btrfs: drop btrfs_device::can_discard to query directly
[linux-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
f361bf4a 21#include <linux/sched/signal.h>
5a0e3ad6 22#include <linux/slab.h>
96303081 23#include <linux/math64.h>
6ab60601 24#include <linux/ratelimit.h>
0f9dd46c 25#include "ctree.h"
fa9c0d79
CM
26#include "free-space-cache.h"
27#include "transaction.h"
0af3d00b 28#include "disk-io.h"
43be2146 29#include "extent_io.h"
581bb050 30#include "inode-map.h"
04216820 31#include "volumes.h"
fa9c0d79 32
0ef6447a 33#define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
ee22184b 34#define MAX_CACHE_BYTES_PER_GIG SZ_32K
0f9dd46c 35
55507ce3
FM
36struct btrfs_trim_range {
37 u64 start;
38 u64 bytes;
39 struct list_head list;
40};
41
34d52cb6 42static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 43 struct btrfs_free_space *info);
cd023e7b
JB
44static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
45 struct btrfs_free_space *info);
afdb5718
JM
46static int btrfs_wait_cache_io_root(struct btrfs_root *root,
47 struct btrfs_trans_handle *trans,
48 struct btrfs_io_ctl *io_ctl,
49 struct btrfs_path *path);
0cb59c99 50
0414efae
LZ
51static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
52 struct btrfs_path *path,
53 u64 offset)
0af3d00b 54{
0b246afa 55 struct btrfs_fs_info *fs_info = root->fs_info;
0af3d00b
JB
56 struct btrfs_key key;
57 struct btrfs_key location;
58 struct btrfs_disk_key disk_key;
59 struct btrfs_free_space_header *header;
60 struct extent_buffer *leaf;
61 struct inode *inode = NULL;
62 int ret;
63
0af3d00b 64 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 65 key.offset = offset;
0af3d00b
JB
66 key.type = 0;
67
68 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
69 if (ret < 0)
70 return ERR_PTR(ret);
71 if (ret > 0) {
b3b4aa74 72 btrfs_release_path(path);
0af3d00b
JB
73 return ERR_PTR(-ENOENT);
74 }
75
76 leaf = path->nodes[0];
77 header = btrfs_item_ptr(leaf, path->slots[0],
78 struct btrfs_free_space_header);
79 btrfs_free_space_key(leaf, header, &disk_key);
80 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 81 btrfs_release_path(path);
0af3d00b 82
0b246afa 83 inode = btrfs_iget(fs_info->sb, &location, root, NULL);
0af3d00b
JB
84 if (IS_ERR(inode))
85 return inode;
86 if (is_bad_inode(inode)) {
87 iput(inode);
88 return ERR_PTR(-ENOENT);
89 }
90
528c0327 91 mapping_set_gfp_mask(inode->i_mapping,
c62d2555
MH
92 mapping_gfp_constraint(inode->i_mapping,
93 ~(__GFP_FS | __GFP_HIGHMEM)));
adae52b9 94
0414efae
LZ
95 return inode;
96}
97
77ab86bf 98struct inode *lookup_free_space_inode(struct btrfs_fs_info *fs_info,
0414efae
LZ
99 struct btrfs_block_group_cache
100 *block_group, struct btrfs_path *path)
101{
102 struct inode *inode = NULL;
5b0e95bf 103 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
104
105 spin_lock(&block_group->lock);
106 if (block_group->inode)
107 inode = igrab(block_group->inode);
108 spin_unlock(&block_group->lock);
109 if (inode)
110 return inode;
111
77ab86bf 112 inode = __lookup_free_space_inode(fs_info->tree_root, path,
0414efae
LZ
113 block_group->key.objectid);
114 if (IS_ERR(inode))
115 return inode;
116
0af3d00b 117 spin_lock(&block_group->lock);
5b0e95bf 118 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
0b246afa 119 btrfs_info(fs_info, "Old style space inode found, converting.");
5b0e95bf
JB
120 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
121 BTRFS_INODE_NODATACOW;
2f356126
JB
122 block_group->disk_cache_state = BTRFS_DC_CLEAR;
123 }
124
300e4f8a 125 if (!block_group->iref) {
0af3d00b
JB
126 block_group->inode = igrab(inode);
127 block_group->iref = 1;
128 }
129 spin_unlock(&block_group->lock);
130
131 return inode;
132}
133
48a3b636
ES
134static int __create_free_space_inode(struct btrfs_root *root,
135 struct btrfs_trans_handle *trans,
136 struct btrfs_path *path,
137 u64 ino, u64 offset)
0af3d00b
JB
138{
139 struct btrfs_key key;
140 struct btrfs_disk_key disk_key;
141 struct btrfs_free_space_header *header;
142 struct btrfs_inode_item *inode_item;
143 struct extent_buffer *leaf;
5b0e95bf 144 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
145 int ret;
146
0414efae 147 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
148 if (ret)
149 return ret;
150
5b0e95bf
JB
151 /* We inline crc's for the free disk space cache */
152 if (ino != BTRFS_FREE_INO_OBJECTID)
153 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
154
0af3d00b
JB
155 leaf = path->nodes[0];
156 inode_item = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_inode_item);
158 btrfs_item_key(leaf, &disk_key, path->slots[0]);
b159fa28 159 memzero_extent_buffer(leaf, (unsigned long)inode_item,
0af3d00b
JB
160 sizeof(*inode_item));
161 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
162 btrfs_set_inode_size(leaf, inode_item, 0);
163 btrfs_set_inode_nbytes(leaf, inode_item, 0);
164 btrfs_set_inode_uid(leaf, inode_item, 0);
165 btrfs_set_inode_gid(leaf, inode_item, 0);
166 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 167 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
168 btrfs_set_inode_nlink(leaf, inode_item, 1);
169 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 170 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 171 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 172 btrfs_release_path(path);
0af3d00b
JB
173
174 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 175 key.offset = offset;
0af3d00b 176 key.type = 0;
0af3d00b
JB
177 ret = btrfs_insert_empty_item(trans, root, path, &key,
178 sizeof(struct btrfs_free_space_header));
179 if (ret < 0) {
b3b4aa74 180 btrfs_release_path(path);
0af3d00b
JB
181 return ret;
182 }
c9dc4c65 183
0af3d00b
JB
184 leaf = path->nodes[0];
185 header = btrfs_item_ptr(leaf, path->slots[0],
186 struct btrfs_free_space_header);
b159fa28 187 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
0af3d00b
JB
188 btrfs_set_free_space_key(leaf, header, &disk_key);
189 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 190 btrfs_release_path(path);
0af3d00b
JB
191
192 return 0;
193}
194
77ab86bf 195int create_free_space_inode(struct btrfs_fs_info *fs_info,
0414efae
LZ
196 struct btrfs_trans_handle *trans,
197 struct btrfs_block_group_cache *block_group,
198 struct btrfs_path *path)
199{
200 int ret;
201 u64 ino;
202
77ab86bf 203 ret = btrfs_find_free_objectid(fs_info->tree_root, &ino);
0414efae
LZ
204 if (ret < 0)
205 return ret;
206
77ab86bf 207 return __create_free_space_inode(fs_info->tree_root, trans, path, ino,
0414efae
LZ
208 block_group->key.objectid);
209}
210
2ff7e61e 211int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
7b61cd92 212 struct btrfs_block_rsv *rsv)
0af3d00b 213{
c8174313 214 u64 needed_bytes;
7b61cd92 215 int ret;
c8174313
JB
216
217 /* 1 for slack space, 1 for updating the inode */
0b246afa
JM
218 needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
219 btrfs_calc_trans_metadata_size(fs_info, 1);
c8174313 220
7b61cd92
MX
221 spin_lock(&rsv->lock);
222 if (rsv->reserved < needed_bytes)
223 ret = -ENOSPC;
224 else
225 ret = 0;
226 spin_unlock(&rsv->lock);
4b286cd1 227 return ret;
7b61cd92
MX
228}
229
77ab86bf 230int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
1bbc621e 231 struct btrfs_block_group_cache *block_group,
7b61cd92
MX
232 struct inode *inode)
233{
77ab86bf 234 struct btrfs_root *root = BTRFS_I(inode)->root;
7b61cd92 235 int ret = 0;
35c76642 236 bool locked = false;
1bbc621e 237
1bbc621e 238 if (block_group) {
21e75ffe
JM
239 struct btrfs_path *path = btrfs_alloc_path();
240
241 if (!path) {
242 ret = -ENOMEM;
243 goto fail;
244 }
35c76642 245 locked = true;
1bbc621e
CM
246 mutex_lock(&trans->transaction->cache_write_mutex);
247 if (!list_empty(&block_group->io_list)) {
248 list_del_init(&block_group->io_list);
249
afdb5718 250 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
251 btrfs_put_block_group(block_group);
252 }
253
254 /*
255 * now that we've truncated the cache away, its no longer
256 * setup or written
257 */
258 spin_lock(&block_group->lock);
259 block_group->disk_cache_state = BTRFS_DC_CLEAR;
260 spin_unlock(&block_group->lock);
21e75ffe 261 btrfs_free_path(path);
1bbc621e 262 }
0af3d00b 263
6ef06d27 264 btrfs_i_size_write(BTRFS_I(inode), 0);
7caef267 265 truncate_pagecache(inode, 0);
0af3d00b
JB
266
267 /*
268 * We don't need an orphan item because truncating the free space cache
269 * will never be split across transactions.
28ed1345
CM
270 * We don't need to check for -EAGAIN because we're a free space
271 * cache inode
0af3d00b
JB
272 */
273 ret = btrfs_truncate_inode_items(trans, root, inode,
274 0, BTRFS_EXTENT_DATA_KEY);
35c76642
FM
275 if (ret)
276 goto fail;
0af3d00b 277
82d5902d 278 ret = btrfs_update_inode(trans, root, inode);
1bbc621e 279
1bbc621e 280fail:
35c76642
FM
281 if (locked)
282 mutex_unlock(&trans->transaction->cache_write_mutex);
79787eaa 283 if (ret)
66642832 284 btrfs_abort_transaction(trans, ret);
c8174313 285
82d5902d 286 return ret;
0af3d00b
JB
287}
288
1d480538 289static void readahead_cache(struct inode *inode)
9d66e233
JB
290{
291 struct file_ra_state *ra;
292 unsigned long last_index;
293
294 ra = kzalloc(sizeof(*ra), GFP_NOFS);
295 if (!ra)
1d480538 296 return;
9d66e233
JB
297
298 file_ra_state_init(ra, inode->i_mapping);
09cbfeaf 299 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
9d66e233
JB
300
301 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
302
303 kfree(ra);
9d66e233
JB
304}
305
4c6d1d85 306static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
f15376df 307 int write)
a67509c3 308{
5349d6c3
MX
309 int num_pages;
310 int check_crcs = 0;
311
09cbfeaf 312 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
5349d6c3 313
4a0cc7ca 314 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FREE_INO_OBJECTID)
5349d6c3
MX
315 check_crcs = 1;
316
317 /* Make sure we can fit our crcs into the first page */
318 if (write && check_crcs &&
09cbfeaf 319 (num_pages * sizeof(u32)) >= PAGE_SIZE)
5349d6c3
MX
320 return -ENOSPC;
321
4c6d1d85 322 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
5349d6c3 323
31e818fe 324 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
a67509c3
JB
325 if (!io_ctl->pages)
326 return -ENOMEM;
5349d6c3
MX
327
328 io_ctl->num_pages = num_pages;
f15376df 329 io_ctl->fs_info = btrfs_sb(inode->i_sb);
5349d6c3 330 io_ctl->check_crcs = check_crcs;
c9dc4c65 331 io_ctl->inode = inode;
5349d6c3 332
a67509c3
JB
333 return 0;
334}
335
4c6d1d85 336static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
337{
338 kfree(io_ctl->pages);
c9dc4c65 339 io_ctl->pages = NULL;
a67509c3
JB
340}
341
4c6d1d85 342static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
343{
344 if (io_ctl->cur) {
a67509c3
JB
345 io_ctl->cur = NULL;
346 io_ctl->orig = NULL;
347 }
348}
349
4c6d1d85 350static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
a67509c3 351{
b12d6869 352 ASSERT(io_ctl->index < io_ctl->num_pages);
a67509c3 353 io_ctl->page = io_ctl->pages[io_ctl->index++];
2b108268 354 io_ctl->cur = page_address(io_ctl->page);
a67509c3 355 io_ctl->orig = io_ctl->cur;
09cbfeaf 356 io_ctl->size = PAGE_SIZE;
a67509c3 357 if (clear)
619a9742 358 clear_page(io_ctl->cur);
a67509c3
JB
359}
360
4c6d1d85 361static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
a67509c3
JB
362{
363 int i;
364
365 io_ctl_unmap_page(io_ctl);
366
367 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
368 if (io_ctl->pages[i]) {
369 ClearPageChecked(io_ctl->pages[i]);
370 unlock_page(io_ctl->pages[i]);
09cbfeaf 371 put_page(io_ctl->pages[i]);
a1ee5a45 372 }
a67509c3
JB
373 }
374}
375
4c6d1d85 376static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
a67509c3
JB
377 int uptodate)
378{
379 struct page *page;
380 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
381 int i;
382
383 for (i = 0; i < io_ctl->num_pages; i++) {
384 page = find_or_create_page(inode->i_mapping, i, mask);
385 if (!page) {
386 io_ctl_drop_pages(io_ctl);
387 return -ENOMEM;
388 }
389 io_ctl->pages[i] = page;
390 if (uptodate && !PageUptodate(page)) {
391 btrfs_readpage(NULL, page);
392 lock_page(page);
393 if (!PageUptodate(page)) {
efe120a0
FH
394 btrfs_err(BTRFS_I(inode)->root->fs_info,
395 "error reading free space cache");
a67509c3
JB
396 io_ctl_drop_pages(io_ctl);
397 return -EIO;
398 }
399 }
400 }
401
f7d61dcd
JB
402 for (i = 0; i < io_ctl->num_pages; i++) {
403 clear_page_dirty_for_io(io_ctl->pages[i]);
404 set_page_extent_mapped(io_ctl->pages[i]);
405 }
406
a67509c3
JB
407 return 0;
408}
409
4c6d1d85 410static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 411{
528c0327 412 __le64 *val;
a67509c3
JB
413
414 io_ctl_map_page(io_ctl, 1);
415
416 /*
5b0e95bf
JB
417 * Skip the csum areas. If we don't check crcs then we just have a
418 * 64bit chunk at the front of the first page.
a67509c3 419 */
5b0e95bf
JB
420 if (io_ctl->check_crcs) {
421 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
422 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
423 } else {
424 io_ctl->cur += sizeof(u64);
425 io_ctl->size -= sizeof(u64) * 2;
426 }
a67509c3
JB
427
428 val = io_ctl->cur;
429 *val = cpu_to_le64(generation);
430 io_ctl->cur += sizeof(u64);
a67509c3
JB
431}
432
4c6d1d85 433static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
a67509c3 434{
528c0327 435 __le64 *gen;
a67509c3 436
5b0e95bf
JB
437 /*
438 * Skip the crc area. If we don't check crcs then we just have a 64bit
439 * chunk at the front of the first page.
440 */
441 if (io_ctl->check_crcs) {
442 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
443 io_ctl->size -= sizeof(u64) +
444 (sizeof(u32) * io_ctl->num_pages);
445 } else {
446 io_ctl->cur += sizeof(u64);
447 io_ctl->size -= sizeof(u64) * 2;
448 }
a67509c3 449
a67509c3
JB
450 gen = io_ctl->cur;
451 if (le64_to_cpu(*gen) != generation) {
f15376df 452 btrfs_err_rl(io_ctl->fs_info,
94647322
DS
453 "space cache generation (%llu) does not match inode (%llu)",
454 *gen, generation);
a67509c3
JB
455 io_ctl_unmap_page(io_ctl);
456 return -EIO;
457 }
458 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
459 return 0;
460}
461
4c6d1d85 462static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
463{
464 u32 *tmp;
465 u32 crc = ~(u32)0;
466 unsigned offset = 0;
467
468 if (!io_ctl->check_crcs) {
469 io_ctl_unmap_page(io_ctl);
470 return;
471 }
472
473 if (index == 0)
cb54f257 474 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf 475
b0496686 476 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 477 PAGE_SIZE - offset);
0b5e3daf 478 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 479 io_ctl_unmap_page(io_ctl);
2b108268 480 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
481 tmp += index;
482 *tmp = crc;
5b0e95bf
JB
483}
484
4c6d1d85 485static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
5b0e95bf
JB
486{
487 u32 *tmp, val;
488 u32 crc = ~(u32)0;
489 unsigned offset = 0;
490
491 if (!io_ctl->check_crcs) {
492 io_ctl_map_page(io_ctl, 0);
493 return 0;
494 }
495
496 if (index == 0)
497 offset = sizeof(u32) * io_ctl->num_pages;
498
2b108268 499 tmp = page_address(io_ctl->pages[0]);
5b0e95bf
JB
500 tmp += index;
501 val = *tmp;
5b0e95bf
JB
502
503 io_ctl_map_page(io_ctl, 0);
b0496686 504 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
09cbfeaf 505 PAGE_SIZE - offset);
0b5e3daf 506 btrfs_csum_final(crc, (u8 *)&crc);
5b0e95bf 507 if (val != crc) {
f15376df 508 btrfs_err_rl(io_ctl->fs_info,
94647322 509 "csum mismatch on free space cache");
5b0e95bf
JB
510 io_ctl_unmap_page(io_ctl);
511 return -EIO;
512 }
513
a67509c3
JB
514 return 0;
515}
516
4c6d1d85 517static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
a67509c3
JB
518 void *bitmap)
519{
520 struct btrfs_free_space_entry *entry;
521
522 if (!io_ctl->cur)
523 return -ENOSPC;
524
525 entry = io_ctl->cur;
526 entry->offset = cpu_to_le64(offset);
527 entry->bytes = cpu_to_le64(bytes);
528 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
529 BTRFS_FREE_SPACE_EXTENT;
530 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
531 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
532
533 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
534 return 0;
535
5b0e95bf 536 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
537
538 /* No more pages to map */
539 if (io_ctl->index >= io_ctl->num_pages)
540 return 0;
541
542 /* map the next page */
543 io_ctl_map_page(io_ctl, 1);
544 return 0;
545}
546
4c6d1d85 547static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
a67509c3
JB
548{
549 if (!io_ctl->cur)
550 return -ENOSPC;
551
552 /*
553 * If we aren't at the start of the current page, unmap this one and
554 * map the next one if there is any left.
555 */
556 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 557 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
558 if (io_ctl->index >= io_ctl->num_pages)
559 return -ENOSPC;
560 io_ctl_map_page(io_ctl, 0);
561 }
562
09cbfeaf 563 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
5b0e95bf 564 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
565 if (io_ctl->index < io_ctl->num_pages)
566 io_ctl_map_page(io_ctl, 0);
567 return 0;
568}
569
4c6d1d85 570static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
a67509c3 571{
5b0e95bf
JB
572 /*
573 * If we're not on the boundary we know we've modified the page and we
574 * need to crc the page.
575 */
576 if (io_ctl->cur != io_ctl->orig)
577 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
578 else
579 io_ctl_unmap_page(io_ctl);
a67509c3
JB
580
581 while (io_ctl->index < io_ctl->num_pages) {
582 io_ctl_map_page(io_ctl, 1);
5b0e95bf 583 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
584 }
585}
586
4c6d1d85 587static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
5b0e95bf 588 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
589{
590 struct btrfs_free_space_entry *e;
2f120c05
JB
591 int ret;
592
593 if (!io_ctl->cur) {
594 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
595 if (ret)
596 return ret;
597 }
a67509c3
JB
598
599 e = io_ctl->cur;
600 entry->offset = le64_to_cpu(e->offset);
601 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 602 *type = e->type;
a67509c3
JB
603 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
604 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
605
606 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 607 return 0;
a67509c3
JB
608
609 io_ctl_unmap_page(io_ctl);
610
2f120c05 611 return 0;
a67509c3
JB
612}
613
4c6d1d85 614static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
5b0e95bf 615 struct btrfs_free_space *entry)
a67509c3 616{
5b0e95bf
JB
617 int ret;
618
5b0e95bf
JB
619 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
620 if (ret)
621 return ret;
622
09cbfeaf 623 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
a67509c3 624 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
625
626 return 0;
a67509c3
JB
627}
628
cd023e7b
JB
629/*
630 * Since we attach pinned extents after the fact we can have contiguous sections
631 * of free space that are split up in entries. This poses a problem with the
632 * tree logging stuff since it could have allocated across what appears to be 2
633 * entries since we would have merged the entries when adding the pinned extents
634 * back to the free space cache. So run through the space cache that we just
635 * loaded and merge contiguous entries. This will make the log replay stuff not
636 * blow up and it will make for nicer allocator behavior.
637 */
638static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
639{
640 struct btrfs_free_space *e, *prev = NULL;
641 struct rb_node *n;
642
643again:
644 spin_lock(&ctl->tree_lock);
645 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
646 e = rb_entry(n, struct btrfs_free_space, offset_index);
647 if (!prev)
648 goto next;
649 if (e->bitmap || prev->bitmap)
650 goto next;
651 if (prev->offset + prev->bytes == e->offset) {
652 unlink_free_space(ctl, prev);
653 unlink_free_space(ctl, e);
654 prev->bytes += e->bytes;
655 kmem_cache_free(btrfs_free_space_cachep, e);
656 link_free_space(ctl, prev);
657 prev = NULL;
658 spin_unlock(&ctl->tree_lock);
659 goto again;
660 }
661next:
662 prev = e;
663 }
664 spin_unlock(&ctl->tree_lock);
665}
666
48a3b636
ES
667static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
668 struct btrfs_free_space_ctl *ctl,
669 struct btrfs_path *path, u64 offset)
9d66e233 670{
0b246afa 671 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9d66e233
JB
672 struct btrfs_free_space_header *header;
673 struct extent_buffer *leaf;
4c6d1d85 674 struct btrfs_io_ctl io_ctl;
9d66e233 675 struct btrfs_key key;
a67509c3 676 struct btrfs_free_space *e, *n;
b76808fc 677 LIST_HEAD(bitmaps);
9d66e233
JB
678 u64 num_entries;
679 u64 num_bitmaps;
680 u64 generation;
a67509c3 681 u8 type;
f6a39829 682 int ret = 0;
9d66e233 683
9d66e233 684 /* Nothing in the space cache, goodbye */
0414efae 685 if (!i_size_read(inode))
a67509c3 686 return 0;
9d66e233
JB
687
688 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 689 key.offset = offset;
9d66e233
JB
690 key.type = 0;
691
692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 693 if (ret < 0)
a67509c3 694 return 0;
0414efae 695 else if (ret > 0) {
945d8962 696 btrfs_release_path(path);
a67509c3 697 return 0;
9d66e233
JB
698 }
699
0414efae
LZ
700 ret = -1;
701
9d66e233
JB
702 leaf = path->nodes[0];
703 header = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_free_space_header);
705 num_entries = btrfs_free_space_entries(leaf, header);
706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 generation = btrfs_free_space_generation(leaf, header);
945d8962 708 btrfs_release_path(path);
9d66e233 709
e570fd27 710 if (!BTRFS_I(inode)->generation) {
0b246afa 711 btrfs_info(fs_info,
913e1535 712 "the free space cache file (%llu) is invalid, skip it",
e570fd27
MX
713 offset);
714 return 0;
715 }
716
9d66e233 717 if (BTRFS_I(inode)->generation != generation) {
0b246afa
JM
718 btrfs_err(fs_info,
719 "free space inode generation (%llu) did not match free space cache generation (%llu)",
720 BTRFS_I(inode)->generation, generation);
a67509c3 721 return 0;
9d66e233
JB
722 }
723
724 if (!num_entries)
a67509c3 725 return 0;
9d66e233 726
f15376df 727 ret = io_ctl_init(&io_ctl, inode, 0);
706efc66
LZ
728 if (ret)
729 return ret;
730
1d480538 731 readahead_cache(inode);
9d66e233 732
a67509c3
JB
733 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
734 if (ret)
735 goto out;
9d66e233 736
5b0e95bf
JB
737 ret = io_ctl_check_crc(&io_ctl, 0);
738 if (ret)
739 goto free_cache;
740
a67509c3
JB
741 ret = io_ctl_check_generation(&io_ctl, generation);
742 if (ret)
743 goto free_cache;
9d66e233 744
a67509c3
JB
745 while (num_entries) {
746 e = kmem_cache_zalloc(btrfs_free_space_cachep,
747 GFP_NOFS);
748 if (!e)
9d66e233 749 goto free_cache;
9d66e233 750
5b0e95bf
JB
751 ret = io_ctl_read_entry(&io_ctl, e, &type);
752 if (ret) {
753 kmem_cache_free(btrfs_free_space_cachep, e);
754 goto free_cache;
755 }
756
a67509c3
JB
757 if (!e->bytes) {
758 kmem_cache_free(btrfs_free_space_cachep, e);
759 goto free_cache;
9d66e233 760 }
a67509c3
JB
761
762 if (type == BTRFS_FREE_SPACE_EXTENT) {
763 spin_lock(&ctl->tree_lock);
764 ret = link_free_space(ctl, e);
765 spin_unlock(&ctl->tree_lock);
766 if (ret) {
0b246afa 767 btrfs_err(fs_info,
c2cf52eb 768 "Duplicate entries in free space cache, dumping");
a67509c3 769 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
770 goto free_cache;
771 }
a67509c3 772 } else {
b12d6869 773 ASSERT(num_bitmaps);
a67509c3 774 num_bitmaps--;
09cbfeaf 775 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
a67509c3
JB
776 if (!e->bitmap) {
777 kmem_cache_free(
778 btrfs_free_space_cachep, e);
9d66e233
JB
779 goto free_cache;
780 }
a67509c3
JB
781 spin_lock(&ctl->tree_lock);
782 ret = link_free_space(ctl, e);
783 ctl->total_bitmaps++;
784 ctl->op->recalc_thresholds(ctl);
785 spin_unlock(&ctl->tree_lock);
786 if (ret) {
0b246afa 787 btrfs_err(fs_info,
c2cf52eb 788 "Duplicate entries in free space cache, dumping");
dc89e982 789 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
790 goto free_cache;
791 }
a67509c3 792 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
793 }
794
a67509c3
JB
795 num_entries--;
796 }
9d66e233 797
2f120c05
JB
798 io_ctl_unmap_page(&io_ctl);
799
a67509c3
JB
800 /*
801 * We add the bitmaps at the end of the entries in order that
802 * the bitmap entries are added to the cache.
803 */
804 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 805 list_del_init(&e->list);
5b0e95bf
JB
806 ret = io_ctl_read_bitmap(&io_ctl, e);
807 if (ret)
808 goto free_cache;
9d66e233
JB
809 }
810
a67509c3 811 io_ctl_drop_pages(&io_ctl);
cd023e7b 812 merge_space_tree(ctl);
9d66e233
JB
813 ret = 1;
814out:
a67509c3 815 io_ctl_free(&io_ctl);
9d66e233 816 return ret;
9d66e233 817free_cache:
a67509c3 818 io_ctl_drop_pages(&io_ctl);
0414efae 819 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
820 goto out;
821}
822
0414efae
LZ
823int load_free_space_cache(struct btrfs_fs_info *fs_info,
824 struct btrfs_block_group_cache *block_group)
0cb59c99 825{
34d52cb6 826 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
827 struct inode *inode;
828 struct btrfs_path *path;
5b0e95bf 829 int ret = 0;
0414efae
LZ
830 bool matched;
831 u64 used = btrfs_block_group_used(&block_group->item);
832
0414efae
LZ
833 /*
834 * If this block group has been marked to be cleared for one reason or
835 * another then we can't trust the on disk cache, so just return.
836 */
9d66e233 837 spin_lock(&block_group->lock);
0414efae
LZ
838 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
839 spin_unlock(&block_group->lock);
840 return 0;
841 }
9d66e233 842 spin_unlock(&block_group->lock);
0414efae
LZ
843
844 path = btrfs_alloc_path();
845 if (!path)
846 return 0;
d53ba474
JB
847 path->search_commit_root = 1;
848 path->skip_locking = 1;
0414efae 849
77ab86bf 850 inode = lookup_free_space_inode(fs_info, block_group, path);
0414efae
LZ
851 if (IS_ERR(inode)) {
852 btrfs_free_path(path);
853 return 0;
854 }
855
5b0e95bf
JB
856 /* We may have converted the inode and made the cache invalid. */
857 spin_lock(&block_group->lock);
858 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
859 spin_unlock(&block_group->lock);
a7e221e9 860 btrfs_free_path(path);
5b0e95bf
JB
861 goto out;
862 }
863 spin_unlock(&block_group->lock);
864
0414efae
LZ
865 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
866 path, block_group->key.objectid);
867 btrfs_free_path(path);
868 if (ret <= 0)
869 goto out;
870
871 spin_lock(&ctl->tree_lock);
872 matched = (ctl->free_space == (block_group->key.offset - used -
873 block_group->bytes_super));
874 spin_unlock(&ctl->tree_lock);
875
876 if (!matched) {
877 __btrfs_remove_free_space_cache(ctl);
5d163e0e
JM
878 btrfs_warn(fs_info,
879 "block group %llu has wrong amount of free space",
880 block_group->key.objectid);
0414efae
LZ
881 ret = -1;
882 }
883out:
884 if (ret < 0) {
885 /* This cache is bogus, make sure it gets cleared */
886 spin_lock(&block_group->lock);
887 block_group->disk_cache_state = BTRFS_DC_CLEAR;
888 spin_unlock(&block_group->lock);
82d5902d 889 ret = 0;
0414efae 890
5d163e0e
JM
891 btrfs_warn(fs_info,
892 "failed to load free space cache for block group %llu, rebuilding it now",
893 block_group->key.objectid);
0414efae
LZ
894 }
895
896 iput(inode);
897 return ret;
9d66e233
JB
898}
899
d4452bc5 900static noinline_for_stack
4c6d1d85 901int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
d4452bc5
CM
902 struct btrfs_free_space_ctl *ctl,
903 struct btrfs_block_group_cache *block_group,
904 int *entries, int *bitmaps,
905 struct list_head *bitmap_list)
0cb59c99 906{
c09544e0 907 int ret;
d4452bc5 908 struct btrfs_free_cluster *cluster = NULL;
1bbc621e 909 struct btrfs_free_cluster *cluster_locked = NULL;
d4452bc5 910 struct rb_node *node = rb_first(&ctl->free_space_offset);
55507ce3 911 struct btrfs_trim_range *trim_entry;
be1a12a0 912
43be2146 913 /* Get the cluster for this block_group if it exists */
d4452bc5 914 if (block_group && !list_empty(&block_group->cluster_list)) {
43be2146
JB
915 cluster = list_entry(block_group->cluster_list.next,
916 struct btrfs_free_cluster,
917 block_group_list);
d4452bc5 918 }
43be2146 919
f75b130e 920 if (!node && cluster) {
1bbc621e
CM
921 cluster_locked = cluster;
922 spin_lock(&cluster_locked->lock);
f75b130e
JB
923 node = rb_first(&cluster->root);
924 cluster = NULL;
925 }
926
a67509c3
JB
927 /* Write out the extent entries */
928 while (node) {
929 struct btrfs_free_space *e;
0cb59c99 930
a67509c3 931 e = rb_entry(node, struct btrfs_free_space, offset_index);
d4452bc5 932 *entries += 1;
0cb59c99 933
d4452bc5 934 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
a67509c3
JB
935 e->bitmap);
936 if (ret)
d4452bc5 937 goto fail;
2f356126 938
a67509c3 939 if (e->bitmap) {
d4452bc5
CM
940 list_add_tail(&e->list, bitmap_list);
941 *bitmaps += 1;
2f356126 942 }
a67509c3
JB
943 node = rb_next(node);
944 if (!node && cluster) {
945 node = rb_first(&cluster->root);
1bbc621e
CM
946 cluster_locked = cluster;
947 spin_lock(&cluster_locked->lock);
a67509c3 948 cluster = NULL;
43be2146 949 }
a67509c3 950 }
1bbc621e
CM
951 if (cluster_locked) {
952 spin_unlock(&cluster_locked->lock);
953 cluster_locked = NULL;
954 }
55507ce3
FM
955
956 /*
957 * Make sure we don't miss any range that was removed from our rbtree
958 * because trimming is running. Otherwise after a umount+mount (or crash
959 * after committing the transaction) we would leak free space and get
960 * an inconsistent free space cache report from fsck.
961 */
962 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
963 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
964 trim_entry->bytes, NULL);
965 if (ret)
966 goto fail;
967 *entries += 1;
968 }
969
d4452bc5
CM
970 return 0;
971fail:
1bbc621e
CM
972 if (cluster_locked)
973 spin_unlock(&cluster_locked->lock);
d4452bc5
CM
974 return -ENOSPC;
975}
976
977static noinline_for_stack int
978update_cache_item(struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 struct inode *inode,
981 struct btrfs_path *path, u64 offset,
982 int entries, int bitmaps)
983{
984 struct btrfs_key key;
985 struct btrfs_free_space_header *header;
986 struct extent_buffer *leaf;
987 int ret;
988
989 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
990 key.offset = offset;
991 key.type = 0;
992
993 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
994 if (ret < 0) {
995 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
ae0f1625 996 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
d4452bc5
CM
997 goto fail;
998 }
999 leaf = path->nodes[0];
1000 if (ret > 0) {
1001 struct btrfs_key found_key;
1002 ASSERT(path->slots[0]);
1003 path->slots[0]--;
1004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1005 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1006 found_key.offset != offset) {
1007 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1008 inode->i_size - 1,
1009 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
ae0f1625 1010 NULL);
d4452bc5
CM
1011 btrfs_release_path(path);
1012 goto fail;
1013 }
1014 }
1015
1016 BTRFS_I(inode)->generation = trans->transid;
1017 header = btrfs_item_ptr(leaf, path->slots[0],
1018 struct btrfs_free_space_header);
1019 btrfs_set_free_space_entries(leaf, header, entries);
1020 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1021 btrfs_set_free_space_generation(leaf, header, trans->transid);
1022 btrfs_mark_buffer_dirty(leaf);
1023 btrfs_release_path(path);
1024
1025 return 0;
1026
1027fail:
1028 return -1;
1029}
1030
1031static noinline_for_stack int
2ff7e61e 1032write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
5349d6c3 1033 struct btrfs_block_group_cache *block_group,
4c6d1d85 1034 struct btrfs_io_ctl *io_ctl,
5349d6c3 1035 int *entries)
d4452bc5
CM
1036{
1037 u64 start, extent_start, extent_end, len;
d4452bc5
CM
1038 struct extent_io_tree *unpin = NULL;
1039 int ret;
43be2146 1040
5349d6c3
MX
1041 if (!block_group)
1042 return 0;
1043
a67509c3
JB
1044 /*
1045 * We want to add any pinned extents to our free space cache
1046 * so we don't leak the space
d4452bc5 1047 *
db804f23
LZ
1048 * We shouldn't have switched the pinned extents yet so this is the
1049 * right one
1050 */
0b246afa 1051 unpin = fs_info->pinned_extents;
db804f23 1052
5349d6c3 1053 start = block_group->key.objectid;
db804f23 1054
5349d6c3 1055 while (start < block_group->key.objectid + block_group->key.offset) {
db804f23
LZ
1056 ret = find_first_extent_bit(unpin, start,
1057 &extent_start, &extent_end,
e6138876 1058 EXTENT_DIRTY, NULL);
5349d6c3
MX
1059 if (ret)
1060 return 0;
0cb59c99 1061
a67509c3 1062 /* This pinned extent is out of our range */
db804f23 1063 if (extent_start >= block_group->key.objectid +
a67509c3 1064 block_group->key.offset)
5349d6c3 1065 return 0;
2f356126 1066
db804f23
LZ
1067 extent_start = max(extent_start, start);
1068 extent_end = min(block_group->key.objectid +
1069 block_group->key.offset, extent_end + 1);
1070 len = extent_end - extent_start;
0cb59c99 1071
d4452bc5
CM
1072 *entries += 1;
1073 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
a67509c3 1074 if (ret)
5349d6c3 1075 return -ENOSPC;
0cb59c99 1076
db804f23 1077 start = extent_end;
a67509c3 1078 }
0cb59c99 1079
5349d6c3
MX
1080 return 0;
1081}
1082
1083static noinline_for_stack int
4c6d1d85 1084write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
5349d6c3 1085{
7ae1681e 1086 struct btrfs_free_space *entry, *next;
5349d6c3
MX
1087 int ret;
1088
0cb59c99 1089 /* Write out the bitmaps */
7ae1681e 1090 list_for_each_entry_safe(entry, next, bitmap_list, list) {
d4452bc5 1091 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
a67509c3 1092 if (ret)
5349d6c3 1093 return -ENOSPC;
0cb59c99 1094 list_del_init(&entry->list);
be1a12a0
JB
1095 }
1096
5349d6c3
MX
1097 return 0;
1098}
0cb59c99 1099
5349d6c3
MX
1100static int flush_dirty_cache(struct inode *inode)
1101{
1102 int ret;
be1a12a0 1103
0ef8b726 1104 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5349d6c3 1105 if (ret)
0ef8b726 1106 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
ae0f1625 1107 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL);
0cb59c99 1108
5349d6c3 1109 return ret;
d4452bc5
CM
1110}
1111
1112static void noinline_for_stack
a3bdccc4 1113cleanup_bitmap_list(struct list_head *bitmap_list)
d4452bc5 1114{
7ae1681e 1115 struct btrfs_free_space *entry, *next;
5349d6c3 1116
7ae1681e 1117 list_for_each_entry_safe(entry, next, bitmap_list, list)
d4452bc5 1118 list_del_init(&entry->list);
a3bdccc4
CM
1119}
1120
1121static void noinline_for_stack
1122cleanup_write_cache_enospc(struct inode *inode,
1123 struct btrfs_io_ctl *io_ctl,
7bf1a159 1124 struct extent_state **cached_state)
a3bdccc4 1125{
d4452bc5
CM
1126 io_ctl_drop_pages(io_ctl);
1127 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1128 i_size_read(inode) - 1, cached_state,
1129 GFP_NOFS);
1130}
549b4fdb 1131
afdb5718
JM
1132static int __btrfs_wait_cache_io(struct btrfs_root *root,
1133 struct btrfs_trans_handle *trans,
1134 struct btrfs_block_group_cache *block_group,
1135 struct btrfs_io_ctl *io_ctl,
1136 struct btrfs_path *path, u64 offset)
c9dc4c65
CM
1137{
1138 int ret;
1139 struct inode *inode = io_ctl->inode;
0b246afa 1140 struct btrfs_fs_info *fs_info;
c9dc4c65 1141
1bbc621e
CM
1142 if (!inode)
1143 return 0;
1144
0b246afa
JM
1145 fs_info = btrfs_sb(inode->i_sb);
1146
c9dc4c65
CM
1147 /* Flush the dirty pages in the cache file. */
1148 ret = flush_dirty_cache(inode);
1149 if (ret)
1150 goto out;
1151
1152 /* Update the cache item to tell everyone this cache file is valid. */
1153 ret = update_cache_item(trans, root, inode, path, offset,
1154 io_ctl->entries, io_ctl->bitmaps);
1155out:
1156 io_ctl_free(io_ctl);
1157 if (ret) {
1158 invalidate_inode_pages2(inode->i_mapping);
1159 BTRFS_I(inode)->generation = 0;
1160 if (block_group) {
1161#ifdef DEBUG
0b246afa
JM
1162 btrfs_err(fs_info,
1163 "failed to write free space cache for block group %llu",
1164 block_group->key.objectid);
c9dc4c65
CM
1165#endif
1166 }
1167 }
1168 btrfs_update_inode(trans, root, inode);
1169
1170 if (block_group) {
1bbc621e
CM
1171 /* the dirty list is protected by the dirty_bgs_lock */
1172 spin_lock(&trans->transaction->dirty_bgs_lock);
1173
1174 /* the disk_cache_state is protected by the block group lock */
c9dc4c65
CM
1175 spin_lock(&block_group->lock);
1176
1177 /*
1178 * only mark this as written if we didn't get put back on
1bbc621e
CM
1179 * the dirty list while waiting for IO. Otherwise our
1180 * cache state won't be right, and we won't get written again
c9dc4c65
CM
1181 */
1182 if (!ret && list_empty(&block_group->dirty_list))
1183 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1184 else if (ret)
1185 block_group->disk_cache_state = BTRFS_DC_ERROR;
1186
1187 spin_unlock(&block_group->lock);
1bbc621e 1188 spin_unlock(&trans->transaction->dirty_bgs_lock);
c9dc4c65
CM
1189 io_ctl->inode = NULL;
1190 iput(inode);
1191 }
1192
1193 return ret;
1194
1195}
1196
afdb5718
JM
1197static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1198 struct btrfs_trans_handle *trans,
1199 struct btrfs_io_ctl *io_ctl,
1200 struct btrfs_path *path)
1201{
1202 return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1203}
1204
1205int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1206 struct btrfs_block_group_cache *block_group,
1207 struct btrfs_path *path)
1208{
1209 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1210 block_group, &block_group->io_ctl,
1211 path, block_group->key.objectid);
1212}
1213
d4452bc5
CM
1214/**
1215 * __btrfs_write_out_cache - write out cached info to an inode
1216 * @root - the root the inode belongs to
1217 * @ctl - the free space cache we are going to write out
1218 * @block_group - the block_group for this cache if it belongs to a block_group
1219 * @trans - the trans handle
d4452bc5
CM
1220 *
1221 * This function writes out a free space cache struct to disk for quick recovery
8cd1e731 1222 * on mount. This will return 0 if it was successful in writing the cache out,
b8605454 1223 * or an errno if it was not.
d4452bc5
CM
1224 */
1225static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1226 struct btrfs_free_space_ctl *ctl,
1227 struct btrfs_block_group_cache *block_group,
c9dc4c65 1228 struct btrfs_io_ctl *io_ctl,
0e8d931a 1229 struct btrfs_trans_handle *trans)
d4452bc5 1230{
2ff7e61e 1231 struct btrfs_fs_info *fs_info = root->fs_info;
d4452bc5 1232 struct extent_state *cached_state = NULL;
5349d6c3 1233 LIST_HEAD(bitmap_list);
d4452bc5
CM
1234 int entries = 0;
1235 int bitmaps = 0;
1236 int ret;
c9dc4c65 1237 int must_iput = 0;
d4452bc5
CM
1238
1239 if (!i_size_read(inode))
b8605454 1240 return -EIO;
d4452bc5 1241
c9dc4c65 1242 WARN_ON(io_ctl->pages);
f15376df 1243 ret = io_ctl_init(io_ctl, inode, 1);
d4452bc5 1244 if (ret)
b8605454 1245 return ret;
d4452bc5 1246
e570fd27
MX
1247 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1248 down_write(&block_group->data_rwsem);
1249 spin_lock(&block_group->lock);
1250 if (block_group->delalloc_bytes) {
1251 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1252 spin_unlock(&block_group->lock);
1253 up_write(&block_group->data_rwsem);
1254 BTRFS_I(inode)->generation = 0;
1255 ret = 0;
c9dc4c65 1256 must_iput = 1;
e570fd27
MX
1257 goto out;
1258 }
1259 spin_unlock(&block_group->lock);
1260 }
1261
d4452bc5 1262 /* Lock all pages first so we can lock the extent safely. */
b8605454
OS
1263 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1264 if (ret)
b77000ed 1265 goto out_unlock;
d4452bc5
CM
1266
1267 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
ff13db41 1268 &cached_state);
d4452bc5 1269
c9dc4c65 1270 io_ctl_set_generation(io_ctl, trans->transid);
d4452bc5 1271
55507ce3 1272 mutex_lock(&ctl->cache_writeout_mutex);
5349d6c3 1273 /* Write out the extent entries in the free space cache */
1bbc621e 1274 spin_lock(&ctl->tree_lock);
c9dc4c65 1275 ret = write_cache_extent_entries(io_ctl, ctl,
d4452bc5
CM
1276 block_group, &entries, &bitmaps,
1277 &bitmap_list);
a3bdccc4
CM
1278 if (ret)
1279 goto out_nospc_locked;
d4452bc5 1280
5349d6c3
MX
1281 /*
1282 * Some spaces that are freed in the current transaction are pinned,
1283 * they will be added into free space cache after the transaction is
1284 * committed, we shouldn't lose them.
1bbc621e
CM
1285 *
1286 * If this changes while we are working we'll get added back to
1287 * the dirty list and redo it. No locking needed
5349d6c3 1288 */
2ff7e61e
JM
1289 ret = write_pinned_extent_entries(fs_info, block_group,
1290 io_ctl, &entries);
a3bdccc4
CM
1291 if (ret)
1292 goto out_nospc_locked;
5349d6c3 1293
55507ce3
FM
1294 /*
1295 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1296 * locked while doing it because a concurrent trim can be manipulating
1297 * or freeing the bitmap.
1298 */
c9dc4c65 1299 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1bbc621e 1300 spin_unlock(&ctl->tree_lock);
55507ce3 1301 mutex_unlock(&ctl->cache_writeout_mutex);
5349d6c3
MX
1302 if (ret)
1303 goto out_nospc;
1304
1305 /* Zero out the rest of the pages just to make sure */
c9dc4c65 1306 io_ctl_zero_remaining_pages(io_ctl);
d4452bc5 1307
5349d6c3 1308 /* Everything is written out, now we dirty the pages in the file. */
2ff7e61e
JM
1309 ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1310 i_size_read(inode), &cached_state);
5349d6c3 1311 if (ret)
d4452bc5 1312 goto out_nospc;
5349d6c3 1313
e570fd27
MX
1314 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1315 up_write(&block_group->data_rwsem);
5349d6c3
MX
1316 /*
1317 * Release the pages and unlock the extent, we will flush
1318 * them out later
1319 */
c9dc4c65 1320 io_ctl_drop_pages(io_ctl);
5349d6c3
MX
1321
1322 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1323 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1324
c9dc4c65
CM
1325 /*
1326 * at this point the pages are under IO and we're happy,
1327 * The caller is responsible for waiting on them and updating the
1328 * the cache and the inode
1329 */
1330 io_ctl->entries = entries;
1331 io_ctl->bitmaps = bitmaps;
1332
1333 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
5349d6c3 1334 if (ret)
d4452bc5
CM
1335 goto out;
1336
c9dc4c65
CM
1337 return 0;
1338
2f356126 1339out:
c9dc4c65
CM
1340 io_ctl->inode = NULL;
1341 io_ctl_free(io_ctl);
5349d6c3 1342 if (ret) {
a67509c3 1343 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1344 BTRFS_I(inode)->generation = 0;
1345 }
0cb59c99 1346 btrfs_update_inode(trans, root, inode);
c9dc4c65
CM
1347 if (must_iput)
1348 iput(inode);
5349d6c3 1349 return ret;
a67509c3 1350
a3bdccc4
CM
1351out_nospc_locked:
1352 cleanup_bitmap_list(&bitmap_list);
1353 spin_unlock(&ctl->tree_lock);
1354 mutex_unlock(&ctl->cache_writeout_mutex);
1355
a67509c3 1356out_nospc:
7bf1a159 1357 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
e570fd27 1358
b77000ed 1359out_unlock:
e570fd27
MX
1360 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1361 up_write(&block_group->data_rwsem);
1362
a67509c3 1363 goto out;
0414efae
LZ
1364}
1365
5b4aacef 1366int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
0414efae
LZ
1367 struct btrfs_trans_handle *trans,
1368 struct btrfs_block_group_cache *block_group,
1369 struct btrfs_path *path)
1370{
1371 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1372 struct inode *inode;
1373 int ret = 0;
1374
0414efae
LZ
1375 spin_lock(&block_group->lock);
1376 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1377 spin_unlock(&block_group->lock);
e570fd27
MX
1378 return 0;
1379 }
0414efae
LZ
1380 spin_unlock(&block_group->lock);
1381
77ab86bf 1382 inode = lookup_free_space_inode(fs_info, block_group, path);
0414efae
LZ
1383 if (IS_ERR(inode))
1384 return 0;
1385
77ab86bf
JM
1386 ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1387 block_group, &block_group->io_ctl, trans);
c09544e0 1388 if (ret) {
c09544e0 1389#ifdef DEBUG
0b246afa
JM
1390 btrfs_err(fs_info,
1391 "failed to write free space cache for block group %llu",
1392 block_group->key.objectid);
c09544e0 1393#endif
c9dc4c65
CM
1394 spin_lock(&block_group->lock);
1395 block_group->disk_cache_state = BTRFS_DC_ERROR;
1396 spin_unlock(&block_group->lock);
1397
1398 block_group->io_ctl.inode = NULL;
1399 iput(inode);
0414efae
LZ
1400 }
1401
c9dc4c65
CM
1402 /*
1403 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1404 * to wait for IO and put the inode
1405 */
1406
0cb59c99
JB
1407 return ret;
1408}
1409
34d52cb6 1410static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1411 u64 offset)
0f9dd46c 1412{
b12d6869 1413 ASSERT(offset >= bitmap_start);
96303081 1414 offset -= bitmap_start;
34d52cb6 1415 return (unsigned long)(div_u64(offset, unit));
96303081 1416}
0f9dd46c 1417
34d52cb6 1418static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1419{
34d52cb6 1420 return (unsigned long)(div_u64(bytes, unit));
96303081 1421}
0f9dd46c 1422
34d52cb6 1423static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1424 u64 offset)
1425{
1426 u64 bitmap_start;
0ef6447a 1427 u64 bytes_per_bitmap;
0f9dd46c 1428
34d52cb6
LZ
1429 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1430 bitmap_start = offset - ctl->start;
0ef6447a 1431 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
96303081 1432 bitmap_start *= bytes_per_bitmap;
34d52cb6 1433 bitmap_start += ctl->start;
0f9dd46c 1434
96303081 1435 return bitmap_start;
0f9dd46c
JB
1436}
1437
96303081
JB
1438static int tree_insert_offset(struct rb_root *root, u64 offset,
1439 struct rb_node *node, int bitmap)
0f9dd46c
JB
1440{
1441 struct rb_node **p = &root->rb_node;
1442 struct rb_node *parent = NULL;
1443 struct btrfs_free_space *info;
1444
1445 while (*p) {
1446 parent = *p;
96303081 1447 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1448
96303081 1449 if (offset < info->offset) {
0f9dd46c 1450 p = &(*p)->rb_left;
96303081 1451 } else if (offset > info->offset) {
0f9dd46c 1452 p = &(*p)->rb_right;
96303081
JB
1453 } else {
1454 /*
1455 * we could have a bitmap entry and an extent entry
1456 * share the same offset. If this is the case, we want
1457 * the extent entry to always be found first if we do a
1458 * linear search through the tree, since we want to have
1459 * the quickest allocation time, and allocating from an
1460 * extent is faster than allocating from a bitmap. So
1461 * if we're inserting a bitmap and we find an entry at
1462 * this offset, we want to go right, or after this entry
1463 * logically. If we are inserting an extent and we've
1464 * found a bitmap, we want to go left, or before
1465 * logically.
1466 */
1467 if (bitmap) {
207dde82
JB
1468 if (info->bitmap) {
1469 WARN_ON_ONCE(1);
1470 return -EEXIST;
1471 }
96303081
JB
1472 p = &(*p)->rb_right;
1473 } else {
207dde82
JB
1474 if (!info->bitmap) {
1475 WARN_ON_ONCE(1);
1476 return -EEXIST;
1477 }
96303081
JB
1478 p = &(*p)->rb_left;
1479 }
1480 }
0f9dd46c
JB
1481 }
1482
1483 rb_link_node(node, parent, p);
1484 rb_insert_color(node, root);
1485
1486 return 0;
1487}
1488
1489/*
70cb0743
JB
1490 * searches the tree for the given offset.
1491 *
96303081
JB
1492 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1493 * want a section that has at least bytes size and comes at or after the given
1494 * offset.
0f9dd46c 1495 */
96303081 1496static struct btrfs_free_space *
34d52cb6 1497tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1498 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1499{
34d52cb6 1500 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1501 struct btrfs_free_space *entry, *prev = NULL;
1502
1503 /* find entry that is closest to the 'offset' */
1504 while (1) {
1505 if (!n) {
1506 entry = NULL;
1507 break;
1508 }
0f9dd46c 1509
0f9dd46c 1510 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1511 prev = entry;
0f9dd46c 1512
96303081 1513 if (offset < entry->offset)
0f9dd46c 1514 n = n->rb_left;
96303081 1515 else if (offset > entry->offset)
0f9dd46c 1516 n = n->rb_right;
96303081 1517 else
0f9dd46c 1518 break;
0f9dd46c
JB
1519 }
1520
96303081
JB
1521 if (bitmap_only) {
1522 if (!entry)
1523 return NULL;
1524 if (entry->bitmap)
1525 return entry;
0f9dd46c 1526
96303081
JB
1527 /*
1528 * bitmap entry and extent entry may share same offset,
1529 * in that case, bitmap entry comes after extent entry.
1530 */
1531 n = rb_next(n);
1532 if (!n)
1533 return NULL;
1534 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1535 if (entry->offset != offset)
1536 return NULL;
0f9dd46c 1537
96303081
JB
1538 WARN_ON(!entry->bitmap);
1539 return entry;
1540 } else if (entry) {
1541 if (entry->bitmap) {
0f9dd46c 1542 /*
96303081
JB
1543 * if previous extent entry covers the offset,
1544 * we should return it instead of the bitmap entry
0f9dd46c 1545 */
de6c4115
MX
1546 n = rb_prev(&entry->offset_index);
1547 if (n) {
96303081
JB
1548 prev = rb_entry(n, struct btrfs_free_space,
1549 offset_index);
de6c4115
MX
1550 if (!prev->bitmap &&
1551 prev->offset + prev->bytes > offset)
1552 entry = prev;
0f9dd46c 1553 }
96303081
JB
1554 }
1555 return entry;
1556 }
1557
1558 if (!prev)
1559 return NULL;
1560
1561 /* find last entry before the 'offset' */
1562 entry = prev;
1563 if (entry->offset > offset) {
1564 n = rb_prev(&entry->offset_index);
1565 if (n) {
1566 entry = rb_entry(n, struct btrfs_free_space,
1567 offset_index);
b12d6869 1568 ASSERT(entry->offset <= offset);
0f9dd46c 1569 } else {
96303081
JB
1570 if (fuzzy)
1571 return entry;
1572 else
1573 return NULL;
0f9dd46c
JB
1574 }
1575 }
1576
96303081 1577 if (entry->bitmap) {
de6c4115
MX
1578 n = rb_prev(&entry->offset_index);
1579 if (n) {
96303081
JB
1580 prev = rb_entry(n, struct btrfs_free_space,
1581 offset_index);
de6c4115
MX
1582 if (!prev->bitmap &&
1583 prev->offset + prev->bytes > offset)
1584 return prev;
96303081 1585 }
34d52cb6 1586 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1587 return entry;
1588 } else if (entry->offset + entry->bytes > offset)
1589 return entry;
1590
1591 if (!fuzzy)
1592 return NULL;
1593
1594 while (1) {
1595 if (entry->bitmap) {
1596 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1597 ctl->unit > offset)
96303081
JB
1598 break;
1599 } else {
1600 if (entry->offset + entry->bytes > offset)
1601 break;
1602 }
1603
1604 n = rb_next(&entry->offset_index);
1605 if (!n)
1606 return NULL;
1607 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1608 }
1609 return entry;
0f9dd46c
JB
1610}
1611
f333adb5 1612static inline void
34d52cb6 1613__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1614 struct btrfs_free_space *info)
0f9dd46c 1615{
34d52cb6
LZ
1616 rb_erase(&info->offset_index, &ctl->free_space_offset);
1617 ctl->free_extents--;
f333adb5
LZ
1618}
1619
34d52cb6 1620static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1621 struct btrfs_free_space *info)
1622{
34d52cb6
LZ
1623 __unlink_free_space(ctl, info);
1624 ctl->free_space -= info->bytes;
0f9dd46c
JB
1625}
1626
34d52cb6 1627static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1628 struct btrfs_free_space *info)
1629{
1630 int ret = 0;
1631
b12d6869 1632 ASSERT(info->bytes || info->bitmap);
34d52cb6 1633 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1634 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1635 if (ret)
1636 return ret;
1637
34d52cb6
LZ
1638 ctl->free_space += info->bytes;
1639 ctl->free_extents++;
96303081
JB
1640 return ret;
1641}
1642
34d52cb6 1643static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1644{
34d52cb6 1645 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1646 u64 max_bytes;
1647 u64 bitmap_bytes;
1648 u64 extent_bytes;
8eb2d829 1649 u64 size = block_group->key.offset;
0ef6447a
FX
1650 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1651 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
34d52cb6 1652
0ef6447a 1653 max_bitmaps = max_t(u64, max_bitmaps, 1);
dde5740f 1654
b12d6869 1655 ASSERT(ctl->total_bitmaps <= max_bitmaps);
96303081
JB
1656
1657 /*
1658 * The goal is to keep the total amount of memory used per 1gb of space
1659 * at or below 32k, so we need to adjust how much memory we allow to be
1660 * used by extent based free space tracking
1661 */
ee22184b 1662 if (size < SZ_1G)
8eb2d829
LZ
1663 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1664 else
ee22184b 1665 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
96303081 1666
25891f79
JB
1667 /*
1668 * we want to account for 1 more bitmap than what we have so we can make
1669 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1670 * we add more bitmaps.
1671 */
b9ef22de 1672 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
96303081 1673
25891f79 1674 if (bitmap_bytes >= max_bytes) {
34d52cb6 1675 ctl->extents_thresh = 0;
25891f79
JB
1676 return;
1677 }
96303081 1678
25891f79 1679 /*
f8c269d7 1680 * we want the extent entry threshold to always be at most 1/2 the max
25891f79
JB
1681 * bytes we can have, or whatever is less than that.
1682 */
1683 extent_bytes = max_bytes - bitmap_bytes;
f8c269d7 1684 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
96303081 1685
34d52cb6 1686 ctl->extents_thresh =
f8c269d7 1687 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
96303081
JB
1688}
1689
bb3ac5a4
MX
1690static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1691 struct btrfs_free_space *info,
1692 u64 offset, u64 bytes)
96303081 1693{
f38b6e75 1694 unsigned long start, count;
96303081 1695
34d52cb6
LZ
1696 start = offset_to_bit(info->offset, ctl->unit, offset);
1697 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1698 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1699
f38b6e75 1700 bitmap_clear(info->bitmap, start, count);
96303081
JB
1701
1702 info->bytes -= bytes;
bb3ac5a4
MX
1703}
1704
1705static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1706 struct btrfs_free_space *info, u64 offset,
1707 u64 bytes)
1708{
1709 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1710 ctl->free_space -= bytes;
96303081
JB
1711}
1712
34d52cb6 1713static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1714 struct btrfs_free_space *info, u64 offset,
1715 u64 bytes)
96303081 1716{
f38b6e75 1717 unsigned long start, count;
96303081 1718
34d52cb6
LZ
1719 start = offset_to_bit(info->offset, ctl->unit, offset);
1720 count = bytes_to_bits(bytes, ctl->unit);
b12d6869 1721 ASSERT(start + count <= BITS_PER_BITMAP);
96303081 1722
f38b6e75 1723 bitmap_set(info->bitmap, start, count);
96303081
JB
1724
1725 info->bytes += bytes;
34d52cb6 1726 ctl->free_space += bytes;
96303081
JB
1727}
1728
a4820398
MX
1729/*
1730 * If we can not find suitable extent, we will use bytes to record
1731 * the size of the max extent.
1732 */
34d52cb6 1733static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081 1734 struct btrfs_free_space *bitmap_info, u64 *offset,
0584f718 1735 u64 *bytes, bool for_alloc)
96303081
JB
1736{
1737 unsigned long found_bits = 0;
a4820398 1738 unsigned long max_bits = 0;
96303081
JB
1739 unsigned long bits, i;
1740 unsigned long next_zero;
a4820398 1741 unsigned long extent_bits;
96303081 1742
cef40483
JB
1743 /*
1744 * Skip searching the bitmap if we don't have a contiguous section that
1745 * is large enough for this allocation.
1746 */
0584f718
JB
1747 if (for_alloc &&
1748 bitmap_info->max_extent_size &&
cef40483
JB
1749 bitmap_info->max_extent_size < *bytes) {
1750 *bytes = bitmap_info->max_extent_size;
1751 return -1;
1752 }
1753
34d52cb6 1754 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1755 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1756 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1757
ebb3dad4 1758 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
0584f718
JB
1759 if (for_alloc && bits == 1) {
1760 found_bits = 1;
1761 break;
1762 }
96303081
JB
1763 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1764 BITS_PER_BITMAP, i);
a4820398
MX
1765 extent_bits = next_zero - i;
1766 if (extent_bits >= bits) {
1767 found_bits = extent_bits;
96303081 1768 break;
a4820398
MX
1769 } else if (extent_bits > max_bits) {
1770 max_bits = extent_bits;
96303081
JB
1771 }
1772 i = next_zero;
1773 }
1774
1775 if (found_bits) {
34d52cb6
LZ
1776 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1777 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1778 return 0;
1779 }
1780
a4820398 1781 *bytes = (u64)(max_bits) * ctl->unit;
cef40483 1782 bitmap_info->max_extent_size = *bytes;
96303081
JB
1783 return -1;
1784}
1785
a4820398 1786/* Cache the size of the max extent in bytes */
34d52cb6 1787static struct btrfs_free_space *
53b381b3 1788find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
a4820398 1789 unsigned long align, u64 *max_extent_size)
96303081
JB
1790{
1791 struct btrfs_free_space *entry;
1792 struct rb_node *node;
53b381b3
DW
1793 u64 tmp;
1794 u64 align_off;
96303081
JB
1795 int ret;
1796
34d52cb6 1797 if (!ctl->free_space_offset.rb_node)
a4820398 1798 goto out;
96303081 1799
34d52cb6 1800 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081 1801 if (!entry)
a4820398 1802 goto out;
96303081
JB
1803
1804 for (node = &entry->offset_index; node; node = rb_next(node)) {
1805 entry = rb_entry(node, struct btrfs_free_space, offset_index);
a4820398
MX
1806 if (entry->bytes < *bytes) {
1807 if (entry->bytes > *max_extent_size)
1808 *max_extent_size = entry->bytes;
96303081 1809 continue;
a4820398 1810 }
96303081 1811
53b381b3
DW
1812 /* make sure the space returned is big enough
1813 * to match our requested alignment
1814 */
1815 if (*bytes >= align) {
a4820398 1816 tmp = entry->offset - ctl->start + align - 1;
47c5713f 1817 tmp = div64_u64(tmp, align);
53b381b3
DW
1818 tmp = tmp * align + ctl->start;
1819 align_off = tmp - entry->offset;
1820 } else {
1821 align_off = 0;
1822 tmp = entry->offset;
1823 }
1824
a4820398
MX
1825 if (entry->bytes < *bytes + align_off) {
1826 if (entry->bytes > *max_extent_size)
1827 *max_extent_size = entry->bytes;
53b381b3 1828 continue;
a4820398 1829 }
53b381b3 1830
96303081 1831 if (entry->bitmap) {
a4820398
MX
1832 u64 size = *bytes;
1833
0584f718 1834 ret = search_bitmap(ctl, entry, &tmp, &size, true);
53b381b3
DW
1835 if (!ret) {
1836 *offset = tmp;
a4820398 1837 *bytes = size;
96303081 1838 return entry;
a4820398
MX
1839 } else if (size > *max_extent_size) {
1840 *max_extent_size = size;
53b381b3 1841 }
96303081
JB
1842 continue;
1843 }
1844
53b381b3
DW
1845 *offset = tmp;
1846 *bytes = entry->bytes - align_off;
96303081
JB
1847 return entry;
1848 }
a4820398 1849out:
96303081
JB
1850 return NULL;
1851}
1852
34d52cb6 1853static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1854 struct btrfs_free_space *info, u64 offset)
1855{
34d52cb6 1856 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1857 info->bytes = 0;
f2d0f676 1858 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1859 link_free_space(ctl, info);
1860 ctl->total_bitmaps++;
96303081 1861
34d52cb6 1862 ctl->op->recalc_thresholds(ctl);
96303081
JB
1863}
1864
34d52cb6 1865static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1866 struct btrfs_free_space *bitmap_info)
1867{
34d52cb6 1868 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1869 kfree(bitmap_info->bitmap);
dc89e982 1870 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1871 ctl->total_bitmaps--;
1872 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1873}
1874
34d52cb6 1875static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1876 struct btrfs_free_space *bitmap_info,
1877 u64 *offset, u64 *bytes)
1878{
1879 u64 end;
6606bb97
JB
1880 u64 search_start, search_bytes;
1881 int ret;
96303081
JB
1882
1883again:
34d52cb6 1884 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1885
6606bb97 1886 /*
bdb7d303
JB
1887 * We need to search for bits in this bitmap. We could only cover some
1888 * of the extent in this bitmap thanks to how we add space, so we need
1889 * to search for as much as it as we can and clear that amount, and then
1890 * go searching for the next bit.
6606bb97
JB
1891 */
1892 search_start = *offset;
bdb7d303 1893 search_bytes = ctl->unit;
13dbc089 1894 search_bytes = min(search_bytes, end - search_start + 1);
0584f718
JB
1895 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1896 false);
b50c6e25
JB
1897 if (ret < 0 || search_start != *offset)
1898 return -EINVAL;
6606bb97 1899
bdb7d303
JB
1900 /* We may have found more bits than what we need */
1901 search_bytes = min(search_bytes, *bytes);
1902
1903 /* Cannot clear past the end of the bitmap */
1904 search_bytes = min(search_bytes, end - search_start + 1);
1905
1906 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1907 *offset += search_bytes;
1908 *bytes -= search_bytes;
96303081
JB
1909
1910 if (*bytes) {
6606bb97 1911 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1912 if (!bitmap_info->bytes)
34d52cb6 1913 free_bitmap(ctl, bitmap_info);
96303081 1914
6606bb97
JB
1915 /*
1916 * no entry after this bitmap, but we still have bytes to
1917 * remove, so something has gone wrong.
1918 */
1919 if (!next)
96303081
JB
1920 return -EINVAL;
1921
6606bb97
JB
1922 bitmap_info = rb_entry(next, struct btrfs_free_space,
1923 offset_index);
1924
1925 /*
1926 * if the next entry isn't a bitmap we need to return to let the
1927 * extent stuff do its work.
1928 */
96303081
JB
1929 if (!bitmap_info->bitmap)
1930 return -EAGAIN;
1931
6606bb97
JB
1932 /*
1933 * Ok the next item is a bitmap, but it may not actually hold
1934 * the information for the rest of this free space stuff, so
1935 * look for it, and if we don't find it return so we can try
1936 * everything over again.
1937 */
1938 search_start = *offset;
bdb7d303 1939 search_bytes = ctl->unit;
34d52cb6 1940 ret = search_bitmap(ctl, bitmap_info, &search_start,
0584f718 1941 &search_bytes, false);
6606bb97
JB
1942 if (ret < 0 || search_start != *offset)
1943 return -EAGAIN;
1944
96303081 1945 goto again;
edf6e2d1 1946 } else if (!bitmap_info->bytes)
34d52cb6 1947 free_bitmap(ctl, bitmap_info);
96303081
JB
1948
1949 return 0;
1950}
1951
2cdc342c
JB
1952static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1953 struct btrfs_free_space *info, u64 offset,
1954 u64 bytes)
1955{
1956 u64 bytes_to_set = 0;
1957 u64 end;
1958
1959 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1960
1961 bytes_to_set = min(end - offset, bytes);
1962
1963 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1964
cef40483
JB
1965 /*
1966 * We set some bytes, we have no idea what the max extent size is
1967 * anymore.
1968 */
1969 info->max_extent_size = 0;
1970
2cdc342c
JB
1971 return bytes_to_set;
1972
1973}
1974
34d52cb6
LZ
1975static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1976 struct btrfs_free_space *info)
96303081 1977{
34d52cb6 1978 struct btrfs_block_group_cache *block_group = ctl->private;
0b246afa 1979 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
1980 bool forced = false;
1981
1982#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 1983 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
1984 forced = true;
1985#endif
96303081
JB
1986
1987 /*
1988 * If we are below the extents threshold then we can add this as an
1989 * extent, and don't have to deal with the bitmap
1990 */
d0bd4560 1991 if (!forced && ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1992 /*
1993 * If this block group has some small extents we don't want to
1994 * use up all of our free slots in the cache with them, we want
01327610 1995 * to reserve them to larger extents, however if we have plenty
32cb0840
JB
1996 * of cache left then go ahead an dadd them, no sense in adding
1997 * the overhead of a bitmap if we don't have to.
1998 */
0b246afa 1999 if (info->bytes <= fs_info->sectorsize * 4) {
34d52cb6
LZ
2000 if (ctl->free_extents * 2 <= ctl->extents_thresh)
2001 return false;
32cb0840 2002 } else {
34d52cb6 2003 return false;
32cb0840
JB
2004 }
2005 }
96303081
JB
2006
2007 /*
dde5740f
JB
2008 * The original block groups from mkfs can be really small, like 8
2009 * megabytes, so don't bother with a bitmap for those entries. However
2010 * some block groups can be smaller than what a bitmap would cover but
2011 * are still large enough that they could overflow the 32k memory limit,
2012 * so allow those block groups to still be allowed to have a bitmap
2013 * entry.
96303081 2014 */
dde5740f 2015 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
34d52cb6
LZ
2016 return false;
2017
2018 return true;
2019}
2020
20e5506b 2021static const struct btrfs_free_space_op free_space_op = {
2cdc342c
JB
2022 .recalc_thresholds = recalculate_thresholds,
2023 .use_bitmap = use_bitmap,
2024};
2025
34d52cb6
LZ
2026static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2027 struct btrfs_free_space *info)
2028{
2029 struct btrfs_free_space *bitmap_info;
2cdc342c 2030 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 2031 int added = 0;
2cdc342c 2032 u64 bytes, offset, bytes_added;
34d52cb6 2033 int ret;
96303081
JB
2034
2035 bytes = info->bytes;
2036 offset = info->offset;
2037
34d52cb6
LZ
2038 if (!ctl->op->use_bitmap(ctl, info))
2039 return 0;
2040
2cdc342c
JB
2041 if (ctl->op == &free_space_op)
2042 block_group = ctl->private;
38e87880 2043again:
2cdc342c
JB
2044 /*
2045 * Since we link bitmaps right into the cluster we need to see if we
2046 * have a cluster here, and if so and it has our bitmap we need to add
2047 * the free space to that bitmap.
2048 */
2049 if (block_group && !list_empty(&block_group->cluster_list)) {
2050 struct btrfs_free_cluster *cluster;
2051 struct rb_node *node;
2052 struct btrfs_free_space *entry;
2053
2054 cluster = list_entry(block_group->cluster_list.next,
2055 struct btrfs_free_cluster,
2056 block_group_list);
2057 spin_lock(&cluster->lock);
2058 node = rb_first(&cluster->root);
2059 if (!node) {
2060 spin_unlock(&cluster->lock);
38e87880 2061 goto no_cluster_bitmap;
2cdc342c
JB
2062 }
2063
2064 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2065 if (!entry->bitmap) {
2066 spin_unlock(&cluster->lock);
38e87880 2067 goto no_cluster_bitmap;
2cdc342c
JB
2068 }
2069
2070 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2071 bytes_added = add_bytes_to_bitmap(ctl, entry,
2072 offset, bytes);
2073 bytes -= bytes_added;
2074 offset += bytes_added;
2075 }
2076 spin_unlock(&cluster->lock);
2077 if (!bytes) {
2078 ret = 1;
2079 goto out;
2080 }
2081 }
38e87880
CM
2082
2083no_cluster_bitmap:
34d52cb6 2084 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
2085 1, 0);
2086 if (!bitmap_info) {
b12d6869 2087 ASSERT(added == 0);
96303081
JB
2088 goto new_bitmap;
2089 }
2090
2cdc342c
JB
2091 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2092 bytes -= bytes_added;
2093 offset += bytes_added;
2094 added = 0;
96303081
JB
2095
2096 if (!bytes) {
2097 ret = 1;
2098 goto out;
2099 } else
2100 goto again;
2101
2102new_bitmap:
2103 if (info && info->bitmap) {
34d52cb6 2104 add_new_bitmap(ctl, info, offset);
96303081
JB
2105 added = 1;
2106 info = NULL;
2107 goto again;
2108 } else {
34d52cb6 2109 spin_unlock(&ctl->tree_lock);
96303081
JB
2110
2111 /* no pre-allocated info, allocate a new one */
2112 if (!info) {
dc89e982
JB
2113 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2114 GFP_NOFS);
96303081 2115 if (!info) {
34d52cb6 2116 spin_lock(&ctl->tree_lock);
96303081
JB
2117 ret = -ENOMEM;
2118 goto out;
2119 }
2120 }
2121
2122 /* allocate the bitmap */
09cbfeaf 2123 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
34d52cb6 2124 spin_lock(&ctl->tree_lock);
96303081
JB
2125 if (!info->bitmap) {
2126 ret = -ENOMEM;
2127 goto out;
2128 }
2129 goto again;
2130 }
2131
2132out:
2133 if (info) {
2134 if (info->bitmap)
2135 kfree(info->bitmap);
dc89e982 2136 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2137 }
0f9dd46c
JB
2138
2139 return ret;
2140}
2141
945d8962 2142static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 2143 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 2144{
120d66ee
LZ
2145 struct btrfs_free_space *left_info;
2146 struct btrfs_free_space *right_info;
2147 bool merged = false;
2148 u64 offset = info->offset;
2149 u64 bytes = info->bytes;
6226cb0a 2150
0f9dd46c
JB
2151 /*
2152 * first we want to see if there is free space adjacent to the range we
2153 * are adding, if there is remove that struct and add a new one to
2154 * cover the entire range
2155 */
34d52cb6 2156 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
2157 if (right_info && rb_prev(&right_info->offset_index))
2158 left_info = rb_entry(rb_prev(&right_info->offset_index),
2159 struct btrfs_free_space, offset_index);
2160 else
34d52cb6 2161 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 2162
96303081 2163 if (right_info && !right_info->bitmap) {
f333adb5 2164 if (update_stat)
34d52cb6 2165 unlink_free_space(ctl, right_info);
f333adb5 2166 else
34d52cb6 2167 __unlink_free_space(ctl, right_info);
6226cb0a 2168 info->bytes += right_info->bytes;
dc89e982 2169 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 2170 merged = true;
0f9dd46c
JB
2171 }
2172
96303081
JB
2173 if (left_info && !left_info->bitmap &&
2174 left_info->offset + left_info->bytes == offset) {
f333adb5 2175 if (update_stat)
34d52cb6 2176 unlink_free_space(ctl, left_info);
f333adb5 2177 else
34d52cb6 2178 __unlink_free_space(ctl, left_info);
6226cb0a
JB
2179 info->offset = left_info->offset;
2180 info->bytes += left_info->bytes;
dc89e982 2181 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 2182 merged = true;
0f9dd46c
JB
2183 }
2184
120d66ee
LZ
2185 return merged;
2186}
2187
20005523
FM
2188static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2189 struct btrfs_free_space *info,
2190 bool update_stat)
2191{
2192 struct btrfs_free_space *bitmap;
2193 unsigned long i;
2194 unsigned long j;
2195 const u64 end = info->offset + info->bytes;
2196 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2197 u64 bytes;
2198
2199 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2200 if (!bitmap)
2201 return false;
2202
2203 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2204 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2205 if (j == i)
2206 return false;
2207 bytes = (j - i) * ctl->unit;
2208 info->bytes += bytes;
2209
2210 if (update_stat)
2211 bitmap_clear_bits(ctl, bitmap, end, bytes);
2212 else
2213 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2214
2215 if (!bitmap->bytes)
2216 free_bitmap(ctl, bitmap);
2217
2218 return true;
2219}
2220
2221static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2222 struct btrfs_free_space *info,
2223 bool update_stat)
2224{
2225 struct btrfs_free_space *bitmap;
2226 u64 bitmap_offset;
2227 unsigned long i;
2228 unsigned long j;
2229 unsigned long prev_j;
2230 u64 bytes;
2231
2232 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2233 /* If we're on a boundary, try the previous logical bitmap. */
2234 if (bitmap_offset == info->offset) {
2235 if (info->offset == 0)
2236 return false;
2237 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2238 }
2239
2240 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2241 if (!bitmap)
2242 return false;
2243
2244 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2245 j = 0;
2246 prev_j = (unsigned long)-1;
2247 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2248 if (j > i)
2249 break;
2250 prev_j = j;
2251 }
2252 if (prev_j == i)
2253 return false;
2254
2255 if (prev_j == (unsigned long)-1)
2256 bytes = (i + 1) * ctl->unit;
2257 else
2258 bytes = (i - prev_j) * ctl->unit;
2259
2260 info->offset -= bytes;
2261 info->bytes += bytes;
2262
2263 if (update_stat)
2264 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2265 else
2266 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2267
2268 if (!bitmap->bytes)
2269 free_bitmap(ctl, bitmap);
2270
2271 return true;
2272}
2273
2274/*
2275 * We prefer always to allocate from extent entries, both for clustered and
2276 * non-clustered allocation requests. So when attempting to add a new extent
2277 * entry, try to see if there's adjacent free space in bitmap entries, and if
2278 * there is, migrate that space from the bitmaps to the extent.
2279 * Like this we get better chances of satisfying space allocation requests
2280 * because we attempt to satisfy them based on a single cache entry, and never
2281 * on 2 or more entries - even if the entries represent a contiguous free space
2282 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2283 * ends).
2284 */
2285static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2286 struct btrfs_free_space *info,
2287 bool update_stat)
2288{
2289 /*
2290 * Only work with disconnected entries, as we can change their offset,
2291 * and must be extent entries.
2292 */
2293 ASSERT(!info->bitmap);
2294 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2295
2296 if (ctl->total_bitmaps > 0) {
2297 bool stole_end;
2298 bool stole_front = false;
2299
2300 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2301 if (ctl->total_bitmaps > 0)
2302 stole_front = steal_from_bitmap_to_front(ctl, info,
2303 update_stat);
2304
2305 if (stole_end || stole_front)
2306 try_merge_free_space(ctl, info, update_stat);
2307 }
2308}
2309
ab8d0fc4
JM
2310int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2311 struct btrfs_free_space_ctl *ctl,
581bb050 2312 u64 offset, u64 bytes)
120d66ee
LZ
2313{
2314 struct btrfs_free_space *info;
2315 int ret = 0;
2316
dc89e982 2317 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
2318 if (!info)
2319 return -ENOMEM;
2320
2321 info->offset = offset;
2322 info->bytes = bytes;
20005523 2323 RB_CLEAR_NODE(&info->offset_index);
120d66ee 2324
34d52cb6 2325 spin_lock(&ctl->tree_lock);
120d66ee 2326
34d52cb6 2327 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
2328 goto link;
2329
2330 /*
2331 * There was no extent directly to the left or right of this new
2332 * extent then we know we're going to have to allocate a new extent, so
2333 * before we do that see if we need to drop this into a bitmap
2334 */
34d52cb6 2335 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
2336 if (ret < 0) {
2337 goto out;
2338 } else if (ret) {
2339 ret = 0;
2340 goto out;
2341 }
2342link:
20005523
FM
2343 /*
2344 * Only steal free space from adjacent bitmaps if we're sure we're not
2345 * going to add the new free space to existing bitmap entries - because
2346 * that would mean unnecessary work that would be reverted. Therefore
2347 * attempt to steal space from bitmaps if we're adding an extent entry.
2348 */
2349 steal_from_bitmap(ctl, info, true);
2350
34d52cb6 2351 ret = link_free_space(ctl, info);
0f9dd46c 2352 if (ret)
dc89e982 2353 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 2354out:
34d52cb6 2355 spin_unlock(&ctl->tree_lock);
6226cb0a 2356
0f9dd46c 2357 if (ret) {
ab8d0fc4 2358 btrfs_crit(fs_info, "unable to add free space :%d", ret);
b12d6869 2359 ASSERT(ret != -EEXIST);
0f9dd46c
JB
2360 }
2361
0f9dd46c
JB
2362 return ret;
2363}
2364
6226cb0a
JB
2365int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2366 u64 offset, u64 bytes)
0f9dd46c 2367{
34d52cb6 2368 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2369 struct btrfs_free_space *info;
b0175117
JB
2370 int ret;
2371 bool re_search = false;
0f9dd46c 2372
34d52cb6 2373 spin_lock(&ctl->tree_lock);
6226cb0a 2374
96303081 2375again:
b0175117 2376 ret = 0;
bdb7d303
JB
2377 if (!bytes)
2378 goto out_lock;
2379
34d52cb6 2380 info = tree_search_offset(ctl, offset, 0, 0);
96303081 2381 if (!info) {
6606bb97
JB
2382 /*
2383 * oops didn't find an extent that matched the space we wanted
2384 * to remove, look for a bitmap instead
2385 */
34d52cb6 2386 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
2387 1, 0);
2388 if (!info) {
b0175117
JB
2389 /*
2390 * If we found a partial bit of our free space in a
2391 * bitmap but then couldn't find the other part this may
2392 * be a problem, so WARN about it.
24a70313 2393 */
b0175117 2394 WARN_ON(re_search);
6606bb97
JB
2395 goto out_lock;
2396 }
96303081
JB
2397 }
2398
b0175117 2399 re_search = false;
bdb7d303 2400 if (!info->bitmap) {
34d52cb6 2401 unlink_free_space(ctl, info);
bdb7d303
JB
2402 if (offset == info->offset) {
2403 u64 to_free = min(bytes, info->bytes);
2404
2405 info->bytes -= to_free;
2406 info->offset += to_free;
2407 if (info->bytes) {
2408 ret = link_free_space(ctl, info);
2409 WARN_ON(ret);
2410 } else {
2411 kmem_cache_free(btrfs_free_space_cachep, info);
2412 }
0f9dd46c 2413
bdb7d303
JB
2414 offset += to_free;
2415 bytes -= to_free;
2416 goto again;
2417 } else {
2418 u64 old_end = info->bytes + info->offset;
9b49c9b9 2419
bdb7d303 2420 info->bytes = offset - info->offset;
34d52cb6 2421 ret = link_free_space(ctl, info);
96303081
JB
2422 WARN_ON(ret);
2423 if (ret)
2424 goto out_lock;
96303081 2425
bdb7d303
JB
2426 /* Not enough bytes in this entry to satisfy us */
2427 if (old_end < offset + bytes) {
2428 bytes -= old_end - offset;
2429 offset = old_end;
2430 goto again;
2431 } else if (old_end == offset + bytes) {
2432 /* all done */
2433 goto out_lock;
2434 }
2435 spin_unlock(&ctl->tree_lock);
2436
2437 ret = btrfs_add_free_space(block_group, offset + bytes,
2438 old_end - (offset + bytes));
2439 WARN_ON(ret);
2440 goto out;
2441 }
0f9dd46c 2442 }
96303081 2443
34d52cb6 2444 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
b0175117
JB
2445 if (ret == -EAGAIN) {
2446 re_search = true;
96303081 2447 goto again;
b0175117 2448 }
96303081 2449out_lock:
34d52cb6 2450 spin_unlock(&ctl->tree_lock);
0f9dd46c 2451out:
25179201
JB
2452 return ret;
2453}
2454
0f9dd46c
JB
2455void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2456 u64 bytes)
2457{
0b246afa 2458 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2459 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
2460 struct btrfs_free_space *info;
2461 struct rb_node *n;
2462 int count = 0;
2463
34d52cb6 2464 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 2465 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 2466 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 2467 count++;
0b246afa 2468 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
efe120a0 2469 info->offset, info->bytes,
96303081 2470 (info->bitmap) ? "yes" : "no");
0f9dd46c 2471 }
0b246afa 2472 btrfs_info(fs_info, "block group has cluster?: %s",
96303081 2473 list_empty(&block_group->cluster_list) ? "no" : "yes");
0b246afa 2474 btrfs_info(fs_info,
efe120a0 2475 "%d blocks of free space at or bigger than bytes is", count);
0f9dd46c
JB
2476}
2477
34d52cb6 2478void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 2479{
0b246afa 2480 struct btrfs_fs_info *fs_info = block_group->fs_info;
34d52cb6 2481 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 2482
34d52cb6 2483 spin_lock_init(&ctl->tree_lock);
0b246afa 2484 ctl->unit = fs_info->sectorsize;
34d52cb6
LZ
2485 ctl->start = block_group->key.objectid;
2486 ctl->private = block_group;
2487 ctl->op = &free_space_op;
55507ce3
FM
2488 INIT_LIST_HEAD(&ctl->trimming_ranges);
2489 mutex_init(&ctl->cache_writeout_mutex);
0f9dd46c 2490
34d52cb6
LZ
2491 /*
2492 * we only want to have 32k of ram per block group for keeping
2493 * track of free space, and if we pass 1/2 of that we want to
2494 * start converting things over to using bitmaps
2495 */
ee22184b 2496 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
0f9dd46c
JB
2497}
2498
fa9c0d79
CM
2499/*
2500 * for a given cluster, put all of its extents back into the free
2501 * space cache. If the block group passed doesn't match the block group
2502 * pointed to by the cluster, someone else raced in and freed the
2503 * cluster already. In that case, we just return without changing anything
2504 */
2505static int
2506__btrfs_return_cluster_to_free_space(
2507 struct btrfs_block_group_cache *block_group,
2508 struct btrfs_free_cluster *cluster)
2509{
34d52cb6 2510 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2511 struct btrfs_free_space *entry;
2512 struct rb_node *node;
2513
2514 spin_lock(&cluster->lock);
2515 if (cluster->block_group != block_group)
2516 goto out;
2517
96303081 2518 cluster->block_group = NULL;
fa9c0d79 2519 cluster->window_start = 0;
96303081 2520 list_del_init(&cluster->block_group_list);
96303081 2521
fa9c0d79 2522 node = rb_first(&cluster->root);
96303081 2523 while (node) {
4e69b598
JB
2524 bool bitmap;
2525
fa9c0d79
CM
2526 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2527 node = rb_next(&entry->offset_index);
2528 rb_erase(&entry->offset_index, &cluster->root);
20005523 2529 RB_CLEAR_NODE(&entry->offset_index);
4e69b598
JB
2530
2531 bitmap = (entry->bitmap != NULL);
20005523 2532 if (!bitmap) {
34d52cb6 2533 try_merge_free_space(ctl, entry, false);
20005523
FM
2534 steal_from_bitmap(ctl, entry, false);
2535 }
34d52cb6 2536 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2537 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2538 }
6bef4d31 2539 cluster->root = RB_ROOT;
96303081 2540
fa9c0d79
CM
2541out:
2542 spin_unlock(&cluster->lock);
96303081 2543 btrfs_put_block_group(block_group);
fa9c0d79
CM
2544 return 0;
2545}
2546
48a3b636
ES
2547static void __btrfs_remove_free_space_cache_locked(
2548 struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2549{
2550 struct btrfs_free_space *info;
2551 struct rb_node *node;
581bb050 2552
581bb050
LZ
2553 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2554 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2555 if (!info->bitmap) {
2556 unlink_free_space(ctl, info);
2557 kmem_cache_free(btrfs_free_space_cachep, info);
2558 } else {
2559 free_bitmap(ctl, info);
2560 }
351810c1
DS
2561
2562 cond_resched_lock(&ctl->tree_lock);
581bb050 2563 }
09655373
CM
2564}
2565
2566void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2567{
2568 spin_lock(&ctl->tree_lock);
2569 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2570 spin_unlock(&ctl->tree_lock);
2571}
2572
2573void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2574{
2575 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2576 struct btrfs_free_cluster *cluster;
96303081 2577 struct list_head *head;
0f9dd46c 2578
34d52cb6 2579 spin_lock(&ctl->tree_lock);
96303081
JB
2580 while ((head = block_group->cluster_list.next) !=
2581 &block_group->cluster_list) {
2582 cluster = list_entry(head, struct btrfs_free_cluster,
2583 block_group_list);
fa9c0d79
CM
2584
2585 WARN_ON(cluster->block_group != block_group);
2586 __btrfs_return_cluster_to_free_space(block_group, cluster);
351810c1
DS
2587
2588 cond_resched_lock(&ctl->tree_lock);
fa9c0d79 2589 }
09655373 2590 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2591 spin_unlock(&ctl->tree_lock);
fa9c0d79 2592
0f9dd46c
JB
2593}
2594
6226cb0a 2595u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
a4820398
MX
2596 u64 offset, u64 bytes, u64 empty_size,
2597 u64 *max_extent_size)
0f9dd46c 2598{
34d52cb6 2599 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2600 struct btrfs_free_space *entry = NULL;
96303081 2601 u64 bytes_search = bytes + empty_size;
6226cb0a 2602 u64 ret = 0;
53b381b3
DW
2603 u64 align_gap = 0;
2604 u64 align_gap_len = 0;
0f9dd46c 2605
34d52cb6 2606 spin_lock(&ctl->tree_lock);
53b381b3 2607 entry = find_free_space(ctl, &offset, &bytes_search,
a4820398 2608 block_group->full_stripe_len, max_extent_size);
6226cb0a 2609 if (!entry)
96303081
JB
2610 goto out;
2611
2612 ret = offset;
2613 if (entry->bitmap) {
34d52cb6 2614 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2615 if (!entry->bytes)
34d52cb6 2616 free_bitmap(ctl, entry);
96303081 2617 } else {
34d52cb6 2618 unlink_free_space(ctl, entry);
53b381b3
DW
2619 align_gap_len = offset - entry->offset;
2620 align_gap = entry->offset;
2621
2622 entry->offset = offset + bytes;
2623 WARN_ON(entry->bytes < bytes + align_gap_len);
2624
2625 entry->bytes -= bytes + align_gap_len;
6226cb0a 2626 if (!entry->bytes)
dc89e982 2627 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2628 else
34d52cb6 2629 link_free_space(ctl, entry);
6226cb0a 2630 }
96303081 2631out:
34d52cb6 2632 spin_unlock(&ctl->tree_lock);
817d52f8 2633
53b381b3 2634 if (align_gap_len)
ab8d0fc4
JM
2635 __btrfs_add_free_space(block_group->fs_info, ctl,
2636 align_gap, align_gap_len);
0f9dd46c
JB
2637 return ret;
2638}
fa9c0d79
CM
2639
2640/*
2641 * given a cluster, put all of its extents back into the free space
2642 * cache. If a block group is passed, this function will only free
2643 * a cluster that belongs to the passed block group.
2644 *
2645 * Otherwise, it'll get a reference on the block group pointed to by the
2646 * cluster and remove the cluster from it.
2647 */
2648int btrfs_return_cluster_to_free_space(
2649 struct btrfs_block_group_cache *block_group,
2650 struct btrfs_free_cluster *cluster)
2651{
34d52cb6 2652 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2653 int ret;
2654
2655 /* first, get a safe pointer to the block group */
2656 spin_lock(&cluster->lock);
2657 if (!block_group) {
2658 block_group = cluster->block_group;
2659 if (!block_group) {
2660 spin_unlock(&cluster->lock);
2661 return 0;
2662 }
2663 } else if (cluster->block_group != block_group) {
2664 /* someone else has already freed it don't redo their work */
2665 spin_unlock(&cluster->lock);
2666 return 0;
2667 }
2668 atomic_inc(&block_group->count);
2669 spin_unlock(&cluster->lock);
2670
34d52cb6
LZ
2671 ctl = block_group->free_space_ctl;
2672
fa9c0d79 2673 /* now return any extents the cluster had on it */
34d52cb6 2674 spin_lock(&ctl->tree_lock);
fa9c0d79 2675 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2676 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2677
2678 /* finally drop our ref */
2679 btrfs_put_block_group(block_group);
2680 return ret;
2681}
2682
96303081
JB
2683static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2684 struct btrfs_free_cluster *cluster,
4e69b598 2685 struct btrfs_free_space *entry,
a4820398
MX
2686 u64 bytes, u64 min_start,
2687 u64 *max_extent_size)
96303081 2688{
34d52cb6 2689 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2690 int err;
2691 u64 search_start = cluster->window_start;
2692 u64 search_bytes = bytes;
2693 u64 ret = 0;
2694
96303081
JB
2695 search_start = min_start;
2696 search_bytes = bytes;
2697
0584f718 2698 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
a4820398
MX
2699 if (err) {
2700 if (search_bytes > *max_extent_size)
2701 *max_extent_size = search_bytes;
4e69b598 2702 return 0;
a4820398 2703 }
96303081
JB
2704
2705 ret = search_start;
bb3ac5a4 2706 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2707
2708 return ret;
2709}
2710
fa9c0d79
CM
2711/*
2712 * given a cluster, try to allocate 'bytes' from it, returns 0
2713 * if it couldn't find anything suitably large, or a logical disk offset
2714 * if things worked out
2715 */
2716u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2717 struct btrfs_free_cluster *cluster, u64 bytes,
a4820398 2718 u64 min_start, u64 *max_extent_size)
fa9c0d79 2719{
34d52cb6 2720 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2721 struct btrfs_free_space *entry = NULL;
2722 struct rb_node *node;
2723 u64 ret = 0;
2724
2725 spin_lock(&cluster->lock);
2726 if (bytes > cluster->max_size)
2727 goto out;
2728
2729 if (cluster->block_group != block_group)
2730 goto out;
2731
2732 node = rb_first(&cluster->root);
2733 if (!node)
2734 goto out;
2735
2736 entry = rb_entry(node, struct btrfs_free_space, offset_index);
67871254 2737 while (1) {
a4820398
MX
2738 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2739 *max_extent_size = entry->bytes;
2740
4e69b598
JB
2741 if (entry->bytes < bytes ||
2742 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2743 node = rb_next(&entry->offset_index);
2744 if (!node)
2745 break;
2746 entry = rb_entry(node, struct btrfs_free_space,
2747 offset_index);
2748 continue;
2749 }
fa9c0d79 2750
4e69b598
JB
2751 if (entry->bitmap) {
2752 ret = btrfs_alloc_from_bitmap(block_group,
2753 cluster, entry, bytes,
a4820398
MX
2754 cluster->window_start,
2755 max_extent_size);
4e69b598 2756 if (ret == 0) {
4e69b598
JB
2757 node = rb_next(&entry->offset_index);
2758 if (!node)
2759 break;
2760 entry = rb_entry(node, struct btrfs_free_space,
2761 offset_index);
2762 continue;
2763 }
9b230628 2764 cluster->window_start += bytes;
4e69b598 2765 } else {
4e69b598
JB
2766 ret = entry->offset;
2767
2768 entry->offset += bytes;
2769 entry->bytes -= bytes;
2770 }
fa9c0d79 2771
5e71b5d5 2772 if (entry->bytes == 0)
fa9c0d79 2773 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2774 break;
2775 }
2776out:
2777 spin_unlock(&cluster->lock);
96303081 2778
5e71b5d5
LZ
2779 if (!ret)
2780 return 0;
2781
34d52cb6 2782 spin_lock(&ctl->tree_lock);
5e71b5d5 2783
34d52cb6 2784 ctl->free_space -= bytes;
5e71b5d5 2785 if (entry->bytes == 0) {
34d52cb6 2786 ctl->free_extents--;
4e69b598
JB
2787 if (entry->bitmap) {
2788 kfree(entry->bitmap);
34d52cb6
LZ
2789 ctl->total_bitmaps--;
2790 ctl->op->recalc_thresholds(ctl);
4e69b598 2791 }
dc89e982 2792 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2793 }
2794
34d52cb6 2795 spin_unlock(&ctl->tree_lock);
5e71b5d5 2796
fa9c0d79
CM
2797 return ret;
2798}
2799
96303081
JB
2800static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2801 struct btrfs_free_space *entry,
2802 struct btrfs_free_cluster *cluster,
1bb91902
AO
2803 u64 offset, u64 bytes,
2804 u64 cont1_bytes, u64 min_bytes)
96303081 2805{
34d52cb6 2806 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2807 unsigned long next_zero;
2808 unsigned long i;
1bb91902
AO
2809 unsigned long want_bits;
2810 unsigned long min_bits;
96303081 2811 unsigned long found_bits;
cef40483 2812 unsigned long max_bits = 0;
96303081
JB
2813 unsigned long start = 0;
2814 unsigned long total_found = 0;
4e69b598 2815 int ret;
96303081 2816
96009762 2817 i = offset_to_bit(entry->offset, ctl->unit,
96303081 2818 max_t(u64, offset, entry->offset));
96009762
WSH
2819 want_bits = bytes_to_bits(bytes, ctl->unit);
2820 min_bits = bytes_to_bits(min_bytes, ctl->unit);
96303081 2821
cef40483
JB
2822 /*
2823 * Don't bother looking for a cluster in this bitmap if it's heavily
2824 * fragmented.
2825 */
2826 if (entry->max_extent_size &&
2827 entry->max_extent_size < cont1_bytes)
2828 return -ENOSPC;
96303081
JB
2829again:
2830 found_bits = 0;
ebb3dad4 2831 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2832 next_zero = find_next_zero_bit(entry->bitmap,
2833 BITS_PER_BITMAP, i);
1bb91902 2834 if (next_zero - i >= min_bits) {
96303081 2835 found_bits = next_zero - i;
cef40483
JB
2836 if (found_bits > max_bits)
2837 max_bits = found_bits;
96303081
JB
2838 break;
2839 }
cef40483
JB
2840 if (next_zero - i > max_bits)
2841 max_bits = next_zero - i;
96303081
JB
2842 i = next_zero;
2843 }
2844
cef40483
JB
2845 if (!found_bits) {
2846 entry->max_extent_size = (u64)max_bits * ctl->unit;
4e69b598 2847 return -ENOSPC;
cef40483 2848 }
96303081 2849
1bb91902 2850 if (!total_found) {
96303081 2851 start = i;
b78d09bc 2852 cluster->max_size = 0;
96303081
JB
2853 }
2854
2855 total_found += found_bits;
2856
96009762
WSH
2857 if (cluster->max_size < found_bits * ctl->unit)
2858 cluster->max_size = found_bits * ctl->unit;
96303081 2859
1bb91902
AO
2860 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2861 i = next_zero + 1;
96303081
JB
2862 goto again;
2863 }
2864
96009762 2865 cluster->window_start = start * ctl->unit + entry->offset;
34d52cb6 2866 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2867 ret = tree_insert_offset(&cluster->root, entry->offset,
2868 &entry->offset_index, 1);
b12d6869 2869 ASSERT(!ret); /* -EEXIST; Logic error */
96303081 2870
3f7de037 2871 trace_btrfs_setup_cluster(block_group, cluster,
96009762 2872 total_found * ctl->unit, 1);
96303081
JB
2873 return 0;
2874}
2875
4e69b598
JB
2876/*
2877 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2878 * Try to find a cluster with at least bytes total bytes, at least one
2879 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2880 */
3de85bb9
JB
2881static noinline int
2882setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2883 struct btrfs_free_cluster *cluster,
2884 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2885 u64 cont1_bytes, u64 min_bytes)
4e69b598 2886{
34d52cb6 2887 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2888 struct btrfs_free_space *first = NULL;
2889 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2890 struct btrfs_free_space *last;
2891 struct rb_node *node;
4e69b598
JB
2892 u64 window_free;
2893 u64 max_extent;
3f7de037 2894 u64 total_size = 0;
4e69b598 2895
34d52cb6 2896 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2897 if (!entry)
2898 return -ENOSPC;
2899
2900 /*
2901 * We don't want bitmaps, so just move along until we find a normal
2902 * extent entry.
2903 */
1bb91902
AO
2904 while (entry->bitmap || entry->bytes < min_bytes) {
2905 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2906 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2907 node = rb_next(&entry->offset_index);
2908 if (!node)
2909 return -ENOSPC;
2910 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2911 }
2912
4e69b598
JB
2913 window_free = entry->bytes;
2914 max_extent = entry->bytes;
2915 first = entry;
2916 last = entry;
4e69b598 2917
1bb91902
AO
2918 for (node = rb_next(&entry->offset_index); node;
2919 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2920 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2921
86d4a77b
JB
2922 if (entry->bitmap) {
2923 if (list_empty(&entry->list))
2924 list_add_tail(&entry->list, bitmaps);
4e69b598 2925 continue;
86d4a77b
JB
2926 }
2927
1bb91902
AO
2928 if (entry->bytes < min_bytes)
2929 continue;
2930
2931 last = entry;
2932 window_free += entry->bytes;
2933 if (entry->bytes > max_extent)
4e69b598 2934 max_extent = entry->bytes;
4e69b598
JB
2935 }
2936
1bb91902
AO
2937 if (window_free < bytes || max_extent < cont1_bytes)
2938 return -ENOSPC;
2939
4e69b598
JB
2940 cluster->window_start = first->offset;
2941
2942 node = &first->offset_index;
2943
2944 /*
2945 * now we've found our entries, pull them out of the free space
2946 * cache and put them into the cluster rbtree
2947 */
2948 do {
2949 int ret;
2950
2951 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2952 node = rb_next(&entry->offset_index);
1bb91902 2953 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2954 continue;
2955
34d52cb6 2956 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2957 ret = tree_insert_offset(&cluster->root, entry->offset,
2958 &entry->offset_index, 0);
3f7de037 2959 total_size += entry->bytes;
b12d6869 2960 ASSERT(!ret); /* -EEXIST; Logic error */
4e69b598
JB
2961 } while (node && entry != last);
2962
2963 cluster->max_size = max_extent;
3f7de037 2964 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2965 return 0;
2966}
2967
2968/*
2969 * This specifically looks for bitmaps that may work in the cluster, we assume
2970 * that we have already failed to find extents that will work.
2971 */
3de85bb9
JB
2972static noinline int
2973setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2974 struct btrfs_free_cluster *cluster,
2975 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2976 u64 cont1_bytes, u64 min_bytes)
4e69b598 2977{
34d52cb6 2978 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1b9b922a 2979 struct btrfs_free_space *entry = NULL;
4e69b598 2980 int ret = -ENOSPC;
0f0fbf1d 2981 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2982
34d52cb6 2983 if (ctl->total_bitmaps == 0)
4e69b598
JB
2984 return -ENOSPC;
2985
0f0fbf1d
LZ
2986 /*
2987 * The bitmap that covers offset won't be in the list unless offset
2988 * is just its start offset.
2989 */
1b9b922a
CM
2990 if (!list_empty(bitmaps))
2991 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2992
2993 if (!entry || entry->offset != bitmap_offset) {
0f0fbf1d
LZ
2994 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2995 if (entry && list_empty(&entry->list))
2996 list_add(&entry->list, bitmaps);
2997 }
2998
86d4a77b 2999 list_for_each_entry(entry, bitmaps, list) {
357b9784 3000 if (entry->bytes < bytes)
86d4a77b
JB
3001 continue;
3002 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 3003 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
3004 if (!ret)
3005 return 0;
3006 }
3007
3008 /*
52621cb6
LZ
3009 * The bitmaps list has all the bitmaps that record free space
3010 * starting after offset, so no more search is required.
86d4a77b 3011 */
52621cb6 3012 return -ENOSPC;
4e69b598
JB
3013}
3014
fa9c0d79
CM
3015/*
3016 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 3017 * is to find at least bytes+empty_size.
fa9c0d79
CM
3018 * We might not find them all in one contiguous area.
3019 *
3020 * returns zero and sets up cluster if things worked out, otherwise
3021 * it returns -enospc
3022 */
2ff7e61e 3023int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
fa9c0d79
CM
3024 struct btrfs_block_group_cache *block_group,
3025 struct btrfs_free_cluster *cluster,
3026 u64 offset, u64 bytes, u64 empty_size)
3027{
34d52cb6 3028 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 3029 struct btrfs_free_space *entry, *tmp;
52621cb6 3030 LIST_HEAD(bitmaps);
fa9c0d79 3031 u64 min_bytes;
1bb91902 3032 u64 cont1_bytes;
fa9c0d79
CM
3033 int ret;
3034
1bb91902
AO
3035 /*
3036 * Choose the minimum extent size we'll require for this
3037 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3038 * For metadata, allow allocates with smaller extents. For
3039 * data, keep it dense.
3040 */
0b246afa 3041 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
1bb91902 3042 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 3043 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902 3044 cont1_bytes = bytes;
0b246afa 3045 min_bytes = fs_info->sectorsize;
1bb91902
AO
3046 } else {
3047 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
0b246afa 3048 min_bytes = fs_info->sectorsize;
1bb91902 3049 }
fa9c0d79 3050
34d52cb6 3051 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
3052
3053 /*
3054 * If we know we don't have enough space to make a cluster don't even
3055 * bother doing all the work to try and find one.
3056 */
1bb91902 3057 if (ctl->free_space < bytes) {
34d52cb6 3058 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
3059 return -ENOSPC;
3060 }
3061
fa9c0d79
CM
3062 spin_lock(&cluster->lock);
3063
3064 /* someone already found a cluster, hooray */
3065 if (cluster->block_group) {
3066 ret = 0;
3067 goto out;
3068 }
fa9c0d79 3069
3f7de037
JB
3070 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3071 min_bytes);
3072
86d4a77b 3073 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
3074 bytes + empty_size,
3075 cont1_bytes, min_bytes);
4e69b598 3076 if (ret)
86d4a77b 3077 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
3078 offset, bytes + empty_size,
3079 cont1_bytes, min_bytes);
86d4a77b
JB
3080
3081 /* Clear our temporary list */
3082 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3083 list_del_init(&entry->list);
fa9c0d79 3084
4e69b598
JB
3085 if (!ret) {
3086 atomic_inc(&block_group->count);
3087 list_add_tail(&cluster->block_group_list,
3088 &block_group->cluster_list);
3089 cluster->block_group = block_group;
3f7de037
JB
3090 } else {
3091 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 3092 }
fa9c0d79
CM
3093out:
3094 spin_unlock(&cluster->lock);
34d52cb6 3095 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
3096
3097 return ret;
3098}
3099
3100/*
3101 * simple code to zero out a cluster
3102 */
3103void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3104{
3105 spin_lock_init(&cluster->lock);
3106 spin_lock_init(&cluster->refill_lock);
6bef4d31 3107 cluster->root = RB_ROOT;
fa9c0d79 3108 cluster->max_size = 0;
c759c4e1 3109 cluster->fragmented = false;
fa9c0d79
CM
3110 INIT_LIST_HEAD(&cluster->block_group_list);
3111 cluster->block_group = NULL;
3112}
3113
7fe1e641
LZ
3114static int do_trimming(struct btrfs_block_group_cache *block_group,
3115 u64 *total_trimmed, u64 start, u64 bytes,
55507ce3
FM
3116 u64 reserved_start, u64 reserved_bytes,
3117 struct btrfs_trim_range *trim_entry)
f7039b1d 3118{
7fe1e641 3119 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 3120 struct btrfs_fs_info *fs_info = block_group->fs_info;
55507ce3 3121 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
7fe1e641
LZ
3122 int ret;
3123 int update = 0;
3124 u64 trimmed = 0;
f7039b1d 3125
7fe1e641
LZ
3126 spin_lock(&space_info->lock);
3127 spin_lock(&block_group->lock);
3128 if (!block_group->ro) {
3129 block_group->reserved += reserved_bytes;
3130 space_info->bytes_reserved += reserved_bytes;
3131 update = 1;
3132 }
3133 spin_unlock(&block_group->lock);
3134 spin_unlock(&space_info->lock);
3135
2ff7e61e 3136 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
7fe1e641
LZ
3137 if (!ret)
3138 *total_trimmed += trimmed;
3139
55507ce3 3140 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641 3141 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
55507ce3
FM
3142 list_del(&trim_entry->list);
3143 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3144
3145 if (update) {
3146 spin_lock(&space_info->lock);
3147 spin_lock(&block_group->lock);
3148 if (block_group->ro)
3149 space_info->bytes_readonly += reserved_bytes;
3150 block_group->reserved -= reserved_bytes;
3151 space_info->bytes_reserved -= reserved_bytes;
3152 spin_unlock(&space_info->lock);
3153 spin_unlock(&block_group->lock);
3154 }
3155
3156 return ret;
3157}
3158
3159static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3160 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3161{
3162 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3163 struct btrfs_free_space *entry;
3164 struct rb_node *node;
3165 int ret = 0;
3166 u64 extent_start;
3167 u64 extent_bytes;
3168 u64 bytes;
f7039b1d
LD
3169
3170 while (start < end) {
55507ce3
FM
3171 struct btrfs_trim_range trim_entry;
3172
3173 mutex_lock(&ctl->cache_writeout_mutex);
34d52cb6 3174 spin_lock(&ctl->tree_lock);
f7039b1d 3175
34d52cb6
LZ
3176 if (ctl->free_space < minlen) {
3177 spin_unlock(&ctl->tree_lock);
55507ce3 3178 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3179 break;
3180 }
3181
34d52cb6 3182 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 3183 if (!entry) {
34d52cb6 3184 spin_unlock(&ctl->tree_lock);
55507ce3 3185 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d
LD
3186 break;
3187 }
3188
7fe1e641
LZ
3189 /* skip bitmaps */
3190 while (entry->bitmap) {
3191 node = rb_next(&entry->offset_index);
3192 if (!node) {
34d52cb6 3193 spin_unlock(&ctl->tree_lock);
55507ce3 3194 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3195 goto out;
f7039b1d 3196 }
7fe1e641
LZ
3197 entry = rb_entry(node, struct btrfs_free_space,
3198 offset_index);
f7039b1d
LD
3199 }
3200
7fe1e641
LZ
3201 if (entry->offset >= end) {
3202 spin_unlock(&ctl->tree_lock);
55507ce3 3203 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3204 break;
f7039b1d
LD
3205 }
3206
7fe1e641
LZ
3207 extent_start = entry->offset;
3208 extent_bytes = entry->bytes;
3209 start = max(start, extent_start);
3210 bytes = min(extent_start + extent_bytes, end) - start;
3211 if (bytes < minlen) {
3212 spin_unlock(&ctl->tree_lock);
55507ce3 3213 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641 3214 goto next;
f7039b1d
LD
3215 }
3216
7fe1e641
LZ
3217 unlink_free_space(ctl, entry);
3218 kmem_cache_free(btrfs_free_space_cachep, entry);
3219
34d52cb6 3220 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3221 trim_entry.start = extent_start;
3222 trim_entry.bytes = extent_bytes;
3223 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3224 mutex_unlock(&ctl->cache_writeout_mutex);
f7039b1d 3225
7fe1e641 3226 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3227 extent_start, extent_bytes, &trim_entry);
7fe1e641
LZ
3228 if (ret)
3229 break;
3230next:
3231 start += bytes;
f7039b1d 3232
7fe1e641
LZ
3233 if (fatal_signal_pending(current)) {
3234 ret = -ERESTARTSYS;
3235 break;
3236 }
3237
3238 cond_resched();
3239 }
3240out:
3241 return ret;
3242}
3243
3244static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3245 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3246{
3247 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3248 struct btrfs_free_space *entry;
3249 int ret = 0;
3250 int ret2;
3251 u64 bytes;
3252 u64 offset = offset_to_bitmap(ctl, start);
3253
3254 while (offset < end) {
3255 bool next_bitmap = false;
55507ce3 3256 struct btrfs_trim_range trim_entry;
7fe1e641 3257
55507ce3 3258 mutex_lock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3259 spin_lock(&ctl->tree_lock);
3260
3261 if (ctl->free_space < minlen) {
3262 spin_unlock(&ctl->tree_lock);
55507ce3 3263 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3264 break;
3265 }
3266
3267 entry = tree_search_offset(ctl, offset, 1, 0);
3268 if (!entry) {
3269 spin_unlock(&ctl->tree_lock);
55507ce3 3270 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3271 next_bitmap = true;
3272 goto next;
3273 }
3274
3275 bytes = minlen;
0584f718 3276 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
7fe1e641
LZ
3277 if (ret2 || start >= end) {
3278 spin_unlock(&ctl->tree_lock);
55507ce3 3279 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3280 next_bitmap = true;
3281 goto next;
3282 }
3283
3284 bytes = min(bytes, end - start);
3285 if (bytes < minlen) {
3286 spin_unlock(&ctl->tree_lock);
55507ce3 3287 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3288 goto next;
3289 }
3290
3291 bitmap_clear_bits(ctl, entry, start, bytes);
3292 if (entry->bytes == 0)
3293 free_bitmap(ctl, entry);
3294
3295 spin_unlock(&ctl->tree_lock);
55507ce3
FM
3296 trim_entry.start = start;
3297 trim_entry.bytes = bytes;
3298 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3299 mutex_unlock(&ctl->cache_writeout_mutex);
7fe1e641
LZ
3300
3301 ret = do_trimming(block_group, total_trimmed, start, bytes,
55507ce3 3302 start, bytes, &trim_entry);
7fe1e641
LZ
3303 if (ret)
3304 break;
3305next:
3306 if (next_bitmap) {
3307 offset += BITS_PER_BITMAP * ctl->unit;
3308 } else {
3309 start += bytes;
3310 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3311 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 3312 }
f7039b1d
LD
3313
3314 if (fatal_signal_pending(current)) {
3315 ret = -ERESTARTSYS;
3316 break;
3317 }
3318
3319 cond_resched();
3320 }
3321
3322 return ret;
3323}
581bb050 3324
e33e17ee 3325void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
7fe1e641 3326{
e33e17ee
JM
3327 atomic_inc(&cache->trimming);
3328}
7fe1e641 3329
e33e17ee
JM
3330void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3331{
0b246afa 3332 struct btrfs_fs_info *fs_info = block_group->fs_info;
e33e17ee
JM
3333 struct extent_map_tree *em_tree;
3334 struct extent_map *em;
3335 bool cleanup;
7fe1e641 3336
04216820 3337 spin_lock(&block_group->lock);
e33e17ee
JM
3338 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3339 block_group->removed);
04216820
FM
3340 spin_unlock(&block_group->lock);
3341
e33e17ee 3342 if (cleanup) {
34441361 3343 mutex_lock(&fs_info->chunk_mutex);
0b246afa 3344 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
3345 write_lock(&em_tree->lock);
3346 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3347 1);
3348 BUG_ON(!em); /* logic error, can't happen */
a1e7e16e
FM
3349 /*
3350 * remove_extent_mapping() will delete us from the pinned_chunks
3351 * list, which is protected by the chunk mutex.
3352 */
04216820
FM
3353 remove_extent_mapping(em_tree, em);
3354 write_unlock(&em_tree->lock);
34441361 3355 mutex_unlock(&fs_info->chunk_mutex);
04216820
FM
3356
3357 /* once for us and once for the tree */
3358 free_extent_map(em);
3359 free_extent_map(em);
946ddbe8
FM
3360
3361 /*
3362 * We've left one free space entry and other tasks trimming
3363 * this block group have left 1 entry each one. Free them.
3364 */
3365 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
e33e17ee
JM
3366 }
3367}
3368
3369int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3370 u64 *trimmed, u64 start, u64 end, u64 minlen)
3371{
3372 int ret;
3373
3374 *trimmed = 0;
3375
3376 spin_lock(&block_group->lock);
3377 if (block_group->removed) {
04216820 3378 spin_unlock(&block_group->lock);
e33e17ee 3379 return 0;
04216820 3380 }
e33e17ee
JM
3381 btrfs_get_block_group_trimming(block_group);
3382 spin_unlock(&block_group->lock);
3383
3384 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3385 if (ret)
3386 goto out;
7fe1e641 3387
e33e17ee
JM
3388 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3389out:
3390 btrfs_put_block_group_trimming(block_group);
7fe1e641
LZ
3391 return ret;
3392}
3393
581bb050
LZ
3394/*
3395 * Find the left-most item in the cache tree, and then return the
3396 * smallest inode number in the item.
3397 *
3398 * Note: the returned inode number may not be the smallest one in
3399 * the tree, if the left-most item is a bitmap.
3400 */
3401u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3402{
3403 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3404 struct btrfs_free_space *entry = NULL;
3405 u64 ino = 0;
3406
3407 spin_lock(&ctl->tree_lock);
3408
3409 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3410 goto out;
3411
3412 entry = rb_entry(rb_first(&ctl->free_space_offset),
3413 struct btrfs_free_space, offset_index);
3414
3415 if (!entry->bitmap) {
3416 ino = entry->offset;
3417
3418 unlink_free_space(ctl, entry);
3419 entry->offset++;
3420 entry->bytes--;
3421 if (!entry->bytes)
3422 kmem_cache_free(btrfs_free_space_cachep, entry);
3423 else
3424 link_free_space(ctl, entry);
3425 } else {
3426 u64 offset = 0;
3427 u64 count = 1;
3428 int ret;
3429
0584f718 3430 ret = search_bitmap(ctl, entry, &offset, &count, true);
79787eaa 3431 /* Logic error; Should be empty if it can't find anything */
b12d6869 3432 ASSERT(!ret);
581bb050
LZ
3433
3434 ino = offset;
3435 bitmap_clear_bits(ctl, entry, offset, 1);
3436 if (entry->bytes == 0)
3437 free_bitmap(ctl, entry);
3438 }
3439out:
3440 spin_unlock(&ctl->tree_lock);
3441
3442 return ino;
3443}
82d5902d
LZ
3444
3445struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3446 struct btrfs_path *path)
3447{
3448 struct inode *inode = NULL;
3449
57cdc8db
DS
3450 spin_lock(&root->ino_cache_lock);
3451 if (root->ino_cache_inode)
3452 inode = igrab(root->ino_cache_inode);
3453 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3454 if (inode)
3455 return inode;
3456
3457 inode = __lookup_free_space_inode(root, path, 0);
3458 if (IS_ERR(inode))
3459 return inode;
3460
57cdc8db 3461 spin_lock(&root->ino_cache_lock);
7841cb28 3462 if (!btrfs_fs_closing(root->fs_info))
57cdc8db
DS
3463 root->ino_cache_inode = igrab(inode);
3464 spin_unlock(&root->ino_cache_lock);
82d5902d
LZ
3465
3466 return inode;
3467}
3468
3469int create_free_ino_inode(struct btrfs_root *root,
3470 struct btrfs_trans_handle *trans,
3471 struct btrfs_path *path)
3472{
3473 return __create_free_space_inode(root, trans, path,
3474 BTRFS_FREE_INO_OBJECTID, 0);
3475}
3476
3477int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3478{
3479 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3480 struct btrfs_path *path;
3481 struct inode *inode;
3482 int ret = 0;
3483 u64 root_gen = btrfs_root_generation(&root->root_item);
3484
0b246afa 3485 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3486 return 0;
3487
82d5902d
LZ
3488 /*
3489 * If we're unmounting then just return, since this does a search on the
3490 * normal root and not the commit root and we could deadlock.
3491 */
7841cb28 3492 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
3493 return 0;
3494
3495 path = btrfs_alloc_path();
3496 if (!path)
3497 return 0;
3498
3499 inode = lookup_free_ino_inode(root, path);
3500 if (IS_ERR(inode))
3501 goto out;
3502
3503 if (root_gen != BTRFS_I(inode)->generation)
3504 goto out_put;
3505
3506 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3507
3508 if (ret < 0)
c2cf52eb
SK
3509 btrfs_err(fs_info,
3510 "failed to load free ino cache for root %llu",
3511 root->root_key.objectid);
82d5902d
LZ
3512out_put:
3513 iput(inode);
3514out:
3515 btrfs_free_path(path);
3516 return ret;
3517}
3518
3519int btrfs_write_out_ino_cache(struct btrfs_root *root,
3520 struct btrfs_trans_handle *trans,
53645a91
FDBM
3521 struct btrfs_path *path,
3522 struct inode *inode)
82d5902d 3523{
0b246afa 3524 struct btrfs_fs_info *fs_info = root->fs_info;
82d5902d 3525 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
82d5902d 3526 int ret;
c9dc4c65 3527 struct btrfs_io_ctl io_ctl;
e43699d4 3528 bool release_metadata = true;
82d5902d 3529
0b246afa 3530 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
4b9465cb
CM
3531 return 0;
3532
85db36cf 3533 memset(&io_ctl, 0, sizeof(io_ctl));
0e8d931a 3534 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl, trans);
e43699d4
FM
3535 if (!ret) {
3536 /*
3537 * At this point writepages() didn't error out, so our metadata
3538 * reservation is released when the writeback finishes, at
3539 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3540 * with or without an error.
3541 */
3542 release_metadata = false;
afdb5718 3543 ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
e43699d4 3544 }
85db36cf 3545
c09544e0 3546 if (ret) {
e43699d4 3547 if (release_metadata)
691fa059
NB
3548 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3549 inode->i_size);
c09544e0 3550#ifdef DEBUG
0b246afa
JM
3551 btrfs_err(fs_info,
3552 "failed to write free ino cache for root %llu",
3553 root->root_key.objectid);
c09544e0
JB
3554#endif
3555 }
82d5902d 3556
82d5902d
LZ
3557 return ret;
3558}
74255aa0
JB
3559
3560#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
dc11dd5d
JB
3561/*
3562 * Use this if you need to make a bitmap or extent entry specifically, it
3563 * doesn't do any of the merging that add_free_space does, this acts a lot like
3564 * how the free space cache loading stuff works, so you can get really weird
3565 * configurations.
3566 */
3567int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3568 u64 offset, u64 bytes, bool bitmap)
74255aa0 3569{
dc11dd5d
JB
3570 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3571 struct btrfs_free_space *info = NULL, *bitmap_info;
3572 void *map = NULL;
3573 u64 bytes_added;
3574 int ret;
74255aa0 3575
dc11dd5d
JB
3576again:
3577 if (!info) {
3578 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3579 if (!info)
3580 return -ENOMEM;
74255aa0
JB
3581 }
3582
dc11dd5d
JB
3583 if (!bitmap) {
3584 spin_lock(&ctl->tree_lock);
3585 info->offset = offset;
3586 info->bytes = bytes;
cef40483 3587 info->max_extent_size = 0;
dc11dd5d
JB
3588 ret = link_free_space(ctl, info);
3589 spin_unlock(&ctl->tree_lock);
3590 if (ret)
3591 kmem_cache_free(btrfs_free_space_cachep, info);
3592 return ret;
3593 }
3594
3595 if (!map) {
09cbfeaf 3596 map = kzalloc(PAGE_SIZE, GFP_NOFS);
dc11dd5d
JB
3597 if (!map) {
3598 kmem_cache_free(btrfs_free_space_cachep, info);
3599 return -ENOMEM;
3600 }
3601 }
3602
3603 spin_lock(&ctl->tree_lock);
3604 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3605 1, 0);
3606 if (!bitmap_info) {
3607 info->bitmap = map;
3608 map = NULL;
3609 add_new_bitmap(ctl, info, offset);
3610 bitmap_info = info;
20005523 3611 info = NULL;
dc11dd5d 3612 }
74255aa0 3613
dc11dd5d 3614 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
cef40483 3615
dc11dd5d
JB
3616 bytes -= bytes_added;
3617 offset += bytes_added;
3618 spin_unlock(&ctl->tree_lock);
74255aa0 3619
dc11dd5d
JB
3620 if (bytes)
3621 goto again;
74255aa0 3622
20005523
FM
3623 if (info)
3624 kmem_cache_free(btrfs_free_space_cachep, info);
dc11dd5d
JB
3625 if (map)
3626 kfree(map);
3627 return 0;
74255aa0
JB
3628}
3629
3630/*
3631 * Checks to see if the given range is in the free space cache. This is really
3632 * just used to check the absence of space, so if there is free space in the
3633 * range at all we will return 1.
3634 */
dc11dd5d
JB
3635int test_check_exists(struct btrfs_block_group_cache *cache,
3636 u64 offset, u64 bytes)
74255aa0
JB
3637{
3638 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3639 struct btrfs_free_space *info;
3640 int ret = 0;
3641
3642 spin_lock(&ctl->tree_lock);
3643 info = tree_search_offset(ctl, offset, 0, 0);
3644 if (!info) {
3645 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3646 1, 0);
3647 if (!info)
3648 goto out;
3649 }
3650
3651have_info:
3652 if (info->bitmap) {
3653 u64 bit_off, bit_bytes;
3654 struct rb_node *n;
3655 struct btrfs_free_space *tmp;
3656
3657 bit_off = offset;
3658 bit_bytes = ctl->unit;
0584f718 3659 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
74255aa0
JB
3660 if (!ret) {
3661 if (bit_off == offset) {
3662 ret = 1;
3663 goto out;
3664 } else if (bit_off > offset &&
3665 offset + bytes > bit_off) {
3666 ret = 1;
3667 goto out;
3668 }
3669 }
3670
3671 n = rb_prev(&info->offset_index);
3672 while (n) {
3673 tmp = rb_entry(n, struct btrfs_free_space,
3674 offset_index);
3675 if (tmp->offset + tmp->bytes < offset)
3676 break;
3677 if (offset + bytes < tmp->offset) {
5473e0c4 3678 n = rb_prev(&tmp->offset_index);
74255aa0
JB
3679 continue;
3680 }
3681 info = tmp;
3682 goto have_info;
3683 }
3684
3685 n = rb_next(&info->offset_index);
3686 while (n) {
3687 tmp = rb_entry(n, struct btrfs_free_space,
3688 offset_index);
3689 if (offset + bytes < tmp->offset)
3690 break;
3691 if (tmp->offset + tmp->bytes < offset) {
5473e0c4 3692 n = rb_next(&tmp->offset_index);
74255aa0
JB
3693 continue;
3694 }
3695 info = tmp;
3696 goto have_info;
3697 }
3698
20005523 3699 ret = 0;
74255aa0
JB
3700 goto out;
3701 }
3702
3703 if (info->offset == offset) {
3704 ret = 1;
3705 goto out;
3706 }
3707
3708 if (offset > info->offset && offset < info->offset + info->bytes)
3709 ret = 1;
3710out:
3711 spin_unlock(&ctl->tree_lock);
3712 return ret;
3713}
dc11dd5d 3714#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */