btrfs: Make btrfs_drop_extent_cache take btrfs_inode
[linux-block.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
6158e1ce 95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
6158e1ce 98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4cb5300b
CM
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b 103
0b246afa 104 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
6158e1ce 126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 127 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
2ff7e61e 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 133{
0b246afa 134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
0b246afa 137 if (btrfs_fs_closing(fs_info))
8ddc4734 138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 148 struct btrfs_inode *inode)
4cb5300b 149{
6158e1ce
NB
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
4cb5300b 152 struct inode_defrag *defrag;
4cb5300b 153 u64 transid;
8ddc4734 154 int ret;
4cb5300b 155
2ff7e61e 156 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
157 return 0;
158
6158e1ce 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
6158e1ce 165 transid = inode->root->last_trans;
4cb5300b 166
9247f317 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
168 if (!defrag)
169 return -ENOMEM;
170
6158e1ce 171 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
0b246afa 175 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
9247f317 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 187 }
0b246afa 188 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 189 return 0;
4cb5300b
CM
190}
191
192/*
8ddc4734
MX
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 196 */
46e59791 197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 198 struct inode_defrag *defrag)
8ddc4734 199{
46e59791 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
8ddc4734
MX
201 int ret;
202
2ff7e61e 203 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
0b246afa 210 spin_lock(&fs_info->defrag_inodes_lock);
46e59791 211 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 212 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
4cb5300b 220/*
26176e7c
MX
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
4cb5300b 223 */
26176e7c
MX
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
226{
227 struct inode_defrag *entry = NULL;
762f2263 228 struct inode_defrag tmp;
4cb5300b
CM
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
762f2263
MX
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
4cb5300b 235
26176e7c
MX
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
762f2263
MX
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
4cb5300b 244 p = parent->rb_left;
762f2263 245 else if (ret > 0)
4cb5300b
CM
246 p = parent->rb_right;
247 else
26176e7c 248 goto out;
4cb5300b
CM
249 }
250
26176e7c
MX
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
4cb5300b 254 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
255 else
256 entry = NULL;
4cb5300b 257 }
26176e7c
MX
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
4cb5300b
CM
263}
264
26176e7c 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
266{
267 struct inode_defrag *defrag;
26176e7c
MX
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
351810c1 277 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
4cb5300b
CM
289 struct btrfs_root *inode_root;
290 struct inode *inode;
4cb5300b
CM
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 293 int num_defrag;
6f1c3605
LB
294 int index;
295 int ret;
4cb5300b 296
26176e7c
MX
297 /* get the inode */
298 key.objectid = defrag->root;
962a298f 299 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 300 key.offset = (u64)-1;
6f1c3605
LB
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
26176e7c
MX
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
6f1c3605
LB
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
26176e7c
MX
309
310 key.objectid = defrag->ino;
962a298f 311 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
6f1c3605
LB
315 ret = PTR_ERR(inode);
316 goto cleanup;
26176e7c 317 }
6f1c3605 318 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
26176e7c 324 range.start = defrag->last_offset;
b66f00da
MX
325
326 sb_start_write(fs_info->sb);
26176e7c
MX
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
b66f00da 329 sb_end_write(fs_info->sb);
26176e7c
MX
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
46e59791 337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
46e59791 346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
6f1c3605
LB
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
26176e7c
MX
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
4cb5300b
CM
368
369 atomic_inc(&fs_info->defrag_running);
67871254 370 while (1) {
dc81cdc5
MX
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
2ff7e61e 376 if (!__need_auto_defrag(fs_info))
26176e7c 377 break;
4cb5300b
CM
378
379 /* find an inode to defrag */
26176e7c
MX
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
4cb5300b 382 if (!defrag) {
26176e7c 383 if (root_objectid || first_ino) {
762f2263 384 root_objectid = 0;
4cb5300b
CM
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
4cb5300b 392 first_ino = defrag->ino + 1;
762f2263 393 root_objectid = defrag->root;
4cb5300b 394
26176e7c 395 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 396 }
4cb5300b
CM
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
39279cc3 406
d352ac68
CM
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
ee22f0c4 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 411 struct page **prepared_pages,
11c65dcc 412 struct iov_iter *i)
39279cc3 413{
914ee295 414 size_t copied = 0;
d0215f3e 415 size_t total_copied = 0;
11c65dcc 416 int pg = 0;
09cbfeaf 417 int offset = pos & (PAGE_SIZE - 1);
39279cc3 418
11c65dcc 419 while (write_bytes > 0) {
39279cc3 420 size_t count = min_t(size_t,
09cbfeaf 421 PAGE_SIZE - offset, write_bytes);
11c65dcc 422 struct page *page = prepared_pages[pg];
914ee295
XZ
423 /*
424 * Copy data from userspace to the current page
914ee295 425 */
914ee295 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 427
39279cc3
CM
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
31339acd
CM
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
11c65dcc
JB
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
914ee295 445 total_copied += copied;
39279cc3 446
b30ac0fc 447 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 448 if (unlikely(copied == 0))
914ee295 449 break;
11c65dcc 450
09cbfeaf 451 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
39279cc3 457 }
914ee295 458 return total_copied;
39279cc3
CM
459}
460
d352ac68
CM
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
48a3b636 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
d352ac68
CM
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
d352ac68 473 */
4a096752 474 ClearPageChecked(pages[i]);
39279cc3 475 unlock_page(pages[i]);
09cbfeaf 476 put_page(pages[i]);
39279cc3
CM
477 }
478}
479
d352ac68
CM
480/*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
2ff7e61e
JM
488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 size_t num_pages, loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
39279cc3 491{
0b246afa 492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 493 int err = 0;
a52d9a80 494 int i;
db94535d 495 u64 num_bytes;
a52d9a80
CM
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
39279cc3 500
0b246afa 501 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 502 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 503 fs_info->sectorsize);
39279cc3 504
db94535d 505 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 506 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
ba8b04c1 507 cached, 0);
d0215f3e
JB
508 if (err)
509 return err;
9ed74f2d 510
c8b97818
CM
511 for (i = 0; i < num_pages; i++) {
512 struct page *p = pages[i];
513 SetPageUptodate(p);
514 ClearPageChecked(p);
515 set_page_dirty(p);
a52d9a80 516 }
9f570b8d
JB
517
518 /*
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
521 * at this time.
522 */
523 if (end_pos > isize)
a52d9a80 524 i_size_write(inode, end_pos);
a22285a6 525 return 0;
39279cc3
CM
526}
527
d352ac68
CM
528/*
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
531 */
dcdbc059 532void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 533 int skip_pinned)
a52d9a80
CM
534{
535 struct extent_map *em;
3b951516
CM
536 struct extent_map *split = NULL;
537 struct extent_map *split2 = NULL;
dcdbc059 538 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 539 u64 len = end - start + 1;
5dc562c5 540 u64 gen;
3b951516
CM
541 int ret;
542 int testend = 1;
5b21f2ed 543 unsigned long flags;
c8b97818 544 int compressed = 0;
09a2a8f9 545 bool modified;
a52d9a80 546
e6dcd2dc 547 WARN_ON(end < start);
3b951516 548 if (end == (u64)-1) {
39b5637f 549 len = (u64)-1;
3b951516
CM
550 testend = 0;
551 }
d397712b 552 while (1) {
7014cdb4
JB
553 int no_splits = 0;
554
09a2a8f9 555 modified = false;
3b951516 556 if (!split)
172ddd60 557 split = alloc_extent_map();
3b951516 558 if (!split2)
172ddd60 559 split2 = alloc_extent_map();
7014cdb4
JB
560 if (!split || !split2)
561 no_splits = 1;
3b951516 562
890871be 563 write_lock(&em_tree->lock);
39b5637f 564 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 565 if (!em) {
890871be 566 write_unlock(&em_tree->lock);
a52d9a80 567 break;
d1310b2e 568 }
5b21f2ed 569 flags = em->flags;
5dc562c5 570 gen = em->generation;
5b21f2ed 571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 572 if (testend && em->start + em->len >= start + len) {
5b21f2ed 573 free_extent_map(em);
a1ed835e 574 write_unlock(&em_tree->lock);
5b21f2ed
ZY
575 break;
576 }
55ef6899
YZ
577 start = em->start + em->len;
578 if (testend)
5b21f2ed 579 len = start + len - (em->start + em->len);
5b21f2ed 580 free_extent_map(em);
a1ed835e 581 write_unlock(&em_tree->lock);
5b21f2ed
ZY
582 continue;
583 }
c8b97818 584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 585 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 586 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 587 modified = !list_empty(&em->list);
7014cdb4
JB
588 if (no_splits)
589 goto next;
3b951516 590
ee20a983 591 if (em->start < start) {
3b951516
CM
592 split->start = em->start;
593 split->len = start - em->start;
ee20a983
JB
594
595 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 split->orig_start = em->orig_start;
597 split->block_start = em->block_start;
598
599 if (compressed)
600 split->block_len = em->block_len;
601 else
602 split->block_len = split->len;
603 split->orig_block_len = max(split->block_len,
604 em->orig_block_len);
605 split->ram_bytes = em->ram_bytes;
606 } else {
607 split->orig_start = split->start;
608 split->block_len = 0;
609 split->block_start = em->block_start;
610 split->orig_block_len = 0;
611 split->ram_bytes = split->len;
612 }
613
5dc562c5 614 split->generation = gen;
3b951516 615 split->bdev = em->bdev;
5b21f2ed 616 split->flags = flags;
261507a0 617 split->compress_type = em->compress_type;
176840b3 618 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
619 free_extent_map(split);
620 split = split2;
621 split2 = NULL;
622 }
ee20a983 623 if (testend && em->start + em->len > start + len) {
3b951516
CM
624 u64 diff = start + len - em->start;
625
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
5b21f2ed 629 split->flags = flags;
261507a0 630 split->compress_type = em->compress_type;
5dc562c5 631 split->generation = gen;
ee20a983
JB
632
633 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 split->orig_block_len = max(em->block_len,
b4939680 635 em->orig_block_len);
3b951516 636
ee20a983
JB
637 split->ram_bytes = em->ram_bytes;
638 if (compressed) {
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
642 } else {
643 split->block_len = split->len;
644 split->block_start = em->block_start
645 + diff;
646 split->orig_start = em->orig_start;
647 }
c8b97818 648 } else {
ee20a983
JB
649 split->ram_bytes = split->len;
650 split->orig_start = split->start;
651 split->block_len = 0;
652 split->block_start = em->block_start;
653 split->orig_block_len = 0;
c8b97818 654 }
3b951516 655
176840b3
FM
656 if (extent_map_in_tree(em)) {
657 replace_extent_mapping(em_tree, em, split,
658 modified);
659 } else {
660 ret = add_extent_mapping(em_tree, split,
661 modified);
662 ASSERT(ret == 0); /* Logic error */
663 }
3b951516
CM
664 free_extent_map(split);
665 split = NULL;
666 }
7014cdb4 667next:
176840b3
FM
668 if (extent_map_in_tree(em))
669 remove_extent_mapping(em_tree, em);
890871be 670 write_unlock(&em_tree->lock);
d1310b2e 671
a52d9a80
CM
672 /* once for us */
673 free_extent_map(em);
674 /* once for the tree*/
675 free_extent_map(em);
676 }
3b951516
CM
677 if (split)
678 free_extent_map(split);
679 if (split2)
680 free_extent_map(split2);
a52d9a80
CM
681}
682
39279cc3
CM
683/*
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
687 *
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
691 */
5dc562c5
JB
692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
695 u64 *drop_end, int drop_cache,
696 int replace_extent,
697 u32 extent_item_size,
698 int *key_inserted)
39279cc3 699{
0b246afa 700 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 701 struct extent_buffer *leaf;
920bbbfb 702 struct btrfs_file_extent_item *fi;
00f5c795 703 struct btrfs_key key;
920bbbfb 704 struct btrfs_key new_key;
4a0cc7ca 705 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
62fe51c1 711 u64 last_end = start;
920bbbfb
YZ
712 int del_nr = 0;
713 int del_slot = 0;
714 int extent_type;
ccd467d6 715 int recow;
00f5c795 716 int ret;
dc7fdde3 717 int modify_tree = -1;
27cdeb70 718 int update_refs;
c3308f84 719 int found = 0;
1acae57b 720 int leafs_visited = 0;
39279cc3 721
a1ed835e 722 if (drop_cache)
dcdbc059 723 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 724
d5f37527 725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
726 modify_tree = 0;
727
27cdeb70 728 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 729 root == fs_info->tree_root);
d397712b 730 while (1) {
ccd467d6 731 recow = 0;
33345d01 732 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 733 search_start, modify_tree);
39279cc3 734 if (ret < 0)
920bbbfb
YZ
735 break;
736 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 leaf = path->nodes[0];
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 739 if (key.objectid == ino &&
920bbbfb
YZ
740 key.type == BTRFS_EXTENT_DATA_KEY)
741 path->slots[0]--;
39279cc3 742 }
920bbbfb 743 ret = 0;
1acae57b 744 leafs_visited++;
8c2383c3 745next_slot:
5f39d397 746 leaf = path->nodes[0];
920bbbfb
YZ
747 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748 BUG_ON(del_nr > 0);
749 ret = btrfs_next_leaf(root, path);
750 if (ret < 0)
751 break;
752 if (ret > 0) {
753 ret = 0;
754 break;
8c2383c3 755 }
1acae57b 756 leafs_visited++;
920bbbfb
YZ
757 leaf = path->nodes[0];
758 recow = 1;
759 }
760
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
762
763 if (key.objectid > ino)
764 break;
765 if (WARN_ON_ONCE(key.objectid < ino) ||
766 key.type < BTRFS_EXTENT_DATA_KEY) {
767 ASSERT(del_nr == 0);
768 path->slots[0]++;
769 goto next_slot;
770 }
771 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
772 break;
773
774 fi = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_file_extent_item);
776 extent_type = btrfs_file_extent_type(leaf, fi);
777
778 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 extent_offset = btrfs_file_extent_offset(leaf, fi);
783 extent_end = key.offset +
784 btrfs_file_extent_num_bytes(leaf, fi);
785 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 extent_end = key.offset +
514ac8ad
CM
787 btrfs_file_extent_inline_len(leaf,
788 path->slots[0], fi);
8c2383c3 789 } else {
aeafbf84
FM
790 /* can't happen */
791 BUG();
39279cc3
CM
792 }
793
fc19c5e7
FM
794 /*
795 * Don't skip extent items representing 0 byte lengths. They
796 * used to be created (bug) if while punching holes we hit
797 * -ENOSPC condition. So if we find one here, just ensure we
798 * delete it, otherwise we would insert a new file extent item
799 * with the same key (offset) as that 0 bytes length file
800 * extent item in the call to setup_items_for_insert() later
801 * in this function.
802 */
62fe51c1
JB
803 if (extent_end == key.offset && extent_end >= search_start) {
804 last_end = extent_end;
fc19c5e7 805 goto delete_extent_item;
62fe51c1 806 }
fc19c5e7 807
920bbbfb
YZ
808 if (extent_end <= search_start) {
809 path->slots[0]++;
8c2383c3 810 goto next_slot;
39279cc3
CM
811 }
812
c3308f84 813 found = 1;
920bbbfb 814 search_start = max(key.offset, start);
dc7fdde3
CM
815 if (recow || !modify_tree) {
816 modify_tree = -1;
b3b4aa74 817 btrfs_release_path(path);
920bbbfb 818 continue;
39279cc3 819 }
6643558d 820
920bbbfb
YZ
821 /*
822 * | - range to drop - |
823 * | -------- extent -------- |
824 */
825 if (start > key.offset && end < extent_end) {
826 BUG_ON(del_nr > 0);
00fdf13a 827 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 828 ret = -EOPNOTSUPP;
00fdf13a
LB
829 break;
830 }
920bbbfb
YZ
831
832 memcpy(&new_key, &key, sizeof(new_key));
833 new_key.offset = start;
834 ret = btrfs_duplicate_item(trans, root, path,
835 &new_key);
836 if (ret == -EAGAIN) {
b3b4aa74 837 btrfs_release_path(path);
920bbbfb 838 continue;
6643558d 839 }
920bbbfb
YZ
840 if (ret < 0)
841 break;
842
843 leaf = path->nodes[0];
844 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845 struct btrfs_file_extent_item);
846 btrfs_set_file_extent_num_bytes(leaf, fi,
847 start - key.offset);
848
849 fi = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_file_extent_item);
851
852 extent_offset += start - key.offset;
853 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
855 extent_end - start);
856 btrfs_mark_buffer_dirty(leaf);
857
5dc562c5 858 if (update_refs && disk_bytenr > 0) {
2ff7e61e 859 ret = btrfs_inc_extent_ref(trans, fs_info,
920bbbfb
YZ
860 disk_bytenr, num_bytes, 0,
861 root->root_key.objectid,
862 new_key.objectid,
b06c4bf5 863 start - extent_offset);
79787eaa 864 BUG_ON(ret); /* -ENOMEM */
771ed689 865 }
920bbbfb 866 key.offset = start;
6643558d 867 }
62fe51c1
JB
868 /*
869 * From here on out we will have actually dropped something, so
870 * last_end can be updated.
871 */
872 last_end = extent_end;
873
920bbbfb
YZ
874 /*
875 * | ---- range to drop ----- |
876 * | -------- extent -------- |
877 */
878 if (start <= key.offset && end < extent_end) {
00fdf13a 879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 880 ret = -EOPNOTSUPP;
00fdf13a
LB
881 break;
882 }
6643558d 883
920bbbfb
YZ
884 memcpy(&new_key, &key, sizeof(new_key));
885 new_key.offset = end;
0b246afa 886 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 887
920bbbfb
YZ
888 extent_offset += end - key.offset;
889 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890 btrfs_set_file_extent_num_bytes(leaf, fi,
891 extent_end - end);
892 btrfs_mark_buffer_dirty(leaf);
2671485d 893 if (update_refs && disk_bytenr > 0)
920bbbfb 894 inode_sub_bytes(inode, end - key.offset);
920bbbfb 895 break;
39279cc3 896 }
771ed689 897
920bbbfb
YZ
898 search_start = extent_end;
899 /*
900 * | ---- range to drop ----- |
901 * | -------- extent -------- |
902 */
903 if (start > key.offset && end >= extent_end) {
904 BUG_ON(del_nr > 0);
00fdf13a 905 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 906 ret = -EOPNOTSUPP;
00fdf13a
LB
907 break;
908 }
8c2383c3 909
920bbbfb
YZ
910 btrfs_set_file_extent_num_bytes(leaf, fi,
911 start - key.offset);
912 btrfs_mark_buffer_dirty(leaf);
2671485d 913 if (update_refs && disk_bytenr > 0)
920bbbfb 914 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
915 if (end == extent_end)
916 break;
c8b97818 917
920bbbfb
YZ
918 path->slots[0]++;
919 goto next_slot;
31840ae1
ZY
920 }
921
920bbbfb
YZ
922 /*
923 * | ---- range to drop ----- |
924 * | ------ extent ------ |
925 */
926 if (start <= key.offset && end >= extent_end) {
fc19c5e7 927delete_extent_item:
920bbbfb
YZ
928 if (del_nr == 0) {
929 del_slot = path->slots[0];
930 del_nr = 1;
931 } else {
932 BUG_ON(del_slot + del_nr != path->slots[0]);
933 del_nr++;
934 }
31840ae1 935
5dc562c5
JB
936 if (update_refs &&
937 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 938 inode_sub_bytes(inode,
920bbbfb
YZ
939 extent_end - key.offset);
940 extent_end = ALIGN(extent_end,
0b246afa 941 fs_info->sectorsize);
5dc562c5 942 } else if (update_refs && disk_bytenr > 0) {
2ff7e61e 943 ret = btrfs_free_extent(trans, fs_info,
920bbbfb
YZ
944 disk_bytenr, num_bytes, 0,
945 root->root_key.objectid,
5d4f98a2 946 key.objectid, key.offset -
b06c4bf5 947 extent_offset);
79787eaa 948 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
949 inode_sub_bytes(inode,
950 extent_end - key.offset);
31840ae1 951 }
31840ae1 952
920bbbfb
YZ
953 if (end == extent_end)
954 break;
955
956 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
957 path->slots[0]++;
958 goto next_slot;
959 }
960
961 ret = btrfs_del_items(trans, root, path, del_slot,
962 del_nr);
79787eaa 963 if (ret) {
66642832 964 btrfs_abort_transaction(trans, ret);
5dc562c5 965 break;
79787eaa 966 }
920bbbfb
YZ
967
968 del_nr = 0;
969 del_slot = 0;
970
b3b4aa74 971 btrfs_release_path(path);
920bbbfb 972 continue;
39279cc3 973 }
920bbbfb
YZ
974
975 BUG_ON(1);
39279cc3 976 }
920bbbfb 977
79787eaa 978 if (!ret && del_nr > 0) {
1acae57b
FDBM
979 /*
980 * Set path->slots[0] to first slot, so that after the delete
981 * if items are move off from our leaf to its immediate left or
982 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 983 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
984 */
985 path->slots[0] = del_slot;
920bbbfb 986 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 987 if (ret)
66642832 988 btrfs_abort_transaction(trans, ret);
d5f37527 989 }
1acae57b 990
d5f37527
FDBM
991 leaf = path->nodes[0];
992 /*
993 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 * which case it unlocked our path, so check path->locks[0] matches a
995 * write lock.
996 */
997 if (!ret && replace_extent && leafs_visited == 1 &&
998 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1000 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1001 sizeof(struct btrfs_item) + extent_item_size) {
1002
1003 key.objectid = ino;
1004 key.type = BTRFS_EXTENT_DATA_KEY;
1005 key.offset = start;
1006 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007 struct btrfs_key slot_key;
1008
1009 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011 path->slots[0]++;
1acae57b 1012 }
d5f37527
FDBM
1013 setup_items_for_insert(root, path, &key,
1014 &extent_item_size,
1015 extent_item_size,
1016 sizeof(struct btrfs_item) +
1017 extent_item_size, 1);
1018 *key_inserted = 1;
6643558d 1019 }
920bbbfb 1020
1acae57b
FDBM
1021 if (!replace_extent || !(*key_inserted))
1022 btrfs_release_path(path);
2aaa6655 1023 if (drop_end)
62fe51c1 1024 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1025 return ret;
1026}
1027
1028int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1030 u64 end, int drop_cache)
5dc562c5
JB
1031{
1032 struct btrfs_path *path;
1033 int ret;
1034
1035 path = btrfs_alloc_path();
1036 if (!path)
1037 return -ENOMEM;
2aaa6655 1038 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1039 drop_cache, 0, 0, NULL);
920bbbfb 1040 btrfs_free_path(path);
39279cc3
CM
1041 return ret;
1042}
1043
d899e052 1044static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1045 u64 objectid, u64 bytenr, u64 orig_offset,
1046 u64 *start, u64 *end)
d899e052
YZ
1047{
1048 struct btrfs_file_extent_item *fi;
1049 struct btrfs_key key;
1050 u64 extent_end;
1051
1052 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053 return 0;
1054
1055 btrfs_item_key_to_cpu(leaf, &key, slot);
1056 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057 return 0;
1058
1059 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1062 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1063 btrfs_file_extent_compression(leaf, fi) ||
1064 btrfs_file_extent_encryption(leaf, fi) ||
1065 btrfs_file_extent_other_encoding(leaf, fi))
1066 return 0;
1067
1068 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070 return 0;
1071
1072 *start = key.offset;
1073 *end = extent_end;
1074 return 1;
1075}
1076
1077/*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1085 struct inode *inode, u64 start, u64 end)
1086{
0b246afa 1087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
920bbbfb 1088 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1089 struct extent_buffer *leaf;
1090 struct btrfs_path *path;
1091 struct btrfs_file_extent_item *fi;
1092 struct btrfs_key key;
920bbbfb 1093 struct btrfs_key new_key;
d899e052
YZ
1094 u64 bytenr;
1095 u64 num_bytes;
1096 u64 extent_end;
5d4f98a2 1097 u64 orig_offset;
d899e052
YZ
1098 u64 other_start;
1099 u64 other_end;
920bbbfb
YZ
1100 u64 split;
1101 int del_nr = 0;
1102 int del_slot = 0;
6c7d54ac 1103 int recow;
d899e052 1104 int ret;
4a0cc7ca 1105 u64 ino = btrfs_ino(BTRFS_I(inode));
d899e052 1106
d899e052 1107 path = btrfs_alloc_path();
d8926bb3
MF
1108 if (!path)
1109 return -ENOMEM;
d899e052 1110again:
6c7d54ac 1111 recow = 0;
920bbbfb 1112 split = start;
33345d01 1113 key.objectid = ino;
d899e052 1114 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1115 key.offset = split;
d899e052
YZ
1116
1117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1118 if (ret < 0)
1119 goto out;
d899e052
YZ
1120 if (ret > 0 && path->slots[0] > 0)
1121 path->slots[0]--;
1122
1123 leaf = path->nodes[0];
1124 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1125 if (key.objectid != ino ||
1126 key.type != BTRFS_EXTENT_DATA_KEY) {
1127 ret = -EINVAL;
1128 btrfs_abort_transaction(trans, ret);
1129 goto out;
1130 }
d899e052
YZ
1131 fi = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_file_extent_item);
9c8e63db
JB
1133 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134 ret = -EINVAL;
1135 btrfs_abort_transaction(trans, ret);
1136 goto out;
1137 }
d899e052 1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1139 if (key.offset > start || extent_end < end) {
1140 ret = -EINVAL;
1141 btrfs_abort_transaction(trans, ret);
1142 goto out;
1143 }
d899e052
YZ
1144
1145 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1147 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1148 memcpy(&new_key, &key, sizeof(new_key));
1149
1150 if (start == key.offset && end < extent_end) {
1151 other_start = 0;
1152 other_end = start;
1153 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1154 ino, bytenr, orig_offset,
6c7d54ac
YZ
1155 &other_start, &other_end)) {
1156 new_key.offset = end;
0b246afa 1157 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1158 fi = btrfs_item_ptr(leaf, path->slots[0],
1159 struct btrfs_file_extent_item);
224ecce5
JB
1160 btrfs_set_file_extent_generation(leaf, fi,
1161 trans->transid);
6c7d54ac
YZ
1162 btrfs_set_file_extent_num_bytes(leaf, fi,
1163 extent_end - end);
1164 btrfs_set_file_extent_offset(leaf, fi,
1165 end - orig_offset);
1166 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167 struct btrfs_file_extent_item);
224ecce5
JB
1168 btrfs_set_file_extent_generation(leaf, fi,
1169 trans->transid);
6c7d54ac
YZ
1170 btrfs_set_file_extent_num_bytes(leaf, fi,
1171 end - other_start);
1172 btrfs_mark_buffer_dirty(leaf);
1173 goto out;
1174 }
1175 }
1176
1177 if (start > key.offset && end == extent_end) {
1178 other_start = end;
1179 other_end = 0;
1180 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1181 ino, bytenr, orig_offset,
6c7d54ac
YZ
1182 &other_start, &other_end)) {
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 start - key.offset);
224ecce5
JB
1187 btrfs_set_file_extent_generation(leaf, fi,
1188 trans->transid);
6c7d54ac
YZ
1189 path->slots[0]++;
1190 new_key.offset = start;
0b246afa 1191 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1192
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
224ecce5
JB
1195 btrfs_set_file_extent_generation(leaf, fi,
1196 trans->transid);
6c7d54ac
YZ
1197 btrfs_set_file_extent_num_bytes(leaf, fi,
1198 other_end - start);
1199 btrfs_set_file_extent_offset(leaf, fi,
1200 start - orig_offset);
1201 btrfs_mark_buffer_dirty(leaf);
1202 goto out;
1203 }
1204 }
d899e052 1205
920bbbfb
YZ
1206 while (start > key.offset || end < extent_end) {
1207 if (key.offset == start)
1208 split = end;
1209
920bbbfb
YZ
1210 new_key.offset = split;
1211 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212 if (ret == -EAGAIN) {
b3b4aa74 1213 btrfs_release_path(path);
920bbbfb 1214 goto again;
d899e052 1215 }
79787eaa 1216 if (ret < 0) {
66642832 1217 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1218 goto out;
1219 }
d899e052 1220
920bbbfb
YZ
1221 leaf = path->nodes[0];
1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1223 struct btrfs_file_extent_item);
224ecce5 1224 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1225 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1226 split - key.offset);
1227
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230
224ecce5 1231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1232 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 extent_end - split);
d899e052
YZ
1235 btrfs_mark_buffer_dirty(leaf);
1236
2ff7e61e
JM
1237 ret = btrfs_inc_extent_ref(trans, fs_info, bytenr, num_bytes,
1238 0, root->root_key.objectid,
b06c4bf5 1239 ino, orig_offset);
9c8e63db
JB
1240 if (ret) {
1241 btrfs_abort_transaction(trans, ret);
1242 goto out;
1243 }
d899e052 1244
920bbbfb
YZ
1245 if (split == start) {
1246 key.offset = start;
1247 } else {
9c8e63db
JB
1248 if (start != key.offset) {
1249 ret = -EINVAL;
1250 btrfs_abort_transaction(trans, ret);
1251 goto out;
1252 }
d899e052 1253 path->slots[0]--;
920bbbfb 1254 extent_end = end;
d899e052 1255 }
6c7d54ac 1256 recow = 1;
d899e052
YZ
1257 }
1258
920bbbfb
YZ
1259 other_start = end;
1260 other_end = 0;
6c7d54ac 1261 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1262 ino, bytenr, orig_offset,
6c7d54ac
YZ
1263 &other_start, &other_end)) {
1264 if (recow) {
b3b4aa74 1265 btrfs_release_path(path);
6c7d54ac
YZ
1266 goto again;
1267 }
920bbbfb
YZ
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1270 del_nr++;
2ff7e61e 1271 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
920bbbfb 1272 0, root->root_key.objectid,
b06c4bf5 1273 ino, orig_offset);
9c8e63db
JB
1274 if (ret) {
1275 btrfs_abort_transaction(trans, ret);
1276 goto out;
1277 }
d899e052 1278 }
920bbbfb
YZ
1279 other_start = 0;
1280 other_end = start;
6c7d54ac 1281 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1282 ino, bytenr, orig_offset,
6c7d54ac
YZ
1283 &other_start, &other_end)) {
1284 if (recow) {
b3b4aa74 1285 btrfs_release_path(path);
6c7d54ac
YZ
1286 goto again;
1287 }
920bbbfb
YZ
1288 key.offset = other_start;
1289 del_slot = path->slots[0];
1290 del_nr++;
2ff7e61e 1291 ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
920bbbfb 1292 0, root->root_key.objectid,
b06c4bf5 1293 ino, orig_offset);
9c8e63db
JB
1294 if (ret) {
1295 btrfs_abort_transaction(trans, ret);
1296 goto out;
1297 }
920bbbfb
YZ
1298 }
1299 if (del_nr == 0) {
3f6fae95
SL
1300 fi = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_file_extent_item);
920bbbfb
YZ
1302 btrfs_set_file_extent_type(leaf, fi,
1303 BTRFS_FILE_EXTENT_REG);
224ecce5 1304 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1305 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1306 } else {
3f6fae95
SL
1307 fi = btrfs_item_ptr(leaf, del_slot - 1,
1308 struct btrfs_file_extent_item);
6c7d54ac
YZ
1309 btrfs_set_file_extent_type(leaf, fi,
1310 BTRFS_FILE_EXTENT_REG);
224ecce5 1311 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1312 btrfs_set_file_extent_num_bytes(leaf, fi,
1313 extent_end - key.offset);
1314 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1315
6c7d54ac 1316 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1317 if (ret < 0) {
66642832 1318 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1319 goto out;
1320 }
6c7d54ac 1321 }
920bbbfb 1322out:
d899e052
YZ
1323 btrfs_free_path(path);
1324 return 0;
1325}
1326
b1bf862e
CM
1327/*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
bb1591b4
CM
1331static int prepare_uptodate_page(struct inode *inode,
1332 struct page *page, u64 pos,
b6316429 1333 bool force_uptodate)
b1bf862e
CM
1334{
1335 int ret = 0;
1336
09cbfeaf 1337 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1338 !PageUptodate(page)) {
b1bf862e
CM
1339 ret = btrfs_readpage(NULL, page);
1340 if (ret)
1341 return ret;
1342 lock_page(page);
1343 if (!PageUptodate(page)) {
1344 unlock_page(page);
1345 return -EIO;
1346 }
bb1591b4
CM
1347 if (page->mapping != inode->i_mapping) {
1348 unlock_page(page);
1349 return -EAGAIN;
1350 }
b1bf862e
CM
1351 }
1352 return 0;
1353}
1354
39279cc3 1355/*
376cc685 1356 * this just gets pages into the page cache and locks them down.
39279cc3 1357 */
b37392ea
MX
1358static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359 size_t num_pages, loff_t pos,
1360 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1361{
1362 int i;
09cbfeaf 1363 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1364 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1365 int err = 0;
376cc685 1366 int faili;
8c2383c3 1367
39279cc3 1368 for (i = 0; i < num_pages; i++) {
bb1591b4 1369again:
a94733d0 1370 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1371 mask | __GFP_WRITE);
39279cc3 1372 if (!pages[i]) {
b1bf862e
CM
1373 faili = i - 1;
1374 err = -ENOMEM;
1375 goto fail;
1376 }
1377
1378 if (i == 0)
bb1591b4 1379 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1380 force_uptodate);
bb1591b4
CM
1381 if (!err && i == num_pages - 1)
1382 err = prepare_uptodate_page(inode, pages[i],
b6316429 1383 pos + write_bytes, false);
b1bf862e 1384 if (err) {
09cbfeaf 1385 put_page(pages[i]);
bb1591b4
CM
1386 if (err == -EAGAIN) {
1387 err = 0;
1388 goto again;
1389 }
b1bf862e
CM
1390 faili = i - 1;
1391 goto fail;
39279cc3 1392 }
ccd467d6 1393 wait_on_page_writeback(pages[i]);
39279cc3 1394 }
376cc685
MX
1395
1396 return 0;
1397fail:
1398 while (faili >= 0) {
1399 unlock_page(pages[faili]);
09cbfeaf 1400 put_page(pages[faili]);
376cc685
MX
1401 faili--;
1402 }
1403 return err;
1404
1405}
1406
1407/*
1408 * This function locks the extent and properly waits for data=ordered extents
1409 * to finish before allowing the pages to be modified if need.
1410 *
1411 * The return value:
1412 * 1 - the extent is locked
1413 * 0 - the extent is not locked, and everything is OK
1414 * -EAGAIN - need re-prepare the pages
1415 * the other < 0 number - Something wrong happens
1416 */
1417static noinline int
1418lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1419 size_t num_pages, loff_t pos,
2e78c927 1420 size_t write_bytes,
376cc685
MX
1421 u64 *lockstart, u64 *lockend,
1422 struct extent_state **cached_state)
1423{
0b246afa 1424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
376cc685
MX
1425 u64 start_pos;
1426 u64 last_pos;
1427 int i;
1428 int ret = 0;
1429
0b246afa 1430 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1431 last_pos = start_pos
da17066c 1432 + round_up(pos + write_bytes - start_pos,
0b246afa 1433 fs_info->sectorsize) - 1;
376cc685 1434
0762704b 1435 if (start_pos < inode->i_size) {
e6dcd2dc 1436 struct btrfs_ordered_extent *ordered;
2ac55d41 1437 lock_extent_bits(&BTRFS_I(inode)->io_tree,
ff13db41 1438 start_pos, last_pos, cached_state);
b88935bf
MX
1439 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1440 last_pos - start_pos + 1);
e6dcd2dc
CM
1441 if (ordered &&
1442 ordered->file_offset + ordered->len > start_pos &&
376cc685 1443 ordered->file_offset <= last_pos) {
2ac55d41 1444 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1445 start_pos, last_pos,
1446 cached_state, GFP_NOFS);
e6dcd2dc
CM
1447 for (i = 0; i < num_pages; i++) {
1448 unlock_page(pages[i]);
09cbfeaf 1449 put_page(pages[i]);
e6dcd2dc 1450 }
b88935bf
MX
1451 btrfs_start_ordered_extent(inode, ordered, 1);
1452 btrfs_put_ordered_extent(ordered);
1453 return -EAGAIN;
e6dcd2dc
CM
1454 }
1455 if (ordered)
1456 btrfs_put_ordered_extent(ordered);
1457
2ac55d41 1458 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1459 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1460 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1461 0, 0, cached_state, GFP_NOFS);
1462 *lockstart = start_pos;
1463 *lockend = last_pos;
1464 ret = 1;
0762704b 1465 }
376cc685 1466
e6dcd2dc 1467 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1468 if (clear_page_dirty_for_io(pages[i]))
1469 account_page_redirty(pages[i]);
e6dcd2dc
CM
1470 set_page_extent_mapped(pages[i]);
1471 WARN_ON(!PageLocked(pages[i]));
1472 }
b1bf862e 1473
376cc685 1474 return ret;
39279cc3
CM
1475}
1476
7ee9e440
JB
1477static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1478 size_t *write_bytes)
1479{
0b246afa 1480 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ee9e440
JB
1481 struct btrfs_root *root = BTRFS_I(inode)->root;
1482 struct btrfs_ordered_extent *ordered;
1483 u64 lockstart, lockend;
1484 u64 num_bytes;
1485 int ret;
1486
9ea24bbe 1487 ret = btrfs_start_write_no_snapshoting(root);
8257b2dc
MX
1488 if (!ret)
1489 return -ENOSPC;
1490
0b246afa 1491 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1492 lockend = round_up(pos + *write_bytes,
0b246afa 1493 fs_info->sectorsize) - 1;
7ee9e440
JB
1494
1495 while (1) {
1496 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1497 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498 lockend - lockstart + 1);
1499 if (!ordered) {
1500 break;
1501 }
1502 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503 btrfs_start_ordered_extent(inode, ordered, 1);
1504 btrfs_put_ordered_extent(ordered);
1505 }
1506
7ee9e440 1507 num_bytes = lockend - lockstart + 1;
00361589 1508 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1509 if (ret <= 0) {
1510 ret = 0;
9ea24bbe 1511 btrfs_end_write_no_snapshoting(root);
7ee9e440 1512 } else {
c933956d
MX
1513 *write_bytes = min_t(size_t, *write_bytes ,
1514 num_bytes - pos + lockstart);
7ee9e440
JB
1515 }
1516
1517 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1518
1519 return ret;
1520}
1521
d0215f3e
JB
1522static noinline ssize_t __btrfs_buffered_write(struct file *file,
1523 struct iov_iter *i,
1524 loff_t pos)
4b46fce2 1525{
496ad9aa 1526 struct inode *inode = file_inode(file);
0b246afa 1527 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1528 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1529 struct page **pages = NULL;
376cc685 1530 struct extent_state *cached_state = NULL;
7ee9e440 1531 u64 release_bytes = 0;
376cc685
MX
1532 u64 lockstart;
1533 u64 lockend;
d0215f3e
JB
1534 size_t num_written = 0;
1535 int nrptrs;
c9149235 1536 int ret = 0;
7ee9e440 1537 bool only_release_metadata = false;
b6316429 1538 bool force_page_uptodate = false;
376cc685 1539 bool need_unlock;
4b46fce2 1540
09cbfeaf
KS
1541 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1542 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1543 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1544 nrptrs = max(nrptrs, 8);
31e818fe 1545 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1546 if (!pages)
1547 return -ENOMEM;
ab93dbec 1548
d0215f3e 1549 while (iov_iter_count(i) > 0) {
09cbfeaf 1550 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1551 size_t sector_offset;
d0215f3e 1552 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1553 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1554 offset);
ed6078f7 1555 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1556 PAGE_SIZE);
7ee9e440 1557 size_t reserve_bytes;
d0215f3e
JB
1558 size_t dirty_pages;
1559 size_t copied;
2e78c927
CR
1560 size_t dirty_sectors;
1561 size_t num_sectors;
39279cc3 1562
8c2383c3 1563 WARN_ON(num_pages > nrptrs);
1832a6d5 1564
914ee295
XZ
1565 /*
1566 * Fault pages before locking them in prepare_pages
1567 * to avoid recursive lock
1568 */
d0215f3e 1569 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1570 ret = -EFAULT;
d0215f3e 1571 break;
914ee295
XZ
1572 }
1573
da17066c 1574 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1575 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1576 fs_info->sectorsize);
d9d8b2a5 1577
7cf5b976 1578 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
c6887cd1
JB
1579 if (ret < 0) {
1580 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1581 BTRFS_INODE_PREALLOC)) &&
1582 check_can_nocow(inode, pos, &write_bytes) > 0) {
1583 /*
1584 * For nodata cow case, no need to reserve
1585 * data space.
1586 */
1587 only_release_metadata = true;
1588 /*
1589 * our prealloc extent may be smaller than
1590 * write_bytes, so scale down.
1591 */
1592 num_pages = DIV_ROUND_UP(write_bytes + offset,
1593 PAGE_SIZE);
1594 reserve_bytes = round_up(write_bytes +
1595 sector_offset,
da17066c 1596 fs_info->sectorsize);
c6887cd1
JB
1597 } else {
1598 break;
1599 }
1600 }
1832a6d5 1601
9f3db423
NB
1602 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1603 reserve_bytes);
7ee9e440
JB
1604 if (ret) {
1605 if (!only_release_metadata)
7cf5b976
QW
1606 btrfs_free_reserved_data_space(inode, pos,
1607 write_bytes);
8257b2dc 1608 else
9ea24bbe 1609 btrfs_end_write_no_snapshoting(root);
7ee9e440
JB
1610 break;
1611 }
1612
1613 release_bytes = reserve_bytes;
376cc685
MX
1614 need_unlock = false;
1615again:
4a64001f
JB
1616 /*
1617 * This is going to setup the pages array with the number of
1618 * pages we want, so we don't really need to worry about the
1619 * contents of pages from loop to loop
1620 */
b37392ea
MX
1621 ret = prepare_pages(inode, pages, num_pages,
1622 pos, write_bytes,
b6316429 1623 force_page_uptodate);
7ee9e440 1624 if (ret)
d0215f3e 1625 break;
39279cc3 1626
376cc685 1627 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
2e78c927
CR
1628 pos, write_bytes, &lockstart,
1629 &lockend, &cached_state);
376cc685
MX
1630 if (ret < 0) {
1631 if (ret == -EAGAIN)
1632 goto again;
1633 break;
1634 } else if (ret > 0) {
1635 need_unlock = true;
1636 ret = 0;
1637 }
1638
ee22f0c4 1639 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1640
0b246afa 1641 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1642 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1643 fs_info->sectorsize);
1644 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1645
b1bf862e
CM
1646 /*
1647 * if we have trouble faulting in the pages, fall
1648 * back to one page at a time
1649 */
1650 if (copied < write_bytes)
1651 nrptrs = 1;
1652
b6316429
JB
1653 if (copied == 0) {
1654 force_page_uptodate = true;
56244ef1 1655 dirty_sectors = 0;
b1bf862e 1656 dirty_pages = 0;
b6316429
JB
1657 } else {
1658 force_page_uptodate = false;
ed6078f7 1659 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1660 PAGE_SIZE);
b6316429 1661 }
914ee295 1662
d0215f3e
JB
1663 /*
1664 * If we had a short copy we need to release the excess delaloc
1665 * bytes we reserved. We need to increment outstanding_extents
56244ef1
CM
1666 * because btrfs_delalloc_release_space and
1667 * btrfs_delalloc_release_metadata will decrement it, but
d0215f3e
JB
1668 * we still have an outstanding extent for the chunk we actually
1669 * managed to copy.
1670 */
2e78c927 1671 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1672 /* release everything except the sectors we dirtied */
1673 release_bytes -= dirty_sectors <<
0b246afa 1674 fs_info->sb->s_blocksize_bits;
9e0baf60
JB
1675 if (copied > 0) {
1676 spin_lock(&BTRFS_I(inode)->lock);
1677 BTRFS_I(inode)->outstanding_extents++;
1678 spin_unlock(&BTRFS_I(inode)->lock);
1679 }
485290a7 1680 if (only_release_metadata) {
691fa059 1681 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7ee9e440 1682 release_bytes);
485290a7
QW
1683 } else {
1684 u64 __pos;
1685
da17066c 1686 __pos = round_down(pos,
0b246afa 1687 fs_info->sectorsize) +
09cbfeaf 1688 (dirty_pages << PAGE_SHIFT);
485290a7 1689 btrfs_delalloc_release_space(inode, __pos,
7ee9e440 1690 release_bytes);
485290a7 1691 }
914ee295
XZ
1692 }
1693
2e78c927 1694 release_bytes = round_up(copied + sector_offset,
0b246afa 1695 fs_info->sectorsize);
376cc685
MX
1696
1697 if (copied > 0)
2ff7e61e
JM
1698 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1699 pos, copied, NULL);
376cc685
MX
1700 if (need_unlock)
1701 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1702 lockstart, lockend, &cached_state,
1703 GFP_NOFS);
f1de9683
MX
1704 if (ret) {
1705 btrfs_drop_pages(pages, num_pages);
376cc685 1706 break;
f1de9683 1707 }
39279cc3 1708
376cc685 1709 release_bytes = 0;
8257b2dc 1710 if (only_release_metadata)
9ea24bbe 1711 btrfs_end_write_no_snapshoting(root);
8257b2dc 1712
7ee9e440 1713 if (only_release_metadata && copied > 0) {
da17066c 1714 lockstart = round_down(pos,
0b246afa 1715 fs_info->sectorsize);
da17066c 1716 lockend = round_up(pos + copied,
0b246afa 1717 fs_info->sectorsize) - 1;
7ee9e440
JB
1718
1719 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1720 lockend, EXTENT_NORESERVE, NULL,
1721 NULL, GFP_NOFS);
1722 only_release_metadata = false;
1723 }
1724
f1de9683
MX
1725 btrfs_drop_pages(pages, num_pages);
1726
d0215f3e
JB
1727 cond_resched();
1728
d0e1d66b 1729 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1730 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1731 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1732
914ee295
XZ
1733 pos += copied;
1734 num_written += copied;
d0215f3e 1735 }
39279cc3 1736
d0215f3e
JB
1737 kfree(pages);
1738
7ee9e440 1739 if (release_bytes) {
8257b2dc 1740 if (only_release_metadata) {
9ea24bbe 1741 btrfs_end_write_no_snapshoting(root);
691fa059
NB
1742 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1743 release_bytes);
8257b2dc 1744 } else {
a2af23b7 1745 btrfs_delalloc_release_space(inode,
0b246afa 1746 round_down(pos, fs_info->sectorsize),
a2af23b7 1747 release_bytes);
8257b2dc 1748 }
7ee9e440
JB
1749 }
1750
d0215f3e
JB
1751 return num_written ? num_written : ret;
1752}
1753
1af5bb49 1754static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1755{
1756 struct file *file = iocb->ki_filp;
728404da 1757 struct inode *inode = file_inode(file);
1af5bb49 1758 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1759 ssize_t written;
1760 ssize_t written_buffered;
1761 loff_t endbyte;
1762 int err;
1763
1af5bb49 1764 written = generic_file_direct_write(iocb, from);
d0215f3e 1765
0c949334 1766 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1767 return written;
1768
1769 pos += written;
0ae5e4d3 1770 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1771 if (written_buffered < 0) {
1772 err = written_buffered;
1773 goto out;
39279cc3 1774 }
075bdbdb
FM
1775 /*
1776 * Ensure all data is persisted. We want the next direct IO read to be
1777 * able to read what was just written.
1778 */
d0215f3e 1779 endbyte = pos + written_buffered - 1;
728404da 1780 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1781 if (err)
1782 goto out;
728404da 1783 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1784 if (err)
1785 goto out;
1786 written += written_buffered;
867c4f93 1787 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1788 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1789 endbyte >> PAGE_SHIFT);
39279cc3 1790out:
d0215f3e
JB
1791 return written ? written : err;
1792}
5b92ee72 1793
6c760c07
JB
1794static void update_time_for_write(struct inode *inode)
1795{
1796 struct timespec now;
1797
1798 if (IS_NOCMTIME(inode))
1799 return;
1800
c2050a45 1801 now = current_time(inode);
6c760c07
JB
1802 if (!timespec_equal(&inode->i_mtime, &now))
1803 inode->i_mtime = now;
1804
1805 if (!timespec_equal(&inode->i_ctime, &now))
1806 inode->i_ctime = now;
1807
1808 if (IS_I_VERSION(inode))
1809 inode_inc_iversion(inode);
1810}
1811
b30ac0fc
AV
1812static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1813 struct iov_iter *from)
d0215f3e
JB
1814{
1815 struct file *file = iocb->ki_filp;
496ad9aa 1816 struct inode *inode = file_inode(file);
0b246afa 1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1818 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1819 u64 start_pos;
3ac0d7b9 1820 u64 end_pos;
d0215f3e 1821 ssize_t num_written = 0;
b812ce28 1822 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04
AV
1823 ssize_t err;
1824 loff_t pos;
1825 size_t count;
27772b68
CR
1826 loff_t oldsize;
1827 int clean_page = 0;
d0215f3e 1828
5955102c 1829 inode_lock(inode);
3309dd04
AV
1830 err = generic_write_checks(iocb, from);
1831 if (err <= 0) {
5955102c 1832 inode_unlock(inode);
3309dd04 1833 return err;
d0215f3e
JB
1834 }
1835
3309dd04 1836 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1837 err = file_remove_privs(file);
d0215f3e 1838 if (err) {
5955102c 1839 inode_unlock(inode);
d0215f3e
JB
1840 goto out;
1841 }
1842
1843 /*
1844 * If BTRFS flips readonly due to some impossible error
1845 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1846 * although we have opened a file as writable, we have
1847 * to stop this write operation to ensure FS consistency.
1848 */
0b246afa 1849 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1850 inode_unlock(inode);
d0215f3e
JB
1851 err = -EROFS;
1852 goto out;
1853 }
1854
6c760c07
JB
1855 /*
1856 * We reserve space for updating the inode when we reserve space for the
1857 * extent we are going to write, so we will enospc out there. We don't
1858 * need to start yet another transaction to update the inode as we will
1859 * update the inode when we finish writing whatever data we write.
1860 */
1861 update_time_for_write(inode);
d0215f3e 1862
3309dd04
AV
1863 pos = iocb->ki_pos;
1864 count = iov_iter_count(from);
0b246afa 1865 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1866 oldsize = i_size_read(inode);
1867 if (start_pos > oldsize) {
3ac0d7b9 1868 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1869 end_pos = round_up(pos + count,
0b246afa 1870 fs_info->sectorsize);
27772b68 1871 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1872 if (err) {
5955102c 1873 inode_unlock(inode);
0c1a98c8
MX
1874 goto out;
1875 }
0b246afa 1876 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1877 clean_page = 1;
0c1a98c8
MX
1878 }
1879
b812ce28
JB
1880 if (sync)
1881 atomic_inc(&BTRFS_I(inode)->sync_writers);
1882
2ba48ce5 1883 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1884 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1885 } else {
b30ac0fc 1886 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1887 if (num_written > 0)
867c4f93 1888 iocb->ki_pos = pos + num_written;
27772b68
CR
1889 if (clean_page)
1890 pagecache_isize_extended(inode, oldsize,
1891 i_size_read(inode));
d0215f3e
JB
1892 }
1893
5955102c 1894 inode_unlock(inode);
2ff3e9b6 1895
5a3f23d5 1896 /*
6c760c07
JB
1897 * We also have to set last_sub_trans to the current log transid,
1898 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1899 * transaction will appear to have already occurred.
5a3f23d5 1900 */
2f2ff0ee 1901 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1902 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1903 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1904 if (num_written > 0)
1905 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1906
b812ce28
JB
1907 if (sync)
1908 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1909out:
39279cc3 1910 current->backing_dev_info = NULL;
39279cc3
CM
1911 return num_written ? num_written : err;
1912}
1913
d397712b 1914int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1915{
6bf13c0c
SW
1916 if (filp->private_data)
1917 btrfs_ioctl_trans_end(filp);
f6dc45c7
CM
1918 /*
1919 * ordered_data_close is set by settattr when we are about to truncate
1920 * a file from a non-zero size to a zero size. This tries to
1921 * flush down new bytes that may have been written if the
1922 * application were using truncate to replace a file in place.
1923 */
1924 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1925 &BTRFS_I(inode)->runtime_flags))
1926 filemap_flush(inode->i_mapping);
e1b81e67
M
1927 return 0;
1928}
1929
669249ee
FM
1930static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1931{
1932 int ret;
1933
1934 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1935 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
1936 atomic_dec(&BTRFS_I(inode)->sync_writers);
1937
1938 return ret;
1939}
1940
d352ac68
CM
1941/*
1942 * fsync call for both files and directories. This logs the inode into
1943 * the tree log instead of forcing full commits whenever possible.
1944 *
1945 * It needs to call filemap_fdatawait so that all ordered extent updates are
1946 * in the metadata btree are up to date for copying to the log.
1947 *
1948 * It drops the inode mutex before doing the tree log commit. This is an
1949 * important optimization for directories because holding the mutex prevents
1950 * new operations on the dir while we write to disk.
1951 */
02c24a82 1952int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1953{
de17e793 1954 struct dentry *dentry = file_dentry(file);
2b0143b5 1955 struct inode *inode = d_inode(dentry);
0b246afa 1956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 1957 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1958 struct btrfs_trans_handle *trans;
8b050d35
MX
1959 struct btrfs_log_ctx ctx;
1960 int ret = 0;
2ab28f32 1961 bool full_sync = 0;
9dcbeed4 1962 u64 len;
39279cc3 1963
9dcbeed4
DS
1964 /*
1965 * The range length can be represented by u64, we have to do the typecasts
1966 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1967 */
1968 len = (u64)end - (u64)start + 1;
1abe9b8a 1969 trace_btrfs_sync_file(file, datasync);
257c62e1 1970
90abccf2
MX
1971 /*
1972 * We write the dirty pages in the range and wait until they complete
1973 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1974 * multi-task, and make the performance up. See
1975 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1976 */
669249ee 1977 ret = start_ordered_ops(inode, start, end);
90abccf2
MX
1978 if (ret)
1979 return ret;
1980
5955102c 1981 inode_lock(inode);
2ecb7923 1982 atomic_inc(&root->log_batch);
2ab28f32
JB
1983 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1984 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
1985 /*
1986 * We might have have had more pages made dirty after calling
1987 * start_ordered_ops and before acquiring the inode's i_mutex.
1988 */
0ef8b726 1989 if (full_sync) {
669249ee
FM
1990 /*
1991 * For a full sync, we need to make sure any ordered operations
1992 * start and finish before we start logging the inode, so that
1993 * all extents are persisted and the respective file extent
1994 * items are in the fs/subvol btree.
1995 */
b659ef02 1996 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
1997 } else {
1998 /*
1999 * Start any new ordered operations before starting to log the
2000 * inode. We will wait for them to finish in btrfs_sync_log().
2001 *
2002 * Right before acquiring the inode's mutex, we might have new
2003 * writes dirtying pages, which won't immediately start the
2004 * respective ordered operations - that is done through the
2005 * fill_delalloc callbacks invoked from the writepage and
2006 * writepages address space operations. So make sure we start
2007 * all ordered operations before starting to log our inode. Not
2008 * doing this means that while logging the inode, writeback
2009 * could start and invoke writepage/writepages, which would call
2010 * the fill_delalloc callbacks (cow_file_range,
2011 * submit_compressed_extents). These callbacks add first an
2012 * extent map to the modified list of extents and then create
2013 * the respective ordered operation, which means in
2014 * tree-log.c:btrfs_log_inode() we might capture all existing
2015 * ordered operations (with btrfs_get_logged_extents()) before
2016 * the fill_delalloc callback adds its ordered operation, and by
2017 * the time we visit the modified list of extent maps (with
2018 * btrfs_log_changed_extents()), we see and process the extent
2019 * map they created. We then use the extent map to construct a
2020 * file extent item for logging without waiting for the
2021 * respective ordered operation to finish - this file extent
2022 * item points to a disk location that might not have yet been
2023 * written to, containing random data - so after a crash a log
2024 * replay will make our inode have file extent items that point
2025 * to disk locations containing invalid data, as we returned
2026 * success to userspace without waiting for the respective
2027 * ordered operation to finish, because it wasn't captured by
2028 * btrfs_get_logged_extents().
2029 */
2030 ret = start_ordered_ops(inode, start, end);
2031 }
2032 if (ret) {
5955102c 2033 inode_unlock(inode);
669249ee 2034 goto out;
0ef8b726 2035 }
2ecb7923 2036 atomic_inc(&root->log_batch);
257c62e1 2037
39279cc3 2038 /*
3a8b36f3
FM
2039 * If the last transaction that changed this file was before the current
2040 * transaction and we have the full sync flag set in our inode, we can
2041 * bail out now without any syncing.
2042 *
2043 * Note that we can't bail out if the full sync flag isn't set. This is
2044 * because when the full sync flag is set we start all ordered extents
2045 * and wait for them to fully complete - when they complete they update
2046 * the inode's last_trans field through:
2047 *
2048 * btrfs_finish_ordered_io() ->
2049 * btrfs_update_inode_fallback() ->
2050 * btrfs_update_inode() ->
2051 * btrfs_set_inode_last_trans()
2052 *
2053 * So we are sure that last_trans is up to date and can do this check to
2054 * bail out safely. For the fast path, when the full sync flag is not
2055 * set in our inode, we can not do it because we start only our ordered
2056 * extents and don't wait for them to complete (that is when
2057 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2058 * value might be less than or equals to fs_info->last_trans_committed,
2059 * and setting a speculative last_trans for an inode when a buffered
2060 * write is made (such as fs_info->generation + 1 for example) would not
2061 * be reliable since after setting the value and before fsync is called
2062 * any number of transactions can start and commit (transaction kthread
2063 * commits the current transaction periodically), and a transaction
2064 * commit does not start nor waits for ordered extents to complete.
257c62e1 2065 */
a4abeea4 2066 smp_mb();
0f8939b8 2067 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
affc0ff9 2068 (full_sync && BTRFS_I(inode)->last_trans <=
0b246afa 2069 fs_info->last_trans_committed) ||
affc0ff9
FM
2070 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2071 BTRFS_I(inode)->last_trans
0b246afa 2072 <= fs_info->last_trans_committed)) {
5dc562c5 2073 /*
01327610 2074 * We've had everything committed since the last time we were
5dc562c5
JB
2075 * modified so clear this flag in case it was set for whatever
2076 * reason, it's no longer relevant.
2077 */
2078 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2079 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2080 /*
2081 * An ordered extent might have started before and completed
2082 * already with io errors, in which case the inode was not
2083 * updated and we end up here. So check the inode's mapping
2084 * flags for any errors that might have happened while doing
2085 * writeback of file data.
2086 */
f0312210 2087 ret = filemap_check_errors(inode->i_mapping);
5955102c 2088 inode_unlock(inode);
15ee9bc7
JB
2089 goto out;
2090 }
15ee9bc7
JB
2091
2092 /*
a52d9a80
CM
2093 * ok we haven't committed the transaction yet, lets do a commit
2094 */
6f902af4 2095 if (file->private_data)
6bf13c0c
SW
2096 btrfs_ioctl_trans_end(file);
2097
5039eddc
JB
2098 /*
2099 * We use start here because we will need to wait on the IO to complete
2100 * in btrfs_sync_log, which could require joining a transaction (for
2101 * example checking cross references in the nocow path). If we use join
2102 * here we could get into a situation where we're waiting on IO to
2103 * happen that is blocked on a transaction trying to commit. With start
2104 * we inc the extwriter counter, so we wait for all extwriters to exit
2105 * before we start blocking join'ers. This comment is to keep somebody
2106 * from thinking they are super smart and changing this to
2107 * btrfs_join_transaction *cough*Josef*cough*.
2108 */
a22285a6
YZ
2109 trans = btrfs_start_transaction(root, 0);
2110 if (IS_ERR(trans)) {
2111 ret = PTR_ERR(trans);
5955102c 2112 inode_unlock(inode);
39279cc3
CM
2113 goto out;
2114 }
5039eddc 2115 trans->sync = true;
e02119d5 2116
28a23593 2117 btrfs_init_log_ctx(&ctx, inode);
8b050d35 2118
49dae1bc 2119 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2120 if (ret < 0) {
a0634be5
FDBM
2121 /* Fallthrough and commit/free transaction. */
2122 ret = 1;
02c24a82 2123 }
49eb7e46
CM
2124
2125 /* we've logged all the items and now have a consistent
2126 * version of the file in the log. It is possible that
2127 * someone will come in and modify the file, but that's
2128 * fine because the log is consistent on disk, and we
2129 * have references to all of the file's extents
2130 *
2131 * It is possible that someone will come in and log the
2132 * file again, but that will end up using the synchronization
2133 * inside btrfs_sync_log to keep things safe.
2134 */
5955102c 2135 inode_unlock(inode);
49eb7e46 2136
8407f553
FM
2137 /*
2138 * If any of the ordered extents had an error, just return it to user
2139 * space, so that the application knows some writes didn't succeed and
2140 * can take proper action (retry for e.g.). Blindly committing the
2141 * transaction in this case, would fool userspace that everything was
2142 * successful. And we also want to make sure our log doesn't contain
2143 * file extent items pointing to extents that weren't fully written to -
2144 * just like in the non fast fsync path, where we check for the ordered
2145 * operation's error flag before writing to the log tree and return -EIO
2146 * if any of them had this flag set (btrfs_wait_ordered_range) -
2147 * therefore we need to check for errors in the ordered operations,
2148 * which are indicated by ctx.io_err.
2149 */
2150 if (ctx.io_err) {
3a45bb20 2151 btrfs_end_transaction(trans);
8407f553
FM
2152 ret = ctx.io_err;
2153 goto out;
2154 }
2155
257c62e1 2156 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2157 if (!ret) {
8b050d35 2158 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2159 if (!ret) {
3a45bb20 2160 ret = btrfs_end_transaction(trans);
0ef8b726 2161 goto out;
2ab28f32 2162 }
257c62e1 2163 }
0ef8b726 2164 if (!full_sync) {
9dcbeed4 2165 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874 2166 if (ret) {
3a45bb20 2167 btrfs_end_transaction(trans);
0ef8b726 2168 goto out;
b05fd874 2169 }
0ef8b726 2170 }
3a45bb20 2171 ret = btrfs_commit_transaction(trans);
257c62e1 2172 } else {
3a45bb20 2173 ret = btrfs_end_transaction(trans);
e02119d5 2174 }
39279cc3 2175out:
014e4ac4 2176 return ret > 0 ? -EIO : ret;
39279cc3
CM
2177}
2178
f0f37e2f 2179static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2180 .fault = filemap_fault,
f1820361 2181 .map_pages = filemap_map_pages,
9ebefb18
CM
2182 .page_mkwrite = btrfs_page_mkwrite,
2183};
2184
2185static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2186{
058a457e
MX
2187 struct address_space *mapping = filp->f_mapping;
2188
2189 if (!mapping->a_ops->readpage)
2190 return -ENOEXEC;
2191
9ebefb18 2192 file_accessed(filp);
058a457e 2193 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2194
9ebefb18
CM
2195 return 0;
2196}
2197
2aaa6655
JB
2198static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2199 int slot, u64 start, u64 end)
2200{
2201 struct btrfs_file_extent_item *fi;
2202 struct btrfs_key key;
2203
2204 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2205 return 0;
2206
2207 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 2208 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
2aaa6655
JB
2209 key.type != BTRFS_EXTENT_DATA_KEY)
2210 return 0;
2211
2212 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2213
2214 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2215 return 0;
2216
2217 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2218 return 0;
2219
2220 if (key.offset == end)
2221 return 1;
2222 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2223 return 1;
2224 return 0;
2225}
2226
2227static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2228 struct btrfs_path *path, u64 offset, u64 end)
2229{
0b246afa 2230 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2231 struct btrfs_root *root = BTRFS_I(inode)->root;
2232 struct extent_buffer *leaf;
2233 struct btrfs_file_extent_item *fi;
2234 struct extent_map *hole_em;
2235 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2236 struct btrfs_key key;
2237 int ret;
2238
0b246afa 2239 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2240 goto out;
2241
4a0cc7ca 2242 key.objectid = btrfs_ino(BTRFS_I(inode));
2aaa6655
JB
2243 key.type = BTRFS_EXTENT_DATA_KEY;
2244 key.offset = offset;
2245
2aaa6655 2246 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2247 if (ret <= 0) {
2248 /*
2249 * We should have dropped this offset, so if we find it then
2250 * something has gone horribly wrong.
2251 */
2252 if (ret == 0)
2253 ret = -EINVAL;
2aaa6655 2254 return ret;
f94480bd 2255 }
2aaa6655
JB
2256
2257 leaf = path->nodes[0];
2258 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2259 u64 num_bytes;
2260
2261 path->slots[0]--;
2262 fi = btrfs_item_ptr(leaf, path->slots[0],
2263 struct btrfs_file_extent_item);
2264 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2265 end - offset;
2266 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2267 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2268 btrfs_set_file_extent_offset(leaf, fi, 0);
2269 btrfs_mark_buffer_dirty(leaf);
2270 goto out;
2271 }
2272
1707e26d 2273 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2274 u64 num_bytes;
2275
2aaa6655 2276 key.offset = offset;
0b246afa 2277 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2278 fi = btrfs_item_ptr(leaf, path->slots[0],
2279 struct btrfs_file_extent_item);
2280 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2281 offset;
2282 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2283 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2284 btrfs_set_file_extent_offset(leaf, fi, 0);
2285 btrfs_mark_buffer_dirty(leaf);
2286 goto out;
2287 }
2288 btrfs_release_path(path);
2289
f85b7379
DS
2290 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
2291 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2292 if (ret)
2293 return ret;
2294
2295out:
2296 btrfs_release_path(path);
2297
2298 hole_em = alloc_extent_map();
2299 if (!hole_em) {
dcdbc059 2300 btrfs_drop_extent_cache(BTRFS_I(inode), offset, end - 1, 0);
2aaa6655
JB
2301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2302 &BTRFS_I(inode)->runtime_flags);
2303 } else {
2304 hole_em->start = offset;
2305 hole_em->len = end - offset;
cc95bef6 2306 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2307 hole_em->orig_start = offset;
2308
2309 hole_em->block_start = EXTENT_MAP_HOLE;
2310 hole_em->block_len = 0;
b4939680 2311 hole_em->orig_block_len = 0;
0b246afa 2312 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2313 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2314 hole_em->generation = trans->transid;
2315
2316 do {
dcdbc059
NB
2317 btrfs_drop_extent_cache(BTRFS_I(inode), offset,
2318 end - 1, 0);
2aaa6655 2319 write_lock(&em_tree->lock);
09a2a8f9 2320 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2321 write_unlock(&em_tree->lock);
2322 } while (ret == -EEXIST);
2323 free_extent_map(hole_em);
2324 if (ret)
2325 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2326 &BTRFS_I(inode)->runtime_flags);
2327 }
2328
2329 return 0;
2330}
2331
d7781546
QW
2332/*
2333 * Find a hole extent on given inode and change start/len to the end of hole
2334 * extent.(hole/vacuum extent whose em->start <= start &&
2335 * em->start + em->len > start)
2336 * When a hole extent is found, return 1 and modify start/len.
2337 */
2338static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2339{
2340 struct extent_map *em;
2341 int ret = 0;
2342
2343 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2344 if (IS_ERR_OR_NULL(em)) {
2345 if (!em)
2346 ret = -ENOMEM;
2347 else
2348 ret = PTR_ERR(em);
2349 return ret;
2350 }
2351
2352 /* Hole or vacuum extent(only exists in no-hole mode) */
2353 if (em->block_start == EXTENT_MAP_HOLE) {
2354 ret = 1;
2355 *len = em->start + em->len > *start + *len ?
2356 0 : *start + *len - em->start - em->len;
2357 *start = em->start + em->len;
2358 }
2359 free_extent_map(em);
2360 return ret;
2361}
2362
2aaa6655
JB
2363static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2364{
0b246afa 2365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2366 struct btrfs_root *root = BTRFS_I(inode)->root;
2367 struct extent_state *cached_state = NULL;
2368 struct btrfs_path *path;
2369 struct btrfs_block_rsv *rsv;
2370 struct btrfs_trans_handle *trans;
d7781546
QW
2371 u64 lockstart;
2372 u64 lockend;
2373 u64 tail_start;
2374 u64 tail_len;
2375 u64 orig_start = offset;
2376 u64 cur_offset;
5f52a2c5 2377 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2378 u64 drop_end;
2aaa6655
JB
2379 int ret = 0;
2380 int err = 0;
6e4d6fa1 2381 unsigned int rsv_count;
9703fefe 2382 bool same_block;
0b246afa 2383 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2384 u64 ino_size;
9703fefe 2385 bool truncated_block = false;
e8c1c76e 2386 bool updated_inode = false;
2aaa6655 2387
0ef8b726
JB
2388 ret = btrfs_wait_ordered_range(inode, offset, len);
2389 if (ret)
2390 return ret;
2aaa6655 2391
5955102c 2392 inode_lock(inode);
0b246afa 2393 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2394 ret = find_first_non_hole(inode, &offset, &len);
2395 if (ret < 0)
2396 goto out_only_mutex;
2397 if (ret && !len) {
2398 /* Already in a large hole */
2399 ret = 0;
2400 goto out_only_mutex;
2401 }
2402
da17066c 2403 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2404 lockend = round_down(offset + len,
da17066c 2405 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2406 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2407 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2408 /*
9703fefe 2409 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2410 * because we are sure there is no data there.
2411 */
2aaa6655 2412 /*
9703fefe
CR
2413 * Only do this if we are in the same block and we aren't doing the
2414 * entire block.
2aaa6655 2415 */
0b246afa 2416 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2417 if (offset < ino_size) {
9703fefe
CR
2418 truncated_block = true;
2419 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2420 } else {
2421 ret = 0;
2422 }
d7781546 2423 goto out_only_mutex;
2aaa6655
JB
2424 }
2425
9703fefe 2426 /* zero back part of the first block */
12870f1c 2427 if (offset < ino_size) {
9703fefe
CR
2428 truncated_block = true;
2429 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2430 if (ret) {
5955102c 2431 inode_unlock(inode);
7426cc04
MX
2432 return ret;
2433 }
2aaa6655
JB
2434 }
2435
d7781546
QW
2436 /* Check the aligned pages after the first unaligned page,
2437 * if offset != orig_start, which means the first unaligned page
01327610 2438 * including several following pages are already in holes,
d7781546
QW
2439 * the extra check can be skipped */
2440 if (offset == orig_start) {
2441 /* after truncate page, check hole again */
2442 len = offset + len - lockstart;
2443 offset = lockstart;
2444 ret = find_first_non_hole(inode, &offset, &len);
2445 if (ret < 0)
2446 goto out_only_mutex;
2447 if (ret && !len) {
2448 ret = 0;
2449 goto out_only_mutex;
2450 }
2451 lockstart = offset;
2452 }
2453
2454 /* Check the tail unaligned part is in a hole */
2455 tail_start = lockend + 1;
2456 tail_len = offset + len - tail_start;
2457 if (tail_len) {
2458 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2459 if (unlikely(ret < 0))
2460 goto out_only_mutex;
2461 if (!ret) {
2462 /* zero the front end of the last page */
2463 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2464 truncated_block = true;
2465 ret = btrfs_truncate_block(inode,
2466 tail_start + tail_len,
2467 0, 1);
d7781546
QW
2468 if (ret)
2469 goto out_only_mutex;
51f395ad 2470 }
0061280d 2471 }
2aaa6655
JB
2472 }
2473
2474 if (lockend < lockstart) {
e8c1c76e
FM
2475 ret = 0;
2476 goto out_only_mutex;
2aaa6655
JB
2477 }
2478
2479 while (1) {
2480 struct btrfs_ordered_extent *ordered;
2481
2482 truncate_pagecache_range(inode, lockstart, lockend);
2483
2484 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2485 &cached_state);
2aaa6655
JB
2486 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2487
2488 /*
2489 * We need to make sure we have no ordered extents in this range
2490 * and nobody raced in and read a page in this range, if we did
2491 * we need to try again.
2492 */
2493 if ((!ordered ||
6126e3ca 2494 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2495 ordered->file_offset > lockend)) &&
fc4adbff 2496 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2497 if (ordered)
2498 btrfs_put_ordered_extent(ordered);
2499 break;
2500 }
2501 if (ordered)
2502 btrfs_put_ordered_extent(ordered);
2503 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2504 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2505 ret = btrfs_wait_ordered_range(inode, lockstart,
2506 lockend - lockstart + 1);
2507 if (ret) {
5955102c 2508 inode_unlock(inode);
0ef8b726
JB
2509 return ret;
2510 }
2aaa6655
JB
2511 }
2512
2513 path = btrfs_alloc_path();
2514 if (!path) {
2515 ret = -ENOMEM;
2516 goto out;
2517 }
2518
2ff7e61e 2519 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2520 if (!rsv) {
2521 ret = -ENOMEM;
2522 goto out_free;
2523 }
5f52a2c5 2524 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2525 rsv->failfast = 1;
2526
2527 /*
2528 * 1 - update the inode
2529 * 1 - removing the extents in the range
16e7549f 2530 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2531 */
16e7549f
JB
2532 rsv_count = no_holes ? 2 : 3;
2533 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2534 if (IS_ERR(trans)) {
2535 err = PTR_ERR(trans);
2536 goto out_free;
2537 }
2538
0b246afa 2539 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 2540 min_size, 0);
2aaa6655
JB
2541 BUG_ON(ret);
2542 trans->block_rsv = rsv;
2543
d7781546
QW
2544 cur_offset = lockstart;
2545 len = lockend - cur_offset;
2aaa6655
JB
2546 while (cur_offset < lockend) {
2547 ret = __btrfs_drop_extents(trans, root, inode, path,
2548 cur_offset, lockend + 1,
1acae57b 2549 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2550 if (ret != -ENOSPC)
2551 break;
2552
0b246afa 2553 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2554
62fe51c1 2555 if (cur_offset < drop_end && cur_offset < ino_size) {
12870f1c
FM
2556 ret = fill_holes(trans, inode, path, cur_offset,
2557 drop_end);
2558 if (ret) {
f94480bd
JB
2559 /*
2560 * If we failed then we didn't insert our hole
2561 * entries for the area we dropped, so now the
2562 * fs is corrupted, so we must abort the
2563 * transaction.
2564 */
2565 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2566 err = ret;
2567 break;
2568 }
2aaa6655
JB
2569 }
2570
2571 cur_offset = drop_end;
2572
2573 ret = btrfs_update_inode(trans, root, inode);
2574 if (ret) {
2575 err = ret;
2576 break;
2577 }
2578
3a45bb20 2579 btrfs_end_transaction(trans);
2ff7e61e 2580 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2581
16e7549f 2582 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2583 if (IS_ERR(trans)) {
2584 ret = PTR_ERR(trans);
2585 trans = NULL;
2586 break;
2587 }
2588
0b246afa 2589 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 2590 rsv, min_size, 0);
2aaa6655
JB
2591 BUG_ON(ret); /* shouldn't happen */
2592 trans->block_rsv = rsv;
d7781546
QW
2593
2594 ret = find_first_non_hole(inode, &cur_offset, &len);
2595 if (unlikely(ret < 0))
2596 break;
2597 if (ret && !len) {
2598 ret = 0;
2599 break;
2600 }
2aaa6655
JB
2601 }
2602
2603 if (ret) {
2604 err = ret;
2605 goto out_trans;
2606 }
2607
0b246afa 2608 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2609 /*
2610 * If we are using the NO_HOLES feature we might have had already an
2611 * hole that overlaps a part of the region [lockstart, lockend] and
2612 * ends at (or beyond) lockend. Since we have no file extent items to
2613 * represent holes, drop_end can be less than lockend and so we must
2614 * make sure we have an extent map representing the existing hole (the
2615 * call to __btrfs_drop_extents() might have dropped the existing extent
2616 * map representing the existing hole), otherwise the fast fsync path
2617 * will not record the existence of the hole region
2618 * [existing_hole_start, lockend].
2619 */
2620 if (drop_end <= lockend)
2621 drop_end = lockend + 1;
fc19c5e7
FM
2622 /*
2623 * Don't insert file hole extent item if it's for a range beyond eof
2624 * (because it's useless) or if it represents a 0 bytes range (when
2625 * cur_offset == drop_end).
2626 */
2627 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2628 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2629 if (ret) {
f94480bd
JB
2630 /* Same comment as above. */
2631 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2632 err = ret;
2633 goto out_trans;
2634 }
2aaa6655
JB
2635 }
2636
2637out_trans:
2638 if (!trans)
2639 goto out_free;
2640
e1f5790e 2641 inode_inc_iversion(inode);
c2050a45 2642 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2643
0b246afa 2644 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2645 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2646 updated_inode = true;
3a45bb20 2647 btrfs_end_transaction(trans);
2ff7e61e 2648 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2649out_free:
2650 btrfs_free_path(path);
2ff7e61e 2651 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2652out:
2653 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2654 &cached_state, GFP_NOFS);
d7781546 2655out_only_mutex:
9703fefe 2656 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2657 /*
2658 * If we only end up zeroing part of a page, we still need to
2659 * update the inode item, so that all the time fields are
2660 * updated as well as the necessary btrfs inode in memory fields
2661 * for detecting, at fsync time, if the inode isn't yet in the
2662 * log tree or it's there but not up to date.
2663 */
2664 trans = btrfs_start_transaction(root, 1);
2665 if (IS_ERR(trans)) {
2666 err = PTR_ERR(trans);
2667 } else {
2668 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2669 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2670 }
2671 }
5955102c 2672 inode_unlock(inode);
2aaa6655
JB
2673 if (ret && !err)
2674 err = ret;
2675 return err;
2676}
2677
14524a84
QW
2678/* Helper structure to record which range is already reserved */
2679struct falloc_range {
2680 struct list_head list;
2681 u64 start;
2682 u64 len;
2683};
2684
2685/*
2686 * Helper function to add falloc range
2687 *
2688 * Caller should have locked the larger range of extent containing
2689 * [start, len)
2690 */
2691static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2692{
2693 struct falloc_range *prev = NULL;
2694 struct falloc_range *range = NULL;
2695
2696 if (list_empty(head))
2697 goto insert;
2698
2699 /*
2700 * As fallocate iterate by bytenr order, we only need to check
2701 * the last range.
2702 */
2703 prev = list_entry(head->prev, struct falloc_range, list);
2704 if (prev->start + prev->len == start) {
2705 prev->len += len;
2706 return 0;
2707 }
2708insert:
32fc932e 2709 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2710 if (!range)
2711 return -ENOMEM;
2712 range->start = start;
2713 range->len = len;
2714 list_add_tail(&range->list, head);
2715 return 0;
2716}
2717
2fe17c10
CH
2718static long btrfs_fallocate(struct file *file, int mode,
2719 loff_t offset, loff_t len)
2720{
496ad9aa 2721 struct inode *inode = file_inode(file);
2fe17c10 2722 struct extent_state *cached_state = NULL;
14524a84
QW
2723 struct falloc_range *range;
2724 struct falloc_range *tmp;
2725 struct list_head reserve_list;
2fe17c10
CH
2726 u64 cur_offset;
2727 u64 last_byte;
2728 u64 alloc_start;
2729 u64 alloc_end;
2730 u64 alloc_hint = 0;
2731 u64 locked_end;
14524a84 2732 u64 actual_end = 0;
2fe17c10 2733 struct extent_map *em;
da17066c 2734 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2735 int ret;
2736
797f4277
MX
2737 alloc_start = round_down(offset, blocksize);
2738 alloc_end = round_up(offset + len, blocksize);
18513091 2739 cur_offset = alloc_start;
2fe17c10 2740
2aaa6655
JB
2741 /* Make sure we aren't being give some crap mode */
2742 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2743 return -EOPNOTSUPP;
2744
2aaa6655
JB
2745 if (mode & FALLOC_FL_PUNCH_HOLE)
2746 return btrfs_punch_hole(inode, offset, len);
2747
d98456fc 2748 /*
14524a84
QW
2749 * Only trigger disk allocation, don't trigger qgroup reserve
2750 *
2751 * For qgroup space, it will be checked later.
d98456fc 2752 */
04f4f916
NB
2753 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2754 alloc_end - alloc_start);
14524a84 2755 if (ret < 0)
d98456fc
CM
2756 return ret;
2757
5955102c 2758 inode_lock(inode);
2a162ce9
DI
2759
2760 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2761 ret = inode_newsize_ok(inode, offset + len);
2762 if (ret)
2763 goto out;
2764 }
2fe17c10 2765
14524a84
QW
2766 /*
2767 * TODO: Move these two operations after we have checked
2768 * accurate reserved space, or fallocate can still fail but
2769 * with page truncated or size expanded.
2770 *
2771 * But that's a minor problem and won't do much harm BTW.
2772 */
2fe17c10 2773 if (alloc_start > inode->i_size) {
a41ad394
JB
2774 ret = btrfs_cont_expand(inode, i_size_read(inode),
2775 alloc_start);
2fe17c10
CH
2776 if (ret)
2777 goto out;
0f6925fa 2778 } else if (offset + len > inode->i_size) {
a71754fc
JB
2779 /*
2780 * If we are fallocating from the end of the file onward we
9703fefe
CR
2781 * need to zero out the end of the block if i_size lands in the
2782 * middle of a block.
a71754fc 2783 */
9703fefe 2784 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2785 if (ret)
2786 goto out;
2fe17c10
CH
2787 }
2788
a71754fc
JB
2789 /*
2790 * wait for ordered IO before we have any locks. We'll loop again
2791 * below with the locks held.
2792 */
0ef8b726
JB
2793 ret = btrfs_wait_ordered_range(inode, alloc_start,
2794 alloc_end - alloc_start);
2795 if (ret)
2796 goto out;
a71754fc 2797
2fe17c10
CH
2798 locked_end = alloc_end - 1;
2799 while (1) {
2800 struct btrfs_ordered_extent *ordered;
2801
2802 /* the extent lock is ordered inside the running
2803 * transaction
2804 */
2805 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2806 locked_end, &cached_state);
2fe17c10
CH
2807 ordered = btrfs_lookup_first_ordered_extent(inode,
2808 alloc_end - 1);
2809 if (ordered &&
2810 ordered->file_offset + ordered->len > alloc_start &&
2811 ordered->file_offset < alloc_end) {
2812 btrfs_put_ordered_extent(ordered);
2813 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2814 alloc_start, locked_end,
32fc932e 2815 &cached_state, GFP_KERNEL);
2fe17c10
CH
2816 /*
2817 * we can't wait on the range with the transaction
2818 * running or with the extent lock held
2819 */
0ef8b726
JB
2820 ret = btrfs_wait_ordered_range(inode, alloc_start,
2821 alloc_end - alloc_start);
2822 if (ret)
2823 goto out;
2fe17c10
CH
2824 } else {
2825 if (ordered)
2826 btrfs_put_ordered_extent(ordered);
2827 break;
2828 }
2829 }
2830
14524a84
QW
2831 /* First, check if we exceed the qgroup limit */
2832 INIT_LIST_HEAD(&reserve_list);
2fe17c10
CH
2833 while (1) {
2834 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2835 alloc_end - cur_offset, 0);
79787eaa
JM
2836 if (IS_ERR_OR_NULL(em)) {
2837 if (!em)
2838 ret = -ENOMEM;
2839 else
2840 ret = PTR_ERR(em);
2841 break;
2842 }
2fe17c10 2843 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2844 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2845 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2846 if (em->block_start == EXTENT_MAP_HOLE ||
2847 (cur_offset >= inode->i_size &&
2848 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2849 ret = add_falloc_range(&reserve_list, cur_offset,
2850 last_byte - cur_offset);
2851 if (ret < 0) {
2852 free_extent_map(em);
2853 break;
3d850dd4 2854 }
14524a84
QW
2855 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2856 last_byte - cur_offset);
2857 if (ret < 0)
2858 break;
18513091
WX
2859 } else {
2860 /*
2861 * Do not need to reserve unwritten extent for this
2862 * range, free reserved data space first, otherwise
2863 * it'll result in false ENOSPC error.
2864 */
2865 btrfs_free_reserved_data_space(inode, cur_offset,
2866 last_byte - cur_offset);
2fe17c10
CH
2867 }
2868 free_extent_map(em);
2fe17c10 2869 cur_offset = last_byte;
14524a84 2870 if (cur_offset >= alloc_end)
2fe17c10 2871 break;
14524a84
QW
2872 }
2873
2874 /*
2875 * If ret is still 0, means we're OK to fallocate.
2876 * Or just cleanup the list and exit.
2877 */
2878 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2879 if (!ret)
2880 ret = btrfs_prealloc_file_range(inode, mode,
2881 range->start,
2882 range->len, 1 << inode->i_blkbits,
2883 offset + len, &alloc_hint);
18513091
WX
2884 else
2885 btrfs_free_reserved_data_space(inode, range->start,
2886 range->len);
14524a84
QW
2887 list_del(&range->list);
2888 kfree(range);
2889 }
2890 if (ret < 0)
2891 goto out_unlock;
2892
2893 if (actual_end > inode->i_size &&
2894 !(mode & FALLOC_FL_KEEP_SIZE)) {
2895 struct btrfs_trans_handle *trans;
2896 struct btrfs_root *root = BTRFS_I(inode)->root;
2897
2898 /*
2899 * We didn't need to allocate any more space, but we
2900 * still extended the size of the file so we need to
2901 * update i_size and the inode item.
2902 */
2903 trans = btrfs_start_transaction(root, 1);
2904 if (IS_ERR(trans)) {
2905 ret = PTR_ERR(trans);
2906 } else {
c2050a45 2907 inode->i_ctime = current_time(inode);
14524a84
QW
2908 i_size_write(inode, actual_end);
2909 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2910 ret = btrfs_update_inode(trans, root, inode);
2911 if (ret)
3a45bb20 2912 btrfs_end_transaction(trans);
14524a84 2913 else
3a45bb20 2914 ret = btrfs_end_transaction(trans);
2fe17c10
CH
2915 }
2916 }
14524a84 2917out_unlock:
2fe17c10 2918 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
32fc932e 2919 &cached_state, GFP_KERNEL);
2fe17c10 2920out:
5955102c 2921 inode_unlock(inode);
d98456fc 2922 /* Let go of our reservation. */
18513091
WX
2923 if (ret != 0)
2924 btrfs_free_reserved_data_space(inode, alloc_start,
2925 alloc_end - cur_offset);
2fe17c10
CH
2926 return ret;
2927}
2928
965c8e59 2929static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 2930{
0b246afa 2931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 2932 struct extent_map *em = NULL;
b2675157 2933 struct extent_state *cached_state = NULL;
4d1a40c6
LB
2934 u64 lockstart;
2935 u64 lockend;
2936 u64 start;
2937 u64 len;
b2675157
JB
2938 int ret = 0;
2939
4d1a40c6
LB
2940 if (inode->i_size == 0)
2941 return -ENXIO;
2942
2943 /*
2944 * *offset can be negative, in this case we start finding DATA/HOLE from
2945 * the very start of the file.
2946 */
2947 start = max_t(loff_t, 0, *offset);
2948
0b246afa 2949 lockstart = round_down(start, fs_info->sectorsize);
da17066c 2950 lockend = round_up(i_size_read(inode),
0b246afa 2951 fs_info->sectorsize);
b2675157 2952 if (lockend <= lockstart)
0b246afa 2953 lockend = lockstart + fs_info->sectorsize;
1214b53f 2954 lockend--;
b2675157
JB
2955 len = lockend - lockstart + 1;
2956
ff13db41 2957 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 2958 &cached_state);
b2675157 2959
7f4ca37c 2960 while (start < inode->i_size) {
b2675157
JB
2961 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2962 if (IS_ERR(em)) {
6af021d8 2963 ret = PTR_ERR(em);
7f4ca37c 2964 em = NULL;
b2675157
JB
2965 break;
2966 }
2967
7f4ca37c
JB
2968 if (whence == SEEK_HOLE &&
2969 (em->block_start == EXTENT_MAP_HOLE ||
2970 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2971 break;
2972 else if (whence == SEEK_DATA &&
2973 (em->block_start != EXTENT_MAP_HOLE &&
2974 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2975 break;
b2675157
JB
2976
2977 start = em->start + em->len;
b2675157 2978 free_extent_map(em);
7f4ca37c 2979 em = NULL;
b2675157
JB
2980 cond_resched();
2981 }
7f4ca37c
JB
2982 free_extent_map(em);
2983 if (!ret) {
2984 if (whence == SEEK_DATA && start >= inode->i_size)
2985 ret = -ENXIO;
2986 else
2987 *offset = min_t(loff_t, start, inode->i_size);
2988 }
b2675157
JB
2989 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2990 &cached_state, GFP_NOFS);
2991 return ret;
2992}
2993
965c8e59 2994static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2995{
2996 struct inode *inode = file->f_mapping->host;
2997 int ret;
2998
5955102c 2999 inode_lock(inode);
965c8e59 3000 switch (whence) {
b2675157
JB
3001 case SEEK_END:
3002 case SEEK_CUR:
965c8e59 3003 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3004 goto out;
3005 case SEEK_DATA:
3006 case SEEK_HOLE:
48802c8a 3007 if (offset >= i_size_read(inode)) {
5955102c 3008 inode_unlock(inode);
48802c8a
JL
3009 return -ENXIO;
3010 }
3011
965c8e59 3012 ret = find_desired_extent(inode, &offset, whence);
b2675157 3013 if (ret) {
5955102c 3014 inode_unlock(inode);
b2675157
JB
3015 return ret;
3016 }
3017 }
3018
46a1c2c7 3019 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3020out:
5955102c 3021 inode_unlock(inode);
b2675157
JB
3022 return offset;
3023}
3024
828c0950 3025const struct file_operations btrfs_file_operations = {
b2675157 3026 .llseek = btrfs_file_llseek,
aad4f8bb 3027 .read_iter = generic_file_read_iter,
e9906a98 3028 .splice_read = generic_file_splice_read,
b30ac0fc 3029 .write_iter = btrfs_file_write_iter,
9ebefb18 3030 .mmap = btrfs_file_mmap,
39279cc3 3031 .open = generic_file_open,
e1b81e67 3032 .release = btrfs_release_file,
39279cc3 3033 .fsync = btrfs_sync_file,
2fe17c10 3034 .fallocate = btrfs_fallocate,
34287aa3 3035 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3036#ifdef CONFIG_COMPAT
4c63c245 3037 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3038#endif
04b38d60 3039 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3040 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3041};
9247f317
MX
3042
3043void btrfs_auto_defrag_exit(void)
3044{
5598e900 3045 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3046}
3047
3048int btrfs_auto_defrag_init(void)
3049{
3050 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3051 sizeof(struct inode_defrag), 0,
fba4b697 3052 SLAB_MEM_SPREAD,
9247f317
MX
3053 NULL);
3054 if (!btrfs_inode_defrag_cachep)
3055 return -ENOMEM;
3056
3057 return 0;
3058}
728404da
FM
3059
3060int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3061{
3062 int ret;
3063
3064 /*
3065 * So with compression we will find and lock a dirty page and clear the
3066 * first one as dirty, setup an async extent, and immediately return
3067 * with the entire range locked but with nobody actually marked with
3068 * writeback. So we can't just filemap_write_and_wait_range() and
3069 * expect it to work since it will just kick off a thread to do the
3070 * actual work. So we need to call filemap_fdatawrite_range _again_
3071 * since it will wait on the page lock, which won't be unlocked until
3072 * after the pages have been marked as writeback and so we're good to go
3073 * from there. We have to do this otherwise we'll miss the ordered
3074 * extents and that results in badness. Please Josef, do not think you
3075 * know better and pull this out at some point in the future, it is
3076 * right and you are wrong.
3077 */
3078 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3079 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3080 &BTRFS_I(inode)->runtime_flags))
3081 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3082
3083 return ret;
3084}