Btrfs: update the delayed inode code to use the btrfs_ino helper.
[linux-2.6-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
0f9dd46c 23#include "ctree.h"
fa9c0d79
CM
24#include "free-space-cache.h"
25#include "transaction.h"
0af3d00b 26#include "disk-io.h"
43be2146 27#include "extent_io.h"
581bb050 28#include "inode-map.h"
fa9c0d79 29
96303081
JB
30#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
31#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 32
34d52cb6 33static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99
JB
34 struct btrfs_free_space *info);
35
0414efae
LZ
36static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
37 struct btrfs_path *path,
38 u64 offset)
0af3d00b
JB
39{
40 struct btrfs_key key;
41 struct btrfs_key location;
42 struct btrfs_disk_key disk_key;
43 struct btrfs_free_space_header *header;
44 struct extent_buffer *leaf;
45 struct inode *inode = NULL;
46 int ret;
47
0af3d00b 48 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 49 key.offset = offset;
0af3d00b
JB
50 key.type = 0;
51
52 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
53 if (ret < 0)
54 return ERR_PTR(ret);
55 if (ret > 0) {
56 btrfs_release_path(root, path);
57 return ERR_PTR(-ENOENT);
58 }
59
60 leaf = path->nodes[0];
61 header = btrfs_item_ptr(leaf, path->slots[0],
62 struct btrfs_free_space_header);
63 btrfs_free_space_key(leaf, header, &disk_key);
64 btrfs_disk_key_to_cpu(&location, &disk_key);
65 btrfs_release_path(root, path);
66
67 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
68 if (!inode)
69 return ERR_PTR(-ENOENT);
70 if (IS_ERR(inode))
71 return inode;
72 if (is_bad_inode(inode)) {
73 iput(inode);
74 return ERR_PTR(-ENOENT);
75 }
76
adae52b9
MX
77 inode->i_mapping->flags &= ~__GFP_FS;
78
0414efae
LZ
79 return inode;
80}
81
82struct inode *lookup_free_space_inode(struct btrfs_root *root,
83 struct btrfs_block_group_cache
84 *block_group, struct btrfs_path *path)
85{
86 struct inode *inode = NULL;
87
88 spin_lock(&block_group->lock);
89 if (block_group->inode)
90 inode = igrab(block_group->inode);
91 spin_unlock(&block_group->lock);
92 if (inode)
93 return inode;
94
95 inode = __lookup_free_space_inode(root, path,
96 block_group->key.objectid);
97 if (IS_ERR(inode))
98 return inode;
99
0af3d00b
JB
100 spin_lock(&block_group->lock);
101 if (!root->fs_info->closing) {
102 block_group->inode = igrab(inode);
103 block_group->iref = 1;
104 }
105 spin_unlock(&block_group->lock);
106
107 return inode;
108}
109
0414efae
LZ
110int __create_free_space_inode(struct btrfs_root *root,
111 struct btrfs_trans_handle *trans,
112 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
113{
114 struct btrfs_key key;
115 struct btrfs_disk_key disk_key;
116 struct btrfs_free_space_header *header;
117 struct btrfs_inode_item *inode_item;
118 struct extent_buffer *leaf;
0af3d00b
JB
119 int ret;
120
0414efae 121 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
122 if (ret)
123 return ret;
124
125 leaf = path->nodes[0];
126 inode_item = btrfs_item_ptr(leaf, path->slots[0],
127 struct btrfs_inode_item);
128 btrfs_item_key(leaf, &disk_key, path->slots[0]);
129 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
130 sizeof(*inode_item));
131 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
132 btrfs_set_inode_size(leaf, inode_item, 0);
133 btrfs_set_inode_nbytes(leaf, inode_item, 0);
134 btrfs_set_inode_uid(leaf, inode_item, 0);
135 btrfs_set_inode_gid(leaf, inode_item, 0);
136 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
137 btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
138 BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
139 btrfs_set_inode_nlink(leaf, inode_item, 1);
140 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 141 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b
JB
142 btrfs_mark_buffer_dirty(leaf);
143 btrfs_release_path(root, path);
144
145 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 146 key.offset = offset;
0af3d00b
JB
147 key.type = 0;
148
149 ret = btrfs_insert_empty_item(trans, root, path, &key,
150 sizeof(struct btrfs_free_space_header));
151 if (ret < 0) {
152 btrfs_release_path(root, path);
153 return ret;
154 }
155 leaf = path->nodes[0];
156 header = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_free_space_header);
158 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
159 btrfs_set_free_space_key(leaf, header, &disk_key);
160 btrfs_mark_buffer_dirty(leaf);
161 btrfs_release_path(root, path);
162
163 return 0;
164}
165
0414efae
LZ
166int create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_block_group_cache *block_group,
169 struct btrfs_path *path)
170{
171 int ret;
172 u64 ino;
173
174 ret = btrfs_find_free_objectid(root, &ino);
175 if (ret < 0)
176 return ret;
177
178 return __create_free_space_inode(root, trans, path, ino,
179 block_group->key.objectid);
180}
181
0af3d00b
JB
182int btrfs_truncate_free_space_cache(struct btrfs_root *root,
183 struct btrfs_trans_handle *trans,
184 struct btrfs_path *path,
185 struct inode *inode)
186{
187 loff_t oldsize;
188 int ret = 0;
189
190 trans->block_rsv = root->orphan_block_rsv;
191 ret = btrfs_block_rsv_check(trans, root,
192 root->orphan_block_rsv,
193 0, 5);
194 if (ret)
195 return ret;
196
197 oldsize = i_size_read(inode);
198 btrfs_i_size_write(inode, 0);
199 truncate_pagecache(inode, oldsize, 0);
200
201 /*
202 * We don't need an orphan item because truncating the free space cache
203 * will never be split across transactions.
204 */
205 ret = btrfs_truncate_inode_items(trans, root, inode,
206 0, BTRFS_EXTENT_DATA_KEY);
207 if (ret) {
208 WARN_ON(1);
209 return ret;
210 }
211
82d5902d
LZ
212 ret = btrfs_update_inode(trans, root, inode);
213 return ret;
0af3d00b
JB
214}
215
9d66e233
JB
216static int readahead_cache(struct inode *inode)
217{
218 struct file_ra_state *ra;
219 unsigned long last_index;
220
221 ra = kzalloc(sizeof(*ra), GFP_NOFS);
222 if (!ra)
223 return -ENOMEM;
224
225 file_ra_state_init(ra, inode->i_mapping);
226 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
227
228 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
229
230 kfree(ra);
231
232 return 0;
233}
234
0414efae
LZ
235int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
236 struct btrfs_free_space_ctl *ctl,
237 struct btrfs_path *path, u64 offset)
9d66e233 238{
9d66e233
JB
239 struct btrfs_free_space_header *header;
240 struct extent_buffer *leaf;
241 struct page *page;
9d66e233
JB
242 u32 *checksums = NULL, *crc;
243 char *disk_crcs = NULL;
244 struct btrfs_key key;
245 struct list_head bitmaps;
246 u64 num_entries;
247 u64 num_bitmaps;
248 u64 generation;
249 u32 cur_crc = ~(u32)0;
250 pgoff_t index = 0;
251 unsigned long first_page_offset;
252 int num_checksums;
0414efae 253 int ret = 0, ret2;
9d66e233
JB
254
255 INIT_LIST_HEAD(&bitmaps);
256
9d66e233 257 /* Nothing in the space cache, goodbye */
0414efae 258 if (!i_size_read(inode))
9d66e233 259 goto out;
9d66e233
JB
260
261 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 262 key.offset = offset;
9d66e233
JB
263 key.type = 0;
264
265 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae
LZ
266 if (ret < 0)
267 goto out;
268 else if (ret > 0) {
269 btrfs_release_path(root, path);
270 ret = 0;
9d66e233
JB
271 goto out;
272 }
273
0414efae
LZ
274 ret = -1;
275
9d66e233
JB
276 leaf = path->nodes[0];
277 header = btrfs_item_ptr(leaf, path->slots[0],
278 struct btrfs_free_space_header);
279 num_entries = btrfs_free_space_entries(leaf, header);
280 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
281 generation = btrfs_free_space_generation(leaf, header);
0414efae 282 btrfs_release_path(root, path);
9d66e233
JB
283
284 if (BTRFS_I(inode)->generation != generation) {
285 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 286 " not match free space cache generation (%llu)\n",
9d66e233 287 (unsigned long long)BTRFS_I(inode)->generation,
0414efae
LZ
288 (unsigned long long)generation);
289 goto out;
9d66e233
JB
290 }
291
292 if (!num_entries)
293 goto out;
294
295 /* Setup everything for doing checksumming */
296 num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
297 checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
298 if (!checksums)
299 goto out;
300 first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
301 disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
302 if (!disk_crcs)
303 goto out;
304
305 ret = readahead_cache(inode);
0414efae 306 if (ret)
9d66e233 307 goto out;
9d66e233
JB
308
309 while (1) {
310 struct btrfs_free_space_entry *entry;
311 struct btrfs_free_space *e;
312 void *addr;
313 unsigned long offset = 0;
314 unsigned long start_offset = 0;
315 int need_loop = 0;
316
317 if (!num_entries && !num_bitmaps)
318 break;
319
320 if (index == 0) {
321 start_offset = first_page_offset;
322 offset = start_offset;
323 }
324
325 page = grab_cache_page(inode->i_mapping, index);
0414efae 326 if (!page)
9d66e233 327 goto free_cache;
9d66e233
JB
328
329 if (!PageUptodate(page)) {
330 btrfs_readpage(NULL, page);
331 lock_page(page);
332 if (!PageUptodate(page)) {
333 unlock_page(page);
334 page_cache_release(page);
335 printk(KERN_ERR "btrfs: error reading free "
0414efae 336 "space cache\n");
9d66e233
JB
337 goto free_cache;
338 }
339 }
340 addr = kmap(page);
341
342 if (index == 0) {
343 u64 *gen;
344
345 memcpy(disk_crcs, addr, first_page_offset);
346 gen = addr + (sizeof(u32) * num_checksums);
347 if (*gen != BTRFS_I(inode)->generation) {
348 printk(KERN_ERR "btrfs: space cache generation"
0414efae 349 " (%llu) does not match inode (%llu)\n",
9d66e233
JB
350 (unsigned long long)*gen,
351 (unsigned long long)
0414efae 352 BTRFS_I(inode)->generation);
9d66e233
JB
353 kunmap(page);
354 unlock_page(page);
355 page_cache_release(page);
356 goto free_cache;
357 }
358 crc = (u32 *)disk_crcs;
359 }
360 entry = addr + start_offset;
361
362 /* First lets check our crc before we do anything fun */
363 cur_crc = ~(u32)0;
364 cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
365 PAGE_CACHE_SIZE - start_offset);
366 btrfs_csum_final(cur_crc, (char *)&cur_crc);
367 if (cur_crc != *crc) {
0414efae
LZ
368 printk(KERN_ERR "btrfs: crc mismatch for page %lu\n",
369 index);
9d66e233
JB
370 kunmap(page);
371 unlock_page(page);
372 page_cache_release(page);
373 goto free_cache;
374 }
375 crc++;
376
377 while (1) {
378 if (!num_entries)
379 break;
380
381 need_loop = 1;
dc89e982
JB
382 e = kmem_cache_zalloc(btrfs_free_space_cachep,
383 GFP_NOFS);
9d66e233
JB
384 if (!e) {
385 kunmap(page);
386 unlock_page(page);
387 page_cache_release(page);
388 goto free_cache;
389 }
390
391 e->offset = le64_to_cpu(entry->offset);
392 e->bytes = le64_to_cpu(entry->bytes);
393 if (!e->bytes) {
394 kunmap(page);
dc89e982 395 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
396 unlock_page(page);
397 page_cache_release(page);
398 goto free_cache;
399 }
400
401 if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
34d52cb6
LZ
402 spin_lock(&ctl->tree_lock);
403 ret = link_free_space(ctl, e);
404 spin_unlock(&ctl->tree_lock);
9d66e233
JB
405 BUG_ON(ret);
406 } else {
407 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
408 if (!e->bitmap) {
409 kunmap(page);
dc89e982
JB
410 kmem_cache_free(
411 btrfs_free_space_cachep, e);
9d66e233
JB
412 unlock_page(page);
413 page_cache_release(page);
414 goto free_cache;
415 }
34d52cb6 416 spin_lock(&ctl->tree_lock);
0414efae 417 ret2 = link_free_space(ctl, e);
34d52cb6
LZ
418 ctl->total_bitmaps++;
419 ctl->op->recalc_thresholds(ctl);
420 spin_unlock(&ctl->tree_lock);
9d66e233
JB
421 list_add_tail(&e->list, &bitmaps);
422 }
423
424 num_entries--;
425 offset += sizeof(struct btrfs_free_space_entry);
426 if (offset + sizeof(struct btrfs_free_space_entry) >=
427 PAGE_CACHE_SIZE)
428 break;
429 entry++;
430 }
431
432 /*
433 * We read an entry out of this page, we need to move on to the
434 * next page.
435 */
436 if (need_loop) {
437 kunmap(page);
438 goto next;
439 }
440
441 /*
442 * We add the bitmaps at the end of the entries in order that
443 * the bitmap entries are added to the cache.
444 */
445 e = list_entry(bitmaps.next, struct btrfs_free_space, list);
446 list_del_init(&e->list);
447 memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
448 kunmap(page);
449 num_bitmaps--;
450next:
451 unlock_page(page);
452 page_cache_release(page);
453 index++;
454 }
455
456 ret = 1;
457out:
458 kfree(checksums);
459 kfree(disk_crcs);
9d66e233 460 return ret;
9d66e233 461free_cache:
0414efae 462 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
463 goto out;
464}
465
0414efae
LZ
466int load_free_space_cache(struct btrfs_fs_info *fs_info,
467 struct btrfs_block_group_cache *block_group)
0cb59c99 468{
34d52cb6 469 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
470 struct btrfs_root *root = fs_info->tree_root;
471 struct inode *inode;
472 struct btrfs_path *path;
473 int ret;
474 bool matched;
475 u64 used = btrfs_block_group_used(&block_group->item);
476
477 /*
478 * If we're unmounting then just return, since this does a search on the
479 * normal root and not the commit root and we could deadlock.
480 */
481 smp_mb();
482 if (fs_info->closing)
483 return 0;
484
485 /*
486 * If this block group has been marked to be cleared for one reason or
487 * another then we can't trust the on disk cache, so just return.
488 */
9d66e233 489 spin_lock(&block_group->lock);
0414efae
LZ
490 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
491 spin_unlock(&block_group->lock);
492 return 0;
493 }
9d66e233 494 spin_unlock(&block_group->lock);
0414efae
LZ
495
496 path = btrfs_alloc_path();
497 if (!path)
498 return 0;
499
500 inode = lookup_free_space_inode(root, block_group, path);
501 if (IS_ERR(inode)) {
502 btrfs_free_path(path);
503 return 0;
504 }
505
506 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
507 path, block_group->key.objectid);
508 btrfs_free_path(path);
509 if (ret <= 0)
510 goto out;
511
512 spin_lock(&ctl->tree_lock);
513 matched = (ctl->free_space == (block_group->key.offset - used -
514 block_group->bytes_super));
515 spin_unlock(&ctl->tree_lock);
516
517 if (!matched) {
518 __btrfs_remove_free_space_cache(ctl);
519 printk(KERN_ERR "block group %llu has an wrong amount of free "
520 "space\n", block_group->key.objectid);
521 ret = -1;
522 }
523out:
524 if (ret < 0) {
525 /* This cache is bogus, make sure it gets cleared */
526 spin_lock(&block_group->lock);
527 block_group->disk_cache_state = BTRFS_DC_CLEAR;
528 spin_unlock(&block_group->lock);
82d5902d 529 ret = 0;
0414efae
LZ
530
531 printk(KERN_ERR "btrfs: failed to load free space cache "
532 "for block group %llu\n", block_group->key.objectid);
533 }
534
535 iput(inode);
536 return ret;
9d66e233
JB
537}
538
0414efae
LZ
539int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
540 struct btrfs_free_space_ctl *ctl,
541 struct btrfs_block_group_cache *block_group,
542 struct btrfs_trans_handle *trans,
543 struct btrfs_path *path, u64 offset)
0cb59c99
JB
544{
545 struct btrfs_free_space_header *header;
546 struct extent_buffer *leaf;
0cb59c99
JB
547 struct rb_node *node;
548 struct list_head *pos, *n;
be1a12a0 549 struct page **pages;
0cb59c99
JB
550 struct page *page;
551 struct extent_state *cached_state = NULL;
43be2146
JB
552 struct btrfs_free_cluster *cluster = NULL;
553 struct extent_io_tree *unpin = NULL;
0cb59c99
JB
554 struct list_head bitmap_list;
555 struct btrfs_key key;
43be2146 556 u64 start, end, len;
0cb59c99
JB
557 u64 bytes = 0;
558 u32 *crc, *checksums;
0cb59c99 559 unsigned long first_page_offset;
be1a12a0 560 int index = 0, num_pages = 0;
0cb59c99
JB
561 int entries = 0;
562 int bitmaps = 0;
0414efae 563 int ret = -1;
43be2146 564 bool next_page = false;
be1a12a0 565 bool out_of_space = false;
0cb59c99 566
0cb59c99
JB
567 INIT_LIST_HEAD(&bitmap_list);
568
34d52cb6 569 node = rb_first(&ctl->free_space_offset);
0414efae 570 if (!node)
0cb59c99
JB
571 return 0;
572
0414efae
LZ
573 if (!i_size_read(inode))
574 return -1;
2b20982e 575
be1a12a0
JB
576 num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
577 PAGE_CACHE_SHIFT;
0cb59c99
JB
578 filemap_write_and_wait(inode->i_mapping);
579 btrfs_wait_ordered_range(inode, inode->i_size &
580 ~(root->sectorsize - 1), (u64)-1);
581
582 /* We need a checksum per page. */
be1a12a0 583 crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
0414efae
LZ
584 if (!crc)
585 return -1;
0cb59c99 586
be1a12a0
JB
587 pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
588 if (!pages) {
589 kfree(crc);
0414efae 590 return -1;
be1a12a0
JB
591 }
592
0cb59c99
JB
593 /* Since the first page has all of our checksums and our generation we
594 * need to calculate the offset into the page that we can start writing
595 * our entries.
596 */
be1a12a0 597 first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
0cb59c99 598
43be2146 599 /* Get the cluster for this block_group if it exists */
0414efae 600 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
601 cluster = list_entry(block_group->cluster_list.next,
602 struct btrfs_free_cluster,
603 block_group_list);
604
605 /*
606 * We shouldn't have switched the pinned extents yet so this is the
607 * right one
608 */
609 unpin = root->fs_info->pinned_extents;
610
0cb59c99
JB
611 /*
612 * Lock all pages first so we can lock the extent safely.
613 *
614 * NOTE: Because we hold the ref the entire time we're going to write to
615 * the page find_get_page should never fail, so we don't do a check
616 * after find_get_page at this point. Just putting this here so people
617 * know and don't freak out.
618 */
be1a12a0 619 while (index < num_pages) {
0cb59c99
JB
620 page = grab_cache_page(inode->i_mapping, index);
621 if (!page) {
be1a12a0 622 int i;
0cb59c99 623
be1a12a0
JB
624 for (i = 0; i < num_pages; i++) {
625 unlock_page(pages[i]);
626 page_cache_release(pages[i]);
0cb59c99
JB
627 }
628 goto out_free;
629 }
be1a12a0 630 pages[index] = page;
0cb59c99
JB
631 index++;
632 }
633
634 index = 0;
635 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
636 0, &cached_state, GFP_NOFS);
637
43be2146
JB
638 /*
639 * When searching for pinned extents, we need to start at our start
640 * offset.
641 */
0414efae
LZ
642 if (block_group)
643 start = block_group->key.objectid;
43be2146 644
0cb59c99
JB
645 /* Write out the extent entries */
646 do {
647 struct btrfs_free_space_entry *entry;
648 void *addr;
649 unsigned long offset = 0;
650 unsigned long start_offset = 0;
651
43be2146
JB
652 next_page = false;
653
0cb59c99
JB
654 if (index == 0) {
655 start_offset = first_page_offset;
656 offset = start_offset;
657 }
658
be1a12a0
JB
659 if (index >= num_pages) {
660 out_of_space = true;
661 break;
662 }
663
664 page = pages[index];
0cb59c99
JB
665
666 addr = kmap(page);
667 entry = addr + start_offset;
668
669 memset(addr, 0, PAGE_CACHE_SIZE);
43be2146 670 while (node && !next_page) {
0cb59c99
JB
671 struct btrfs_free_space *e;
672
673 e = rb_entry(node, struct btrfs_free_space, offset_index);
674 entries++;
675
676 entry->offset = cpu_to_le64(e->offset);
677 entry->bytes = cpu_to_le64(e->bytes);
678 if (e->bitmap) {
679 entry->type = BTRFS_FREE_SPACE_BITMAP;
680 list_add_tail(&e->list, &bitmap_list);
681 bitmaps++;
682 } else {
683 entry->type = BTRFS_FREE_SPACE_EXTENT;
684 }
685 node = rb_next(node);
43be2146
JB
686 if (!node && cluster) {
687 node = rb_first(&cluster->root);
688 cluster = NULL;
689 }
0cb59c99
JB
690 offset += sizeof(struct btrfs_free_space_entry);
691 if (offset + sizeof(struct btrfs_free_space_entry) >=
692 PAGE_CACHE_SIZE)
43be2146
JB
693 next_page = true;
694 entry++;
695 }
696
697 /*
698 * We want to add any pinned extents to our free space cache
699 * so we don't leak the space
700 */
0414efae
LZ
701 while (block_group && !next_page &&
702 (start < block_group->key.objectid +
703 block_group->key.offset)) {
43be2146
JB
704 ret = find_first_extent_bit(unpin, start, &start, &end,
705 EXTENT_DIRTY);
706 if (ret) {
707 ret = 0;
708 break;
709 }
710
711 /* This pinned extent is out of our range */
712 if (start >= block_group->key.objectid +
713 block_group->key.offset)
0cb59c99 714 break;
43be2146
JB
715
716 len = block_group->key.objectid +
717 block_group->key.offset - start;
718 len = min(len, end + 1 - start);
719
720 entries++;
721 entry->offset = cpu_to_le64(start);
722 entry->bytes = cpu_to_le64(len);
723 entry->type = BTRFS_FREE_SPACE_EXTENT;
724
725 start = end + 1;
726 offset += sizeof(struct btrfs_free_space_entry);
727 if (offset + sizeof(struct btrfs_free_space_entry) >=
728 PAGE_CACHE_SIZE)
729 next_page = true;
0cb59c99
JB
730 entry++;
731 }
732 *crc = ~(u32)0;
733 *crc = btrfs_csum_data(root, addr + start_offset, *crc,
734 PAGE_CACHE_SIZE - start_offset);
735 kunmap(page);
736
737 btrfs_csum_final(*crc, (char *)crc);
738 crc++;
739
740 bytes += PAGE_CACHE_SIZE;
741
0cb59c99 742 index++;
43be2146 743 } while (node || next_page);
0cb59c99
JB
744
745 /* Write out the bitmaps */
746 list_for_each_safe(pos, n, &bitmap_list) {
747 void *addr;
748 struct btrfs_free_space *entry =
749 list_entry(pos, struct btrfs_free_space, list);
750
be1a12a0
JB
751 if (index >= num_pages) {
752 out_of_space = true;
753 break;
754 }
f65647c2 755 page = pages[index];
0cb59c99
JB
756
757 addr = kmap(page);
758 memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
759 *crc = ~(u32)0;
760 *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
761 kunmap(page);
762 btrfs_csum_final(*crc, (char *)crc);
763 crc++;
764 bytes += PAGE_CACHE_SIZE;
765
0cb59c99
JB
766 list_del_init(&entry->list);
767 index++;
768 }
769
be1a12a0
JB
770 if (out_of_space) {
771 btrfs_drop_pages(pages, num_pages);
772 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
773 i_size_read(inode) - 1, &cached_state,
774 GFP_NOFS);
775 ret = 0;
776 goto out_free;
777 }
778
0cb59c99 779 /* Zero out the rest of the pages just to make sure */
be1a12a0 780 while (index < num_pages) {
0cb59c99
JB
781 void *addr;
782
be1a12a0 783 page = pages[index];
0cb59c99
JB
784 addr = kmap(page);
785 memset(addr, 0, PAGE_CACHE_SIZE);
786 kunmap(page);
0cb59c99
JB
787 bytes += PAGE_CACHE_SIZE;
788 index++;
789 }
790
0cb59c99
JB
791 /* Write the checksums and trans id to the first page */
792 {
793 void *addr;
794 u64 *gen;
795
be1a12a0 796 page = pages[0];
0cb59c99
JB
797
798 addr = kmap(page);
be1a12a0
JB
799 memcpy(addr, checksums, sizeof(u32) * num_pages);
800 gen = addr + (sizeof(u32) * num_pages);
0cb59c99
JB
801 *gen = trans->transid;
802 kunmap(page);
0cb59c99 803 }
0cb59c99 804
be1a12a0
JB
805 ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
806 bytes, &cached_state);
807 btrfs_drop_pages(pages, num_pages);
0cb59c99
JB
808 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
809 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
810
be1a12a0
JB
811 if (ret) {
812 ret = 0;
813 goto out_free;
814 }
815
816 BTRFS_I(inode)->generation = trans->transid;
817
0cb59c99
JB
818 filemap_write_and_wait(inode->i_mapping);
819
820 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 821 key.offset = offset;
0cb59c99
JB
822 key.type = 0;
823
824 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
825 if (ret < 0) {
0414efae 826 ret = -1;
0cb59c99
JB
827 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
828 EXTENT_DIRTY | EXTENT_DELALLOC |
829 EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
830 goto out_free;
831 }
832 leaf = path->nodes[0];
833 if (ret > 0) {
834 struct btrfs_key found_key;
835 BUG_ON(!path->slots[0]);
836 path->slots[0]--;
837 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
838 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae
LZ
839 found_key.offset != offset) {
840 ret = -1;
0cb59c99
JB
841 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
842 EXTENT_DIRTY | EXTENT_DELALLOC |
843 EXTENT_DO_ACCOUNTING, 0, 0, NULL,
844 GFP_NOFS);
845 btrfs_release_path(root, path);
846 goto out_free;
847 }
848 }
849 header = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_free_space_header);
851 btrfs_set_free_space_entries(leaf, header, entries);
852 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
853 btrfs_set_free_space_generation(leaf, header, trans->transid);
854 btrfs_mark_buffer_dirty(leaf);
855 btrfs_release_path(root, path);
856
857 ret = 1;
858
859out_free:
0414efae 860 if (ret != 1) {
0cb59c99 861 invalidate_inode_pages2_range(inode->i_mapping, 0, index);
0cb59c99
JB
862 BTRFS_I(inode)->generation = 0;
863 }
864 kfree(checksums);
be1a12a0 865 kfree(pages);
0cb59c99 866 btrfs_update_inode(trans, root, inode);
0414efae
LZ
867 return ret;
868}
869
870int btrfs_write_out_cache(struct btrfs_root *root,
871 struct btrfs_trans_handle *trans,
872 struct btrfs_block_group_cache *block_group,
873 struct btrfs_path *path)
874{
875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
876 struct inode *inode;
877 int ret = 0;
878
879 root = root->fs_info->tree_root;
880
881 spin_lock(&block_group->lock);
882 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
883 spin_unlock(&block_group->lock);
884 return 0;
885 }
886 spin_unlock(&block_group->lock);
887
888 inode = lookup_free_space_inode(root, block_group, path);
889 if (IS_ERR(inode))
890 return 0;
891
892 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
893 path, block_group->key.objectid);
894 if (ret < 0) {
895 spin_lock(&block_group->lock);
896 block_group->disk_cache_state = BTRFS_DC_ERROR;
897 spin_unlock(&block_group->lock);
82d5902d 898 ret = 0;
0414efae
LZ
899
900 printk(KERN_ERR "btrfs: failed to write free space cace "
901 "for block group %llu\n", block_group->key.objectid);
902 }
903
0cb59c99
JB
904 iput(inode);
905 return ret;
906}
907
34d52cb6 908static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 909 u64 offset)
0f9dd46c 910{
96303081
JB
911 BUG_ON(offset < bitmap_start);
912 offset -= bitmap_start;
34d52cb6 913 return (unsigned long)(div_u64(offset, unit));
96303081 914}
0f9dd46c 915
34d52cb6 916static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 917{
34d52cb6 918 return (unsigned long)(div_u64(bytes, unit));
96303081 919}
0f9dd46c 920
34d52cb6 921static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
922 u64 offset)
923{
924 u64 bitmap_start;
925 u64 bytes_per_bitmap;
0f9dd46c 926
34d52cb6
LZ
927 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
928 bitmap_start = offset - ctl->start;
96303081
JB
929 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
930 bitmap_start *= bytes_per_bitmap;
34d52cb6 931 bitmap_start += ctl->start;
0f9dd46c 932
96303081 933 return bitmap_start;
0f9dd46c
JB
934}
935
96303081
JB
936static int tree_insert_offset(struct rb_root *root, u64 offset,
937 struct rb_node *node, int bitmap)
0f9dd46c
JB
938{
939 struct rb_node **p = &root->rb_node;
940 struct rb_node *parent = NULL;
941 struct btrfs_free_space *info;
942
943 while (*p) {
944 parent = *p;
96303081 945 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 946
96303081 947 if (offset < info->offset) {
0f9dd46c 948 p = &(*p)->rb_left;
96303081 949 } else if (offset > info->offset) {
0f9dd46c 950 p = &(*p)->rb_right;
96303081
JB
951 } else {
952 /*
953 * we could have a bitmap entry and an extent entry
954 * share the same offset. If this is the case, we want
955 * the extent entry to always be found first if we do a
956 * linear search through the tree, since we want to have
957 * the quickest allocation time, and allocating from an
958 * extent is faster than allocating from a bitmap. So
959 * if we're inserting a bitmap and we find an entry at
960 * this offset, we want to go right, or after this entry
961 * logically. If we are inserting an extent and we've
962 * found a bitmap, we want to go left, or before
963 * logically.
964 */
965 if (bitmap) {
966 WARN_ON(info->bitmap);
967 p = &(*p)->rb_right;
968 } else {
969 WARN_ON(!info->bitmap);
970 p = &(*p)->rb_left;
971 }
972 }
0f9dd46c
JB
973 }
974
975 rb_link_node(node, parent, p);
976 rb_insert_color(node, root);
977
978 return 0;
979}
980
981/*
70cb0743
JB
982 * searches the tree for the given offset.
983 *
96303081
JB
984 * fuzzy - If this is set, then we are trying to make an allocation, and we just
985 * want a section that has at least bytes size and comes at or after the given
986 * offset.
0f9dd46c 987 */
96303081 988static struct btrfs_free_space *
34d52cb6 989tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 990 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 991{
34d52cb6 992 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
993 struct btrfs_free_space *entry, *prev = NULL;
994
995 /* find entry that is closest to the 'offset' */
996 while (1) {
997 if (!n) {
998 entry = NULL;
999 break;
1000 }
0f9dd46c 1001
0f9dd46c 1002 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1003 prev = entry;
0f9dd46c 1004
96303081 1005 if (offset < entry->offset)
0f9dd46c 1006 n = n->rb_left;
96303081 1007 else if (offset > entry->offset)
0f9dd46c 1008 n = n->rb_right;
96303081 1009 else
0f9dd46c 1010 break;
0f9dd46c
JB
1011 }
1012
96303081
JB
1013 if (bitmap_only) {
1014 if (!entry)
1015 return NULL;
1016 if (entry->bitmap)
1017 return entry;
0f9dd46c 1018
96303081
JB
1019 /*
1020 * bitmap entry and extent entry may share same offset,
1021 * in that case, bitmap entry comes after extent entry.
1022 */
1023 n = rb_next(n);
1024 if (!n)
1025 return NULL;
1026 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1027 if (entry->offset != offset)
1028 return NULL;
0f9dd46c 1029
96303081
JB
1030 WARN_ON(!entry->bitmap);
1031 return entry;
1032 } else if (entry) {
1033 if (entry->bitmap) {
0f9dd46c 1034 /*
96303081
JB
1035 * if previous extent entry covers the offset,
1036 * we should return it instead of the bitmap entry
0f9dd46c 1037 */
96303081
JB
1038 n = &entry->offset_index;
1039 while (1) {
1040 n = rb_prev(n);
1041 if (!n)
1042 break;
1043 prev = rb_entry(n, struct btrfs_free_space,
1044 offset_index);
1045 if (!prev->bitmap) {
1046 if (prev->offset + prev->bytes > offset)
1047 entry = prev;
1048 break;
1049 }
0f9dd46c 1050 }
96303081
JB
1051 }
1052 return entry;
1053 }
1054
1055 if (!prev)
1056 return NULL;
1057
1058 /* find last entry before the 'offset' */
1059 entry = prev;
1060 if (entry->offset > offset) {
1061 n = rb_prev(&entry->offset_index);
1062 if (n) {
1063 entry = rb_entry(n, struct btrfs_free_space,
1064 offset_index);
1065 BUG_ON(entry->offset > offset);
0f9dd46c 1066 } else {
96303081
JB
1067 if (fuzzy)
1068 return entry;
1069 else
1070 return NULL;
0f9dd46c
JB
1071 }
1072 }
1073
96303081
JB
1074 if (entry->bitmap) {
1075 n = &entry->offset_index;
1076 while (1) {
1077 n = rb_prev(n);
1078 if (!n)
1079 break;
1080 prev = rb_entry(n, struct btrfs_free_space,
1081 offset_index);
1082 if (!prev->bitmap) {
1083 if (prev->offset + prev->bytes > offset)
1084 return prev;
1085 break;
1086 }
1087 }
34d52cb6 1088 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1089 return entry;
1090 } else if (entry->offset + entry->bytes > offset)
1091 return entry;
1092
1093 if (!fuzzy)
1094 return NULL;
1095
1096 while (1) {
1097 if (entry->bitmap) {
1098 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1099 ctl->unit > offset)
96303081
JB
1100 break;
1101 } else {
1102 if (entry->offset + entry->bytes > offset)
1103 break;
1104 }
1105
1106 n = rb_next(&entry->offset_index);
1107 if (!n)
1108 return NULL;
1109 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1110 }
1111 return entry;
0f9dd46c
JB
1112}
1113
f333adb5 1114static inline void
34d52cb6 1115__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1116 struct btrfs_free_space *info)
0f9dd46c 1117{
34d52cb6
LZ
1118 rb_erase(&info->offset_index, &ctl->free_space_offset);
1119 ctl->free_extents--;
f333adb5
LZ
1120}
1121
34d52cb6 1122static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1123 struct btrfs_free_space *info)
1124{
34d52cb6
LZ
1125 __unlink_free_space(ctl, info);
1126 ctl->free_space -= info->bytes;
0f9dd46c
JB
1127}
1128
34d52cb6 1129static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1130 struct btrfs_free_space *info)
1131{
1132 int ret = 0;
1133
96303081 1134 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1135 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1136 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1137 if (ret)
1138 return ret;
1139
34d52cb6
LZ
1140 ctl->free_space += info->bytes;
1141 ctl->free_extents++;
96303081
JB
1142 return ret;
1143}
1144
34d52cb6 1145static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1146{
34d52cb6 1147 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1148 u64 max_bytes;
1149 u64 bitmap_bytes;
1150 u64 extent_bytes;
8eb2d829 1151 u64 size = block_group->key.offset;
34d52cb6
LZ
1152 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1153 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1154
1155 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1156
1157 /*
1158 * The goal is to keep the total amount of memory used per 1gb of space
1159 * at or below 32k, so we need to adjust how much memory we allow to be
1160 * used by extent based free space tracking
1161 */
8eb2d829
LZ
1162 if (size < 1024 * 1024 * 1024)
1163 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1164 else
1165 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1166 div64_u64(size, 1024 * 1024 * 1024);
96303081 1167
25891f79
JB
1168 /*
1169 * we want to account for 1 more bitmap than what we have so we can make
1170 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1171 * we add more bitmaps.
1172 */
34d52cb6 1173 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1174
25891f79 1175 if (bitmap_bytes >= max_bytes) {
34d52cb6 1176 ctl->extents_thresh = 0;
25891f79
JB
1177 return;
1178 }
96303081 1179
25891f79
JB
1180 /*
1181 * we want the extent entry threshold to always be at most 1/2 the maxw
1182 * bytes we can have, or whatever is less than that.
1183 */
1184 extent_bytes = max_bytes - bitmap_bytes;
1185 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1186
34d52cb6 1187 ctl->extents_thresh =
25891f79 1188 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1189}
1190
34d52cb6 1191static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1192 struct btrfs_free_space *info, u64 offset,
1193 u64 bytes)
96303081 1194{
f38b6e75 1195 unsigned long start, count;
96303081 1196
34d52cb6
LZ
1197 start = offset_to_bit(info->offset, ctl->unit, offset);
1198 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1199 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1200
f38b6e75 1201 bitmap_clear(info->bitmap, start, count);
96303081
JB
1202
1203 info->bytes -= bytes;
34d52cb6 1204 ctl->free_space -= bytes;
96303081
JB
1205}
1206
34d52cb6 1207static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1208 struct btrfs_free_space *info, u64 offset,
1209 u64 bytes)
96303081 1210{
f38b6e75 1211 unsigned long start, count;
96303081 1212
34d52cb6
LZ
1213 start = offset_to_bit(info->offset, ctl->unit, offset);
1214 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1215 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1216
f38b6e75 1217 bitmap_set(info->bitmap, start, count);
96303081
JB
1218
1219 info->bytes += bytes;
34d52cb6 1220 ctl->free_space += bytes;
96303081
JB
1221}
1222
34d52cb6 1223static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1224 struct btrfs_free_space *bitmap_info, u64 *offset,
1225 u64 *bytes)
1226{
1227 unsigned long found_bits = 0;
1228 unsigned long bits, i;
1229 unsigned long next_zero;
1230
34d52cb6 1231 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1232 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1233 bits = bytes_to_bits(*bytes, ctl->unit);
96303081
JB
1234
1235 for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1236 i < BITS_PER_BITMAP;
1237 i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1238 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1239 BITS_PER_BITMAP, i);
1240 if ((next_zero - i) >= bits) {
1241 found_bits = next_zero - i;
1242 break;
1243 }
1244 i = next_zero;
1245 }
1246
1247 if (found_bits) {
34d52cb6
LZ
1248 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1249 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1250 return 0;
1251 }
1252
1253 return -1;
1254}
1255
34d52cb6
LZ
1256static struct btrfs_free_space *
1257find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1258{
1259 struct btrfs_free_space *entry;
1260 struct rb_node *node;
1261 int ret;
1262
34d52cb6 1263 if (!ctl->free_space_offset.rb_node)
96303081
JB
1264 return NULL;
1265
34d52cb6 1266 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1267 if (!entry)
1268 return NULL;
1269
1270 for (node = &entry->offset_index; node; node = rb_next(node)) {
1271 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1272 if (entry->bytes < *bytes)
1273 continue;
1274
1275 if (entry->bitmap) {
34d52cb6 1276 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1277 if (!ret)
1278 return entry;
1279 continue;
1280 }
1281
1282 *offset = entry->offset;
1283 *bytes = entry->bytes;
1284 return entry;
1285 }
1286
1287 return NULL;
1288}
1289
34d52cb6 1290static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1291 struct btrfs_free_space *info, u64 offset)
1292{
34d52cb6 1293 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1294 info->bytes = 0;
34d52cb6
LZ
1295 link_free_space(ctl, info);
1296 ctl->total_bitmaps++;
96303081 1297
34d52cb6 1298 ctl->op->recalc_thresholds(ctl);
96303081
JB
1299}
1300
34d52cb6 1301static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1302 struct btrfs_free_space *bitmap_info)
1303{
34d52cb6 1304 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1305 kfree(bitmap_info->bitmap);
dc89e982 1306 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1307 ctl->total_bitmaps--;
1308 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1309}
1310
34d52cb6 1311static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1312 struct btrfs_free_space *bitmap_info,
1313 u64 *offset, u64 *bytes)
1314{
1315 u64 end;
6606bb97
JB
1316 u64 search_start, search_bytes;
1317 int ret;
96303081
JB
1318
1319again:
34d52cb6 1320 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1321
6606bb97
JB
1322 /*
1323 * XXX - this can go away after a few releases.
1324 *
1325 * since the only user of btrfs_remove_free_space is the tree logging
1326 * stuff, and the only way to test that is under crash conditions, we
1327 * want to have this debug stuff here just in case somethings not
1328 * working. Search the bitmap for the space we are trying to use to
1329 * make sure its actually there. If its not there then we need to stop
1330 * because something has gone wrong.
1331 */
1332 search_start = *offset;
1333 search_bytes = *bytes;
13dbc089 1334 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1335 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1336 BUG_ON(ret < 0 || search_start != *offset);
1337
96303081 1338 if (*offset > bitmap_info->offset && *offset + *bytes > end) {
34d52cb6 1339 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
96303081
JB
1340 *bytes -= end - *offset + 1;
1341 *offset = end + 1;
1342 } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
34d52cb6 1343 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
96303081
JB
1344 *bytes = 0;
1345 }
1346
1347 if (*bytes) {
6606bb97 1348 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1349 if (!bitmap_info->bytes)
34d52cb6 1350 free_bitmap(ctl, bitmap_info);
96303081 1351
6606bb97
JB
1352 /*
1353 * no entry after this bitmap, but we still have bytes to
1354 * remove, so something has gone wrong.
1355 */
1356 if (!next)
96303081
JB
1357 return -EINVAL;
1358
6606bb97
JB
1359 bitmap_info = rb_entry(next, struct btrfs_free_space,
1360 offset_index);
1361
1362 /*
1363 * if the next entry isn't a bitmap we need to return to let the
1364 * extent stuff do its work.
1365 */
96303081
JB
1366 if (!bitmap_info->bitmap)
1367 return -EAGAIN;
1368
6606bb97
JB
1369 /*
1370 * Ok the next item is a bitmap, but it may not actually hold
1371 * the information for the rest of this free space stuff, so
1372 * look for it, and if we don't find it return so we can try
1373 * everything over again.
1374 */
1375 search_start = *offset;
1376 search_bytes = *bytes;
34d52cb6 1377 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1378 &search_bytes);
1379 if (ret < 0 || search_start != *offset)
1380 return -EAGAIN;
1381
96303081 1382 goto again;
edf6e2d1 1383 } else if (!bitmap_info->bytes)
34d52cb6 1384 free_bitmap(ctl, bitmap_info);
96303081
JB
1385
1386 return 0;
1387}
1388
34d52cb6
LZ
1389static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1390 struct btrfs_free_space *info)
96303081 1391{
34d52cb6 1392 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1393
1394 /*
1395 * If we are below the extents threshold then we can add this as an
1396 * extent, and don't have to deal with the bitmap
1397 */
34d52cb6 1398 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1399 /*
1400 * If this block group has some small extents we don't want to
1401 * use up all of our free slots in the cache with them, we want
1402 * to reserve them to larger extents, however if we have plent
1403 * of cache left then go ahead an dadd them, no sense in adding
1404 * the overhead of a bitmap if we don't have to.
1405 */
1406 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1407 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1408 return false;
32cb0840 1409 } else {
34d52cb6 1410 return false;
32cb0840
JB
1411 }
1412 }
96303081
JB
1413
1414 /*
1415 * some block groups are so tiny they can't be enveloped by a bitmap, so
1416 * don't even bother to create a bitmap for this
1417 */
1418 if (BITS_PER_BITMAP * block_group->sectorsize >
1419 block_group->key.offset)
34d52cb6
LZ
1420 return false;
1421
1422 return true;
1423}
1424
1425static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1426 struct btrfs_free_space *info)
1427{
1428 struct btrfs_free_space *bitmap_info;
1429 int added = 0;
1430 u64 bytes, offset, end;
1431 int ret;
96303081
JB
1432
1433 bytes = info->bytes;
1434 offset = info->offset;
1435
34d52cb6
LZ
1436 if (!ctl->op->use_bitmap(ctl, info))
1437 return 0;
1438
96303081 1439again:
34d52cb6 1440 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1441 1, 0);
1442 if (!bitmap_info) {
1443 BUG_ON(added);
1444 goto new_bitmap;
1445 }
1446
34d52cb6 1447 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
96303081
JB
1448
1449 if (offset >= bitmap_info->offset && offset + bytes > end) {
34d52cb6 1450 bitmap_set_bits(ctl, bitmap_info, offset, end - offset);
96303081
JB
1451 bytes -= end - offset;
1452 offset = end;
1453 added = 0;
1454 } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
34d52cb6 1455 bitmap_set_bits(ctl, bitmap_info, offset, bytes);
96303081
JB
1456 bytes = 0;
1457 } else {
1458 BUG();
1459 }
1460
1461 if (!bytes) {
1462 ret = 1;
1463 goto out;
1464 } else
1465 goto again;
1466
1467new_bitmap:
1468 if (info && info->bitmap) {
34d52cb6 1469 add_new_bitmap(ctl, info, offset);
96303081
JB
1470 added = 1;
1471 info = NULL;
1472 goto again;
1473 } else {
34d52cb6 1474 spin_unlock(&ctl->tree_lock);
96303081
JB
1475
1476 /* no pre-allocated info, allocate a new one */
1477 if (!info) {
dc89e982
JB
1478 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1479 GFP_NOFS);
96303081 1480 if (!info) {
34d52cb6 1481 spin_lock(&ctl->tree_lock);
96303081
JB
1482 ret = -ENOMEM;
1483 goto out;
1484 }
1485 }
1486
1487 /* allocate the bitmap */
1488 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1489 spin_lock(&ctl->tree_lock);
96303081
JB
1490 if (!info->bitmap) {
1491 ret = -ENOMEM;
1492 goto out;
1493 }
1494 goto again;
1495 }
1496
1497out:
1498 if (info) {
1499 if (info->bitmap)
1500 kfree(info->bitmap);
dc89e982 1501 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1502 }
0f9dd46c
JB
1503
1504 return ret;
1505}
1506
34d52cb6 1507bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1508 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1509{
120d66ee
LZ
1510 struct btrfs_free_space *left_info;
1511 struct btrfs_free_space *right_info;
1512 bool merged = false;
1513 u64 offset = info->offset;
1514 u64 bytes = info->bytes;
6226cb0a 1515
0f9dd46c
JB
1516 /*
1517 * first we want to see if there is free space adjacent to the range we
1518 * are adding, if there is remove that struct and add a new one to
1519 * cover the entire range
1520 */
34d52cb6 1521 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1522 if (right_info && rb_prev(&right_info->offset_index))
1523 left_info = rb_entry(rb_prev(&right_info->offset_index),
1524 struct btrfs_free_space, offset_index);
1525 else
34d52cb6 1526 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1527
96303081 1528 if (right_info && !right_info->bitmap) {
f333adb5 1529 if (update_stat)
34d52cb6 1530 unlink_free_space(ctl, right_info);
f333adb5 1531 else
34d52cb6 1532 __unlink_free_space(ctl, right_info);
6226cb0a 1533 info->bytes += right_info->bytes;
dc89e982 1534 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1535 merged = true;
0f9dd46c
JB
1536 }
1537
96303081
JB
1538 if (left_info && !left_info->bitmap &&
1539 left_info->offset + left_info->bytes == offset) {
f333adb5 1540 if (update_stat)
34d52cb6 1541 unlink_free_space(ctl, left_info);
f333adb5 1542 else
34d52cb6 1543 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1544 info->offset = left_info->offset;
1545 info->bytes += left_info->bytes;
dc89e982 1546 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1547 merged = true;
0f9dd46c
JB
1548 }
1549
120d66ee
LZ
1550 return merged;
1551}
1552
581bb050
LZ
1553int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1554 u64 offset, u64 bytes)
120d66ee
LZ
1555{
1556 struct btrfs_free_space *info;
1557 int ret = 0;
1558
dc89e982 1559 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1560 if (!info)
1561 return -ENOMEM;
1562
1563 info->offset = offset;
1564 info->bytes = bytes;
1565
34d52cb6 1566 spin_lock(&ctl->tree_lock);
120d66ee 1567
34d52cb6 1568 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1569 goto link;
1570
1571 /*
1572 * There was no extent directly to the left or right of this new
1573 * extent then we know we're going to have to allocate a new extent, so
1574 * before we do that see if we need to drop this into a bitmap
1575 */
34d52cb6 1576 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1577 if (ret < 0) {
1578 goto out;
1579 } else if (ret) {
1580 ret = 0;
1581 goto out;
1582 }
1583link:
34d52cb6 1584 ret = link_free_space(ctl, info);
0f9dd46c 1585 if (ret)
dc89e982 1586 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1587out:
34d52cb6 1588 spin_unlock(&ctl->tree_lock);
6226cb0a 1589
0f9dd46c 1590 if (ret) {
96303081 1591 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1592 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1593 }
1594
0f9dd46c
JB
1595 return ret;
1596}
1597
6226cb0a
JB
1598int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1599 u64 offset, u64 bytes)
0f9dd46c 1600{
34d52cb6 1601 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1602 struct btrfs_free_space *info;
96303081 1603 struct btrfs_free_space *next_info = NULL;
0f9dd46c
JB
1604 int ret = 0;
1605
34d52cb6 1606 spin_lock(&ctl->tree_lock);
6226cb0a 1607
96303081 1608again:
34d52cb6 1609 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1610 if (!info) {
6606bb97
JB
1611 /*
1612 * oops didn't find an extent that matched the space we wanted
1613 * to remove, look for a bitmap instead
1614 */
34d52cb6 1615 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1616 1, 0);
1617 if (!info) {
1618 WARN_ON(1);
1619 goto out_lock;
1620 }
96303081
JB
1621 }
1622
1623 if (info->bytes < bytes && rb_next(&info->offset_index)) {
1624 u64 end;
1625 next_info = rb_entry(rb_next(&info->offset_index),
1626 struct btrfs_free_space,
1627 offset_index);
1628
1629 if (next_info->bitmap)
34d52cb6
LZ
1630 end = next_info->offset +
1631 BITS_PER_BITMAP * ctl->unit - 1;
96303081
JB
1632 else
1633 end = next_info->offset + next_info->bytes;
1634
1635 if (next_info->bytes < bytes ||
1636 next_info->offset > offset || offset > end) {
1637 printk(KERN_CRIT "Found free space at %llu, size %llu,"
1638 " trying to use %llu\n",
1639 (unsigned long long)info->offset,
1640 (unsigned long long)info->bytes,
1641 (unsigned long long)bytes);
0f9dd46c
JB
1642 WARN_ON(1);
1643 ret = -EINVAL;
96303081 1644 goto out_lock;
0f9dd46c 1645 }
0f9dd46c 1646
96303081
JB
1647 info = next_info;
1648 }
1649
1650 if (info->bytes == bytes) {
34d52cb6 1651 unlink_free_space(ctl, info);
96303081
JB
1652 if (info->bitmap) {
1653 kfree(info->bitmap);
34d52cb6 1654 ctl->total_bitmaps--;
0f9dd46c 1655 }
dc89e982 1656 kmem_cache_free(btrfs_free_space_cachep, info);
96303081
JB
1657 goto out_lock;
1658 }
0f9dd46c 1659
96303081 1660 if (!info->bitmap && info->offset == offset) {
34d52cb6 1661 unlink_free_space(ctl, info);
0f9dd46c
JB
1662 info->offset += bytes;
1663 info->bytes -= bytes;
34d52cb6 1664 link_free_space(ctl, info);
96303081
JB
1665 goto out_lock;
1666 }
0f9dd46c 1667
96303081
JB
1668 if (!info->bitmap && info->offset <= offset &&
1669 info->offset + info->bytes >= offset + bytes) {
9b49c9b9
CM
1670 u64 old_start = info->offset;
1671 /*
1672 * we're freeing space in the middle of the info,
1673 * this can happen during tree log replay
1674 *
1675 * first unlink the old info and then
1676 * insert it again after the hole we're creating
1677 */
34d52cb6 1678 unlink_free_space(ctl, info);
9b49c9b9
CM
1679 if (offset + bytes < info->offset + info->bytes) {
1680 u64 old_end = info->offset + info->bytes;
1681
1682 info->offset = offset + bytes;
1683 info->bytes = old_end - info->offset;
34d52cb6 1684 ret = link_free_space(ctl, info);
96303081
JB
1685 WARN_ON(ret);
1686 if (ret)
1687 goto out_lock;
9b49c9b9
CM
1688 } else {
1689 /* the hole we're creating ends at the end
1690 * of the info struct, just free the info
1691 */
dc89e982 1692 kmem_cache_free(btrfs_free_space_cachep, info);
9b49c9b9 1693 }
34d52cb6 1694 spin_unlock(&ctl->tree_lock);
96303081
JB
1695
1696 /* step two, insert a new info struct to cover
1697 * anything before the hole
9b49c9b9 1698 */
6226cb0a
JB
1699 ret = btrfs_add_free_space(block_group, old_start,
1700 offset - old_start);
96303081
JB
1701 WARN_ON(ret);
1702 goto out;
0f9dd46c 1703 }
96303081 1704
34d52cb6 1705 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1706 if (ret == -EAGAIN)
1707 goto again;
1708 BUG_ON(ret);
1709out_lock:
34d52cb6 1710 spin_unlock(&ctl->tree_lock);
0f9dd46c 1711out:
25179201
JB
1712 return ret;
1713}
1714
0f9dd46c
JB
1715void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1716 u64 bytes)
1717{
34d52cb6 1718 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1719 struct btrfs_free_space *info;
1720 struct rb_node *n;
1721 int count = 0;
1722
34d52cb6 1723 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c
JB
1724 info = rb_entry(n, struct btrfs_free_space, offset_index);
1725 if (info->bytes >= bytes)
1726 count++;
96303081 1727 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1728 (unsigned long long)info->offset,
96303081
JB
1729 (unsigned long long)info->bytes,
1730 (info->bitmap) ? "yes" : "no");
0f9dd46c 1731 }
96303081
JB
1732 printk(KERN_INFO "block group has cluster?: %s\n",
1733 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1734 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1735 "\n", count);
1736}
1737
34d52cb6
LZ
1738static struct btrfs_free_space_op free_space_op = {
1739 .recalc_thresholds = recalculate_thresholds,
1740 .use_bitmap = use_bitmap,
1741};
1742
1743void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1744{
34d52cb6 1745 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1746
34d52cb6
LZ
1747 spin_lock_init(&ctl->tree_lock);
1748 ctl->unit = block_group->sectorsize;
1749 ctl->start = block_group->key.objectid;
1750 ctl->private = block_group;
1751 ctl->op = &free_space_op;
0f9dd46c 1752
34d52cb6
LZ
1753 /*
1754 * we only want to have 32k of ram per block group for keeping
1755 * track of free space, and if we pass 1/2 of that we want to
1756 * start converting things over to using bitmaps
1757 */
1758 ctl->extents_thresh = ((1024 * 32) / 2) /
1759 sizeof(struct btrfs_free_space);
0f9dd46c
JB
1760}
1761
fa9c0d79
CM
1762/*
1763 * for a given cluster, put all of its extents back into the free
1764 * space cache. If the block group passed doesn't match the block group
1765 * pointed to by the cluster, someone else raced in and freed the
1766 * cluster already. In that case, we just return without changing anything
1767 */
1768static int
1769__btrfs_return_cluster_to_free_space(
1770 struct btrfs_block_group_cache *block_group,
1771 struct btrfs_free_cluster *cluster)
1772{
34d52cb6 1773 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
1774 struct btrfs_free_space *entry;
1775 struct rb_node *node;
1776
1777 spin_lock(&cluster->lock);
1778 if (cluster->block_group != block_group)
1779 goto out;
1780
96303081 1781 cluster->block_group = NULL;
fa9c0d79 1782 cluster->window_start = 0;
96303081 1783 list_del_init(&cluster->block_group_list);
96303081 1784
fa9c0d79 1785 node = rb_first(&cluster->root);
96303081 1786 while (node) {
4e69b598
JB
1787 bool bitmap;
1788
fa9c0d79
CM
1789 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1790 node = rb_next(&entry->offset_index);
1791 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
1792
1793 bitmap = (entry->bitmap != NULL);
1794 if (!bitmap)
34d52cb6
LZ
1795 try_merge_free_space(ctl, entry, false);
1796 tree_insert_offset(&ctl->free_space_offset,
4e69b598 1797 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 1798 }
6bef4d31 1799 cluster->root = RB_ROOT;
96303081 1800
fa9c0d79
CM
1801out:
1802 spin_unlock(&cluster->lock);
96303081 1803 btrfs_put_block_group(block_group);
fa9c0d79
CM
1804 return 0;
1805}
1806
09655373 1807void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
1808{
1809 struct btrfs_free_space *info;
1810 struct rb_node *node;
581bb050 1811
581bb050
LZ
1812 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
1813 info = rb_entry(node, struct btrfs_free_space, offset_index);
1814 unlink_free_space(ctl, info);
1815 kfree(info->bitmap);
1816 kmem_cache_free(btrfs_free_space_cachep, info);
1817 if (need_resched()) {
1818 spin_unlock(&ctl->tree_lock);
1819 cond_resched();
1820 spin_lock(&ctl->tree_lock);
1821 }
1822 }
09655373
CM
1823}
1824
1825void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
1826{
1827 spin_lock(&ctl->tree_lock);
1828 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
1829 spin_unlock(&ctl->tree_lock);
1830}
1831
1832void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
1833{
1834 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 1835 struct btrfs_free_cluster *cluster;
96303081 1836 struct list_head *head;
0f9dd46c 1837
34d52cb6 1838 spin_lock(&ctl->tree_lock);
96303081
JB
1839 while ((head = block_group->cluster_list.next) !=
1840 &block_group->cluster_list) {
1841 cluster = list_entry(head, struct btrfs_free_cluster,
1842 block_group_list);
fa9c0d79
CM
1843
1844 WARN_ON(cluster->block_group != block_group);
1845 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 1846 if (need_resched()) {
34d52cb6 1847 spin_unlock(&ctl->tree_lock);
96303081 1848 cond_resched();
34d52cb6 1849 spin_lock(&ctl->tree_lock);
96303081 1850 }
fa9c0d79 1851 }
09655373 1852 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 1853 spin_unlock(&ctl->tree_lock);
fa9c0d79 1854
0f9dd46c
JB
1855}
1856
6226cb0a
JB
1857u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
1858 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 1859{
34d52cb6 1860 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 1861 struct btrfs_free_space *entry = NULL;
96303081 1862 u64 bytes_search = bytes + empty_size;
6226cb0a 1863 u64 ret = 0;
0f9dd46c 1864
34d52cb6
LZ
1865 spin_lock(&ctl->tree_lock);
1866 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 1867 if (!entry)
96303081
JB
1868 goto out;
1869
1870 ret = offset;
1871 if (entry->bitmap) {
34d52cb6 1872 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 1873 if (!entry->bytes)
34d52cb6 1874 free_bitmap(ctl, entry);
96303081 1875 } else {
34d52cb6 1876 unlink_free_space(ctl, entry);
6226cb0a
JB
1877 entry->offset += bytes;
1878 entry->bytes -= bytes;
6226cb0a 1879 if (!entry->bytes)
dc89e982 1880 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 1881 else
34d52cb6 1882 link_free_space(ctl, entry);
6226cb0a 1883 }
0f9dd46c 1884
96303081 1885out:
34d52cb6 1886 spin_unlock(&ctl->tree_lock);
817d52f8 1887
0f9dd46c
JB
1888 return ret;
1889}
fa9c0d79
CM
1890
1891/*
1892 * given a cluster, put all of its extents back into the free space
1893 * cache. If a block group is passed, this function will only free
1894 * a cluster that belongs to the passed block group.
1895 *
1896 * Otherwise, it'll get a reference on the block group pointed to by the
1897 * cluster and remove the cluster from it.
1898 */
1899int btrfs_return_cluster_to_free_space(
1900 struct btrfs_block_group_cache *block_group,
1901 struct btrfs_free_cluster *cluster)
1902{
34d52cb6 1903 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
1904 int ret;
1905
1906 /* first, get a safe pointer to the block group */
1907 spin_lock(&cluster->lock);
1908 if (!block_group) {
1909 block_group = cluster->block_group;
1910 if (!block_group) {
1911 spin_unlock(&cluster->lock);
1912 return 0;
1913 }
1914 } else if (cluster->block_group != block_group) {
1915 /* someone else has already freed it don't redo their work */
1916 spin_unlock(&cluster->lock);
1917 return 0;
1918 }
1919 atomic_inc(&block_group->count);
1920 spin_unlock(&cluster->lock);
1921
34d52cb6
LZ
1922 ctl = block_group->free_space_ctl;
1923
fa9c0d79 1924 /* now return any extents the cluster had on it */
34d52cb6 1925 spin_lock(&ctl->tree_lock);
fa9c0d79 1926 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 1927 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
1928
1929 /* finally drop our ref */
1930 btrfs_put_block_group(block_group);
1931 return ret;
1932}
1933
96303081
JB
1934static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
1935 struct btrfs_free_cluster *cluster,
4e69b598 1936 struct btrfs_free_space *entry,
96303081
JB
1937 u64 bytes, u64 min_start)
1938{
34d52cb6 1939 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
1940 int err;
1941 u64 search_start = cluster->window_start;
1942 u64 search_bytes = bytes;
1943 u64 ret = 0;
1944
96303081
JB
1945 search_start = min_start;
1946 search_bytes = bytes;
1947
34d52cb6 1948 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 1949 if (err)
4e69b598 1950 return 0;
96303081
JB
1951
1952 ret = search_start;
34d52cb6 1953 bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
1954
1955 return ret;
1956}
1957
fa9c0d79
CM
1958/*
1959 * given a cluster, try to allocate 'bytes' from it, returns 0
1960 * if it couldn't find anything suitably large, or a logical disk offset
1961 * if things worked out
1962 */
1963u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
1964 struct btrfs_free_cluster *cluster, u64 bytes,
1965 u64 min_start)
1966{
34d52cb6 1967 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
1968 struct btrfs_free_space *entry = NULL;
1969 struct rb_node *node;
1970 u64 ret = 0;
1971
1972 spin_lock(&cluster->lock);
1973 if (bytes > cluster->max_size)
1974 goto out;
1975
1976 if (cluster->block_group != block_group)
1977 goto out;
1978
1979 node = rb_first(&cluster->root);
1980 if (!node)
1981 goto out;
1982
1983 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 1984 while(1) {
4e69b598
JB
1985 if (entry->bytes < bytes ||
1986 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
1987 struct rb_node *node;
1988
1989 node = rb_next(&entry->offset_index);
1990 if (!node)
1991 break;
1992 entry = rb_entry(node, struct btrfs_free_space,
1993 offset_index);
1994 continue;
1995 }
fa9c0d79 1996
4e69b598
JB
1997 if (entry->bitmap) {
1998 ret = btrfs_alloc_from_bitmap(block_group,
1999 cluster, entry, bytes,
2000 min_start);
2001 if (ret == 0) {
2002 struct rb_node *node;
2003 node = rb_next(&entry->offset_index);
2004 if (!node)
2005 break;
2006 entry = rb_entry(node, struct btrfs_free_space,
2007 offset_index);
2008 continue;
2009 }
2010 } else {
2011
2012 ret = entry->offset;
2013
2014 entry->offset += bytes;
2015 entry->bytes -= bytes;
2016 }
fa9c0d79 2017
5e71b5d5 2018 if (entry->bytes == 0)
fa9c0d79 2019 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2020 break;
2021 }
2022out:
2023 spin_unlock(&cluster->lock);
96303081 2024
5e71b5d5
LZ
2025 if (!ret)
2026 return 0;
2027
34d52cb6 2028 spin_lock(&ctl->tree_lock);
5e71b5d5 2029
34d52cb6 2030 ctl->free_space -= bytes;
5e71b5d5 2031 if (entry->bytes == 0) {
34d52cb6 2032 ctl->free_extents--;
4e69b598
JB
2033 if (entry->bitmap) {
2034 kfree(entry->bitmap);
34d52cb6
LZ
2035 ctl->total_bitmaps--;
2036 ctl->op->recalc_thresholds(ctl);
4e69b598 2037 }
dc89e982 2038 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2039 }
2040
34d52cb6 2041 spin_unlock(&ctl->tree_lock);
5e71b5d5 2042
fa9c0d79
CM
2043 return ret;
2044}
2045
96303081
JB
2046static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2047 struct btrfs_free_space *entry,
2048 struct btrfs_free_cluster *cluster,
2049 u64 offset, u64 bytes, u64 min_bytes)
2050{
34d52cb6 2051 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2052 unsigned long next_zero;
2053 unsigned long i;
2054 unsigned long search_bits;
2055 unsigned long total_bits;
2056 unsigned long found_bits;
2057 unsigned long start = 0;
2058 unsigned long total_found = 0;
4e69b598 2059 int ret;
96303081
JB
2060 bool found = false;
2061
2062 i = offset_to_bit(entry->offset, block_group->sectorsize,
2063 max_t(u64, offset, entry->offset));
d0a365e8
JB
2064 search_bits = bytes_to_bits(bytes, block_group->sectorsize);
2065 total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
96303081
JB
2066
2067again:
2068 found_bits = 0;
2069 for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2070 i < BITS_PER_BITMAP;
2071 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2072 next_zero = find_next_zero_bit(entry->bitmap,
2073 BITS_PER_BITMAP, i);
2074 if (next_zero - i >= search_bits) {
2075 found_bits = next_zero - i;
2076 break;
2077 }
2078 i = next_zero;
2079 }
2080
2081 if (!found_bits)
4e69b598 2082 return -ENOSPC;
96303081
JB
2083
2084 if (!found) {
2085 start = i;
2086 found = true;
2087 }
2088
2089 total_found += found_bits;
2090
2091 if (cluster->max_size < found_bits * block_group->sectorsize)
2092 cluster->max_size = found_bits * block_group->sectorsize;
2093
2094 if (total_found < total_bits) {
2095 i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
2096 if (i - start > total_bits * 2) {
2097 total_found = 0;
2098 cluster->max_size = 0;
2099 found = false;
2100 }
2101 goto again;
2102 }
2103
2104 cluster->window_start = start * block_group->sectorsize +
2105 entry->offset;
34d52cb6 2106 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2107 ret = tree_insert_offset(&cluster->root, entry->offset,
2108 &entry->offset_index, 1);
2109 BUG_ON(ret);
96303081
JB
2110
2111 return 0;
2112}
2113
4e69b598
JB
2114/*
2115 * This searches the block group for just extents to fill the cluster with.
2116 */
2117static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2118 struct btrfs_free_cluster *cluster,
2119 u64 offset, u64 bytes, u64 min_bytes)
2120{
34d52cb6 2121 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2122 struct btrfs_free_space *first = NULL;
2123 struct btrfs_free_space *entry = NULL;
2124 struct btrfs_free_space *prev = NULL;
2125 struct btrfs_free_space *last;
2126 struct rb_node *node;
2127 u64 window_start;
2128 u64 window_free;
2129 u64 max_extent;
2130 u64 max_gap = 128 * 1024;
2131
34d52cb6 2132 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2133 if (!entry)
2134 return -ENOSPC;
2135
2136 /*
2137 * We don't want bitmaps, so just move along until we find a normal
2138 * extent entry.
2139 */
2140 while (entry->bitmap) {
2141 node = rb_next(&entry->offset_index);
2142 if (!node)
2143 return -ENOSPC;
2144 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2145 }
2146
2147 window_start = entry->offset;
2148 window_free = entry->bytes;
2149 max_extent = entry->bytes;
2150 first = entry;
2151 last = entry;
2152 prev = entry;
2153
2154 while (window_free <= min_bytes) {
2155 node = rb_next(&entry->offset_index);
2156 if (!node)
2157 return -ENOSPC;
2158 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2159
2160 if (entry->bitmap)
2161 continue;
2162 /*
2163 * we haven't filled the empty size and the window is
2164 * very large. reset and try again
2165 */
2166 if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
2167 entry->offset - window_start > (min_bytes * 2)) {
2168 first = entry;
2169 window_start = entry->offset;
2170 window_free = entry->bytes;
2171 last = entry;
2172 max_extent = entry->bytes;
2173 } else {
2174 last = entry;
2175 window_free += entry->bytes;
2176 if (entry->bytes > max_extent)
2177 max_extent = entry->bytes;
2178 }
2179 prev = entry;
2180 }
2181
2182 cluster->window_start = first->offset;
2183
2184 node = &first->offset_index;
2185
2186 /*
2187 * now we've found our entries, pull them out of the free space
2188 * cache and put them into the cluster rbtree
2189 */
2190 do {
2191 int ret;
2192
2193 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2194 node = rb_next(&entry->offset_index);
2195 if (entry->bitmap)
2196 continue;
2197
34d52cb6 2198 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2199 ret = tree_insert_offset(&cluster->root, entry->offset,
2200 &entry->offset_index, 0);
2201 BUG_ON(ret);
2202 } while (node && entry != last);
2203
2204 cluster->max_size = max_extent;
2205
2206 return 0;
2207}
2208
2209/*
2210 * This specifically looks for bitmaps that may work in the cluster, we assume
2211 * that we have already failed to find extents that will work.
2212 */
2213static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2214 struct btrfs_free_cluster *cluster,
2215 u64 offset, u64 bytes, u64 min_bytes)
2216{
34d52cb6 2217 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2218 struct btrfs_free_space *entry;
2219 struct rb_node *node;
2220 int ret = -ENOSPC;
2221
34d52cb6 2222 if (ctl->total_bitmaps == 0)
4e69b598
JB
2223 return -ENOSPC;
2224
34d52cb6 2225 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, offset), 0, 1);
4e69b598
JB
2226 if (!entry)
2227 return -ENOSPC;
2228
2229 node = &entry->offset_index;
2230 do {
2231 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2232 node = rb_next(&entry->offset_index);
2233 if (!entry->bitmap)
2234 continue;
2235 if (entry->bytes < min_bytes)
2236 continue;
2237 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2238 bytes, min_bytes);
2239 } while (ret && node);
2240
2241 return ret;
2242}
2243
fa9c0d79
CM
2244/*
2245 * here we try to find a cluster of blocks in a block group. The goal
2246 * is to find at least bytes free and up to empty_size + bytes free.
2247 * We might not find them all in one contiguous area.
2248 *
2249 * returns zero and sets up cluster if things worked out, otherwise
2250 * it returns -enospc
2251 */
2252int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2253 struct btrfs_root *root,
fa9c0d79
CM
2254 struct btrfs_block_group_cache *block_group,
2255 struct btrfs_free_cluster *cluster,
2256 u64 offset, u64 bytes, u64 empty_size)
2257{
34d52cb6 2258 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2259 u64 min_bytes;
fa9c0d79
CM
2260 int ret;
2261
2262 /* for metadata, allow allocates with more holes */
451d7585
CM
2263 if (btrfs_test_opt(root, SSD_SPREAD)) {
2264 min_bytes = bytes + empty_size;
2265 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
fa9c0d79
CM
2266 /*
2267 * we want to do larger allocations when we are
2268 * flushing out the delayed refs, it helps prevent
2269 * making more work as we go along.
2270 */
2271 if (trans->transaction->delayed_refs.flushing)
2272 min_bytes = max(bytes, (bytes + empty_size) >> 1);
2273 else
2274 min_bytes = max(bytes, (bytes + empty_size) >> 4);
2275 } else
2276 min_bytes = max(bytes, (bytes + empty_size) >> 2);
2277
34d52cb6 2278 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2279
2280 /*
2281 * If we know we don't have enough space to make a cluster don't even
2282 * bother doing all the work to try and find one.
2283 */
34d52cb6
LZ
2284 if (ctl->free_space < min_bytes) {
2285 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2286 return -ENOSPC;
2287 }
2288
fa9c0d79
CM
2289 spin_lock(&cluster->lock);
2290
2291 /* someone already found a cluster, hooray */
2292 if (cluster->block_group) {
2293 ret = 0;
2294 goto out;
2295 }
fa9c0d79 2296
4e69b598
JB
2297 ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
2298 min_bytes);
2299 if (ret)
2300 ret = setup_cluster_bitmap(block_group, cluster, offset,
2301 bytes, min_bytes);
fa9c0d79 2302
4e69b598
JB
2303 if (!ret) {
2304 atomic_inc(&block_group->count);
2305 list_add_tail(&cluster->block_group_list,
2306 &block_group->cluster_list);
2307 cluster->block_group = block_group;
fa9c0d79 2308 }
fa9c0d79
CM
2309out:
2310 spin_unlock(&cluster->lock);
34d52cb6 2311 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2312
2313 return ret;
2314}
2315
2316/*
2317 * simple code to zero out a cluster
2318 */
2319void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2320{
2321 spin_lock_init(&cluster->lock);
2322 spin_lock_init(&cluster->refill_lock);
6bef4d31 2323 cluster->root = RB_ROOT;
fa9c0d79
CM
2324 cluster->max_size = 0;
2325 INIT_LIST_HEAD(&cluster->block_group_list);
2326 cluster->block_group = NULL;
2327}
2328
f7039b1d
LD
2329int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2330 u64 *trimmed, u64 start, u64 end, u64 minlen)
2331{
34d52cb6 2332 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
f7039b1d
LD
2333 struct btrfs_free_space *entry = NULL;
2334 struct btrfs_fs_info *fs_info = block_group->fs_info;
2335 u64 bytes = 0;
2336 u64 actually_trimmed;
2337 int ret = 0;
2338
2339 *trimmed = 0;
2340
2341 while (start < end) {
34d52cb6 2342 spin_lock(&ctl->tree_lock);
f7039b1d 2343
34d52cb6
LZ
2344 if (ctl->free_space < minlen) {
2345 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2346 break;
2347 }
2348
34d52cb6 2349 entry = tree_search_offset(ctl, start, 0, 1);
f7039b1d 2350 if (!entry)
34d52cb6
LZ
2351 entry = tree_search_offset(ctl,
2352 offset_to_bitmap(ctl, start),
f7039b1d
LD
2353 1, 1);
2354
2355 if (!entry || entry->offset >= end) {
34d52cb6 2356 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2357 break;
2358 }
2359
2360 if (entry->bitmap) {
34d52cb6 2361 ret = search_bitmap(ctl, entry, &start, &bytes);
f7039b1d
LD
2362 if (!ret) {
2363 if (start >= end) {
34d52cb6 2364 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2365 break;
2366 }
2367 bytes = min(bytes, end - start);
34d52cb6 2368 bitmap_clear_bits(ctl, entry, start, bytes);
f7039b1d 2369 if (entry->bytes == 0)
34d52cb6 2370 free_bitmap(ctl, entry);
f7039b1d
LD
2371 } else {
2372 start = entry->offset + BITS_PER_BITMAP *
2373 block_group->sectorsize;
34d52cb6 2374 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2375 ret = 0;
2376 continue;
2377 }
2378 } else {
2379 start = entry->offset;
2380 bytes = min(entry->bytes, end - start);
34d52cb6 2381 unlink_free_space(ctl, entry);
f789b684 2382 kmem_cache_free(btrfs_free_space_cachep, entry);
f7039b1d
LD
2383 }
2384
34d52cb6 2385 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2386
2387 if (bytes >= minlen) {
2388 int update_ret;
2389 update_ret = btrfs_update_reserved_bytes(block_group,
2390 bytes, 1, 1);
2391
2392 ret = btrfs_error_discard_extent(fs_info->extent_root,
2393 start,
2394 bytes,
2395 &actually_trimmed);
2396
34d52cb6 2397 btrfs_add_free_space(block_group, start, bytes);
f7039b1d
LD
2398 if (!update_ret)
2399 btrfs_update_reserved_bytes(block_group,
2400 bytes, 0, 1);
2401
2402 if (ret)
2403 break;
2404 *trimmed += actually_trimmed;
2405 }
2406 start += bytes;
2407 bytes = 0;
2408
2409 if (fatal_signal_pending(current)) {
2410 ret = -ERESTARTSYS;
2411 break;
2412 }
2413
2414 cond_resched();
2415 }
2416
2417 return ret;
2418}
581bb050
LZ
2419
2420/*
2421 * Find the left-most item in the cache tree, and then return the
2422 * smallest inode number in the item.
2423 *
2424 * Note: the returned inode number may not be the smallest one in
2425 * the tree, if the left-most item is a bitmap.
2426 */
2427u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2428{
2429 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2430 struct btrfs_free_space *entry = NULL;
2431 u64 ino = 0;
2432
2433 spin_lock(&ctl->tree_lock);
2434
2435 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2436 goto out;
2437
2438 entry = rb_entry(rb_first(&ctl->free_space_offset),
2439 struct btrfs_free_space, offset_index);
2440
2441 if (!entry->bitmap) {
2442 ino = entry->offset;
2443
2444 unlink_free_space(ctl, entry);
2445 entry->offset++;
2446 entry->bytes--;
2447 if (!entry->bytes)
2448 kmem_cache_free(btrfs_free_space_cachep, entry);
2449 else
2450 link_free_space(ctl, entry);
2451 } else {
2452 u64 offset = 0;
2453 u64 count = 1;
2454 int ret;
2455
2456 ret = search_bitmap(ctl, entry, &offset, &count);
2457 BUG_ON(ret);
2458
2459 ino = offset;
2460 bitmap_clear_bits(ctl, entry, offset, 1);
2461 if (entry->bytes == 0)
2462 free_bitmap(ctl, entry);
2463 }
2464out:
2465 spin_unlock(&ctl->tree_lock);
2466
2467 return ino;
2468}
82d5902d
LZ
2469
2470struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2471 struct btrfs_path *path)
2472{
2473 struct inode *inode = NULL;
2474
2475 spin_lock(&root->cache_lock);
2476 if (root->cache_inode)
2477 inode = igrab(root->cache_inode);
2478 spin_unlock(&root->cache_lock);
2479 if (inode)
2480 return inode;
2481
2482 inode = __lookup_free_space_inode(root, path, 0);
2483 if (IS_ERR(inode))
2484 return inode;
2485
2486 spin_lock(&root->cache_lock);
2487 if (!root->fs_info->closing)
2488 root->cache_inode = igrab(inode);
2489 spin_unlock(&root->cache_lock);
2490
2491 return inode;
2492}
2493
2494int create_free_ino_inode(struct btrfs_root *root,
2495 struct btrfs_trans_handle *trans,
2496 struct btrfs_path *path)
2497{
2498 return __create_free_space_inode(root, trans, path,
2499 BTRFS_FREE_INO_OBJECTID, 0);
2500}
2501
2502int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2503{
2504 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2505 struct btrfs_path *path;
2506 struct inode *inode;
2507 int ret = 0;
2508 u64 root_gen = btrfs_root_generation(&root->root_item);
2509
2510 /*
2511 * If we're unmounting then just return, since this does a search on the
2512 * normal root and not the commit root and we could deadlock.
2513 */
2514 smp_mb();
2515 if (fs_info->closing)
2516 return 0;
2517
2518 path = btrfs_alloc_path();
2519 if (!path)
2520 return 0;
2521
2522 inode = lookup_free_ino_inode(root, path);
2523 if (IS_ERR(inode))
2524 goto out;
2525
2526 if (root_gen != BTRFS_I(inode)->generation)
2527 goto out_put;
2528
2529 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2530
2531 if (ret < 0)
2532 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2533 "root %llu\n", root->root_key.objectid);
2534out_put:
2535 iput(inode);
2536out:
2537 btrfs_free_path(path);
2538 return ret;
2539}
2540
2541int btrfs_write_out_ino_cache(struct btrfs_root *root,
2542 struct btrfs_trans_handle *trans,
2543 struct btrfs_path *path)
2544{
2545 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2546 struct inode *inode;
2547 int ret;
2548
2549 inode = lookup_free_ino_inode(root, path);
2550 if (IS_ERR(inode))
2551 return 0;
2552
2553 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2554 if (ret < 0)
2555 printk(KERN_ERR "btrfs: failed to write free ino cache "
2556 "for root %llu\n", root->root_key.objectid);
2557
2558 iput(inode);
2559 return ret;
2560}