btrfs: account ticket size at add/delete time
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
86736342 29#include "delalloc-space.h"
6a177381 30#include "reflink.h"
39279cc3 31
9247f317 32static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
33/*
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
37 */
38struct inode_defrag {
39 struct rb_node rb_node;
40 /* objectid */
41 u64 ino;
42 /*
43 * transid where the defrag was added, we search for
44 * extents newer than this
45 */
46 u64 transid;
47
48 /* root objectid */
49 u64 root;
50
51 /* last offset we were able to defrag */
52 u64 last_offset;
53
54 /* if we've wrapped around back to zero once already */
55 int cycled;
56};
57
762f2263
MX
58static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
60{
61 if (defrag1->root > defrag2->root)
62 return 1;
63 else if (defrag1->root < defrag2->root)
64 return -1;
65 else if (defrag1->ino > defrag2->ino)
66 return 1;
67 else if (defrag1->ino < defrag2->ino)
68 return -1;
69 else
70 return 0;
71}
72
4cb5300b
CM
73/* pop a record for an inode into the defrag tree. The lock
74 * must be held already
75 *
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
78 *
79 * If an existing record is found the defrag item you
80 * pass in is freed
81 */
6158e1ce 82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
83 struct inode_defrag *defrag)
84{
3ffbd68c 85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
86 struct inode_defrag *entry;
87 struct rb_node **p;
88 struct rb_node *parent = NULL;
762f2263 89 int ret;
4cb5300b 90
0b246afa 91 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
92 while (*p) {
93 parent = *p;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
762f2263
MX
96 ret = __compare_inode_defrag(defrag, entry);
97 if (ret < 0)
4cb5300b 98 p = &parent->rb_left;
762f2263 99 else if (ret > 0)
4cb5300b
CM
100 p = &parent->rb_right;
101 else {
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
105 */
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
8ddc4734 110 return -EEXIST;
4cb5300b
CM
111 }
112 }
6158e1ce 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 114 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
116 return 0;
117}
4cb5300b 118
2ff7e61e 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 120{
0b246afa 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
122 return 0;
123
0b246afa 124 if (btrfs_fs_closing(fs_info))
8ddc4734 125 return 0;
4cb5300b 126
8ddc4734 127 return 1;
4cb5300b
CM
128}
129
130/*
131 * insert a defrag record for this inode if auto defrag is
132 * enabled
133 */
134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 135 struct btrfs_inode *inode)
4cb5300b 136{
6158e1ce 137 struct btrfs_root *root = inode->root;
3ffbd68c 138 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 139 struct inode_defrag *defrag;
4cb5300b 140 u64 transid;
8ddc4734 141 int ret;
4cb5300b 142
2ff7e61e 143 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
144 return 0;
145
6158e1ce 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
147 return 0;
148
149 if (trans)
150 transid = trans->transid;
151 else
6158e1ce 152 transid = inode->root->last_trans;
4cb5300b 153
9247f317 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
155 if (!defrag)
156 return -ENOMEM;
157
6158e1ce 158 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
161
0b246afa 162 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
164 /*
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 */
169 ret = __btrfs_add_inode_defrag(inode, defrag);
170 if (ret)
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 } else {
9247f317 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 174 }
0b246afa 175 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 176 return 0;
4cb5300b
CM
177}
178
179/*
8ddc4734
MX
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 183 */
46e59791 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 185 struct inode_defrag *defrag)
8ddc4734 186{
3ffbd68c 187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
188 int ret;
189
2ff7e61e 190 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
191 goto out;
192
193 /*
194 * Here we don't check the IN_DEFRAG flag, because we need merge
195 * them together.
196 */
0b246afa 197 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 198 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 199 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
200 if (ret)
201 goto out;
202 return;
203out:
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205}
206
4cb5300b 207/*
26176e7c
MX
208 * pick the defragable inode that we want, if it doesn't exist, we will get
209 * the next one.
4cb5300b 210 */
26176e7c
MX
211static struct inode_defrag *
212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
213{
214 struct inode_defrag *entry = NULL;
762f2263 215 struct inode_defrag tmp;
4cb5300b
CM
216 struct rb_node *p;
217 struct rb_node *parent = NULL;
762f2263
MX
218 int ret;
219
220 tmp.ino = ino;
221 tmp.root = root;
4cb5300b 222
26176e7c
MX
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
225 while (p) {
226 parent = p;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
762f2263
MX
229 ret = __compare_inode_defrag(&tmp, entry);
230 if (ret < 0)
4cb5300b 231 p = parent->rb_left;
762f2263 232 else if (ret > 0)
4cb5300b
CM
233 p = parent->rb_right;
234 else
26176e7c 235 goto out;
4cb5300b
CM
236 }
237
26176e7c
MX
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
240 if (parent)
4cb5300b 241 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
242 else
243 entry = NULL;
4cb5300b 244 }
26176e7c
MX
245out:
246 if (entry)
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
249 return entry;
4cb5300b
CM
250}
251
26176e7c 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
253{
254 struct inode_defrag *defrag;
26176e7c
MX
255 struct rb_node *node;
256
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
259 while (node) {
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
351810c1 264 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
265
266 node = rb_first(&fs_info->defrag_inodes);
267 }
268 spin_unlock(&fs_info->defrag_inodes_lock);
269}
270
271#define BTRFS_DEFRAG_BATCH 1024
272
273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
275{
4cb5300b
CM
276 struct btrfs_root *inode_root;
277 struct inode *inode;
4cb5300b
CM
278 struct btrfs_key key;
279 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 280 int num_defrag;
6f1c3605
LB
281 int index;
282 int ret;
4cb5300b 283
26176e7c
MX
284 /* get the inode */
285 key.objectid = defrag->root;
962a298f 286 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 287 key.offset = (u64)-1;
6f1c3605
LB
288
289 index = srcu_read_lock(&fs_info->subvol_srcu);
290
3619c94f 291 inode_root = btrfs_get_fs_root(fs_info, &key, true);
26176e7c 292 if (IS_ERR(inode_root)) {
6f1c3605
LB
293 ret = PTR_ERR(inode_root);
294 goto cleanup;
295 }
26176e7c
MX
296
297 key.objectid = defrag->ino;
962a298f 298 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c 299 key.offset = 0;
4c66e0d4 300 inode = btrfs_iget(fs_info->sb, &key, inode_root);
00246528 301 btrfs_put_root(inode_root);
26176e7c 302 if (IS_ERR(inode)) {
6f1c3605
LB
303 ret = PTR_ERR(inode);
304 goto cleanup;
26176e7c 305 }
6f1c3605 306 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
307
308 /* do a chunk of defrag */
309 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
310 memset(&range, 0, sizeof(range));
311 range.len = (u64)-1;
26176e7c 312 range.start = defrag->last_offset;
b66f00da
MX
313
314 sb_start_write(fs_info->sb);
26176e7c
MX
315 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
316 BTRFS_DEFRAG_BATCH);
b66f00da 317 sb_end_write(fs_info->sb);
26176e7c
MX
318 /*
319 * if we filled the whole defrag batch, there
320 * must be more work to do. Queue this defrag
321 * again
322 */
323 if (num_defrag == BTRFS_DEFRAG_BATCH) {
324 defrag->last_offset = range.start;
46e59791 325 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
326 } else if (defrag->last_offset && !defrag->cycled) {
327 /*
328 * we didn't fill our defrag batch, but
329 * we didn't start at zero. Make sure we loop
330 * around to the start of the file.
331 */
332 defrag->last_offset = 0;
333 defrag->cycled = 1;
46e59791 334 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
335 } else {
336 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
337 }
338
339 iput(inode);
340 return 0;
6f1c3605
LB
341cleanup:
342 srcu_read_unlock(&fs_info->subvol_srcu, index);
343 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
344 return ret;
26176e7c
MX
345}
346
347/*
348 * run through the list of inodes in the FS that need
349 * defragging
350 */
351int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
352{
353 struct inode_defrag *defrag;
354 u64 first_ino = 0;
355 u64 root_objectid = 0;
4cb5300b
CM
356
357 atomic_inc(&fs_info->defrag_running);
67871254 358 while (1) {
dc81cdc5
MX
359 /* Pause the auto defragger. */
360 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
361 &fs_info->fs_state))
362 break;
363
2ff7e61e 364 if (!__need_auto_defrag(fs_info))
26176e7c 365 break;
4cb5300b
CM
366
367 /* find an inode to defrag */
26176e7c
MX
368 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
369 first_ino);
4cb5300b 370 if (!defrag) {
26176e7c 371 if (root_objectid || first_ino) {
762f2263 372 root_objectid = 0;
4cb5300b
CM
373 first_ino = 0;
374 continue;
375 } else {
376 break;
377 }
378 }
379
4cb5300b 380 first_ino = defrag->ino + 1;
762f2263 381 root_objectid = defrag->root;
4cb5300b 382
26176e7c 383 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 384 }
4cb5300b
CM
385 atomic_dec(&fs_info->defrag_running);
386
387 /*
388 * during unmount, we use the transaction_wait queue to
389 * wait for the defragger to stop
390 */
391 wake_up(&fs_info->transaction_wait);
392 return 0;
393}
39279cc3 394
d352ac68
CM
395/* simple helper to fault in pages and copy. This should go away
396 * and be replaced with calls into generic code.
397 */
ee22f0c4 398static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 399 struct page **prepared_pages,
11c65dcc 400 struct iov_iter *i)
39279cc3 401{
914ee295 402 size_t copied = 0;
d0215f3e 403 size_t total_copied = 0;
11c65dcc 404 int pg = 0;
7073017a 405 int offset = offset_in_page(pos);
39279cc3 406
11c65dcc 407 while (write_bytes > 0) {
39279cc3 408 size_t count = min_t(size_t,
09cbfeaf 409 PAGE_SIZE - offset, write_bytes);
11c65dcc 410 struct page *page = prepared_pages[pg];
914ee295
XZ
411 /*
412 * Copy data from userspace to the current page
914ee295 413 */
914ee295 414 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 415
39279cc3
CM
416 /* Flush processor's dcache for this page */
417 flush_dcache_page(page);
31339acd
CM
418
419 /*
420 * if we get a partial write, we can end up with
421 * partially up to date pages. These add
422 * a lot of complexity, so make sure they don't
423 * happen by forcing this copy to be retried.
424 *
425 * The rest of the btrfs_file_write code will fall
426 * back to page at a time copies after we return 0.
427 */
428 if (!PageUptodate(page) && copied < count)
429 copied = 0;
430
11c65dcc
JB
431 iov_iter_advance(i, copied);
432 write_bytes -= copied;
914ee295 433 total_copied += copied;
39279cc3 434
b30ac0fc 435 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 436 if (unlikely(copied == 0))
914ee295 437 break;
11c65dcc 438
09cbfeaf 439 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
440 offset += copied;
441 } else {
442 pg++;
443 offset = 0;
444 }
39279cc3 445 }
914ee295 446 return total_copied;
39279cc3
CM
447}
448
d352ac68
CM
449/*
450 * unlocks pages after btrfs_file_write is done with them
451 */
48a3b636 452static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
453{
454 size_t i;
455 for (i = 0; i < num_pages; i++) {
d352ac68
CM
456 /* page checked is some magic around finding pages that
457 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
458 * clear it here. There should be no need to mark the pages
459 * accessed as prepare_pages should have marked them accessed
460 * in prepare_pages via find_or_create_page()
d352ac68 461 */
4a096752 462 ClearPageChecked(pages[i]);
39279cc3 463 unlock_page(pages[i]);
09cbfeaf 464 put_page(pages[i]);
39279cc3
CM
465 }
466}
467
f48bf66b
FM
468static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
469 const u64 start,
470 const u64 len,
471 struct extent_state **cached_state)
472{
473 u64 search_start = start;
474 const u64 end = start + len - 1;
475
476 while (search_start < end) {
477 const u64 search_len = end - search_start + 1;
478 struct extent_map *em;
479 u64 em_len;
480 int ret = 0;
481
39b07b5d 482 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
f48bf66b
FM
483 if (IS_ERR(em))
484 return PTR_ERR(em);
485
486 if (em->block_start != EXTENT_MAP_HOLE)
487 goto next;
488
489 em_len = em->len;
490 if (em->start < search_start)
491 em_len -= search_start - em->start;
492 if (em_len > search_len)
493 em_len = search_len;
494
495 ret = set_extent_bit(&inode->io_tree, search_start,
496 search_start + em_len - 1,
497 EXTENT_DELALLOC_NEW,
498 NULL, cached_state, GFP_NOFS);
499next:
500 search_start = extent_map_end(em);
501 free_extent_map(em);
502 if (ret)
503 return ret;
504 }
505 return 0;
506}
507
d352ac68
CM
508/*
509 * after copy_from_user, pages need to be dirtied and we need to make
510 * sure holes are created between the current EOF and the start of
511 * any next extents (if required).
512 *
513 * this also makes the decision about creating an inline extent vs
514 * doing real data extents, marking pages dirty and delalloc as required.
515 */
2ff7e61e
JM
516int btrfs_dirty_pages(struct inode *inode, struct page **pages,
517 size_t num_pages, loff_t pos, size_t write_bytes,
518 struct extent_state **cached)
39279cc3 519{
0b246afa 520 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 521 int err = 0;
a52d9a80 522 int i;
db94535d 523 u64 num_bytes;
a52d9a80
CM
524 u64 start_pos;
525 u64 end_of_last_block;
526 u64 end_pos = pos + write_bytes;
527 loff_t isize = i_size_read(inode);
e3b8a485 528 unsigned int extra_bits = 0;
39279cc3 529
0b246afa 530 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 531 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 532 fs_info->sectorsize);
39279cc3 533
db94535d 534 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 535
7703bdd8
CM
536 /*
537 * The pages may have already been dirty, clear out old accounting so
538 * we can set things up properly
539 */
540 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
e182163d
OS
541 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
542 0, 0, cached);
7703bdd8 543
e3b8a485
FM
544 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
545 if (start_pos >= isize &&
546 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
547 /*
548 * There can't be any extents following eof in this case
549 * so just set the delalloc new bit for the range
550 * directly.
551 */
552 extra_bits |= EXTENT_DELALLOC_NEW;
553 } else {
554 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
555 start_pos,
556 num_bytes, cached);
557 if (err)
558 return err;
559 }
560 }
561
2ac55d41 562 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 563 extra_bits, cached);
d0215f3e
JB
564 if (err)
565 return err;
9ed74f2d 566
c8b97818
CM
567 for (i = 0; i < num_pages; i++) {
568 struct page *p = pages[i];
569 SetPageUptodate(p);
570 ClearPageChecked(p);
571 set_page_dirty(p);
a52d9a80 572 }
9f570b8d
JB
573
574 /*
575 * we've only changed i_size in ram, and we haven't updated
576 * the disk i_size. There is no need to log the inode
577 * at this time.
578 */
579 if (end_pos > isize)
a52d9a80 580 i_size_write(inode, end_pos);
a22285a6 581 return 0;
39279cc3
CM
582}
583
d352ac68
CM
584/*
585 * this drops all the extents in the cache that intersect the range
586 * [start, end]. Existing extents are split as required.
587 */
dcdbc059 588void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 589 int skip_pinned)
a52d9a80
CM
590{
591 struct extent_map *em;
3b951516
CM
592 struct extent_map *split = NULL;
593 struct extent_map *split2 = NULL;
dcdbc059 594 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 595 u64 len = end - start + 1;
5dc562c5 596 u64 gen;
3b951516
CM
597 int ret;
598 int testend = 1;
5b21f2ed 599 unsigned long flags;
c8b97818 600 int compressed = 0;
09a2a8f9 601 bool modified;
a52d9a80 602
e6dcd2dc 603 WARN_ON(end < start);
3b951516 604 if (end == (u64)-1) {
39b5637f 605 len = (u64)-1;
3b951516
CM
606 testend = 0;
607 }
d397712b 608 while (1) {
7014cdb4
JB
609 int no_splits = 0;
610
09a2a8f9 611 modified = false;
3b951516 612 if (!split)
172ddd60 613 split = alloc_extent_map();
3b951516 614 if (!split2)
172ddd60 615 split2 = alloc_extent_map();
7014cdb4
JB
616 if (!split || !split2)
617 no_splits = 1;
3b951516 618
890871be 619 write_lock(&em_tree->lock);
39b5637f 620 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 621 if (!em) {
890871be 622 write_unlock(&em_tree->lock);
a52d9a80 623 break;
d1310b2e 624 }
5b21f2ed 625 flags = em->flags;
5dc562c5 626 gen = em->generation;
5b21f2ed 627 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 628 if (testend && em->start + em->len >= start + len) {
5b21f2ed 629 free_extent_map(em);
a1ed835e 630 write_unlock(&em_tree->lock);
5b21f2ed
ZY
631 break;
632 }
55ef6899
YZ
633 start = em->start + em->len;
634 if (testend)
5b21f2ed 635 len = start + len - (em->start + em->len);
5b21f2ed 636 free_extent_map(em);
a1ed835e 637 write_unlock(&em_tree->lock);
5b21f2ed
ZY
638 continue;
639 }
c8b97818 640 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 641 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 642 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 643 modified = !list_empty(&em->list);
7014cdb4
JB
644 if (no_splits)
645 goto next;
3b951516 646
ee20a983 647 if (em->start < start) {
3b951516
CM
648 split->start = em->start;
649 split->len = start - em->start;
ee20a983
JB
650
651 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
652 split->orig_start = em->orig_start;
653 split->block_start = em->block_start;
654
655 if (compressed)
656 split->block_len = em->block_len;
657 else
658 split->block_len = split->len;
659 split->orig_block_len = max(split->block_len,
660 em->orig_block_len);
661 split->ram_bytes = em->ram_bytes;
662 } else {
663 split->orig_start = split->start;
664 split->block_len = 0;
665 split->block_start = em->block_start;
666 split->orig_block_len = 0;
667 split->ram_bytes = split->len;
668 }
669
5dc562c5 670 split->generation = gen;
5b21f2ed 671 split->flags = flags;
261507a0 672 split->compress_type = em->compress_type;
176840b3 673 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
674 free_extent_map(split);
675 split = split2;
676 split2 = NULL;
677 }
ee20a983 678 if (testend && em->start + em->len > start + len) {
3b951516
CM
679 u64 diff = start + len - em->start;
680
681 split->start = start + len;
682 split->len = em->start + em->len - (start + len);
5b21f2ed 683 split->flags = flags;
261507a0 684 split->compress_type = em->compress_type;
5dc562c5 685 split->generation = gen;
ee20a983
JB
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
b4939680 689 em->orig_block_len);
3b951516 690
ee20a983
JB
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
c8b97818 702 } else {
ee20a983
JB
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
c8b97818 708 }
3b951516 709
176840b3
FM
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
3b951516
CM
718 free_extent_map(split);
719 split = NULL;
720 }
7014cdb4 721next:
176840b3
FM
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
890871be 724 write_unlock(&em_tree->lock);
d1310b2e 725
a52d9a80
CM
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
3b951516
CM
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
a52d9a80
CM
735}
736
39279cc3
CM
737/*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
5dc562c5
JB
746int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
39279cc3 753{
0b246afa 754 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 755 struct extent_buffer *leaf;
920bbbfb 756 struct btrfs_file_extent_item *fi;
82fa113f 757 struct btrfs_ref ref = { 0 };
00f5c795 758 struct btrfs_key key;
920bbbfb 759 struct btrfs_key new_key;
4a0cc7ca 760 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
761 u64 search_start = start;
762 u64 disk_bytenr = 0;
763 u64 num_bytes = 0;
764 u64 extent_offset = 0;
765 u64 extent_end = 0;
62fe51c1 766 u64 last_end = start;
920bbbfb
YZ
767 int del_nr = 0;
768 int del_slot = 0;
769 int extent_type;
ccd467d6 770 int recow;
00f5c795 771 int ret;
dc7fdde3 772 int modify_tree = -1;
27cdeb70 773 int update_refs;
c3308f84 774 int found = 0;
1acae57b 775 int leafs_visited = 0;
39279cc3 776
a1ed835e 777 if (drop_cache)
dcdbc059 778 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 779
d5f37527 780 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
781 modify_tree = 0;
782
27cdeb70 783 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 784 root == fs_info->tree_root);
d397712b 785 while (1) {
ccd467d6 786 recow = 0;
33345d01 787 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 788 search_start, modify_tree);
39279cc3 789 if (ret < 0)
920bbbfb
YZ
790 break;
791 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
792 leaf = path->nodes[0];
793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 794 if (key.objectid == ino &&
920bbbfb
YZ
795 key.type == BTRFS_EXTENT_DATA_KEY)
796 path->slots[0]--;
39279cc3 797 }
920bbbfb 798 ret = 0;
1acae57b 799 leafs_visited++;
8c2383c3 800next_slot:
5f39d397 801 leaf = path->nodes[0];
920bbbfb
YZ
802 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
803 BUG_ON(del_nr > 0);
804 ret = btrfs_next_leaf(root, path);
805 if (ret < 0)
806 break;
807 if (ret > 0) {
808 ret = 0;
809 break;
8c2383c3 810 }
1acae57b 811 leafs_visited++;
920bbbfb
YZ
812 leaf = path->nodes[0];
813 recow = 1;
814 }
815
816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
817
818 if (key.objectid > ino)
819 break;
820 if (WARN_ON_ONCE(key.objectid < ino) ||
821 key.type < BTRFS_EXTENT_DATA_KEY) {
822 ASSERT(del_nr == 0);
823 path->slots[0]++;
824 goto next_slot;
825 }
826 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
827 break;
828
829 fi = btrfs_item_ptr(leaf, path->slots[0],
830 struct btrfs_file_extent_item);
831 extent_type = btrfs_file_extent_type(leaf, fi);
832
833 if (extent_type == BTRFS_FILE_EXTENT_REG ||
834 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
835 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
836 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
837 extent_offset = btrfs_file_extent_offset(leaf, fi);
838 extent_end = key.offset +
839 btrfs_file_extent_num_bytes(leaf, fi);
840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
841 extent_end = key.offset +
e41ca589 842 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 843 } else {
aeafbf84
FM
844 /* can't happen */
845 BUG();
39279cc3
CM
846 }
847
fc19c5e7
FM
848 /*
849 * Don't skip extent items representing 0 byte lengths. They
850 * used to be created (bug) if while punching holes we hit
851 * -ENOSPC condition. So if we find one here, just ensure we
852 * delete it, otherwise we would insert a new file extent item
853 * with the same key (offset) as that 0 bytes length file
854 * extent item in the call to setup_items_for_insert() later
855 * in this function.
856 */
62fe51c1
JB
857 if (extent_end == key.offset && extent_end >= search_start) {
858 last_end = extent_end;
fc19c5e7 859 goto delete_extent_item;
62fe51c1 860 }
fc19c5e7 861
920bbbfb
YZ
862 if (extent_end <= search_start) {
863 path->slots[0]++;
8c2383c3 864 goto next_slot;
39279cc3
CM
865 }
866
c3308f84 867 found = 1;
920bbbfb 868 search_start = max(key.offset, start);
dc7fdde3
CM
869 if (recow || !modify_tree) {
870 modify_tree = -1;
b3b4aa74 871 btrfs_release_path(path);
920bbbfb 872 continue;
39279cc3 873 }
6643558d 874
920bbbfb
YZ
875 /*
876 * | - range to drop - |
877 * | -------- extent -------- |
878 */
879 if (start > key.offset && end < extent_end) {
880 BUG_ON(del_nr > 0);
00fdf13a 881 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 882 ret = -EOPNOTSUPP;
00fdf13a
LB
883 break;
884 }
920bbbfb
YZ
885
886 memcpy(&new_key, &key, sizeof(new_key));
887 new_key.offset = start;
888 ret = btrfs_duplicate_item(trans, root, path,
889 &new_key);
890 if (ret == -EAGAIN) {
b3b4aa74 891 btrfs_release_path(path);
920bbbfb 892 continue;
6643558d 893 }
920bbbfb
YZ
894 if (ret < 0)
895 break;
896
897 leaf = path->nodes[0];
898 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
899 struct btrfs_file_extent_item);
900 btrfs_set_file_extent_num_bytes(leaf, fi,
901 start - key.offset);
902
903 fi = btrfs_item_ptr(leaf, path->slots[0],
904 struct btrfs_file_extent_item);
905
906 extent_offset += start - key.offset;
907 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 btrfs_set_file_extent_num_bytes(leaf, fi,
909 extent_end - start);
910 btrfs_mark_buffer_dirty(leaf);
911
5dc562c5 912 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
913 btrfs_init_generic_ref(&ref,
914 BTRFS_ADD_DELAYED_REF,
915 disk_bytenr, num_bytes, 0);
916 btrfs_init_data_ref(&ref,
920bbbfb
YZ
917 root->root_key.objectid,
918 new_key.objectid,
b06c4bf5 919 start - extent_offset);
82fa113f 920 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
771ed689 922 }
920bbbfb 923 key.offset = start;
6643558d 924 }
62fe51c1
JB
925 /*
926 * From here on out we will have actually dropped something, so
927 * last_end can be updated.
928 */
929 last_end = extent_end;
930
920bbbfb
YZ
931 /*
932 * | ---- range to drop ----- |
933 * | -------- extent -------- |
934 */
935 if (start <= key.offset && end < extent_end) {
00fdf13a 936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 937 ret = -EOPNOTSUPP;
00fdf13a
LB
938 break;
939 }
6643558d 940
920bbbfb
YZ
941 memcpy(&new_key, &key, sizeof(new_key));
942 new_key.offset = end;
0b246afa 943 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 944
920bbbfb
YZ
945 extent_offset += end - key.offset;
946 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
947 btrfs_set_file_extent_num_bytes(leaf, fi,
948 extent_end - end);
949 btrfs_mark_buffer_dirty(leaf);
2671485d 950 if (update_refs && disk_bytenr > 0)
920bbbfb 951 inode_sub_bytes(inode, end - key.offset);
920bbbfb 952 break;
39279cc3 953 }
771ed689 954
920bbbfb
YZ
955 search_start = extent_end;
956 /*
957 * | ---- range to drop ----- |
958 * | -------- extent -------- |
959 */
960 if (start > key.offset && end >= extent_end) {
961 BUG_ON(del_nr > 0);
00fdf13a 962 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 963 ret = -EOPNOTSUPP;
00fdf13a
LB
964 break;
965 }
8c2383c3 966
920bbbfb
YZ
967 btrfs_set_file_extent_num_bytes(leaf, fi,
968 start - key.offset);
969 btrfs_mark_buffer_dirty(leaf);
2671485d 970 if (update_refs && disk_bytenr > 0)
920bbbfb 971 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
972 if (end == extent_end)
973 break;
c8b97818 974
920bbbfb
YZ
975 path->slots[0]++;
976 goto next_slot;
31840ae1
ZY
977 }
978
920bbbfb
YZ
979 /*
980 * | ---- range to drop ----- |
981 * | ------ extent ------ |
982 */
983 if (start <= key.offset && end >= extent_end) {
fc19c5e7 984delete_extent_item:
920bbbfb
YZ
985 if (del_nr == 0) {
986 del_slot = path->slots[0];
987 del_nr = 1;
988 } else {
989 BUG_ON(del_slot + del_nr != path->slots[0]);
990 del_nr++;
991 }
31840ae1 992
5dc562c5
JB
993 if (update_refs &&
994 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 995 inode_sub_bytes(inode,
920bbbfb
YZ
996 extent_end - key.offset);
997 extent_end = ALIGN(extent_end,
0b246afa 998 fs_info->sectorsize);
5dc562c5 999 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
1000 btrfs_init_generic_ref(&ref,
1001 BTRFS_DROP_DELAYED_REF,
1002 disk_bytenr, num_bytes, 0);
1003 btrfs_init_data_ref(&ref,
920bbbfb 1004 root->root_key.objectid,
ffd4bb2a
QW
1005 key.objectid,
1006 key.offset - extent_offset);
1007 ret = btrfs_free_extent(trans, &ref);
79787eaa 1008 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1009 inode_sub_bytes(inode,
1010 extent_end - key.offset);
31840ae1 1011 }
31840ae1 1012
920bbbfb
YZ
1013 if (end == extent_end)
1014 break;
1015
1016 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1017 path->slots[0]++;
1018 goto next_slot;
1019 }
1020
1021 ret = btrfs_del_items(trans, root, path, del_slot,
1022 del_nr);
79787eaa 1023 if (ret) {
66642832 1024 btrfs_abort_transaction(trans, ret);
5dc562c5 1025 break;
79787eaa 1026 }
920bbbfb
YZ
1027
1028 del_nr = 0;
1029 del_slot = 0;
1030
b3b4aa74 1031 btrfs_release_path(path);
920bbbfb 1032 continue;
39279cc3 1033 }
920bbbfb 1034
290342f6 1035 BUG();
39279cc3 1036 }
920bbbfb 1037
79787eaa 1038 if (!ret && del_nr > 0) {
1acae57b
FDBM
1039 /*
1040 * Set path->slots[0] to first slot, so that after the delete
1041 * if items are move off from our leaf to its immediate left or
1042 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1043 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1044 */
1045 path->slots[0] = del_slot;
920bbbfb 1046 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1047 if (ret)
66642832 1048 btrfs_abort_transaction(trans, ret);
d5f37527 1049 }
1acae57b 1050
d5f37527
FDBM
1051 leaf = path->nodes[0];
1052 /*
1053 * If btrfs_del_items() was called, it might have deleted a leaf, in
1054 * which case it unlocked our path, so check path->locks[0] matches a
1055 * write lock.
1056 */
1057 if (!ret && replace_extent && leafs_visited == 1 &&
1058 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1059 path->locks[0] == BTRFS_WRITE_LOCK) &&
e902baac 1060 btrfs_leaf_free_space(leaf) >=
d5f37527
FDBM
1061 sizeof(struct btrfs_item) + extent_item_size) {
1062
1063 key.objectid = ino;
1064 key.type = BTRFS_EXTENT_DATA_KEY;
1065 key.offset = start;
1066 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1067 struct btrfs_key slot_key;
1068
1069 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1070 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1071 path->slots[0]++;
1acae57b 1072 }
d5f37527
FDBM
1073 setup_items_for_insert(root, path, &key,
1074 &extent_item_size,
1075 extent_item_size,
1076 sizeof(struct btrfs_item) +
1077 extent_item_size, 1);
1078 *key_inserted = 1;
6643558d 1079 }
920bbbfb 1080
1acae57b
FDBM
1081 if (!replace_extent || !(*key_inserted))
1082 btrfs_release_path(path);
2aaa6655 1083 if (drop_end)
62fe51c1 1084 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1085 return ret;
1086}
1087
1088int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1090 u64 end, int drop_cache)
5dc562c5
JB
1091{
1092 struct btrfs_path *path;
1093 int ret;
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
2aaa6655 1098 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1099 drop_cache, 0, 0, NULL);
920bbbfb 1100 btrfs_free_path(path);
39279cc3
CM
1101 return ret;
1102}
1103
d899e052 1104static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1105 u64 objectid, u64 bytenr, u64 orig_offset,
1106 u64 *start, u64 *end)
d899e052
YZ
1107{
1108 struct btrfs_file_extent_item *fi;
1109 struct btrfs_key key;
1110 u64 extent_end;
1111
1112 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1113 return 0;
1114
1115 btrfs_item_key_to_cpu(leaf, &key, slot);
1116 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1117 return 0;
1118
1119 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1121 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1122 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1123 btrfs_file_extent_compression(leaf, fi) ||
1124 btrfs_file_extent_encryption(leaf, fi) ||
1125 btrfs_file_extent_other_encoding(leaf, fi))
1126 return 0;
1127
1128 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1129 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1130 return 0;
1131
1132 *start = key.offset;
1133 *end = extent_end;
1134 return 1;
1135}
1136
1137/*
1138 * Mark extent in the range start - end as written.
1139 *
1140 * This changes extent type from 'pre-allocated' to 'regular'. If only
1141 * part of extent is marked as written, the extent will be split into
1142 * two or three.
1143 */
1144int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1145 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1146{
3ffbd68c 1147 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1148 struct btrfs_root *root = inode->root;
d899e052
YZ
1149 struct extent_buffer *leaf;
1150 struct btrfs_path *path;
1151 struct btrfs_file_extent_item *fi;
82fa113f 1152 struct btrfs_ref ref = { 0 };
d899e052 1153 struct btrfs_key key;
920bbbfb 1154 struct btrfs_key new_key;
d899e052
YZ
1155 u64 bytenr;
1156 u64 num_bytes;
1157 u64 extent_end;
5d4f98a2 1158 u64 orig_offset;
d899e052
YZ
1159 u64 other_start;
1160 u64 other_end;
920bbbfb
YZ
1161 u64 split;
1162 int del_nr = 0;
1163 int del_slot = 0;
6c7d54ac 1164 int recow;
d899e052 1165 int ret;
7a6d7067 1166 u64 ino = btrfs_ino(inode);
d899e052 1167
d899e052 1168 path = btrfs_alloc_path();
d8926bb3
MF
1169 if (!path)
1170 return -ENOMEM;
d899e052 1171again:
6c7d54ac 1172 recow = 0;
920bbbfb 1173 split = start;
33345d01 1174 key.objectid = ino;
d899e052 1175 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1176 key.offset = split;
d899e052
YZ
1177
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1179 if (ret < 0)
1180 goto out;
d899e052
YZ
1181 if (ret > 0 && path->slots[0] > 0)
1182 path->slots[0]--;
1183
1184 leaf = path->nodes[0];
1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1186 if (key.objectid != ino ||
1187 key.type != BTRFS_EXTENT_DATA_KEY) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
d899e052
YZ
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
9c8e63db
JB
1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 ret = -EINVAL;
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
d899e052 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1200 if (key.offset > start || extent_end < end) {
1201 ret = -EINVAL;
1202 btrfs_abort_transaction(trans, ret);
1203 goto out;
1204 }
d899e052
YZ
1205
1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1209 memcpy(&new_key, &key, sizeof(new_key));
1210
1211 if (start == key.offset && end < extent_end) {
1212 other_start = 0;
1213 other_end = start;
1214 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1215 ino, bytenr, orig_offset,
6c7d54ac
YZ
1216 &other_start, &other_end)) {
1217 new_key.offset = end;
0b246afa 1218 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
224ecce5
JB
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
6c7d54ac
YZ
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 extent_end - end);
1225 btrfs_set_file_extent_offset(leaf, fi,
1226 end - orig_offset);
1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 struct btrfs_file_extent_item);
224ecce5
JB
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
6c7d54ac
YZ
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 end - other_start);
1233 btrfs_mark_buffer_dirty(leaf);
1234 goto out;
1235 }
1236 }
1237
1238 if (start > key.offset && end == extent_end) {
1239 other_start = end;
1240 other_end = 0;
1241 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1242 ino, bytenr, orig_offset,
6c7d54ac
YZ
1243 &other_start, &other_end)) {
1244 fi = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_file_extent_item);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 start - key.offset);
224ecce5
JB
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
6c7d54ac
YZ
1250 path->slots[0]++;
1251 new_key.offset = start;
0b246afa 1252 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1253
1254 fi = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_file_extent_item);
224ecce5
JB
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
6c7d54ac
YZ
1258 btrfs_set_file_extent_num_bytes(leaf, fi,
1259 other_end - start);
1260 btrfs_set_file_extent_offset(leaf, fi,
1261 start - orig_offset);
1262 btrfs_mark_buffer_dirty(leaf);
1263 goto out;
1264 }
1265 }
d899e052 1266
920bbbfb
YZ
1267 while (start > key.offset || end < extent_end) {
1268 if (key.offset == start)
1269 split = end;
1270
920bbbfb
YZ
1271 new_key.offset = split;
1272 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 if (ret == -EAGAIN) {
b3b4aa74 1274 btrfs_release_path(path);
920bbbfb 1275 goto again;
d899e052 1276 }
79787eaa 1277 if (ret < 0) {
66642832 1278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1279 goto out;
1280 }
d899e052 1281
920bbbfb
YZ
1282 leaf = path->nodes[0];
1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1284 struct btrfs_file_extent_item);
224ecce5 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1286 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1287 split - key.offset);
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291
224ecce5 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 extent_end - split);
d899e052
YZ
1296 btrfs_mark_buffer_dirty(leaf);
1297
82fa113f
QW
1298 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1299 num_bytes, 0);
1300 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1301 orig_offset);
1302 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1303 if (ret) {
1304 btrfs_abort_transaction(trans, ret);
1305 goto out;
1306 }
d899e052 1307
920bbbfb
YZ
1308 if (split == start) {
1309 key.offset = start;
1310 } else {
9c8e63db
JB
1311 if (start != key.offset) {
1312 ret = -EINVAL;
1313 btrfs_abort_transaction(trans, ret);
1314 goto out;
1315 }
d899e052 1316 path->slots[0]--;
920bbbfb 1317 extent_end = end;
d899e052 1318 }
6c7d54ac 1319 recow = 1;
d899e052
YZ
1320 }
1321
920bbbfb
YZ
1322 other_start = end;
1323 other_end = 0;
ffd4bb2a
QW
1324 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1325 num_bytes, 0);
1326 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
6c7d54ac 1327 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1328 ino, bytenr, orig_offset,
6c7d54ac
YZ
1329 &other_start, &other_end)) {
1330 if (recow) {
b3b4aa74 1331 btrfs_release_path(path);
6c7d54ac
YZ
1332 goto again;
1333 }
920bbbfb
YZ
1334 extent_end = other_end;
1335 del_slot = path->slots[0] + 1;
1336 del_nr++;
ffd4bb2a 1337 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1338 if (ret) {
1339 btrfs_abort_transaction(trans, ret);
1340 goto out;
1341 }
d899e052 1342 }
920bbbfb
YZ
1343 other_start = 0;
1344 other_end = start;
6c7d54ac 1345 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1346 ino, bytenr, orig_offset,
6c7d54ac
YZ
1347 &other_start, &other_end)) {
1348 if (recow) {
b3b4aa74 1349 btrfs_release_path(path);
6c7d54ac
YZ
1350 goto again;
1351 }
920bbbfb
YZ
1352 key.offset = other_start;
1353 del_slot = path->slots[0];
1354 del_nr++;
ffd4bb2a 1355 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1356 if (ret) {
1357 btrfs_abort_transaction(trans, ret);
1358 goto out;
1359 }
920bbbfb
YZ
1360 }
1361 if (del_nr == 0) {
3f6fae95
SL
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
920bbbfb
YZ
1364 btrfs_set_file_extent_type(leaf, fi,
1365 BTRFS_FILE_EXTENT_REG);
224ecce5 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1367 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1368 } else {
3f6fae95
SL
1369 fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 struct btrfs_file_extent_item);
6c7d54ac
YZ
1371 btrfs_set_file_extent_type(leaf, fi,
1372 BTRFS_FILE_EXTENT_REG);
224ecce5 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1374 btrfs_set_file_extent_num_bytes(leaf, fi,
1375 extent_end - key.offset);
1376 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1377
6c7d54ac 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1379 if (ret < 0) {
66642832 1380 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1381 goto out;
1382 }
6c7d54ac 1383 }
920bbbfb 1384out:
d899e052
YZ
1385 btrfs_free_path(path);
1386 return 0;
1387}
1388
b1bf862e
CM
1389/*
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1392 */
bb1591b4
CM
1393static int prepare_uptodate_page(struct inode *inode,
1394 struct page *page, u64 pos,
b6316429 1395 bool force_uptodate)
b1bf862e
CM
1396{
1397 int ret = 0;
1398
09cbfeaf 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1400 !PageUptodate(page)) {
b1bf862e
CM
1401 ret = btrfs_readpage(NULL, page);
1402 if (ret)
1403 return ret;
1404 lock_page(page);
1405 if (!PageUptodate(page)) {
1406 unlock_page(page);
1407 return -EIO;
1408 }
bb1591b4
CM
1409 if (page->mapping != inode->i_mapping) {
1410 unlock_page(page);
1411 return -EAGAIN;
1412 }
b1bf862e
CM
1413 }
1414 return 0;
1415}
1416
39279cc3 1417/*
376cc685 1418 * this just gets pages into the page cache and locks them down.
39279cc3 1419 */
b37392ea
MX
1420static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 size_t num_pages, loff_t pos,
1422 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1423{
1424 int i;
09cbfeaf 1425 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1427 int err = 0;
376cc685 1428 int faili;
8c2383c3 1429
39279cc3 1430 for (i = 0; i < num_pages; i++) {
bb1591b4 1431again:
a94733d0 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1433 mask | __GFP_WRITE);
39279cc3 1434 if (!pages[i]) {
b1bf862e
CM
1435 faili = i - 1;
1436 err = -ENOMEM;
1437 goto fail;
1438 }
1439
1440 if (i == 0)
bb1591b4 1441 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1442 force_uptodate);
bb1591b4
CM
1443 if (!err && i == num_pages - 1)
1444 err = prepare_uptodate_page(inode, pages[i],
b6316429 1445 pos + write_bytes, false);
b1bf862e 1446 if (err) {
09cbfeaf 1447 put_page(pages[i]);
bb1591b4
CM
1448 if (err == -EAGAIN) {
1449 err = 0;
1450 goto again;
1451 }
b1bf862e
CM
1452 faili = i - 1;
1453 goto fail;
39279cc3 1454 }
ccd467d6 1455 wait_on_page_writeback(pages[i]);
39279cc3 1456 }
376cc685
MX
1457
1458 return 0;
1459fail:
1460 while (faili >= 0) {
1461 unlock_page(pages[faili]);
09cbfeaf 1462 put_page(pages[faili]);
376cc685
MX
1463 faili--;
1464 }
1465 return err;
1466
1467}
1468
1469/*
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1472 *
1473 * The return value:
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1478 */
1479static noinline int
2cff578c 1480lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1481 size_t num_pages, loff_t pos,
2e78c927 1482 size_t write_bytes,
376cc685
MX
1483 u64 *lockstart, u64 *lockend,
1484 struct extent_state **cached_state)
1485{
3ffbd68c 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1487 u64 start_pos;
1488 u64 last_pos;
1489 int i;
1490 int ret = 0;
1491
0b246afa 1492 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1493 last_pos = start_pos
da17066c 1494 + round_up(pos + write_bytes - start_pos,
0b246afa 1495 fs_info->sectorsize) - 1;
376cc685 1496
e3b8a485 1497 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1498 struct btrfs_ordered_extent *ordered;
a7e3b975 1499
2cff578c
NB
1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501 cached_state);
b88935bf
MX
1502 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 last_pos - start_pos + 1);
e6dcd2dc 1504 if (ordered &&
bffe633e 1505 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1506 ordered->file_offset <= last_pos) {
2cff578c 1507 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1508 last_pos, cached_state);
e6dcd2dc
CM
1509 for (i = 0; i < num_pages; i++) {
1510 unlock_page(pages[i]);
09cbfeaf 1511 put_page(pages[i]);
e6dcd2dc 1512 }
2cff578c
NB
1513 btrfs_start_ordered_extent(&inode->vfs_inode,
1514 ordered, 1);
b88935bf
MX
1515 btrfs_put_ordered_extent(ordered);
1516 return -EAGAIN;
e6dcd2dc
CM
1517 }
1518 if (ordered)
1519 btrfs_put_ordered_extent(ordered);
7703bdd8 1520
376cc685
MX
1521 *lockstart = start_pos;
1522 *lockend = last_pos;
1523 ret = 1;
0762704b 1524 }
376cc685 1525
7703bdd8
CM
1526 /*
1527 * It's possible the pages are dirty right now, but we don't want
1528 * to clean them yet because copy_from_user may catch a page fault
1529 * and we might have to fall back to one page at a time. If that
1530 * happens, we'll unlock these pages and we'd have a window where
1531 * reclaim could sneak in and drop the once-dirty page on the floor
1532 * without writing it.
1533 *
1534 * We have the pages locked and the extent range locked, so there's
1535 * no way someone can start IO on any dirty pages in this range.
1536 *
1537 * We'll call btrfs_dirty_pages() later on, and that will flip around
1538 * delalloc bits and dirty the pages as required.
1539 */
e6dcd2dc 1540 for (i = 0; i < num_pages; i++) {
e6dcd2dc
CM
1541 set_page_extent_mapped(pages[i]);
1542 WARN_ON(!PageLocked(pages[i]));
1543 }
b1bf862e 1544
376cc685 1545 return ret;
39279cc3
CM
1546}
1547
85b7ab67 1548static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1549 size_t *write_bytes)
1550{
3ffbd68c 1551 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1552 struct btrfs_root *root = inode->root;
7ee9e440
JB
1553 u64 lockstart, lockend;
1554 u64 num_bytes;
1555 int ret;
1556
dcc3eb96 1557 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1558 return -EAGAIN;
8257b2dc 1559
0b246afa 1560 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1561 lockend = round_up(pos + *write_bytes,
0b246afa 1562 fs_info->sectorsize) - 1;
7ee9e440 1563
b272ae22 1564 btrfs_lock_and_flush_ordered_range(inode, lockstart,
23d31bd4 1565 lockend, NULL);
7ee9e440 1566
7ee9e440 1567 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1568 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1569 NULL, NULL, NULL);
7ee9e440
JB
1570 if (ret <= 0) {
1571 ret = 0;
dcc3eb96 1572 btrfs_drew_write_unlock(&root->snapshot_lock);
7ee9e440 1573 } else {
c933956d
MX
1574 *write_bytes = min_t(size_t, *write_bytes ,
1575 num_bytes - pos + lockstart);
7ee9e440
JB
1576 }
1577
85b7ab67 1578 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1579
1580 return ret;
1581}
1582
e4af400a
GR
1583static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1584 struct iov_iter *i)
4b46fce2 1585{
e4af400a
GR
1586 struct file *file = iocb->ki_filp;
1587 loff_t pos = iocb->ki_pos;
496ad9aa 1588 struct inode *inode = file_inode(file);
0b246afa 1589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1590 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1591 struct page **pages = NULL;
364ecf36 1592 struct extent_changeset *data_reserved = NULL;
7ee9e440 1593 u64 release_bytes = 0;
376cc685
MX
1594 u64 lockstart;
1595 u64 lockend;
d0215f3e
JB
1596 size_t num_written = 0;
1597 int nrptrs;
c9149235 1598 int ret = 0;
7ee9e440 1599 bool only_release_metadata = false;
b6316429 1600 bool force_page_uptodate = false;
4b46fce2 1601
09cbfeaf
KS
1602 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1603 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1604 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1605 nrptrs = max(nrptrs, 8);
31e818fe 1606 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1607 if (!pages)
1608 return -ENOMEM;
ab93dbec 1609
d0215f3e 1610 while (iov_iter_count(i) > 0) {
c67d970f 1611 struct extent_state *cached_state = NULL;
7073017a 1612 size_t offset = offset_in_page(pos);
2e78c927 1613 size_t sector_offset;
d0215f3e 1614 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1615 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1616 offset);
ed6078f7 1617 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1618 PAGE_SIZE);
7ee9e440 1619 size_t reserve_bytes;
d0215f3e
JB
1620 size_t dirty_pages;
1621 size_t copied;
2e78c927
CR
1622 size_t dirty_sectors;
1623 size_t num_sectors;
79f015f2 1624 int extents_locked;
39279cc3 1625
8c2383c3 1626 WARN_ON(num_pages > nrptrs);
1832a6d5 1627
914ee295
XZ
1628 /*
1629 * Fault pages before locking them in prepare_pages
1630 * to avoid recursive lock
1631 */
d0215f3e 1632 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1633 ret = -EFAULT;
d0215f3e 1634 break;
914ee295
XZ
1635 }
1636
a0e248bb 1637 only_release_metadata = false;
da17066c 1638 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1639 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1640 fs_info->sectorsize);
d9d8b2a5 1641
364ecf36
QW
1642 extent_changeset_release(data_reserved);
1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1644 write_bytes);
c6887cd1
JB
1645 if (ret < 0) {
1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1648 check_can_nocow(BTRFS_I(inode), pos,
1649 &write_bytes) > 0) {
c6887cd1
JB
1650 /*
1651 * For nodata cow case, no need to reserve
1652 * data space.
1653 */
1654 only_release_metadata = true;
1655 /*
1656 * our prealloc extent may be smaller than
1657 * write_bytes, so scale down.
1658 */
1659 num_pages = DIV_ROUND_UP(write_bytes + offset,
1660 PAGE_SIZE);
1661 reserve_bytes = round_up(write_bytes +
1662 sector_offset,
da17066c 1663 fs_info->sectorsize);
c6887cd1
JB
1664 } else {
1665 break;
1666 }
1667 }
1832a6d5 1668
8b62f87b 1669 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1671 reserve_bytes);
7ee9e440
JB
1672 if (ret) {
1673 if (!only_release_metadata)
bc42bda2
QW
1674 btrfs_free_reserved_data_space(inode,
1675 data_reserved, pos,
1676 write_bytes);
8257b2dc 1677 else
dcc3eb96 1678 btrfs_drew_write_unlock(&root->snapshot_lock);
7ee9e440
JB
1679 break;
1680 }
1681
1682 release_bytes = reserve_bytes;
376cc685 1683again:
4a64001f
JB
1684 /*
1685 * This is going to setup the pages array with the number of
1686 * pages we want, so we don't really need to worry about the
1687 * contents of pages from loop to loop
1688 */
b37392ea
MX
1689 ret = prepare_pages(inode, pages, num_pages,
1690 pos, write_bytes,
b6316429 1691 force_page_uptodate);
8b62f87b
JB
1692 if (ret) {
1693 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1694 reserve_bytes);
d0215f3e 1695 break;
8b62f87b 1696 }
39279cc3 1697
79f015f2
GR
1698 extents_locked = lock_and_cleanup_extent_if_need(
1699 BTRFS_I(inode), pages,
2cff578c
NB
1700 num_pages, pos, write_bytes, &lockstart,
1701 &lockend, &cached_state);
79f015f2
GR
1702 if (extents_locked < 0) {
1703 if (extents_locked == -EAGAIN)
376cc685 1704 goto again;
8b62f87b 1705 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1706 reserve_bytes);
79f015f2 1707 ret = extents_locked;
376cc685 1708 break;
376cc685
MX
1709 }
1710
ee22f0c4 1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1712
0b246afa 1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1714 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1715 fs_info->sectorsize);
1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1717
b1bf862e
CM
1718 /*
1719 * if we have trouble faulting in the pages, fall
1720 * back to one page at a time
1721 */
1722 if (copied < write_bytes)
1723 nrptrs = 1;
1724
b6316429
JB
1725 if (copied == 0) {
1726 force_page_uptodate = true;
56244ef1 1727 dirty_sectors = 0;
b1bf862e 1728 dirty_pages = 0;
b6316429
JB
1729 } else {
1730 force_page_uptodate = false;
ed6078f7 1731 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1732 PAGE_SIZE);
b6316429 1733 }
914ee295 1734
2e78c927 1735 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1736 /* release everything except the sectors we dirtied */
1737 release_bytes -= dirty_sectors <<
0b246afa 1738 fs_info->sb->s_blocksize_bits;
485290a7 1739 if (only_release_metadata) {
691fa059 1740 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1741 release_bytes, true);
485290a7
QW
1742 } else {
1743 u64 __pos;
1744
da17066c 1745 __pos = round_down(pos,
0b246afa 1746 fs_info->sectorsize) +
09cbfeaf 1747 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1748 btrfs_delalloc_release_space(inode,
1749 data_reserved, __pos,
43b18595 1750 release_bytes, true);
485290a7 1751 }
914ee295
XZ
1752 }
1753
2e78c927 1754 release_bytes = round_up(copied + sector_offset,
0b246afa 1755 fs_info->sectorsize);
376cc685
MX
1756
1757 if (copied > 0)
2ff7e61e 1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
94f45071 1759 pos, copied, &cached_state);
c67d970f
FM
1760
1761 /*
1762 * If we have not locked the extent range, because the range's
1763 * start offset is >= i_size, we might still have a non-NULL
1764 * cached extent state, acquired while marking the extent range
1765 * as delalloc through btrfs_dirty_pages(). Therefore free any
1766 * possible cached extent state to avoid a memory leak.
1767 */
79f015f2 1768 if (extents_locked)
376cc685 1769 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1770 lockstart, lockend, &cached_state);
c67d970f
FM
1771 else
1772 free_extent_state(cached_state);
1773
8702ba93 1774 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683
MX
1775 if (ret) {
1776 btrfs_drop_pages(pages, num_pages);
376cc685 1777 break;
f1de9683 1778 }
39279cc3 1779
376cc685 1780 release_bytes = 0;
8257b2dc 1781 if (only_release_metadata)
dcc3eb96 1782 btrfs_drew_write_unlock(&root->snapshot_lock);
8257b2dc 1783
7ee9e440 1784 if (only_release_metadata && copied > 0) {
da17066c 1785 lockstart = round_down(pos,
0b246afa 1786 fs_info->sectorsize);
da17066c 1787 lockend = round_up(pos + copied,
0b246afa 1788 fs_info->sectorsize) - 1;
7ee9e440
JB
1789
1790 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1791 lockend, EXTENT_NORESERVE, NULL,
1792 NULL, GFP_NOFS);
7ee9e440
JB
1793 }
1794
f1de9683
MX
1795 btrfs_drop_pages(pages, num_pages);
1796
d0215f3e
JB
1797 cond_resched();
1798
d0e1d66b 1799 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1800 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1801 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1802
914ee295
XZ
1803 pos += copied;
1804 num_written += copied;
d0215f3e 1805 }
39279cc3 1806
d0215f3e
JB
1807 kfree(pages);
1808
7ee9e440 1809 if (release_bytes) {
8257b2dc 1810 if (only_release_metadata) {
dcc3eb96 1811 btrfs_drew_write_unlock(&root->snapshot_lock);
691fa059 1812 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1813 release_bytes, true);
8257b2dc 1814 } else {
bc42bda2
QW
1815 btrfs_delalloc_release_space(inode, data_reserved,
1816 round_down(pos, fs_info->sectorsize),
43b18595 1817 release_bytes, true);
8257b2dc 1818 }
7ee9e440
JB
1819 }
1820
364ecf36 1821 extent_changeset_free(data_reserved);
d0215f3e
JB
1822 return num_written ? num_written : ret;
1823}
1824
1af5bb49 1825static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1826{
1827 struct file *file = iocb->ki_filp;
728404da 1828 struct inode *inode = file_inode(file);
e4af400a 1829 loff_t pos;
d0215f3e
JB
1830 ssize_t written;
1831 ssize_t written_buffered;
1832 loff_t endbyte;
1833 int err;
1834
1af5bb49 1835 written = generic_file_direct_write(iocb, from);
d0215f3e 1836
0c949334 1837 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1838 return written;
1839
e4af400a
GR
1840 pos = iocb->ki_pos;
1841 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1842 if (written_buffered < 0) {
1843 err = written_buffered;
1844 goto out;
39279cc3 1845 }
075bdbdb
FM
1846 /*
1847 * Ensure all data is persisted. We want the next direct IO read to be
1848 * able to read what was just written.
1849 */
d0215f3e 1850 endbyte = pos + written_buffered - 1;
728404da 1851 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1852 if (err)
1853 goto out;
728404da 1854 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1855 if (err)
1856 goto out;
1857 written += written_buffered;
867c4f93 1858 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1859 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1860 endbyte >> PAGE_SHIFT);
39279cc3 1861out:
d0215f3e
JB
1862 return written ? written : err;
1863}
5b92ee72 1864
6c760c07
JB
1865static void update_time_for_write(struct inode *inode)
1866{
95582b00 1867 struct timespec64 now;
6c760c07
JB
1868
1869 if (IS_NOCMTIME(inode))
1870 return;
1871
c2050a45 1872 now = current_time(inode);
95582b00 1873 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1874 inode->i_mtime = now;
1875
95582b00 1876 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1877 inode->i_ctime = now;
1878
1879 if (IS_I_VERSION(inode))
1880 inode_inc_iversion(inode);
1881}
1882
b30ac0fc
AV
1883static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1884 struct iov_iter *from)
d0215f3e
JB
1885{
1886 struct file *file = iocb->ki_filp;
496ad9aa 1887 struct inode *inode = file_inode(file);
0b246afa 1888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1889 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1890 u64 start_pos;
3ac0d7b9 1891 u64 end_pos;
d0215f3e 1892 ssize_t num_written = 0;
f50cb7af 1893 const bool sync = iocb->ki_flags & IOCB_DSYNC;
3309dd04 1894 ssize_t err;
ff0fa732 1895 loff_t pos;
c09767a8 1896 size_t count;
27772b68
CR
1897 loff_t oldsize;
1898 int clean_page = 0;
d0215f3e 1899
91f9943e
CH
1900 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1901 (iocb->ki_flags & IOCB_NOWAIT))
1902 return -EOPNOTSUPP;
1903
9cf35f67
GR
1904 if (iocb->ki_flags & IOCB_NOWAIT) {
1905 if (!inode_trylock(inode))
edf064e7 1906 return -EAGAIN;
9cf35f67 1907 } else {
ff0fa732
GR
1908 inode_lock(inode);
1909 }
1910
1911 err = generic_write_checks(iocb, from);
1912 if (err <= 0) {
1913 inode_unlock(inode);
1914 return err;
1915 }
1916
1917 pos = iocb->ki_pos;
c09767a8 1918 count = iov_iter_count(from);
ff0fa732 1919 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1920 /*
1921 * We will allocate space in case nodatacow is not set,
1922 * so bail
1923 */
1924 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1925 BTRFS_INODE_PREALLOC)) ||
1926 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1927 inode_unlock(inode);
1928 return -EAGAIN;
1929 }
d0215f3e
JB
1930 }
1931
3309dd04 1932 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1933 err = file_remove_privs(file);
d0215f3e 1934 if (err) {
5955102c 1935 inode_unlock(inode);
d0215f3e
JB
1936 goto out;
1937 }
1938
1939 /*
1940 * If BTRFS flips readonly due to some impossible error
1941 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1942 * although we have opened a file as writable, we have
1943 * to stop this write operation to ensure FS consistency.
1944 */
0b246afa 1945 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1946 inode_unlock(inode);
d0215f3e
JB
1947 err = -EROFS;
1948 goto out;
1949 }
1950
6c760c07
JB
1951 /*
1952 * We reserve space for updating the inode when we reserve space for the
1953 * extent we are going to write, so we will enospc out there. We don't
1954 * need to start yet another transaction to update the inode as we will
1955 * update the inode when we finish writing whatever data we write.
1956 */
1957 update_time_for_write(inode);
d0215f3e 1958
0b246afa 1959 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1960 oldsize = i_size_read(inode);
1961 if (start_pos > oldsize) {
3ac0d7b9 1962 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1963 end_pos = round_up(pos + count,
0b246afa 1964 fs_info->sectorsize);
27772b68 1965 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1966 if (err) {
5955102c 1967 inode_unlock(inode);
0c1a98c8
MX
1968 goto out;
1969 }
0b246afa 1970 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1971 clean_page = 1;
0c1a98c8
MX
1972 }
1973
b812ce28
JB
1974 if (sync)
1975 atomic_inc(&BTRFS_I(inode)->sync_writers);
1976
2ba48ce5 1977 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1978 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1979 } else {
e4af400a 1980 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 1981 if (num_written > 0)
867c4f93 1982 iocb->ki_pos = pos + num_written;
27772b68
CR
1983 if (clean_page)
1984 pagecache_isize_extended(inode, oldsize,
1985 i_size_read(inode));
d0215f3e
JB
1986 }
1987
5955102c 1988 inode_unlock(inode);
2ff3e9b6 1989
5a3f23d5 1990 /*
6c760c07
JB
1991 * We also have to set last_sub_trans to the current log transid,
1992 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1993 * transaction will appear to have already occurred.
5a3f23d5 1994 */
2f2ff0ee 1995 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1996 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1997 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1998 if (num_written > 0)
1999 num_written = generic_write_sync(iocb, num_written);
0a3404dc 2000
b812ce28
JB
2001 if (sync)
2002 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 2003out:
39279cc3 2004 current->backing_dev_info = NULL;
39279cc3
CM
2005 return num_written ? num_written : err;
2006}
2007
d397712b 2008int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 2009{
23b5ec74
JB
2010 struct btrfs_file_private *private = filp->private_data;
2011
23b5ec74
JB
2012 if (private && private->filldir_buf)
2013 kfree(private->filldir_buf);
2014 kfree(private);
2015 filp->private_data = NULL;
2016
f6dc45c7 2017 /*
52042d8e 2018 * ordered_data_close is set by setattr when we are about to truncate
f6dc45c7
CM
2019 * a file from a non-zero size to a zero size. This tries to
2020 * flush down new bytes that may have been written if the
2021 * application were using truncate to replace a file in place.
2022 */
2023 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2024 &BTRFS_I(inode)->runtime_flags))
2025 filemap_flush(inode->i_mapping);
e1b81e67
M
2026 return 0;
2027}
2028
669249ee
FM
2029static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2030{
2031 int ret;
343e4fc1 2032 struct blk_plug plug;
669249ee 2033
343e4fc1
LB
2034 /*
2035 * This is only called in fsync, which would do synchronous writes, so
2036 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2037 * multiple disks using raid profile, a large IO can be split to
2038 * several segments of stripe length (currently 64K).
2039 */
2040 blk_start_plug(&plug);
669249ee 2041 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2042 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2043 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2044 blk_finish_plug(&plug);
669249ee
FM
2045
2046 return ret;
2047}
2048
d352ac68
CM
2049/*
2050 * fsync call for both files and directories. This logs the inode into
2051 * the tree log instead of forcing full commits whenever possible.
2052 *
2053 * It needs to call filemap_fdatawait so that all ordered extent updates are
2054 * in the metadata btree are up to date for copying to the log.
2055 *
2056 * It drops the inode mutex before doing the tree log commit. This is an
2057 * important optimization for directories because holding the mutex prevents
2058 * new operations on the dir while we write to disk.
2059 */
02c24a82 2060int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2061{
de17e793 2062 struct dentry *dentry = file_dentry(file);
2b0143b5 2063 struct inode *inode = d_inode(dentry);
0b246afa 2064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2065 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2066 struct btrfs_trans_handle *trans;
8b050d35 2067 struct btrfs_log_ctx ctx;
333427a5 2068 int ret = 0, err;
39279cc3 2069
1abe9b8a 2070 trace_btrfs_sync_file(file, datasync);
257c62e1 2071
ebb70442
LB
2072 btrfs_init_log_ctx(&ctx, inode);
2073
90abccf2
MX
2074 /*
2075 * We write the dirty pages in the range and wait until they complete
2076 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2077 * multi-task, and make the performance up. See
2078 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2079 */
669249ee 2080 ret = start_ordered_ops(inode, start, end);
90abccf2 2081 if (ret)
333427a5 2082 goto out;
90abccf2 2083
5955102c 2084 inode_lock(inode);
c495144b
JB
2085
2086 /*
2087 * We take the dio_sem here because the tree log stuff can race with
2088 * lockless dio writes and get an extent map logged for an extent we
2089 * never waited on. We need it this high up for lockdep reasons.
2090 */
2091 down_write(&BTRFS_I(inode)->dio_sem);
2092
2ecb7923 2093 atomic_inc(&root->log_batch);
b5e6c3e1 2094
ba0b084a
FM
2095 /*
2096 * If the inode needs a full sync, make sure we use a full range to
2097 * avoid log tree corruption, due to hole detection racing with ordered
2098 * extent completion for adjacent ranges, and assertion failures during
2099 * hole detection. Do this while holding the inode lock, to avoid races
2100 * with other tasks.
2101 */
2102 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2103 &BTRFS_I(inode)->runtime_flags)) {
2104 start = 0;
2105 end = LLONG_MAX;
2106 }
2107
aab15e8e
FM
2108 /*
2109 * Before we acquired the inode's lock, someone may have dirtied more
2110 * pages in the target range. We need to make sure that writeback for
2111 * any such pages does not start while we are logging the inode, because
2112 * if it does, any of the following might happen when we are not doing a
2113 * full inode sync:
2114 *
2115 * 1) We log an extent after its writeback finishes but before its
2116 * checksums are added to the csum tree, leading to -EIO errors
2117 * when attempting to read the extent after a log replay.
2118 *
2119 * 2) We can end up logging an extent before its writeback finishes.
2120 * Therefore after the log replay we will have a file extent item
2121 * pointing to an unwritten extent (and no data checksums as well).
2122 *
2123 * So trigger writeback for any eventual new dirty pages and then we
2124 * wait for all ordered extents to complete below.
2125 */
2126 ret = start_ordered_ops(inode, start, end);
2127 if (ret) {
2128 inode_unlock(inode);
2129 goto out;
2130 }
2131
669249ee 2132 /*
b5e6c3e1 2133 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2134 * IO of a lower priority task while holding a transaction open.
ba0b084a
FM
2135 *
2136 * Also, the range length can be represented by u64, we have to do the
2137 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
669249ee 2138 */
ba0b084a 2139 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
669249ee 2140 if (ret) {
c495144b 2141 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2142 inode_unlock(inode);
669249ee 2143 goto out;
0ef8b726 2144 }
2ecb7923 2145 atomic_inc(&root->log_batch);
257c62e1 2146
a4abeea4 2147 smp_mb();
0f8939b8 2148 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
ca5788ab 2149 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
5dc562c5 2150 /*
01327610 2151 * We've had everything committed since the last time we were
5dc562c5
JB
2152 * modified so clear this flag in case it was set for whatever
2153 * reason, it's no longer relevant.
2154 */
2155 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2156 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2157 /*
2158 * An ordered extent might have started before and completed
2159 * already with io errors, in which case the inode was not
2160 * updated and we end up here. So check the inode's mapping
333427a5
JL
2161 * for any errors that might have happened since we last
2162 * checked called fsync.
0596a904 2163 */
333427a5 2164 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
c495144b 2165 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2166 inode_unlock(inode);
15ee9bc7
JB
2167 goto out;
2168 }
15ee9bc7 2169
5039eddc
JB
2170 /*
2171 * We use start here because we will need to wait on the IO to complete
2172 * in btrfs_sync_log, which could require joining a transaction (for
2173 * example checking cross references in the nocow path). If we use join
2174 * here we could get into a situation where we're waiting on IO to
2175 * happen that is blocked on a transaction trying to commit. With start
2176 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2177 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2178 * from thinking they are super smart and changing this to
2179 * btrfs_join_transaction *cough*Josef*cough*.
2180 */
a22285a6
YZ
2181 trans = btrfs_start_transaction(root, 0);
2182 if (IS_ERR(trans)) {
2183 ret = PTR_ERR(trans);
c495144b 2184 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2185 inode_unlock(inode);
39279cc3
CM
2186 goto out;
2187 }
e02119d5 2188
e5b84f7a 2189 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
02c24a82 2190 if (ret < 0) {
a0634be5
FDBM
2191 /* Fallthrough and commit/free transaction. */
2192 ret = 1;
02c24a82 2193 }
49eb7e46
CM
2194
2195 /* we've logged all the items and now have a consistent
2196 * version of the file in the log. It is possible that
2197 * someone will come in and modify the file, but that's
2198 * fine because the log is consistent on disk, and we
2199 * have references to all of the file's extents
2200 *
2201 * It is possible that someone will come in and log the
2202 * file again, but that will end up using the synchronization
2203 * inside btrfs_sync_log to keep things safe.
2204 */
c495144b 2205 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2206 inode_unlock(inode);
49eb7e46 2207
257c62e1 2208 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2209 if (!ret) {
8b050d35 2210 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2211 if (!ret) {
3a45bb20 2212 ret = btrfs_end_transaction(trans);
0ef8b726 2213 goto out;
2ab28f32 2214 }
257c62e1 2215 }
3a45bb20 2216 ret = btrfs_commit_transaction(trans);
257c62e1 2217 } else {
3a45bb20 2218 ret = btrfs_end_transaction(trans);
e02119d5 2219 }
39279cc3 2220out:
ebb70442 2221 ASSERT(list_empty(&ctx.list));
333427a5
JL
2222 err = file_check_and_advance_wb_err(file);
2223 if (!ret)
2224 ret = err;
014e4ac4 2225 return ret > 0 ? -EIO : ret;
39279cc3
CM
2226}
2227
f0f37e2f 2228static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2229 .fault = filemap_fault,
f1820361 2230 .map_pages = filemap_map_pages,
9ebefb18
CM
2231 .page_mkwrite = btrfs_page_mkwrite,
2232};
2233
2234static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2235{
058a457e
MX
2236 struct address_space *mapping = filp->f_mapping;
2237
2238 if (!mapping->a_ops->readpage)
2239 return -ENOEXEC;
2240
9ebefb18 2241 file_accessed(filp);
058a457e 2242 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2243
9ebefb18
CM
2244 return 0;
2245}
2246
35339c24 2247static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2248 int slot, u64 start, u64 end)
2249{
2250 struct btrfs_file_extent_item *fi;
2251 struct btrfs_key key;
2252
2253 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2254 return 0;
2255
2256 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2257 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2258 key.type != BTRFS_EXTENT_DATA_KEY)
2259 return 0;
2260
2261 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2262
2263 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2264 return 0;
2265
2266 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2267 return 0;
2268
2269 if (key.offset == end)
2270 return 1;
2271 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2272 return 1;
2273 return 0;
2274}
2275
a012a74e
NB
2276static int fill_holes(struct btrfs_trans_handle *trans,
2277 struct btrfs_inode *inode,
2278 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2279{
3ffbd68c 2280 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2281 struct btrfs_root *root = inode->root;
2aaa6655
JB
2282 struct extent_buffer *leaf;
2283 struct btrfs_file_extent_item *fi;
2284 struct extent_map *hole_em;
a012a74e 2285 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2286 struct btrfs_key key;
2287 int ret;
2288
0b246afa 2289 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2290 goto out;
2291
a012a74e 2292 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2293 key.type = BTRFS_EXTENT_DATA_KEY;
2294 key.offset = offset;
2295
2aaa6655 2296 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2297 if (ret <= 0) {
2298 /*
2299 * We should have dropped this offset, so if we find it then
2300 * something has gone horribly wrong.
2301 */
2302 if (ret == 0)
2303 ret = -EINVAL;
2aaa6655 2304 return ret;
f94480bd 2305 }
2aaa6655
JB
2306
2307 leaf = path->nodes[0];
a012a74e 2308 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2309 u64 num_bytes;
2310
2311 path->slots[0]--;
2312 fi = btrfs_item_ptr(leaf, path->slots[0],
2313 struct btrfs_file_extent_item);
2314 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2315 end - offset;
2316 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2317 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2318 btrfs_set_file_extent_offset(leaf, fi, 0);
2319 btrfs_mark_buffer_dirty(leaf);
2320 goto out;
2321 }
2322
1707e26d 2323 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2324 u64 num_bytes;
2325
2aaa6655 2326 key.offset = offset;
0b246afa 2327 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2328 fi = btrfs_item_ptr(leaf, path->slots[0],
2329 struct btrfs_file_extent_item);
2330 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2331 offset;
2332 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2333 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2334 btrfs_set_file_extent_offset(leaf, fi, 0);
2335 btrfs_mark_buffer_dirty(leaf);
2336 goto out;
2337 }
2338 btrfs_release_path(path);
2339
a012a74e 2340 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2341 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2342 if (ret)
2343 return ret;
2344
2345out:
2346 btrfs_release_path(path);
2347
2348 hole_em = alloc_extent_map();
2349 if (!hole_em) {
2350 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2352 } else {
2353 hole_em->start = offset;
2354 hole_em->len = end - offset;
cc95bef6 2355 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2356 hole_em->orig_start = offset;
2357
2358 hole_em->block_start = EXTENT_MAP_HOLE;
2359 hole_em->block_len = 0;
b4939680 2360 hole_em->orig_block_len = 0;
2aaa6655
JB
2361 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2362 hole_em->generation = trans->transid;
2363
2364 do {
2365 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2366 write_lock(&em_tree->lock);
09a2a8f9 2367 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2368 write_unlock(&em_tree->lock);
2369 } while (ret == -EEXIST);
2370 free_extent_map(hole_em);
2371 if (ret)
2372 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2373 &inode->runtime_flags);
2aaa6655
JB
2374 }
2375
2376 return 0;
2377}
2378
d7781546
QW
2379/*
2380 * Find a hole extent on given inode and change start/len to the end of hole
2381 * extent.(hole/vacuum extent whose em->start <= start &&
2382 * em->start + em->len > start)
2383 * When a hole extent is found, return 1 and modify start/len.
2384 */
2385static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2386{
609805d8 2387 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2388 struct extent_map *em;
2389 int ret = 0;
2390
609805d8
FM
2391 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2392 round_down(*start, fs_info->sectorsize),
39b07b5d 2393 round_up(*len, fs_info->sectorsize));
9986277e
DC
2394 if (IS_ERR(em))
2395 return PTR_ERR(em);
d7781546
QW
2396
2397 /* Hole or vacuum extent(only exists in no-hole mode) */
2398 if (em->block_start == EXTENT_MAP_HOLE) {
2399 ret = 1;
2400 *len = em->start + em->len > *start + *len ?
2401 0 : *start + *len - em->start - em->len;
2402 *start = em->start + em->len;
2403 }
2404 free_extent_map(em);
2405 return ret;
2406}
2407
f27451f2
FM
2408static int btrfs_punch_hole_lock_range(struct inode *inode,
2409 const u64 lockstart,
2410 const u64 lockend,
2411 struct extent_state **cached_state)
2412{
2413 while (1) {
2414 struct btrfs_ordered_extent *ordered;
2415 int ret;
2416
2417 truncate_pagecache_range(inode, lockstart, lockend);
2418
2419 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2420 cached_state);
2421 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2422
2423 /*
2424 * We need to make sure we have no ordered extents in this range
2425 * and nobody raced in and read a page in this range, if we did
2426 * we need to try again.
2427 */
2428 if ((!ordered ||
bffe633e 2429 (ordered->file_offset + ordered->num_bytes <= lockstart ||
f27451f2 2430 ordered->file_offset > lockend)) &&
051c98eb
DS
2431 !filemap_range_has_page(inode->i_mapping,
2432 lockstart, lockend)) {
f27451f2
FM
2433 if (ordered)
2434 btrfs_put_ordered_extent(ordered);
2435 break;
2436 }
2437 if (ordered)
2438 btrfs_put_ordered_extent(ordered);
2439 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2440 lockend, cached_state);
2441 ret = btrfs_wait_ordered_range(inode, lockstart,
2442 lockend - lockstart + 1);
2443 if (ret)
2444 return ret;
2445 }
2446 return 0;
2447}
2448
690a5dbf
FM
2449static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2450 struct inode *inode,
2451 struct btrfs_path *path,
2452 struct btrfs_clone_extent_info *clone_info,
2453 const u64 clone_len)
2454{
2455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2456 struct btrfs_root *root = BTRFS_I(inode)->root;
2457 struct btrfs_file_extent_item *extent;
2458 struct extent_buffer *leaf;
2459 struct btrfs_key key;
2460 int slot;
2461 struct btrfs_ref ref = { 0 };
2462 u64 ref_offset;
2463 int ret;
2464
2465 if (clone_len == 0)
2466 return 0;
2467
2468 if (clone_info->disk_offset == 0 &&
2469 btrfs_fs_incompat(fs_info, NO_HOLES))
2470 return 0;
2471
2472 key.objectid = btrfs_ino(BTRFS_I(inode));
2473 key.type = BTRFS_EXTENT_DATA_KEY;
2474 key.offset = clone_info->file_offset;
2475 ret = btrfs_insert_empty_item(trans, root, path, &key,
2476 clone_info->item_size);
2477 if (ret)
2478 return ret;
2479 leaf = path->nodes[0];
2480 slot = path->slots[0];
2481 write_extent_buffer(leaf, clone_info->extent_buf,
2482 btrfs_item_ptr_offset(leaf, slot),
2483 clone_info->item_size);
2484 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2485 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2486 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2487 btrfs_mark_buffer_dirty(leaf);
2488 btrfs_release_path(path);
2489
9ddc959e
JB
2490 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2491 clone_info->file_offset, clone_len);
2492 if (ret)
2493 return ret;
2494
690a5dbf
FM
2495 /* If it's a hole, nothing more needs to be done. */
2496 if (clone_info->disk_offset == 0)
2497 return 0;
2498
2499 inode_add_bytes(inode, clone_len);
2500 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2501 clone_info->disk_offset,
2502 clone_info->disk_len, 0);
2503 ref_offset = clone_info->file_offset - clone_info->data_offset;
2504 btrfs_init_data_ref(&ref, root->root_key.objectid,
2505 btrfs_ino(BTRFS_I(inode)), ref_offset);
2506 ret = btrfs_inc_extent_ref(trans, &ref);
2507
2508 return ret;
2509}
2510
9cba40a6
FM
2511/*
2512 * The respective range must have been previously locked, as well as the inode.
2513 * The end offset is inclusive (last byte of the range).
690a5dbf
FM
2514 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2515 * cloning.
2516 * When cloning, we don't want to end up in a state where we dropped extents
2517 * without inserting a new one, so we must abort the transaction to avoid a
2518 * corruption.
9cba40a6 2519 */
690a5dbf
FM
2520int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2521 const u64 start, const u64 end,
2522 struct btrfs_clone_extent_info *clone_info,
2523 struct btrfs_trans_handle **trans_out)
9cba40a6
FM
2524{
2525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2bd36e7b 2526 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2527 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2528 struct btrfs_root *root = BTRFS_I(inode)->root;
2529 struct btrfs_trans_handle *trans = NULL;
2530 struct btrfs_block_rsv *rsv;
2531 unsigned int rsv_count;
2532 u64 cur_offset;
2533 u64 drop_end;
2534 u64 len = end - start;
2535 int ret = 0;
2536
2537 if (end <= start)
2538 return -EINVAL;
2539
2540 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2541 if (!rsv) {
2542 ret = -ENOMEM;
2543 goto out;
2544 }
2bd36e7b 2545 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2546 rsv->failfast = 1;
2547
2548 /*
2549 * 1 - update the inode
2550 * 1 - removing the extents in the range
690a5dbf
FM
2551 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2552 * an extent
9cba40a6 2553 */
690a5dbf
FM
2554 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2555 rsv_count = 3;
2556 else
2557 rsv_count = 2;
2558
9cba40a6
FM
2559 trans = btrfs_start_transaction(root, rsv_count);
2560 if (IS_ERR(trans)) {
2561 ret = PTR_ERR(trans);
2562 trans = NULL;
2563 goto out_free;
2564 }
2565
2566 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2567 min_size, false);
2568 BUG_ON(ret);
2569 trans->block_rsv = rsv;
2570
2571 cur_offset = start;
2572 while (cur_offset < end) {
2573 ret = __btrfs_drop_extents(trans, root, inode, path,
2574 cur_offset, end + 1, &drop_end,
2575 1, 0, 0, NULL);
690a5dbf
FM
2576 if (ret != -ENOSPC) {
2577 /*
2578 * When cloning we want to avoid transaction aborts when
2579 * nothing was done and we are attempting to clone parts
2580 * of inline extents, in such cases -EOPNOTSUPP is
2581 * returned by __btrfs_drop_extents() without having
2582 * changed anything in the file.
2583 */
2584 if (clone_info && ret && ret != -EOPNOTSUPP)
2585 btrfs_abort_transaction(trans, ret);
9cba40a6 2586 break;
690a5dbf 2587 }
9cba40a6
FM
2588
2589 trans->block_rsv = &fs_info->trans_block_rsv;
2590
690a5dbf
FM
2591 if (!clone_info && cur_offset < drop_end &&
2592 cur_offset < ino_size) {
9cba40a6
FM
2593 ret = fill_holes(trans, BTRFS_I(inode), path,
2594 cur_offset, drop_end);
2595 if (ret) {
2596 /*
2597 * If we failed then we didn't insert our hole
2598 * entries for the area we dropped, so now the
2599 * fs is corrupted, so we must abort the
2600 * transaction.
2601 */
2602 btrfs_abort_transaction(trans, ret);
2603 break;
2604 }
9ddc959e
JB
2605 } else if (!clone_info && cur_offset < drop_end) {
2606 /*
2607 * We are past the i_size here, but since we didn't
2608 * insert holes we need to clear the mapped area so we
2609 * know to not set disk_i_size in this area until a new
2610 * file extent is inserted here.
2611 */
2612 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2613 cur_offset, drop_end - cur_offset);
2614 if (ret) {
2615 /*
2616 * We couldn't clear our area, so we could
2617 * presumably adjust up and corrupt the fs, so
2618 * we need to abort.
2619 */
2620 btrfs_abort_transaction(trans, ret);
2621 break;
2622 }
9cba40a6
FM
2623 }
2624
fcb97058
FM
2625 if (clone_info && drop_end > clone_info->file_offset) {
2626 u64 clone_len = drop_end - clone_info->file_offset;
690a5dbf
FM
2627
2628 ret = btrfs_insert_clone_extent(trans, inode, path,
2629 clone_info, clone_len);
2630 if (ret) {
2631 btrfs_abort_transaction(trans, ret);
2632 break;
2633 }
2634 clone_info->data_len -= clone_len;
2635 clone_info->data_offset += clone_len;
2636 clone_info->file_offset += clone_len;
2637 }
2638
9cba40a6
FM
2639 cur_offset = drop_end;
2640
2641 ret = btrfs_update_inode(trans, root, inode);
2642 if (ret)
2643 break;
2644
2645 btrfs_end_transaction(trans);
2646 btrfs_btree_balance_dirty(fs_info);
2647
2648 trans = btrfs_start_transaction(root, rsv_count);
2649 if (IS_ERR(trans)) {
2650 ret = PTR_ERR(trans);
2651 trans = NULL;
2652 break;
2653 }
2654
2655 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2656 rsv, min_size, false);
2657 BUG_ON(ret); /* shouldn't happen */
2658 trans->block_rsv = rsv;
2659
690a5dbf
FM
2660 if (!clone_info) {
2661 ret = find_first_non_hole(inode, &cur_offset, &len);
2662 if (unlikely(ret < 0))
2663 break;
2664 if (ret && !len) {
2665 ret = 0;
2666 break;
2667 }
9cba40a6
FM
2668 }
2669 }
2670
690a5dbf
FM
2671 /*
2672 * If we were cloning, force the next fsync to be a full one since we
2673 * we replaced (or just dropped in the case of cloning holes when
2674 * NO_HOLES is enabled) extents and extent maps.
2675 * This is for the sake of simplicity, and cloning into files larger
2676 * than 16Mb would force the full fsync any way (when
2677 * try_release_extent_mapping() is invoked during page cache truncation.
2678 */
2679 if (clone_info)
2680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2681 &BTRFS_I(inode)->runtime_flags);
2682
9cba40a6
FM
2683 if (ret)
2684 goto out_trans;
2685
2686 trans->block_rsv = &fs_info->trans_block_rsv;
2687 /*
2688 * If we are using the NO_HOLES feature we might have had already an
2689 * hole that overlaps a part of the region [lockstart, lockend] and
2690 * ends at (or beyond) lockend. Since we have no file extent items to
2691 * represent holes, drop_end can be less than lockend and so we must
2692 * make sure we have an extent map representing the existing hole (the
2693 * call to __btrfs_drop_extents() might have dropped the existing extent
2694 * map representing the existing hole), otherwise the fast fsync path
2695 * will not record the existence of the hole region
2696 * [existing_hole_start, lockend].
2697 */
2698 if (drop_end <= end)
2699 drop_end = end + 1;
2700 /*
2701 * Don't insert file hole extent item if it's for a range beyond eof
2702 * (because it's useless) or if it represents a 0 bytes range (when
2703 * cur_offset == drop_end).
2704 */
690a5dbf 2705 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
9cba40a6
FM
2706 ret = fill_holes(trans, BTRFS_I(inode), path,
2707 cur_offset, drop_end);
2708 if (ret) {
2709 /* Same comment as above. */
2710 btrfs_abort_transaction(trans, ret);
2711 goto out_trans;
2712 }
9ddc959e
JB
2713 } else if (!clone_info && cur_offset < drop_end) {
2714 /* See the comment in the loop above for the reasoning here. */
2715 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2716 cur_offset, drop_end - cur_offset);
2717 if (ret) {
2718 btrfs_abort_transaction(trans, ret);
2719 goto out_trans;
2720 }
2721
9cba40a6 2722 }
690a5dbf
FM
2723 if (clone_info) {
2724 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2725 clone_info->data_len);
2726 if (ret) {
2727 btrfs_abort_transaction(trans, ret);
2728 goto out_trans;
2729 }
2730 }
9cba40a6
FM
2731
2732out_trans:
2733 if (!trans)
2734 goto out_free;
2735
2736 trans->block_rsv = &fs_info->trans_block_rsv;
2737 if (ret)
2738 btrfs_end_transaction(trans);
2739 else
2740 *trans_out = trans;
2741out_free:
2742 btrfs_free_block_rsv(fs_info, rsv);
2743out:
2744 return ret;
2745}
2746
2aaa6655
JB
2747static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2748{
0b246afa 2749 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2750 struct btrfs_root *root = BTRFS_I(inode)->root;
2751 struct extent_state *cached_state = NULL;
2752 struct btrfs_path *path;
9cba40a6 2753 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2754 u64 lockstart;
2755 u64 lockend;
2756 u64 tail_start;
2757 u64 tail_len;
2758 u64 orig_start = offset;
2aaa6655 2759 int ret = 0;
9703fefe 2760 bool same_block;
a1a50f60 2761 u64 ino_size;
9703fefe 2762 bool truncated_block = false;
e8c1c76e 2763 bool updated_inode = false;
2aaa6655 2764
0ef8b726
JB
2765 ret = btrfs_wait_ordered_range(inode, offset, len);
2766 if (ret)
2767 return ret;
2aaa6655 2768
5955102c 2769 inode_lock(inode);
0b246afa 2770 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2771 ret = find_first_non_hole(inode, &offset, &len);
2772 if (ret < 0)
2773 goto out_only_mutex;
2774 if (ret && !len) {
2775 /* Already in a large hole */
2776 ret = 0;
2777 goto out_only_mutex;
2778 }
2779
da17066c 2780 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2781 lockend = round_down(offset + len,
da17066c 2782 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2783 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2784 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2785 /*
9703fefe 2786 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2787 * because we are sure there is no data there.
2788 */
2aaa6655 2789 /*
9703fefe
CR
2790 * Only do this if we are in the same block and we aren't doing the
2791 * entire block.
2aaa6655 2792 */
0b246afa 2793 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2794 if (offset < ino_size) {
9703fefe
CR
2795 truncated_block = true;
2796 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2797 } else {
2798 ret = 0;
2799 }
d7781546 2800 goto out_only_mutex;
2aaa6655
JB
2801 }
2802
9703fefe 2803 /* zero back part of the first block */
12870f1c 2804 if (offset < ino_size) {
9703fefe
CR
2805 truncated_block = true;
2806 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2807 if (ret) {
5955102c 2808 inode_unlock(inode);
7426cc04
MX
2809 return ret;
2810 }
2aaa6655
JB
2811 }
2812
d7781546
QW
2813 /* Check the aligned pages after the first unaligned page,
2814 * if offset != orig_start, which means the first unaligned page
01327610 2815 * including several following pages are already in holes,
d7781546
QW
2816 * the extra check can be skipped */
2817 if (offset == orig_start) {
2818 /* after truncate page, check hole again */
2819 len = offset + len - lockstart;
2820 offset = lockstart;
2821 ret = find_first_non_hole(inode, &offset, &len);
2822 if (ret < 0)
2823 goto out_only_mutex;
2824 if (ret && !len) {
2825 ret = 0;
2826 goto out_only_mutex;
2827 }
2828 lockstart = offset;
2829 }
2830
2831 /* Check the tail unaligned part is in a hole */
2832 tail_start = lockend + 1;
2833 tail_len = offset + len - tail_start;
2834 if (tail_len) {
2835 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2836 if (unlikely(ret < 0))
2837 goto out_only_mutex;
2838 if (!ret) {
2839 /* zero the front end of the last page */
2840 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2841 truncated_block = true;
2842 ret = btrfs_truncate_block(inode,
2843 tail_start + tail_len,
2844 0, 1);
d7781546
QW
2845 if (ret)
2846 goto out_only_mutex;
51f395ad 2847 }
0061280d 2848 }
2aaa6655
JB
2849 }
2850
2851 if (lockend < lockstart) {
e8c1c76e
FM
2852 ret = 0;
2853 goto out_only_mutex;
2aaa6655
JB
2854 }
2855
f27451f2
FM
2856 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2857 &cached_state);
8fca9550 2858 if (ret)
f27451f2 2859 goto out_only_mutex;
2aaa6655
JB
2860
2861 path = btrfs_alloc_path();
2862 if (!path) {
2863 ret = -ENOMEM;
2864 goto out;
2865 }
2866
690a5dbf
FM
2867 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2868 &trans);
9cba40a6
FM
2869 btrfs_free_path(path);
2870 if (ret)
2871 goto out;
2aaa6655 2872
9cba40a6 2873 ASSERT(trans != NULL);
e1f5790e 2874 inode_inc_iversion(inode);
c2050a45 2875 inode->i_mtime = inode->i_ctime = current_time(inode);
2aaa6655 2876 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2877 updated_inode = true;
3a45bb20 2878 btrfs_end_transaction(trans);
2ff7e61e 2879 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2880out:
2881 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2882 &cached_state);
d7781546 2883out_only_mutex:
9cba40a6 2884 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2885 /*
2886 * If we only end up zeroing part of a page, we still need to
2887 * update the inode item, so that all the time fields are
2888 * updated as well as the necessary btrfs inode in memory fields
2889 * for detecting, at fsync time, if the inode isn't yet in the
2890 * log tree or it's there but not up to date.
2891 */
17900668
FM
2892 struct timespec64 now = current_time(inode);
2893
2894 inode_inc_iversion(inode);
2895 inode->i_mtime = now;
2896 inode->i_ctime = now;
e8c1c76e
FM
2897 trans = btrfs_start_transaction(root, 1);
2898 if (IS_ERR(trans)) {
9cba40a6 2899 ret = PTR_ERR(trans);
e8c1c76e 2900 } else {
9cba40a6
FM
2901 int ret2;
2902
2903 ret = btrfs_update_inode(trans, root, inode);
2904 ret2 = btrfs_end_transaction(trans);
2905 if (!ret)
2906 ret = ret2;
e8c1c76e
FM
2907 }
2908 }
5955102c 2909 inode_unlock(inode);
9cba40a6 2910 return ret;
2aaa6655
JB
2911}
2912
14524a84
QW
2913/* Helper structure to record which range is already reserved */
2914struct falloc_range {
2915 struct list_head list;
2916 u64 start;
2917 u64 len;
2918};
2919
2920/*
2921 * Helper function to add falloc range
2922 *
2923 * Caller should have locked the larger range of extent containing
2924 * [start, len)
2925 */
2926static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2927{
2928 struct falloc_range *prev = NULL;
2929 struct falloc_range *range = NULL;
2930
2931 if (list_empty(head))
2932 goto insert;
2933
2934 /*
2935 * As fallocate iterate by bytenr order, we only need to check
2936 * the last range.
2937 */
2938 prev = list_entry(head->prev, struct falloc_range, list);
2939 if (prev->start + prev->len == start) {
2940 prev->len += len;
2941 return 0;
2942 }
2943insert:
32fc932e 2944 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2945 if (!range)
2946 return -ENOMEM;
2947 range->start = start;
2948 range->len = len;
2949 list_add_tail(&range->list, head);
2950 return 0;
2951}
2952
f27451f2
FM
2953static int btrfs_fallocate_update_isize(struct inode *inode,
2954 const u64 end,
2955 const int mode)
2956{
2957 struct btrfs_trans_handle *trans;
2958 struct btrfs_root *root = BTRFS_I(inode)->root;
2959 int ret;
2960 int ret2;
2961
2962 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2963 return 0;
2964
2965 trans = btrfs_start_transaction(root, 1);
2966 if (IS_ERR(trans))
2967 return PTR_ERR(trans);
2968
2969 inode->i_ctime = current_time(inode);
2970 i_size_write(inode, end);
d923afe9 2971 btrfs_inode_safe_disk_i_size_write(inode, 0);
f27451f2
FM
2972 ret = btrfs_update_inode(trans, root, inode);
2973 ret2 = btrfs_end_transaction(trans);
2974
2975 return ret ? ret : ret2;
2976}
2977
81fdf638 2978enum {
f262fa8d
DS
2979 RANGE_BOUNDARY_WRITTEN_EXTENT,
2980 RANGE_BOUNDARY_PREALLOC_EXTENT,
2981 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2982};
2983
f27451f2
FM
2984static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2985 u64 offset)
2986{
2987 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2988 struct extent_map *em;
81fdf638 2989 int ret;
f27451f2
FM
2990
2991 offset = round_down(offset, sectorsize);
39b07b5d 2992 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
f27451f2
FM
2993 if (IS_ERR(em))
2994 return PTR_ERR(em);
2995
2996 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2997 ret = RANGE_BOUNDARY_HOLE;
2998 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2999 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3000 else
3001 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
3002
3003 free_extent_map(em);
3004 return ret;
3005}
3006
3007static int btrfs_zero_range(struct inode *inode,
3008 loff_t offset,
3009 loff_t len,
3010 const int mode)
3011{
3012 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3013 struct extent_map *em;
3014 struct extent_changeset *data_reserved = NULL;
3015 int ret;
3016 u64 alloc_hint = 0;
3017 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3018 u64 alloc_start = round_down(offset, sectorsize);
3019 u64 alloc_end = round_up(offset + len, sectorsize);
3020 u64 bytes_to_reserve = 0;
3021 bool space_reserved = false;
3022
3023 inode_dio_wait(inode);
3024
39b07b5d
OS
3025 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3026 alloc_end - alloc_start);
f27451f2
FM
3027 if (IS_ERR(em)) {
3028 ret = PTR_ERR(em);
3029 goto out;
3030 }
3031
3032 /*
3033 * Avoid hole punching and extent allocation for some cases. More cases
3034 * could be considered, but these are unlikely common and we keep things
3035 * as simple as possible for now. Also, intentionally, if the target
3036 * range contains one or more prealloc extents together with regular
3037 * extents and holes, we drop all the existing extents and allocate a
3038 * new prealloc extent, so that we get a larger contiguous disk extent.
3039 */
3040 if (em->start <= alloc_start &&
3041 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3042 const u64 em_end = em->start + em->len;
3043
3044 if (em_end >= offset + len) {
3045 /*
3046 * The whole range is already a prealloc extent,
3047 * do nothing except updating the inode's i_size if
3048 * needed.
3049 */
3050 free_extent_map(em);
3051 ret = btrfs_fallocate_update_isize(inode, offset + len,
3052 mode);
3053 goto out;
3054 }
3055 /*
3056 * Part of the range is already a prealloc extent, so operate
3057 * only on the remaining part of the range.
3058 */
3059 alloc_start = em_end;
3060 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3061 len = offset + len - alloc_start;
3062 offset = alloc_start;
3063 alloc_hint = em->block_start + em->len;
3064 }
3065 free_extent_map(em);
3066
3067 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3068 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
3069 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3070 sectorsize);
f27451f2
FM
3071 if (IS_ERR(em)) {
3072 ret = PTR_ERR(em);
3073 goto out;
3074 }
3075
3076 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3077 free_extent_map(em);
3078 ret = btrfs_fallocate_update_isize(inode, offset + len,
3079 mode);
3080 goto out;
3081 }
3082 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3083 free_extent_map(em);
3084 ret = btrfs_truncate_block(inode, offset, len, 0);
3085 if (!ret)
3086 ret = btrfs_fallocate_update_isize(inode,
3087 offset + len,
3088 mode);
3089 return ret;
3090 }
3091 free_extent_map(em);
3092 alloc_start = round_down(offset, sectorsize);
3093 alloc_end = alloc_start + sectorsize;
3094 goto reserve_space;
3095 }
3096
3097 alloc_start = round_up(offset, sectorsize);
3098 alloc_end = round_down(offset + len, sectorsize);
3099
3100 /*
3101 * For unaligned ranges, check the pages at the boundaries, they might
3102 * map to an extent, in which case we need to partially zero them, or
3103 * they might map to a hole, in which case we need our allocation range
3104 * to cover them.
3105 */
3106 if (!IS_ALIGNED(offset, sectorsize)) {
3107 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3108 if (ret < 0)
3109 goto out;
81fdf638 3110 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3111 alloc_start = round_down(offset, sectorsize);
3112 ret = 0;
81fdf638 3113 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
3114 ret = btrfs_truncate_block(inode, offset, 0, 0);
3115 if (ret)
3116 goto out;
81fdf638
FM
3117 } else {
3118 ret = 0;
f27451f2
FM
3119 }
3120 }
3121
3122 if (!IS_ALIGNED(offset + len, sectorsize)) {
3123 ret = btrfs_zero_range_check_range_boundary(inode,
3124 offset + len);
3125 if (ret < 0)
3126 goto out;
81fdf638 3127 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3128 alloc_end = round_up(offset + len, sectorsize);
3129 ret = 0;
81fdf638 3130 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
3131 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3132 if (ret)
3133 goto out;
81fdf638
FM
3134 } else {
3135 ret = 0;
f27451f2
FM
3136 }
3137 }
3138
3139reserve_space:
3140 if (alloc_start < alloc_end) {
3141 struct extent_state *cached_state = NULL;
3142 const u64 lockstart = alloc_start;
3143 const u64 lockend = alloc_end - 1;
3144
3145 bytes_to_reserve = alloc_end - alloc_start;
3146 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3147 bytes_to_reserve);
3148 if (ret < 0)
3149 goto out;
3150 space_reserved = true;
3151 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3152 alloc_start, bytes_to_reserve);
3153 if (ret)
3154 goto out;
3155 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3156 &cached_state);
3157 if (ret)
3158 goto out;
3159 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3160 alloc_end - alloc_start,
3161 i_blocksize(inode),
3162 offset + len, &alloc_hint);
3163 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3164 lockend, &cached_state);
3165 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3166 if (ret) {
f27451f2 3167 space_reserved = false;
9f13ce74
FM
3168 goto out;
3169 }
f27451f2 3170 }
9f13ce74 3171 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3172 out:
3173 if (ret && space_reserved)
3174 btrfs_free_reserved_data_space(inode, data_reserved,
3175 alloc_start, bytes_to_reserve);
3176 extent_changeset_free(data_reserved);
3177
3178 return ret;
3179}
3180
2fe17c10
CH
3181static long btrfs_fallocate(struct file *file, int mode,
3182 loff_t offset, loff_t len)
3183{
496ad9aa 3184 struct inode *inode = file_inode(file);
2fe17c10 3185 struct extent_state *cached_state = NULL;
364ecf36 3186 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3187 struct falloc_range *range;
3188 struct falloc_range *tmp;
3189 struct list_head reserve_list;
2fe17c10
CH
3190 u64 cur_offset;
3191 u64 last_byte;
3192 u64 alloc_start;
3193 u64 alloc_end;
3194 u64 alloc_hint = 0;
3195 u64 locked_end;
14524a84 3196 u64 actual_end = 0;
2fe17c10 3197 struct extent_map *em;
da17066c 3198 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
3199 int ret;
3200
797f4277
MX
3201 alloc_start = round_down(offset, blocksize);
3202 alloc_end = round_up(offset + len, blocksize);
18513091 3203 cur_offset = alloc_start;
2fe17c10 3204
2aaa6655 3205 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3206 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3207 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3208 return -EOPNOTSUPP;
3209
2aaa6655
JB
3210 if (mode & FALLOC_FL_PUNCH_HOLE)
3211 return btrfs_punch_hole(inode, offset, len);
3212
d98456fc 3213 /*
14524a84
QW
3214 * Only trigger disk allocation, don't trigger qgroup reserve
3215 *
3216 * For qgroup space, it will be checked later.
d98456fc 3217 */
f27451f2
FM
3218 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3219 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3220 alloc_end - alloc_start);
3221 if (ret < 0)
3222 return ret;
3223 }
d98456fc 3224
5955102c 3225 inode_lock(inode);
2a162ce9
DI
3226
3227 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3228 ret = inode_newsize_ok(inode, offset + len);
3229 if (ret)
3230 goto out;
3231 }
2fe17c10 3232
14524a84
QW
3233 /*
3234 * TODO: Move these two operations after we have checked
3235 * accurate reserved space, or fallocate can still fail but
3236 * with page truncated or size expanded.
3237 *
3238 * But that's a minor problem and won't do much harm BTW.
3239 */
2fe17c10 3240 if (alloc_start > inode->i_size) {
a41ad394
JB
3241 ret = btrfs_cont_expand(inode, i_size_read(inode),
3242 alloc_start);
2fe17c10
CH
3243 if (ret)
3244 goto out;
0f6925fa 3245 } else if (offset + len > inode->i_size) {
a71754fc
JB
3246 /*
3247 * If we are fallocating from the end of the file onward we
9703fefe
CR
3248 * need to zero out the end of the block if i_size lands in the
3249 * middle of a block.
a71754fc 3250 */
9703fefe 3251 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3252 if (ret)
3253 goto out;
2fe17c10
CH
3254 }
3255
a71754fc
JB
3256 /*
3257 * wait for ordered IO before we have any locks. We'll loop again
3258 * below with the locks held.
3259 */
0ef8b726
JB
3260 ret = btrfs_wait_ordered_range(inode, alloc_start,
3261 alloc_end - alloc_start);
3262 if (ret)
3263 goto out;
a71754fc 3264
f27451f2
FM
3265 if (mode & FALLOC_FL_ZERO_RANGE) {
3266 ret = btrfs_zero_range(inode, offset, len, mode);
3267 inode_unlock(inode);
3268 return ret;
3269 }
3270
2fe17c10
CH
3271 locked_end = alloc_end - 1;
3272 while (1) {
3273 struct btrfs_ordered_extent *ordered;
3274
3275 /* the extent lock is ordered inside the running
3276 * transaction
3277 */
3278 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3279 locked_end, &cached_state);
96b09dde
NB
3280 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3281
2fe17c10 3282 if (ordered &&
bffe633e 3283 ordered->file_offset + ordered->num_bytes > alloc_start &&
2fe17c10
CH
3284 ordered->file_offset < alloc_end) {
3285 btrfs_put_ordered_extent(ordered);
3286 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3287 alloc_start, locked_end,
e43bbe5e 3288 &cached_state);
2fe17c10
CH
3289 /*
3290 * we can't wait on the range with the transaction
3291 * running or with the extent lock held
3292 */
0ef8b726
JB
3293 ret = btrfs_wait_ordered_range(inode, alloc_start,
3294 alloc_end - alloc_start);
3295 if (ret)
3296 goto out;
2fe17c10
CH
3297 } else {
3298 if (ordered)
3299 btrfs_put_ordered_extent(ordered);
3300 break;
3301 }
3302 }
3303
14524a84
QW
3304 /* First, check if we exceed the qgroup limit */
3305 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3306 while (cur_offset < alloc_end) {
fc4f21b1 3307 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3308 alloc_end - cur_offset);
9986277e
DC
3309 if (IS_ERR(em)) {
3310 ret = PTR_ERR(em);
79787eaa
JM
3311 break;
3312 }
2fe17c10 3313 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3314 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3315 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3316 if (em->block_start == EXTENT_MAP_HOLE ||
3317 (cur_offset >= inode->i_size &&
3318 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3319 ret = add_falloc_range(&reserve_list, cur_offset,
3320 last_byte - cur_offset);
3321 if (ret < 0) {
3322 free_extent_map(em);
3323 break;
3d850dd4 3324 }
364ecf36
QW
3325 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3326 cur_offset, last_byte - cur_offset);
be2d253c 3327 if (ret < 0) {
39ad3173 3328 cur_offset = last_byte;
be2d253c 3329 free_extent_map(em);
14524a84 3330 break;
be2d253c 3331 }
18513091
WX
3332 } else {
3333 /*
3334 * Do not need to reserve unwritten extent for this
3335 * range, free reserved data space first, otherwise
3336 * it'll result in false ENOSPC error.
3337 */
bc42bda2
QW
3338 btrfs_free_reserved_data_space(inode, data_reserved,
3339 cur_offset, last_byte - cur_offset);
2fe17c10
CH
3340 }
3341 free_extent_map(em);
2fe17c10 3342 cur_offset = last_byte;
14524a84
QW
3343 }
3344
3345 /*
3346 * If ret is still 0, means we're OK to fallocate.
3347 * Or just cleanup the list and exit.
3348 */
3349 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3350 if (!ret)
3351 ret = btrfs_prealloc_file_range(inode, mode,
3352 range->start,
93407472 3353 range->len, i_blocksize(inode),
14524a84 3354 offset + len, &alloc_hint);
18513091 3355 else
bc42bda2
QW
3356 btrfs_free_reserved_data_space(inode,
3357 data_reserved, range->start,
3358 range->len);
14524a84
QW
3359 list_del(&range->list);
3360 kfree(range);
3361 }
3362 if (ret < 0)
3363 goto out_unlock;
3364
f27451f2
FM
3365 /*
3366 * We didn't need to allocate any more space, but we still extended the
3367 * size of the file so we need to update i_size and the inode item.
3368 */
3369 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3370out_unlock:
2fe17c10 3371 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3372 &cached_state);
2fe17c10 3373out:
5955102c 3374 inode_unlock(inode);
d98456fc 3375 /* Let go of our reservation. */
f27451f2 3376 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
bc42bda2 3377 btrfs_free_reserved_data_space(inode, data_reserved,
39ad3173 3378 cur_offset, alloc_end - cur_offset);
364ecf36 3379 extent_changeset_free(data_reserved);
2fe17c10
CH
3380 return ret;
3381}
3382
bc80230e
NB
3383static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3384 int whence)
b2675157 3385{
0b246afa 3386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3387 struct extent_map *em = NULL;
b2675157 3388 struct extent_state *cached_state = NULL;
d79b7c26 3389 loff_t i_size = inode->i_size;
4d1a40c6
LB
3390 u64 lockstart;
3391 u64 lockend;
3392 u64 start;
3393 u64 len;
b2675157
JB
3394 int ret = 0;
3395
bc80230e 3396 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3397 return -ENXIO;
3398
3399 /*
bc80230e 3400 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3401 * the very start of the file.
3402 */
bc80230e 3403 start = max_t(loff_t, 0, offset);
4d1a40c6 3404
0b246afa 3405 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3406 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3407 if (lockend <= lockstart)
0b246afa 3408 lockend = lockstart + fs_info->sectorsize;
1214b53f 3409 lockend--;
b2675157
JB
3410 len = lockend - lockstart + 1;
3411
ff13db41 3412 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3413 &cached_state);
b2675157 3414
d79b7c26 3415 while (start < i_size) {
4ab47a8d 3416 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
b2675157 3417 if (IS_ERR(em)) {
6af021d8 3418 ret = PTR_ERR(em);
7f4ca37c 3419 em = NULL;
b2675157
JB
3420 break;
3421 }
3422
7f4ca37c
JB
3423 if (whence == SEEK_HOLE &&
3424 (em->block_start == EXTENT_MAP_HOLE ||
3425 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3426 break;
3427 else if (whence == SEEK_DATA &&
3428 (em->block_start != EXTENT_MAP_HOLE &&
3429 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3430 break;
b2675157
JB
3431
3432 start = em->start + em->len;
b2675157 3433 free_extent_map(em);
7f4ca37c 3434 em = NULL;
b2675157
JB
3435 cond_resched();
3436 }
7f4ca37c 3437 free_extent_map(em);
bc80230e
NB
3438 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3439 &cached_state);
3440 if (ret) {
3441 offset = ret;
3442 } else {
d79b7c26 3443 if (whence == SEEK_DATA && start >= i_size)
bc80230e 3444 offset = -ENXIO;
7f4ca37c 3445 else
bc80230e 3446 offset = min_t(loff_t, start, i_size);
7f4ca37c 3447 }
bc80230e
NB
3448
3449 return offset;
b2675157
JB
3450}
3451
965c8e59 3452static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3453{
3454 struct inode *inode = file->f_mapping->host;
b2675157 3455
965c8e59 3456 switch (whence) {
2034f3b4
NB
3457 default:
3458 return generic_file_llseek(file, offset, whence);
b2675157
JB
3459 case SEEK_DATA:
3460 case SEEK_HOLE:
d79b7c26 3461 inode_lock_shared(inode);
bc80230e 3462 offset = find_desired_extent(inode, offset, whence);
d79b7c26 3463 inode_unlock_shared(inode);
bc80230e 3464 break;
b2675157
JB
3465 }
3466
bc80230e
NB
3467 if (offset < 0)
3468 return offset;
3469
2034f3b4 3470 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3471}
3472
edf064e7
GR
3473static int btrfs_file_open(struct inode *inode, struct file *filp)
3474{
91f9943e 3475 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3476 return generic_file_open(inode, filp);
3477}
3478
828c0950 3479const struct file_operations btrfs_file_operations = {
b2675157 3480 .llseek = btrfs_file_llseek,
aad4f8bb 3481 .read_iter = generic_file_read_iter,
e9906a98 3482 .splice_read = generic_file_splice_read,
b30ac0fc 3483 .write_iter = btrfs_file_write_iter,
9ebefb18 3484 .mmap = btrfs_file_mmap,
edf064e7 3485 .open = btrfs_file_open,
e1b81e67 3486 .release = btrfs_release_file,
39279cc3 3487 .fsync = btrfs_sync_file,
2fe17c10 3488 .fallocate = btrfs_fallocate,
34287aa3 3489 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3490#ifdef CONFIG_COMPAT
4c63c245 3491 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3492#endif
2e5dfc99 3493 .remap_file_range = btrfs_remap_file_range,
39279cc3 3494};
9247f317 3495
e67c718b 3496void __cold btrfs_auto_defrag_exit(void)
9247f317 3497{
5598e900 3498 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3499}
3500
f5c29bd9 3501int __init btrfs_auto_defrag_init(void)
9247f317
MX
3502{
3503 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3504 sizeof(struct inode_defrag), 0,
fba4b697 3505 SLAB_MEM_SPREAD,
9247f317
MX
3506 NULL);
3507 if (!btrfs_inode_defrag_cachep)
3508 return -ENOMEM;
3509
3510 return 0;
3511}
728404da
FM
3512
3513int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3514{
3515 int ret;
3516
3517 /*
3518 * So with compression we will find and lock a dirty page and clear the
3519 * first one as dirty, setup an async extent, and immediately return
3520 * with the entire range locked but with nobody actually marked with
3521 * writeback. So we can't just filemap_write_and_wait_range() and
3522 * expect it to work since it will just kick off a thread to do the
3523 * actual work. So we need to call filemap_fdatawrite_range _again_
3524 * since it will wait on the page lock, which won't be unlocked until
3525 * after the pages have been marked as writeback and so we're good to go
3526 * from there. We have to do this otherwise we'll miss the ordered
3527 * extents and that results in badness. Please Josef, do not think you
3528 * know better and pull this out at some point in the future, it is
3529 * right and you are wrong.
3530 */
3531 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3532 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3533 &BTRFS_I(inode)->runtime_flags))
3534 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3535
3536 return ret;
3537}