btrfs: rename btrfs_block_group_cache
[linux-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0f9dd46c
JB
2/*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
0f9dd46c
JB
4 */
5
96303081 6#include <linux/pagemap.h>
0f9dd46c 7#include <linux/sched.h>
f361bf4a 8#include <linux/sched/signal.h>
5a0e3ad6 9#include <linux/slab.h>
96303081 10#include <linux/math64.h>
6ab60601 11#include <linux/ratelimit.h>
540adea3 12#include <linux/error-injection.h>
84de76a2 13#include <linux/sched/mm.h>
0f9dd46c 14#include "ctree.h"
fa9c0d79
CM
15#include "free-space-cache.h"
16#include "transaction.h"
0af3d00b 17#include "disk-io.h"
43be2146 18#include "extent_io.h"
581bb050 19#include "inode-map.h"
04216820 20#include "volumes.h"
8719aaae 21#include "space-info.h"
86736342 22#include "delalloc-space.h"
aac0023c 23#include "block-group.h"
fa9c0d79 24
0ef6447a 25#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
ee22184b 26#define MAX_CACHE_BYTES_PER_GIG SZ_32K
0f9dd46c 27
55507ce3
FM
28struct btrfs_trim_range {
29 u64 start;
30 u64 bytes;
31 struct list_head list;
32};
33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 35 struct btrfs_free_space *info);
cd023e7b
JB
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
afdb5718
JM
38static int btrfs_wait_cache_io_root(struct btrfs_root *root,
39 struct btrfs_trans_handle *trans,
40 struct btrfs_io_ctl *io_ctl,
41 struct btrfs_path *path);
0cb59c99 42
0414efae
LZ
43static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
44 struct btrfs_path *path,
45 u64 offset)
0af3d00b 46{
0b246afa 47 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
48 struct btrfs_key key;
49 struct btrfs_key location;
50 struct btrfs_disk_key disk_key;
51 struct btrfs_free_space_header *header;
52 struct extent_buffer *leaf;
53 struct inode *inode = NULL;
84de76a2 54 unsigned nofs_flag;
0af3d00b
JB
55 int ret;
56
0af3d00b 57 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 58 key.offset = offset;
0af3d00b
JB
59 key.type = 0;
60
61 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
62 if (ret < 0)
63 return ERR_PTR(ret);
64 if (ret > 0) {
b3b4aa74 65 btrfs_release_path(path);
0af3d00b
JB
66 return ERR_PTR(-ENOENT);
67 }
68
69 leaf = path->nodes[0];
70 header = btrfs_item_ptr(leaf, path->slots[0],
71 struct btrfs_free_space_header);
72 btrfs_free_space_key(leaf, header, &disk_key);
73 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 74 btrfs_release_path(path);
0af3d00b 75
84de76a2
JB
76 /*
77 * We are often under a trans handle at this point, so we need to make
78 * sure NOFS is set to keep us from deadlocking.
79 */
80 nofs_flag = memalloc_nofs_save();
4c66e0d4 81 inode = btrfs_iget_path(fs_info->sb, &location, root, path);
4222ea71 82 btrfs_release_path(path);
84de76a2 83 memalloc_nofs_restore(nofs_flag);
0af3d00b
JB
84 if (IS_ERR(inode))
85 return inode;
0af3d00b 86
528c0327 87 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 90
0414efae
LZ
91 return inode;
92}
93
32da5386 94struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
7949f339 95 struct btrfs_path *path)
0414efae 96{
7949f339 97 struct btrfs_fs_info *fs_info = block_group->fs_info;
0414efae 98 struct inode *inode = NULL;
5b0e95bf 99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
100
101 spin_lock(&block_group->lock);
102 if (block_group->inode)
103 inode = igrab(block_group->inode);
104 spin_unlock(&block_group->lock);
105 if (inode)
106 return inode;
107
77ab86bf 108 inode = __lookup_free_space_inode(fs_info->tree_root, path,
b3470b5d 109 block_group->start);
0414efae
LZ
110 if (IS_ERR(inode))
111 return inode;
112
0af3d00b 113 spin_lock(&block_group->lock);
5b0e95bf 114 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 115 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
116 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
117 BTRFS_INODE_NODATACOW;
2f356126
JB
118 block_group->disk_cache_state = BTRFS_DC_CLEAR;
119 }
120
300e4f8a 121 if (!block_group->iref) {
0af3d00b
JB
122 block_group->inode = igrab(inode);
123 block_group->iref = 1;
124 }
125 spin_unlock(&block_group->lock);
126
127 return inode;
128}
129
48a3b636
ES
130static int __create_free_space_inode(struct btrfs_root *root,
131 struct btrfs_trans_handle *trans,
132 struct btrfs_path *path,
133 u64 ino, u64 offset)
0af3d00b
JB
134{
135 struct btrfs_key key;
136 struct btrfs_disk_key disk_key;
137 struct btrfs_free_space_header *header;
138 struct btrfs_inode_item *inode_item;
139 struct extent_buffer *leaf;
5b0e95bf 140 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
141 int ret;
142
0414efae 143 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
144 if (ret)
145 return ret;
146
5b0e95bf
JB
147 /* We inline crc's for the free disk space cache */
148 if (ino != BTRFS_FREE_INO_OBJECTID)
149 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
150
0af3d00b
JB
151 leaf = path->nodes[0];
152 inode_item = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_inode_item);
154 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 155 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
156 sizeof(*inode_item));
157 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
158 btrfs_set_inode_size(leaf, inode_item, 0);
159 btrfs_set_inode_nbytes(leaf, inode_item, 0);
160 btrfs_set_inode_uid(leaf, inode_item, 0);
161 btrfs_set_inode_gid(leaf, inode_item, 0);
162 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 163 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
164 btrfs_set_inode_nlink(leaf, inode_item, 1);
165 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 166 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 167 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 168 btrfs_release_path(path);
0af3d00b
JB
169
170 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 171 key.offset = offset;
0af3d00b 172 key.type = 0;
0af3d00b
JB
173 ret = btrfs_insert_empty_item(trans, root, path, &key,
174 sizeof(struct btrfs_free_space_header));
175 if (ret < 0) {
b3b4aa74 176 btrfs_release_path(path);
0af3d00b
JB
177 return ret;
178 }
c9dc4c65 179
0af3d00b
JB
180 leaf = path->nodes[0];
181 header = btrfs_item_ptr(leaf, path->slots[0],
182 struct btrfs_free_space_header);
b159fa28 183 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b
JB
184 btrfs_set_free_space_key(leaf, header, &disk_key);
185 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 186 btrfs_release_path(path);
0af3d00b
JB
187
188 return 0;
189}
190
4ca75f1b 191int create_free_space_inode(struct btrfs_trans_handle *trans,
32da5386 192 struct btrfs_block_group *block_group,
0414efae
LZ
193 struct btrfs_path *path)
194{
195 int ret;
196 u64 ino;
197
4ca75f1b 198 ret = btrfs_find_free_objectid(trans->fs_info->tree_root, &ino);
0414efae
LZ
199 if (ret < 0)
200 return ret;
201
4ca75f1b 202 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
b3470b5d 203 ino, block_group->start);
0414efae
LZ
204}
205
2ff7e61e 206int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
7b61cd92 207 struct btrfs_block_rsv *rsv)
0af3d00b 208{
c8174313 209 u64 needed_bytes;
7b61cd92 210 int ret;
c8174313
JB
211
212 /* 1 for slack space, 1 for updating the inode */
2bd36e7b
JB
213 needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
214 btrfs_calc_metadata_size(fs_info, 1);
c8174313 215
7b61cd92
MX
216 spin_lock(&rsv->lock);
217 if (rsv->reserved < needed_bytes)
218 ret = -ENOSPC;
219 else
220 ret = 0;
221 spin_unlock(&rsv->lock);
4b286cd1 222 return ret;
7b61cd92
MX
223}
224
77ab86bf 225int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
32da5386 226 struct btrfs_block_group *block_group,
7b61cd92
MX
227 struct inode *inode)
228{
77ab86bf 229 struct btrfs_root *root = BTRFS_I(inode)->root;
7b61cd92 230 int ret = 0;
35c76642 231 bool locked = false;
1bbc621e 232
1bbc621e 233 if (block_group) {
21e75ffe
JM
234 struct btrfs_path *path = btrfs_alloc_path();
235
236 if (!path) {
237 ret = -ENOMEM;
238 goto fail;
239 }
35c76642 240 locked = true;
1bbc621e
CM
241 mutex_lock(&trans->transaction->cache_write_mutex);
242 if (!list_empty(&block_group->io_list)) {
243 list_del_init(&block_group->io_list);
244
afdb5718 245 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
246 btrfs_put_block_group(block_group);
247 }
248
249 /*
250 * now that we've truncated the cache away, its no longer
251 * setup or written
252 */
253 spin_lock(&block_group->lock);
254 block_group->disk_cache_state = BTRFS_DC_CLEAR;
255 spin_unlock(&block_group->lock);
21e75ffe 256 btrfs_free_path(path);
1bbc621e 257 }
0af3d00b 258
6ef06d27 259 btrfs_i_size_write(BTRFS_I(inode), 0);
7caef267 260 truncate_pagecache(inode, 0);
0af3d00b
JB
261
262 /*
f7e9e8fc
OS
263 * We skip the throttling logic for free space cache inodes, so we don't
264 * need to check for -EAGAIN.
0af3d00b
JB
265 */
266 ret = btrfs_truncate_inode_items(trans, root, inode,
267 0, BTRFS_EXTENT_DATA_KEY);
35c76642
FM
268 if (ret)
269 goto fail;
0af3d00b 270
82d5902d 271 ret = btrfs_update_inode(trans, root, inode);
1bbc621e 272
1bbc621e 273fail:
35c76642
FM
274 if (locked)
275 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 276 if (ret)
66642832 277 btrfs_abort_transaction(trans, ret);
c8174313 278
82d5902d 279 return ret;
0af3d00b
JB
280}
281
1d480538 282static void readahead_cache(struct inode *inode)
9d66e233
JB
283{
284 struct file_ra_state *ra;
285 unsigned long last_index;
286
287 ra = kzalloc(sizeof(*ra), GFP_NOFS);
288 if (!ra)
1d480538 289 return;
9d66e233
JB
290
291 file_ra_state_init(ra, inode->i_mapping);
09cbfeaf 292 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233
JB
293
294 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
295
296 kfree(ra);
9d66e233
JB
297}
298
4c6d1d85 299static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 300 int write)
a67509c3 301{
5349d6c3
MX
302 int num_pages;
303 int check_crcs = 0;
304
09cbfeaf 305 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 306
4a0cc7ca 307 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
5349d6c3
MX
308 check_crcs = 1;
309
8f6c72a9 310 /* Make sure we can fit our crcs and generation into the first page */
5349d6c3 311 if (write && check_crcs &&
8f6c72a9 312 (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
5349d6c3
MX
313 return -ENOSPC;
314
4c6d1d85 315 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 316
31e818fe 317 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
318 if (!io_ctl->pages)
319 return -ENOMEM;
5349d6c3
MX
320
321 io_ctl->num_pages = num_pages;
f15376df 322 io_ctl->fs_info = btrfs_sb(inode->i_sb);
5349d6c3 323 io_ctl->check_crcs = check_crcs;
c9dc4c65 324 io_ctl->inode = inode;
5349d6c3 325
a67509c3
JB
326 return 0;
327}
663faf9f 328ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
a67509c3 329
4c6d1d85 330static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
331{
332 kfree(io_ctl->pages);
c9dc4c65 333 io_ctl->pages = NULL;
a67509c3
JB
334}
335
4c6d1d85 336static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
337{
338 if (io_ctl->cur) {
a67509c3
JB
339 io_ctl->cur = NULL;
340 io_ctl->orig = NULL;
341 }
342}
343
4c6d1d85 344static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 345{
b12d6869 346 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 347 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 348 io_ctl->cur = page_address(io_ctl->page);
a67509c3 349 io_ctl->orig = io_ctl->cur;
09cbfeaf 350 io_ctl->size = PAGE_SIZE;
a67509c3 351 if (clear)
619a9742 352 clear_page(io_ctl->cur);
a67509c3
JB
353}
354
4c6d1d85 355static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
356{
357 int i;
358
359 io_ctl_unmap_page(io_ctl);
360
361 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
362 if (io_ctl->pages[i]) {
363 ClearPageChecked(io_ctl->pages[i]);
364 unlock_page(io_ctl->pages[i]);
09cbfeaf 365 put_page(io_ctl->pages[i]);
a1ee5a45 366 }
a67509c3
JB
367 }
368}
369
4c6d1d85 370static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
a67509c3
JB
371 int uptodate)
372{
373 struct page *page;
374 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
375 int i;
376
377 for (i = 0; i < io_ctl->num_pages; i++) {
378 page = find_or_create_page(inode->i_mapping, i, mask);
379 if (!page) {
380 io_ctl_drop_pages(io_ctl);
381 return -ENOMEM;
382 }
383 io_ctl->pages[i] = page;
384 if (uptodate && !PageUptodate(page)) {
385 btrfs_readpage(NULL, page);
386 lock_page(page);
3797136b
JB
387 if (page->mapping != inode->i_mapping) {
388 btrfs_err(BTRFS_I(inode)->root->fs_info,
389 "free space cache page truncated");
390 io_ctl_drop_pages(io_ctl);
391 return -EIO;
392 }
a67509c3 393 if (!PageUptodate(page)) {
efe120a0
FH
394 btrfs_err(BTRFS_I(inode)->root->fs_info,
395 "error reading free space cache");
a67509c3
JB
396 io_ctl_drop_pages(io_ctl);
397 return -EIO;
398 }
399 }
400 }
401
f7d61dcd
JB
402 for (i = 0; i < io_ctl->num_pages; i++) {
403 clear_page_dirty_for_io(io_ctl->pages[i]);
404 set_page_extent_mapped(io_ctl->pages[i]);
405 }
406
a67509c3
JB
407 return 0;
408}
409
4c6d1d85 410static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 411{
528c0327 412 __le64 *val;
a67509c3
JB
413
414 io_ctl_map_page(io_ctl, 1);
415
416 /*
5b0e95bf
JB
417 * Skip the csum areas. If we don't check crcs then we just have a
418 * 64bit chunk at the front of the first page.
a67509c3 419 */
5b0e95bf
JB
420 if (io_ctl->check_crcs) {
421 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
422 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
423 } else {
424 io_ctl->cur += sizeof(u64);
425 io_ctl->size -= sizeof(u64) * 2;
426 }
a67509c3
JB
427
428 val = io_ctl->cur;
429 *val = cpu_to_le64(generation);
430 io_ctl->cur += sizeof(u64);
a67509c3
JB
431}
432
4c6d1d85 433static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 434{
528c0327 435 __le64 *gen;
a67509c3 436
5b0e95bf
JB
437 /*
438 * Skip the crc area. If we don't check crcs then we just have a 64bit
439 * chunk at the front of the first page.
440 */
441 if (io_ctl->check_crcs) {
442 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
443 io_ctl->size -= sizeof(u64) +
444 (sizeof(u32) * io_ctl->num_pages);
445 } else {
446 io_ctl->cur += sizeof(u64);
447 io_ctl->size -= sizeof(u64) * 2;
448 }
a67509c3 449
a67509c3
JB
450 gen = io_ctl->cur;
451 if (le64_to_cpu(*gen) != generation) {
f15376df 452 btrfs_err_rl(io_ctl->fs_info,
94647322
DS
453 "space cache generation (%llu) does not match inode (%llu)",
454 *gen, generation);
a67509c3
JB
455 io_ctl_unmap_page(io_ctl);
456 return -EIO;
457 }
458 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
459 return 0;
460}
461
4c6d1d85 462static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
463{
464 u32 *tmp;
465 u32 crc = ~(u32)0;
466 unsigned offset = 0;
467
468 if (!io_ctl->check_crcs) {
469 io_ctl_unmap_page(io_ctl);
470 return;
471 }
472
473 if (index == 0)
cb54f257 474 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 475
4bb3c2e2
JT
476 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
477 btrfs_crc32c_final(crc, (u8 *)&crc);
5b0e95bf 478 io_ctl_unmap_page(io_ctl);
2b108268 479 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
480 tmp += index;
481 *tmp = crc;
5b0e95bf
JB
482}
483
4c6d1d85 484static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
485{
486 u32 *tmp, val;
487 u32 crc = ~(u32)0;
488 unsigned offset = 0;
489
490 if (!io_ctl->check_crcs) {
491 io_ctl_map_page(io_ctl, 0);
492 return 0;
493 }
494
495 if (index == 0)
496 offset = sizeof(u32) * io_ctl->num_pages;
497
2b108268 498 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
499 tmp += index;
500 val = *tmp;
5b0e95bf
JB
501
502 io_ctl_map_page(io_ctl, 0);
4bb3c2e2
JT
503 crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
504 btrfs_crc32c_final(crc, (u8 *)&crc);
5b0e95bf 505 if (val != crc) {
f15376df 506 btrfs_err_rl(io_ctl->fs_info,
94647322 507 "csum mismatch on free space cache");
5b0e95bf
JB
508 io_ctl_unmap_page(io_ctl);
509 return -EIO;
510 }
511
a67509c3
JB
512 return 0;
513}
514
4c6d1d85 515static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
516 void *bitmap)
517{
518 struct btrfs_free_space_entry *entry;
519
520 if (!io_ctl->cur)
521 return -ENOSPC;
522
523 entry = io_ctl->cur;
524 entry->offset = cpu_to_le64(offset);
525 entry->bytes = cpu_to_le64(bytes);
526 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
527 BTRFS_FREE_SPACE_EXTENT;
528 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
529 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
530
531 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
532 return 0;
533
5b0e95bf 534 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
535
536 /* No more pages to map */
537 if (io_ctl->index >= io_ctl->num_pages)
538 return 0;
539
540 /* map the next page */
541 io_ctl_map_page(io_ctl, 1);
542 return 0;
543}
544
4c6d1d85 545static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
546{
547 if (!io_ctl->cur)
548 return -ENOSPC;
549
550 /*
551 * If we aren't at the start of the current page, unmap this one and
552 * map the next one if there is any left.
553 */
554 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 555 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
556 if (io_ctl->index >= io_ctl->num_pages)
557 return -ENOSPC;
558 io_ctl_map_page(io_ctl, 0);
559 }
560
69d24804 561 copy_page(io_ctl->cur, bitmap);
5b0e95bf 562 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
563 if (io_ctl->index < io_ctl->num_pages)
564 io_ctl_map_page(io_ctl, 0);
565 return 0;
566}
567
4c6d1d85 568static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 569{
5b0e95bf
JB
570 /*
571 * If we're not on the boundary we know we've modified the page and we
572 * need to crc the page.
573 */
574 if (io_ctl->cur != io_ctl->orig)
575 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 else
577 io_ctl_unmap_page(io_ctl);
a67509c3
JB
578
579 while (io_ctl->index < io_ctl->num_pages) {
580 io_ctl_map_page(io_ctl, 1);
5b0e95bf 581 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
582 }
583}
584
4c6d1d85 585static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 586 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
587{
588 struct btrfs_free_space_entry *e;
2f120c05
JB
589 int ret;
590
591 if (!io_ctl->cur) {
592 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
593 if (ret)
594 return ret;
595 }
a67509c3
JB
596
597 e = io_ctl->cur;
598 entry->offset = le64_to_cpu(e->offset);
599 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 600 *type = e->type;
a67509c3
JB
601 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
602 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
603
604 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 605 return 0;
a67509c3
JB
606
607 io_ctl_unmap_page(io_ctl);
608
2f120c05 609 return 0;
a67509c3
JB
610}
611
4c6d1d85 612static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 613 struct btrfs_free_space *entry)
a67509c3 614{
5b0e95bf
JB
615 int ret;
616
5b0e95bf
JB
617 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
618 if (ret)
619 return ret;
620
69d24804 621 copy_page(entry->bitmap, io_ctl->cur);
a67509c3 622 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
623
624 return 0;
a67509c3
JB
625}
626
cd023e7b
JB
627/*
628 * Since we attach pinned extents after the fact we can have contiguous sections
629 * of free space that are split up in entries. This poses a problem with the
630 * tree logging stuff since it could have allocated across what appears to be 2
631 * entries since we would have merged the entries when adding the pinned extents
632 * back to the free space cache. So run through the space cache that we just
633 * loaded and merge contiguous entries. This will make the log replay stuff not
634 * blow up and it will make for nicer allocator behavior.
635 */
636static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
637{
638 struct btrfs_free_space *e, *prev = NULL;
639 struct rb_node *n;
640
641again:
642 spin_lock(&ctl->tree_lock);
643 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
644 e = rb_entry(n, struct btrfs_free_space, offset_index);
645 if (!prev)
646 goto next;
647 if (e->bitmap || prev->bitmap)
648 goto next;
649 if (prev->offset + prev->bytes == e->offset) {
650 unlink_free_space(ctl, prev);
651 unlink_free_space(ctl, e);
652 prev->bytes += e->bytes;
653 kmem_cache_free(btrfs_free_space_cachep, e);
654 link_free_space(ctl, prev);
655 prev = NULL;
656 spin_unlock(&ctl->tree_lock);
657 goto again;
658 }
659next:
660 prev = e;
661 }
662 spin_unlock(&ctl->tree_lock);
663}
664
48a3b636
ES
665static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
666 struct btrfs_free_space_ctl *ctl,
667 struct btrfs_path *path, u64 offset)
9d66e233 668{
3ffbd68c 669 struct btrfs_fs_info *fs_info = root->fs_info;
9d66e233
JB
670 struct btrfs_free_space_header *header;
671 struct extent_buffer *leaf;
4c6d1d85 672 struct btrfs_io_ctl io_ctl;
9d66e233 673 struct btrfs_key key;
a67509c3 674 struct btrfs_free_space *e, *n;
b76808fc 675 LIST_HEAD(bitmaps);
9d66e233
JB
676 u64 num_entries;
677 u64 num_bitmaps;
678 u64 generation;
a67509c3 679 u8 type;
f6a39829 680 int ret = 0;
9d66e233 681
9d66e233 682 /* Nothing in the space cache, goodbye */
0414efae 683 if (!i_size_read(inode))
a67509c3 684 return 0;
9d66e233
JB
685
686 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 687 key.offset = offset;
9d66e233
JB
688 key.type = 0;
689
690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 691 if (ret < 0)
a67509c3 692 return 0;
0414efae 693 else if (ret > 0) {
945d8962 694 btrfs_release_path(path);
a67509c3 695 return 0;
9d66e233
JB
696 }
697
0414efae
LZ
698 ret = -1;
699
9d66e233
JB
700 leaf = path->nodes[0];
701 header = btrfs_item_ptr(leaf, path->slots[0],
702 struct btrfs_free_space_header);
703 num_entries = btrfs_free_space_entries(leaf, header);
704 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
705 generation = btrfs_free_space_generation(leaf, header);
945d8962 706 btrfs_release_path(path);
9d66e233 707
e570fd27 708 if (!BTRFS_I(inode)->generation) {
0b246afa 709 btrfs_info(fs_info,
913e1535 710 "the free space cache file (%llu) is invalid, skip it",
e570fd27
MX
711 offset);
712 return 0;
713 }
714
9d66e233 715 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
716 btrfs_err(fs_info,
717 "free space inode generation (%llu) did not match free space cache generation (%llu)",
718 BTRFS_I(inode)->generation, generation);
a67509c3 719 return 0;
9d66e233
JB
720 }
721
722 if (!num_entries)
a67509c3 723 return 0;
9d66e233 724
f15376df 725 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
726 if (ret)
727 return ret;
728
1d480538 729 readahead_cache(inode);
9d66e233 730
a67509c3
JB
731 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
732 if (ret)
733 goto out;
9d66e233 734
5b0e95bf
JB
735 ret = io_ctl_check_crc(&io_ctl, 0);
736 if (ret)
737 goto free_cache;
738
a67509c3
JB
739 ret = io_ctl_check_generation(&io_ctl, generation);
740 if (ret)
741 goto free_cache;
9d66e233 742
a67509c3
JB
743 while (num_entries) {
744 e = kmem_cache_zalloc(btrfs_free_space_cachep,
745 GFP_NOFS);
746 if (!e)
9d66e233 747 goto free_cache;
9d66e233 748
5b0e95bf
JB
749 ret = io_ctl_read_entry(&io_ctl, e, &type);
750 if (ret) {
751 kmem_cache_free(btrfs_free_space_cachep, e);
752 goto free_cache;
753 }
754
a67509c3
JB
755 if (!e->bytes) {
756 kmem_cache_free(btrfs_free_space_cachep, e);
757 goto free_cache;
9d66e233 758 }
a67509c3
JB
759
760 if (type == BTRFS_FREE_SPACE_EXTENT) {
761 spin_lock(&ctl->tree_lock);
762 ret = link_free_space(ctl, e);
763 spin_unlock(&ctl->tree_lock);
764 if (ret) {
0b246afa 765 btrfs_err(fs_info,
c2cf52eb 766 "Duplicate entries in free space cache, dumping");
a67509c3 767 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
768 goto free_cache;
769 }
a67509c3 770 } else {
b12d6869 771 ASSERT(num_bitmaps);
a67509c3 772 num_bitmaps--;
3acd4850
CL
773 e->bitmap = kmem_cache_zalloc(
774 btrfs_free_space_bitmap_cachep, GFP_NOFS);
a67509c3
JB
775 if (!e->bitmap) {
776 kmem_cache_free(
777 btrfs_free_space_cachep, e);
9d66e233
JB
778 goto free_cache;
779 }
a67509c3
JB
780 spin_lock(&ctl->tree_lock);
781 ret = link_free_space(ctl, e);
782 ctl->total_bitmaps++;
783 ctl->op->recalc_thresholds(ctl);
784 spin_unlock(&ctl->tree_lock);
785 if (ret) {
0b246afa 786 btrfs_err(fs_info,
c2cf52eb 787 "Duplicate entries in free space cache, dumping");
dc89e982 788 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
789 goto free_cache;
790 }
a67509c3 791 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
792 }
793
a67509c3
JB
794 num_entries--;
795 }
9d66e233 796
2f120c05
JB
797 io_ctl_unmap_page(&io_ctl);
798
a67509c3
JB
799 /*
800 * We add the bitmaps at the end of the entries in order that
801 * the bitmap entries are added to the cache.
802 */
803 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 804 list_del_init(&e->list);
5b0e95bf
JB
805 ret = io_ctl_read_bitmap(&io_ctl, e);
806 if (ret)
807 goto free_cache;
9d66e233
JB
808 }
809
a67509c3 810 io_ctl_drop_pages(&io_ctl);
cd023e7b 811 merge_space_tree(ctl);
9d66e233
JB
812 ret = 1;
813out:
a67509c3 814 io_ctl_free(&io_ctl);
9d66e233 815 return ret;
9d66e233 816free_cache:
a67509c3 817 io_ctl_drop_pages(&io_ctl);
0414efae 818 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
819 goto out;
820}
821
32da5386 822int load_free_space_cache(struct btrfs_block_group *block_group)
0cb59c99 823{
bb6cb1c5 824 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 825 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
826 struct inode *inode;
827 struct btrfs_path *path;
5b0e95bf 828 int ret = 0;
0414efae 829 bool matched;
bf38be65 830 u64 used = block_group->used;
0414efae 831
0414efae
LZ
832 /*
833 * If this block group has been marked to be cleared for one reason or
834 * another then we can't trust the on disk cache, so just return.
835 */
9d66e233 836 spin_lock(&block_group->lock);
0414efae
LZ
837 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
838 spin_unlock(&block_group->lock);
839 return 0;
840 }
9d66e233 841 spin_unlock(&block_group->lock);
0414efae
LZ
842
843 path = btrfs_alloc_path();
844 if (!path)
845 return 0;
d53ba474
JB
846 path->search_commit_root = 1;
847 path->skip_locking = 1;
0414efae 848
4222ea71
FM
849 /*
850 * We must pass a path with search_commit_root set to btrfs_iget in
851 * order to avoid a deadlock when allocating extents for the tree root.
852 *
853 * When we are COWing an extent buffer from the tree root, when looking
854 * for a free extent, at extent-tree.c:find_free_extent(), we can find
855 * block group without its free space cache loaded. When we find one
856 * we must load its space cache which requires reading its free space
857 * cache's inode item from the root tree. If this inode item is located
858 * in the same leaf that we started COWing before, then we end up in
859 * deadlock on the extent buffer (trying to read lock it when we
860 * previously write locked it).
861 *
862 * It's safe to read the inode item using the commit root because
863 * block groups, once loaded, stay in memory forever (until they are
864 * removed) as well as their space caches once loaded. New block groups
865 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
866 * we will never try to read their inode item while the fs is mounted.
867 */
7949f339 868 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
869 if (IS_ERR(inode)) {
870 btrfs_free_path(path);
871 return 0;
872 }
873
5b0e95bf
JB
874 /* We may have converted the inode and made the cache invalid. */
875 spin_lock(&block_group->lock);
876 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
877 spin_unlock(&block_group->lock);
a7e221e9 878 btrfs_free_path(path);
5b0e95bf
JB
879 goto out;
880 }
881 spin_unlock(&block_group->lock);
882
0414efae 883 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
b3470b5d 884 path, block_group->start);
0414efae
LZ
885 btrfs_free_path(path);
886 if (ret <= 0)
887 goto out;
888
889 spin_lock(&ctl->tree_lock);
b3470b5d 890 matched = (ctl->free_space == (block_group->length - used -
0414efae
LZ
891 block_group->bytes_super));
892 spin_unlock(&ctl->tree_lock);
893
894 if (!matched) {
895 __btrfs_remove_free_space_cache(ctl);
5d163e0e
JM
896 btrfs_warn(fs_info,
897 "block group %llu has wrong amount of free space",
b3470b5d 898 block_group->start);
0414efae
LZ
899 ret = -1;
900 }
901out:
902 if (ret < 0) {
903 /* This cache is bogus, make sure it gets cleared */
904 spin_lock(&block_group->lock);
905 block_group->disk_cache_state = BTRFS_DC_CLEAR;
906 spin_unlock(&block_group->lock);
82d5902d 907 ret = 0;
0414efae 908
5d163e0e
JM
909 btrfs_warn(fs_info,
910 "failed to load free space cache for block group %llu, rebuilding it now",
b3470b5d 911 block_group->start);
0414efae
LZ
912 }
913
914 iput(inode);
915 return ret;
9d66e233
JB
916}
917
d4452bc5 918static noinline_for_stack
4c6d1d85 919int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5 920 struct btrfs_free_space_ctl *ctl,
32da5386 921 struct btrfs_block_group *block_group,
d4452bc5
CM
922 int *entries, int *bitmaps,
923 struct list_head *bitmap_list)
0cb59c99 924{
c09544e0 925 int ret;
d4452bc5 926 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 927 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 928 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 929 struct btrfs_trim_range *trim_entry;
be1a12a0 930
43be2146 931 /* Get the cluster for this block_group if it exists */
d4452bc5 932 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
933 cluster = list_entry(block_group->cluster_list.next,
934 struct btrfs_free_cluster,
935 block_group_list);
d4452bc5 936 }
43be2146 937
f75b130e 938 if (!node && cluster) {
1bbc621e
CM
939 cluster_locked = cluster;
940 spin_lock(&cluster_locked->lock);
f75b130e
JB
941 node = rb_first(&cluster->root);
942 cluster = NULL;
943 }
944
a67509c3
JB
945 /* Write out the extent entries */
946 while (node) {
947 struct btrfs_free_space *e;
0cb59c99 948
a67509c3 949 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 950 *entries += 1;
0cb59c99 951
d4452bc5 952 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
953 e->bitmap);
954 if (ret)
d4452bc5 955 goto fail;
2f356126 956
a67509c3 957 if (e->bitmap) {
d4452bc5
CM
958 list_add_tail(&e->list, bitmap_list);
959 *bitmaps += 1;
2f356126 960 }
a67509c3
JB
961 node = rb_next(node);
962 if (!node && cluster) {
963 node = rb_first(&cluster->root);
1bbc621e
CM
964 cluster_locked = cluster;
965 spin_lock(&cluster_locked->lock);
a67509c3 966 cluster = NULL;
43be2146 967 }
a67509c3 968 }
1bbc621e
CM
969 if (cluster_locked) {
970 spin_unlock(&cluster_locked->lock);
971 cluster_locked = NULL;
972 }
55507ce3
FM
973
974 /*
975 * Make sure we don't miss any range that was removed from our rbtree
976 * because trimming is running. Otherwise after a umount+mount (or crash
977 * after committing the transaction) we would leak free space and get
978 * an inconsistent free space cache report from fsck.
979 */
980 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
981 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
982 trim_entry->bytes, NULL);
983 if (ret)
984 goto fail;
985 *entries += 1;
986 }
987
d4452bc5
CM
988 return 0;
989fail:
1bbc621e
CM
990 if (cluster_locked)
991 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
992 return -ENOSPC;
993}
994
995static noinline_for_stack int
996update_cache_item(struct btrfs_trans_handle *trans,
997 struct btrfs_root *root,
998 struct inode *inode,
999 struct btrfs_path *path, u64 offset,
1000 int entries, int bitmaps)
1001{
1002 struct btrfs_key key;
1003 struct btrfs_free_space_header *header;
1004 struct extent_buffer *leaf;
1005 int ret;
1006
1007 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1008 key.offset = offset;
1009 key.type = 0;
1010
1011 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1012 if (ret < 0) {
1013 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
e182163d 1014 EXTENT_DELALLOC, 0, 0, NULL);
d4452bc5
CM
1015 goto fail;
1016 }
1017 leaf = path->nodes[0];
1018 if (ret > 0) {
1019 struct btrfs_key found_key;
1020 ASSERT(path->slots[0]);
1021 path->slots[0]--;
1022 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1023 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1024 found_key.offset != offset) {
1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
e182163d
OS
1026 inode->i_size - 1, EXTENT_DELALLOC, 0,
1027 0, NULL);
d4452bc5
CM
1028 btrfs_release_path(path);
1029 goto fail;
1030 }
1031 }
1032
1033 BTRFS_I(inode)->generation = trans->transid;
1034 header = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_free_space_header);
1036 btrfs_set_free_space_entries(leaf, header, entries);
1037 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1038 btrfs_set_free_space_generation(leaf, header, trans->transid);
1039 btrfs_mark_buffer_dirty(leaf);
1040 btrfs_release_path(path);
1041
1042 return 0;
1043
1044fail:
1045 return -1;
1046}
1047
6701bdb3 1048static noinline_for_stack int write_pinned_extent_entries(
32da5386 1049 struct btrfs_block_group *block_group,
4c6d1d85 1050 struct btrfs_io_ctl *io_ctl,
5349d6c3 1051 int *entries)
d4452bc5
CM
1052{
1053 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1054 struct extent_io_tree *unpin = NULL;
1055 int ret;
43be2146 1056
5349d6c3
MX
1057 if (!block_group)
1058 return 0;
1059
a67509c3
JB
1060 /*
1061 * We want to add any pinned extents to our free space cache
1062 * so we don't leak the space
d4452bc5 1063 *
db804f23
LZ
1064 * We shouldn't have switched the pinned extents yet so this is the
1065 * right one
1066 */
6701bdb3 1067 unpin = block_group->fs_info->pinned_extents;
db804f23 1068
b3470b5d 1069 start = block_group->start;
db804f23 1070
b3470b5d 1071 while (start < block_group->start + block_group->length) {
db804f23
LZ
1072 ret = find_first_extent_bit(unpin, start,
1073 &extent_start, &extent_end,
e6138876 1074 EXTENT_DIRTY, NULL);
5349d6c3
MX
1075 if (ret)
1076 return 0;
0cb59c99 1077
a67509c3 1078 /* This pinned extent is out of our range */
b3470b5d 1079 if (extent_start >= block_group->start + block_group->length)
5349d6c3 1080 return 0;
2f356126 1081
db804f23 1082 extent_start = max(extent_start, start);
b3470b5d
DS
1083 extent_end = min(block_group->start + block_group->length,
1084 extent_end + 1);
db804f23 1085 len = extent_end - extent_start;
0cb59c99 1086
d4452bc5
CM
1087 *entries += 1;
1088 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1089 if (ret)
5349d6c3 1090 return -ENOSPC;
0cb59c99 1091
db804f23 1092 start = extent_end;
a67509c3 1093 }
0cb59c99 1094
5349d6c3
MX
1095 return 0;
1096}
1097
1098static noinline_for_stack int
4c6d1d85 1099write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1100{
7ae1681e 1101 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1102 int ret;
1103
0cb59c99 1104 /* Write out the bitmaps */
7ae1681e 1105 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1106 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1107 if (ret)
5349d6c3 1108 return -ENOSPC;
0cb59c99 1109 list_del_init(&entry->list);
be1a12a0
JB
1110 }
1111
5349d6c3
MX
1112 return 0;
1113}
0cb59c99 1114
5349d6c3
MX
1115static int flush_dirty_cache(struct inode *inode)
1116{
1117 int ret;
be1a12a0 1118
0ef8b726 1119 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1120 if (ret)
0ef8b726 1121 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
e182163d 1122 EXTENT_DELALLOC, 0, 0, NULL);
0cb59c99 1123
5349d6c3 1124 return ret;
d4452bc5
CM
1125}
1126
1127static void noinline_for_stack
a3bdccc4 1128cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1129{
7ae1681e 1130 struct btrfs_free_space *entry, *next;
5349d6c3 1131
7ae1681e 1132 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1133 list_del_init(&entry->list);
a3bdccc4
CM
1134}
1135
1136static void noinline_for_stack
1137cleanup_write_cache_enospc(struct inode *inode,
1138 struct btrfs_io_ctl *io_ctl,
7bf1a159 1139 struct extent_state **cached_state)
a3bdccc4 1140{
d4452bc5
CM
1141 io_ctl_drop_pages(io_ctl);
1142 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
e43bbe5e 1143 i_size_read(inode) - 1, cached_state);
d4452bc5 1144}
549b4fdb 1145
afdb5718
JM
1146static int __btrfs_wait_cache_io(struct btrfs_root *root,
1147 struct btrfs_trans_handle *trans,
32da5386 1148 struct btrfs_block_group *block_group,
afdb5718
JM
1149 struct btrfs_io_ctl *io_ctl,
1150 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1151{
1152 int ret;
1153 struct inode *inode = io_ctl->inode;
1154
1bbc621e
CM
1155 if (!inode)
1156 return 0;
1157
c9dc4c65
CM
1158 /* Flush the dirty pages in the cache file. */
1159 ret = flush_dirty_cache(inode);
1160 if (ret)
1161 goto out;
1162
1163 /* Update the cache item to tell everyone this cache file is valid. */
1164 ret = update_cache_item(trans, root, inode, path, offset,
1165 io_ctl->entries, io_ctl->bitmaps);
1166out:
1167 io_ctl_free(io_ctl);
1168 if (ret) {
1169 invalidate_inode_pages2(inode->i_mapping);
1170 BTRFS_I(inode)->generation = 0;
1171 if (block_group) {
1172#ifdef DEBUG
3ffbd68c 1173 btrfs_err(root->fs_info,
0b246afa 1174 "failed to write free space cache for block group %llu",
b3470b5d 1175 block_group->start);
c9dc4c65
CM
1176#endif
1177 }
1178 }
1179 btrfs_update_inode(trans, root, inode);
1180
1181 if (block_group) {
1bbc621e
CM
1182 /* the dirty list is protected by the dirty_bgs_lock */
1183 spin_lock(&trans->transaction->dirty_bgs_lock);
1184
1185 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1186 spin_lock(&block_group->lock);
1187
1188 /*
1189 * only mark this as written if we didn't get put back on
1bbc621e
CM
1190 * the dirty list while waiting for IO. Otherwise our
1191 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1192 */
1193 if (!ret && list_empty(&block_group->dirty_list))
1194 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195 else if (ret)
1196 block_group->disk_cache_state = BTRFS_DC_ERROR;
1197
1198 spin_unlock(&block_group->lock);
1bbc621e 1199 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1200 io_ctl->inode = NULL;
1201 iput(inode);
1202 }
1203
1204 return ret;
1205
1206}
1207
afdb5718
JM
1208static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1209 struct btrfs_trans_handle *trans,
1210 struct btrfs_io_ctl *io_ctl,
1211 struct btrfs_path *path)
1212{
1213 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1214}
1215
1216int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
32da5386 1217 struct btrfs_block_group *block_group,
afdb5718
JM
1218 struct btrfs_path *path)
1219{
1220 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1221 block_group, &block_group->io_ctl,
b3470b5d 1222 path, block_group->start);
afdb5718
JM
1223}
1224
d4452bc5
CM
1225/**
1226 * __btrfs_write_out_cache - write out cached info to an inode
1227 * @root - the root the inode belongs to
1228 * @ctl - the free space cache we are going to write out
1229 * @block_group - the block_group for this cache if it belongs to a block_group
1230 * @trans - the trans handle
d4452bc5
CM
1231 *
1232 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1233 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1234 * or an errno if it was not.
d4452bc5
CM
1235 */
1236static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1237 struct btrfs_free_space_ctl *ctl,
32da5386 1238 struct btrfs_block_group *block_group,
c9dc4c65 1239 struct btrfs_io_ctl *io_ctl,
0e8d931a 1240 struct btrfs_trans_handle *trans)
d4452bc5
CM
1241{
1242 struct extent_state *cached_state = NULL;
5349d6c3 1243 LIST_HEAD(bitmap_list);
d4452bc5
CM
1244 int entries = 0;
1245 int bitmaps = 0;
1246 int ret;
c9dc4c65 1247 int must_iput = 0;
d4452bc5
CM
1248
1249 if (!i_size_read(inode))
b8605454 1250 return -EIO;
d4452bc5 1251
c9dc4c65 1252 WARN_ON(io_ctl->pages);
f15376df 1253 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1254 if (ret)
b8605454 1255 return ret;
d4452bc5 1256
e570fd27
MX
1257 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1258 down_write(&block_group->data_rwsem);
1259 spin_lock(&block_group->lock);
1260 if (block_group->delalloc_bytes) {
1261 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1262 spin_unlock(&block_group->lock);
1263 up_write(&block_group->data_rwsem);
1264 BTRFS_I(inode)->generation = 0;
1265 ret = 0;
c9dc4c65 1266 must_iput = 1;
e570fd27
MX
1267 goto out;
1268 }
1269 spin_unlock(&block_group->lock);
1270 }
1271
d4452bc5 1272 /* Lock all pages first so we can lock the extent safely. */
b8605454
OS
1273 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1274 if (ret)
b77000ed 1275 goto out_unlock;
d4452bc5
CM
1276
1277 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
ff13db41 1278 &cached_state);
d4452bc5 1279
c9dc4c65 1280 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1281
55507ce3 1282 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1283 /* Write out the extent entries in the free space cache */
1bbc621e 1284 spin_lock(&ctl->tree_lock);
c9dc4c65 1285 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1286 block_group, &entries, &bitmaps,
1287 &bitmap_list);
a3bdccc4
CM
1288 if (ret)
1289 goto out_nospc_locked;
d4452bc5 1290
5349d6c3
MX
1291 /*
1292 * Some spaces that are freed in the current transaction are pinned,
1293 * they will be added into free space cache after the transaction is
1294 * committed, we shouldn't lose them.
1bbc621e
CM
1295 *
1296 * If this changes while we are working we'll get added back to
1297 * the dirty list and redo it. No locking needed
5349d6c3 1298 */
6701bdb3 1299 ret = write_pinned_extent_entries(block_group, io_ctl, &entries);
a3bdccc4
CM
1300 if (ret)
1301 goto out_nospc_locked;
5349d6c3 1302
55507ce3
FM
1303 /*
1304 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1305 * locked while doing it because a concurrent trim can be manipulating
1306 * or freeing the bitmap.
1307 */
c9dc4c65 1308 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1309 spin_unlock(&ctl->tree_lock);
55507ce3 1310 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1311 if (ret)
1312 goto out_nospc;
1313
1314 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1315 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1316
5349d6c3 1317 /* Everything is written out, now we dirty the pages in the file. */
2ff7e61e
JM
1318 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1319 i_size_read(inode), &cached_state);
5349d6c3 1320 if (ret)
d4452bc5 1321 goto out_nospc;
5349d6c3 1322
e570fd27
MX
1323 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1324 up_write(&block_group->data_rwsem);
5349d6c3
MX
1325 /*
1326 * Release the pages and unlock the extent, we will flush
1327 * them out later
1328 */
c9dc4c65 1329 io_ctl_drop_pages(io_ctl);
5349d6c3
MX
1330
1331 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
e43bbe5e 1332 i_size_read(inode) - 1, &cached_state);
5349d6c3 1333
c9dc4c65
CM
1334 /*
1335 * at this point the pages are under IO and we're happy,
1336 * The caller is responsible for waiting on them and updating the
1337 * the cache and the inode
1338 */
1339 io_ctl->entries = entries;
1340 io_ctl->bitmaps = bitmaps;
1341
1342 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1343 if (ret)
d4452bc5
CM
1344 goto out;
1345
c9dc4c65
CM
1346 return 0;
1347
2f356126 1348out:
c9dc4c65
CM
1349 io_ctl->inode = NULL;
1350 io_ctl_free(io_ctl);
5349d6c3 1351 if (ret) {
a67509c3 1352 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1353 BTRFS_I(inode)->generation = 0;
1354 }
0cb59c99 1355 btrfs_update_inode(trans, root, inode);
c9dc4c65
CM
1356 if (must_iput)
1357 iput(inode);
5349d6c3 1358 return ret;
a67509c3 1359
a3bdccc4
CM
1360out_nospc_locked:
1361 cleanup_bitmap_list(&bitmap_list);
1362 spin_unlock(&ctl->tree_lock);
1363 mutex_unlock(&ctl->cache_writeout_mutex);
1364
a67509c3 1365out_nospc:
7bf1a159 1366 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27 1367
b77000ed 1368out_unlock:
e570fd27
MX
1369 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1370 up_write(&block_group->data_rwsem);
1371
a67509c3 1372 goto out;
0414efae
LZ
1373}
1374
fe041534 1375int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
32da5386 1376 struct btrfs_block_group *block_group,
0414efae
LZ
1377 struct btrfs_path *path)
1378{
fe041534 1379 struct btrfs_fs_info *fs_info = trans->fs_info;
0414efae
LZ
1380 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1381 struct inode *inode;
1382 int ret = 0;
1383
0414efae
LZ
1384 spin_lock(&block_group->lock);
1385 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1386 spin_unlock(&block_group->lock);
e570fd27
MX
1387 return 0;
1388 }
0414efae
LZ
1389 spin_unlock(&block_group->lock);
1390
7949f339 1391 inode = lookup_free_space_inode(block_group, path);
0414efae
LZ
1392 if (IS_ERR(inode))
1393 return 0;
1394
77ab86bf
JM
1395 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1396 block_group, &block_group->io_ctl, trans);
c09544e0 1397 if (ret) {
c09544e0 1398#ifdef DEBUG
0b246afa
JM
1399 btrfs_err(fs_info,
1400 "failed to write free space cache for block group %llu",
b3470b5d 1401 block_group->start);
c09544e0 1402#endif
c9dc4c65
CM
1403 spin_lock(&block_group->lock);
1404 block_group->disk_cache_state = BTRFS_DC_ERROR;
1405 spin_unlock(&block_group->lock);
1406
1407 block_group->io_ctl.inode = NULL;
1408 iput(inode);
0414efae
LZ
1409 }
1410
c9dc4c65
CM
1411 /*
1412 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1413 * to wait for IO and put the inode
1414 */
1415
0cb59c99
JB
1416 return ret;
1417}
1418
34d52cb6 1419static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1420 u64 offset)
0f9dd46c 1421{
b12d6869 1422 ASSERT(offset >= bitmap_start);
96303081 1423 offset -= bitmap_start;
34d52cb6 1424 return (unsigned long)(div_u64(offset, unit));
96303081 1425}
0f9dd46c 1426
34d52cb6 1427static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1428{
34d52cb6 1429 return (unsigned long)(div_u64(bytes, unit));
96303081 1430}
0f9dd46c 1431
34d52cb6 1432static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1433 u64 offset)
1434{
1435 u64 bitmap_start;
0ef6447a 1436 u64 bytes_per_bitmap;
0f9dd46c 1437
34d52cb6
LZ
1438 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1439 bitmap_start = offset - ctl->start;
0ef6447a 1440 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1441 bitmap_start *= bytes_per_bitmap;
34d52cb6 1442 bitmap_start += ctl->start;
0f9dd46c 1443
96303081 1444 return bitmap_start;
0f9dd46c
JB
1445}
1446
96303081
JB
1447static int tree_insert_offset(struct rb_root *root, u64 offset,
1448 struct rb_node *node, int bitmap)
0f9dd46c
JB
1449{
1450 struct rb_node **p = &root->rb_node;
1451 struct rb_node *parent = NULL;
1452 struct btrfs_free_space *info;
1453
1454 while (*p) {
1455 parent = *p;
96303081 1456 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1457
96303081 1458 if (offset < info->offset) {
0f9dd46c 1459 p = &(*p)->rb_left;
96303081 1460 } else if (offset > info->offset) {
0f9dd46c 1461 p = &(*p)->rb_right;
96303081
JB
1462 } else {
1463 /*
1464 * we could have a bitmap entry and an extent entry
1465 * share the same offset. If this is the case, we want
1466 * the extent entry to always be found first if we do a
1467 * linear search through the tree, since we want to have
1468 * the quickest allocation time, and allocating from an
1469 * extent is faster than allocating from a bitmap. So
1470 * if we're inserting a bitmap and we find an entry at
1471 * this offset, we want to go right, or after this entry
1472 * logically. If we are inserting an extent and we've
1473 * found a bitmap, we want to go left, or before
1474 * logically.
1475 */
1476 if (bitmap) {
207dde82
JB
1477 if (info->bitmap) {
1478 WARN_ON_ONCE(1);
1479 return -EEXIST;
1480 }
96303081
JB
1481 p = &(*p)->rb_right;
1482 } else {
207dde82
JB
1483 if (!info->bitmap) {
1484 WARN_ON_ONCE(1);
1485 return -EEXIST;
1486 }
96303081
JB
1487 p = &(*p)->rb_left;
1488 }
1489 }
0f9dd46c
JB
1490 }
1491
1492 rb_link_node(node, parent, p);
1493 rb_insert_color(node, root);
1494
1495 return 0;
1496}
1497
1498/*
70cb0743
JB
1499 * searches the tree for the given offset.
1500 *
96303081
JB
1501 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1502 * want a section that has at least bytes size and comes at or after the given
1503 * offset.
0f9dd46c 1504 */
96303081 1505static struct btrfs_free_space *
34d52cb6 1506tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1507 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1508{
34d52cb6 1509 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1510 struct btrfs_free_space *entry, *prev = NULL;
1511
1512 /* find entry that is closest to the 'offset' */
1513 while (1) {
1514 if (!n) {
1515 entry = NULL;
1516 break;
1517 }
0f9dd46c 1518
0f9dd46c 1519 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1520 prev = entry;
0f9dd46c 1521
96303081 1522 if (offset < entry->offset)
0f9dd46c 1523 n = n->rb_left;
96303081 1524 else if (offset > entry->offset)
0f9dd46c 1525 n = n->rb_right;
96303081 1526 else
0f9dd46c 1527 break;
0f9dd46c
JB
1528 }
1529
96303081
JB
1530 if (bitmap_only) {
1531 if (!entry)
1532 return NULL;
1533 if (entry->bitmap)
1534 return entry;
0f9dd46c 1535
96303081
JB
1536 /*
1537 * bitmap entry and extent entry may share same offset,
1538 * in that case, bitmap entry comes after extent entry.
1539 */
1540 n = rb_next(n);
1541 if (!n)
1542 return NULL;
1543 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1544 if (entry->offset != offset)
1545 return NULL;
0f9dd46c 1546
96303081
JB
1547 WARN_ON(!entry->bitmap);
1548 return entry;
1549 } else if (entry) {
1550 if (entry->bitmap) {
0f9dd46c 1551 /*
96303081
JB
1552 * if previous extent entry covers the offset,
1553 * we should return it instead of the bitmap entry
0f9dd46c 1554 */
de6c4115
MX
1555 n = rb_prev(&entry->offset_index);
1556 if (n) {
96303081
JB
1557 prev = rb_entry(n, struct btrfs_free_space,
1558 offset_index);
de6c4115
MX
1559 if (!prev->bitmap &&
1560 prev->offset + prev->bytes > offset)
1561 entry = prev;
0f9dd46c 1562 }
96303081
JB
1563 }
1564 return entry;
1565 }
1566
1567 if (!prev)
1568 return NULL;
1569
1570 /* find last entry before the 'offset' */
1571 entry = prev;
1572 if (entry->offset > offset) {
1573 n = rb_prev(&entry->offset_index);
1574 if (n) {
1575 entry = rb_entry(n, struct btrfs_free_space,
1576 offset_index);
b12d6869 1577 ASSERT(entry->offset <= offset);
0f9dd46c 1578 } else {
96303081
JB
1579 if (fuzzy)
1580 return entry;
1581 else
1582 return NULL;
0f9dd46c
JB
1583 }
1584 }
1585
96303081 1586 if (entry->bitmap) {
de6c4115
MX
1587 n = rb_prev(&entry->offset_index);
1588 if (n) {
96303081
JB
1589 prev = rb_entry(n, struct btrfs_free_space,
1590 offset_index);
de6c4115
MX
1591 if (!prev->bitmap &&
1592 prev->offset + prev->bytes > offset)
1593 return prev;
96303081 1594 }
34d52cb6 1595 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1596 return entry;
1597 } else if (entry->offset + entry->bytes > offset)
1598 return entry;
1599
1600 if (!fuzzy)
1601 return NULL;
1602
1603 while (1) {
1604 if (entry->bitmap) {
1605 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1606 ctl->unit > offset)
96303081
JB
1607 break;
1608 } else {
1609 if (entry->offset + entry->bytes > offset)
1610 break;
1611 }
1612
1613 n = rb_next(&entry->offset_index);
1614 if (!n)
1615 return NULL;
1616 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1617 }
1618 return entry;
0f9dd46c
JB
1619}
1620
f333adb5 1621static inline void
34d52cb6 1622__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1623 struct btrfs_free_space *info)
0f9dd46c 1624{
34d52cb6
LZ
1625 rb_erase(&info->offset_index, &ctl->free_space_offset);
1626 ctl->free_extents--;
f333adb5
LZ
1627}
1628
34d52cb6 1629static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1630 struct btrfs_free_space *info)
1631{
34d52cb6
LZ
1632 __unlink_free_space(ctl, info);
1633 ctl->free_space -= info->bytes;
0f9dd46c
JB
1634}
1635
34d52cb6 1636static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1637 struct btrfs_free_space *info)
1638{
1639 int ret = 0;
1640
b12d6869 1641 ASSERT(info->bytes || info->bitmap);
34d52cb6 1642 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1643 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1644 if (ret)
1645 return ret;
1646
34d52cb6
LZ
1647 ctl->free_space += info->bytes;
1648 ctl->free_extents++;
96303081
JB
1649 return ret;
1650}
1651
34d52cb6 1652static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1653{
32da5386 1654 struct btrfs_block_group *block_group = ctl->private;
25891f79
JB
1655 u64 max_bytes;
1656 u64 bitmap_bytes;
1657 u64 extent_bytes;
b3470b5d 1658 u64 size = block_group->length;
0ef6447a
FX
1659 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1660 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
34d52cb6 1661
0ef6447a 1662 max_bitmaps = max_t(u64, max_bitmaps, 1);
dde5740f 1663
b12d6869 1664 ASSERT(ctl->total_bitmaps <= max_bitmaps);
96303081
JB
1665
1666 /*
1667 * The goal is to keep the total amount of memory used per 1gb of space
1668 * at or below 32k, so we need to adjust how much memory we allow to be
1669 * used by extent based free space tracking
1670 */
ee22184b 1671 if (size < SZ_1G)
8eb2d829
LZ
1672 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1673 else
ee22184b 1674 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
96303081 1675
25891f79
JB
1676 /*
1677 * we want to account for 1 more bitmap than what we have so we can make
1678 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1679 * we add more bitmaps.
1680 */
b9ef22de 1681 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
96303081 1682
25891f79 1683 if (bitmap_bytes >= max_bytes) {
34d52cb6 1684 ctl->extents_thresh = 0;
25891f79
JB
1685 return;
1686 }
96303081 1687
25891f79 1688 /*
f8c269d7 1689 * we want the extent entry threshold to always be at most 1/2 the max
25891f79
JB
1690 * bytes we can have, or whatever is less than that.
1691 */
1692 extent_bytes = max_bytes - bitmap_bytes;
f8c269d7 1693 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
96303081 1694
34d52cb6 1695 ctl->extents_thresh =
f8c269d7 1696 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
96303081
JB
1697}
1698
bb3ac5a4
MX
1699static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1700 struct btrfs_free_space *info,
1701 u64 offset, u64 bytes)
96303081 1702{
f38b6e75 1703 unsigned long start, count;
96303081 1704
34d52cb6
LZ
1705 start = offset_to_bit(info->offset, ctl->unit, offset);
1706 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1707 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1708
f38b6e75 1709 bitmap_clear(info->bitmap, start, count);
96303081
JB
1710
1711 info->bytes -= bytes;
553cceb4
JB
1712 if (info->max_extent_size > ctl->unit)
1713 info->max_extent_size = 0;
bb3ac5a4
MX
1714}
1715
1716static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1717 struct btrfs_free_space *info, u64 offset,
1718 u64 bytes)
1719{
1720 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1721 ctl->free_space -= bytes;
96303081
JB
1722}
1723
34d52cb6 1724static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1725 struct btrfs_free_space *info, u64 offset,
1726 u64 bytes)
96303081 1727{
f38b6e75 1728 unsigned long start, count;
96303081 1729
34d52cb6
LZ
1730 start = offset_to_bit(info->offset, ctl->unit, offset);
1731 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1732 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1733
f38b6e75 1734 bitmap_set(info->bitmap, start, count);
96303081
JB
1735
1736 info->bytes += bytes;
34d52cb6 1737 ctl->free_space += bytes;
96303081
JB
1738}
1739
a4820398
MX
1740/*
1741 * If we can not find suitable extent, we will use bytes to record
1742 * the size of the max extent.
1743 */
34d52cb6 1744static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1745 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1746 u64 *bytes, bool for_alloc)
96303081
JB
1747{
1748 unsigned long found_bits = 0;
a4820398 1749 unsigned long max_bits = 0;
96303081
JB
1750 unsigned long bits, i;
1751 unsigned long next_zero;
a4820398 1752 unsigned long extent_bits;
96303081 1753
cef40483
JB
1754 /*
1755 * Skip searching the bitmap if we don't have a contiguous section that
1756 * is large enough for this allocation.
1757 */
0584f718
JB
1758 if (for_alloc &&
1759 bitmap_info->max_extent_size &&
cef40483
JB
1760 bitmap_info->max_extent_size < *bytes) {
1761 *bytes = bitmap_info->max_extent_size;
1762 return -1;
1763 }
1764
34d52cb6 1765 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1766 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1767 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1768
ebb3dad4 1769 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1770 if (for_alloc && bits == 1) {
1771 found_bits = 1;
1772 break;
1773 }
96303081
JB
1774 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1775 BITS_PER_BITMAP, i);
a4820398
MX
1776 extent_bits = next_zero - i;
1777 if (extent_bits >= bits) {
1778 found_bits = extent_bits;
96303081 1779 break;
a4820398
MX
1780 } else if (extent_bits > max_bits) {
1781 max_bits = extent_bits;
96303081
JB
1782 }
1783 i = next_zero;
1784 }
1785
1786 if (found_bits) {
34d52cb6
LZ
1787 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1788 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1789 return 0;
1790 }
1791
a4820398 1792 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 1793 bitmap_info->max_extent_size = *bytes;
96303081
JB
1794 return -1;
1795}
1796
ad22cf6e
JB
1797static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1798{
1799 if (entry->bitmap)
1800 return entry->max_extent_size;
1801 return entry->bytes;
1802}
1803
a4820398 1804/* Cache the size of the max extent in bytes */
34d52cb6 1805static struct btrfs_free_space *
53b381b3 1806find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
a4820398 1807 unsigned long align, u64 *max_extent_size)
96303081
JB
1808{
1809 struct btrfs_free_space *entry;
1810 struct rb_node *node;
53b381b3
DW
1811 u64 tmp;
1812 u64 align_off;
96303081
JB
1813 int ret;
1814
34d52cb6 1815 if (!ctl->free_space_offset.rb_node)
a4820398 1816 goto out;
96303081 1817
34d52cb6 1818 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081 1819 if (!entry)
a4820398 1820 goto out;
96303081
JB
1821
1822 for (node = &entry->offset_index; node; node = rb_next(node)) {
1823 entry = rb_entry(node, struct btrfs_free_space, offset_index);
a4820398 1824 if (entry->bytes < *bytes) {
ad22cf6e
JB
1825 *max_extent_size = max(get_max_extent_size(entry),
1826 *max_extent_size);
96303081 1827 continue;
a4820398 1828 }
96303081 1829
53b381b3
DW
1830 /* make sure the space returned is big enough
1831 * to match our requested alignment
1832 */
1833 if (*bytes >= align) {
a4820398 1834 tmp = entry->offset - ctl->start + align - 1;
47c5713f 1835 tmp = div64_u64(tmp, align);
53b381b3
DW
1836 tmp = tmp * align + ctl->start;
1837 align_off = tmp - entry->offset;
1838 } else {
1839 align_off = 0;
1840 tmp = entry->offset;
1841 }
1842
a4820398 1843 if (entry->bytes < *bytes + align_off) {
ad22cf6e
JB
1844 *max_extent_size = max(get_max_extent_size(entry),
1845 *max_extent_size);
53b381b3 1846 continue;
a4820398 1847 }
53b381b3 1848
96303081 1849 if (entry->bitmap) {
a4820398
MX
1850 u64 size = *bytes;
1851
0584f718 1852 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
1853 if (!ret) {
1854 *offset = tmp;
a4820398 1855 *bytes = size;
96303081 1856 return entry;
ad22cf6e
JB
1857 } else {
1858 *max_extent_size =
1859 max(get_max_extent_size(entry),
1860 *max_extent_size);
53b381b3 1861 }
96303081
JB
1862 continue;
1863 }
1864
53b381b3
DW
1865 *offset = tmp;
1866 *bytes = entry->bytes - align_off;
96303081
JB
1867 return entry;
1868 }
a4820398 1869out:
96303081
JB
1870 return NULL;
1871}
1872
34d52cb6 1873static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1874 struct btrfs_free_space *info, u64 offset)
1875{
34d52cb6 1876 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1877 info->bytes = 0;
f2d0f676 1878 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1879 link_free_space(ctl, info);
1880 ctl->total_bitmaps++;
96303081 1881
34d52cb6 1882 ctl->op->recalc_thresholds(ctl);
96303081
JB
1883}
1884
34d52cb6 1885static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1886 struct btrfs_free_space *bitmap_info)
1887{
34d52cb6 1888 unlink_free_space(ctl, bitmap_info);
3acd4850 1889 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
dc89e982 1890 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1891 ctl->total_bitmaps--;
1892 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1893}
1894
34d52cb6 1895static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1896 struct btrfs_free_space *bitmap_info,
1897 u64 *offset, u64 *bytes)
1898{
1899 u64 end;
6606bb97
JB
1900 u64 search_start, search_bytes;
1901 int ret;
96303081
JB
1902
1903again:
34d52cb6 1904 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1905
6606bb97 1906 /*
bdb7d303
JB
1907 * We need to search for bits in this bitmap. We could only cover some
1908 * of the extent in this bitmap thanks to how we add space, so we need
1909 * to search for as much as it as we can and clear that amount, and then
1910 * go searching for the next bit.
6606bb97
JB
1911 */
1912 search_start = *offset;
bdb7d303 1913 search_bytes = ctl->unit;
13dbc089 1914 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
1915 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1916 false);
b50c6e25
JB
1917 if (ret < 0 || search_start != *offset)
1918 return -EINVAL;
6606bb97 1919
bdb7d303
JB
1920 /* We may have found more bits than what we need */
1921 search_bytes = min(search_bytes, *bytes);
1922
1923 /* Cannot clear past the end of the bitmap */
1924 search_bytes = min(search_bytes, end - search_start + 1);
1925
1926 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1927 *offset += search_bytes;
1928 *bytes -= search_bytes;
96303081
JB
1929
1930 if (*bytes) {
6606bb97 1931 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1932 if (!bitmap_info->bytes)
34d52cb6 1933 free_bitmap(ctl, bitmap_info);
96303081 1934
6606bb97
JB
1935 /*
1936 * no entry after this bitmap, but we still have bytes to
1937 * remove, so something has gone wrong.
1938 */
1939 if (!next)
96303081
JB
1940 return -EINVAL;
1941
6606bb97
JB
1942 bitmap_info = rb_entry(next, struct btrfs_free_space,
1943 offset_index);
1944
1945 /*
1946 * if the next entry isn't a bitmap we need to return to let the
1947 * extent stuff do its work.
1948 */
96303081
JB
1949 if (!bitmap_info->bitmap)
1950 return -EAGAIN;
1951
6606bb97
JB
1952 /*
1953 * Ok the next item is a bitmap, but it may not actually hold
1954 * the information for the rest of this free space stuff, so
1955 * look for it, and if we don't find it return so we can try
1956 * everything over again.
1957 */
1958 search_start = *offset;
bdb7d303 1959 search_bytes = ctl->unit;
34d52cb6 1960 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 1961 &search_bytes, false);
6606bb97
JB
1962 if (ret < 0 || search_start != *offset)
1963 return -EAGAIN;
1964
96303081 1965 goto again;
edf6e2d1 1966 } else if (!bitmap_info->bytes)
34d52cb6 1967 free_bitmap(ctl, bitmap_info);
96303081
JB
1968
1969 return 0;
1970}
1971
2cdc342c
JB
1972static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1973 struct btrfs_free_space *info, u64 offset,
1974 u64 bytes)
1975{
1976 u64 bytes_to_set = 0;
1977 u64 end;
1978
1979 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1980
1981 bytes_to_set = min(end - offset, bytes);
1982
1983 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1984
cef40483
JB
1985 /*
1986 * We set some bytes, we have no idea what the max extent size is
1987 * anymore.
1988 */
1989 info->max_extent_size = 0;
1990
2cdc342c
JB
1991 return bytes_to_set;
1992
1993}
1994
34d52cb6
LZ
1995static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1996 struct btrfs_free_space *info)
96303081 1997{
32da5386 1998 struct btrfs_block_group *block_group = ctl->private;
0b246afa 1999 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
2000 bool forced = false;
2001
2002#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 2003 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
2004 forced = true;
2005#endif
96303081
JB
2006
2007 /*
2008 * If we are below the extents threshold then we can add this as an
2009 * extent, and don't have to deal with the bitmap
2010 */
d0bd4560 2011 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
2012 /*
2013 * If this block group has some small extents we don't want to
2014 * use up all of our free slots in the cache with them, we want
01327610 2015 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
2016 * of cache left then go ahead an dadd them, no sense in adding
2017 * the overhead of a bitmap if we don't have to.
2018 */
0b246afa 2019 if (info->bytes <= fs_info->sectorsize * 4) {
34d52cb6
LZ
2020 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2021 return false;
32cb0840 2022 } else {
34d52cb6 2023 return false;
32cb0840
JB
2024 }
2025 }
96303081
JB
2026
2027 /*
dde5740f
JB
2028 * The original block groups from mkfs can be really small, like 8
2029 * megabytes, so don't bother with a bitmap for those entries. However
2030 * some block groups can be smaller than what a bitmap would cover but
2031 * are still large enough that they could overflow the 32k memory limit,
2032 * so allow those block groups to still be allowed to have a bitmap
2033 * entry.
96303081 2034 */
b3470b5d 2035 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
34d52cb6
LZ
2036 return false;
2037
2038 return true;
2039}
2040
20e5506b 2041static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2042 .recalc_thresholds = recalculate_thresholds,
2043 .use_bitmap = use_bitmap,
2044};
2045
34d52cb6
LZ
2046static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2047 struct btrfs_free_space *info)
2048{
2049 struct btrfs_free_space *bitmap_info;
32da5386 2050 struct btrfs_block_group *block_group = NULL;
34d52cb6 2051 int added = 0;
2cdc342c 2052 u64 bytes, offset, bytes_added;
34d52cb6 2053 int ret;
96303081
JB
2054
2055 bytes = info->bytes;
2056 offset = info->offset;
2057
34d52cb6
LZ
2058 if (!ctl->op->use_bitmap(ctl, info))
2059 return 0;
2060
2cdc342c
JB
2061 if (ctl->op == &free_space_op)
2062 block_group = ctl->private;
38e87880 2063again:
2cdc342c
JB
2064 /*
2065 * Since we link bitmaps right into the cluster we need to see if we
2066 * have a cluster here, and if so and it has our bitmap we need to add
2067 * the free space to that bitmap.
2068 */
2069 if (block_group && !list_empty(&block_group->cluster_list)) {
2070 struct btrfs_free_cluster *cluster;
2071 struct rb_node *node;
2072 struct btrfs_free_space *entry;
2073
2074 cluster = list_entry(block_group->cluster_list.next,
2075 struct btrfs_free_cluster,
2076 block_group_list);
2077 spin_lock(&cluster->lock);
2078 node = rb_first(&cluster->root);
2079 if (!node) {
2080 spin_unlock(&cluster->lock);
38e87880 2081 goto no_cluster_bitmap;
2cdc342c
JB
2082 }
2083
2084 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2085 if (!entry->bitmap) {
2086 spin_unlock(&cluster->lock);
38e87880 2087 goto no_cluster_bitmap;
2cdc342c
JB
2088 }
2089
2090 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2091 bytes_added = add_bytes_to_bitmap(ctl, entry,
2092 offset, bytes);
2093 bytes -= bytes_added;
2094 offset += bytes_added;
2095 }
2096 spin_unlock(&cluster->lock);
2097 if (!bytes) {
2098 ret = 1;
2099 goto out;
2100 }
2101 }
38e87880
CM
2102
2103no_cluster_bitmap:
34d52cb6 2104 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2105 1, 0);
2106 if (!bitmap_info) {
b12d6869 2107 ASSERT(added == 0);
96303081
JB
2108 goto new_bitmap;
2109 }
2110
2cdc342c
JB
2111 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2112 bytes -= bytes_added;
2113 offset += bytes_added;
2114 added = 0;
96303081
JB
2115
2116 if (!bytes) {
2117 ret = 1;
2118 goto out;
2119 } else
2120 goto again;
2121
2122new_bitmap:
2123 if (info && info->bitmap) {
34d52cb6 2124 add_new_bitmap(ctl, info, offset);
96303081
JB
2125 added = 1;
2126 info = NULL;
2127 goto again;
2128 } else {
34d52cb6 2129 spin_unlock(&ctl->tree_lock);
96303081
JB
2130
2131 /* no pre-allocated info, allocate a new one */
2132 if (!info) {
dc89e982
JB
2133 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2134 GFP_NOFS);
96303081 2135 if (!info) {
34d52cb6 2136 spin_lock(&ctl->tree_lock);
96303081
JB
2137 ret = -ENOMEM;
2138 goto out;
2139 }
2140 }
2141
2142 /* allocate the bitmap */
3acd4850
CL
2143 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2144 GFP_NOFS);
34d52cb6 2145 spin_lock(&ctl->tree_lock);
96303081
JB
2146 if (!info->bitmap) {
2147 ret = -ENOMEM;
2148 goto out;
2149 }
2150 goto again;
2151 }
2152
2153out:
2154 if (info) {
3acd4850
CL
2155 if (info->bitmap)
2156 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2157 info->bitmap);
dc89e982 2158 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2159 }
0f9dd46c
JB
2160
2161 return ret;
2162}
2163
945d8962 2164static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2165 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2166{
120d66ee
LZ
2167 struct btrfs_free_space *left_info;
2168 struct btrfs_free_space *right_info;
2169 bool merged = false;
2170 u64 offset = info->offset;
2171 u64 bytes = info->bytes;
6226cb0a 2172
0f9dd46c
JB
2173 /*
2174 * first we want to see if there is free space adjacent to the range we
2175 * are adding, if there is remove that struct and add a new one to
2176 * cover the entire range
2177 */
34d52cb6 2178 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
2179 if (right_info && rb_prev(&right_info->offset_index))
2180 left_info = rb_entry(rb_prev(&right_info->offset_index),
2181 struct btrfs_free_space, offset_index);
2182 else
34d52cb6 2183 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2184
96303081 2185 if (right_info && !right_info->bitmap) {
f333adb5 2186 if (update_stat)
34d52cb6 2187 unlink_free_space(ctl, right_info);
f333adb5 2188 else
34d52cb6 2189 __unlink_free_space(ctl, right_info);
6226cb0a 2190 info->bytes += right_info->bytes;
dc89e982 2191 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2192 merged = true;
0f9dd46c
JB
2193 }
2194
96303081
JB
2195 if (left_info && !left_info->bitmap &&
2196 left_info->offset + left_info->bytes == offset) {
f333adb5 2197 if (update_stat)
34d52cb6 2198 unlink_free_space(ctl, left_info);
f333adb5 2199 else
34d52cb6 2200 __unlink_free_space(ctl, left_info);
6226cb0a
JB
2201 info->offset = left_info->offset;
2202 info->bytes += left_info->bytes;
dc89e982 2203 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2204 merged = true;
0f9dd46c
JB
2205 }
2206
120d66ee
LZ
2207 return merged;
2208}
2209
20005523
FM
2210static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2211 struct btrfs_free_space *info,
2212 bool update_stat)
2213{
2214 struct btrfs_free_space *bitmap;
2215 unsigned long i;
2216 unsigned long j;
2217 const u64 end = info->offset + info->bytes;
2218 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2219 u64 bytes;
2220
2221 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2222 if (!bitmap)
2223 return false;
2224
2225 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2226 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2227 if (j == i)
2228 return false;
2229 bytes = (j - i) * ctl->unit;
2230 info->bytes += bytes;
2231
2232 if (update_stat)
2233 bitmap_clear_bits(ctl, bitmap, end, bytes);
2234 else
2235 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2236
2237 if (!bitmap->bytes)
2238 free_bitmap(ctl, bitmap);
2239
2240 return true;
2241}
2242
2243static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2244 struct btrfs_free_space *info,
2245 bool update_stat)
2246{
2247 struct btrfs_free_space *bitmap;
2248 u64 bitmap_offset;
2249 unsigned long i;
2250 unsigned long j;
2251 unsigned long prev_j;
2252 u64 bytes;
2253
2254 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2255 /* If we're on a boundary, try the previous logical bitmap. */
2256 if (bitmap_offset == info->offset) {
2257 if (info->offset == 0)
2258 return false;
2259 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2260 }
2261
2262 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2263 if (!bitmap)
2264 return false;
2265
2266 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2267 j = 0;
2268 prev_j = (unsigned long)-1;
2269 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2270 if (j > i)
2271 break;
2272 prev_j = j;
2273 }
2274 if (prev_j == i)
2275 return false;
2276
2277 if (prev_j == (unsigned long)-1)
2278 bytes = (i + 1) * ctl->unit;
2279 else
2280 bytes = (i - prev_j) * ctl->unit;
2281
2282 info->offset -= bytes;
2283 info->bytes += bytes;
2284
2285 if (update_stat)
2286 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2287 else
2288 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2289
2290 if (!bitmap->bytes)
2291 free_bitmap(ctl, bitmap);
2292
2293 return true;
2294}
2295
2296/*
2297 * We prefer always to allocate from extent entries, both for clustered and
2298 * non-clustered allocation requests. So when attempting to add a new extent
2299 * entry, try to see if there's adjacent free space in bitmap entries, and if
2300 * there is, migrate that space from the bitmaps to the extent.
2301 * Like this we get better chances of satisfying space allocation requests
2302 * because we attempt to satisfy them based on a single cache entry, and never
2303 * on 2 or more entries - even if the entries represent a contiguous free space
2304 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2305 * ends).
2306 */
2307static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2308 struct btrfs_free_space *info,
2309 bool update_stat)
2310{
2311 /*
2312 * Only work with disconnected entries, as we can change their offset,
2313 * and must be extent entries.
2314 */
2315 ASSERT(!info->bitmap);
2316 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2317
2318 if (ctl->total_bitmaps > 0) {
2319 bool stole_end;
2320 bool stole_front = false;
2321
2322 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2323 if (ctl->total_bitmaps > 0)
2324 stole_front = steal_from_bitmap_to_front(ctl, info,
2325 update_stat);
2326
2327 if (stole_end || stole_front)
2328 try_merge_free_space(ctl, info, update_stat);
2329 }
2330}
2331
ab8d0fc4
JM
2332int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2333 struct btrfs_free_space_ctl *ctl,
581bb050 2334 u64 offset, u64 bytes)
120d66ee
LZ
2335{
2336 struct btrfs_free_space *info;
2337 int ret = 0;
2338
dc89e982 2339 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2340 if (!info)
2341 return -ENOMEM;
2342
2343 info->offset = offset;
2344 info->bytes = bytes;
20005523 2345 RB_CLEAR_NODE(&info->offset_index);
120d66ee 2346
34d52cb6 2347 spin_lock(&ctl->tree_lock);
120d66ee 2348
34d52cb6 2349 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2350 goto link;
2351
2352 /*
2353 * There was no extent directly to the left or right of this new
2354 * extent then we know we're going to have to allocate a new extent, so
2355 * before we do that see if we need to drop this into a bitmap
2356 */
34d52cb6 2357 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2358 if (ret < 0) {
2359 goto out;
2360 } else if (ret) {
2361 ret = 0;
2362 goto out;
2363 }
2364link:
20005523
FM
2365 /*
2366 * Only steal free space from adjacent bitmaps if we're sure we're not
2367 * going to add the new free space to existing bitmap entries - because
2368 * that would mean unnecessary work that would be reverted. Therefore
2369 * attempt to steal space from bitmaps if we're adding an extent entry.
2370 */
2371 steal_from_bitmap(ctl, info, true);
2372
34d52cb6 2373 ret = link_free_space(ctl, info);
0f9dd46c 2374 if (ret)
dc89e982 2375 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2376out:
34d52cb6 2377 spin_unlock(&ctl->tree_lock);
6226cb0a 2378
0f9dd46c 2379 if (ret) {
ab8d0fc4 2380 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2381 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2382 }
2383
0f9dd46c
JB
2384 return ret;
2385}
2386
32da5386 2387int btrfs_add_free_space(struct btrfs_block_group *block_group,
478b4d9f
JB
2388 u64 bytenr, u64 size)
2389{
2390 return __btrfs_add_free_space(block_group->fs_info,
2391 block_group->free_space_ctl,
2392 bytenr, size);
2393}
2394
32da5386 2395int btrfs_remove_free_space(struct btrfs_block_group *block_group,
6226cb0a 2396 u64 offset, u64 bytes)
0f9dd46c 2397{
34d52cb6 2398 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2399 struct btrfs_free_space *info;
b0175117
JB
2400 int ret;
2401 bool re_search = false;
0f9dd46c 2402
34d52cb6 2403 spin_lock(&ctl->tree_lock);
6226cb0a 2404
96303081 2405again:
b0175117 2406 ret = 0;
bdb7d303
JB
2407 if (!bytes)
2408 goto out_lock;
2409
34d52cb6 2410 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2411 if (!info) {
6606bb97
JB
2412 /*
2413 * oops didn't find an extent that matched the space we wanted
2414 * to remove, look for a bitmap instead
2415 */
34d52cb6 2416 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2417 1, 0);
2418 if (!info) {
b0175117
JB
2419 /*
2420 * If we found a partial bit of our free space in a
2421 * bitmap but then couldn't find the other part this may
2422 * be a problem, so WARN about it.
24a70313 2423 */
b0175117 2424 WARN_ON(re_search);
6606bb97
JB
2425 goto out_lock;
2426 }
96303081
JB
2427 }
2428
b0175117 2429 re_search = false;
bdb7d303 2430 if (!info->bitmap) {
34d52cb6 2431 unlink_free_space(ctl, info);
bdb7d303
JB
2432 if (offset == info->offset) {
2433 u64 to_free = min(bytes, info->bytes);
2434
2435 info->bytes -= to_free;
2436 info->offset += to_free;
2437 if (info->bytes) {
2438 ret = link_free_space(ctl, info);
2439 WARN_ON(ret);
2440 } else {
2441 kmem_cache_free(btrfs_free_space_cachep, info);
2442 }
0f9dd46c 2443
bdb7d303
JB
2444 offset += to_free;
2445 bytes -= to_free;
2446 goto again;
2447 } else {
2448 u64 old_end = info->bytes + info->offset;
9b49c9b9 2449
bdb7d303 2450 info->bytes = offset - info->offset;
34d52cb6 2451 ret = link_free_space(ctl, info);
96303081
JB
2452 WARN_ON(ret);
2453 if (ret)
2454 goto out_lock;
96303081 2455
bdb7d303
JB
2456 /* Not enough bytes in this entry to satisfy us */
2457 if (old_end < offset + bytes) {
2458 bytes -= old_end - offset;
2459 offset = old_end;
2460 goto again;
2461 } else if (old_end == offset + bytes) {
2462 /* all done */
2463 goto out_lock;
2464 }
2465 spin_unlock(&ctl->tree_lock);
2466
2467 ret = btrfs_add_free_space(block_group, offset + bytes,
2468 old_end - (offset + bytes));
2469 WARN_ON(ret);
2470 goto out;
2471 }
0f9dd46c 2472 }
96303081 2473
34d52cb6 2474 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2475 if (ret == -EAGAIN) {
2476 re_search = true;
96303081 2477 goto again;
b0175117 2478 }
96303081 2479out_lock:
34d52cb6 2480 spin_unlock(&ctl->tree_lock);
0f9dd46c 2481out:
25179201
JB
2482 return ret;
2483}
2484
32da5386 2485void btrfs_dump_free_space(struct btrfs_block_group *block_group,
0f9dd46c
JB
2486 u64 bytes)
2487{
0b246afa 2488 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2489 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2490 struct btrfs_free_space *info;
2491 struct rb_node *n;
2492 int count = 0;
2493
9084cb6a 2494 spin_lock(&ctl->tree_lock);
34d52cb6 2495 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2496 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2497 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2498 count++;
0b246afa 2499 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2500 info->offset, info->bytes,
96303081 2501 (info->bitmap) ? "yes" : "no");
0f9dd46c 2502 }
9084cb6a 2503 spin_unlock(&ctl->tree_lock);
0b246afa 2504 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2505 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2506 btrfs_info(fs_info,
efe120a0 2507 "%d blocks of free space at or bigger than bytes is", count);
0f9dd46c
JB
2508}
2509
32da5386 2510void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group)
0f9dd46c 2511{
0b246afa 2512 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2513 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2514
34d52cb6 2515 spin_lock_init(&ctl->tree_lock);
0b246afa 2516 ctl->unit = fs_info->sectorsize;
b3470b5d 2517 ctl->start = block_group->start;
34d52cb6
LZ
2518 ctl->private = block_group;
2519 ctl->op = &free_space_op;
55507ce3
FM
2520 INIT_LIST_HEAD(&ctl->trimming_ranges);
2521 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2522
34d52cb6
LZ
2523 /*
2524 * we only want to have 32k of ram per block group for keeping
2525 * track of free space, and if we pass 1/2 of that we want to
2526 * start converting things over to using bitmaps
2527 */
ee22184b 2528 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2529}
2530
fa9c0d79
CM
2531/*
2532 * for a given cluster, put all of its extents back into the free
2533 * space cache. If the block group passed doesn't match the block group
2534 * pointed to by the cluster, someone else raced in and freed the
2535 * cluster already. In that case, we just return without changing anything
2536 */
2537static int
2538__btrfs_return_cluster_to_free_space(
32da5386 2539 struct btrfs_block_group *block_group,
fa9c0d79
CM
2540 struct btrfs_free_cluster *cluster)
2541{
34d52cb6 2542 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2543 struct btrfs_free_space *entry;
2544 struct rb_node *node;
2545
2546 spin_lock(&cluster->lock);
2547 if (cluster->block_group != block_group)
2548 goto out;
2549
96303081 2550 cluster->block_group = NULL;
fa9c0d79 2551 cluster->window_start = 0;
96303081 2552 list_del_init(&cluster->block_group_list);
96303081 2553
fa9c0d79 2554 node = rb_first(&cluster->root);
96303081 2555 while (node) {
4e69b598
JB
2556 bool bitmap;
2557
fa9c0d79
CM
2558 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2559 node = rb_next(&entry->offset_index);
2560 rb_erase(&entry->offset_index, &cluster->root);
20005523 2561 RB_CLEAR_NODE(&entry->offset_index);
4e69b598
JB
2562
2563 bitmap = (entry->bitmap != NULL);
20005523 2564 if (!bitmap) {
34d52cb6 2565 try_merge_free_space(ctl, entry, false);
20005523
FM
2566 steal_from_bitmap(ctl, entry, false);
2567 }
34d52cb6 2568 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2569 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2570 }
6bef4d31 2571 cluster->root = RB_ROOT;
96303081 2572
fa9c0d79
CM
2573out:
2574 spin_unlock(&cluster->lock);
96303081 2575 btrfs_put_block_group(block_group);
fa9c0d79
CM
2576 return 0;
2577}
2578
48a3b636
ES
2579static void __btrfs_remove_free_space_cache_locked(
2580 struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2581{
2582 struct btrfs_free_space *info;
2583 struct rb_node *node;
581bb050 2584
581bb050
LZ
2585 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2586 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2587 if (!info->bitmap) {
2588 unlink_free_space(ctl, info);
2589 kmem_cache_free(btrfs_free_space_cachep, info);
2590 } else {
2591 free_bitmap(ctl, info);
2592 }
351810c1
DS
2593
2594 cond_resched_lock(&ctl->tree_lock);
581bb050 2595 }
09655373
CM
2596}
2597
2598void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2599{
2600 spin_lock(&ctl->tree_lock);
2601 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2602 spin_unlock(&ctl->tree_lock);
2603}
2604
32da5386 2605void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
581bb050
LZ
2606{
2607 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2608 struct btrfs_free_cluster *cluster;
96303081 2609 struct list_head *head;
0f9dd46c 2610
34d52cb6 2611 spin_lock(&ctl->tree_lock);
96303081
JB
2612 while ((head = block_group->cluster_list.next) !=
2613 &block_group->cluster_list) {
2614 cluster = list_entry(head, struct btrfs_free_cluster,
2615 block_group_list);
fa9c0d79
CM
2616
2617 WARN_ON(cluster->block_group != block_group);
2618 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
2619
2620 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 2621 }
09655373 2622 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2623 spin_unlock(&ctl->tree_lock);
fa9c0d79 2624
0f9dd46c
JB
2625}
2626
32da5386 2627u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
a4820398
MX
2628 u64 offset, u64 bytes, u64 empty_size,
2629 u64 *max_extent_size)
0f9dd46c 2630{
34d52cb6 2631 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2632 struct btrfs_free_space *entry = NULL;
96303081 2633 u64 bytes_search = bytes + empty_size;
6226cb0a 2634 u64 ret = 0;
53b381b3
DW
2635 u64 align_gap = 0;
2636 u64 align_gap_len = 0;
0f9dd46c 2637
34d52cb6 2638 spin_lock(&ctl->tree_lock);
53b381b3 2639 entry = find_free_space(ctl, &offset, &bytes_search,
a4820398 2640 block_group->full_stripe_len, max_extent_size);
6226cb0a 2641 if (!entry)
96303081
JB
2642 goto out;
2643
2644 ret = offset;
2645 if (entry->bitmap) {
34d52cb6 2646 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2647 if (!entry->bytes)
34d52cb6 2648 free_bitmap(ctl, entry);
96303081 2649 } else {
34d52cb6 2650 unlink_free_space(ctl, entry);
53b381b3
DW
2651 align_gap_len = offset - entry->offset;
2652 align_gap = entry->offset;
2653
2654 entry->offset = offset + bytes;
2655 WARN_ON(entry->bytes < bytes + align_gap_len);
2656
2657 entry->bytes -= bytes + align_gap_len;
6226cb0a 2658 if (!entry->bytes)
dc89e982 2659 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2660 else
34d52cb6 2661 link_free_space(ctl, entry);
6226cb0a 2662 }
96303081 2663out:
34d52cb6 2664 spin_unlock(&ctl->tree_lock);
817d52f8 2665
53b381b3 2666 if (align_gap_len)
ab8d0fc4
JM
2667 __btrfs_add_free_space(block_group->fs_info, ctl,
2668 align_gap, align_gap_len);
0f9dd46c
JB
2669 return ret;
2670}
fa9c0d79
CM
2671
2672/*
2673 * given a cluster, put all of its extents back into the free space
2674 * cache. If a block group is passed, this function will only free
2675 * a cluster that belongs to the passed block group.
2676 *
2677 * Otherwise, it'll get a reference on the block group pointed to by the
2678 * cluster and remove the cluster from it.
2679 */
2680int btrfs_return_cluster_to_free_space(
32da5386 2681 struct btrfs_block_group *block_group,
fa9c0d79
CM
2682 struct btrfs_free_cluster *cluster)
2683{
34d52cb6 2684 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2685 int ret;
2686
2687 /* first, get a safe pointer to the block group */
2688 spin_lock(&cluster->lock);
2689 if (!block_group) {
2690 block_group = cluster->block_group;
2691 if (!block_group) {
2692 spin_unlock(&cluster->lock);
2693 return 0;
2694 }
2695 } else if (cluster->block_group != block_group) {
2696 /* someone else has already freed it don't redo their work */
2697 spin_unlock(&cluster->lock);
2698 return 0;
2699 }
2700 atomic_inc(&block_group->count);
2701 spin_unlock(&cluster->lock);
2702
34d52cb6
LZ
2703 ctl = block_group->free_space_ctl;
2704
fa9c0d79 2705 /* now return any extents the cluster had on it */
34d52cb6 2706 spin_lock(&ctl->tree_lock);
fa9c0d79 2707 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2708 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2709
2710 /* finally drop our ref */
2711 btrfs_put_block_group(block_group);
2712 return ret;
2713}
2714
32da5386 2715static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
96303081 2716 struct btrfs_free_cluster *cluster,
4e69b598 2717 struct btrfs_free_space *entry,
a4820398
MX
2718 u64 bytes, u64 min_start,
2719 u64 *max_extent_size)
96303081 2720{
34d52cb6 2721 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2722 int err;
2723 u64 search_start = cluster->window_start;
2724 u64 search_bytes = bytes;
2725 u64 ret = 0;
2726
96303081
JB
2727 search_start = min_start;
2728 search_bytes = bytes;
2729
0584f718 2730 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398 2731 if (err) {
ad22cf6e
JB
2732 *max_extent_size = max(get_max_extent_size(entry),
2733 *max_extent_size);
4e69b598 2734 return 0;
a4820398 2735 }
96303081
JB
2736
2737 ret = search_start;
bb3ac5a4 2738 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2739
2740 return ret;
2741}
2742
fa9c0d79
CM
2743/*
2744 * given a cluster, try to allocate 'bytes' from it, returns 0
2745 * if it couldn't find anything suitably large, or a logical disk offset
2746 * if things worked out
2747 */
32da5386 2748u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
fa9c0d79 2749 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 2750 u64 min_start, u64 *max_extent_size)
fa9c0d79 2751{
34d52cb6 2752 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2753 struct btrfs_free_space *entry = NULL;
2754 struct rb_node *node;
2755 u64 ret = 0;
2756
2757 spin_lock(&cluster->lock);
2758 if (bytes > cluster->max_size)
2759 goto out;
2760
2761 if (cluster->block_group != block_group)
2762 goto out;
2763
2764 node = rb_first(&cluster->root);
2765 if (!node)
2766 goto out;
2767
2768 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 2769 while (1) {
ad22cf6e
JB
2770 if (entry->bytes < bytes)
2771 *max_extent_size = max(get_max_extent_size(entry),
2772 *max_extent_size);
a4820398 2773
4e69b598
JB
2774 if (entry->bytes < bytes ||
2775 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2776 node = rb_next(&entry->offset_index);
2777 if (!node)
2778 break;
2779 entry = rb_entry(node, struct btrfs_free_space,
2780 offset_index);
2781 continue;
2782 }
fa9c0d79 2783
4e69b598
JB
2784 if (entry->bitmap) {
2785 ret = btrfs_alloc_from_bitmap(block_group,
2786 cluster, entry, bytes,
a4820398
MX
2787 cluster->window_start,
2788 max_extent_size);
4e69b598 2789 if (ret == 0) {
4e69b598
JB
2790 node = rb_next(&entry->offset_index);
2791 if (!node)
2792 break;
2793 entry = rb_entry(node, struct btrfs_free_space,
2794 offset_index);
2795 continue;
2796 }
9b230628 2797 cluster->window_start += bytes;
4e69b598 2798 } else {
4e69b598
JB
2799 ret = entry->offset;
2800
2801 entry->offset += bytes;
2802 entry->bytes -= bytes;
2803 }
fa9c0d79 2804
5e71b5d5 2805 if (entry->bytes == 0)
fa9c0d79 2806 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2807 break;
2808 }
2809out:
2810 spin_unlock(&cluster->lock);
96303081 2811
5e71b5d5
LZ
2812 if (!ret)
2813 return 0;
2814
34d52cb6 2815 spin_lock(&ctl->tree_lock);
5e71b5d5 2816
34d52cb6 2817 ctl->free_space -= bytes;
5e71b5d5 2818 if (entry->bytes == 0) {
34d52cb6 2819 ctl->free_extents--;
4e69b598 2820 if (entry->bitmap) {
3acd4850
CL
2821 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2822 entry->bitmap);
34d52cb6
LZ
2823 ctl->total_bitmaps--;
2824 ctl->op->recalc_thresholds(ctl);
4e69b598 2825 }
dc89e982 2826 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2827 }
2828
34d52cb6 2829 spin_unlock(&ctl->tree_lock);
5e71b5d5 2830
fa9c0d79
CM
2831 return ret;
2832}
2833
32da5386 2834static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
96303081
JB
2835 struct btrfs_free_space *entry,
2836 struct btrfs_free_cluster *cluster,
1bb91902
AO
2837 u64 offset, u64 bytes,
2838 u64 cont1_bytes, u64 min_bytes)
96303081 2839{
34d52cb6 2840 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2841 unsigned long next_zero;
2842 unsigned long i;
1bb91902
AO
2843 unsigned long want_bits;
2844 unsigned long min_bits;
96303081 2845 unsigned long found_bits;
cef40483 2846 unsigned long max_bits = 0;
96303081
JB
2847 unsigned long start = 0;
2848 unsigned long total_found = 0;
4e69b598 2849 int ret;
96303081 2850
96009762 2851 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2852 max_t(u64, offset, entry->offset));
96009762
WSH
2853 want_bits = bytes_to_bits(bytes, ctl->unit);
2854 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 2855
cef40483
JB
2856 /*
2857 * Don't bother looking for a cluster in this bitmap if it's heavily
2858 * fragmented.
2859 */
2860 if (entry->max_extent_size &&
2861 entry->max_extent_size < cont1_bytes)
2862 return -ENOSPC;
96303081
JB
2863again:
2864 found_bits = 0;
ebb3dad4 2865 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2866 next_zero = find_next_zero_bit(entry->bitmap,
2867 BITS_PER_BITMAP, i);
1bb91902 2868 if (next_zero - i >= min_bits) {
96303081 2869 found_bits = next_zero - i;
cef40483
JB
2870 if (found_bits > max_bits)
2871 max_bits = found_bits;
96303081
JB
2872 break;
2873 }
cef40483
JB
2874 if (next_zero - i > max_bits)
2875 max_bits = next_zero - i;
96303081
JB
2876 i = next_zero;
2877 }
2878
cef40483
JB
2879 if (!found_bits) {
2880 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 2881 return -ENOSPC;
cef40483 2882 }
96303081 2883
1bb91902 2884 if (!total_found) {
96303081 2885 start = i;
b78d09bc 2886 cluster->max_size = 0;
96303081
JB
2887 }
2888
2889 total_found += found_bits;
2890
96009762
WSH
2891 if (cluster->max_size < found_bits * ctl->unit)
2892 cluster->max_size = found_bits * ctl->unit;
96303081 2893
1bb91902
AO
2894 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2895 i = next_zero + 1;
96303081
JB
2896 goto again;
2897 }
2898
96009762 2899 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2900 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2901 ret = tree_insert_offset(&cluster->root, entry->offset,
2902 &entry->offset_index, 1);
b12d6869 2903 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 2904
3f7de037 2905 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2906 total_found * ctl->unit, 1);
96303081
JB
2907 return 0;
2908}
2909
4e69b598
JB
2910/*
2911 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2912 * Try to find a cluster with at least bytes total bytes, at least one
2913 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2914 */
3de85bb9 2915static noinline int
32da5386 2916setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3de85bb9
JB
2917 struct btrfs_free_cluster *cluster,
2918 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2919 u64 cont1_bytes, u64 min_bytes)
4e69b598 2920{
34d52cb6 2921 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2922 struct btrfs_free_space *first = NULL;
2923 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2924 struct btrfs_free_space *last;
2925 struct rb_node *node;
4e69b598
JB
2926 u64 window_free;
2927 u64 max_extent;
3f7de037 2928 u64 total_size = 0;
4e69b598 2929
34d52cb6 2930 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2931 if (!entry)
2932 return -ENOSPC;
2933
2934 /*
2935 * We don't want bitmaps, so just move along until we find a normal
2936 * extent entry.
2937 */
1bb91902
AO
2938 while (entry->bitmap || entry->bytes < min_bytes) {
2939 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2940 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2941 node = rb_next(&entry->offset_index);
2942 if (!node)
2943 return -ENOSPC;
2944 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2945 }
2946
4e69b598
JB
2947 window_free = entry->bytes;
2948 max_extent = entry->bytes;
2949 first = entry;
2950 last = entry;
4e69b598 2951
1bb91902
AO
2952 for (node = rb_next(&entry->offset_index); node;
2953 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2954 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2955
86d4a77b
JB
2956 if (entry->bitmap) {
2957 if (list_empty(&entry->list))
2958 list_add_tail(&entry->list, bitmaps);
4e69b598 2959 continue;
86d4a77b
JB
2960 }
2961
1bb91902
AO
2962 if (entry->bytes < min_bytes)
2963 continue;
2964
2965 last = entry;
2966 window_free += entry->bytes;
2967 if (entry->bytes > max_extent)
4e69b598 2968 max_extent = entry->bytes;
4e69b598
JB
2969 }
2970
1bb91902
AO
2971 if (window_free < bytes || max_extent < cont1_bytes)
2972 return -ENOSPC;
2973
4e69b598
JB
2974 cluster->window_start = first->offset;
2975
2976 node = &first->offset_index;
2977
2978 /*
2979 * now we've found our entries, pull them out of the free space
2980 * cache and put them into the cluster rbtree
2981 */
2982 do {
2983 int ret;
2984
2985 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2986 node = rb_next(&entry->offset_index);
1bb91902 2987 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2988 continue;
2989
34d52cb6 2990 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2991 ret = tree_insert_offset(&cluster->root, entry->offset,
2992 &entry->offset_index, 0);
3f7de037 2993 total_size += entry->bytes;
b12d6869 2994 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
2995 } while (node && entry != last);
2996
2997 cluster->max_size = max_extent;
3f7de037 2998 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2999 return 0;
3000}
3001
3002/*
3003 * This specifically looks for bitmaps that may work in the cluster, we assume
3004 * that we have already failed to find extents that will work.
3005 */
3de85bb9 3006static noinline int
32da5386 3007setup_cluster_bitmap(struct btrfs_block_group *block_group,
3de85bb9
JB
3008 struct btrfs_free_cluster *cluster,
3009 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 3010 u64 cont1_bytes, u64 min_bytes)
4e69b598 3011{
34d52cb6 3012 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 3013 struct btrfs_free_space *entry = NULL;
4e69b598 3014 int ret = -ENOSPC;
0f0fbf1d 3015 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 3016
34d52cb6 3017 if (ctl->total_bitmaps == 0)
4e69b598
JB
3018 return -ENOSPC;
3019
0f0fbf1d
LZ
3020 /*
3021 * The bitmap that covers offset won't be in the list unless offset
3022 * is just its start offset.
3023 */
1b9b922a
CM
3024 if (!list_empty(bitmaps))
3025 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3026
3027 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
3028 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3029 if (entry && list_empty(&entry->list))
3030 list_add(&entry->list, bitmaps);
3031 }
3032
86d4a77b 3033 list_for_each_entry(entry, bitmaps, list) {
357b9784 3034 if (entry->bytes < bytes)
86d4a77b
JB
3035 continue;
3036 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3037 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3038 if (!ret)
3039 return 0;
3040 }
3041
3042 /*
52621cb6
LZ
3043 * The bitmaps list has all the bitmaps that record free space
3044 * starting after offset, so no more search is required.
86d4a77b 3045 */
52621cb6 3046 return -ENOSPC;
4e69b598
JB
3047}
3048
fa9c0d79
CM
3049/*
3050 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3051 * is to find at least bytes+empty_size.
fa9c0d79
CM
3052 * We might not find them all in one contiguous area.
3053 *
3054 * returns zero and sets up cluster if things worked out, otherwise
3055 * it returns -enospc
3056 */
32da5386 3057int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
fa9c0d79
CM
3058 struct btrfs_free_cluster *cluster,
3059 u64 offset, u64 bytes, u64 empty_size)
3060{
2ceeae2e 3061 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 3062 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3063 struct btrfs_free_space *entry, *tmp;
52621cb6 3064 LIST_HEAD(bitmaps);
fa9c0d79 3065 u64 min_bytes;
1bb91902 3066 u64 cont1_bytes;
fa9c0d79
CM
3067 int ret;
3068
1bb91902
AO
3069 /*
3070 * Choose the minimum extent size we'll require for this
3071 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3072 * For metadata, allow allocates with smaller extents. For
3073 * data, keep it dense.
3074 */
0b246afa 3075 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
1bb91902 3076 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 3077 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3078 cont1_bytes = bytes;
0b246afa 3079 min_bytes = fs_info->sectorsize;
1bb91902
AO
3080 } else {
3081 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3082 min_bytes = fs_info->sectorsize;
1bb91902 3083 }
fa9c0d79 3084
34d52cb6 3085 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3086
3087 /*
3088 * If we know we don't have enough space to make a cluster don't even
3089 * bother doing all the work to try and find one.
3090 */
1bb91902 3091 if (ctl->free_space < bytes) {
34d52cb6 3092 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3093 return -ENOSPC;
3094 }
3095
fa9c0d79
CM
3096 spin_lock(&cluster->lock);
3097
3098 /* someone already found a cluster, hooray */
3099 if (cluster->block_group) {
3100 ret = 0;
3101 goto out;
3102 }
fa9c0d79 3103
3f7de037
JB
3104 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3105 min_bytes);
3106
86d4a77b 3107 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3108 bytes + empty_size,
3109 cont1_bytes, min_bytes);
4e69b598 3110 if (ret)
86d4a77b 3111 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3112 offset, bytes + empty_size,
3113 cont1_bytes, min_bytes);
86d4a77b
JB
3114
3115 /* Clear our temporary list */
3116 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3117 list_del_init(&entry->list);
fa9c0d79 3118
4e69b598
JB
3119 if (!ret) {
3120 atomic_inc(&block_group->count);
3121 list_add_tail(&cluster->block_group_list,
3122 &block_group->cluster_list);
3123 cluster->block_group = block_group;
3f7de037
JB
3124 } else {
3125 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3126 }
fa9c0d79
CM
3127out:
3128 spin_unlock(&cluster->lock);
34d52cb6 3129 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3130
3131 return ret;
3132}
3133
3134/*
3135 * simple code to zero out a cluster
3136 */
3137void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3138{
3139 spin_lock_init(&cluster->lock);
3140 spin_lock_init(&cluster->refill_lock);
6bef4d31 3141 cluster->root = RB_ROOT;
fa9c0d79 3142 cluster->max_size = 0;
c759c4e1 3143 cluster->fragmented = false;
fa9c0d79
CM
3144 INIT_LIST_HEAD(&cluster->block_group_list);
3145 cluster->block_group = NULL;
3146}
3147
32da5386 3148static int do_trimming(struct btrfs_block_group *block_group,
7fe1e641 3149 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3
FM
3150 u64 reserved_start, u64 reserved_bytes,
3151 struct btrfs_trim_range *trim_entry)
f7039b1d 3152{
7fe1e641 3153 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3154 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3155 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3156 int ret;
3157 int update = 0;
3158 u64 trimmed = 0;
f7039b1d 3159
7fe1e641
LZ
3160 spin_lock(&space_info->lock);
3161 spin_lock(&block_group->lock);
3162 if (!block_group->ro) {
3163 block_group->reserved += reserved_bytes;
3164 space_info->bytes_reserved += reserved_bytes;
3165 update = 1;
3166 }
3167 spin_unlock(&block_group->lock);
3168 spin_unlock(&space_info->lock);
3169
2ff7e61e 3170 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
7fe1e641
LZ
3171 if (!ret)
3172 *total_trimmed += trimmed;
3173
55507ce3 3174 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641 3175 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
55507ce3
FM
3176 list_del(&trim_entry->list);
3177 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3178
3179 if (update) {
3180 spin_lock(&space_info->lock);
3181 spin_lock(&block_group->lock);
3182 if (block_group->ro)
3183 space_info->bytes_readonly += reserved_bytes;
3184 block_group->reserved -= reserved_bytes;
3185 space_info->bytes_reserved -= reserved_bytes;
7fe1e641 3186 spin_unlock(&block_group->lock);
8f63a840 3187 spin_unlock(&space_info->lock);
7fe1e641
LZ
3188 }
3189
3190 return ret;
3191}
3192
32da5386 3193static int trim_no_bitmap(struct btrfs_block_group *block_group,
7fe1e641
LZ
3194 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3195{
3196 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3197 struct btrfs_free_space *entry;
3198 struct rb_node *node;
3199 int ret = 0;
3200 u64 extent_start;
3201 u64 extent_bytes;
3202 u64 bytes;
f7039b1d
LD
3203
3204 while (start < end) {
55507ce3
FM
3205 struct btrfs_trim_range trim_entry;
3206
3207 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3208 spin_lock(&ctl->tree_lock);
f7039b1d 3209
34d52cb6
LZ
3210 if (ctl->free_space < minlen) {
3211 spin_unlock(&ctl->tree_lock);
55507ce3 3212 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3213 break;
3214 }
3215
34d52cb6 3216 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 3217 if (!entry) {
34d52cb6 3218 spin_unlock(&ctl->tree_lock);
55507ce3 3219 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3220 break;
3221 }
3222
7fe1e641
LZ
3223 /* skip bitmaps */
3224 while (entry->bitmap) {
3225 node = rb_next(&entry->offset_index);
3226 if (!node) {
34d52cb6 3227 spin_unlock(&ctl->tree_lock);
55507ce3 3228 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3229 goto out;
f7039b1d 3230 }
7fe1e641
LZ
3231 entry = rb_entry(node, struct btrfs_free_space,
3232 offset_index);
f7039b1d
LD
3233 }
3234
7fe1e641
LZ
3235 if (entry->offset >= end) {
3236 spin_unlock(&ctl->tree_lock);
55507ce3 3237 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3238 break;
f7039b1d
LD
3239 }
3240
7fe1e641
LZ
3241 extent_start = entry->offset;
3242 extent_bytes = entry->bytes;
3243 start = max(start, extent_start);
3244 bytes = min(extent_start + extent_bytes, end) - start;
3245 if (bytes < minlen) {
3246 spin_unlock(&ctl->tree_lock);
55507ce3 3247 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3248 goto next;
f7039b1d
LD
3249 }
3250
7fe1e641
LZ
3251 unlink_free_space(ctl, entry);
3252 kmem_cache_free(btrfs_free_space_cachep, entry);
3253
34d52cb6 3254 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3255 trim_entry.start = extent_start;
3256 trim_entry.bytes = extent_bytes;
3257 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3258 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3259
7fe1e641 3260 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3261 extent_start, extent_bytes, &trim_entry);
7fe1e641
LZ
3262 if (ret)
3263 break;
3264next:
3265 start += bytes;
f7039b1d 3266
7fe1e641
LZ
3267 if (fatal_signal_pending(current)) {
3268 ret = -ERESTARTSYS;
3269 break;
3270 }
3271
3272 cond_resched();
3273 }
3274out:
3275 return ret;
3276}
3277
32da5386 3278static int trim_bitmaps(struct btrfs_block_group *block_group,
7fe1e641
LZ
3279 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3280{
3281 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3282 struct btrfs_free_space *entry;
3283 int ret = 0;
3284 int ret2;
3285 u64 bytes;
3286 u64 offset = offset_to_bitmap(ctl, start);
3287
3288 while (offset < end) {
3289 bool next_bitmap = false;
55507ce3 3290 struct btrfs_trim_range trim_entry;
7fe1e641 3291
55507ce3 3292 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3293 spin_lock(&ctl->tree_lock);
3294
3295 if (ctl->free_space < minlen) {
3296 spin_unlock(&ctl->tree_lock);
55507ce3 3297 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3298 break;
3299 }
3300
3301 entry = tree_search_offset(ctl, offset, 1, 0);
3302 if (!entry) {
3303 spin_unlock(&ctl->tree_lock);
55507ce3 3304 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3305 next_bitmap = true;
3306 goto next;
3307 }
3308
3309 bytes = minlen;
0584f718 3310 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641
LZ
3311 if (ret2 || start >= end) {
3312 spin_unlock(&ctl->tree_lock);
55507ce3 3313 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3314 next_bitmap = true;
3315 goto next;
3316 }
3317
3318 bytes = min(bytes, end - start);
3319 if (bytes < minlen) {
3320 spin_unlock(&ctl->tree_lock);
55507ce3 3321 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3322 goto next;
3323 }
3324
3325 bitmap_clear_bits(ctl, entry, start, bytes);
3326 if (entry->bytes == 0)
3327 free_bitmap(ctl, entry);
3328
3329 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3330 trim_entry.start = start;
3331 trim_entry.bytes = bytes;
3332 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3333 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3334
3335 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3336 start, bytes, &trim_entry);
7fe1e641
LZ
3337 if (ret)
3338 break;
3339next:
3340 if (next_bitmap) {
3341 offset += BITS_PER_BITMAP * ctl->unit;
3342 } else {
3343 start += bytes;
3344 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3345 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 3346 }
f7039b1d
LD
3347
3348 if (fatal_signal_pending(current)) {
3349 ret = -ERESTARTSYS;
3350 break;
3351 }
3352
3353 cond_resched();
3354 }
3355
3356 return ret;
3357}
581bb050 3358
32da5386 3359void btrfs_get_block_group_trimming(struct btrfs_block_group *cache)
7fe1e641 3360{
e33e17ee
JM
3361 atomic_inc(&cache->trimming);
3362}
7fe1e641 3363
32da5386 3364void btrfs_put_block_group_trimming(struct btrfs_block_group *block_group)
e33e17ee 3365{
0b246afa 3366 struct btrfs_fs_info *fs_info = block_group->fs_info;
e33e17ee
JM
3367 struct extent_map_tree *em_tree;
3368 struct extent_map *em;
3369 bool cleanup;
7fe1e641 3370
04216820 3371 spin_lock(&block_group->lock);
e33e17ee
JM
3372 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3373 block_group->removed);
04216820
FM
3374 spin_unlock(&block_group->lock);
3375
e33e17ee 3376 if (cleanup) {
34441361 3377 mutex_lock(&fs_info->chunk_mutex);
c8bf1b67 3378 em_tree = &fs_info->mapping_tree;
04216820 3379 write_lock(&em_tree->lock);
b3470b5d 3380 em = lookup_extent_mapping(em_tree, block_group->start,
04216820
FM
3381 1);
3382 BUG_ON(!em); /* logic error, can't happen */
3383 remove_extent_mapping(em_tree, em);
3384 write_unlock(&em_tree->lock);
34441361 3385 mutex_unlock(&fs_info->chunk_mutex);
04216820
FM
3386
3387 /* once for us and once for the tree */
3388 free_extent_map(em);
3389 free_extent_map(em);
946ddbe8
FM
3390
3391 /*
3392 * We've left one free space entry and other tasks trimming
3393 * this block group have left 1 entry each one. Free them.
3394 */
3395 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
e33e17ee
JM
3396 }
3397}
3398
32da5386 3399int btrfs_trim_block_group(struct btrfs_block_group *block_group,
e33e17ee
JM
3400 u64 *trimmed, u64 start, u64 end, u64 minlen)
3401{
3402 int ret;
3403
3404 *trimmed = 0;
3405
3406 spin_lock(&block_group->lock);
3407 if (block_group->removed) {
04216820 3408 spin_unlock(&block_group->lock);
e33e17ee 3409 return 0;
04216820 3410 }
e33e17ee
JM
3411 btrfs_get_block_group_trimming(block_group);
3412 spin_unlock(&block_group->lock);
3413
3414 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3415 if (ret)
3416 goto out;
7fe1e641 3417
e33e17ee
JM
3418 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3419out:
3420 btrfs_put_block_group_trimming(block_group);
7fe1e641
LZ
3421 return ret;
3422}
3423
581bb050
LZ
3424/*
3425 * Find the left-most item in the cache tree, and then return the
3426 * smallest inode number in the item.
3427 *
3428 * Note: the returned inode number may not be the smallest one in
3429 * the tree, if the left-most item is a bitmap.
3430 */
3431u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3432{
3433 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3434 struct btrfs_free_space *entry = NULL;
3435 u64 ino = 0;
3436
3437 spin_lock(&ctl->tree_lock);
3438
3439 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3440 goto out;
3441
3442 entry = rb_entry(rb_first(&ctl->free_space_offset),
3443 struct btrfs_free_space, offset_index);
3444
3445 if (!entry->bitmap) {
3446 ino = entry->offset;
3447
3448 unlink_free_space(ctl, entry);
3449 entry->offset++;
3450 entry->bytes--;
3451 if (!entry->bytes)
3452 kmem_cache_free(btrfs_free_space_cachep, entry);
3453 else
3454 link_free_space(ctl, entry);
3455 } else {
3456 u64 offset = 0;
3457 u64 count = 1;
3458 int ret;
3459
0584f718 3460 ret = search_bitmap(ctl, entry, &offset, &count, true);
79787eaa 3461 /* Logic error; Should be empty if it can't find anything */
b12d6869 3462 ASSERT(!ret);
581bb050
LZ
3463
3464 ino = offset;
3465 bitmap_clear_bits(ctl, entry, offset, 1);
3466 if (entry->bytes == 0)
3467 free_bitmap(ctl, entry);
3468 }
3469out:
3470 spin_unlock(&ctl->tree_lock);
3471
3472 return ino;
3473}
82d5902d
LZ
3474
3475struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3476 struct btrfs_path *path)
3477{
3478 struct inode *inode = NULL;
3479
57cdc8db
DS
3480 spin_lock(&root->ino_cache_lock);
3481 if (root->ino_cache_inode)
3482 inode = igrab(root->ino_cache_inode);
3483 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3484 if (inode)
3485 return inode;
3486
3487 inode = __lookup_free_space_inode(root, path, 0);
3488 if (IS_ERR(inode))
3489 return inode;
3490
57cdc8db 3491 spin_lock(&root->ino_cache_lock);
7841cb28 3492 if (!btrfs_fs_closing(root->fs_info))
57cdc8db
DS
3493 root->ino_cache_inode = igrab(inode);
3494 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3495
3496 return inode;
3497}
3498
3499int create_free_ino_inode(struct btrfs_root *root,
3500 struct btrfs_trans_handle *trans,
3501 struct btrfs_path *path)
3502{
3503 return __create_free_space_inode(root, trans, path,
3504 BTRFS_FREE_INO_OBJECTID, 0);
3505}
3506
3507int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3508{
3509 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3510 struct btrfs_path *path;
3511 struct inode *inode;
3512 int ret = 0;
3513 u64 root_gen = btrfs_root_generation(&root->root_item);
3514
0b246afa 3515 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3516 return 0;
3517
82d5902d
LZ
3518 /*
3519 * If we're unmounting then just return, since this does a search on the
3520 * normal root and not the commit root and we could deadlock.
3521 */
7841cb28 3522 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
3523 return 0;
3524
3525 path = btrfs_alloc_path();
3526 if (!path)
3527 return 0;
3528
3529 inode = lookup_free_ino_inode(root, path);
3530 if (IS_ERR(inode))
3531 goto out;
3532
3533 if (root_gen != BTRFS_I(inode)->generation)
3534 goto out_put;
3535
3536 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3537
3538 if (ret < 0)
c2cf52eb
SK
3539 btrfs_err(fs_info,
3540 "failed to load free ino cache for root %llu",
3541 root->root_key.objectid);
82d5902d
LZ
3542out_put:
3543 iput(inode);
3544out:
3545 btrfs_free_path(path);
3546 return ret;
3547}
3548
3549int btrfs_write_out_ino_cache(struct btrfs_root *root,
3550 struct btrfs_trans_handle *trans,
53645a91
FDBM
3551 struct btrfs_path *path,
3552 struct inode *inode)
82d5902d 3553{
0b246afa 3554 struct btrfs_fs_info *fs_info = root->fs_info;
82d5902d 3555 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
82d5902d 3556 int ret;
c9dc4c65 3557 struct btrfs_io_ctl io_ctl;
e43699d4 3558 bool release_metadata = true;
82d5902d 3559
0b246afa 3560 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3561 return 0;
3562
85db36cf 3563 memset(&io_ctl, 0, sizeof(io_ctl));
0e8d931a 3564 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
e43699d4
FM
3565 if (!ret) {
3566 /*
3567 * At this point writepages() didn't error out, so our metadata
3568 * reservation is released when the writeback finishes, at
3569 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3570 * with or without an error.
3571 */
3572 release_metadata = false;
afdb5718 3573 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
e43699d4 3574 }
85db36cf 3575
c09544e0 3576 if (ret) {
e43699d4 3577 if (release_metadata)
691fa059 3578 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 3579 inode->i_size, true);
c09544e0 3580#ifdef DEBUG
0b246afa
JM
3581 btrfs_err(fs_info,
3582 "failed to write free ino cache for root %llu",
3583 root->root_key.objectid);
c09544e0
JB
3584#endif
3585 }
82d5902d 3586
82d5902d
LZ
3587 return ret;
3588}
74255aa0
JB
3589
3590#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
3591/*
3592 * Use this if you need to make a bitmap or extent entry specifically, it
3593 * doesn't do any of the merging that add_free_space does, this acts a lot like
3594 * how the free space cache loading stuff works, so you can get really weird
3595 * configurations.
3596 */
32da5386 3597int test_add_free_space_entry(struct btrfs_block_group *cache,
dc11dd5d 3598 u64 offset, u64 bytes, bool bitmap)
74255aa0 3599{
dc11dd5d
JB
3600 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3601 struct btrfs_free_space *info = NULL, *bitmap_info;
3602 void *map = NULL;
3603 u64 bytes_added;
3604 int ret;
74255aa0 3605
dc11dd5d
JB
3606again:
3607 if (!info) {
3608 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3609 if (!info)
3610 return -ENOMEM;
74255aa0
JB
3611 }
3612
dc11dd5d
JB
3613 if (!bitmap) {
3614 spin_lock(&ctl->tree_lock);
3615 info->offset = offset;
3616 info->bytes = bytes;
cef40483 3617 info->max_extent_size = 0;
dc11dd5d
JB
3618 ret = link_free_space(ctl, info);
3619 spin_unlock(&ctl->tree_lock);
3620 if (ret)
3621 kmem_cache_free(btrfs_free_space_cachep, info);
3622 return ret;
3623 }
3624
3625 if (!map) {
3acd4850 3626 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
dc11dd5d
JB
3627 if (!map) {
3628 kmem_cache_free(btrfs_free_space_cachep, info);
3629 return -ENOMEM;
3630 }
3631 }
3632
3633 spin_lock(&ctl->tree_lock);
3634 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3635 1, 0);
3636 if (!bitmap_info) {
3637 info->bitmap = map;
3638 map = NULL;
3639 add_new_bitmap(ctl, info, offset);
3640 bitmap_info = info;
20005523 3641 info = NULL;
dc11dd5d 3642 }
74255aa0 3643
dc11dd5d 3644 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
cef40483 3645
dc11dd5d
JB
3646 bytes -= bytes_added;
3647 offset += bytes_added;
3648 spin_unlock(&ctl->tree_lock);
74255aa0 3649
dc11dd5d
JB
3650 if (bytes)
3651 goto again;
74255aa0 3652
20005523
FM
3653 if (info)
3654 kmem_cache_free(btrfs_free_space_cachep, info);
3acd4850
CL
3655 if (map)
3656 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
dc11dd5d 3657 return 0;
74255aa0
JB
3658}
3659
3660/*
3661 * Checks to see if the given range is in the free space cache. This is really
3662 * just used to check the absence of space, so if there is free space in the
3663 * range at all we will return 1.
3664 */
32da5386 3665int test_check_exists(struct btrfs_block_group *cache,
dc11dd5d 3666 u64 offset, u64 bytes)
74255aa0
JB
3667{
3668 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3669 struct btrfs_free_space *info;
3670 int ret = 0;
3671
3672 spin_lock(&ctl->tree_lock);
3673 info = tree_search_offset(ctl, offset, 0, 0);
3674 if (!info) {
3675 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3676 1, 0);
3677 if (!info)
3678 goto out;
3679 }
3680
3681have_info:
3682 if (info->bitmap) {
3683 u64 bit_off, bit_bytes;
3684 struct rb_node *n;
3685 struct btrfs_free_space *tmp;
3686
3687 bit_off = offset;
3688 bit_bytes = ctl->unit;
0584f718 3689 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
3690 if (!ret) {
3691 if (bit_off == offset) {
3692 ret = 1;
3693 goto out;
3694 } else if (bit_off > offset &&
3695 offset + bytes > bit_off) {
3696 ret = 1;
3697 goto out;
3698 }
3699 }
3700
3701 n = rb_prev(&info->offset_index);
3702 while (n) {
3703 tmp = rb_entry(n, struct btrfs_free_space,
3704 offset_index);
3705 if (tmp->offset + tmp->bytes < offset)
3706 break;
3707 if (offset + bytes < tmp->offset) {
5473e0c4 3708 n = rb_prev(&tmp->offset_index);
74255aa0
JB
3709 continue;
3710 }
3711 info = tmp;
3712 goto have_info;
3713 }
3714
3715 n = rb_next(&info->offset_index);
3716 while (n) {
3717 tmp = rb_entry(n, struct btrfs_free_space,
3718 offset_index);
3719 if (offset + bytes < tmp->offset)
3720 break;
3721 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 3722 n = rb_next(&tmp->offset_index);
74255aa0
JB
3723 continue;
3724 }
3725 info = tmp;
3726 goto have_info;
3727 }
3728
20005523 3729 ret = 0;
74255aa0
JB
3730 goto out;
3731 }
3732
3733 if (info->offset == offset) {
3734 ret = 1;
3735 goto out;
3736 }
3737
3738 if (offset > info->offset && offset < info->offset + info->bytes)
3739 ret = 1;
3740out:
3741 spin_unlock(&ctl->tree_lock);
3742 return ret;
3743}
dc11dd5d 3744#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */