btrfs: change nr to u64 in btrfs_start_delalloc_roots
[linux-block.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
55e20bd1 9#include <linux/buffer_head.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
92d32170 34#include <asm/unaligned.h>
602cbe91 35#include "misc.h"
39279cc3
CM
36#include "ctree.h"
37#include "disk-io.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
39279cc3 40#include "print-tree.h"
e6dcd2dc 41#include "ordered-data.h"
95819c05 42#include "xattr.h"
e02119d5 43#include "tree-log.h"
4a54c8c1 44#include "volumes.h"
c8b97818 45#include "compression.h"
b4ce94de 46#include "locking.h"
dc89e982 47#include "free-space-cache.h"
581bb050 48#include "inode-map.h"
63541927 49#include "props.h"
31193213 50#include "qgroup.h"
86736342 51#include "delalloc-space.h"
aac0023c 52#include "block-group.h"
467dc47e 53#include "space-info.h"
39279cc3
CM
54
55struct btrfs_iget_args {
0202e83f 56 u64 ino;
39279cc3
CM
57 struct btrfs_root *root;
58};
59
f28a4928 60struct btrfs_dio_data {
f28a4928 61 u64 reserve;
55e20bd1
DS
62 u64 unsubmitted_oe_range_start;
63 u64 unsubmitted_oe_range_end;
64 int overwrite;
f28a4928
FM
65};
66
6e1d5dcc
AD
67static const struct inode_operations btrfs_dir_inode_operations;
68static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
69static const struct inode_operations btrfs_special_inode_operations;
70static const struct inode_operations btrfs_file_inode_operations;
7f09410b 71static const struct address_space_operations btrfs_aops;
828c0950 72static const struct file_operations btrfs_dir_file_operations;
20e5506b 73static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
74
75static struct kmem_cache *btrfs_inode_cachep;
76struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 77struct kmem_cache *btrfs_path_cachep;
dc89e982 78struct kmem_cache *btrfs_free_space_cachep;
3acd4850 79struct kmem_cache *btrfs_free_space_bitmap_cachep;
39279cc3 80
3972f260 81static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 82static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 83static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
6e26c442 84static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 85 struct page *locked_page,
74e9194a 86 u64 start, u64 end, int *page_started,
330a5827 87 unsigned long *nr_written, int unlock);
4b67c11d
NB
88static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
7b128766 93
b672b5c1 94static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98/*
99 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 100 * from the btrfs_run_delalloc_range() callback.
52427260
QW
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
d1051d6e 106 * extent (btrfs_finish_ordered_io()).
52427260 107 */
64e1db56 108static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
109 struct page *locked_page,
110 u64 offset, u64 bytes)
52427260 111{
63d71450
NA
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
63d71450
NA
117 struct page *page;
118
119 while (index <= end_index) {
64e1db56 120 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
d1051d6e
NB
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
64e1db56 138 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
139}
140
48a3b636 141static int btrfs_dirty_inode(struct inode *inode);
7b128766 142
6a3891c5
JB
143#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
144void btrfs_test_inode_set_ops(struct inode *inode)
145{
146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147}
148#endif
149
f34f57a3 150static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
151 struct inode *inode, struct inode *dir,
152 const struct qstr *qstr)
0279b4cd
JO
153{
154 int err;
155
f34f57a3 156 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 157 if (!err)
2a7dba39 158 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
159 return err;
160}
161
c8b97818
CM
162/*
163 * this does all the hard work for inserting an inline extent into
164 * the btree. The caller should have done a btrfs_drop_extents so that
165 * no overlapping inline items exist in the btree
166 */
40f76580 167static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 168 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
169 struct btrfs_root *root, struct inode *inode,
170 u64 start, size_t size, size_t compressed_size,
fe3f566c 171 int compress_type,
c8b97818
CM
172 struct page **compressed_pages)
173{
c8b97818
CM
174 struct extent_buffer *leaf;
175 struct page *page = NULL;
176 char *kaddr;
177 unsigned long ptr;
178 struct btrfs_file_extent_item *ei;
c8b97818
CM
179 int ret;
180 size_t cur_size = size;
c8b97818 181 unsigned long offset;
c8b97818 182
982f1f5d
JJB
183 ASSERT((compressed_size > 0 && compressed_pages) ||
184 (compressed_size == 0 && !compressed_pages));
185
fe3f566c 186 if (compressed_size && compressed_pages)
c8b97818 187 cur_size = compressed_size;
c8b97818 188
1acae57b 189 inode_add_bytes(inode, size);
c8b97818 190
1acae57b
FDBM
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
c8b97818 194
4a0cc7ca 195 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 196 key.offset = start;
962a298f 197 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 198
1acae57b
FDBM
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
79b4f4c6 203 if (ret)
1acae57b 204 goto fail;
c8b97818
CM
205 }
206 leaf = path->nodes[0];
207 ei = btrfs_item_ptr(leaf, path->slots[0],
208 struct btrfs_file_extent_item);
209 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 btrfs_set_file_extent_encryption(leaf, ei, 0);
212 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 ptr = btrfs_file_extent_inline_start(ei);
215
261507a0 216 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
217 struct page *cpage;
218 int i = 0;
d397712b 219 while (compressed_size > 0) {
c8b97818 220 cpage = compressed_pages[i];
5b050f04 221 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 222 PAGE_SIZE);
c8b97818 223
7ac687d9 224 kaddr = kmap_atomic(cpage);
c8b97818 225 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 226 kunmap_atomic(kaddr);
c8b97818
CM
227
228 i++;
229 ptr += cur_size;
230 compressed_size -= cur_size;
231 }
232 btrfs_set_file_extent_compression(leaf, ei,
261507a0 233 compress_type);
c8b97818
CM
234 } else {
235 page = find_get_page(inode->i_mapping,
09cbfeaf 236 start >> PAGE_SHIFT);
c8b97818 237 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 238 kaddr = kmap_atomic(page);
7073017a 239 offset = offset_in_page(start);
c8b97818 240 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 241 kunmap_atomic(kaddr);
09cbfeaf 242 put_page(page);
c8b97818
CM
243 }
244 btrfs_mark_buffer_dirty(leaf);
1acae57b 245 btrfs_release_path(path);
c8b97818 246
9ddc959e
JB
247 /*
248 * We align size to sectorsize for inline extents just for simplicity
249 * sake.
250 */
251 size = ALIGN(size, root->fs_info->sectorsize);
252 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
253 if (ret)
254 goto fail;
255
c2167754
YZ
256 /*
257 * we're an inline extent, so nobody can
258 * extend the file past i_size without locking
259 * a page we already have locked.
260 *
261 * We must do any isize and inode updates
262 * before we unlock the pages. Otherwise we
263 * could end up racing with unlink.
264 */
c8b97818 265 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 266 ret = btrfs_update_inode(trans, root, inode);
c2167754 267
c8b97818 268fail:
79b4f4c6 269 return ret;
c8b97818
CM
270}
271
272
273/*
274 * conditionally insert an inline extent into the file. This
275 * does the checks required to make sure the data is small enough
276 * to fit as an inline extent.
277 */
a0349401 278static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
00361589
JB
279 u64 end, size_t compressed_size,
280 int compress_type,
281 struct page **compressed_pages)
c8b97818 282{
a0349401 283 struct btrfs_root *root = inode->root;
0b246afa 284 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 285 struct btrfs_trans_handle *trans;
a0349401 286 u64 isize = i_size_read(&inode->vfs_inode);
c8b97818
CM
287 u64 actual_end = min(end + 1, isize);
288 u64 inline_len = actual_end - start;
0b246afa 289 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
290 u64 data_len = inline_len;
291 int ret;
1acae57b
FDBM
292 struct btrfs_path *path;
293 int extent_inserted = 0;
294 u32 extent_item_size;
c8b97818
CM
295
296 if (compressed_size)
297 data_len = compressed_size;
298
299 if (start > 0 ||
0b246afa
JM
300 actual_end > fs_info->sectorsize ||
301 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 302 (!compressed_size &&
0b246afa 303 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 304 end + 1 < isize ||
0b246afa 305 data_len > fs_info->max_inline) {
c8b97818
CM
306 return 1;
307 }
308
1acae57b
FDBM
309 path = btrfs_alloc_path();
310 if (!path)
311 return -ENOMEM;
312
00361589 313 trans = btrfs_join_transaction(root);
1acae57b
FDBM
314 if (IS_ERR(trans)) {
315 btrfs_free_path(path);
00361589 316 return PTR_ERR(trans);
1acae57b 317 }
a0349401 318 trans->block_rsv = &inode->block_rsv;
00361589 319
1acae57b
FDBM
320 if (compressed_size && compressed_pages)
321 extent_item_size = btrfs_file_extent_calc_inline_size(
322 compressed_size);
323 else
324 extent_item_size = btrfs_file_extent_calc_inline_size(
325 inline_len);
326
a0349401
NB
327 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
328 NULL, 1, 1, extent_item_size,
329 &extent_inserted);
00361589 330 if (ret) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589
JB
332 goto out;
333 }
c8b97818
CM
334
335 if (isize > actual_end)
336 inline_len = min_t(u64, isize, actual_end);
1acae57b 337 ret = insert_inline_extent(trans, path, extent_inserted,
a0349401 338 root, &inode->vfs_inode, start,
c8b97818 339 inline_len, compressed_size,
fe3f566c 340 compress_type, compressed_pages);
2adcac1a 341 if (ret && ret != -ENOSPC) {
66642832 342 btrfs_abort_transaction(trans, ret);
00361589 343 goto out;
2adcac1a 344 } else if (ret == -ENOSPC) {
00361589
JB
345 ret = 1;
346 goto out;
79787eaa 347 }
2adcac1a 348
a0349401
NB
349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
350 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 351out:
94ed938a
QW
352 /*
353 * Don't forget to free the reserved space, as for inlined extent
354 * it won't count as data extent, free them directly here.
355 * And at reserve time, it's always aligned to page size, so
356 * just free one page here.
357 */
a0349401 358 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 359 btrfs_free_path(path);
3a45bb20 360 btrfs_end_transaction(trans);
00361589 361 return ret;
c8b97818
CM
362}
363
771ed689
CM
364struct async_extent {
365 u64 start;
366 u64 ram_size;
367 u64 compressed_size;
368 struct page **pages;
369 unsigned long nr_pages;
261507a0 370 int compress_type;
771ed689
CM
371 struct list_head list;
372};
373
97db1204 374struct async_chunk {
771ed689 375 struct inode *inode;
771ed689
CM
376 struct page *locked_page;
377 u64 start;
378 u64 end;
f82b7359 379 unsigned int write_flags;
771ed689 380 struct list_head extents;
ec39f769 381 struct cgroup_subsys_state *blkcg_css;
771ed689 382 struct btrfs_work work;
97db1204 383 atomic_t *pending;
771ed689
CM
384};
385
97db1204
NB
386struct async_cow {
387 /* Number of chunks in flight; must be first in the structure */
388 atomic_t num_chunks;
389 struct async_chunk chunks[];
771ed689
CM
390};
391
97db1204 392static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
393 u64 start, u64 ram_size,
394 u64 compressed_size,
395 struct page **pages,
261507a0
LZ
396 unsigned long nr_pages,
397 int compress_type)
771ed689
CM
398{
399 struct async_extent *async_extent;
400
401 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 402 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
403 async_extent->start = start;
404 async_extent->ram_size = ram_size;
405 async_extent->compressed_size = compressed_size;
406 async_extent->pages = pages;
407 async_extent->nr_pages = nr_pages;
261507a0 408 async_extent->compress_type = compress_type;
771ed689
CM
409 list_add_tail(&async_extent->list, &cow->extents);
410 return 0;
411}
412
42c16da6
QW
413/*
414 * Check if the inode has flags compatible with compression
415 */
99c88dc7 416static inline bool inode_can_compress(struct btrfs_inode *inode)
42c16da6 417{
99c88dc7
NB
418 if (inode->flags & BTRFS_INODE_NODATACOW ||
419 inode->flags & BTRFS_INODE_NODATASUM)
42c16da6
QW
420 return false;
421 return true;
422}
423
424/*
425 * Check if the inode needs to be submitted to compression, based on mount
426 * options, defragmentation, properties or heuristics.
427 */
808a1292
NB
428static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
429 u64 end)
f79707b0 430{
808a1292 431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 432
808a1292 433 if (!inode_can_compress(inode)) {
42c16da6
QW
434 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
435 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 436 btrfs_ino(inode));
42c16da6
QW
437 return 0;
438 }
f79707b0 439 /* force compress */
0b246afa 440 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 441 return 1;
eec63c65 442 /* defrag ioctl */
808a1292 443 if (inode->defrag_compress)
eec63c65 444 return 1;
f79707b0 445 /* bad compression ratios */
808a1292 446 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 447 return 0;
0b246afa 448 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
449 inode->flags & BTRFS_INODE_COMPRESS ||
450 inode->prop_compress)
451 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
452 return 0;
453}
454
6158e1ce 455static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
456 u64 start, u64 end, u64 num_bytes, u64 small_write)
457{
458 /* If this is a small write inside eof, kick off a defrag */
459 if (num_bytes < small_write &&
6158e1ce 460 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
461 btrfs_add_inode_defrag(NULL, inode);
462}
463
d352ac68 464/*
771ed689
CM
465 * we create compressed extents in two phases. The first
466 * phase compresses a range of pages that have already been
467 * locked (both pages and state bits are locked).
c8b97818 468 *
771ed689
CM
469 * This is done inside an ordered work queue, and the compression
470 * is spread across many cpus. The actual IO submission is step
471 * two, and the ordered work queue takes care of making sure that
472 * happens in the same order things were put onto the queue by
473 * writepages and friends.
c8b97818 474 *
771ed689
CM
475 * If this code finds it can't get good compression, it puts an
476 * entry onto the work queue to write the uncompressed bytes. This
477 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
478 * are written in the same order that the flusher thread sent them
479 * down.
d352ac68 480 */
ac3e9933 481static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 482{
1368c6da 483 struct inode *inode = async_chunk->inode;
0b246afa 484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 485 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
486 u64 start = async_chunk->start;
487 u64 end = async_chunk->end;
c8b97818 488 u64 actual_end;
d98da499 489 u64 i_size;
e6dcd2dc 490 int ret = 0;
c8b97818
CM
491 struct page **pages = NULL;
492 unsigned long nr_pages;
c8b97818
CM
493 unsigned long total_compressed = 0;
494 unsigned long total_in = 0;
c8b97818
CM
495 int i;
496 int will_compress;
0b246afa 497 int compress_type = fs_info->compress_type;
ac3e9933 498 int compressed_extents = 0;
4adaa611 499 int redirty = 0;
b888db2b 500
6158e1ce
NB
501 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
502 SZ_16K);
4cb5300b 503
d98da499
JB
504 /*
505 * We need to save i_size before now because it could change in between
506 * us evaluating the size and assigning it. This is because we lock and
507 * unlock the page in truncate and fallocate, and then modify the i_size
508 * later on.
509 *
510 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 * does that for us.
512 */
513 barrier();
514 i_size = i_size_read(inode);
515 barrier();
516 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
517again:
518 will_compress = 0;
09cbfeaf 519 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
520 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
521 nr_pages = min_t(unsigned long, nr_pages,
522 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 523
f03d9301
CM
524 /*
525 * we don't want to send crud past the end of i_size through
526 * compression, that's just a waste of CPU time. So, if the
527 * end of the file is before the start of our current
528 * requested range of bytes, we bail out to the uncompressed
529 * cleanup code that can deal with all of this.
530 *
531 * It isn't really the fastest way to fix things, but this is a
532 * very uncommon corner.
533 */
534 if (actual_end <= start)
535 goto cleanup_and_bail_uncompressed;
536
c8b97818
CM
537 total_compressed = actual_end - start;
538
4bcbb332
SW
539 /*
540 * skip compression for a small file range(<=blocksize) that
01327610 541 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
542 */
543 if (total_compressed <= blocksize &&
544 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
545 goto cleanup_and_bail_uncompressed;
546
069eac78
DS
547 total_compressed = min_t(unsigned long, total_compressed,
548 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
549 total_in = 0;
550 ret = 0;
db94535d 551
771ed689
CM
552 /*
553 * we do compression for mount -o compress and when the
554 * inode has not been flagged as nocompress. This flag can
555 * change at any time if we discover bad compression ratios.
c8b97818 556 */
808a1292 557 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 558 WARN_ON(pages);
31e818fe 559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
560 if (!pages) {
561 /* just bail out to the uncompressed code */
3527a018 562 nr_pages = 0;
560f7d75
LZ
563 goto cont;
564 }
c8b97818 565
eec63c65
DS
566 if (BTRFS_I(inode)->defrag_compress)
567 compress_type = BTRFS_I(inode)->defrag_compress;
568 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 569 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 570
4adaa611
CM
571 /*
572 * we need to call clear_page_dirty_for_io on each
573 * page in the range. Otherwise applications with the file
574 * mmap'd can wander in and change the page contents while
575 * we are compressing them.
576 *
577 * If the compression fails for any reason, we set the pages
578 * dirty again later on.
e9679de3
TT
579 *
580 * Note that the remaining part is redirtied, the start pointer
581 * has moved, the end is the original one.
4adaa611 582 */
e9679de3
TT
583 if (!redirty) {
584 extent_range_clear_dirty_for_io(inode, start, end);
585 redirty = 1;
586 }
f51d2b59
DS
587
588 /* Compression level is applied here and only here */
589 ret = btrfs_compress_pages(
590 compress_type | (fs_info->compress_level << 4),
261507a0 591 inode->i_mapping, start,
38c31464 592 pages,
4d3a800e 593 &nr_pages,
261507a0 594 &total_in,
e5d74902 595 &total_compressed);
c8b97818
CM
596
597 if (!ret) {
7073017a 598 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 599 struct page *page = pages[nr_pages - 1];
c8b97818
CM
600 char *kaddr;
601
602 /* zero the tail end of the last page, we might be
603 * sending it down to disk
604 */
605 if (offset) {
7ac687d9 606 kaddr = kmap_atomic(page);
c8b97818 607 memset(kaddr + offset, 0,
09cbfeaf 608 PAGE_SIZE - offset);
7ac687d9 609 kunmap_atomic(kaddr);
c8b97818
CM
610 }
611 will_compress = 1;
612 }
613 }
560f7d75 614cont:
c8b97818
CM
615 if (start == 0) {
616 /* lets try to make an inline extent */
6018ba0a 617 if (ret || total_in < actual_end) {
c8b97818 618 /* we didn't compress the entire range, try
771ed689 619 * to make an uncompressed inline extent.
c8b97818 620 */
a0349401
NB
621 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
622 0, BTRFS_COMPRESS_NONE,
623 NULL);
c8b97818 624 } else {
771ed689 625 /* try making a compressed inline extent */
a0349401 626 ret = cow_file_range_inline(BTRFS_I(inode), start, end,
fe3f566c
LZ
627 total_compressed,
628 compress_type, pages);
c8b97818 629 }
79787eaa 630 if (ret <= 0) {
151a41bc 631 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
632 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
633 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
634 unsigned long page_error_op;
635
e6eb4314 636 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 637
771ed689 638 /*
79787eaa
JM
639 * inline extent creation worked or returned error,
640 * we don't need to create any more async work items.
641 * Unlock and free up our temp pages.
8b62f87b
JB
642 *
643 * We use DO_ACCOUNTING here because we need the
644 * delalloc_release_metadata to be done _after_ we drop
645 * our outstanding extent for clearing delalloc for this
646 * range.
771ed689 647 */
ad7ff17b
NB
648 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
649 NULL,
74e9194a 650 clear_flags,
ba8b04c1 651 PAGE_UNLOCK |
c2790a2e
JB
652 PAGE_CLEAR_DIRTY |
653 PAGE_SET_WRITEBACK |
e6eb4314 654 page_error_op |
c2790a2e 655 PAGE_END_WRITEBACK);
cecc8d90 656
1e6e238c
QW
657 /*
658 * Ensure we only free the compressed pages if we have
659 * them allocated, as we can still reach here with
660 * inode_need_compress() == false.
661 */
662 if (pages) {
663 for (i = 0; i < nr_pages; i++) {
664 WARN_ON(pages[i]->mapping);
665 put_page(pages[i]);
666 }
667 kfree(pages);
cecc8d90 668 }
cecc8d90 669 return 0;
c8b97818
CM
670 }
671 }
672
673 if (will_compress) {
674 /*
675 * we aren't doing an inline extent round the compressed size
676 * up to a block size boundary so the allocator does sane
677 * things
678 */
fda2832f 679 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
680
681 /*
682 * one last check to make sure the compression is really a
170607eb
TT
683 * win, compare the page count read with the blocks on disk,
684 * compression must free at least one sector size
c8b97818 685 */
09cbfeaf 686 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 687 if (total_compressed + blocksize <= total_in) {
ac3e9933 688 compressed_extents++;
c8bb0c8b
AS
689
690 /*
691 * The async work queues will take care of doing actual
692 * allocation on disk for these compressed pages, and
693 * will submit them to the elevator.
694 */
b5326271 695 add_async_extent(async_chunk, start, total_in,
4d3a800e 696 total_compressed, pages, nr_pages,
c8bb0c8b
AS
697 compress_type);
698
1170862d
TT
699 if (start + total_in < end) {
700 start += total_in;
c8bb0c8b
AS
701 pages = NULL;
702 cond_resched();
703 goto again;
704 }
ac3e9933 705 return compressed_extents;
c8b97818
CM
706 }
707 }
c8bb0c8b 708 if (pages) {
c8b97818
CM
709 /*
710 * the compression code ran but failed to make things smaller,
711 * free any pages it allocated and our page pointer array
712 */
4d3a800e 713 for (i = 0; i < nr_pages; i++) {
70b99e69 714 WARN_ON(pages[i]->mapping);
09cbfeaf 715 put_page(pages[i]);
c8b97818
CM
716 }
717 kfree(pages);
718 pages = NULL;
719 total_compressed = 0;
4d3a800e 720 nr_pages = 0;
c8b97818
CM
721
722 /* flag the file so we don't compress in the future */
0b246afa 723 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 724 !(BTRFS_I(inode)->prop_compress)) {
a555f810 725 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 726 }
c8b97818 727 }
f03d9301 728cleanup_and_bail_uncompressed:
c8bb0c8b
AS
729 /*
730 * No compression, but we still need to write the pages in the file
731 * we've been given so far. redirty the locked page if it corresponds
732 * to our extent and set things up for the async work queue to run
733 * cow_file_range to do the normal delalloc dance.
734 */
1d53c9e6
CM
735 if (async_chunk->locked_page &&
736 (page_offset(async_chunk->locked_page) >= start &&
737 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 738 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 739 /* unlocked later on in the async handlers */
1d53c9e6 740 }
c8bb0c8b
AS
741
742 if (redirty)
743 extent_range_redirty_for_io(inode, start, end);
b5326271 744 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 745 BTRFS_COMPRESS_NONE);
ac3e9933 746 compressed_extents++;
3b951516 747
ac3e9933 748 return compressed_extents;
771ed689 749}
771ed689 750
40ae837b
FM
751static void free_async_extent_pages(struct async_extent *async_extent)
752{
753 int i;
754
755 if (!async_extent->pages)
756 return;
757
758 for (i = 0; i < async_extent->nr_pages; i++) {
759 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 760 put_page(async_extent->pages[i]);
40ae837b
FM
761 }
762 kfree(async_extent->pages);
763 async_extent->nr_pages = 0;
764 async_extent->pages = NULL;
771ed689
CM
765}
766
767/*
768 * phase two of compressed writeback. This is the ordered portion
769 * of the code, which only gets called in the order the work was
770 * queued. We walk all the async extents created by compress_file_range
771 * and send them down to the disk.
772 */
b5326271 773static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
771ed689 774{
a0ff10dc
NB
775 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
776 struct btrfs_fs_info *fs_info = inode->root->fs_info;
771ed689
CM
777 struct async_extent *async_extent;
778 u64 alloc_hint = 0;
771ed689
CM
779 struct btrfs_key ins;
780 struct extent_map *em;
a0ff10dc
NB
781 struct btrfs_root *root = inode->root;
782 struct extent_io_tree *io_tree = &inode->io_tree;
f5a84ee3 783 int ret = 0;
771ed689 784
3e04e7f1 785again:
b5326271
NB
786 while (!list_empty(&async_chunk->extents)) {
787 async_extent = list_entry(async_chunk->extents.next,
771ed689
CM
788 struct async_extent, list);
789 list_del(&async_extent->list);
c8b97818 790
f5a84ee3 791retry:
7447555f
NB
792 lock_extent(io_tree, async_extent->start,
793 async_extent->start + async_extent->ram_size - 1);
771ed689
CM
794 /* did the compression code fall back to uncompressed IO? */
795 if (!async_extent->pages) {
796 int page_started = 0;
797 unsigned long nr_written = 0;
798
771ed689 799 /* allocate blocks */
a0ff10dc 800 ret = cow_file_range(inode, async_chunk->locked_page,
f5a84ee3
JB
801 async_extent->start,
802 async_extent->start +
803 async_extent->ram_size - 1,
330a5827 804 &page_started, &nr_written, 0);
771ed689 805
79787eaa
JM
806 /* JDM XXX */
807
771ed689
CM
808 /*
809 * if page_started, cow_file_range inserted an
810 * inline extent and took care of all the unlocking
811 * and IO for us. Otherwise, we need to submit
812 * all those pages down to the drive.
813 */
f5a84ee3 814 if (!page_started && !ret)
a0ff10dc 815 extent_write_locked_range(&inode->vfs_inode,
5e3ee236 816 async_extent->start,
d397712b 817 async_extent->start +
771ed689 818 async_extent->ram_size - 1,
771ed689 819 WB_SYNC_ALL);
1d53c9e6 820 else if (ret && async_chunk->locked_page)
b5326271 821 unlock_page(async_chunk->locked_page);
771ed689
CM
822 kfree(async_extent);
823 cond_resched();
824 continue;
825 }
826
18513091 827 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
828 async_extent->compressed_size,
829 async_extent->compressed_size,
e570fd27 830 0, alloc_hint, &ins, 1, 1);
f5a84ee3 831 if (ret) {
40ae837b 832 free_async_extent_pages(async_extent);
3e04e7f1 833
fdf8e2ea
JB
834 if (ret == -ENOSPC) {
835 unlock_extent(io_tree, async_extent->start,
836 async_extent->start +
837 async_extent->ram_size - 1);
ce62003f
LB
838
839 /*
840 * we need to redirty the pages if we decide to
841 * fallback to uncompressed IO, otherwise we
842 * will not submit these pages down to lower
843 * layers.
844 */
a0ff10dc 845 extent_range_redirty_for_io(&inode->vfs_inode,
ce62003f
LB
846 async_extent->start,
847 async_extent->start +
848 async_extent->ram_size - 1);
849
79787eaa 850 goto retry;
fdf8e2ea 851 }
3e04e7f1 852 goto out_free;
f5a84ee3 853 }
c2167754
YZ
854 /*
855 * here we're doing allocation and writeback of the
856 * compressed pages
857 */
a0ff10dc 858 em = create_io_em(inode, async_extent->start,
6f9994db
LB
859 async_extent->ram_size, /* len */
860 async_extent->start, /* orig_start */
861 ins.objectid, /* block_start */
862 ins.offset, /* block_len */
863 ins.offset, /* orig_block_len */
864 async_extent->ram_size, /* ram_bytes */
865 async_extent->compress_type,
866 BTRFS_ORDERED_COMPRESSED);
867 if (IS_ERR(em))
868 /* ret value is not necessary due to void function */
3e04e7f1 869 goto out_free_reserve;
6f9994db 870 free_extent_map(em);
3e04e7f1 871
a0ff10dc 872 ret = btrfs_add_ordered_extent_compress(inode,
261507a0
LZ
873 async_extent->start,
874 ins.objectid,
875 async_extent->ram_size,
876 ins.offset,
877 BTRFS_ORDERED_COMPRESSED,
878 async_extent->compress_type);
d9f85963 879 if (ret) {
a0ff10dc 880 btrfs_drop_extent_cache(inode, async_extent->start,
d9f85963
FM
881 async_extent->start +
882 async_extent->ram_size - 1, 0);
3e04e7f1 883 goto out_free_reserve;
d9f85963 884 }
0b246afa 885 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 886
771ed689
CM
887 /*
888 * clear dirty, set writeback and unlock the pages.
889 */
a0ff10dc 890 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
891 async_extent->start +
892 async_extent->ram_size - 1,
151a41bc
JB
893 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
894 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 895 PAGE_SET_WRITEBACK);
a0ff10dc 896 if (btrfs_submit_compressed_write(inode, async_extent->start,
d397712b
CM
897 async_extent->ram_size,
898 ins.objectid,
899 ins.offset, async_extent->pages,
f82b7359 900 async_extent->nr_pages,
ec39f769
CM
901 async_chunk->write_flags,
902 async_chunk->blkcg_css)) {
fce2a4e6
FM
903 struct page *p = async_extent->pages[0];
904 const u64 start = async_extent->start;
905 const u64 end = start + async_extent->ram_size - 1;
906
a0ff10dc 907 p->mapping = inode->vfs_inode.i_mapping;
c629732d 908 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 909
fce2a4e6 910 p->mapping = NULL;
a0ff10dc 911 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
fce2a4e6
FM
912 PAGE_END_WRITEBACK |
913 PAGE_SET_ERROR);
40ae837b 914 free_async_extent_pages(async_extent);
fce2a4e6 915 }
771ed689
CM
916 alloc_hint = ins.objectid + ins.offset;
917 kfree(async_extent);
918 cond_resched();
919 }
dec8f175 920 return;
3e04e7f1 921out_free_reserve:
0b246afa 922 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 923 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 924out_free:
a0ff10dc 925 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
926 async_extent->start +
927 async_extent->ram_size - 1,
c2790a2e 928 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 929 EXTENT_DELALLOC_NEW |
151a41bc
JB
930 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
931 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
932 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
933 PAGE_SET_ERROR);
40ae837b 934 free_async_extent_pages(async_extent);
79787eaa 935 kfree(async_extent);
3e04e7f1 936 goto again;
771ed689
CM
937}
938
43c69849 939static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
940 u64 num_bytes)
941{
43c69849 942 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
943 struct extent_map *em;
944 u64 alloc_hint = 0;
945
946 read_lock(&em_tree->lock);
947 em = search_extent_mapping(em_tree, start, num_bytes);
948 if (em) {
949 /*
950 * if block start isn't an actual block number then find the
951 * first block in this inode and use that as a hint. If that
952 * block is also bogus then just don't worry about it.
953 */
954 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
955 free_extent_map(em);
956 em = search_extent_mapping(em_tree, 0, 0);
957 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
958 alloc_hint = em->block_start;
959 if (em)
960 free_extent_map(em);
961 } else {
962 alloc_hint = em->block_start;
963 free_extent_map(em);
964 }
965 }
966 read_unlock(&em_tree->lock);
967
968 return alloc_hint;
969}
970
771ed689
CM
971/*
972 * when extent_io.c finds a delayed allocation range in the file,
973 * the call backs end up in this code. The basic idea is to
974 * allocate extents on disk for the range, and create ordered data structs
975 * in ram to track those extents.
976 *
977 * locked_page is the page that writepage had locked already. We use
978 * it to make sure we don't do extra locks or unlocks.
979 *
980 * *page_started is set to one if we unlock locked_page and do everything
981 * required to start IO on it. It may be clean and already done with
982 * IO when we return.
983 */
6e26c442 984static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 985 struct page *locked_page,
74e9194a 986 u64 start, u64 end, int *page_started,
330a5827 987 unsigned long *nr_written, int unlock)
771ed689 988{
6e26c442
NB
989 struct btrfs_root *root = inode->root;
990 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689
CM
991 u64 alloc_hint = 0;
992 u64 num_bytes;
993 unsigned long ram_size;
a315e68f 994 u64 cur_alloc_size = 0;
432cd2a1 995 u64 min_alloc_size;
0b246afa 996 u64 blocksize = fs_info->sectorsize;
771ed689
CM
997 struct btrfs_key ins;
998 struct extent_map *em;
a315e68f
FM
999 unsigned clear_bits;
1000 unsigned long page_ops;
1001 bool extent_reserved = false;
771ed689
CM
1002 int ret = 0;
1003
6e26c442 1004 if (btrfs_is_free_space_inode(inode)) {
02ecd2c2 1005 WARN_ON_ONCE(1);
29bce2f3
JB
1006 ret = -EINVAL;
1007 goto out_unlock;
02ecd2c2 1008 }
771ed689 1009
fda2832f 1010 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1011 num_bytes = max(blocksize, num_bytes);
566b1760 1012 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1013
6e26c442 1014 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1015
771ed689
CM
1016 if (start == 0) {
1017 /* lets try to make an inline extent */
6e26c442 1018 ret = cow_file_range_inline(inode, start, end, 0,
d02c0e20 1019 BTRFS_COMPRESS_NONE, NULL);
771ed689 1020 if (ret == 0) {
8b62f87b
JB
1021 /*
1022 * We use DO_ACCOUNTING here because we need the
1023 * delalloc_release_metadata to be run _after_ we drop
1024 * our outstanding extent for clearing delalloc for this
1025 * range.
1026 */
6e26c442 1027 extent_clear_unlock_delalloc(inode, start, end, NULL,
c2790a2e 1028 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1029 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1031 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032 PAGE_END_WRITEBACK);
771ed689 1033 *nr_written = *nr_written +
09cbfeaf 1034 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1035 *page_started = 1;
771ed689 1036 goto out;
79787eaa 1037 } else if (ret < 0) {
79787eaa 1038 goto out_unlock;
771ed689
CM
1039 }
1040 }
1041
6e26c442
NB
1042 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
771ed689 1044
432cd2a1
FM
1045 /*
1046 * Relocation relies on the relocated extents to have exactly the same
1047 * size as the original extents. Normally writeback for relocation data
1048 * extents follows a NOCOW path because relocation preallocates the
1049 * extents. However, due to an operation such as scrub turning a block
1050 * group to RO mode, it may fallback to COW mode, so we must make sure
1051 * an extent allocated during COW has exactly the requested size and can
1052 * not be split into smaller extents, otherwise relocation breaks and
1053 * fails during the stage where it updates the bytenr of file extent
1054 * items.
1055 */
1056 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057 min_alloc_size = num_bytes;
1058 else
1059 min_alloc_size = fs_info->sectorsize;
1060
3752d22f
AJ
1061 while (num_bytes > 0) {
1062 cur_alloc_size = num_bytes;
18513091 1063 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1064 min_alloc_size, 0, alloc_hint,
e570fd27 1065 &ins, 1, 1);
00361589 1066 if (ret < 0)
79787eaa 1067 goto out_unlock;
a315e68f
FM
1068 cur_alloc_size = ins.offset;
1069 extent_reserved = true;
d397712b 1070
771ed689 1071 ram_size = ins.offset;
6e26c442 1072 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1073 start, /* orig_start */
1074 ins.objectid, /* block_start */
1075 ins.offset, /* block_len */
1076 ins.offset, /* orig_block_len */
1077 ram_size, /* ram_bytes */
1078 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1079 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1080 if (IS_ERR(em)) {
1081 ret = PTR_ERR(em);
ace68bac 1082 goto out_reserve;
090a127a 1083 }
6f9994db 1084 free_extent_map(em);
e6dcd2dc 1085
6e26c442
NB
1086 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087 ram_size, cur_alloc_size, 0);
ace68bac 1088 if (ret)
d9f85963 1089 goto out_drop_extent_cache;
c8b97818 1090
17d217fe
YZ
1091 if (root->root_key.objectid ==
1092 BTRFS_DATA_RELOC_TREE_OBJECTID) {
6e26c442 1093 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1094 cur_alloc_size);
4dbd80fb
QW
1095 /*
1096 * Only drop cache here, and process as normal.
1097 *
1098 * We must not allow extent_clear_unlock_delalloc()
1099 * at out_unlock label to free meta of this ordered
1100 * extent, as its meta should be freed by
1101 * btrfs_finish_ordered_io().
1102 *
1103 * So we must continue until @start is increased to
1104 * skip current ordered extent.
1105 */
00361589 1106 if (ret)
6e26c442 1107 btrfs_drop_extent_cache(inode, start,
4dbd80fb 1108 start + ram_size - 1, 0);
17d217fe
YZ
1109 }
1110
0b246afa 1111 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1112
c8b97818
CM
1113 /* we're not doing compressed IO, don't unlock the first
1114 * page (which the caller expects to stay locked), don't
1115 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1116 *
1117 * Do set the Private2 bit so we know this page was properly
1118 * setup for writepage
c8b97818 1119 */
a315e68f
FM
1120 page_ops = unlock ? PAGE_UNLOCK : 0;
1121 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1122
6e26c442 1123 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1124 locked_page,
c2790a2e 1125 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1126 page_ops);
3752d22f
AJ
1127 if (num_bytes < cur_alloc_size)
1128 num_bytes = 0;
4dbd80fb 1129 else
3752d22f 1130 num_bytes -= cur_alloc_size;
c59f8951
CM
1131 alloc_hint = ins.objectid + ins.offset;
1132 start += cur_alloc_size;
a315e68f 1133 extent_reserved = false;
4dbd80fb
QW
1134
1135 /*
1136 * btrfs_reloc_clone_csums() error, since start is increased
1137 * extent_clear_unlock_delalloc() at out_unlock label won't
1138 * free metadata of current ordered extent, we're OK to exit.
1139 */
1140 if (ret)
1141 goto out_unlock;
b888db2b 1142 }
79787eaa 1143out:
be20aa9d 1144 return ret;
b7d5b0a8 1145
d9f85963 1146out_drop_extent_cache:
6e26c442 1147 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1148out_reserve:
0b246afa 1149 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1150 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1151out_unlock:
a7e3b975
FM
1152 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1154 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155 PAGE_END_WRITEBACK;
1156 /*
1157 * If we reserved an extent for our delalloc range (or a subrange) and
1158 * failed to create the respective ordered extent, then it means that
1159 * when we reserved the extent we decremented the extent's size from
1160 * the data space_info's bytes_may_use counter and incremented the
1161 * space_info's bytes_reserved counter by the same amount. We must make
1162 * sure extent_clear_unlock_delalloc() does not try to decrement again
1163 * the data space_info's bytes_may_use counter, therefore we do not pass
1164 * it the flag EXTENT_CLEAR_DATA_RESV.
1165 */
1166 if (extent_reserved) {
6e26c442 1167 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1168 start + cur_alloc_size - 1,
a315e68f
FM
1169 locked_page,
1170 clear_bits,
1171 page_ops);
1172 start += cur_alloc_size;
1173 if (start >= end)
1174 goto out;
1175 }
6e26c442 1176 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1177 clear_bits | EXTENT_CLEAR_DATA_RESV,
1178 page_ops);
79787eaa 1179 goto out;
771ed689 1180}
c8b97818 1181
771ed689
CM
1182/*
1183 * work queue call back to started compression on a file and pages
1184 */
1185static noinline void async_cow_start(struct btrfs_work *work)
1186{
b5326271 1187 struct async_chunk *async_chunk;
ac3e9933 1188 int compressed_extents;
771ed689 1189
b5326271 1190 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1191
ac3e9933
NB
1192 compressed_extents = compress_file_range(async_chunk);
1193 if (compressed_extents == 0) {
b5326271
NB
1194 btrfs_add_delayed_iput(async_chunk->inode);
1195 async_chunk->inode = NULL;
8180ef88 1196 }
771ed689
CM
1197}
1198
1199/*
1200 * work queue call back to submit previously compressed pages
1201 */
1202static noinline void async_cow_submit(struct btrfs_work *work)
1203{
c5a68aec
NB
1204 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205 work);
1206 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1207 unsigned long nr_pages;
1208
b5326271 1209 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1210 PAGE_SHIFT;
771ed689 1211
093258e6 1212 /* atomic_sub_return implies a barrier */
0b246afa 1213 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1214 5 * SZ_1M)
1215 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1216
4546d178 1217 /*
b5326271 1218 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1219 * in which case we don't have anything to submit, yet we need to
1220 * always adjust ->async_delalloc_pages as its paired with the init
1221 * happening in cow_file_range_async
1222 */
b5326271
NB
1223 if (async_chunk->inode)
1224 submit_compressed_extents(async_chunk);
771ed689 1225}
c8b97818 1226
771ed689
CM
1227static noinline void async_cow_free(struct btrfs_work *work)
1228{
b5326271 1229 struct async_chunk *async_chunk;
97db1204 1230
b5326271
NB
1231 async_chunk = container_of(work, struct async_chunk, work);
1232 if (async_chunk->inode)
1233 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1234 if (async_chunk->blkcg_css)
1235 css_put(async_chunk->blkcg_css);
97db1204
NB
1236 /*
1237 * Since the pointer to 'pending' is at the beginning of the array of
b5326271 1238 * async_chunk's, freeing it ensures the whole array has been freed.
97db1204 1239 */
b5326271 1240 if (atomic_dec_and_test(async_chunk->pending))
b1c16ac9 1241 kvfree(async_chunk->pending);
771ed689
CM
1242}
1243
751b6431 1244static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1245 struct writeback_control *wbc,
1246 struct page *locked_page,
771ed689 1247 u64 start, u64 end, int *page_started,
fac07d2b 1248 unsigned long *nr_written)
771ed689 1249{
751b6431 1250 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1251 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1252 struct async_cow *ctx;
1253 struct async_chunk *async_chunk;
771ed689
CM
1254 unsigned long nr_pages;
1255 u64 cur_end;
97db1204
NB
1256 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257 int i;
1258 bool should_compress;
b1c16ac9 1259 unsigned nofs_flag;
fac07d2b 1260 const unsigned int write_flags = wbc_to_write_flags(wbc);
771ed689 1261
751b6431 1262 unlock_extent(&inode->io_tree, start, end);
97db1204 1263
751b6431 1264 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1265 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266 num_chunks = 1;
1267 should_compress = false;
1268 } else {
1269 should_compress = true;
1270 }
1271
b1c16ac9
NB
1272 nofs_flag = memalloc_nofs_save();
1273 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274 memalloc_nofs_restore(nofs_flag);
1275
97db1204
NB
1276 if (!ctx) {
1277 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279 EXTENT_DO_ACCOUNTING;
1280 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282 PAGE_SET_ERROR;
1283
751b6431
NB
1284 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285 clear_bits, page_ops);
97db1204
NB
1286 return -ENOMEM;
1287 }
1288
1289 async_chunk = ctx->chunks;
1290 atomic_set(&ctx->num_chunks, num_chunks);
1291
1292 for (i = 0; i < num_chunks; i++) {
1293 if (should_compress)
1294 cur_end = min(end, start + SZ_512K - 1);
1295 else
1296 cur_end = end;
771ed689 1297
bd4691a0
NB
1298 /*
1299 * igrab is called higher up in the call chain, take only the
1300 * lightweight reference for the callback lifetime
1301 */
751b6431 1302 ihold(&inode->vfs_inode);
97db1204 1303 async_chunk[i].pending = &ctx->num_chunks;
751b6431 1304 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1305 async_chunk[i].start = start;
1306 async_chunk[i].end = cur_end;
97db1204
NB
1307 async_chunk[i].write_flags = write_flags;
1308 INIT_LIST_HEAD(&async_chunk[i].extents);
1309
1d53c9e6
CM
1310 /*
1311 * The locked_page comes all the way from writepage and its
1312 * the original page we were actually given. As we spread
1313 * this large delalloc region across multiple async_chunk
1314 * structs, only the first struct needs a pointer to locked_page
1315 *
1316 * This way we don't need racey decisions about who is supposed
1317 * to unlock it.
1318 */
1319 if (locked_page) {
ec39f769
CM
1320 /*
1321 * Depending on the compressibility, the pages might or
1322 * might not go through async. We want all of them to
1323 * be accounted against wbc once. Let's do it here
1324 * before the paths diverge. wbc accounting is used
1325 * only for foreign writeback detection and doesn't
1326 * need full accuracy. Just account the whole thing
1327 * against the first page.
1328 */
1329 wbc_account_cgroup_owner(wbc, locked_page,
1330 cur_end - start);
1d53c9e6
CM
1331 async_chunk[i].locked_page = locked_page;
1332 locked_page = NULL;
1333 } else {
1334 async_chunk[i].locked_page = NULL;
1335 }
1336
ec39f769
CM
1337 if (blkcg_css != blkcg_root_css) {
1338 css_get(blkcg_css);
1339 async_chunk[i].blkcg_css = blkcg_css;
1340 } else {
1341 async_chunk[i].blkcg_css = NULL;
1342 }
1343
a0cac0ec
OS
1344 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345 async_cow_submit, async_cow_free);
771ed689 1346
97db1204 1347 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1348 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1349
97db1204 1350 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1351
771ed689
CM
1352 *nr_written += nr_pages;
1353 start = cur_end + 1;
1354 }
1355 *page_started = 1;
1356 return 0;
be20aa9d
CM
1357}
1358
2ff7e61e 1359static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1360 u64 bytenr, u64 num_bytes)
1361{
1362 int ret;
1363 struct btrfs_ordered_sum *sums;
1364 LIST_HEAD(list);
1365
0b246afa 1366 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1367 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1368 if (ret == 0 && list_empty(&list))
1369 return 0;
1370
1371 while (!list_empty(&list)) {
1372 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373 list_del(&sums->list);
1374 kfree(sums);
1375 }
58113753
LB
1376 if (ret < 0)
1377 return ret;
17d217fe
YZ
1378 return 1;
1379}
1380
8ba96f3d 1381static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1382 const u64 start, const u64 end,
1383 int *page_started, unsigned long *nr_written)
1384{
8ba96f3d
NB
1385 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386 const bool is_reloc_ino = (inode->root->root_key.objectid ==
6bd335b4 1387 BTRFS_DATA_RELOC_TREE_OBJECTID);
2166e5ed 1388 const u64 range_bytes = end + 1 - start;
8ba96f3d 1389 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1390 u64 range_start = start;
1391 u64 count;
1392
1393 /*
1394 * If EXTENT_NORESERVE is set it means that when the buffered write was
1395 * made we had not enough available data space and therefore we did not
1396 * reserve data space for it, since we though we could do NOCOW for the
1397 * respective file range (either there is prealloc extent or the inode
1398 * has the NOCOW bit set).
1399 *
1400 * However when we need to fallback to COW mode (because for example the
1401 * block group for the corresponding extent was turned to RO mode by a
1402 * scrub or relocation) we need to do the following:
1403 *
1404 * 1) We increment the bytes_may_use counter of the data space info.
1405 * If COW succeeds, it allocates a new data extent and after doing
1406 * that it decrements the space info's bytes_may_use counter and
1407 * increments its bytes_reserved counter by the same amount (we do
1408 * this at btrfs_add_reserved_bytes()). So we need to increment the
1409 * bytes_may_use counter to compensate (when space is reserved at
1410 * buffered write time, the bytes_may_use counter is incremented);
1411 *
1412 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413 * that if the COW path fails for any reason, it decrements (through
1414 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415 * data space info, which we incremented in the step above.
2166e5ed
FM
1416 *
1417 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1418 * space cache inode or an inode of the data relocation tree, we must
1419 * also increment bytes_may_use of the data space_info for the same
1420 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1421 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1422 * group that contains that extent to RO mode and therefore force COW
1423 * when starting writeback.
467dc47e 1424 */
2166e5ed 1425 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1426 EXTENT_NORESERVE, 0);
6bd335b4
FM
1427 if (count > 0 || is_space_ino || is_reloc_ino) {
1428 u64 bytes = count;
8ba96f3d 1429 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1430 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431
6bd335b4
FM
1432 if (is_space_ino || is_reloc_ino)
1433 bytes = range_bytes;
1434
467dc47e 1435 spin_lock(&sinfo->lock);
2166e5ed 1436 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1437 spin_unlock(&sinfo->lock);
1438
2166e5ed
FM
1439 if (count > 0)
1440 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441 0, 0, NULL);
467dc47e
FM
1442 }
1443
8ba96f3d
NB
1444 return cow_file_range(inode, locked_page, start, end, page_started,
1445 nr_written, 1);
467dc47e
FM
1446}
1447
d352ac68
CM
1448/*
1449 * when nowcow writeback call back. This checks for snapshots or COW copies
1450 * of the extents that exist in the file, and COWs the file as required.
1451 *
1452 * If no cow copies or snapshots exist, we write directly to the existing
1453 * blocks on disk
1454 */
968322c8 1455static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1456 struct page *locked_page,
3e024846
NB
1457 const u64 start, const u64 end,
1458 int *page_started, int force,
1459 unsigned long *nr_written)
be20aa9d 1460{
968322c8
NB
1461 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462 struct btrfs_root *root = inode->root;
be20aa9d 1463 struct btrfs_path *path;
3e024846
NB
1464 u64 cow_start = (u64)-1;
1465 u64 cur_offset = start;
8ecebf4d 1466 int ret;
3e024846 1467 bool check_prev = true;
968322c8
NB
1468 const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469 u64 ino = btrfs_ino(inode);
762bf098
NB
1470 bool nocow = false;
1471 u64 disk_bytenr = 0;
be20aa9d
CM
1472
1473 path = btrfs_alloc_path();
17ca04af 1474 if (!path) {
968322c8 1475 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1476 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1477 EXTENT_DO_ACCOUNTING |
1478 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1479 PAGE_CLEAR_DIRTY |
1480 PAGE_SET_WRITEBACK |
1481 PAGE_END_WRITEBACK);
d8926bb3 1482 return -ENOMEM;
17ca04af 1483 }
82d5902d 1484
80ff3856 1485 while (1) {
3e024846
NB
1486 struct btrfs_key found_key;
1487 struct btrfs_file_extent_item *fi;
1488 struct extent_buffer *leaf;
1489 u64 extent_end;
1490 u64 extent_offset;
3e024846
NB
1491 u64 num_bytes = 0;
1492 u64 disk_num_bytes;
3e024846
NB
1493 u64 ram_bytes;
1494 int extent_type;
762bf098
NB
1495
1496 nocow = false;
3e024846 1497
e4c3b2dc 1498 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1499 cur_offset, 0);
d788a349 1500 if (ret < 0)
79787eaa 1501 goto error;
a6bd9cd1
NB
1502
1503 /*
1504 * If there is no extent for our range when doing the initial
1505 * search, then go back to the previous slot as it will be the
1506 * one containing the search offset
1507 */
80ff3856
YZ
1508 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509 leaf = path->nodes[0];
1510 btrfs_item_key_to_cpu(leaf, &found_key,
1511 path->slots[0] - 1);
33345d01 1512 if (found_key.objectid == ino &&
80ff3856
YZ
1513 found_key.type == BTRFS_EXTENT_DATA_KEY)
1514 path->slots[0]--;
1515 }
3e024846 1516 check_prev = false;
80ff3856 1517next_slot:
a6bd9cd1 1518 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1519 leaf = path->nodes[0];
1520 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521 ret = btrfs_next_leaf(root, path);
e8916699
LB
1522 if (ret < 0) {
1523 if (cow_start != (u64)-1)
1524 cur_offset = cow_start;
79787eaa 1525 goto error;
e8916699 1526 }
80ff3856
YZ
1527 if (ret > 0)
1528 break;
1529 leaf = path->nodes[0];
1530 }
be20aa9d 1531
80ff3856
YZ
1532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533
a6bd9cd1 1534 /* Didn't find anything for our INO */
1d512cb7
FM
1535 if (found_key.objectid > ino)
1536 break;
a6bd9cd1
NB
1537 /*
1538 * Keep searching until we find an EXTENT_ITEM or there are no
1539 * more extents for this inode
1540 */
1d512cb7
FM
1541 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543 path->slots[0]++;
1544 goto next_slot;
1545 }
a6bd9cd1
NB
1546
1547 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 1548 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1549 found_key.offset > end)
1550 break;
1551
a6bd9cd1
NB
1552 /*
1553 * If the found extent starts after requested offset, then
1554 * adjust extent_end to be right before this extent begins
1555 */
80ff3856
YZ
1556 if (found_key.offset > cur_offset) {
1557 extent_end = found_key.offset;
e9061e21 1558 extent_type = 0;
80ff3856
YZ
1559 goto out_check;
1560 }
1561
a6bd9cd1
NB
1562 /*
1563 * Found extent which begins before our range and potentially
1564 * intersect it
1565 */
80ff3856
YZ
1566 fi = btrfs_item_ptr(leaf, path->slots[0],
1567 struct btrfs_file_extent_item);
1568 extent_type = btrfs_file_extent_type(leaf, fi);
1569
cc95bef6 1570 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1571 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1573 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1574 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1575 extent_end = found_key.offset +
1576 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1577 disk_num_bytes =
1578 btrfs_file_extent_disk_num_bytes(leaf, fi);
a6bd9cd1 1579 /*
de7999af
FM
1580 * If the extent we got ends before our current offset,
1581 * skip to the next extent.
a6bd9cd1 1582 */
de7999af 1583 if (extent_end <= cur_offset) {
80ff3856
YZ
1584 path->slots[0]++;
1585 goto next_slot;
1586 }
a6bd9cd1 1587 /* Skip holes */
17d217fe
YZ
1588 if (disk_bytenr == 0)
1589 goto out_check;
a6bd9cd1 1590 /* Skip compressed/encrypted/encoded extents */
80ff3856
YZ
1591 if (btrfs_file_extent_compression(leaf, fi) ||
1592 btrfs_file_extent_encryption(leaf, fi) ||
1593 btrfs_file_extent_other_encoding(leaf, fi))
1594 goto out_check;
78d4295b 1595 /*
a6bd9cd1
NB
1596 * If extent is created before the last volume's snapshot
1597 * this implies the extent is shared, hence we can't do
1598 * nocow. This is the same check as in
1599 * btrfs_cross_ref_exist but without calling
1600 * btrfs_search_slot.
78d4295b 1601 */
3e024846 1602 if (!freespace_inode &&
27a7ff55 1603 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1604 btrfs_root_last_snapshot(&root->root_item))
1605 goto out_check;
d899e052
YZ
1606 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607 goto out_check;
a6bd9cd1 1608 /* If extent is RO, we must COW it */
2ff7e61e 1609 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1610 goto out_check;
58113753
LB
1611 ret = btrfs_cross_ref_exist(root, ino,
1612 found_key.offset -
a84d5d42 1613 extent_offset, disk_bytenr, false);
58113753
LB
1614 if (ret) {
1615 /*
1616 * ret could be -EIO if the above fails to read
1617 * metadata.
1618 */
1619 if (ret < 0) {
1620 if (cow_start != (u64)-1)
1621 cur_offset = cow_start;
1622 goto error;
1623 }
1624
3e024846 1625 WARN_ON_ONCE(freespace_inode);
17d217fe 1626 goto out_check;
58113753 1627 }
5d4f98a2 1628 disk_bytenr += extent_offset;
17d217fe
YZ
1629 disk_bytenr += cur_offset - found_key.offset;
1630 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3 1631 /*
a6bd9cd1
NB
1632 * If there are pending snapshots for this root, we
1633 * fall into common COW way
e9894fd3 1634 */
3e024846 1635 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
8ecebf4d 1636 goto out_check;
17d217fe
YZ
1637 /*
1638 * force cow if csum exists in the range.
1639 * this ensure that csum for a given extent are
1640 * either valid or do not exist.
1641 */
58113753
LB
1642 ret = csum_exist_in_range(fs_info, disk_bytenr,
1643 num_bytes);
1644 if (ret) {
58113753
LB
1645 /*
1646 * ret could be -EIO if the above fails to read
1647 * metadata.
1648 */
1649 if (ret < 0) {
1650 if (cow_start != (u64)-1)
1651 cur_offset = cow_start;
1652 goto error;
1653 }
3e024846 1654 WARN_ON_ONCE(freespace_inode);
17d217fe 1655 goto out_check;
91e1f56a 1656 }
8ecebf4d 1657 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1658 goto out_check;
3e024846 1659 nocow = true;
80ff3856 1660 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e8e21007
NB
1661 extent_end = found_key.offset + ram_bytes;
1662 extent_end = ALIGN(extent_end, fs_info->sectorsize);
922f0518
NB
1663 /* Skip extents outside of our requested range */
1664 if (extent_end <= start) {
1665 path->slots[0]++;
1666 goto next_slot;
1667 }
80ff3856 1668 } else {
e8e21007 1669 /* If this triggers then we have a memory corruption */
290342f6 1670 BUG();
80ff3856
YZ
1671 }
1672out_check:
a6bd9cd1
NB
1673 /*
1674 * If nocow is false then record the beginning of the range
1675 * that needs to be COWed
1676 */
80ff3856
YZ
1677 if (!nocow) {
1678 if (cow_start == (u64)-1)
1679 cow_start = cur_offset;
1680 cur_offset = extent_end;
1681 if (cur_offset > end)
1682 break;
1683 path->slots[0]++;
1684 goto next_slot;
7ea394f1
YZ
1685 }
1686
b3b4aa74 1687 btrfs_release_path(path);
a6bd9cd1
NB
1688
1689 /*
1690 * COW range from cow_start to found_key.offset - 1. As the key
1691 * will contain the beginning of the first extent that can be
1692 * NOCOW, following one which needs to be COW'ed
1693 */
80ff3856 1694 if (cow_start != (u64)-1) {
968322c8 1695 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 1696 cow_start, found_key.offset - 1,
467dc47e 1697 page_started, nr_written);
230ed397 1698 if (ret)
79787eaa 1699 goto error;
80ff3856 1700 cow_start = (u64)-1;
7ea394f1 1701 }
80ff3856 1702
d899e052 1703 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db 1704 u64 orig_start = found_key.offset - extent_offset;
3e024846 1705 struct extent_map *em;
6f9994db 1706
968322c8 1707 em = create_io_em(inode, cur_offset, num_bytes,
6f9994db
LB
1708 orig_start,
1709 disk_bytenr, /* block_start */
1710 num_bytes, /* block_len */
1711 disk_num_bytes, /* orig_block_len */
1712 ram_bytes, BTRFS_COMPRESS_NONE,
1713 BTRFS_ORDERED_PREALLOC);
1714 if (IS_ERR(em)) {
6f9994db
LB
1715 ret = PTR_ERR(em);
1716 goto error;
d899e052 1717 }
6f9994db 1718 free_extent_map(em);
968322c8 1719 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1720 disk_bytenr, num_bytes,
1721 num_bytes,
1722 BTRFS_ORDERED_PREALLOC);
762bf098 1723 if (ret) {
968322c8 1724 btrfs_drop_extent_cache(inode, cur_offset,
762bf098
NB
1725 cur_offset + num_bytes - 1,
1726 0);
1727 goto error;
1728 }
d899e052 1729 } else {
968322c8 1730 ret = btrfs_add_ordered_extent(inode, cur_offset,
bb55f626
NB
1731 disk_bytenr, num_bytes,
1732 num_bytes,
1733 BTRFS_ORDERED_NOCOW);
762bf098
NB
1734 if (ret)
1735 goto error;
d899e052 1736 }
80ff3856 1737
f78c436c 1738 if (nocow)
0b246afa 1739 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
762bf098 1740 nocow = false;
771ed689 1741
efa56464 1742 if (root->root_key.objectid ==
4dbd80fb
QW
1743 BTRFS_DATA_RELOC_TREE_OBJECTID)
1744 /*
1745 * Error handled later, as we must prevent
1746 * extent_clear_unlock_delalloc() in error handler
1747 * from freeing metadata of created ordered extent.
1748 */
968322c8 1749 ret = btrfs_reloc_clone_csums(inode, cur_offset,
efa56464 1750 num_bytes);
efa56464 1751
968322c8 1752 extent_clear_unlock_delalloc(inode, cur_offset,
74e9194a 1753 cur_offset + num_bytes - 1,
c2790a2e 1754 locked_page, EXTENT_LOCKED |
18513091
WX
1755 EXTENT_DELALLOC |
1756 EXTENT_CLEAR_DATA_RESV,
1757 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758
80ff3856 1759 cur_offset = extent_end;
4dbd80fb
QW
1760
1761 /*
1762 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763 * handler, as metadata for created ordered extent will only
1764 * be freed by btrfs_finish_ordered_io().
1765 */
1766 if (ret)
1767 goto error;
80ff3856
YZ
1768 if (cur_offset > end)
1769 break;
be20aa9d 1770 }
b3b4aa74 1771 btrfs_release_path(path);
80ff3856 1772
506481b2 1773 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1774 cow_start = cur_offset;
17ca04af 1775
80ff3856 1776 if (cow_start != (u64)-1) {
506481b2 1777 cur_offset = end;
968322c8
NB
1778 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779 page_started, nr_written);
d788a349 1780 if (ret)
79787eaa 1781 goto error;
80ff3856
YZ
1782 }
1783
79787eaa 1784error:
762bf098
NB
1785 if (nocow)
1786 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787
17ca04af 1788 if (ret && cur_offset < end)
968322c8 1789 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 1790 locked_page, EXTENT_LOCKED |
151a41bc
JB
1791 EXTENT_DELALLOC | EXTENT_DEFRAG |
1792 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1794 PAGE_SET_WRITEBACK |
1795 PAGE_END_WRITEBACK);
7ea394f1 1796 btrfs_free_path(path);
79787eaa 1797 return ret;
be20aa9d
CM
1798}
1799
0c494225 1800static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93
WS
1801{
1802
0c494225
NB
1803 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804 !(inode->flags & BTRFS_INODE_PREALLOC))
47059d93
WS
1805 return 0;
1806
1807 /*
1808 * @defrag_bytes is a hint value, no spinlock held here,
1809 * if is not zero, it means the file is defragging.
1810 * Force cow if given extent needs to be defragged.
1811 */
0c494225
NB
1812 if (inode->defrag_bytes &&
1813 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
47059d93
WS
1814 return 1;
1815
1816 return 0;
1817}
1818
d352ac68 1819/*
5eaad97a
NB
1820 * Function to process delayed allocation (create CoW) for ranges which are
1821 * being touched for the first time.
d352ac68 1822 */
98456b9c 1823int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
1824 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825 struct writeback_control *wbc)
be20aa9d 1826{
be20aa9d 1827 int ret;
98456b9c 1828 int force_cow = need_force_cow(inode, start, end);
a2135011 1829
98456b9c
NB
1830 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1832 page_started, 1, nr_written);
98456b9c
NB
1833 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1835 page_started, 0, nr_written);
98456b9c
NB
1836 } else if (!inode_can_compress(inode) ||
1837 !inode_need_compress(inode, start, end)) {
1838 ret = cow_file_range(inode, locked_page, start, end,
1839 page_started, nr_written, 1);
7ddf5a42 1840 } else {
98456b9c
NB
1841 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 1843 page_started, nr_written);
7ddf5a42 1844 }
52427260 1845 if (ret)
98456b9c 1846 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 1847 end - start + 1);
b888db2b
CM
1848 return ret;
1849}
1850
abbb55f4
NB
1851void btrfs_split_delalloc_extent(struct inode *inode,
1852 struct extent_state *orig, u64 split)
9ed74f2d 1853{
dcab6a3b
JB
1854 u64 size;
1855
0ca1f7ce 1856 /* not delalloc, ignore it */
9ed74f2d 1857 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1858 return;
9ed74f2d 1859
dcab6a3b
JB
1860 size = orig->end - orig->start + 1;
1861 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1862 u32 num_extents;
dcab6a3b
JB
1863 u64 new_size;
1864
1865 /*
5c848198 1866 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1867 * applies here, just in reverse.
dcab6a3b
JB
1868 */
1869 new_size = orig->end - split + 1;
823bb20a 1870 num_extents = count_max_extents(new_size);
ba117213 1871 new_size = split - orig->start;
823bb20a
DS
1872 num_extents += count_max_extents(new_size);
1873 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1874 return;
1875 }
1876
9e0baf60 1877 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1878 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1879 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1880}
1881
1882/*
5c848198
NB
1883 * Handle merged delayed allocation extents so we can keep track of new extents
1884 * that are just merged onto old extents, such as when we are doing sequential
1885 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1886 */
5c848198
NB
1887void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888 struct extent_state *other)
9ed74f2d 1889{
dcab6a3b 1890 u64 new_size, old_size;
823bb20a 1891 u32 num_extents;
dcab6a3b 1892
9ed74f2d
JB
1893 /* not delalloc, ignore it */
1894 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1895 return;
9ed74f2d 1896
8461a3de
JB
1897 if (new->start > other->start)
1898 new_size = new->end - other->start + 1;
1899 else
1900 new_size = other->end - new->start + 1;
dcab6a3b
JB
1901
1902 /* we're not bigger than the max, unreserve the space and go */
1903 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1905 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1906 spin_unlock(&BTRFS_I(inode)->lock);
1907 return;
1908 }
1909
1910 /*
ba117213
JB
1911 * We have to add up either side to figure out how many extents were
1912 * accounted for before we merged into one big extent. If the number of
1913 * extents we accounted for is <= the amount we need for the new range
1914 * then we can return, otherwise drop. Think of it like this
1915 *
1916 * [ 4k][MAX_SIZE]
1917 *
1918 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919 * need 2 outstanding extents, on one side we have 1 and the other side
1920 * we have 1 so they are == and we can return. But in this case
1921 *
1922 * [MAX_SIZE+4k][MAX_SIZE+4k]
1923 *
1924 * Each range on their own accounts for 2 extents, but merged together
1925 * they are only 3 extents worth of accounting, so we need to drop in
1926 * this case.
dcab6a3b 1927 */
ba117213 1928 old_size = other->end - other->start + 1;
823bb20a 1929 num_extents = count_max_extents(old_size);
ba117213 1930 old_size = new->end - new->start + 1;
823bb20a
DS
1931 num_extents += count_max_extents(old_size);
1932 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1933 return;
1934
9e0baf60 1935 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1936 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1937 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1938}
1939
eb73c1b7
MX
1940static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941 struct inode *inode)
1942{
0b246afa
JM
1943 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944
eb73c1b7
MX
1945 spin_lock(&root->delalloc_lock);
1946 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948 &root->delalloc_inodes);
1949 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950 &BTRFS_I(inode)->runtime_flags);
1951 root->nr_delalloc_inodes++;
1952 if (root->nr_delalloc_inodes == 1) {
0b246afa 1953 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1954 BUG_ON(!list_empty(&root->delalloc_root));
1955 list_add_tail(&root->delalloc_root,
0b246afa
JM
1956 &fs_info->delalloc_roots);
1957 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1958 }
1959 }
1960 spin_unlock(&root->delalloc_lock);
1961}
1962
2b877331
NB
1963
1964void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965 struct btrfs_inode *inode)
eb73c1b7 1966{
3ffbd68c 1967 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1968
9e3e97f4
NB
1969 if (!list_empty(&inode->delalloc_inodes)) {
1970 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1971 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1972 &inode->runtime_flags);
eb73c1b7
MX
1973 root->nr_delalloc_inodes--;
1974 if (!root->nr_delalloc_inodes) {
7c8a0d36 1975 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1976 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1977 BUG_ON(list_empty(&root->delalloc_root));
1978 list_del_init(&root->delalloc_root);
0b246afa 1979 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1980 }
1981 }
2b877331
NB
1982}
1983
1984static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985 struct btrfs_inode *inode)
1986{
1987 spin_lock(&root->delalloc_lock);
1988 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1989 spin_unlock(&root->delalloc_lock);
1990}
1991
d352ac68 1992/*
e06a1fc9
NB
1993 * Properly track delayed allocation bytes in the inode and to maintain the
1994 * list of inodes that have pending delalloc work to be done.
d352ac68 1995 */
e06a1fc9
NB
1996void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997 unsigned *bits)
291d673e 1998{
0b246afa
JM
1999 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000
47059d93
WS
2001 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002 WARN_ON(1);
75eff68e
CM
2003 /*
2004 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2005 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2006 * bit, which is only set or cleared with irqs on
2007 */
0ca1f7ce 2008 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 2009 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2010 u64 len = state->end + 1 - state->start;
8b62f87b 2011 u32 num_extents = count_max_extents(len);
70ddc553 2012 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2013
8b62f87b
JB
2014 spin_lock(&BTRFS_I(inode)->lock);
2015 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2017
6a3891c5 2018 /* For sanity tests */
0b246afa 2019 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2020 return;
2021
104b4e51
NB
2022 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023 fs_info->delalloc_batch);
df0af1a5 2024 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2025 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
2026 if (*bits & EXTENT_DEFRAG)
2027 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2028 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2029 &BTRFS_I(inode)->runtime_flags))
2030 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2031 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2032 }
a7e3b975
FM
2033
2034 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035 (*bits & EXTENT_DELALLOC_NEW)) {
2036 spin_lock(&BTRFS_I(inode)->lock);
2037 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038 state->start;
2039 spin_unlock(&BTRFS_I(inode)->lock);
2040 }
291d673e
CM
2041}
2042
d352ac68 2043/*
a36bb5f9
NB
2044 * Once a range is no longer delalloc this function ensures that proper
2045 * accounting happens.
d352ac68 2046 */
a36bb5f9
NB
2047void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048 struct extent_state *state, unsigned *bits)
291d673e 2049{
a36bb5f9
NB
2050 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2052 u64 len = state->end + 1 - state->start;
823bb20a 2053 u32 num_extents = count_max_extents(len);
47059d93 2054
4a4b964f
FM
2055 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056 spin_lock(&inode->lock);
6fc0ef68 2057 inode->defrag_bytes -= len;
4a4b964f
FM
2058 spin_unlock(&inode->lock);
2059 }
47059d93 2060
75eff68e
CM
2061 /*
2062 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2063 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2064 * bit, which is only set or cleared with irqs on
2065 */
0ca1f7ce 2066 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 2067 struct btrfs_root *root = inode->root;
83eea1f1 2068 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2069
8b62f87b
JB
2070 spin_lock(&inode->lock);
2071 btrfs_mod_outstanding_extents(inode, -num_extents);
2072 spin_unlock(&inode->lock);
0ca1f7ce 2073
b6d08f06
JB
2074 /*
2075 * We don't reserve metadata space for space cache inodes so we
52042d8e 2076 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2077 * error.
2078 */
a315e68f 2079 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2080 root != fs_info->tree_root)
43b18595 2081 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2082
6a3891c5 2083 /* For sanity tests. */
0b246afa 2084 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2085 return;
2086
a315e68f
FM
2087 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088 do_list && !(state->state & EXTENT_NORESERVE) &&
2089 (*bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2090 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2091
104b4e51
NB
2092 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093 fs_info->delalloc_batch);
6fc0ef68
NB
2094 spin_lock(&inode->lock);
2095 inode->delalloc_bytes -= len;
2096 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2097 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2098 &inode->runtime_flags))
eb73c1b7 2099 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2100 spin_unlock(&inode->lock);
291d673e 2101 }
a7e3b975
FM
2102
2103 if ((state->state & EXTENT_DELALLOC_NEW) &&
2104 (*bits & EXTENT_DELALLOC_NEW)) {
2105 spin_lock(&inode->lock);
2106 ASSERT(inode->new_delalloc_bytes >= len);
2107 inode->new_delalloc_bytes -= len;
2108 spin_unlock(&inode->lock);
2109 }
291d673e
CM
2110}
2111
d352ac68 2112/*
da12fe54
NB
2113 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114 * in a chunk's stripe. This function ensures that bios do not span a
2115 * stripe/chunk
6f034ece 2116 *
da12fe54
NB
2117 * @page - The page we are about to add to the bio
2118 * @size - size we want to add to the bio
2119 * @bio - bio we want to ensure is smaller than a stripe
2120 * @bio_flags - flags of the bio
2121 *
2122 * return 1 if page cannot be added to the bio
2123 * return 0 if page can be added to the bio
6f034ece 2124 * return error otherwise
d352ac68 2125 */
da12fe54
NB
2126int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127 unsigned long bio_flags)
239b14b3 2128{
0b246afa
JM
2129 struct inode *inode = page->mapping->host;
2130 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 2131 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
2132 u64 length = 0;
2133 u64 map_length;
239b14b3 2134 int ret;
89b798ad 2135 struct btrfs_io_geometry geom;
239b14b3 2136
771ed689
CM
2137 if (bio_flags & EXTENT_BIO_COMPRESSED)
2138 return 0;
2139
4f024f37 2140 length = bio->bi_iter.bi_size;
239b14b3 2141 map_length = length;
89b798ad
NB
2142 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143 &geom);
6f034ece
LB
2144 if (ret < 0)
2145 return ret;
89b798ad
NB
2146
2147 if (geom.len < length + size)
239b14b3 2148 return 1;
3444a972 2149 return 0;
239b14b3
CM
2150}
2151
d352ac68
CM
2152/*
2153 * in order to insert checksums into the metadata in large chunks,
2154 * we wait until bio submission time. All the pages in the bio are
2155 * checksummed and sums are attached onto the ordered extent record.
2156 *
2157 * At IO completion time the cums attached on the ordered extent record
2158 * are inserted into the btree
2159 */
d0ee3934 2160static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 2161 u64 bio_offset)
065631f6 2162{
c6100a4b 2163 struct inode *inode = private_data;
e015640f 2164
c965d640 2165 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
4a69a410 2166}
e015640f 2167
d352ac68 2168/*
cad321ad 2169 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
2170 * on write, or reading the csums from the tree before a read.
2171 *
2172 * Rules about async/sync submit,
2173 * a) read: sync submit
2174 *
2175 * b) write without checksum: sync submit
2176 *
2177 * c) write with checksum:
2178 * c-1) if bio is issued by fsync: sync submit
2179 * (sync_writers != 0)
2180 *
2181 * c-2) if root is reloc root: sync submit
2182 * (only in case of buffered IO)
2183 *
2184 * c-3) otherwise: async submit
d352ac68 2185 */
a56b1c7b 2186static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
50489a57
NB
2187 int mirror_num,
2188 unsigned long bio_flags)
2189
44b8bd7e 2190{
0b246afa 2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 2192 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 2193 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 2194 blk_status_t ret = 0;
19b9bdb0 2195 int skip_sum;
b812ce28 2196 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 2197
6cbff00f 2198 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 2199
70ddc553 2200 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 2201 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 2202
37226b21 2203 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 2204 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 2205 if (ret)
61891923 2206 goto out;
5fd02043 2207
d20f7043 2208 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2209 ret = btrfs_submit_compressed_read(inode, bio,
2210 mirror_num,
2211 bio_flags);
2212 goto out;
c2db1073 2213 } else if (!skip_sum) {
db72e47f 2214 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
c2db1073 2215 if (ret)
61891923 2216 goto out;
c2db1073 2217 }
4d1b5fb4 2218 goto mapit;
b812ce28 2219 } else if (async && !skip_sum) {
17d217fe
YZ
2220 /* csum items have already been cloned */
2221 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2222 goto mapit;
19b9bdb0 2223 /* we're doing a write, do the async checksumming */
c6100a4b 2224 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
e7681167 2225 0, inode, btrfs_submit_bio_start);
61891923 2226 goto out;
b812ce28 2227 } else if (!skip_sum) {
bd242a08 2228 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
b812ce28
JB
2229 if (ret)
2230 goto out;
19b9bdb0
CM
2231 }
2232
0b86a832 2233mapit:
08635bae 2234 ret = btrfs_map_bio(fs_info, bio, mirror_num);
61891923
SB
2235
2236out:
4e4cbee9
CH
2237 if (ret) {
2238 bio->bi_status = ret;
4246a0b6
CH
2239 bio_endio(bio);
2240 }
61891923 2241 return ret;
065631f6 2242}
6885f308 2243
d352ac68
CM
2244/*
2245 * given a list of ordered sums record them in the inode. This happens
2246 * at IO completion time based on sums calculated at bio submission time.
2247 */
ba1da2f4 2248static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2249 struct inode *inode, struct list_head *list)
e6dcd2dc 2250{
e6dcd2dc 2251 struct btrfs_ordered_sum *sum;
ac01f26a 2252 int ret;
e6dcd2dc 2253
c6e30871 2254 list_for_each_entry(sum, list, list) {
7c2871a2 2255 trans->adding_csums = true;
ac01f26a 2256 ret = btrfs_csum_file_blocks(trans,
d20f7043 2257 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2258 trans->adding_csums = false;
ac01f26a
NB
2259 if (ret)
2260 return ret;
e6dcd2dc
CM
2261 }
2262 return 0;
2263}
2264
c2566f22 2265int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2266 unsigned int extra_bits,
330a5827 2267 struct extent_state **cached_state)
ea8c2819 2268{
fdb1e121 2269 WARN_ON(PAGE_ALIGNED(end));
c2566f22
NB
2270 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2271 cached_state);
ea8c2819
CM
2272}
2273
d352ac68 2274/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2275struct btrfs_writepage_fixup {
2276 struct page *page;
f4b1363c 2277 struct inode *inode;
247e743c
CM
2278 struct btrfs_work work;
2279};
2280
b2950863 2281static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2282{
2283 struct btrfs_writepage_fixup *fixup;
2284 struct btrfs_ordered_extent *ordered;
2ac55d41 2285 struct extent_state *cached_state = NULL;
364ecf36 2286 struct extent_changeset *data_reserved = NULL;
247e743c 2287 struct page *page;
65d87f79 2288 struct btrfs_inode *inode;
247e743c
CM
2289 u64 page_start;
2290 u64 page_end;
25f3c502 2291 int ret = 0;
f4b1363c 2292 bool free_delalloc_space = true;
247e743c
CM
2293
2294 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2295 page = fixup->page;
65d87f79 2296 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2297 page_start = page_offset(page);
2298 page_end = page_offset(page) + PAGE_SIZE - 1;
2299
2300 /*
2301 * This is similar to page_mkwrite, we need to reserve the space before
2302 * we take the page lock.
2303 */
65d87f79
NB
2304 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2305 PAGE_SIZE);
4a096752 2306again:
247e743c 2307 lock_page(page);
25f3c502
CM
2308
2309 /*
2310 * Before we queued this fixup, we took a reference on the page.
2311 * page->mapping may go NULL, but it shouldn't be moved to a different
2312 * address space.
2313 */
f4b1363c
JB
2314 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2315 /*
2316 * Unfortunately this is a little tricky, either
2317 *
2318 * 1) We got here and our page had already been dealt with and
2319 * we reserved our space, thus ret == 0, so we need to just
2320 * drop our space reservation and bail. This can happen the
2321 * first time we come into the fixup worker, or could happen
2322 * while waiting for the ordered extent.
2323 * 2) Our page was already dealt with, but we happened to get an
2324 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2325 * this case we obviously don't have anything to release, but
2326 * because the page was already dealt with we don't want to
2327 * mark the page with an error, so make sure we're resetting
2328 * ret to 0. This is why we have this check _before_ the ret
2329 * check, because we do not want to have a surprise ENOSPC
2330 * when the page was already properly dealt with.
2331 */
2332 if (!ret) {
65d87f79
NB
2333 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2334 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2335 page_start, PAGE_SIZE,
2336 true);
2337 }
2338 ret = 0;
247e743c 2339 goto out_page;
f4b1363c 2340 }
247e743c 2341
25f3c502 2342 /*
f4b1363c
JB
2343 * We can't mess with the page state unless it is locked, so now that
2344 * it is locked bail if we failed to make our space reservation.
25f3c502 2345 */
f4b1363c
JB
2346 if (ret)
2347 goto out_page;
247e743c 2348
65d87f79 2349 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2350
2351 /* already ordered? We're done */
8b62b72b 2352 if (PagePrivate2(page))
f4b1363c 2353 goto out_reserved;
4a096752 2354
65d87f79 2355 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2356 if (ordered) {
65d87f79
NB
2357 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2358 &cached_state);
4a096752 2359 unlock_page(page);
65d87f79 2360 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
87826df0 2361 btrfs_put_ordered_extent(ordered);
4a096752
CM
2362 goto again;
2363 }
247e743c 2364
65d87f79 2365 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2366 &cached_state);
25f3c502 2367 if (ret)
53687007 2368 goto out_reserved;
f3038ee3 2369
25f3c502
CM
2370 /*
2371 * Everything went as planned, we're now the owner of a dirty page with
2372 * delayed allocation bits set and space reserved for our COW
2373 * destination.
2374 *
2375 * The page was dirty when we started, nothing should have cleaned it.
2376 */
2377 BUG_ON(!PageDirty(page));
f4b1363c 2378 free_delalloc_space = false;
53687007 2379out_reserved:
65d87f79 2380 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2381 if (free_delalloc_space)
65d87f79
NB
2382 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2383 PAGE_SIZE, true);
2384 unlock_extent_cached(&inode->io_tree, page_start, page_end,
e43bbe5e 2385 &cached_state);
247e743c 2386out_page:
25f3c502
CM
2387 if (ret) {
2388 /*
2389 * We hit ENOSPC or other errors. Update the mapping and page
2390 * to reflect the errors and clean the page.
2391 */
2392 mapping_set_error(page->mapping, ret);
2393 end_extent_writepage(page, ret, page_start, page_end);
2394 clear_page_dirty_for_io(page);
2395 SetPageError(page);
2396 }
2397 ClearPageChecked(page);
247e743c 2398 unlock_page(page);
09cbfeaf 2399 put_page(page);
b897abec 2400 kfree(fixup);
364ecf36 2401 extent_changeset_free(data_reserved);
f4b1363c
JB
2402 /*
2403 * As a precaution, do a delayed iput in case it would be the last iput
2404 * that could need flushing space. Recursing back to fixup worker would
2405 * deadlock.
2406 */
65d87f79 2407 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
2408}
2409
2410/*
2411 * There are a few paths in the higher layers of the kernel that directly
2412 * set the page dirty bit without asking the filesystem if it is a
2413 * good idea. This causes problems because we want to make sure COW
2414 * properly happens and the data=ordered rules are followed.
2415 *
c8b97818 2416 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2417 * hasn't been properly setup for IO. We kick off an async process
2418 * to fix it up. The async helper will wait for ordered extents, set
2419 * the delalloc bit and make it safe to write the page.
2420 */
d75855b4 2421int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2422{
2423 struct inode *inode = page->mapping->host;
0b246afa 2424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2425 struct btrfs_writepage_fixup *fixup;
247e743c 2426
8b62b72b
CM
2427 /* this page is properly in the ordered list */
2428 if (TestClearPagePrivate2(page))
247e743c
CM
2429 return 0;
2430
25f3c502
CM
2431 /*
2432 * PageChecked is set below when we create a fixup worker for this page,
2433 * don't try to create another one if we're already PageChecked()
2434 *
2435 * The extent_io writepage code will redirty the page if we send back
2436 * EAGAIN.
2437 */
247e743c
CM
2438 if (PageChecked(page))
2439 return -EAGAIN;
2440
2441 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2442 if (!fixup)
2443 return -EAGAIN;
f421950f 2444
f4b1363c
JB
2445 /*
2446 * We are already holding a reference to this inode from
2447 * write_cache_pages. We need to hold it because the space reservation
2448 * takes place outside of the page lock, and we can't trust
2449 * page->mapping outside of the page lock.
2450 */
2451 ihold(inode);
247e743c 2452 SetPageChecked(page);
09cbfeaf 2453 get_page(page);
a0cac0ec 2454 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2455 fixup->page = page;
f4b1363c 2456 fixup->inode = inode;
0b246afa 2457 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
2458
2459 return -EAGAIN;
247e743c
CM
2460}
2461
d899e052 2462static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 2463 struct btrfs_inode *inode, u64 file_pos,
9729f10a
QW
2464 struct btrfs_file_extent_item *stack_fi,
2465 u64 qgroup_reserved)
d899e052 2466{
c553f94d 2467 struct btrfs_root *root = inode->root;
d899e052
YZ
2468 struct btrfs_path *path;
2469 struct extent_buffer *leaf;
2470 struct btrfs_key ins;
203f44c5
QW
2471 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2472 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2473 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2474 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
1acae57b 2475 int extent_inserted = 0;
d899e052
YZ
2476 int ret;
2477
2478 path = btrfs_alloc_path();
d8926bb3
MF
2479 if (!path)
2480 return -ENOMEM;
d899e052 2481
a1ed835e
CM
2482 /*
2483 * we may be replacing one extent in the tree with another.
2484 * The new extent is pinned in the extent map, and we don't want
2485 * to drop it from the cache until it is completely in the btree.
2486 *
2487 * So, tell btrfs_drop_extents to leave this extent in the cache.
2488 * the caller is expected to unpin it and allow it to be merged
2489 * with the others.
2490 */
c553f94d 2491 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1acae57b 2492 file_pos + num_bytes, NULL, 0,
203f44c5 2493 1, sizeof(*stack_fi), &extent_inserted);
79787eaa
JM
2494 if (ret)
2495 goto out;
d899e052 2496
1acae57b 2497 if (!extent_inserted) {
c553f94d 2498 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
2499 ins.offset = file_pos;
2500 ins.type = BTRFS_EXTENT_DATA_KEY;
2501
2502 path->leave_spinning = 1;
2503 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 2504 sizeof(*stack_fi));
1acae57b
FDBM
2505 if (ret)
2506 goto out;
2507 }
d899e052 2508 leaf = path->nodes[0];
203f44c5
QW
2509 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2510 write_extent_buffer(leaf, stack_fi,
2511 btrfs_item_ptr_offset(leaf, path->slots[0]),
2512 sizeof(struct btrfs_file_extent_item));
b9473439 2513
d899e052 2514 btrfs_mark_buffer_dirty(leaf);
ce195332 2515 btrfs_release_path(path);
d899e052 2516
c553f94d 2517 inode_add_bytes(&inode->vfs_inode, num_bytes);
d899e052
YZ
2518
2519 ins.objectid = disk_bytenr;
2520 ins.offset = disk_num_bytes;
2521 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2522
c553f94d 2523 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
2524 if (ret)
2525 goto out;
2526
c553f94d 2527 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
9729f10a 2528 file_pos, qgroup_reserved, &ins);
79787eaa 2529out:
d899e052 2530 btrfs_free_path(path);
b9473439 2531
79787eaa 2532 return ret;
d899e052
YZ
2533}
2534
2ff7e61e 2535static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2536 u64 start, u64 len)
2537{
32da5386 2538 struct btrfs_block_group *cache;
e570fd27 2539
0b246afa 2540 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2541 ASSERT(cache);
2542
2543 spin_lock(&cache->lock);
2544 cache->delalloc_bytes -= len;
2545 spin_unlock(&cache->lock);
2546
2547 btrfs_put_block_group(cache);
2548}
2549
203f44c5
QW
2550static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2551 struct inode *inode,
2552 struct btrfs_ordered_extent *oe)
2553{
2554 struct btrfs_file_extent_item stack_fi;
2555 u64 logical_len;
2556
2557 memset(&stack_fi, 0, sizeof(stack_fi));
2558 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2559 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2560 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2561 oe->disk_num_bytes);
2562 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2563 logical_len = oe->truncated_len;
2564 else
2565 logical_len = oe->num_bytes;
2566 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2567 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2568 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2569 /* Encryption and other encoding is reserved and all 0 */
2570
c553f94d 2571 return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
7dbeaad0 2572 &stack_fi, oe->qgroup_rsv);
203f44c5
QW
2573}
2574
2575/*
2576 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
2577 * an ordered extent if the range of bytes in the file it covers are
2578 * fully written.
2579 */
5fd02043 2580static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2581{
5fd02043 2582 struct inode *inode = ordered_extent->inode;
0b246afa 2583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2584 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2585 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2586 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2587 struct extent_state *cached_state = NULL;
bffe633e 2588 u64 start, end;
261507a0 2589 int compress_type = 0;
77cef2ec 2590 int ret = 0;
bffe633e 2591 u64 logical_len = ordered_extent->num_bytes;
8d510121 2592 bool freespace_inode;
77cef2ec 2593 bool truncated = false;
a7e3b975
FM
2594 bool range_locked = false;
2595 bool clear_new_delalloc_bytes = false;
49940bdd 2596 bool clear_reserved_extent = true;
313facc5 2597 unsigned int clear_bits;
a7e3b975 2598
bffe633e
OS
2599 start = ordered_extent->file_offset;
2600 end = start + ordered_extent->num_bytes - 1;
2601
a7e3b975
FM
2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2603 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2604 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2605 clear_new_delalloc_bytes = true;
e6dcd2dc 2606
8d510121 2607 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2608
5fd02043
JB
2609 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2610 ret = -EIO;
2611 goto out;
2612 }
2613
bffe633e 2614 btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
f612496b 2615
77cef2ec
JB
2616 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2617 truncated = true;
2618 logical_len = ordered_extent->truncated_len;
2619 /* Truncated the entire extent, don't bother adding */
2620 if (!logical_len)
2621 goto out;
2622 }
2623
c2167754 2624 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2625 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 2626
d923afe9 2627 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
2628 if (freespace_inode)
2629 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
2630 else
2631 trans = btrfs_join_transaction(root);
2632 if (IS_ERR(trans)) {
2633 ret = PTR_ERR(trans);
2634 trans = NULL;
2635 goto out;
c2167754 2636 }
69fe2d75 2637 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2638 ret = btrfs_update_inode_fallback(trans, root, inode);
2639 if (ret) /* -ENOMEM or corruption */
66642832 2640 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2641 goto out;
2642 }
e6dcd2dc 2643
a7e3b975 2644 range_locked = true;
bffe633e 2645 lock_extent_bits(io_tree, start, end, &cached_state);
e6dcd2dc 2646
8d510121
NB
2647 if (freespace_inode)
2648 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 2649 else
7a7eaa40 2650 trans = btrfs_join_transaction(root);
79787eaa
JM
2651 if (IS_ERR(trans)) {
2652 ret = PTR_ERR(trans);
2653 trans = NULL;
a7e3b975 2654 goto out;
79787eaa 2655 }
a79b7d4b 2656
69fe2d75 2657 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2658
c8b97818 2659 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2660 compress_type = ordered_extent->compress_type;
d899e052 2661 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2662 BUG_ON(compress_type);
7a6d7067 2663 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2664 ordered_extent->file_offset,
2665 ordered_extent->file_offset +
77cef2ec 2666 logical_len);
d899e052 2667 } else {
0b246afa 2668 BUG_ON(root == fs_info->tree_root);
203f44c5
QW
2669 ret = insert_ordered_extent_file_extent(trans, inode,
2670 ordered_extent);
49940bdd
JB
2671 if (!ret) {
2672 clear_reserved_extent = false;
2ff7e61e 2673 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
2674 ordered_extent->disk_bytenr,
2675 ordered_extent->disk_num_bytes);
49940bdd 2676 }
d899e052 2677 }
5dc562c5 2678 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
bffe633e
OS
2679 ordered_extent->file_offset,
2680 ordered_extent->num_bytes, trans->transid);
79787eaa 2681 if (ret < 0) {
66642832 2682 btrfs_abort_transaction(trans, ret);
a7e3b975 2683 goto out;
79787eaa 2684 }
2ac55d41 2685
ac01f26a
NB
2686 ret = add_pending_csums(trans, inode, &ordered_extent->list);
2687 if (ret) {
2688 btrfs_abort_transaction(trans, ret);
2689 goto out;
2690 }
e6dcd2dc 2691
d923afe9 2692 btrfs_inode_safe_disk_i_size_write(inode, 0);
6c760c07
JB
2693 ret = btrfs_update_inode_fallback(trans, root, inode);
2694 if (ret) { /* -ENOMEM or corruption */
66642832 2695 btrfs_abort_transaction(trans, ret);
a7e3b975 2696 goto out;
1ef30be1
JB
2697 }
2698 ret = 0;
c2167754 2699out:
313facc5
OS
2700 clear_bits = EXTENT_DEFRAG;
2701 if (range_locked)
2702 clear_bits |= EXTENT_LOCKED;
2703 if (clear_new_delalloc_bytes)
2704 clear_bits |= EXTENT_DELALLOC_NEW;
bffe633e
OS
2705 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2706 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
313facc5 2707 &cached_state);
a7e3b975 2708
a698d075 2709 if (trans)
3a45bb20 2710 btrfs_end_transaction(trans);
0cb59c99 2711
77cef2ec 2712 if (ret || truncated) {
bffe633e 2713 u64 unwritten_start = start;
77cef2ec
JB
2714
2715 if (truncated)
bffe633e
OS
2716 unwritten_start += logical_len;
2717 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec
JB
2718
2719 /* Drop the cache for the part of the extent we didn't write. */
bffe633e 2720 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
5fd02043 2721
0bec9ef5
JB
2722 /*
2723 * If the ordered extent had an IOERR or something else went
2724 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2725 * back to the allocator. We only free the extent in the
2726 * truncated case if we didn't write out the extent at all.
49940bdd
JB
2727 *
2728 * If we made it past insert_reserved_file_extent before we
2729 * errored out then we don't need to do this as the accounting
2730 * has already been done.
0bec9ef5 2731 */
77cef2ec 2732 if ((ret || !logical_len) &&
49940bdd 2733 clear_reserved_extent &&
77cef2ec 2734 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
2735 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2736 /*
2737 * Discard the range before returning it back to the
2738 * free space pool
2739 */
46b27f50 2740 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 2741 btrfs_discard_extent(fs_info,
bffe633e
OS
2742 ordered_extent->disk_bytenr,
2743 ordered_extent->disk_num_bytes,
2744 NULL);
2ff7e61e 2745 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
2746 ordered_extent->disk_bytenr,
2747 ordered_extent->disk_num_bytes, 1);
4eaaec24 2748 }
0bec9ef5
JB
2749 }
2750
5fd02043 2751 /*
8bad3c02
LB
2752 * This needs to be done to make sure anybody waiting knows we are done
2753 * updating everything for this ordered extent.
5fd02043
JB
2754 */
2755 btrfs_remove_ordered_extent(inode, ordered_extent);
2756
e6dcd2dc
CM
2757 /* once for us */
2758 btrfs_put_ordered_extent(ordered_extent);
2759 /* once for the tree */
2760 btrfs_put_ordered_extent(ordered_extent);
2761
5fd02043
JB
2762 return ret;
2763}
2764
2765static void finish_ordered_fn(struct btrfs_work *work)
2766{
2767 struct btrfs_ordered_extent *ordered_extent;
2768 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2770}
2771
c629732d
NB
2772void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2773 u64 end, int uptodate)
211f90e6 2774{
5fd02043 2775 struct inode *inode = page->mapping->host;
0b246afa 2776 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 2777 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237 2778 struct btrfs_workqueue *wq;
5fd02043 2779
1abe9b8a 2780 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781
8b62b72b 2782 ClearPagePrivate2(page);
5fd02043
JB
2783 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784 end - start + 1, uptodate))
c3988d63 2785 return;
5fd02043 2786
a0cac0ec 2787 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0b246afa 2788 wq = fs_info->endio_freespace_worker;
a0cac0ec 2789 else
0b246afa 2790 wq = fs_info->endio_write_workers;
5fd02043 2791
a0cac0ec 2792 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
9e0af237 2793 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
2794}
2795
47df7765
OS
2796static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2797 int icsum, struct page *page, int pgoff, u64 start,
2798 size_t len)
dc380aea 2799{
d5178578
JT
2800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2801 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
dc380aea 2802 char *kaddr;
d5178578
JT
2803 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2804 u8 *csum_expected;
2805 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 2806
d5178578 2807 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
dc380aea
MX
2808
2809 kaddr = kmap_atomic(page);
d5178578
JT
2810 shash->tfm = fs_info->csum_shash;
2811
fd08001f 2812 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
d5178578
JT
2813
2814 if (memcmp(csum, csum_expected, csum_size))
dc380aea
MX
2815 goto zeroit;
2816
2817 kunmap_atomic(kaddr);
2818 return 0;
2819zeroit:
ea41d6b2
JT
2820 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2821 io_bio->mirror_num);
814723e0
NB
2822 if (io_bio->device)
2823 btrfs_dev_stat_inc_and_print(io_bio->device,
2824 BTRFS_DEV_STAT_CORRUPTION_ERRS);
dc380aea
MX
2825 memset(kaddr + pgoff, 1, len);
2826 flush_dcache_page(page);
2827 kunmap_atomic(kaddr);
dc380aea
MX
2828 return -EIO;
2829}
2830
d352ac68
CM
2831/*
2832 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2833 * if there's a match, we allow the bio to finish. If not, the code in
2834 * extent_io.c will try to find good copies for us.
d352ac68 2835 */
facc8a22
MX
2836static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2837 u64 phy_offset, struct page *page,
2838 u64 start, u64 end, int mirror)
07157aac 2839{
4eee4fa4 2840 size_t offset = start - page_offset(page);
07157aac 2841 struct inode *inode = page->mapping->host;
d1310b2e 2842 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2843 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2844
d20f7043
CM
2845 if (PageChecked(page)) {
2846 ClearPageChecked(page);
dc380aea 2847 return 0;
d20f7043 2848 }
6cbff00f
CH
2849
2850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2851 return 0;
17d217fe
YZ
2852
2853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 2855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 2856 return 0;
17d217fe 2857 }
d20f7043 2858
facc8a22 2859 phy_offset >>= inode->i_sb->s_blocksize_bits;
47df7765
OS
2860 return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2861 (size_t)(end - start + 1));
07157aac 2862}
b888db2b 2863
c1c3fac2
NB
2864/*
2865 * btrfs_add_delayed_iput - perform a delayed iput on @inode
2866 *
2867 * @inode: The inode we want to perform iput on
2868 *
2869 * This function uses the generic vfs_inode::i_count to track whether we should
2870 * just decrement it (in case it's > 1) or if this is the last iput then link
2871 * the inode to the delayed iput machinery. Delayed iputs are processed at
2872 * transaction commit time/superblock commit/cleaner kthread.
2873 */
24bbcf04
YZ
2874void btrfs_add_delayed_iput(struct inode *inode)
2875{
0b246afa 2876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 2877 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
2878
2879 if (atomic_add_unless(&inode->i_count, -1, 1))
2880 return;
2881
034f784d 2882 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 2883 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
2884 ASSERT(list_empty(&binode->delayed_iput));
2885 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 2886 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
2887 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2888 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
2889}
2890
63611e73
JB
2891static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2892 struct btrfs_inode *inode)
2893{
2894 list_del_init(&inode->delayed_iput);
2895 spin_unlock(&fs_info->delayed_iput_lock);
2896 iput(&inode->vfs_inode);
2897 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2898 wake_up(&fs_info->delayed_iputs_wait);
2899 spin_lock(&fs_info->delayed_iput_lock);
2900}
2901
2902static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2903 struct btrfs_inode *inode)
2904{
2905 if (!list_empty(&inode->delayed_iput)) {
2906 spin_lock(&fs_info->delayed_iput_lock);
2907 if (!list_empty(&inode->delayed_iput))
2908 run_delayed_iput_locked(fs_info, inode);
2909 spin_unlock(&fs_info->delayed_iput_lock);
2910 }
2911}
2912
2ff7e61e 2913void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 2914{
24bbcf04 2915
24bbcf04 2916 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
2917 while (!list_empty(&fs_info->delayed_iputs)) {
2918 struct btrfs_inode *inode;
2919
2920 inode = list_first_entry(&fs_info->delayed_iputs,
2921 struct btrfs_inode, delayed_iput);
63611e73 2922 run_delayed_iput_locked(fs_info, inode);
24bbcf04 2923 }
8089fe62 2924 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
2925}
2926
034f784d
JB
2927/**
2928 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2929 * @fs_info - the fs_info for this fs
2930 * @return - EINTR if we were killed, 0 if nothing's pending
2931 *
2932 * This will wait on any delayed iputs that are currently running with KILLABLE
2933 * set. Once they are all done running we will return, unless we are killed in
2934 * which case we return EINTR. This helps in user operations like fallocate etc
2935 * that might get blocked on the iputs.
2936 */
2937int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2938{
2939 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2940 atomic_read(&fs_info->nr_delayed_iputs) == 0);
2941 if (ret)
2942 return -EINTR;
2943 return 0;
2944}
2945
7b128766 2946/*
f7e9e8fc
OS
2947 * This creates an orphan entry for the given inode in case something goes wrong
2948 * in the middle of an unlink.
7b128766 2949 */
73f2e545 2950int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 2951 struct btrfs_inode *inode)
7b128766 2952{
d68fc57b 2953 int ret;
7b128766 2954
27919067
OS
2955 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2956 if (ret && ret != -EEXIST) {
2957 btrfs_abort_transaction(trans, ret);
2958 return ret;
d68fc57b
YZ
2959 }
2960
d68fc57b 2961 return 0;
7b128766
JB
2962}
2963
2964/*
f7e9e8fc
OS
2965 * We have done the delete so we can go ahead and remove the orphan item for
2966 * this particular inode.
7b128766 2967 */
48a3b636 2968static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 2969 struct btrfs_inode *inode)
7b128766 2970{
27919067 2971 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
2972}
2973
2974/*
2975 * this cleans up any orphans that may be left on the list from the last use
2976 * of this root.
2977 */
66b4ffd1 2978int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 2979{
0b246afa 2980 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
2981 struct btrfs_path *path;
2982 struct extent_buffer *leaf;
7b128766
JB
2983 struct btrfs_key key, found_key;
2984 struct btrfs_trans_handle *trans;
2985 struct inode *inode;
8f6d7f4f 2986 u64 last_objectid = 0;
f7e9e8fc 2987 int ret = 0, nr_unlink = 0;
7b128766 2988
d68fc57b 2989 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2990 return 0;
c71bf099
YZ
2991
2992 path = btrfs_alloc_path();
66b4ffd1
JB
2993 if (!path) {
2994 ret = -ENOMEM;
2995 goto out;
2996 }
e4058b54 2997 path->reada = READA_BACK;
7b128766
JB
2998
2999 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3000 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3001 key.offset = (u64)-1;
3002
7b128766
JB
3003 while (1) {
3004 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3005 if (ret < 0)
3006 goto out;
7b128766
JB
3007
3008 /*
3009 * if ret == 0 means we found what we were searching for, which
25985edc 3010 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3011 * find the key and see if we have stuff that matches
3012 */
3013 if (ret > 0) {
66b4ffd1 3014 ret = 0;
7b128766
JB
3015 if (path->slots[0] == 0)
3016 break;
3017 path->slots[0]--;
3018 }
3019
3020 /* pull out the item */
3021 leaf = path->nodes[0];
7b128766
JB
3022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3023
3024 /* make sure the item matches what we want */
3025 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3026 break;
962a298f 3027 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3028 break;
3029
3030 /* release the path since we're done with it */
b3b4aa74 3031 btrfs_release_path(path);
7b128766
JB
3032
3033 /*
3034 * this is where we are basically btrfs_lookup, without the
3035 * crossing root thing. we store the inode number in the
3036 * offset of the orphan item.
3037 */
8f6d7f4f
JB
3038
3039 if (found_key.offset == last_objectid) {
0b246afa
JM
3040 btrfs_err(fs_info,
3041 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3042 ret = -EINVAL;
3043 goto out;
3044 }
3045
3046 last_objectid = found_key.offset;
3047
5d4f98a2
YZ
3048 found_key.objectid = found_key.offset;
3049 found_key.type = BTRFS_INODE_ITEM_KEY;
3050 found_key.offset = 0;
0202e83f 3051 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3052 ret = PTR_ERR_OR_ZERO(inode);
67710892 3053 if (ret && ret != -ENOENT)
66b4ffd1 3054 goto out;
7b128766 3055
0b246afa 3056 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3057 struct btrfs_root *dead_root;
3058 struct btrfs_fs_info *fs_info = root->fs_info;
3059 int is_dead_root = 0;
3060
3061 /*
3062 * this is an orphan in the tree root. Currently these
3063 * could come from 2 sources:
3064 * a) a snapshot deletion in progress
3065 * b) a free space cache inode
3066 * We need to distinguish those two, as the snapshot
3067 * orphan must not get deleted.
3068 * find_dead_roots already ran before us, so if this
3069 * is a snapshot deletion, we should find the root
a619b3c7 3070 * in the fs_roots radix tree.
f8e9e0b0 3071 */
a619b3c7
RK
3072
3073 spin_lock(&fs_info->fs_roots_radix_lock);
3074 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3075 (unsigned long)found_key.objectid);
3076 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3077 is_dead_root = 1;
3078 spin_unlock(&fs_info->fs_roots_radix_lock);
3079
f8e9e0b0
AJ
3080 if (is_dead_root) {
3081 /* prevent this orphan from being found again */
3082 key.offset = found_key.objectid - 1;
3083 continue;
3084 }
f7e9e8fc 3085
f8e9e0b0 3086 }
f7e9e8fc 3087
7b128766 3088 /*
f7e9e8fc
OS
3089 * If we have an inode with links, there are a couple of
3090 * possibilities. Old kernels (before v3.12) used to create an
3091 * orphan item for truncate indicating that there were possibly
3092 * extent items past i_size that needed to be deleted. In v3.12,
3093 * truncate was changed to update i_size in sync with the extent
3094 * items, but the (useless) orphan item was still created. Since
3095 * v4.18, we don't create the orphan item for truncate at all.
3096 *
3097 * So, this item could mean that we need to do a truncate, but
3098 * only if this filesystem was last used on a pre-v3.12 kernel
3099 * and was not cleanly unmounted. The odds of that are quite
3100 * slim, and it's a pain to do the truncate now, so just delete
3101 * the orphan item.
3102 *
3103 * It's also possible that this orphan item was supposed to be
3104 * deleted but wasn't. The inode number may have been reused,
3105 * but either way, we can delete the orphan item.
7b128766 3106 */
f7e9e8fc
OS
3107 if (ret == -ENOENT || inode->i_nlink) {
3108 if (!ret)
3109 iput(inode);
a8c9e576 3110 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3111 if (IS_ERR(trans)) {
3112 ret = PTR_ERR(trans);
3113 goto out;
3114 }
0b246afa
JM
3115 btrfs_debug(fs_info, "auto deleting %Lu",
3116 found_key.objectid);
a8c9e576
JB
3117 ret = btrfs_del_orphan_item(trans, root,
3118 found_key.objectid);
3a45bb20 3119 btrfs_end_transaction(trans);
4ef31a45
JB
3120 if (ret)
3121 goto out;
7b128766
JB
3122 continue;
3123 }
3124
f7e9e8fc 3125 nr_unlink++;
7b128766
JB
3126
3127 /* this will do delete_inode and everything for us */
3128 iput(inode);
3129 }
3254c876
MX
3130 /* release the path since we're done with it */
3131 btrfs_release_path(path);
3132
d68fc57b
YZ
3133 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3134
a575ceeb 3135 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3136 trans = btrfs_join_transaction(root);
66b4ffd1 3137 if (!IS_ERR(trans))
3a45bb20 3138 btrfs_end_transaction(trans);
d68fc57b 3139 }
7b128766
JB
3140
3141 if (nr_unlink)
0b246afa 3142 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3143
3144out:
3145 if (ret)
0b246afa 3146 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3147 btrfs_free_path(path);
3148 return ret;
7b128766
JB
3149}
3150
46a53cca
CM
3151/*
3152 * very simple check to peek ahead in the leaf looking for xattrs. If we
3153 * don't find any xattrs, we know there can't be any acls.
3154 *
3155 * slot is the slot the inode is in, objectid is the objectid of the inode
3156 */
3157static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3158 int slot, u64 objectid,
3159 int *first_xattr_slot)
46a53cca
CM
3160{
3161 u32 nritems = btrfs_header_nritems(leaf);
3162 struct btrfs_key found_key;
f23b5a59
JB
3163 static u64 xattr_access = 0;
3164 static u64 xattr_default = 0;
46a53cca
CM
3165 int scanned = 0;
3166
f23b5a59 3167 if (!xattr_access) {
97d79299
AG
3168 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3169 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3170 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3171 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3172 }
3173
46a53cca 3174 slot++;
63541927 3175 *first_xattr_slot = -1;
46a53cca
CM
3176 while (slot < nritems) {
3177 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3178
3179 /* we found a different objectid, there must not be acls */
3180 if (found_key.objectid != objectid)
3181 return 0;
3182
3183 /* we found an xattr, assume we've got an acl */
f23b5a59 3184 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3185 if (*first_xattr_slot == -1)
3186 *first_xattr_slot = slot;
f23b5a59
JB
3187 if (found_key.offset == xattr_access ||
3188 found_key.offset == xattr_default)
3189 return 1;
3190 }
46a53cca
CM
3191
3192 /*
3193 * we found a key greater than an xattr key, there can't
3194 * be any acls later on
3195 */
3196 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3197 return 0;
3198
3199 slot++;
3200 scanned++;
3201
3202 /*
3203 * it goes inode, inode backrefs, xattrs, extents,
3204 * so if there are a ton of hard links to an inode there can
3205 * be a lot of backrefs. Don't waste time searching too hard,
3206 * this is just an optimization
3207 */
3208 if (scanned >= 8)
3209 break;
3210 }
3211 /* we hit the end of the leaf before we found an xattr or
3212 * something larger than an xattr. We have to assume the inode
3213 * has acls
3214 */
63541927
FDBM
3215 if (*first_xattr_slot == -1)
3216 *first_xattr_slot = slot;
46a53cca
CM
3217 return 1;
3218}
3219
d352ac68
CM
3220/*
3221 * read an inode from the btree into the in-memory inode
3222 */
4222ea71
FM
3223static int btrfs_read_locked_inode(struct inode *inode,
3224 struct btrfs_path *in_path)
39279cc3 3225{
0b246afa 3226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3227 struct btrfs_path *path = in_path;
5f39d397 3228 struct extent_buffer *leaf;
39279cc3
CM
3229 struct btrfs_inode_item *inode_item;
3230 struct btrfs_root *root = BTRFS_I(inode)->root;
3231 struct btrfs_key location;
67de1176 3232 unsigned long ptr;
46a53cca 3233 int maybe_acls;
618e21d5 3234 u32 rdev;
39279cc3 3235 int ret;
2f7e33d4 3236 bool filled = false;
63541927 3237 int first_xattr_slot;
2f7e33d4
MX
3238
3239 ret = btrfs_fill_inode(inode, &rdev);
3240 if (!ret)
3241 filled = true;
39279cc3 3242
4222ea71
FM
3243 if (!path) {
3244 path = btrfs_alloc_path();
3245 if (!path)
3246 return -ENOMEM;
3247 }
1748f843 3248
39279cc3 3249 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3250
39279cc3 3251 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3252 if (ret) {
4222ea71
FM
3253 if (path != in_path)
3254 btrfs_free_path(path);
f5b3a417 3255 return ret;
67710892 3256 }
39279cc3 3257
5f39d397 3258 leaf = path->nodes[0];
2f7e33d4
MX
3259
3260 if (filled)
67de1176 3261 goto cache_index;
2f7e33d4 3262
5f39d397
CM
3263 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3264 struct btrfs_inode_item);
5f39d397 3265 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3266 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3267 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3268 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3269 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
3270 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3271 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 3272
a937b979
DS
3273 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3274 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3275
a937b979
DS
3276 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3277 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3278
a937b979
DS
3279 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3280 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3281
9cc97d64 3282 BTRFS_I(inode)->i_otime.tv_sec =
3283 btrfs_timespec_sec(leaf, &inode_item->otime);
3284 BTRFS_I(inode)->i_otime.tv_nsec =
3285 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3286
a76a3cd4 3287 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3288 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3289 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3290
c7f88c4e
JL
3291 inode_set_iversion_queried(inode,
3292 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3293 inode->i_generation = BTRFS_I(inode)->generation;
3294 inode->i_rdev = 0;
3295 rdev = btrfs_inode_rdev(leaf, inode_item);
3296
3297 BTRFS_I(inode)->index_cnt = (u64)-1;
3298 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3299
3300cache_index:
5dc562c5
JB
3301 /*
3302 * If we were modified in the current generation and evicted from memory
3303 * and then re-read we need to do a full sync since we don't have any
3304 * idea about which extents were modified before we were evicted from
3305 * cache.
6e17d30b
YD
3306 *
3307 * This is required for both inode re-read from disk and delayed inode
3308 * in delayed_nodes_tree.
5dc562c5 3309 */
0b246afa 3310 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312 &BTRFS_I(inode)->runtime_flags);
3313
bde6c242
FM
3314 /*
3315 * We don't persist the id of the transaction where an unlink operation
3316 * against the inode was last made. So here we assume the inode might
3317 * have been evicted, and therefore the exact value of last_unlink_trans
3318 * lost, and set it to last_trans to avoid metadata inconsistencies
3319 * between the inode and its parent if the inode is fsync'ed and the log
3320 * replayed. For example, in the scenario:
3321 *
3322 * touch mydir/foo
3323 * ln mydir/foo mydir/bar
3324 * sync
3325 * unlink mydir/bar
3326 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3327 * xfs_io -c fsync mydir/foo
3328 * <power failure>
3329 * mount fs, triggers fsync log replay
3330 *
3331 * We must make sure that when we fsync our inode foo we also log its
3332 * parent inode, otherwise after log replay the parent still has the
3333 * dentry with the "bar" name but our inode foo has a link count of 1
3334 * and doesn't have an inode ref with the name "bar" anymore.
3335 *
3336 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3337 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3338 * transaction commits on fsync if our inode is a directory, or if our
3339 * inode is not a directory, logging its parent unnecessarily.
3340 */
3341 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3342
3ebac17c
FM
3343 /*
3344 * Same logic as for last_unlink_trans. We don't persist the generation
3345 * of the last transaction where this inode was used for a reflink
3346 * operation, so after eviction and reloading the inode we must be
3347 * pessimistic and assume the last transaction that modified the inode.
3348 */
3349 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3350
67de1176
MX
3351 path->slots[0]++;
3352 if (inode->i_nlink != 1 ||
3353 path->slots[0] >= btrfs_header_nritems(leaf))
3354 goto cache_acl;
3355
3356 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3357 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3358 goto cache_acl;
3359
3360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3361 if (location.type == BTRFS_INODE_REF_KEY) {
3362 struct btrfs_inode_ref *ref;
3363
3364 ref = (struct btrfs_inode_ref *)ptr;
3365 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3366 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3367 struct btrfs_inode_extref *extref;
3368
3369 extref = (struct btrfs_inode_extref *)ptr;
3370 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3371 extref);
3372 }
2f7e33d4 3373cache_acl:
46a53cca
CM
3374 /*
3375 * try to precache a NULL acl entry for files that don't have
3376 * any xattrs or acls
3377 */
33345d01 3378 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3379 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3380 if (first_xattr_slot != -1) {
3381 path->slots[0] = first_xattr_slot;
3382 ret = btrfs_load_inode_props(inode, path);
3383 if (ret)
0b246afa 3384 btrfs_err(fs_info,
351fd353 3385 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3386 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3387 root->root_key.objectid, ret);
3388 }
4222ea71
FM
3389 if (path != in_path)
3390 btrfs_free_path(path);
63541927 3391
72c04902
AV
3392 if (!maybe_acls)
3393 cache_no_acl(inode);
46a53cca 3394
39279cc3 3395 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3396 case S_IFREG:
3397 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3398 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3399 inode->i_fop = &btrfs_file_operations;
3400 inode->i_op = &btrfs_file_inode_operations;
3401 break;
3402 case S_IFDIR:
3403 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3404 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3405 break;
3406 case S_IFLNK:
3407 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3408 inode_nohighmem(inode);
4779cc04 3409 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3410 break;
618e21d5 3411 default:
0279b4cd 3412 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3413 init_special_inode(inode, inode->i_mode, rdev);
3414 break;
39279cc3 3415 }
6cbff00f 3416
7b6a221e 3417 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3418 return 0;
39279cc3
CM
3419}
3420
d352ac68
CM
3421/*
3422 * given a leaf and an inode, copy the inode fields into the leaf
3423 */
e02119d5
CM
3424static void fill_inode_item(struct btrfs_trans_handle *trans,
3425 struct extent_buffer *leaf,
5f39d397 3426 struct btrfs_inode_item *item,
39279cc3
CM
3427 struct inode *inode)
3428{
51fab693
LB
3429 struct btrfs_map_token token;
3430
c82f823c 3431 btrfs_init_map_token(&token, leaf);
5f39d397 3432
cc4c13d5
DS
3433 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3434 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3435 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3436 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3437 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3438
3439 btrfs_set_token_timespec_sec(&token, &item->atime,
3440 inode->i_atime.tv_sec);
3441 btrfs_set_token_timespec_nsec(&token, &item->atime,
3442 inode->i_atime.tv_nsec);
3443
3444 btrfs_set_token_timespec_sec(&token, &item->mtime,
3445 inode->i_mtime.tv_sec);
3446 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3447 inode->i_mtime.tv_nsec);
3448
3449 btrfs_set_token_timespec_sec(&token, &item->ctime,
3450 inode->i_ctime.tv_sec);
3451 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3452 inode->i_ctime.tv_nsec);
3453
3454 btrfs_set_token_timespec_sec(&token, &item->otime,
3455 BTRFS_I(inode)->i_otime.tv_sec);
3456 btrfs_set_token_timespec_nsec(&token, &item->otime,
3457 BTRFS_I(inode)->i_otime.tv_nsec);
3458
3459 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3460 btrfs_set_token_inode_generation(&token, item,
3461 BTRFS_I(inode)->generation);
3462 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3463 btrfs_set_token_inode_transid(&token, item, trans->transid);
3464 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3465 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3466 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
3467}
3468
d352ac68
CM
3469/*
3470 * copy everything in the in-memory inode into the btree.
3471 */
2115133f 3472static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3473 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3474{
3475 struct btrfs_inode_item *inode_item;
3476 struct btrfs_path *path;
5f39d397 3477 struct extent_buffer *leaf;
39279cc3
CM
3478 int ret;
3479
3480 path = btrfs_alloc_path();
16cdcec7
MX
3481 if (!path)
3482 return -ENOMEM;
3483
b9473439 3484 path->leave_spinning = 1;
16cdcec7
MX
3485 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486 1);
39279cc3
CM
3487 if (ret) {
3488 if (ret > 0)
3489 ret = -ENOENT;
3490 goto failed;
3491 }
3492
5f39d397
CM
3493 leaf = path->nodes[0];
3494 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3495 struct btrfs_inode_item);
39279cc3 3496
e02119d5 3497 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3498 btrfs_mark_buffer_dirty(leaf);
d9094414 3499 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
39279cc3
CM
3500 ret = 0;
3501failed:
39279cc3
CM
3502 btrfs_free_path(path);
3503 return ret;
3504}
3505
2115133f
CM
3506/*
3507 * copy everything in the in-memory inode into the btree.
3508 */
3509noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root, struct inode *inode)
3511{
0b246afa 3512 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3513 int ret;
3514
3515 /*
3516 * If the inode is a free space inode, we can deadlock during commit
3517 * if we put it into the delayed code.
3518 *
3519 * The data relocation inode should also be directly updated
3520 * without delay
3521 */
70ddc553 3522 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3523 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3524 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3525 btrfs_update_root_times(trans, root);
3526
2115133f
CM
3527 ret = btrfs_delayed_update_inode(trans, root, inode);
3528 if (!ret)
d9094414 3529 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
2115133f
CM
3530 return ret;
3531 }
3532
3533 return btrfs_update_inode_item(trans, root, inode);
3534}
3535
be6aef60
JB
3536noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode)
2115133f
CM
3539{
3540 int ret;
3541
3542 ret = btrfs_update_inode(trans, root, inode);
3543 if (ret == -ENOSPC)
3544 return btrfs_update_inode_item(trans, root, inode);
3545 return ret;
3546}
3547
d352ac68
CM
3548/*
3549 * unlink helper that gets used here in inode.c and in the tree logging
3550 * recovery code. It remove a link in a directory with a given name, and
3551 * also drops the back refs in the inode to the directory
3552 */
92986796
AV
3553static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 struct btrfs_root *root,
4ec5934e
NB
3555 struct btrfs_inode *dir,
3556 struct btrfs_inode *inode,
92986796 3557 const char *name, int name_len)
39279cc3 3558{
0b246afa 3559 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3560 struct btrfs_path *path;
39279cc3 3561 int ret = 0;
39279cc3 3562 struct btrfs_dir_item *di;
aec7477b 3563 u64 index;
33345d01
LZ
3564 u64 ino = btrfs_ino(inode);
3565 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3566
3567 path = btrfs_alloc_path();
54aa1f4d
CM
3568 if (!path) {
3569 ret = -ENOMEM;
554233a6 3570 goto out;
54aa1f4d
CM
3571 }
3572
b9473439 3573 path->leave_spinning = 1;
33345d01 3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3575 name, name_len, -1);
3cf5068f
LB
3576 if (IS_ERR_OR_NULL(di)) {
3577 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3578 goto err;
3579 }
39279cc3 3580 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3581 if (ret)
3582 goto err;
b3b4aa74 3583 btrfs_release_path(path);
39279cc3 3584
67de1176
MX
3585 /*
3586 * If we don't have dir index, we have to get it by looking up
3587 * the inode ref, since we get the inode ref, remove it directly,
3588 * it is unnecessary to do delayed deletion.
3589 *
3590 * But if we have dir index, needn't search inode ref to get it.
3591 * Since the inode ref is close to the inode item, it is better
3592 * that we delay to delete it, and just do this deletion when
3593 * we update the inode item.
3594 */
4ec5934e 3595 if (inode->dir_index) {
67de1176
MX
3596 ret = btrfs_delayed_delete_inode_ref(inode);
3597 if (!ret) {
4ec5934e 3598 index = inode->dir_index;
67de1176
MX
3599 goto skip_backref;
3600 }
3601 }
3602
33345d01
LZ
3603 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3604 dir_ino, &index);
aec7477b 3605 if (ret) {
0b246afa 3606 btrfs_info(fs_info,
c2cf52eb 3607 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3608 name_len, name, ino, dir_ino);
66642832 3609 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3610 goto err;
3611 }
67de1176 3612skip_backref:
9add2945 3613 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3614 if (ret) {
66642832 3615 btrfs_abort_transaction(trans, ret);
39279cc3 3616 goto err;
79787eaa 3617 }
39279cc3 3618
4ec5934e
NB
3619 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3620 dir_ino);
79787eaa 3621 if (ret != 0 && ret != -ENOENT) {
66642832 3622 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3623 goto err;
3624 }
e02119d5 3625
4ec5934e
NB
3626 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3627 index);
6418c961
CM
3628 if (ret == -ENOENT)
3629 ret = 0;
d4e3991b 3630 else if (ret)
66642832 3631 btrfs_abort_transaction(trans, ret);
63611e73
JB
3632
3633 /*
3634 * If we have a pending delayed iput we could end up with the final iput
3635 * being run in btrfs-cleaner context. If we have enough of these built
3636 * up we can end up burning a lot of time in btrfs-cleaner without any
3637 * way to throttle the unlinks. Since we're currently holding a ref on
3638 * the inode we can run the delayed iput here without any issues as the
3639 * final iput won't be done until after we drop the ref we're currently
3640 * holding.
3641 */
3642 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
3643err:
3644 btrfs_free_path(path);
e02119d5
CM
3645 if (ret)
3646 goto out;
3647
6ef06d27 3648 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3649 inode_inc_iversion(&inode->vfs_inode);
3650 inode_inc_iversion(&dir->vfs_inode);
3651 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3652 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3653 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3654out:
39279cc3
CM
3655 return ret;
3656}
3657
92986796
AV
3658int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3659 struct btrfs_root *root,
4ec5934e 3660 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3661 const char *name, int name_len)
3662{
3663 int ret;
3664 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3665 if (!ret) {
4ec5934e
NB
3666 drop_nlink(&inode->vfs_inode);
3667 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
3668 }
3669 return ret;
3670}
39279cc3 3671
a22285a6
YZ
3672/*
3673 * helper to start transaction for unlink and rmdir.
3674 *
d52be818
JB
3675 * unlink and rmdir are special in btrfs, they do not always free space, so
3676 * if we cannot make our reservations the normal way try and see if there is
3677 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3678 * allow the unlink to occur.
a22285a6 3679 */
d52be818 3680static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3681{
a22285a6 3682 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 3683
e70bea5f
JB
3684 /*
3685 * 1 for the possible orphan item
3686 * 1 for the dir item
3687 * 1 for the dir index
3688 * 1 for the inode ref
e70bea5f
JB
3689 * 1 for the inode
3690 */
7f9fe614 3691 return btrfs_start_transaction_fallback_global_rsv(root, 5);
a22285a6
YZ
3692}
3693
3694static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3695{
3696 struct btrfs_root *root = BTRFS_I(dir)->root;
3697 struct btrfs_trans_handle *trans;
2b0143b5 3698 struct inode *inode = d_inode(dentry);
a22285a6 3699 int ret;
a22285a6 3700
d52be818 3701 trans = __unlink_start_trans(dir);
a22285a6
YZ
3702 if (IS_ERR(trans))
3703 return PTR_ERR(trans);
5f39d397 3704
4ec5934e
NB
3705 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3706 0);
12fcfd22 3707
4ec5934e
NB
3708 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3709 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3710 dentry->d_name.len);
b532402e
TI
3711 if (ret)
3712 goto out;
7b128766 3713
a22285a6 3714 if (inode->i_nlink == 0) {
73f2e545 3715 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
3716 if (ret)
3717 goto out;
a22285a6 3718 }
7b128766 3719
b532402e 3720out:
3a45bb20 3721 btrfs_end_transaction(trans);
2ff7e61e 3722 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
3723 return ret;
3724}
3725
f60a2364 3726static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 3727 struct inode *dir, struct dentry *dentry)
4df27c4d 3728{
401b3b19 3729 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 3730 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
3731 struct btrfs_path *path;
3732 struct extent_buffer *leaf;
3733 struct btrfs_dir_item *di;
3734 struct btrfs_key key;
045d3967
JB
3735 const char *name = dentry->d_name.name;
3736 int name_len = dentry->d_name.len;
4df27c4d
YZ
3737 u64 index;
3738 int ret;
045d3967 3739 u64 objectid;
4a0cc7ca 3740 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d 3741
045d3967
JB
3742 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3743 objectid = inode->root->root_key.objectid;
3744 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3745 objectid = inode->location.objectid;
3746 } else {
3747 WARN_ON(1);
3748 return -EINVAL;
3749 }
3750
4df27c4d
YZ
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754
33345d01 3755 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3756 name, name_len, -1);
79787eaa 3757 if (IS_ERR_OR_NULL(di)) {
3cf5068f 3758 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
3759 goto out;
3760 }
4df27c4d
YZ
3761
3762 leaf = path->nodes[0];
3763 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3764 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3765 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 3766 if (ret) {
66642832 3767 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3768 goto out;
3769 }
b3b4aa74 3770 btrfs_release_path(path);
4df27c4d 3771
d49d3287
JB
3772 /*
3773 * This is a placeholder inode for a subvolume we didn't have a
3774 * reference to at the time of the snapshot creation. In the meantime
3775 * we could have renamed the real subvol link into our snapshot, so
3776 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3777 * Instead simply lookup the dir_index_item for this entry so we can
3778 * remove it. Otherwise we know we have a ref to the root and we can
3779 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3780 */
3781 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
33345d01 3782 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3783 name, name_len);
79787eaa
JM
3784 if (IS_ERR_OR_NULL(di)) {
3785 if (!di)
3786 ret = -ENOENT;
3787 else
3788 ret = PTR_ERR(di);
66642832 3789 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3790 goto out;
3791 }
4df27c4d
YZ
3792
3793 leaf = path->nodes[0];
3794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 3795 index = key.offset;
d49d3287
JB
3796 btrfs_release_path(path);
3797 } else {
3798 ret = btrfs_del_root_ref(trans, objectid,
3799 root->root_key.objectid, dir_ino,
3800 &index, name, name_len);
3801 if (ret) {
3802 btrfs_abort_transaction(trans, ret);
3803 goto out;
3804 }
4df27c4d
YZ
3805 }
3806
9add2945 3807 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 3808 if (ret) {
66642832 3809 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3810 goto out;
3811 }
4df27c4d 3812
6ef06d27 3813 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 3814 inode_inc_iversion(dir);
c2050a45 3815 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 3816 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 3817 if (ret)
66642832 3818 btrfs_abort_transaction(trans, ret);
79787eaa 3819out:
71d7aed0 3820 btrfs_free_path(path);
79787eaa 3821 return ret;
4df27c4d
YZ
3822}
3823
ec42f167
MT
3824/*
3825 * Helper to check if the subvolume references other subvolumes or if it's
3826 * default.
3827 */
f60a2364 3828static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
3829{
3830 struct btrfs_fs_info *fs_info = root->fs_info;
3831 struct btrfs_path *path;
3832 struct btrfs_dir_item *di;
3833 struct btrfs_key key;
3834 u64 dir_id;
3835 int ret;
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
3841 /* Make sure this root isn't set as the default subvol */
3842 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3843 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3844 dir_id, "default", 7, 0);
3845 if (di && !IS_ERR(di)) {
3846 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3847 if (key.objectid == root->root_key.objectid) {
3848 ret = -EPERM;
3849 btrfs_err(fs_info,
3850 "deleting default subvolume %llu is not allowed",
3851 key.objectid);
3852 goto out;
3853 }
3854 btrfs_release_path(path);
3855 }
3856
3857 key.objectid = root->root_key.objectid;
3858 key.type = BTRFS_ROOT_REF_KEY;
3859 key.offset = (u64)-1;
3860
3861 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3862 if (ret < 0)
3863 goto out;
3864 BUG_ON(ret == 0);
3865
3866 ret = 0;
3867 if (path->slots[0] > 0) {
3868 path->slots[0]--;
3869 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3870 if (key.objectid == root->root_key.objectid &&
3871 key.type == BTRFS_ROOT_REF_KEY)
3872 ret = -ENOTEMPTY;
3873 }
3874out:
3875 btrfs_free_path(path);
3876 return ret;
3877}
3878
20a68004
NB
3879/* Delete all dentries for inodes belonging to the root */
3880static void btrfs_prune_dentries(struct btrfs_root *root)
3881{
3882 struct btrfs_fs_info *fs_info = root->fs_info;
3883 struct rb_node *node;
3884 struct rb_node *prev;
3885 struct btrfs_inode *entry;
3886 struct inode *inode;
3887 u64 objectid = 0;
3888
3889 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3890 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3891
3892 spin_lock(&root->inode_lock);
3893again:
3894 node = root->inode_tree.rb_node;
3895 prev = NULL;
3896 while (node) {
3897 prev = node;
3898 entry = rb_entry(node, struct btrfs_inode, rb_node);
3899
37508515 3900 if (objectid < btrfs_ino(entry))
20a68004 3901 node = node->rb_left;
37508515 3902 else if (objectid > btrfs_ino(entry))
20a68004
NB
3903 node = node->rb_right;
3904 else
3905 break;
3906 }
3907 if (!node) {
3908 while (prev) {
3909 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 3910 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
3911 node = prev;
3912 break;
3913 }
3914 prev = rb_next(prev);
3915 }
3916 }
3917 while (node) {
3918 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 3919 objectid = btrfs_ino(entry) + 1;
20a68004
NB
3920 inode = igrab(&entry->vfs_inode);
3921 if (inode) {
3922 spin_unlock(&root->inode_lock);
3923 if (atomic_read(&inode->i_count) > 1)
3924 d_prune_aliases(inode);
3925 /*
3926 * btrfs_drop_inode will have it removed from the inode
3927 * cache when its usage count hits zero.
3928 */
3929 iput(inode);
3930 cond_resched();
3931 spin_lock(&root->inode_lock);
3932 goto again;
3933 }
3934
3935 if (cond_resched_lock(&root->inode_lock))
3936 goto again;
3937
3938 node = rb_next(node);
3939 }
3940 spin_unlock(&root->inode_lock);
3941}
3942
f60a2364
MT
3943int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3944{
3945 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3946 struct btrfs_root *root = BTRFS_I(dir)->root;
3947 struct inode *inode = d_inode(dentry);
3948 struct btrfs_root *dest = BTRFS_I(inode)->root;
3949 struct btrfs_trans_handle *trans;
3950 struct btrfs_block_rsv block_rsv;
3951 u64 root_flags;
f60a2364
MT
3952 int ret;
3953 int err;
3954
3955 /*
3956 * Don't allow to delete a subvolume with send in progress. This is
3957 * inside the inode lock so the error handling that has to drop the bit
3958 * again is not run concurrently.
3959 */
3960 spin_lock(&dest->root_item_lock);
a7176f74 3961 if (dest->send_in_progress) {
f60a2364
MT
3962 spin_unlock(&dest->root_item_lock);
3963 btrfs_warn(fs_info,
3964 "attempt to delete subvolume %llu during send",
3965 dest->root_key.objectid);
3966 return -EPERM;
3967 }
a7176f74
LF
3968 root_flags = btrfs_root_flags(&dest->root_item);
3969 btrfs_set_root_flags(&dest->root_item,
3970 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3971 spin_unlock(&dest->root_item_lock);
f60a2364
MT
3972
3973 down_write(&fs_info->subvol_sem);
3974
3975 err = may_destroy_subvol(dest);
3976 if (err)
3977 goto out_up_write;
3978
3979 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3980 /*
3981 * One for dir inode,
3982 * two for dir entries,
3983 * two for root ref/backref.
3984 */
c4c129db 3985 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
3986 if (err)
3987 goto out_up_write;
3988
3989 trans = btrfs_start_transaction(root, 0);
3990 if (IS_ERR(trans)) {
3991 err = PTR_ERR(trans);
3992 goto out_release;
3993 }
3994 trans->block_rsv = &block_rsv;
3995 trans->bytes_reserved = block_rsv.size;
3996
3997 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3998
045d3967 3999 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364
MT
4000 if (ret) {
4001 err = ret;
4002 btrfs_abort_transaction(trans, ret);
4003 goto out_end_trans;
4004 }
4005
4006 btrfs_record_root_in_trans(trans, dest);
4007
4008 memset(&dest->root_item.drop_progress, 0,
4009 sizeof(dest->root_item.drop_progress));
4010 dest->root_item.drop_level = 0;
4011 btrfs_set_root_refs(&dest->root_item, 0);
4012
4013 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4014 ret = btrfs_insert_orphan_item(trans,
4015 fs_info->tree_root,
4016 dest->root_key.objectid);
4017 if (ret) {
4018 btrfs_abort_transaction(trans, ret);
4019 err = ret;
4020 goto out_end_trans;
4021 }
4022 }
4023
d1957791 4024 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4025 BTRFS_UUID_KEY_SUBVOL,
4026 dest->root_key.objectid);
4027 if (ret && ret != -ENOENT) {
4028 btrfs_abort_transaction(trans, ret);
4029 err = ret;
4030 goto out_end_trans;
4031 }
4032 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4033 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4034 dest->root_item.received_uuid,
4035 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 dest->root_key.objectid);
4037 if (ret && ret != -ENOENT) {
4038 btrfs_abort_transaction(trans, ret);
4039 err = ret;
4040 goto out_end_trans;
4041 }
4042 }
4043
082b6c97
QW
4044 free_anon_bdev(dest->anon_dev);
4045 dest->anon_dev = 0;
f60a2364
MT
4046out_end_trans:
4047 trans->block_rsv = NULL;
4048 trans->bytes_reserved = 0;
4049 ret = btrfs_end_transaction(trans);
4050 if (ret && !err)
4051 err = ret;
4052 inode->i_flags |= S_DEAD;
4053out_release:
4054 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4055out_up_write:
4056 up_write(&fs_info->subvol_sem);
4057 if (err) {
4058 spin_lock(&dest->root_item_lock);
4059 root_flags = btrfs_root_flags(&dest->root_item);
4060 btrfs_set_root_flags(&dest->root_item,
4061 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4062 spin_unlock(&dest->root_item_lock);
4063 } else {
4064 d_invalidate(dentry);
20a68004 4065 btrfs_prune_dentries(dest);
f60a2364
MT
4066 ASSERT(dest->send_in_progress == 0);
4067
4068 /* the last ref */
4069 if (dest->ino_cache_inode) {
4070 iput(dest->ino_cache_inode);
4071 dest->ino_cache_inode = NULL;
4072 }
4073 }
4074
4075 return err;
4076}
4077
39279cc3
CM
4078static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4079{
2b0143b5 4080 struct inode *inode = d_inode(dentry);
1832a6d5 4081 int err = 0;
39279cc3 4082 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4083 struct btrfs_trans_handle *trans;
44f714da 4084 u64 last_unlink_trans;
39279cc3 4085
b3ae244e 4086 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4087 return -ENOTEMPTY;
4a0cc7ca 4088 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4089 return btrfs_delete_subvolume(dir, dentry);
134d4512 4090
d52be818 4091 trans = __unlink_start_trans(dir);
a22285a6 4092 if (IS_ERR(trans))
5df6a9f6 4093 return PTR_ERR(trans);
5df6a9f6 4094
4a0cc7ca 4095 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4096 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4097 goto out;
4098 }
4099
73f2e545 4100 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4101 if (err)
4df27c4d 4102 goto out;
7b128766 4103
44f714da
FM
4104 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4105
39279cc3 4106 /* now the directory is empty */
4ec5934e
NB
4107 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4108 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4109 dentry->d_name.len);
44f714da 4110 if (!err) {
6ef06d27 4111 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4112 /*
4113 * Propagate the last_unlink_trans value of the deleted dir to
4114 * its parent directory. This is to prevent an unrecoverable
4115 * log tree in the case we do something like this:
4116 * 1) create dir foo
4117 * 2) create snapshot under dir foo
4118 * 3) delete the snapshot
4119 * 4) rmdir foo
4120 * 5) mkdir foo
4121 * 6) fsync foo or some file inside foo
4122 */
4123 if (last_unlink_trans >= trans->transid)
4124 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4125 }
4df27c4d 4126out:
3a45bb20 4127 btrfs_end_transaction(trans);
2ff7e61e 4128 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4129
39279cc3
CM
4130 return err;
4131}
4132
ddfae63c
JB
4133/*
4134 * Return this if we need to call truncate_block for the last bit of the
4135 * truncate.
4136 */
4137#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4138
39279cc3
CM
4139/*
4140 * this can truncate away extent items, csum items and directory items.
4141 * It starts at a high offset and removes keys until it can't find
d352ac68 4142 * any higher than new_size
39279cc3
CM
4143 *
4144 * csum items that cross the new i_size are truncated to the new size
4145 * as well.
7b128766
JB
4146 *
4147 * min_type is the minimum key type to truncate down to. If set to 0, this
4148 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4149 */
8082510e
YZ
4150int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4151 struct btrfs_root *root,
4152 struct inode *inode,
4153 u64 new_size, u32 min_type)
39279cc3 4154{
0b246afa 4155 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4156 struct btrfs_path *path;
5f39d397 4157 struct extent_buffer *leaf;
39279cc3 4158 struct btrfs_file_extent_item *fi;
8082510e
YZ
4159 struct btrfs_key key;
4160 struct btrfs_key found_key;
39279cc3 4161 u64 extent_start = 0;
db94535d 4162 u64 extent_num_bytes = 0;
5d4f98a2 4163 u64 extent_offset = 0;
39279cc3 4164 u64 item_end = 0;
c1aa4575 4165 u64 last_size = new_size;
8082510e 4166 u32 found_type = (u8)-1;
39279cc3
CM
4167 int found_extent;
4168 int del_item;
85e21bac
CM
4169 int pending_del_nr = 0;
4170 int pending_del_slot = 0;
179e29e4 4171 int extent_type = -1;
8082510e 4172 int ret;
4a0cc7ca 4173 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4174 u64 bytes_deleted = 0;
897ca819
TM
4175 bool be_nice = false;
4176 bool should_throttle = false;
28553fa9
FM
4177 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4178 struct extent_state *cached_state = NULL;
8082510e
YZ
4179
4180 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4181
28ed1345 4182 /*
92a7cc42
QW
4183 * For non-free space inodes and non-shareable roots, we want to back
4184 * off from time to time. This means all inodes in subvolume roots,
4185 * reloc roots, and data reloc roots.
28ed1345 4186 */
70ddc553 4187 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
92a7cc42 4188 test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
897ca819 4189 be_nice = true;
28ed1345 4190
0eb0e19c
MF
4191 path = btrfs_alloc_path();
4192 if (!path)
4193 return -ENOMEM;
e4058b54 4194 path->reada = READA_BACK;
0eb0e19c 4195
82028e0a 4196 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
a5ae50de
FM
4197 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4198 &cached_state);
28553fa9 4199
82028e0a
QW
4200 /*
4201 * We want to drop from the next block forward in case this
4202 * new size is not block aligned since we will be keeping the
4203 * last block of the extent just the way it is.
4204 */
dcdbc059 4205 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4206 fs_info->sectorsize),
da17066c 4207 (u64)-1, 0);
82028e0a 4208 }
8082510e 4209
16cdcec7
MX
4210 /*
4211 * This function is also used to drop the items in the log tree before
4212 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
52042d8e 4213 * it is used to drop the logged items. So we shouldn't kill the delayed
16cdcec7
MX
4214 * items.
4215 */
4216 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4217 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4218
33345d01 4219 key.objectid = ino;
39279cc3 4220 key.offset = (u64)-1;
5f39d397
CM
4221 key.type = (u8)-1;
4222
85e21bac 4223search_again:
28ed1345
CM
4224 /*
4225 * with a 16K leaf size and 128MB extents, you can actually queue
4226 * up a huge file in a single leaf. Most of the time that
4227 * bytes_deleted is > 0, it will be huge by the time we get here
4228 */
fd86a3a3
OS
4229 if (be_nice && bytes_deleted > SZ_32M &&
4230 btrfs_should_end_transaction(trans)) {
4231 ret = -EAGAIN;
4232 goto out;
28ed1345
CM
4233 }
4234
85e21bac 4235 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4236 if (ret < 0)
8082510e 4237 goto out;
d397712b 4238
85e21bac 4239 if (ret > 0) {
fd86a3a3 4240 ret = 0;
e02119d5
CM
4241 /* there are no items in the tree for us to truncate, we're
4242 * done
4243 */
8082510e
YZ
4244 if (path->slots[0] == 0)
4245 goto out;
85e21bac
CM
4246 path->slots[0]--;
4247 }
4248
d397712b 4249 while (1) {
9ddc959e
JB
4250 u64 clear_start = 0, clear_len = 0;
4251
39279cc3 4252 fi = NULL;
5f39d397
CM
4253 leaf = path->nodes[0];
4254 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4255 found_type = found_key.type;
39279cc3 4256
33345d01 4257 if (found_key.objectid != ino)
39279cc3 4258 break;
5f39d397 4259
85e21bac 4260 if (found_type < min_type)
39279cc3
CM
4261 break;
4262
5f39d397 4263 item_end = found_key.offset;
39279cc3 4264 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4265 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4266 struct btrfs_file_extent_item);
179e29e4
CM
4267 extent_type = btrfs_file_extent_type(leaf, fi);
4268 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4269 item_end +=
db94535d 4270 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4271
4272 trace_btrfs_truncate_show_fi_regular(
4273 BTRFS_I(inode), leaf, fi,
4274 found_key.offset);
179e29e4 4275 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4276 item_end += btrfs_file_extent_ram_bytes(leaf,
4277 fi);
09ed2f16
LB
4278
4279 trace_btrfs_truncate_show_fi_inline(
4280 BTRFS_I(inode), leaf, fi, path->slots[0],
4281 found_key.offset);
39279cc3 4282 }
008630c1 4283 item_end--;
39279cc3 4284 }
8082510e
YZ
4285 if (found_type > min_type) {
4286 del_item = 1;
4287 } else {
76b42abb 4288 if (item_end < new_size)
b888db2b 4289 break;
8082510e
YZ
4290 if (found_key.offset >= new_size)
4291 del_item = 1;
4292 else
4293 del_item = 0;
39279cc3 4294 }
39279cc3 4295 found_extent = 0;
39279cc3 4296 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4297 if (found_type != BTRFS_EXTENT_DATA_KEY)
4298 goto delete;
4299
4300 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4301 u64 num_dec;
9ddc959e
JB
4302
4303 clear_start = found_key.offset;
db94535d 4304 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4305 if (!del_item) {
db94535d
CM
4306 u64 orig_num_bytes =
4307 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4308 extent_num_bytes = ALIGN(new_size -
4309 found_key.offset,
0b246afa 4310 fs_info->sectorsize);
9ddc959e 4311 clear_start = ALIGN(new_size, fs_info->sectorsize);
db94535d
CM
4312 btrfs_set_file_extent_num_bytes(leaf, fi,
4313 extent_num_bytes);
4314 num_dec = (orig_num_bytes -
9069218d 4315 extent_num_bytes);
92a7cc42 4316 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70
MX
4317 &root->state) &&
4318 extent_start != 0)
a76a3cd4 4319 inode_sub_bytes(inode, num_dec);
5f39d397 4320 btrfs_mark_buffer_dirty(leaf);
39279cc3 4321 } else {
db94535d
CM
4322 extent_num_bytes =
4323 btrfs_file_extent_disk_num_bytes(leaf,
4324 fi);
5d4f98a2
YZ
4325 extent_offset = found_key.offset -
4326 btrfs_file_extent_offset(leaf, fi);
4327
39279cc3 4328 /* FIXME blocksize != 4096 */
9069218d 4329 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4330 if (extent_start != 0) {
4331 found_extent = 1;
92a7cc42 4332 if (test_bit(BTRFS_ROOT_SHAREABLE,
27cdeb70 4333 &root->state))
a76a3cd4 4334 inode_sub_bytes(inode, num_dec);
e02119d5 4335 }
39279cc3 4336 }
9ddc959e 4337 clear_len = num_dec;
9069218d 4338 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4339 /*
4340 * we can't truncate inline items that have had
4341 * special encodings
4342 */
4343 if (!del_item &&
c8b97818 4344 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4345 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4346 btrfs_file_extent_compression(leaf, fi) == 0) {
4347 u32 size = (u32)(new_size - found_key.offset);
4348
4349 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350 size = btrfs_file_extent_calc_inline_size(size);
78ac4f9e 4351 btrfs_truncate_item(path, size, 1);
ddfae63c 4352 } else if (!del_item) {
514ac8ad 4353 /*
ddfae63c
JB
4354 * We have to bail so the last_size is set to
4355 * just before this extent.
514ac8ad 4356 */
fd86a3a3 4357 ret = NEED_TRUNCATE_BLOCK;
ddfae63c 4358 break;
9ddc959e
JB
4359 } else {
4360 /*
4361 * Inline extents are special, we just treat
4362 * them as a full sector worth in the file
4363 * extent tree just for simplicity sake.
4364 */
4365 clear_len = fs_info->sectorsize;
ddfae63c 4366 }
0305cd5f 4367
92a7cc42 4368 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
0305cd5f 4369 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4370 }
179e29e4 4371delete:
9ddc959e
JB
4372 /*
4373 * We use btrfs_truncate_inode_items() to clean up log trees for
4374 * multiple fsyncs, and in this case we don't want to clear the
4375 * file extent range because it's just the log.
4376 */
4377 if (root == BTRFS_I(inode)->root) {
4378 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4379 clear_start, clear_len);
4380 if (ret) {
4381 btrfs_abort_transaction(trans, ret);
4382 break;
4383 }
4384 }
4385
ddfae63c
JB
4386 if (del_item)
4387 last_size = found_key.offset;
4388 else
4389 last_size = new_size;
39279cc3 4390 if (del_item) {
85e21bac
CM
4391 if (!pending_del_nr) {
4392 /* no pending yet, add ourselves */
4393 pending_del_slot = path->slots[0];
4394 pending_del_nr = 1;
4395 } else if (pending_del_nr &&
4396 path->slots[0] + 1 == pending_del_slot) {
4397 /* hop on the pending chunk */
4398 pending_del_nr++;
4399 pending_del_slot = path->slots[0];
4400 } else {
d397712b 4401 BUG();
85e21bac 4402 }
39279cc3
CM
4403 } else {
4404 break;
4405 }
897ca819 4406 should_throttle = false;
28f75a0e 4407
27cdeb70 4408 if (found_extent &&
82028e0a 4409 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
ffd4bb2a
QW
4410 struct btrfs_ref ref = { 0 };
4411
28ed1345 4412 bytes_deleted += extent_num_bytes;
ffd4bb2a
QW
4413
4414 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4415 extent_start, extent_num_bytes, 0);
4416 ref.real_root = root->root_key.objectid;
4417 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4418 ino, extent_offset);
4419 ret = btrfs_free_extent(trans, &ref);
05522109
OS
4420 if (ret) {
4421 btrfs_abort_transaction(trans, ret);
4422 break;
4423 }
28f75a0e 4424 if (be_nice) {
7c861627 4425 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4426 should_throttle = true;
28f75a0e 4427 }
39279cc3 4428 }
85e21bac 4429
8082510e
YZ
4430 if (found_type == BTRFS_INODE_ITEM_KEY)
4431 break;
4432
4433 if (path->slots[0] == 0 ||
1262133b 4434 path->slots[0] != pending_del_slot ||
28bad212 4435 should_throttle) {
8082510e
YZ
4436 if (pending_del_nr) {
4437 ret = btrfs_del_items(trans, root, path,
4438 pending_del_slot,
4439 pending_del_nr);
79787eaa 4440 if (ret) {
66642832 4441 btrfs_abort_transaction(trans, ret);
fd86a3a3 4442 break;
79787eaa 4443 }
8082510e
YZ
4444 pending_del_nr = 0;
4445 }
b3b4aa74 4446 btrfs_release_path(path);
28bad212 4447
28f75a0e 4448 /*
28bad212
JB
4449 * We can generate a lot of delayed refs, so we need to
4450 * throttle every once and a while and make sure we're
4451 * adding enough space to keep up with the work we are
4452 * generating. Since we hold a transaction here we
4453 * can't flush, and we don't want to FLUSH_LIMIT because
4454 * we could have generated too many delayed refs to
4455 * actually allocate, so just bail if we're short and
4456 * let the normal reservation dance happen higher up.
28f75a0e 4457 */
28bad212
JB
4458 if (should_throttle) {
4459 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4460 BTRFS_RESERVE_NO_FLUSH);
4461 if (ret) {
4462 ret = -EAGAIN;
4463 break;
4464 }
28f75a0e 4465 }
85e21bac 4466 goto search_again;
8082510e
YZ
4467 } else {
4468 path->slots[0]--;
85e21bac 4469 }
39279cc3 4470 }
8082510e 4471out:
fd86a3a3
OS
4472 if (ret >= 0 && pending_del_nr) {
4473 int err;
4474
4475 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4476 pending_del_nr);
fd86a3a3
OS
4477 if (err) {
4478 btrfs_abort_transaction(trans, err);
4479 ret = err;
4480 }
85e21bac 4481 }
76b42abb
FM
4482 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4483 ASSERT(last_size >= new_size);
fd86a3a3 4484 if (!ret && last_size > new_size)
76b42abb 4485 last_size = new_size;
d923afe9 4486 btrfs_inode_safe_disk_i_size_write(inode, last_size);
a5ae50de
FM
4487 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4488 (u64)-1, &cached_state);
76b42abb 4489 }
28ed1345 4490
39279cc3 4491 btrfs_free_path(path);
fd86a3a3 4492 return ret;
39279cc3
CM
4493}
4494
4495/*
9703fefe 4496 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4497 * @inode - inode that we're zeroing
4498 * @from - the offset to start zeroing
4499 * @len - the length to zero, 0 to zero the entire range respective to the
4500 * offset
4501 * @front - zero up to the offset instead of from the offset on
4502 *
9703fefe 4503 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4504 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4505 */
9703fefe 4506int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4507 int front)
39279cc3 4508{
0b246afa 4509 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4510 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4511 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4512 struct btrfs_ordered_extent *ordered;
2ac55d41 4513 struct extent_state *cached_state = NULL;
364ecf36 4514 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4515 char *kaddr;
6d4572a9 4516 bool only_release_metadata = false;
0b246afa 4517 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4518 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4519 unsigned offset = from & (blocksize - 1);
39279cc3 4520 struct page *page;
3b16a4e3 4521 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4522 size_t write_bytes = blocksize;
39279cc3 4523 int ret = 0;
9703fefe
CR
4524 u64 block_start;
4525 u64 block_end;
39279cc3 4526
b03ebd99
NB
4527 if (IS_ALIGNED(offset, blocksize) &&
4528 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4529 goto out;
9703fefe 4530
8b62f87b
JB
4531 block_start = round_down(from, blocksize);
4532 block_end = block_start + blocksize - 1;
4533
36ea6f3e
NB
4534 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4535 block_start, blocksize);
6d4572a9 4536 if (ret < 0) {
38d37aa9
QW
4537 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4538 &write_bytes) > 0) {
6d4572a9
QW
4539 /* For nocow case, no need to reserve data space */
4540 only_release_metadata = true;
4541 } else {
4542 goto out;
4543 }
4544 }
4545 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4546 if (ret < 0) {
4547 if (!only_release_metadata)
25ce28ca
NB
4548 btrfs_free_reserved_data_space(BTRFS_I(inode),
4549 data_reserved, block_start, blocksize);
6d4572a9
QW
4550 goto out;
4551 }
211c17f5 4552again:
3b16a4e3 4553 page = find_or_create_page(mapping, index, mask);
5d5e103a 4554 if (!page) {
86d52921 4555 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
43b18595 4556 block_start, blocksize, true);
8702ba93 4557 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4558 ret = -ENOMEM;
39279cc3 4559 goto out;
5d5e103a 4560 }
e6dcd2dc 4561
39279cc3 4562 if (!PageUptodate(page)) {
9ebefb18 4563 ret = btrfs_readpage(NULL, page);
39279cc3 4564 lock_page(page);
211c17f5
CM
4565 if (page->mapping != mapping) {
4566 unlock_page(page);
09cbfeaf 4567 put_page(page);
211c17f5
CM
4568 goto again;
4569 }
39279cc3
CM
4570 if (!PageUptodate(page)) {
4571 ret = -EIO;
89642229 4572 goto out_unlock;
39279cc3
CM
4573 }
4574 }
211c17f5 4575 wait_on_page_writeback(page);
e6dcd2dc 4576
9703fefe 4577 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4578 set_page_extent_mapped(page);
4579
c3504372 4580 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
e6dcd2dc 4581 if (ordered) {
9703fefe 4582 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4583 &cached_state);
e6dcd2dc 4584 unlock_page(page);
09cbfeaf 4585 put_page(page);
eb84ae03 4586 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4587 btrfs_put_ordered_extent(ordered);
4588 goto again;
4589 }
4590
9703fefe 4591 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
e182163d
OS
4592 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593 0, 0, &cached_state);
5d5e103a 4594
c2566f22 4595 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
330a5827 4596 &cached_state);
9ed74f2d 4597 if (ret) {
9703fefe 4598 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4599 &cached_state);
9ed74f2d
JB
4600 goto out_unlock;
4601 }
4602
9703fefe 4603 if (offset != blocksize) {
2aaa6655 4604 if (!len)
9703fefe 4605 len = blocksize - offset;
e6dcd2dc 4606 kaddr = kmap(page);
2aaa6655 4607 if (front)
9703fefe
CR
4608 memset(kaddr + (block_start - page_offset(page)),
4609 0, offset);
2aaa6655 4610 else
9703fefe
CR
4611 memset(kaddr + (block_start - page_offset(page)) + offset,
4612 0, len);
e6dcd2dc
CM
4613 flush_dcache_page(page);
4614 kunmap(page);
4615 }
247e743c 4616 ClearPageChecked(page);
e6dcd2dc 4617 set_page_dirty(page);
e43bbe5e 4618 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4619
6d4572a9
QW
4620 if (only_release_metadata)
4621 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4622 block_end, EXTENT_NORESERVE, NULL, NULL,
4623 GFP_NOFS);
4624
89642229 4625out_unlock:
6d4572a9
QW
4626 if (ret) {
4627 if (only_release_metadata)
4628 btrfs_delalloc_release_metadata(BTRFS_I(inode),
4629 blocksize, true);
4630 else
86d52921 4631 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
6d4572a9
QW
4632 block_start, blocksize, true);
4633 }
8702ba93 4634 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4635 unlock_page(page);
09cbfeaf 4636 put_page(page);
39279cc3 4637out:
6d4572a9 4638 if (only_release_metadata)
38d37aa9 4639 btrfs_check_nocow_unlock(BTRFS_I(inode));
364ecf36 4640 extent_changeset_free(data_reserved);
39279cc3
CM
4641 return ret;
4642}
4643
16e7549f
JB
4644static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4645 u64 offset, u64 len)
4646{
0b246afa 4647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4648 struct btrfs_trans_handle *trans;
4649 int ret;
4650
4651 /*
4652 * Still need to make sure the inode looks like it's been updated so
4653 * that any holes get logged if we fsync.
4654 */
0b246afa
JM
4655 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4656 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4657 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4658 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4659 return 0;
4660 }
4661
4662 /*
4663 * 1 - for the one we're dropping
4664 * 1 - for the one we're adding
4665 * 1 - for updating the inode.
4666 */
4667 trans = btrfs_start_transaction(root, 3);
4668 if (IS_ERR(trans))
4669 return PTR_ERR(trans);
4670
4671 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4672 if (ret) {
66642832 4673 btrfs_abort_transaction(trans, ret);
3a45bb20 4674 btrfs_end_transaction(trans);
16e7549f
JB
4675 return ret;
4676 }
4677
f85b7379
DS
4678 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4679 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4680 if (ret)
66642832 4681 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4682 else
4683 btrfs_update_inode(trans, root, inode);
3a45bb20 4684 btrfs_end_transaction(trans);
16e7549f
JB
4685 return ret;
4686}
4687
695a0d0d
JB
4688/*
4689 * This function puts in dummy file extents for the area we're creating a hole
4690 * for. So if we are truncating this file to a larger size we need to insert
4691 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4692 * the range between oldsize and size
4693 */
a41ad394 4694int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4695{
0b246afa 4696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4697 struct btrfs_root *root = BTRFS_I(inode)->root;
4698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4699 struct extent_map *em = NULL;
2ac55d41 4700 struct extent_state *cached_state = NULL;
5dc562c5 4701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4702 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4703 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4704 u64 last_byte;
4705 u64 cur_offset;
4706 u64 hole_size;
9ed74f2d 4707 int err = 0;
39279cc3 4708
a71754fc 4709 /*
9703fefe
CR
4710 * If our size started in the middle of a block we need to zero out the
4711 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4712 * expose stale data.
4713 */
9703fefe 4714 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4715 if (err)
4716 return err;
4717
9036c102
YZ
4718 if (size <= hole_start)
4719 return 0;
4720
b272ae22 4721 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
23d31bd4 4722 block_end - 1, &cached_state);
9036c102
YZ
4723 cur_offset = hole_start;
4724 while (1) {
fc4f21b1 4725 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 4726 block_end - cur_offset);
79787eaa
JM
4727 if (IS_ERR(em)) {
4728 err = PTR_ERR(em);
f2767956 4729 em = NULL;
79787eaa
JM
4730 break;
4731 }
9036c102 4732 last_byte = min(extent_map_end(em), block_end);
0b246afa 4733 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
4734 hole_size = last_byte - cur_offset;
4735
8082510e 4736 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4737 struct extent_map *hole_em;
9ed74f2d 4738
16e7549f
JB
4739 err = maybe_insert_hole(root, inode, cur_offset,
4740 hole_size);
4741 if (err)
3893e33b 4742 break;
9ddc959e
JB
4743
4744 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4745 cur_offset, hole_size);
4746 if (err)
4747 break;
4748
dcdbc059 4749 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4750 cur_offset + hole_size - 1, 0);
4751 hole_em = alloc_extent_map();
4752 if (!hole_em) {
4753 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4754 &BTRFS_I(inode)->runtime_flags);
4755 goto next;
4756 }
4757 hole_em->start = cur_offset;
4758 hole_em->len = hole_size;
4759 hole_em->orig_start = cur_offset;
8082510e 4760
5dc562c5
JB
4761 hole_em->block_start = EXTENT_MAP_HOLE;
4762 hole_em->block_len = 0;
b4939680 4763 hole_em->orig_block_len = 0;
cc95bef6 4764 hole_em->ram_bytes = hole_size;
5dc562c5 4765 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4766 hole_em->generation = fs_info->generation;
8082510e 4767
5dc562c5
JB
4768 while (1) {
4769 write_lock(&em_tree->lock);
09a2a8f9 4770 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4771 write_unlock(&em_tree->lock);
4772 if (err != -EEXIST)
4773 break;
dcdbc059
NB
4774 btrfs_drop_extent_cache(BTRFS_I(inode),
4775 cur_offset,
5dc562c5
JB
4776 cur_offset +
4777 hole_size - 1, 0);
4778 }
4779 free_extent_map(hole_em);
9ddc959e
JB
4780 } else {
4781 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4782 cur_offset, hole_size);
4783 if (err)
4784 break;
9036c102 4785 }
16e7549f 4786next:
9036c102 4787 free_extent_map(em);
a22285a6 4788 em = NULL;
9036c102 4789 cur_offset = last_byte;
8082510e 4790 if (cur_offset >= block_end)
9036c102
YZ
4791 break;
4792 }
a22285a6 4793 free_extent_map(em);
e43bbe5e 4794 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
4795 return err;
4796}
39279cc3 4797
3972f260 4798static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4799{
f4a2f4c5
MX
4800 struct btrfs_root *root = BTRFS_I(inode)->root;
4801 struct btrfs_trans_handle *trans;
a41ad394 4802 loff_t oldsize = i_size_read(inode);
3972f260
ES
4803 loff_t newsize = attr->ia_size;
4804 int mask = attr->ia_valid;
8082510e
YZ
4805 int ret;
4806
3972f260
ES
4807 /*
4808 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4809 * special case where we need to update the times despite not having
4810 * these flags set. For all other operations the VFS set these flags
4811 * explicitly if it wants a timestamp update.
4812 */
dff6efc3
CH
4813 if (newsize != oldsize) {
4814 inode_inc_iversion(inode);
4815 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4816 inode->i_ctime = inode->i_mtime =
c2050a45 4817 current_time(inode);
dff6efc3 4818 }
3972f260 4819
a41ad394 4820 if (newsize > oldsize) {
9ea24bbe 4821 /*
ea14b57f 4822 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
4823 * This is to ensure the snapshot captures a fully consistent
4824 * state of this file - if the snapshot captures this expanding
4825 * truncation, it must capture all writes that happened before
4826 * this truncation.
4827 */
dcc3eb96 4828 btrfs_drew_write_lock(&root->snapshot_lock);
a41ad394 4829 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 4830 if (ret) {
dcc3eb96 4831 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 4832 return ret;
9ea24bbe 4833 }
8082510e 4834
f4a2f4c5 4835 trans = btrfs_start_transaction(root, 1);
9ea24bbe 4836 if (IS_ERR(trans)) {
dcc3eb96 4837 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 4838 return PTR_ERR(trans);
9ea24bbe 4839 }
f4a2f4c5
MX
4840
4841 i_size_write(inode, newsize);
d923afe9 4842 btrfs_inode_safe_disk_i_size_write(inode, 0);
27772b68 4843 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4844 ret = btrfs_update_inode(trans, root, inode);
dcc3eb96 4845 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 4846 btrfs_end_transaction(trans);
a41ad394 4847 } else {
8082510e 4848
a41ad394
JB
4849 /*
4850 * We're truncating a file that used to have good data down to
4851 * zero. Make sure it gets into the ordered flush list so that
4852 * any new writes get down to disk quickly.
4853 */
4854 if (newsize == 0)
72ac3c0d
JB
4855 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4856 &BTRFS_I(inode)->runtime_flags);
8082510e 4857
a41ad394 4858 truncate_setsize(inode, newsize);
2e60a51e 4859
8e0fa5d7
DS
4860 /* Disable nonlocked read DIO to avoid the endless truncate */
4861 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 4862 inode_dio_wait(inode);
8e0fa5d7 4863 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 4864
213e8c55 4865 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
4866 if (ret && inode->i_nlink) {
4867 int err;
4868
4869 /*
f7e9e8fc
OS
4870 * Truncate failed, so fix up the in-memory size. We
4871 * adjusted disk_i_size down as we removed extents, so
4872 * wait for disk_i_size to be stable and then update the
4873 * in-memory size to match.
7f4f6e0a 4874 */
f7e9e8fc 4875 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 4876 if (err)
f7e9e8fc
OS
4877 return err;
4878 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 4879 }
8082510e
YZ
4880 }
4881
a41ad394 4882 return ret;
8082510e
YZ
4883}
4884
9036c102
YZ
4885static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4886{
2b0143b5 4887 struct inode *inode = d_inode(dentry);
b83cc969 4888 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4889 int err;
39279cc3 4890
b83cc969
LZ
4891 if (btrfs_root_readonly(root))
4892 return -EROFS;
4893
31051c85 4894 err = setattr_prepare(dentry, attr);
9036c102
YZ
4895 if (err)
4896 return err;
2bf5a725 4897
5a3f23d5 4898 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4899 err = btrfs_setsize(inode, attr);
8082510e
YZ
4900 if (err)
4901 return err;
39279cc3 4902 }
9036c102 4903
1025774c
CH
4904 if (attr->ia_valid) {
4905 setattr_copy(inode, attr);
0c4d2d95 4906 inode_inc_iversion(inode);
22c44fe6 4907 err = btrfs_dirty_inode(inode);
1025774c 4908
22c44fe6 4909 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4910 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4911 }
33268eaf 4912
39279cc3
CM
4913 return err;
4914}
61295eb8 4915
131e404a
FDBM
4916/*
4917 * While truncating the inode pages during eviction, we get the VFS calling
4918 * btrfs_invalidatepage() against each page of the inode. This is slow because
4919 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4920 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4921 * extent_state structures over and over, wasting lots of time.
4922 *
4923 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4924 * those expensive operations on a per page basis and do only the ordered io
4925 * finishing, while we release here the extent_map and extent_state structures,
4926 * without the excessive merging and splitting.
4927 */
4928static void evict_inode_truncate_pages(struct inode *inode)
4929{
4930 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4931 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4932 struct rb_node *node;
4933
4934 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4935 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4936
4937 write_lock(&map_tree->lock);
07e1ce09 4938 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
4939 struct extent_map *em;
4940
07e1ce09 4941 node = rb_first_cached(&map_tree->map);
131e404a 4942 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4943 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4944 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4945 remove_extent_mapping(map_tree, em);
4946 free_extent_map(em);
7064dd5c
FM
4947 if (need_resched()) {
4948 write_unlock(&map_tree->lock);
4949 cond_resched();
4950 write_lock(&map_tree->lock);
4951 }
131e404a
FDBM
4952 }
4953 write_unlock(&map_tree->lock);
4954
6ca07097
FM
4955 /*
4956 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
4957 * We can have ongoing bios started by readahead that have
4958 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
4959 * still in progress (unlocked the pages in the bio but did not yet
4960 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
4961 * ranges can still be locked and eviction started because before
4962 * submitting those bios, which are executed by a separate task (work
4963 * queue kthread), inode references (inode->i_count) were not taken
4964 * (which would be dropped in the end io callback of each bio).
4965 * Therefore here we effectively end up waiting for those bios and
4966 * anyone else holding locked ranges without having bumped the inode's
4967 * reference count - if we don't do it, when they access the inode's
4968 * io_tree to unlock a range it may be too late, leading to an
4969 * use-after-free issue.
4970 */
131e404a
FDBM
4971 spin_lock(&io_tree->lock);
4972 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4973 struct extent_state *state;
4974 struct extent_state *cached_state = NULL;
6ca07097
FM
4975 u64 start;
4976 u64 end;
421f0922 4977 unsigned state_flags;
131e404a
FDBM
4978
4979 node = rb_first(&io_tree->state);
4980 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
4981 start = state->start;
4982 end = state->end;
421f0922 4983 state_flags = state->state;
131e404a
FDBM
4984 spin_unlock(&io_tree->lock);
4985
ff13db41 4986 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
4987
4988 /*
4989 * If still has DELALLOC flag, the extent didn't reach disk,
4990 * and its reserved space won't be freed by delayed_ref.
4991 * So we need to free its reserved space here.
4992 * (Refer to comment in btrfs_invalidatepage, case 2)
4993 *
4994 * Note, end is the bytenr of last byte, so we need + 1 here.
4995 */
421f0922 4996 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
4997 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4998 end - start + 1);
b9d0b389 4999
6ca07097 5000 clear_extent_bit(io_tree, start, end,
e182163d
OS
5001 EXTENT_LOCKED | EXTENT_DELALLOC |
5002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5003 &cached_state);
131e404a 5004
7064dd5c 5005 cond_resched();
131e404a
FDBM
5006 spin_lock(&io_tree->lock);
5007 }
5008 spin_unlock(&io_tree->lock);
5009}
5010
4b9d7b59 5011static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5012 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5013{
5014 struct btrfs_fs_info *fs_info = root->fs_info;
5015 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d3984c90 5016 struct btrfs_trans_handle *trans;
2bd36e7b 5017 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5018 int ret;
4b9d7b59 5019
d3984c90
JB
5020 /*
5021 * Eviction should be taking place at some place safe because of our
5022 * delayed iputs. However the normal flushing code will run delayed
5023 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5024 *
5025 * We reserve the delayed_refs_extra here again because we can't use
5026 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5027 * above. We reserve our extra bit here because we generate a ton of
5028 * delayed refs activity by truncating.
5029 *
5030 * If we cannot make our reservation we'll attempt to steal from the
5031 * global reserve, because we really want to be able to free up space.
5032 */
5033 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5034 BTRFS_RESERVE_FLUSH_EVICT);
5035 if (ret) {
4b9d7b59
OS
5036 /*
5037 * Try to steal from the global reserve if there is space for
5038 * it.
5039 */
d3984c90
JB
5040 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5041 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5042 btrfs_warn(fs_info,
5043 "could not allocate space for delete; will truncate on mount");
5044 return ERR_PTR(-ENOSPC);
5045 }
5046 delayed_refs_extra = 0;
5047 }
4b9d7b59 5048
d3984c90
JB
5049 trans = btrfs_join_transaction(root);
5050 if (IS_ERR(trans))
5051 return trans;
5052
5053 if (delayed_refs_extra) {
5054 trans->block_rsv = &fs_info->trans_block_rsv;
5055 trans->bytes_reserved = delayed_refs_extra;
5056 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5057 delayed_refs_extra, 1);
4b9d7b59 5058 }
d3984c90 5059 return trans;
4b9d7b59
OS
5060}
5061
bd555975 5062void btrfs_evict_inode(struct inode *inode)
39279cc3 5063{
0b246afa 5064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5065 struct btrfs_trans_handle *trans;
5066 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5067 struct btrfs_block_rsv *rsv;
39279cc3
CM
5068 int ret;
5069
1abe9b8a 5070 trace_btrfs_inode_evict(inode);
5071
3d48d981 5072 if (!root) {
e8f1bc14 5073 clear_inode(inode);
3d48d981
NB
5074 return;
5075 }
5076
131e404a
FDBM
5077 evict_inode_truncate_pages(inode);
5078
69e9c6c6
SB
5079 if (inode->i_nlink &&
5080 ((btrfs_root_refs(&root->root_item) != 0 &&
5081 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5082 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5083 goto no_delete;
5084
27919067 5085 if (is_bad_inode(inode))
39279cc3 5086 goto no_delete;
5f39d397 5087
7ab7956e 5088 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5089
7b40b695 5090 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5091 goto no_delete;
c71bf099 5092
76dda93c 5093 if (inode->i_nlink > 0) {
69e9c6c6
SB
5094 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5096 goto no_delete;
5097 }
5098
aa79021f 5099 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5100 if (ret)
0e8c36a9 5101 goto no_delete;
0e8c36a9 5102
2ff7e61e 5103 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5104 if (!rsv)
4289a667 5105 goto no_delete;
2bd36e7b 5106 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
ca7e70f5 5107 rsv->failfast = 1;
4289a667 5108
6ef06d27 5109 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5110
8082510e 5111 while (1) {
ad80cf50 5112 trans = evict_refill_and_join(root, rsv);
27919067
OS
5113 if (IS_ERR(trans))
5114 goto free_rsv;
7b128766 5115
4289a667
JB
5116 trans->block_rsv = rsv;
5117
d68fc57b 5118 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5119 trans->block_rsv = &fs_info->trans_block_rsv;
5120 btrfs_end_transaction(trans);
5121 btrfs_btree_balance_dirty(fs_info);
5122 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5123 goto free_rsv;
5124 else if (!ret)
8082510e 5125 break;
8082510e 5126 }
5f39d397 5127
4ef31a45 5128 /*
27919067
OS
5129 * Errors here aren't a big deal, it just means we leave orphan items in
5130 * the tree. They will be cleaned up on the next mount. If the inode
5131 * number gets reused, cleanup deletes the orphan item without doing
5132 * anything, and unlink reuses the existing orphan item.
5133 *
5134 * If it turns out that we are dropping too many of these, we might want
5135 * to add a mechanism for retrying these after a commit.
4ef31a45 5136 */
ad80cf50 5137 trans = evict_refill_and_join(root, rsv);
27919067
OS
5138 if (!IS_ERR(trans)) {
5139 trans->block_rsv = rsv;
5140 btrfs_orphan_del(trans, BTRFS_I(inode));
5141 trans->block_rsv = &fs_info->trans_block_rsv;
5142 btrfs_end_transaction(trans);
5143 }
54aa1f4d 5144
0b246afa 5145 if (!(root == fs_info->tree_root ||
581bb050 5146 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5147 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5148
27919067
OS
5149free_rsv:
5150 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5151no_delete:
27919067
OS
5152 /*
5153 * If we didn't successfully delete, the orphan item will still be in
5154 * the tree and we'll retry on the next mount. Again, we might also want
5155 * to retry these periodically in the future.
5156 */
f48d1cf5 5157 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5158 clear_inode(inode);
39279cc3
CM
5159}
5160
5161/*
6bf9e4bd
QW
5162 * Return the key found in the dir entry in the location pointer, fill @type
5163 * with BTRFS_FT_*, and return 0.
5164 *
005d6712
SY
5165 * If no dir entries were found, returns -ENOENT.
5166 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5167 */
5168static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5169 struct btrfs_key *location, u8 *type)
39279cc3
CM
5170{
5171 const char *name = dentry->d_name.name;
5172 int namelen = dentry->d_name.len;
5173 struct btrfs_dir_item *di;
5174 struct btrfs_path *path;
5175 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5176 int ret = 0;
39279cc3
CM
5177
5178 path = btrfs_alloc_path();
d8926bb3
MF
5179 if (!path)
5180 return -ENOMEM;
3954401f 5181
f85b7379
DS
5182 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5183 name, namelen, 0);
3cf5068f
LB
5184 if (IS_ERR_OR_NULL(di)) {
5185 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5186 goto out;
5187 }
d397712b 5188
5f39d397 5189 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5190 if (location->type != BTRFS_INODE_ITEM_KEY &&
5191 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5192 ret = -EUCLEAN;
56a0e706
LB
5193 btrfs_warn(root->fs_info,
5194"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5195 __func__, name, btrfs_ino(BTRFS_I(dir)),
5196 location->objectid, location->type, location->offset);
56a0e706 5197 }
6bf9e4bd
QW
5198 if (!ret)
5199 *type = btrfs_dir_type(path->nodes[0], di);
39279cc3 5200out:
39279cc3
CM
5201 btrfs_free_path(path);
5202 return ret;
5203}
5204
5205/*
5206 * when we hit a tree root in a directory, the btrfs part of the inode
5207 * needs to be changed to reflect the root directory of the tree root. This
5208 * is kind of like crossing a mount point.
5209 */
2ff7e61e 5210static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5211 struct inode *dir,
5212 struct dentry *dentry,
5213 struct btrfs_key *location,
5214 struct btrfs_root **sub_root)
39279cc3 5215{
4df27c4d
YZ
5216 struct btrfs_path *path;
5217 struct btrfs_root *new_root;
5218 struct btrfs_root_ref *ref;
5219 struct extent_buffer *leaf;
1d4c08e0 5220 struct btrfs_key key;
4df27c4d
YZ
5221 int ret;
5222 int err = 0;
39279cc3 5223
4df27c4d
YZ
5224 path = btrfs_alloc_path();
5225 if (!path) {
5226 err = -ENOMEM;
5227 goto out;
5228 }
39279cc3 5229
4df27c4d 5230 err = -ENOENT;
1d4c08e0
DS
5231 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5232 key.type = BTRFS_ROOT_REF_KEY;
5233 key.offset = location->objectid;
5234
0b246afa 5235 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5236 if (ret) {
5237 if (ret < 0)
5238 err = ret;
5239 goto out;
5240 }
39279cc3 5241
4df27c4d
YZ
5242 leaf = path->nodes[0];
5243 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5244 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5245 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5246 goto out;
39279cc3 5247
4df27c4d
YZ
5248 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5249 (unsigned long)(ref + 1),
5250 dentry->d_name.len);
5251 if (ret)
5252 goto out;
5253
b3b4aa74 5254 btrfs_release_path(path);
4df27c4d 5255
56e9357a 5256 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5257 if (IS_ERR(new_root)) {
5258 err = PTR_ERR(new_root);
5259 goto out;
5260 }
5261
4df27c4d
YZ
5262 *sub_root = new_root;
5263 location->objectid = btrfs_root_dirid(&new_root->root_item);
5264 location->type = BTRFS_INODE_ITEM_KEY;
5265 location->offset = 0;
5266 err = 0;
5267out:
5268 btrfs_free_path(path);
5269 return err;
39279cc3
CM
5270}
5271
5d4f98a2
YZ
5272static void inode_tree_add(struct inode *inode)
5273{
5274 struct btrfs_root *root = BTRFS_I(inode)->root;
5275 struct btrfs_inode *entry;
03e860bd
FNP
5276 struct rb_node **p;
5277 struct rb_node *parent;
cef21937 5278 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5279 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5280
1d3382cb 5281 if (inode_unhashed(inode))
76dda93c 5282 return;
e1409cef 5283 parent = NULL;
5d4f98a2 5284 spin_lock(&root->inode_lock);
e1409cef 5285 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5286 while (*p) {
5287 parent = *p;
5288 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5289
37508515 5290 if (ino < btrfs_ino(entry))
03e860bd 5291 p = &parent->rb_left;
37508515 5292 else if (ino > btrfs_ino(entry))
03e860bd 5293 p = &parent->rb_right;
5d4f98a2
YZ
5294 else {
5295 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5296 (I_WILL_FREE | I_FREEING)));
cef21937 5297 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5298 RB_CLEAR_NODE(parent);
5299 spin_unlock(&root->inode_lock);
cef21937 5300 return;
5d4f98a2
YZ
5301 }
5302 }
cef21937
FDBM
5303 rb_link_node(new, parent, p);
5304 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5305 spin_unlock(&root->inode_lock);
5306}
5307
5308static void inode_tree_del(struct inode *inode)
5309{
5310 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5311 int empty = 0;
5d4f98a2 5312
03e860bd 5313 spin_lock(&root->inode_lock);
5d4f98a2 5314 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5315 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5316 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5317 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5318 }
03e860bd 5319 spin_unlock(&root->inode_lock);
76dda93c 5320
69e9c6c6 5321 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5322 spin_lock(&root->inode_lock);
5323 empty = RB_EMPTY_ROOT(&root->inode_tree);
5324 spin_unlock(&root->inode_lock);
5325 if (empty)
5326 btrfs_add_dead_root(root);
5327 }
5328}
5329
5d4f98a2 5330
e02119d5
CM
5331static int btrfs_init_locked_inode(struct inode *inode, void *p)
5332{
5333 struct btrfs_iget_args *args = p;
0202e83f
DS
5334
5335 inode->i_ino = args->ino;
5336 BTRFS_I(inode)->location.objectid = args->ino;
5337 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5338 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5339 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5340 BUG_ON(args->root && !BTRFS_I(inode)->root);
39279cc3
CM
5341 return 0;
5342}
5343
5344static int btrfs_find_actor(struct inode *inode, void *opaque)
5345{
5346 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5347
5348 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5349 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5350}
5351
0202e83f 5352static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5353 struct btrfs_root *root)
39279cc3
CM
5354{
5355 struct inode *inode;
5356 struct btrfs_iget_args args;
0202e83f 5357 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5358
0202e83f 5359 args.ino = ino;
39279cc3
CM
5360 args.root = root;
5361
778ba82b 5362 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5363 btrfs_init_locked_inode,
5364 (void *)&args);
5365 return inode;
5366}
5367
4c66e0d4 5368/*
0202e83f 5369 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5370 * Path can be preallocated to prevent recursing back to iget through
5371 * allocator. NULL is also valid but may require an additional allocation
5372 * later.
1a54ef8c 5373 */
0202e83f 5374struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5375 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5376{
5377 struct inode *inode;
5378
0202e83f 5379 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5380 if (!inode)
5d4f98a2 5381 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5382
5383 if (inode->i_state & I_NEW) {
67710892
FM
5384 int ret;
5385
4222ea71 5386 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5387 if (!ret) {
1748f843
MF
5388 inode_tree_add(inode);
5389 unlock_new_inode(inode);
1748f843 5390 } else {
f5b3a417
AV
5391 iget_failed(inode);
5392 /*
5393 * ret > 0 can come from btrfs_search_slot called by
5394 * btrfs_read_locked_inode, this means the inode item
5395 * was not found.
5396 */
5397 if (ret > 0)
5398 ret = -ENOENT;
5399 inode = ERR_PTR(ret);
1748f843
MF
5400 }
5401 }
5402
1a54ef8c
BR
5403 return inode;
5404}
5405
0202e83f 5406struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5407{
0202e83f 5408 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5409}
5410
4df27c4d
YZ
5411static struct inode *new_simple_dir(struct super_block *s,
5412 struct btrfs_key *key,
5413 struct btrfs_root *root)
5414{
5415 struct inode *inode = new_inode(s);
5416
5417 if (!inode)
5418 return ERR_PTR(-ENOMEM);
5419
5c8fd99f 5420 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5421 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5422 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5423
5424 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5425 /*
5426 * We only need lookup, the rest is read-only and there's no inode
5427 * associated with the dentry
5428 */
5429 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5430 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5431 inode->i_fop = &simple_dir_operations;
5432 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5433 inode->i_mtime = current_time(inode);
9cc97d64 5434 inode->i_atime = inode->i_mtime;
5435 inode->i_ctime = inode->i_mtime;
d3c6be6f 5436 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5437
5438 return inode;
5439}
5440
6bf9e4bd
QW
5441static inline u8 btrfs_inode_type(struct inode *inode)
5442{
5443 /*
5444 * Compile-time asserts that generic FT_* types still match
5445 * BTRFS_FT_* types
5446 */
5447 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5448 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5449 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5450 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5451 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5452 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5453 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5454 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5455
5456 return fs_umode_to_ftype(inode->i_mode);
5457}
5458
3de4586c 5459struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5460{
0b246afa 5461 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5462 struct inode *inode;
4df27c4d 5463 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5464 struct btrfs_root *sub_root = root;
5465 struct btrfs_key location;
6bf9e4bd 5466 u8 di_type = 0;
b4aff1f8 5467 int ret = 0;
39279cc3
CM
5468
5469 if (dentry->d_name.len > BTRFS_NAME_LEN)
5470 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5471
6bf9e4bd 5472 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5473 if (ret < 0)
5474 return ERR_PTR(ret);
5f39d397 5475
4df27c4d 5476 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5477 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5478 if (IS_ERR(inode))
5479 return inode;
5480
5481 /* Do extra check against inode mode with di_type */
5482 if (btrfs_inode_type(inode) != di_type) {
5483 btrfs_crit(fs_info,
5484"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5485 inode->i_mode, btrfs_inode_type(inode),
5486 di_type);
5487 iput(inode);
5488 return ERR_PTR(-EUCLEAN);
5489 }
4df27c4d
YZ
5490 return inode;
5491 }
5492
2ff7e61e 5493 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5494 &location, &sub_root);
5495 if (ret < 0) {
5496 if (ret != -ENOENT)
5497 inode = ERR_PTR(ret);
5498 else
5499 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5500 } else {
0202e83f 5501 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
39279cc3 5502 }
8727002f 5503 if (root != sub_root)
00246528 5504 btrfs_put_root(sub_root);
76dda93c 5505
34d19bad 5506 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5507 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5508 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5509 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5510 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5511 if (ret) {
5512 iput(inode);
66b4ffd1 5513 inode = ERR_PTR(ret);
01cd3367 5514 }
c71bf099
YZ
5515 }
5516
3de4586c
CM
5517 return inode;
5518}
5519
fe15ce44 5520static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5521{
5522 struct btrfs_root *root;
2b0143b5 5523 struct inode *inode = d_inode(dentry);
76dda93c 5524
848cce0d 5525 if (!inode && !IS_ROOT(dentry))
2b0143b5 5526 inode = d_inode(dentry->d_parent);
76dda93c 5527
848cce0d
LZ
5528 if (inode) {
5529 root = BTRFS_I(inode)->root;
efefb143
YZ
5530 if (btrfs_root_refs(&root->root_item) == 0)
5531 return 1;
848cce0d 5532
4a0cc7ca 5533 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5534 return 1;
efefb143 5535 }
76dda93c
YZ
5536 return 0;
5537}
5538
3de4586c 5539static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5540 unsigned int flags)
3de4586c 5541{
3837d208 5542 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5543
3837d208
AV
5544 if (inode == ERR_PTR(-ENOENT))
5545 inode = NULL;
41d28bca 5546 return d_splice_alias(inode, dentry);
39279cc3
CM
5547}
5548
23b5ec74
JB
5549/*
5550 * All this infrastructure exists because dir_emit can fault, and we are holding
5551 * the tree lock when doing readdir. For now just allocate a buffer and copy
5552 * our information into that, and then dir_emit from the buffer. This is
5553 * similar to what NFS does, only we don't keep the buffer around in pagecache
5554 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5555 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5556 * tree lock.
5557 */
5558static int btrfs_opendir(struct inode *inode, struct file *file)
5559{
5560 struct btrfs_file_private *private;
5561
5562 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5563 if (!private)
5564 return -ENOMEM;
5565 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5566 if (!private->filldir_buf) {
5567 kfree(private);
5568 return -ENOMEM;
5569 }
5570 file->private_data = private;
5571 return 0;
5572}
5573
5574struct dir_entry {
5575 u64 ino;
5576 u64 offset;
5577 unsigned type;
5578 int name_len;
5579};
5580
5581static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5582{
5583 while (entries--) {
5584 struct dir_entry *entry = addr;
5585 char *name = (char *)(entry + 1);
5586
92d32170
DS
5587 ctx->pos = get_unaligned(&entry->offset);
5588 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5589 get_unaligned(&entry->ino),
5590 get_unaligned(&entry->type)))
23b5ec74 5591 return 1;
92d32170
DS
5592 addr += sizeof(struct dir_entry) +
5593 get_unaligned(&entry->name_len);
23b5ec74
JB
5594 ctx->pos++;
5595 }
5596 return 0;
5597}
5598
9cdda8d3 5599static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5600{
9cdda8d3 5601 struct inode *inode = file_inode(file);
39279cc3 5602 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5603 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5604 struct btrfs_dir_item *di;
5605 struct btrfs_key key;
5f39d397 5606 struct btrfs_key found_key;
39279cc3 5607 struct btrfs_path *path;
23b5ec74 5608 void *addr;
16cdcec7
MX
5609 struct list_head ins_list;
5610 struct list_head del_list;
39279cc3 5611 int ret;
5f39d397 5612 struct extent_buffer *leaf;
39279cc3 5613 int slot;
5f39d397
CM
5614 char *name_ptr;
5615 int name_len;
23b5ec74
JB
5616 int entries = 0;
5617 int total_len = 0;
02dbfc99 5618 bool put = false;
c2951f32 5619 struct btrfs_key location;
5f39d397 5620
9cdda8d3
AV
5621 if (!dir_emit_dots(file, ctx))
5622 return 0;
5623
49593bfa 5624 path = btrfs_alloc_path();
16cdcec7
MX
5625 if (!path)
5626 return -ENOMEM;
ff5714cc 5627
23b5ec74 5628 addr = private->filldir_buf;
e4058b54 5629 path->reada = READA_FORWARD;
49593bfa 5630
c2951f32
JM
5631 INIT_LIST_HEAD(&ins_list);
5632 INIT_LIST_HEAD(&del_list);
5633 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5634
23b5ec74 5635again:
c2951f32 5636 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5637 key.offset = ctx->pos;
4a0cc7ca 5638 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5639
39279cc3
CM
5640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641 if (ret < 0)
5642 goto err;
49593bfa
DW
5643
5644 while (1) {
23b5ec74
JB
5645 struct dir_entry *entry;
5646
5f39d397 5647 leaf = path->nodes[0];
39279cc3 5648 slot = path->slots[0];
b9e03af0
LZ
5649 if (slot >= btrfs_header_nritems(leaf)) {
5650 ret = btrfs_next_leaf(root, path);
5651 if (ret < 0)
5652 goto err;
5653 else if (ret > 0)
5654 break;
5655 continue;
39279cc3 5656 }
3de4586c 5657
5f39d397
CM
5658 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5659
5660 if (found_key.objectid != key.objectid)
39279cc3 5661 break;
c2951f32 5662 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5663 break;
9cdda8d3 5664 if (found_key.offset < ctx->pos)
b9e03af0 5665 goto next;
c2951f32 5666 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5667 goto next;
39279cc3 5668 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5669 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5670 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5671 PAGE_SIZE) {
5672 btrfs_release_path(path);
5673 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5674 if (ret)
5675 goto nopos;
5676 addr = private->filldir_buf;
5677 entries = 0;
5678 total_len = 0;
5679 goto again;
c2951f32 5680 }
23b5ec74
JB
5681
5682 entry = addr;
92d32170 5683 put_unaligned(name_len, &entry->name_len);
23b5ec74 5684 name_ptr = (char *)(entry + 1);
c2951f32
JM
5685 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5686 name_len);
7d157c3d 5687 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
92d32170 5688 &entry->type);
c2951f32 5689 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5690 put_unaligned(location.objectid, &entry->ino);
5691 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5692 entries++;
5693 addr += sizeof(struct dir_entry) + name_len;
5694 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5695next:
5696 path->slots[0]++;
39279cc3 5697 }
23b5ec74
JB
5698 btrfs_release_path(path);
5699
5700 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5701 if (ret)
5702 goto nopos;
49593bfa 5703
d2fbb2b5 5704 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5705 if (ret)
bc4ef759
DS
5706 goto nopos;
5707
db62efbb
ZB
5708 /*
5709 * Stop new entries from being returned after we return the last
5710 * entry.
5711 *
5712 * New directory entries are assigned a strictly increasing
5713 * offset. This means that new entries created during readdir
5714 * are *guaranteed* to be seen in the future by that readdir.
5715 * This has broken buggy programs which operate on names as
5716 * they're returned by readdir. Until we re-use freed offsets
5717 * we have this hack to stop new entries from being returned
5718 * under the assumption that they'll never reach this huge
5719 * offset.
5720 *
5721 * This is being careful not to overflow 32bit loff_t unless the
5722 * last entry requires it because doing so has broken 32bit apps
5723 * in the past.
5724 */
c2951f32
JM
5725 if (ctx->pos >= INT_MAX)
5726 ctx->pos = LLONG_MAX;
5727 else
5728 ctx->pos = INT_MAX;
39279cc3
CM
5729nopos:
5730 ret = 0;
5731err:
02dbfc99
OS
5732 if (put)
5733 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5734 btrfs_free_path(path);
39279cc3
CM
5735 return ret;
5736}
5737
39279cc3 5738/*
54aa1f4d 5739 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5740 * inode changes. But, it is most likely to find the inode in cache.
5741 * FIXME, needs more benchmarking...there are no reasons other than performance
5742 * to keep or drop this code.
5743 */
48a3b636 5744static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5745{
2ff7e61e 5746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5747 struct btrfs_root *root = BTRFS_I(inode)->root;
5748 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5749 int ret;
5750
72ac3c0d 5751 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5752 return 0;
39279cc3 5753
7a7eaa40 5754 trans = btrfs_join_transaction(root);
22c44fe6
JB
5755 if (IS_ERR(trans))
5756 return PTR_ERR(trans);
8929ecfa
YZ
5757
5758 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5759 if (ret && ret == -ENOSPC) {
5760 /* whoops, lets try again with the full transaction */
3a45bb20 5761 btrfs_end_transaction(trans);
94b60442 5762 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5763 if (IS_ERR(trans))
5764 return PTR_ERR(trans);
8929ecfa 5765
94b60442 5766 ret = btrfs_update_inode(trans, root, inode);
94b60442 5767 }
3a45bb20 5768 btrfs_end_transaction(trans);
16cdcec7 5769 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 5770 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
5771
5772 return ret;
5773}
5774
5775/*
5776 * This is a copy of file_update_time. We need this so we can return error on
5777 * ENOSPC for updating the inode in the case of file write and mmap writes.
5778 */
95582b00 5779static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 5780 int flags)
22c44fe6 5781{
2bc55652 5782 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 5783 bool dirty = flags & ~S_VERSION;
2bc55652
AB
5784
5785 if (btrfs_root_readonly(root))
5786 return -EROFS;
5787
e41f941a 5788 if (flags & S_VERSION)
3a8c7231 5789 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
5790 if (flags & S_CTIME)
5791 inode->i_ctime = *now;
5792 if (flags & S_MTIME)
5793 inode->i_mtime = *now;
5794 if (flags & S_ATIME)
5795 inode->i_atime = *now;
3a8c7231 5796 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
5797}
5798
d352ac68
CM
5799/*
5800 * find the highest existing sequence number in a directory
5801 * and then set the in-memory index_cnt variable to reflect
5802 * free sequence numbers
5803 */
4c570655 5804static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 5805{
4c570655 5806 struct btrfs_root *root = inode->root;
aec7477b
JB
5807 struct btrfs_key key, found_key;
5808 struct btrfs_path *path;
5809 struct extent_buffer *leaf;
5810 int ret;
5811
4c570655 5812 key.objectid = btrfs_ino(inode);
962a298f 5813 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5814 key.offset = (u64)-1;
5815
5816 path = btrfs_alloc_path();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5821 if (ret < 0)
5822 goto out;
5823 /* FIXME: we should be able to handle this */
5824 if (ret == 0)
5825 goto out;
5826 ret = 0;
5827
5828 /*
5829 * MAGIC NUMBER EXPLANATION:
5830 * since we search a directory based on f_pos we have to start at 2
5831 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5832 * else has to start at 2
5833 */
5834 if (path->slots[0] == 0) {
4c570655 5835 inode->index_cnt = 2;
aec7477b
JB
5836 goto out;
5837 }
5838
5839 path->slots[0]--;
5840
5841 leaf = path->nodes[0];
5842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5843
4c570655 5844 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5845 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 5846 inode->index_cnt = 2;
aec7477b
JB
5847 goto out;
5848 }
5849
4c570655 5850 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
5851out:
5852 btrfs_free_path(path);
5853 return ret;
5854}
5855
d352ac68
CM
5856/*
5857 * helper to find a free sequence number in a given directory. This current
5858 * code is very simple, later versions will do smarter things in the btree
5859 */
877574e2 5860int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
5861{
5862 int ret = 0;
5863
877574e2
NB
5864 if (dir->index_cnt == (u64)-1) {
5865 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
5866 if (ret) {
5867 ret = btrfs_set_inode_index_count(dir);
5868 if (ret)
5869 return ret;
5870 }
aec7477b
JB
5871 }
5872
877574e2
NB
5873 *index = dir->index_cnt;
5874 dir->index_cnt++;
aec7477b
JB
5875
5876 return ret;
5877}
5878
b0d5d10f
CM
5879static int btrfs_insert_inode_locked(struct inode *inode)
5880{
5881 struct btrfs_iget_args args;
0202e83f
DS
5882
5883 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
5884 args.root = BTRFS_I(inode)->root;
5885
5886 return insert_inode_locked4(inode,
5887 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5888 btrfs_find_actor, &args);
5889}
5890
19aee8de
AJ
5891/*
5892 * Inherit flags from the parent inode.
5893 *
5894 * Currently only the compression flags and the cow flags are inherited.
5895 */
5896static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5897{
5898 unsigned int flags;
5899
5900 if (!dir)
5901 return;
5902
5903 flags = BTRFS_I(dir)->flags;
5904
5905 if (flags & BTRFS_INODE_NOCOMPRESS) {
5906 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5907 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5908 } else if (flags & BTRFS_INODE_COMPRESS) {
5909 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5910 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5911 }
5912
5913 if (flags & BTRFS_INODE_NODATACOW) {
5914 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5915 if (S_ISREG(inode->i_mode))
5916 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5917 }
5918
7b6a221e 5919 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
5920}
5921
39279cc3
CM
5922static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5923 struct btrfs_root *root,
aec7477b 5924 struct inode *dir,
9c58309d 5925 const char *name, int name_len,
175a4eb7
AV
5926 u64 ref_objectid, u64 objectid,
5927 umode_t mode, u64 *index)
39279cc3 5928{
0b246afa 5929 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 5930 struct inode *inode;
5f39d397 5931 struct btrfs_inode_item *inode_item;
39279cc3 5932 struct btrfs_key *location;
5f39d397 5933 struct btrfs_path *path;
9c58309d
CM
5934 struct btrfs_inode_ref *ref;
5935 struct btrfs_key key[2];
5936 u32 sizes[2];
ef3b9af5 5937 int nitems = name ? 2 : 1;
9c58309d 5938 unsigned long ptr;
11a19a90 5939 unsigned int nofs_flag;
39279cc3 5940 int ret;
39279cc3 5941
5f39d397 5942 path = btrfs_alloc_path();
d8926bb3
MF
5943 if (!path)
5944 return ERR_PTR(-ENOMEM);
5f39d397 5945
11a19a90 5946 nofs_flag = memalloc_nofs_save();
0b246afa 5947 inode = new_inode(fs_info->sb);
11a19a90 5948 memalloc_nofs_restore(nofs_flag);
8fb27640
YS
5949 if (!inode) {
5950 btrfs_free_path(path);
39279cc3 5951 return ERR_PTR(-ENOMEM);
8fb27640 5952 }
39279cc3 5953
5762b5c9
FM
5954 /*
5955 * O_TMPFILE, set link count to 0, so that after this point,
5956 * we fill in an inode item with the correct link count.
5957 */
5958 if (!name)
5959 set_nlink(inode, 0);
5960
581bb050
LZ
5961 /*
5962 * we have to initialize this early, so we can reclaim the inode
5963 * number if we fail afterwards in this function.
5964 */
5965 inode->i_ino = objectid;
5966
ef3b9af5 5967 if (dir && name) {
1abe9b8a 5968 trace_btrfs_inode_request(dir);
5969
877574e2 5970 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 5971 if (ret) {
8fb27640 5972 btrfs_free_path(path);
09771430 5973 iput(inode);
aec7477b 5974 return ERR_PTR(ret);
09771430 5975 }
ef3b9af5
FM
5976 } else if (dir) {
5977 *index = 0;
aec7477b
JB
5978 }
5979 /*
5980 * index_cnt is ignored for everything but a dir,
df6703e1 5981 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
5982 * number
5983 */
5984 BTRFS_I(inode)->index_cnt = 2;
67de1176 5985 BTRFS_I(inode)->dir_index = *index;
5c8fd99f 5986 BTRFS_I(inode)->root = btrfs_grab_root(root);
e02119d5 5987 BTRFS_I(inode)->generation = trans->transid;
76195853 5988 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5989
5dc562c5
JB
5990 /*
5991 * We could have gotten an inode number from somebody who was fsynced
5992 * and then removed in this same transaction, so let's just set full
5993 * sync since it will be a full sync anyway and this will blow away the
5994 * old info in the log.
5995 */
5996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5997
9c58309d 5998 key[0].objectid = objectid;
962a298f 5999 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6000 key[0].offset = 0;
6001
9c58309d 6002 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6003
6004 if (name) {
6005 /*
6006 * Start new inodes with an inode_ref. This is slightly more
6007 * efficient for small numbers of hard links since they will
6008 * be packed into one item. Extended refs will kick in if we
6009 * add more hard links than can fit in the ref item.
6010 */
6011 key[1].objectid = objectid;
962a298f 6012 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6013 key[1].offset = ref_objectid;
6014
6015 sizes[1] = name_len + sizeof(*ref);
6016 }
9c58309d 6017
b0d5d10f
CM
6018 location = &BTRFS_I(inode)->location;
6019 location->objectid = objectid;
6020 location->offset = 0;
962a298f 6021 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6022
6023 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6024 if (ret < 0) {
6025 iput(inode);
b0d5d10f 6026 goto fail;
32955c54 6027 }
b0d5d10f 6028
b9473439 6029 path->leave_spinning = 1;
ef3b9af5 6030 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6031 if (ret != 0)
b0d5d10f 6032 goto fail_unlock;
5f39d397 6033
ecc11fab 6034 inode_init_owner(inode, dir, mode);
a76a3cd4 6035 inode_set_bytes(inode, 0);
9cc97d64 6036
c2050a45 6037 inode->i_mtime = current_time(inode);
9cc97d64 6038 inode->i_atime = inode->i_mtime;
6039 inode->i_ctime = inode->i_mtime;
d3c6be6f 6040 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6041
5f39d397
CM
6042 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6043 struct btrfs_inode_item);
b159fa28 6044 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6045 sizeof(*inode_item));
e02119d5 6046 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6047
ef3b9af5
FM
6048 if (name) {
6049 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6050 struct btrfs_inode_ref);
6051 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6052 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6053 ptr = (unsigned long)(ref + 1);
6054 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6055 }
9c58309d 6056
5f39d397
CM
6057 btrfs_mark_buffer_dirty(path->nodes[0]);
6058 btrfs_free_path(path);
6059
6cbff00f
CH
6060 btrfs_inherit_iflags(inode, dir);
6061
569254b0 6062 if (S_ISREG(mode)) {
0b246afa 6063 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6064 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6065 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6066 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6067 BTRFS_INODE_NODATASUM;
94272164
CM
6068 }
6069
5d4f98a2 6070 inode_tree_add(inode);
1abe9b8a 6071
6072 trace_btrfs_inode_new(inode);
d9094414 6073 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6074
8ea05e3a
AB
6075 btrfs_update_root_times(trans, root);
6076
63541927
FDBM
6077 ret = btrfs_inode_inherit_props(trans, inode, dir);
6078 if (ret)
0b246afa 6079 btrfs_err(fs_info,
63541927 6080 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6081 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6082
39279cc3 6083 return inode;
b0d5d10f
CM
6084
6085fail_unlock:
32955c54 6086 discard_new_inode(inode);
5f39d397 6087fail:
ef3b9af5 6088 if (dir && name)
aec7477b 6089 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6090 btrfs_free_path(path);
6091 return ERR_PTR(ret);
39279cc3
CM
6092}
6093
d352ac68
CM
6094/*
6095 * utility function to add 'inode' into 'parent_inode' with
6096 * a give name and a given sequence number.
6097 * if 'add_backref' is true, also insert a backref from the
6098 * inode to the parent directory.
6099 */
e02119d5 6100int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6101 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6102 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6103{
4df27c4d 6104 int ret = 0;
39279cc3 6105 struct btrfs_key key;
db0a669f
NB
6106 struct btrfs_root *root = parent_inode->root;
6107 u64 ino = btrfs_ino(inode);
6108 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6109
33345d01 6110 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6111 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6112 } else {
33345d01 6113 key.objectid = ino;
962a298f 6114 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6115 key.offset = 0;
6116 }
6117
33345d01 6118 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6119 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6120 root->root_key.objectid, parent_ino,
6121 index, name, name_len);
4df27c4d 6122 } else if (add_backref) {
33345d01
LZ
6123 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6124 parent_ino, index);
4df27c4d 6125 }
39279cc3 6126
79787eaa
JM
6127 /* Nothing to clean up yet */
6128 if (ret)
6129 return ret;
4df27c4d 6130
684572df 6131 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6132 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6133 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6134 goto fail_dir_item;
6135 else if (ret) {
66642832 6136 btrfs_abort_transaction(trans, ret);
79787eaa 6137 return ret;
39279cc3 6138 }
79787eaa 6139
db0a669f 6140 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6141 name_len * 2);
db0a669f 6142 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6143 /*
6144 * If we are replaying a log tree, we do not want to update the mtime
6145 * and ctime of the parent directory with the current time, since the
6146 * log replay procedure is responsible for setting them to their correct
6147 * values (the ones it had when the fsync was done).
6148 */
6149 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6150 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6151
6152 parent_inode->vfs_inode.i_mtime = now;
6153 parent_inode->vfs_inode.i_ctime = now;
6154 }
db0a669f 6155 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6156 if (ret)
66642832 6157 btrfs_abort_transaction(trans, ret);
39279cc3 6158 return ret;
fe66a05a
CM
6159
6160fail_dir_item:
6161 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162 u64 local_index;
6163 int err;
3ee1c553 6164 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6165 root->root_key.objectid, parent_ino,
6166 &local_index, name, name_len);
1690dd41
JT
6167 if (err)
6168 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6169 } else if (add_backref) {
6170 u64 local_index;
6171 int err;
6172
6173 err = btrfs_del_inode_ref(trans, root, name, name_len,
6174 ino, parent_ino, &local_index);
1690dd41
JT
6175 if (err)
6176 btrfs_abort_transaction(trans, err);
fe66a05a 6177 }
1690dd41
JT
6178
6179 /* Return the original error code */
fe66a05a 6180 return ret;
39279cc3
CM
6181}
6182
6183static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6184 struct btrfs_inode *dir, struct dentry *dentry,
6185 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6186{
a1b075d2
JB
6187 int err = btrfs_add_link(trans, dir, inode,
6188 dentry->d_name.name, dentry->d_name.len,
6189 backref, index);
39279cc3
CM
6190 if (err > 0)
6191 err = -EEXIST;
6192 return err;
6193}
6194
618e21d5 6195static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6196 umode_t mode, dev_t rdev)
618e21d5 6197{
2ff7e61e 6198 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6199 struct btrfs_trans_handle *trans;
6200 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6201 struct inode *inode = NULL;
618e21d5 6202 int err;
618e21d5 6203 u64 objectid;
00e4e6b3 6204 u64 index = 0;
618e21d5 6205
9ed74f2d
JB
6206 /*
6207 * 2 for inode item and ref
6208 * 2 for dir items
6209 * 1 for xattr if selinux is on
6210 */
a22285a6
YZ
6211 trans = btrfs_start_transaction(root, 5);
6212 if (IS_ERR(trans))
6213 return PTR_ERR(trans);
1832a6d5 6214
581bb050
LZ
6215 err = btrfs_find_free_ino(root, &objectid);
6216 if (err)
6217 goto out_unlock;
6218
aec7477b 6219 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6220 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6221 mode, &index);
7cf96da3
TI
6222 if (IS_ERR(inode)) {
6223 err = PTR_ERR(inode);
32955c54 6224 inode = NULL;
618e21d5 6225 goto out_unlock;
7cf96da3 6226 }
618e21d5 6227
ad19db71
CS
6228 /*
6229 * If the active LSM wants to access the inode during
6230 * d_instantiate it needs these. Smack checks to see
6231 * if the filesystem supports xattrs by looking at the
6232 * ops vector.
6233 */
ad19db71 6234 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6235 init_special_inode(inode, inode->i_mode, rdev);
6236
6237 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6238 if (err)
32955c54 6239 goto out_unlock;
b0d5d10f 6240
cef415af
NB
6241 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6242 0, index);
32955c54
AV
6243 if (err)
6244 goto out_unlock;
6245
6246 btrfs_update_inode(trans, root, inode);
6247 d_instantiate_new(dentry, inode);
b0d5d10f 6248
618e21d5 6249out_unlock:
3a45bb20 6250 btrfs_end_transaction(trans);
2ff7e61e 6251 btrfs_btree_balance_dirty(fs_info);
32955c54 6252 if (err && inode) {
618e21d5 6253 inode_dec_link_count(inode);
32955c54 6254 discard_new_inode(inode);
618e21d5 6255 }
618e21d5
JB
6256 return err;
6257}
6258
39279cc3 6259static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6260 umode_t mode, bool excl)
39279cc3 6261{
2ff7e61e 6262 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6263 struct btrfs_trans_handle *trans;
6264 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6265 struct inode *inode = NULL;
a22285a6 6266 int err;
39279cc3 6267 u64 objectid;
00e4e6b3 6268 u64 index = 0;
39279cc3 6269
9ed74f2d
JB
6270 /*
6271 * 2 for inode item and ref
6272 * 2 for dir items
6273 * 1 for xattr if selinux is on
6274 */
a22285a6
YZ
6275 trans = btrfs_start_transaction(root, 5);
6276 if (IS_ERR(trans))
6277 return PTR_ERR(trans);
9ed74f2d 6278
581bb050
LZ
6279 err = btrfs_find_free_ino(root, &objectid);
6280 if (err)
6281 goto out_unlock;
6282
aec7477b 6283 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6284 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6285 mode, &index);
7cf96da3
TI
6286 if (IS_ERR(inode)) {
6287 err = PTR_ERR(inode);
32955c54 6288 inode = NULL;
39279cc3 6289 goto out_unlock;
7cf96da3 6290 }
ad19db71
CS
6291 /*
6292 * If the active LSM wants to access the inode during
6293 * d_instantiate it needs these. Smack checks to see
6294 * if the filesystem supports xattrs by looking at the
6295 * ops vector.
6296 */
6297 inode->i_fop = &btrfs_file_operations;
6298 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6299 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6300
6301 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6302 if (err)
32955c54 6303 goto out_unlock;
b0d5d10f
CM
6304
6305 err = btrfs_update_inode(trans, root, inode);
6306 if (err)
32955c54 6307 goto out_unlock;
ad19db71 6308
cef415af
NB
6309 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6310 0, index);
39279cc3 6311 if (err)
32955c54 6312 goto out_unlock;
43baa579 6313
43baa579 6314 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6315 d_instantiate_new(dentry, inode);
43baa579 6316
39279cc3 6317out_unlock:
3a45bb20 6318 btrfs_end_transaction(trans);
32955c54 6319 if (err && inode) {
39279cc3 6320 inode_dec_link_count(inode);
32955c54 6321 discard_new_inode(inode);
39279cc3 6322 }
2ff7e61e 6323 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6324 return err;
6325}
6326
6327static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6328 struct dentry *dentry)
6329{
271dba45 6330 struct btrfs_trans_handle *trans = NULL;
39279cc3 6331 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6332 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6333 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6334 u64 index;
39279cc3
CM
6335 int err;
6336 int drop_inode = 0;
6337
4a8be425 6338 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6339 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6340 return -EXDEV;
4a8be425 6341
f186373f 6342 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6343 return -EMLINK;
4a8be425 6344
877574e2 6345 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6346 if (err)
6347 goto fail;
6348
a22285a6 6349 /*
7e6b6465 6350 * 2 items for inode and inode ref
a22285a6 6351 * 2 items for dir items
7e6b6465 6352 * 1 item for parent inode
399b0bbf 6353 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6354 */
399b0bbf 6355 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6356 if (IS_ERR(trans)) {
6357 err = PTR_ERR(trans);
271dba45 6358 trans = NULL;
a22285a6
YZ
6359 goto fail;
6360 }
5f39d397 6361
67de1176
MX
6362 /* There are several dir indexes for this inode, clear the cache. */
6363 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6364 inc_nlink(inode);
0c4d2d95 6365 inode_inc_iversion(inode);
c2050a45 6366 inode->i_ctime = current_time(inode);
7de9c6ee 6367 ihold(inode);
e9976151 6368 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6369
cef415af
NB
6370 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371 1, index);
5f39d397 6372
a5719521 6373 if (err) {
54aa1f4d 6374 drop_inode = 1;
a5719521 6375 } else {
10d9f309 6376 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6377 int ret;
6378
a5719521 6379 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6380 if (err)
6381 goto fail;
ef3b9af5
FM
6382 if (inode->i_nlink == 1) {
6383 /*
6384 * If new hard link count is 1, it's a file created
6385 * with open(2) O_TMPFILE flag.
6386 */
3d6ae7bb 6387 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6388 if (err)
6389 goto fail;
6390 }
08c422c2 6391 d_instantiate(dentry, inode);
d4682ba0
FM
6392 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6393 true, NULL);
6394 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6395 err = btrfs_commit_transaction(trans);
6396 trans = NULL;
6397 }
a5719521 6398 }
39279cc3 6399
1832a6d5 6400fail:
271dba45 6401 if (trans)
3a45bb20 6402 btrfs_end_transaction(trans);
39279cc3
CM
6403 if (drop_inode) {
6404 inode_dec_link_count(inode);
6405 iput(inode);
6406 }
2ff7e61e 6407 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6408 return err;
6409}
6410
18bb1db3 6411static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6412{
2ff7e61e 6413 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6414 struct inode *inode = NULL;
39279cc3
CM
6415 struct btrfs_trans_handle *trans;
6416 struct btrfs_root *root = BTRFS_I(dir)->root;
6417 int err = 0;
b9d86667 6418 u64 objectid = 0;
00e4e6b3 6419 u64 index = 0;
39279cc3 6420
9ed74f2d
JB
6421 /*
6422 * 2 items for inode and ref
6423 * 2 items for dir items
6424 * 1 for xattr if selinux is on
6425 */
a22285a6
YZ
6426 trans = btrfs_start_transaction(root, 5);
6427 if (IS_ERR(trans))
6428 return PTR_ERR(trans);
39279cc3 6429
581bb050
LZ
6430 err = btrfs_find_free_ino(root, &objectid);
6431 if (err)
6432 goto out_fail;
6433
aec7477b 6434 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6435 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6436 S_IFDIR | mode, &index);
39279cc3
CM
6437 if (IS_ERR(inode)) {
6438 err = PTR_ERR(inode);
32955c54 6439 inode = NULL;
39279cc3
CM
6440 goto out_fail;
6441 }
5f39d397 6442
b0d5d10f
CM
6443 /* these must be set before we unlock the inode */
6444 inode->i_op = &btrfs_dir_inode_operations;
6445 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6446
2a7dba39 6447 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6448 if (err)
32955c54 6449 goto out_fail;
39279cc3 6450
6ef06d27 6451 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6452 err = btrfs_update_inode(trans, root, inode);
6453 if (err)
32955c54 6454 goto out_fail;
5f39d397 6455
db0a669f
NB
6456 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6457 dentry->d_name.name,
6458 dentry->d_name.len, 0, index);
39279cc3 6459 if (err)
32955c54 6460 goto out_fail;
5f39d397 6461
1e2e547a 6462 d_instantiate_new(dentry, inode);
39279cc3
CM
6463
6464out_fail:
3a45bb20 6465 btrfs_end_transaction(trans);
32955c54 6466 if (err && inode) {
c7cfb8a5 6467 inode_dec_link_count(inode);
32955c54 6468 discard_new_inode(inode);
c7cfb8a5 6469 }
2ff7e61e 6470 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6471 return err;
6472}
6473
c8b97818 6474static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6475 struct page *page,
c8b97818
CM
6476 size_t pg_offset, u64 extent_offset,
6477 struct btrfs_file_extent_item *item)
6478{
6479 int ret;
6480 struct extent_buffer *leaf = path->nodes[0];
6481 char *tmp;
6482 size_t max_size;
6483 unsigned long inline_size;
6484 unsigned long ptr;
261507a0 6485 int compress_type;
c8b97818
CM
6486
6487 WARN_ON(pg_offset != 0);
261507a0 6488 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6489 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6490 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6491 btrfs_item_nr(path->slots[0]));
c8b97818 6492 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6493 if (!tmp)
6494 return -ENOMEM;
c8b97818
CM
6495 ptr = btrfs_file_extent_inline_start(item);
6496
6497 read_extent_buffer(leaf, tmp, ptr, inline_size);
6498
09cbfeaf 6499 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6500 ret = btrfs_decompress(compress_type, tmp, page,
6501 extent_offset, inline_size, max_size);
e1699d2d
ZB
6502
6503 /*
6504 * decompression code contains a memset to fill in any space between the end
6505 * of the uncompressed data and the end of max_size in case the decompressed
6506 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6507 * the end of an inline extent and the beginning of the next block, so we
6508 * cover that region here.
6509 */
6510
6511 if (max_size + pg_offset < PAGE_SIZE) {
6512 char *map = kmap(page);
6513 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6514 kunmap(page);
6515 }
c8b97818 6516 kfree(tmp);
166ae5a4 6517 return ret;
c8b97818
CM
6518}
6519
39b07b5d
OS
6520/**
6521 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6522 * @inode: file to search in
6523 * @page: page to read extent data into if the extent is inline
6524 * @pg_offset: offset into @page to copy to
6525 * @start: file offset
6526 * @len: length of range starting at @start
6527 *
6528 * This returns the first &struct extent_map which overlaps with the given
6529 * range, reading it from the B-tree and caching it if necessary. Note that
6530 * there may be more extents which overlap the given range after the returned
6531 * extent_map.
d352ac68 6532 *
39b07b5d
OS
6533 * If @page is not NULL and the extent is inline, this also reads the extent
6534 * data directly into the page and marks the extent up to date in the io_tree.
6535 *
6536 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6537 */
fc4f21b1 6538struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6539 struct page *page, size_t pg_offset,
6540 u64 start, u64 len)
a52d9a80 6541{
3ffbd68c 6542 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6543 int ret;
6544 int err = 0;
a52d9a80
CM
6545 u64 extent_start = 0;
6546 u64 extent_end = 0;
fc4f21b1 6547 u64 objectid = btrfs_ino(inode);
7e74e235 6548 int extent_type = -1;
f421950f 6549 struct btrfs_path *path = NULL;
fc4f21b1 6550 struct btrfs_root *root = inode->root;
a52d9a80 6551 struct btrfs_file_extent_item *item;
5f39d397
CM
6552 struct extent_buffer *leaf;
6553 struct btrfs_key found_key;
a52d9a80 6554 struct extent_map *em = NULL;
fc4f21b1
NB
6555 struct extent_map_tree *em_tree = &inode->extent_tree;
6556 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6557
890871be 6558 read_lock(&em_tree->lock);
d1310b2e 6559 em = lookup_extent_mapping(em_tree, start, len);
890871be 6560 read_unlock(&em_tree->lock);
d1310b2e 6561
a52d9a80 6562 if (em) {
e1c4b745
CM
6563 if (em->start > start || em->start + em->len <= start)
6564 free_extent_map(em);
6565 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6566 free_extent_map(em);
6567 else
6568 goto out;
a52d9a80 6569 }
172ddd60 6570 em = alloc_extent_map();
a52d9a80 6571 if (!em) {
d1310b2e
CM
6572 err = -ENOMEM;
6573 goto out;
a52d9a80 6574 }
d1310b2e 6575 em->start = EXTENT_MAP_HOLE;
445a6944 6576 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6577 em->len = (u64)-1;
c8b97818 6578 em->block_len = (u64)-1;
f421950f 6579
bee6ec82 6580 path = btrfs_alloc_path();
f421950f 6581 if (!path) {
bee6ec82
LB
6582 err = -ENOMEM;
6583 goto out;
f421950f
CM
6584 }
6585
bee6ec82
LB
6586 /* Chances are we'll be called again, so go ahead and do readahead */
6587 path->reada = READA_FORWARD;
6588
e49aabd9
LB
6589 /*
6590 * Unless we're going to uncompress the inline extent, no sleep would
6591 * happen.
6592 */
6593 path->leave_spinning = 1;
6594
5c9a702e 6595 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6596 if (ret < 0) {
6597 err = ret;
6598 goto out;
b8eeab7f 6599 } else if (ret > 0) {
a52d9a80
CM
6600 if (path->slots[0] == 0)
6601 goto not_found;
6602 path->slots[0]--;
6603 }
6604
5f39d397
CM
6605 leaf = path->nodes[0];
6606 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6607 struct btrfs_file_extent_item);
5f39d397 6608 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6609 if (found_key.objectid != objectid ||
694c12ed 6610 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6611 /*
6612 * If we backup past the first extent we want to move forward
6613 * and see if there is an extent in front of us, otherwise we'll
6614 * say there is a hole for our whole search range which can
6615 * cause problems.
6616 */
6617 extent_end = start;
6618 goto next;
a52d9a80
CM
6619 }
6620
694c12ed 6621 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 6622 extent_start = found_key.offset;
a5eeb3d1 6623 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
6624 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6625 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
6626 /* Only regular file could have regular/prealloc extent */
6627 if (!S_ISREG(inode->vfs_inode.i_mode)) {
881a3a11 6628 err = -EUCLEAN;
6bf9e4bd
QW
6629 btrfs_crit(fs_info,
6630 "regular/prealloc extent found for non-regular inode %llu",
6631 btrfs_ino(inode));
6632 goto out;
6633 }
09ed2f16
LB
6634 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6635 extent_start);
694c12ed 6636 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
6637 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6638 path->slots[0],
6639 extent_start);
9036c102 6640 }
25a50341 6641next:
9036c102
YZ
6642 if (start >= extent_end) {
6643 path->slots[0]++;
6644 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6645 ret = btrfs_next_leaf(root, path);
6646 if (ret < 0) {
6647 err = ret;
6648 goto out;
b8eeab7f 6649 } else if (ret > 0) {
9036c102 6650 goto not_found;
b8eeab7f 6651 }
9036c102 6652 leaf = path->nodes[0];
a52d9a80 6653 }
9036c102
YZ
6654 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6655 if (found_key.objectid != objectid ||
6656 found_key.type != BTRFS_EXTENT_DATA_KEY)
6657 goto not_found;
6658 if (start + len <= found_key.offset)
6659 goto not_found;
e2eca69d
WS
6660 if (start > found_key.offset)
6661 goto next;
02a033df
NB
6662
6663 /* New extent overlaps with existing one */
9036c102 6664 em->start = start;
70c8a91c 6665 em->orig_start = start;
9036c102 6666 em->len = found_key.offset - start;
02a033df
NB
6667 em->block_start = EXTENT_MAP_HOLE;
6668 goto insert;
9036c102
YZ
6669 }
6670
39b07b5d 6671 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 6672
694c12ed
NB
6673 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6674 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6675 goto insert;
694c12ed 6676 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6677 unsigned long ptr;
a52d9a80 6678 char *map;
3326d1b0
CM
6679 size_t size;
6680 size_t extent_offset;
6681 size_t copy_size;
a52d9a80 6682
39b07b5d 6683 if (!page)
689f9346 6684 goto out;
5f39d397 6685
e41ca589 6686 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6687 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6688 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6689 size - extent_offset);
3326d1b0 6690 em->start = extent_start + extent_offset;
0b246afa 6691 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6692 em->orig_block_len = em->len;
70c8a91c 6693 em->orig_start = em->start;
689f9346 6694 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6695
6696 btrfs_set_path_blocking(path);
bf46f52d 6697 if (!PageUptodate(page)) {
261507a0
LZ
6698 if (btrfs_file_extent_compression(leaf, item) !=
6699 BTRFS_COMPRESS_NONE) {
e40da0e5 6700 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6701 extent_offset, item);
166ae5a4
ZB
6702 if (ret) {
6703 err = ret;
6704 goto out;
6705 }
c8b97818
CM
6706 } else {
6707 map = kmap(page);
6708 read_extent_buffer(leaf, map + pg_offset, ptr,
6709 copy_size);
09cbfeaf 6710 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6711 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6712 PAGE_SIZE - pg_offset -
93c82d57
CM
6713 copy_size);
6714 }
c8b97818
CM
6715 kunmap(page);
6716 }
179e29e4 6717 flush_dcache_page(page);
a52d9a80 6718 }
d1310b2e 6719 set_extent_uptodate(io_tree, em->start,
507903b8 6720 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6721 goto insert;
a52d9a80
CM
6722 }
6723not_found:
6724 em->start = start;
70c8a91c 6725 em->orig_start = start;
d1310b2e 6726 em->len = len;
5f39d397 6727 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6728insert:
b3b4aa74 6729 btrfs_release_path(path);
d1310b2e 6730 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6731 btrfs_err(fs_info,
5d163e0e
JM
6732 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6733 em->start, em->len, start, len);
a52d9a80
CM
6734 err = -EIO;
6735 goto out;
6736 }
d1310b2e
CM
6737
6738 err = 0;
890871be 6739 write_lock(&em_tree->lock);
f46b24c9 6740 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6741 write_unlock(&em_tree->lock);
a52d9a80 6742out:
c6414280 6743 btrfs_free_path(path);
1abe9b8a 6744
fc4f21b1 6745 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6746
a52d9a80
CM
6747 if (err) {
6748 free_extent_map(em);
a52d9a80
CM
6749 return ERR_PTR(err);
6750 }
6751 return em;
6752}
6753
fc4f21b1 6754struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
4ab47a8d 6755 u64 start, u64 len)
ec29ed5b
CM
6756{
6757 struct extent_map *em;
6758 struct extent_map *hole_em = NULL;
f3714ef4 6759 u64 delalloc_start = start;
ec29ed5b 6760 u64 end;
f3714ef4
NB
6761 u64 delalloc_len;
6762 u64 delalloc_end;
ec29ed5b
CM
6763 int err = 0;
6764
39b07b5d 6765 em = btrfs_get_extent(inode, NULL, 0, start, len);
ec29ed5b
CM
6766 if (IS_ERR(em))
6767 return em;
9986277e
DC
6768 /*
6769 * If our em maps to:
6770 * - a hole or
6771 * - a pre-alloc extent,
6772 * there might actually be delalloc bytes behind it.
6773 */
6774 if (em->block_start != EXTENT_MAP_HOLE &&
6775 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6776 return em;
6777 else
6778 hole_em = em;
ec29ed5b
CM
6779
6780 /* check to see if we've wrapped (len == -1 or similar) */
6781 end = start + len;
6782 if (end < start)
6783 end = (u64)-1;
6784 else
6785 end -= 1;
6786
6787 em = NULL;
6788
6789 /* ok, we didn't find anything, lets look for delalloc */
f3714ef4 6790 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
ec29ed5b 6791 end, len, EXTENT_DELALLOC, 1);
f3714ef4
NB
6792 delalloc_end = delalloc_start + delalloc_len;
6793 if (delalloc_end < delalloc_start)
6794 delalloc_end = (u64)-1;
ec29ed5b
CM
6795
6796 /*
f3714ef4
NB
6797 * We didn't find anything useful, return the original results from
6798 * get_extent()
ec29ed5b 6799 */
f3714ef4 6800 if (delalloc_start > end || delalloc_end <= start) {
ec29ed5b
CM
6801 em = hole_em;
6802 hole_em = NULL;
6803 goto out;
6804 }
6805
f3714ef4
NB
6806 /*
6807 * Adjust the delalloc_start to make sure it doesn't go backwards from
6808 * the start they passed in
ec29ed5b 6809 */
f3714ef4
NB
6810 delalloc_start = max(start, delalloc_start);
6811 delalloc_len = delalloc_end - delalloc_start;
ec29ed5b 6812
f3714ef4
NB
6813 if (delalloc_len > 0) {
6814 u64 hole_start;
02950af4 6815 u64 hole_len;
f3714ef4 6816 const u64 hole_end = extent_map_end(hole_em);
ec29ed5b 6817
172ddd60 6818 em = alloc_extent_map();
ec29ed5b
CM
6819 if (!em) {
6820 err = -ENOMEM;
6821 goto out;
6822 }
f3714ef4
NB
6823
6824 ASSERT(hole_em);
ec29ed5b 6825 /*
f3714ef4
NB
6826 * When btrfs_get_extent can't find anything it returns one
6827 * huge hole
ec29ed5b 6828 *
f3714ef4
NB
6829 * Make sure what it found really fits our range, and adjust to
6830 * make sure it is based on the start from the caller
ec29ed5b 6831 */
f3714ef4
NB
6832 if (hole_end <= start || hole_em->start > end) {
6833 free_extent_map(hole_em);
6834 hole_em = NULL;
6835 } else {
6836 hole_start = max(hole_em->start, start);
6837 hole_len = hole_end - hole_start;
ec29ed5b 6838 }
f3714ef4
NB
6839
6840 if (hole_em && delalloc_start > hole_start) {
6841 /*
6842 * Our hole starts before our delalloc, so we have to
6843 * return just the parts of the hole that go until the
6844 * delalloc starts
ec29ed5b 6845 */
f3714ef4 6846 em->len = min(hole_len, delalloc_start - hole_start);
ec29ed5b
CM
6847 em->start = hole_start;
6848 em->orig_start = hole_start;
6849 /*
f3714ef4
NB
6850 * Don't adjust block start at all, it is fixed at
6851 * EXTENT_MAP_HOLE
ec29ed5b
CM
6852 */
6853 em->block_start = hole_em->block_start;
6854 em->block_len = hole_len;
f9e4fb53
LB
6855 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6856 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b 6857 } else {
f3714ef4
NB
6858 /*
6859 * Hole is out of passed range or it starts after
6860 * delalloc range
6861 */
6862 em->start = delalloc_start;
6863 em->len = delalloc_len;
6864 em->orig_start = delalloc_start;
ec29ed5b 6865 em->block_start = EXTENT_MAP_DELALLOC;
f3714ef4 6866 em->block_len = delalloc_len;
ec29ed5b 6867 }
bf8d32b9 6868 } else {
ec29ed5b
CM
6869 return hole_em;
6870 }
6871out:
6872
6873 free_extent_map(hole_em);
6874 if (err) {
6875 free_extent_map(em);
6876 return ERR_PTR(err);
6877 }
6878 return em;
6879}
6880
64f54188 6881static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
6882 const u64 start,
6883 const u64 len,
6884 const u64 orig_start,
6885 const u64 block_start,
6886 const u64 block_len,
6887 const u64 orig_block_len,
6888 const u64 ram_bytes,
6889 const int type)
6890{
6891 struct extent_map *em = NULL;
6892 int ret;
6893
5f9a8a51 6894 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
6895 em = create_io_em(inode, start, len, orig_start, block_start,
6896 block_len, orig_block_len, ram_bytes,
6f9994db
LB
6897 BTRFS_COMPRESS_NONE, /* compress_type */
6898 type);
5f9a8a51
FM
6899 if (IS_ERR(em))
6900 goto out;
6901 }
64f54188
NB
6902 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6903 block_len, type);
5f9a8a51
FM
6904 if (ret) {
6905 if (em) {
6906 free_extent_map(em);
64f54188 6907 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5f9a8a51
FM
6908 }
6909 em = ERR_PTR(ret);
6910 }
6911 out:
5f9a8a51
FM
6912
6913 return em;
6914}
6915
9fc6f911 6916static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
6917 u64 start, u64 len)
6918{
9fc6f911
NB
6919 struct btrfs_root *root = inode->root;
6920 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 6921 struct extent_map *em;
4b46fce2
JB
6922 struct btrfs_key ins;
6923 u64 alloc_hint;
6924 int ret;
4b46fce2 6925
9fc6f911 6926 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 6927 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 6928 0, alloc_hint, &ins, 1, 1);
00361589
JB
6929 if (ret)
6930 return ERR_PTR(ret);
4b46fce2 6931
9fc6f911 6932 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 6933 ins.objectid, ins.offset, ins.offset,
6288d6ea 6934 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 6935 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 6936 if (IS_ERR(em))
9fc6f911
NB
6937 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6938 1);
de0ee0ed 6939
4b46fce2
JB
6940 return em;
6941}
6942
46bfbb5c 6943/*
e4ecaf90
QW
6944 * Check if we can do nocow write into the range [@offset, @offset + @len)
6945 *
6946 * @offset: File offset
6947 * @len: The length to write, will be updated to the nocow writeable
6948 * range
6949 * @orig_start: (optional) Return the original file offset of the file extent
6950 * @orig_len: (optional) Return the original on-disk length of the file extent
6951 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
6952 * @strict: if true, omit optimizations that might force us into unnecessary
6953 * cow. e.g., don't trust generation number.
e4ecaf90
QW
6954 *
6955 * This function will flush ordered extents in the range to ensure proper
6956 * nocow checks for (nowait == false) case.
6957 *
6958 * Return:
6959 * >0 and update @len if we can do nocow write
6960 * 0 if we can't do nocow write
6961 * <0 if error happened
6962 *
6963 * NOTE: This only checks the file extents, caller is responsible to wait for
6964 * any ordered extents.
46bfbb5c 6965 */
00361589 6966noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 6967 u64 *orig_start, u64 *orig_block_len,
a84d5d42 6968 u64 *ram_bytes, bool strict)
46bfbb5c 6969{
2ff7e61e 6970 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
6971 struct btrfs_path *path;
6972 int ret;
6973 struct extent_buffer *leaf;
6974 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6976 struct btrfs_file_extent_item *fi;
6977 struct btrfs_key key;
6978 u64 disk_bytenr;
6979 u64 backref_offset;
6980 u64 extent_end;
6981 u64 num_bytes;
6982 int slot;
6983 int found_type;
7ee9e440 6984 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6985
46bfbb5c
CM
6986 path = btrfs_alloc_path();
6987 if (!path)
6988 return -ENOMEM;
6989
f85b7379
DS
6990 ret = btrfs_lookup_file_extent(NULL, root, path,
6991 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
6992 if (ret < 0)
6993 goto out;
6994
6995 slot = path->slots[0];
6996 if (ret == 1) {
6997 if (slot == 0) {
6998 /* can't find the item, must cow */
6999 ret = 0;
7000 goto out;
7001 }
7002 slot--;
7003 }
7004 ret = 0;
7005 leaf = path->nodes[0];
7006 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7007 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7008 key.type != BTRFS_EXTENT_DATA_KEY) {
7009 /* not our file or wrong item type, must cow */
7010 goto out;
7011 }
7012
7013 if (key.offset > offset) {
7014 /* Wrong offset, must cow */
7015 goto out;
7016 }
7017
7018 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7019 found_type = btrfs_file_extent_type(leaf, fi);
7020 if (found_type != BTRFS_FILE_EXTENT_REG &&
7021 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7022 /* not a regular extent, must cow */
7023 goto out;
7024 }
7ee9e440
JB
7025
7026 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7027 goto out;
7028
e77751aa
MX
7029 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7030 if (extent_end <= offset)
7031 goto out;
7032
46bfbb5c 7033 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7034 if (disk_bytenr == 0)
7035 goto out;
7036
7037 if (btrfs_file_extent_compression(leaf, fi) ||
7038 btrfs_file_extent_encryption(leaf, fi) ||
7039 btrfs_file_extent_other_encoding(leaf, fi))
7040 goto out;
7041
78d4295b
EL
7042 /*
7043 * Do the same check as in btrfs_cross_ref_exist but without the
7044 * unnecessary search.
7045 */
a84d5d42
BB
7046 if (!strict &&
7047 (btrfs_file_extent_generation(leaf, fi) <=
7048 btrfs_root_last_snapshot(&root->root_item)))
78d4295b
EL
7049 goto out;
7050
46bfbb5c
CM
7051 backref_offset = btrfs_file_extent_offset(leaf, fi);
7052
7ee9e440
JB
7053 if (orig_start) {
7054 *orig_start = key.offset - backref_offset;
7055 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7056 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7057 }
eb384b55 7058
2ff7e61e 7059 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7060 goto out;
7b2b7085
MX
7061
7062 num_bytes = min(offset + *len, extent_end) - offset;
7063 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7064 u64 range_end;
7065
da17066c
JM
7066 range_end = round_up(offset + num_bytes,
7067 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7068 ret = test_range_bit(io_tree, offset, range_end,
7069 EXTENT_DELALLOC, 0, NULL);
7070 if (ret) {
7071 ret = -EAGAIN;
7072 goto out;
7073 }
7074 }
7075
1bda19eb 7076 btrfs_release_path(path);
46bfbb5c
CM
7077
7078 /*
7079 * look for other files referencing this extent, if we
7080 * find any we must cow
7081 */
00361589 7082
e4c3b2dc 7083 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
a84d5d42
BB
7084 key.offset - backref_offset, disk_bytenr,
7085 strict);
00361589
JB
7086 if (ret) {
7087 ret = 0;
7088 goto out;
7089 }
46bfbb5c
CM
7090
7091 /*
7092 * adjust disk_bytenr and num_bytes to cover just the bytes
7093 * in this extent we are about to write. If there
7094 * are any csums in that range we have to cow in order
7095 * to keep the csums correct
7096 */
7097 disk_bytenr += backref_offset;
7098 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7099 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7100 goto out;
46bfbb5c
CM
7101 /*
7102 * all of the above have passed, it is safe to overwrite this extent
7103 * without cow
7104 */
eb384b55 7105 *len = num_bytes;
46bfbb5c
CM
7106 ret = 1;
7107out:
7108 btrfs_free_path(path);
7109 return ret;
7110}
7111
eb838e73 7112static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
55e20bd1 7113 struct extent_state **cached_state, int writing)
eb838e73
JB
7114{
7115 struct btrfs_ordered_extent *ordered;
7116 int ret = 0;
7117
7118 while (1) {
7119 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7120 cached_state);
eb838e73
JB
7121 /*
7122 * We're concerned with the entire range that we're going to be
01327610 7123 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7124 * extents in this range.
7125 */
a776c6fa 7126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7127 lockend - lockstart + 1);
7128
7129 /*
7130 * We need to make sure there are no buffered pages in this
7131 * range either, we could have raced between the invalidate in
7132 * generic_file_direct_write and locking the extent. The
7133 * invalidate needs to happen so that reads after a write do not
7134 * get stale data.
7135 */
fc4adbff 7136 if (!ordered &&
051c98eb
DS
7137 (!writing || !filemap_range_has_page(inode->i_mapping,
7138 lockstart, lockend)))
eb838e73
JB
7139 break;
7140
7141 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7142 cached_state);
eb838e73
JB
7143
7144 if (ordered) {
ade77029
FM
7145 /*
7146 * If we are doing a DIO read and the ordered extent we
7147 * found is for a buffered write, we can not wait for it
7148 * to complete and retry, because if we do so we can
7149 * deadlock with concurrent buffered writes on page
7150 * locks. This happens only if our DIO read covers more
7151 * than one extent map, if at this point has already
7152 * created an ordered extent for a previous extent map
7153 * and locked its range in the inode's io tree, and a
7154 * concurrent write against that previous extent map's
7155 * range and this range started (we unlock the ranges
7156 * in the io tree only when the bios complete and
7157 * buffered writes always lock pages before attempting
7158 * to lock range in the io tree).
7159 */
7160 if (writing ||
7161 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7162 btrfs_start_ordered_extent(inode, ordered, 1);
7163 else
7164 ret = -ENOTBLK;
eb838e73
JB
7165 btrfs_put_ordered_extent(ordered);
7166 } else {
eb838e73 7167 /*
b850ae14
FM
7168 * We could trigger writeback for this range (and wait
7169 * for it to complete) and then invalidate the pages for
7170 * this range (through invalidate_inode_pages2_range()),
7171 * but that can lead us to a deadlock with a concurrent
ba206a02 7172 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7173 * triggered a readahead) on a page lock due to an
7174 * ordered dio extent we created before but did not have
7175 * yet a corresponding bio submitted (whence it can not
ba206a02 7176 * complete), which makes readahead wait for that
b850ae14
FM
7177 * ordered extent to complete while holding a lock on
7178 * that page.
eb838e73 7179 */
b850ae14 7180 ret = -ENOTBLK;
eb838e73
JB
7181 }
7182
ade77029
FM
7183 if (ret)
7184 break;
7185
eb838e73
JB
7186 cond_resched();
7187 }
7188
7189 return ret;
7190}
7191
6f9994db 7192/* The callers of this must take lock_extent() */
4b67c11d
NB
7193static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7194 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7195 u64 block_len, u64 orig_block_len,
7196 u64 ram_bytes, int compress_type,
7197 int type)
69ffb543
JB
7198{
7199 struct extent_map_tree *em_tree;
7200 struct extent_map *em;
69ffb543
JB
7201 int ret;
7202
6f9994db
LB
7203 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7204 type == BTRFS_ORDERED_COMPRESSED ||
7205 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7206 type == BTRFS_ORDERED_REGULAR);
6f9994db 7207
4b67c11d 7208 em_tree = &inode->extent_tree;
69ffb543
JB
7209 em = alloc_extent_map();
7210 if (!em)
7211 return ERR_PTR(-ENOMEM);
7212
7213 em->start = start;
7214 em->orig_start = orig_start;
7215 em->len = len;
7216 em->block_len = block_len;
7217 em->block_start = block_start;
b4939680 7218 em->orig_block_len = orig_block_len;
cc95bef6 7219 em->ram_bytes = ram_bytes;
70c8a91c 7220 em->generation = -1;
69ffb543 7221 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7222 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7223 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7224 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7225 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7226 em->compress_type = compress_type;
7227 }
69ffb543
JB
7228
7229 do {
4b67c11d
NB
7230 btrfs_drop_extent_cache(inode, em->start,
7231 em->start + em->len - 1, 0);
69ffb543 7232 write_lock(&em_tree->lock);
09a2a8f9 7233 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7234 write_unlock(&em_tree->lock);
6f9994db
LB
7235 /*
7236 * The caller has taken lock_extent(), who could race with us
7237 * to add em?
7238 */
69ffb543
JB
7239 } while (ret == -EEXIST);
7240
7241 if (ret) {
7242 free_extent_map(em);
7243 return ERR_PTR(ret);
7244 }
7245
6f9994db 7246 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7247 return em;
7248}
7249
1c8d0175 7250
55e20bd1
DS
7251static int btrfs_get_blocks_direct_read(struct extent_map *em,
7252 struct buffer_head *bh_result,
7253 struct inode *inode,
7254 u64 start, u64 len)
7255{
7256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7257
7258 if (em->block_start == EXTENT_MAP_HOLE ||
7259 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7260 return -ENOENT;
7261
7262 len = min(len, em->len - (start - em->start));
7263
7264 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7265 inode->i_blkbits;
7266 bh_result->b_size = len;
7267 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7268 set_buffer_mapped(bh_result);
7269
7270 return 0;
7271}
7272
c5794e51 7273static int btrfs_get_blocks_direct_write(struct extent_map **map,
55e20bd1 7274 struct buffer_head *bh_result,
c5794e51
NB
7275 struct inode *inode,
7276 struct btrfs_dio_data *dio_data,
7277 u64 start, u64 len)
7278{
7279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7280 struct extent_map *em = *map;
7281 int ret = 0;
7282
7283 /*
7284 * We don't allocate a new extent in the following cases
7285 *
7286 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7287 * existing extent.
7288 * 2) The extent is marked as PREALLOC. We're good to go here and can
7289 * just use the extent.
7290 *
7291 */
7292 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294 em->block_start != EXTENT_MAP_HOLE)) {
7295 int type;
7296 u64 block_start, orig_start, orig_block_len, ram_bytes;
7297
7298 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7299 type = BTRFS_ORDERED_PREALLOC;
7300 else
7301 type = BTRFS_ORDERED_NOCOW;
7302 len = min(len, em->len - (start - em->start));
7303 block_start = em->block_start + (start - em->start);
7304
7305 if (can_nocow_extent(inode, start, &len, &orig_start,
a84d5d42 7306 &orig_block_len, &ram_bytes, false) == 1 &&
c5794e51
NB
7307 btrfs_inc_nocow_writers(fs_info, block_start)) {
7308 struct extent_map *em2;
7309
64f54188 7310 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
c5794e51
NB
7311 orig_start, block_start,
7312 len, orig_block_len,
7313 ram_bytes, type);
7314 btrfs_dec_nocow_writers(fs_info, block_start);
7315 if (type == BTRFS_ORDERED_PREALLOC) {
7316 free_extent_map(em);
7317 *map = em = em2;
7318 }
7319
7320 if (em2 && IS_ERR(em2)) {
7321 ret = PTR_ERR(em2);
7322 goto out;
7323 }
7324 /*
7325 * For inode marked NODATACOW or extent marked PREALLOC,
7326 * use the existing or preallocated extent, so does not
7327 * need to adjust btrfs_space_info's bytes_may_use.
7328 */
9db5d510 7329 btrfs_free_reserved_data_space_noquota(fs_info, len);
c5794e51
NB
7330 goto skip_cow;
7331 }
7332 }
7333
7334 /* this will cow the extent */
55e20bd1 7335 len = bh_result->b_size;
c5794e51 7336 free_extent_map(em);
9fc6f911 7337 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
c5794e51
NB
7338 if (IS_ERR(em)) {
7339 ret = PTR_ERR(em);
7340 goto out;
7341 }
7342
7343 len = min(len, em->len - (start - em->start));
7344
7345skip_cow:
55e20bd1
DS
7346 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7347 inode->i_blkbits;
7348 bh_result->b_size = len;
7349 bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7350 set_buffer_mapped(bh_result);
7351
7352 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7353 set_buffer_new(bh_result);
7354
c5794e51
NB
7355 /*
7356 * Need to update the i_size under the extent lock so buffered
7357 * readers will get the updated i_size when we unlock.
7358 */
55e20bd1 7359 if (!dio_data->overwrite && start + len > i_size_read(inode))
c5794e51
NB
7360 i_size_write(inode, start + len);
7361
55e20bd1 7362 WARN_ON(dio_data->reserve < len);
c5794e51 7363 dio_data->reserve -= len;
55e20bd1
DS
7364 dio_data->unsubmitted_oe_range_end = start + len;
7365 current->journal_info = dio_data;
c5794e51
NB
7366out:
7367 return ret;
7368}
7369
55e20bd1
DS
7370static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7371 struct buffer_head *bh_result, int create)
4b46fce2 7372{
0b246afa 7373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7374 struct extent_map *em;
eb838e73 7375 struct extent_state *cached_state = NULL;
50745b0a 7376 struct btrfs_dio_data *dio_data = NULL;
55e20bd1 7377 u64 start = iblock << inode->i_blkbits;
eb838e73 7378 u64 lockstart, lockend;
55e20bd1 7379 u64 len = bh_result->b_size;
0934856d 7380 int ret = 0;
eb838e73 7381
55e20bd1 7382 if (!create)
0b246afa 7383 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7384
c329861d
JB
7385 lockstart = start;
7386 lockend = start + len - 1;
7387
55e20bd1
DS
7388 if (current->journal_info) {
7389 /*
7390 * Need to pull our outstanding extents and set journal_info to NULL so
7391 * that anything that needs to check if there's a transaction doesn't get
7392 * confused.
7393 */
7394 dio_data = current->journal_info;
7395 current->journal_info = NULL;
e1cbbfa5
JB
7396 }
7397
eb838e73
JB
7398 /*
7399 * If this errors out it's because we couldn't invalidate pagecache for
7400 * this range and we need to fallback to buffered.
7401 */
55e20bd1
DS
7402 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7403 create)) {
9c9464cc
FM
7404 ret = -ENOTBLK;
7405 goto err;
7406 }
eb838e73 7407
39b07b5d 7408 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7409 if (IS_ERR(em)) {
7410 ret = PTR_ERR(em);
7411 goto unlock_err;
7412 }
4b46fce2
JB
7413
7414 /*
7415 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7416 * io. INLINE is special, and we could probably kludge it in here, but
7417 * it's still buffered so for safety lets just fall back to the generic
7418 * buffered path.
7419 *
7420 * For COMPRESSED we _have_ to read the entire extent in so we can
7421 * decompress it, so there will be buffering required no matter what we
7422 * do, so go ahead and fallback to buffered.
7423 *
01327610 7424 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7425 * to buffered IO. Don't blame me, this is the price we pay for using
7426 * the generic code.
7427 */
7428 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7429 em->block_start == EXTENT_MAP_INLINE) {
7430 free_extent_map(em);
eb838e73
JB
7431 ret = -ENOTBLK;
7432 goto unlock_err;
4b46fce2
JB
7433 }
7434
55e20bd1
DS
7435 if (create) {
7436 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7437 dio_data, start, len);
c5794e51
NB
7438 if (ret < 0)
7439 goto unlock_err;
55e20bd1
DS
7440
7441 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7442 lockend, &cached_state);
c5794e51 7443 } else {
55e20bd1
DS
7444 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7445 start, len);
7446 /* Can be negative only if we read from a hole */
7447 if (ret < 0) {
7448 ret = 0;
7449 free_extent_map(em);
7450 goto unlock_err;
7451 }
1c8d0175
NB
7452 /*
7453 * We need to unlock only the end area that we aren't using.
7454 * The rest is going to be unlocked by the endio routine.
7455 */
55e20bd1
DS
7456 lockstart = start + bh_result->b_size;
7457 if (lockstart < lockend) {
7458 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7459 lockstart, lockend, &cached_state);
7460 } else {
7461 free_extent_state(cached_state);
7462 }
a43a67a2 7463 }
a43a67a2 7464
4b46fce2
JB
7465 free_extent_map(em);
7466
7467 return 0;
eb838e73
JB
7468
7469unlock_err:
e182163d
OS
7470 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7471 &cached_state);
9c9464cc 7472err:
55e20bd1
DS
7473 if (dio_data)
7474 current->journal_info = dio_data;
8b110e39
MX
7475 return ret;
7476}
7477
769b4f24 7478static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7479{
769b4f24
OS
7480 /*
7481 * This implies a barrier so that stores to dio_bio->bi_status before
7482 * this and loads of dio_bio->bi_status after this are fully ordered.
7483 */
7484 if (!refcount_dec_and_test(&dip->refs))
7485 return;
8b110e39 7486
769b4f24 7487 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
b672b5c1
NB
7488 __endio_write_update_ordered(BTRFS_I(dip->inode),
7489 dip->logical_offset,
769b4f24
OS
7490 dip->bytes,
7491 !dip->dio_bio->bi_status);
7492 } else {
7493 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7494 dip->logical_offset,
7495 dip->logical_offset + dip->bytes - 1);
8b110e39
MX
7496 }
7497
55e20bd1 7498 dio_end_io(dip->dio_bio);
769b4f24 7499 kfree(dip);
8b110e39
MX
7500}
7501
77d5d689
OS
7502static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7503 int mirror_num,
7504 unsigned long bio_flags)
8b110e39 7505{
77d5d689 7506 struct btrfs_dio_private *dip = bio->bi_private;
2ff7e61e 7507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7508 blk_status_t ret;
8b110e39 7509
37226b21 7510 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7511
5c047a69 7512 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8b110e39 7513 if (ret)
ea057f6d 7514 return ret;
8b110e39 7515
77d5d689 7516 refcount_inc(&dip->refs);
08635bae 7517 ret = btrfs_map_bio(fs_info, bio, mirror_num);
8b110e39 7518 if (ret)
fd9d6670 7519 refcount_dec(&dip->refs);
77d5d689 7520 return ret;
8b110e39
MX
7521}
7522
fd9d6670
OS
7523static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7524 struct btrfs_io_bio *io_bio,
7525 const bool uptodate)
4b46fce2 7526{
fd9d6670
OS
7527 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7528 const u32 sectorsize = fs_info->sectorsize;
7529 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7530 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7531 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
17347cec
LB
7532 struct bio_vec bvec;
7533 struct bvec_iter iter;
fd9d6670
OS
7534 u64 start = io_bio->logical;
7535 int icsum = 0;
58efbc9f 7536 blk_status_t err = BLK_STS_OK;
4b46fce2 7537
fd9d6670
OS
7538 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7539 unsigned int i, nr_sectors, pgoff;
8b110e39 7540
17347cec
LB
7541 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7542 pgoff = bvec.bv_offset;
fd9d6670 7543 for (i = 0; i < nr_sectors; i++) {
97bf5a55 7544 ASSERT(pgoff < PAGE_SIZE);
fd9d6670
OS
7545 if (uptodate &&
7546 (!csum || !check_data_csum(inode, io_bio, icsum,
7547 bvec.bv_page, pgoff,
7548 start, sectorsize))) {
7549 clean_io_failure(fs_info, failure_tree, io_tree,
7550 start, bvec.bv_page,
7551 btrfs_ino(BTRFS_I(inode)),
7552 pgoff);
7553 } else {
7554 blk_status_t status;
7555
77d5d689
OS
7556 status = btrfs_submit_read_repair(inode,
7557 &io_bio->bio,
7558 start - io_bio->logical,
fd9d6670
OS
7559 bvec.bv_page, pgoff,
7560 start,
7561 start + sectorsize - 1,
77d5d689
OS
7562 io_bio->mirror_num,
7563 submit_dio_repair_bio);
fd9d6670
OS
7564 if (status)
7565 err = status;
7566 }
7567 start += sectorsize;
7568 icsum++;
2dabb324 7569 pgoff += sectorsize;
2dabb324 7570 }
2c30c71b 7571 }
c1dc0896
MX
7572 return err;
7573}
7574
b672b5c1 7575static void __endio_write_update_ordered(struct btrfs_inode *inode,
52427260
QW
7576 const u64 offset, const u64 bytes,
7577 const bool uptodate)
4b46fce2 7578{
b672b5c1 7579 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4b46fce2 7580 struct btrfs_ordered_extent *ordered = NULL;
52427260 7581 struct btrfs_workqueue *wq;
14543774
FM
7582 u64 ordered_offset = offset;
7583 u64 ordered_bytes = bytes;
67c003f9 7584 u64 last_offset;
4b46fce2 7585
b672b5c1 7586 if (btrfs_is_free_space_inode(inode))
52427260 7587 wq = fs_info->endio_freespace_worker;
a0cac0ec 7588 else
52427260 7589 wq = fs_info->endio_write_workers;
52427260 7590
b25f0d00
NB
7591 while (ordered_offset < offset + bytes) {
7592 last_offset = ordered_offset;
b672b5c1 7593 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7095821e
NB
7594 &ordered_offset,
7595 ordered_bytes,
7596 uptodate)) {
a0cac0ec
OS
7597 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7598 NULL);
b25f0d00
NB
7599 btrfs_queue_work(wq, &ordered->work);
7600 }
7601 /*
7602 * If btrfs_dec_test_ordered_pending does not find any ordered
7603 * extent in the range, we can exit.
7604 */
7605 if (ordered_offset == last_offset)
7606 return;
7607 /*
7608 * Our bio might span multiple ordered extents. In this case
52042d8e 7609 * we keep going until we have accounted the whole dio.
b25f0d00
NB
7610 */
7611 if (ordered_offset < offset + bytes) {
7612 ordered_bytes = offset + bytes - ordered_offset;
7613 ordered = NULL;
7614 }
163cf09c 7615 }
14543774
FM
7616}
7617
d0ee3934 7618static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 7619 struct bio *bio, u64 offset)
eaf25d93 7620{
c6100a4b 7621 struct inode *inode = private_data;
c965d640
JT
7622
7623 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
eaf25d93
CM
7624}
7625
4246a0b6 7626static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
7627{
7628 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 7629 blk_status_t err = bio->bi_status;
e65e1535 7630
8b110e39
MX
7631 if (err)
7632 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7633 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
7634 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7635 bio->bi_opf,
8b110e39
MX
7636 (unsigned long long)bio->bi_iter.bi_sector,
7637 bio->bi_iter.bi_size, err);
7638
769b4f24
OS
7639 if (bio_op(bio) == REQ_OP_READ) {
7640 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
fd9d6670 7641 !err);
e65e1535
MX
7642 }
7643
769b4f24
OS
7644 if (err)
7645 dip->dio_bio->bi_status = err;
e65e1535 7646
e65e1535 7647 bio_put(bio);
769b4f24 7648 btrfs_dio_private_put(dip);
c1dc0896
MX
7649}
7650
d0ee3934
DS
7651static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7652 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 7653{
0b246afa 7654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 7655 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 7656 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 7657 blk_status_t ret;
e65e1535 7658
4c274bc6 7659 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
7660 if (async_submit)
7661 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7662
5fd02043 7663 if (!write) {
0b246afa 7664 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7665 if (ret)
7666 goto err;
7667 }
e65e1535 7668
e6961cac 7669 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
7670 goto map;
7671
7672 if (write && async_submit) {
c6100a4b
JB
7673 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7674 file_offset, inode,
e288c080 7675 btrfs_submit_bio_start_direct_io);
e65e1535 7676 goto err;
1ae39938
JB
7677 } else if (write) {
7678 /*
7679 * If we aren't doing async submit, calculate the csum of the
7680 * bio now.
7681 */
bd242a08 7682 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
1ae39938
JB
7683 if (ret)
7684 goto err;
23ea8e5a 7685 } else {
85879573
OS
7686 u64 csum_offset;
7687
7688 csum_offset = file_offset - dip->logical_offset;
7689 csum_offset >>= inode->i_sb->s_blocksize_bits;
7690 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7691 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
c2db1073 7692 }
1ae39938 7693map:
08635bae 7694 ret = btrfs_map_bio(fs_info, bio, 0);
e65e1535 7695err:
e65e1535
MX
7696 return ret;
7697}
7698
c36cac28
OS
7699/*
7700 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7701 * or ordered extents whether or not we submit any bios.
7702 */
7703static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7704 struct inode *inode,
7705 loff_t file_offset)
e65e1535 7706{
c36cac28 7707 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573
OS
7708 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7709 size_t dip_size;
c36cac28 7710 struct btrfs_dio_private *dip;
c36cac28 7711
85879573
OS
7712 dip_size = sizeof(*dip);
7713 if (!write && csum) {
7714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7715 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7716 size_t nblocks;
7717
7718 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7719 dip_size += csum_size * nblocks;
7720 }
7721
7722 dip = kzalloc(dip_size, GFP_NOFS);
c36cac28
OS
7723 if (!dip)
7724 return NULL;
7725
c36cac28
OS
7726 dip->inode = inode;
7727 dip->logical_offset = file_offset;
7728 dip->bytes = dio_bio->bi_iter.bi_size;
7729 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
c36cac28 7730 dip->dio_bio = dio_bio;
e3b318d1 7731 refcount_set(&dip->refs, 1);
55e20bd1
DS
7732
7733 if (write) {
7734 struct btrfs_dio_data *dio_data = current->journal_info;
7735
7736 /*
7737 * Setting range start and end to the same value means that
7738 * no cleanup will happen in btrfs_direct_IO
7739 */
7740 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7741 dip->bytes;
7742 dio_data->unsubmitted_oe_range_start =
7743 dio_data->unsubmitted_oe_range_end;
7744 }
c36cac28
OS
7745 return dip;
7746}
7747
55e20bd1
DS
7748static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7749 loff_t file_offset)
c36cac28
OS
7750{
7751 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
85879573 7752 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
0b246afa 7753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
7754 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7755 BTRFS_BLOCK_GROUP_RAID56_MASK);
c36cac28 7756 struct btrfs_dio_private *dip;
e65e1535 7757 struct bio *bio;
c36cac28 7758 u64 start_sector;
1ae39938 7759 int async_submit = 0;
725130ba
LB
7760 u64 submit_len;
7761 int clone_offset = 0;
7762 int clone_len;
5f4dc8fc 7763 int ret;
58efbc9f 7764 blk_status_t status;
89b798ad 7765 struct btrfs_io_geometry geom;
e65e1535 7766
c36cac28
OS
7767 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7768 if (!dip) {
7769 if (!write) {
7770 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7771 file_offset + dio_bio->bi_iter.bi_size - 1);
7772 }
7773 dio_bio->bi_status = BLK_STS_RESOURCE;
55e20bd1
DS
7774 dio_end_io(dio_bio);
7775 return;
c36cac28 7776 }
facc8a22 7777
85879573
OS
7778 if (!write && csum) {
7779 /*
7780 * Load the csums up front to reduce csum tree searches and
7781 * contention when submitting bios.
7782 */
7783 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7784 dip->csums);
7785 if (status != BLK_STS_OK)
7786 goto out_err;
02f57c7a
JB
7787 }
7788
769b4f24
OS
7789 start_sector = dio_bio->bi_iter.bi_sector;
7790 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 7791
3c91ee69 7792 do {
769b4f24
OS
7793 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7794 start_sector << 9, submit_len,
7795 &geom);
7796 if (ret) {
7797 status = errno_to_blk_status(ret);
7798 goto out_err;
7799 }
7800 ASSERT(geom.len <= INT_MAX);
7801
89b798ad 7802 clone_len = min_t(int, submit_len, geom.len);
02f57c7a 7803
725130ba
LB
7804 /*
7805 * This will never fail as it's passing GPF_NOFS and
7806 * the allocation is backed by btrfs_bioset.
7807 */
769b4f24 7808 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
725130ba
LB
7809 bio->bi_private = dip;
7810 bio->bi_end_io = btrfs_end_dio_bio;
7811 btrfs_io_bio(bio)->logical = file_offset;
7812
7813 ASSERT(submit_len >= clone_len);
7814 submit_len -= clone_len;
e65e1535 7815
725130ba
LB
7816 /*
7817 * Increase the count before we submit the bio so we know
7818 * the end IO handler won't happen before we increase the
7819 * count. Otherwise, the dip might get freed before we're
7820 * done setting it up.
769b4f24
OS
7821 *
7822 * We transfer the initial reference to the last bio, so we
7823 * don't need to increment the reference count for the last one.
725130ba 7824 */
769b4f24
OS
7825 if (submit_len > 0) {
7826 refcount_inc(&dip->refs);
7827 /*
7828 * If we are submitting more than one bio, submit them
7829 * all asynchronously. The exception is RAID 5 or 6, as
7830 * asynchronous checksums make it difficult to collect
7831 * full stripe writes.
7832 */
7833 if (!raid56)
7834 async_submit = 1;
7835 }
e65e1535 7836
d0ee3934 7837 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
7838 async_submit);
7839 if (status) {
725130ba 7840 bio_put(bio);
769b4f24
OS
7841 if (submit_len > 0)
7842 refcount_dec(&dip->refs);
725130ba
LB
7843 goto out_err;
7844 }
e65e1535 7845
725130ba
LB
7846 clone_offset += clone_len;
7847 start_sector += clone_len >> 9;
7848 file_offset += clone_len;
3c91ee69 7849 } while (submit_len > 0);
55e20bd1 7850 return;
e65e1535 7851
e65e1535 7852out_err:
769b4f24
OS
7853 dip->dio_bio->bi_status = status;
7854 btrfs_dio_private_put(dip);
4b46fce2
JB
7855}
7856
f4c48b44
DS
7857static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7858 const struct iov_iter *iter, loff_t offset)
7859{
7860 int seg;
7861 int i;
7862 unsigned int blocksize_mask = fs_info->sectorsize - 1;
7863 ssize_t retval = -EINVAL;
0934856d 7864
f4c48b44
DS
7865 if (offset & blocksize_mask)
7866 goto out;
7867
7868 if (iov_iter_alignment(iter) & blocksize_mask)
7869 goto out;
7870
7871 /* If this is a write we don't need to check anymore */
7872 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7873 return 0;
7874 /*
7875 * Check to make sure we don't have duplicate iov_base's in this
7876 * iovec, if so return EINVAL, otherwise we'll get csum errors
7877 * when reading back.
7878 */
7879 for (seg = 0; seg < iter->nr_segs; seg++) {
7880 for (i = seg + 1; i < iter->nr_segs; i++) {
7881 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7882 goto out;
7883 }
7884 }
7885 retval = 0;
7886out:
7887 return retval;
7888}
7889
55e20bd1 7890static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
f4c48b44
DS
7891{
7892 struct file *file = iocb->ki_filp;
7893 struct inode *inode = file->f_mapping->host;
7894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
55e20bd1 7895 struct btrfs_dio_data dio_data = { 0 };
f4c48b44
DS
7896 struct extent_changeset *data_reserved = NULL;
7897 loff_t offset = iocb->ki_pos;
7898 size_t count = 0;
55e20bd1
DS
7899 int flags = 0;
7900 bool wakeup = true;
f4c48b44
DS
7901 bool relock = false;
7902 ssize_t ret;
7903
7904 if (check_direct_IO(fs_info, iter, offset))
7905 return 0;
7906
55e20bd1
DS
7907 inode_dio_begin(inode);
7908
7909 /*
7910 * The generic stuff only does filemap_write_and_wait_range, which
7911 * isn't enough if we've written compressed pages to this area, so
7912 * we need to flush the dirty pages again to make absolutely sure
7913 * that any outstanding dirty pages are on disk.
7914 */
f4c48b44 7915 count = iov_iter_count(iter);
55e20bd1
DS
7916 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7917 &BTRFS_I(inode)->runtime_flags))
7918 filemap_fdatawrite_range(inode->i_mapping, offset,
7919 offset + count - 1);
7920
f4c48b44
DS
7921 if (iov_iter_rw(iter) == WRITE) {
7922 /*
7923 * If the write DIO is beyond the EOF, we need update
7924 * the isize, but it is protected by i_mutex. So we can
7925 * not unlock the i_mutex at this case.
7926 */
7927 if (offset + count <= inode->i_size) {
55e20bd1 7928 dio_data.overwrite = 1;
f4c48b44
DS
7929 inode_unlock(inode);
7930 relock = true;
f4c48b44 7931 }
e5b7231e 7932 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
55e20bd1
DS
7933 offset, count);
7934 if (ret)
7935 goto out;
7936
7937 /*
7938 * We need to know how many extents we reserved so that we can
7939 * do the accounting properly if we go over the number we
7940 * originally calculated. Abuse current->journal_info for this.
7941 */
7942 dio_data.reserve = round_up(count,
7943 fs_info->sectorsize);
7944 dio_data.unsubmitted_oe_range_start = (u64)offset;
7945 dio_data.unsubmitted_oe_range_end = (u64)offset;
7946 current->journal_info = &dio_data;
f4c48b44 7947 down_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7948 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7949 &BTRFS_I(inode)->runtime_flags)) {
7950 inode_dio_end(inode);
7951 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7952 wakeup = false;
f4c48b44
DS
7953 }
7954
55e20bd1
DS
7955 ret = __blockdev_direct_IO(iocb, inode,
7956 fs_info->fs_devices->latest_bdev,
7957 iter, btrfs_get_blocks_direct, NULL,
7958 btrfs_submit_direct, flags);
f4c48b44
DS
7959 if (iov_iter_rw(iter) == WRITE) {
7960 up_read(&BTRFS_I(inode)->dio_sem);
55e20bd1
DS
7961 current->journal_info = NULL;
7962 if (ret < 0 && ret != -EIOCBQUEUED) {
7963 if (dio_data.reserve)
86d52921
NB
7964 btrfs_delalloc_release_space(BTRFS_I(inode),
7965 data_reserved, offset, dio_data.reserve,
7966 true);
55e20bd1
DS
7967 /*
7968 * On error we might have left some ordered extents
7969 * without submitting corresponding bios for them, so
7970 * cleanup them up to avoid other tasks getting them
7971 * and waiting for them to complete forever.
7972 */
7973 if (dio_data.unsubmitted_oe_range_start <
7974 dio_data.unsubmitted_oe_range_end)
b672b5c1 7975 __endio_write_update_ordered(BTRFS_I(inode),
55e20bd1
DS
7976 dio_data.unsubmitted_oe_range_start,
7977 dio_data.unsubmitted_oe_range_end -
7978 dio_data.unsubmitted_oe_range_start,
7979 false);
7980 } else if (ret >= 0 && (size_t)ret < count)
86d52921 7981 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
55e20bd1
DS
7982 offset, count - (size_t)ret, true);
7983 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
f4c48b44
DS
7984 }
7985out:
55e20bd1
DS
7986 if (wakeup)
7987 inode_dio_end(inode);
f4c48b44
DS
7988 if (relock)
7989 inode_lock(inode);
55e20bd1 7990
f4c48b44
DS
7991 extent_changeset_free(data_reserved);
7992 return ret;
7993}
16432985 7994
1506fcc8 7995static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 7996 u64 start, u64 len)
1506fcc8 7997{
05dadc09
TI
7998 int ret;
7999
45dd052e 8000 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8001 if (ret)
8002 return ret;
8003
2135fb9b 8004 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8005}
8006
a52d9a80 8007int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8008{
71ad38b4 8009 return extent_read_full_page(page, btrfs_get_extent, 0);
9ebefb18 8010}
1832a6d5 8011
a52d9a80 8012static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8013{
be7bd730
JB
8014 struct inode *inode = page->mapping->host;
8015 int ret;
b888db2b
CM
8016
8017 if (current->flags & PF_MEMALLOC) {
8018 redirty_page_for_writepage(wbc, page);
8019 unlock_page(page);
8020 return 0;
8021 }
be7bd730
JB
8022
8023 /*
8024 * If we are under memory pressure we will call this directly from the
8025 * VM, we need to make sure we have the inode referenced for the ordered
8026 * extent. If not just return like we didn't do anything.
8027 */
8028 if (!igrab(inode)) {
8029 redirty_page_for_writepage(wbc, page);
8030 return AOP_WRITEPAGE_ACTIVATE;
8031 }
0a9b0e53 8032 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8033 btrfs_add_delayed_iput(inode);
8034 return ret;
9ebefb18
CM
8035}
8036
48a3b636
ES
8037static int btrfs_writepages(struct address_space *mapping,
8038 struct writeback_control *wbc)
b293f02e 8039{
8ae225a8 8040 return extent_writepages(mapping, wbc);
b293f02e
CM
8041}
8042
ba206a02 8043static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8044{
ba206a02 8045 extent_readahead(rac);
3ab2fb5a 8046}
2a3ff0ad 8047
e6dcd2dc 8048static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8049{
477a30ba 8050 int ret = try_release_extent_mapping(page, gfp_flags);
d1b89bc0
GJ
8051 if (ret == 1)
8052 detach_page_private(page);
a52d9a80 8053 return ret;
39279cc3
CM
8054}
8055
e6dcd2dc
CM
8056static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8057{
98509cfc
CM
8058 if (PageWriteback(page) || PageDirty(page))
8059 return 0;
3ba7ab22 8060 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8061}
8062
f8e66081
RG
8063#ifdef CONFIG_MIGRATION
8064static int btrfs_migratepage(struct address_space *mapping,
8065 struct page *newpage, struct page *page,
8066 enum migrate_mode mode)
8067{
8068 int ret;
8069
8070 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8071 if (ret != MIGRATEPAGE_SUCCESS)
8072 return ret;
8073
d1b89bc0
GJ
8074 if (page_has_private(page))
8075 attach_page_private(newpage, detach_page_private(page));
f8e66081
RG
8076
8077 if (PagePrivate2(page)) {
8078 ClearPagePrivate2(page);
8079 SetPagePrivate2(newpage);
8080 }
8081
8082 if (mode != MIGRATE_SYNC_NO_COPY)
8083 migrate_page_copy(newpage, page);
8084 else
8085 migrate_page_states(newpage, page);
8086 return MIGRATEPAGE_SUCCESS;
8087}
8088#endif
8089
d47992f8
LC
8090static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8091 unsigned int length)
39279cc3 8092{
5fd02043 8093 struct inode *inode = page->mapping->host;
d1310b2e 8094 struct extent_io_tree *tree;
e6dcd2dc 8095 struct btrfs_ordered_extent *ordered;
2ac55d41 8096 struct extent_state *cached_state = NULL;
e6dcd2dc 8097 u64 page_start = page_offset(page);
09cbfeaf 8098 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8099 u64 start;
8100 u64 end;
131e404a 8101 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8102
8b62b72b
CM
8103 /*
8104 * we have the page locked, so new writeback can't start,
8105 * and the dirty bit won't be cleared while we are here.
8106 *
8107 * Wait for IO on this page so that we can safely clear
8108 * the PagePrivate2 bit and do ordered accounting
8109 */
e6dcd2dc 8110 wait_on_page_writeback(page);
8b62b72b 8111
5fd02043 8112 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8113 if (offset) {
8114 btrfs_releasepage(page, GFP_NOFS);
8115 return;
8116 }
131e404a
FDBM
8117
8118 if (!inode_evicting)
ff13db41 8119 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8120again:
8121 start = page_start;
a776c6fa 8122 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8123 page_end - start + 1);
e6dcd2dc 8124 if (ordered) {
bffe633e
OS
8125 end = min(page_end,
8126 ordered->file_offset + ordered->num_bytes - 1);
eb84ae03
CM
8127 /*
8128 * IO on this page will never be started, so we need
8129 * to account for any ordered extents now
8130 */
131e404a 8131 if (!inode_evicting)
dbfdb6d1 8132 clear_extent_bit(tree, start, end,
e182163d 8133 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
131e404a 8134 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8135 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8136 /*
8137 * whoever cleared the private bit is responsible
8138 * for the finish_ordered_io
8139 */
77cef2ec
JB
8140 if (TestClearPagePrivate2(page)) {
8141 struct btrfs_ordered_inode_tree *tree;
8142 u64 new_len;
8143
8144 tree = &BTRFS_I(inode)->ordered_tree;
8145
8146 spin_lock_irq(&tree->lock);
8147 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8148 new_len = start - ordered->file_offset;
77cef2ec
JB
8149 if (new_len < ordered->truncated_len)
8150 ordered->truncated_len = new_len;
8151 spin_unlock_irq(&tree->lock);
8152
8153 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8154 start,
8155 end - start + 1, 1))
77cef2ec 8156 btrfs_finish_ordered_io(ordered);
8b62b72b 8157 }
e6dcd2dc 8158 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8159 if (!inode_evicting) {
8160 cached_state = NULL;
dbfdb6d1 8161 lock_extent_bits(tree, start, end,
131e404a
FDBM
8162 &cached_state);
8163 }
dbfdb6d1
CR
8164
8165 start = end + 1;
8166 if (start < page_end)
8167 goto again;
131e404a
FDBM
8168 }
8169
b9d0b389
QW
8170 /*
8171 * Qgroup reserved space handler
8172 * Page here will be either
fa91e4aa
QW
8173 * 1) Already written to disk or ordered extent already submitted
8174 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8175 * Qgroup will be handled by its qgroup_record then.
8176 * btrfs_qgroup_free_data() call will do nothing here.
8177 *
8178 * 2) Not written to disk yet
8179 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8180 * bit of its io_tree, and free the qgroup reserved data space.
8181 * Since the IO will never happen for this page.
b9d0b389 8182 */
8b8a979f 8183 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
131e404a 8184 if (!inode_evicting) {
e182163d 8185 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
a7e3b975
FM
8186 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8187 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8188 &cached_state);
131e404a
FDBM
8189
8190 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8191 }
e6dcd2dc 8192
4a096752 8193 ClearPageChecked(page);
d1b89bc0 8194 detach_page_private(page);
39279cc3
CM
8195}
8196
9ebefb18
CM
8197/*
8198 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8199 * called from a page fault handler when a page is first dirtied. Hence we must
8200 * be careful to check for EOF conditions here. We set the page up correctly
8201 * for a written page which means we get ENOSPC checking when writing into
8202 * holes and correct delalloc and unwritten extent mapping on filesystems that
8203 * support these features.
8204 *
8205 * We are not allowed to take the i_mutex here so we have to play games to
8206 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8207 * truncate_setsize() writes the inode size before removing pages, once we have
8208 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8209 * beyond EOF, then the page is guaranteed safe against truncation until we
8210 * unlock the page.
8211 */
a528a241 8212vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8213{
c2ec175c 8214 struct page *page = vmf->page;
11bac800 8215 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8217 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8218 struct btrfs_ordered_extent *ordered;
2ac55d41 8219 struct extent_state *cached_state = NULL;
364ecf36 8220 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8221 char *kaddr;
8222 unsigned long zero_start;
9ebefb18 8223 loff_t size;
a528a241
SJ
8224 vm_fault_t ret;
8225 int ret2;
9998eb70 8226 int reserved = 0;
d0b7da88 8227 u64 reserved_space;
a52d9a80 8228 u64 page_start;
e6dcd2dc 8229 u64 page_end;
d0b7da88
CR
8230 u64 end;
8231
09cbfeaf 8232 reserved_space = PAGE_SIZE;
9ebefb18 8233
b2b5ef5c 8234 sb_start_pagefault(inode->i_sb);
df480633 8235 page_start = page_offset(page);
09cbfeaf 8236 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8237 end = page_end;
df480633 8238
d0b7da88
CR
8239 /*
8240 * Reserving delalloc space after obtaining the page lock can lead to
8241 * deadlock. For example, if a dirty page is locked by this function
8242 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8243 * dirty page write out, then the btrfs_writepage() function could
8244 * end up waiting indefinitely to get a lock on the page currently
8245 * being processed by btrfs_page_mkwrite() function.
8246 */
e5b7231e
NB
8247 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8248 page_start, reserved_space);
a528a241
SJ
8249 if (!ret2) {
8250 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8251 reserved = 1;
8252 }
a528a241
SJ
8253 if (ret2) {
8254 ret = vmf_error(ret2);
9998eb70
CM
8255 if (reserved)
8256 goto out;
8257 goto out_noreserve;
56a76f82 8258 }
1832a6d5 8259
56a76f82 8260 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8261again:
9ebefb18 8262 lock_page(page);
9ebefb18 8263 size = i_size_read(inode);
a52d9a80 8264
9ebefb18 8265 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8266 (page_start >= size)) {
9ebefb18
CM
8267 /* page got truncated out from underneath us */
8268 goto out_unlock;
8269 }
e6dcd2dc
CM
8270 wait_on_page_writeback(page);
8271
ff13db41 8272 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8273 set_page_extent_mapped(page);
8274
eb84ae03
CM
8275 /*
8276 * we can't set the delalloc bits if there are pending ordered
8277 * extents. Drop our locks and wait for them to finish
8278 */
a776c6fa
NB
8279 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8280 PAGE_SIZE);
e6dcd2dc 8281 if (ordered) {
2ac55d41 8282 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8283 &cached_state);
e6dcd2dc 8284 unlock_page(page);
eb84ae03 8285 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8286 btrfs_put_ordered_extent(ordered);
8287 goto again;
8288 }
8289
09cbfeaf 8290 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8291 reserved_space = round_up(size - page_start,
0b246afa 8292 fs_info->sectorsize);
09cbfeaf 8293 if (reserved_space < PAGE_SIZE) {
d0b7da88 8294 end = page_start + reserved_space - 1;
86d52921
NB
8295 btrfs_delalloc_release_space(BTRFS_I(inode),
8296 data_reserved, page_start,
8297 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8298 }
8299 }
8300
fbf19087 8301 /*
5416034f
LB
8302 * page_mkwrite gets called when the page is firstly dirtied after it's
8303 * faulted in, but write(2) could also dirty a page and set delalloc
8304 * bits, thus in this case for space account reason, we still need to
8305 * clear any delalloc bits within this page range since we have to
8306 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8307 */
d0b7da88 8308 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d
OS
8309 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8310 EXTENT_DEFRAG, 0, 0, &cached_state);
fbf19087 8311
c2566f22 8312 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8313 &cached_state);
a528a241 8314 if (ret2) {
2ac55d41 8315 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8316 &cached_state);
9ed74f2d
JB
8317 ret = VM_FAULT_SIGBUS;
8318 goto out_unlock;
8319 }
9ebefb18
CM
8320
8321 /* page is wholly or partially inside EOF */
09cbfeaf 8322 if (page_start + PAGE_SIZE > size)
7073017a 8323 zero_start = offset_in_page(size);
9ebefb18 8324 else
09cbfeaf 8325 zero_start = PAGE_SIZE;
9ebefb18 8326
09cbfeaf 8327 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8328 kaddr = kmap(page);
09cbfeaf 8329 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8330 flush_dcache_page(page);
8331 kunmap(page);
8332 }
247e743c 8333 ClearPageChecked(page);
e6dcd2dc 8334 set_page_dirty(page);
50a9b214 8335 SetPageUptodate(page);
5a3f23d5 8336
0b246afa 8337 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8338 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8339 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8340
e43bbe5e 8341 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8342
76de60ed
YY
8343 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8344 sb_end_pagefault(inode->i_sb);
8345 extent_changeset_free(data_reserved);
8346 return VM_FAULT_LOCKED;
717beb96
CM
8347
8348out_unlock:
9ebefb18 8349 unlock_page(page);
1832a6d5 8350out:
8702ba93 8351 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8352 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8353 reserved_space, (ret != 0));
9998eb70 8354out_noreserve:
b2b5ef5c 8355 sb_end_pagefault(inode->i_sb);
364ecf36 8356 extent_changeset_free(data_reserved);
9ebefb18
CM
8357 return ret;
8358}
8359
213e8c55 8360static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8361{
0b246afa 8362 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8363 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8364 struct btrfs_block_rsv *rsv;
ad7e1a74 8365 int ret;
39279cc3 8366 struct btrfs_trans_handle *trans;
0b246afa 8367 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8368 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8369
213e8c55
FM
8370 if (!skip_writeback) {
8371 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8372 (u64)-1);
8373 if (ret)
8374 return ret;
8375 }
39279cc3 8376
fcb80c2a 8377 /*
f7e9e8fc
OS
8378 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8379 * things going on here:
fcb80c2a 8380 *
f7e9e8fc 8381 * 1) We need to reserve space to update our inode.
fcb80c2a 8382 *
f7e9e8fc 8383 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8384 * be free'd up by the truncate operation, but also have some slack
8385 * space reserved in case it uses space during the truncate (thank you
8386 * very much snapshotting).
8387 *
f7e9e8fc 8388 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8389 * space doing the truncate, and we have no earthly idea how much space
01327610 8390 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8391 * doesn't end up using space reserved for updating the inode. We also
8392 * need to be able to stop the transaction and start a new one, which
8393 * means we need to be able to update the inode several times, and we
8394 * have no idea of knowing how many times that will be, so we can't just
8395 * reserve 1 item for the entirety of the operation, so that has to be
8396 * done separately as well.
fcb80c2a
JB
8397 *
8398 * So that leaves us with
8399 *
f7e9e8fc 8400 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8401 * transaction reservation.
f7e9e8fc 8402 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8403 * updating the inode.
8404 */
2ff7e61e 8405 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8406 if (!rsv)
8407 return -ENOMEM;
4a338542 8408 rsv->size = min_size;
ca7e70f5 8409 rsv->failfast = 1;
f0cd846e 8410
907cbceb 8411 /*
07127184 8412 * 1 for the truncate slack space
907cbceb
JB
8413 * 1 for updating the inode.
8414 */
f3fe820c 8415 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8416 if (IS_ERR(trans)) {
ad7e1a74 8417 ret = PTR_ERR(trans);
fcb80c2a
JB
8418 goto out;
8419 }
f0cd846e 8420
907cbceb 8421 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8422 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8423 min_size, false);
fcb80c2a 8424 BUG_ON(ret);
f0cd846e 8425
5dc562c5
JB
8426 /*
8427 * So if we truncate and then write and fsync we normally would just
8428 * write the extents that changed, which is a problem if we need to
8429 * first truncate that entire inode. So set this flag so we write out
8430 * all of the extents in the inode to the sync log so we're completely
8431 * safe.
8432 */
8433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8434 trans->block_rsv = rsv;
907cbceb 8435
8082510e
YZ
8436 while (1) {
8437 ret = btrfs_truncate_inode_items(trans, root, inode,
8438 inode->i_size,
8439 BTRFS_EXTENT_DATA_KEY);
ddfae63c 8440 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8441 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8442 break;
39279cc3 8443
8082510e 8444 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 8445 if (ret)
3893e33b 8446 break;
ca7e70f5 8447
3a45bb20 8448 btrfs_end_transaction(trans);
2ff7e61e 8449 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8450
8451 trans = btrfs_start_transaction(root, 2);
8452 if (IS_ERR(trans)) {
ad7e1a74 8453 ret = PTR_ERR(trans);
ca7e70f5
JB
8454 trans = NULL;
8455 break;
8456 }
8457
63f018be 8458 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8459 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8460 rsv, min_size, false);
ca7e70f5
JB
8461 BUG_ON(ret); /* shouldn't happen */
8462 trans->block_rsv = rsv;
8082510e
YZ
8463 }
8464
ddfae63c
JB
8465 /*
8466 * We can't call btrfs_truncate_block inside a trans handle as we could
8467 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8468 * we've truncated everything except the last little bit, and can do
8469 * btrfs_truncate_block and then update the disk_i_size.
8470 */
8471 if (ret == NEED_TRUNCATE_BLOCK) {
8472 btrfs_end_transaction(trans);
8473 btrfs_btree_balance_dirty(fs_info);
8474
8475 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8476 if (ret)
8477 goto out;
8478 trans = btrfs_start_transaction(root, 1);
8479 if (IS_ERR(trans)) {
8480 ret = PTR_ERR(trans);
8481 goto out;
8482 }
d923afe9 8483 btrfs_inode_safe_disk_i_size_write(inode, 0);
ddfae63c
JB
8484 }
8485
917c16b2 8486 if (trans) {
ad7e1a74
OS
8487 int ret2;
8488
0b246afa 8489 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
8490 ret2 = btrfs_update_inode(trans, root, inode);
8491 if (ret2 && !ret)
8492 ret = ret2;
7b128766 8493
ad7e1a74
OS
8494 ret2 = btrfs_end_transaction(trans);
8495 if (ret2 && !ret)
8496 ret = ret2;
2ff7e61e 8497 btrfs_btree_balance_dirty(fs_info);
917c16b2 8498 }
fcb80c2a 8499out:
2ff7e61e 8500 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 8501
ad7e1a74 8502 return ret;
39279cc3
CM
8503}
8504
d352ac68
CM
8505/*
8506 * create a new subvolume directory/inode (helper for the ioctl).
8507 */
d2fb3437 8508int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8509 struct btrfs_root *new_root,
8510 struct btrfs_root *parent_root,
8511 u64 new_dirid)
39279cc3 8512{
39279cc3 8513 struct inode *inode;
76dda93c 8514 int err;
00e4e6b3 8515 u64 index = 0;
39279cc3 8516
12fc9d09
FA
8517 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8518 new_dirid, new_dirid,
8519 S_IFDIR | (~current_umask() & S_IRWXUGO),
8520 &index);
54aa1f4d 8521 if (IS_ERR(inode))
f46b5a66 8522 return PTR_ERR(inode);
39279cc3
CM
8523 inode->i_op = &btrfs_dir_inode_operations;
8524 inode->i_fop = &btrfs_dir_file_operations;
8525
bfe86848 8526 set_nlink(inode, 1);
6ef06d27 8527 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 8528 unlock_new_inode(inode);
3b96362c 8529
63541927
FDBM
8530 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8531 if (err)
8532 btrfs_err(new_root->fs_info,
351fd353 8533 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8534 new_root->root_key.objectid, err);
8535
76dda93c 8536 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8537
76dda93c 8538 iput(inode);
ce598979 8539 return err;
39279cc3
CM
8540}
8541
39279cc3
CM
8542struct inode *btrfs_alloc_inode(struct super_block *sb)
8543{
69fe2d75 8544 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8545 struct btrfs_inode *ei;
2ead6ae7 8546 struct inode *inode;
39279cc3 8547
712e36c5 8548 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8549 if (!ei)
8550 return NULL;
2ead6ae7
YZ
8551
8552 ei->root = NULL;
2ead6ae7 8553 ei->generation = 0;
15ee9bc7 8554 ei->last_trans = 0;
257c62e1 8555 ei->last_sub_trans = 0;
e02119d5 8556 ei->logged_trans = 0;
2ead6ae7 8557 ei->delalloc_bytes = 0;
a7e3b975 8558 ei->new_delalloc_bytes = 0;
47059d93 8559 ei->defrag_bytes = 0;
2ead6ae7
YZ
8560 ei->disk_i_size = 0;
8561 ei->flags = 0;
7709cde3 8562 ei->csum_bytes = 0;
2ead6ae7 8563 ei->index_cnt = (u64)-1;
67de1176 8564 ei->dir_index = 0;
2ead6ae7 8565 ei->last_unlink_trans = 0;
3ebac17c 8566 ei->last_reflink_trans = 0;
46d8bc34 8567 ei->last_log_commit = 0;
2ead6ae7 8568
9e0baf60
JB
8569 spin_lock_init(&ei->lock);
8570 ei->outstanding_extents = 0;
69fe2d75
JB
8571 if (sb->s_magic != BTRFS_TEST_MAGIC)
8572 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8573 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8574 ei->runtime_flags = 0;
b52aa8c9 8575 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8576 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8577
16cdcec7
MX
8578 ei->delayed_node = NULL;
8579
9cc97d64 8580 ei->i_otime.tv_sec = 0;
8581 ei->i_otime.tv_nsec = 0;
8582
2ead6ae7 8583 inode = &ei->vfs_inode;
a8067e02 8584 extent_map_tree_init(&ei->extent_tree);
43eb5f29
QW
8585 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8586 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8587 IO_TREE_INODE_IO_FAILURE, inode);
41a2ee75
JB
8588 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8589 IO_TREE_INODE_FILE_EXTENT, inode);
7b439738
DS
8590 ei->io_tree.track_uptodate = true;
8591 ei->io_failure_tree.track_uptodate = true;
b812ce28 8592 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8593 mutex_init(&ei->log_mutex);
e6dcd2dc 8594 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8595 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8596 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8597 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 8598 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
8599
8600 return inode;
39279cc3
CM
8601}
8602
aaedb55b
JB
8603#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8604void btrfs_test_destroy_inode(struct inode *inode)
8605{
dcdbc059 8606 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
8607 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8608}
8609#endif
8610
26602cab 8611void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8612{
fa0d7e3d
NP
8613 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8614}
8615
39279cc3
CM
8616void btrfs_destroy_inode(struct inode *inode)
8617{
0b246afa 8618 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 8619 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8620 struct btrfs_root *root = BTRFS_I(inode)->root;
8621
b3d9b7a3 8622 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8623 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
8624 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8625 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 8626 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 8627 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 8628 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 8629 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8630 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8631
a6dbd429
JB
8632 /*
8633 * This can happen where we create an inode, but somebody else also
8634 * created the same inode and we need to destroy the one we already
8635 * created.
8636 */
8637 if (!root)
26602cab 8638 return;
a6dbd429 8639
d397712b 8640 while (1) {
e6dcd2dc
CM
8641 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8642 if (!ordered)
8643 break;
8644 else {
0b246afa 8645 btrfs_err(fs_info,
5d163e0e 8646 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8647 ordered->file_offset, ordered->num_bytes);
e6dcd2dc
CM
8648 btrfs_remove_ordered_extent(inode, ordered);
8649 btrfs_put_ordered_extent(ordered);
8650 btrfs_put_ordered_extent(ordered);
8651 }
8652 }
cfdd4592 8653 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
5d4f98a2 8654 inode_tree_del(inode);
dcdbc059 8655 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
41a2ee75 8656 btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
5c8fd99f 8657 btrfs_put_root(BTRFS_I(inode)->root);
39279cc3
CM
8658}
8659
45321ac5 8660int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8661{
8662 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8663
6379ef9f
NA
8664 if (root == NULL)
8665 return 1;
8666
fa6ac876 8667 /* the snap/subvol tree is on deleting */
69e9c6c6 8668 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8669 return 1;
76dda93c 8670 else
45321ac5 8671 return generic_drop_inode(inode);
76dda93c
YZ
8672}
8673
0ee0fda0 8674static void init_once(void *foo)
39279cc3
CM
8675{
8676 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8677
8678 inode_init_once(&ei->vfs_inode);
8679}
8680
e67c718b 8681void __cold btrfs_destroy_cachep(void)
39279cc3 8682{
8c0a8537
KS
8683 /*
8684 * Make sure all delayed rcu free inodes are flushed before we
8685 * destroy cache.
8686 */
8687 rcu_barrier();
5598e900
KM
8688 kmem_cache_destroy(btrfs_inode_cachep);
8689 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
8690 kmem_cache_destroy(btrfs_path_cachep);
8691 kmem_cache_destroy(btrfs_free_space_cachep);
3acd4850 8692 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
39279cc3
CM
8693}
8694
f5c29bd9 8695int __init btrfs_init_cachep(void)
39279cc3 8696{
837e1972 8697 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8698 sizeof(struct btrfs_inode), 0,
5d097056
VD
8699 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8700 init_once);
39279cc3
CM
8701 if (!btrfs_inode_cachep)
8702 goto fail;
9601e3f6 8703
837e1972 8704 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 8705 sizeof(struct btrfs_trans_handle), 0,
fba4b697 8706 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8707 if (!btrfs_trans_handle_cachep)
8708 goto fail;
9601e3f6 8709
837e1972 8710 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 8711 sizeof(struct btrfs_path), 0,
fba4b697 8712 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8713 if (!btrfs_path_cachep)
8714 goto fail;
9601e3f6 8715
837e1972 8716 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 8717 sizeof(struct btrfs_free_space), 0,
fba4b697 8718 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
8719 if (!btrfs_free_space_cachep)
8720 goto fail;
8721
3acd4850
CL
8722 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8723 PAGE_SIZE, PAGE_SIZE,
8724 SLAB_RED_ZONE, NULL);
8725 if (!btrfs_free_space_bitmap_cachep)
8726 goto fail;
8727
39279cc3
CM
8728 return 0;
8729fail:
8730 btrfs_destroy_cachep();
8731 return -ENOMEM;
8732}
8733
a528d35e
DH
8734static int btrfs_getattr(const struct path *path, struct kstat *stat,
8735 u32 request_mask, unsigned int flags)
39279cc3 8736{
df0af1a5 8737 u64 delalloc_bytes;
a528d35e 8738 struct inode *inode = d_inode(path->dentry);
fadc0d8b 8739 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
8740 u32 bi_flags = BTRFS_I(inode)->flags;
8741
8742 stat->result_mask |= STATX_BTIME;
8743 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8744 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8745 if (bi_flags & BTRFS_INODE_APPEND)
8746 stat->attributes |= STATX_ATTR_APPEND;
8747 if (bi_flags & BTRFS_INODE_COMPRESS)
8748 stat->attributes |= STATX_ATTR_COMPRESSED;
8749 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8750 stat->attributes |= STATX_ATTR_IMMUTABLE;
8751 if (bi_flags & BTRFS_INODE_NODUMP)
8752 stat->attributes |= STATX_ATTR_NODUMP;
8753
8754 stat->attributes_mask |= (STATX_ATTR_APPEND |
8755 STATX_ATTR_COMPRESSED |
8756 STATX_ATTR_IMMUTABLE |
8757 STATX_ATTR_NODUMP);
fadc0d8b 8758
39279cc3 8759 generic_fillattr(inode, stat);
0ee5dc67 8760 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
8761
8762 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 8763 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 8764 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8765 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8766 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8767 return 0;
8768}
8769
cdd1fedf
DF
8770static int btrfs_rename_exchange(struct inode *old_dir,
8771 struct dentry *old_dentry,
8772 struct inode *new_dir,
8773 struct dentry *new_dentry)
8774{
0b246afa 8775 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
8776 struct btrfs_trans_handle *trans;
8777 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8778 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8779 struct inode *new_inode = new_dentry->d_inode;
8780 struct inode *old_inode = old_dentry->d_inode;
95582b00 8781 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 8782 struct dentry *parent;
4a0cc7ca
NB
8783 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8784 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
8785 u64 old_idx = 0;
8786 u64 new_idx = 0;
cdd1fedf 8787 int ret;
86e8aa0e
FM
8788 bool root_log_pinned = false;
8789 bool dest_log_pinned = false;
d4682ba0
FM
8790 struct btrfs_log_ctx ctx_root;
8791 struct btrfs_log_ctx ctx_dest;
8792 bool sync_log_root = false;
8793 bool sync_log_dest = false;
8794 bool commit_transaction = false;
cdd1fedf
DF
8795
8796 /* we only allow rename subvolume link between subvolumes */
8797 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8798 return -EXDEV;
8799
d4682ba0
FM
8800 btrfs_init_log_ctx(&ctx_root, old_inode);
8801 btrfs_init_log_ctx(&ctx_dest, new_inode);
8802
cdd1fedf 8803 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
8804 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8805 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 8806 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
8807
8808 /*
8809 * We want to reserve the absolute worst case amount of items. So if
8810 * both inodes are subvols and we need to unlink them then that would
8811 * require 4 item modifications, but if they are both normal inodes it
8812 * would require 5 item modifications, so we'll assume their normal
8813 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8814 * should cover the worst case number of items we'll modify.
8815 */
8816 trans = btrfs_start_transaction(root, 12);
8817 if (IS_ERR(trans)) {
8818 ret = PTR_ERR(trans);
8819 goto out_notrans;
8820 }
8821
3e174099
JB
8822 if (dest != root)
8823 btrfs_record_root_in_trans(trans, dest);
8824
cdd1fedf
DF
8825 /*
8826 * We need to find a free sequence number both in the source and
8827 * in the destination directory for the exchange.
8828 */
877574e2 8829 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
8830 if (ret)
8831 goto out_fail;
877574e2 8832 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
8833 if (ret)
8834 goto out_fail;
8835
8836 BTRFS_I(old_inode)->dir_index = 0ULL;
8837 BTRFS_I(new_inode)->dir_index = 0ULL;
8838
8839 /* Reference for the source. */
8840 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8841 /* force full log commit if subvolume involved. */
90787766 8842 btrfs_set_log_full_commit(trans);
cdd1fedf 8843 } else {
376e5a57
FM
8844 btrfs_pin_log_trans(root);
8845 root_log_pinned = true;
cdd1fedf
DF
8846 ret = btrfs_insert_inode_ref(trans, dest,
8847 new_dentry->d_name.name,
8848 new_dentry->d_name.len,
8849 old_ino,
f85b7379
DS
8850 btrfs_ino(BTRFS_I(new_dir)),
8851 old_idx);
cdd1fedf
DF
8852 if (ret)
8853 goto out_fail;
cdd1fedf
DF
8854 }
8855
8856 /* And now for the dest. */
8857 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8858 /* force full log commit if subvolume involved. */
90787766 8859 btrfs_set_log_full_commit(trans);
cdd1fedf 8860 } else {
376e5a57
FM
8861 btrfs_pin_log_trans(dest);
8862 dest_log_pinned = true;
cdd1fedf
DF
8863 ret = btrfs_insert_inode_ref(trans, root,
8864 old_dentry->d_name.name,
8865 old_dentry->d_name.len,
8866 new_ino,
f85b7379
DS
8867 btrfs_ino(BTRFS_I(old_dir)),
8868 new_idx);
cdd1fedf
DF
8869 if (ret)
8870 goto out_fail;
cdd1fedf
DF
8871 }
8872
8873 /* Update inode version and ctime/mtime. */
8874 inode_inc_iversion(old_dir);
8875 inode_inc_iversion(new_dir);
8876 inode_inc_iversion(old_inode);
8877 inode_inc_iversion(new_inode);
8878 old_dir->i_ctime = old_dir->i_mtime = ctime;
8879 new_dir->i_ctime = new_dir->i_mtime = ctime;
8880 old_inode->i_ctime = ctime;
8881 new_inode->i_ctime = ctime;
8882
8883 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
8884 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8885 BTRFS_I(old_inode), 1);
8886 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8887 BTRFS_I(new_inode), 1);
cdd1fedf
DF
8888 }
8889
8890 /* src is a subvolume */
8891 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8892 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 8893 } else { /* src is an inode */
4ec5934e
NB
8894 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8895 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
8896 old_dentry->d_name.name,
8897 old_dentry->d_name.len);
8898 if (!ret)
8899 ret = btrfs_update_inode(trans, root, old_inode);
8900 }
8901 if (ret) {
66642832 8902 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8903 goto out_fail;
8904 }
8905
8906 /* dest is a subvolume */
8907 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 8908 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 8909 } else { /* dest is an inode */
4ec5934e
NB
8910 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8911 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
8912 new_dentry->d_name.name,
8913 new_dentry->d_name.len);
8914 if (!ret)
8915 ret = btrfs_update_inode(trans, dest, new_inode);
8916 }
8917 if (ret) {
66642832 8918 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8919 goto out_fail;
8920 }
8921
db0a669f 8922 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
8923 new_dentry->d_name.name,
8924 new_dentry->d_name.len, 0, old_idx);
8925 if (ret) {
66642832 8926 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8927 goto out_fail;
8928 }
8929
db0a669f 8930 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
8931 old_dentry->d_name.name,
8932 old_dentry->d_name.len, 0, new_idx);
8933 if (ret) {
66642832 8934 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
8935 goto out_fail;
8936 }
8937
8938 if (old_inode->i_nlink == 1)
8939 BTRFS_I(old_inode)->dir_index = old_idx;
8940 if (new_inode->i_nlink == 1)
8941 BTRFS_I(new_inode)->dir_index = new_idx;
8942
86e8aa0e 8943 if (root_log_pinned) {
cdd1fedf 8944 parent = new_dentry->d_parent;
d4682ba0
FM
8945 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8946 BTRFS_I(old_dir), parent,
8947 false, &ctx_root);
8948 if (ret == BTRFS_NEED_LOG_SYNC)
8949 sync_log_root = true;
8950 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8951 commit_transaction = true;
8952 ret = 0;
cdd1fedf 8953 btrfs_end_log_trans(root);
86e8aa0e 8954 root_log_pinned = false;
cdd1fedf 8955 }
86e8aa0e 8956 if (dest_log_pinned) {
d4682ba0
FM
8957 if (!commit_transaction) {
8958 parent = old_dentry->d_parent;
8959 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8960 BTRFS_I(new_dir), parent,
8961 false, &ctx_dest);
8962 if (ret == BTRFS_NEED_LOG_SYNC)
8963 sync_log_dest = true;
8964 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8965 commit_transaction = true;
8966 ret = 0;
8967 }
cdd1fedf 8968 btrfs_end_log_trans(dest);
86e8aa0e 8969 dest_log_pinned = false;
cdd1fedf
DF
8970 }
8971out_fail:
86e8aa0e
FM
8972 /*
8973 * If we have pinned a log and an error happened, we unpin tasks
8974 * trying to sync the log and force them to fallback to a transaction
8975 * commit if the log currently contains any of the inodes involved in
8976 * this rename operation (to ensure we do not persist a log with an
8977 * inconsistent state for any of these inodes or leading to any
8978 * inconsistencies when replayed). If the transaction was aborted, the
8979 * abortion reason is propagated to userspace when attempting to commit
8980 * the transaction. If the log does not contain any of these inodes, we
8981 * allow the tasks to sync it.
8982 */
8983 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
8984 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8985 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8986 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 8987 (new_inode &&
0f8939b8 8988 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 8989 btrfs_set_log_full_commit(trans);
86e8aa0e
FM
8990
8991 if (root_log_pinned) {
8992 btrfs_end_log_trans(root);
8993 root_log_pinned = false;
8994 }
8995 if (dest_log_pinned) {
8996 btrfs_end_log_trans(dest);
8997 dest_log_pinned = false;
8998 }
8999 }
d4682ba0
FM
9000 if (!ret && sync_log_root && !commit_transaction) {
9001 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9002 &ctx_root);
9003 if (ret)
9004 commit_transaction = true;
9005 }
9006 if (!ret && sync_log_dest && !commit_transaction) {
9007 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9008 &ctx_dest);
9009 if (ret)
9010 commit_transaction = true;
9011 }
9012 if (commit_transaction) {
e6c61710
FM
9013 /*
9014 * We may have set commit_transaction when logging the new name
9015 * in the destination root, in which case we left the source
9016 * root context in the list of log contextes. So make sure we
9017 * remove it to avoid invalid memory accesses, since the context
9018 * was allocated in our stack frame.
9019 */
9020 if (sync_log_root) {
9021 mutex_lock(&root->log_mutex);
9022 list_del_init(&ctx_root.list);
9023 mutex_unlock(&root->log_mutex);
9024 }
d4682ba0
FM
9025 ret = btrfs_commit_transaction(trans);
9026 } else {
9027 int ret2;
9028
9029 ret2 = btrfs_end_transaction(trans);
9030 ret = ret ? ret : ret2;
9031 }
cdd1fedf 9032out_notrans:
943eb3bf
JB
9033 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9034 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9035 up_read(&fs_info->subvol_sem);
cdd1fedf 9036
e6c61710
FM
9037 ASSERT(list_empty(&ctx_root.list));
9038 ASSERT(list_empty(&ctx_dest.list));
9039
cdd1fedf
DF
9040 return ret;
9041}
9042
9043static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9044 struct btrfs_root *root,
9045 struct inode *dir,
9046 struct dentry *dentry)
9047{
9048 int ret;
9049 struct inode *inode;
9050 u64 objectid;
9051 u64 index;
9052
9053 ret = btrfs_find_free_ino(root, &objectid);
9054 if (ret)
9055 return ret;
9056
9057 inode = btrfs_new_inode(trans, root, dir,
9058 dentry->d_name.name,
9059 dentry->d_name.len,
4a0cc7ca 9060 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9061 objectid,
9062 S_IFCHR | WHITEOUT_MODE,
9063 &index);
9064
9065 if (IS_ERR(inode)) {
9066 ret = PTR_ERR(inode);
9067 return ret;
9068 }
9069
9070 inode->i_op = &btrfs_special_inode_operations;
9071 init_special_inode(inode, inode->i_mode,
9072 WHITEOUT_DEV);
9073
9074 ret = btrfs_init_inode_security(trans, inode, dir,
9075 &dentry->d_name);
9076 if (ret)
c9901618 9077 goto out;
cdd1fedf 9078
cef415af
NB
9079 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9080 BTRFS_I(inode), 0, index);
cdd1fedf 9081 if (ret)
c9901618 9082 goto out;
cdd1fedf
DF
9083
9084 ret = btrfs_update_inode(trans, root, inode);
c9901618 9085out:
cdd1fedf 9086 unlock_new_inode(inode);
c9901618
FM
9087 if (ret)
9088 inode_dec_link_count(inode);
cdd1fedf
DF
9089 iput(inode);
9090
c9901618 9091 return ret;
cdd1fedf
DF
9092}
9093
d397712b 9094static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9095 struct inode *new_dir, struct dentry *new_dentry,
9096 unsigned int flags)
39279cc3 9097{
0b246afa 9098 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9099 struct btrfs_trans_handle *trans;
5062af35 9100 unsigned int trans_num_items;
39279cc3 9101 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9102 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9103 struct inode *new_inode = d_inode(new_dentry);
9104 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9105 u64 index = 0;
39279cc3 9106 int ret;
4a0cc7ca 9107 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9108 bool log_pinned = false;
d4682ba0
FM
9109 struct btrfs_log_ctx ctx;
9110 bool sync_log = false;
9111 bool commit_transaction = false;
39279cc3 9112
4a0cc7ca 9113 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9114 return -EPERM;
9115
4df27c4d 9116 /* we only allow rename subvolume link between subvolumes */
33345d01 9117 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9118 return -EXDEV;
9119
33345d01 9120 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9121 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9122 return -ENOTEMPTY;
5f39d397 9123
4df27c4d
YZ
9124 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9125 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9126 return -ENOTEMPTY;
9c52057c
CM
9127
9128
9129 /* check for collisions, even if the name isn't there */
4871c158 9130 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9131 new_dentry->d_name.name,
9132 new_dentry->d_name.len);
9133
9134 if (ret) {
9135 if (ret == -EEXIST) {
9136 /* we shouldn't get
9137 * eexist without a new_inode */
fae7f21c 9138 if (WARN_ON(!new_inode)) {
9c52057c
CM
9139 return ret;
9140 }
9141 } else {
9142 /* maybe -EOVERFLOW */
9143 return ret;
9144 }
9145 }
9146 ret = 0;
9147
5a3f23d5 9148 /*
8d875f95
CM
9149 * we're using rename to replace one file with another. Start IO on it
9150 * now so we don't add too much work to the end of the transaction
5a3f23d5 9151 */
8d875f95 9152 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9153 filemap_flush(old_inode->i_mapping);
9154
76dda93c 9155 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9156 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9157 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9158 /*
9159 * We want to reserve the absolute worst case amount of items. So if
9160 * both inodes are subvols and we need to unlink them then that would
9161 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9162 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9163 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9164 * should cover the worst case number of items we'll modify.
5062af35
FM
9165 * If our rename has the whiteout flag, we need more 5 units for the
9166 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9167 * when selinux is enabled).
a22285a6 9168 */
5062af35
FM
9169 trans_num_items = 11;
9170 if (flags & RENAME_WHITEOUT)
9171 trans_num_items += 5;
9172 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9173 if (IS_ERR(trans)) {
cdd1fedf
DF
9174 ret = PTR_ERR(trans);
9175 goto out_notrans;
9176 }
76dda93c 9177
4df27c4d
YZ
9178 if (dest != root)
9179 btrfs_record_root_in_trans(trans, dest);
5f39d397 9180
877574e2 9181 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9182 if (ret)
9183 goto out_fail;
5a3f23d5 9184
67de1176 9185 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9186 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9187 /* force full log commit if subvolume involved. */
90787766 9188 btrfs_set_log_full_commit(trans);
4df27c4d 9189 } else {
c4aba954
FM
9190 btrfs_pin_log_trans(root);
9191 log_pinned = true;
a5719521
YZ
9192 ret = btrfs_insert_inode_ref(trans, dest,
9193 new_dentry->d_name.name,
9194 new_dentry->d_name.len,
33345d01 9195 old_ino,
4a0cc7ca 9196 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9197 if (ret)
9198 goto out_fail;
4df27c4d 9199 }
5a3f23d5 9200
0c4d2d95
JB
9201 inode_inc_iversion(old_dir);
9202 inode_inc_iversion(new_dir);
9203 inode_inc_iversion(old_inode);
04b285f3
DD
9204 old_dir->i_ctime = old_dir->i_mtime =
9205 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9206 old_inode->i_ctime = current_time(old_dir);
5f39d397 9207
12fcfd22 9208 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9209 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9210 BTRFS_I(old_inode), 1);
12fcfd22 9211
33345d01 9212 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9213 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9214 } else {
4ec5934e
NB
9215 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9216 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9217 old_dentry->d_name.name,
9218 old_dentry->d_name.len);
9219 if (!ret)
9220 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9221 }
79787eaa 9222 if (ret) {
66642832 9223 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9224 goto out_fail;
9225 }
39279cc3
CM
9226
9227 if (new_inode) {
0c4d2d95 9228 inode_inc_iversion(new_inode);
c2050a45 9229 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9230 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9231 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9232 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9233 BUG_ON(new_inode->i_nlink == 0);
9234 } else {
4ec5934e
NB
9235 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9236 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9237 new_dentry->d_name.name,
9238 new_dentry->d_name.len);
9239 }
4ef31a45 9240 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9241 ret = btrfs_orphan_add(trans,
9242 BTRFS_I(d_inode(new_dentry)));
79787eaa 9243 if (ret) {
66642832 9244 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9245 goto out_fail;
9246 }
39279cc3 9247 }
aec7477b 9248
db0a669f 9249 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9250 new_dentry->d_name.name,
a5719521 9251 new_dentry->d_name.len, 0, index);
79787eaa 9252 if (ret) {
66642832 9253 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9254 goto out_fail;
9255 }
39279cc3 9256
67de1176
MX
9257 if (old_inode->i_nlink == 1)
9258 BTRFS_I(old_inode)->dir_index = index;
9259
3dc9e8f7 9260 if (log_pinned) {
10d9f309 9261 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9262
d4682ba0
FM
9263 btrfs_init_log_ctx(&ctx, old_inode);
9264 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9265 BTRFS_I(old_dir), parent,
9266 false, &ctx);
9267 if (ret == BTRFS_NEED_LOG_SYNC)
9268 sync_log = true;
9269 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9270 commit_transaction = true;
9271 ret = 0;
4df27c4d 9272 btrfs_end_log_trans(root);
3dc9e8f7 9273 log_pinned = false;
4df27c4d 9274 }
cdd1fedf
DF
9275
9276 if (flags & RENAME_WHITEOUT) {
9277 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9278 old_dentry);
9279
9280 if (ret) {
66642832 9281 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9282 goto out_fail;
9283 }
4df27c4d 9284 }
39279cc3 9285out_fail:
3dc9e8f7
FM
9286 /*
9287 * If we have pinned the log and an error happened, we unpin tasks
9288 * trying to sync the log and force them to fallback to a transaction
9289 * commit if the log currently contains any of the inodes involved in
9290 * this rename operation (to ensure we do not persist a log with an
9291 * inconsistent state for any of these inodes or leading to any
9292 * inconsistencies when replayed). If the transaction was aborted, the
9293 * abortion reason is propagated to userspace when attempting to commit
9294 * the transaction. If the log does not contain any of these inodes, we
9295 * allow the tasks to sync it.
9296 */
9297 if (ret && log_pinned) {
0f8939b8
NB
9298 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9299 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9300 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9301 (new_inode &&
0f8939b8 9302 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
90787766 9303 btrfs_set_log_full_commit(trans);
3dc9e8f7
FM
9304
9305 btrfs_end_log_trans(root);
9306 log_pinned = false;
9307 }
d4682ba0
FM
9308 if (!ret && sync_log) {
9309 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9310 if (ret)
9311 commit_transaction = true;
236ebc20
FM
9312 } else if (sync_log) {
9313 mutex_lock(&root->log_mutex);
9314 list_del(&ctx.list);
9315 mutex_unlock(&root->log_mutex);
d4682ba0
FM
9316 }
9317 if (commit_transaction) {
9318 ret = btrfs_commit_transaction(trans);
9319 } else {
9320 int ret2;
9321
9322 ret2 = btrfs_end_transaction(trans);
9323 ret = ret ? ret : ret2;
9324 }
b44c59a8 9325out_notrans:
33345d01 9326 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9327 up_read(&fs_info->subvol_sem);
9ed74f2d 9328
39279cc3
CM
9329 return ret;
9330}
9331
80ace85c
MS
9332static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9333 struct inode *new_dir, struct dentry *new_dentry,
9334 unsigned int flags)
9335{
cdd1fedf 9336 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9337 return -EINVAL;
9338
cdd1fedf
DF
9339 if (flags & RENAME_EXCHANGE)
9340 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9341 new_dentry);
9342
9343 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9344}
9345
3a2f8c07
NB
9346struct btrfs_delalloc_work {
9347 struct inode *inode;
9348 struct completion completion;
9349 struct list_head list;
9350 struct btrfs_work work;
9351};
9352
8ccf6f19
MX
9353static void btrfs_run_delalloc_work(struct btrfs_work *work)
9354{
9355 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9356 struct inode *inode;
8ccf6f19
MX
9357
9358 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9359 work);
9f23e289 9360 inode = delalloc_work->inode;
30424601
DS
9361 filemap_flush(inode->i_mapping);
9362 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9363 &BTRFS_I(inode)->runtime_flags))
9f23e289 9364 filemap_flush(inode->i_mapping);
8ccf6f19 9365
076da91c 9366 iput(inode);
8ccf6f19
MX
9367 complete(&delalloc_work->completion);
9368}
9369
3a2f8c07 9370static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9371{
9372 struct btrfs_delalloc_work *work;
9373
100d5702 9374 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9375 if (!work)
9376 return NULL;
9377
9378 init_completion(&work->completion);
9379 INIT_LIST_HEAD(&work->list);
9380 work->inode = inode;
a0cac0ec 9381 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9382
9383 return work;
9384}
9385
d352ac68
CM
9386/*
9387 * some fairly slow code that needs optimization. This walks the list
9388 * of all the inodes with pending delalloc and forces them to disk.
9389 */
b4912139 9390static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot)
ea8c2819 9391{
ea8c2819 9392 struct btrfs_inode *binode;
5b21f2ed 9393 struct inode *inode;
8ccf6f19
MX
9394 struct btrfs_delalloc_work *work, *next;
9395 struct list_head works;
1eafa6c7 9396 struct list_head splice;
8ccf6f19 9397 int ret = 0;
ea8c2819 9398
8ccf6f19 9399 INIT_LIST_HEAD(&works);
1eafa6c7 9400 INIT_LIST_HEAD(&splice);
63607cc8 9401
573bfb72 9402 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9403 spin_lock(&root->delalloc_lock);
9404 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9405 while (!list_empty(&splice)) {
9406 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9407 delalloc_inodes);
1eafa6c7 9408
eb73c1b7
MX
9409 list_move_tail(&binode->delalloc_inodes,
9410 &root->delalloc_inodes);
5b21f2ed 9411 inode = igrab(&binode->vfs_inode);
df0af1a5 9412 if (!inode) {
eb73c1b7 9413 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9414 continue;
df0af1a5 9415 }
eb73c1b7 9416 spin_unlock(&root->delalloc_lock);
1eafa6c7 9417
3cd24c69
EL
9418 if (snapshot)
9419 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9420 &binode->runtime_flags);
076da91c 9421 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9422 if (!work) {
4fbb5147 9423 iput(inode);
1eafa6c7 9424 ret = -ENOMEM;
a1ecaabb 9425 goto out;
5b21f2ed 9426 }
1eafa6c7 9427 list_add_tail(&work->list, &works);
a44903ab
QW
9428 btrfs_queue_work(root->fs_info->flush_workers,
9429 &work->work);
b4912139
JB
9430 if (*nr != U64_MAX) {
9431 (*nr)--;
9432 if (*nr == 0)
9433 goto out;
9434 }
5b21f2ed 9435 cond_resched();
eb73c1b7 9436 spin_lock(&root->delalloc_lock);
ea8c2819 9437 }
eb73c1b7 9438 spin_unlock(&root->delalloc_lock);
8c8bee1d 9439
a1ecaabb 9440out:
eb73c1b7
MX
9441 list_for_each_entry_safe(work, next, &works, list) {
9442 list_del_init(&work->list);
40012f96
NB
9443 wait_for_completion(&work->completion);
9444 kfree(work);
eb73c1b7
MX
9445 }
9446
81f1d390 9447 if (!list_empty(&splice)) {
eb73c1b7
MX
9448 spin_lock(&root->delalloc_lock);
9449 list_splice_tail(&splice, &root->delalloc_inodes);
9450 spin_unlock(&root->delalloc_lock);
9451 }
573bfb72 9452 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9453 return ret;
9454}
1eafa6c7 9455
3cd24c69 9456int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 9457{
0b246afa 9458 struct btrfs_fs_info *fs_info = root->fs_info;
b4912139 9459 u64 nr = U64_MAX;
1eafa6c7 9460
0b246afa 9461 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9462 return -EROFS;
9463
b4912139 9464 return start_delalloc_inodes(root, &nr, true);
eb73c1b7
MX
9465}
9466
b4912139 9467int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr)
eb73c1b7
MX
9468{
9469 struct btrfs_root *root;
9470 struct list_head splice;
9471 int ret;
9472
2c21b4d7 9473 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9474 return -EROFS;
9475
9476 INIT_LIST_HEAD(&splice);
9477
573bfb72 9478 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9479 spin_lock(&fs_info->delalloc_root_lock);
9480 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9481 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9482 root = list_first_entry(&splice, struct btrfs_root,
9483 delalloc_root);
00246528 9484 root = btrfs_grab_root(root);
eb73c1b7
MX
9485 BUG_ON(!root);
9486 list_move_tail(&root->delalloc_root,
9487 &fs_info->delalloc_roots);
9488 spin_unlock(&fs_info->delalloc_root_lock);
9489
b4912139 9490 ret = start_delalloc_inodes(root, &nr, false);
00246528 9491 btrfs_put_root(root);
6c255e67 9492 if (ret < 0)
eb73c1b7 9493 goto out;
eb73c1b7 9494 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9495 }
eb73c1b7 9496 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9497
6c255e67 9498 ret = 0;
eb73c1b7 9499out:
81f1d390 9500 if (!list_empty(&splice)) {
eb73c1b7
MX
9501 spin_lock(&fs_info->delalloc_root_lock);
9502 list_splice_tail(&splice, &fs_info->delalloc_roots);
9503 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9504 }
573bfb72 9505 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9506 return ret;
ea8c2819
CM
9507}
9508
39279cc3
CM
9509static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9510 const char *symname)
9511{
0b246afa 9512 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9513 struct btrfs_trans_handle *trans;
9514 struct btrfs_root *root = BTRFS_I(dir)->root;
9515 struct btrfs_path *path;
9516 struct btrfs_key key;
1832a6d5 9517 struct inode *inode = NULL;
39279cc3 9518 int err;
39279cc3 9519 u64 objectid;
67871254 9520 u64 index = 0;
39279cc3
CM
9521 int name_len;
9522 int datasize;
5f39d397 9523 unsigned long ptr;
39279cc3 9524 struct btrfs_file_extent_item *ei;
5f39d397 9525 struct extent_buffer *leaf;
39279cc3 9526
f06becc4 9527 name_len = strlen(symname);
0b246afa 9528 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9529 return -ENAMETOOLONG;
1832a6d5 9530
9ed74f2d
JB
9531 /*
9532 * 2 items for inode item and ref
9533 * 2 items for dir items
9269d12b
FM
9534 * 1 item for updating parent inode item
9535 * 1 item for the inline extent item
9ed74f2d
JB
9536 * 1 item for xattr if selinux is on
9537 */
9269d12b 9538 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
9539 if (IS_ERR(trans))
9540 return PTR_ERR(trans);
1832a6d5 9541
581bb050
LZ
9542 err = btrfs_find_free_ino(root, &objectid);
9543 if (err)
9544 goto out_unlock;
9545
aec7477b 9546 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
9547 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9548 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9549 if (IS_ERR(inode)) {
9550 err = PTR_ERR(inode);
32955c54 9551 inode = NULL;
39279cc3 9552 goto out_unlock;
7cf96da3 9553 }
39279cc3 9554
ad19db71
CS
9555 /*
9556 * If the active LSM wants to access the inode during
9557 * d_instantiate it needs these. Smack checks to see
9558 * if the filesystem supports xattrs by looking at the
9559 * ops vector.
9560 */
9561 inode->i_fop = &btrfs_file_operations;
9562 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9563 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9564 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9565
9566 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9567 if (err)
32955c54 9568 goto out_unlock;
ad19db71 9569
39279cc3 9570 path = btrfs_alloc_path();
d8926bb3
MF
9571 if (!path) {
9572 err = -ENOMEM;
32955c54 9573 goto out_unlock;
d8926bb3 9574 }
4a0cc7ca 9575 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9576 key.offset = 0;
962a298f 9577 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9578 datasize = btrfs_file_extent_calc_inline_size(name_len);
9579 err = btrfs_insert_empty_item(trans, root, path, &key,
9580 datasize);
54aa1f4d 9581 if (err) {
b0839166 9582 btrfs_free_path(path);
32955c54 9583 goto out_unlock;
54aa1f4d 9584 }
5f39d397
CM
9585 leaf = path->nodes[0];
9586 ei = btrfs_item_ptr(leaf, path->slots[0],
9587 struct btrfs_file_extent_item);
9588 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9589 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9590 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9591 btrfs_set_file_extent_encryption(leaf, ei, 0);
9592 btrfs_set_file_extent_compression(leaf, ei, 0);
9593 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9594 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9595
39279cc3 9596 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9597 write_extent_buffer(leaf, symname, ptr, name_len);
9598 btrfs_mark_buffer_dirty(leaf);
39279cc3 9599 btrfs_free_path(path);
5f39d397 9600
39279cc3 9601 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 9602 inode_nohighmem(inode);
d899e052 9603 inode_set_bytes(inode, name_len);
6ef06d27 9604 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 9605 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
9606 /*
9607 * Last step, add directory indexes for our symlink inode. This is the
9608 * last step to avoid extra cleanup of these indexes if an error happens
9609 * elsewhere above.
9610 */
9611 if (!err)
cef415af
NB
9612 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9613 BTRFS_I(inode), 0, index);
32955c54
AV
9614 if (err)
9615 goto out_unlock;
b0d5d10f 9616
1e2e547a 9617 d_instantiate_new(dentry, inode);
39279cc3
CM
9618
9619out_unlock:
3a45bb20 9620 btrfs_end_transaction(trans);
32955c54 9621 if (err && inode) {
39279cc3 9622 inode_dec_link_count(inode);
32955c54 9623 discard_new_inode(inode);
39279cc3 9624 }
2ff7e61e 9625 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
9626 return err;
9627}
16432985 9628
203f44c5
QW
9629static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9630 struct inode *inode, struct btrfs_key *ins,
9631 u64 file_offset)
9632{
9633 struct btrfs_file_extent_item stack_fi;
9634 u64 start = ins->objectid;
9635 u64 len = ins->offset;
9729f10a 9636 int ret;
203f44c5
QW
9637
9638 memset(&stack_fi, 0, sizeof(stack_fi));
9639
9640 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9641 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9642 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9643 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9644 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9645 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9646 /* Encryption and other encoding is reserved and all 0 */
9647
72b7d15b 9648 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9729f10a
QW
9649 if (ret < 0)
9650 return ret;
c553f94d 9651 return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9729f10a 9652 &stack_fi, ret);
203f44c5 9653}
0af3d00b
JB
9654static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9655 u64 start, u64 num_bytes, u64 min_size,
9656 loff_t actual_len, u64 *alloc_hint,
9657 struct btrfs_trans_handle *trans)
d899e052 9658{
0b246afa 9659 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
9660 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9661 struct extent_map *em;
d899e052
YZ
9662 struct btrfs_root *root = BTRFS_I(inode)->root;
9663 struct btrfs_key ins;
d899e052 9664 u64 cur_offset = start;
b778cf96 9665 u64 clear_offset = start;
55a61d1d 9666 u64 i_size;
154ea289 9667 u64 cur_bytes;
0b670dc4 9668 u64 last_alloc = (u64)-1;
d899e052 9669 int ret = 0;
0af3d00b 9670 bool own_trans = true;
18513091 9671 u64 end = start + num_bytes - 1;
d899e052 9672
0af3d00b
JB
9673 if (trans)
9674 own_trans = false;
d899e052 9675 while (num_bytes > 0) {
0af3d00b
JB
9676 if (own_trans) {
9677 trans = btrfs_start_transaction(root, 3);
9678 if (IS_ERR(trans)) {
9679 ret = PTR_ERR(trans);
9680 break;
9681 }
5a303d5d
YZ
9682 }
9683
ee22184b 9684 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9685 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9686 /*
9687 * If we are severely fragmented we could end up with really
9688 * small allocations, so if the allocator is returning small
9689 * chunks lets make its job easier by only searching for those
9690 * sized chunks.
9691 */
9692 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9693 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9694 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 9695 if (ret) {
0af3d00b 9696 if (own_trans)
3a45bb20 9697 btrfs_end_transaction(trans);
a22285a6 9698 break;
d899e052 9699 }
b778cf96
JB
9700
9701 /*
9702 * We've reserved this space, and thus converted it from
9703 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9704 * from here on out we will only need to clear our reservation
9705 * for the remaining unreserved area, so advance our
9706 * clear_offset by our extent size.
9707 */
9708 clear_offset += ins.offset;
0b246afa 9709 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 9710
0b670dc4 9711 last_alloc = ins.offset;
c553f94d 9712 ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
79787eaa 9713 if (ret) {
2ff7e61e 9714 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9715 ins.offset, 0);
66642832 9716 btrfs_abort_transaction(trans, ret);
79787eaa 9717 if (own_trans)
3a45bb20 9718 btrfs_end_transaction(trans);
79787eaa
JM
9719 break;
9720 }
31193213 9721
dcdbc059 9722 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 9723 cur_offset + ins.offset -1, 0);
5a303d5d 9724
5dc562c5
JB
9725 em = alloc_extent_map();
9726 if (!em) {
9727 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9728 &BTRFS_I(inode)->runtime_flags);
9729 goto next;
9730 }
9731
9732 em->start = cur_offset;
9733 em->orig_start = cur_offset;
9734 em->len = ins.offset;
9735 em->block_start = ins.objectid;
9736 em->block_len = ins.offset;
b4939680 9737 em->orig_block_len = ins.offset;
cc95bef6 9738 em->ram_bytes = ins.offset;
5dc562c5
JB
9739 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9740 em->generation = trans->transid;
9741
9742 while (1) {
9743 write_lock(&em_tree->lock);
09a2a8f9 9744 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9745 write_unlock(&em_tree->lock);
9746 if (ret != -EEXIST)
9747 break;
dcdbc059 9748 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
9749 cur_offset + ins.offset - 1,
9750 0);
9751 }
9752 free_extent_map(em);
9753next:
d899e052
YZ
9754 num_bytes -= ins.offset;
9755 cur_offset += ins.offset;
efa56464 9756 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9757
0c4d2d95 9758 inode_inc_iversion(inode);
c2050a45 9759 inode->i_ctime = current_time(inode);
6cbff00f 9760 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9761 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9762 (actual_len > inode->i_size) &&
9763 (cur_offset > inode->i_size)) {
d1ea6a61 9764 if (cur_offset > actual_len)
55a61d1d 9765 i_size = actual_len;
d1ea6a61 9766 else
55a61d1d
JB
9767 i_size = cur_offset;
9768 i_size_write(inode, i_size);
d923afe9 9769 btrfs_inode_safe_disk_i_size_write(inode, 0);
5a303d5d
YZ
9770 }
9771
d899e052 9772 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9773
9774 if (ret) {
66642832 9775 btrfs_abort_transaction(trans, ret);
79787eaa 9776 if (own_trans)
3a45bb20 9777 btrfs_end_transaction(trans);
79787eaa
JM
9778 break;
9779 }
d899e052 9780
0af3d00b 9781 if (own_trans)
3a45bb20 9782 btrfs_end_transaction(trans);
5a303d5d 9783 }
b778cf96 9784 if (clear_offset < end)
25ce28ca 9785 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 9786 end - clear_offset + 1);
d899e052
YZ
9787 return ret;
9788}
9789
0af3d00b
JB
9790int btrfs_prealloc_file_range(struct inode *inode, int mode,
9791 u64 start, u64 num_bytes, u64 min_size,
9792 loff_t actual_len, u64 *alloc_hint)
9793{
9794 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9795 min_size, actual_len, alloc_hint,
9796 NULL);
9797}
9798
9799int btrfs_prealloc_file_range_trans(struct inode *inode,
9800 struct btrfs_trans_handle *trans, int mode,
9801 u64 start, u64 num_bytes, u64 min_size,
9802 loff_t actual_len, u64 *alloc_hint)
9803{
9804 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9805 min_size, actual_len, alloc_hint, trans);
9806}
9807
e6dcd2dc
CM
9808static int btrfs_set_page_dirty(struct page *page)
9809{
e6dcd2dc
CM
9810 return __set_page_dirty_nobuffers(page);
9811}
9812
10556cb2 9813static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9814{
b83cc969 9815 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9816 umode_t mode = inode->i_mode;
b83cc969 9817
cb6db4e5
JM
9818 if (mask & MAY_WRITE &&
9819 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9820 if (btrfs_root_readonly(root))
9821 return -EROFS;
9822 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9823 return -EACCES;
9824 }
2830ba7f 9825 return generic_permission(inode, mask);
fdebe2bd 9826}
39279cc3 9827
ef3b9af5
FM
9828static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9829{
2ff7e61e 9830 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
9831 struct btrfs_trans_handle *trans;
9832 struct btrfs_root *root = BTRFS_I(dir)->root;
9833 struct inode *inode = NULL;
9834 u64 objectid;
9835 u64 index;
9836 int ret = 0;
9837
9838 /*
9839 * 5 units required for adding orphan entry
9840 */
9841 trans = btrfs_start_transaction(root, 5);
9842 if (IS_ERR(trans))
9843 return PTR_ERR(trans);
9844
9845 ret = btrfs_find_free_ino(root, &objectid);
9846 if (ret)
9847 goto out;
9848
9849 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 9850 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
9851 if (IS_ERR(inode)) {
9852 ret = PTR_ERR(inode);
9853 inode = NULL;
9854 goto out;
9855 }
9856
ef3b9af5
FM
9857 inode->i_fop = &btrfs_file_operations;
9858 inode->i_op = &btrfs_file_inode_operations;
9859
9860 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9861 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9862
b0d5d10f
CM
9863 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9864 if (ret)
32955c54 9865 goto out;
b0d5d10f
CM
9866
9867 ret = btrfs_update_inode(trans, root, inode);
9868 if (ret)
32955c54 9869 goto out;
73f2e545 9870 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 9871 if (ret)
32955c54 9872 goto out;
ef3b9af5 9873
5762b5c9
FM
9874 /*
9875 * We set number of links to 0 in btrfs_new_inode(), and here we set
9876 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9877 * through:
9878 *
9879 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9880 */
9881 set_nlink(inode, 1);
ef3b9af5 9882 d_tmpfile(dentry, inode);
32955c54 9883 unlock_new_inode(inode);
ef3b9af5 9884 mark_inode_dirty(inode);
ef3b9af5 9885out:
3a45bb20 9886 btrfs_end_transaction(trans);
32955c54
AV
9887 if (ret && inode)
9888 discard_new_inode(inode);
2ff7e61e 9889 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
9890 return ret;
9891}
9892
5cdc84bf 9893void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 9894{
5cdc84bf 9895 struct inode *inode = tree->private_data;
c6100a4b
JB
9896 unsigned long index = start >> PAGE_SHIFT;
9897 unsigned long end_index = end >> PAGE_SHIFT;
9898 struct page *page;
9899
9900 while (index <= end_index) {
9901 page = find_get_page(inode->i_mapping, index);
9902 ASSERT(page); /* Pages should be in the extent_io_tree */
9903 set_page_writeback(page);
9904 put_page(page);
9905 index++;
9906 }
9907}
9908
ed46ff3d
OS
9909#ifdef CONFIG_SWAP
9910/*
9911 * Add an entry indicating a block group or device which is pinned by a
9912 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9913 * negative errno on failure.
9914 */
9915static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9916 bool is_block_group)
9917{
9918 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9919 struct btrfs_swapfile_pin *sp, *entry;
9920 struct rb_node **p;
9921 struct rb_node *parent = NULL;
9922
9923 sp = kmalloc(sizeof(*sp), GFP_NOFS);
9924 if (!sp)
9925 return -ENOMEM;
9926 sp->ptr = ptr;
9927 sp->inode = inode;
9928 sp->is_block_group = is_block_group;
9929
9930 spin_lock(&fs_info->swapfile_pins_lock);
9931 p = &fs_info->swapfile_pins.rb_node;
9932 while (*p) {
9933 parent = *p;
9934 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9935 if (sp->ptr < entry->ptr ||
9936 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9937 p = &(*p)->rb_left;
9938 } else if (sp->ptr > entry->ptr ||
9939 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9940 p = &(*p)->rb_right;
9941 } else {
9942 spin_unlock(&fs_info->swapfile_pins_lock);
9943 kfree(sp);
9944 return 1;
9945 }
9946 }
9947 rb_link_node(&sp->node, parent, p);
9948 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9949 spin_unlock(&fs_info->swapfile_pins_lock);
9950 return 0;
9951}
9952
9953/* Free all of the entries pinned by this swapfile. */
9954static void btrfs_free_swapfile_pins(struct inode *inode)
9955{
9956 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9957 struct btrfs_swapfile_pin *sp;
9958 struct rb_node *node, *next;
9959
9960 spin_lock(&fs_info->swapfile_pins_lock);
9961 node = rb_first(&fs_info->swapfile_pins);
9962 while (node) {
9963 next = rb_next(node);
9964 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9965 if (sp->inode == inode) {
9966 rb_erase(&sp->node, &fs_info->swapfile_pins);
9967 if (sp->is_block_group)
9968 btrfs_put_block_group(sp->ptr);
9969 kfree(sp);
9970 }
9971 node = next;
9972 }
9973 spin_unlock(&fs_info->swapfile_pins_lock);
9974}
9975
9976struct btrfs_swap_info {
9977 u64 start;
9978 u64 block_start;
9979 u64 block_len;
9980 u64 lowest_ppage;
9981 u64 highest_ppage;
9982 unsigned long nr_pages;
9983 int nr_extents;
9984};
9985
9986static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9987 struct btrfs_swap_info *bsi)
9988{
9989 unsigned long nr_pages;
9990 u64 first_ppage, first_ppage_reported, next_ppage;
9991 int ret;
9992
9993 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9994 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9995 PAGE_SIZE) >> PAGE_SHIFT;
9996
9997 if (first_ppage >= next_ppage)
9998 return 0;
9999 nr_pages = next_ppage - first_ppage;
10000
10001 first_ppage_reported = first_ppage;
10002 if (bsi->start == 0)
10003 first_ppage_reported++;
10004 if (bsi->lowest_ppage > first_ppage_reported)
10005 bsi->lowest_ppage = first_ppage_reported;
10006 if (bsi->highest_ppage < (next_ppage - 1))
10007 bsi->highest_ppage = next_ppage - 1;
10008
10009 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10010 if (ret < 0)
10011 return ret;
10012 bsi->nr_extents += ret;
10013 bsi->nr_pages += nr_pages;
10014 return 0;
10015}
10016
10017static void btrfs_swap_deactivate(struct file *file)
10018{
10019 struct inode *inode = file_inode(file);
10020
10021 btrfs_free_swapfile_pins(inode);
10022 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10023}
10024
10025static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10026 sector_t *span)
10027{
10028 struct inode *inode = file_inode(file);
10029 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10031 struct extent_state *cached_state = NULL;
10032 struct extent_map *em = NULL;
10033 struct btrfs_device *device = NULL;
10034 struct btrfs_swap_info bsi = {
10035 .lowest_ppage = (sector_t)-1ULL,
10036 };
10037 int ret = 0;
10038 u64 isize;
10039 u64 start;
10040
10041 /*
10042 * If the swap file was just created, make sure delalloc is done. If the
10043 * file changes again after this, the user is doing something stupid and
10044 * we don't really care.
10045 */
10046 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10047 if (ret)
10048 return ret;
10049
10050 /*
10051 * The inode is locked, so these flags won't change after we check them.
10052 */
10053 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10054 btrfs_warn(fs_info, "swapfile must not be compressed");
10055 return -EINVAL;
10056 }
10057 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10058 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10059 return -EINVAL;
10060 }
10061 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10062 btrfs_warn(fs_info, "swapfile must not be checksummed");
10063 return -EINVAL;
10064 }
10065
10066 /*
10067 * Balance or device remove/replace/resize can move stuff around from
10068 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10069 * concurrently while we are mapping the swap extents, and
10070 * fs_info->swapfile_pins prevents them from running while the swap file
10071 * is active and moving the extents. Note that this also prevents a
10072 * concurrent device add which isn't actually necessary, but it's not
10073 * really worth the trouble to allow it.
10074 */
10075 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10076 btrfs_warn(fs_info,
10077 "cannot activate swapfile while exclusive operation is running");
10078 return -EBUSY;
10079 }
10080 /*
10081 * Snapshots can create extents which require COW even if NODATACOW is
10082 * set. We use this counter to prevent snapshots. We must increment it
10083 * before walking the extents because we don't want a concurrent
10084 * snapshot to run after we've already checked the extents.
10085 */
10086 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10087
10088 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10089
10090 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10091 start = 0;
10092 while (start < isize) {
10093 u64 logical_block_start, physical_block_start;
32da5386 10094 struct btrfs_block_group *bg;
ed46ff3d
OS
10095 u64 len = isize - start;
10096
39b07b5d 10097 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
10098 if (IS_ERR(em)) {
10099 ret = PTR_ERR(em);
10100 goto out;
10101 }
10102
10103 if (em->block_start == EXTENT_MAP_HOLE) {
10104 btrfs_warn(fs_info, "swapfile must not have holes");
10105 ret = -EINVAL;
10106 goto out;
10107 }
10108 if (em->block_start == EXTENT_MAP_INLINE) {
10109 /*
10110 * It's unlikely we'll ever actually find ourselves
10111 * here, as a file small enough to fit inline won't be
10112 * big enough to store more than the swap header, but in
10113 * case something changes in the future, let's catch it
10114 * here rather than later.
10115 */
10116 btrfs_warn(fs_info, "swapfile must not be inline");
10117 ret = -EINVAL;
10118 goto out;
10119 }
10120 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10121 btrfs_warn(fs_info, "swapfile must not be compressed");
10122 ret = -EINVAL;
10123 goto out;
10124 }
10125
10126 logical_block_start = em->block_start + (start - em->start);
10127 len = min(len, em->len - (start - em->start));
10128 free_extent_map(em);
10129 em = NULL;
10130
a84d5d42 10131 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
ed46ff3d
OS
10132 if (ret < 0) {
10133 goto out;
10134 } else if (ret) {
10135 ret = 0;
10136 } else {
10137 btrfs_warn(fs_info,
10138 "swapfile must not be copy-on-write");
10139 ret = -EINVAL;
10140 goto out;
10141 }
10142
10143 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10144 if (IS_ERR(em)) {
10145 ret = PTR_ERR(em);
10146 goto out;
10147 }
10148
10149 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10150 btrfs_warn(fs_info,
10151 "swapfile must have single data profile");
10152 ret = -EINVAL;
10153 goto out;
10154 }
10155
10156 if (device == NULL) {
10157 device = em->map_lookup->stripes[0].dev;
10158 ret = btrfs_add_swapfile_pin(inode, device, false);
10159 if (ret == 1)
10160 ret = 0;
10161 else if (ret)
10162 goto out;
10163 } else if (device != em->map_lookup->stripes[0].dev) {
10164 btrfs_warn(fs_info, "swapfile must be on one device");
10165 ret = -EINVAL;
10166 goto out;
10167 }
10168
10169 physical_block_start = (em->map_lookup->stripes[0].physical +
10170 (logical_block_start - em->start));
10171 len = min(len, em->len - (logical_block_start - em->start));
10172 free_extent_map(em);
10173 em = NULL;
10174
10175 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10176 if (!bg) {
10177 btrfs_warn(fs_info,
10178 "could not find block group containing swapfile");
10179 ret = -EINVAL;
10180 goto out;
10181 }
10182
10183 ret = btrfs_add_swapfile_pin(inode, bg, true);
10184 if (ret) {
10185 btrfs_put_block_group(bg);
10186 if (ret == 1)
10187 ret = 0;
10188 else
10189 goto out;
10190 }
10191
10192 if (bsi.block_len &&
10193 bsi.block_start + bsi.block_len == physical_block_start) {
10194 bsi.block_len += len;
10195 } else {
10196 if (bsi.block_len) {
10197 ret = btrfs_add_swap_extent(sis, &bsi);
10198 if (ret)
10199 goto out;
10200 }
10201 bsi.start = start;
10202 bsi.block_start = physical_block_start;
10203 bsi.block_len = len;
10204 }
10205
10206 start += len;
10207 }
10208
10209 if (bsi.block_len)
10210 ret = btrfs_add_swap_extent(sis, &bsi);
10211
10212out:
10213 if (!IS_ERR_OR_NULL(em))
10214 free_extent_map(em);
10215
10216 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10217
10218 if (ret)
10219 btrfs_swap_deactivate(file);
10220
10221 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10222
10223 if (ret)
10224 return ret;
10225
10226 if (device)
10227 sis->bdev = device->bdev;
10228 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10229 sis->max = bsi.nr_pages;
10230 sis->pages = bsi.nr_pages - 1;
10231 sis->highest_bit = bsi.nr_pages - 1;
10232 return bsi.nr_extents;
10233}
10234#else
10235static void btrfs_swap_deactivate(struct file *file)
10236{
10237}
10238
10239static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10240 sector_t *span)
10241{
10242 return -EOPNOTSUPP;
10243}
10244#endif
10245
6e1d5dcc 10246static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10247 .getattr = btrfs_getattr,
39279cc3
CM
10248 .lookup = btrfs_lookup,
10249 .create = btrfs_create,
10250 .unlink = btrfs_unlink,
10251 .link = btrfs_link,
10252 .mkdir = btrfs_mkdir,
10253 .rmdir = btrfs_rmdir,
2773bf00 10254 .rename = btrfs_rename2,
39279cc3
CM
10255 .symlink = btrfs_symlink,
10256 .setattr = btrfs_setattr,
618e21d5 10257 .mknod = btrfs_mknod,
5103e947 10258 .listxattr = btrfs_listxattr,
fdebe2bd 10259 .permission = btrfs_permission,
4e34e719 10260 .get_acl = btrfs_get_acl,
996a710d 10261 .set_acl = btrfs_set_acl,
93fd63c2 10262 .update_time = btrfs_update_time,
ef3b9af5 10263 .tmpfile = btrfs_tmpfile,
39279cc3 10264};
76dda93c 10265
828c0950 10266static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10267 .llseek = generic_file_llseek,
10268 .read = generic_read_dir,
02dbfc99 10269 .iterate_shared = btrfs_real_readdir,
23b5ec74 10270 .open = btrfs_opendir,
34287aa3 10271 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10272#ifdef CONFIG_COMPAT
4c63c245 10273 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10274#endif
6bf13c0c 10275 .release = btrfs_release_file,
e02119d5 10276 .fsync = btrfs_sync_file,
39279cc3
CM
10277};
10278
20e5506b 10279static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10280 /* mandatory callbacks */
065631f6 10281 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10282 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10283};
10284
35054394
CM
10285/*
10286 * btrfs doesn't support the bmap operation because swapfiles
10287 * use bmap to make a mapping of extents in the file. They assume
10288 * these extents won't change over the life of the file and they
10289 * use the bmap result to do IO directly to the drive.
10290 *
10291 * the btrfs bmap call would return logical addresses that aren't
10292 * suitable for IO and they also will change frequently as COW
10293 * operations happen. So, swapfile + btrfs == corruption.
10294 *
10295 * For now we're avoiding this by dropping bmap.
10296 */
7f09410b 10297static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10298 .readpage = btrfs_readpage,
10299 .writepage = btrfs_writepage,
b293f02e 10300 .writepages = btrfs_writepages,
ba206a02 10301 .readahead = btrfs_readahead,
55e20bd1 10302 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10303 .invalidatepage = btrfs_invalidatepage,
10304 .releasepage = btrfs_releasepage,
f8e66081
RG
10305#ifdef CONFIG_MIGRATION
10306 .migratepage = btrfs_migratepage,
10307#endif
e6dcd2dc 10308 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10309 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10310 .swap_activate = btrfs_swap_activate,
10311 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10312};
10313
6e1d5dcc 10314static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10315 .getattr = btrfs_getattr,
10316 .setattr = btrfs_setattr,
5103e947 10317 .listxattr = btrfs_listxattr,
fdebe2bd 10318 .permission = btrfs_permission,
1506fcc8 10319 .fiemap = btrfs_fiemap,
4e34e719 10320 .get_acl = btrfs_get_acl,
996a710d 10321 .set_acl = btrfs_set_acl,
e41f941a 10322 .update_time = btrfs_update_time,
39279cc3 10323};
6e1d5dcc 10324static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10325 .getattr = btrfs_getattr,
10326 .setattr = btrfs_setattr,
fdebe2bd 10327 .permission = btrfs_permission,
33268eaf 10328 .listxattr = btrfs_listxattr,
4e34e719 10329 .get_acl = btrfs_get_acl,
996a710d 10330 .set_acl = btrfs_set_acl,
e41f941a 10331 .update_time = btrfs_update_time,
618e21d5 10332};
6e1d5dcc 10333static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10334 .get_link = page_get_link,
f209561a 10335 .getattr = btrfs_getattr,
22c44fe6 10336 .setattr = btrfs_setattr,
fdebe2bd 10337 .permission = btrfs_permission,
0279b4cd 10338 .listxattr = btrfs_listxattr,
e41f941a 10339 .update_time = btrfs_update_time,
39279cc3 10340};
76dda93c 10341
82d339d9 10342const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10343 .d_delete = btrfs_dentry_delete,
10344};