btrfs: get fs_info from block group in lookup_free_space_inode
[linux-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0f9dd46c
JB
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
0f9dd46c
JB
4 */
5
96303081 6#include <linux/pagemap.h>
0f9dd46c 7#include <linux/sched.h>
f361bf4a 8#include <linux/sched/signal.h>
5a0e3ad6 9#include <linux/slab.h>
96303081 10#include <linux/math64.h>
6ab60601 11#include <linux/ratelimit.h>
540adea3 12#include <linux/error-injection.h>
84de76a2 13#include <linux/sched/mm.h>
0f9dd46c 14#include "ctree.h"
fa9c0d79
CM
15#include "free-space-cache.h"
16#include "transaction.h"
0af3d00b 17#include "disk-io.h"
43be2146 18#include "extent_io.h"
581bb050 19#include "inode-map.h"
04216820 20#include "volumes.h"
fa9c0d79 21
0ef6447a 22#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
ee22184b 23#define MAX_CACHE_BYTES_PER_GIG SZ_32K
0f9dd46c 24
55507ce3
FM
25struct btrfs_trim_range {
26 u64 start;
27 u64 bytes;
28 struct list_head list;
29};
30
34d52cb6 31static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 32 struct btrfs_free_space *info);
cd023e7b
JB
33static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
34 struct btrfs_free_space *info);
afdb5718
JM
35static int btrfs_wait_cache_io_root(struct btrfs_root *root,
36 struct btrfs_trans_handle *trans,
37 struct btrfs_io_ctl *io_ctl,
38 struct btrfs_path *path);
0cb59c99 39
0414efae
LZ
40static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
41 struct btrfs_path *path,
42 u64 offset)
0af3d00b 43{
0b246afa 44 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
45 struct btrfs_key key;
46 struct btrfs_key location;
47 struct btrfs_disk_key disk_key;
48 struct btrfs_free_space_header *header;
49 struct extent_buffer *leaf;
50 struct inode *inode = NULL;
84de76a2 51 unsigned nofs_flag;
0af3d00b
JB
52 int ret;
53
0af3d00b 54 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 55 key.offset = offset;
0af3d00b
JB
56 key.type = 0;
57
58 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
59 if (ret < 0)
60 return ERR_PTR(ret);
61 if (ret > 0) {
b3b4aa74 62 btrfs_release_path(path);
0af3d00b
JB
63 return ERR_PTR(-ENOENT);
64 }
65
66 leaf = path->nodes[0];
67 header = btrfs_item_ptr(leaf, path->slots[0],
68 struct btrfs_free_space_header);
69 btrfs_free_space_key(leaf, header, &disk_key);
70 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 71 btrfs_release_path(path);
0af3d00b 72
84de76a2
JB
73 /*
74 * We are often under a trans handle at this point, so we need to make
75 * sure NOFS is set to keep us from deadlocking.
76 */
77 nofs_flag = memalloc_nofs_save();
4222ea71
FM
78 inode = btrfs_iget_path(fs_info->sb, &location, root, NULL, path);
79 btrfs_release_path(path);
84de76a2 80 memalloc_nofs_restore(nofs_flag);
0af3d00b
JB
81 if (IS_ERR(inode))
82 return inode;
0af3d00b 83
528c0327 84 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
85 mapping_gfp_constraint(inode->i_mapping,
86 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 87
0414efae
LZ
88 return inode;
89}
90
7949f339
DS
91struct inode *lookup_free_space_inode(
92 struct btrfs_block_group_cache *block_group,
93 struct btrfs_path *path)
0414efae 94{
7949f339 95 struct btrfs_fs_info *fs_info = block_group->fs_info;
0414efae 96 struct inode *inode = NULL;
5b0e95bf 97 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
98
99 spin_lock(&block_group->lock);
100 if (block_group->inode)
101 inode = igrab(block_group->inode);
102 spin_unlock(&block_group->lock);
103 if (inode)
104 return inode;
105
77ab86bf 106 inode = __lookup_free_space_inode(fs_info->tree_root, path,
0414efae
LZ
107 block_group->key.objectid);
108 if (IS_ERR(inode))
109 return inode;
110
0af3d00b 111 spin_lock(&block_group->lock);
5b0e95bf 112 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 113 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
114 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
115 BTRFS_INODE_NODATACOW;
2f356126
JB
116 block_group->disk_cache_state = BTRFS_DC_CLEAR;
117 }
118
300e4f8a 119 if (!block_group->iref) {
0af3d00b
JB
120 block_group->inode = igrab(inode);
121 block_group->iref = 1;
122 }
123 spin_unlock(&block_group->lock);
124
125 return inode;
126}
127
48a3b636
ES
128static int __create_free_space_inode(struct btrfs_root *root,
129 struct btrfs_trans_handle *trans,
130 struct btrfs_path *path,
131 u64 ino, u64 offset)
0af3d00b
JB
132{
133 struct btrfs_key key;
134 struct btrfs_disk_key disk_key;
135 struct btrfs_free_space_header *header;
136 struct btrfs_inode_item *inode_item;
137 struct extent_buffer *leaf;
5b0e95bf 138 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
139 int ret;
140
0414efae 141 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
142 if (ret)
143 return ret;
144
5b0e95bf
JB
145 /* We inline crc's for the free disk space cache */
146 if (ino != BTRFS_FREE_INO_OBJECTID)
147 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
148
0af3d00b
JB
149 leaf = path->nodes[0];
150 inode_item = btrfs_item_ptr(leaf, path->slots[0],
151 struct btrfs_inode_item);
152 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 153 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
154 sizeof(*inode_item));
155 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
156 btrfs_set_inode_size(leaf, inode_item, 0);
157 btrfs_set_inode_nbytes(leaf, inode_item, 0);
158 btrfs_set_inode_uid(leaf, inode_item, 0);
159 btrfs_set_inode_gid(leaf, inode_item, 0);
160 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 161 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
162 btrfs_set_inode_nlink(leaf, inode_item, 1);
163 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 164 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 165 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 166 btrfs_release_path(path);
0af3d00b
JB
167
168 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 169 key.offset = offset;
0af3d00b 170 key.type = 0;
0af3d00b
JB
171 ret = btrfs_insert_empty_item(trans, root, path, &key,
172 sizeof(struct btrfs_free_space_header));
173 if (ret < 0) {
b3b4aa74 174 btrfs_release_path(path);
0af3d00b
JB
175 return ret;
176 }
c9dc4c65 177
0af3d00b
JB
178 leaf = path->nodes[0];
179 header = btrfs_item_ptr(leaf, path->slots[0],
180 struct btrfs_free_space_header);
b159fa28 181 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b
JB
182 btrfs_set_free_space_key(leaf, header, &disk_key);
183 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 184 btrfs_release_path(path);
0af3d00b
JB
185
186 return 0;
187}
188
4ca75f1b 189int create_free_space_inode(struct btrfs_trans_handle *trans,
0414efae
LZ
190 struct btrfs_block_group_cache *block_group,
191 struct btrfs_path *path)
192{
193 int ret;
194 u64 ino;
195
4ca75f1b 196 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
0414efae
LZ
197 if (ret < 0)
198 return ret;
199
4ca75f1b
DS
200 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
201 ino, block_group->key.objectid);
0414efae
LZ
202}
203
2ff7e61e 204int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
7b61cd92 205 struct btrfs_block_rsv *rsv)
0af3d00b 206{
c8174313 207 u64 needed_bytes;
7b61cd92 208 int ret;
c8174313
JB
209
210 /* 1 for slack space, 1 for updating the inode */
0b246afa
JM
211 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
212 btrfs_calc_trans_metadata_size(fs_info, 1);
c8174313 213
7b61cd92
MX
214 spin_lock(&rsv->lock);
215 if (rsv->reserved < needed_bytes)
216 ret = -ENOSPC;
217 else
218 ret = 0;
219 spin_unlock(&rsv->lock);
4b286cd1 220 return ret;
7b61cd92
MX
221}
222
77ab86bf 223int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
1bbc621e 224 struct btrfs_block_group_cache *block_group,
7b61cd92
MX
225 struct inode *inode)
226{
77ab86bf 227 struct btrfs_root *root = BTRFS_I(inode)->root;
7b61cd92 228 int ret = 0;
35c76642 229 bool locked = false;
1bbc621e 230
1bbc621e 231 if (block_group) {
21e75ffe
JM
232 struct btrfs_path *path = btrfs_alloc_path();
233
234 if (!path) {
235 ret = -ENOMEM;
236 goto fail;
237 }
35c76642 238 locked = true;
1bbc621e
CM
239 mutex_lock(&trans->transaction->cache_write_mutex);
240 if (!list_empty(&block_group->io_list)) {
241 list_del_init(&block_group->io_list);
242
afdb5718 243 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
244 btrfs_put_block_group(block_group);
245 }
246
247 /*
248 * now that we've truncated the cache away, its no longer
249 * setup or written
250 */
251 spin_lock(&block_group->lock);
252 block_group->disk_cache_state = BTRFS_DC_CLEAR;
253 spin_unlock(&block_group->lock);
21e75ffe 254 btrfs_free_path(path);
1bbc621e 255 }
0af3d00b 256
6ef06d27 257 btrfs_i_size_write(BTRFS_I(inode), 0);
7caef267 258 truncate_pagecache(inode, 0);
0af3d00b
JB
259
260 /*
f7e9e8fc
OS
261 * We skip the throttling logic for free space cache inodes, so we don't
262 * need to check for -EAGAIN.
0af3d00b
JB
263 */
264 ret = btrfs_truncate_inode_items(trans, root, inode,
265 0, BTRFS_EXTENT_DATA_KEY);
35c76642
FM
266 if (ret)
267 goto fail;
0af3d00b 268
82d5902d 269 ret = btrfs_update_inode(trans, root, inode);
1bbc621e 270
1bbc621e 271fail:
35c76642
FM
272 if (locked)
273 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 274 if (ret)
66642832 275 btrfs_abort_transaction(trans, ret);
c8174313 276
82d5902d 277 return ret;
0af3d00b
JB
278}
279
1d480538 280static void readahead_cache(struct inode *inode)
9d66e233
JB
281{
282 struct file_ra_state *ra;
283 unsigned long last_index;
284
285 ra = kzalloc(sizeof(*ra), GFP_NOFS);
286 if (!ra)
1d480538 287 return;
9d66e233
JB
288
289 file_ra_state_init(ra, inode->i_mapping);
09cbfeaf 290 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233
JB
291
292 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
293
294 kfree(ra);
9d66e233
JB
295}
296
4c6d1d85 297static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 298 int write)
a67509c3 299{
5349d6c3
MX
300 int num_pages;
301 int check_crcs = 0;
302
09cbfeaf 303 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 304
4a0cc7ca 305 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
5349d6c3
MX
306 check_crcs = 1;
307
8f6c72a9 308 /* Make sure we can fit our crcs and generation into the first page */
5349d6c3 309 if (write && check_crcs &&
8f6c72a9 310 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
5349d6c3
MX
311 return -ENOSPC;
312
4c6d1d85 313 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 314
31e818fe 315 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
316 if (!io_ctl->pages)
317 return -ENOMEM;
5349d6c3
MX
318
319 io_ctl->num_pages = num_pages;
f15376df 320 io_ctl->fs_info = btrfs_sb(inode->i_sb);
5349d6c3 321 io_ctl->check_crcs = check_crcs;
c9dc4c65 322 io_ctl->inode = inode;
5349d6c3 323
a67509c3
JB
324 return 0;
325}
663faf9f 326ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
a67509c3 327
4c6d1d85 328static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
329{
330 kfree(io_ctl->pages);
c9dc4c65 331 io_ctl->pages = NULL;
a67509c3
JB
332}
333
4c6d1d85 334static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
335{
336 if (io_ctl->cur) {
a67509c3
JB
337 io_ctl->cur = NULL;
338 io_ctl->orig = NULL;
339 }
340}
341
4c6d1d85 342static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 343{
b12d6869 344 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 345 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 346 io_ctl->cur = page_address(io_ctl->page);
a67509c3 347 io_ctl->orig = io_ctl->cur;
09cbfeaf 348 io_ctl->size = PAGE_SIZE;
a67509c3 349 if (clear)
619a9742 350 clear_page(io_ctl->cur);
a67509c3
JB
351}
352
4c6d1d85 353static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
354{
355 int i;
356
357 io_ctl_unmap_page(io_ctl);
358
359 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
360 if (io_ctl->pages[i]) {
361 ClearPageChecked(io_ctl->pages[i]);
362 unlock_page(io_ctl->pages[i]);
09cbfeaf 363 put_page(io_ctl->pages[i]);
a1ee5a45 364 }
a67509c3
JB
365 }
366}
367
4c6d1d85 368static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
a67509c3
JB
369 int uptodate)
370{
371 struct page *page;
372 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
373 int i;
374
375 for (i = 0; i < io_ctl->num_pages; i++) {
376 page = find_or_create_page(inode->i_mapping, i, mask);
377 if (!page) {
378 io_ctl_drop_pages(io_ctl);
379 return -ENOMEM;
380 }
381 io_ctl->pages[i] = page;
382 if (uptodate && !PageUptodate(page)) {
383 btrfs_readpage(NULL, page);
384 lock_page(page);
385 if (!PageUptodate(page)) {
efe120a0
FH
386 btrfs_err(BTRFS_I(inode)->root->fs_info,
387 "error reading free space cache");
a67509c3
JB
388 io_ctl_drop_pages(io_ctl);
389 return -EIO;
390 }
391 }
392 }
393
f7d61dcd
JB
394 for (i = 0; i < io_ctl->num_pages; i++) {
395 clear_page_dirty_for_io(io_ctl->pages[i]);
396 set_page_extent_mapped(io_ctl->pages[i]);
397 }
398
a67509c3
JB
399 return 0;
400}
401
4c6d1d85 402static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 403{
528c0327 404 __le64 *val;
a67509c3
JB
405
406 io_ctl_map_page(io_ctl, 1);
407
408 /*
5b0e95bf
JB
409 * Skip the csum areas. If we don't check crcs then we just have a
410 * 64bit chunk at the front of the first page.
a67509c3 411 */
5b0e95bf
JB
412 if (io_ctl->check_crcs) {
413 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
414 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
415 } else {
416 io_ctl->cur += sizeof(u64);
417 io_ctl->size -= sizeof(u64) * 2;
418 }
a67509c3
JB
419
420 val = io_ctl->cur;
421 *val = cpu_to_le64(generation);
422 io_ctl->cur += sizeof(u64);
a67509c3
JB
423}
424
4c6d1d85 425static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 426{
528c0327 427 __le64 *gen;
a67509c3 428
5b0e95bf
JB
429 /*
430 * Skip the crc area. If we don't check crcs then we just have a 64bit
431 * chunk at the front of the first page.
432 */
433 if (io_ctl->check_crcs) {
434 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
435 io_ctl->size -= sizeof(u64) +
436 (sizeof(u32) * io_ctl->num_pages);
437 } else {
438 io_ctl->cur += sizeof(u64);
439 io_ctl->size -= sizeof(u64) * 2;
440 }
a67509c3 441
a67509c3
JB
442 gen = io_ctl->cur;
443 if (le64_to_cpu(*gen) != generation) {
f15376df 444 btrfs_err_rl(io_ctl->fs_info,
94647322
DS
445 "space cache generation (%llu) does not match inode (%llu)",
446 *gen, generation);
a67509c3
JB
447 io_ctl_unmap_page(io_ctl);
448 return -EIO;
449 }
450 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
451 return 0;
452}
453
4c6d1d85 454static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
455{
456 u32 *tmp;
457 u32 crc = ~(u32)0;
458 unsigned offset = 0;
459
460 if (!io_ctl->check_crcs) {
461 io_ctl_unmap_page(io_ctl);
462 return;
463 }
464
465 if (index == 0)
cb54f257 466 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 467
b0496686 468 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 469 PAGE_SIZE - offset);
0b5e3daf 470 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 471 io_ctl_unmap_page(io_ctl);
2b108268 472 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
473 tmp += index;
474 *tmp = crc;
5b0e95bf
JB
475}
476
4c6d1d85 477static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
478{
479 u32 *tmp, val;
480 u32 crc = ~(u32)0;
481 unsigned offset = 0;
482
483 if (!io_ctl->check_crcs) {
484 io_ctl_map_page(io_ctl, 0);
485 return 0;
486 }
487
488 if (index == 0)
489 offset = sizeof(u32) * io_ctl->num_pages;
490
2b108268 491 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
492 tmp += index;
493 val = *tmp;
5b0e95bf
JB
494
495 io_ctl_map_page(io_ctl, 0);
b0496686 496 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 497 PAGE_SIZE - offset);
0b5e3daf 498 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 499 if (val != crc) {
f15376df 500 btrfs_err_rl(io_ctl->fs_info,
94647322 501 "csum mismatch on free space cache");
5b0e95bf
JB
502 io_ctl_unmap_page(io_ctl);
503 return -EIO;
504 }
505
a67509c3
JB
506 return 0;
507}
508
4c6d1d85 509static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
510 void *bitmap)
511{
512 struct btrfs_free_space_entry *entry;
513
514 if (!io_ctl->cur)
515 return -ENOSPC;
516
517 entry = io_ctl->cur;
518 entry->offset = cpu_to_le64(offset);
519 entry->bytes = cpu_to_le64(bytes);
520 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
521 BTRFS_FREE_SPACE_EXTENT;
522 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
523 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
524
525 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
526 return 0;
527
5b0e95bf 528 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
529
530 /* No more pages to map */
531 if (io_ctl->index >= io_ctl->num_pages)
532 return 0;
533
534 /* map the next page */
535 io_ctl_map_page(io_ctl, 1);
536 return 0;
537}
538
4c6d1d85 539static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
540{
541 if (!io_ctl->cur)
542 return -ENOSPC;
543
544 /*
545 * If we aren't at the start of the current page, unmap this one and
546 * map the next one if there is any left.
547 */
548 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 549 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
550 if (io_ctl->index >= io_ctl->num_pages)
551 return -ENOSPC;
552 io_ctl_map_page(io_ctl, 0);
553 }
554
69d24804 555 copy_page(io_ctl->cur, bitmap);
5b0e95bf 556 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
557 if (io_ctl->index < io_ctl->num_pages)
558 io_ctl_map_page(io_ctl, 0);
559 return 0;
560}
561
4c6d1d85 562static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 563{
5b0e95bf
JB
564 /*
565 * If we're not on the boundary we know we've modified the page and we
566 * need to crc the page.
567 */
568 if (io_ctl->cur != io_ctl->orig)
569 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
570 else
571 io_ctl_unmap_page(io_ctl);
a67509c3
JB
572
573 while (io_ctl->index < io_ctl->num_pages) {
574 io_ctl_map_page(io_ctl, 1);
5b0e95bf 575 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
576 }
577}
578
4c6d1d85 579static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 580 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
581{
582 struct btrfs_free_space_entry *e;
2f120c05
JB
583 int ret;
584
585 if (!io_ctl->cur) {
586 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
587 if (ret)
588 return ret;
589 }
a67509c3
JB
590
591 e = io_ctl->cur;
592 entry->offset = le64_to_cpu(e->offset);
593 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 594 *type = e->type;
a67509c3
JB
595 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
596 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
597
598 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 599 return 0;
a67509c3
JB
600
601 io_ctl_unmap_page(io_ctl);
602
2f120c05 603 return 0;
a67509c3
JB
604}
605
4c6d1d85 606static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 607 struct btrfs_free_space *entry)
a67509c3 608{
5b0e95bf
JB
609 int ret;
610
5b0e95bf
JB
611 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
612 if (ret)
613 return ret;
614
69d24804 615 copy_page(entry->bitmap, io_ctl->cur);
a67509c3 616 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
617
618 return 0;
a67509c3
JB
619}
620
cd023e7b
JB
621/*
622 * Since we attach pinned extents after the fact we can have contiguous sections
623 * of free space that are split up in entries. This poses a problem with the
624 * tree logging stuff since it could have allocated across what appears to be 2
625 * entries since we would have merged the entries when adding the pinned extents
626 * back to the free space cache. So run through the space cache that we just
627 * loaded and merge contiguous entries. This will make the log replay stuff not
628 * blow up and it will make for nicer allocator behavior.
629 */
630static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
631{
632 struct btrfs_free_space *e, *prev = NULL;
633 struct rb_node *n;
634
635again:
636 spin_lock(&ctl->tree_lock);
637 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
638 e = rb_entry(n, struct btrfs_free_space, offset_index);
639 if (!prev)
640 goto next;
641 if (e->bitmap || prev->bitmap)
642 goto next;
643 if (prev->offset + prev->bytes == e->offset) {
644 unlink_free_space(ctl, prev);
645 unlink_free_space(ctl, e);
646 prev->bytes += e->bytes;
647 kmem_cache_free(btrfs_free_space_cachep, e);
648 link_free_space(ctl, prev);
649 prev = NULL;
650 spin_unlock(&ctl->tree_lock);
651 goto again;
652 }
653next:
654 prev = e;
655 }
656 spin_unlock(&ctl->tree_lock);
657}
658
48a3b636
ES
659static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
660 struct btrfs_free_space_ctl *ctl,
661 struct btrfs_path *path, u64 offset)
9d66e233 662{
3ffbd68c 663 struct btrfs_fs_info *fs_info = root->fs_info;
9d66e233
JB
664 struct btrfs_free_space_header *header;
665 struct extent_buffer *leaf;
4c6d1d85 666 struct btrfs_io_ctl io_ctl;
9d66e233 667 struct btrfs_key key;
a67509c3 668 struct btrfs_free_space *e, *n;
b76808fc 669 LIST_HEAD(bitmaps);
9d66e233
JB
670 u64 num_entries;
671 u64 num_bitmaps;
672 u64 generation;
a67509c3 673 u8 type;
f6a39829 674 int ret = 0;
9d66e233 675
9d66e233 676 /* Nothing in the space cache, goodbye */
0414efae 677 if (!i_size_read(inode))
a67509c3 678 return 0;
9d66e233
JB
679
680 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 681 key.offset = offset;
9d66e233
JB
682 key.type = 0;
683
684 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 685 if (ret < 0)
a67509c3 686 return 0;
0414efae 687 else if (ret > 0) {
945d8962 688 btrfs_release_path(path);
a67509c3 689 return 0;
9d66e233
JB
690 }
691
0414efae
LZ
692 ret = -1;
693
9d66e233
JB
694 leaf = path->nodes[0];
695 header = btrfs_item_ptr(leaf, path->slots[0],
696 struct btrfs_free_space_header);
697 num_entries = btrfs_free_space_entries(leaf, header);
698 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
699 generation = btrfs_free_space_generation(leaf, header);
945d8962 700 btrfs_release_path(path);
9d66e233 701
e570fd27 702 if (!BTRFS_I(inode)->generation) {
0b246afa 703 btrfs_info(fs_info,
913e1535 704 "the free space cache file (%llu) is invalid, skip it",
e570fd27
MX
705 offset);
706 return 0;
707 }
708
9d66e233 709 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
710 btrfs_err(fs_info,
711 "free space inode generation (%llu) did not match free space cache generation (%llu)",
712 BTRFS_I(inode)->generation, generation);
a67509c3 713 return 0;
9d66e233
JB
714 }
715
716 if (!num_entries)
a67509c3 717 return 0;
9d66e233 718
f15376df 719 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
720 if (ret)
721 return ret;
722
1d480538 723 readahead_cache(inode);
9d66e233 724
a67509c3
JB
725 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
726 if (ret)
727 goto out;
9d66e233 728
5b0e95bf
JB
729 ret = io_ctl_check_crc(&io_ctl, 0);
730 if (ret)
731 goto free_cache;
732
a67509c3
JB
733 ret = io_ctl_check_generation(&io_ctl, generation);
734 if (ret)
735 goto free_cache;
9d66e233 736
a67509c3
JB
737 while (num_entries) {
738 e = kmem_cache_zalloc(btrfs_free_space_cachep,
739 GFP_NOFS);
740 if (!e)
9d66e233 741 goto free_cache;
9d66e233 742
5b0e95bf
JB
743 ret = io_ctl_read_entry(&io_ctl, e, &type);
744 if (ret) {
745 kmem_cache_free(btrfs_free_space_cachep, e);
746 goto free_cache;
747 }
748
a67509c3
JB
749 if (!e->bytes) {
750 kmem_cache_free(btrfs_free_space_cachep, e);
751 goto free_cache;
9d66e233 752 }
a67509c3
JB
753
754 if (type == BTRFS_FREE_SPACE_EXTENT) {
755 spin_lock(&ctl->tree_lock);
756 ret = link_free_space(ctl, e);
757 spin_unlock(&ctl->tree_lock);
758 if (ret) {
0b246afa 759 btrfs_err(fs_info,
c2cf52eb 760 "Duplicate entries in free space cache, dumping");
a67509c3 761 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
762 goto free_cache;
763 }
a67509c3 764 } else {
b12d6869 765 ASSERT(num_bitmaps);
a67509c3 766 num_bitmaps--;
09cbfeaf 767 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
a67509c3
JB
768 if (!e->bitmap) {
769 kmem_cache_free(
770 btrfs_free_space_cachep, e);
9d66e233
JB
771 goto free_cache;
772 }
a67509c3
JB
773 spin_lock(&ctl->tree_lock);
774 ret = link_free_space(ctl, e);
775 ctl->total_bitmaps++;
776 ctl->op->recalc_thresholds(ctl);
777 spin_unlock(&ctl->tree_lock);
778 if (ret) {
0b246afa 779 btrfs_err(fs_info,
c2cf52eb 780 "Duplicate entries in free space cache, dumping");
dc89e982 781 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
782 goto free_cache;
783 }
a67509c3 784 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
785 }
786
a67509c3
JB
787 num_entries--;
788 }
9d66e233 789
2f120c05
JB
790 io_ctl_unmap_page(&io_ctl);
791
a67509c3
JB
792 /*
793 * We add the bitmaps at the end of the entries in order that
794 * the bitmap entries are added to the cache.
795 */
796 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 797 list_del_init(&e->list);
5b0e95bf
JB
798 ret = io_ctl_read_bitmap(&io_ctl, e);
799 if (ret)
800 goto free_cache;
9d66e233
JB
801 }
802
a67509c3 803 io_ctl_drop_pages(&io_ctl);
cd023e7b 804 merge_space_tree(ctl);
9d66e233
JB
805 ret = 1;
806out:
a67509c3 807 io_ctl_free(&io_ctl);
9d66e233 808 return ret;
9d66e233 809free_cache:
a67509c3 810 io_ctl_drop_pages(&io_ctl);
0414efae 811 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
812 goto out;
813}
814
0414efae
LZ
815int load_free_space_cache(struct btrfs_fs_info *fs_info,
816 struct btrfs_block_group_cache *block_group)
0cb59c99 817{
34d52cb6 818 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
819 struct inode *inode;
820 struct btrfs_path *path;
5b0e95bf 821 int ret = 0;
0414efae
LZ
822 bool matched;
823 u64 used = btrfs_block_group_used(&block_group->item);
824
0414efae
LZ
825 /*
826 * If this block group has been marked to be cleared for one reason or
827 * another then we can't trust the on disk cache, so just return.
828 */
9d66e233 829 spin_lock(&block_group->lock);
0414efae
LZ
830 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
831 spin_unlock(&block_group->lock);
832 return 0;
833 }
9d66e233 834 spin_unlock(&block_group->lock);
0414efae
LZ
835
836 path = btrfs_alloc_path();
837 if (!path)
838 return 0;
d53ba474
JB
839 path->search_commit_root = 1;
840 path->skip_locking = 1;
0414efae 841
4222ea71
FM
842 /*
843 * We must pass a path with search_commit_root set to btrfs_iget in
844 * order to avoid a deadlock when allocating extents for the tree root.
845 *
846 * When we are COWing an extent buffer from the tree root, when looking
847 * for a free extent, at extent-tree.c:find_free_extent(), we can find
848 * block group without its free space cache loaded. When we find one
849 * we must load its space cache which requires reading its free space
850 * cache's inode item from the root tree. If this inode item is located
851 * in the same leaf that we started COWing before, then we end up in
852 * deadlock on the extent buffer (trying to read lock it when we
853 * previously write locked it).
854 *
855 * It's safe to read the inode item using the commit root because
856 * block groups, once loaded, stay in memory forever (until they are
857 * removed) as well as their space caches once loaded. New block groups
858 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
859 * we will never try to read their inode item while the fs is mounted.
860 */
7949f339 861 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
862 if (IS_ERR(inode)) {
863 btrfs_free_path(path);
864 return 0;
865 }
866
5b0e95bf
JB
867 /* We may have converted the inode and made the cache invalid. */
868 spin_lock(&block_group->lock);
869 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
870 spin_unlock(&block_group->lock);
a7e221e9 871 btrfs_free_path(path);
5b0e95bf
JB
872 goto out;
873 }
874 spin_unlock(&block_group->lock);
875
0414efae
LZ
876 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
877 path, block_group->key.objectid);
878 btrfs_free_path(path);
879 if (ret <= 0)
880 goto out;
881
882 spin_lock(&ctl->tree_lock);
883 matched = (ctl->free_space == (block_group->key.offset - used -
884 block_group->bytes_super));
885 spin_unlock(&ctl->tree_lock);
886
887 if (!matched) {
888 __btrfs_remove_free_space_cache(ctl);
5d163e0e
JM
889 btrfs_warn(fs_info,
890 "block group %llu has wrong amount of free space",
891 block_group->key.objectid);
0414efae
LZ
892 ret = -1;
893 }
894out:
895 if (ret < 0) {
896 /* This cache is bogus, make sure it gets cleared */
897 spin_lock(&block_group->lock);
898 block_group->disk_cache_state = BTRFS_DC_CLEAR;
899 spin_unlock(&block_group->lock);
82d5902d 900 ret = 0;
0414efae 901
5d163e0e
JM
902 btrfs_warn(fs_info,
903 "failed to load free space cache for block group %llu, rebuilding it now",
904 block_group->key.objectid);
0414efae
LZ
905 }
906
907 iput(inode);
908 return ret;
9d66e233
JB
909}
910
d4452bc5 911static noinline_for_stack
4c6d1d85 912int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5
CM
913 struct btrfs_free_space_ctl *ctl,
914 struct btrfs_block_group_cache *block_group,
915 int *entries, int *bitmaps,
916 struct list_head *bitmap_list)
0cb59c99 917{
c09544e0 918 int ret;
d4452bc5 919 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 920 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 921 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 922 struct btrfs_trim_range *trim_entry;
be1a12a0 923
43be2146 924 /* Get the cluster for this block_group if it exists */
d4452bc5 925 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
926 cluster = list_entry(block_group->cluster_list.next,
927 struct btrfs_free_cluster,
928 block_group_list);
d4452bc5 929 }
43be2146 930
f75b130e 931 if (!node && cluster) {
1bbc621e
CM
932 cluster_locked = cluster;
933 spin_lock(&cluster_locked->lock);
f75b130e
JB
934 node = rb_first(&cluster->root);
935 cluster = NULL;
936 }
937
a67509c3
JB
938 /* Write out the extent entries */
939 while (node) {
940 struct btrfs_free_space *e;
0cb59c99 941
a67509c3 942 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 943 *entries += 1;
0cb59c99 944
d4452bc5 945 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
946 e->bitmap);
947 if (ret)
d4452bc5 948 goto fail;
2f356126 949
a67509c3 950 if (e->bitmap) {
d4452bc5
CM
951 list_add_tail(&e->list, bitmap_list);
952 *bitmaps += 1;
2f356126 953 }
a67509c3
JB
954 node = rb_next(node);
955 if (!node && cluster) {
956 node = rb_first(&cluster->root);
1bbc621e
CM
957 cluster_locked = cluster;
958 spin_lock(&cluster_locked->lock);
a67509c3 959 cluster = NULL;
43be2146 960 }
a67509c3 961 }
1bbc621e
CM
962 if (cluster_locked) {
963 spin_unlock(&cluster_locked->lock);
964 cluster_locked = NULL;
965 }
55507ce3
FM
966
967 /*
968 * Make sure we don't miss any range that was removed from our rbtree
969 * because trimming is running. Otherwise after a umount+mount (or crash
970 * after committing the transaction) we would leak free space and get
971 * an inconsistent free space cache report from fsck.
972 */
973 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
974 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
975 trim_entry->bytes, NULL);
976 if (ret)
977 goto fail;
978 *entries += 1;
979 }
980
d4452bc5
CM
981 return 0;
982fail:
1bbc621e
CM
983 if (cluster_locked)
984 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
985 return -ENOSPC;
986}
987
988static noinline_for_stack int
989update_cache_item(struct btrfs_trans_handle *trans,
990 struct btrfs_root *root,
991 struct inode *inode,
992 struct btrfs_path *path, u64 offset,
993 int entries, int bitmaps)
994{
995 struct btrfs_key key;
996 struct btrfs_free_space_header *header;
997 struct extent_buffer *leaf;
998 int ret;
999
1000 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1001 key.offset = offset;
1002 key.type = 0;
1003
1004 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1005 if (ret < 0) {
1006 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
ae0f1625 1007 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
d4452bc5
CM
1008 goto fail;
1009 }
1010 leaf = path->nodes[0];
1011 if (ret > 0) {
1012 struct btrfs_key found_key;
1013 ASSERT(path->slots[0]);
1014 path->slots[0]--;
1015 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1016 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1017 found_key.offset != offset) {
1018 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1019 inode->i_size - 1,
1020 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
ae0f1625 1021 NULL);
d4452bc5
CM
1022 btrfs_release_path(path);
1023 goto fail;
1024 }
1025 }
1026
1027 BTRFS_I(inode)->generation = trans->transid;
1028 header = btrfs_item_ptr(leaf, path->slots[0],
1029 struct btrfs_free_space_header);
1030 btrfs_set_free_space_entries(leaf, header, entries);
1031 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1032 btrfs_set_free_space_generation(leaf, header, trans->transid);
1033 btrfs_mark_buffer_dirty(leaf);
1034 btrfs_release_path(path);
1035
1036 return 0;
1037
1038fail:
1039 return -1;
1040}
1041
1042static noinline_for_stack int
2ff7e61e 1043write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
5349d6c3 1044 struct btrfs_block_group_cache *block_group,
4c6d1d85 1045 struct btrfs_io_ctl *io_ctl,
5349d6c3 1046 int *entries)
d4452bc5
CM
1047{
1048 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1049 struct extent_io_tree *unpin = NULL;
1050 int ret;
43be2146 1051
5349d6c3
MX
1052 if (!block_group)
1053 return 0;
1054
a67509c3
JB
1055 /*
1056 * We want to add any pinned extents to our free space cache
1057 * so we don't leak the space
d4452bc5 1058 *
db804f23
LZ
1059 * We shouldn't have switched the pinned extents yet so this is the
1060 * right one
1061 */
0b246afa 1062 unpin = fs_info->pinned_extents;
db804f23 1063
5349d6c3 1064 start = block_group->key.objectid;
db804f23 1065
5349d6c3 1066 while (start < block_group->key.objectid + block_group->key.offset) {
db804f23
LZ
1067 ret = find_first_extent_bit(unpin, start,
1068 &extent_start, &extent_end,
e6138876 1069 EXTENT_DIRTY, NULL);
5349d6c3
MX
1070 if (ret)
1071 return 0;
0cb59c99 1072
a67509c3 1073 /* This pinned extent is out of our range */
db804f23 1074 if (extent_start >= block_group->key.objectid +
a67509c3 1075 block_group->key.offset)
5349d6c3 1076 return 0;
2f356126 1077
db804f23
LZ
1078 extent_start = max(extent_start, start);
1079 extent_end = min(block_group->key.objectid +
1080 block_group->key.offset, extent_end + 1);
1081 len = extent_end - extent_start;
0cb59c99 1082
d4452bc5
CM
1083 *entries += 1;
1084 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1085 if (ret)
5349d6c3 1086 return -ENOSPC;
0cb59c99 1087
db804f23 1088 start = extent_end;
a67509c3 1089 }
0cb59c99 1090
5349d6c3
MX
1091 return 0;
1092}
1093
1094static noinline_for_stack int
4c6d1d85 1095write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1096{
7ae1681e 1097 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1098 int ret;
1099
0cb59c99 1100 /* Write out the bitmaps */
7ae1681e 1101 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1102 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1103 if (ret)
5349d6c3 1104 return -ENOSPC;
0cb59c99 1105 list_del_init(&entry->list);
be1a12a0
JB
1106 }
1107
5349d6c3
MX
1108 return 0;
1109}
0cb59c99 1110
5349d6c3
MX
1111static int flush_dirty_cache(struct inode *inode)
1112{
1113 int ret;
be1a12a0 1114
0ef8b726 1115 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1116 if (ret)
0ef8b726 1117 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
ae0f1625 1118 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
0cb59c99 1119
5349d6c3 1120 return ret;
d4452bc5
CM
1121}
1122
1123static void noinline_for_stack
a3bdccc4 1124cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1125{
7ae1681e 1126 struct btrfs_free_space *entry, *next;
5349d6c3 1127
7ae1681e 1128 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1129 list_del_init(&entry->list);
a3bdccc4
CM
1130}
1131
1132static void noinline_for_stack
1133cleanup_write_cache_enospc(struct inode *inode,
1134 struct btrfs_io_ctl *io_ctl,
7bf1a159 1135 struct extent_state **cached_state)
a3bdccc4 1136{
d4452bc5
CM
1137 io_ctl_drop_pages(io_ctl);
1138 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
e43bbe5e 1139 i_size_read(inode) - 1, cached_state);
d4452bc5 1140}
549b4fdb 1141
afdb5718
JM
1142static int __btrfs_wait_cache_io(struct btrfs_root *root,
1143 struct btrfs_trans_handle *trans,
1144 struct btrfs_block_group_cache *block_group,
1145 struct btrfs_io_ctl *io_ctl,
1146 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1147{
1148 int ret;
1149 struct inode *inode = io_ctl->inode;
1150
1bbc621e
CM
1151 if (!inode)
1152 return 0;
1153
c9dc4c65
CM
1154 /* Flush the dirty pages in the cache file. */
1155 ret = flush_dirty_cache(inode);
1156 if (ret)
1157 goto out;
1158
1159 /* Update the cache item to tell everyone this cache file is valid. */
1160 ret = update_cache_item(trans, root, inode, path, offset,
1161 io_ctl->entries, io_ctl->bitmaps);
1162out:
1163 io_ctl_free(io_ctl);
1164 if (ret) {
1165 invalidate_inode_pages2(inode->i_mapping);
1166 BTRFS_I(inode)->generation = 0;
1167 if (block_group) {
1168#ifdef DEBUG
3ffbd68c 1169 btrfs_err(root->fs_info,
0b246afa
JM
1170 "failed to write free space cache for block group %llu",
1171 block_group->key.objectid);
c9dc4c65
CM
1172#endif
1173 }
1174 }
1175 btrfs_update_inode(trans, root, inode);
1176
1177 if (block_group) {
1bbc621e
CM
1178 /* the dirty list is protected by the dirty_bgs_lock */
1179 spin_lock(&trans->transaction->dirty_bgs_lock);
1180
1181 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1182 spin_lock(&block_group->lock);
1183
1184 /*
1185 * only mark this as written if we didn't get put back on
1bbc621e
CM
1186 * the dirty list while waiting for IO. Otherwise our
1187 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1188 */
1189 if (!ret && list_empty(&block_group->dirty_list))
1190 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1191 else if (ret)
1192 block_group->disk_cache_state = BTRFS_DC_ERROR;
1193
1194 spin_unlock(&block_group->lock);
1bbc621e 1195 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1196 io_ctl->inode = NULL;
1197 iput(inode);
1198 }
1199
1200 return ret;
1201
1202}
1203
afdb5718
JM
1204static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1205 struct btrfs_trans_handle *trans,
1206 struct btrfs_io_ctl *io_ctl,
1207 struct btrfs_path *path)
1208{
1209 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1210}
1211
1212int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1213 struct btrfs_block_group_cache *block_group,
1214 struct btrfs_path *path)
1215{
1216 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1217 block_group, &block_group->io_ctl,
1218 path, block_group->key.objectid);
1219}
1220
d4452bc5
CM
1221/**
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
d4452bc5
CM
1227 *
1228 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1229 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1230 * or an errno if it was not.
d4452bc5
CM
1231 */
1232static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1233 struct btrfs_free_space_ctl *ctl,
1234 struct btrfs_block_group_cache *block_group,
c9dc4c65 1235 struct btrfs_io_ctl *io_ctl,
0e8d931a 1236 struct btrfs_trans_handle *trans)
d4452bc5 1237{
2ff7e61e 1238 struct btrfs_fs_info *fs_info = root->fs_info;
d4452bc5 1239 struct extent_state *cached_state = NULL;
5349d6c3 1240 LIST_HEAD(bitmap_list);
d4452bc5
CM
1241 int entries = 0;
1242 int bitmaps = 0;
1243 int ret;
c9dc4c65 1244 int must_iput = 0;
d4452bc5
CM
1245
1246 if (!i_size_read(inode))
b8605454 1247 return -EIO;
d4452bc5 1248
c9dc4c65 1249 WARN_ON(io_ctl->pages);
f15376df 1250 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1251 if (ret)
b8605454 1252 return ret;
d4452bc5 1253
e570fd27
MX
1254 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1255 down_write(&block_group->data_rwsem);
1256 spin_lock(&block_group->lock);
1257 if (block_group->delalloc_bytes) {
1258 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1259 spin_unlock(&block_group->lock);
1260 up_write(&block_group->data_rwsem);
1261 BTRFS_I(inode)->generation = 0;
1262 ret = 0;
c9dc4c65 1263 must_iput = 1;
e570fd27
MX
1264 goto out;
1265 }
1266 spin_unlock(&block_group->lock);
1267 }
1268
d4452bc5 1269 /* Lock all pages first so we can lock the extent safely. */
b8605454
OS
1270 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1271 if (ret)
b77000ed 1272 goto out_unlock;
d4452bc5
CM
1273
1274 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
ff13db41 1275 &cached_state);
d4452bc5 1276
c9dc4c65 1277 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1278
55507ce3 1279 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1280 /* Write out the extent entries in the free space cache */
1bbc621e 1281 spin_lock(&ctl->tree_lock);
c9dc4c65 1282 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1283 block_group, &entries, &bitmaps,
1284 &bitmap_list);
a3bdccc4
CM
1285 if (ret)
1286 goto out_nospc_locked;
d4452bc5 1287
5349d6c3
MX
1288 /*
1289 * Some spaces that are freed in the current transaction are pinned,
1290 * they will be added into free space cache after the transaction is
1291 * committed, we shouldn't lose them.
1bbc621e
CM
1292 *
1293 * If this changes while we are working we'll get added back to
1294 * the dirty list and redo it. No locking needed
5349d6c3 1295 */
2ff7e61e
JM
1296 ret = write_pinned_extent_entries(fs_info, block_group,
1297 io_ctl, &entries);
a3bdccc4
CM
1298 if (ret)
1299 goto out_nospc_locked;
5349d6c3 1300
55507ce3
FM
1301 /*
1302 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1303 * locked while doing it because a concurrent trim can be manipulating
1304 * or freeing the bitmap.
1305 */
c9dc4c65 1306 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1307 spin_unlock(&ctl->tree_lock);
55507ce3 1308 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1309 if (ret)
1310 goto out_nospc;
1311
1312 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1313 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1314
5349d6c3 1315 /* Everything is written out, now we dirty the pages in the file. */
2ff7e61e
JM
1316 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1317 i_size_read(inode), &cached_state);
5349d6c3 1318 if (ret)
d4452bc5 1319 goto out_nospc;
5349d6c3 1320
e570fd27
MX
1321 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1322 up_write(&block_group->data_rwsem);
5349d6c3
MX
1323 /*
1324 * Release the pages and unlock the extent, we will flush
1325 * them out later
1326 */
c9dc4c65 1327 io_ctl_drop_pages(io_ctl);
5349d6c3
MX
1328
1329 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
e43bbe5e 1330 i_size_read(inode) - 1, &cached_state);
5349d6c3 1331
c9dc4c65
CM
1332 /*
1333 * at this point the pages are under IO and we're happy,
1334 * The caller is responsible for waiting on them and updating the
1335 * the cache and the inode
1336 */
1337 io_ctl->entries = entries;
1338 io_ctl->bitmaps = bitmaps;
1339
1340 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1341 if (ret)
d4452bc5
CM
1342 goto out;
1343
c9dc4c65
CM
1344 return 0;
1345
2f356126 1346out:
c9dc4c65
CM
1347 io_ctl->inode = NULL;
1348 io_ctl_free(io_ctl);
5349d6c3 1349 if (ret) {
a67509c3 1350 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1351 BTRFS_I(inode)->generation = 0;
1352 }
0cb59c99 1353 btrfs_update_inode(trans, root, inode);
c9dc4c65
CM
1354 if (must_iput)
1355 iput(inode);
5349d6c3 1356 return ret;
a67509c3 1357
a3bdccc4
CM
1358out_nospc_locked:
1359 cleanup_bitmap_list(&bitmap_list);
1360 spin_unlock(&ctl->tree_lock);
1361 mutex_unlock(&ctl->cache_writeout_mutex);
1362
a67509c3 1363out_nospc:
7bf1a159 1364 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27 1365
b77000ed 1366out_unlock:
e570fd27
MX
1367 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1368 up_write(&block_group->data_rwsem);
1369
a67509c3 1370 goto out;
0414efae
LZ
1371}
1372
fe041534 1373int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
0414efae
LZ
1374 struct btrfs_block_group_cache *block_group,
1375 struct btrfs_path *path)
1376{
fe041534 1377 struct btrfs_fs_info *fs_info = trans->fs_info;
0414efae
LZ
1378 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1379 struct inode *inode;
1380 int ret = 0;
1381
0414efae
LZ
1382 spin_lock(&block_group->lock);
1383 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1384 spin_unlock(&block_group->lock);
e570fd27
MX
1385 return 0;
1386 }
0414efae
LZ
1387 spin_unlock(&block_group->lock);
1388
7949f339 1389 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
1390 if (IS_ERR(inode))
1391 return 0;
1392
77ab86bf
JM
1393 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1394 block_group, &block_group->io_ctl, trans);
c09544e0 1395 if (ret) {
c09544e0 1396#ifdef DEBUG
0b246afa
JM
1397 btrfs_err(fs_info,
1398 "failed to write free space cache for block group %llu",
1399 block_group->key.objectid);
c09544e0 1400#endif
c9dc4c65
CM
1401 spin_lock(&block_group->lock);
1402 block_group->disk_cache_state = BTRFS_DC_ERROR;
1403 spin_unlock(&block_group->lock);
1404
1405 block_group->io_ctl.inode = NULL;
1406 iput(inode);
0414efae
LZ
1407 }
1408
c9dc4c65
CM
1409 /*
1410 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1411 * to wait for IO and put the inode
1412 */
1413
0cb59c99
JB
1414 return ret;
1415}
1416
34d52cb6 1417static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1418 u64 offset)
0f9dd46c 1419{
b12d6869 1420 ASSERT(offset >= bitmap_start);
96303081 1421 offset -= bitmap_start;
34d52cb6 1422 return (unsigned long)(div_u64(offset, unit));
96303081 1423}
0f9dd46c 1424
34d52cb6 1425static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1426{
34d52cb6 1427 return (unsigned long)(div_u64(bytes, unit));
96303081 1428}
0f9dd46c 1429
34d52cb6 1430static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1431 u64 offset)
1432{
1433 u64 bitmap_start;
0ef6447a 1434 u64 bytes_per_bitmap;
0f9dd46c 1435
34d52cb6
LZ
1436 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1437 bitmap_start = offset - ctl->start;
0ef6447a 1438 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1439 bitmap_start *= bytes_per_bitmap;
34d52cb6 1440 bitmap_start += ctl->start;
0f9dd46c 1441
96303081 1442 return bitmap_start;
0f9dd46c
JB
1443}
1444
96303081
JB
1445static int tree_insert_offset(struct rb_root *root, u64 offset,
1446 struct rb_node *node, int bitmap)
0f9dd46c
JB
1447{
1448 struct rb_node **p = &root->rb_node;
1449 struct rb_node *parent = NULL;
1450 struct btrfs_free_space *info;
1451
1452 while (*p) {
1453 parent = *p;
96303081 1454 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1455
96303081 1456 if (offset < info->offset) {
0f9dd46c 1457 p = &(*p)->rb_left;
96303081 1458 } else if (offset > info->offset) {
0f9dd46c 1459 p = &(*p)->rb_right;
96303081
JB
1460 } else {
1461 /*
1462 * we could have a bitmap entry and an extent entry
1463 * share the same offset. If this is the case, we want
1464 * the extent entry to always be found first if we do a
1465 * linear search through the tree, since we want to have
1466 * the quickest allocation time, and allocating from an
1467 * extent is faster than allocating from a bitmap. So
1468 * if we're inserting a bitmap and we find an entry at
1469 * this offset, we want to go right, or after this entry
1470 * logically. If we are inserting an extent and we've
1471 * found a bitmap, we want to go left, or before
1472 * logically.
1473 */
1474 if (bitmap) {
207dde82
JB
1475 if (info->bitmap) {
1476 WARN_ON_ONCE(1);
1477 return -EEXIST;
1478 }
96303081
JB
1479 p = &(*p)->rb_right;
1480 } else {
207dde82
JB
1481 if (!info->bitmap) {
1482 WARN_ON_ONCE(1);
1483 return -EEXIST;
1484 }
96303081
JB
1485 p = &(*p)->rb_left;
1486 }
1487 }
0f9dd46c
JB
1488 }
1489
1490 rb_link_node(node, parent, p);
1491 rb_insert_color(node, root);
1492
1493 return 0;
1494}
1495
1496/*
70cb0743
JB
1497 * searches the tree for the given offset.
1498 *
96303081
JB
1499 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1500 * want a section that has at least bytes size and comes at or after the given
1501 * offset.
0f9dd46c 1502 */
96303081 1503static struct btrfs_free_space *
34d52cb6 1504tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1505 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1506{
34d52cb6 1507 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1508 struct btrfs_free_space *entry, *prev = NULL;
1509
1510 /* find entry that is closest to the 'offset' */
1511 while (1) {
1512 if (!n) {
1513 entry = NULL;
1514 break;
1515 }
0f9dd46c 1516
0f9dd46c 1517 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1518 prev = entry;
0f9dd46c 1519
96303081 1520 if (offset < entry->offset)
0f9dd46c 1521 n = n->rb_left;
96303081 1522 else if (offset > entry->offset)
0f9dd46c 1523 n = n->rb_right;
96303081 1524 else
0f9dd46c 1525 break;
0f9dd46c
JB
1526 }
1527
96303081
JB
1528 if (bitmap_only) {
1529 if (!entry)
1530 return NULL;
1531 if (entry->bitmap)
1532 return entry;
0f9dd46c 1533
96303081
JB
1534 /*
1535 * bitmap entry and extent entry may share same offset,
1536 * in that case, bitmap entry comes after extent entry.
1537 */
1538 n = rb_next(n);
1539 if (!n)
1540 return NULL;
1541 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1542 if (entry->offset != offset)
1543 return NULL;
0f9dd46c 1544
96303081
JB
1545 WARN_ON(!entry->bitmap);
1546 return entry;
1547 } else if (entry) {
1548 if (entry->bitmap) {
0f9dd46c 1549 /*
96303081
JB
1550 * if previous extent entry covers the offset,
1551 * we should return it instead of the bitmap entry
0f9dd46c 1552 */
de6c4115
MX
1553 n = rb_prev(&entry->offset_index);
1554 if (n) {
96303081
JB
1555 prev = rb_entry(n, struct btrfs_free_space,
1556 offset_index);
de6c4115
MX
1557 if (!prev->bitmap &&
1558 prev->offset + prev->bytes > offset)
1559 entry = prev;
0f9dd46c 1560 }
96303081
JB
1561 }
1562 return entry;
1563 }
1564
1565 if (!prev)
1566 return NULL;
1567
1568 /* find last entry before the 'offset' */
1569 entry = prev;
1570 if (entry->offset > offset) {
1571 n = rb_prev(&entry->offset_index);
1572 if (n) {
1573 entry = rb_entry(n, struct btrfs_free_space,
1574 offset_index);
b12d6869 1575 ASSERT(entry->offset <= offset);
0f9dd46c 1576 } else {
96303081
JB
1577 if (fuzzy)
1578 return entry;
1579 else
1580 return NULL;
0f9dd46c
JB
1581 }
1582 }
1583
96303081 1584 if (entry->bitmap) {
de6c4115
MX
1585 n = rb_prev(&entry->offset_index);
1586 if (n) {
96303081
JB
1587 prev = rb_entry(n, struct btrfs_free_space,
1588 offset_index);
de6c4115
MX
1589 if (!prev->bitmap &&
1590 prev->offset + prev->bytes > offset)
1591 return prev;
96303081 1592 }
34d52cb6 1593 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1594 return entry;
1595 } else if (entry->offset + entry->bytes > offset)
1596 return entry;
1597
1598 if (!fuzzy)
1599 return NULL;
1600
1601 while (1) {
1602 if (entry->bitmap) {
1603 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1604 ctl->unit > offset)
96303081
JB
1605 break;
1606 } else {
1607 if (entry->offset + entry->bytes > offset)
1608 break;
1609 }
1610
1611 n = rb_next(&entry->offset_index);
1612 if (!n)
1613 return NULL;
1614 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1615 }
1616 return entry;
0f9dd46c
JB
1617}
1618
f333adb5 1619static inline void
34d52cb6 1620__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1621 struct btrfs_free_space *info)
0f9dd46c 1622{
34d52cb6
LZ
1623 rb_erase(&info->offset_index, &ctl->free_space_offset);
1624 ctl->free_extents--;
f333adb5
LZ
1625}
1626
34d52cb6 1627static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1628 struct btrfs_free_space *info)
1629{
34d52cb6
LZ
1630 __unlink_free_space(ctl, info);
1631 ctl->free_space -= info->bytes;
0f9dd46c
JB
1632}
1633
34d52cb6 1634static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1635 struct btrfs_free_space *info)
1636{
1637 int ret = 0;
1638
b12d6869 1639 ASSERT(info->bytes || info->bitmap);
34d52cb6 1640 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1641 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1642 if (ret)
1643 return ret;
1644
34d52cb6
LZ
1645 ctl->free_space += info->bytes;
1646 ctl->free_extents++;
96303081
JB
1647 return ret;
1648}
1649
34d52cb6 1650static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1651{
34d52cb6 1652 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1653 u64 max_bytes;
1654 u64 bitmap_bytes;
1655 u64 extent_bytes;
8eb2d829 1656 u64 size = block_group->key.offset;
0ef6447a
FX
1657 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1658 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
34d52cb6 1659
0ef6447a 1660 max_bitmaps = max_t(u64, max_bitmaps, 1);
dde5740f 1661
b12d6869 1662 ASSERT(ctl->total_bitmaps <= max_bitmaps);
96303081
JB
1663
1664 /*
1665 * The goal is to keep the total amount of memory used per 1gb of space
1666 * at or below 32k, so we need to adjust how much memory we allow to be
1667 * used by extent based free space tracking
1668 */
ee22184b 1669 if (size < SZ_1G)
8eb2d829
LZ
1670 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1671 else
ee22184b 1672 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
96303081 1673
25891f79
JB
1674 /*
1675 * we want to account for 1 more bitmap than what we have so we can make
1676 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1677 * we add more bitmaps.
1678 */
b9ef22de 1679 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
96303081 1680
25891f79 1681 if (bitmap_bytes >= max_bytes) {
34d52cb6 1682 ctl->extents_thresh = 0;
25891f79
JB
1683 return;
1684 }
96303081 1685
25891f79 1686 /*
f8c269d7 1687 * we want the extent entry threshold to always be at most 1/2 the max
25891f79
JB
1688 * bytes we can have, or whatever is less than that.
1689 */
1690 extent_bytes = max_bytes - bitmap_bytes;
f8c269d7 1691 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
96303081 1692
34d52cb6 1693 ctl->extents_thresh =
f8c269d7 1694 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
96303081
JB
1695}
1696
bb3ac5a4
MX
1697static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1698 struct btrfs_free_space *info,
1699 u64 offset, u64 bytes)
96303081 1700{
f38b6e75 1701 unsigned long start, count;
96303081 1702
34d52cb6
LZ
1703 start = offset_to_bit(info->offset, ctl->unit, offset);
1704 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1705 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1706
f38b6e75 1707 bitmap_clear(info->bitmap, start, count);
96303081
JB
1708
1709 info->bytes -= bytes;
553cceb4
JB
1710 if (info->max_extent_size > ctl->unit)
1711 info->max_extent_size = 0;
bb3ac5a4
MX
1712}
1713
1714static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1715 struct btrfs_free_space *info, u64 offset,
1716 u64 bytes)
1717{
1718 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1719 ctl->free_space -= bytes;
96303081
JB
1720}
1721
34d52cb6 1722static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1723 struct btrfs_free_space *info, u64 offset,
1724 u64 bytes)
96303081 1725{
f38b6e75 1726 unsigned long start, count;
96303081 1727
34d52cb6
LZ
1728 start = offset_to_bit(info->offset, ctl->unit, offset);
1729 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1730 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1731
f38b6e75 1732 bitmap_set(info->bitmap, start, count);
96303081
JB
1733
1734 info->bytes += bytes;
34d52cb6 1735 ctl->free_space += bytes;
96303081
JB
1736}
1737
a4820398
MX
1738/*
1739 * If we can not find suitable extent, we will use bytes to record
1740 * the size of the max extent.
1741 */
34d52cb6 1742static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1743 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1744 u64 *bytes, bool for_alloc)
96303081
JB
1745{
1746 unsigned long found_bits = 0;
a4820398 1747 unsigned long max_bits = 0;
96303081
JB
1748 unsigned long bits, i;
1749 unsigned long next_zero;
a4820398 1750 unsigned long extent_bits;
96303081 1751
cef40483
JB
1752 /*
1753 * Skip searching the bitmap if we don't have a contiguous section that
1754 * is large enough for this allocation.
1755 */
0584f718
JB
1756 if (for_alloc &&
1757 bitmap_info->max_extent_size &&
cef40483
JB
1758 bitmap_info->max_extent_size < *bytes) {
1759 *bytes = bitmap_info->max_extent_size;
1760 return -1;
1761 }
1762
34d52cb6 1763 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1764 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1765 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1766
ebb3dad4 1767 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1768 if (for_alloc && bits == 1) {
1769 found_bits = 1;
1770 break;
1771 }
96303081
JB
1772 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1773 BITS_PER_BITMAP, i);
a4820398
MX
1774 extent_bits = next_zero - i;
1775 if (extent_bits >= bits) {
1776 found_bits = extent_bits;
96303081 1777 break;
a4820398
MX
1778 } else if (extent_bits > max_bits) {
1779 max_bits = extent_bits;
96303081
JB
1780 }
1781 i = next_zero;
1782 }
1783
1784 if (found_bits) {
34d52cb6
LZ
1785 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1786 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1787 return 0;
1788 }
1789
a4820398 1790 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 1791 bitmap_info->max_extent_size = *bytes;
96303081
JB
1792 return -1;
1793}
1794
ad22cf6e
JB
1795static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1796{
1797 if (entry->bitmap)
1798 return entry->max_extent_size;
1799 return entry->bytes;
1800}
1801
a4820398 1802/* Cache the size of the max extent in bytes */
34d52cb6 1803static struct btrfs_free_space *
53b381b3 1804find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
a4820398 1805 unsigned long align, u64 *max_extent_size)
96303081
JB
1806{
1807 struct btrfs_free_space *entry;
1808 struct rb_node *node;
53b381b3
DW
1809 u64 tmp;
1810 u64 align_off;
96303081
JB
1811 int ret;
1812
34d52cb6 1813 if (!ctl->free_space_offset.rb_node)
a4820398 1814 goto out;
96303081 1815
34d52cb6 1816 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081 1817 if (!entry)
a4820398 1818 goto out;
96303081
JB
1819
1820 for (node = &entry->offset_index; node; node = rb_next(node)) {
1821 entry = rb_entry(node, struct btrfs_free_space, offset_index);
a4820398 1822 if (entry->bytes < *bytes) {
ad22cf6e
JB
1823 *max_extent_size = max(get_max_extent_size(entry),
1824 *max_extent_size);
96303081 1825 continue;
a4820398 1826 }
96303081 1827
53b381b3
DW
1828 /* make sure the space returned is big enough
1829 * to match our requested alignment
1830 */
1831 if (*bytes >= align) {
a4820398 1832 tmp = entry->offset - ctl->start + align - 1;
47c5713f 1833 tmp = div64_u64(tmp, align);
53b381b3
DW
1834 tmp = tmp * align + ctl->start;
1835 align_off = tmp - entry->offset;
1836 } else {
1837 align_off = 0;
1838 tmp = entry->offset;
1839 }
1840
a4820398 1841 if (entry->bytes < *bytes + align_off) {
ad22cf6e
JB
1842 *max_extent_size = max(get_max_extent_size(entry),
1843 *max_extent_size);
53b381b3 1844 continue;
a4820398 1845 }
53b381b3 1846
96303081 1847 if (entry->bitmap) {
a4820398
MX
1848 u64 size = *bytes;
1849
0584f718 1850 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
1851 if (!ret) {
1852 *offset = tmp;
a4820398 1853 *bytes = size;
96303081 1854 return entry;
ad22cf6e
JB
1855 } else {
1856 *max_extent_size =
1857 max(get_max_extent_size(entry),
1858 *max_extent_size);
53b381b3 1859 }
96303081
JB
1860 continue;
1861 }
1862
53b381b3
DW
1863 *offset = tmp;
1864 *bytes = entry->bytes - align_off;
96303081
JB
1865 return entry;
1866 }
a4820398 1867out:
96303081
JB
1868 return NULL;
1869}
1870
34d52cb6 1871static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1872 struct btrfs_free_space *info, u64 offset)
1873{
34d52cb6 1874 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1875 info->bytes = 0;
f2d0f676 1876 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1877 link_free_space(ctl, info);
1878 ctl->total_bitmaps++;
96303081 1879
34d52cb6 1880 ctl->op->recalc_thresholds(ctl);
96303081
JB
1881}
1882
34d52cb6 1883static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1884 struct btrfs_free_space *bitmap_info)
1885{
34d52cb6 1886 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1887 kfree(bitmap_info->bitmap);
dc89e982 1888 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1889 ctl->total_bitmaps--;
1890 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1891}
1892
34d52cb6 1893static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1894 struct btrfs_free_space *bitmap_info,
1895 u64 *offset, u64 *bytes)
1896{
1897 u64 end;
6606bb97
JB
1898 u64 search_start, search_bytes;
1899 int ret;
96303081
JB
1900
1901again:
34d52cb6 1902 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1903
6606bb97 1904 /*
bdb7d303
JB
1905 * We need to search for bits in this bitmap. We could only cover some
1906 * of the extent in this bitmap thanks to how we add space, so we need
1907 * to search for as much as it as we can and clear that amount, and then
1908 * go searching for the next bit.
6606bb97
JB
1909 */
1910 search_start = *offset;
bdb7d303 1911 search_bytes = ctl->unit;
13dbc089 1912 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
1913 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1914 false);
b50c6e25
JB
1915 if (ret < 0 || search_start != *offset)
1916 return -EINVAL;
6606bb97 1917
bdb7d303
JB
1918 /* We may have found more bits than what we need */
1919 search_bytes = min(search_bytes, *bytes);
1920
1921 /* Cannot clear past the end of the bitmap */
1922 search_bytes = min(search_bytes, end - search_start + 1);
1923
1924 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1925 *offset += search_bytes;
1926 *bytes -= search_bytes;
96303081
JB
1927
1928 if (*bytes) {
6606bb97 1929 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1930 if (!bitmap_info->bytes)
34d52cb6 1931 free_bitmap(ctl, bitmap_info);
96303081 1932
6606bb97
JB
1933 /*
1934 * no entry after this bitmap, but we still have bytes to
1935 * remove, so something has gone wrong.
1936 */
1937 if (!next)
96303081
JB
1938 return -EINVAL;
1939
6606bb97
JB
1940 bitmap_info = rb_entry(next, struct btrfs_free_space,
1941 offset_index);
1942
1943 /*
1944 * if the next entry isn't a bitmap we need to return to let the
1945 * extent stuff do its work.
1946 */
96303081
JB
1947 if (!bitmap_info->bitmap)
1948 return -EAGAIN;
1949
6606bb97
JB
1950 /*
1951 * Ok the next item is a bitmap, but it may not actually hold
1952 * the information for the rest of this free space stuff, so
1953 * look for it, and if we don't find it return so we can try
1954 * everything over again.
1955 */
1956 search_start = *offset;
bdb7d303 1957 search_bytes = ctl->unit;
34d52cb6 1958 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 1959 &search_bytes, false);
6606bb97
JB
1960 if (ret < 0 || search_start != *offset)
1961 return -EAGAIN;
1962
96303081 1963 goto again;
edf6e2d1 1964 } else if (!bitmap_info->bytes)
34d52cb6 1965 free_bitmap(ctl, bitmap_info);
96303081
JB
1966
1967 return 0;
1968}
1969
2cdc342c
JB
1970static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1971 struct btrfs_free_space *info, u64 offset,
1972 u64 bytes)
1973{
1974 u64 bytes_to_set = 0;
1975 u64 end;
1976
1977 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1978
1979 bytes_to_set = min(end - offset, bytes);
1980
1981 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1982
cef40483
JB
1983 /*
1984 * We set some bytes, we have no idea what the max extent size is
1985 * anymore.
1986 */
1987 info->max_extent_size = 0;
1988
2cdc342c
JB
1989 return bytes_to_set;
1990
1991}
1992
34d52cb6
LZ
1993static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1994 struct btrfs_free_space *info)
96303081 1995{
34d52cb6 1996 struct btrfs_block_group_cache *block_group = ctl->private;
0b246afa 1997 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
1998 bool forced = false;
1999
2000#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 2001 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
2002 forced = true;
2003#endif
96303081
JB
2004
2005 /*
2006 * If we are below the extents threshold then we can add this as an
2007 * extent, and don't have to deal with the bitmap
2008 */
d0bd4560 2009 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
2010 /*
2011 * If this block group has some small extents we don't want to
2012 * use up all of our free slots in the cache with them, we want
01327610 2013 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
2014 * of cache left then go ahead an dadd them, no sense in adding
2015 * the overhead of a bitmap if we don't have to.
2016 */
0b246afa 2017 if (info->bytes <= fs_info->sectorsize * 4) {
34d52cb6
LZ
2018 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2019 return false;
32cb0840 2020 } else {
34d52cb6 2021 return false;
32cb0840
JB
2022 }
2023 }
96303081
JB
2024
2025 /*
dde5740f
JB
2026 * The original block groups from mkfs can be really small, like 8
2027 * megabytes, so don't bother with a bitmap for those entries. However
2028 * some block groups can be smaller than what a bitmap would cover but
2029 * are still large enough that they could overflow the 32k memory limit,
2030 * so allow those block groups to still be allowed to have a bitmap
2031 * entry.
96303081 2032 */
dde5740f 2033 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
34d52cb6
LZ
2034 return false;
2035
2036 return true;
2037}
2038
20e5506b 2039static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2040 .recalc_thresholds = recalculate_thresholds,
2041 .use_bitmap = use_bitmap,
2042};
2043
34d52cb6
LZ
2044static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2045 struct btrfs_free_space *info)
2046{
2047 struct btrfs_free_space *bitmap_info;
2cdc342c 2048 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 2049 int added = 0;
2cdc342c 2050 u64 bytes, offset, bytes_added;
34d52cb6 2051 int ret;
96303081
JB
2052
2053 bytes = info->bytes;
2054 offset = info->offset;
2055
34d52cb6
LZ
2056 if (!ctl->op->use_bitmap(ctl, info))
2057 return 0;
2058
2cdc342c
JB
2059 if (ctl->op == &free_space_op)
2060 block_group = ctl->private;
38e87880 2061again:
2cdc342c
JB
2062 /*
2063 * Since we link bitmaps right into the cluster we need to see if we
2064 * have a cluster here, and if so and it has our bitmap we need to add
2065 * the free space to that bitmap.
2066 */
2067 if (block_group && !list_empty(&block_group->cluster_list)) {
2068 struct btrfs_free_cluster *cluster;
2069 struct rb_node *node;
2070 struct btrfs_free_space *entry;
2071
2072 cluster = list_entry(block_group->cluster_list.next,
2073 struct btrfs_free_cluster,
2074 block_group_list);
2075 spin_lock(&cluster->lock);
2076 node = rb_first(&cluster->root);
2077 if (!node) {
2078 spin_unlock(&cluster->lock);
38e87880 2079 goto no_cluster_bitmap;
2cdc342c
JB
2080 }
2081
2082 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2083 if (!entry->bitmap) {
2084 spin_unlock(&cluster->lock);
38e87880 2085 goto no_cluster_bitmap;
2cdc342c
JB
2086 }
2087
2088 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2089 bytes_added = add_bytes_to_bitmap(ctl, entry,
2090 offset, bytes);
2091 bytes -= bytes_added;
2092 offset += bytes_added;
2093 }
2094 spin_unlock(&cluster->lock);
2095 if (!bytes) {
2096 ret = 1;
2097 goto out;
2098 }
2099 }
38e87880
CM
2100
2101no_cluster_bitmap:
34d52cb6 2102 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2103 1, 0);
2104 if (!bitmap_info) {
b12d6869 2105 ASSERT(added == 0);
96303081
JB
2106 goto new_bitmap;
2107 }
2108
2cdc342c
JB
2109 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2110 bytes -= bytes_added;
2111 offset += bytes_added;
2112 added = 0;
96303081
JB
2113
2114 if (!bytes) {
2115 ret = 1;
2116 goto out;
2117 } else
2118 goto again;
2119
2120new_bitmap:
2121 if (info && info->bitmap) {
34d52cb6 2122 add_new_bitmap(ctl, info, offset);
96303081
JB
2123 added = 1;
2124 info = NULL;
2125 goto again;
2126 } else {
34d52cb6 2127 spin_unlock(&ctl->tree_lock);
96303081
JB
2128
2129 /* no pre-allocated info, allocate a new one */
2130 if (!info) {
dc89e982
JB
2131 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2132 GFP_NOFS);
96303081 2133 if (!info) {
34d52cb6 2134 spin_lock(&ctl->tree_lock);
96303081
JB
2135 ret = -ENOMEM;
2136 goto out;
2137 }
2138 }
2139
2140 /* allocate the bitmap */
09cbfeaf 2141 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
34d52cb6 2142 spin_lock(&ctl->tree_lock);
96303081
JB
2143 if (!info->bitmap) {
2144 ret = -ENOMEM;
2145 goto out;
2146 }
2147 goto again;
2148 }
2149
2150out:
2151 if (info) {
f8b00e0f 2152 kfree(info->bitmap);
dc89e982 2153 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2154 }
0f9dd46c
JB
2155
2156 return ret;
2157}
2158
945d8962 2159static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2160 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2161{
120d66ee
LZ
2162 struct btrfs_free_space *left_info;
2163 struct btrfs_free_space *right_info;
2164 bool merged = false;
2165 u64 offset = info->offset;
2166 u64 bytes = info->bytes;
6226cb0a 2167
0f9dd46c
JB
2168 /*
2169 * first we want to see if there is free space adjacent to the range we
2170 * are adding, if there is remove that struct and add a new one to
2171 * cover the entire range
2172 */
34d52cb6 2173 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
2174 if (right_info && rb_prev(&right_info->offset_index))
2175 left_info = rb_entry(rb_prev(&right_info->offset_index),
2176 struct btrfs_free_space, offset_index);
2177 else
34d52cb6 2178 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2179
96303081 2180 if (right_info && !right_info->bitmap) {
f333adb5 2181 if (update_stat)
34d52cb6 2182 unlink_free_space(ctl, right_info);
f333adb5 2183 else
34d52cb6 2184 __unlink_free_space(ctl, right_info);
6226cb0a 2185 info->bytes += right_info->bytes;
dc89e982 2186 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2187 merged = true;
0f9dd46c
JB
2188 }
2189
96303081
JB
2190 if (left_info && !left_info->bitmap &&
2191 left_info->offset + left_info->bytes == offset) {
f333adb5 2192 if (update_stat)
34d52cb6 2193 unlink_free_space(ctl, left_info);
f333adb5 2194 else
34d52cb6 2195 __unlink_free_space(ctl, left_info);
6226cb0a
JB
2196 info->offset = left_info->offset;
2197 info->bytes += left_info->bytes;
dc89e982 2198 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2199 merged = true;
0f9dd46c
JB
2200 }
2201
120d66ee
LZ
2202 return merged;
2203}
2204
20005523
FM
2205static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2206 struct btrfs_free_space *info,
2207 bool update_stat)
2208{
2209 struct btrfs_free_space *bitmap;
2210 unsigned long i;
2211 unsigned long j;
2212 const u64 end = info->offset + info->bytes;
2213 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2214 u64 bytes;
2215
2216 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2217 if (!bitmap)
2218 return false;
2219
2220 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2221 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2222 if (j == i)
2223 return false;
2224 bytes = (j - i) * ctl->unit;
2225 info->bytes += bytes;
2226
2227 if (update_stat)
2228 bitmap_clear_bits(ctl, bitmap, end, bytes);
2229 else
2230 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2231
2232 if (!bitmap->bytes)
2233 free_bitmap(ctl, bitmap);
2234
2235 return true;
2236}
2237
2238static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2239 struct btrfs_free_space *info,
2240 bool update_stat)
2241{
2242 struct btrfs_free_space *bitmap;
2243 u64 bitmap_offset;
2244 unsigned long i;
2245 unsigned long j;
2246 unsigned long prev_j;
2247 u64 bytes;
2248
2249 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2250 /* If we're on a boundary, try the previous logical bitmap. */
2251 if (bitmap_offset == info->offset) {
2252 if (info->offset == 0)
2253 return false;
2254 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2255 }
2256
2257 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2258 if (!bitmap)
2259 return false;
2260
2261 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2262 j = 0;
2263 prev_j = (unsigned long)-1;
2264 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2265 if (j > i)
2266 break;
2267 prev_j = j;
2268 }
2269 if (prev_j == i)
2270 return false;
2271
2272 if (prev_j == (unsigned long)-1)
2273 bytes = (i + 1) * ctl->unit;
2274 else
2275 bytes = (i - prev_j) * ctl->unit;
2276
2277 info->offset -= bytes;
2278 info->bytes += bytes;
2279
2280 if (update_stat)
2281 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2282 else
2283 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2284
2285 if (!bitmap->bytes)
2286 free_bitmap(ctl, bitmap);
2287
2288 return true;
2289}
2290
2291/*
2292 * We prefer always to allocate from extent entries, both for clustered and
2293 * non-clustered allocation requests. So when attempting to add a new extent
2294 * entry, try to see if there's adjacent free space in bitmap entries, and if
2295 * there is, migrate that space from the bitmaps to the extent.
2296 * Like this we get better chances of satisfying space allocation requests
2297 * because we attempt to satisfy them based on a single cache entry, and never
2298 * on 2 or more entries - even if the entries represent a contiguous free space
2299 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2300 * ends).
2301 */
2302static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2303 struct btrfs_free_space *info,
2304 bool update_stat)
2305{
2306 /*
2307 * Only work with disconnected entries, as we can change their offset,
2308 * and must be extent entries.
2309 */
2310 ASSERT(!info->bitmap);
2311 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2312
2313 if (ctl->total_bitmaps > 0) {
2314 bool stole_end;
2315 bool stole_front = false;
2316
2317 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2318 if (ctl->total_bitmaps > 0)
2319 stole_front = steal_from_bitmap_to_front(ctl, info,
2320 update_stat);
2321
2322 if (stole_end || stole_front)
2323 try_merge_free_space(ctl, info, update_stat);
2324 }
2325}
2326
ab8d0fc4
JM
2327int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2328 struct btrfs_free_space_ctl *ctl,
581bb050 2329 u64 offset, u64 bytes)
120d66ee
LZ
2330{
2331 struct btrfs_free_space *info;
2332 int ret = 0;
2333
dc89e982 2334 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2335 if (!info)
2336 return -ENOMEM;
2337
2338 info->offset = offset;
2339 info->bytes = bytes;
20005523 2340 RB_CLEAR_NODE(&info->offset_index);
120d66ee 2341
34d52cb6 2342 spin_lock(&ctl->tree_lock);
120d66ee 2343
34d52cb6 2344 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2345 goto link;
2346
2347 /*
2348 * There was no extent directly to the left or right of this new
2349 * extent then we know we're going to have to allocate a new extent, so
2350 * before we do that see if we need to drop this into a bitmap
2351 */
34d52cb6 2352 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2353 if (ret < 0) {
2354 goto out;
2355 } else if (ret) {
2356 ret = 0;
2357 goto out;
2358 }
2359link:
20005523
FM
2360 /*
2361 * Only steal free space from adjacent bitmaps if we're sure we're not
2362 * going to add the new free space to existing bitmap entries - because
2363 * that would mean unnecessary work that would be reverted. Therefore
2364 * attempt to steal space from bitmaps if we're adding an extent entry.
2365 */
2366 steal_from_bitmap(ctl, info, true);
2367
34d52cb6 2368 ret = link_free_space(ctl, info);
0f9dd46c 2369 if (ret)
dc89e982 2370 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2371out:
34d52cb6 2372 spin_unlock(&ctl->tree_lock);
6226cb0a 2373
0f9dd46c 2374 if (ret) {
ab8d0fc4 2375 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2376 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2377 }
2378
0f9dd46c
JB
2379 return ret;
2380}
2381
6226cb0a
JB
2382int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2383 u64 offset, u64 bytes)
0f9dd46c 2384{
34d52cb6 2385 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2386 struct btrfs_free_space *info;
b0175117
JB
2387 int ret;
2388 bool re_search = false;
0f9dd46c 2389
34d52cb6 2390 spin_lock(&ctl->tree_lock);
6226cb0a 2391
96303081 2392again:
b0175117 2393 ret = 0;
bdb7d303
JB
2394 if (!bytes)
2395 goto out_lock;
2396
34d52cb6 2397 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2398 if (!info) {
6606bb97
JB
2399 /*
2400 * oops didn't find an extent that matched the space we wanted
2401 * to remove, look for a bitmap instead
2402 */
34d52cb6 2403 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2404 1, 0);
2405 if (!info) {
b0175117
JB
2406 /*
2407 * If we found a partial bit of our free space in a
2408 * bitmap but then couldn't find the other part this may
2409 * be a problem, so WARN about it.
24a70313 2410 */
b0175117 2411 WARN_ON(re_search);
6606bb97
JB
2412 goto out_lock;
2413 }
96303081
JB
2414 }
2415
b0175117 2416 re_search = false;
bdb7d303 2417 if (!info->bitmap) {
34d52cb6 2418 unlink_free_space(ctl, info);
bdb7d303
JB
2419 if (offset == info->offset) {
2420 u64 to_free = min(bytes, info->bytes);
2421
2422 info->bytes -= to_free;
2423 info->offset += to_free;
2424 if (info->bytes) {
2425 ret = link_free_space(ctl, info);
2426 WARN_ON(ret);
2427 } else {
2428 kmem_cache_free(btrfs_free_space_cachep, info);
2429 }
0f9dd46c 2430
bdb7d303
JB
2431 offset += to_free;
2432 bytes -= to_free;
2433 goto again;
2434 } else {
2435 u64 old_end = info->bytes + info->offset;
9b49c9b9 2436
bdb7d303 2437 info->bytes = offset - info->offset;
34d52cb6 2438 ret = link_free_space(ctl, info);
96303081
JB
2439 WARN_ON(ret);
2440 if (ret)
2441 goto out_lock;
96303081 2442
bdb7d303
JB
2443 /* Not enough bytes in this entry to satisfy us */
2444 if (old_end < offset + bytes) {
2445 bytes -= old_end - offset;
2446 offset = old_end;
2447 goto again;
2448 } else if (old_end == offset + bytes) {
2449 /* all done */
2450 goto out_lock;
2451 }
2452 spin_unlock(&ctl->tree_lock);
2453
2454 ret = btrfs_add_free_space(block_group, offset + bytes,
2455 old_end - (offset + bytes));
2456 WARN_ON(ret);
2457 goto out;
2458 }
0f9dd46c 2459 }
96303081 2460
34d52cb6 2461 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2462 if (ret == -EAGAIN) {
2463 re_search = true;
96303081 2464 goto again;
b0175117 2465 }
96303081 2466out_lock:
34d52cb6 2467 spin_unlock(&ctl->tree_lock);
0f9dd46c 2468out:
25179201
JB
2469 return ret;
2470}
2471
0f9dd46c
JB
2472void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2473 u64 bytes)
2474{
0b246afa 2475 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2476 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2477 struct btrfs_free_space *info;
2478 struct rb_node *n;
2479 int count = 0;
2480
9084cb6a 2481 spin_lock(&ctl->tree_lock);
34d52cb6 2482 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2483 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2484 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2485 count++;
0b246afa 2486 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2487 info->offset, info->bytes,
96303081 2488 (info->bitmap) ? "yes" : "no");
0f9dd46c 2489 }
9084cb6a 2490 spin_unlock(&ctl->tree_lock);
0b246afa 2491 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2492 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2493 btrfs_info(fs_info,
efe120a0 2494 "%d blocks of free space at or bigger than bytes is", count);
0f9dd46c
JB
2495}
2496
34d52cb6 2497void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 2498{
0b246afa 2499 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2500 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2501
34d52cb6 2502 spin_lock_init(&ctl->tree_lock);
0b246afa 2503 ctl->unit = fs_info->sectorsize;
34d52cb6
LZ
2504 ctl->start = block_group->key.objectid;
2505 ctl->private = block_group;
2506 ctl->op = &free_space_op;
55507ce3
FM
2507 INIT_LIST_HEAD(&ctl->trimming_ranges);
2508 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2509
34d52cb6
LZ
2510 /*
2511 * we only want to have 32k of ram per block group for keeping
2512 * track of free space, and if we pass 1/2 of that we want to
2513 * start converting things over to using bitmaps
2514 */
ee22184b 2515 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2516}
2517
fa9c0d79
CM
2518/*
2519 * for a given cluster, put all of its extents back into the free
2520 * space cache. If the block group passed doesn't match the block group
2521 * pointed to by the cluster, someone else raced in and freed the
2522 * cluster already. In that case, we just return without changing anything
2523 */
2524static int
2525__btrfs_return_cluster_to_free_space(
2526 struct btrfs_block_group_cache *block_group,
2527 struct btrfs_free_cluster *cluster)
2528{
34d52cb6 2529 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2530 struct btrfs_free_space *entry;
2531 struct rb_node *node;
2532
2533 spin_lock(&cluster->lock);
2534 if (cluster->block_group != block_group)
2535 goto out;
2536
96303081 2537 cluster->block_group = NULL;
fa9c0d79 2538 cluster->window_start = 0;
96303081 2539 list_del_init(&cluster->block_group_list);
96303081 2540
fa9c0d79 2541 node = rb_first(&cluster->root);
96303081 2542 while (node) {
4e69b598
JB
2543 bool bitmap;
2544
fa9c0d79
CM
2545 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2546 node = rb_next(&entry->offset_index);
2547 rb_erase(&entry->offset_index, &cluster->root);
20005523 2548 RB_CLEAR_NODE(&entry->offset_index);
4e69b598
JB
2549
2550 bitmap = (entry->bitmap != NULL);
20005523 2551 if (!bitmap) {
34d52cb6 2552 try_merge_free_space(ctl, entry, false);
20005523
FM
2553 steal_from_bitmap(ctl, entry, false);
2554 }
34d52cb6 2555 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2556 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2557 }
6bef4d31 2558 cluster->root = RB_ROOT;
96303081 2559
fa9c0d79
CM
2560out:
2561 spin_unlock(&cluster->lock);
96303081 2562 btrfs_put_block_group(block_group);
fa9c0d79
CM
2563 return 0;
2564}
2565
48a3b636
ES
2566static void __btrfs_remove_free_space_cache_locked(
2567 struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2568{
2569 struct btrfs_free_space *info;
2570 struct rb_node *node;
581bb050 2571
581bb050
LZ
2572 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2573 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2574 if (!info->bitmap) {
2575 unlink_free_space(ctl, info);
2576 kmem_cache_free(btrfs_free_space_cachep, info);
2577 } else {
2578 free_bitmap(ctl, info);
2579 }
351810c1
DS
2580
2581 cond_resched_lock(&ctl->tree_lock);
581bb050 2582 }
09655373
CM
2583}
2584
2585void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2586{
2587 spin_lock(&ctl->tree_lock);
2588 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2589 spin_unlock(&ctl->tree_lock);
2590}
2591
2592void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2593{
2594 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2595 struct btrfs_free_cluster *cluster;
96303081 2596 struct list_head *head;
0f9dd46c 2597
34d52cb6 2598 spin_lock(&ctl->tree_lock);
96303081
JB
2599 while ((head = block_group->cluster_list.next) !=
2600 &block_group->cluster_list) {
2601 cluster = list_entry(head, struct btrfs_free_cluster,
2602 block_group_list);
fa9c0d79
CM
2603
2604 WARN_ON(cluster->block_group != block_group);
2605 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
2606
2607 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 2608 }
09655373 2609 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2610 spin_unlock(&ctl->tree_lock);
fa9c0d79 2611
0f9dd46c
JB
2612}
2613
6226cb0a 2614u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
a4820398
MX
2615 u64 offset, u64 bytes, u64 empty_size,
2616 u64 *max_extent_size)
0f9dd46c 2617{
34d52cb6 2618 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2619 struct btrfs_free_space *entry = NULL;
96303081 2620 u64 bytes_search = bytes + empty_size;
6226cb0a 2621 u64 ret = 0;
53b381b3
DW
2622 u64 align_gap = 0;
2623 u64 align_gap_len = 0;
0f9dd46c 2624
34d52cb6 2625 spin_lock(&ctl->tree_lock);
53b381b3 2626 entry = find_free_space(ctl, &offset, &bytes_search,
a4820398 2627 block_group->full_stripe_len, max_extent_size);
6226cb0a 2628 if (!entry)
96303081
JB
2629 goto out;
2630
2631 ret = offset;
2632 if (entry->bitmap) {
34d52cb6 2633 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2634 if (!entry->bytes)
34d52cb6 2635 free_bitmap(ctl, entry);
96303081 2636 } else {
34d52cb6 2637 unlink_free_space(ctl, entry);
53b381b3
DW
2638 align_gap_len = offset - entry->offset;
2639 align_gap = entry->offset;
2640
2641 entry->offset = offset + bytes;
2642 WARN_ON(entry->bytes < bytes + align_gap_len);
2643
2644 entry->bytes -= bytes + align_gap_len;
6226cb0a 2645 if (!entry->bytes)
dc89e982 2646 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2647 else
34d52cb6 2648 link_free_space(ctl, entry);
6226cb0a 2649 }
96303081 2650out:
34d52cb6 2651 spin_unlock(&ctl->tree_lock);
817d52f8 2652
53b381b3 2653 if (align_gap_len)
ab8d0fc4
JM
2654 __btrfs_add_free_space(block_group->fs_info, ctl,
2655 align_gap, align_gap_len);
0f9dd46c
JB
2656 return ret;
2657}
fa9c0d79
CM
2658
2659/*
2660 * given a cluster, put all of its extents back into the free space
2661 * cache. If a block group is passed, this function will only free
2662 * a cluster that belongs to the passed block group.
2663 *
2664 * Otherwise, it'll get a reference on the block group pointed to by the
2665 * cluster and remove the cluster from it.
2666 */
2667int btrfs_return_cluster_to_free_space(
2668 struct btrfs_block_group_cache *block_group,
2669 struct btrfs_free_cluster *cluster)
2670{
34d52cb6 2671 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2672 int ret;
2673
2674 /* first, get a safe pointer to the block group */
2675 spin_lock(&cluster->lock);
2676 if (!block_group) {
2677 block_group = cluster->block_group;
2678 if (!block_group) {
2679 spin_unlock(&cluster->lock);
2680 return 0;
2681 }
2682 } else if (cluster->block_group != block_group) {
2683 /* someone else has already freed it don't redo their work */
2684 spin_unlock(&cluster->lock);
2685 return 0;
2686 }
2687 atomic_inc(&block_group->count);
2688 spin_unlock(&cluster->lock);
2689
34d52cb6
LZ
2690 ctl = block_group->free_space_ctl;
2691
fa9c0d79 2692 /* now return any extents the cluster had on it */
34d52cb6 2693 spin_lock(&ctl->tree_lock);
fa9c0d79 2694 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2695 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2696
2697 /* finally drop our ref */
2698 btrfs_put_block_group(block_group);
2699 return ret;
2700}
2701
96303081
JB
2702static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2703 struct btrfs_free_cluster *cluster,
4e69b598 2704 struct btrfs_free_space *entry,
a4820398
MX
2705 u64 bytes, u64 min_start,
2706 u64 *max_extent_size)
96303081 2707{
34d52cb6 2708 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2709 int err;
2710 u64 search_start = cluster->window_start;
2711 u64 search_bytes = bytes;
2712 u64 ret = 0;
2713
96303081
JB
2714 search_start = min_start;
2715 search_bytes = bytes;
2716
0584f718 2717 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398 2718 if (err) {
ad22cf6e
JB
2719 *max_extent_size = max(get_max_extent_size(entry),
2720 *max_extent_size);
4e69b598 2721 return 0;
a4820398 2722 }
96303081
JB
2723
2724 ret = search_start;
bb3ac5a4 2725 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2726
2727 return ret;
2728}
2729
fa9c0d79
CM
2730/*
2731 * given a cluster, try to allocate 'bytes' from it, returns 0
2732 * if it couldn't find anything suitably large, or a logical disk offset
2733 * if things worked out
2734 */
2735u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2736 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 2737 u64 min_start, u64 *max_extent_size)
fa9c0d79 2738{
34d52cb6 2739 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2740 struct btrfs_free_space *entry = NULL;
2741 struct rb_node *node;
2742 u64 ret = 0;
2743
2744 spin_lock(&cluster->lock);
2745 if (bytes > cluster->max_size)
2746 goto out;
2747
2748 if (cluster->block_group != block_group)
2749 goto out;
2750
2751 node = rb_first(&cluster->root);
2752 if (!node)
2753 goto out;
2754
2755 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 2756 while (1) {
ad22cf6e
JB
2757 if (entry->bytes < bytes)
2758 *max_extent_size = max(get_max_extent_size(entry),
2759 *max_extent_size);
a4820398 2760
4e69b598
JB
2761 if (entry->bytes < bytes ||
2762 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2763 node = rb_next(&entry->offset_index);
2764 if (!node)
2765 break;
2766 entry = rb_entry(node, struct btrfs_free_space,
2767 offset_index);
2768 continue;
2769 }
fa9c0d79 2770
4e69b598
JB
2771 if (entry->bitmap) {
2772 ret = btrfs_alloc_from_bitmap(block_group,
2773 cluster, entry, bytes,
a4820398
MX
2774 cluster->window_start,
2775 max_extent_size);
4e69b598 2776 if (ret == 0) {
4e69b598
JB
2777 node = rb_next(&entry->offset_index);
2778 if (!node)
2779 break;
2780 entry = rb_entry(node, struct btrfs_free_space,
2781 offset_index);
2782 continue;
2783 }
9b230628 2784 cluster->window_start += bytes;
4e69b598 2785 } else {
4e69b598
JB
2786 ret = entry->offset;
2787
2788 entry->offset += bytes;
2789 entry->bytes -= bytes;
2790 }
fa9c0d79 2791
5e71b5d5 2792 if (entry->bytes == 0)
fa9c0d79 2793 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2794 break;
2795 }
2796out:
2797 spin_unlock(&cluster->lock);
96303081 2798
5e71b5d5
LZ
2799 if (!ret)
2800 return 0;
2801
34d52cb6 2802 spin_lock(&ctl->tree_lock);
5e71b5d5 2803
34d52cb6 2804 ctl->free_space -= bytes;
5e71b5d5 2805 if (entry->bytes == 0) {
34d52cb6 2806 ctl->free_extents--;
4e69b598
JB
2807 if (entry->bitmap) {
2808 kfree(entry->bitmap);
34d52cb6
LZ
2809 ctl->total_bitmaps--;
2810 ctl->op->recalc_thresholds(ctl);
4e69b598 2811 }
dc89e982 2812 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2813 }
2814
34d52cb6 2815 spin_unlock(&ctl->tree_lock);
5e71b5d5 2816
fa9c0d79
CM
2817 return ret;
2818}
2819
96303081
JB
2820static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2821 struct btrfs_free_space *entry,
2822 struct btrfs_free_cluster *cluster,
1bb91902
AO
2823 u64 offset, u64 bytes,
2824 u64 cont1_bytes, u64 min_bytes)
96303081 2825{
34d52cb6 2826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2827 unsigned long next_zero;
2828 unsigned long i;
1bb91902
AO
2829 unsigned long want_bits;
2830 unsigned long min_bits;
96303081 2831 unsigned long found_bits;
cef40483 2832 unsigned long max_bits = 0;
96303081
JB
2833 unsigned long start = 0;
2834 unsigned long total_found = 0;
4e69b598 2835 int ret;
96303081 2836
96009762 2837 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2838 max_t(u64, offset, entry->offset));
96009762
WSH
2839 want_bits = bytes_to_bits(bytes, ctl->unit);
2840 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 2841
cef40483
JB
2842 /*
2843 * Don't bother looking for a cluster in this bitmap if it's heavily
2844 * fragmented.
2845 */
2846 if (entry->max_extent_size &&
2847 entry->max_extent_size < cont1_bytes)
2848 return -ENOSPC;
96303081
JB
2849again:
2850 found_bits = 0;
ebb3dad4 2851 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2852 next_zero = find_next_zero_bit(entry->bitmap,
2853 BITS_PER_BITMAP, i);
1bb91902 2854 if (next_zero - i >= min_bits) {
96303081 2855 found_bits = next_zero - i;
cef40483
JB
2856 if (found_bits > max_bits)
2857 max_bits = found_bits;
96303081
JB
2858 break;
2859 }
cef40483
JB
2860 if (next_zero - i > max_bits)
2861 max_bits = next_zero - i;
96303081
JB
2862 i = next_zero;
2863 }
2864
cef40483
JB
2865 if (!found_bits) {
2866 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 2867 return -ENOSPC;
cef40483 2868 }
96303081 2869
1bb91902 2870 if (!total_found) {
96303081 2871 start = i;
b78d09bc 2872 cluster->max_size = 0;
96303081
JB
2873 }
2874
2875 total_found += found_bits;
2876
96009762
WSH
2877 if (cluster->max_size < found_bits * ctl->unit)
2878 cluster->max_size = found_bits * ctl->unit;
96303081 2879
1bb91902
AO
2880 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2881 i = next_zero + 1;
96303081
JB
2882 goto again;
2883 }
2884
96009762 2885 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2886 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2887 ret = tree_insert_offset(&cluster->root, entry->offset,
2888 &entry->offset_index, 1);
b12d6869 2889 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 2890
3f7de037 2891 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2892 total_found * ctl->unit, 1);
96303081
JB
2893 return 0;
2894}
2895
4e69b598
JB
2896/*
2897 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2898 * Try to find a cluster with at least bytes total bytes, at least one
2899 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2900 */
3de85bb9
JB
2901static noinline int
2902setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2903 struct btrfs_free_cluster *cluster,
2904 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2905 u64 cont1_bytes, u64 min_bytes)
4e69b598 2906{
34d52cb6 2907 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2908 struct btrfs_free_space *first = NULL;
2909 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2910 struct btrfs_free_space *last;
2911 struct rb_node *node;
4e69b598
JB
2912 u64 window_free;
2913 u64 max_extent;
3f7de037 2914 u64 total_size = 0;
4e69b598 2915
34d52cb6 2916 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2917 if (!entry)
2918 return -ENOSPC;
2919
2920 /*
2921 * We don't want bitmaps, so just move along until we find a normal
2922 * extent entry.
2923 */
1bb91902
AO
2924 while (entry->bitmap || entry->bytes < min_bytes) {
2925 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2926 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2927 node = rb_next(&entry->offset_index);
2928 if (!node)
2929 return -ENOSPC;
2930 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2931 }
2932
4e69b598
JB
2933 window_free = entry->bytes;
2934 max_extent = entry->bytes;
2935 first = entry;
2936 last = entry;
4e69b598 2937
1bb91902
AO
2938 for (node = rb_next(&entry->offset_index); node;
2939 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2940 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2941
86d4a77b
JB
2942 if (entry->bitmap) {
2943 if (list_empty(&entry->list))
2944 list_add_tail(&entry->list, bitmaps);
4e69b598 2945 continue;
86d4a77b
JB
2946 }
2947
1bb91902
AO
2948 if (entry->bytes < min_bytes)
2949 continue;
2950
2951 last = entry;
2952 window_free += entry->bytes;
2953 if (entry->bytes > max_extent)
4e69b598 2954 max_extent = entry->bytes;
4e69b598
JB
2955 }
2956
1bb91902
AO
2957 if (window_free < bytes || max_extent < cont1_bytes)
2958 return -ENOSPC;
2959
4e69b598
JB
2960 cluster->window_start = first->offset;
2961
2962 node = &first->offset_index;
2963
2964 /*
2965 * now we've found our entries, pull them out of the free space
2966 * cache and put them into the cluster rbtree
2967 */
2968 do {
2969 int ret;
2970
2971 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2972 node = rb_next(&entry->offset_index);
1bb91902 2973 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2974 continue;
2975
34d52cb6 2976 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2977 ret = tree_insert_offset(&cluster->root, entry->offset,
2978 &entry->offset_index, 0);
3f7de037 2979 total_size += entry->bytes;
b12d6869 2980 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
2981 } while (node && entry != last);
2982
2983 cluster->max_size = max_extent;
3f7de037 2984 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2985 return 0;
2986}
2987
2988/*
2989 * This specifically looks for bitmaps that may work in the cluster, we assume
2990 * that we have already failed to find extents that will work.
2991 */
3de85bb9
JB
2992static noinline int
2993setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2994 struct btrfs_free_cluster *cluster,
2995 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2996 u64 cont1_bytes, u64 min_bytes)
4e69b598 2997{
34d52cb6 2998 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 2999 struct btrfs_free_space *entry = NULL;
4e69b598 3000 int ret = -ENOSPC;
0f0fbf1d 3001 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 3002
34d52cb6 3003 if (ctl->total_bitmaps == 0)
4e69b598
JB
3004 return -ENOSPC;
3005
0f0fbf1d
LZ
3006 /*
3007 * The bitmap that covers offset won't be in the list unless offset
3008 * is just its start offset.
3009 */
1b9b922a
CM
3010 if (!list_empty(bitmaps))
3011 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3012
3013 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
3014 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3015 if (entry && list_empty(&entry->list))
3016 list_add(&entry->list, bitmaps);
3017 }
3018
86d4a77b 3019 list_for_each_entry(entry, bitmaps, list) {
357b9784 3020 if (entry->bytes < bytes)
86d4a77b
JB
3021 continue;
3022 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3023 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3024 if (!ret)
3025 return 0;
3026 }
3027
3028 /*
52621cb6
LZ
3029 * The bitmaps list has all the bitmaps that record free space
3030 * starting after offset, so no more search is required.
86d4a77b 3031 */
52621cb6 3032 return -ENOSPC;
4e69b598
JB
3033}
3034
fa9c0d79
CM
3035/*
3036 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3037 * is to find at least bytes+empty_size.
fa9c0d79
CM
3038 * We might not find them all in one contiguous area.
3039 *
3040 * returns zero and sets up cluster if things worked out, otherwise
3041 * it returns -enospc
3042 */
2ff7e61e 3043int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
fa9c0d79
CM
3044 struct btrfs_block_group_cache *block_group,
3045 struct btrfs_free_cluster *cluster,
3046 u64 offset, u64 bytes, u64 empty_size)
3047{
34d52cb6 3048 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3049 struct btrfs_free_space *entry, *tmp;
52621cb6 3050 LIST_HEAD(bitmaps);
fa9c0d79 3051 u64 min_bytes;
1bb91902 3052 u64 cont1_bytes;
fa9c0d79
CM
3053 int ret;
3054
1bb91902
AO
3055 /*
3056 * Choose the minimum extent size we'll require for this
3057 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3058 * For metadata, allow allocates with smaller extents. For
3059 * data, keep it dense.
3060 */
0b246afa 3061 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
1bb91902 3062 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 3063 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3064 cont1_bytes = bytes;
0b246afa 3065 min_bytes = fs_info->sectorsize;
1bb91902
AO
3066 } else {
3067 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3068 min_bytes = fs_info->sectorsize;
1bb91902 3069 }
fa9c0d79 3070
34d52cb6 3071 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3072
3073 /*
3074 * If we know we don't have enough space to make a cluster don't even
3075 * bother doing all the work to try and find one.
3076 */
1bb91902 3077 if (ctl->free_space < bytes) {
34d52cb6 3078 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3079 return -ENOSPC;
3080 }
3081
fa9c0d79
CM
3082 spin_lock(&cluster->lock);
3083
3084 /* someone already found a cluster, hooray */
3085 if (cluster->block_group) {
3086 ret = 0;
3087 goto out;
3088 }
fa9c0d79 3089
3f7de037
JB
3090 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3091 min_bytes);
3092
86d4a77b 3093 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3094 bytes + empty_size,
3095 cont1_bytes, min_bytes);
4e69b598 3096 if (ret)
86d4a77b 3097 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3098 offset, bytes + empty_size,
3099 cont1_bytes, min_bytes);
86d4a77b
JB
3100
3101 /* Clear our temporary list */
3102 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3103 list_del_init(&entry->list);
fa9c0d79 3104
4e69b598
JB
3105 if (!ret) {
3106 atomic_inc(&block_group->count);
3107 list_add_tail(&cluster->block_group_list,
3108 &block_group->cluster_list);
3109 cluster->block_group = block_group;
3f7de037
JB
3110 } else {
3111 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3112 }
fa9c0d79
CM
3113out:
3114 spin_unlock(&cluster->lock);
34d52cb6 3115 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3116
3117 return ret;
3118}
3119
3120/*
3121 * simple code to zero out a cluster
3122 */
3123void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3124{
3125 spin_lock_init(&cluster->lock);
3126 spin_lock_init(&cluster->refill_lock);
6bef4d31 3127 cluster->root = RB_ROOT;
fa9c0d79 3128 cluster->max_size = 0;
c759c4e1 3129 cluster->fragmented = false;
fa9c0d79
CM
3130 INIT_LIST_HEAD(&cluster->block_group_list);
3131 cluster->block_group = NULL;
3132}
3133
7fe1e641
LZ
3134static int do_trimming(struct btrfs_block_group_cache *block_group,
3135 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3
FM
3136 u64 reserved_start, u64 reserved_bytes,
3137 struct btrfs_trim_range *trim_entry)
f7039b1d 3138{
7fe1e641 3139 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3140 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3141 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3142 int ret;
3143 int update = 0;
3144 u64 trimmed = 0;
f7039b1d 3145
7fe1e641
LZ
3146 spin_lock(&space_info->lock);
3147 spin_lock(&block_group->lock);
3148 if (!block_group->ro) {
3149 block_group->reserved += reserved_bytes;
3150 space_info->bytes_reserved += reserved_bytes;
3151 update = 1;
3152 }
3153 spin_unlock(&block_group->lock);
3154 spin_unlock(&space_info->lock);
3155
2ff7e61e 3156 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
7fe1e641
LZ
3157 if (!ret)
3158 *total_trimmed += trimmed;
3159
55507ce3 3160 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641 3161 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
55507ce3
FM
3162 list_del(&trim_entry->list);
3163 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3164
3165 if (update) {
3166 spin_lock(&space_info->lock);
3167 spin_lock(&block_group->lock);
3168 if (block_group->ro)
3169 space_info->bytes_readonly += reserved_bytes;
3170 block_group->reserved -= reserved_bytes;
3171 space_info->bytes_reserved -= reserved_bytes;
3172 spin_unlock(&space_info->lock);
3173 spin_unlock(&block_group->lock);
3174 }
3175
3176 return ret;
3177}
3178
3179static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3180 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3181{
3182 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3183 struct btrfs_free_space *entry;
3184 struct rb_node *node;
3185 int ret = 0;
3186 u64 extent_start;
3187 u64 extent_bytes;
3188 u64 bytes;
f7039b1d
LD
3189
3190 while (start < end) {
55507ce3
FM
3191 struct btrfs_trim_range trim_entry;
3192
3193 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3194 spin_lock(&ctl->tree_lock);
f7039b1d 3195
34d52cb6
LZ
3196 if (ctl->free_space < minlen) {
3197 spin_unlock(&ctl->tree_lock);
55507ce3 3198 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3199 break;
3200 }
3201
34d52cb6 3202 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 3203 if (!entry) {
34d52cb6 3204 spin_unlock(&ctl->tree_lock);
55507ce3 3205 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3206 break;
3207 }
3208
7fe1e641
LZ
3209 /* skip bitmaps */
3210 while (entry->bitmap) {
3211 node = rb_next(&entry->offset_index);
3212 if (!node) {
34d52cb6 3213 spin_unlock(&ctl->tree_lock);
55507ce3 3214 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3215 goto out;
f7039b1d 3216 }
7fe1e641
LZ
3217 entry = rb_entry(node, struct btrfs_free_space,
3218 offset_index);
f7039b1d
LD
3219 }
3220
7fe1e641
LZ
3221 if (entry->offset >= end) {
3222 spin_unlock(&ctl->tree_lock);
55507ce3 3223 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3224 break;
f7039b1d
LD
3225 }
3226
7fe1e641
LZ
3227 extent_start = entry->offset;
3228 extent_bytes = entry->bytes;
3229 start = max(start, extent_start);
3230 bytes = min(extent_start + extent_bytes, end) - start;
3231 if (bytes < minlen) {
3232 spin_unlock(&ctl->tree_lock);
55507ce3 3233 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3234 goto next;
f7039b1d
LD
3235 }
3236
7fe1e641
LZ
3237 unlink_free_space(ctl, entry);
3238 kmem_cache_free(btrfs_free_space_cachep, entry);
3239
34d52cb6 3240 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3241 trim_entry.start = extent_start;
3242 trim_entry.bytes = extent_bytes;
3243 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3244 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3245
7fe1e641 3246 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3247 extent_start, extent_bytes, &trim_entry);
7fe1e641
LZ
3248 if (ret)
3249 break;
3250next:
3251 start += bytes;
f7039b1d 3252
7fe1e641
LZ
3253 if (fatal_signal_pending(current)) {
3254 ret = -ERESTARTSYS;
3255 break;
3256 }
3257
3258 cond_resched();
3259 }
3260out:
3261 return ret;
3262}
3263
3264static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3265 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3266{
3267 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3268 struct btrfs_free_space *entry;
3269 int ret = 0;
3270 int ret2;
3271 u64 bytes;
3272 u64 offset = offset_to_bitmap(ctl, start);
3273
3274 while (offset < end) {
3275 bool next_bitmap = false;
55507ce3 3276 struct btrfs_trim_range trim_entry;
7fe1e641 3277
55507ce3 3278 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3279 spin_lock(&ctl->tree_lock);
3280
3281 if (ctl->free_space < minlen) {
3282 spin_unlock(&ctl->tree_lock);
55507ce3 3283 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3284 break;
3285 }
3286
3287 entry = tree_search_offset(ctl, offset, 1, 0);
3288 if (!entry) {
3289 spin_unlock(&ctl->tree_lock);
55507ce3 3290 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3291 next_bitmap = true;
3292 goto next;
3293 }
3294
3295 bytes = minlen;
0584f718 3296 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641
LZ
3297 if (ret2 || start >= end) {
3298 spin_unlock(&ctl->tree_lock);
55507ce3 3299 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3300 next_bitmap = true;
3301 goto next;
3302 }
3303
3304 bytes = min(bytes, end - start);
3305 if (bytes < minlen) {
3306 spin_unlock(&ctl->tree_lock);
55507ce3 3307 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3308 goto next;
3309 }
3310
3311 bitmap_clear_bits(ctl, entry, start, bytes);
3312 if (entry->bytes == 0)
3313 free_bitmap(ctl, entry);
3314
3315 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3316 trim_entry.start = start;
3317 trim_entry.bytes = bytes;
3318 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3319 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3320
3321 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3322 start, bytes, &trim_entry);
7fe1e641
LZ
3323 if (ret)
3324 break;
3325next:
3326 if (next_bitmap) {
3327 offset += BITS_PER_BITMAP * ctl->unit;
3328 } else {
3329 start += bytes;
3330 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3331 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 3332 }
f7039b1d
LD
3333
3334 if (fatal_signal_pending(current)) {
3335 ret = -ERESTARTSYS;
3336 break;
3337 }
3338
3339 cond_resched();
3340 }
3341
3342 return ret;
3343}
581bb050 3344
e33e17ee 3345void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
7fe1e641 3346{
e33e17ee
JM
3347 atomic_inc(&cache->trimming);
3348}
7fe1e641 3349
e33e17ee
JM
3350void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3351{
0b246afa 3352 struct btrfs_fs_info *fs_info = block_group->fs_info;
e33e17ee
JM
3353 struct extent_map_tree *em_tree;
3354 struct extent_map *em;
3355 bool cleanup;
7fe1e641 3356
04216820 3357 spin_lock(&block_group->lock);
e33e17ee
JM
3358 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3359 block_group->removed);
04216820
FM
3360 spin_unlock(&block_group->lock);
3361
e33e17ee 3362 if (cleanup) {
34441361 3363 mutex_lock(&fs_info->chunk_mutex);
0b246afa 3364 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
3365 write_lock(&em_tree->lock);
3366 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3367 1);
3368 BUG_ON(!em); /* logic error, can't happen */
3369 remove_extent_mapping(em_tree, em);
3370 write_unlock(&em_tree->lock);
34441361 3371 mutex_unlock(&fs_info->chunk_mutex);
04216820
FM
3372
3373 /* once for us and once for the tree */
3374 free_extent_map(em);
3375 free_extent_map(em);
946ddbe8
FM
3376
3377 /*
3378 * We've left one free space entry and other tasks trimming
3379 * this block group have left 1 entry each one. Free them.
3380 */
3381 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
e33e17ee
JM
3382 }
3383}
3384
3385int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3386 u64 *trimmed, u64 start, u64 end, u64 minlen)
3387{
3388 int ret;
3389
3390 *trimmed = 0;
3391
3392 spin_lock(&block_group->lock);
3393 if (block_group->removed) {
04216820 3394 spin_unlock(&block_group->lock);
e33e17ee 3395 return 0;
04216820 3396 }
e33e17ee
JM
3397 btrfs_get_block_group_trimming(block_group);
3398 spin_unlock(&block_group->lock);
3399
3400 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3401 if (ret)
3402 goto out;
7fe1e641 3403
e33e17ee
JM
3404 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3405out:
3406 btrfs_put_block_group_trimming(block_group);
7fe1e641
LZ
3407 return ret;
3408}
3409
581bb050
LZ
3410/*
3411 * Find the left-most item in the cache tree, and then return the
3412 * smallest inode number in the item.
3413 *
3414 * Note: the returned inode number may not be the smallest one in
3415 * the tree, if the left-most item is a bitmap.
3416 */
3417u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3418{
3419 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3420 struct btrfs_free_space *entry = NULL;
3421 u64 ino = 0;
3422
3423 spin_lock(&ctl->tree_lock);
3424
3425 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3426 goto out;
3427
3428 entry = rb_entry(rb_first(&ctl->free_space_offset),
3429 struct btrfs_free_space, offset_index);
3430
3431 if (!entry->bitmap) {
3432 ino = entry->offset;
3433
3434 unlink_free_space(ctl, entry);
3435 entry->offset++;
3436 entry->bytes--;
3437 if (!entry->bytes)
3438 kmem_cache_free(btrfs_free_space_cachep, entry);
3439 else
3440 link_free_space(ctl, entry);
3441 } else {
3442 u64 offset = 0;
3443 u64 count = 1;
3444 int ret;
3445
0584f718 3446 ret = search_bitmap(ctl, entry, &offset, &count, true);
79787eaa 3447 /* Logic error; Should be empty if it can't find anything */
b12d6869 3448 ASSERT(!ret);
581bb050
LZ
3449
3450 ino = offset;
3451 bitmap_clear_bits(ctl, entry, offset, 1);
3452 if (entry->bytes == 0)
3453 free_bitmap(ctl, entry);
3454 }
3455out:
3456 spin_unlock(&ctl->tree_lock);
3457
3458 return ino;
3459}
82d5902d
LZ
3460
3461struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3462 struct btrfs_path *path)
3463{
3464 struct inode *inode = NULL;
3465
57cdc8db
DS
3466 spin_lock(&root->ino_cache_lock);
3467 if (root->ino_cache_inode)
3468 inode = igrab(root->ino_cache_inode);
3469 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3470 if (inode)
3471 return inode;
3472
3473 inode = __lookup_free_space_inode(root, path, 0);
3474 if (IS_ERR(inode))
3475 return inode;
3476
57cdc8db 3477 spin_lock(&root->ino_cache_lock);
7841cb28 3478 if (!btrfs_fs_closing(root->fs_info))
57cdc8db
DS
3479 root->ino_cache_inode = igrab(inode);
3480 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3481
3482 return inode;
3483}
3484
3485int create_free_ino_inode(struct btrfs_root *root,
3486 struct btrfs_trans_handle *trans,
3487 struct btrfs_path *path)
3488{
3489 return __create_free_space_inode(root, trans, path,
3490 BTRFS_FREE_INO_OBJECTID, 0);
3491}
3492
3493int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3494{
3495 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3496 struct btrfs_path *path;
3497 struct inode *inode;
3498 int ret = 0;
3499 u64 root_gen = btrfs_root_generation(&root->root_item);
3500
0b246afa 3501 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3502 return 0;
3503
82d5902d
LZ
3504 /*
3505 * If we're unmounting then just return, since this does a search on the
3506 * normal root and not the commit root and we could deadlock.
3507 */
7841cb28 3508 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
3509 return 0;
3510
3511 path = btrfs_alloc_path();
3512 if (!path)
3513 return 0;
3514
3515 inode = lookup_free_ino_inode(root, path);
3516 if (IS_ERR(inode))
3517 goto out;
3518
3519 if (root_gen != BTRFS_I(inode)->generation)
3520 goto out_put;
3521
3522 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3523
3524 if (ret < 0)
c2cf52eb
SK
3525 btrfs_err(fs_info,
3526 "failed to load free ino cache for root %llu",
3527 root->root_key.objectid);
82d5902d
LZ
3528out_put:
3529 iput(inode);
3530out:
3531 btrfs_free_path(path);
3532 return ret;
3533}
3534
3535int btrfs_write_out_ino_cache(struct btrfs_root *root,
3536 struct btrfs_trans_handle *trans,
53645a91
FDBM
3537 struct btrfs_path *path,
3538 struct inode *inode)
82d5902d 3539{
0b246afa 3540 struct btrfs_fs_info *fs_info = root->fs_info;
82d5902d 3541 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
82d5902d 3542 int ret;
c9dc4c65 3543 struct btrfs_io_ctl io_ctl;
e43699d4 3544 bool release_metadata = true;
82d5902d 3545
0b246afa 3546 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3547 return 0;
3548
85db36cf 3549 memset(&io_ctl, 0, sizeof(io_ctl));
0e8d931a 3550 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
e43699d4
FM
3551 if (!ret) {
3552 /*
3553 * At this point writepages() didn't error out, so our metadata
3554 * reservation is released when the writeback finishes, at
3555 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3556 * with or without an error.
3557 */
3558 release_metadata = false;
afdb5718 3559 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
e43699d4 3560 }
85db36cf 3561
c09544e0 3562 if (ret) {
e43699d4 3563 if (release_metadata)
691fa059 3564 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 3565 inode->i_size, true);
c09544e0 3566#ifdef DEBUG
0b246afa
JM
3567 btrfs_err(fs_info,
3568 "failed to write free ino cache for root %llu",
3569 root->root_key.objectid);
c09544e0
JB
3570#endif
3571 }
82d5902d 3572
82d5902d
LZ
3573 return ret;
3574}
74255aa0
JB
3575
3576#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
3577/*
3578 * Use this if you need to make a bitmap or extent entry specifically, it
3579 * doesn't do any of the merging that add_free_space does, this acts a lot like
3580 * how the free space cache loading stuff works, so you can get really weird
3581 * configurations.
3582 */
3583int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3584 u64 offset, u64 bytes, bool bitmap)
74255aa0 3585{
dc11dd5d
JB
3586 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3587 struct btrfs_free_space *info = NULL, *bitmap_info;
3588 void *map = NULL;
3589 u64 bytes_added;
3590 int ret;
74255aa0 3591
dc11dd5d
JB
3592again:
3593 if (!info) {
3594 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3595 if (!info)
3596 return -ENOMEM;
74255aa0
JB
3597 }
3598
dc11dd5d
JB
3599 if (!bitmap) {
3600 spin_lock(&ctl->tree_lock);
3601 info->offset = offset;
3602 info->bytes = bytes;
cef40483 3603 info->max_extent_size = 0;
dc11dd5d
JB
3604 ret = link_free_space(ctl, info);
3605 spin_unlock(&ctl->tree_lock);
3606 if (ret)
3607 kmem_cache_free(btrfs_free_space_cachep, info);
3608 return ret;
3609 }
3610
3611 if (!map) {
09cbfeaf 3612 map = kzalloc(PAGE_SIZE, GFP_NOFS);
dc11dd5d
JB
3613 if (!map) {
3614 kmem_cache_free(btrfs_free_space_cachep, info);
3615 return -ENOMEM;
3616 }
3617 }
3618
3619 spin_lock(&ctl->tree_lock);
3620 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3621 1, 0);
3622 if (!bitmap_info) {
3623 info->bitmap = map;
3624 map = NULL;
3625 add_new_bitmap(ctl, info, offset);
3626 bitmap_info = info;
20005523 3627 info = NULL;
dc11dd5d 3628 }
74255aa0 3629
dc11dd5d 3630 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
cef40483 3631
dc11dd5d
JB
3632 bytes -= bytes_added;
3633 offset += bytes_added;
3634 spin_unlock(&ctl->tree_lock);
74255aa0 3635
dc11dd5d
JB
3636 if (bytes)
3637 goto again;
74255aa0 3638
20005523
FM
3639 if (info)
3640 kmem_cache_free(btrfs_free_space_cachep, info);
f8b00e0f 3641 kfree(map);
dc11dd5d 3642 return 0;
74255aa0
JB
3643}
3644
3645/*
3646 * Checks to see if the given range is in the free space cache. This is really
3647 * just used to check the absence of space, so if there is free space in the
3648 * range at all we will return 1.
3649 */
dc11dd5d
JB
3650int test_check_exists(struct btrfs_block_group_cache *cache,
3651 u64 offset, u64 bytes)
74255aa0
JB
3652{
3653 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3654 struct btrfs_free_space *info;
3655 int ret = 0;
3656
3657 spin_lock(&ctl->tree_lock);
3658 info = tree_search_offset(ctl, offset, 0, 0);
3659 if (!info) {
3660 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3661 1, 0);
3662 if (!info)
3663 goto out;
3664 }
3665
3666have_info:
3667 if (info->bitmap) {
3668 u64 bit_off, bit_bytes;
3669 struct rb_node *n;
3670 struct btrfs_free_space *tmp;
3671
3672 bit_off = offset;
3673 bit_bytes = ctl->unit;
0584f718 3674 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
3675 if (!ret) {
3676 if (bit_off == offset) {
3677 ret = 1;
3678 goto out;
3679 } else if (bit_off > offset &&
3680 offset + bytes > bit_off) {
3681 ret = 1;
3682 goto out;
3683 }
3684 }
3685
3686 n = rb_prev(&info->offset_index);
3687 while (n) {
3688 tmp = rb_entry(n, struct btrfs_free_space,
3689 offset_index);
3690 if (tmp->offset + tmp->bytes < offset)
3691 break;
3692 if (offset + bytes < tmp->offset) {
5473e0c4 3693 n = rb_prev(&tmp->offset_index);
74255aa0
JB
3694 continue;
3695 }
3696 info = tmp;
3697 goto have_info;
3698 }
3699
3700 n = rb_next(&info->offset_index);
3701 while (n) {
3702 tmp = rb_entry(n, struct btrfs_free_space,
3703 offset_index);
3704 if (offset + bytes < tmp->offset)
3705 break;
3706 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 3707 n = rb_next(&tmp->offset_index);
74255aa0
JB
3708 continue;
3709 }
3710 info = tmp;
3711 goto have_info;
3712 }
3713
20005523 3714 ret = 0;
74255aa0
JB
3715 goto out;
3716 }
3717
3718 if (info->offset == offset) {
3719 ret = 1;
3720 goto out;
3721 }
3722
3723 if (offset > info->offset && offset < info->offset + info->bytes)
3724 ret = 1;
3725out:
3726 spin_unlock(&ctl->tree_lock);
3727 return ret;
3728}
dc11dd5d 3729#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */