Btrfs: do not merge rbios if their fail stripe index are not identical
[linux-2.6-block.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
6158e1ce 95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
6158e1ce 98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4cb5300b
CM
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b 103
0b246afa 104 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
6158e1ce 126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 127 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
2ff7e61e 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 133{
0b246afa 134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
0b246afa 137 if (btrfs_fs_closing(fs_info))
8ddc4734 138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 148 struct btrfs_inode *inode)
4cb5300b 149{
6158e1ce
NB
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
4cb5300b 152 struct inode_defrag *defrag;
4cb5300b 153 u64 transid;
8ddc4734 154 int ret;
4cb5300b 155
2ff7e61e 156 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
157 return 0;
158
6158e1ce 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
6158e1ce 165 transid = inode->root->last_trans;
4cb5300b 166
9247f317 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
168 if (!defrag)
169 return -ENOMEM;
170
6158e1ce 171 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
0b246afa 175 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
9247f317 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 187 }
0b246afa 188 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 189 return 0;
4cb5300b
CM
190}
191
192/*
8ddc4734
MX
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 196 */
46e59791 197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 198 struct inode_defrag *defrag)
8ddc4734 199{
46e59791 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
8ddc4734
MX
201 int ret;
202
2ff7e61e 203 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
0b246afa 210 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 211 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 212 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
4cb5300b 220/*
26176e7c
MX
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
4cb5300b 223 */
26176e7c
MX
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
226{
227 struct inode_defrag *entry = NULL;
762f2263 228 struct inode_defrag tmp;
4cb5300b
CM
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
762f2263
MX
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
4cb5300b 235
26176e7c
MX
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
762f2263
MX
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
4cb5300b 244 p = parent->rb_left;
762f2263 245 else if (ret > 0)
4cb5300b
CM
246 p = parent->rb_right;
247 else
26176e7c 248 goto out;
4cb5300b
CM
249 }
250
26176e7c
MX
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
4cb5300b 254 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
255 else
256 entry = NULL;
4cb5300b 257 }
26176e7c
MX
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
4cb5300b
CM
263}
264
26176e7c 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
266{
267 struct inode_defrag *defrag;
26176e7c
MX
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
351810c1 277 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
4cb5300b
CM
289 struct btrfs_root *inode_root;
290 struct inode *inode;
4cb5300b
CM
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 293 int num_defrag;
6f1c3605
LB
294 int index;
295 int ret;
4cb5300b 296
26176e7c
MX
297 /* get the inode */
298 key.objectid = defrag->root;
962a298f 299 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 300 key.offset = (u64)-1;
6f1c3605
LB
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
26176e7c
MX
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
6f1c3605
LB
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
26176e7c
MX
309
310 key.objectid = defrag->ino;
962a298f 311 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
6f1c3605
LB
315 ret = PTR_ERR(inode);
316 goto cleanup;
26176e7c 317 }
6f1c3605 318 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
26176e7c 324 range.start = defrag->last_offset;
b66f00da
MX
325
326 sb_start_write(fs_info->sb);
26176e7c
MX
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
b66f00da 329 sb_end_write(fs_info->sb);
26176e7c
MX
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
46e59791 337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
46e59791 346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
6f1c3605
LB
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
26176e7c
MX
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
4cb5300b
CM
368
369 atomic_inc(&fs_info->defrag_running);
67871254 370 while (1) {
dc81cdc5
MX
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
2ff7e61e 376 if (!__need_auto_defrag(fs_info))
26176e7c 377 break;
4cb5300b
CM
378
379 /* find an inode to defrag */
26176e7c
MX
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
4cb5300b 382 if (!defrag) {
26176e7c 383 if (root_objectid || first_ino) {
762f2263 384 root_objectid = 0;
4cb5300b
CM
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
4cb5300b 392 first_ino = defrag->ino + 1;
762f2263 393 root_objectid = defrag->root;
4cb5300b 394
26176e7c 395 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 396 }
4cb5300b
CM
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
39279cc3 406
d352ac68
CM
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
ee22f0c4 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 411 struct page **prepared_pages,
11c65dcc 412 struct iov_iter *i)
39279cc3 413{
914ee295 414 size_t copied = 0;
d0215f3e 415 size_t total_copied = 0;
11c65dcc 416 int pg = 0;
09cbfeaf 417 int offset = pos & (PAGE_SIZE - 1);
39279cc3 418
11c65dcc 419 while (write_bytes > 0) {
39279cc3 420 size_t count = min_t(size_t,
09cbfeaf 421 PAGE_SIZE - offset, write_bytes);
11c65dcc 422 struct page *page = prepared_pages[pg];
914ee295
XZ
423 /*
424 * Copy data from userspace to the current page
914ee295 425 */
914ee295 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 427
39279cc3
CM
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
31339acd
CM
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
11c65dcc
JB
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
914ee295 445 total_copied += copied;
39279cc3 446
b30ac0fc 447 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 448 if (unlikely(copied == 0))
914ee295 449 break;
11c65dcc 450
09cbfeaf 451 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
39279cc3 457 }
914ee295 458 return total_copied;
39279cc3
CM
459}
460
d352ac68
CM
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
48a3b636 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
d352ac68
CM
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
d352ac68 473 */
4a096752 474 ClearPageChecked(pages[i]);
39279cc3 475 unlock_page(pages[i]);
09cbfeaf 476 put_page(pages[i]);
39279cc3
CM
477 }
478}
479
f48bf66b
FM
480static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
481 const u64 start,
482 const u64 len,
483 struct extent_state **cached_state)
484{
485 u64 search_start = start;
486 const u64 end = start + len - 1;
487
488 while (search_start < end) {
489 const u64 search_len = end - search_start + 1;
490 struct extent_map *em;
491 u64 em_len;
492 int ret = 0;
493
494 em = btrfs_get_extent(inode, NULL, 0, search_start,
495 search_len, 0);
496 if (IS_ERR(em))
497 return PTR_ERR(em);
498
499 if (em->block_start != EXTENT_MAP_HOLE)
500 goto next;
501
502 em_len = em->len;
503 if (em->start < search_start)
504 em_len -= search_start - em->start;
505 if (em_len > search_len)
506 em_len = search_len;
507
508 ret = set_extent_bit(&inode->io_tree, search_start,
509 search_start + em_len - 1,
510 EXTENT_DELALLOC_NEW,
511 NULL, cached_state, GFP_NOFS);
512next:
513 search_start = extent_map_end(em);
514 free_extent_map(em);
515 if (ret)
516 return ret;
517 }
518 return 0;
519}
520
d352ac68
CM
521/*
522 * after copy_from_user, pages need to be dirtied and we need to make
523 * sure holes are created between the current EOF and the start of
524 * any next extents (if required).
525 *
526 * this also makes the decision about creating an inline extent vs
527 * doing real data extents, marking pages dirty and delalloc as required.
528 */
2ff7e61e
JM
529int btrfs_dirty_pages(struct inode *inode, struct page **pages,
530 size_t num_pages, loff_t pos, size_t write_bytes,
531 struct extent_state **cached)
39279cc3 532{
0b246afa 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 534 int err = 0;
a52d9a80 535 int i;
db94535d 536 u64 num_bytes;
a52d9a80
CM
537 u64 start_pos;
538 u64 end_of_last_block;
539 u64 end_pos = pos + write_bytes;
540 loff_t isize = i_size_read(inode);
e3b8a485 541 unsigned int extra_bits = 0;
39279cc3 542
0b246afa 543 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 544 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 545 fs_info->sectorsize);
39279cc3 546
db94535d 547 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485
FM
548
549 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
550 if (start_pos >= isize &&
551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
552 /*
553 * There can't be any extents following eof in this case
554 * so just set the delalloc new bit for the range
555 * directly.
556 */
557 extra_bits |= EXTENT_DELALLOC_NEW;
558 } else {
559 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
560 start_pos,
561 num_bytes, cached);
562 if (err)
563 return err;
564 }
565 }
566
2ac55d41 567 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
e3b8a485 568 extra_bits, cached, 0);
d0215f3e
JB
569 if (err)
570 return err;
9ed74f2d 571
c8b97818
CM
572 for (i = 0; i < num_pages; i++) {
573 struct page *p = pages[i];
574 SetPageUptodate(p);
575 ClearPageChecked(p);
576 set_page_dirty(p);
a52d9a80 577 }
9f570b8d
JB
578
579 /*
580 * we've only changed i_size in ram, and we haven't updated
581 * the disk i_size. There is no need to log the inode
582 * at this time.
583 */
584 if (end_pos > isize)
a52d9a80 585 i_size_write(inode, end_pos);
a22285a6 586 return 0;
39279cc3
CM
587}
588
d352ac68
CM
589/*
590 * this drops all the extents in the cache that intersect the range
591 * [start, end]. Existing extents are split as required.
592 */
dcdbc059 593void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 594 int skip_pinned)
a52d9a80
CM
595{
596 struct extent_map *em;
3b951516
CM
597 struct extent_map *split = NULL;
598 struct extent_map *split2 = NULL;
dcdbc059 599 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 600 u64 len = end - start + 1;
5dc562c5 601 u64 gen;
3b951516
CM
602 int ret;
603 int testend = 1;
5b21f2ed 604 unsigned long flags;
c8b97818 605 int compressed = 0;
09a2a8f9 606 bool modified;
a52d9a80 607
e6dcd2dc 608 WARN_ON(end < start);
3b951516 609 if (end == (u64)-1) {
39b5637f 610 len = (u64)-1;
3b951516
CM
611 testend = 0;
612 }
d397712b 613 while (1) {
7014cdb4
JB
614 int no_splits = 0;
615
09a2a8f9 616 modified = false;
3b951516 617 if (!split)
172ddd60 618 split = alloc_extent_map();
3b951516 619 if (!split2)
172ddd60 620 split2 = alloc_extent_map();
7014cdb4
JB
621 if (!split || !split2)
622 no_splits = 1;
3b951516 623
890871be 624 write_lock(&em_tree->lock);
39b5637f 625 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 626 if (!em) {
890871be 627 write_unlock(&em_tree->lock);
a52d9a80 628 break;
d1310b2e 629 }
5b21f2ed 630 flags = em->flags;
5dc562c5 631 gen = em->generation;
5b21f2ed 632 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 633 if (testend && em->start + em->len >= start + len) {
5b21f2ed 634 free_extent_map(em);
a1ed835e 635 write_unlock(&em_tree->lock);
5b21f2ed
ZY
636 break;
637 }
55ef6899
YZ
638 start = em->start + em->len;
639 if (testend)
5b21f2ed 640 len = start + len - (em->start + em->len);
5b21f2ed 641 free_extent_map(em);
a1ed835e 642 write_unlock(&em_tree->lock);
5b21f2ed
ZY
643 continue;
644 }
c8b97818 645 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 646 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 647 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 648 modified = !list_empty(&em->list);
7014cdb4
JB
649 if (no_splits)
650 goto next;
3b951516 651
ee20a983 652 if (em->start < start) {
3b951516
CM
653 split->start = em->start;
654 split->len = start - em->start;
ee20a983
JB
655
656 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
657 split->orig_start = em->orig_start;
658 split->block_start = em->block_start;
659
660 if (compressed)
661 split->block_len = em->block_len;
662 else
663 split->block_len = split->len;
664 split->orig_block_len = max(split->block_len,
665 em->orig_block_len);
666 split->ram_bytes = em->ram_bytes;
667 } else {
668 split->orig_start = split->start;
669 split->block_len = 0;
670 split->block_start = em->block_start;
671 split->orig_block_len = 0;
672 split->ram_bytes = split->len;
673 }
674
5dc562c5 675 split->generation = gen;
3b951516 676 split->bdev = em->bdev;
5b21f2ed 677 split->flags = flags;
261507a0 678 split->compress_type = em->compress_type;
176840b3 679 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
680 free_extent_map(split);
681 split = split2;
682 split2 = NULL;
683 }
ee20a983 684 if (testend && em->start + em->len > start + len) {
3b951516
CM
685 u64 diff = start + len - em->start;
686
687 split->start = start + len;
688 split->len = em->start + em->len - (start + len);
689 split->bdev = em->bdev;
5b21f2ed 690 split->flags = flags;
261507a0 691 split->compress_type = em->compress_type;
5dc562c5 692 split->generation = gen;
ee20a983
JB
693
694 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
695 split->orig_block_len = max(em->block_len,
b4939680 696 em->orig_block_len);
3b951516 697
ee20a983
JB
698 split->ram_bytes = em->ram_bytes;
699 if (compressed) {
700 split->block_len = em->block_len;
701 split->block_start = em->block_start;
702 split->orig_start = em->orig_start;
703 } else {
704 split->block_len = split->len;
705 split->block_start = em->block_start
706 + diff;
707 split->orig_start = em->orig_start;
708 }
c8b97818 709 } else {
ee20a983
JB
710 split->ram_bytes = split->len;
711 split->orig_start = split->start;
712 split->block_len = 0;
713 split->block_start = em->block_start;
714 split->orig_block_len = 0;
c8b97818 715 }
3b951516 716
176840b3
FM
717 if (extent_map_in_tree(em)) {
718 replace_extent_mapping(em_tree, em, split,
719 modified);
720 } else {
721 ret = add_extent_mapping(em_tree, split,
722 modified);
723 ASSERT(ret == 0); /* Logic error */
724 }
3b951516
CM
725 free_extent_map(split);
726 split = NULL;
727 }
7014cdb4 728next:
176840b3
FM
729 if (extent_map_in_tree(em))
730 remove_extent_mapping(em_tree, em);
890871be 731 write_unlock(&em_tree->lock);
d1310b2e 732
a52d9a80
CM
733 /* once for us */
734 free_extent_map(em);
735 /* once for the tree*/
736 free_extent_map(em);
737 }
3b951516
CM
738 if (split)
739 free_extent_map(split);
740 if (split2)
741 free_extent_map(split2);
a52d9a80
CM
742}
743
39279cc3
CM
744/*
745 * this is very complex, but the basic idea is to drop all extents
746 * in the range start - end. hint_block is filled in with a block number
747 * that would be a good hint to the block allocator for this file.
748 *
749 * If an extent intersects the range but is not entirely inside the range
750 * it is either truncated or split. Anything entirely inside the range
751 * is deleted from the tree.
752 */
5dc562c5
JB
753int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
754 struct btrfs_root *root, struct inode *inode,
755 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
756 u64 *drop_end, int drop_cache,
757 int replace_extent,
758 u32 extent_item_size,
759 int *key_inserted)
39279cc3 760{
0b246afa 761 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 762 struct extent_buffer *leaf;
920bbbfb 763 struct btrfs_file_extent_item *fi;
00f5c795 764 struct btrfs_key key;
920bbbfb 765 struct btrfs_key new_key;
4a0cc7ca 766 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
767 u64 search_start = start;
768 u64 disk_bytenr = 0;
769 u64 num_bytes = 0;
770 u64 extent_offset = 0;
771 u64 extent_end = 0;
62fe51c1 772 u64 last_end = start;
920bbbfb
YZ
773 int del_nr = 0;
774 int del_slot = 0;
775 int extent_type;
ccd467d6 776 int recow;
00f5c795 777 int ret;
dc7fdde3 778 int modify_tree = -1;
27cdeb70 779 int update_refs;
c3308f84 780 int found = 0;
1acae57b 781 int leafs_visited = 0;
39279cc3 782
a1ed835e 783 if (drop_cache)
dcdbc059 784 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 785
d5f37527 786 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
787 modify_tree = 0;
788
27cdeb70 789 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 790 root == fs_info->tree_root);
d397712b 791 while (1) {
ccd467d6 792 recow = 0;
33345d01 793 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 794 search_start, modify_tree);
39279cc3 795 if (ret < 0)
920bbbfb
YZ
796 break;
797 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
798 leaf = path->nodes[0];
799 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 800 if (key.objectid == ino &&
920bbbfb
YZ
801 key.type == BTRFS_EXTENT_DATA_KEY)
802 path->slots[0]--;
39279cc3 803 }
920bbbfb 804 ret = 0;
1acae57b 805 leafs_visited++;
8c2383c3 806next_slot:
5f39d397 807 leaf = path->nodes[0];
920bbbfb
YZ
808 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
809 BUG_ON(del_nr > 0);
810 ret = btrfs_next_leaf(root, path);
811 if (ret < 0)
812 break;
813 if (ret > 0) {
814 ret = 0;
815 break;
8c2383c3 816 }
1acae57b 817 leafs_visited++;
920bbbfb
YZ
818 leaf = path->nodes[0];
819 recow = 1;
820 }
821
822 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
823
824 if (key.objectid > ino)
825 break;
826 if (WARN_ON_ONCE(key.objectid < ino) ||
827 key.type < BTRFS_EXTENT_DATA_KEY) {
828 ASSERT(del_nr == 0);
829 path->slots[0]++;
830 goto next_slot;
831 }
832 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
833 break;
834
835 fi = btrfs_item_ptr(leaf, path->slots[0],
836 struct btrfs_file_extent_item);
837 extent_type = btrfs_file_extent_type(leaf, fi);
838
839 if (extent_type == BTRFS_FILE_EXTENT_REG ||
840 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
841 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
842 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
843 extent_offset = btrfs_file_extent_offset(leaf, fi);
844 extent_end = key.offset +
845 btrfs_file_extent_num_bytes(leaf, fi);
846 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
847 extent_end = key.offset +
514ac8ad
CM
848 btrfs_file_extent_inline_len(leaf,
849 path->slots[0], fi);
8c2383c3 850 } else {
aeafbf84
FM
851 /* can't happen */
852 BUG();
39279cc3
CM
853 }
854
fc19c5e7
FM
855 /*
856 * Don't skip extent items representing 0 byte lengths. They
857 * used to be created (bug) if while punching holes we hit
858 * -ENOSPC condition. So if we find one here, just ensure we
859 * delete it, otherwise we would insert a new file extent item
860 * with the same key (offset) as that 0 bytes length file
861 * extent item in the call to setup_items_for_insert() later
862 * in this function.
863 */
62fe51c1
JB
864 if (extent_end == key.offset && extent_end >= search_start) {
865 last_end = extent_end;
fc19c5e7 866 goto delete_extent_item;
62fe51c1 867 }
fc19c5e7 868
920bbbfb
YZ
869 if (extent_end <= search_start) {
870 path->slots[0]++;
8c2383c3 871 goto next_slot;
39279cc3
CM
872 }
873
c3308f84 874 found = 1;
920bbbfb 875 search_start = max(key.offset, start);
dc7fdde3
CM
876 if (recow || !modify_tree) {
877 modify_tree = -1;
b3b4aa74 878 btrfs_release_path(path);
920bbbfb 879 continue;
39279cc3 880 }
6643558d 881
920bbbfb
YZ
882 /*
883 * | - range to drop - |
884 * | -------- extent -------- |
885 */
886 if (start > key.offset && end < extent_end) {
887 BUG_ON(del_nr > 0);
00fdf13a 888 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 889 ret = -EOPNOTSUPP;
00fdf13a
LB
890 break;
891 }
920bbbfb
YZ
892
893 memcpy(&new_key, &key, sizeof(new_key));
894 new_key.offset = start;
895 ret = btrfs_duplicate_item(trans, root, path,
896 &new_key);
897 if (ret == -EAGAIN) {
b3b4aa74 898 btrfs_release_path(path);
920bbbfb 899 continue;
6643558d 900 }
920bbbfb
YZ
901 if (ret < 0)
902 break;
903
904 leaf = path->nodes[0];
905 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
906 struct btrfs_file_extent_item);
907 btrfs_set_file_extent_num_bytes(leaf, fi,
908 start - key.offset);
909
910 fi = btrfs_item_ptr(leaf, path->slots[0],
911 struct btrfs_file_extent_item);
912
913 extent_offset += start - key.offset;
914 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
915 btrfs_set_file_extent_num_bytes(leaf, fi,
916 extent_end - start);
917 btrfs_mark_buffer_dirty(leaf);
918
5dc562c5 919 if (update_refs && disk_bytenr > 0) {
84f7d8e6 920 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
921 disk_bytenr, num_bytes, 0,
922 root->root_key.objectid,
923 new_key.objectid,
b06c4bf5 924 start - extent_offset);
79787eaa 925 BUG_ON(ret); /* -ENOMEM */
771ed689 926 }
920bbbfb 927 key.offset = start;
6643558d 928 }
62fe51c1
JB
929 /*
930 * From here on out we will have actually dropped something, so
931 * last_end can be updated.
932 */
933 last_end = extent_end;
934
920bbbfb
YZ
935 /*
936 * | ---- range to drop ----- |
937 * | -------- extent -------- |
938 */
939 if (start <= key.offset && end < extent_end) {
00fdf13a 940 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 941 ret = -EOPNOTSUPP;
00fdf13a
LB
942 break;
943 }
6643558d 944
920bbbfb
YZ
945 memcpy(&new_key, &key, sizeof(new_key));
946 new_key.offset = end;
0b246afa 947 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 948
920bbbfb
YZ
949 extent_offset += end - key.offset;
950 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
951 btrfs_set_file_extent_num_bytes(leaf, fi,
952 extent_end - end);
953 btrfs_mark_buffer_dirty(leaf);
2671485d 954 if (update_refs && disk_bytenr > 0)
920bbbfb 955 inode_sub_bytes(inode, end - key.offset);
920bbbfb 956 break;
39279cc3 957 }
771ed689 958
920bbbfb
YZ
959 search_start = extent_end;
960 /*
961 * | ---- range to drop ----- |
962 * | -------- extent -------- |
963 */
964 if (start > key.offset && end >= extent_end) {
965 BUG_ON(del_nr > 0);
00fdf13a 966 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 967 ret = -EOPNOTSUPP;
00fdf13a
LB
968 break;
969 }
8c2383c3 970
920bbbfb
YZ
971 btrfs_set_file_extent_num_bytes(leaf, fi,
972 start - key.offset);
973 btrfs_mark_buffer_dirty(leaf);
2671485d 974 if (update_refs && disk_bytenr > 0)
920bbbfb 975 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
976 if (end == extent_end)
977 break;
c8b97818 978
920bbbfb
YZ
979 path->slots[0]++;
980 goto next_slot;
31840ae1
ZY
981 }
982
920bbbfb
YZ
983 /*
984 * | ---- range to drop ----- |
985 * | ------ extent ------ |
986 */
987 if (start <= key.offset && end >= extent_end) {
fc19c5e7 988delete_extent_item:
920bbbfb
YZ
989 if (del_nr == 0) {
990 del_slot = path->slots[0];
991 del_nr = 1;
992 } else {
993 BUG_ON(del_slot + del_nr != path->slots[0]);
994 del_nr++;
995 }
31840ae1 996
5dc562c5
JB
997 if (update_refs &&
998 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 999 inode_sub_bytes(inode,
920bbbfb
YZ
1000 extent_end - key.offset);
1001 extent_end = ALIGN(extent_end,
0b246afa 1002 fs_info->sectorsize);
5dc562c5 1003 } else if (update_refs && disk_bytenr > 0) {
84f7d8e6 1004 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
1005 disk_bytenr, num_bytes, 0,
1006 root->root_key.objectid,
5d4f98a2 1007 key.objectid, key.offset -
b06c4bf5 1008 extent_offset);
79787eaa 1009 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1010 inode_sub_bytes(inode,
1011 extent_end - key.offset);
31840ae1 1012 }
31840ae1 1013
920bbbfb
YZ
1014 if (end == extent_end)
1015 break;
1016
1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 path->slots[0]++;
1019 goto next_slot;
1020 }
1021
1022 ret = btrfs_del_items(trans, root, path, del_slot,
1023 del_nr);
79787eaa 1024 if (ret) {
66642832 1025 btrfs_abort_transaction(trans, ret);
5dc562c5 1026 break;
79787eaa 1027 }
920bbbfb
YZ
1028
1029 del_nr = 0;
1030 del_slot = 0;
1031
b3b4aa74 1032 btrfs_release_path(path);
920bbbfb 1033 continue;
39279cc3 1034 }
920bbbfb
YZ
1035
1036 BUG_ON(1);
39279cc3 1037 }
920bbbfb 1038
79787eaa 1039 if (!ret && del_nr > 0) {
1acae57b
FDBM
1040 /*
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1044 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1045 */
1046 path->slots[0] = del_slot;
920bbbfb 1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1048 if (ret)
66642832 1049 btrfs_abort_transaction(trans, ret);
d5f37527 1050 }
1acae57b 1051
d5f37527
FDBM
1052 leaf = path->nodes[0];
1053 /*
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1056 * write lock.
1057 */
1058 if (!ret && replace_extent && leafs_visited == 1 &&
1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1061 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1062 sizeof(struct btrfs_item) + extent_item_size) {
1063
1064 key.objectid = ino;
1065 key.type = BTRFS_EXTENT_DATA_KEY;
1066 key.offset = start;
1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 struct btrfs_key slot_key;
1069
1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 path->slots[0]++;
1acae57b 1073 }
d5f37527
FDBM
1074 setup_items_for_insert(root, path, &key,
1075 &extent_item_size,
1076 extent_item_size,
1077 sizeof(struct btrfs_item) +
1078 extent_item_size, 1);
1079 *key_inserted = 1;
6643558d 1080 }
920bbbfb 1081
1acae57b
FDBM
1082 if (!replace_extent || !(*key_inserted))
1083 btrfs_release_path(path);
2aaa6655 1084 if (drop_end)
62fe51c1 1085 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1086 return ret;
1087}
1088
1089int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1091 u64 end, int drop_cache)
5dc562c5
JB
1092{
1093 struct btrfs_path *path;
1094 int ret;
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
2aaa6655 1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1100 drop_cache, 0, 0, NULL);
920bbbfb 1101 btrfs_free_path(path);
39279cc3
CM
1102 return ret;
1103}
1104
d899e052 1105static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1106 u64 objectid, u64 bytenr, u64 orig_offset,
1107 u64 *start, u64 *end)
d899e052
YZ
1108{
1109 struct btrfs_file_extent_item *fi;
1110 struct btrfs_key key;
1111 u64 extent_end;
1112
1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 return 0;
1115
1116 btrfs_item_key_to_cpu(leaf, &key, slot);
1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 return 0;
1119
1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1124 btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 return 0;
1128
1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 return 0;
1132
1133 *start = key.offset;
1134 *end = extent_end;
1135 return 1;
1136}
1137
1138/*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1146 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1147{
7a6d7067
NB
1148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1149 struct btrfs_root *root = inode->root;
d899e052
YZ
1150 struct extent_buffer *leaf;
1151 struct btrfs_path *path;
1152 struct btrfs_file_extent_item *fi;
1153 struct btrfs_key key;
920bbbfb 1154 struct btrfs_key new_key;
d899e052
YZ
1155 u64 bytenr;
1156 u64 num_bytes;
1157 u64 extent_end;
5d4f98a2 1158 u64 orig_offset;
d899e052
YZ
1159 u64 other_start;
1160 u64 other_end;
920bbbfb
YZ
1161 u64 split;
1162 int del_nr = 0;
1163 int del_slot = 0;
6c7d54ac 1164 int recow;
d899e052 1165 int ret;
7a6d7067 1166 u64 ino = btrfs_ino(inode);
d899e052 1167
d899e052 1168 path = btrfs_alloc_path();
d8926bb3
MF
1169 if (!path)
1170 return -ENOMEM;
d899e052 1171again:
6c7d54ac 1172 recow = 0;
920bbbfb 1173 split = start;
33345d01 1174 key.objectid = ino;
d899e052 1175 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1176 key.offset = split;
d899e052
YZ
1177
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1179 if (ret < 0)
1180 goto out;
d899e052
YZ
1181 if (ret > 0 && path->slots[0] > 0)
1182 path->slots[0]--;
1183
1184 leaf = path->nodes[0];
1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1186 if (key.objectid != ino ||
1187 key.type != BTRFS_EXTENT_DATA_KEY) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
d899e052
YZ
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
9c8e63db
JB
1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 ret = -EINVAL;
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
d899e052 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1200 if (key.offset > start || extent_end < end) {
1201 ret = -EINVAL;
1202 btrfs_abort_transaction(trans, ret);
1203 goto out;
1204 }
d899e052
YZ
1205
1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1209 memcpy(&new_key, &key, sizeof(new_key));
1210
1211 if (start == key.offset && end < extent_end) {
1212 other_start = 0;
1213 other_end = start;
1214 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1215 ino, bytenr, orig_offset,
6c7d54ac
YZ
1216 &other_start, &other_end)) {
1217 new_key.offset = end;
0b246afa 1218 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
224ecce5
JB
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
6c7d54ac
YZ
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 extent_end - end);
1225 btrfs_set_file_extent_offset(leaf, fi,
1226 end - orig_offset);
1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 struct btrfs_file_extent_item);
224ecce5
JB
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
6c7d54ac
YZ
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 end - other_start);
1233 btrfs_mark_buffer_dirty(leaf);
1234 goto out;
1235 }
1236 }
1237
1238 if (start > key.offset && end == extent_end) {
1239 other_start = end;
1240 other_end = 0;
1241 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1242 ino, bytenr, orig_offset,
6c7d54ac
YZ
1243 &other_start, &other_end)) {
1244 fi = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_file_extent_item);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 start - key.offset);
224ecce5
JB
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
6c7d54ac
YZ
1250 path->slots[0]++;
1251 new_key.offset = start;
0b246afa 1252 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1253
1254 fi = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_file_extent_item);
224ecce5
JB
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
6c7d54ac
YZ
1258 btrfs_set_file_extent_num_bytes(leaf, fi,
1259 other_end - start);
1260 btrfs_set_file_extent_offset(leaf, fi,
1261 start - orig_offset);
1262 btrfs_mark_buffer_dirty(leaf);
1263 goto out;
1264 }
1265 }
d899e052 1266
920bbbfb
YZ
1267 while (start > key.offset || end < extent_end) {
1268 if (key.offset == start)
1269 split = end;
1270
920bbbfb
YZ
1271 new_key.offset = split;
1272 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 if (ret == -EAGAIN) {
b3b4aa74 1274 btrfs_release_path(path);
920bbbfb 1275 goto again;
d899e052 1276 }
79787eaa 1277 if (ret < 0) {
66642832 1278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1279 goto out;
1280 }
d899e052 1281
920bbbfb
YZ
1282 leaf = path->nodes[0];
1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1284 struct btrfs_file_extent_item);
224ecce5 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1286 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1287 split - key.offset);
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291
224ecce5 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 extent_end - split);
d899e052
YZ
1296 btrfs_mark_buffer_dirty(leaf);
1297
84f7d8e6 1298 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
2ff7e61e 1299 0, root->root_key.objectid,
b06c4bf5 1300 ino, orig_offset);
9c8e63db
JB
1301 if (ret) {
1302 btrfs_abort_transaction(trans, ret);
1303 goto out;
1304 }
d899e052 1305
920bbbfb
YZ
1306 if (split == start) {
1307 key.offset = start;
1308 } else {
9c8e63db
JB
1309 if (start != key.offset) {
1310 ret = -EINVAL;
1311 btrfs_abort_transaction(trans, ret);
1312 goto out;
1313 }
d899e052 1314 path->slots[0]--;
920bbbfb 1315 extent_end = end;
d899e052 1316 }
6c7d54ac 1317 recow = 1;
d899e052
YZ
1318 }
1319
920bbbfb
YZ
1320 other_start = end;
1321 other_end = 0;
6c7d54ac 1322 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1323 ino, bytenr, orig_offset,
6c7d54ac
YZ
1324 &other_start, &other_end)) {
1325 if (recow) {
b3b4aa74 1326 btrfs_release_path(path);
6c7d54ac
YZ
1327 goto again;
1328 }
920bbbfb
YZ
1329 extent_end = other_end;
1330 del_slot = path->slots[0] + 1;
1331 del_nr++;
84f7d8e6 1332 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1333 0, root->root_key.objectid,
b06c4bf5 1334 ino, orig_offset);
9c8e63db
JB
1335 if (ret) {
1336 btrfs_abort_transaction(trans, ret);
1337 goto out;
1338 }
d899e052 1339 }
920bbbfb
YZ
1340 other_start = 0;
1341 other_end = start;
6c7d54ac 1342 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1343 ino, bytenr, orig_offset,
6c7d54ac
YZ
1344 &other_start, &other_end)) {
1345 if (recow) {
b3b4aa74 1346 btrfs_release_path(path);
6c7d54ac
YZ
1347 goto again;
1348 }
920bbbfb
YZ
1349 key.offset = other_start;
1350 del_slot = path->slots[0];
1351 del_nr++;
84f7d8e6 1352 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1353 0, root->root_key.objectid,
b06c4bf5 1354 ino, orig_offset);
9c8e63db
JB
1355 if (ret) {
1356 btrfs_abort_transaction(trans, ret);
1357 goto out;
1358 }
920bbbfb
YZ
1359 }
1360 if (del_nr == 0) {
3f6fae95
SL
1361 fi = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_file_extent_item);
920bbbfb
YZ
1363 btrfs_set_file_extent_type(leaf, fi,
1364 BTRFS_FILE_EXTENT_REG);
224ecce5 1365 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1366 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1367 } else {
3f6fae95
SL
1368 fi = btrfs_item_ptr(leaf, del_slot - 1,
1369 struct btrfs_file_extent_item);
6c7d54ac
YZ
1370 btrfs_set_file_extent_type(leaf, fi,
1371 BTRFS_FILE_EXTENT_REG);
224ecce5 1372 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1373 btrfs_set_file_extent_num_bytes(leaf, fi,
1374 extent_end - key.offset);
1375 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1376
6c7d54ac 1377 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1378 if (ret < 0) {
66642832 1379 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1380 goto out;
1381 }
6c7d54ac 1382 }
920bbbfb 1383out:
d899e052
YZ
1384 btrfs_free_path(path);
1385 return 0;
1386}
1387
b1bf862e
CM
1388/*
1389 * on error we return an unlocked page and the error value
1390 * on success we return a locked page and 0
1391 */
bb1591b4
CM
1392static int prepare_uptodate_page(struct inode *inode,
1393 struct page *page, u64 pos,
b6316429 1394 bool force_uptodate)
b1bf862e
CM
1395{
1396 int ret = 0;
1397
09cbfeaf 1398 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1399 !PageUptodate(page)) {
b1bf862e
CM
1400 ret = btrfs_readpage(NULL, page);
1401 if (ret)
1402 return ret;
1403 lock_page(page);
1404 if (!PageUptodate(page)) {
1405 unlock_page(page);
1406 return -EIO;
1407 }
bb1591b4
CM
1408 if (page->mapping != inode->i_mapping) {
1409 unlock_page(page);
1410 return -EAGAIN;
1411 }
b1bf862e
CM
1412 }
1413 return 0;
1414}
1415
39279cc3 1416/*
376cc685 1417 * this just gets pages into the page cache and locks them down.
39279cc3 1418 */
b37392ea
MX
1419static noinline int prepare_pages(struct inode *inode, struct page **pages,
1420 size_t num_pages, loff_t pos,
1421 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1422{
1423 int i;
09cbfeaf 1424 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1425 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1426 int err = 0;
376cc685 1427 int faili;
8c2383c3 1428
39279cc3 1429 for (i = 0; i < num_pages; i++) {
bb1591b4 1430again:
a94733d0 1431 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1432 mask | __GFP_WRITE);
39279cc3 1433 if (!pages[i]) {
b1bf862e
CM
1434 faili = i - 1;
1435 err = -ENOMEM;
1436 goto fail;
1437 }
1438
1439 if (i == 0)
bb1591b4 1440 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1441 force_uptodate);
bb1591b4
CM
1442 if (!err && i == num_pages - 1)
1443 err = prepare_uptodate_page(inode, pages[i],
b6316429 1444 pos + write_bytes, false);
b1bf862e 1445 if (err) {
09cbfeaf 1446 put_page(pages[i]);
bb1591b4
CM
1447 if (err == -EAGAIN) {
1448 err = 0;
1449 goto again;
1450 }
b1bf862e
CM
1451 faili = i - 1;
1452 goto fail;
39279cc3 1453 }
ccd467d6 1454 wait_on_page_writeback(pages[i]);
39279cc3 1455 }
376cc685
MX
1456
1457 return 0;
1458fail:
1459 while (faili >= 0) {
1460 unlock_page(pages[faili]);
09cbfeaf 1461 put_page(pages[faili]);
376cc685
MX
1462 faili--;
1463 }
1464 return err;
1465
1466}
1467
1468/*
1469 * This function locks the extent and properly waits for data=ordered extents
1470 * to finish before allowing the pages to be modified if need.
1471 *
1472 * The return value:
1473 * 1 - the extent is locked
1474 * 0 - the extent is not locked, and everything is OK
1475 * -EAGAIN - need re-prepare the pages
1476 * the other < 0 number - Something wrong happens
1477 */
1478static noinline int
2cff578c 1479lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1480 size_t num_pages, loff_t pos,
2e78c927 1481 size_t write_bytes,
376cc685
MX
1482 u64 *lockstart, u64 *lockend,
1483 struct extent_state **cached_state)
1484{
2cff578c 1485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
376cc685
MX
1486 u64 start_pos;
1487 u64 last_pos;
1488 int i;
1489 int ret = 0;
1490
0b246afa 1491 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1492 last_pos = start_pos
da17066c 1493 + round_up(pos + write_bytes - start_pos,
0b246afa 1494 fs_info->sectorsize) - 1;
376cc685 1495
e3b8a485 1496 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1497 struct btrfs_ordered_extent *ordered;
a7e3b975 1498
2cff578c
NB
1499 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1500 cached_state);
b88935bf
MX
1501 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1502 last_pos - start_pos + 1);
e6dcd2dc
CM
1503 if (ordered &&
1504 ordered->file_offset + ordered->len > start_pos &&
376cc685 1505 ordered->file_offset <= last_pos) {
2cff578c 1506 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1507 last_pos, cached_state);
e6dcd2dc
CM
1508 for (i = 0; i < num_pages; i++) {
1509 unlock_page(pages[i]);
09cbfeaf 1510 put_page(pages[i]);
e6dcd2dc 1511 }
2cff578c
NB
1512 btrfs_start_ordered_extent(&inode->vfs_inode,
1513 ordered, 1);
b88935bf
MX
1514 btrfs_put_ordered_extent(ordered);
1515 return -EAGAIN;
e6dcd2dc
CM
1516 }
1517 if (ordered)
1518 btrfs_put_ordered_extent(ordered);
e3b8a485
FM
1519 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1520 EXTENT_DIRTY | EXTENT_DELALLOC |
1521 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 1522 0, 0, cached_state);
376cc685
MX
1523 *lockstart = start_pos;
1524 *lockend = last_pos;
1525 ret = 1;
0762704b 1526 }
376cc685 1527
e6dcd2dc 1528 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1529 if (clear_page_dirty_for_io(pages[i]))
1530 account_page_redirty(pages[i]);
e6dcd2dc
CM
1531 set_page_extent_mapped(pages[i]);
1532 WARN_ON(!PageLocked(pages[i]));
1533 }
b1bf862e 1534
376cc685 1535 return ret;
39279cc3
CM
1536}
1537
85b7ab67 1538static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1539 size_t *write_bytes)
1540{
85b7ab67
NB
1541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1542 struct btrfs_root *root = inode->root;
7ee9e440
JB
1543 struct btrfs_ordered_extent *ordered;
1544 u64 lockstart, lockend;
1545 u64 num_bytes;
1546 int ret;
1547
ea14b57f 1548 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc
MX
1549 if (!ret)
1550 return -ENOSPC;
1551
0b246afa 1552 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1553 lockend = round_up(pos + *write_bytes,
0b246afa 1554 fs_info->sectorsize) - 1;
7ee9e440
JB
1555
1556 while (1) {
85b7ab67 1557 lock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1558 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1559 lockend - lockstart + 1);
1560 if (!ordered) {
1561 break;
1562 }
85b7ab67
NB
1563 unlock_extent(&inode->io_tree, lockstart, lockend);
1564 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
7ee9e440
JB
1565 btrfs_put_ordered_extent(ordered);
1566 }
1567
7ee9e440 1568 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1569 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1570 NULL, NULL, NULL);
7ee9e440
JB
1571 if (ret <= 0) {
1572 ret = 0;
ea14b57f 1573 btrfs_end_write_no_snapshotting(root);
7ee9e440 1574 } else {
c933956d
MX
1575 *write_bytes = min_t(size_t, *write_bytes ,
1576 num_bytes - pos + lockstart);
7ee9e440
JB
1577 }
1578
85b7ab67 1579 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1580
1581 return ret;
1582}
1583
d0215f3e
JB
1584static noinline ssize_t __btrfs_buffered_write(struct file *file,
1585 struct iov_iter *i,
1586 loff_t pos)
4b46fce2 1587{
496ad9aa 1588 struct inode *inode = file_inode(file);
0b246afa 1589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1590 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1591 struct page **pages = NULL;
376cc685 1592 struct extent_state *cached_state = NULL;
364ecf36 1593 struct extent_changeset *data_reserved = NULL;
7ee9e440 1594 u64 release_bytes = 0;
376cc685
MX
1595 u64 lockstart;
1596 u64 lockend;
d0215f3e
JB
1597 size_t num_written = 0;
1598 int nrptrs;
c9149235 1599 int ret = 0;
7ee9e440 1600 bool only_release_metadata = false;
b6316429 1601 bool force_page_uptodate = false;
4b46fce2 1602
09cbfeaf
KS
1603 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1604 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1605 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1606 nrptrs = max(nrptrs, 8);
31e818fe 1607 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1608 if (!pages)
1609 return -ENOMEM;
ab93dbec 1610
d0215f3e 1611 while (iov_iter_count(i) > 0) {
09cbfeaf 1612 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1613 size_t sector_offset;
d0215f3e 1614 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1615 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1616 offset);
ed6078f7 1617 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1618 PAGE_SIZE);
7ee9e440 1619 size_t reserve_bytes;
d0215f3e
JB
1620 size_t dirty_pages;
1621 size_t copied;
2e78c927
CR
1622 size_t dirty_sectors;
1623 size_t num_sectors;
79f015f2 1624 int extents_locked;
39279cc3 1625
8c2383c3 1626 WARN_ON(num_pages > nrptrs);
1832a6d5 1627
914ee295
XZ
1628 /*
1629 * Fault pages before locking them in prepare_pages
1630 * to avoid recursive lock
1631 */
d0215f3e 1632 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1633 ret = -EFAULT;
d0215f3e 1634 break;
914ee295
XZ
1635 }
1636
da17066c 1637 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1638 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1639 fs_info->sectorsize);
d9d8b2a5 1640
364ecf36
QW
1641 extent_changeset_release(data_reserved);
1642 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1643 write_bytes);
c6887cd1
JB
1644 if (ret < 0) {
1645 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1646 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1647 check_can_nocow(BTRFS_I(inode), pos,
1648 &write_bytes) > 0) {
c6887cd1
JB
1649 /*
1650 * For nodata cow case, no need to reserve
1651 * data space.
1652 */
1653 only_release_metadata = true;
1654 /*
1655 * our prealloc extent may be smaller than
1656 * write_bytes, so scale down.
1657 */
1658 num_pages = DIV_ROUND_UP(write_bytes + offset,
1659 PAGE_SIZE);
1660 reserve_bytes = round_up(write_bytes +
1661 sector_offset,
da17066c 1662 fs_info->sectorsize);
c6887cd1
JB
1663 } else {
1664 break;
1665 }
1666 }
1832a6d5 1667
8b62f87b 1668 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1669 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1670 reserve_bytes);
7ee9e440
JB
1671 if (ret) {
1672 if (!only_release_metadata)
bc42bda2
QW
1673 btrfs_free_reserved_data_space(inode,
1674 data_reserved, pos,
1675 write_bytes);
8257b2dc 1676 else
ea14b57f 1677 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1678 break;
1679 }
1680
1681 release_bytes = reserve_bytes;
376cc685 1682again:
4a64001f
JB
1683 /*
1684 * This is going to setup the pages array with the number of
1685 * pages we want, so we don't really need to worry about the
1686 * contents of pages from loop to loop
1687 */
b37392ea
MX
1688 ret = prepare_pages(inode, pages, num_pages,
1689 pos, write_bytes,
b6316429 1690 force_page_uptodate);
8b62f87b
JB
1691 if (ret) {
1692 btrfs_delalloc_release_extents(BTRFS_I(inode),
1693 reserve_bytes);
d0215f3e 1694 break;
8b62f87b 1695 }
39279cc3 1696
79f015f2
GR
1697 extents_locked = lock_and_cleanup_extent_if_need(
1698 BTRFS_I(inode), pages,
2cff578c
NB
1699 num_pages, pos, write_bytes, &lockstart,
1700 &lockend, &cached_state);
79f015f2
GR
1701 if (extents_locked < 0) {
1702 if (extents_locked == -EAGAIN)
376cc685 1703 goto again;
8b62f87b
JB
1704 btrfs_delalloc_release_extents(BTRFS_I(inode),
1705 reserve_bytes);
79f015f2 1706 ret = extents_locked;
376cc685 1707 break;
376cc685
MX
1708 }
1709
ee22f0c4 1710 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1711
0b246afa 1712 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1713 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1714 fs_info->sectorsize);
1715 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1716
b1bf862e
CM
1717 /*
1718 * if we have trouble faulting in the pages, fall
1719 * back to one page at a time
1720 */
1721 if (copied < write_bytes)
1722 nrptrs = 1;
1723
b6316429
JB
1724 if (copied == 0) {
1725 force_page_uptodate = true;
56244ef1 1726 dirty_sectors = 0;
b1bf862e 1727 dirty_pages = 0;
b6316429
JB
1728 } else {
1729 force_page_uptodate = false;
ed6078f7 1730 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1731 PAGE_SIZE);
b6316429 1732 }
914ee295 1733
2e78c927 1734 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1735 /* release everything except the sectors we dirtied */
1736 release_bytes -= dirty_sectors <<
0b246afa 1737 fs_info->sb->s_blocksize_bits;
485290a7 1738 if (only_release_metadata) {
691fa059 1739 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7ee9e440 1740 release_bytes);
485290a7
QW
1741 } else {
1742 u64 __pos;
1743
da17066c 1744 __pos = round_down(pos,
0b246afa 1745 fs_info->sectorsize) +
09cbfeaf 1746 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1747 btrfs_delalloc_release_space(inode,
1748 data_reserved, __pos,
1749 release_bytes);
485290a7 1750 }
914ee295
XZ
1751 }
1752
2e78c927 1753 release_bytes = round_up(copied + sector_offset,
0b246afa 1754 fs_info->sectorsize);
376cc685
MX
1755
1756 if (copied > 0)
2ff7e61e
JM
1757 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1758 pos, copied, NULL);
79f015f2 1759 if (extents_locked)
376cc685 1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1761 lockstart, lockend, &cached_state);
8b62f87b 1762 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683
MX
1763 if (ret) {
1764 btrfs_drop_pages(pages, num_pages);
376cc685 1765 break;
f1de9683 1766 }
39279cc3 1767
376cc685 1768 release_bytes = 0;
8257b2dc 1769 if (only_release_metadata)
ea14b57f 1770 btrfs_end_write_no_snapshotting(root);
8257b2dc 1771
7ee9e440 1772 if (only_release_metadata && copied > 0) {
da17066c 1773 lockstart = round_down(pos,
0b246afa 1774 fs_info->sectorsize);
da17066c 1775 lockend = round_up(pos + copied,
0b246afa 1776 fs_info->sectorsize) - 1;
7ee9e440
JB
1777
1778 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1779 lockend, EXTENT_NORESERVE, NULL,
1780 NULL, GFP_NOFS);
1781 only_release_metadata = false;
1782 }
1783
f1de9683
MX
1784 btrfs_drop_pages(pages, num_pages);
1785
d0215f3e
JB
1786 cond_resched();
1787
d0e1d66b 1788 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1789 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1790 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1791
914ee295
XZ
1792 pos += copied;
1793 num_written += copied;
d0215f3e 1794 }
39279cc3 1795
d0215f3e
JB
1796 kfree(pages);
1797
7ee9e440 1798 if (release_bytes) {
8257b2dc 1799 if (only_release_metadata) {
ea14b57f 1800 btrfs_end_write_no_snapshotting(root);
691fa059
NB
1801 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1802 release_bytes);
8257b2dc 1803 } else {
bc42bda2
QW
1804 btrfs_delalloc_release_space(inode, data_reserved,
1805 round_down(pos, fs_info->sectorsize),
1806 release_bytes);
8257b2dc 1807 }
7ee9e440
JB
1808 }
1809
364ecf36 1810 extent_changeset_free(data_reserved);
d0215f3e
JB
1811 return num_written ? num_written : ret;
1812}
1813
1af5bb49 1814static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1815{
1816 struct file *file = iocb->ki_filp;
728404da 1817 struct inode *inode = file_inode(file);
1af5bb49 1818 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1819 ssize_t written;
1820 ssize_t written_buffered;
1821 loff_t endbyte;
1822 int err;
1823
1af5bb49 1824 written = generic_file_direct_write(iocb, from);
d0215f3e 1825
0c949334 1826 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1827 return written;
1828
1829 pos += written;
0ae5e4d3 1830 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1831 if (written_buffered < 0) {
1832 err = written_buffered;
1833 goto out;
39279cc3 1834 }
075bdbdb
FM
1835 /*
1836 * Ensure all data is persisted. We want the next direct IO read to be
1837 * able to read what was just written.
1838 */
d0215f3e 1839 endbyte = pos + written_buffered - 1;
728404da 1840 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1841 if (err)
1842 goto out;
728404da 1843 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1844 if (err)
1845 goto out;
1846 written += written_buffered;
867c4f93 1847 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1848 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1849 endbyte >> PAGE_SHIFT);
39279cc3 1850out:
d0215f3e
JB
1851 return written ? written : err;
1852}
5b92ee72 1853
6c760c07
JB
1854static void update_time_for_write(struct inode *inode)
1855{
1856 struct timespec now;
1857
1858 if (IS_NOCMTIME(inode))
1859 return;
1860
c2050a45 1861 now = current_time(inode);
6c760c07
JB
1862 if (!timespec_equal(&inode->i_mtime, &now))
1863 inode->i_mtime = now;
1864
1865 if (!timespec_equal(&inode->i_ctime, &now))
1866 inode->i_ctime = now;
1867
1868 if (IS_I_VERSION(inode))
1869 inode_inc_iversion(inode);
1870}
1871
b30ac0fc
AV
1872static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1873 struct iov_iter *from)
d0215f3e
JB
1874{
1875 struct file *file = iocb->ki_filp;
496ad9aa 1876 struct inode *inode = file_inode(file);
0b246afa 1877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1878 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1879 u64 start_pos;
3ac0d7b9 1880 u64 end_pos;
d0215f3e 1881 ssize_t num_written = 0;
b812ce28 1882 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1883 ssize_t err;
ff0fa732 1884 loff_t pos;
edf064e7 1885 size_t count = iov_iter_count(from);
27772b68
CR
1886 loff_t oldsize;
1887 int clean_page = 0;
d0215f3e 1888
91f9943e
CH
1889 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1890 (iocb->ki_flags & IOCB_NOWAIT))
1891 return -EOPNOTSUPP;
1892
ff0fa732
GR
1893 if (!inode_trylock(inode)) {
1894 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1895 return -EAGAIN;
ff0fa732
GR
1896 inode_lock(inode);
1897 }
1898
1899 err = generic_write_checks(iocb, from);
1900 if (err <= 0) {
1901 inode_unlock(inode);
1902 return err;
1903 }
1904
1905 pos = iocb->ki_pos;
1906 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1907 /*
1908 * We will allocate space in case nodatacow is not set,
1909 * so bail
1910 */
1911 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1912 BTRFS_INODE_PREALLOC)) ||
1913 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1914 inode_unlock(inode);
1915 return -EAGAIN;
1916 }
d0215f3e
JB
1917 }
1918
3309dd04 1919 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1920 err = file_remove_privs(file);
d0215f3e 1921 if (err) {
5955102c 1922 inode_unlock(inode);
d0215f3e
JB
1923 goto out;
1924 }
1925
1926 /*
1927 * If BTRFS flips readonly due to some impossible error
1928 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1929 * although we have opened a file as writable, we have
1930 * to stop this write operation to ensure FS consistency.
1931 */
0b246afa 1932 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1933 inode_unlock(inode);
d0215f3e
JB
1934 err = -EROFS;
1935 goto out;
1936 }
1937
6c760c07
JB
1938 /*
1939 * We reserve space for updating the inode when we reserve space for the
1940 * extent we are going to write, so we will enospc out there. We don't
1941 * need to start yet another transaction to update the inode as we will
1942 * update the inode when we finish writing whatever data we write.
1943 */
1944 update_time_for_write(inode);
d0215f3e 1945
0b246afa 1946 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1947 oldsize = i_size_read(inode);
1948 if (start_pos > oldsize) {
3ac0d7b9 1949 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1950 end_pos = round_up(pos + count,
0b246afa 1951 fs_info->sectorsize);
27772b68 1952 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1953 if (err) {
5955102c 1954 inode_unlock(inode);
0c1a98c8
MX
1955 goto out;
1956 }
0b246afa 1957 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1958 clean_page = 1;
0c1a98c8
MX
1959 }
1960
b812ce28
JB
1961 if (sync)
1962 atomic_inc(&BTRFS_I(inode)->sync_writers);
1963
2ba48ce5 1964 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1965 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1966 } else {
b30ac0fc 1967 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1968 if (num_written > 0)
867c4f93 1969 iocb->ki_pos = pos + num_written;
27772b68
CR
1970 if (clean_page)
1971 pagecache_isize_extended(inode, oldsize,
1972 i_size_read(inode));
d0215f3e
JB
1973 }
1974
5955102c 1975 inode_unlock(inode);
2ff3e9b6 1976
5a3f23d5 1977 /*
6c760c07
JB
1978 * We also have to set last_sub_trans to the current log transid,
1979 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1980 * transaction will appear to have already occurred.
5a3f23d5 1981 */
2f2ff0ee 1982 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1983 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1984 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1985 if (num_written > 0)
1986 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1987
b812ce28
JB
1988 if (sync)
1989 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1990out:
39279cc3 1991 current->backing_dev_info = NULL;
39279cc3
CM
1992 return num_written ? num_written : err;
1993}
1994
d397712b 1995int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1996{
23b5ec74
JB
1997 struct btrfs_file_private *private = filp->private_data;
1998
1999 if (private && private->trans)
6bf13c0c 2000 btrfs_ioctl_trans_end(filp);
23b5ec74
JB
2001 if (private && private->filldir_buf)
2002 kfree(private->filldir_buf);
2003 kfree(private);
2004 filp->private_data = NULL;
2005
f6dc45c7
CM
2006 /*
2007 * ordered_data_close is set by settattr when we are about to truncate
2008 * a file from a non-zero size to a zero size. This tries to
2009 * flush down new bytes that may have been written if the
2010 * application were using truncate to replace a file in place.
2011 */
2012 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2013 &BTRFS_I(inode)->runtime_flags))
2014 filemap_flush(inode->i_mapping);
e1b81e67
M
2015 return 0;
2016}
2017
669249ee
FM
2018static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2019{
2020 int ret;
343e4fc1 2021 struct blk_plug plug;
669249ee 2022
343e4fc1
LB
2023 /*
2024 * This is only called in fsync, which would do synchronous writes, so
2025 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2026 * multiple disks using raid profile, a large IO can be split to
2027 * several segments of stripe length (currently 64K).
2028 */
2029 blk_start_plug(&plug);
669249ee 2030 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2031 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2032 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2033 blk_finish_plug(&plug);
669249ee
FM
2034
2035 return ret;
2036}
2037
d352ac68
CM
2038/*
2039 * fsync call for both files and directories. This logs the inode into
2040 * the tree log instead of forcing full commits whenever possible.
2041 *
2042 * It needs to call filemap_fdatawait so that all ordered extent updates are
2043 * in the metadata btree are up to date for copying to the log.
2044 *
2045 * It drops the inode mutex before doing the tree log commit. This is an
2046 * important optimization for directories because holding the mutex prevents
2047 * new operations on the dir while we write to disk.
2048 */
02c24a82 2049int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2050{
de17e793 2051 struct dentry *dentry = file_dentry(file);
2b0143b5 2052 struct inode *inode = d_inode(dentry);
0b246afa 2053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2054 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2055 struct btrfs_trans_handle *trans;
8b050d35 2056 struct btrfs_log_ctx ctx;
333427a5 2057 int ret = 0, err;
897ca819 2058 bool full_sync = false;
9dcbeed4 2059 u64 len;
39279cc3 2060
9dcbeed4
DS
2061 /*
2062 * The range length can be represented by u64, we have to do the typecasts
2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2064 */
2065 len = (u64)end - (u64)start + 1;
1abe9b8a 2066 trace_btrfs_sync_file(file, datasync);
257c62e1 2067
ebb70442
LB
2068 btrfs_init_log_ctx(&ctx, inode);
2069
90abccf2
MX
2070 /*
2071 * We write the dirty pages in the range and wait until they complete
2072 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2073 * multi-task, and make the performance up. See
2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2075 */
669249ee 2076 ret = start_ordered_ops(inode, start, end);
90abccf2 2077 if (ret)
333427a5 2078 goto out;
90abccf2 2079
5955102c 2080 inode_lock(inode);
2ecb7923 2081 atomic_inc(&root->log_batch);
2ab28f32
JB
2082 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2083 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
2084 /*
2085 * We might have have had more pages made dirty after calling
2086 * start_ordered_ops and before acquiring the inode's i_mutex.
2087 */
0ef8b726 2088 if (full_sync) {
669249ee
FM
2089 /*
2090 * For a full sync, we need to make sure any ordered operations
2091 * start and finish before we start logging the inode, so that
2092 * all extents are persisted and the respective file extent
2093 * items are in the fs/subvol btree.
2094 */
b659ef02 2095 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
2096 } else {
2097 /*
2098 * Start any new ordered operations before starting to log the
2099 * inode. We will wait for them to finish in btrfs_sync_log().
2100 *
2101 * Right before acquiring the inode's mutex, we might have new
2102 * writes dirtying pages, which won't immediately start the
2103 * respective ordered operations - that is done through the
2104 * fill_delalloc callbacks invoked from the writepage and
2105 * writepages address space operations. So make sure we start
2106 * all ordered operations before starting to log our inode. Not
2107 * doing this means that while logging the inode, writeback
2108 * could start and invoke writepage/writepages, which would call
2109 * the fill_delalloc callbacks (cow_file_range,
2110 * submit_compressed_extents). These callbacks add first an
2111 * extent map to the modified list of extents and then create
2112 * the respective ordered operation, which means in
2113 * tree-log.c:btrfs_log_inode() we might capture all existing
2114 * ordered operations (with btrfs_get_logged_extents()) before
2115 * the fill_delalloc callback adds its ordered operation, and by
2116 * the time we visit the modified list of extent maps (with
2117 * btrfs_log_changed_extents()), we see and process the extent
2118 * map they created. We then use the extent map to construct a
2119 * file extent item for logging without waiting for the
2120 * respective ordered operation to finish - this file extent
2121 * item points to a disk location that might not have yet been
2122 * written to, containing random data - so after a crash a log
2123 * replay will make our inode have file extent items that point
2124 * to disk locations containing invalid data, as we returned
2125 * success to userspace without waiting for the respective
2126 * ordered operation to finish, because it wasn't captured by
2127 * btrfs_get_logged_extents().
2128 */
2129 ret = start_ordered_ops(inode, start, end);
2130 }
2131 if (ret) {
5955102c 2132 inode_unlock(inode);
669249ee 2133 goto out;
0ef8b726 2134 }
2ecb7923 2135 atomic_inc(&root->log_batch);
257c62e1 2136
39279cc3 2137 /*
3a8b36f3
FM
2138 * If the last transaction that changed this file was before the current
2139 * transaction and we have the full sync flag set in our inode, we can
2140 * bail out now without any syncing.
2141 *
2142 * Note that we can't bail out if the full sync flag isn't set. This is
2143 * because when the full sync flag is set we start all ordered extents
2144 * and wait for them to fully complete - when they complete they update
2145 * the inode's last_trans field through:
2146 *
2147 * btrfs_finish_ordered_io() ->
2148 * btrfs_update_inode_fallback() ->
2149 * btrfs_update_inode() ->
2150 * btrfs_set_inode_last_trans()
2151 *
2152 * So we are sure that last_trans is up to date and can do this check to
2153 * bail out safely. For the fast path, when the full sync flag is not
2154 * set in our inode, we can not do it because we start only our ordered
2155 * extents and don't wait for them to complete (that is when
2156 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2157 * value might be less than or equals to fs_info->last_trans_committed,
2158 * and setting a speculative last_trans for an inode when a buffered
2159 * write is made (such as fs_info->generation + 1 for example) would not
2160 * be reliable since after setting the value and before fsync is called
2161 * any number of transactions can start and commit (transaction kthread
2162 * commits the current transaction periodically), and a transaction
2163 * commit does not start nor waits for ordered extents to complete.
257c62e1 2164 */
a4abeea4 2165 smp_mb();
0f8939b8 2166 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
affc0ff9 2167 (full_sync && BTRFS_I(inode)->last_trans <=
0b246afa 2168 fs_info->last_trans_committed) ||
affc0ff9
FM
2169 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2170 BTRFS_I(inode)->last_trans
0b246afa 2171 <= fs_info->last_trans_committed)) {
5dc562c5 2172 /*
01327610 2173 * We've had everything committed since the last time we were
5dc562c5
JB
2174 * modified so clear this flag in case it was set for whatever
2175 * reason, it's no longer relevant.
2176 */
2177 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2178 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2179 /*
2180 * An ordered extent might have started before and completed
2181 * already with io errors, in which case the inode was not
2182 * updated and we end up here. So check the inode's mapping
333427a5
JL
2183 * for any errors that might have happened since we last
2184 * checked called fsync.
0596a904 2185 */
333427a5 2186 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
5955102c 2187 inode_unlock(inode);
15ee9bc7
JB
2188 goto out;
2189 }
15ee9bc7
JB
2190
2191 /*
a52d9a80
CM
2192 * ok we haven't committed the transaction yet, lets do a commit
2193 */
6f902af4 2194 if (file->private_data)
6bf13c0c
SW
2195 btrfs_ioctl_trans_end(file);
2196
5039eddc
JB
2197 /*
2198 * We use start here because we will need to wait on the IO to complete
2199 * in btrfs_sync_log, which could require joining a transaction (for
2200 * example checking cross references in the nocow path). If we use join
2201 * here we could get into a situation where we're waiting on IO to
2202 * happen that is blocked on a transaction trying to commit. With start
2203 * we inc the extwriter counter, so we wait for all extwriters to exit
2204 * before we start blocking join'ers. This comment is to keep somebody
2205 * from thinking they are super smart and changing this to
2206 * btrfs_join_transaction *cough*Josef*cough*.
2207 */
a22285a6
YZ
2208 trans = btrfs_start_transaction(root, 0);
2209 if (IS_ERR(trans)) {
2210 ret = PTR_ERR(trans);
5955102c 2211 inode_unlock(inode);
39279cc3
CM
2212 goto out;
2213 }
5039eddc 2214 trans->sync = true;
e02119d5 2215
49dae1bc 2216 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2217 if (ret < 0) {
a0634be5
FDBM
2218 /* Fallthrough and commit/free transaction. */
2219 ret = 1;
02c24a82 2220 }
49eb7e46
CM
2221
2222 /* we've logged all the items and now have a consistent
2223 * version of the file in the log. It is possible that
2224 * someone will come in and modify the file, but that's
2225 * fine because the log is consistent on disk, and we
2226 * have references to all of the file's extents
2227 *
2228 * It is possible that someone will come in and log the
2229 * file again, but that will end up using the synchronization
2230 * inside btrfs_sync_log to keep things safe.
2231 */
5955102c 2232 inode_unlock(inode);
49eb7e46 2233
8407f553
FM
2234 /*
2235 * If any of the ordered extents had an error, just return it to user
2236 * space, so that the application knows some writes didn't succeed and
2237 * can take proper action (retry for e.g.). Blindly committing the
2238 * transaction in this case, would fool userspace that everything was
2239 * successful. And we also want to make sure our log doesn't contain
2240 * file extent items pointing to extents that weren't fully written to -
2241 * just like in the non fast fsync path, where we check for the ordered
2242 * operation's error flag before writing to the log tree and return -EIO
2243 * if any of them had this flag set (btrfs_wait_ordered_range) -
2244 * therefore we need to check for errors in the ordered operations,
2245 * which are indicated by ctx.io_err.
2246 */
2247 if (ctx.io_err) {
3a45bb20 2248 btrfs_end_transaction(trans);
8407f553
FM
2249 ret = ctx.io_err;
2250 goto out;
2251 }
2252
257c62e1 2253 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2254 if (!ret) {
8b050d35 2255 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2256 if (!ret) {
3a45bb20 2257 ret = btrfs_end_transaction(trans);
0ef8b726 2258 goto out;
2ab28f32 2259 }
257c62e1 2260 }
0ef8b726 2261 if (!full_sync) {
9dcbeed4 2262 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874 2263 if (ret) {
3a45bb20 2264 btrfs_end_transaction(trans);
0ef8b726 2265 goto out;
b05fd874 2266 }
0ef8b726 2267 }
3a45bb20 2268 ret = btrfs_commit_transaction(trans);
257c62e1 2269 } else {
3a45bb20 2270 ret = btrfs_end_transaction(trans);
e02119d5 2271 }
39279cc3 2272out:
ebb70442 2273 ASSERT(list_empty(&ctx.list));
333427a5
JL
2274 err = file_check_and_advance_wb_err(file);
2275 if (!ret)
2276 ret = err;
014e4ac4 2277 return ret > 0 ? -EIO : ret;
39279cc3
CM
2278}
2279
f0f37e2f 2280static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2281 .fault = filemap_fault,
f1820361 2282 .map_pages = filemap_map_pages,
9ebefb18
CM
2283 .page_mkwrite = btrfs_page_mkwrite,
2284};
2285
2286static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2287{
058a457e
MX
2288 struct address_space *mapping = filp->f_mapping;
2289
2290 if (!mapping->a_ops->readpage)
2291 return -ENOEXEC;
2292
9ebefb18 2293 file_accessed(filp);
058a457e 2294 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2295
9ebefb18
CM
2296 return 0;
2297}
2298
35339c24 2299static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2300 int slot, u64 start, u64 end)
2301{
2302 struct btrfs_file_extent_item *fi;
2303 struct btrfs_key key;
2304
2305 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2306 return 0;
2307
2308 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2309 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2310 key.type != BTRFS_EXTENT_DATA_KEY)
2311 return 0;
2312
2313 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2314
2315 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2316 return 0;
2317
2318 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2319 return 0;
2320
2321 if (key.offset == end)
2322 return 1;
2323 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2324 return 1;
2325 return 0;
2326}
2327
a012a74e
NB
2328static int fill_holes(struct btrfs_trans_handle *trans,
2329 struct btrfs_inode *inode,
2330 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2331{
a012a74e
NB
2332 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2333 struct btrfs_root *root = inode->root;
2aaa6655
JB
2334 struct extent_buffer *leaf;
2335 struct btrfs_file_extent_item *fi;
2336 struct extent_map *hole_em;
a012a74e 2337 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2338 struct btrfs_key key;
2339 int ret;
2340
0b246afa 2341 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2342 goto out;
2343
a012a74e 2344 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2345 key.type = BTRFS_EXTENT_DATA_KEY;
2346 key.offset = offset;
2347
2aaa6655 2348 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2349 if (ret <= 0) {
2350 /*
2351 * We should have dropped this offset, so if we find it then
2352 * something has gone horribly wrong.
2353 */
2354 if (ret == 0)
2355 ret = -EINVAL;
2aaa6655 2356 return ret;
f94480bd 2357 }
2aaa6655
JB
2358
2359 leaf = path->nodes[0];
a012a74e 2360 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2361 u64 num_bytes;
2362
2363 path->slots[0]--;
2364 fi = btrfs_item_ptr(leaf, path->slots[0],
2365 struct btrfs_file_extent_item);
2366 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2367 end - offset;
2368 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2369 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2370 btrfs_set_file_extent_offset(leaf, fi, 0);
2371 btrfs_mark_buffer_dirty(leaf);
2372 goto out;
2373 }
2374
1707e26d 2375 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2376 u64 num_bytes;
2377
2aaa6655 2378 key.offset = offset;
0b246afa 2379 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2380 fi = btrfs_item_ptr(leaf, path->slots[0],
2381 struct btrfs_file_extent_item);
2382 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2383 offset;
2384 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2385 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2386 btrfs_set_file_extent_offset(leaf, fi, 0);
2387 btrfs_mark_buffer_dirty(leaf);
2388 goto out;
2389 }
2390 btrfs_release_path(path);
2391
a012a74e 2392 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2393 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2394 if (ret)
2395 return ret;
2396
2397out:
2398 btrfs_release_path(path);
2399
2400 hole_em = alloc_extent_map();
2401 if (!hole_em) {
2402 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2403 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2404 } else {
2405 hole_em->start = offset;
2406 hole_em->len = end - offset;
cc95bef6 2407 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2408 hole_em->orig_start = offset;
2409
2410 hole_em->block_start = EXTENT_MAP_HOLE;
2411 hole_em->block_len = 0;
b4939680 2412 hole_em->orig_block_len = 0;
0b246afa 2413 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2414 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2415 hole_em->generation = trans->transid;
2416
2417 do {
2418 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2419 write_lock(&em_tree->lock);
09a2a8f9 2420 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2421 write_unlock(&em_tree->lock);
2422 } while (ret == -EEXIST);
2423 free_extent_map(hole_em);
2424 if (ret)
2425 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2426 &inode->runtime_flags);
2aaa6655
JB
2427 }
2428
2429 return 0;
2430}
2431
d7781546
QW
2432/*
2433 * Find a hole extent on given inode and change start/len to the end of hole
2434 * extent.(hole/vacuum extent whose em->start <= start &&
2435 * em->start + em->len > start)
2436 * When a hole extent is found, return 1 and modify start/len.
2437 */
2438static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2439{
609805d8 2440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2441 struct extent_map *em;
2442 int ret = 0;
2443
609805d8
FM
2444 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2445 round_down(*start, fs_info->sectorsize),
2446 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2447 if (IS_ERR(em))
2448 return PTR_ERR(em);
d7781546
QW
2449
2450 /* Hole or vacuum extent(only exists in no-hole mode) */
2451 if (em->block_start == EXTENT_MAP_HOLE) {
2452 ret = 1;
2453 *len = em->start + em->len > *start + *len ?
2454 0 : *start + *len - em->start - em->len;
2455 *start = em->start + em->len;
2456 }
2457 free_extent_map(em);
2458 return ret;
2459}
2460
2aaa6655
JB
2461static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2462{
0b246afa 2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct extent_state *cached_state = NULL;
2466 struct btrfs_path *path;
2467 struct btrfs_block_rsv *rsv;
2468 struct btrfs_trans_handle *trans;
d7781546
QW
2469 u64 lockstart;
2470 u64 lockend;
2471 u64 tail_start;
2472 u64 tail_len;
2473 u64 orig_start = offset;
2474 u64 cur_offset;
5f52a2c5 2475 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2476 u64 drop_end;
2aaa6655
JB
2477 int ret = 0;
2478 int err = 0;
6e4d6fa1 2479 unsigned int rsv_count;
9703fefe 2480 bool same_block;
0b246afa 2481 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2482 u64 ino_size;
9703fefe 2483 bool truncated_block = false;
e8c1c76e 2484 bool updated_inode = false;
2aaa6655 2485
0ef8b726
JB
2486 ret = btrfs_wait_ordered_range(inode, offset, len);
2487 if (ret)
2488 return ret;
2aaa6655 2489
5955102c 2490 inode_lock(inode);
0b246afa 2491 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2492 ret = find_first_non_hole(inode, &offset, &len);
2493 if (ret < 0)
2494 goto out_only_mutex;
2495 if (ret && !len) {
2496 /* Already in a large hole */
2497 ret = 0;
2498 goto out_only_mutex;
2499 }
2500
da17066c 2501 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2502 lockend = round_down(offset + len,
da17066c 2503 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2504 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2505 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2506 /*
9703fefe 2507 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2508 * because we are sure there is no data there.
2509 */
2aaa6655 2510 /*
9703fefe
CR
2511 * Only do this if we are in the same block and we aren't doing the
2512 * entire block.
2aaa6655 2513 */
0b246afa 2514 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2515 if (offset < ino_size) {
9703fefe
CR
2516 truncated_block = true;
2517 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2518 } else {
2519 ret = 0;
2520 }
d7781546 2521 goto out_only_mutex;
2aaa6655
JB
2522 }
2523
9703fefe 2524 /* zero back part of the first block */
12870f1c 2525 if (offset < ino_size) {
9703fefe
CR
2526 truncated_block = true;
2527 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2528 if (ret) {
5955102c 2529 inode_unlock(inode);
7426cc04
MX
2530 return ret;
2531 }
2aaa6655
JB
2532 }
2533
d7781546
QW
2534 /* Check the aligned pages after the first unaligned page,
2535 * if offset != orig_start, which means the first unaligned page
01327610 2536 * including several following pages are already in holes,
d7781546
QW
2537 * the extra check can be skipped */
2538 if (offset == orig_start) {
2539 /* after truncate page, check hole again */
2540 len = offset + len - lockstart;
2541 offset = lockstart;
2542 ret = find_first_non_hole(inode, &offset, &len);
2543 if (ret < 0)
2544 goto out_only_mutex;
2545 if (ret && !len) {
2546 ret = 0;
2547 goto out_only_mutex;
2548 }
2549 lockstart = offset;
2550 }
2551
2552 /* Check the tail unaligned part is in a hole */
2553 tail_start = lockend + 1;
2554 tail_len = offset + len - tail_start;
2555 if (tail_len) {
2556 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2557 if (unlikely(ret < 0))
2558 goto out_only_mutex;
2559 if (!ret) {
2560 /* zero the front end of the last page */
2561 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2562 truncated_block = true;
2563 ret = btrfs_truncate_block(inode,
2564 tail_start + tail_len,
2565 0, 1);
d7781546
QW
2566 if (ret)
2567 goto out_only_mutex;
51f395ad 2568 }
0061280d 2569 }
2aaa6655
JB
2570 }
2571
2572 if (lockend < lockstart) {
e8c1c76e
FM
2573 ret = 0;
2574 goto out_only_mutex;
2aaa6655
JB
2575 }
2576
2577 while (1) {
2578 struct btrfs_ordered_extent *ordered;
2579
2580 truncate_pagecache_range(inode, lockstart, lockend);
2581
2582 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2583 &cached_state);
2aaa6655
JB
2584 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2585
2586 /*
2587 * We need to make sure we have no ordered extents in this range
2588 * and nobody raced in and read a page in this range, if we did
2589 * we need to try again.
2590 */
2591 if ((!ordered ||
6126e3ca 2592 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2593 ordered->file_offset > lockend)) &&
fc4adbff 2594 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2595 if (ordered)
2596 btrfs_put_ordered_extent(ordered);
2597 break;
2598 }
2599 if (ordered)
2600 btrfs_put_ordered_extent(ordered);
2601 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
e43bbe5e 2602 lockend, &cached_state);
0ef8b726
JB
2603 ret = btrfs_wait_ordered_range(inode, lockstart,
2604 lockend - lockstart + 1);
2605 if (ret) {
5955102c 2606 inode_unlock(inode);
0ef8b726
JB
2607 return ret;
2608 }
2aaa6655
JB
2609 }
2610
2611 path = btrfs_alloc_path();
2612 if (!path) {
2613 ret = -ENOMEM;
2614 goto out;
2615 }
2616
2ff7e61e 2617 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2618 if (!rsv) {
2619 ret = -ENOMEM;
2620 goto out_free;
2621 }
5f52a2c5 2622 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2623 rsv->failfast = 1;
2624
2625 /*
2626 * 1 - update the inode
2627 * 1 - removing the extents in the range
16e7549f 2628 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2629 */
16e7549f
JB
2630 rsv_count = no_holes ? 2 : 3;
2631 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2632 if (IS_ERR(trans)) {
2633 err = PTR_ERR(trans);
2634 goto out_free;
2635 }
2636
0b246afa 2637 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 2638 min_size, 0);
2aaa6655
JB
2639 BUG_ON(ret);
2640 trans->block_rsv = rsv;
2641
d7781546
QW
2642 cur_offset = lockstart;
2643 len = lockend - cur_offset;
2aaa6655
JB
2644 while (cur_offset < lockend) {
2645 ret = __btrfs_drop_extents(trans, root, inode, path,
2646 cur_offset, lockend + 1,
1acae57b 2647 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2648 if (ret != -ENOSPC)
2649 break;
2650
0b246afa 2651 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2652
62fe51c1 2653 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2654 ret = fill_holes(trans, BTRFS_I(inode), path,
2655 cur_offset, drop_end);
12870f1c 2656 if (ret) {
f94480bd
JB
2657 /*
2658 * If we failed then we didn't insert our hole
2659 * entries for the area we dropped, so now the
2660 * fs is corrupted, so we must abort the
2661 * transaction.
2662 */
2663 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2664 err = ret;
2665 break;
2666 }
2aaa6655
JB
2667 }
2668
2669 cur_offset = drop_end;
2670
2671 ret = btrfs_update_inode(trans, root, inode);
2672 if (ret) {
2673 err = ret;
2674 break;
2675 }
2676
3a45bb20 2677 btrfs_end_transaction(trans);
2ff7e61e 2678 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2679
16e7549f 2680 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2681 if (IS_ERR(trans)) {
2682 ret = PTR_ERR(trans);
2683 trans = NULL;
2684 break;
2685 }
2686
0b246afa 2687 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 2688 rsv, min_size, 0);
2aaa6655
JB
2689 BUG_ON(ret); /* shouldn't happen */
2690 trans->block_rsv = rsv;
d7781546
QW
2691
2692 ret = find_first_non_hole(inode, &cur_offset, &len);
2693 if (unlikely(ret < 0))
2694 break;
2695 if (ret && !len) {
2696 ret = 0;
2697 break;
2698 }
2aaa6655
JB
2699 }
2700
2701 if (ret) {
2702 err = ret;
2703 goto out_trans;
2704 }
2705
0b246afa 2706 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2707 /*
2708 * If we are using the NO_HOLES feature we might have had already an
2709 * hole that overlaps a part of the region [lockstart, lockend] and
2710 * ends at (or beyond) lockend. Since we have no file extent items to
2711 * represent holes, drop_end can be less than lockend and so we must
2712 * make sure we have an extent map representing the existing hole (the
2713 * call to __btrfs_drop_extents() might have dropped the existing extent
2714 * map representing the existing hole), otherwise the fast fsync path
2715 * will not record the existence of the hole region
2716 * [existing_hole_start, lockend].
2717 */
2718 if (drop_end <= lockend)
2719 drop_end = lockend + 1;
fc19c5e7
FM
2720 /*
2721 * Don't insert file hole extent item if it's for a range beyond eof
2722 * (because it's useless) or if it represents a 0 bytes range (when
2723 * cur_offset == drop_end).
2724 */
2725 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2726 ret = fill_holes(trans, BTRFS_I(inode), path,
2727 cur_offset, drop_end);
12870f1c 2728 if (ret) {
f94480bd
JB
2729 /* Same comment as above. */
2730 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2731 err = ret;
2732 goto out_trans;
2733 }
2aaa6655
JB
2734 }
2735
2736out_trans:
2737 if (!trans)
2738 goto out_free;
2739
e1f5790e 2740 inode_inc_iversion(inode);
c2050a45 2741 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2742
0b246afa 2743 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2744 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2745 updated_inode = true;
3a45bb20 2746 btrfs_end_transaction(trans);
2ff7e61e 2747 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2748out_free:
2749 btrfs_free_path(path);
2ff7e61e 2750 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2751out:
2752 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2753 &cached_state);
d7781546 2754out_only_mutex:
9703fefe 2755 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2756 /*
2757 * If we only end up zeroing part of a page, we still need to
2758 * update the inode item, so that all the time fields are
2759 * updated as well as the necessary btrfs inode in memory fields
2760 * for detecting, at fsync time, if the inode isn't yet in the
2761 * log tree or it's there but not up to date.
2762 */
2763 trans = btrfs_start_transaction(root, 1);
2764 if (IS_ERR(trans)) {
2765 err = PTR_ERR(trans);
2766 } else {
2767 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2768 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2769 }
2770 }
5955102c 2771 inode_unlock(inode);
2aaa6655
JB
2772 if (ret && !err)
2773 err = ret;
2774 return err;
2775}
2776
14524a84
QW
2777/* Helper structure to record which range is already reserved */
2778struct falloc_range {
2779 struct list_head list;
2780 u64 start;
2781 u64 len;
2782};
2783
2784/*
2785 * Helper function to add falloc range
2786 *
2787 * Caller should have locked the larger range of extent containing
2788 * [start, len)
2789 */
2790static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2791{
2792 struct falloc_range *prev = NULL;
2793 struct falloc_range *range = NULL;
2794
2795 if (list_empty(head))
2796 goto insert;
2797
2798 /*
2799 * As fallocate iterate by bytenr order, we only need to check
2800 * the last range.
2801 */
2802 prev = list_entry(head->prev, struct falloc_range, list);
2803 if (prev->start + prev->len == start) {
2804 prev->len += len;
2805 return 0;
2806 }
2807insert:
32fc932e 2808 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2809 if (!range)
2810 return -ENOMEM;
2811 range->start = start;
2812 range->len = len;
2813 list_add_tail(&range->list, head);
2814 return 0;
2815}
2816
2fe17c10
CH
2817static long btrfs_fallocate(struct file *file, int mode,
2818 loff_t offset, loff_t len)
2819{
496ad9aa 2820 struct inode *inode = file_inode(file);
2fe17c10 2821 struct extent_state *cached_state = NULL;
364ecf36 2822 struct extent_changeset *data_reserved = NULL;
14524a84
QW
2823 struct falloc_range *range;
2824 struct falloc_range *tmp;
2825 struct list_head reserve_list;
2fe17c10
CH
2826 u64 cur_offset;
2827 u64 last_byte;
2828 u64 alloc_start;
2829 u64 alloc_end;
2830 u64 alloc_hint = 0;
2831 u64 locked_end;
14524a84 2832 u64 actual_end = 0;
2fe17c10 2833 struct extent_map *em;
da17066c 2834 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2835 int ret;
2836
797f4277
MX
2837 alloc_start = round_down(offset, blocksize);
2838 alloc_end = round_up(offset + len, blocksize);
18513091 2839 cur_offset = alloc_start;
2fe17c10 2840
2aaa6655
JB
2841 /* Make sure we aren't being give some crap mode */
2842 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2843 return -EOPNOTSUPP;
2844
2aaa6655
JB
2845 if (mode & FALLOC_FL_PUNCH_HOLE)
2846 return btrfs_punch_hole(inode, offset, len);
2847
d98456fc 2848 /*
14524a84
QW
2849 * Only trigger disk allocation, don't trigger qgroup reserve
2850 *
2851 * For qgroup space, it will be checked later.
d98456fc 2852 */
04f4f916
NB
2853 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2854 alloc_end - alloc_start);
14524a84 2855 if (ret < 0)
d98456fc
CM
2856 return ret;
2857
5955102c 2858 inode_lock(inode);
2a162ce9
DI
2859
2860 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2861 ret = inode_newsize_ok(inode, offset + len);
2862 if (ret)
2863 goto out;
2864 }
2fe17c10 2865
14524a84
QW
2866 /*
2867 * TODO: Move these two operations after we have checked
2868 * accurate reserved space, or fallocate can still fail but
2869 * with page truncated or size expanded.
2870 *
2871 * But that's a minor problem and won't do much harm BTW.
2872 */
2fe17c10 2873 if (alloc_start > inode->i_size) {
a41ad394
JB
2874 ret = btrfs_cont_expand(inode, i_size_read(inode),
2875 alloc_start);
2fe17c10
CH
2876 if (ret)
2877 goto out;
0f6925fa 2878 } else if (offset + len > inode->i_size) {
a71754fc
JB
2879 /*
2880 * If we are fallocating from the end of the file onward we
9703fefe
CR
2881 * need to zero out the end of the block if i_size lands in the
2882 * middle of a block.
a71754fc 2883 */
9703fefe 2884 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2885 if (ret)
2886 goto out;
2fe17c10
CH
2887 }
2888
a71754fc
JB
2889 /*
2890 * wait for ordered IO before we have any locks. We'll loop again
2891 * below with the locks held.
2892 */
0ef8b726
JB
2893 ret = btrfs_wait_ordered_range(inode, alloc_start,
2894 alloc_end - alloc_start);
2895 if (ret)
2896 goto out;
a71754fc 2897
2fe17c10
CH
2898 locked_end = alloc_end - 1;
2899 while (1) {
2900 struct btrfs_ordered_extent *ordered;
2901
2902 /* the extent lock is ordered inside the running
2903 * transaction
2904 */
2905 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2906 locked_end, &cached_state);
96b09dde
NB
2907 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
2908
2fe17c10
CH
2909 if (ordered &&
2910 ordered->file_offset + ordered->len > alloc_start &&
2911 ordered->file_offset < alloc_end) {
2912 btrfs_put_ordered_extent(ordered);
2913 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2914 alloc_start, locked_end,
e43bbe5e 2915 &cached_state);
2fe17c10
CH
2916 /*
2917 * we can't wait on the range with the transaction
2918 * running or with the extent lock held
2919 */
0ef8b726
JB
2920 ret = btrfs_wait_ordered_range(inode, alloc_start,
2921 alloc_end - alloc_start);
2922 if (ret)
2923 goto out;
2fe17c10
CH
2924 } else {
2925 if (ordered)
2926 btrfs_put_ordered_extent(ordered);
2927 break;
2928 }
2929 }
2930
14524a84
QW
2931 /* First, check if we exceed the qgroup limit */
2932 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 2933 while (cur_offset < alloc_end) {
fc4f21b1 2934 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 2935 alloc_end - cur_offset, 0);
9986277e
DC
2936 if (IS_ERR(em)) {
2937 ret = PTR_ERR(em);
79787eaa
JM
2938 break;
2939 }
2fe17c10 2940 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2941 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2942 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2943 if (em->block_start == EXTENT_MAP_HOLE ||
2944 (cur_offset >= inode->i_size &&
2945 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2946 ret = add_falloc_range(&reserve_list, cur_offset,
2947 last_byte - cur_offset);
2948 if (ret < 0) {
2949 free_extent_map(em);
2950 break;
3d850dd4 2951 }
364ecf36
QW
2952 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2953 cur_offset, last_byte - cur_offset);
be2d253c
FM
2954 if (ret < 0) {
2955 free_extent_map(em);
14524a84 2956 break;
be2d253c 2957 }
18513091
WX
2958 } else {
2959 /*
2960 * Do not need to reserve unwritten extent for this
2961 * range, free reserved data space first, otherwise
2962 * it'll result in false ENOSPC error.
2963 */
bc42bda2
QW
2964 btrfs_free_reserved_data_space(inode, data_reserved,
2965 cur_offset, last_byte - cur_offset);
2fe17c10
CH
2966 }
2967 free_extent_map(em);
2fe17c10 2968 cur_offset = last_byte;
14524a84
QW
2969 }
2970
2971 /*
2972 * If ret is still 0, means we're OK to fallocate.
2973 * Or just cleanup the list and exit.
2974 */
2975 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2976 if (!ret)
2977 ret = btrfs_prealloc_file_range(inode, mode,
2978 range->start,
93407472 2979 range->len, i_blocksize(inode),
14524a84 2980 offset + len, &alloc_hint);
18513091 2981 else
bc42bda2
QW
2982 btrfs_free_reserved_data_space(inode,
2983 data_reserved, range->start,
2984 range->len);
14524a84
QW
2985 list_del(&range->list);
2986 kfree(range);
2987 }
2988 if (ret < 0)
2989 goto out_unlock;
2990
2991 if (actual_end > inode->i_size &&
2992 !(mode & FALLOC_FL_KEEP_SIZE)) {
2993 struct btrfs_trans_handle *trans;
2994 struct btrfs_root *root = BTRFS_I(inode)->root;
2995
2996 /*
2997 * We didn't need to allocate any more space, but we
2998 * still extended the size of the file so we need to
2999 * update i_size and the inode item.
3000 */
3001 trans = btrfs_start_transaction(root, 1);
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 } else {
c2050a45 3005 inode->i_ctime = current_time(inode);
14524a84
QW
3006 i_size_write(inode, actual_end);
3007 btrfs_ordered_update_i_size(inode, actual_end, NULL);
3008 ret = btrfs_update_inode(trans, root, inode);
3009 if (ret)
3a45bb20 3010 btrfs_end_transaction(trans);
14524a84 3011 else
3a45bb20 3012 ret = btrfs_end_transaction(trans);
2fe17c10
CH
3013 }
3014 }
14524a84 3015out_unlock:
2fe17c10 3016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3017 &cached_state);
2fe17c10 3018out:
5955102c 3019 inode_unlock(inode);
d98456fc 3020 /* Let go of our reservation. */
18513091 3021 if (ret != 0)
bc42bda2
QW
3022 btrfs_free_reserved_data_space(inode, data_reserved,
3023 alloc_start, alloc_end - cur_offset);
364ecf36 3024 extent_changeset_free(data_reserved);
2fe17c10
CH
3025 return ret;
3026}
3027
965c8e59 3028static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3029{
0b246afa 3030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3031 struct extent_map *em = NULL;
b2675157 3032 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3033 u64 lockstart;
3034 u64 lockend;
3035 u64 start;
3036 u64 len;
b2675157
JB
3037 int ret = 0;
3038
4d1a40c6
LB
3039 if (inode->i_size == 0)
3040 return -ENXIO;
3041
3042 /*
3043 * *offset can be negative, in this case we start finding DATA/HOLE from
3044 * the very start of the file.
3045 */
3046 start = max_t(loff_t, 0, *offset);
3047
0b246afa 3048 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3049 lockend = round_up(i_size_read(inode),
0b246afa 3050 fs_info->sectorsize);
b2675157 3051 if (lockend <= lockstart)
0b246afa 3052 lockend = lockstart + fs_info->sectorsize;
1214b53f 3053 lockend--;
b2675157
JB
3054 len = lockend - lockstart + 1;
3055
ff13db41 3056 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3057 &cached_state);
b2675157 3058
7f4ca37c 3059 while (start < inode->i_size) {
fc4f21b1
NB
3060 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3061 start, len, 0);
b2675157 3062 if (IS_ERR(em)) {
6af021d8 3063 ret = PTR_ERR(em);
7f4ca37c 3064 em = NULL;
b2675157
JB
3065 break;
3066 }
3067
7f4ca37c
JB
3068 if (whence == SEEK_HOLE &&
3069 (em->block_start == EXTENT_MAP_HOLE ||
3070 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3071 break;
3072 else if (whence == SEEK_DATA &&
3073 (em->block_start != EXTENT_MAP_HOLE &&
3074 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3075 break;
b2675157
JB
3076
3077 start = em->start + em->len;
b2675157 3078 free_extent_map(em);
7f4ca37c 3079 em = NULL;
b2675157
JB
3080 cond_resched();
3081 }
7f4ca37c
JB
3082 free_extent_map(em);
3083 if (!ret) {
3084 if (whence == SEEK_DATA && start >= inode->i_size)
3085 ret = -ENXIO;
3086 else
3087 *offset = min_t(loff_t, start, inode->i_size);
3088 }
b2675157 3089 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3090 &cached_state);
b2675157
JB
3091 return ret;
3092}
3093
965c8e59 3094static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3095{
3096 struct inode *inode = file->f_mapping->host;
3097 int ret;
3098
5955102c 3099 inode_lock(inode);
965c8e59 3100 switch (whence) {
b2675157
JB
3101 case SEEK_END:
3102 case SEEK_CUR:
965c8e59 3103 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3104 goto out;
3105 case SEEK_DATA:
3106 case SEEK_HOLE:
48802c8a 3107 if (offset >= i_size_read(inode)) {
5955102c 3108 inode_unlock(inode);
48802c8a
JL
3109 return -ENXIO;
3110 }
3111
965c8e59 3112 ret = find_desired_extent(inode, &offset, whence);
b2675157 3113 if (ret) {
5955102c 3114 inode_unlock(inode);
b2675157
JB
3115 return ret;
3116 }
3117 }
3118
46a1c2c7 3119 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3120out:
5955102c 3121 inode_unlock(inode);
b2675157
JB
3122 return offset;
3123}
3124
edf064e7
GR
3125static int btrfs_file_open(struct inode *inode, struct file *filp)
3126{
91f9943e 3127 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3128 return generic_file_open(inode, filp);
3129}
3130
828c0950 3131const struct file_operations btrfs_file_operations = {
b2675157 3132 .llseek = btrfs_file_llseek,
aad4f8bb 3133 .read_iter = generic_file_read_iter,
e9906a98 3134 .splice_read = generic_file_splice_read,
b30ac0fc 3135 .write_iter = btrfs_file_write_iter,
9ebefb18 3136 .mmap = btrfs_file_mmap,
edf064e7 3137 .open = btrfs_file_open,
e1b81e67 3138 .release = btrfs_release_file,
39279cc3 3139 .fsync = btrfs_sync_file,
2fe17c10 3140 .fallocate = btrfs_fallocate,
34287aa3 3141 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3142#ifdef CONFIG_COMPAT
4c63c245 3143 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3144#endif
04b38d60 3145 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3146 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3147};
9247f317
MX
3148
3149void btrfs_auto_defrag_exit(void)
3150{
5598e900 3151 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3152}
3153
f5c29bd9 3154int __init btrfs_auto_defrag_init(void)
9247f317
MX
3155{
3156 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3157 sizeof(struct inode_defrag), 0,
fba4b697 3158 SLAB_MEM_SPREAD,
9247f317
MX
3159 NULL);
3160 if (!btrfs_inode_defrag_cachep)
3161 return -ENOMEM;
3162
3163 return 0;
3164}
728404da
FM
3165
3166int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3167{
3168 int ret;
3169
3170 /*
3171 * So with compression we will find and lock a dirty page and clear the
3172 * first one as dirty, setup an async extent, and immediately return
3173 * with the entire range locked but with nobody actually marked with
3174 * writeback. So we can't just filemap_write_and_wait_range() and
3175 * expect it to work since it will just kick off a thread to do the
3176 * actual work. So we need to call filemap_fdatawrite_range _again_
3177 * since it will wait on the page lock, which won't be unlocked until
3178 * after the pages have been marked as writeback and so we're good to go
3179 * from there. We have to do this otherwise we'll miss the ordered
3180 * extents and that results in badness. Please Josef, do not think you
3181 * know better and pull this out at some point in the future, it is
3182 * right and you are wrong.
3183 */
3184 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3185 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3186 &BTRFS_I(inode)->runtime_flags))
3187 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3188
3189 return ret;
3190}