btrfs: convert btrfs_inc_block_group_ro to accept fs_info
[linux-2.6-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
04216820 30#include "volumes.h"
fa9c0d79 31
0ef6447a 32#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
ee22184b 33#define MAX_CACHE_BYTES_PER_GIG SZ_32K
0f9dd46c 34
55507ce3
FM
35struct btrfs_trim_range {
36 u64 start;
37 u64 bytes;
38 struct list_head list;
39};
40
34d52cb6 41static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 42 struct btrfs_free_space *info);
cd023e7b
JB
43static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 struct btrfs_free_space *info);
afdb5718
JM
45static int btrfs_wait_cache_io_root(struct btrfs_root *root,
46 struct btrfs_trans_handle *trans,
47 struct btrfs_io_ctl *io_ctl,
48 struct btrfs_path *path);
0cb59c99 49
0414efae
LZ
50static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
51 struct btrfs_path *path,
52 u64 offset)
0af3d00b 53{
0b246afa 54 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
55 struct btrfs_key key;
56 struct btrfs_key location;
57 struct btrfs_disk_key disk_key;
58 struct btrfs_free_space_header *header;
59 struct extent_buffer *leaf;
60 struct inode *inode = NULL;
61 int ret;
62
0af3d00b 63 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 64 key.offset = offset;
0af3d00b
JB
65 key.type = 0;
66
67 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
68 if (ret < 0)
69 return ERR_PTR(ret);
70 if (ret > 0) {
b3b4aa74 71 btrfs_release_path(path);
0af3d00b
JB
72 return ERR_PTR(-ENOENT);
73 }
74
75 leaf = path->nodes[0];
76 header = btrfs_item_ptr(leaf, path->slots[0],
77 struct btrfs_free_space_header);
78 btrfs_free_space_key(leaf, header, &disk_key);
79 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 80 btrfs_release_path(path);
0af3d00b 81
0b246afa 82 inode = btrfs_iget(fs_info->sb, &location, root, NULL);
0af3d00b
JB
83 if (IS_ERR(inode))
84 return inode;
85 if (is_bad_inode(inode)) {
86 iput(inode);
87 return ERR_PTR(-ENOENT);
88 }
89
528c0327 90 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
91 mapping_gfp_constraint(inode->i_mapping,
92 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 93
0414efae
LZ
94 return inode;
95}
96
97struct inode *lookup_free_space_inode(struct btrfs_root *root,
98 struct btrfs_block_group_cache
99 *block_group, struct btrfs_path *path)
100{
101 struct inode *inode = NULL;
0b246afa 102 struct btrfs_fs_info *fs_info = root->fs_info;
5b0e95bf 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
104
105 spin_lock(&block_group->lock);
106 if (block_group->inode)
107 inode = igrab(block_group->inode);
108 spin_unlock(&block_group->lock);
109 if (inode)
110 return inode;
111
112 inode = __lookup_free_space_inode(root, path,
113 block_group->key.objectid);
114 if (IS_ERR(inode))
115 return inode;
116
0af3d00b 117 spin_lock(&block_group->lock);
5b0e95bf 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 119 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 BTRFS_INODE_NODATACOW;
2f356126
JB
122 block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 }
124
300e4f8a 125 if (!block_group->iref) {
0af3d00b
JB
126 block_group->inode = igrab(inode);
127 block_group->iref = 1;
128 }
129 spin_unlock(&block_group->lock);
130
131 return inode;
132}
133
48a3b636
ES
134static int __create_free_space_inode(struct btrfs_root *root,
135 struct btrfs_trans_handle *trans,
136 struct btrfs_path *path,
137 u64 ino, u64 offset)
0af3d00b
JB
138{
139 struct btrfs_key key;
140 struct btrfs_disk_key disk_key;
141 struct btrfs_free_space_header *header;
142 struct btrfs_inode_item *inode_item;
143 struct extent_buffer *leaf;
5b0e95bf 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
145 int ret;
146
0414efae 147 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
148 if (ret)
149 return ret;
150
5b0e95bf
JB
151 /* We inline crc's for the free disk space cache */
152 if (ino != BTRFS_FREE_INO_OBJECTID)
153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154
0af3d00b
JB
155 leaf = path->nodes[0];
156 inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_inode_item);
158 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 159 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
160 sizeof(*inode_item));
161 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 btrfs_set_inode_size(leaf, inode_item, 0);
163 btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 btrfs_set_inode_uid(leaf, inode_item, 0);
165 btrfs_set_inode_gid(leaf, inode_item, 0);
166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 167 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
168 btrfs_set_inode_nlink(leaf, inode_item, 1);
169 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 170 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 171 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 172 btrfs_release_path(path);
0af3d00b
JB
173
174 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 175 key.offset = offset;
0af3d00b 176 key.type = 0;
0af3d00b
JB
177 ret = btrfs_insert_empty_item(trans, root, path, &key,
178 sizeof(struct btrfs_free_space_header));
179 if (ret < 0) {
b3b4aa74 180 btrfs_release_path(path);
0af3d00b
JB
181 return ret;
182 }
c9dc4c65 183
0af3d00b
JB
184 leaf = path->nodes[0];
185 header = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_free_space_header);
b159fa28 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b
JB
188 btrfs_set_free_space_key(leaf, header, &disk_key);
189 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 190 btrfs_release_path(path);
0af3d00b
JB
191
192 return 0;
193}
194
0414efae
LZ
195int create_free_space_inode(struct btrfs_root *root,
196 struct btrfs_trans_handle *trans,
197 struct btrfs_block_group_cache *block_group,
198 struct btrfs_path *path)
199{
200 int ret;
201 u64 ino;
202
203 ret = btrfs_find_free_objectid(root, &ino);
204 if (ret < 0)
205 return ret;
206
207 return __create_free_space_inode(root, trans, path, ino,
208 block_group->key.objectid);
209}
210
2ff7e61e 211int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
7b61cd92 212 struct btrfs_block_rsv *rsv)
0af3d00b 213{
c8174313 214 u64 needed_bytes;
7b61cd92 215 int ret;
c8174313
JB
216
217 /* 1 for slack space, 1 for updating the inode */
0b246afa
JM
218 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
219 btrfs_calc_trans_metadata_size(fs_info, 1);
c8174313 220
7b61cd92
MX
221 spin_lock(&rsv->lock);
222 if (rsv->reserved < needed_bytes)
223 ret = -ENOSPC;
224 else
225 ret = 0;
226 spin_unlock(&rsv->lock);
4b286cd1 227 return ret;
7b61cd92
MX
228}
229
230int btrfs_truncate_free_space_cache(struct btrfs_root *root,
231 struct btrfs_trans_handle *trans,
1bbc621e 232 struct btrfs_block_group_cache *block_group,
7b61cd92
MX
233 struct inode *inode)
234{
7b61cd92 235 int ret = 0;
1bbc621e 236 struct btrfs_path *path = btrfs_alloc_path();
35c76642 237 bool locked = false;
1bbc621e
CM
238
239 if (!path) {
240 ret = -ENOMEM;
241 goto fail;
242 }
243
244 if (block_group) {
35c76642 245 locked = true;
1bbc621e
CM
246 mutex_lock(&trans->transaction->cache_write_mutex);
247 if (!list_empty(&block_group->io_list)) {
248 list_del_init(&block_group->io_list);
249
afdb5718 250 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
251 btrfs_put_block_group(block_group);
252 }
253
254 /*
255 * now that we've truncated the cache away, its no longer
256 * setup or written
257 */
258 spin_lock(&block_group->lock);
259 block_group->disk_cache_state = BTRFS_DC_CLEAR;
260 spin_unlock(&block_group->lock);
261 }
262 btrfs_free_path(path);
0af3d00b 263
0af3d00b 264 btrfs_i_size_write(inode, 0);
7caef267 265 truncate_pagecache(inode, 0);
0af3d00b
JB
266
267 /*
268 * We don't need an orphan item because truncating the free space cache
269 * will never be split across transactions.
28ed1345
CM
270 * We don't need to check for -EAGAIN because we're a free space
271 * cache inode
0af3d00b
JB
272 */
273 ret = btrfs_truncate_inode_items(trans, root, inode,
274 0, BTRFS_EXTENT_DATA_KEY);
35c76642
FM
275 if (ret)
276 goto fail;
0af3d00b 277
82d5902d 278 ret = btrfs_update_inode(trans, root, inode);
1bbc621e 279
1bbc621e 280fail:
35c76642
FM
281 if (locked)
282 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 283 if (ret)
66642832 284 btrfs_abort_transaction(trans, ret);
c8174313 285
82d5902d 286 return ret;
0af3d00b
JB
287}
288
1d480538 289static void readahead_cache(struct inode *inode)
9d66e233
JB
290{
291 struct file_ra_state *ra;
292 unsigned long last_index;
293
294 ra = kzalloc(sizeof(*ra), GFP_NOFS);
295 if (!ra)
1d480538 296 return;
9d66e233
JB
297
298 file_ra_state_init(ra, inode->i_mapping);
09cbfeaf 299 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233
JB
300
301 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
302
303 kfree(ra);
9d66e233
JB
304}
305
4c6d1d85 306static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 307 int write)
a67509c3 308{
5349d6c3
MX
309 int num_pages;
310 int check_crcs = 0;
311
09cbfeaf 312 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 313
4a0cc7ca 314 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
5349d6c3
MX
315 check_crcs = 1;
316
317 /* Make sure we can fit our crcs into the first page */
318 if (write && check_crcs &&
09cbfeaf 319 (num_pages * sizeof(u32)) >= PAGE_SIZE)
5349d6c3
MX
320 return -ENOSPC;
321
4c6d1d85 322 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 323
31e818fe 324 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
325 if (!io_ctl->pages)
326 return -ENOMEM;
5349d6c3
MX
327
328 io_ctl->num_pages = num_pages;
f15376df 329 io_ctl->fs_info = btrfs_sb(inode->i_sb);
5349d6c3 330 io_ctl->check_crcs = check_crcs;
c9dc4c65 331 io_ctl->inode = inode;
5349d6c3 332
a67509c3
JB
333 return 0;
334}
335
4c6d1d85 336static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
337{
338 kfree(io_ctl->pages);
c9dc4c65 339 io_ctl->pages = NULL;
a67509c3
JB
340}
341
4c6d1d85 342static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
343{
344 if (io_ctl->cur) {
a67509c3
JB
345 io_ctl->cur = NULL;
346 io_ctl->orig = NULL;
347 }
348}
349
4c6d1d85 350static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 351{
b12d6869 352 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 353 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 354 io_ctl->cur = page_address(io_ctl->page);
a67509c3 355 io_ctl->orig = io_ctl->cur;
09cbfeaf 356 io_ctl->size = PAGE_SIZE;
a67509c3 357 if (clear)
09cbfeaf 358 memset(io_ctl->cur, 0, PAGE_SIZE);
a67509c3
JB
359}
360
4c6d1d85 361static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
362{
363 int i;
364
365 io_ctl_unmap_page(io_ctl);
366
367 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
368 if (io_ctl->pages[i]) {
369 ClearPageChecked(io_ctl->pages[i]);
370 unlock_page(io_ctl->pages[i]);
09cbfeaf 371 put_page(io_ctl->pages[i]);
a1ee5a45 372 }
a67509c3
JB
373 }
374}
375
4c6d1d85 376static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
a67509c3
JB
377 int uptodate)
378{
379 struct page *page;
380 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
381 int i;
382
383 for (i = 0; i < io_ctl->num_pages; i++) {
384 page = find_or_create_page(inode->i_mapping, i, mask);
385 if (!page) {
386 io_ctl_drop_pages(io_ctl);
387 return -ENOMEM;
388 }
389 io_ctl->pages[i] = page;
390 if (uptodate && !PageUptodate(page)) {
391 btrfs_readpage(NULL, page);
392 lock_page(page);
393 if (!PageUptodate(page)) {
efe120a0
FH
394 btrfs_err(BTRFS_I(inode)->root->fs_info,
395 "error reading free space cache");
a67509c3
JB
396 io_ctl_drop_pages(io_ctl);
397 return -EIO;
398 }
399 }
400 }
401
f7d61dcd
JB
402 for (i = 0; i < io_ctl->num_pages; i++) {
403 clear_page_dirty_for_io(io_ctl->pages[i]);
404 set_page_extent_mapped(io_ctl->pages[i]);
405 }
406
a67509c3
JB
407 return 0;
408}
409
4c6d1d85 410static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 411{
528c0327 412 __le64 *val;
a67509c3
JB
413
414 io_ctl_map_page(io_ctl, 1);
415
416 /*
5b0e95bf
JB
417 * Skip the csum areas. If we don't check crcs then we just have a
418 * 64bit chunk at the front of the first page.
a67509c3 419 */
5b0e95bf
JB
420 if (io_ctl->check_crcs) {
421 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
422 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
423 } else {
424 io_ctl->cur += sizeof(u64);
425 io_ctl->size -= sizeof(u64) * 2;
426 }
a67509c3
JB
427
428 val = io_ctl->cur;
429 *val = cpu_to_le64(generation);
430 io_ctl->cur += sizeof(u64);
a67509c3
JB
431}
432
4c6d1d85 433static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 434{
528c0327 435 __le64 *gen;
a67509c3 436
5b0e95bf
JB
437 /*
438 * Skip the crc area. If we don't check crcs then we just have a 64bit
439 * chunk at the front of the first page.
440 */
441 if (io_ctl->check_crcs) {
442 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
443 io_ctl->size -= sizeof(u64) +
444 (sizeof(u32) * io_ctl->num_pages);
445 } else {
446 io_ctl->cur += sizeof(u64);
447 io_ctl->size -= sizeof(u64) * 2;
448 }
a67509c3 449
a67509c3
JB
450 gen = io_ctl->cur;
451 if (le64_to_cpu(*gen) != generation) {
f15376df 452 btrfs_err_rl(io_ctl->fs_info,
94647322
DS
453 "space cache generation (%llu) does not match inode (%llu)",
454 *gen, generation);
a67509c3
JB
455 io_ctl_unmap_page(io_ctl);
456 return -EIO;
457 }
458 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
459 return 0;
460}
461
4c6d1d85 462static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
463{
464 u32 *tmp;
465 u32 crc = ~(u32)0;
466 unsigned offset = 0;
467
468 if (!io_ctl->check_crcs) {
469 io_ctl_unmap_page(io_ctl);
470 return;
471 }
472
473 if (index == 0)
cb54f257 474 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 475
b0496686 476 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 477 PAGE_SIZE - offset);
0b5e3daf 478 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 479 io_ctl_unmap_page(io_ctl);
2b108268 480 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
481 tmp += index;
482 *tmp = crc;
5b0e95bf
JB
483}
484
4c6d1d85 485static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
486{
487 u32 *tmp, val;
488 u32 crc = ~(u32)0;
489 unsigned offset = 0;
490
491 if (!io_ctl->check_crcs) {
492 io_ctl_map_page(io_ctl, 0);
493 return 0;
494 }
495
496 if (index == 0)
497 offset = sizeof(u32) * io_ctl->num_pages;
498
2b108268 499 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
500 tmp += index;
501 val = *tmp;
5b0e95bf
JB
502
503 io_ctl_map_page(io_ctl, 0);
b0496686 504 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 505 PAGE_SIZE - offset);
0b5e3daf 506 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 507 if (val != crc) {
f15376df 508 btrfs_err_rl(io_ctl->fs_info,
94647322 509 "csum mismatch on free space cache");
5b0e95bf
JB
510 io_ctl_unmap_page(io_ctl);
511 return -EIO;
512 }
513
a67509c3
JB
514 return 0;
515}
516
4c6d1d85 517static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
518 void *bitmap)
519{
520 struct btrfs_free_space_entry *entry;
521
522 if (!io_ctl->cur)
523 return -ENOSPC;
524
525 entry = io_ctl->cur;
526 entry->offset = cpu_to_le64(offset);
527 entry->bytes = cpu_to_le64(bytes);
528 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
529 BTRFS_FREE_SPACE_EXTENT;
530 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
531 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
532
533 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
534 return 0;
535
5b0e95bf 536 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
537
538 /* No more pages to map */
539 if (io_ctl->index >= io_ctl->num_pages)
540 return 0;
541
542 /* map the next page */
543 io_ctl_map_page(io_ctl, 1);
544 return 0;
545}
546
4c6d1d85 547static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
548{
549 if (!io_ctl->cur)
550 return -ENOSPC;
551
552 /*
553 * If we aren't at the start of the current page, unmap this one and
554 * map the next one if there is any left.
555 */
556 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 557 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
558 if (io_ctl->index >= io_ctl->num_pages)
559 return -ENOSPC;
560 io_ctl_map_page(io_ctl, 0);
561 }
562
09cbfeaf 563 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
5b0e95bf 564 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
565 if (io_ctl->index < io_ctl->num_pages)
566 io_ctl_map_page(io_ctl, 0);
567 return 0;
568}
569
4c6d1d85 570static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 571{
5b0e95bf
JB
572 /*
573 * If we're not on the boundary we know we've modified the page and we
574 * need to crc the page.
575 */
576 if (io_ctl->cur != io_ctl->orig)
577 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
578 else
579 io_ctl_unmap_page(io_ctl);
a67509c3
JB
580
581 while (io_ctl->index < io_ctl->num_pages) {
582 io_ctl_map_page(io_ctl, 1);
5b0e95bf 583 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
584 }
585}
586
4c6d1d85 587static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 588 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
589{
590 struct btrfs_free_space_entry *e;
2f120c05
JB
591 int ret;
592
593 if (!io_ctl->cur) {
594 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
595 if (ret)
596 return ret;
597 }
a67509c3
JB
598
599 e = io_ctl->cur;
600 entry->offset = le64_to_cpu(e->offset);
601 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 602 *type = e->type;
a67509c3
JB
603 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
604 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
605
606 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 607 return 0;
a67509c3
JB
608
609 io_ctl_unmap_page(io_ctl);
610
2f120c05 611 return 0;
a67509c3
JB
612}
613
4c6d1d85 614static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 615 struct btrfs_free_space *entry)
a67509c3 616{
5b0e95bf
JB
617 int ret;
618
5b0e95bf
JB
619 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
620 if (ret)
621 return ret;
622
09cbfeaf 623 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
a67509c3 624 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
625
626 return 0;
a67509c3
JB
627}
628
cd023e7b
JB
629/*
630 * Since we attach pinned extents after the fact we can have contiguous sections
631 * of free space that are split up in entries. This poses a problem with the
632 * tree logging stuff since it could have allocated across what appears to be 2
633 * entries since we would have merged the entries when adding the pinned extents
634 * back to the free space cache. So run through the space cache that we just
635 * loaded and merge contiguous entries. This will make the log replay stuff not
636 * blow up and it will make for nicer allocator behavior.
637 */
638static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
639{
640 struct btrfs_free_space *e, *prev = NULL;
641 struct rb_node *n;
642
643again:
644 spin_lock(&ctl->tree_lock);
645 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
646 e = rb_entry(n, struct btrfs_free_space, offset_index);
647 if (!prev)
648 goto next;
649 if (e->bitmap || prev->bitmap)
650 goto next;
651 if (prev->offset + prev->bytes == e->offset) {
652 unlink_free_space(ctl, prev);
653 unlink_free_space(ctl, e);
654 prev->bytes += e->bytes;
655 kmem_cache_free(btrfs_free_space_cachep, e);
656 link_free_space(ctl, prev);
657 prev = NULL;
658 spin_unlock(&ctl->tree_lock);
659 goto again;
660 }
661next:
662 prev = e;
663 }
664 spin_unlock(&ctl->tree_lock);
665}
666
48a3b636
ES
667static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
668 struct btrfs_free_space_ctl *ctl,
669 struct btrfs_path *path, u64 offset)
9d66e233 670{
0b246afa 671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9d66e233
JB
672 struct btrfs_free_space_header *header;
673 struct extent_buffer *leaf;
4c6d1d85 674 struct btrfs_io_ctl io_ctl;
9d66e233 675 struct btrfs_key key;
a67509c3 676 struct btrfs_free_space *e, *n;
b76808fc 677 LIST_HEAD(bitmaps);
9d66e233
JB
678 u64 num_entries;
679 u64 num_bitmaps;
680 u64 generation;
a67509c3 681 u8 type;
f6a39829 682 int ret = 0;
9d66e233 683
9d66e233 684 /* Nothing in the space cache, goodbye */
0414efae 685 if (!i_size_read(inode))
a67509c3 686 return 0;
9d66e233
JB
687
688 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 689 key.offset = offset;
9d66e233
JB
690 key.type = 0;
691
692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 693 if (ret < 0)
a67509c3 694 return 0;
0414efae 695 else if (ret > 0) {
945d8962 696 btrfs_release_path(path);
a67509c3 697 return 0;
9d66e233
JB
698 }
699
0414efae
LZ
700 ret = -1;
701
9d66e233
JB
702 leaf = path->nodes[0];
703 header = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_free_space_header);
705 num_entries = btrfs_free_space_entries(leaf, header);
706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 generation = btrfs_free_space_generation(leaf, header);
945d8962 708 btrfs_release_path(path);
9d66e233 709
e570fd27 710 if (!BTRFS_I(inode)->generation) {
0b246afa 711 btrfs_info(fs_info,
e570fd27
MX
712 "The free space cache file (%llu) is invalid. skip it\n",
713 offset);
714 return 0;
715 }
716
9d66e233 717 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
718 btrfs_err(fs_info,
719 "free space inode generation (%llu) did not match free space cache generation (%llu)",
720 BTRFS_I(inode)->generation, generation);
a67509c3 721 return 0;
9d66e233
JB
722 }
723
724 if (!num_entries)
a67509c3 725 return 0;
9d66e233 726
f15376df 727 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
728 if (ret)
729 return ret;
730
1d480538 731 readahead_cache(inode);
9d66e233 732
a67509c3
JB
733 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
734 if (ret)
735 goto out;
9d66e233 736
5b0e95bf
JB
737 ret = io_ctl_check_crc(&io_ctl, 0);
738 if (ret)
739 goto free_cache;
740
a67509c3
JB
741 ret = io_ctl_check_generation(&io_ctl, generation);
742 if (ret)
743 goto free_cache;
9d66e233 744
a67509c3
JB
745 while (num_entries) {
746 e = kmem_cache_zalloc(btrfs_free_space_cachep,
747 GFP_NOFS);
748 if (!e)
9d66e233 749 goto free_cache;
9d66e233 750
5b0e95bf
JB
751 ret = io_ctl_read_entry(&io_ctl, e, &type);
752 if (ret) {
753 kmem_cache_free(btrfs_free_space_cachep, e);
754 goto free_cache;
755 }
756
a67509c3
JB
757 if (!e->bytes) {
758 kmem_cache_free(btrfs_free_space_cachep, e);
759 goto free_cache;
9d66e233 760 }
a67509c3
JB
761
762 if (type == BTRFS_FREE_SPACE_EXTENT) {
763 spin_lock(&ctl->tree_lock);
764 ret = link_free_space(ctl, e);
765 spin_unlock(&ctl->tree_lock);
766 if (ret) {
0b246afa 767 btrfs_err(fs_info,
c2cf52eb 768 "Duplicate entries in free space cache, dumping");
a67509c3 769 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
770 goto free_cache;
771 }
a67509c3 772 } else {
b12d6869 773 ASSERT(num_bitmaps);
a67509c3 774 num_bitmaps--;
09cbfeaf 775 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
a67509c3
JB
776 if (!e->bitmap) {
777 kmem_cache_free(
778 btrfs_free_space_cachep, e);
9d66e233
JB
779 goto free_cache;
780 }
a67509c3
JB
781 spin_lock(&ctl->tree_lock);
782 ret = link_free_space(ctl, e);
783 ctl->total_bitmaps++;
784 ctl->op->recalc_thresholds(ctl);
785 spin_unlock(&ctl->tree_lock);
786 if (ret) {
0b246afa 787 btrfs_err(fs_info,
c2cf52eb 788 "Duplicate entries in free space cache, dumping");
dc89e982 789 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
790 goto free_cache;
791 }
a67509c3 792 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
793 }
794
a67509c3
JB
795 num_entries--;
796 }
9d66e233 797
2f120c05
JB
798 io_ctl_unmap_page(&io_ctl);
799
a67509c3
JB
800 /*
801 * We add the bitmaps at the end of the entries in order that
802 * the bitmap entries are added to the cache.
803 */
804 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 805 list_del_init(&e->list);
5b0e95bf
JB
806 ret = io_ctl_read_bitmap(&io_ctl, e);
807 if (ret)
808 goto free_cache;
9d66e233
JB
809 }
810
a67509c3 811 io_ctl_drop_pages(&io_ctl);
cd023e7b 812 merge_space_tree(ctl);
9d66e233
JB
813 ret = 1;
814out:
a67509c3 815 io_ctl_free(&io_ctl);
9d66e233 816 return ret;
9d66e233 817free_cache:
a67509c3 818 io_ctl_drop_pages(&io_ctl);
0414efae 819 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
820 goto out;
821}
822
0414efae
LZ
823int load_free_space_cache(struct btrfs_fs_info *fs_info,
824 struct btrfs_block_group_cache *block_group)
0cb59c99 825{
34d52cb6 826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
827 struct btrfs_root *root = fs_info->tree_root;
828 struct inode *inode;
829 struct btrfs_path *path;
5b0e95bf 830 int ret = 0;
0414efae
LZ
831 bool matched;
832 u64 used = btrfs_block_group_used(&block_group->item);
833
0414efae
LZ
834 /*
835 * If this block group has been marked to be cleared for one reason or
836 * another then we can't trust the on disk cache, so just return.
837 */
9d66e233 838 spin_lock(&block_group->lock);
0414efae
LZ
839 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
840 spin_unlock(&block_group->lock);
841 return 0;
842 }
9d66e233 843 spin_unlock(&block_group->lock);
0414efae
LZ
844
845 path = btrfs_alloc_path();
846 if (!path)
847 return 0;
d53ba474
JB
848 path->search_commit_root = 1;
849 path->skip_locking = 1;
0414efae
LZ
850
851 inode = lookup_free_space_inode(root, block_group, path);
852 if (IS_ERR(inode)) {
853 btrfs_free_path(path);
854 return 0;
855 }
856
5b0e95bf
JB
857 /* We may have converted the inode and made the cache invalid. */
858 spin_lock(&block_group->lock);
859 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
860 spin_unlock(&block_group->lock);
a7e221e9 861 btrfs_free_path(path);
5b0e95bf
JB
862 goto out;
863 }
864 spin_unlock(&block_group->lock);
865
0414efae
LZ
866 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
867 path, block_group->key.objectid);
868 btrfs_free_path(path);
869 if (ret <= 0)
870 goto out;
871
872 spin_lock(&ctl->tree_lock);
873 matched = (ctl->free_space == (block_group->key.offset - used -
874 block_group->bytes_super));
875 spin_unlock(&ctl->tree_lock);
876
877 if (!matched) {
878 __btrfs_remove_free_space_cache(ctl);
5d163e0e
JM
879 btrfs_warn(fs_info,
880 "block group %llu has wrong amount of free space",
881 block_group->key.objectid);
0414efae
LZ
882 ret = -1;
883 }
884out:
885 if (ret < 0) {
886 /* This cache is bogus, make sure it gets cleared */
887 spin_lock(&block_group->lock);
888 block_group->disk_cache_state = BTRFS_DC_CLEAR;
889 spin_unlock(&block_group->lock);
82d5902d 890 ret = 0;
0414efae 891
5d163e0e
JM
892 btrfs_warn(fs_info,
893 "failed to load free space cache for block group %llu, rebuilding it now",
894 block_group->key.objectid);
0414efae
LZ
895 }
896
897 iput(inode);
898 return ret;
9d66e233
JB
899}
900
d4452bc5 901static noinline_for_stack
4c6d1d85 902int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5
CM
903 struct btrfs_free_space_ctl *ctl,
904 struct btrfs_block_group_cache *block_group,
905 int *entries, int *bitmaps,
906 struct list_head *bitmap_list)
0cb59c99 907{
c09544e0 908 int ret;
d4452bc5 909 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 910 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 911 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 912 struct btrfs_trim_range *trim_entry;
be1a12a0 913
43be2146 914 /* Get the cluster for this block_group if it exists */
d4452bc5 915 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
916 cluster = list_entry(block_group->cluster_list.next,
917 struct btrfs_free_cluster,
918 block_group_list);
d4452bc5 919 }
43be2146 920
f75b130e 921 if (!node && cluster) {
1bbc621e
CM
922 cluster_locked = cluster;
923 spin_lock(&cluster_locked->lock);
f75b130e
JB
924 node = rb_first(&cluster->root);
925 cluster = NULL;
926 }
927
a67509c3
JB
928 /* Write out the extent entries */
929 while (node) {
930 struct btrfs_free_space *e;
0cb59c99 931
a67509c3 932 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 933 *entries += 1;
0cb59c99 934
d4452bc5 935 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
936 e->bitmap);
937 if (ret)
d4452bc5 938 goto fail;
2f356126 939
a67509c3 940 if (e->bitmap) {
d4452bc5
CM
941 list_add_tail(&e->list, bitmap_list);
942 *bitmaps += 1;
2f356126 943 }
a67509c3
JB
944 node = rb_next(node);
945 if (!node && cluster) {
946 node = rb_first(&cluster->root);
1bbc621e
CM
947 cluster_locked = cluster;
948 spin_lock(&cluster_locked->lock);
a67509c3 949 cluster = NULL;
43be2146 950 }
a67509c3 951 }
1bbc621e
CM
952 if (cluster_locked) {
953 spin_unlock(&cluster_locked->lock);
954 cluster_locked = NULL;
955 }
55507ce3
FM
956
957 /*
958 * Make sure we don't miss any range that was removed from our rbtree
959 * because trimming is running. Otherwise after a umount+mount (or crash
960 * after committing the transaction) we would leak free space and get
961 * an inconsistent free space cache report from fsck.
962 */
963 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
964 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
965 trim_entry->bytes, NULL);
966 if (ret)
967 goto fail;
968 *entries += 1;
969 }
970
d4452bc5
CM
971 return 0;
972fail:
1bbc621e
CM
973 if (cluster_locked)
974 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
975 return -ENOSPC;
976}
977
978static noinline_for_stack int
979update_cache_item(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct inode *inode,
982 struct btrfs_path *path, u64 offset,
983 int entries, int bitmaps)
984{
985 struct btrfs_key key;
986 struct btrfs_free_space_header *header;
987 struct extent_buffer *leaf;
988 int ret;
989
990 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
991 key.offset = offset;
992 key.type = 0;
993
994 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
995 if (ret < 0) {
996 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
997 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
998 GFP_NOFS);
999 goto fail;
1000 }
1001 leaf = path->nodes[0];
1002 if (ret > 0) {
1003 struct btrfs_key found_key;
1004 ASSERT(path->slots[0]);
1005 path->slots[0]--;
1006 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1007 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1008 found_key.offset != offset) {
1009 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1010 inode->i_size - 1,
1011 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1012 NULL, GFP_NOFS);
1013 btrfs_release_path(path);
1014 goto fail;
1015 }
1016 }
1017
1018 BTRFS_I(inode)->generation = trans->transid;
1019 header = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_free_space_header);
1021 btrfs_set_free_space_entries(leaf, header, entries);
1022 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1023 btrfs_set_free_space_generation(leaf, header, trans->transid);
1024 btrfs_mark_buffer_dirty(leaf);
1025 btrfs_release_path(path);
1026
1027 return 0;
1028
1029fail:
1030 return -1;
1031}
1032
1033static noinline_for_stack int
2ff7e61e 1034write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
5349d6c3 1035 struct btrfs_block_group_cache *block_group,
4c6d1d85 1036 struct btrfs_io_ctl *io_ctl,
5349d6c3 1037 int *entries)
d4452bc5
CM
1038{
1039 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1040 struct extent_io_tree *unpin = NULL;
1041 int ret;
43be2146 1042
5349d6c3
MX
1043 if (!block_group)
1044 return 0;
1045
a67509c3
JB
1046 /*
1047 * We want to add any pinned extents to our free space cache
1048 * so we don't leak the space
d4452bc5 1049 *
db804f23
LZ
1050 * We shouldn't have switched the pinned extents yet so this is the
1051 * right one
1052 */
0b246afa 1053 unpin = fs_info->pinned_extents;
db804f23 1054
5349d6c3 1055 start = block_group->key.objectid;
db804f23 1056
5349d6c3 1057 while (start < block_group->key.objectid + block_group->key.offset) {
db804f23
LZ
1058 ret = find_first_extent_bit(unpin, start,
1059 &extent_start, &extent_end,
e6138876 1060 EXTENT_DIRTY, NULL);
5349d6c3
MX
1061 if (ret)
1062 return 0;
0cb59c99 1063
a67509c3 1064 /* This pinned extent is out of our range */
db804f23 1065 if (extent_start >= block_group->key.objectid +
a67509c3 1066 block_group->key.offset)
5349d6c3 1067 return 0;
2f356126 1068
db804f23
LZ
1069 extent_start = max(extent_start, start);
1070 extent_end = min(block_group->key.objectid +
1071 block_group->key.offset, extent_end + 1);
1072 len = extent_end - extent_start;
0cb59c99 1073
d4452bc5
CM
1074 *entries += 1;
1075 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1076 if (ret)
5349d6c3 1077 return -ENOSPC;
0cb59c99 1078
db804f23 1079 start = extent_end;
a67509c3 1080 }
0cb59c99 1081
5349d6c3
MX
1082 return 0;
1083}
1084
1085static noinline_for_stack int
4c6d1d85 1086write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1087{
7ae1681e 1088 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1089 int ret;
1090
0cb59c99 1091 /* Write out the bitmaps */
7ae1681e 1092 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1093 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1094 if (ret)
5349d6c3 1095 return -ENOSPC;
0cb59c99 1096 list_del_init(&entry->list);
be1a12a0
JB
1097 }
1098
5349d6c3
MX
1099 return 0;
1100}
0cb59c99 1101
5349d6c3
MX
1102static int flush_dirty_cache(struct inode *inode)
1103{
1104 int ret;
be1a12a0 1105
0ef8b726 1106 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1107 if (ret)
0ef8b726
JB
1108 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1109 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1110 GFP_NOFS);
0cb59c99 1111
5349d6c3 1112 return ret;
d4452bc5
CM
1113}
1114
1115static void noinline_for_stack
a3bdccc4 1116cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1117{
7ae1681e 1118 struct btrfs_free_space *entry, *next;
5349d6c3 1119
7ae1681e 1120 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1121 list_del_init(&entry->list);
a3bdccc4
CM
1122}
1123
1124static void noinline_for_stack
1125cleanup_write_cache_enospc(struct inode *inode,
1126 struct btrfs_io_ctl *io_ctl,
7bf1a159 1127 struct extent_state **cached_state)
a3bdccc4 1128{
d4452bc5
CM
1129 io_ctl_drop_pages(io_ctl);
1130 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1131 i_size_read(inode) - 1, cached_state,
1132 GFP_NOFS);
1133}
549b4fdb 1134
afdb5718
JM
1135static int __btrfs_wait_cache_io(struct btrfs_root *root,
1136 struct btrfs_trans_handle *trans,
1137 struct btrfs_block_group_cache *block_group,
1138 struct btrfs_io_ctl *io_ctl,
1139 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1140{
1141 int ret;
1142 struct inode *inode = io_ctl->inode;
0b246afa 1143 struct btrfs_fs_info *fs_info;
c9dc4c65 1144
1bbc621e
CM
1145 if (!inode)
1146 return 0;
1147
0b246afa
JM
1148 fs_info = btrfs_sb(inode->i_sb);
1149
c9dc4c65
CM
1150 /* Flush the dirty pages in the cache file. */
1151 ret = flush_dirty_cache(inode);
1152 if (ret)
1153 goto out;
1154
1155 /* Update the cache item to tell everyone this cache file is valid. */
1156 ret = update_cache_item(trans, root, inode, path, offset,
1157 io_ctl->entries, io_ctl->bitmaps);
1158out:
1159 io_ctl_free(io_ctl);
1160 if (ret) {
1161 invalidate_inode_pages2(inode->i_mapping);
1162 BTRFS_I(inode)->generation = 0;
1163 if (block_group) {
1164#ifdef DEBUG
0b246afa
JM
1165 btrfs_err(fs_info,
1166 "failed to write free space cache for block group %llu",
1167 block_group->key.objectid);
c9dc4c65
CM
1168#endif
1169 }
1170 }
1171 btrfs_update_inode(trans, root, inode);
1172
1173 if (block_group) {
1bbc621e
CM
1174 /* the dirty list is protected by the dirty_bgs_lock */
1175 spin_lock(&trans->transaction->dirty_bgs_lock);
1176
1177 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1178 spin_lock(&block_group->lock);
1179
1180 /*
1181 * only mark this as written if we didn't get put back on
1bbc621e
CM
1182 * the dirty list while waiting for IO. Otherwise our
1183 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1184 */
1185 if (!ret && list_empty(&block_group->dirty_list))
1186 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1187 else if (ret)
1188 block_group->disk_cache_state = BTRFS_DC_ERROR;
1189
1190 spin_unlock(&block_group->lock);
1bbc621e 1191 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1192 io_ctl->inode = NULL;
1193 iput(inode);
1194 }
1195
1196 return ret;
1197
1198}
1199
afdb5718
JM
1200static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1201 struct btrfs_trans_handle *trans,
1202 struct btrfs_io_ctl *io_ctl,
1203 struct btrfs_path *path)
1204{
1205 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1206}
1207
1208int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1209 struct btrfs_block_group_cache *block_group,
1210 struct btrfs_path *path)
1211{
1212 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1213 block_group, &block_group->io_ctl,
1214 path, block_group->key.objectid);
1215}
1216
d4452bc5
CM
1217/**
1218 * __btrfs_write_out_cache - write out cached info to an inode
1219 * @root - the root the inode belongs to
1220 * @ctl - the free space cache we are going to write out
1221 * @block_group - the block_group for this cache if it belongs to a block_group
1222 * @trans - the trans handle
d4452bc5
CM
1223 *
1224 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1225 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1226 * or an errno if it was not.
d4452bc5
CM
1227 */
1228static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1229 struct btrfs_free_space_ctl *ctl,
1230 struct btrfs_block_group_cache *block_group,
c9dc4c65 1231 struct btrfs_io_ctl *io_ctl,
0e8d931a 1232 struct btrfs_trans_handle *trans)
d4452bc5 1233{
2ff7e61e 1234 struct btrfs_fs_info *fs_info = root->fs_info;
d4452bc5 1235 struct extent_state *cached_state = NULL;
5349d6c3 1236 LIST_HEAD(bitmap_list);
d4452bc5
CM
1237 int entries = 0;
1238 int bitmaps = 0;
1239 int ret;
c9dc4c65 1240 int must_iput = 0;
d4452bc5
CM
1241
1242 if (!i_size_read(inode))
b8605454 1243 return -EIO;
d4452bc5 1244
c9dc4c65 1245 WARN_ON(io_ctl->pages);
f15376df 1246 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1247 if (ret)
b8605454 1248 return ret;
d4452bc5 1249
e570fd27
MX
1250 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1251 down_write(&block_group->data_rwsem);
1252 spin_lock(&block_group->lock);
1253 if (block_group->delalloc_bytes) {
1254 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1255 spin_unlock(&block_group->lock);
1256 up_write(&block_group->data_rwsem);
1257 BTRFS_I(inode)->generation = 0;
1258 ret = 0;
c9dc4c65 1259 must_iput = 1;
e570fd27
MX
1260 goto out;
1261 }
1262 spin_unlock(&block_group->lock);
1263 }
1264
d4452bc5 1265 /* Lock all pages first so we can lock the extent safely. */
b8605454
OS
1266 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1267 if (ret)
1268 goto out;
d4452bc5
CM
1269
1270 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
ff13db41 1271 &cached_state);
d4452bc5 1272
c9dc4c65 1273 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1274
55507ce3 1275 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1276 /* Write out the extent entries in the free space cache */
1bbc621e 1277 spin_lock(&ctl->tree_lock);
c9dc4c65 1278 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1279 block_group, &entries, &bitmaps,
1280 &bitmap_list);
a3bdccc4
CM
1281 if (ret)
1282 goto out_nospc_locked;
d4452bc5 1283
5349d6c3
MX
1284 /*
1285 * Some spaces that are freed in the current transaction are pinned,
1286 * they will be added into free space cache after the transaction is
1287 * committed, we shouldn't lose them.
1bbc621e
CM
1288 *
1289 * If this changes while we are working we'll get added back to
1290 * the dirty list and redo it. No locking needed
5349d6c3 1291 */
2ff7e61e
JM
1292 ret = write_pinned_extent_entries(fs_info, block_group,
1293 io_ctl, &entries);
a3bdccc4
CM
1294 if (ret)
1295 goto out_nospc_locked;
5349d6c3 1296
55507ce3
FM
1297 /*
1298 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1299 * locked while doing it because a concurrent trim can be manipulating
1300 * or freeing the bitmap.
1301 */
c9dc4c65 1302 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1303 spin_unlock(&ctl->tree_lock);
55507ce3 1304 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1305 if (ret)
1306 goto out_nospc;
1307
1308 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1309 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1310
5349d6c3 1311 /* Everything is written out, now we dirty the pages in the file. */
2ff7e61e
JM
1312 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1313 i_size_read(inode), &cached_state);
5349d6c3 1314 if (ret)
d4452bc5 1315 goto out_nospc;
5349d6c3 1316
e570fd27
MX
1317 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1318 up_write(&block_group->data_rwsem);
5349d6c3
MX
1319 /*
1320 * Release the pages and unlock the extent, we will flush
1321 * them out later
1322 */
c9dc4c65 1323 io_ctl_drop_pages(io_ctl);
5349d6c3
MX
1324
1325 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1326 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1327
c9dc4c65
CM
1328 /*
1329 * at this point the pages are under IO and we're happy,
1330 * The caller is responsible for waiting on them and updating the
1331 * the cache and the inode
1332 */
1333 io_ctl->entries = entries;
1334 io_ctl->bitmaps = bitmaps;
1335
1336 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1337 if (ret)
d4452bc5
CM
1338 goto out;
1339
c9dc4c65
CM
1340 return 0;
1341
2f356126 1342out:
c9dc4c65
CM
1343 io_ctl->inode = NULL;
1344 io_ctl_free(io_ctl);
5349d6c3 1345 if (ret) {
a67509c3 1346 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1347 BTRFS_I(inode)->generation = 0;
1348 }
0cb59c99 1349 btrfs_update_inode(trans, root, inode);
c9dc4c65
CM
1350 if (must_iput)
1351 iput(inode);
5349d6c3 1352 return ret;
a67509c3 1353
a3bdccc4
CM
1354out_nospc_locked:
1355 cleanup_bitmap_list(&bitmap_list);
1356 spin_unlock(&ctl->tree_lock);
1357 mutex_unlock(&ctl->cache_writeout_mutex);
1358
a67509c3 1359out_nospc:
7bf1a159 1360 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27
MX
1361
1362 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1363 up_write(&block_group->data_rwsem);
1364
a67509c3 1365 goto out;
0414efae
LZ
1366}
1367
5b4aacef 1368int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
0414efae
LZ
1369 struct btrfs_trans_handle *trans,
1370 struct btrfs_block_group_cache *block_group,
1371 struct btrfs_path *path)
1372{
5b4aacef 1373 struct btrfs_root *root = fs_info->tree_root;
0414efae
LZ
1374 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1375 struct inode *inode;
1376 int ret = 0;
1377
0414efae
LZ
1378 spin_lock(&block_group->lock);
1379 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1380 spin_unlock(&block_group->lock);
e570fd27
MX
1381 return 0;
1382 }
0414efae
LZ
1383 spin_unlock(&block_group->lock);
1384
1385 inode = lookup_free_space_inode(root, block_group, path);
1386 if (IS_ERR(inode))
1387 return 0;
1388
c9dc4c65 1389 ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
0e8d931a 1390 &block_group->io_ctl, trans);
c09544e0 1391 if (ret) {
c09544e0 1392#ifdef DEBUG
0b246afa
JM
1393 btrfs_err(fs_info,
1394 "failed to write free space cache for block group %llu",
1395 block_group->key.objectid);
c09544e0 1396#endif
c9dc4c65
CM
1397 spin_lock(&block_group->lock);
1398 block_group->disk_cache_state = BTRFS_DC_ERROR;
1399 spin_unlock(&block_group->lock);
1400
1401 block_group->io_ctl.inode = NULL;
1402 iput(inode);
0414efae
LZ
1403 }
1404
c9dc4c65
CM
1405 /*
1406 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1407 * to wait for IO and put the inode
1408 */
1409
0cb59c99
JB
1410 return ret;
1411}
1412
34d52cb6 1413static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1414 u64 offset)
0f9dd46c 1415{
b12d6869 1416 ASSERT(offset >= bitmap_start);
96303081 1417 offset -= bitmap_start;
34d52cb6 1418 return (unsigned long)(div_u64(offset, unit));
96303081 1419}
0f9dd46c 1420
34d52cb6 1421static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1422{
34d52cb6 1423 return (unsigned long)(div_u64(bytes, unit));
96303081 1424}
0f9dd46c 1425
34d52cb6 1426static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1427 u64 offset)
1428{
1429 u64 bitmap_start;
0ef6447a 1430 u64 bytes_per_bitmap;
0f9dd46c 1431
34d52cb6
LZ
1432 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1433 bitmap_start = offset - ctl->start;
0ef6447a 1434 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1435 bitmap_start *= bytes_per_bitmap;
34d52cb6 1436 bitmap_start += ctl->start;
0f9dd46c 1437
96303081 1438 return bitmap_start;
0f9dd46c
JB
1439}
1440
96303081
JB
1441static int tree_insert_offset(struct rb_root *root, u64 offset,
1442 struct rb_node *node, int bitmap)
0f9dd46c
JB
1443{
1444 struct rb_node **p = &root->rb_node;
1445 struct rb_node *parent = NULL;
1446 struct btrfs_free_space *info;
1447
1448 while (*p) {
1449 parent = *p;
96303081 1450 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1451
96303081 1452 if (offset < info->offset) {
0f9dd46c 1453 p = &(*p)->rb_left;
96303081 1454 } else if (offset > info->offset) {
0f9dd46c 1455 p = &(*p)->rb_right;
96303081
JB
1456 } else {
1457 /*
1458 * we could have a bitmap entry and an extent entry
1459 * share the same offset. If this is the case, we want
1460 * the extent entry to always be found first if we do a
1461 * linear search through the tree, since we want to have
1462 * the quickest allocation time, and allocating from an
1463 * extent is faster than allocating from a bitmap. So
1464 * if we're inserting a bitmap and we find an entry at
1465 * this offset, we want to go right, or after this entry
1466 * logically. If we are inserting an extent and we've
1467 * found a bitmap, we want to go left, or before
1468 * logically.
1469 */
1470 if (bitmap) {
207dde82
JB
1471 if (info->bitmap) {
1472 WARN_ON_ONCE(1);
1473 return -EEXIST;
1474 }
96303081
JB
1475 p = &(*p)->rb_right;
1476 } else {
207dde82
JB
1477 if (!info->bitmap) {
1478 WARN_ON_ONCE(1);
1479 return -EEXIST;
1480 }
96303081
JB
1481 p = &(*p)->rb_left;
1482 }
1483 }
0f9dd46c
JB
1484 }
1485
1486 rb_link_node(node, parent, p);
1487 rb_insert_color(node, root);
1488
1489 return 0;
1490}
1491
1492/*
70cb0743
JB
1493 * searches the tree for the given offset.
1494 *
96303081
JB
1495 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1496 * want a section that has at least bytes size and comes at or after the given
1497 * offset.
0f9dd46c 1498 */
96303081 1499static struct btrfs_free_space *
34d52cb6 1500tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1501 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1502{
34d52cb6 1503 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1504 struct btrfs_free_space *entry, *prev = NULL;
1505
1506 /* find entry that is closest to the 'offset' */
1507 while (1) {
1508 if (!n) {
1509 entry = NULL;
1510 break;
1511 }
0f9dd46c 1512
0f9dd46c 1513 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1514 prev = entry;
0f9dd46c 1515
96303081 1516 if (offset < entry->offset)
0f9dd46c 1517 n = n->rb_left;
96303081 1518 else if (offset > entry->offset)
0f9dd46c 1519 n = n->rb_right;
96303081 1520 else
0f9dd46c 1521 break;
0f9dd46c
JB
1522 }
1523
96303081
JB
1524 if (bitmap_only) {
1525 if (!entry)
1526 return NULL;
1527 if (entry->bitmap)
1528 return entry;
0f9dd46c 1529
96303081
JB
1530 /*
1531 * bitmap entry and extent entry may share same offset,
1532 * in that case, bitmap entry comes after extent entry.
1533 */
1534 n = rb_next(n);
1535 if (!n)
1536 return NULL;
1537 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1538 if (entry->offset != offset)
1539 return NULL;
0f9dd46c 1540
96303081
JB
1541 WARN_ON(!entry->bitmap);
1542 return entry;
1543 } else if (entry) {
1544 if (entry->bitmap) {
0f9dd46c 1545 /*
96303081
JB
1546 * if previous extent entry covers the offset,
1547 * we should return it instead of the bitmap entry
0f9dd46c 1548 */
de6c4115
MX
1549 n = rb_prev(&entry->offset_index);
1550 if (n) {
96303081
JB
1551 prev = rb_entry(n, struct btrfs_free_space,
1552 offset_index);
de6c4115
MX
1553 if (!prev->bitmap &&
1554 prev->offset + prev->bytes > offset)
1555 entry = prev;
0f9dd46c 1556 }
96303081
JB
1557 }
1558 return entry;
1559 }
1560
1561 if (!prev)
1562 return NULL;
1563
1564 /* find last entry before the 'offset' */
1565 entry = prev;
1566 if (entry->offset > offset) {
1567 n = rb_prev(&entry->offset_index);
1568 if (n) {
1569 entry = rb_entry(n, struct btrfs_free_space,
1570 offset_index);
b12d6869 1571 ASSERT(entry->offset <= offset);
0f9dd46c 1572 } else {
96303081
JB
1573 if (fuzzy)
1574 return entry;
1575 else
1576 return NULL;
0f9dd46c
JB
1577 }
1578 }
1579
96303081 1580 if (entry->bitmap) {
de6c4115
MX
1581 n = rb_prev(&entry->offset_index);
1582 if (n) {
96303081
JB
1583 prev = rb_entry(n, struct btrfs_free_space,
1584 offset_index);
de6c4115
MX
1585 if (!prev->bitmap &&
1586 prev->offset + prev->bytes > offset)
1587 return prev;
96303081 1588 }
34d52cb6 1589 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1590 return entry;
1591 } else if (entry->offset + entry->bytes > offset)
1592 return entry;
1593
1594 if (!fuzzy)
1595 return NULL;
1596
1597 while (1) {
1598 if (entry->bitmap) {
1599 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1600 ctl->unit > offset)
96303081
JB
1601 break;
1602 } else {
1603 if (entry->offset + entry->bytes > offset)
1604 break;
1605 }
1606
1607 n = rb_next(&entry->offset_index);
1608 if (!n)
1609 return NULL;
1610 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1611 }
1612 return entry;
0f9dd46c
JB
1613}
1614
f333adb5 1615static inline void
34d52cb6 1616__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1617 struct btrfs_free_space *info)
0f9dd46c 1618{
34d52cb6
LZ
1619 rb_erase(&info->offset_index, &ctl->free_space_offset);
1620 ctl->free_extents--;
f333adb5
LZ
1621}
1622
34d52cb6 1623static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1624 struct btrfs_free_space *info)
1625{
34d52cb6
LZ
1626 __unlink_free_space(ctl, info);
1627 ctl->free_space -= info->bytes;
0f9dd46c
JB
1628}
1629
34d52cb6 1630static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1631 struct btrfs_free_space *info)
1632{
1633 int ret = 0;
1634
b12d6869 1635 ASSERT(info->bytes || info->bitmap);
34d52cb6 1636 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1637 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1638 if (ret)
1639 return ret;
1640
34d52cb6
LZ
1641 ctl->free_space += info->bytes;
1642 ctl->free_extents++;
96303081
JB
1643 return ret;
1644}
1645
34d52cb6 1646static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1647{
34d52cb6 1648 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1649 u64 max_bytes;
1650 u64 bitmap_bytes;
1651 u64 extent_bytes;
8eb2d829 1652 u64 size = block_group->key.offset;
0ef6447a
FX
1653 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1654 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
34d52cb6 1655
0ef6447a 1656 max_bitmaps = max_t(u64, max_bitmaps, 1);
dde5740f 1657
b12d6869 1658 ASSERT(ctl->total_bitmaps <= max_bitmaps);
96303081
JB
1659
1660 /*
1661 * The goal is to keep the total amount of memory used per 1gb of space
1662 * at or below 32k, so we need to adjust how much memory we allow to be
1663 * used by extent based free space tracking
1664 */
ee22184b 1665 if (size < SZ_1G)
8eb2d829
LZ
1666 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1667 else
ee22184b 1668 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
96303081 1669
25891f79
JB
1670 /*
1671 * we want to account for 1 more bitmap than what we have so we can make
1672 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1673 * we add more bitmaps.
1674 */
b9ef22de 1675 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
96303081 1676
25891f79 1677 if (bitmap_bytes >= max_bytes) {
34d52cb6 1678 ctl->extents_thresh = 0;
25891f79
JB
1679 return;
1680 }
96303081 1681
25891f79 1682 /*
f8c269d7 1683 * we want the extent entry threshold to always be at most 1/2 the max
25891f79
JB
1684 * bytes we can have, or whatever is less than that.
1685 */
1686 extent_bytes = max_bytes - bitmap_bytes;
f8c269d7 1687 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
96303081 1688
34d52cb6 1689 ctl->extents_thresh =
f8c269d7 1690 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
96303081
JB
1691}
1692
bb3ac5a4
MX
1693static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1694 struct btrfs_free_space *info,
1695 u64 offset, u64 bytes)
96303081 1696{
f38b6e75 1697 unsigned long start, count;
96303081 1698
34d52cb6
LZ
1699 start = offset_to_bit(info->offset, ctl->unit, offset);
1700 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1701 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1702
f38b6e75 1703 bitmap_clear(info->bitmap, start, count);
96303081
JB
1704
1705 info->bytes -= bytes;
bb3ac5a4
MX
1706}
1707
1708static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1709 struct btrfs_free_space *info, u64 offset,
1710 u64 bytes)
1711{
1712 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1713 ctl->free_space -= bytes;
96303081
JB
1714}
1715
34d52cb6 1716static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1717 struct btrfs_free_space *info, u64 offset,
1718 u64 bytes)
96303081 1719{
f38b6e75 1720 unsigned long start, count;
96303081 1721
34d52cb6
LZ
1722 start = offset_to_bit(info->offset, ctl->unit, offset);
1723 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1724 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1725
f38b6e75 1726 bitmap_set(info->bitmap, start, count);
96303081
JB
1727
1728 info->bytes += bytes;
34d52cb6 1729 ctl->free_space += bytes;
96303081
JB
1730}
1731
a4820398
MX
1732/*
1733 * If we can not find suitable extent, we will use bytes to record
1734 * the size of the max extent.
1735 */
34d52cb6 1736static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1737 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1738 u64 *bytes, bool for_alloc)
96303081
JB
1739{
1740 unsigned long found_bits = 0;
a4820398 1741 unsigned long max_bits = 0;
96303081
JB
1742 unsigned long bits, i;
1743 unsigned long next_zero;
a4820398 1744 unsigned long extent_bits;
96303081 1745
cef40483
JB
1746 /*
1747 * Skip searching the bitmap if we don't have a contiguous section that
1748 * is large enough for this allocation.
1749 */
0584f718
JB
1750 if (for_alloc &&
1751 bitmap_info->max_extent_size &&
cef40483
JB
1752 bitmap_info->max_extent_size < *bytes) {
1753 *bytes = bitmap_info->max_extent_size;
1754 return -1;
1755 }
1756
34d52cb6 1757 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1758 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1759 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1760
ebb3dad4 1761 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1762 if (for_alloc && bits == 1) {
1763 found_bits = 1;
1764 break;
1765 }
96303081
JB
1766 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1767 BITS_PER_BITMAP, i);
a4820398
MX
1768 extent_bits = next_zero - i;
1769 if (extent_bits >= bits) {
1770 found_bits = extent_bits;
96303081 1771 break;
a4820398
MX
1772 } else if (extent_bits > max_bits) {
1773 max_bits = extent_bits;
96303081
JB
1774 }
1775 i = next_zero;
1776 }
1777
1778 if (found_bits) {
34d52cb6
LZ
1779 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1780 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1781 return 0;
1782 }
1783
a4820398 1784 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 1785 bitmap_info->max_extent_size = *bytes;
96303081
JB
1786 return -1;
1787}
1788
a4820398 1789/* Cache the size of the max extent in bytes */
34d52cb6 1790static struct btrfs_free_space *
53b381b3 1791find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
a4820398 1792 unsigned long align, u64 *max_extent_size)
96303081
JB
1793{
1794 struct btrfs_free_space *entry;
1795 struct rb_node *node;
53b381b3
DW
1796 u64 tmp;
1797 u64 align_off;
96303081
JB
1798 int ret;
1799
34d52cb6 1800 if (!ctl->free_space_offset.rb_node)
a4820398 1801 goto out;
96303081 1802
34d52cb6 1803 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081 1804 if (!entry)
a4820398 1805 goto out;
96303081
JB
1806
1807 for (node = &entry->offset_index; node; node = rb_next(node)) {
1808 entry = rb_entry(node, struct btrfs_free_space, offset_index);
a4820398
MX
1809 if (entry->bytes < *bytes) {
1810 if (entry->bytes > *max_extent_size)
1811 *max_extent_size = entry->bytes;
96303081 1812 continue;
a4820398 1813 }
96303081 1814
53b381b3
DW
1815 /* make sure the space returned is big enough
1816 * to match our requested alignment
1817 */
1818 if (*bytes >= align) {
a4820398 1819 tmp = entry->offset - ctl->start + align - 1;
47c5713f 1820 tmp = div64_u64(tmp, align);
53b381b3
DW
1821 tmp = tmp * align + ctl->start;
1822 align_off = tmp - entry->offset;
1823 } else {
1824 align_off = 0;
1825 tmp = entry->offset;
1826 }
1827
a4820398
MX
1828 if (entry->bytes < *bytes + align_off) {
1829 if (entry->bytes > *max_extent_size)
1830 *max_extent_size = entry->bytes;
53b381b3 1831 continue;
a4820398 1832 }
53b381b3 1833
96303081 1834 if (entry->bitmap) {
a4820398
MX
1835 u64 size = *bytes;
1836
0584f718 1837 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
1838 if (!ret) {
1839 *offset = tmp;
a4820398 1840 *bytes = size;
96303081 1841 return entry;
a4820398
MX
1842 } else if (size > *max_extent_size) {
1843 *max_extent_size = size;
53b381b3 1844 }
96303081
JB
1845 continue;
1846 }
1847
53b381b3
DW
1848 *offset = tmp;
1849 *bytes = entry->bytes - align_off;
96303081
JB
1850 return entry;
1851 }
a4820398 1852out:
96303081
JB
1853 return NULL;
1854}
1855
34d52cb6 1856static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1857 struct btrfs_free_space *info, u64 offset)
1858{
34d52cb6 1859 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1860 info->bytes = 0;
f2d0f676 1861 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1862 link_free_space(ctl, info);
1863 ctl->total_bitmaps++;
96303081 1864
34d52cb6 1865 ctl->op->recalc_thresholds(ctl);
96303081
JB
1866}
1867
34d52cb6 1868static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1869 struct btrfs_free_space *bitmap_info)
1870{
34d52cb6 1871 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1872 kfree(bitmap_info->bitmap);
dc89e982 1873 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1874 ctl->total_bitmaps--;
1875 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1876}
1877
34d52cb6 1878static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1879 struct btrfs_free_space *bitmap_info,
1880 u64 *offset, u64 *bytes)
1881{
1882 u64 end;
6606bb97
JB
1883 u64 search_start, search_bytes;
1884 int ret;
96303081
JB
1885
1886again:
34d52cb6 1887 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1888
6606bb97 1889 /*
bdb7d303
JB
1890 * We need to search for bits in this bitmap. We could only cover some
1891 * of the extent in this bitmap thanks to how we add space, so we need
1892 * to search for as much as it as we can and clear that amount, and then
1893 * go searching for the next bit.
6606bb97
JB
1894 */
1895 search_start = *offset;
bdb7d303 1896 search_bytes = ctl->unit;
13dbc089 1897 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
1898 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1899 false);
b50c6e25
JB
1900 if (ret < 0 || search_start != *offset)
1901 return -EINVAL;
6606bb97 1902
bdb7d303
JB
1903 /* We may have found more bits than what we need */
1904 search_bytes = min(search_bytes, *bytes);
1905
1906 /* Cannot clear past the end of the bitmap */
1907 search_bytes = min(search_bytes, end - search_start + 1);
1908
1909 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1910 *offset += search_bytes;
1911 *bytes -= search_bytes;
96303081
JB
1912
1913 if (*bytes) {
6606bb97 1914 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1915 if (!bitmap_info->bytes)
34d52cb6 1916 free_bitmap(ctl, bitmap_info);
96303081 1917
6606bb97
JB
1918 /*
1919 * no entry after this bitmap, but we still have bytes to
1920 * remove, so something has gone wrong.
1921 */
1922 if (!next)
96303081
JB
1923 return -EINVAL;
1924
6606bb97
JB
1925 bitmap_info = rb_entry(next, struct btrfs_free_space,
1926 offset_index);
1927
1928 /*
1929 * if the next entry isn't a bitmap we need to return to let the
1930 * extent stuff do its work.
1931 */
96303081
JB
1932 if (!bitmap_info->bitmap)
1933 return -EAGAIN;
1934
6606bb97
JB
1935 /*
1936 * Ok the next item is a bitmap, but it may not actually hold
1937 * the information for the rest of this free space stuff, so
1938 * look for it, and if we don't find it return so we can try
1939 * everything over again.
1940 */
1941 search_start = *offset;
bdb7d303 1942 search_bytes = ctl->unit;
34d52cb6 1943 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 1944 &search_bytes, false);
6606bb97
JB
1945 if (ret < 0 || search_start != *offset)
1946 return -EAGAIN;
1947
96303081 1948 goto again;
edf6e2d1 1949 } else if (!bitmap_info->bytes)
34d52cb6 1950 free_bitmap(ctl, bitmap_info);
96303081
JB
1951
1952 return 0;
1953}
1954
2cdc342c
JB
1955static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1956 struct btrfs_free_space *info, u64 offset,
1957 u64 bytes)
1958{
1959 u64 bytes_to_set = 0;
1960 u64 end;
1961
1962 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1963
1964 bytes_to_set = min(end - offset, bytes);
1965
1966 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1967
cef40483
JB
1968 /*
1969 * We set some bytes, we have no idea what the max extent size is
1970 * anymore.
1971 */
1972 info->max_extent_size = 0;
1973
2cdc342c
JB
1974 return bytes_to_set;
1975
1976}
1977
34d52cb6
LZ
1978static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1979 struct btrfs_free_space *info)
96303081 1980{
34d52cb6 1981 struct btrfs_block_group_cache *block_group = ctl->private;
0b246afa 1982 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
1983 bool forced = false;
1984
1985#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 1986 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
1987 forced = true;
1988#endif
96303081
JB
1989
1990 /*
1991 * If we are below the extents threshold then we can add this as an
1992 * extent, and don't have to deal with the bitmap
1993 */
d0bd4560 1994 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1995 /*
1996 * If this block group has some small extents we don't want to
1997 * use up all of our free slots in the cache with them, we want
01327610 1998 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
1999 * of cache left then go ahead an dadd them, no sense in adding
2000 * the overhead of a bitmap if we don't have to.
2001 */
0b246afa 2002 if (info->bytes <= fs_info->sectorsize * 4) {
34d52cb6
LZ
2003 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2004 return false;
32cb0840 2005 } else {
34d52cb6 2006 return false;
32cb0840
JB
2007 }
2008 }
96303081
JB
2009
2010 /*
dde5740f
JB
2011 * The original block groups from mkfs can be really small, like 8
2012 * megabytes, so don't bother with a bitmap for those entries. However
2013 * some block groups can be smaller than what a bitmap would cover but
2014 * are still large enough that they could overflow the 32k memory limit,
2015 * so allow those block groups to still be allowed to have a bitmap
2016 * entry.
96303081 2017 */
dde5740f 2018 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
34d52cb6
LZ
2019 return false;
2020
2021 return true;
2022}
2023
20e5506b 2024static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2025 .recalc_thresholds = recalculate_thresholds,
2026 .use_bitmap = use_bitmap,
2027};
2028
34d52cb6
LZ
2029static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2030 struct btrfs_free_space *info)
2031{
2032 struct btrfs_free_space *bitmap_info;
2cdc342c 2033 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 2034 int added = 0;
2cdc342c 2035 u64 bytes, offset, bytes_added;
34d52cb6 2036 int ret;
96303081
JB
2037
2038 bytes = info->bytes;
2039 offset = info->offset;
2040
34d52cb6
LZ
2041 if (!ctl->op->use_bitmap(ctl, info))
2042 return 0;
2043
2cdc342c
JB
2044 if (ctl->op == &free_space_op)
2045 block_group = ctl->private;
38e87880 2046again:
2cdc342c
JB
2047 /*
2048 * Since we link bitmaps right into the cluster we need to see if we
2049 * have a cluster here, and if so and it has our bitmap we need to add
2050 * the free space to that bitmap.
2051 */
2052 if (block_group && !list_empty(&block_group->cluster_list)) {
2053 struct btrfs_free_cluster *cluster;
2054 struct rb_node *node;
2055 struct btrfs_free_space *entry;
2056
2057 cluster = list_entry(block_group->cluster_list.next,
2058 struct btrfs_free_cluster,
2059 block_group_list);
2060 spin_lock(&cluster->lock);
2061 node = rb_first(&cluster->root);
2062 if (!node) {
2063 spin_unlock(&cluster->lock);
38e87880 2064 goto no_cluster_bitmap;
2cdc342c
JB
2065 }
2066
2067 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2068 if (!entry->bitmap) {
2069 spin_unlock(&cluster->lock);
38e87880 2070 goto no_cluster_bitmap;
2cdc342c
JB
2071 }
2072
2073 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2074 bytes_added = add_bytes_to_bitmap(ctl, entry,
2075 offset, bytes);
2076 bytes -= bytes_added;
2077 offset += bytes_added;
2078 }
2079 spin_unlock(&cluster->lock);
2080 if (!bytes) {
2081 ret = 1;
2082 goto out;
2083 }
2084 }
38e87880
CM
2085
2086no_cluster_bitmap:
34d52cb6 2087 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2088 1, 0);
2089 if (!bitmap_info) {
b12d6869 2090 ASSERT(added == 0);
96303081
JB
2091 goto new_bitmap;
2092 }
2093
2cdc342c
JB
2094 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2095 bytes -= bytes_added;
2096 offset += bytes_added;
2097 added = 0;
96303081
JB
2098
2099 if (!bytes) {
2100 ret = 1;
2101 goto out;
2102 } else
2103 goto again;
2104
2105new_bitmap:
2106 if (info && info->bitmap) {
34d52cb6 2107 add_new_bitmap(ctl, info, offset);
96303081
JB
2108 added = 1;
2109 info = NULL;
2110 goto again;
2111 } else {
34d52cb6 2112 spin_unlock(&ctl->tree_lock);
96303081
JB
2113
2114 /* no pre-allocated info, allocate a new one */
2115 if (!info) {
dc89e982
JB
2116 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2117 GFP_NOFS);
96303081 2118 if (!info) {
34d52cb6 2119 spin_lock(&ctl->tree_lock);
96303081
JB
2120 ret = -ENOMEM;
2121 goto out;
2122 }
2123 }
2124
2125 /* allocate the bitmap */
09cbfeaf 2126 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
34d52cb6 2127 spin_lock(&ctl->tree_lock);
96303081
JB
2128 if (!info->bitmap) {
2129 ret = -ENOMEM;
2130 goto out;
2131 }
2132 goto again;
2133 }
2134
2135out:
2136 if (info) {
2137 if (info->bitmap)
2138 kfree(info->bitmap);
dc89e982 2139 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2140 }
0f9dd46c
JB
2141
2142 return ret;
2143}
2144
945d8962 2145static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2146 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2147{
120d66ee
LZ
2148 struct btrfs_free_space *left_info;
2149 struct btrfs_free_space *right_info;
2150 bool merged = false;
2151 u64 offset = info->offset;
2152 u64 bytes = info->bytes;
6226cb0a 2153
0f9dd46c
JB
2154 /*
2155 * first we want to see if there is free space adjacent to the range we
2156 * are adding, if there is remove that struct and add a new one to
2157 * cover the entire range
2158 */
34d52cb6 2159 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
2160 if (right_info && rb_prev(&right_info->offset_index))
2161 left_info = rb_entry(rb_prev(&right_info->offset_index),
2162 struct btrfs_free_space, offset_index);
2163 else
34d52cb6 2164 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2165
96303081 2166 if (right_info && !right_info->bitmap) {
f333adb5 2167 if (update_stat)
34d52cb6 2168 unlink_free_space(ctl, right_info);
f333adb5 2169 else
34d52cb6 2170 __unlink_free_space(ctl, right_info);
6226cb0a 2171 info->bytes += right_info->bytes;
dc89e982 2172 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2173 merged = true;
0f9dd46c
JB
2174 }
2175
96303081
JB
2176 if (left_info && !left_info->bitmap &&
2177 left_info->offset + left_info->bytes == offset) {
f333adb5 2178 if (update_stat)
34d52cb6 2179 unlink_free_space(ctl, left_info);
f333adb5 2180 else
34d52cb6 2181 __unlink_free_space(ctl, left_info);
6226cb0a
JB
2182 info->offset = left_info->offset;
2183 info->bytes += left_info->bytes;
dc89e982 2184 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2185 merged = true;
0f9dd46c
JB
2186 }
2187
120d66ee
LZ
2188 return merged;
2189}
2190
20005523
FM
2191static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2192 struct btrfs_free_space *info,
2193 bool update_stat)
2194{
2195 struct btrfs_free_space *bitmap;
2196 unsigned long i;
2197 unsigned long j;
2198 const u64 end = info->offset + info->bytes;
2199 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2200 u64 bytes;
2201
2202 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2203 if (!bitmap)
2204 return false;
2205
2206 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2207 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2208 if (j == i)
2209 return false;
2210 bytes = (j - i) * ctl->unit;
2211 info->bytes += bytes;
2212
2213 if (update_stat)
2214 bitmap_clear_bits(ctl, bitmap, end, bytes);
2215 else
2216 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2217
2218 if (!bitmap->bytes)
2219 free_bitmap(ctl, bitmap);
2220
2221 return true;
2222}
2223
2224static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2225 struct btrfs_free_space *info,
2226 bool update_stat)
2227{
2228 struct btrfs_free_space *bitmap;
2229 u64 bitmap_offset;
2230 unsigned long i;
2231 unsigned long j;
2232 unsigned long prev_j;
2233 u64 bytes;
2234
2235 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2236 /* If we're on a boundary, try the previous logical bitmap. */
2237 if (bitmap_offset == info->offset) {
2238 if (info->offset == 0)
2239 return false;
2240 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2241 }
2242
2243 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2244 if (!bitmap)
2245 return false;
2246
2247 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2248 j = 0;
2249 prev_j = (unsigned long)-1;
2250 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2251 if (j > i)
2252 break;
2253 prev_j = j;
2254 }
2255 if (prev_j == i)
2256 return false;
2257
2258 if (prev_j == (unsigned long)-1)
2259 bytes = (i + 1) * ctl->unit;
2260 else
2261 bytes = (i - prev_j) * ctl->unit;
2262
2263 info->offset -= bytes;
2264 info->bytes += bytes;
2265
2266 if (update_stat)
2267 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2268 else
2269 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2270
2271 if (!bitmap->bytes)
2272 free_bitmap(ctl, bitmap);
2273
2274 return true;
2275}
2276
2277/*
2278 * We prefer always to allocate from extent entries, both for clustered and
2279 * non-clustered allocation requests. So when attempting to add a new extent
2280 * entry, try to see if there's adjacent free space in bitmap entries, and if
2281 * there is, migrate that space from the bitmaps to the extent.
2282 * Like this we get better chances of satisfying space allocation requests
2283 * because we attempt to satisfy them based on a single cache entry, and never
2284 * on 2 or more entries - even if the entries represent a contiguous free space
2285 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2286 * ends).
2287 */
2288static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2289 struct btrfs_free_space *info,
2290 bool update_stat)
2291{
2292 /*
2293 * Only work with disconnected entries, as we can change their offset,
2294 * and must be extent entries.
2295 */
2296 ASSERT(!info->bitmap);
2297 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2298
2299 if (ctl->total_bitmaps > 0) {
2300 bool stole_end;
2301 bool stole_front = false;
2302
2303 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2304 if (ctl->total_bitmaps > 0)
2305 stole_front = steal_from_bitmap_to_front(ctl, info,
2306 update_stat);
2307
2308 if (stole_end || stole_front)
2309 try_merge_free_space(ctl, info, update_stat);
2310 }
2311}
2312
ab8d0fc4
JM
2313int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2314 struct btrfs_free_space_ctl *ctl,
581bb050 2315 u64 offset, u64 bytes)
120d66ee
LZ
2316{
2317 struct btrfs_free_space *info;
2318 int ret = 0;
2319
dc89e982 2320 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2321 if (!info)
2322 return -ENOMEM;
2323
2324 info->offset = offset;
2325 info->bytes = bytes;
20005523 2326 RB_CLEAR_NODE(&info->offset_index);
120d66ee 2327
34d52cb6 2328 spin_lock(&ctl->tree_lock);
120d66ee 2329
34d52cb6 2330 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2331 goto link;
2332
2333 /*
2334 * There was no extent directly to the left or right of this new
2335 * extent then we know we're going to have to allocate a new extent, so
2336 * before we do that see if we need to drop this into a bitmap
2337 */
34d52cb6 2338 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2339 if (ret < 0) {
2340 goto out;
2341 } else if (ret) {
2342 ret = 0;
2343 goto out;
2344 }
2345link:
20005523
FM
2346 /*
2347 * Only steal free space from adjacent bitmaps if we're sure we're not
2348 * going to add the new free space to existing bitmap entries - because
2349 * that would mean unnecessary work that would be reverted. Therefore
2350 * attempt to steal space from bitmaps if we're adding an extent entry.
2351 */
2352 steal_from_bitmap(ctl, info, true);
2353
34d52cb6 2354 ret = link_free_space(ctl, info);
0f9dd46c 2355 if (ret)
dc89e982 2356 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2357out:
34d52cb6 2358 spin_unlock(&ctl->tree_lock);
6226cb0a 2359
0f9dd46c 2360 if (ret) {
ab8d0fc4 2361 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2362 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2363 }
2364
0f9dd46c
JB
2365 return ret;
2366}
2367
6226cb0a
JB
2368int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2369 u64 offset, u64 bytes)
0f9dd46c 2370{
34d52cb6 2371 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2372 struct btrfs_free_space *info;
b0175117
JB
2373 int ret;
2374 bool re_search = false;
0f9dd46c 2375
34d52cb6 2376 spin_lock(&ctl->tree_lock);
6226cb0a 2377
96303081 2378again:
b0175117 2379 ret = 0;
bdb7d303
JB
2380 if (!bytes)
2381 goto out_lock;
2382
34d52cb6 2383 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2384 if (!info) {
6606bb97
JB
2385 /*
2386 * oops didn't find an extent that matched the space we wanted
2387 * to remove, look for a bitmap instead
2388 */
34d52cb6 2389 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2390 1, 0);
2391 if (!info) {
b0175117
JB
2392 /*
2393 * If we found a partial bit of our free space in a
2394 * bitmap but then couldn't find the other part this may
2395 * be a problem, so WARN about it.
24a70313 2396 */
b0175117 2397 WARN_ON(re_search);
6606bb97
JB
2398 goto out_lock;
2399 }
96303081
JB
2400 }
2401
b0175117 2402 re_search = false;
bdb7d303 2403 if (!info->bitmap) {
34d52cb6 2404 unlink_free_space(ctl, info);
bdb7d303
JB
2405 if (offset == info->offset) {
2406 u64 to_free = min(bytes, info->bytes);
2407
2408 info->bytes -= to_free;
2409 info->offset += to_free;
2410 if (info->bytes) {
2411 ret = link_free_space(ctl, info);
2412 WARN_ON(ret);
2413 } else {
2414 kmem_cache_free(btrfs_free_space_cachep, info);
2415 }
0f9dd46c 2416
bdb7d303
JB
2417 offset += to_free;
2418 bytes -= to_free;
2419 goto again;
2420 } else {
2421 u64 old_end = info->bytes + info->offset;
9b49c9b9 2422
bdb7d303 2423 info->bytes = offset - info->offset;
34d52cb6 2424 ret = link_free_space(ctl, info);
96303081
JB
2425 WARN_ON(ret);
2426 if (ret)
2427 goto out_lock;
96303081 2428
bdb7d303
JB
2429 /* Not enough bytes in this entry to satisfy us */
2430 if (old_end < offset + bytes) {
2431 bytes -= old_end - offset;
2432 offset = old_end;
2433 goto again;
2434 } else if (old_end == offset + bytes) {
2435 /* all done */
2436 goto out_lock;
2437 }
2438 spin_unlock(&ctl->tree_lock);
2439
2440 ret = btrfs_add_free_space(block_group, offset + bytes,
2441 old_end - (offset + bytes));
2442 WARN_ON(ret);
2443 goto out;
2444 }
0f9dd46c 2445 }
96303081 2446
34d52cb6 2447 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2448 if (ret == -EAGAIN) {
2449 re_search = true;
96303081 2450 goto again;
b0175117 2451 }
96303081 2452out_lock:
34d52cb6 2453 spin_unlock(&ctl->tree_lock);
0f9dd46c 2454out:
25179201
JB
2455 return ret;
2456}
2457
0f9dd46c
JB
2458void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2459 u64 bytes)
2460{
0b246afa 2461 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2462 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2463 struct btrfs_free_space *info;
2464 struct rb_node *n;
2465 int count = 0;
2466
34d52cb6 2467 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2468 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2469 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2470 count++;
0b246afa 2471 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2472 info->offset, info->bytes,
96303081 2473 (info->bitmap) ? "yes" : "no");
0f9dd46c 2474 }
0b246afa 2475 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2476 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2477 btrfs_info(fs_info,
efe120a0 2478 "%d blocks of free space at or bigger than bytes is", count);
0f9dd46c
JB
2479}
2480
34d52cb6 2481void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 2482{
0b246afa 2483 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2484 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2485
34d52cb6 2486 spin_lock_init(&ctl->tree_lock);
0b246afa 2487 ctl->unit = fs_info->sectorsize;
34d52cb6
LZ
2488 ctl->start = block_group->key.objectid;
2489 ctl->private = block_group;
2490 ctl->op = &free_space_op;
55507ce3
FM
2491 INIT_LIST_HEAD(&ctl->trimming_ranges);
2492 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2493
34d52cb6
LZ
2494 /*
2495 * we only want to have 32k of ram per block group for keeping
2496 * track of free space, and if we pass 1/2 of that we want to
2497 * start converting things over to using bitmaps
2498 */
ee22184b 2499 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2500}
2501
fa9c0d79
CM
2502/*
2503 * for a given cluster, put all of its extents back into the free
2504 * space cache. If the block group passed doesn't match the block group
2505 * pointed to by the cluster, someone else raced in and freed the
2506 * cluster already. In that case, we just return without changing anything
2507 */
2508static int
2509__btrfs_return_cluster_to_free_space(
2510 struct btrfs_block_group_cache *block_group,
2511 struct btrfs_free_cluster *cluster)
2512{
34d52cb6 2513 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2514 struct btrfs_free_space *entry;
2515 struct rb_node *node;
2516
2517 spin_lock(&cluster->lock);
2518 if (cluster->block_group != block_group)
2519 goto out;
2520
96303081 2521 cluster->block_group = NULL;
fa9c0d79 2522 cluster->window_start = 0;
96303081 2523 list_del_init(&cluster->block_group_list);
96303081 2524
fa9c0d79 2525 node = rb_first(&cluster->root);
96303081 2526 while (node) {
4e69b598
JB
2527 bool bitmap;
2528
fa9c0d79
CM
2529 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2530 node = rb_next(&entry->offset_index);
2531 rb_erase(&entry->offset_index, &cluster->root);
20005523 2532 RB_CLEAR_NODE(&entry->offset_index);
4e69b598
JB
2533
2534 bitmap = (entry->bitmap != NULL);
20005523 2535 if (!bitmap) {
34d52cb6 2536 try_merge_free_space(ctl, entry, false);
20005523
FM
2537 steal_from_bitmap(ctl, entry, false);
2538 }
34d52cb6 2539 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2540 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2541 }
6bef4d31 2542 cluster->root = RB_ROOT;
96303081 2543
fa9c0d79
CM
2544out:
2545 spin_unlock(&cluster->lock);
96303081 2546 btrfs_put_block_group(block_group);
fa9c0d79
CM
2547 return 0;
2548}
2549
48a3b636
ES
2550static void __btrfs_remove_free_space_cache_locked(
2551 struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2552{
2553 struct btrfs_free_space *info;
2554 struct rb_node *node;
581bb050 2555
581bb050
LZ
2556 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2557 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2558 if (!info->bitmap) {
2559 unlink_free_space(ctl, info);
2560 kmem_cache_free(btrfs_free_space_cachep, info);
2561 } else {
2562 free_bitmap(ctl, info);
2563 }
351810c1
DS
2564
2565 cond_resched_lock(&ctl->tree_lock);
581bb050 2566 }
09655373
CM
2567}
2568
2569void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2570{
2571 spin_lock(&ctl->tree_lock);
2572 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2573 spin_unlock(&ctl->tree_lock);
2574}
2575
2576void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2577{
2578 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2579 struct btrfs_free_cluster *cluster;
96303081 2580 struct list_head *head;
0f9dd46c 2581
34d52cb6 2582 spin_lock(&ctl->tree_lock);
96303081
JB
2583 while ((head = block_group->cluster_list.next) !=
2584 &block_group->cluster_list) {
2585 cluster = list_entry(head, struct btrfs_free_cluster,
2586 block_group_list);
fa9c0d79
CM
2587
2588 WARN_ON(cluster->block_group != block_group);
2589 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
2590
2591 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 2592 }
09655373 2593 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2594 spin_unlock(&ctl->tree_lock);
fa9c0d79 2595
0f9dd46c
JB
2596}
2597
6226cb0a 2598u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
a4820398
MX
2599 u64 offset, u64 bytes, u64 empty_size,
2600 u64 *max_extent_size)
0f9dd46c 2601{
34d52cb6 2602 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2603 struct btrfs_free_space *entry = NULL;
96303081 2604 u64 bytes_search = bytes + empty_size;
6226cb0a 2605 u64 ret = 0;
53b381b3
DW
2606 u64 align_gap = 0;
2607 u64 align_gap_len = 0;
0f9dd46c 2608
34d52cb6 2609 spin_lock(&ctl->tree_lock);
53b381b3 2610 entry = find_free_space(ctl, &offset, &bytes_search,
a4820398 2611 block_group->full_stripe_len, max_extent_size);
6226cb0a 2612 if (!entry)
96303081
JB
2613 goto out;
2614
2615 ret = offset;
2616 if (entry->bitmap) {
34d52cb6 2617 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2618 if (!entry->bytes)
34d52cb6 2619 free_bitmap(ctl, entry);
96303081 2620 } else {
34d52cb6 2621 unlink_free_space(ctl, entry);
53b381b3
DW
2622 align_gap_len = offset - entry->offset;
2623 align_gap = entry->offset;
2624
2625 entry->offset = offset + bytes;
2626 WARN_ON(entry->bytes < bytes + align_gap_len);
2627
2628 entry->bytes -= bytes + align_gap_len;
6226cb0a 2629 if (!entry->bytes)
dc89e982 2630 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2631 else
34d52cb6 2632 link_free_space(ctl, entry);
6226cb0a 2633 }
96303081 2634out:
34d52cb6 2635 spin_unlock(&ctl->tree_lock);
817d52f8 2636
53b381b3 2637 if (align_gap_len)
ab8d0fc4
JM
2638 __btrfs_add_free_space(block_group->fs_info, ctl,
2639 align_gap, align_gap_len);
0f9dd46c
JB
2640 return ret;
2641}
fa9c0d79
CM
2642
2643/*
2644 * given a cluster, put all of its extents back into the free space
2645 * cache. If a block group is passed, this function will only free
2646 * a cluster that belongs to the passed block group.
2647 *
2648 * Otherwise, it'll get a reference on the block group pointed to by the
2649 * cluster and remove the cluster from it.
2650 */
2651int btrfs_return_cluster_to_free_space(
2652 struct btrfs_block_group_cache *block_group,
2653 struct btrfs_free_cluster *cluster)
2654{
34d52cb6 2655 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2656 int ret;
2657
2658 /* first, get a safe pointer to the block group */
2659 spin_lock(&cluster->lock);
2660 if (!block_group) {
2661 block_group = cluster->block_group;
2662 if (!block_group) {
2663 spin_unlock(&cluster->lock);
2664 return 0;
2665 }
2666 } else if (cluster->block_group != block_group) {
2667 /* someone else has already freed it don't redo their work */
2668 spin_unlock(&cluster->lock);
2669 return 0;
2670 }
2671 atomic_inc(&block_group->count);
2672 spin_unlock(&cluster->lock);
2673
34d52cb6
LZ
2674 ctl = block_group->free_space_ctl;
2675
fa9c0d79 2676 /* now return any extents the cluster had on it */
34d52cb6 2677 spin_lock(&ctl->tree_lock);
fa9c0d79 2678 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2679 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2680
2681 /* finally drop our ref */
2682 btrfs_put_block_group(block_group);
2683 return ret;
2684}
2685
96303081
JB
2686static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2687 struct btrfs_free_cluster *cluster,
4e69b598 2688 struct btrfs_free_space *entry,
a4820398
MX
2689 u64 bytes, u64 min_start,
2690 u64 *max_extent_size)
96303081 2691{
34d52cb6 2692 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2693 int err;
2694 u64 search_start = cluster->window_start;
2695 u64 search_bytes = bytes;
2696 u64 ret = 0;
2697
96303081
JB
2698 search_start = min_start;
2699 search_bytes = bytes;
2700
0584f718 2701 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398
MX
2702 if (err) {
2703 if (search_bytes > *max_extent_size)
2704 *max_extent_size = search_bytes;
4e69b598 2705 return 0;
a4820398 2706 }
96303081
JB
2707
2708 ret = search_start;
bb3ac5a4 2709 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2710
2711 return ret;
2712}
2713
fa9c0d79
CM
2714/*
2715 * given a cluster, try to allocate 'bytes' from it, returns 0
2716 * if it couldn't find anything suitably large, or a logical disk offset
2717 * if things worked out
2718 */
2719u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2720 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 2721 u64 min_start, u64 *max_extent_size)
fa9c0d79 2722{
34d52cb6 2723 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2724 struct btrfs_free_space *entry = NULL;
2725 struct rb_node *node;
2726 u64 ret = 0;
2727
2728 spin_lock(&cluster->lock);
2729 if (bytes > cluster->max_size)
2730 goto out;
2731
2732 if (cluster->block_group != block_group)
2733 goto out;
2734
2735 node = rb_first(&cluster->root);
2736 if (!node)
2737 goto out;
2738
2739 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 2740 while (1) {
a4820398
MX
2741 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2742 *max_extent_size = entry->bytes;
2743
4e69b598
JB
2744 if (entry->bytes < bytes ||
2745 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2746 node = rb_next(&entry->offset_index);
2747 if (!node)
2748 break;
2749 entry = rb_entry(node, struct btrfs_free_space,
2750 offset_index);
2751 continue;
2752 }
fa9c0d79 2753
4e69b598
JB
2754 if (entry->bitmap) {
2755 ret = btrfs_alloc_from_bitmap(block_group,
2756 cluster, entry, bytes,
a4820398
MX
2757 cluster->window_start,
2758 max_extent_size);
4e69b598 2759 if (ret == 0) {
4e69b598
JB
2760 node = rb_next(&entry->offset_index);
2761 if (!node)
2762 break;
2763 entry = rb_entry(node, struct btrfs_free_space,
2764 offset_index);
2765 continue;
2766 }
9b230628 2767 cluster->window_start += bytes;
4e69b598 2768 } else {
4e69b598
JB
2769 ret = entry->offset;
2770
2771 entry->offset += bytes;
2772 entry->bytes -= bytes;
2773 }
fa9c0d79 2774
5e71b5d5 2775 if (entry->bytes == 0)
fa9c0d79 2776 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2777 break;
2778 }
2779out:
2780 spin_unlock(&cluster->lock);
96303081 2781
5e71b5d5
LZ
2782 if (!ret)
2783 return 0;
2784
34d52cb6 2785 spin_lock(&ctl->tree_lock);
5e71b5d5 2786
34d52cb6 2787 ctl->free_space -= bytes;
5e71b5d5 2788 if (entry->bytes == 0) {
34d52cb6 2789 ctl->free_extents--;
4e69b598
JB
2790 if (entry->bitmap) {
2791 kfree(entry->bitmap);
34d52cb6
LZ
2792 ctl->total_bitmaps--;
2793 ctl->op->recalc_thresholds(ctl);
4e69b598 2794 }
dc89e982 2795 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2796 }
2797
34d52cb6 2798 spin_unlock(&ctl->tree_lock);
5e71b5d5 2799
fa9c0d79
CM
2800 return ret;
2801}
2802
96303081
JB
2803static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2804 struct btrfs_free_space *entry,
2805 struct btrfs_free_cluster *cluster,
1bb91902
AO
2806 u64 offset, u64 bytes,
2807 u64 cont1_bytes, u64 min_bytes)
96303081 2808{
34d52cb6 2809 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2810 unsigned long next_zero;
2811 unsigned long i;
1bb91902
AO
2812 unsigned long want_bits;
2813 unsigned long min_bits;
96303081 2814 unsigned long found_bits;
cef40483 2815 unsigned long max_bits = 0;
96303081
JB
2816 unsigned long start = 0;
2817 unsigned long total_found = 0;
4e69b598 2818 int ret;
96303081 2819
96009762 2820 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2821 max_t(u64, offset, entry->offset));
96009762
WSH
2822 want_bits = bytes_to_bits(bytes, ctl->unit);
2823 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 2824
cef40483
JB
2825 /*
2826 * Don't bother looking for a cluster in this bitmap if it's heavily
2827 * fragmented.
2828 */
2829 if (entry->max_extent_size &&
2830 entry->max_extent_size < cont1_bytes)
2831 return -ENOSPC;
96303081
JB
2832again:
2833 found_bits = 0;
ebb3dad4 2834 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2835 next_zero = find_next_zero_bit(entry->bitmap,
2836 BITS_PER_BITMAP, i);
1bb91902 2837 if (next_zero - i >= min_bits) {
96303081 2838 found_bits = next_zero - i;
cef40483
JB
2839 if (found_bits > max_bits)
2840 max_bits = found_bits;
96303081
JB
2841 break;
2842 }
cef40483
JB
2843 if (next_zero - i > max_bits)
2844 max_bits = next_zero - i;
96303081
JB
2845 i = next_zero;
2846 }
2847
cef40483
JB
2848 if (!found_bits) {
2849 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 2850 return -ENOSPC;
cef40483 2851 }
96303081 2852
1bb91902 2853 if (!total_found) {
96303081 2854 start = i;
b78d09bc 2855 cluster->max_size = 0;
96303081
JB
2856 }
2857
2858 total_found += found_bits;
2859
96009762
WSH
2860 if (cluster->max_size < found_bits * ctl->unit)
2861 cluster->max_size = found_bits * ctl->unit;
96303081 2862
1bb91902
AO
2863 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2864 i = next_zero + 1;
96303081
JB
2865 goto again;
2866 }
2867
96009762 2868 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2869 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2870 ret = tree_insert_offset(&cluster->root, entry->offset,
2871 &entry->offset_index, 1);
b12d6869 2872 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 2873
3f7de037 2874 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2875 total_found * ctl->unit, 1);
96303081
JB
2876 return 0;
2877}
2878
4e69b598
JB
2879/*
2880 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2881 * Try to find a cluster with at least bytes total bytes, at least one
2882 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2883 */
3de85bb9
JB
2884static noinline int
2885setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2886 struct btrfs_free_cluster *cluster,
2887 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2888 u64 cont1_bytes, u64 min_bytes)
4e69b598 2889{
34d52cb6 2890 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2891 struct btrfs_free_space *first = NULL;
2892 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2893 struct btrfs_free_space *last;
2894 struct rb_node *node;
4e69b598
JB
2895 u64 window_free;
2896 u64 max_extent;
3f7de037 2897 u64 total_size = 0;
4e69b598 2898
34d52cb6 2899 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2900 if (!entry)
2901 return -ENOSPC;
2902
2903 /*
2904 * We don't want bitmaps, so just move along until we find a normal
2905 * extent entry.
2906 */
1bb91902
AO
2907 while (entry->bitmap || entry->bytes < min_bytes) {
2908 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2909 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2910 node = rb_next(&entry->offset_index);
2911 if (!node)
2912 return -ENOSPC;
2913 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2914 }
2915
4e69b598
JB
2916 window_free = entry->bytes;
2917 max_extent = entry->bytes;
2918 first = entry;
2919 last = entry;
4e69b598 2920
1bb91902
AO
2921 for (node = rb_next(&entry->offset_index); node;
2922 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2923 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2924
86d4a77b
JB
2925 if (entry->bitmap) {
2926 if (list_empty(&entry->list))
2927 list_add_tail(&entry->list, bitmaps);
4e69b598 2928 continue;
86d4a77b
JB
2929 }
2930
1bb91902
AO
2931 if (entry->bytes < min_bytes)
2932 continue;
2933
2934 last = entry;
2935 window_free += entry->bytes;
2936 if (entry->bytes > max_extent)
4e69b598 2937 max_extent = entry->bytes;
4e69b598
JB
2938 }
2939
1bb91902
AO
2940 if (window_free < bytes || max_extent < cont1_bytes)
2941 return -ENOSPC;
2942
4e69b598
JB
2943 cluster->window_start = first->offset;
2944
2945 node = &first->offset_index;
2946
2947 /*
2948 * now we've found our entries, pull them out of the free space
2949 * cache and put them into the cluster rbtree
2950 */
2951 do {
2952 int ret;
2953
2954 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2955 node = rb_next(&entry->offset_index);
1bb91902 2956 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2957 continue;
2958
34d52cb6 2959 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2960 ret = tree_insert_offset(&cluster->root, entry->offset,
2961 &entry->offset_index, 0);
3f7de037 2962 total_size += entry->bytes;
b12d6869 2963 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
2964 } while (node && entry != last);
2965
2966 cluster->max_size = max_extent;
3f7de037 2967 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2968 return 0;
2969}
2970
2971/*
2972 * This specifically looks for bitmaps that may work in the cluster, we assume
2973 * that we have already failed to find extents that will work.
2974 */
3de85bb9
JB
2975static noinline int
2976setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2977 struct btrfs_free_cluster *cluster,
2978 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2979 u64 cont1_bytes, u64 min_bytes)
4e69b598 2980{
34d52cb6 2981 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 2982 struct btrfs_free_space *entry = NULL;
4e69b598 2983 int ret = -ENOSPC;
0f0fbf1d 2984 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2985
34d52cb6 2986 if (ctl->total_bitmaps == 0)
4e69b598
JB
2987 return -ENOSPC;
2988
0f0fbf1d
LZ
2989 /*
2990 * The bitmap that covers offset won't be in the list unless offset
2991 * is just its start offset.
2992 */
1b9b922a
CM
2993 if (!list_empty(bitmaps))
2994 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2995
2996 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
2997 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2998 if (entry && list_empty(&entry->list))
2999 list_add(&entry->list, bitmaps);
3000 }
3001
86d4a77b 3002 list_for_each_entry(entry, bitmaps, list) {
357b9784 3003 if (entry->bytes < bytes)
86d4a77b
JB
3004 continue;
3005 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3006 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3007 if (!ret)
3008 return 0;
3009 }
3010
3011 /*
52621cb6
LZ
3012 * The bitmaps list has all the bitmaps that record free space
3013 * starting after offset, so no more search is required.
86d4a77b 3014 */
52621cb6 3015 return -ENOSPC;
4e69b598
JB
3016}
3017
fa9c0d79
CM
3018/*
3019 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3020 * is to find at least bytes+empty_size.
fa9c0d79
CM
3021 * We might not find them all in one contiguous area.
3022 *
3023 * returns zero and sets up cluster if things worked out, otherwise
3024 * it returns -enospc
3025 */
2ff7e61e 3026int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
fa9c0d79
CM
3027 struct btrfs_block_group_cache *block_group,
3028 struct btrfs_free_cluster *cluster,
3029 u64 offset, u64 bytes, u64 empty_size)
3030{
34d52cb6 3031 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3032 struct btrfs_free_space *entry, *tmp;
52621cb6 3033 LIST_HEAD(bitmaps);
fa9c0d79 3034 u64 min_bytes;
1bb91902 3035 u64 cont1_bytes;
fa9c0d79
CM
3036 int ret;
3037
1bb91902
AO
3038 /*
3039 * Choose the minimum extent size we'll require for this
3040 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3041 * For metadata, allow allocates with smaller extents. For
3042 * data, keep it dense.
3043 */
0b246afa 3044 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
1bb91902 3045 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 3046 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3047 cont1_bytes = bytes;
0b246afa 3048 min_bytes = fs_info->sectorsize;
1bb91902
AO
3049 } else {
3050 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3051 min_bytes = fs_info->sectorsize;
1bb91902 3052 }
fa9c0d79 3053
34d52cb6 3054 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3055
3056 /*
3057 * If we know we don't have enough space to make a cluster don't even
3058 * bother doing all the work to try and find one.
3059 */
1bb91902 3060 if (ctl->free_space < bytes) {
34d52cb6 3061 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3062 return -ENOSPC;
3063 }
3064
fa9c0d79
CM
3065 spin_lock(&cluster->lock);
3066
3067 /* someone already found a cluster, hooray */
3068 if (cluster->block_group) {
3069 ret = 0;
3070 goto out;
3071 }
fa9c0d79 3072
3f7de037
JB
3073 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3074 min_bytes);
3075
86d4a77b 3076 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3077 bytes + empty_size,
3078 cont1_bytes, min_bytes);
4e69b598 3079 if (ret)
86d4a77b 3080 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3081 offset, bytes + empty_size,
3082 cont1_bytes, min_bytes);
86d4a77b
JB
3083
3084 /* Clear our temporary list */
3085 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3086 list_del_init(&entry->list);
fa9c0d79 3087
4e69b598
JB
3088 if (!ret) {
3089 atomic_inc(&block_group->count);
3090 list_add_tail(&cluster->block_group_list,
3091 &block_group->cluster_list);
3092 cluster->block_group = block_group;
3f7de037
JB
3093 } else {
3094 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3095 }
fa9c0d79
CM
3096out:
3097 spin_unlock(&cluster->lock);
34d52cb6 3098 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3099
3100 return ret;
3101}
3102
3103/*
3104 * simple code to zero out a cluster
3105 */
3106void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3107{
3108 spin_lock_init(&cluster->lock);
3109 spin_lock_init(&cluster->refill_lock);
6bef4d31 3110 cluster->root = RB_ROOT;
fa9c0d79 3111 cluster->max_size = 0;
c759c4e1 3112 cluster->fragmented = false;
fa9c0d79
CM
3113 INIT_LIST_HEAD(&cluster->block_group_list);
3114 cluster->block_group = NULL;
3115}
3116
7fe1e641
LZ
3117static int do_trimming(struct btrfs_block_group_cache *block_group,
3118 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3
FM
3119 u64 reserved_start, u64 reserved_bytes,
3120 struct btrfs_trim_range *trim_entry)
f7039b1d 3121{
7fe1e641 3122 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3123 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3124 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3125 int ret;
3126 int update = 0;
3127 u64 trimmed = 0;
f7039b1d 3128
7fe1e641
LZ
3129 spin_lock(&space_info->lock);
3130 spin_lock(&block_group->lock);
3131 if (!block_group->ro) {
3132 block_group->reserved += reserved_bytes;
3133 space_info->bytes_reserved += reserved_bytes;
3134 update = 1;
3135 }
3136 spin_unlock(&block_group->lock);
3137 spin_unlock(&space_info->lock);
3138
2ff7e61e 3139 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
7fe1e641
LZ
3140 if (!ret)
3141 *total_trimmed += trimmed;
3142
55507ce3 3143 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641 3144 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
55507ce3
FM
3145 list_del(&trim_entry->list);
3146 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3147
3148 if (update) {
3149 spin_lock(&space_info->lock);
3150 spin_lock(&block_group->lock);
3151 if (block_group->ro)
3152 space_info->bytes_readonly += reserved_bytes;
3153 block_group->reserved -= reserved_bytes;
3154 space_info->bytes_reserved -= reserved_bytes;
3155 spin_unlock(&space_info->lock);
3156 spin_unlock(&block_group->lock);
3157 }
3158
3159 return ret;
3160}
3161
3162static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3163 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3164{
3165 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3166 struct btrfs_free_space *entry;
3167 struct rb_node *node;
3168 int ret = 0;
3169 u64 extent_start;
3170 u64 extent_bytes;
3171 u64 bytes;
f7039b1d
LD
3172
3173 while (start < end) {
55507ce3
FM
3174 struct btrfs_trim_range trim_entry;
3175
3176 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3177 spin_lock(&ctl->tree_lock);
f7039b1d 3178
34d52cb6
LZ
3179 if (ctl->free_space < minlen) {
3180 spin_unlock(&ctl->tree_lock);
55507ce3 3181 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3182 break;
3183 }
3184
34d52cb6 3185 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 3186 if (!entry) {
34d52cb6 3187 spin_unlock(&ctl->tree_lock);
55507ce3 3188 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3189 break;
3190 }
3191
7fe1e641
LZ
3192 /* skip bitmaps */
3193 while (entry->bitmap) {
3194 node = rb_next(&entry->offset_index);
3195 if (!node) {
34d52cb6 3196 spin_unlock(&ctl->tree_lock);
55507ce3 3197 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3198 goto out;
f7039b1d 3199 }
7fe1e641
LZ
3200 entry = rb_entry(node, struct btrfs_free_space,
3201 offset_index);
f7039b1d
LD
3202 }
3203
7fe1e641
LZ
3204 if (entry->offset >= end) {
3205 spin_unlock(&ctl->tree_lock);
55507ce3 3206 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3207 break;
f7039b1d
LD
3208 }
3209
7fe1e641
LZ
3210 extent_start = entry->offset;
3211 extent_bytes = entry->bytes;
3212 start = max(start, extent_start);
3213 bytes = min(extent_start + extent_bytes, end) - start;
3214 if (bytes < minlen) {
3215 spin_unlock(&ctl->tree_lock);
55507ce3 3216 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3217 goto next;
f7039b1d
LD
3218 }
3219
7fe1e641
LZ
3220 unlink_free_space(ctl, entry);
3221 kmem_cache_free(btrfs_free_space_cachep, entry);
3222
34d52cb6 3223 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3224 trim_entry.start = extent_start;
3225 trim_entry.bytes = extent_bytes;
3226 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3227 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3228
7fe1e641 3229 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3230 extent_start, extent_bytes, &trim_entry);
7fe1e641
LZ
3231 if (ret)
3232 break;
3233next:
3234 start += bytes;
f7039b1d 3235
7fe1e641
LZ
3236 if (fatal_signal_pending(current)) {
3237 ret = -ERESTARTSYS;
3238 break;
3239 }
3240
3241 cond_resched();
3242 }
3243out:
3244 return ret;
3245}
3246
3247static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3248 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3249{
3250 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3251 struct btrfs_free_space *entry;
3252 int ret = 0;
3253 int ret2;
3254 u64 bytes;
3255 u64 offset = offset_to_bitmap(ctl, start);
3256
3257 while (offset < end) {
3258 bool next_bitmap = false;
55507ce3 3259 struct btrfs_trim_range trim_entry;
7fe1e641 3260
55507ce3 3261 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3262 spin_lock(&ctl->tree_lock);
3263
3264 if (ctl->free_space < minlen) {
3265 spin_unlock(&ctl->tree_lock);
55507ce3 3266 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3267 break;
3268 }
3269
3270 entry = tree_search_offset(ctl, offset, 1, 0);
3271 if (!entry) {
3272 spin_unlock(&ctl->tree_lock);
55507ce3 3273 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3274 next_bitmap = true;
3275 goto next;
3276 }
3277
3278 bytes = minlen;
0584f718 3279 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641
LZ
3280 if (ret2 || start >= end) {
3281 spin_unlock(&ctl->tree_lock);
55507ce3 3282 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3283 next_bitmap = true;
3284 goto next;
3285 }
3286
3287 bytes = min(bytes, end - start);
3288 if (bytes < minlen) {
3289 spin_unlock(&ctl->tree_lock);
55507ce3 3290 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3291 goto next;
3292 }
3293
3294 bitmap_clear_bits(ctl, entry, start, bytes);
3295 if (entry->bytes == 0)
3296 free_bitmap(ctl, entry);
3297
3298 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3299 trim_entry.start = start;
3300 trim_entry.bytes = bytes;
3301 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3302 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3303
3304 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3305 start, bytes, &trim_entry);
7fe1e641
LZ
3306 if (ret)
3307 break;
3308next:
3309 if (next_bitmap) {
3310 offset += BITS_PER_BITMAP * ctl->unit;
3311 } else {
3312 start += bytes;
3313 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3314 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 3315 }
f7039b1d
LD
3316
3317 if (fatal_signal_pending(current)) {
3318 ret = -ERESTARTSYS;
3319 break;
3320 }
3321
3322 cond_resched();
3323 }
3324
3325 return ret;
3326}
581bb050 3327
e33e17ee 3328void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
7fe1e641 3329{
e33e17ee
JM
3330 atomic_inc(&cache->trimming);
3331}
7fe1e641 3332
e33e17ee
JM
3333void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3334{
0b246afa 3335 struct btrfs_fs_info *fs_info = block_group->fs_info;
e33e17ee
JM
3336 struct extent_map_tree *em_tree;
3337 struct extent_map *em;
3338 bool cleanup;
7fe1e641 3339
04216820 3340 spin_lock(&block_group->lock);
e33e17ee
JM
3341 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3342 block_group->removed);
04216820
FM
3343 spin_unlock(&block_group->lock);
3344
e33e17ee 3345 if (cleanup) {
34441361 3346 mutex_lock(&fs_info->chunk_mutex);
0b246afa 3347 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
3348 write_lock(&em_tree->lock);
3349 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3350 1);
3351 BUG_ON(!em); /* logic error, can't happen */
a1e7e16e
FM
3352 /*
3353 * remove_extent_mapping() will delete us from the pinned_chunks
3354 * list, which is protected by the chunk mutex.
3355 */
04216820
FM
3356 remove_extent_mapping(em_tree, em);
3357 write_unlock(&em_tree->lock);
34441361 3358 mutex_unlock(&fs_info->chunk_mutex);
04216820
FM
3359
3360 /* once for us and once for the tree */
3361 free_extent_map(em);
3362 free_extent_map(em);
946ddbe8
FM
3363
3364 /*
3365 * We've left one free space entry and other tasks trimming
3366 * this block group have left 1 entry each one. Free them.
3367 */
3368 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
e33e17ee
JM
3369 }
3370}
3371
3372int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3373 u64 *trimmed, u64 start, u64 end, u64 minlen)
3374{
3375 int ret;
3376
3377 *trimmed = 0;
3378
3379 spin_lock(&block_group->lock);
3380 if (block_group->removed) {
04216820 3381 spin_unlock(&block_group->lock);
e33e17ee 3382 return 0;
04216820 3383 }
e33e17ee
JM
3384 btrfs_get_block_group_trimming(block_group);
3385 spin_unlock(&block_group->lock);
3386
3387 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3388 if (ret)
3389 goto out;
7fe1e641 3390
e33e17ee
JM
3391 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3392out:
3393 btrfs_put_block_group_trimming(block_group);
7fe1e641
LZ
3394 return ret;
3395}
3396
581bb050
LZ
3397/*
3398 * Find the left-most item in the cache tree, and then return the
3399 * smallest inode number in the item.
3400 *
3401 * Note: the returned inode number may not be the smallest one in
3402 * the tree, if the left-most item is a bitmap.
3403 */
3404u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3405{
3406 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3407 struct btrfs_free_space *entry = NULL;
3408 u64 ino = 0;
3409
3410 spin_lock(&ctl->tree_lock);
3411
3412 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3413 goto out;
3414
3415 entry = rb_entry(rb_first(&ctl->free_space_offset),
3416 struct btrfs_free_space, offset_index);
3417
3418 if (!entry->bitmap) {
3419 ino = entry->offset;
3420
3421 unlink_free_space(ctl, entry);
3422 entry->offset++;
3423 entry->bytes--;
3424 if (!entry->bytes)
3425 kmem_cache_free(btrfs_free_space_cachep, entry);
3426 else
3427 link_free_space(ctl, entry);
3428 } else {
3429 u64 offset = 0;
3430 u64 count = 1;
3431 int ret;
3432
0584f718 3433 ret = search_bitmap(ctl, entry, &offset, &count, true);
79787eaa 3434 /* Logic error; Should be empty if it can't find anything */
b12d6869 3435 ASSERT(!ret);
581bb050
LZ
3436
3437 ino = offset;
3438 bitmap_clear_bits(ctl, entry, offset, 1);
3439 if (entry->bytes == 0)
3440 free_bitmap(ctl, entry);
3441 }
3442out:
3443 spin_unlock(&ctl->tree_lock);
3444
3445 return ino;
3446}
82d5902d
LZ
3447
3448struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3449 struct btrfs_path *path)
3450{
3451 struct inode *inode = NULL;
3452
57cdc8db
DS
3453 spin_lock(&root->ino_cache_lock);
3454 if (root->ino_cache_inode)
3455 inode = igrab(root->ino_cache_inode);
3456 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3457 if (inode)
3458 return inode;
3459
3460 inode = __lookup_free_space_inode(root, path, 0);
3461 if (IS_ERR(inode))
3462 return inode;
3463
57cdc8db 3464 spin_lock(&root->ino_cache_lock);
7841cb28 3465 if (!btrfs_fs_closing(root->fs_info))
57cdc8db
DS
3466 root->ino_cache_inode = igrab(inode);
3467 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3468
3469 return inode;
3470}
3471
3472int create_free_ino_inode(struct btrfs_root *root,
3473 struct btrfs_trans_handle *trans,
3474 struct btrfs_path *path)
3475{
3476 return __create_free_space_inode(root, trans, path,
3477 BTRFS_FREE_INO_OBJECTID, 0);
3478}
3479
3480int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3481{
3482 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3483 struct btrfs_path *path;
3484 struct inode *inode;
3485 int ret = 0;
3486 u64 root_gen = btrfs_root_generation(&root->root_item);
3487
0b246afa 3488 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3489 return 0;
3490
82d5902d
LZ
3491 /*
3492 * If we're unmounting then just return, since this does a search on the
3493 * normal root and not the commit root and we could deadlock.
3494 */
7841cb28 3495 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
3496 return 0;
3497
3498 path = btrfs_alloc_path();
3499 if (!path)
3500 return 0;
3501
3502 inode = lookup_free_ino_inode(root, path);
3503 if (IS_ERR(inode))
3504 goto out;
3505
3506 if (root_gen != BTRFS_I(inode)->generation)
3507 goto out_put;
3508
3509 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3510
3511 if (ret < 0)
c2cf52eb
SK
3512 btrfs_err(fs_info,
3513 "failed to load free ino cache for root %llu",
3514 root->root_key.objectid);
82d5902d
LZ
3515out_put:
3516 iput(inode);
3517out:
3518 btrfs_free_path(path);
3519 return ret;
3520}
3521
3522int btrfs_write_out_ino_cache(struct btrfs_root *root,
3523 struct btrfs_trans_handle *trans,
53645a91
FDBM
3524 struct btrfs_path *path,
3525 struct inode *inode)
82d5902d 3526{
0b246afa 3527 struct btrfs_fs_info *fs_info = root->fs_info;
82d5902d 3528 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
82d5902d 3529 int ret;
c9dc4c65 3530 struct btrfs_io_ctl io_ctl;
e43699d4 3531 bool release_metadata = true;
82d5902d 3532
0b246afa 3533 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3534 return 0;
3535
85db36cf 3536 memset(&io_ctl, 0, sizeof(io_ctl));
0e8d931a 3537 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
e43699d4
FM
3538 if (!ret) {
3539 /*
3540 * At this point writepages() didn't error out, so our metadata
3541 * reservation is released when the writeback finishes, at
3542 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3543 * with or without an error.
3544 */
3545 release_metadata = false;
afdb5718 3546 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
e43699d4 3547 }
85db36cf 3548
c09544e0 3549 if (ret) {
e43699d4
FM
3550 if (release_metadata)
3551 btrfs_delalloc_release_metadata(inode, inode->i_size);
c09544e0 3552#ifdef DEBUG
0b246afa
JM
3553 btrfs_err(fs_info,
3554 "failed to write free ino cache for root %llu",
3555 root->root_key.objectid);
c09544e0
JB
3556#endif
3557 }
82d5902d 3558
82d5902d
LZ
3559 return ret;
3560}
74255aa0
JB
3561
3562#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
3563/*
3564 * Use this if you need to make a bitmap or extent entry specifically, it
3565 * doesn't do any of the merging that add_free_space does, this acts a lot like
3566 * how the free space cache loading stuff works, so you can get really weird
3567 * configurations.
3568 */
3569int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3570 u64 offset, u64 bytes, bool bitmap)
74255aa0 3571{
dc11dd5d
JB
3572 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3573 struct btrfs_free_space *info = NULL, *bitmap_info;
3574 void *map = NULL;
3575 u64 bytes_added;
3576 int ret;
74255aa0 3577
dc11dd5d
JB
3578again:
3579 if (!info) {
3580 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3581 if (!info)
3582 return -ENOMEM;
74255aa0
JB
3583 }
3584
dc11dd5d
JB
3585 if (!bitmap) {
3586 spin_lock(&ctl->tree_lock);
3587 info->offset = offset;
3588 info->bytes = bytes;
cef40483 3589 info->max_extent_size = 0;
dc11dd5d
JB
3590 ret = link_free_space(ctl, info);
3591 spin_unlock(&ctl->tree_lock);
3592 if (ret)
3593 kmem_cache_free(btrfs_free_space_cachep, info);
3594 return ret;
3595 }
3596
3597 if (!map) {
09cbfeaf 3598 map = kzalloc(PAGE_SIZE, GFP_NOFS);
dc11dd5d
JB
3599 if (!map) {
3600 kmem_cache_free(btrfs_free_space_cachep, info);
3601 return -ENOMEM;
3602 }
3603 }
3604
3605 spin_lock(&ctl->tree_lock);
3606 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3607 1, 0);
3608 if (!bitmap_info) {
3609 info->bitmap = map;
3610 map = NULL;
3611 add_new_bitmap(ctl, info, offset);
3612 bitmap_info = info;
20005523 3613 info = NULL;
dc11dd5d 3614 }
74255aa0 3615
dc11dd5d 3616 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
cef40483 3617
dc11dd5d
JB
3618 bytes -= bytes_added;
3619 offset += bytes_added;
3620 spin_unlock(&ctl->tree_lock);
74255aa0 3621
dc11dd5d
JB
3622 if (bytes)
3623 goto again;
74255aa0 3624
20005523
FM
3625 if (info)
3626 kmem_cache_free(btrfs_free_space_cachep, info);
dc11dd5d
JB
3627 if (map)
3628 kfree(map);
3629 return 0;
74255aa0
JB
3630}
3631
3632/*
3633 * Checks to see if the given range is in the free space cache. This is really
3634 * just used to check the absence of space, so if there is free space in the
3635 * range at all we will return 1.
3636 */
dc11dd5d
JB
3637int test_check_exists(struct btrfs_block_group_cache *cache,
3638 u64 offset, u64 bytes)
74255aa0
JB
3639{
3640 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3641 struct btrfs_free_space *info;
3642 int ret = 0;
3643
3644 spin_lock(&ctl->tree_lock);
3645 info = tree_search_offset(ctl, offset, 0, 0);
3646 if (!info) {
3647 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3648 1, 0);
3649 if (!info)
3650 goto out;
3651 }
3652
3653have_info:
3654 if (info->bitmap) {
3655 u64 bit_off, bit_bytes;
3656 struct rb_node *n;
3657 struct btrfs_free_space *tmp;
3658
3659 bit_off = offset;
3660 bit_bytes = ctl->unit;
0584f718 3661 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
3662 if (!ret) {
3663 if (bit_off == offset) {
3664 ret = 1;
3665 goto out;
3666 } else if (bit_off > offset &&
3667 offset + bytes > bit_off) {
3668 ret = 1;
3669 goto out;
3670 }
3671 }
3672
3673 n = rb_prev(&info->offset_index);
3674 while (n) {
3675 tmp = rb_entry(n, struct btrfs_free_space,
3676 offset_index);
3677 if (tmp->offset + tmp->bytes < offset)
3678 break;
3679 if (offset + bytes < tmp->offset) {
5473e0c4 3680 n = rb_prev(&tmp->offset_index);
74255aa0
JB
3681 continue;
3682 }
3683 info = tmp;
3684 goto have_info;
3685 }
3686
3687 n = rb_next(&info->offset_index);
3688 while (n) {
3689 tmp = rb_entry(n, struct btrfs_free_space,
3690 offset_index);
3691 if (offset + bytes < tmp->offset)
3692 break;
3693 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 3694 n = rb_next(&tmp->offset_index);
74255aa0
JB
3695 continue;
3696 }
3697 info = tmp;
3698 goto have_info;
3699 }
3700
20005523 3701 ret = 0;
74255aa0
JB
3702 goto out;
3703 }
3704
3705 if (info->offset == offset) {
3706 ret = 1;
3707 goto out;
3708 }
3709
3710 if (offset > info->offset && offset < info->offset + info->bytes)
3711 ret = 1;
3712out:
3713 spin_unlock(&ctl->tree_lock);
3714 return ret;
3715}
dc11dd5d 3716#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */