbf19087 9085
e3b8a485 9086 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9087 &cached_state, 0);
9ed74f2d 9088 if (ret) {
2ac55d41 9089 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9090 &cached_state);
9ed74f2d
JB
9091 ret = VM_FAULT_SIGBUS;
9092 goto out_unlock;
9093 }
e6dcd2dc 9094 ret = 0;
9ebefb18
CM
9095
9096 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9097 if (page_start + PAGE_SIZE > size)
9098 zero_start = size & ~PAGE_MASK;
9ebefb18 9099 else
09cbfeaf 9100 zero_start = PAGE_SIZE;
9ebefb18 9101
09cbfeaf 9102 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9103 kaddr = kmap(page);
09cbfeaf 9104 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9105 flush_dcache_page(page);
9106 kunmap(page);
9107 }
247e743c 9108 ClearPageChecked(page);
e6dcd2dc 9109 set_page_dirty(page);
50a9b214 9110 SetPageUptodate(page);
5a3f23d5 9111
0b246afa 9112 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9113 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9114 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9115
e43bbe5e 9116 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9117
9118out_unlock:
b2b5ef5c 9119 if (!ret) {
8b62f87b 9120 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9121 sb_end_pagefault(inode->i_sb);
364ecf36 9122 extent_changeset_free(data_reserved);
50a9b214 9123 return VM_FAULT_LOCKED;
b2b5ef5c 9124 }
9ebefb18 9125 unlock_page(page);
1832a6d5 9126out:
8b62f87b 9127 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9128 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9129 reserved_space);
9998eb70 9130out_noreserve:
b2b5ef5c 9131 sb_end_pagefault(inode->i_sb);
364ecf36 9132 extent_changeset_free(data_reserved);
9ebefb18
CM
9133 return ret;
9134}
9135
213e8c55 9136static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 9137{
0b246afa 9138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9139 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9140 struct btrfs_block_rsv *rsv;
a71754fc 9141 int ret = 0;
3893e33b 9142 int err = 0;
39279cc3 9143 struct btrfs_trans_handle *trans;
0b246afa
JM
9144 u64 mask = fs_info->sectorsize - 1;
9145 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9146
213e8c55
FM
9147 if (!skip_writeback) {
9148 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9149 (u64)-1);
9150 if (ret)
9151 return ret;
9152 }
39279cc3 9153
fcb80c2a 9154 /*
01327610 9155 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9156 * 3 things going on here
9157 *
9158 * 1) We need to reserve space for our orphan item and the space to
9159 * delete our orphan item. Lord knows we don't want to have a dangling
9160 * orphan item because we didn't reserve space to remove it.
9161 *
9162 * 2) We need to reserve space to update our inode.
9163 *
9164 * 3) We need to have something to cache all the space that is going to
9165 * be free'd up by the truncate operation, but also have some slack
9166 * space reserved in case it uses space during the truncate (thank you
9167 * very much snapshotting).
9168 *
01327610 9169 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9170 * space doing the truncate, and we have no earthly idea how much space
01327610 9171 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9172 * doesn't end up using space reserved for updating the inode or
9173 * removing the orphan item. We also need to be able to stop the
9174 * transaction and start a new one, which means we need to be able to
9175 * update the inode several times, and we have no idea of knowing how
9176 * many times that will be, so we can't just reserve 1 item for the
01327610 9177 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9178 * Then there is the orphan item, which does indeed need to be held on
9179 * to for the whole operation, and we need nobody to touch this reserved
9180 * space except the orphan code.
9181 *
9182 * So that leaves us with
9183 *
9184 * 1) root->orphan_block_rsv - for the orphan deletion.
9185 * 2) rsv - for the truncate reservation, which we will steal from the
9186 * transaction reservation.
9187 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9188 * updating the inode.
9189 */
2ff7e61e 9190 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9191 if (!rsv)
9192 return -ENOMEM;
4a338542 9193 rsv->size = min_size;
ca7e70f5 9194 rsv->failfast = 1;
f0cd846e 9195
907cbceb 9196 /*
07127184 9197 * 1 for the truncate slack space
907cbceb
JB
9198 * 1 for updating the inode.
9199 */
f3fe820c 9200 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9201 if (IS_ERR(trans)) {
9202 err = PTR_ERR(trans);
9203 goto out;
9204 }
f0cd846e 9205
907cbceb 9206 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9207 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9208 min_size, 0);
fcb80c2a 9209 BUG_ON(ret);
f0cd846e 9210
5dc562c5
JB
9211 /*
9212 * So if we truncate and then write and fsync we normally would just
9213 * write the extents that changed, which is a problem if we need to
9214 * first truncate that entire inode. So set this flag so we write out
9215 * all of the extents in the inode to the sync log so we're completely
9216 * safe.
9217 */
9218 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9219 trans->block_rsv = rsv;
907cbceb 9220
8082510e
YZ
9221 while (1) {
9222 ret = btrfs_truncate_inode_items(trans, root, inode,
9223 inode->i_size,
9224 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9225 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9226 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9227 err = ret;
8082510e 9228 break;
3893e33b 9229 }
39279cc3 9230
8082510e 9231 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9232 if (ret) {
9233 err = ret;
9234 break;
9235 }
ca7e70f5 9236
3a45bb20 9237 btrfs_end_transaction(trans);
2ff7e61e 9238 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9239
9240 trans = btrfs_start_transaction(root, 2);
9241 if (IS_ERR(trans)) {
9242 ret = err = PTR_ERR(trans);
9243 trans = NULL;
9244 break;
9245 }
9246
47b5d646 9247 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9248 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9249 rsv, min_size, 0);
ca7e70f5
JB
9250 BUG_ON(ret); /* shouldn't happen */
9251 trans->block_rsv = rsv;
8082510e
YZ
9252 }
9253
ddfae63c
JB
9254 /*
9255 * We can't call btrfs_truncate_block inside a trans handle as we could
9256 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9257 * we've truncated everything except the last little bit, and can do
9258 * btrfs_truncate_block and then update the disk_i_size.
9259 */
9260 if (ret == NEED_TRUNCATE_BLOCK) {
9261 btrfs_end_transaction(trans);
9262 btrfs_btree_balance_dirty(fs_info);
9263
9264 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9265 if (ret)
9266 goto out;
9267 trans = btrfs_start_transaction(root, 1);
9268 if (IS_ERR(trans)) {
9269 ret = PTR_ERR(trans);
9270 goto out;
9271 }
9272 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9273 }
9274
8082510e 9275 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9276 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9277 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9278 if (ret)
9279 err = ret;
8082510e
YZ
9280 }
9281
917c16b2 9282 if (trans) {
0b246afa 9283 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9284 ret = btrfs_update_inode(trans, root, inode);
9285 if (ret && !err)
9286 err = ret;
7b128766 9287
3a45bb20 9288 ret = btrfs_end_transaction(trans);
2ff7e61e 9289 btrfs_btree_balance_dirty(fs_info);
917c16b2 9290 }
fcb80c2a 9291out:
2ff7e61e 9292 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9293
3893e33b
JB
9294 if (ret && !err)
9295 err = ret;
a41ad394 9296
3893e33b 9297 return err;
39279cc3
CM
9298}
9299
d352ac68
CM
9300/*
9301 * create a new subvolume directory/inode (helper for the ioctl).
9302 */
d2fb3437 9303int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9304 struct btrfs_root *new_root,
9305 struct btrfs_root *parent_root,
9306 u64 new_dirid)
39279cc3 9307{
39279cc3 9308 struct inode *inode;
76dda93c 9309 int err;
00e4e6b3 9310 u64 index = 0;
39279cc3 9311
12fc9d09
FA
9312 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9313 new_dirid, new_dirid,
9314 S_IFDIR | (~current_umask() & S_IRWXUGO),
9315 &index);
54aa1f4d 9316 if (IS_ERR(inode))
f46b5a66 9317 return PTR_ERR(inode);
39279cc3
CM
9318 inode->i_op = &btrfs_dir_inode_operations;
9319 inode->i_fop = &btrfs_dir_file_operations;
9320
bfe86848 9321 set_nlink(inode, 1);
6ef06d27 9322 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9323 unlock_new_inode(inode);
3b96362c 9324
63541927
FDBM
9325 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9326 if (err)
9327 btrfs_err(new_root->fs_info,
351fd353 9328 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9329 new_root->root_key.objectid, err);
9330
76dda93c 9331 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9332
76dda93c 9333 iput(inode);
ce598979 9334 return err;
39279cc3
CM
9335}
9336
39279cc3
CM
9337struct inode *btrfs_alloc_inode(struct super_block *sb)
9338{
69fe2d75 9339 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9340 struct btrfs_inode *ei;
2ead6ae7 9341 struct inode *inode;
39279cc3 9342
712e36c5 9343 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9344 if (!ei)
9345 return NULL;
2ead6ae7
YZ
9346
9347 ei->root = NULL;
2ead6ae7 9348 ei->generation = 0;
15ee9bc7 9349 ei->last_trans = 0;
257c62e1 9350 ei->last_sub_trans = 0;
e02119d5 9351 ei->logged_trans = 0;
2ead6ae7 9352 ei->delalloc_bytes = 0;
a7e3b975 9353 ei->new_delalloc_bytes = 0;
47059d93 9354 ei->defrag_bytes = 0;
2ead6ae7
YZ
9355 ei->disk_i_size = 0;
9356 ei->flags = 0;
7709cde3 9357 ei->csum_bytes = 0;
2ead6ae7 9358 ei->index_cnt = (u64)-1;
67de1176 9359 ei->dir_index = 0;
2ead6ae7 9360 ei->last_unlink_trans = 0;
46d8bc34 9361 ei->last_log_commit = 0;
2ead6ae7 9362
9e0baf60
JB
9363 spin_lock_init(&ei->lock);
9364 ei->outstanding_extents = 0;
69fe2d75
JB
9365 if (sb->s_magic != BTRFS_TEST_MAGIC)
9366 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9367 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9368 ei->runtime_flags = 0;
b52aa8c9 9369 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9370 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9371
16cdcec7
MX
9372 ei->delayed_node = NULL;
9373
9cc97d64 9374 ei->i_otime.tv_sec = 0;
9375 ei->i_otime.tv_nsec = 0;
9376
2ead6ae7 9377 inode = &ei->vfs_inode;
a8067e02 9378 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9379 extent_io_tree_init(&ei->io_tree, inode);
9380 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9381 ei->io_tree.track_uptodate = 1;
9382 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9383 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9384 mutex_init(&ei->log_mutex);
f248679e 9385 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9386 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9387 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9388 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9389 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9390 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9391
9392 return inode;
39279cc3
CM
9393}
9394
aaedb55b
JB
9395#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9396void btrfs_test_destroy_inode(struct inode *inode)
9397{
dcdbc059 9398 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9399 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9400}
9401#endif
9402
fa0d7e3d
NP
9403static void btrfs_i_callback(struct rcu_head *head)
9404{
9405 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9406 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9407}
9408
39279cc3
CM
9409void btrfs_destroy_inode(struct inode *inode)
9410{
0b246afa 9411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9412 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9413 struct btrfs_root *root = BTRFS_I(inode)->root;
9414
b3d9b7a3 9415 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9416 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9417 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9418 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9419 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9420 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9421 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9422 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9423 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9424
a6dbd429
JB
9425 /*
9426 * This can happen where we create an inode, but somebody else also
9427 * created the same inode and we need to destroy the one we already
9428 * created.
9429 */
9430 if (!root)
9431 goto free;
9432
8a35d95f
JB
9433 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9434 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9435 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9436 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9437 atomic_dec(&root->orphan_inodes);
7b128766 9438 }
7b128766 9439
d397712b 9440 while (1) {
e6dcd2dc
CM
9441 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9442 if (!ordered)
9443 break;
9444 else {
0b246afa 9445 btrfs_err(fs_info,
5d163e0e
JM
9446 "found ordered extent %llu %llu on inode cleanup",
9447 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9448 btrfs_remove_ordered_extent(inode, ordered);
9449 btrfs_put_ordered_extent(ordered);
9450 btrfs_put_ordered_extent(ordered);
9451 }
9452 }
56fa9d07 9453 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9454 inode_tree_del(inode);
dcdbc059 9455 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9456free:
fa0d7e3d 9457 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9458}
9459
45321ac5 9460int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9461{
9462 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9463
6379ef9f
NA
9464 if (root == NULL)
9465 return 1;
9466
fa6ac876 9467 /* the snap/subvol tree is on deleting */
69e9c6c6 9468 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9469 return 1;
76dda93c 9470 else
45321ac5 9471 return generic_drop_inode(inode);
76dda93c
YZ
9472}
9473
0ee0fda0 9474static void init_once(void *foo)
39279cc3
CM
9475{
9476 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9477
9478 inode_init_once(&ei->vfs_inode);
9479}
9480
e67c718b 9481void __cold btrfs_destroy_cachep(void)
39279cc3 9482{
8c0a8537
KS
9483 /*
9484 * Make sure all delayed rcu free inodes are flushed before we
9485 * destroy cache.
9486 */
9487 rcu_barrier();
5598e900
KM
9488 kmem_cache_destroy(btrfs_inode_cachep);
9489 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9490 kmem_cache_destroy(btrfs_path_cachep);
9491 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9492}
9493
f5c29bd9 9494int __init btrfs_init_cachep(void)
39279cc3 9495{
837e1972 9496 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9497 sizeof(struct btrfs_inode), 0,
5d097056
VD
9498 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9499 init_once);
39279cc3
CM
9500 if (!btrfs_inode_cachep)
9501 goto fail;
9601e3f6 9502
837e1972 9503 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9504 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9505 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9506 if (!btrfs_trans_handle_cachep)
9507 goto fail;
9601e3f6 9508
837e1972 9509 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9510 sizeof(struct btrfs_path), 0,
fba4b697 9511 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9512 if (!btrfs_path_cachep)
9513 goto fail;
9601e3f6 9514
837e1972 9515 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9516 sizeof(struct btrfs_free_space), 0,
fba4b697 9517 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9518 if (!btrfs_free_space_cachep)
9519 goto fail;
9520
39279cc3
CM
9521 return 0;
9522fail:
9523 btrfs_destroy_cachep();
9524 return -ENOMEM;
9525}
9526
a528d35e
DH
9527static int btrfs_getattr(const struct path *path, struct kstat *stat,
9528 u32 request_mask, unsigned int flags)
39279cc3 9529{
df0af1a5 9530 u64 delalloc_bytes;
a528d35e 9531 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9532 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9533 u32 bi_flags = BTRFS_I(inode)->flags;
9534
9535 stat->result_mask |= STATX_BTIME;
9536 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9537 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9538 if (bi_flags & BTRFS_INODE_APPEND)
9539 stat->attributes |= STATX_ATTR_APPEND;
9540 if (bi_flags & BTRFS_INODE_COMPRESS)
9541 stat->attributes |= STATX_ATTR_COMPRESSED;
9542 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9543 stat->attributes |= STATX_ATTR_IMMUTABLE;
9544 if (bi_flags & BTRFS_INODE_NODUMP)
9545 stat->attributes |= STATX_ATTR_NODUMP;
9546
9547 stat->attributes_mask |= (STATX_ATTR_APPEND |
9548 STATX_ATTR_COMPRESSED |
9549 STATX_ATTR_IMMUTABLE |
9550 STATX_ATTR_NODUMP);
fadc0d8b 9551
39279cc3 9552 generic_fillattr(inode, stat);
0ee5dc67 9553 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9554
9555 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9556 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9557 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9558 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9559 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9560 return 0;
9561}
9562
cdd1fedf
DF
9563static int btrfs_rename_exchange(struct inode *old_dir,
9564 struct dentry *old_dentry,
9565 struct inode *new_dir,
9566 struct dentry *new_dentry)
9567{
0b246afa 9568 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9569 struct btrfs_trans_handle *trans;
9570 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9571 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9572 struct inode *new_inode = new_dentry->d_inode;
9573 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9574 struct timespec ctime = current_time(old_inode);
cdd1fedf 9575 struct dentry *parent;
4a0cc7ca
NB
9576 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9577 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9578 u64 old_idx = 0;
9579 u64 new_idx = 0;
9580 u64 root_objectid;
9581 int ret;
86e8aa0e
FM
9582 bool root_log_pinned = false;
9583 bool dest_log_pinned = false;
cdd1fedf
DF
9584
9585 /* we only allow rename subvolume link between subvolumes */
9586 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9587 return -EXDEV;
9588
9589 /* close the race window with snapshot create/destroy ioctl */
9590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9591 down_read(&fs_info->subvol_sem);
cdd1fedf 9592 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9593 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9594
9595 /*
9596 * We want to reserve the absolute worst case amount of items. So if
9597 * both inodes are subvols and we need to unlink them then that would
9598 * require 4 item modifications, but if they are both normal inodes it
9599 * would require 5 item modifications, so we'll assume their normal
9600 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9601 * should cover the worst case number of items we'll modify.
9602 */
9603 trans = btrfs_start_transaction(root, 12);
9604 if (IS_ERR(trans)) {
9605 ret = PTR_ERR(trans);
9606 goto out_notrans;
9607 }
9608
9609 /*
9610 * We need to find a free sequence number both in the source and
9611 * in the destination directory for the exchange.
9612 */
877574e2 9613 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9614 if (ret)
9615 goto out_fail;
877574e2 9616 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9617 if (ret)
9618 goto out_fail;
9619
9620 BTRFS_I(old_inode)->dir_index = 0ULL;
9621 BTRFS_I(new_inode)->dir_index = 0ULL;
9622
9623 /* Reference for the source. */
9624 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9625 /* force full log commit if subvolume involved. */
0b246afa 9626 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9627 } else {
376e5a57
FM
9628 btrfs_pin_log_trans(root);
9629 root_log_pinned = true;
cdd1fedf
DF
9630 ret = btrfs_insert_inode_ref(trans, dest,
9631 new_dentry->d_name.name,
9632 new_dentry->d_name.len,
9633 old_ino,
f85b7379
DS
9634 btrfs_ino(BTRFS_I(new_dir)),
9635 old_idx);
cdd1fedf
DF
9636 if (ret)
9637 goto out_fail;
cdd1fedf
DF
9638 }
9639
9640 /* And now for the dest. */
9641 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9642 /* force full log commit if subvolume involved. */
0b246afa 9643 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9644 } else {
376e5a57
FM
9645 btrfs_pin_log_trans(dest);
9646 dest_log_pinned = true;
cdd1fedf
DF
9647 ret = btrfs_insert_inode_ref(trans, root,
9648 old_dentry->d_name.name,
9649 old_dentry->d_name.len,
9650 new_ino,
f85b7379
DS
9651 btrfs_ino(BTRFS_I(old_dir)),
9652 new_idx);
cdd1fedf
DF
9653 if (ret)
9654 goto out_fail;
cdd1fedf
DF
9655 }
9656
9657 /* Update inode version and ctime/mtime. */
9658 inode_inc_iversion(old_dir);
9659 inode_inc_iversion(new_dir);
9660 inode_inc_iversion(old_inode);
9661 inode_inc_iversion(new_inode);
9662 old_dir->i_ctime = old_dir->i_mtime = ctime;
9663 new_dir->i_ctime = new_dir->i_mtime = ctime;
9664 old_inode->i_ctime = ctime;
9665 new_inode->i_ctime = ctime;
9666
9667 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9668 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9669 BTRFS_I(old_inode), 1);
9670 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9671 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9672 }
9673
9674 /* src is a subvolume */
9675 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9676 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9677 ret = btrfs_unlink_subvol(trans, root, old_dir,
9678 root_objectid,
9679 old_dentry->d_name.name,
9680 old_dentry->d_name.len);
9681 } else { /* src is an inode */
4ec5934e
NB
9682 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9683 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9684 old_dentry->d_name.name,
9685 old_dentry->d_name.len);
9686 if (!ret)
9687 ret = btrfs_update_inode(trans, root, old_inode);
9688 }
9689 if (ret) {
66642832 9690 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9691 goto out_fail;
9692 }
9693
9694 /* dest is a subvolume */
9695 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9696 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9697 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9698 root_objectid,
9699 new_dentry->d_name.name,
9700 new_dentry->d_name.len);
9701 } else { /* dest is an inode */
4ec5934e
NB
9702 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9703 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9704 new_dentry->d_name.name,
9705 new_dentry->d_name.len);
9706 if (!ret)
9707 ret = btrfs_update_inode(trans, dest, new_inode);
9708 }
9709 if (ret) {
66642832 9710 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9711 goto out_fail;
9712 }
9713
db0a669f 9714 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9715 new_dentry->d_name.name,
9716 new_dentry->d_name.len, 0, old_idx);
9717 if (ret) {
66642832 9718 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9719 goto out_fail;
9720 }
9721
db0a669f 9722 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9723 old_dentry->d_name.name,
9724 old_dentry->d_name.len, 0, new_idx);
9725 if (ret) {
66642832 9726 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9727 goto out_fail;
9728 }
9729
9730 if (old_inode->i_nlink == 1)
9731 BTRFS_I(old_inode)->dir_index = old_idx;
9732 if (new_inode->i_nlink == 1)
9733 BTRFS_I(new_inode)->dir_index = new_idx;
9734
86e8aa0e 9735 if (root_log_pinned) {
cdd1fedf 9736 parent = new_dentry->d_parent;
f85b7379
DS
9737 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9738 parent);
cdd1fedf 9739 btrfs_end_log_trans(root);
86e8aa0e 9740 root_log_pinned = false;
cdd1fedf 9741 }
86e8aa0e 9742 if (dest_log_pinned) {
cdd1fedf 9743 parent = old_dentry->d_parent;
f85b7379
DS
9744 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9745 parent);
cdd1fedf 9746 btrfs_end_log_trans(dest);
86e8aa0e 9747 dest_log_pinned = false;
cdd1fedf
DF
9748 }
9749out_fail:
86e8aa0e
FM
9750 /*
9751 * If we have pinned a log and an error happened, we unpin tasks
9752 * trying to sync the log and force them to fallback to a transaction
9753 * commit if the log currently contains any of the inodes involved in
9754 * this rename operation (to ensure we do not persist a log with an
9755 * inconsistent state for any of these inodes or leading to any
9756 * inconsistencies when replayed). If the transaction was aborted, the
9757 * abortion reason is propagated to userspace when attempting to commit
9758 * the transaction. If the log does not contain any of these inodes, we
9759 * allow the tasks to sync it.
9760 */
9761 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9762 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9763 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9764 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9765 (new_inode &&
0f8939b8 9766 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9767 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9768
9769 if (root_log_pinned) {
9770 btrfs_end_log_trans(root);
9771 root_log_pinned = false;
9772 }
9773 if (dest_log_pinned) {
9774 btrfs_end_log_trans(dest);
9775 dest_log_pinned = false;
9776 }
9777 }
3a45bb20 9778 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9779out_notrans:
9780 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9781 up_read(&fs_info->subvol_sem);
cdd1fedf 9782 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9783 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9784
9785 return ret;
9786}
9787
9788static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9789 struct btrfs_root *root,
9790 struct inode *dir,
9791 struct dentry *dentry)
9792{
9793 int ret;
9794 struct inode *inode;
9795 u64 objectid;
9796 u64 index;
9797
9798 ret = btrfs_find_free_ino(root, &objectid);
9799 if (ret)
9800 return ret;
9801
9802 inode = btrfs_new_inode(trans, root, dir,
9803 dentry->d_name.name,
9804 dentry->d_name.len,
4a0cc7ca 9805 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9806 objectid,
9807 S_IFCHR | WHITEOUT_MODE,
9808 &index);
9809
9810 if (IS_ERR(inode)) {
9811 ret = PTR_ERR(inode);
9812 return ret;
9813 }
9814
9815 inode->i_op = &btrfs_special_inode_operations;
9816 init_special_inode(inode, inode->i_mode,
9817 WHITEOUT_DEV);
9818
9819 ret = btrfs_init_inode_security(trans, inode, dir,
9820 &dentry->d_name);
9821 if (ret)
c9901618 9822 goto out;
cdd1fedf 9823
cef415af
NB
9824 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9825 BTRFS_I(inode), 0, index);
cdd1fedf 9826 if (ret)
c9901618 9827 goto out;
cdd1fedf
DF
9828
9829 ret = btrfs_update_inode(trans, root, inode);
c9901618 9830out:
cdd1fedf 9831 unlock_new_inode(inode);
c9901618
FM
9832 if (ret)
9833 inode_dec_link_count(inode);
cdd1fedf
DF
9834 iput(inode);
9835
c9901618 9836 return ret;
cdd1fedf
DF
9837}
9838
d397712b 9839static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9840 struct inode *new_dir, struct dentry *new_dentry,
9841 unsigned int flags)
39279cc3 9842{
0b246afa 9843 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9844 struct btrfs_trans_handle *trans;
5062af35 9845 unsigned int trans_num_items;
39279cc3 9846 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9847 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9848 struct inode *new_inode = d_inode(new_dentry);
9849 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9850 u64 index = 0;
4df27c4d 9851 u64 root_objectid;
39279cc3 9852 int ret;
4a0cc7ca 9853 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9854 bool log_pinned = false;
39279cc3 9855
4a0cc7ca 9856 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9857 return -EPERM;
9858
4df27c4d 9859 /* we only allow rename subvolume link between subvolumes */
33345d01 9860 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9861 return -EXDEV;
9862
33345d01 9863 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9864 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9865 return -ENOTEMPTY;
5f39d397 9866
4df27c4d
YZ
9867 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9868 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9869 return -ENOTEMPTY;
9c52057c
CM
9870
9871
9872 /* check for collisions, even if the name isn't there */
4871c158 9873 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9874 new_dentry->d_name.name,
9875 new_dentry->d_name.len);
9876
9877 if (ret) {
9878 if (ret == -EEXIST) {
9879 /* we shouldn't get
9880 * eexist without a new_inode */
fae7f21c 9881 if (WARN_ON(!new_inode)) {
9c52057c
CM
9882 return ret;
9883 }
9884 } else {
9885 /* maybe -EOVERFLOW */
9886 return ret;
9887 }
9888 }
9889 ret = 0;
9890
5a3f23d5 9891 /*
8d875f95
CM
9892 * we're using rename to replace one file with another. Start IO on it
9893 * now so we don't add too much work to the end of the transaction
5a3f23d5 9894 */
8d875f95 9895 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9896 filemap_flush(old_inode->i_mapping);
9897
76dda93c 9898 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9899 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9900 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9901 /*
9902 * We want to reserve the absolute worst case amount of items. So if
9903 * both inodes are subvols and we need to unlink them then that would
9904 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9905 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9906 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9907 * should cover the worst case number of items we'll modify.
5062af35
FM
9908 * If our rename has the whiteout flag, we need more 5 units for the
9909 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9910 * when selinux is enabled).
a22285a6 9911 */
5062af35
FM
9912 trans_num_items = 11;
9913 if (flags & RENAME_WHITEOUT)
9914 trans_num_items += 5;
9915 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9916 if (IS_ERR(trans)) {
cdd1fedf
DF
9917 ret = PTR_ERR(trans);
9918 goto out_notrans;
9919 }
76dda93c 9920
4df27c4d
YZ
9921 if (dest != root)
9922 btrfs_record_root_in_trans(trans, dest);
5f39d397 9923
877574e2 9924 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9925 if (ret)
9926 goto out_fail;
5a3f23d5 9927
67de1176 9928 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9929 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9930 /* force full log commit if subvolume involved. */
0b246afa 9931 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9932 } else {
c4aba954
FM
9933 btrfs_pin_log_trans(root);
9934 log_pinned = true;
a5719521
YZ
9935 ret = btrfs_insert_inode_ref(trans, dest,
9936 new_dentry->d_name.name,
9937 new_dentry->d_name.len,
33345d01 9938 old_ino,
4a0cc7ca 9939 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9940 if (ret)
9941 goto out_fail;
4df27c4d 9942 }
5a3f23d5 9943
0c4d2d95
JB
9944 inode_inc_iversion(old_dir);
9945 inode_inc_iversion(new_dir);
9946 inode_inc_iversion(old_inode);
04b285f3
DD
9947 old_dir->i_ctime = old_dir->i_mtime =
9948 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9949 old_inode->i_ctime = current_time(old_dir);
5f39d397 9950
12fcfd22 9951 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9952 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9953 BTRFS_I(old_inode), 1);
12fcfd22 9954
33345d01 9955 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9956 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9957 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9958 old_dentry->d_name.name,
9959 old_dentry->d_name.len);
9960 } else {
4ec5934e
NB
9961 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9962 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9963 old_dentry->d_name.name,
9964 old_dentry->d_name.len);
9965 if (!ret)
9966 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9967 }
79787eaa 9968 if (ret) {
66642832 9969 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9970 goto out_fail;
9971 }
39279cc3
CM
9972
9973 if (new_inode) {
0c4d2d95 9974 inode_inc_iversion(new_inode);
c2050a45 9975 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9976 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9977 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9978 root_objectid = BTRFS_I(new_inode)->location.objectid;
9979 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9980 root_objectid,
9981 new_dentry->d_name.name,
9982 new_dentry->d_name.len);
9983 BUG_ON(new_inode->i_nlink == 0);
9984 } else {
4ec5934e
NB
9985 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9986 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9987 new_dentry->d_name.name,
9988 new_dentry->d_name.len);
9989 }
4ef31a45 9990 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9991 ret = btrfs_orphan_add(trans,
9992 BTRFS_I(d_inode(new_dentry)));
79787eaa 9993 if (ret) {
66642832 9994 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9995 goto out_fail;
9996 }
39279cc3 9997 }
aec7477b 9998
db0a669f 9999 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10000 new_dentry->d_name.name,
a5719521 10001 new_dentry->d_name.len, 0, index);
79787eaa 10002 if (ret) {
66642832 10003 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10004 goto out_fail;
10005 }
39279cc3 10006
67de1176
MX
10007 if (old_inode->i_nlink == 1)
10008 BTRFS_I(old_inode)->dir_index = index;
10009
3dc9e8f7 10010 if (log_pinned) {
10d9f309 10011 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10012
f85b7379
DS
10013 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10014 parent);
4df27c4d 10015 btrfs_end_log_trans(root);
3dc9e8f7 10016 log_pinned = false;
4df27c4d 10017 }
cdd1fedf
DF
10018
10019 if (flags & RENAME_WHITEOUT) {
10020 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10021 old_dentry);
10022
10023 if (ret) {
66642832 10024 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10025 goto out_fail;
10026 }
4df27c4d 10027 }
39279cc3 10028out_fail:
3dc9e8f7
FM
10029 /*
10030 * If we have pinned the log and an error happened, we unpin tasks
10031 * trying to sync the log and force them to fallback to a transaction
10032 * commit if the log currently contains any of the inodes involved in
10033 * this rename operation (to ensure we do not persist a log with an
10034 * inconsistent state for any of these inodes or leading to any
10035 * inconsistencies when replayed). If the transaction was aborted, the
10036 * abortion reason is propagated to userspace when attempting to commit
10037 * the transaction. If the log does not contain any of these inodes, we
10038 * allow the tasks to sync it.
10039 */
10040 if (ret && log_pinned) {
0f8939b8
NB
10041 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10042 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10043 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10044 (new_inode &&
0f8939b8 10045 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10046 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10047
10048 btrfs_end_log_trans(root);
10049 log_pinned = false;
10050 }
3a45bb20 10051 btrfs_end_transaction(trans);
b44c59a8 10052out_notrans:
33345d01 10053 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10054 up_read(&fs_info->subvol_sem);
9ed74f2d 10055
39279cc3
CM
10056 return ret;
10057}
10058
80ace85c
MS
10059static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10060 struct inode *new_dir, struct dentry *new_dentry,
10061 unsigned int flags)
10062{
cdd1fedf 10063 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10064 return -EINVAL;
10065
cdd1fedf
DF
10066 if (flags & RENAME_EXCHANGE)
10067 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10068 new_dentry);
10069
10070 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10071}
10072
8ccf6f19
MX
10073static void btrfs_run_delalloc_work(struct btrfs_work *work)
10074{
10075 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10076 struct inode *inode;
8ccf6f19
MX
10077
10078 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10079 work);
9f23e289 10080 inode = delalloc_work->inode;
30424601
DS
10081 filemap_flush(inode->i_mapping);
10082 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10083 &BTRFS_I(inode)->runtime_flags))
9f23e289 10084 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10085
10086 if (delalloc_work->delay_iput)
9f23e289 10087 btrfs_add_delayed_iput(inode);
8ccf6f19 10088 else
9f23e289 10089 iput(inode);
8ccf6f19
MX
10090 complete(&delalloc_work->completion);
10091}
10092
10093struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10094 int delay_iput)
8ccf6f19
MX
10095{
10096 struct btrfs_delalloc_work *work;
10097
100d5702 10098 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10099 if (!work)
10100 return NULL;
10101
10102 init_completion(&work->completion);
10103 INIT_LIST_HEAD(&work->list);
10104 work->inode = inode;
8ccf6f19 10105 work->delay_iput = delay_iput;
9e0af237
LB
10106 WARN_ON_ONCE(!inode);
10107 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10108 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10109
10110 return work;
10111}
10112
10113void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10114{
10115 wait_for_completion(&work->completion);
100d5702 10116 kfree(work);
8ccf6f19
MX
10117}
10118
d352ac68
CM
10119/*
10120 * some fairly slow code that needs optimization. This walks the list
10121 * of all the inodes with pending delalloc and forces them to disk.
10122 */
6c255e67
MX
10123static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10124 int nr)
ea8c2819 10125{
ea8c2819 10126 struct btrfs_inode *binode;
5b21f2ed 10127 struct inode *inode;
8ccf6f19
MX
10128 struct btrfs_delalloc_work *work, *next;
10129 struct list_head works;
1eafa6c7 10130 struct list_head splice;
8ccf6f19 10131 int ret = 0;
ea8c2819 10132
8ccf6f19 10133 INIT_LIST_HEAD(&works);
1eafa6c7 10134 INIT_LIST_HEAD(&splice);
63607cc8 10135
573bfb72 10136 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10137 spin_lock(&root->delalloc_lock);
10138 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10139 while (!list_empty(&splice)) {
10140 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10141 delalloc_inodes);
1eafa6c7 10142
eb73c1b7
MX
10143 list_move_tail(&binode->delalloc_inodes,
10144 &root->delalloc_inodes);
5b21f2ed 10145 inode = igrab(&binode->vfs_inode);
df0af1a5 10146 if (!inode) {
eb73c1b7 10147 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10148 continue;
df0af1a5 10149 }
eb73c1b7 10150 spin_unlock(&root->delalloc_lock);
1eafa6c7 10151
651d494a 10152 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10153 if (!work) {
f4ab9ea7
JB
10154 if (delay_iput)
10155 btrfs_add_delayed_iput(inode);
10156 else
10157 iput(inode);
1eafa6c7 10158 ret = -ENOMEM;
a1ecaabb 10159 goto out;
5b21f2ed 10160 }
1eafa6c7 10161 list_add_tail(&work->list, &works);
a44903ab
QW
10162 btrfs_queue_work(root->fs_info->flush_workers,
10163 &work->work);
6c255e67
MX
10164 ret++;
10165 if (nr != -1 && ret >= nr)
a1ecaabb 10166 goto out;
5b21f2ed 10167 cond_resched();
eb73c1b7 10168 spin_lock(&root->delalloc_lock);
ea8c2819 10169 }
eb73c1b7 10170 spin_unlock(&root->delalloc_lock);
8c8bee1d 10171
a1ecaabb 10172out:
eb73c1b7
MX
10173 list_for_each_entry_safe(work, next, &works, list) {
10174 list_del_init(&work->list);
10175 btrfs_wait_and_free_delalloc_work(work);
10176 }
10177
10178 if (!list_empty_careful(&splice)) {
10179 spin_lock(&root->delalloc_lock);
10180 list_splice_tail(&splice, &root->delalloc_inodes);
10181 spin_unlock(&root->delalloc_lock);
10182 }
573bfb72 10183 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10184 return ret;
10185}
1eafa6c7 10186
eb73c1b7
MX
10187int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10188{
0b246afa 10189 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10190 int ret;
1eafa6c7 10191
0b246afa 10192 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10193 return -EROFS;
10194
6c255e67
MX
10195 ret = __start_delalloc_inodes(root, delay_iput, -1);
10196 if (ret > 0)
10197 ret = 0;
eb73c1b7
MX
10198 return ret;
10199}
10200
6c255e67
MX
10201int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10202 int nr)
eb73c1b7
MX
10203{
10204 struct btrfs_root *root;
10205 struct list_head splice;
10206 int ret;
10207
2c21b4d7 10208 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10209 return -EROFS;
10210
10211 INIT_LIST_HEAD(&splice);
10212
573bfb72 10213 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10214 spin_lock(&fs_info->delalloc_root_lock);
10215 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10216 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10217 root = list_first_entry(&splice, struct btrfs_root,
10218 delalloc_root);
10219 root = btrfs_grab_fs_root(root);
10220 BUG_ON(!root);
10221 list_move_tail(&root->delalloc_root,
10222 &fs_info->delalloc_roots);
10223 spin_unlock(&fs_info->delalloc_root_lock);
10224
6c255e67 10225 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10226 btrfs_put_fs_root(root);
6c255e67 10227 if (ret < 0)
eb73c1b7
MX
10228 goto out;
10229
6c255e67
MX
10230 if (nr != -1) {
10231 nr -= ret;
10232 WARN_ON(nr < 0);
10233 }
eb73c1b7 10234 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10235 }
eb73c1b7 10236 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10237
6c255e67 10238 ret = 0;
eb73c1b7 10239out:
1eafa6c7 10240 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10241 spin_lock(&fs_info->delalloc_root_lock);
10242 list_splice_tail(&splice, &fs_info->delalloc_roots);
10243 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10244 }
573bfb72 10245 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10246 return ret;
ea8c2819
CM
10247}
10248
39279cc3
CM
10249static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10250 const char *symname)
10251{
0b246afa 10252 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10253 struct btrfs_trans_handle *trans;
10254 struct btrfs_root *root = BTRFS_I(dir)->root;
10255 struct btrfs_path *path;
10256 struct btrfs_key key;
1832a6d5 10257 struct inode *inode = NULL;
39279cc3
CM
10258 int err;
10259 int drop_inode = 0;
10260 u64 objectid;
67871254 10261 u64 index = 0;
39279cc3
CM
10262 int name_len;
10263 int datasize;
5f39d397 10264 unsigned long ptr;
39279cc3 10265 struct btrfs_file_extent_item *ei;
5f39d397 10266 struct extent_buffer *leaf;
39279cc3 10267
f06becc4 10268 name_len = strlen(symname);
0b246afa 10269 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10270 return -ENAMETOOLONG;
1832a6d5 10271
9ed74f2d
JB
10272 /*
10273 * 2 items for inode item and ref
10274 * 2 items for dir items
9269d12b
FM
10275 * 1 item for updating parent inode item
10276 * 1 item for the inline extent item
9ed74f2d
JB
10277 * 1 item for xattr if selinux is on
10278 */
9269d12b 10279 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10280 if (IS_ERR(trans))
10281 return PTR_ERR(trans);
1832a6d5 10282
581bb050
LZ
10283 err = btrfs_find_free_ino(root, &objectid);
10284 if (err)
10285 goto out_unlock;
10286
aec7477b 10287 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10288 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10289 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10290 if (IS_ERR(inode)) {
10291 err = PTR_ERR(inode);
39279cc3 10292 goto out_unlock;
7cf96da3 10293 }
39279cc3 10294
ad19db71
CS
10295 /*
10296 * If the active LSM wants to access the inode during
10297 * d_instantiate it needs these. Smack checks to see
10298 * if the filesystem supports xattrs by looking at the
10299 * ops vector.
10300 */
10301 inode->i_fop = &btrfs_file_operations;
10302 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10303 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10304 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10305
10306 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10307 if (err)
10308 goto out_unlock_inode;
ad19db71 10309
39279cc3 10310 path = btrfs_alloc_path();
d8926bb3
MF
10311 if (!path) {
10312 err = -ENOMEM;
b0d5d10f 10313 goto out_unlock_inode;
d8926bb3 10314 }
4a0cc7ca 10315 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10316 key.offset = 0;
962a298f 10317 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10318 datasize = btrfs_file_extent_calc_inline_size(name_len);
10319 err = btrfs_insert_empty_item(trans, root, path, &key,
10320 datasize);
54aa1f4d 10321 if (err) {
b0839166 10322 btrfs_free_path(path);
b0d5d10f 10323 goto out_unlock_inode;
54aa1f4d 10324 }
5f39d397
CM
10325 leaf = path->nodes[0];
10326 ei = btrfs_item_ptr(leaf, path->slots[0],
10327 struct btrfs_file_extent_item);
10328 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10329 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10330 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10331 btrfs_set_file_extent_encryption(leaf, ei, 0);
10332 btrfs_set_file_extent_compression(leaf, ei, 0);
10333 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10334 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10335
39279cc3 10336 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10337 write_extent_buffer(leaf, symname, ptr, name_len);
10338 btrfs_mark_buffer_dirty(leaf);
39279cc3 10339 btrfs_free_path(path);
5f39d397 10340
39279cc3 10341 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10342 inode_nohighmem(inode);
39279cc3 10343 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10344 inode_set_bytes(inode, name_len);
6ef06d27 10345 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10346 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10347 /*
10348 * Last step, add directory indexes for our symlink inode. This is the
10349 * last step to avoid extra cleanup of these indexes if an error happens
10350 * elsewhere above.
10351 */
10352 if (!err)
cef415af
NB
10353 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10354 BTRFS_I(inode), 0, index);
b0d5d10f 10355 if (err) {
54aa1f4d 10356 drop_inode = 1;
b0d5d10f
CM
10357 goto out_unlock_inode;
10358 }
10359
10360 unlock_new_inode(inode);
10361 d_instantiate(dentry, inode);
39279cc3
CM
10362
10363out_unlock:
3a45bb20 10364 btrfs_end_transaction(trans);
39279cc3
CM
10365 if (drop_inode) {
10366 inode_dec_link_count(inode);
10367 iput(inode);
10368 }
2ff7e61e 10369 btrfs_btree_balance_dirty(fs_info);
39279cc3 10370 return err;
b0d5d10f
CM
10371
10372out_unlock_inode:
10373 drop_inode = 1;
10374 unlock_new_inode(inode);
10375 goto out_unlock;
39279cc3 10376}
16432985 10377
0af3d00b
JB
10378static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10379 u64 start, u64 num_bytes, u64 min_size,
10380 loff_t actual_len, u64 *alloc_hint,
10381 struct btrfs_trans_handle *trans)
d899e052 10382{
0b246afa 10383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10384 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10385 struct extent_map *em;
d899e052
YZ
10386 struct btrfs_root *root = BTRFS_I(inode)->root;
10387 struct btrfs_key ins;
d899e052 10388 u64 cur_offset = start;
55a61d1d 10389 u64 i_size;
154ea289 10390 u64 cur_bytes;
0b670dc4 10391 u64 last_alloc = (u64)-1;
d899e052 10392 int ret = 0;
0af3d00b 10393 bool own_trans = true;
18513091 10394 u64 end = start + num_bytes - 1;
d899e052 10395
0af3d00b
JB
10396 if (trans)
10397 own_trans = false;
d899e052 10398 while (num_bytes > 0) {
0af3d00b
JB
10399 if (own_trans) {
10400 trans = btrfs_start_transaction(root, 3);
10401 if (IS_ERR(trans)) {
10402 ret = PTR_ERR(trans);
10403 break;
10404 }
5a303d5d
YZ
10405 }
10406
ee22184b 10407 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10408 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10409 /*
10410 * If we are severely fragmented we could end up with really
10411 * small allocations, so if the allocator is returning small
10412 * chunks lets make its job easier by only searching for those
10413 * sized chunks.
10414 */
10415 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10416 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10417 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10418 if (ret) {
0af3d00b 10419 if (own_trans)
3a45bb20 10420 btrfs_end_transaction(trans);
a22285a6 10421 break;
d899e052 10422 }
0b246afa 10423 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10424
0b670dc4 10425 last_alloc = ins.offset;
d899e052
YZ
10426 ret = insert_reserved_file_extent(trans, inode,
10427 cur_offset, ins.objectid,
10428 ins.offset, ins.offset,
920bbbfb 10429 ins.offset, 0, 0, 0,
d899e052 10430 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10431 if (ret) {
2ff7e61e 10432 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10433 ins.offset, 0);
66642832 10434 btrfs_abort_transaction(trans, ret);
79787eaa 10435 if (own_trans)
3a45bb20 10436 btrfs_end_transaction(trans);
79787eaa
JM
10437 break;
10438 }
31193213 10439
dcdbc059 10440 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10441 cur_offset + ins.offset -1, 0);
5a303d5d 10442
5dc562c5
JB
10443 em = alloc_extent_map();
10444 if (!em) {
10445 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10446 &BTRFS_I(inode)->runtime_flags);
10447 goto next;
10448 }
10449
10450 em->start = cur_offset;
10451 em->orig_start = cur_offset;
10452 em->len = ins.offset;
10453 em->block_start = ins.objectid;
10454 em->block_len = ins.offset;
b4939680 10455 em->orig_block_len = ins.offset;
cc95bef6 10456 em->ram_bytes = ins.offset;
0b246afa 10457 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10458 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10459 em->generation = trans->transid;
10460
10461 while (1) {
10462 write_lock(&em_tree->lock);
09a2a8f9 10463 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10464 write_unlock(&em_tree->lock);
10465 if (ret != -EEXIST)
10466 break;
dcdbc059 10467 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10468 cur_offset + ins.offset - 1,
10469 0);
10470 }
10471 free_extent_map(em);
10472next:
d899e052
YZ
10473 num_bytes -= ins.offset;
10474 cur_offset += ins.offset;
efa56464 10475 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10476
0c4d2d95 10477 inode_inc_iversion(inode);
c2050a45 10478 inode->i_ctime = current_time(inode);
6cbff00f 10479 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10480 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10481 (actual_len > inode->i_size) &&
10482 (cur_offset > inode->i_size)) {
d1ea6a61 10483 if (cur_offset > actual_len)
55a61d1d 10484 i_size = actual_len;
d1ea6a61 10485 else
55a61d1d
JB
10486 i_size = cur_offset;
10487 i_size_write(inode, i_size);
10488 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10489 }
10490
d899e052 10491 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10492
10493 if (ret) {
66642832 10494 btrfs_abort_transaction(trans, ret);
79787eaa 10495 if (own_trans)
3a45bb20 10496 btrfs_end_transaction(trans);
79787eaa
JM
10497 break;
10498 }
d899e052 10499
0af3d00b 10500 if (own_trans)
3a45bb20 10501 btrfs_end_transaction(trans);
5a303d5d 10502 }
18513091 10503 if (cur_offset < end)
bc42bda2 10504 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10505 end - cur_offset + 1);
d899e052
YZ
10506 return ret;
10507}
10508
0af3d00b
JB
10509int btrfs_prealloc_file_range(struct inode *inode, int mode,
10510 u64 start, u64 num_bytes, u64 min_size,
10511 loff_t actual_len, u64 *alloc_hint)
10512{
10513 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10514 min_size, actual_len, alloc_hint,
10515 NULL);
10516}
10517
10518int btrfs_prealloc_file_range_trans(struct inode *inode,
10519 struct btrfs_trans_handle *trans, int mode,
10520 u64 start, u64 num_bytes, u64 min_size,
10521 loff_t actual_len, u64 *alloc_hint)
10522{
10523 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10524 min_size, actual_len, alloc_hint, trans);
10525}
10526
e6dcd2dc
CM
10527static int btrfs_set_page_dirty(struct page *page)
10528{
e6dcd2dc
CM
10529 return __set_page_dirty_nobuffers(page);
10530}
10531
10556cb2 10532static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10533{
b83cc969 10534 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10535 umode_t mode = inode->i_mode;
b83cc969 10536
cb6db4e5
JM
10537 if (mask & MAY_WRITE &&
10538 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10539 if (btrfs_root_readonly(root))
10540 return -EROFS;
10541 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10542 return -EACCES;
10543 }
2830ba7f 10544 return generic_permission(inode, mask);
fdebe2bd 10545}
39279cc3 10546
ef3b9af5
FM
10547static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10548{
2ff7e61e 10549 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10550 struct btrfs_trans_handle *trans;
10551 struct btrfs_root *root = BTRFS_I(dir)->root;
10552 struct inode *inode = NULL;
10553 u64 objectid;
10554 u64 index;
10555 int ret = 0;
10556
10557 /*
10558 * 5 units required for adding orphan entry
10559 */
10560 trans = btrfs_start_transaction(root, 5);
10561 if (IS_ERR(trans))
10562 return PTR_ERR(trans);
10563
10564 ret = btrfs_find_free_ino(root, &objectid);
10565 if (ret)
10566 goto out;
10567
10568 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10569 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10570 if (IS_ERR(inode)) {
10571 ret = PTR_ERR(inode);
10572 inode = NULL;
10573 goto out;
10574 }
10575
ef3b9af5
FM
10576 inode->i_fop = &btrfs_file_operations;
10577 inode->i_op = &btrfs_file_inode_operations;
10578
10579 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10580 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10581
b0d5d10f
CM
10582 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10583 if (ret)
10584 goto out_inode;
10585
10586 ret = btrfs_update_inode(trans, root, inode);
10587 if (ret)
10588 goto out_inode;
73f2e545 10589 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10590 if (ret)
b0d5d10f 10591 goto out_inode;
ef3b9af5 10592
5762b5c9
FM
10593 /*
10594 * We set number of links to 0 in btrfs_new_inode(), and here we set
10595 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10596 * through:
10597 *
10598 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10599 */
10600 set_nlink(inode, 1);
b0d5d10f 10601 unlock_new_inode(inode);
ef3b9af5
FM
10602 d_tmpfile(dentry, inode);
10603 mark_inode_dirty(inode);
10604
10605out:
3a45bb20 10606 btrfs_end_transaction(trans);
ef3b9af5
FM
10607 if (ret)
10608 iput(inode);
2ff7e61e 10609 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10610 return ret;
b0d5d10f
CM
10611
10612out_inode:
10613 unlock_new_inode(inode);
10614 goto out;
10615
ef3b9af5
FM
10616}
10617
20a7db8a 10618__attribute__((const))
9d0d1c8b 10619static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10620{
9d0d1c8b 10621 return -EAGAIN;
20a7db8a
DS
10622}
10623
c6100a4b
JB
10624static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10625{
10626 struct inode *inode = private_data;
10627 return btrfs_sb(inode->i_sb);
10628}
10629
10630static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10631 u64 start, u64 end)
10632{
10633 struct inode *inode = private_data;
10634 u64 isize;
10635
10636 isize = i_size_read(inode);
10637 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10638 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10639 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10640 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10641 }
10642}
10643
10644void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10645{
10646 struct inode *inode = private_data;
10647 unsigned long index = start >> PAGE_SHIFT;
10648 unsigned long end_index = end >> PAGE_SHIFT;
10649 struct page *page;
10650
10651 while (index <= end_index) {
10652 page = find_get_page(inode->i_mapping, index);
10653 ASSERT(page); /* Pages should be in the extent_io_tree */
10654 set_page_writeback(page);
10655 put_page(page);
10656 index++;
10657 }
10658}
10659
6e1d5dcc 10660static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10661 .getattr = btrfs_getattr,
39279cc3
CM
10662 .lookup = btrfs_lookup,
10663 .create = btrfs_create,
10664 .unlink = btrfs_unlink,
10665 .link = btrfs_link,
10666 .mkdir = btrfs_mkdir,
10667 .rmdir = btrfs_rmdir,
2773bf00 10668 .rename = btrfs_rename2,
39279cc3
CM
10669 .symlink = btrfs_symlink,
10670 .setattr = btrfs_setattr,
618e21d5 10671 .mknod = btrfs_mknod,
5103e947 10672 .listxattr = btrfs_listxattr,
fdebe2bd 10673 .permission = btrfs_permission,
4e34e719 10674 .get_acl = btrfs_get_acl,
996a710d 10675 .set_acl = btrfs_set_acl,
93fd63c2 10676 .update_time = btrfs_update_time,
ef3b9af5 10677 .tmpfile = btrfs_tmpfile,
39279cc3 10678};
6e1d5dcc 10679static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10680 .lookup = btrfs_lookup,
fdebe2bd 10681 .permission = btrfs_permission,
93fd63c2 10682 .update_time = btrfs_update_time,
39279cc3 10683};
76dda93c 10684
828c0950 10685static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10686 .llseek = generic_file_llseek,
10687 .read = generic_read_dir,
02dbfc99 10688 .iterate_shared = btrfs_real_readdir,
23b5ec74 10689 .open = btrfs_opendir,
34287aa3 10690 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10691#ifdef CONFIG_COMPAT
4c63c245 10692 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10693#endif
6bf13c0c 10694 .release = btrfs_release_file,
e02119d5 10695 .fsync = btrfs_sync_file,
39279cc3
CM
10696};
10697
20e5506b 10698static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10699 /* mandatory callbacks */
065631f6 10700 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10701 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10702 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10703 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10704 .tree_fs_info = iotree_fs_info,
10705 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10706
10707 /* optional callbacks */
10708 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10709 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10710 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10711 .set_bit_hook = btrfs_set_bit_hook,
10712 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10713 .merge_extent_hook = btrfs_merge_extent_hook,
10714 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10715 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10716};
10717
35054394
CM
10718/*
10719 * btrfs doesn't support the bmap operation because swapfiles
10720 * use bmap to make a mapping of extents in the file. They assume
10721 * these extents won't change over the life of the file and they
10722 * use the bmap result to do IO directly to the drive.
10723 *
10724 * the btrfs bmap call would return logical addresses that aren't
10725 * suitable for IO and they also will change frequently as COW
10726 * operations happen. So, swapfile + btrfs == corruption.
10727 *
10728 * For now we're avoiding this by dropping bmap.
10729 */
7f09410b 10730static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10731 .readpage = btrfs_readpage,
10732 .writepage = btrfs_writepage,
b293f02e 10733 .writepages = btrfs_writepages,
3ab2fb5a 10734 .readpages = btrfs_readpages,
16432985 10735 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10736 .invalidatepage = btrfs_invalidatepage,
10737 .releasepage = btrfs_releasepage,
e6dcd2dc 10738 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10739 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10740};
10741
7f09410b 10742static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10743 .readpage = btrfs_readpage,
10744 .writepage = btrfs_writepage,
2bf5a725
CM
10745 .invalidatepage = btrfs_invalidatepage,
10746 .releasepage = btrfs_releasepage,
39279cc3
CM
10747};
10748
6e1d5dcc 10749static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10750 .getattr = btrfs_getattr,
10751 .setattr = btrfs_setattr,
5103e947 10752 .listxattr = btrfs_listxattr,
fdebe2bd 10753 .permission = btrfs_permission,
1506fcc8 10754 .fiemap = btrfs_fiemap,
4e34e719 10755 .get_acl = btrfs_get_acl,
996a710d 10756 .set_acl = btrfs_set_acl,
e41f941a 10757 .update_time = btrfs_update_time,
39279cc3 10758};
6e1d5dcc 10759static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10760 .getattr = btrfs_getattr,
10761 .setattr = btrfs_setattr,
fdebe2bd 10762 .permission = btrfs_permission,
33268eaf 10763 .listxattr = btrfs_listxattr,
4e34e719 10764 .get_acl = btrfs_get_acl,
996a710d 10765 .set_acl = btrfs_set_acl,
e41f941a 10766 .update_time = btrfs_update_time,
618e21d5 10767};
6e1d5dcc 10768static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10769 .get_link = page_get_link,
f209561a 10770 .getattr = btrfs_getattr,
22c44fe6 10771 .setattr = btrfs_setattr,
fdebe2bd 10772 .permission = btrfs_permission,
0279b4cd 10773 .listxattr = btrfs_listxattr,
e41f941a 10774 .update_time = btrfs_update_time,
39279cc3 10775};
76dda93c 10776
82d339d9 10777const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10778 .d_delete = btrfs_dentry_delete,
b4aff1f8 10779 .d_release = btrfs_dentry_release,
76dda93c 10780};