iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
39279cc3
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
39279cc3 24#include "print-tree.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
2aaa6655 27#include "volumes.h"
fcebe456 28#include "qgroup.h"
ebb8765b 29#include "compression.h"
86736342 30#include "delalloc-space.h"
6a177381 31#include "reflink.h"
f02a85d2 32#include "subpage.h"
39279cc3 33
9247f317 34static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
35/*
36 * when auto defrag is enabled we
37 * queue up these defrag structs to remember which
38 * inodes need defragging passes
39 */
40struct inode_defrag {
41 struct rb_node rb_node;
42 /* objectid */
43 u64 ino;
44 /*
45 * transid where the defrag was added, we search for
46 * extents newer than this
47 */
48 u64 transid;
49
50 /* root objectid */
51 u64 root;
52
53 /* last offset we were able to defrag */
54 u64 last_offset;
55
56 /* if we've wrapped around back to zero once already */
57 int cycled;
58};
59
762f2263
MX
60static int __compare_inode_defrag(struct inode_defrag *defrag1,
61 struct inode_defrag *defrag2)
62{
63 if (defrag1->root > defrag2->root)
64 return 1;
65 else if (defrag1->root < defrag2->root)
66 return -1;
67 else if (defrag1->ino > defrag2->ino)
68 return 1;
69 else if (defrag1->ino < defrag2->ino)
70 return -1;
71 else
72 return 0;
73}
74
4cb5300b
CM
75/* pop a record for an inode into the defrag tree. The lock
76 * must be held already
77 *
78 * If you're inserting a record for an older transid than an
79 * existing record, the transid already in the tree is lowered
80 *
81 * If an existing record is found the defrag item you
82 * pass in is freed
83 */
6158e1ce 84static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
85 struct inode_defrag *defrag)
86{
3ffbd68c 87 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
88 struct inode_defrag *entry;
89 struct rb_node **p;
90 struct rb_node *parent = NULL;
762f2263 91 int ret;
4cb5300b 92
0b246afa 93 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
94 while (*p) {
95 parent = *p;
96 entry = rb_entry(parent, struct inode_defrag, rb_node);
97
762f2263
MX
98 ret = __compare_inode_defrag(defrag, entry);
99 if (ret < 0)
4cb5300b 100 p = &parent->rb_left;
762f2263 101 else if (ret > 0)
4cb5300b
CM
102 p = &parent->rb_right;
103 else {
104 /* if we're reinserting an entry for
105 * an old defrag run, make sure to
106 * lower the transid of our existing record
107 */
108 if (defrag->transid < entry->transid)
109 entry->transid = defrag->transid;
110 if (defrag->last_offset > entry->last_offset)
111 entry->last_offset = defrag->last_offset;
8ddc4734 112 return -EEXIST;
4cb5300b
CM
113 }
114 }
6158e1ce 115 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 116 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 117 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
118 return 0;
119}
4cb5300b 120
2ff7e61e 121static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 122{
0b246afa 123 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
124 return 0;
125
0b246afa 126 if (btrfs_fs_closing(fs_info))
8ddc4734 127 return 0;
4cb5300b 128
8ddc4734 129 return 1;
4cb5300b
CM
130}
131
132/*
133 * insert a defrag record for this inode if auto defrag is
134 * enabled
135 */
136int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 137 struct btrfs_inode *inode)
4cb5300b 138{
6158e1ce 139 struct btrfs_root *root = inode->root;
3ffbd68c 140 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 141 struct inode_defrag *defrag;
4cb5300b 142 u64 transid;
8ddc4734 143 int ret;
4cb5300b 144
2ff7e61e 145 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
146 return 0;
147
6158e1ce 148 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
149 return 0;
150
151 if (trans)
152 transid = trans->transid;
153 else
6158e1ce 154 transid = inode->root->last_trans;
4cb5300b 155
9247f317 156 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
157 if (!defrag)
158 return -ENOMEM;
159
6158e1ce 160 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
161 defrag->transid = transid;
162 defrag->root = root->root_key.objectid;
163
0b246afa 164 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 165 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
166 /*
167 * If we set IN_DEFRAG flag and evict the inode from memory,
168 * and then re-read this inode, this new inode doesn't have
169 * IN_DEFRAG flag. At the case, we may find the existed defrag.
170 */
171 ret = __btrfs_add_inode_defrag(inode, defrag);
172 if (ret)
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 } else {
9247f317 175 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 176 }
0b246afa 177 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 178 return 0;
4cb5300b
CM
179}
180
181/*
8ddc4734
MX
182 * Requeue the defrag object. If there is a defrag object that points to
183 * the same inode in the tree, we will merge them together (by
184 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 185 */
46e59791 186static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 187 struct inode_defrag *defrag)
8ddc4734 188{
3ffbd68c 189 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
190 int ret;
191
2ff7e61e 192 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
193 goto out;
194
195 /*
196 * Here we don't check the IN_DEFRAG flag, because we need merge
197 * them together.
198 */
0b246afa 199 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 200 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 201 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
202 if (ret)
203 goto out;
204 return;
205out:
206 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
207}
208
4cb5300b 209/*
26176e7c
MX
210 * pick the defragable inode that we want, if it doesn't exist, we will get
211 * the next one.
4cb5300b 212 */
26176e7c
MX
213static struct inode_defrag *
214btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
215{
216 struct inode_defrag *entry = NULL;
762f2263 217 struct inode_defrag tmp;
4cb5300b
CM
218 struct rb_node *p;
219 struct rb_node *parent = NULL;
762f2263
MX
220 int ret;
221
222 tmp.ino = ino;
223 tmp.root = root;
4cb5300b 224
26176e7c
MX
225 spin_lock(&fs_info->defrag_inodes_lock);
226 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
227 while (p) {
228 parent = p;
229 entry = rb_entry(parent, struct inode_defrag, rb_node);
230
762f2263
MX
231 ret = __compare_inode_defrag(&tmp, entry);
232 if (ret < 0)
4cb5300b 233 p = parent->rb_left;
762f2263 234 else if (ret > 0)
4cb5300b
CM
235 p = parent->rb_right;
236 else
26176e7c 237 goto out;
4cb5300b
CM
238 }
239
26176e7c
MX
240 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
241 parent = rb_next(parent);
242 if (parent)
4cb5300b 243 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
244 else
245 entry = NULL;
4cb5300b 246 }
26176e7c
MX
247out:
248 if (entry)
249 rb_erase(parent, &fs_info->defrag_inodes);
250 spin_unlock(&fs_info->defrag_inodes_lock);
251 return entry;
4cb5300b
CM
252}
253
26176e7c 254void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
255{
256 struct inode_defrag *defrag;
26176e7c
MX
257 struct rb_node *node;
258
259 spin_lock(&fs_info->defrag_inodes_lock);
260 node = rb_first(&fs_info->defrag_inodes);
261 while (node) {
262 rb_erase(node, &fs_info->defrag_inodes);
263 defrag = rb_entry(node, struct inode_defrag, rb_node);
264 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
265
351810c1 266 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
267
268 node = rb_first(&fs_info->defrag_inodes);
269 }
270 spin_unlock(&fs_info->defrag_inodes_lock);
271}
272
273#define BTRFS_DEFRAG_BATCH 1024
274
275static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
276 struct inode_defrag *defrag)
277{
4cb5300b
CM
278 struct btrfs_root *inode_root;
279 struct inode *inode;
4cb5300b 280 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 281 int num_defrag;
6f1c3605 282 int ret;
4cb5300b 283
26176e7c 284 /* get the inode */
56e9357a 285 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
26176e7c 286 if (IS_ERR(inode_root)) {
6f1c3605
LB
287 ret = PTR_ERR(inode_root);
288 goto cleanup;
289 }
26176e7c 290
0202e83f 291 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
00246528 292 btrfs_put_root(inode_root);
26176e7c 293 if (IS_ERR(inode)) {
6f1c3605
LB
294 ret = PTR_ERR(inode);
295 goto cleanup;
26176e7c
MX
296 }
297
298 /* do a chunk of defrag */
299 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
300 memset(&range, 0, sizeof(range));
301 range.len = (u64)-1;
26176e7c 302 range.start = defrag->last_offset;
b66f00da
MX
303
304 sb_start_write(fs_info->sb);
26176e7c
MX
305 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
306 BTRFS_DEFRAG_BATCH);
b66f00da 307 sb_end_write(fs_info->sb);
26176e7c
MX
308 /*
309 * if we filled the whole defrag batch, there
310 * must be more work to do. Queue this defrag
311 * again
312 */
313 if (num_defrag == BTRFS_DEFRAG_BATCH) {
314 defrag->last_offset = range.start;
46e59791 315 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
316 } else if (defrag->last_offset && !defrag->cycled) {
317 /*
318 * we didn't fill our defrag batch, but
319 * we didn't start at zero. Make sure we loop
320 * around to the start of the file.
321 */
322 defrag->last_offset = 0;
323 defrag->cycled = 1;
46e59791 324 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
325 } else {
326 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
327 }
328
329 iput(inode);
330 return 0;
6f1c3605 331cleanup:
6f1c3605
LB
332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333 return ret;
26176e7c
MX
334}
335
336/*
337 * run through the list of inodes in the FS that need
338 * defragging
339 */
340int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
341{
342 struct inode_defrag *defrag;
343 u64 first_ino = 0;
344 u64 root_objectid = 0;
4cb5300b
CM
345
346 atomic_inc(&fs_info->defrag_running);
67871254 347 while (1) {
dc81cdc5
MX
348 /* Pause the auto defragger. */
349 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
350 &fs_info->fs_state))
351 break;
352
2ff7e61e 353 if (!__need_auto_defrag(fs_info))
26176e7c 354 break;
4cb5300b
CM
355
356 /* find an inode to defrag */
26176e7c
MX
357 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
358 first_ino);
4cb5300b 359 if (!defrag) {
26176e7c 360 if (root_objectid || first_ino) {
762f2263 361 root_objectid = 0;
4cb5300b
CM
362 first_ino = 0;
363 continue;
364 } else {
365 break;
366 }
367 }
368
4cb5300b 369 first_ino = defrag->ino + 1;
762f2263 370 root_objectid = defrag->root;
4cb5300b 371
26176e7c 372 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 373 }
4cb5300b
CM
374 atomic_dec(&fs_info->defrag_running);
375
376 /*
377 * during unmount, we use the transaction_wait queue to
378 * wait for the defragger to stop
379 */
380 wake_up(&fs_info->transaction_wait);
381 return 0;
382}
39279cc3 383
d352ac68
CM
384/* simple helper to fault in pages and copy. This should go away
385 * and be replaced with calls into generic code.
386 */
ee22f0c4 387static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 388 struct page **prepared_pages,
11c65dcc 389 struct iov_iter *i)
39279cc3 390{
914ee295 391 size_t copied = 0;
d0215f3e 392 size_t total_copied = 0;
11c65dcc 393 int pg = 0;
7073017a 394 int offset = offset_in_page(pos);
39279cc3 395
11c65dcc 396 while (write_bytes > 0) {
39279cc3 397 size_t count = min_t(size_t,
09cbfeaf 398 PAGE_SIZE - offset, write_bytes);
11c65dcc 399 struct page *page = prepared_pages[pg];
914ee295
XZ
400 /*
401 * Copy data from userspace to the current page
914ee295 402 */
f0b65f39 403 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 404
39279cc3
CM
405 /* Flush processor's dcache for this page */
406 flush_dcache_page(page);
31339acd
CM
407
408 /*
409 * if we get a partial write, we can end up with
410 * partially up to date pages. These add
411 * a lot of complexity, so make sure they don't
412 * happen by forcing this copy to be retried.
413 *
414 * The rest of the btrfs_file_write code will fall
415 * back to page at a time copies after we return 0.
416 */
f0b65f39
AV
417 if (unlikely(copied < count)) {
418 if (!PageUptodate(page)) {
419 iov_iter_revert(i, copied);
420 copied = 0;
421 }
422 if (!copied)
423 break;
424 }
31339acd 425
11c65dcc 426 write_bytes -= copied;
914ee295 427 total_copied += copied;
f0b65f39
AV
428 offset += copied;
429 if (offset == PAGE_SIZE) {
11c65dcc
JB
430 pg++;
431 offset = 0;
432 }
39279cc3 433 }
914ee295 434 return total_copied;
39279cc3
CM
435}
436
d352ac68
CM
437/*
438 * unlocks pages after btrfs_file_write is done with them
439 */
48a3b636 440static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
441{
442 size_t i;
443 for (i = 0; i < num_pages; i++) {
d352ac68
CM
444 /* page checked is some magic around finding pages that
445 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
446 * clear it here. There should be no need to mark the pages
447 * accessed as prepare_pages should have marked them accessed
448 * in prepare_pages via find_or_create_page()
d352ac68 449 */
4a096752 450 ClearPageChecked(pages[i]);
39279cc3 451 unlock_page(pages[i]);
09cbfeaf 452 put_page(pages[i]);
39279cc3
CM
453 }
454}
455
d352ac68 456/*
c0fab480
QW
457 * After btrfs_copy_from_user(), update the following things for delalloc:
458 * - Mark newly dirtied pages as DELALLOC in the io tree.
459 * Used to advise which range is to be written back.
460 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
461 * - Update inode size for past EOF write
d352ac68 462 */
088545f6 463int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 464 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 465 struct extent_state **cached, bool noreserve)
39279cc3 466{
088545f6 467 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 468 int err = 0;
a52d9a80 469 int i;
db94535d 470 u64 num_bytes;
a52d9a80
CM
471 u64 start_pos;
472 u64 end_of_last_block;
473 u64 end_pos = pos + write_bytes;
088545f6 474 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 475 unsigned int extra_bits = 0;
39279cc3 476
aa8c1a41
GR
477 if (write_bytes == 0)
478 return 0;
479
480 if (noreserve)
481 extra_bits |= EXTENT_NORESERVE;
482
13f0dd8f 483 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 484 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 485 fs_info->sectorsize);
f02a85d2 486 ASSERT(num_bytes <= U32_MAX);
39279cc3 487
db94535d 488 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 489
7703bdd8
CM
490 /*
491 * The pages may have already been dirty, clear out old accounting so
492 * we can set things up properly
493 */
088545f6 494 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d
OS
495 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
496 0, 0, cached);
7703bdd8 497
088545f6 498 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 499 extra_bits, cached);
d0215f3e
JB
500 if (err)
501 return err;
9ed74f2d 502
c8b97818
CM
503 for (i = 0; i < num_pages; i++) {
504 struct page *p = pages[i];
f02a85d2
QW
505
506 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
c8b97818 507 ClearPageChecked(p);
f02a85d2 508 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
a52d9a80 509 }
9f570b8d
JB
510
511 /*
512 * we've only changed i_size in ram, and we haven't updated
513 * the disk i_size. There is no need to log the inode
514 * at this time.
515 */
516 if (end_pos > isize)
088545f6 517 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 518 return 0;
39279cc3
CM
519}
520
d352ac68
CM
521/*
522 * this drops all the extents in the cache that intersect the range
523 * [start, end]. Existing extents are split as required.
524 */
dcdbc059 525void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 526 int skip_pinned)
a52d9a80
CM
527{
528 struct extent_map *em;
3b951516
CM
529 struct extent_map *split = NULL;
530 struct extent_map *split2 = NULL;
dcdbc059 531 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 532 u64 len = end - start + 1;
5dc562c5 533 u64 gen;
3b951516
CM
534 int ret;
535 int testend = 1;
5b21f2ed 536 unsigned long flags;
c8b97818 537 int compressed = 0;
09a2a8f9 538 bool modified;
a52d9a80 539
e6dcd2dc 540 WARN_ON(end < start);
3b951516 541 if (end == (u64)-1) {
39b5637f 542 len = (u64)-1;
3b951516
CM
543 testend = 0;
544 }
d397712b 545 while (1) {
7014cdb4
JB
546 int no_splits = 0;
547
09a2a8f9 548 modified = false;
3b951516 549 if (!split)
172ddd60 550 split = alloc_extent_map();
3b951516 551 if (!split2)
172ddd60 552 split2 = alloc_extent_map();
7014cdb4
JB
553 if (!split || !split2)
554 no_splits = 1;
3b951516 555
890871be 556 write_lock(&em_tree->lock);
39b5637f 557 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 558 if (!em) {
890871be 559 write_unlock(&em_tree->lock);
a52d9a80 560 break;
d1310b2e 561 }
5b21f2ed 562 flags = em->flags;
5dc562c5 563 gen = em->generation;
5b21f2ed 564 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 565 if (testend && em->start + em->len >= start + len) {
5b21f2ed 566 free_extent_map(em);
a1ed835e 567 write_unlock(&em_tree->lock);
5b21f2ed
ZY
568 break;
569 }
55ef6899
YZ
570 start = em->start + em->len;
571 if (testend)
5b21f2ed 572 len = start + len - (em->start + em->len);
5b21f2ed 573 free_extent_map(em);
a1ed835e 574 write_unlock(&em_tree->lock);
5b21f2ed
ZY
575 continue;
576 }
c8b97818 577 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 578 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 579 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 580 modified = !list_empty(&em->list);
7014cdb4
JB
581 if (no_splits)
582 goto next;
3b951516 583
ee20a983 584 if (em->start < start) {
3b951516
CM
585 split->start = em->start;
586 split->len = start - em->start;
ee20a983
JB
587
588 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
589 split->orig_start = em->orig_start;
590 split->block_start = em->block_start;
591
592 if (compressed)
593 split->block_len = em->block_len;
594 else
595 split->block_len = split->len;
596 split->orig_block_len = max(split->block_len,
597 em->orig_block_len);
598 split->ram_bytes = em->ram_bytes;
599 } else {
600 split->orig_start = split->start;
601 split->block_len = 0;
602 split->block_start = em->block_start;
603 split->orig_block_len = 0;
604 split->ram_bytes = split->len;
605 }
606
5dc562c5 607 split->generation = gen;
5b21f2ed 608 split->flags = flags;
261507a0 609 split->compress_type = em->compress_type;
176840b3 610 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
611 free_extent_map(split);
612 split = split2;
613 split2 = NULL;
614 }
ee20a983 615 if (testend && em->start + em->len > start + len) {
3b951516
CM
616 u64 diff = start + len - em->start;
617
618 split->start = start + len;
619 split->len = em->start + em->len - (start + len);
5b21f2ed 620 split->flags = flags;
261507a0 621 split->compress_type = em->compress_type;
5dc562c5 622 split->generation = gen;
ee20a983
JB
623
624 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
625 split->orig_block_len = max(em->block_len,
b4939680 626 em->orig_block_len);
3b951516 627
ee20a983
JB
628 split->ram_bytes = em->ram_bytes;
629 if (compressed) {
630 split->block_len = em->block_len;
631 split->block_start = em->block_start;
632 split->orig_start = em->orig_start;
633 } else {
634 split->block_len = split->len;
635 split->block_start = em->block_start
636 + diff;
637 split->orig_start = em->orig_start;
638 }
c8b97818 639 } else {
ee20a983
JB
640 split->ram_bytes = split->len;
641 split->orig_start = split->start;
642 split->block_len = 0;
643 split->block_start = em->block_start;
644 split->orig_block_len = 0;
c8b97818 645 }
3b951516 646
176840b3
FM
647 if (extent_map_in_tree(em)) {
648 replace_extent_mapping(em_tree, em, split,
649 modified);
650 } else {
651 ret = add_extent_mapping(em_tree, split,
652 modified);
653 ASSERT(ret == 0); /* Logic error */
654 }
3b951516
CM
655 free_extent_map(split);
656 split = NULL;
657 }
7014cdb4 658next:
176840b3
FM
659 if (extent_map_in_tree(em))
660 remove_extent_mapping(em_tree, em);
890871be 661 write_unlock(&em_tree->lock);
d1310b2e 662
a52d9a80
CM
663 /* once for us */
664 free_extent_map(em);
665 /* once for the tree*/
666 free_extent_map(em);
667 }
3b951516
CM
668 if (split)
669 free_extent_map(split);
670 if (split2)
671 free_extent_map(split2);
a52d9a80
CM
672}
673
39279cc3
CM
674/*
675 * this is very complex, but the basic idea is to drop all extents
676 * in the range start - end. hint_block is filled in with a block number
677 * that would be a good hint to the block allocator for this file.
678 *
679 * If an extent intersects the range but is not entirely inside the range
680 * it is either truncated or split. Anything entirely inside the range
681 * is deleted from the tree.
2766ff61
FM
682 *
683 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
684 * to deal with that. We set the field 'bytes_found' of the arguments structure
685 * with the number of allocated bytes found in the target range, so that the
686 * caller can update the inode's number of bytes in an atomic way when
687 * replacing extents in a range to avoid races with stat(2).
39279cc3 688 */
5893dfb9
FM
689int btrfs_drop_extents(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, struct btrfs_inode *inode,
691 struct btrfs_drop_extents_args *args)
39279cc3 692{
0b246afa 693 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 694 struct extent_buffer *leaf;
920bbbfb 695 struct btrfs_file_extent_item *fi;
82fa113f 696 struct btrfs_ref ref = { 0 };
00f5c795 697 struct btrfs_key key;
920bbbfb 698 struct btrfs_key new_key;
906c448c 699 u64 ino = btrfs_ino(inode);
5893dfb9 700 u64 search_start = args->start;
920bbbfb
YZ
701 u64 disk_bytenr = 0;
702 u64 num_bytes = 0;
703 u64 extent_offset = 0;
704 u64 extent_end = 0;
5893dfb9 705 u64 last_end = args->start;
920bbbfb
YZ
706 int del_nr = 0;
707 int del_slot = 0;
708 int extent_type;
ccd467d6 709 int recow;
00f5c795 710 int ret;
dc7fdde3 711 int modify_tree = -1;
27cdeb70 712 int update_refs;
c3308f84 713 int found = 0;
1acae57b 714 int leafs_visited = 0;
5893dfb9
FM
715 struct btrfs_path *path = args->path;
716
2766ff61 717 args->bytes_found = 0;
5893dfb9
FM
718 args->extent_inserted = false;
719
720 /* Must always have a path if ->replace_extent is true */
721 ASSERT(!(args->replace_extent && !args->path));
722
723 if (!path) {
724 path = btrfs_alloc_path();
725 if (!path) {
726 ret = -ENOMEM;
727 goto out;
728 }
729 }
39279cc3 730
5893dfb9
FM
731 if (args->drop_cache)
732 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
a52d9a80 733
5893dfb9 734 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
735 modify_tree = 0;
736
92a7cc42 737 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
0b246afa 738 root == fs_info->tree_root);
d397712b 739 while (1) {
ccd467d6 740 recow = 0;
33345d01 741 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 742 search_start, modify_tree);
39279cc3 743 if (ret < 0)
920bbbfb 744 break;
5893dfb9 745 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
746 leaf = path->nodes[0];
747 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 748 if (key.objectid == ino &&
920bbbfb
YZ
749 key.type == BTRFS_EXTENT_DATA_KEY)
750 path->slots[0]--;
39279cc3 751 }
920bbbfb 752 ret = 0;
1acae57b 753 leafs_visited++;
8c2383c3 754next_slot:
5f39d397 755 leaf = path->nodes[0];
920bbbfb
YZ
756 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
757 BUG_ON(del_nr > 0);
758 ret = btrfs_next_leaf(root, path);
759 if (ret < 0)
760 break;
761 if (ret > 0) {
762 ret = 0;
763 break;
8c2383c3 764 }
1acae57b 765 leafs_visited++;
920bbbfb
YZ
766 leaf = path->nodes[0];
767 recow = 1;
768 }
769
770 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
771
772 if (key.objectid > ino)
773 break;
774 if (WARN_ON_ONCE(key.objectid < ino) ||
775 key.type < BTRFS_EXTENT_DATA_KEY) {
776 ASSERT(del_nr == 0);
777 path->slots[0]++;
778 goto next_slot;
779 }
5893dfb9 780 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
781 break;
782
783 fi = btrfs_item_ptr(leaf, path->slots[0],
784 struct btrfs_file_extent_item);
785 extent_type = btrfs_file_extent_type(leaf, fi);
786
787 if (extent_type == BTRFS_FILE_EXTENT_REG ||
788 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
789 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
790 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
791 extent_offset = btrfs_file_extent_offset(leaf, fi);
792 extent_end = key.offset +
793 btrfs_file_extent_num_bytes(leaf, fi);
794 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
795 extent_end = key.offset +
e41ca589 796 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 797 } else {
aeafbf84
FM
798 /* can't happen */
799 BUG();
39279cc3
CM
800 }
801
fc19c5e7
FM
802 /*
803 * Don't skip extent items representing 0 byte lengths. They
804 * used to be created (bug) if while punching holes we hit
805 * -ENOSPC condition. So if we find one here, just ensure we
806 * delete it, otherwise we would insert a new file extent item
807 * with the same key (offset) as that 0 bytes length file
808 * extent item in the call to setup_items_for_insert() later
809 * in this function.
810 */
62fe51c1
JB
811 if (extent_end == key.offset && extent_end >= search_start) {
812 last_end = extent_end;
fc19c5e7 813 goto delete_extent_item;
62fe51c1 814 }
fc19c5e7 815
920bbbfb
YZ
816 if (extent_end <= search_start) {
817 path->slots[0]++;
8c2383c3 818 goto next_slot;
39279cc3
CM
819 }
820
c3308f84 821 found = 1;
5893dfb9 822 search_start = max(key.offset, args->start);
dc7fdde3
CM
823 if (recow || !modify_tree) {
824 modify_tree = -1;
b3b4aa74 825 btrfs_release_path(path);
920bbbfb 826 continue;
39279cc3 827 }
6643558d 828
920bbbfb
YZ
829 /*
830 * | - range to drop - |
831 * | -------- extent -------- |
832 */
5893dfb9 833 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 834 BUG_ON(del_nr > 0);
00fdf13a 835 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 836 ret = -EOPNOTSUPP;
00fdf13a
LB
837 break;
838 }
920bbbfb
YZ
839
840 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 841 new_key.offset = args->start;
920bbbfb
YZ
842 ret = btrfs_duplicate_item(trans, root, path,
843 &new_key);
844 if (ret == -EAGAIN) {
b3b4aa74 845 btrfs_release_path(path);
920bbbfb 846 continue;
6643558d 847 }
920bbbfb
YZ
848 if (ret < 0)
849 break;
850
851 leaf = path->nodes[0];
852 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
853 struct btrfs_file_extent_item);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 855 args->start - key.offset);
920bbbfb
YZ
856
857 fi = btrfs_item_ptr(leaf, path->slots[0],
858 struct btrfs_file_extent_item);
859
5893dfb9 860 extent_offset += args->start - key.offset;
920bbbfb
YZ
861 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
862 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 863 extent_end - args->start);
920bbbfb
YZ
864 btrfs_mark_buffer_dirty(leaf);
865
5dc562c5 866 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
867 btrfs_init_generic_ref(&ref,
868 BTRFS_ADD_DELAYED_REF,
869 disk_bytenr, num_bytes, 0);
870 btrfs_init_data_ref(&ref,
920bbbfb
YZ
871 root->root_key.objectid,
872 new_key.objectid,
5893dfb9 873 args->start - extent_offset);
82fa113f 874 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 875 BUG_ON(ret); /* -ENOMEM */
771ed689 876 }
5893dfb9 877 key.offset = args->start;
6643558d 878 }
62fe51c1
JB
879 /*
880 * From here on out we will have actually dropped something, so
881 * last_end can be updated.
882 */
883 last_end = extent_end;
884
920bbbfb
YZ
885 /*
886 * | ---- range to drop ----- |
887 * | -------- extent -------- |
888 */
5893dfb9 889 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 891 ret = -EOPNOTSUPP;
00fdf13a
LB
892 break;
893 }
6643558d 894
920bbbfb 895 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 896 new_key.offset = args->end;
0b246afa 897 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 898
5893dfb9 899 extent_offset += args->end - key.offset;
920bbbfb
YZ
900 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
901 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 902 extent_end - args->end);
920bbbfb 903 btrfs_mark_buffer_dirty(leaf);
2671485d 904 if (update_refs && disk_bytenr > 0)
2766ff61 905 args->bytes_found += args->end - key.offset;
920bbbfb 906 break;
39279cc3 907 }
771ed689 908
920bbbfb
YZ
909 search_start = extent_end;
910 /*
911 * | ---- range to drop ----- |
912 * | -------- extent -------- |
913 */
5893dfb9 914 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 915 BUG_ON(del_nr > 0);
00fdf13a 916 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 917 ret = -EOPNOTSUPP;
00fdf13a
LB
918 break;
919 }
8c2383c3 920
920bbbfb 921 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 922 args->start - key.offset);
920bbbfb 923 btrfs_mark_buffer_dirty(leaf);
2671485d 924 if (update_refs && disk_bytenr > 0)
2766ff61 925 args->bytes_found += extent_end - args->start;
5893dfb9 926 if (args->end == extent_end)
920bbbfb 927 break;
c8b97818 928
920bbbfb
YZ
929 path->slots[0]++;
930 goto next_slot;
31840ae1
ZY
931 }
932
920bbbfb
YZ
933 /*
934 * | ---- range to drop ----- |
935 * | ------ extent ------ |
936 */
5893dfb9 937 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 938delete_extent_item:
920bbbfb
YZ
939 if (del_nr == 0) {
940 del_slot = path->slots[0];
941 del_nr = 1;
942 } else {
943 BUG_ON(del_slot + del_nr != path->slots[0]);
944 del_nr++;
945 }
31840ae1 946
5dc562c5
JB
947 if (update_refs &&
948 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 949 args->bytes_found += extent_end - key.offset;
920bbbfb 950 extent_end = ALIGN(extent_end,
0b246afa 951 fs_info->sectorsize);
5dc562c5 952 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
953 btrfs_init_generic_ref(&ref,
954 BTRFS_DROP_DELAYED_REF,
955 disk_bytenr, num_bytes, 0);
956 btrfs_init_data_ref(&ref,
920bbbfb 957 root->root_key.objectid,
ffd4bb2a
QW
958 key.objectid,
959 key.offset - extent_offset);
960 ret = btrfs_free_extent(trans, &ref);
79787eaa 961 BUG_ON(ret); /* -ENOMEM */
2766ff61 962 args->bytes_found += extent_end - key.offset;
31840ae1 963 }
31840ae1 964
5893dfb9 965 if (args->end == extent_end)
920bbbfb
YZ
966 break;
967
968 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
969 path->slots[0]++;
970 goto next_slot;
971 }
972
973 ret = btrfs_del_items(trans, root, path, del_slot,
974 del_nr);
79787eaa 975 if (ret) {
66642832 976 btrfs_abort_transaction(trans, ret);
5dc562c5 977 break;
79787eaa 978 }
920bbbfb
YZ
979
980 del_nr = 0;
981 del_slot = 0;
982
b3b4aa74 983 btrfs_release_path(path);
920bbbfb 984 continue;
39279cc3 985 }
920bbbfb 986
290342f6 987 BUG();
39279cc3 988 }
920bbbfb 989
79787eaa 990 if (!ret && del_nr > 0) {
1acae57b
FDBM
991 /*
992 * Set path->slots[0] to first slot, so that after the delete
993 * if items are move off from our leaf to its immediate left or
994 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 995 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
996 */
997 path->slots[0] = del_slot;
920bbbfb 998 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 999 if (ret)
66642832 1000 btrfs_abort_transaction(trans, ret);
d5f37527 1001 }
1acae57b 1002
d5f37527
FDBM
1003 leaf = path->nodes[0];
1004 /*
1005 * If btrfs_del_items() was called, it might have deleted a leaf, in
1006 * which case it unlocked our path, so check path->locks[0] matches a
1007 * write lock.
1008 */
5893dfb9 1009 if (!ret && args->replace_extent && leafs_visited == 1 &&
ac5887c8 1010 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 1011 btrfs_leaf_free_space(leaf) >=
5893dfb9 1012 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
1013
1014 key.objectid = ino;
1015 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 1016 key.offset = args->start;
d5f37527
FDBM
1017 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1018 struct btrfs_key slot_key;
1019
1020 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1021 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1022 path->slots[0]++;
1acae57b 1023 }
5893dfb9
FM
1024 setup_items_for_insert(root, path, &key,
1025 &args->extent_item_size, 1);
1026 args->extent_inserted = true;
6643558d 1027 }
920bbbfb 1028
5893dfb9
FM
1029 if (!args->path)
1030 btrfs_free_path(path);
1031 else if (!args->extent_inserted)
1acae57b 1032 btrfs_release_path(path);
5893dfb9
FM
1033out:
1034 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 1035
39279cc3
CM
1036 return ret;
1037}
1038
d899e052 1039static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1040 u64 objectid, u64 bytenr, u64 orig_offset,
1041 u64 *start, u64 *end)
d899e052
YZ
1042{
1043 struct btrfs_file_extent_item *fi;
1044 struct btrfs_key key;
1045 u64 extent_end;
1046
1047 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1048 return 0;
1049
1050 btrfs_item_key_to_cpu(leaf, &key, slot);
1051 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1052 return 0;
1053
1054 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1055 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1056 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1057 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1058 btrfs_file_extent_compression(leaf, fi) ||
1059 btrfs_file_extent_encryption(leaf, fi) ||
1060 btrfs_file_extent_other_encoding(leaf, fi))
1061 return 0;
1062
1063 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1064 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1065 return 0;
1066
1067 *start = key.offset;
1068 *end = extent_end;
1069 return 1;
1070}
1071
1072/*
1073 * Mark extent in the range start - end as written.
1074 *
1075 * This changes extent type from 'pre-allocated' to 'regular'. If only
1076 * part of extent is marked as written, the extent will be split into
1077 * two or three.
1078 */
1079int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1080 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1081{
3ffbd68c 1082 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1083 struct btrfs_root *root = inode->root;
d899e052
YZ
1084 struct extent_buffer *leaf;
1085 struct btrfs_path *path;
1086 struct btrfs_file_extent_item *fi;
82fa113f 1087 struct btrfs_ref ref = { 0 };
d899e052 1088 struct btrfs_key key;
920bbbfb 1089 struct btrfs_key new_key;
d899e052
YZ
1090 u64 bytenr;
1091 u64 num_bytes;
1092 u64 extent_end;
5d4f98a2 1093 u64 orig_offset;
d899e052
YZ
1094 u64 other_start;
1095 u64 other_end;
920bbbfb
YZ
1096 u64 split;
1097 int del_nr = 0;
1098 int del_slot = 0;
6c7d54ac 1099 int recow;
e7b2ec3d 1100 int ret = 0;
7a6d7067 1101 u64 ino = btrfs_ino(inode);
d899e052 1102
d899e052 1103 path = btrfs_alloc_path();
d8926bb3
MF
1104 if (!path)
1105 return -ENOMEM;
d899e052 1106again:
6c7d54ac 1107 recow = 0;
920bbbfb 1108 split = start;
33345d01 1109 key.objectid = ino;
d899e052 1110 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1111 key.offset = split;
d899e052
YZ
1112
1113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1114 if (ret < 0)
1115 goto out;
d899e052
YZ
1116 if (ret > 0 && path->slots[0] > 0)
1117 path->slots[0]--;
1118
1119 leaf = path->nodes[0];
1120 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1121 if (key.objectid != ino ||
1122 key.type != BTRFS_EXTENT_DATA_KEY) {
1123 ret = -EINVAL;
1124 btrfs_abort_transaction(trans, ret);
1125 goto out;
1126 }
d899e052
YZ
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
9c8e63db
JB
1129 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1130 ret = -EINVAL;
1131 btrfs_abort_transaction(trans, ret);
1132 goto out;
1133 }
d899e052 1134 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1135 if (key.offset > start || extent_end < end) {
1136 ret = -EINVAL;
1137 btrfs_abort_transaction(trans, ret);
1138 goto out;
1139 }
d899e052
YZ
1140
1141 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1142 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1143 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1144 memcpy(&new_key, &key, sizeof(new_key));
1145
1146 if (start == key.offset && end < extent_end) {
1147 other_start = 0;
1148 other_end = start;
1149 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1150 ino, bytenr, orig_offset,
6c7d54ac
YZ
1151 &other_start, &other_end)) {
1152 new_key.offset = end;
0b246afa 1153 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1154 fi = btrfs_item_ptr(leaf, path->slots[0],
1155 struct btrfs_file_extent_item);
224ecce5
JB
1156 btrfs_set_file_extent_generation(leaf, fi,
1157 trans->transid);
6c7d54ac
YZ
1158 btrfs_set_file_extent_num_bytes(leaf, fi,
1159 extent_end - end);
1160 btrfs_set_file_extent_offset(leaf, fi,
1161 end - orig_offset);
1162 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1163 struct btrfs_file_extent_item);
224ecce5
JB
1164 btrfs_set_file_extent_generation(leaf, fi,
1165 trans->transid);
6c7d54ac
YZ
1166 btrfs_set_file_extent_num_bytes(leaf, fi,
1167 end - other_start);
1168 btrfs_mark_buffer_dirty(leaf);
1169 goto out;
1170 }
1171 }
1172
1173 if (start > key.offset && end == extent_end) {
1174 other_start = end;
1175 other_end = 0;
1176 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1177 ino, bytenr, orig_offset,
6c7d54ac
YZ
1178 &other_start, &other_end)) {
1179 fi = btrfs_item_ptr(leaf, path->slots[0],
1180 struct btrfs_file_extent_item);
1181 btrfs_set_file_extent_num_bytes(leaf, fi,
1182 start - key.offset);
224ecce5
JB
1183 btrfs_set_file_extent_generation(leaf, fi,
1184 trans->transid);
6c7d54ac
YZ
1185 path->slots[0]++;
1186 new_key.offset = start;
0b246afa 1187 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1188
1189 fi = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_file_extent_item);
224ecce5
JB
1191 btrfs_set_file_extent_generation(leaf, fi,
1192 trans->transid);
6c7d54ac
YZ
1193 btrfs_set_file_extent_num_bytes(leaf, fi,
1194 other_end - start);
1195 btrfs_set_file_extent_offset(leaf, fi,
1196 start - orig_offset);
1197 btrfs_mark_buffer_dirty(leaf);
1198 goto out;
1199 }
1200 }
d899e052 1201
920bbbfb
YZ
1202 while (start > key.offset || end < extent_end) {
1203 if (key.offset == start)
1204 split = end;
1205
920bbbfb
YZ
1206 new_key.offset = split;
1207 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1208 if (ret == -EAGAIN) {
b3b4aa74 1209 btrfs_release_path(path);
920bbbfb 1210 goto again;
d899e052 1211 }
79787eaa 1212 if (ret < 0) {
66642832 1213 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1214 goto out;
1215 }
d899e052 1216
920bbbfb
YZ
1217 leaf = path->nodes[0];
1218 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1219 struct btrfs_file_extent_item);
224ecce5 1220 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1221 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1222 split - key.offset);
1223
1224 fi = btrfs_item_ptr(leaf, path->slots[0],
1225 struct btrfs_file_extent_item);
1226
224ecce5 1227 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1228 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1229 btrfs_set_file_extent_num_bytes(leaf, fi,
1230 extent_end - split);
d899e052
YZ
1231 btrfs_mark_buffer_dirty(leaf);
1232
82fa113f
QW
1233 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1234 num_bytes, 0);
1235 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1236 orig_offset);
1237 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1238 if (ret) {
1239 btrfs_abort_transaction(trans, ret);
1240 goto out;
1241 }
d899e052 1242
920bbbfb
YZ
1243 if (split == start) {
1244 key.offset = start;
1245 } else {
9c8e63db
JB
1246 if (start != key.offset) {
1247 ret = -EINVAL;
1248 btrfs_abort_transaction(trans, ret);
1249 goto out;
1250 }
d899e052 1251 path->slots[0]--;
920bbbfb 1252 extent_end = end;
d899e052 1253 }
6c7d54ac 1254 recow = 1;
d899e052
YZ
1255 }
1256
920bbbfb
YZ
1257 other_start = end;
1258 other_end = 0;
ffd4bb2a
QW
1259 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1260 num_bytes, 0);
1261 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
6c7d54ac 1262 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1263 ino, bytenr, orig_offset,
6c7d54ac
YZ
1264 &other_start, &other_end)) {
1265 if (recow) {
b3b4aa74 1266 btrfs_release_path(path);
6c7d54ac
YZ
1267 goto again;
1268 }
920bbbfb
YZ
1269 extent_end = other_end;
1270 del_slot = path->slots[0] + 1;
1271 del_nr++;
ffd4bb2a 1272 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1273 if (ret) {
1274 btrfs_abort_transaction(trans, ret);
1275 goto out;
1276 }
d899e052 1277 }
920bbbfb
YZ
1278 other_start = 0;
1279 other_end = start;
6c7d54ac 1280 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1281 ino, bytenr, orig_offset,
6c7d54ac
YZ
1282 &other_start, &other_end)) {
1283 if (recow) {
b3b4aa74 1284 btrfs_release_path(path);
6c7d54ac
YZ
1285 goto again;
1286 }
920bbbfb
YZ
1287 key.offset = other_start;
1288 del_slot = path->slots[0];
1289 del_nr++;
ffd4bb2a 1290 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1291 if (ret) {
1292 btrfs_abort_transaction(trans, ret);
1293 goto out;
1294 }
920bbbfb
YZ
1295 }
1296 if (del_nr == 0) {
3f6fae95
SL
1297 fi = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_file_extent_item);
920bbbfb
YZ
1299 btrfs_set_file_extent_type(leaf, fi,
1300 BTRFS_FILE_EXTENT_REG);
224ecce5 1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1302 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1303 } else {
3f6fae95
SL
1304 fi = btrfs_item_ptr(leaf, del_slot - 1,
1305 struct btrfs_file_extent_item);
6c7d54ac
YZ
1306 btrfs_set_file_extent_type(leaf, fi,
1307 BTRFS_FILE_EXTENT_REG);
224ecce5 1308 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1309 btrfs_set_file_extent_num_bytes(leaf, fi,
1310 extent_end - key.offset);
1311 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1312
6c7d54ac 1313 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1314 if (ret < 0) {
66642832 1315 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1316 goto out;
1317 }
6c7d54ac 1318 }
920bbbfb 1319out:
d899e052 1320 btrfs_free_path(path);
e7b2ec3d 1321 return ret;
d899e052
YZ
1322}
1323
b1bf862e
CM
1324/*
1325 * on error we return an unlocked page and the error value
1326 * on success we return a locked page and 0
1327 */
bb1591b4
CM
1328static int prepare_uptodate_page(struct inode *inode,
1329 struct page *page, u64 pos,
b6316429 1330 bool force_uptodate)
b1bf862e
CM
1331{
1332 int ret = 0;
1333
09cbfeaf 1334 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1335 !PageUptodate(page)) {
b1bf862e
CM
1336 ret = btrfs_readpage(NULL, page);
1337 if (ret)
1338 return ret;
1339 lock_page(page);
1340 if (!PageUptodate(page)) {
1341 unlock_page(page);
1342 return -EIO;
1343 }
e0467866
QW
1344
1345 /*
1346 * Since btrfs_readpage() will unlock the page before it
7c11d0ae
QW
1347 * returns, there is a window where btrfs_releasepage() can be
1348 * called to release the page. Here we check both inode
1349 * mapping and PagePrivate() to make sure the page was not
1350 * released.
e0467866
QW
1351 *
1352 * The private flag check is essential for subpage as we need
1353 * to store extra bitmap using page->private.
1354 */
1355 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
bb1591b4
CM
1356 unlock_page(page);
1357 return -EAGAIN;
1358 }
b1bf862e
CM
1359 }
1360 return 0;
1361}
1362
39279cc3 1363/*
376cc685 1364 * this just gets pages into the page cache and locks them down.
39279cc3 1365 */
b37392ea
MX
1366static noinline int prepare_pages(struct inode *inode, struct page **pages,
1367 size_t num_pages, loff_t pos,
1368 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1369{
1370 int i;
09cbfeaf 1371 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1372 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1373 int err = 0;
376cc685 1374 int faili;
8c2383c3 1375
39279cc3 1376 for (i = 0; i < num_pages; i++) {
bb1591b4 1377again:
a94733d0 1378 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1379 mask | __GFP_WRITE);
39279cc3 1380 if (!pages[i]) {
b1bf862e
CM
1381 faili = i - 1;
1382 err = -ENOMEM;
1383 goto fail;
1384 }
1385
32443de3
QW
1386 err = set_page_extent_mapped(pages[i]);
1387 if (err < 0) {
1388 faili = i;
1389 goto fail;
1390 }
1391
b1bf862e 1392 if (i == 0)
bb1591b4 1393 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1394 force_uptodate);
bb1591b4
CM
1395 if (!err && i == num_pages - 1)
1396 err = prepare_uptodate_page(inode, pages[i],
b6316429 1397 pos + write_bytes, false);
b1bf862e 1398 if (err) {
09cbfeaf 1399 put_page(pages[i]);
bb1591b4
CM
1400 if (err == -EAGAIN) {
1401 err = 0;
1402 goto again;
1403 }
b1bf862e
CM
1404 faili = i - 1;
1405 goto fail;
39279cc3 1406 }
ccd467d6 1407 wait_on_page_writeback(pages[i]);
39279cc3 1408 }
376cc685
MX
1409
1410 return 0;
1411fail:
1412 while (faili >= 0) {
1413 unlock_page(pages[faili]);
09cbfeaf 1414 put_page(pages[faili]);
376cc685
MX
1415 faili--;
1416 }
1417 return err;
1418
1419}
1420
1421/*
1422 * This function locks the extent and properly waits for data=ordered extents
1423 * to finish before allowing the pages to be modified if need.
1424 *
1425 * The return value:
1426 * 1 - the extent is locked
1427 * 0 - the extent is not locked, and everything is OK
1428 * -EAGAIN - need re-prepare the pages
1429 * the other < 0 number - Something wrong happens
1430 */
1431static noinline int
2cff578c 1432lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1433 size_t num_pages, loff_t pos,
2e78c927 1434 size_t write_bytes,
376cc685
MX
1435 u64 *lockstart, u64 *lockend,
1436 struct extent_state **cached_state)
1437{
3ffbd68c 1438 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1439 u64 start_pos;
1440 u64 last_pos;
1441 int i;
1442 int ret = 0;
1443
0b246afa 1444 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 1445 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 1446
e3b8a485 1447 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1448 struct btrfs_ordered_extent *ordered;
a7e3b975 1449
2cff578c
NB
1450 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1451 cached_state);
b88935bf
MX
1452 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1453 last_pos - start_pos + 1);
e6dcd2dc 1454 if (ordered &&
bffe633e 1455 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1456 ordered->file_offset <= last_pos) {
2cff578c 1457 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1458 last_pos, cached_state);
e6dcd2dc
CM
1459 for (i = 0; i < num_pages; i++) {
1460 unlock_page(pages[i]);
09cbfeaf 1461 put_page(pages[i]);
e6dcd2dc 1462 }
c0a43603 1463 btrfs_start_ordered_extent(ordered, 1);
b88935bf
MX
1464 btrfs_put_ordered_extent(ordered);
1465 return -EAGAIN;
e6dcd2dc
CM
1466 }
1467 if (ordered)
1468 btrfs_put_ordered_extent(ordered);
7703bdd8 1469
376cc685
MX
1470 *lockstart = start_pos;
1471 *lockend = last_pos;
1472 ret = 1;
0762704b 1473 }
376cc685 1474
7703bdd8 1475 /*
32443de3
QW
1476 * We should be called after prepare_pages() which should have locked
1477 * all pages in the range.
7703bdd8 1478 */
32443de3 1479 for (i = 0; i < num_pages; i++)
e6dcd2dc 1480 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1481
376cc685 1482 return ret;
39279cc3
CM
1483}
1484
38d37aa9
QW
1485static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1486 size_t *write_bytes, bool nowait)
7ee9e440 1487{
3ffbd68c 1488 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1489 struct btrfs_root *root = inode->root;
7ee9e440
JB
1490 u64 lockstart, lockend;
1491 u64 num_bytes;
1492 int ret;
1493
38d37aa9
QW
1494 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1495 return 0;
1496
5dbb75ed 1497 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1498 return -EAGAIN;
8257b2dc 1499
0b246afa 1500 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1501 lockend = round_up(pos + *write_bytes,
0b246afa 1502 fs_info->sectorsize) - 1;
5dbb75ed 1503 num_bytes = lockend - lockstart + 1;
7ee9e440 1504
5dbb75ed
FM
1505 if (nowait) {
1506 struct btrfs_ordered_extent *ordered;
1507
1508 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1509 return -EAGAIN;
1510
1511 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1512 num_bytes);
1513 if (ordered) {
1514 btrfs_put_ordered_extent(ordered);
1515 ret = -EAGAIN;
1516 goto out_unlock;
1517 }
1518 } else {
1519 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1520 lockend, NULL);
1521 }
7ee9e440 1522
85b7ab67 1523 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
a84d5d42 1524 NULL, NULL, NULL, false);
7ee9e440
JB
1525 if (ret <= 0) {
1526 ret = 0;
5dbb75ed
FM
1527 if (!nowait)
1528 btrfs_drew_write_unlock(&root->snapshot_lock);
7ee9e440 1529 } else {
c933956d
MX
1530 *write_bytes = min_t(size_t, *write_bytes ,
1531 num_bytes - pos + lockstart);
7ee9e440 1532 }
5dbb75ed 1533out_unlock:
85b7ab67 1534 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1535
1536 return ret;
1537}
1538
38d37aa9
QW
1539static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1540 size_t *write_bytes)
1541{
1542 return check_can_nocow(inode, pos, write_bytes, true);
1543}
1544
1545/*
1546 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1547 *
1548 * @pos: File offset
1549 * @write_bytes: The length to write, will be updated to the nocow writeable
1550 * range
1551 *
1552 * This function will flush ordered extents in the range to ensure proper
1553 * nocow checks.
1554 *
1555 * Return:
1556 * >0 and update @write_bytes if we can do nocow write
1557 * 0 if we can't do nocow write
1558 * -EAGAIN if we can't get the needed lock or there are ordered extents
1559 * for * (nowait == true) case
1560 * <0 if other error happened
1561 *
1562 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1563 */
1564int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1565 size_t *write_bytes)
1566{
1567 return check_can_nocow(inode, pos, write_bytes, false);
1568}
1569
1570void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1571{
1572 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1573}
1574
b8d8e1fd
GR
1575static void update_time_for_write(struct inode *inode)
1576{
1577 struct timespec64 now;
1578
1579 if (IS_NOCMTIME(inode))
1580 return;
1581
1582 now = current_time(inode);
1583 if (!timespec64_equal(&inode->i_mtime, &now))
1584 inode->i_mtime = now;
1585
1586 if (!timespec64_equal(&inode->i_ctime, &now))
1587 inode->i_ctime = now;
1588
1589 if (IS_I_VERSION(inode))
1590 inode_inc_iversion(inode);
1591}
1592
1593static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1594 size_t count)
1595{
1596 struct file *file = iocb->ki_filp;
1597 struct inode *inode = file_inode(file);
1598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1599 loff_t pos = iocb->ki_pos;
1600 int ret;
1601 loff_t oldsize;
1602 loff_t start_pos;
1603
1604 if (iocb->ki_flags & IOCB_NOWAIT) {
1605 size_t nocow_bytes = count;
1606
1607 /* We will allocate space in case nodatacow is not set, so bail */
1608 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1609 return -EAGAIN;
1610 /*
1611 * There are holes in the range or parts of the range that must
1612 * be COWed (shared extents, RO block groups, etc), so just bail
1613 * out.
1614 */
1615 if (nocow_bytes < count)
1616 return -EAGAIN;
1617 }
1618
1619 current->backing_dev_info = inode_to_bdi(inode);
1620 ret = file_remove_privs(file);
1621 if (ret)
1622 return ret;
1623
1624 /*
1625 * We reserve space for updating the inode when we reserve space for the
1626 * extent we are going to write, so we will enospc out there. We don't
1627 * need to start yet another transaction to update the inode as we will
1628 * update the inode when we finish writing whatever data we write.
1629 */
1630 update_time_for_write(inode);
1631
1632 start_pos = round_down(pos, fs_info->sectorsize);
1633 oldsize = i_size_read(inode);
1634 if (start_pos > oldsize) {
1635 /* Expand hole size to cover write data, preventing empty gap */
1636 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1637
b06359a3 1638 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
b8d8e1fd
GR
1639 if (ret) {
1640 current->backing_dev_info = NULL;
1641 return ret;
1642 }
1643 }
1644
1645 return 0;
1646}
1647
e4af400a
GR
1648static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1649 struct iov_iter *i)
4b46fce2 1650{
e4af400a 1651 struct file *file = iocb->ki_filp;
c3523706 1652 loff_t pos;
496ad9aa 1653 struct inode *inode = file_inode(file);
0b246afa 1654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1655 struct page **pages = NULL;
364ecf36 1656 struct extent_changeset *data_reserved = NULL;
7ee9e440 1657 u64 release_bytes = 0;
376cc685
MX
1658 u64 lockstart;
1659 u64 lockend;
d0215f3e
JB
1660 size_t num_written = 0;
1661 int nrptrs;
c3523706 1662 ssize_t ret;
7ee9e440 1663 bool only_release_metadata = false;
b6316429 1664 bool force_page_uptodate = false;
5e8b9ef3 1665 loff_t old_isize = i_size_read(inode);
c3523706
GR
1666 unsigned int ilock_flags = 0;
1667
1668 if (iocb->ki_flags & IOCB_NOWAIT)
1669 ilock_flags |= BTRFS_ILOCK_TRY;
1670
1671 ret = btrfs_inode_lock(inode, ilock_flags);
1672 if (ret < 0)
1673 return ret;
4b46fce2 1674
c3523706
GR
1675 ret = generic_write_checks(iocb, i);
1676 if (ret <= 0)
1677 goto out;
1678
1679 ret = btrfs_write_check(iocb, i, ret);
1680 if (ret < 0)
1681 goto out;
1682
1683 pos = iocb->ki_pos;
09cbfeaf
KS
1684 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1685 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1686 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1687 nrptrs = max(nrptrs, 8);
31e818fe 1688 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1689 if (!pages) {
1690 ret = -ENOMEM;
1691 goto out;
1692 }
ab93dbec 1693
d0215f3e 1694 while (iov_iter_count(i) > 0) {
c67d970f 1695 struct extent_state *cached_state = NULL;
7073017a 1696 size_t offset = offset_in_page(pos);
2e78c927 1697 size_t sector_offset;
d0215f3e 1698 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1699 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1700 offset);
eefa45f5 1701 size_t num_pages;
7ee9e440 1702 size_t reserve_bytes;
d0215f3e
JB
1703 size_t dirty_pages;
1704 size_t copied;
2e78c927
CR
1705 size_t dirty_sectors;
1706 size_t num_sectors;
79f015f2 1707 int extents_locked;
39279cc3 1708
914ee295
XZ
1709 /*
1710 * Fault pages before locking them in prepare_pages
1711 * to avoid recursive lock
1712 */
a6294593 1713 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1714 ret = -EFAULT;
d0215f3e 1715 break;
914ee295
XZ
1716 }
1717
a0e248bb 1718 only_release_metadata = false;
da17066c 1719 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1720
364ecf36 1721 extent_changeset_release(data_reserved);
36ea6f3e
NB
1722 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1723 &data_reserved, pos,
364ecf36 1724 write_bytes);
c6887cd1 1725 if (ret < 0) {
eefa45f5
GR
1726 /*
1727 * If we don't have to COW at the offset, reserve
1728 * metadata only. write_bytes may get smaller than
1729 * requested here.
1730 */
38d37aa9 1731 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
eefa45f5 1732 &write_bytes) > 0)
c6887cd1 1733 only_release_metadata = true;
eefa45f5 1734 else
c6887cd1 1735 break;
c6887cd1 1736 }
1832a6d5 1737
eefa45f5
GR
1738 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1739 WARN_ON(num_pages > nrptrs);
1740 reserve_bytes = round_up(write_bytes + sector_offset,
1741 fs_info->sectorsize);
8b62f87b 1742 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1743 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1744 reserve_bytes);
7ee9e440
JB
1745 if (ret) {
1746 if (!only_release_metadata)
25ce28ca 1747 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1748 data_reserved, pos,
1749 write_bytes);
8257b2dc 1750 else
38d37aa9 1751 btrfs_check_nocow_unlock(BTRFS_I(inode));
7ee9e440
JB
1752 break;
1753 }
1754
1755 release_bytes = reserve_bytes;
376cc685 1756again:
4a64001f
JB
1757 /*
1758 * This is going to setup the pages array with the number of
1759 * pages we want, so we don't really need to worry about the
1760 * contents of pages from loop to loop
1761 */
b37392ea
MX
1762 ret = prepare_pages(inode, pages, num_pages,
1763 pos, write_bytes,
b6316429 1764 force_page_uptodate);
8b62f87b
JB
1765 if (ret) {
1766 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1767 reserve_bytes);
d0215f3e 1768 break;
8b62f87b 1769 }
39279cc3 1770
79f015f2
GR
1771 extents_locked = lock_and_cleanup_extent_if_need(
1772 BTRFS_I(inode), pages,
2cff578c
NB
1773 num_pages, pos, write_bytes, &lockstart,
1774 &lockend, &cached_state);
79f015f2
GR
1775 if (extents_locked < 0) {
1776 if (extents_locked == -EAGAIN)
376cc685 1777 goto again;
8b62f87b 1778 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1779 reserve_bytes);
79f015f2 1780 ret = extents_locked;
376cc685 1781 break;
376cc685
MX
1782 }
1783
ee22f0c4 1784 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1785
0b246afa 1786 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1787 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1788 fs_info->sectorsize);
1789 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1790
b1bf862e
CM
1791 /*
1792 * if we have trouble faulting in the pages, fall
1793 * back to one page at a time
1794 */
1795 if (copied < write_bytes)
1796 nrptrs = 1;
1797
b6316429
JB
1798 if (copied == 0) {
1799 force_page_uptodate = true;
56244ef1 1800 dirty_sectors = 0;
b1bf862e 1801 dirty_pages = 0;
b6316429
JB
1802 } else {
1803 force_page_uptodate = false;
ed6078f7 1804 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1805 PAGE_SIZE);
b6316429 1806 }
914ee295 1807
2e78c927 1808 if (num_sectors > dirty_sectors) {
8b8b08cb 1809 /* release everything except the sectors we dirtied */
265fdfa6 1810 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1811 if (only_release_metadata) {
691fa059 1812 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1813 release_bytes, true);
485290a7
QW
1814 } else {
1815 u64 __pos;
1816
da17066c 1817 __pos = round_down(pos,
0b246afa 1818 fs_info->sectorsize) +
09cbfeaf 1819 (dirty_pages << PAGE_SHIFT);
86d52921 1820 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1821 data_reserved, __pos,
43b18595 1822 release_bytes, true);
485290a7 1823 }
914ee295
XZ
1824 }
1825
2e78c927 1826 release_bytes = round_up(copied + sector_offset,
0b246afa 1827 fs_info->sectorsize);
376cc685 1828
aa8c1a41
GR
1829 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1830 dirty_pages, pos, copied,
1831 &cached_state, only_release_metadata);
c67d970f
FM
1832
1833 /*
1834 * If we have not locked the extent range, because the range's
1835 * start offset is >= i_size, we might still have a non-NULL
1836 * cached extent state, acquired while marking the extent range
1837 * as delalloc through btrfs_dirty_pages(). Therefore free any
1838 * possible cached extent state to avoid a memory leak.
1839 */
79f015f2 1840 if (extents_locked)
376cc685 1841 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1842 lockstart, lockend, &cached_state);
c67d970f
FM
1843 else
1844 free_extent_state(cached_state);
1845
8702ba93 1846 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683
MX
1847 if (ret) {
1848 btrfs_drop_pages(pages, num_pages);
376cc685 1849 break;
f1de9683 1850 }
39279cc3 1851
376cc685 1852 release_bytes = 0;
8257b2dc 1853 if (only_release_metadata)
38d37aa9 1854 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1855
f1de9683
MX
1856 btrfs_drop_pages(pages, num_pages);
1857
d0215f3e
JB
1858 cond_resched();
1859
d0e1d66b 1860 balance_dirty_pages_ratelimited(inode->i_mapping);
cb843a6f 1861
914ee295
XZ
1862 pos += copied;
1863 num_written += copied;
d0215f3e 1864 }
39279cc3 1865
d0215f3e
JB
1866 kfree(pages);
1867
7ee9e440 1868 if (release_bytes) {
8257b2dc 1869 if (only_release_metadata) {
38d37aa9 1870 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1871 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1872 release_bytes, true);
8257b2dc 1873 } else {
86d52921
NB
1874 btrfs_delalloc_release_space(BTRFS_I(inode),
1875 data_reserved,
bc42bda2 1876 round_down(pos, fs_info->sectorsize),
43b18595 1877 release_bytes, true);
8257b2dc 1878 }
7ee9e440
JB
1879 }
1880
364ecf36 1881 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1882 if (num_written > 0) {
1883 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1884 iocb->ki_pos += num_written;
1885 }
c3523706
GR
1886out:
1887 btrfs_inode_unlock(inode, ilock_flags);
d0215f3e
JB
1888 return num_written ? num_written : ret;
1889}
1890
4e4cabec
GR
1891static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1892 const struct iov_iter *iter, loff_t offset)
1893{
1894 const u32 blocksize_mask = fs_info->sectorsize - 1;
1895
1896 if (offset & blocksize_mask)
1897 return -EINVAL;
1898
1899 if (iov_iter_alignment(iter) & blocksize_mask)
1900 return -EINVAL;
1901
1902 return 0;
1903}
1904
1905static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1906{
1907 struct file *file = iocb->ki_filp;
728404da 1908 struct inode *inode = file_inode(file);
4e4cabec 1909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1910 loff_t pos;
4e4cabec 1911 ssize_t written = 0;
d0215f3e
JB
1912 ssize_t written_buffered;
1913 loff_t endbyte;
c3523706
GR
1914 ssize_t err;
1915 unsigned int ilock_flags = 0;
a42fa643 1916 struct iomap_dio *dio = NULL;
c3523706
GR
1917
1918 if (iocb->ki_flags & IOCB_NOWAIT)
1919 ilock_flags |= BTRFS_ILOCK_TRY;
1920
e9adabb9
GR
1921 /* If the write DIO is within EOF, use a shared lock */
1922 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1923 ilock_flags |= BTRFS_ILOCK_SHARED;
1924
1925relock:
c3523706
GR
1926 err = btrfs_inode_lock(inode, ilock_flags);
1927 if (err < 0)
1928 return err;
1929
1930 err = generic_write_checks(iocb, from);
1931 if (err <= 0) {
1932 btrfs_inode_unlock(inode, ilock_flags);
1933 return err;
1934 }
d0215f3e 1935
c3523706
GR
1936 err = btrfs_write_check(iocb, from, err);
1937 if (err < 0) {
1938 btrfs_inode_unlock(inode, ilock_flags);
1939 goto out;
1940 }
1941
1942 pos = iocb->ki_pos;
e9adabb9
GR
1943 /*
1944 * Re-check since file size may have changed just before taking the
1945 * lock or pos may have changed because of O_APPEND in generic_write_check()
1946 */
1947 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1948 pos + iov_iter_count(from) > i_size_read(inode)) {
1949 btrfs_inode_unlock(inode, ilock_flags);
1950 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1951 goto relock;
1952 }
c3523706
GR
1953
1954 if (check_direct_IO(fs_info, from, pos)) {
1955 btrfs_inode_unlock(inode, ilock_flags);
4e4cabec 1956 goto buffered;
c3523706 1957 }
4e4cabec 1958
2f632965
CH
1959 dio = __iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1960 0);
4e4cabec 1961
e9adabb9 1962 btrfs_inode_unlock(inode, ilock_flags);
d0215f3e 1963
a42fa643
GR
1964 if (IS_ERR_OR_NULL(dio)) {
1965 err = PTR_ERR_OR_ZERO(dio);
1966 if (err < 0 && err != -ENOTBLK)
1967 goto out;
1968 } else {
1969 written = iomap_dio_complete(dio);
1970 }
1971
c3523706
GR
1972 if (written < 0 || !iov_iter_count(from)) {
1973 err = written;
1974 goto out;
1975 }
d0215f3e 1976
4e4cabec 1977buffered:
e4af400a
GR
1978 pos = iocb->ki_pos;
1979 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1980 if (written_buffered < 0) {
1981 err = written_buffered;
1982 goto out;
39279cc3 1983 }
075bdbdb
FM
1984 /*
1985 * Ensure all data is persisted. We want the next direct IO read to be
1986 * able to read what was just written.
1987 */
d0215f3e 1988 endbyte = pos + written_buffered - 1;
728404da 1989 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1990 if (err)
1991 goto out;
728404da 1992 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1993 if (err)
1994 goto out;
1995 written += written_buffered;
867c4f93 1996 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1997 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1998 endbyte >> PAGE_SHIFT);
39279cc3 1999out:
d0215f3e
JB
2000 return written ? written : err;
2001}
5b92ee72 2002
b30ac0fc
AV
2003static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
2004 struct iov_iter *from)
d0215f3e
JB
2005{
2006 struct file *file = iocb->ki_filp;
14971657 2007 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
d0215f3e 2008 ssize_t num_written = 0;
f50cb7af 2009 const bool sync = iocb->ki_flags & IOCB_DSYNC;
d0215f3e 2010
c86537a4
GR
2011 /*
2012 * If the fs flips readonly due to some impossible error, although we
2013 * have opened a file as writable, we have to stop this write operation
2014 * to ensure consistency.
2015 */
14971657 2016 if (test_bit(BTRFS_FS_STATE_ERROR, &inode->root->fs_info->fs_state))
c86537a4
GR
2017 return -EROFS;
2018
91f9943e
CH
2019 if (!(iocb->ki_flags & IOCB_DIRECT) &&
2020 (iocb->ki_flags & IOCB_NOWAIT))
2021 return -EOPNOTSUPP;
2022
b812ce28 2023 if (sync)
14971657 2024 atomic_inc(&inode->sync_writers);
b812ce28 2025
ecfdc08b 2026 if (iocb->ki_flags & IOCB_DIRECT)
4e4cabec 2027 num_written = btrfs_direct_write(iocb, from);
ecfdc08b 2028 else
e4af400a 2029 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 2030
bc0939fc
FM
2031 btrfs_set_inode_last_sub_trans(inode);
2032
e2592217
CH
2033 if (num_written > 0)
2034 num_written = generic_write_sync(iocb, num_written);
0a3404dc 2035
b812ce28 2036 if (sync)
14971657 2037 atomic_dec(&inode->sync_writers);
b8d8e1fd 2038
39279cc3 2039 current->backing_dev_info = NULL;
c3523706 2040 return num_written;
39279cc3
CM
2041}
2042
d397712b 2043int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 2044{
23b5ec74
JB
2045 struct btrfs_file_private *private = filp->private_data;
2046
23b5ec74
JB
2047 if (private && private->filldir_buf)
2048 kfree(private->filldir_buf);
2049 kfree(private);
2050 filp->private_data = NULL;
2051
f6dc45c7 2052 /*
1fd4033d
NB
2053 * Set by setattr when we are about to truncate a file from a non-zero
2054 * size to a zero size. This tries to flush down new bytes that may
2055 * have been written if the application were using truncate to replace
2056 * a file in place.
f6dc45c7 2057 */
1fd4033d 2058 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
2059 &BTRFS_I(inode)->runtime_flags))
2060 filemap_flush(inode->i_mapping);
e1b81e67
M
2061 return 0;
2062}
2063
669249ee
FM
2064static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2065{
2066 int ret;
343e4fc1 2067 struct blk_plug plug;
669249ee 2068
343e4fc1
LB
2069 /*
2070 * This is only called in fsync, which would do synchronous writes, so
2071 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2072 * multiple disks using raid profile, a large IO can be split to
2073 * several segments of stripe length (currently 64K).
2074 */
2075 blk_start_plug(&plug);
669249ee 2076 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2077 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2078 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2079 blk_finish_plug(&plug);
669249ee
FM
2080
2081 return ret;
2082}
2083
626e9f41
FM
2084static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2085{
2086 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2087 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2088
2089 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2090 list_empty(&ctx->ordered_extents))
2091 return true;
2092
2093 /*
2094 * If we are doing a fast fsync we can not bail out if the inode's
2095 * last_trans is <= then the last committed transaction, because we only
2096 * update the last_trans of the inode during ordered extent completion,
2097 * and for a fast fsync we don't wait for that, we only wait for the
2098 * writeback to complete.
2099 */
2100 if (inode->last_trans <= fs_info->last_trans_committed &&
2101 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2102 list_empty(&ctx->ordered_extents)))
2103 return true;
2104
2105 return false;
2106}
2107
d352ac68
CM
2108/*
2109 * fsync call for both files and directories. This logs the inode into
2110 * the tree log instead of forcing full commits whenever possible.
2111 *
2112 * It needs to call filemap_fdatawait so that all ordered extent updates are
2113 * in the metadata btree are up to date for copying to the log.
2114 *
2115 * It drops the inode mutex before doing the tree log commit. This is an
2116 * important optimization for directories because holding the mutex prevents
2117 * new operations on the dir while we write to disk.
2118 */
02c24a82 2119int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2120{
de17e793 2121 struct dentry *dentry = file_dentry(file);
2b0143b5 2122 struct inode *inode = d_inode(dentry);
0b246afa 2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2124 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2125 struct btrfs_trans_handle *trans;
8b050d35 2126 struct btrfs_log_ctx ctx;
333427a5 2127 int ret = 0, err;
48778179
FM
2128 u64 len;
2129 bool full_sync;
39279cc3 2130
1abe9b8a 2131 trace_btrfs_sync_file(file, datasync);
257c62e1 2132
ebb70442
LB
2133 btrfs_init_log_ctx(&ctx, inode);
2134
95418ed1 2135 /*
48778179
FM
2136 * Always set the range to a full range, otherwise we can get into
2137 * several problems, from missing file extent items to represent holes
2138 * when not using the NO_HOLES feature, to log tree corruption due to
2139 * races between hole detection during logging and completion of ordered
2140 * extents outside the range, to missing checksums due to ordered extents
2141 * for which we flushed only a subset of their pages.
95418ed1 2142 */
48778179
FM
2143 start = 0;
2144 end = LLONG_MAX;
2145 len = (u64)LLONG_MAX + 1;
95418ed1 2146
90abccf2
MX
2147 /*
2148 * We write the dirty pages in the range and wait until they complete
2149 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2150 * multi-task, and make the performance up. See
2151 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2152 */
669249ee 2153 ret = start_ordered_ops(inode, start, end);
90abccf2 2154 if (ret)
333427a5 2155 goto out;
90abccf2 2156
885f46d8 2157 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
c495144b 2158
2ecb7923 2159 atomic_inc(&root->log_batch);
b5e6c3e1 2160
7af59743 2161 /*
48778179
FM
2162 * Always check for the full sync flag while holding the inode's lock,
2163 * to avoid races with other tasks. The flag must be either set all the
2164 * time during logging or always off all the time while logging.
7af59743 2165 */
48778179
FM
2166 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2167 &BTRFS_I(inode)->runtime_flags);
7af59743 2168
aab15e8e 2169 /*
885f46d8
FM
2170 * Before we acquired the inode's lock and the mmap lock, someone may
2171 * have dirtied more pages in the target range. We need to make sure
2172 * that writeback for any such pages does not start while we are logging
2173 * the inode, because if it does, any of the following might happen when
2174 * we are not doing a full inode sync:
aab15e8e
FM
2175 *
2176 * 1) We log an extent after its writeback finishes but before its
2177 * checksums are added to the csum tree, leading to -EIO errors
2178 * when attempting to read the extent after a log replay.
2179 *
2180 * 2) We can end up logging an extent before its writeback finishes.
2181 * Therefore after the log replay we will have a file extent item
2182 * pointing to an unwritten extent (and no data checksums as well).
2183 *
2184 * So trigger writeback for any eventual new dirty pages and then we
2185 * wait for all ordered extents to complete below.
2186 */
2187 ret = start_ordered_ops(inode, start, end);
2188 if (ret) {
885f46d8 2189 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
aab15e8e
FM
2190 goto out;
2191 }
2192
669249ee 2193 /*
b5e6c3e1 2194 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2195 * IO of a lower priority task while holding a transaction open.
ba0b084a 2196 *
48778179
FM
2197 * For a full fsync we wait for the ordered extents to complete while
2198 * for a fast fsync we wait just for writeback to complete, and then
2199 * attach the ordered extents to the transaction so that a transaction
2200 * commit waits for their completion, to avoid data loss if we fsync,
2201 * the current transaction commits before the ordered extents complete
2202 * and a power failure happens right after that.
d8e3fb10
NA
2203 *
2204 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2205 * logical address recorded in the ordered extent may change. We need
2206 * to wait for the IO to stabilize the logical address.
669249ee 2207 */
d8e3fb10 2208 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
2209 ret = btrfs_wait_ordered_range(inode, start, len);
2210 } else {
2211 /*
2212 * Get our ordered extents as soon as possible to avoid doing
2213 * checksum lookups in the csum tree, and use instead the
2214 * checksums attached to the ordered extents.
2215 */
2216 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2217 &ctx.ordered_extents);
2218 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 2219 }
48778179
FM
2220
2221 if (ret)
2222 goto out_release_extents;
2223
2ecb7923 2224 atomic_inc(&root->log_batch);
257c62e1 2225
a4abeea4 2226 smp_mb();
626e9f41 2227 if (skip_inode_logging(&ctx)) {
5dc562c5 2228 /*
01327610 2229 * We've had everything committed since the last time we were
5dc562c5
JB
2230 * modified so clear this flag in case it was set for whatever
2231 * reason, it's no longer relevant.
2232 */
2233 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2234 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2235 /*
2236 * An ordered extent might have started before and completed
2237 * already with io errors, in which case the inode was not
2238 * updated and we end up here. So check the inode's mapping
333427a5
JL
2239 * for any errors that might have happened since we last
2240 * checked called fsync.
0596a904 2241 */
333427a5 2242 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 2243 goto out_release_extents;
15ee9bc7 2244 }
15ee9bc7 2245
5039eddc
JB
2246 /*
2247 * We use start here because we will need to wait on the IO to complete
2248 * in btrfs_sync_log, which could require joining a transaction (for
2249 * example checking cross references in the nocow path). If we use join
2250 * here we could get into a situation where we're waiting on IO to
2251 * happen that is blocked on a transaction trying to commit. With start
2252 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2253 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2254 * from thinking they are super smart and changing this to
2255 * btrfs_join_transaction *cough*Josef*cough*.
2256 */
a22285a6
YZ
2257 trans = btrfs_start_transaction(root, 0);
2258 if (IS_ERR(trans)) {
2259 ret = PTR_ERR(trans);
48778179 2260 goto out_release_extents;
39279cc3 2261 }
d0c2f4fa 2262 trans->in_fsync = true;
e02119d5 2263
48778179
FM
2264 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2265 btrfs_release_log_ctx_extents(&ctx);
02c24a82 2266 if (ret < 0) {
a0634be5
FDBM
2267 /* Fallthrough and commit/free transaction. */
2268 ret = 1;
02c24a82 2269 }
49eb7e46
CM
2270
2271 /* we've logged all the items and now have a consistent
2272 * version of the file in the log. It is possible that
2273 * someone will come in and modify the file, but that's
2274 * fine because the log is consistent on disk, and we
2275 * have references to all of the file's extents
2276 *
2277 * It is possible that someone will come in and log the
2278 * file again, but that will end up using the synchronization
2279 * inside btrfs_sync_log to keep things safe.
2280 */
885f46d8 2281 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
49eb7e46 2282
257c62e1 2283 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2284 if (!ret) {
8b050d35 2285 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2286 if (!ret) {
3a45bb20 2287 ret = btrfs_end_transaction(trans);
0ef8b726 2288 goto out;
2ab28f32 2289 }
257c62e1 2290 }
48778179
FM
2291 if (!full_sync) {
2292 ret = btrfs_wait_ordered_range(inode, start, len);
2293 if (ret) {
2294 btrfs_end_transaction(trans);
2295 goto out;
2296 }
2297 }
3a45bb20 2298 ret = btrfs_commit_transaction(trans);
257c62e1 2299 } else {
3a45bb20 2300 ret = btrfs_end_transaction(trans);
e02119d5 2301 }
39279cc3 2302out:
ebb70442 2303 ASSERT(list_empty(&ctx.list));
333427a5
JL
2304 err = file_check_and_advance_wb_err(file);
2305 if (!ret)
2306 ret = err;
014e4ac4 2307 return ret > 0 ? -EIO : ret;
48778179
FM
2308
2309out_release_extents:
2310 btrfs_release_log_ctx_extents(&ctx);
885f46d8 2311 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
48778179 2312 goto out;
39279cc3
CM
2313}
2314
f0f37e2f 2315static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2316 .fault = filemap_fault,
f1820361 2317 .map_pages = filemap_map_pages,
9ebefb18
CM
2318 .page_mkwrite = btrfs_page_mkwrite,
2319};
2320
2321static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2322{
058a457e
MX
2323 struct address_space *mapping = filp->f_mapping;
2324
2325 if (!mapping->a_ops->readpage)
2326 return -ENOEXEC;
2327
9ebefb18 2328 file_accessed(filp);
058a457e 2329 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2330
9ebefb18
CM
2331 return 0;
2332}
2333
35339c24 2334static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2335 int slot, u64 start, u64 end)
2336{
2337 struct btrfs_file_extent_item *fi;
2338 struct btrfs_key key;
2339
2340 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2341 return 0;
2342
2343 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2344 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2345 key.type != BTRFS_EXTENT_DATA_KEY)
2346 return 0;
2347
2348 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2349
2350 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2351 return 0;
2352
2353 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2354 return 0;
2355
2356 if (key.offset == end)
2357 return 1;
2358 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2359 return 1;
2360 return 0;
2361}
2362
a012a74e
NB
2363static int fill_holes(struct btrfs_trans_handle *trans,
2364 struct btrfs_inode *inode,
2365 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2366{
3ffbd68c 2367 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2368 struct btrfs_root *root = inode->root;
2aaa6655
JB
2369 struct extent_buffer *leaf;
2370 struct btrfs_file_extent_item *fi;
2371 struct extent_map *hole_em;
a012a74e 2372 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2373 struct btrfs_key key;
2374 int ret;
2375
0b246afa 2376 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2377 goto out;
2378
a012a74e 2379 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2380 key.type = BTRFS_EXTENT_DATA_KEY;
2381 key.offset = offset;
2382
2aaa6655 2383 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2384 if (ret <= 0) {
2385 /*
2386 * We should have dropped this offset, so if we find it then
2387 * something has gone horribly wrong.
2388 */
2389 if (ret == 0)
2390 ret = -EINVAL;
2aaa6655 2391 return ret;
f94480bd 2392 }
2aaa6655
JB
2393
2394 leaf = path->nodes[0];
a012a74e 2395 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2396 u64 num_bytes;
2397
2398 path->slots[0]--;
2399 fi = btrfs_item_ptr(leaf, path->slots[0],
2400 struct btrfs_file_extent_item);
2401 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2402 end - offset;
2403 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2404 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2405 btrfs_set_file_extent_offset(leaf, fi, 0);
2406 btrfs_mark_buffer_dirty(leaf);
2407 goto out;
2408 }
2409
1707e26d 2410 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2411 u64 num_bytes;
2412
2aaa6655 2413 key.offset = offset;
0b246afa 2414 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2415 fi = btrfs_item_ptr(leaf, path->slots[0],
2416 struct btrfs_file_extent_item);
2417 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2418 offset;
2419 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2420 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2421 btrfs_set_file_extent_offset(leaf, fi, 0);
2422 btrfs_mark_buffer_dirty(leaf);
2423 goto out;
2424 }
2425 btrfs_release_path(path);
2426
a012a74e 2427 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2428 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2429 if (ret)
2430 return ret;
2431
2432out:
2433 btrfs_release_path(path);
2434
2435 hole_em = alloc_extent_map();
2436 if (!hole_em) {
2437 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2438 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2439 } else {
2440 hole_em->start = offset;
2441 hole_em->len = end - offset;
cc95bef6 2442 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2443 hole_em->orig_start = offset;
2444
2445 hole_em->block_start = EXTENT_MAP_HOLE;
2446 hole_em->block_len = 0;
b4939680 2447 hole_em->orig_block_len = 0;
2aaa6655
JB
2448 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2449 hole_em->generation = trans->transid;
2450
2451 do {
2452 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2453 write_lock(&em_tree->lock);
09a2a8f9 2454 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2455 write_unlock(&em_tree->lock);
2456 } while (ret == -EEXIST);
2457 free_extent_map(hole_em);
2458 if (ret)
2459 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2460 &inode->runtime_flags);
2aaa6655
JB
2461 }
2462
2463 return 0;
2464}
2465
d7781546
QW
2466/*
2467 * Find a hole extent on given inode and change start/len to the end of hole
2468 * extent.(hole/vacuum extent whose em->start <= start &&
2469 * em->start + em->len > start)
2470 * When a hole extent is found, return 1 and modify start/len.
2471 */
dea46d84 2472static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2473{
dea46d84 2474 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2475 struct extent_map *em;
2476 int ret = 0;
2477
dea46d84 2478 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2479 round_down(*start, fs_info->sectorsize),
39b07b5d 2480 round_up(*len, fs_info->sectorsize));
9986277e
DC
2481 if (IS_ERR(em))
2482 return PTR_ERR(em);
d7781546
QW
2483
2484 /* Hole or vacuum extent(only exists in no-hole mode) */
2485 if (em->block_start == EXTENT_MAP_HOLE) {
2486 ret = 1;
2487 *len = em->start + em->len > *start + *len ?
2488 0 : *start + *len - em->start - em->len;
2489 *start = em->start + em->len;
2490 }
2491 free_extent_map(em);
2492 return ret;
2493}
2494
f27451f2
FM
2495static int btrfs_punch_hole_lock_range(struct inode *inode,
2496 const u64 lockstart,
2497 const u64 lockend,
2498 struct extent_state **cached_state)
2499{
0528476b
QW
2500 /*
2501 * For subpage case, if the range is not at page boundary, we could
2502 * have pages at the leading/tailing part of the range.
2503 * This could lead to dead loop since filemap_range_has_page()
2504 * will always return true.
2505 * So here we need to do extra page alignment for
2506 * filemap_range_has_page().
2507 */
2508 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2509 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2510
f27451f2
FM
2511 while (1) {
2512 struct btrfs_ordered_extent *ordered;
2513 int ret;
2514
2515 truncate_pagecache_range(inode, lockstart, lockend);
2516
2517 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2518 cached_state);
6d072c8e
NB
2519 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2520 lockend);
f27451f2
FM
2521
2522 /*
2523 * We need to make sure we have no ordered extents in this range
2524 * and nobody raced in and read a page in this range, if we did
2525 * we need to try again.
2526 */
2527 if ((!ordered ||
bffe633e 2528 (ordered->file_offset + ordered->num_bytes <= lockstart ||
f27451f2 2529 ordered->file_offset > lockend)) &&
051c98eb 2530 !filemap_range_has_page(inode->i_mapping,
0528476b 2531 page_lockstart, page_lockend)) {
f27451f2
FM
2532 if (ordered)
2533 btrfs_put_ordered_extent(ordered);
2534 break;
2535 }
2536 if (ordered)
2537 btrfs_put_ordered_extent(ordered);
2538 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2539 lockend, cached_state);
2540 ret = btrfs_wait_ordered_range(inode, lockstart,
2541 lockend - lockstart + 1);
2542 if (ret)
2543 return ret;
2544 }
2545 return 0;
2546}
2547
0cbb5bdf 2548static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2549 struct btrfs_inode *inode,
690a5dbf 2550 struct btrfs_path *path,
bf385648 2551 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2552 const u64 replace_len,
2553 const u64 bytes_to_drop)
690a5dbf 2554{
03fcb1ab
NB
2555 struct btrfs_fs_info *fs_info = trans->fs_info;
2556 struct btrfs_root *root = inode->root;
690a5dbf
FM
2557 struct btrfs_file_extent_item *extent;
2558 struct extent_buffer *leaf;
2559 struct btrfs_key key;
2560 int slot;
2561 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2562 int ret;
2563
bf385648 2564 if (replace_len == 0)
690a5dbf
FM
2565 return 0;
2566
bf385648 2567 if (extent_info->disk_offset == 0 &&
2766ff61 2568 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2569 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2570 return 0;
2766ff61 2571 }
690a5dbf 2572
03fcb1ab 2573 key.objectid = btrfs_ino(inode);
690a5dbf 2574 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2575 key.offset = extent_info->file_offset;
690a5dbf 2576 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2577 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2578 if (ret)
2579 return ret;
2580 leaf = path->nodes[0];
2581 slot = path->slots[0];
bf385648 2582 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2583 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2584 sizeof(struct btrfs_file_extent_item));
690a5dbf 2585 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2586 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2587 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2588 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2589 if (extent_info->is_new_extent)
8fccebfa 2590 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
690a5dbf
FM
2591 btrfs_mark_buffer_dirty(leaf);
2592 btrfs_release_path(path);
2593
03fcb1ab
NB
2594 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2595 replace_len);
9ddc959e
JB
2596 if (ret)
2597 return ret;
2598
690a5dbf 2599 /* If it's a hole, nothing more needs to be done. */
2766ff61 2600 if (extent_info->disk_offset == 0) {
03fcb1ab 2601 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2602 return 0;
2766ff61 2603 }
690a5dbf 2604
03fcb1ab 2605 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2606
bf385648
FM
2607 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2608 key.objectid = extent_info->disk_offset;
8fccebfa 2609 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2610 key.offset = extent_info->disk_len;
8fccebfa 2611 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2612 btrfs_ino(inode),
bf385648
FM
2613 extent_info->file_offset,
2614 extent_info->qgroup_reserved,
8fccebfa
FM
2615 &key);
2616 } else {
2617 u64 ref_offset;
2618
2619 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648
FM
2620 extent_info->disk_offset,
2621 extent_info->disk_len, 0);
2622 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2623 btrfs_init_data_ref(&ref, root->root_key.objectid,
03fcb1ab 2624 btrfs_ino(inode), ref_offset);
8fccebfa
FM
2625 ret = btrfs_inc_extent_ref(trans, &ref);
2626 }
2627
bf385648 2628 extent_info->insertions++;
690a5dbf
FM
2629
2630 return ret;
2631}
2632
9cba40a6
FM
2633/*
2634 * The respective range must have been previously locked, as well as the inode.
2635 * The end offset is inclusive (last byte of the range).
bf385648
FM
2636 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2637 * the file range with an extent.
2638 * When not punching a hole, we don't want to end up in a state where we dropped
2639 * extents without inserting a new one, so we must abort the transaction to avoid
2640 * a corruption.
9cba40a6 2641 */
bfc78479
NB
2642int btrfs_replace_file_extents(struct btrfs_inode *inode,
2643 struct btrfs_path *path, const u64 start,
2644 const u64 end,
2645 struct btrfs_replace_extent_info *extent_info,
2646 struct btrfs_trans_handle **trans_out)
9cba40a6 2647{
5893dfb9 2648 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2649 struct btrfs_root *root = inode->root;
2650 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2651 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2652 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2653 struct btrfs_trans_handle *trans = NULL;
2654 struct btrfs_block_rsv *rsv;
2655 unsigned int rsv_count;
2656 u64 cur_offset;
9cba40a6
FM
2657 u64 len = end - start;
2658 int ret = 0;
2659
2660 if (end <= start)
2661 return -EINVAL;
2662
2663 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2664 if (!rsv) {
2665 ret = -ENOMEM;
2666 goto out;
2667 }
2bd36e7b 2668 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2669 rsv->failfast = 1;
2670
2671 /*
2672 * 1 - update the inode
2673 * 1 - removing the extents in the range
bf385648
FM
2674 * 1 - adding the hole extent if no_holes isn't set or if we are
2675 * replacing the range with a new extent
9cba40a6 2676 */
bf385648 2677 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2678 rsv_count = 3;
2679 else
2680 rsv_count = 2;
2681
9cba40a6
FM
2682 trans = btrfs_start_transaction(root, rsv_count);
2683 if (IS_ERR(trans)) {
2684 ret = PTR_ERR(trans);
2685 trans = NULL;
2686 goto out_free;
2687 }
2688
2689 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2690 min_size, false);
2691 BUG_ON(ret);
2692 trans->block_rsv = rsv;
2693
2694 cur_offset = start;
5893dfb9
FM
2695 drop_args.path = path;
2696 drop_args.end = end + 1;
2697 drop_args.drop_cache = true;
9cba40a6 2698 while (cur_offset < end) {
5893dfb9 2699 drop_args.start = cur_offset;
bfc78479 2700 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2701 /* If we are punching a hole decrement the inode's byte count */
2702 if (!extent_info)
bfc78479 2703 btrfs_update_inode_bytes(inode, 0,
2766ff61 2704 drop_args.bytes_found);
690a5dbf
FM
2705 if (ret != -ENOSPC) {
2706 /*
2707 * When cloning we want to avoid transaction aborts when
2708 * nothing was done and we are attempting to clone parts
2709 * of inline extents, in such cases -EOPNOTSUPP is
2710 * returned by __btrfs_drop_extents() without having
2711 * changed anything in the file.
2712 */
bf385648 2713 if (extent_info && !extent_info->is_new_extent &&
8fccebfa 2714 ret && ret != -EOPNOTSUPP)
690a5dbf 2715 btrfs_abort_transaction(trans, ret);
9cba40a6 2716 break;
690a5dbf 2717 }
9cba40a6
FM
2718
2719 trans->block_rsv = &fs_info->trans_block_rsv;
2720
5893dfb9 2721 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2722 cur_offset < ino_size) {
bfc78479
NB
2723 ret = fill_holes(trans, inode, path, cur_offset,
2724 drop_args.drop_end);
9cba40a6
FM
2725 if (ret) {
2726 /*
2727 * If we failed then we didn't insert our hole
2728 * entries for the area we dropped, so now the
2729 * fs is corrupted, so we must abort the
2730 * transaction.
2731 */
2732 btrfs_abort_transaction(trans, ret);
2733 break;
2734 }
5893dfb9 2735 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2736 /*
2737 * We are past the i_size here, but since we didn't
2738 * insert holes we need to clear the mapped area so we
2739 * know to not set disk_i_size in this area until a new
2740 * file extent is inserted here.
2741 */
bfc78479 2742 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2743 cur_offset,
2744 drop_args.drop_end - cur_offset);
9ddc959e
JB
2745 if (ret) {
2746 /*
2747 * We couldn't clear our area, so we could
2748 * presumably adjust up and corrupt the fs, so
2749 * we need to abort.
2750 */
2751 btrfs_abort_transaction(trans, ret);
2752 break;
2753 }
9cba40a6
FM
2754 }
2755
5893dfb9
FM
2756 if (extent_info &&
2757 drop_args.drop_end > extent_info->file_offset) {
2758 u64 replace_len = drop_args.drop_end -
2759 extent_info->file_offset;
690a5dbf 2760
bfc78479
NB
2761 ret = btrfs_insert_replace_extent(trans, inode, path,
2762 extent_info, replace_len,
03fcb1ab 2763 drop_args.bytes_found);
690a5dbf
FM
2764 if (ret) {
2765 btrfs_abort_transaction(trans, ret);
2766 break;
2767 }
bf385648
FM
2768 extent_info->data_len -= replace_len;
2769 extent_info->data_offset += replace_len;
2770 extent_info->file_offset += replace_len;
690a5dbf
FM
2771 }
2772
bfc78479 2773 ret = btrfs_update_inode(trans, root, inode);
9cba40a6
FM
2774 if (ret)
2775 break;
2776
2777 btrfs_end_transaction(trans);
2778 btrfs_btree_balance_dirty(fs_info);
2779
2780 trans = btrfs_start_transaction(root, rsv_count);
2781 if (IS_ERR(trans)) {
2782 ret = PTR_ERR(trans);
2783 trans = NULL;
2784 break;
2785 }
2786
2787 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2788 rsv, min_size, false);
2789 BUG_ON(ret); /* shouldn't happen */
2790 trans->block_rsv = rsv;
2791
3227788c
BC
2792 cur_offset = drop_args.drop_end;
2793 len = end - cur_offset;
2794 if (!extent_info && len) {
bfc78479 2795 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2796 if (unlikely(ret < 0))
2797 break;
2798 if (ret && !len) {
2799 ret = 0;
2800 break;
2801 }
9cba40a6
FM
2802 }
2803 }
2804
690a5dbf
FM
2805 /*
2806 * If we were cloning, force the next fsync to be a full one since we
2807 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2808 * NO_HOLES is enabled) file extent items and did not setup new extent
2809 * maps for the replacement extents (or holes).
690a5dbf 2810 */
bf385648 2811 if (extent_info && !extent_info->is_new_extent)
bfc78479 2812 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
690a5dbf 2813
9cba40a6
FM
2814 if (ret)
2815 goto out_trans;
2816
2817 trans->block_rsv = &fs_info->trans_block_rsv;
2818 /*
2819 * If we are using the NO_HOLES feature we might have had already an
2820 * hole that overlaps a part of the region [lockstart, lockend] and
2821 * ends at (or beyond) lockend. Since we have no file extent items to
2822 * represent holes, drop_end can be less than lockend and so we must
2823 * make sure we have an extent map representing the existing hole (the
2824 * call to __btrfs_drop_extents() might have dropped the existing extent
2825 * map representing the existing hole), otherwise the fast fsync path
2826 * will not record the existence of the hole region
2827 * [existing_hole_start, lockend].
2828 */
5893dfb9
FM
2829 if (drop_args.drop_end <= end)
2830 drop_args.drop_end = end + 1;
9cba40a6
FM
2831 /*
2832 * Don't insert file hole extent item if it's for a range beyond eof
2833 * (because it's useless) or if it represents a 0 bytes range (when
2834 * cur_offset == drop_end).
2835 */
5893dfb9
FM
2836 if (!extent_info && cur_offset < ino_size &&
2837 cur_offset < drop_args.drop_end) {
bfc78479
NB
2838 ret = fill_holes(trans, inode, path, cur_offset,
2839 drop_args.drop_end);
9cba40a6
FM
2840 if (ret) {
2841 /* Same comment as above. */
2842 btrfs_abort_transaction(trans, ret);
2843 goto out_trans;
2844 }
5893dfb9 2845 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2846 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2847 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2848 drop_args.drop_end - cur_offset);
9ddc959e
JB
2849 if (ret) {
2850 btrfs_abort_transaction(trans, ret);
2851 goto out_trans;
2852 }
2853
9cba40a6 2854 }
bf385648 2855 if (extent_info) {
bfc78479 2856 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2857 extent_info, extent_info->data_len,
2858 drop_args.bytes_found);
690a5dbf
FM
2859 if (ret) {
2860 btrfs_abort_transaction(trans, ret);
2861 goto out_trans;
2862 }
2863 }
9cba40a6
FM
2864
2865out_trans:
2866 if (!trans)
2867 goto out_free;
2868
2869 trans->block_rsv = &fs_info->trans_block_rsv;
2870 if (ret)
2871 btrfs_end_transaction(trans);
2872 else
2873 *trans_out = trans;
2874out_free:
2875 btrfs_free_block_rsv(fs_info, rsv);
2876out:
2877 return ret;
2878}
2879
2aaa6655
JB
2880static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2881{
0b246afa 2882 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2883 struct btrfs_root *root = BTRFS_I(inode)->root;
2884 struct extent_state *cached_state = NULL;
2885 struct btrfs_path *path;
9cba40a6 2886 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2887 u64 lockstart;
2888 u64 lockend;
2889 u64 tail_start;
2890 u64 tail_len;
2891 u64 orig_start = offset;
2aaa6655 2892 int ret = 0;
9703fefe 2893 bool same_block;
a1a50f60 2894 u64 ino_size;
9703fefe 2895 bool truncated_block = false;
e8c1c76e 2896 bool updated_inode = false;
2aaa6655 2897
0ef8b726
JB
2898 ret = btrfs_wait_ordered_range(inode, offset, len);
2899 if (ret)
2900 return ret;
2aaa6655 2901
8d9b4a16 2902 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
0b246afa 2903 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2904 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2905 if (ret < 0)
2906 goto out_only_mutex;
2907 if (ret && !len) {
2908 /* Already in a large hole */
2909 ret = 0;
2910 goto out_only_mutex;
2911 }
2912
6fee248d 2913 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
d7781546 2914 lockend = round_down(offset + len,
6fee248d 2915 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
0b246afa
JM
2916 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2917 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2918 /*
9703fefe 2919 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2920 * because we are sure there is no data there.
2921 */
2aaa6655 2922 /*
9703fefe
CR
2923 * Only do this if we are in the same block and we aren't doing the
2924 * entire block.
2aaa6655 2925 */
0b246afa 2926 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2927 if (offset < ino_size) {
9703fefe 2928 truncated_block = true;
217f42eb
NB
2929 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2930 0);
e8c1c76e
FM
2931 } else {
2932 ret = 0;
2933 }
d7781546 2934 goto out_only_mutex;
2aaa6655
JB
2935 }
2936
9703fefe 2937 /* zero back part of the first block */
12870f1c 2938 if (offset < ino_size) {
9703fefe 2939 truncated_block = true;
217f42eb 2940 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2941 if (ret) {
8d9b4a16 2942 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
7426cc04
MX
2943 return ret;
2944 }
2aaa6655
JB
2945 }
2946
d7781546
QW
2947 /* Check the aligned pages after the first unaligned page,
2948 * if offset != orig_start, which means the first unaligned page
01327610 2949 * including several following pages are already in holes,
d7781546
QW
2950 * the extra check can be skipped */
2951 if (offset == orig_start) {
2952 /* after truncate page, check hole again */
2953 len = offset + len - lockstart;
2954 offset = lockstart;
dea46d84 2955 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2956 if (ret < 0)
2957 goto out_only_mutex;
2958 if (ret && !len) {
2959 ret = 0;
2960 goto out_only_mutex;
2961 }
2962 lockstart = offset;
2963 }
2964
2965 /* Check the tail unaligned part is in a hole */
2966 tail_start = lockend + 1;
2967 tail_len = offset + len - tail_start;
2968 if (tail_len) {
dea46d84 2969 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2970 if (unlikely(ret < 0))
2971 goto out_only_mutex;
2972 if (!ret) {
2973 /* zero the front end of the last page */
2974 if (tail_start + tail_len < ino_size) {
9703fefe 2975 truncated_block = true;
217f42eb 2976 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2977 tail_start + tail_len,
2978 0, 1);
d7781546
QW
2979 if (ret)
2980 goto out_only_mutex;
51f395ad 2981 }
0061280d 2982 }
2aaa6655
JB
2983 }
2984
2985 if (lockend < lockstart) {
e8c1c76e
FM
2986 ret = 0;
2987 goto out_only_mutex;
2aaa6655
JB
2988 }
2989
f27451f2
FM
2990 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2991 &cached_state);
8fca9550 2992 if (ret)
f27451f2 2993 goto out_only_mutex;
2aaa6655
JB
2994
2995 path = btrfs_alloc_path();
2996 if (!path) {
2997 ret = -ENOMEM;
2998 goto out;
2999 }
3000
bfc78479
NB
3001 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3002 lockend, NULL, &trans);
9cba40a6
FM
3003 btrfs_free_path(path);
3004 if (ret)
3005 goto out;
2aaa6655 3006
9cba40a6 3007 ASSERT(trans != NULL);
e1f5790e 3008 inode_inc_iversion(inode);
c2050a45 3009 inode->i_mtime = inode->i_ctime = current_time(inode);
9a56fcd1 3010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e8c1c76e 3011 updated_inode = true;
3a45bb20 3012 btrfs_end_transaction(trans);
2ff7e61e 3013 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
3014out:
3015 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3016 &cached_state);
d7781546 3017out_only_mutex:
9cba40a6 3018 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
3019 /*
3020 * If we only end up zeroing part of a page, we still need to
3021 * update the inode item, so that all the time fields are
3022 * updated as well as the necessary btrfs inode in memory fields
3023 * for detecting, at fsync time, if the inode isn't yet in the
3024 * log tree or it's there but not up to date.
3025 */
17900668
FM
3026 struct timespec64 now = current_time(inode);
3027
3028 inode_inc_iversion(inode);
3029 inode->i_mtime = now;
3030 inode->i_ctime = now;
e8c1c76e
FM
3031 trans = btrfs_start_transaction(root, 1);
3032 if (IS_ERR(trans)) {
9cba40a6 3033 ret = PTR_ERR(trans);
e8c1c76e 3034 } else {
9cba40a6
FM
3035 int ret2;
3036
9a56fcd1 3037 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9cba40a6
FM
3038 ret2 = btrfs_end_transaction(trans);
3039 if (!ret)
3040 ret = ret2;
e8c1c76e
FM
3041 }
3042 }
8d9b4a16 3043 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
9cba40a6 3044 return ret;
2aaa6655
JB
3045}
3046
14524a84
QW
3047/* Helper structure to record which range is already reserved */
3048struct falloc_range {
3049 struct list_head list;
3050 u64 start;
3051 u64 len;
3052};
3053
3054/*
3055 * Helper function to add falloc range
3056 *
3057 * Caller should have locked the larger range of extent containing
3058 * [start, len)
3059 */
3060static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3061{
14524a84
QW
3062 struct falloc_range *range = NULL;
3063
77d25534
NB
3064 if (!list_empty(head)) {
3065 /*
3066 * As fallocate iterates by bytenr order, we only need to check
3067 * the last range.
3068 */
3069 range = list_last_entry(head, struct falloc_range, list);
3070 if (range->start + range->len == start) {
3071 range->len += len;
3072 return 0;
3073 }
14524a84 3074 }
77d25534 3075
32fc932e 3076 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
3077 if (!range)
3078 return -ENOMEM;
3079 range->start = start;
3080 range->len = len;
3081 list_add_tail(&range->list, head);
3082 return 0;
3083}
3084
f27451f2
FM
3085static int btrfs_fallocate_update_isize(struct inode *inode,
3086 const u64 end,
3087 const int mode)
3088{
3089 struct btrfs_trans_handle *trans;
3090 struct btrfs_root *root = BTRFS_I(inode)->root;
3091 int ret;
3092 int ret2;
3093
3094 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3095 return 0;
3096
3097 trans = btrfs_start_transaction(root, 1);
3098 if (IS_ERR(trans))
3099 return PTR_ERR(trans);
3100
3101 inode->i_ctime = current_time(inode);
3102 i_size_write(inode, end);
76aea537 3103 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 3104 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
f27451f2
FM
3105 ret2 = btrfs_end_transaction(trans);
3106
3107 return ret ? ret : ret2;
3108}
3109
81fdf638 3110enum {
f262fa8d
DS
3111 RANGE_BOUNDARY_WRITTEN_EXTENT,
3112 RANGE_BOUNDARY_PREALLOC_EXTENT,
3113 RANGE_BOUNDARY_HOLE,
81fdf638
FM
3114};
3115
948dfeb8 3116static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
3117 u64 offset)
3118{
948dfeb8 3119 const u64 sectorsize = btrfs_inode_sectorsize(inode);
f27451f2 3120 struct extent_map *em;
81fdf638 3121 int ret;
f27451f2
FM
3122
3123 offset = round_down(offset, sectorsize);
948dfeb8 3124 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
3125 if (IS_ERR(em))
3126 return PTR_ERR(em);
3127
3128 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
3129 ret = RANGE_BOUNDARY_HOLE;
3130 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3131 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3132 else
3133 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
3134
3135 free_extent_map(em);
3136 return ret;
3137}
3138
3139static int btrfs_zero_range(struct inode *inode,
3140 loff_t offset,
3141 loff_t len,
3142 const int mode)
3143{
3144 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3145 struct extent_map *em;
3146 struct extent_changeset *data_reserved = NULL;
3147 int ret;
3148 u64 alloc_hint = 0;
6fee248d 3149 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
f27451f2
FM
3150 u64 alloc_start = round_down(offset, sectorsize);
3151 u64 alloc_end = round_up(offset + len, sectorsize);
3152 u64 bytes_to_reserve = 0;
3153 bool space_reserved = false;
3154
3155 inode_dio_wait(inode);
3156
39b07b5d
OS
3157 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3158 alloc_end - alloc_start);
f27451f2
FM
3159 if (IS_ERR(em)) {
3160 ret = PTR_ERR(em);
3161 goto out;
3162 }
3163
3164 /*
3165 * Avoid hole punching and extent allocation for some cases. More cases
3166 * could be considered, but these are unlikely common and we keep things
3167 * as simple as possible for now. Also, intentionally, if the target
3168 * range contains one or more prealloc extents together with regular
3169 * extents and holes, we drop all the existing extents and allocate a
3170 * new prealloc extent, so that we get a larger contiguous disk extent.
3171 */
3172 if (em->start <= alloc_start &&
3173 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3174 const u64 em_end = em->start + em->len;
3175
3176 if (em_end >= offset + len) {
3177 /*
3178 * The whole range is already a prealloc extent,
3179 * do nothing except updating the inode's i_size if
3180 * needed.
3181 */
3182 free_extent_map(em);
3183 ret = btrfs_fallocate_update_isize(inode, offset + len,
3184 mode);
3185 goto out;
3186 }
3187 /*
3188 * Part of the range is already a prealloc extent, so operate
3189 * only on the remaining part of the range.
3190 */
3191 alloc_start = em_end;
3192 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3193 len = offset + len - alloc_start;
3194 offset = alloc_start;
3195 alloc_hint = em->block_start + em->len;
3196 }
3197 free_extent_map(em);
3198
3199 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3200 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
3201 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3202 sectorsize);
f27451f2
FM
3203 if (IS_ERR(em)) {
3204 ret = PTR_ERR(em);
3205 goto out;
3206 }
3207
3208 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3209 free_extent_map(em);
3210 ret = btrfs_fallocate_update_isize(inode, offset + len,
3211 mode);
3212 goto out;
3213 }
3214 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3215 free_extent_map(em);
217f42eb
NB
3216 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3217 0);
f27451f2
FM
3218 if (!ret)
3219 ret = btrfs_fallocate_update_isize(inode,
3220 offset + len,
3221 mode);
3222 return ret;
3223 }
3224 free_extent_map(em);
3225 alloc_start = round_down(offset, sectorsize);
3226 alloc_end = alloc_start + sectorsize;
3227 goto reserve_space;
3228 }
3229
3230 alloc_start = round_up(offset, sectorsize);
3231 alloc_end = round_down(offset + len, sectorsize);
3232
3233 /*
3234 * For unaligned ranges, check the pages at the boundaries, they might
3235 * map to an extent, in which case we need to partially zero them, or
3236 * they might map to a hole, in which case we need our allocation range
3237 * to cover them.
3238 */
3239 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
3240 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3241 offset);
f27451f2
FM
3242 if (ret < 0)
3243 goto out;
81fdf638 3244 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3245 alloc_start = round_down(offset, sectorsize);
3246 ret = 0;
81fdf638 3247 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 3248 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
3249 if (ret)
3250 goto out;
81fdf638
FM
3251 } else {
3252 ret = 0;
f27451f2
FM
3253 }
3254 }
3255
3256 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 3257 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
3258 offset + len);
3259 if (ret < 0)
3260 goto out;
81fdf638 3261 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3262 alloc_end = round_up(offset + len, sectorsize);
3263 ret = 0;
81fdf638 3264 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
3265 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3266 0, 1);
f27451f2
FM
3267 if (ret)
3268 goto out;
81fdf638
FM
3269 } else {
3270 ret = 0;
f27451f2
FM
3271 }
3272 }
3273
3274reserve_space:
3275 if (alloc_start < alloc_end) {
3276 struct extent_state *cached_state = NULL;
3277 const u64 lockstart = alloc_start;
3278 const u64 lockend = alloc_end - 1;
3279
3280 bytes_to_reserve = alloc_end - alloc_start;
3281 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3282 bytes_to_reserve);
3283 if (ret < 0)
3284 goto out;
3285 space_reserved = true;
f27451f2
FM
3286 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3287 &cached_state);
3288 if (ret)
3289 goto out;
7661a3e0 3290 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 3291 alloc_start, bytes_to_reserve);
4f6a49de
NB
3292 if (ret) {
3293 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3294 lockend, &cached_state);
a7f8b1c2 3295 goto out;
4f6a49de 3296 }
f27451f2
FM
3297 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3298 alloc_end - alloc_start,
3299 i_blocksize(inode),
3300 offset + len, &alloc_hint);
3301 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3302 lockend, &cached_state);
3303 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3304 if (ret) {
f27451f2 3305 space_reserved = false;
9f13ce74
FM
3306 goto out;
3307 }
f27451f2 3308 }
9f13ce74 3309 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3310 out:
3311 if (ret && space_reserved)
25ce28ca 3312 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3313 alloc_start, bytes_to_reserve);
3314 extent_changeset_free(data_reserved);
3315
3316 return ret;
3317}
3318
2fe17c10
CH
3319static long btrfs_fallocate(struct file *file, int mode,
3320 loff_t offset, loff_t len)
3321{
496ad9aa 3322 struct inode *inode = file_inode(file);
2fe17c10 3323 struct extent_state *cached_state = NULL;
364ecf36 3324 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3325 struct falloc_range *range;
3326 struct falloc_range *tmp;
3327 struct list_head reserve_list;
2fe17c10
CH
3328 u64 cur_offset;
3329 u64 last_byte;
3330 u64 alloc_start;
3331 u64 alloc_end;
3332 u64 alloc_hint = 0;
3333 u64 locked_end;
14524a84 3334 u64 actual_end = 0;
2fe17c10 3335 struct extent_map *em;
6fee248d 3336 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
2fe17c10
CH
3337 int ret;
3338
f1569c4c
NA
3339 /* Do not allow fallocate in ZONED mode */
3340 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3341 return -EOPNOTSUPP;
3342
797f4277
MX
3343 alloc_start = round_down(offset, blocksize);
3344 alloc_end = round_up(offset + len, blocksize);
18513091 3345 cur_offset = alloc_start;
2fe17c10 3346
2aaa6655 3347 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3348 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3349 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3350 return -EOPNOTSUPP;
3351
2aaa6655
JB
3352 if (mode & FALLOC_FL_PUNCH_HOLE)
3353 return btrfs_punch_hole(inode, offset, len);
3354
d98456fc 3355 /*
14524a84
QW
3356 * Only trigger disk allocation, don't trigger qgroup reserve
3357 *
3358 * For qgroup space, it will be checked later.
d98456fc 3359 */
f27451f2
FM
3360 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3361 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3362 alloc_end - alloc_start);
3363 if (ret < 0)
3364 return ret;
3365 }
d98456fc 3366
8d9b4a16 3367 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2a162ce9
DI
3368
3369 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3370 ret = inode_newsize_ok(inode, offset + len);
3371 if (ret)
3372 goto out;
3373 }
2fe17c10 3374
14524a84
QW
3375 /*
3376 * TODO: Move these two operations after we have checked
3377 * accurate reserved space, or fallocate can still fail but
3378 * with page truncated or size expanded.
3379 *
3380 * But that's a minor problem and won't do much harm BTW.
3381 */
2fe17c10 3382 if (alloc_start > inode->i_size) {
b06359a3 3383 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3384 alloc_start);
2fe17c10
CH
3385 if (ret)
3386 goto out;
0f6925fa 3387 } else if (offset + len > inode->i_size) {
a71754fc
JB
3388 /*
3389 * If we are fallocating from the end of the file onward we
9703fefe
CR
3390 * need to zero out the end of the block if i_size lands in the
3391 * middle of a block.
a71754fc 3392 */
217f42eb 3393 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3394 if (ret)
3395 goto out;
2fe17c10
CH
3396 }
3397
a71754fc
JB
3398 /*
3399 * wait for ordered IO before we have any locks. We'll loop again
3400 * below with the locks held.
3401 */
0ef8b726
JB
3402 ret = btrfs_wait_ordered_range(inode, alloc_start,
3403 alloc_end - alloc_start);
3404 if (ret)
3405 goto out;
a71754fc 3406
f27451f2
FM
3407 if (mode & FALLOC_FL_ZERO_RANGE) {
3408 ret = btrfs_zero_range(inode, offset, len, mode);
8d9b4a16 3409 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
f27451f2
FM
3410 return ret;
3411 }
3412
2fe17c10
CH
3413 locked_end = alloc_end - 1;
3414 while (1) {
3415 struct btrfs_ordered_extent *ordered;
3416
3417 /* the extent lock is ordered inside the running
3418 * transaction
3419 */
3420 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3421 locked_end, &cached_state);
6d072c8e
NB
3422 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3423 locked_end);
96b09dde 3424
2fe17c10 3425 if (ordered &&
bffe633e 3426 ordered->file_offset + ordered->num_bytes > alloc_start &&
2fe17c10
CH
3427 ordered->file_offset < alloc_end) {
3428 btrfs_put_ordered_extent(ordered);
3429 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3430 alloc_start, locked_end,
e43bbe5e 3431 &cached_state);
2fe17c10
CH
3432 /*
3433 * we can't wait on the range with the transaction
3434 * running or with the extent lock held
3435 */
0ef8b726
JB
3436 ret = btrfs_wait_ordered_range(inode, alloc_start,
3437 alloc_end - alloc_start);
3438 if (ret)
3439 goto out;
2fe17c10
CH
3440 } else {
3441 if (ordered)
3442 btrfs_put_ordered_extent(ordered);
3443 break;
3444 }
3445 }
3446
14524a84
QW
3447 /* First, check if we exceed the qgroup limit */
3448 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3449 while (cur_offset < alloc_end) {
fc4f21b1 3450 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3451 alloc_end - cur_offset);
9986277e
DC
3452 if (IS_ERR(em)) {
3453 ret = PTR_ERR(em);
79787eaa
JM
3454 break;
3455 }
2fe17c10 3456 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3457 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3458 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3459 if (em->block_start == EXTENT_MAP_HOLE ||
3460 (cur_offset >= inode->i_size &&
3461 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3462 ret = add_falloc_range(&reserve_list, cur_offset,
3463 last_byte - cur_offset);
3464 if (ret < 0) {
3465 free_extent_map(em);
3466 break;
3d850dd4 3467 }
7661a3e0
NB
3468 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3469 &data_reserved, cur_offset,
3470 last_byte - cur_offset);
be2d253c 3471 if (ret < 0) {
39ad3173 3472 cur_offset = last_byte;
be2d253c 3473 free_extent_map(em);
14524a84 3474 break;
be2d253c 3475 }
18513091
WX
3476 } else {
3477 /*
3478 * Do not need to reserve unwritten extent for this
3479 * range, free reserved data space first, otherwise
3480 * it'll result in false ENOSPC error.
3481 */
25ce28ca
NB
3482 btrfs_free_reserved_data_space(BTRFS_I(inode),
3483 data_reserved, cur_offset,
3484 last_byte - cur_offset);
2fe17c10
CH
3485 }
3486 free_extent_map(em);
2fe17c10 3487 cur_offset = last_byte;
14524a84
QW
3488 }
3489
3490 /*
3491 * If ret is still 0, means we're OK to fallocate.
3492 * Or just cleanup the list and exit.
3493 */
3494 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3495 if (!ret)
3496 ret = btrfs_prealloc_file_range(inode, mode,
3497 range->start,
93407472 3498 range->len, i_blocksize(inode),
14524a84 3499 offset + len, &alloc_hint);
18513091 3500 else
25ce28ca 3501 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
3502 data_reserved, range->start,
3503 range->len);
14524a84
QW
3504 list_del(&range->list);
3505 kfree(range);
3506 }
3507 if (ret < 0)
3508 goto out_unlock;
3509
f27451f2
FM
3510 /*
3511 * We didn't need to allocate any more space, but we still extended the
3512 * size of the file so we need to update i_size and the inode item.
3513 */
3514 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3515out_unlock:
2fe17c10 3516 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3517 &cached_state);
2fe17c10 3518out:
8d9b4a16 3519 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
d98456fc 3520 /* Let go of our reservation. */
f27451f2 3521 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
25ce28ca 3522 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
39ad3173 3523 cur_offset, alloc_end - cur_offset);
364ecf36 3524 extent_changeset_free(data_reserved);
2fe17c10
CH
3525 return ret;
3526}
3527
cca5de97 3528static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
bc80230e 3529 int whence)
b2675157 3530{
cca5de97 3531 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7f4ca37c 3532 struct extent_map *em = NULL;
b2675157 3533 struct extent_state *cached_state = NULL;
cca5de97 3534 loff_t i_size = inode->vfs_inode.i_size;
4d1a40c6
LB
3535 u64 lockstart;
3536 u64 lockend;
3537 u64 start;
3538 u64 len;
b2675157
JB
3539 int ret = 0;
3540
bc80230e 3541 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3542 return -ENXIO;
3543
3544 /*
bc80230e 3545 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3546 * the very start of the file.
3547 */
bc80230e 3548 start = max_t(loff_t, 0, offset);
4d1a40c6 3549
0b246afa 3550 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3551 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3552 if (lockend <= lockstart)
0b246afa 3553 lockend = lockstart + fs_info->sectorsize;
1214b53f 3554 lockend--;
b2675157
JB
3555 len = lockend - lockstart + 1;
3556
cca5de97 3557 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3558
d79b7c26 3559 while (start < i_size) {
cca5de97 3560 em = btrfs_get_extent_fiemap(inode, start, len);
b2675157 3561 if (IS_ERR(em)) {
6af021d8 3562 ret = PTR_ERR(em);
7f4ca37c 3563 em = NULL;
b2675157
JB
3564 break;
3565 }
3566
7f4ca37c
JB
3567 if (whence == SEEK_HOLE &&
3568 (em->block_start == EXTENT_MAP_HOLE ||
3569 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3570 break;
3571 else if (whence == SEEK_DATA &&
3572 (em->block_start != EXTENT_MAP_HOLE &&
3573 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3574 break;
b2675157
JB
3575
3576 start = em->start + em->len;
b2675157 3577 free_extent_map(em);
7f4ca37c 3578 em = NULL;
b2675157
JB
3579 cond_resched();
3580 }
7f4ca37c 3581 free_extent_map(em);
cca5de97 3582 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
bc80230e
NB
3583 &cached_state);
3584 if (ret) {
3585 offset = ret;
3586 } else {
d79b7c26 3587 if (whence == SEEK_DATA && start >= i_size)
bc80230e 3588 offset = -ENXIO;
7f4ca37c 3589 else
bc80230e 3590 offset = min_t(loff_t, start, i_size);
7f4ca37c 3591 }
bc80230e
NB
3592
3593 return offset;
b2675157
JB
3594}
3595
965c8e59 3596static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3597{
3598 struct inode *inode = file->f_mapping->host;
b2675157 3599
965c8e59 3600 switch (whence) {
2034f3b4
NB
3601 default:
3602 return generic_file_llseek(file, offset, whence);
b2675157
JB
3603 case SEEK_DATA:
3604 case SEEK_HOLE:
a14b78ad 3605 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
cca5de97 3606 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
a14b78ad 3607 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
bc80230e 3608 break;
b2675157
JB
3609 }
3610
bc80230e
NB
3611 if (offset < 0)
3612 return offset;
3613
2034f3b4 3614 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3615}
3616
edf064e7
GR
3617static int btrfs_file_open(struct inode *inode, struct file *filp)
3618{
14605409
BB
3619 int ret;
3620
8730f12b 3621 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
14605409
BB
3622
3623 ret = fsverity_file_open(inode, filp);
3624 if (ret)
3625 return ret;
edf064e7
GR
3626 return generic_file_open(inode, filp);
3627}
3628
4e4cabec
GR
3629static int check_direct_read(struct btrfs_fs_info *fs_info,
3630 const struct iov_iter *iter, loff_t offset)
3631{
3632 int ret;
3633 int i, seg;
3634
3635 ret = check_direct_IO(fs_info, iter, offset);
3636 if (ret < 0)
3637 return ret;
3638
3639 if (!iter_is_iovec(iter))
3640 return 0;
3641
3642 for (seg = 0; seg < iter->nr_segs; seg++)
3643 for (i = seg + 1; i < iter->nr_segs; i++)
3644 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3645 return -EINVAL;
3646 return 0;
3647}
3648
3649static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3650{
3651 struct inode *inode = file_inode(iocb->ki_filp);
3652 ssize_t ret;
3653
14605409
BB
3654 if (fsverity_active(inode))
3655 return 0;
3656
4e4cabec
GR
3657 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3658 return 0;
3659
a14b78ad 3660 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2f632965 3661 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 0);
a14b78ad 3662 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4e4cabec
GR
3663 return ret;
3664}
3665
f85781fb
GR
3666static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3667{
3668 ssize_t ret = 0;
3669
3670 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3671 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3672 if (ret < 0 || !iov_iter_count(to) ||
3673 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3674 return ret;
3675 }
3676
87fa0f3e 3677 return filemap_read(iocb, to, ret);
f85781fb
GR
3678}
3679
828c0950 3680const struct file_operations btrfs_file_operations = {
b2675157 3681 .llseek = btrfs_file_llseek,
f85781fb 3682 .read_iter = btrfs_file_read_iter,
e9906a98 3683 .splice_read = generic_file_splice_read,
b30ac0fc 3684 .write_iter = btrfs_file_write_iter,
d7776591 3685 .splice_write = iter_file_splice_write,
9ebefb18 3686 .mmap = btrfs_file_mmap,
edf064e7 3687 .open = btrfs_file_open,
e1b81e67 3688 .release = btrfs_release_file,
39279cc3 3689 .fsync = btrfs_sync_file,
2fe17c10 3690 .fallocate = btrfs_fallocate,
34287aa3 3691 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3692#ifdef CONFIG_COMPAT
4c63c245 3693 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3694#endif
2e5dfc99 3695 .remap_file_range = btrfs_remap_file_range,
39279cc3 3696};
9247f317 3697
e67c718b 3698void __cold btrfs_auto_defrag_exit(void)
9247f317 3699{
5598e900 3700 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3701}
3702
f5c29bd9 3703int __init btrfs_auto_defrag_init(void)
9247f317
MX
3704{
3705 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3706 sizeof(struct inode_defrag), 0,
fba4b697 3707 SLAB_MEM_SPREAD,
9247f317
MX
3708 NULL);
3709 if (!btrfs_inode_defrag_cachep)
3710 return -ENOMEM;
3711
3712 return 0;
3713}
728404da
FM
3714
3715int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3716{
3717 int ret;
3718
3719 /*
3720 * So with compression we will find and lock a dirty page and clear the
3721 * first one as dirty, setup an async extent, and immediately return
3722 * with the entire range locked but with nobody actually marked with
3723 * writeback. So we can't just filemap_write_and_wait_range() and
3724 * expect it to work since it will just kick off a thread to do the
3725 * actual work. So we need to call filemap_fdatawrite_range _again_
3726 * since it will wait on the page lock, which won't be unlocked until
3727 * after the pages have been marked as writeback and so we're good to go
3728 * from there. We have to do this otherwise we'll miss the ordered
3729 * extents and that results in badness. Please Josef, do not think you
3730 * know better and pull this out at some point in the future, it is
3731 * right and you are wrong.
3732 */
3733 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3734 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3735 &BTRFS_I(inode)->runtime_flags))
3736 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3737
3738 return ret;
3739}