btrfs: remove unused function calc_global_rsv_need_space()
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
86736342 29#include "delalloc-space.h"
6a177381 30#include "reflink.h"
39279cc3 31
9247f317 32static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
33/*
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
37 */
38struct inode_defrag {
39 struct rb_node rb_node;
40 /* objectid */
41 u64 ino;
42 /*
43 * transid where the defrag was added, we search for
44 * extents newer than this
45 */
46 u64 transid;
47
48 /* root objectid */
49 u64 root;
50
51 /* last offset we were able to defrag */
52 u64 last_offset;
53
54 /* if we've wrapped around back to zero once already */
55 int cycled;
56};
57
762f2263
MX
58static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
60{
61 if (defrag1->root > defrag2->root)
62 return 1;
63 else if (defrag1->root < defrag2->root)
64 return -1;
65 else if (defrag1->ino > defrag2->ino)
66 return 1;
67 else if (defrag1->ino < defrag2->ino)
68 return -1;
69 else
70 return 0;
71}
72
4cb5300b
CM
73/* pop a record for an inode into the defrag tree. The lock
74 * must be held already
75 *
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
78 *
79 * If an existing record is found the defrag item you
80 * pass in is freed
81 */
6158e1ce 82static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
83 struct inode_defrag *defrag)
84{
3ffbd68c 85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
86 struct inode_defrag *entry;
87 struct rb_node **p;
88 struct rb_node *parent = NULL;
762f2263 89 int ret;
4cb5300b 90
0b246afa 91 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
92 while (*p) {
93 parent = *p;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
762f2263
MX
96 ret = __compare_inode_defrag(defrag, entry);
97 if (ret < 0)
4cb5300b 98 p = &parent->rb_left;
762f2263 99 else if (ret > 0)
4cb5300b
CM
100 p = &parent->rb_right;
101 else {
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
105 */
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
8ddc4734 110 return -EEXIST;
4cb5300b
CM
111 }
112 }
6158e1ce 113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 114 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
116 return 0;
117}
4cb5300b 118
2ff7e61e 119static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 120{
0b246afa 121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
122 return 0;
123
0b246afa 124 if (btrfs_fs_closing(fs_info))
8ddc4734 125 return 0;
4cb5300b 126
8ddc4734 127 return 1;
4cb5300b
CM
128}
129
130/*
131 * insert a defrag record for this inode if auto defrag is
132 * enabled
133 */
134int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 135 struct btrfs_inode *inode)
4cb5300b 136{
6158e1ce 137 struct btrfs_root *root = inode->root;
3ffbd68c 138 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 139 struct inode_defrag *defrag;
4cb5300b 140 u64 transid;
8ddc4734 141 int ret;
4cb5300b 142
2ff7e61e 143 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
144 return 0;
145
6158e1ce 146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
147 return 0;
148
149 if (trans)
150 transid = trans->transid;
151 else
6158e1ce 152 transid = inode->root->last_trans;
4cb5300b 153
9247f317 154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
155 if (!defrag)
156 return -ENOMEM;
157
6158e1ce 158 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
161
0b246afa 162 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
164 /*
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 */
169 ret = __btrfs_add_inode_defrag(inode, defrag);
170 if (ret)
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 } else {
9247f317 173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 174 }
0b246afa 175 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 176 return 0;
4cb5300b
CM
177}
178
179/*
8ddc4734
MX
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 183 */
46e59791 184static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 185 struct inode_defrag *defrag)
8ddc4734 186{
3ffbd68c 187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
188 int ret;
189
2ff7e61e 190 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
191 goto out;
192
193 /*
194 * Here we don't check the IN_DEFRAG flag, because we need merge
195 * them together.
196 */
0b246afa 197 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 198 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 199 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
200 if (ret)
201 goto out;
202 return;
203out:
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205}
206
4cb5300b 207/*
26176e7c
MX
208 * pick the defragable inode that we want, if it doesn't exist, we will get
209 * the next one.
4cb5300b 210 */
26176e7c
MX
211static struct inode_defrag *
212btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
213{
214 struct inode_defrag *entry = NULL;
762f2263 215 struct inode_defrag tmp;
4cb5300b
CM
216 struct rb_node *p;
217 struct rb_node *parent = NULL;
762f2263
MX
218 int ret;
219
220 tmp.ino = ino;
221 tmp.root = root;
4cb5300b 222
26176e7c
MX
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
225 while (p) {
226 parent = p;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
762f2263
MX
229 ret = __compare_inode_defrag(&tmp, entry);
230 if (ret < 0)
4cb5300b 231 p = parent->rb_left;
762f2263 232 else if (ret > 0)
4cb5300b
CM
233 p = parent->rb_right;
234 else
26176e7c 235 goto out;
4cb5300b
CM
236 }
237
26176e7c
MX
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
240 if (parent)
4cb5300b 241 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
242 else
243 entry = NULL;
4cb5300b 244 }
26176e7c
MX
245out:
246 if (entry)
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
249 return entry;
4cb5300b
CM
250}
251
26176e7c 252void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
253{
254 struct inode_defrag *defrag;
26176e7c
MX
255 struct rb_node *node;
256
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
259 while (node) {
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
351810c1 264 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
265
266 node = rb_first(&fs_info->defrag_inodes);
267 }
268 spin_unlock(&fs_info->defrag_inodes_lock);
269}
270
271#define BTRFS_DEFRAG_BATCH 1024
272
273static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
275{
4cb5300b
CM
276 struct btrfs_root *inode_root;
277 struct inode *inode;
4cb5300b 278 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 279 int num_defrag;
6f1c3605 280 int ret;
4cb5300b 281
26176e7c 282 /* get the inode */
56e9357a 283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
26176e7c 284 if (IS_ERR(inode_root)) {
6f1c3605
LB
285 ret = PTR_ERR(inode_root);
286 goto cleanup;
287 }
26176e7c 288
0202e83f 289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
00246528 290 btrfs_put_root(inode_root);
26176e7c 291 if (IS_ERR(inode)) {
6f1c3605
LB
292 ret = PTR_ERR(inode);
293 goto cleanup;
26176e7c
MX
294 }
295
296 /* do a chunk of defrag */
297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
298 memset(&range, 0, sizeof(range));
299 range.len = (u64)-1;
26176e7c 300 range.start = defrag->last_offset;
b66f00da
MX
301
302 sb_start_write(fs_info->sb);
26176e7c
MX
303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 BTRFS_DEFRAG_BATCH);
b66f00da 305 sb_end_write(fs_info->sb);
26176e7c
MX
306 /*
307 * if we filled the whole defrag batch, there
308 * must be more work to do. Queue this defrag
309 * again
310 */
311 if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 defrag->last_offset = range.start;
46e59791 313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
314 } else if (defrag->last_offset && !defrag->cycled) {
315 /*
316 * we didn't fill our defrag batch, but
317 * we didn't start at zero. Make sure we loop
318 * around to the start of the file.
319 */
320 defrag->last_offset = 0;
321 defrag->cycled = 1;
46e59791 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
323 } else {
324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 }
326
327 iput(inode);
328 return 0;
6f1c3605 329cleanup:
6f1c3605
LB
330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 return ret;
26176e7c
MX
332}
333
334/*
335 * run through the list of inodes in the FS that need
336 * defragging
337 */
338int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339{
340 struct inode_defrag *defrag;
341 u64 first_ino = 0;
342 u64 root_objectid = 0;
4cb5300b
CM
343
344 atomic_inc(&fs_info->defrag_running);
67871254 345 while (1) {
dc81cdc5
MX
346 /* Pause the auto defragger. */
347 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 &fs_info->fs_state))
349 break;
350
2ff7e61e 351 if (!__need_auto_defrag(fs_info))
26176e7c 352 break;
4cb5300b
CM
353
354 /* find an inode to defrag */
26176e7c
MX
355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 first_ino);
4cb5300b 357 if (!defrag) {
26176e7c 358 if (root_objectid || first_ino) {
762f2263 359 root_objectid = 0;
4cb5300b
CM
360 first_ino = 0;
361 continue;
362 } else {
363 break;
364 }
365 }
366
4cb5300b 367 first_ino = defrag->ino + 1;
762f2263 368 root_objectid = defrag->root;
4cb5300b 369
26176e7c 370 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 371 }
4cb5300b
CM
372 atomic_dec(&fs_info->defrag_running);
373
374 /*
375 * during unmount, we use the transaction_wait queue to
376 * wait for the defragger to stop
377 */
378 wake_up(&fs_info->transaction_wait);
379 return 0;
380}
39279cc3 381
d352ac68
CM
382/* simple helper to fault in pages and copy. This should go away
383 * and be replaced with calls into generic code.
384 */
ee22f0c4 385static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 386 struct page **prepared_pages,
11c65dcc 387 struct iov_iter *i)
39279cc3 388{
914ee295 389 size_t copied = 0;
d0215f3e 390 size_t total_copied = 0;
11c65dcc 391 int pg = 0;
7073017a 392 int offset = offset_in_page(pos);
39279cc3 393
11c65dcc 394 while (write_bytes > 0) {
39279cc3 395 size_t count = min_t(size_t,
09cbfeaf 396 PAGE_SIZE - offset, write_bytes);
11c65dcc 397 struct page *page = prepared_pages[pg];
914ee295
XZ
398 /*
399 * Copy data from userspace to the current page
914ee295 400 */
914ee295 401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 402
39279cc3
CM
403 /* Flush processor's dcache for this page */
404 flush_dcache_page(page);
31339acd
CM
405
406 /*
407 * if we get a partial write, we can end up with
408 * partially up to date pages. These add
409 * a lot of complexity, so make sure they don't
410 * happen by forcing this copy to be retried.
411 *
412 * The rest of the btrfs_file_write code will fall
413 * back to page at a time copies after we return 0.
414 */
415 if (!PageUptodate(page) && copied < count)
416 copied = 0;
417
11c65dcc
JB
418 iov_iter_advance(i, copied);
419 write_bytes -= copied;
914ee295 420 total_copied += copied;
39279cc3 421
b30ac0fc 422 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 423 if (unlikely(copied == 0))
914ee295 424 break;
11c65dcc 425
09cbfeaf 426 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
427 offset += copied;
428 } else {
429 pg++;
430 offset = 0;
431 }
39279cc3 432 }
914ee295 433 return total_copied;
39279cc3
CM
434}
435
d352ac68
CM
436/*
437 * unlocks pages after btrfs_file_write is done with them
438 */
48a3b636 439static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
440{
441 size_t i;
442 for (i = 0; i < num_pages; i++) {
d352ac68
CM
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
d352ac68 448 */
4a096752 449 ClearPageChecked(pages[i]);
39279cc3 450 unlock_page(pages[i]);
09cbfeaf 451 put_page(pages[i]);
39279cc3
CM
452 }
453}
454
f48bf66b
FM
455static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
456 const u64 start,
457 const u64 len,
458 struct extent_state **cached_state)
459{
460 u64 search_start = start;
461 const u64 end = start + len - 1;
462
463 while (search_start < end) {
464 const u64 search_len = end - search_start + 1;
465 struct extent_map *em;
466 u64 em_len;
467 int ret = 0;
468
39b07b5d 469 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
f48bf66b
FM
470 if (IS_ERR(em))
471 return PTR_ERR(em);
472
473 if (em->block_start != EXTENT_MAP_HOLE)
474 goto next;
475
476 em_len = em->len;
477 if (em->start < search_start)
478 em_len -= search_start - em->start;
479 if (em_len > search_len)
480 em_len = search_len;
481
482 ret = set_extent_bit(&inode->io_tree, search_start,
483 search_start + em_len - 1,
484 EXTENT_DELALLOC_NEW,
485 NULL, cached_state, GFP_NOFS);
486next:
487 search_start = extent_map_end(em);
488 free_extent_map(em);
489 if (ret)
490 return ret;
491 }
492 return 0;
493}
494
d352ac68
CM
495/*
496 * after copy_from_user, pages need to be dirtied and we need to make
497 * sure holes are created between the current EOF and the start of
498 * any next extents (if required).
499 *
500 * this also makes the decision about creating an inline extent vs
501 * doing real data extents, marking pages dirty and delalloc as required.
502 */
088545f6 503int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e
JM
504 size_t num_pages, loff_t pos, size_t write_bytes,
505 struct extent_state **cached)
39279cc3 506{
088545f6 507 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 508 int err = 0;
a52d9a80 509 int i;
db94535d 510 u64 num_bytes;
a52d9a80
CM
511 u64 start_pos;
512 u64 end_of_last_block;
513 u64 end_pos = pos + write_bytes;
088545f6 514 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 515 unsigned int extra_bits = 0;
39279cc3 516
0b246afa 517 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 518 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 519 fs_info->sectorsize);
39279cc3 520
db94535d 521 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 522
7703bdd8
CM
523 /*
524 * The pages may have already been dirty, clear out old accounting so
525 * we can set things up properly
526 */
088545f6 527 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d
OS
528 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
529 0, 0, cached);
7703bdd8 530
088545f6 531 if (!btrfs_is_free_space_inode(inode)) {
e3b8a485 532 if (start_pos >= isize &&
088545f6 533 !(inode->flags & BTRFS_INODE_PREALLOC)) {
e3b8a485
FM
534 /*
535 * There can't be any extents following eof in this case
536 * so just set the delalloc new bit for the range
537 * directly.
538 */
539 extra_bits |= EXTENT_DELALLOC_NEW;
540 } else {
088545f6 541 err = btrfs_find_new_delalloc_bytes(inode, start_pos,
e3b8a485
FM
542 num_bytes, cached);
543 if (err)
544 return err;
545 }
546 }
547
088545f6 548 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 549 extra_bits, cached);
d0215f3e
JB
550 if (err)
551 return err;
9ed74f2d 552
c8b97818
CM
553 for (i = 0; i < num_pages; i++) {
554 struct page *p = pages[i];
555 SetPageUptodate(p);
556 ClearPageChecked(p);
557 set_page_dirty(p);
a52d9a80 558 }
9f570b8d
JB
559
560 /*
561 * we've only changed i_size in ram, and we haven't updated
562 * the disk i_size. There is no need to log the inode
563 * at this time.
564 */
565 if (end_pos > isize)
088545f6 566 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 567 return 0;
39279cc3
CM
568}
569
d352ac68
CM
570/*
571 * this drops all the extents in the cache that intersect the range
572 * [start, end]. Existing extents are split as required.
573 */
dcdbc059 574void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 575 int skip_pinned)
a52d9a80
CM
576{
577 struct extent_map *em;
3b951516
CM
578 struct extent_map *split = NULL;
579 struct extent_map *split2 = NULL;
dcdbc059 580 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 581 u64 len = end - start + 1;
5dc562c5 582 u64 gen;
3b951516
CM
583 int ret;
584 int testend = 1;
5b21f2ed 585 unsigned long flags;
c8b97818 586 int compressed = 0;
09a2a8f9 587 bool modified;
a52d9a80 588
e6dcd2dc 589 WARN_ON(end < start);
3b951516 590 if (end == (u64)-1) {
39b5637f 591 len = (u64)-1;
3b951516
CM
592 testend = 0;
593 }
d397712b 594 while (1) {
7014cdb4
JB
595 int no_splits = 0;
596
09a2a8f9 597 modified = false;
3b951516 598 if (!split)
172ddd60 599 split = alloc_extent_map();
3b951516 600 if (!split2)
172ddd60 601 split2 = alloc_extent_map();
7014cdb4
JB
602 if (!split || !split2)
603 no_splits = 1;
3b951516 604
890871be 605 write_lock(&em_tree->lock);
39b5637f 606 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 607 if (!em) {
890871be 608 write_unlock(&em_tree->lock);
a52d9a80 609 break;
d1310b2e 610 }
5b21f2ed 611 flags = em->flags;
5dc562c5 612 gen = em->generation;
5b21f2ed 613 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 614 if (testend && em->start + em->len >= start + len) {
5b21f2ed 615 free_extent_map(em);
a1ed835e 616 write_unlock(&em_tree->lock);
5b21f2ed
ZY
617 break;
618 }
55ef6899
YZ
619 start = em->start + em->len;
620 if (testend)
5b21f2ed 621 len = start + len - (em->start + em->len);
5b21f2ed 622 free_extent_map(em);
a1ed835e 623 write_unlock(&em_tree->lock);
5b21f2ed
ZY
624 continue;
625 }
c8b97818 626 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 627 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 628 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 629 modified = !list_empty(&em->list);
7014cdb4
JB
630 if (no_splits)
631 goto next;
3b951516 632
ee20a983 633 if (em->start < start) {
3b951516
CM
634 split->start = em->start;
635 split->len = start - em->start;
ee20a983
JB
636
637 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
638 split->orig_start = em->orig_start;
639 split->block_start = em->block_start;
640
641 if (compressed)
642 split->block_len = em->block_len;
643 else
644 split->block_len = split->len;
645 split->orig_block_len = max(split->block_len,
646 em->orig_block_len);
647 split->ram_bytes = em->ram_bytes;
648 } else {
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 split->ram_bytes = split->len;
654 }
655
5dc562c5 656 split->generation = gen;
5b21f2ed 657 split->flags = flags;
261507a0 658 split->compress_type = em->compress_type;
176840b3 659 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
660 free_extent_map(split);
661 split = split2;
662 split2 = NULL;
663 }
ee20a983 664 if (testend && em->start + em->len > start + len) {
3b951516
CM
665 u64 diff = start + len - em->start;
666
667 split->start = start + len;
668 split->len = em->start + em->len - (start + len);
5b21f2ed 669 split->flags = flags;
261507a0 670 split->compress_type = em->compress_type;
5dc562c5 671 split->generation = gen;
ee20a983
JB
672
673 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
674 split->orig_block_len = max(em->block_len,
b4939680 675 em->orig_block_len);
3b951516 676
ee20a983
JB
677 split->ram_bytes = em->ram_bytes;
678 if (compressed) {
679 split->block_len = em->block_len;
680 split->block_start = em->block_start;
681 split->orig_start = em->orig_start;
682 } else {
683 split->block_len = split->len;
684 split->block_start = em->block_start
685 + diff;
686 split->orig_start = em->orig_start;
687 }
c8b97818 688 } else {
ee20a983
JB
689 split->ram_bytes = split->len;
690 split->orig_start = split->start;
691 split->block_len = 0;
692 split->block_start = em->block_start;
693 split->orig_block_len = 0;
c8b97818 694 }
3b951516 695
176840b3
FM
696 if (extent_map_in_tree(em)) {
697 replace_extent_mapping(em_tree, em, split,
698 modified);
699 } else {
700 ret = add_extent_mapping(em_tree, split,
701 modified);
702 ASSERT(ret == 0); /* Logic error */
703 }
3b951516
CM
704 free_extent_map(split);
705 split = NULL;
706 }
7014cdb4 707next:
176840b3
FM
708 if (extent_map_in_tree(em))
709 remove_extent_mapping(em_tree, em);
890871be 710 write_unlock(&em_tree->lock);
d1310b2e 711
a52d9a80
CM
712 /* once for us */
713 free_extent_map(em);
714 /* once for the tree*/
715 free_extent_map(em);
716 }
3b951516
CM
717 if (split)
718 free_extent_map(split);
719 if (split2)
720 free_extent_map(split2);
a52d9a80
CM
721}
722
39279cc3
CM
723/*
724 * this is very complex, but the basic idea is to drop all extents
725 * in the range start - end. hint_block is filled in with a block number
726 * that would be a good hint to the block allocator for this file.
727 *
728 * If an extent intersects the range but is not entirely inside the range
729 * it is either truncated or split. Anything entirely inside the range
730 * is deleted from the tree.
731 */
5dc562c5 732int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
906c448c 733 struct btrfs_root *root, struct btrfs_inode *inode,
5dc562c5 734 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
735 u64 *drop_end, int drop_cache,
736 int replace_extent,
737 u32 extent_item_size,
738 int *key_inserted)
39279cc3 739{
0b246afa 740 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 741 struct extent_buffer *leaf;
920bbbfb 742 struct btrfs_file_extent_item *fi;
82fa113f 743 struct btrfs_ref ref = { 0 };
00f5c795 744 struct btrfs_key key;
920bbbfb 745 struct btrfs_key new_key;
906c448c
NB
746 struct inode *vfs_inode = &inode->vfs_inode;
747 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
748 u64 search_start = start;
749 u64 disk_bytenr = 0;
750 u64 num_bytes = 0;
751 u64 extent_offset = 0;
752 u64 extent_end = 0;
62fe51c1 753 u64 last_end = start;
920bbbfb
YZ
754 int del_nr = 0;
755 int del_slot = 0;
756 int extent_type;
ccd467d6 757 int recow;
00f5c795 758 int ret;
dc7fdde3 759 int modify_tree = -1;
27cdeb70 760 int update_refs;
c3308f84 761 int found = 0;
1acae57b 762 int leafs_visited = 0;
39279cc3 763
a1ed835e 764 if (drop_cache)
906c448c 765 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 766
906c448c 767 if (start >= inode->disk_i_size && !replace_extent)
dc7fdde3
CM
768 modify_tree = 0;
769
92a7cc42 770 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
0b246afa 771 root == fs_info->tree_root);
d397712b 772 while (1) {
ccd467d6 773 recow = 0;
33345d01 774 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 775 search_start, modify_tree);
39279cc3 776 if (ret < 0)
920bbbfb
YZ
777 break;
778 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
779 leaf = path->nodes[0];
780 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 781 if (key.objectid == ino &&
920bbbfb
YZ
782 key.type == BTRFS_EXTENT_DATA_KEY)
783 path->slots[0]--;
39279cc3 784 }
920bbbfb 785 ret = 0;
1acae57b 786 leafs_visited++;
8c2383c3 787next_slot:
5f39d397 788 leaf = path->nodes[0];
920bbbfb
YZ
789 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
790 BUG_ON(del_nr > 0);
791 ret = btrfs_next_leaf(root, path);
792 if (ret < 0)
793 break;
794 if (ret > 0) {
795 ret = 0;
796 break;
8c2383c3 797 }
1acae57b 798 leafs_visited++;
920bbbfb
YZ
799 leaf = path->nodes[0];
800 recow = 1;
801 }
802
803 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
804
805 if (key.objectid > ino)
806 break;
807 if (WARN_ON_ONCE(key.objectid < ino) ||
808 key.type < BTRFS_EXTENT_DATA_KEY) {
809 ASSERT(del_nr == 0);
810 path->slots[0]++;
811 goto next_slot;
812 }
813 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
814 break;
815
816 fi = btrfs_item_ptr(leaf, path->slots[0],
817 struct btrfs_file_extent_item);
818 extent_type = btrfs_file_extent_type(leaf, fi);
819
820 if (extent_type == BTRFS_FILE_EXTENT_REG ||
821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
822 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
823 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
824 extent_offset = btrfs_file_extent_offset(leaf, fi);
825 extent_end = key.offset +
826 btrfs_file_extent_num_bytes(leaf, fi);
827 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
828 extent_end = key.offset +
e41ca589 829 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 830 } else {
aeafbf84
FM
831 /* can't happen */
832 BUG();
39279cc3
CM
833 }
834
fc19c5e7
FM
835 /*
836 * Don't skip extent items representing 0 byte lengths. They
837 * used to be created (bug) if while punching holes we hit
838 * -ENOSPC condition. So if we find one here, just ensure we
839 * delete it, otherwise we would insert a new file extent item
840 * with the same key (offset) as that 0 bytes length file
841 * extent item in the call to setup_items_for_insert() later
842 * in this function.
843 */
62fe51c1
JB
844 if (extent_end == key.offset && extent_end >= search_start) {
845 last_end = extent_end;
fc19c5e7 846 goto delete_extent_item;
62fe51c1 847 }
fc19c5e7 848
920bbbfb
YZ
849 if (extent_end <= search_start) {
850 path->slots[0]++;
8c2383c3 851 goto next_slot;
39279cc3
CM
852 }
853
c3308f84 854 found = 1;
920bbbfb 855 search_start = max(key.offset, start);
dc7fdde3
CM
856 if (recow || !modify_tree) {
857 modify_tree = -1;
b3b4aa74 858 btrfs_release_path(path);
920bbbfb 859 continue;
39279cc3 860 }
6643558d 861
920bbbfb
YZ
862 /*
863 * | - range to drop - |
864 * | -------- extent -------- |
865 */
866 if (start > key.offset && end < extent_end) {
867 BUG_ON(del_nr > 0);
00fdf13a 868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 869 ret = -EOPNOTSUPP;
00fdf13a
LB
870 break;
871 }
920bbbfb
YZ
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = start;
875 ret = btrfs_duplicate_item(trans, root, path,
876 &new_key);
877 if (ret == -EAGAIN) {
b3b4aa74 878 btrfs_release_path(path);
920bbbfb 879 continue;
6643558d 880 }
920bbbfb
YZ
881 if (ret < 0)
882 break;
883
884 leaf = path->nodes[0];
885 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
886 struct btrfs_file_extent_item);
887 btrfs_set_file_extent_num_bytes(leaf, fi,
888 start - key.offset);
889
890 fi = btrfs_item_ptr(leaf, path->slots[0],
891 struct btrfs_file_extent_item);
892
893 extent_offset += start - key.offset;
894 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 extent_end - start);
897 btrfs_mark_buffer_dirty(leaf);
898
5dc562c5 899 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
900 btrfs_init_generic_ref(&ref,
901 BTRFS_ADD_DELAYED_REF,
902 disk_bytenr, num_bytes, 0);
903 btrfs_init_data_ref(&ref,
920bbbfb
YZ
904 root->root_key.objectid,
905 new_key.objectid,
b06c4bf5 906 start - extent_offset);
82fa113f 907 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 908 BUG_ON(ret); /* -ENOMEM */
771ed689 909 }
920bbbfb 910 key.offset = start;
6643558d 911 }
62fe51c1
JB
912 /*
913 * From here on out we will have actually dropped something, so
914 * last_end can be updated.
915 */
916 last_end = extent_end;
917
920bbbfb
YZ
918 /*
919 * | ---- range to drop ----- |
920 * | -------- extent -------- |
921 */
922 if (start <= key.offset && end < extent_end) {
00fdf13a 923 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 924 ret = -EOPNOTSUPP;
00fdf13a
LB
925 break;
926 }
6643558d 927
920bbbfb
YZ
928 memcpy(&new_key, &key, sizeof(new_key));
929 new_key.offset = end;
0b246afa 930 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 931
920bbbfb
YZ
932 extent_offset += end - key.offset;
933 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
934 btrfs_set_file_extent_num_bytes(leaf, fi,
935 extent_end - end);
936 btrfs_mark_buffer_dirty(leaf);
2671485d 937 if (update_refs && disk_bytenr > 0)
906c448c 938 inode_sub_bytes(vfs_inode, end - key.offset);
920bbbfb 939 break;
39279cc3 940 }
771ed689 941
920bbbfb
YZ
942 search_start = extent_end;
943 /*
944 * | ---- range to drop ----- |
945 * | -------- extent -------- |
946 */
947 if (start > key.offset && end >= extent_end) {
948 BUG_ON(del_nr > 0);
00fdf13a 949 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 950 ret = -EOPNOTSUPP;
00fdf13a
LB
951 break;
952 }
8c2383c3 953
920bbbfb
YZ
954 btrfs_set_file_extent_num_bytes(leaf, fi,
955 start - key.offset);
956 btrfs_mark_buffer_dirty(leaf);
2671485d 957 if (update_refs && disk_bytenr > 0)
906c448c 958 inode_sub_bytes(vfs_inode, extent_end - start);
920bbbfb
YZ
959 if (end == extent_end)
960 break;
c8b97818 961
920bbbfb
YZ
962 path->slots[0]++;
963 goto next_slot;
31840ae1
ZY
964 }
965
920bbbfb
YZ
966 /*
967 * | ---- range to drop ----- |
968 * | ------ extent ------ |
969 */
970 if (start <= key.offset && end >= extent_end) {
fc19c5e7 971delete_extent_item:
920bbbfb
YZ
972 if (del_nr == 0) {
973 del_slot = path->slots[0];
974 del_nr = 1;
975 } else {
976 BUG_ON(del_slot + del_nr != path->slots[0]);
977 del_nr++;
978 }
31840ae1 979
5dc562c5
JB
980 if (update_refs &&
981 extent_type == BTRFS_FILE_EXTENT_INLINE) {
906c448c 982 inode_sub_bytes(vfs_inode,
920bbbfb
YZ
983 extent_end - key.offset);
984 extent_end = ALIGN(extent_end,
0b246afa 985 fs_info->sectorsize);
5dc562c5 986 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
987 btrfs_init_generic_ref(&ref,
988 BTRFS_DROP_DELAYED_REF,
989 disk_bytenr, num_bytes, 0);
990 btrfs_init_data_ref(&ref,
920bbbfb 991 root->root_key.objectid,
ffd4bb2a
QW
992 key.objectid,
993 key.offset - extent_offset);
994 ret = btrfs_free_extent(trans, &ref);
79787eaa 995 BUG_ON(ret); /* -ENOMEM */
906c448c 996 inode_sub_bytes(vfs_inode,
920bbbfb 997 extent_end - key.offset);
31840ae1 998 }
31840ae1 999
920bbbfb
YZ
1000 if (end == extent_end)
1001 break;
1002
1003 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1004 path->slots[0]++;
1005 goto next_slot;
1006 }
1007
1008 ret = btrfs_del_items(trans, root, path, del_slot,
1009 del_nr);
79787eaa 1010 if (ret) {
66642832 1011 btrfs_abort_transaction(trans, ret);
5dc562c5 1012 break;
79787eaa 1013 }
920bbbfb
YZ
1014
1015 del_nr = 0;
1016 del_slot = 0;
1017
b3b4aa74 1018 btrfs_release_path(path);
920bbbfb 1019 continue;
39279cc3 1020 }
920bbbfb 1021
290342f6 1022 BUG();
39279cc3 1023 }
920bbbfb 1024
79787eaa 1025 if (!ret && del_nr > 0) {
1acae57b
FDBM
1026 /*
1027 * Set path->slots[0] to first slot, so that after the delete
1028 * if items are move off from our leaf to its immediate left or
1029 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1030 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1031 */
1032 path->slots[0] = del_slot;
920bbbfb 1033 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1034 if (ret)
66642832 1035 btrfs_abort_transaction(trans, ret);
d5f37527 1036 }
1acae57b 1037
d5f37527
FDBM
1038 leaf = path->nodes[0];
1039 /*
1040 * If btrfs_del_items() was called, it might have deleted a leaf, in
1041 * which case it unlocked our path, so check path->locks[0] matches a
1042 * write lock.
1043 */
1044 if (!ret && replace_extent && leafs_visited == 1 &&
1045 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1046 path->locks[0] == BTRFS_WRITE_LOCK) &&
e902baac 1047 btrfs_leaf_free_space(leaf) >=
d5f37527
FDBM
1048 sizeof(struct btrfs_item) + extent_item_size) {
1049
1050 key.objectid = ino;
1051 key.type = BTRFS_EXTENT_DATA_KEY;
1052 key.offset = start;
1053 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1054 struct btrfs_key slot_key;
1055
1056 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1057 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1058 path->slots[0]++;
1acae57b 1059 }
d5f37527
FDBM
1060 setup_items_for_insert(root, path, &key,
1061 &extent_item_size,
1062 extent_item_size,
1063 sizeof(struct btrfs_item) +
1064 extent_item_size, 1);
1065 *key_inserted = 1;
6643558d 1066 }
920bbbfb 1067
1acae57b
FDBM
1068 if (!replace_extent || !(*key_inserted))
1069 btrfs_release_path(path);
2aaa6655 1070 if (drop_end)
62fe51c1 1071 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1072 return ret;
1073}
1074
1075int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1076 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1077 u64 end, int drop_cache)
5dc562c5
JB
1078{
1079 struct btrfs_path *path;
1080 int ret;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return -ENOMEM;
906c448c
NB
1085 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1086 end, NULL, drop_cache, 0, 0, NULL);
920bbbfb 1087 btrfs_free_path(path);
39279cc3
CM
1088 return ret;
1089}
1090
d899e052 1091static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1092 u64 objectid, u64 bytenr, u64 orig_offset,
1093 u64 *start, u64 *end)
d899e052
YZ
1094{
1095 struct btrfs_file_extent_item *fi;
1096 struct btrfs_key key;
1097 u64 extent_end;
1098
1099 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1100 return 0;
1101
1102 btrfs_item_key_to_cpu(leaf, &key, slot);
1103 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1104 return 0;
1105
1106 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1107 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1108 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1109 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1110 btrfs_file_extent_compression(leaf, fi) ||
1111 btrfs_file_extent_encryption(leaf, fi) ||
1112 btrfs_file_extent_other_encoding(leaf, fi))
1113 return 0;
1114
1115 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1116 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1117 return 0;
1118
1119 *start = key.offset;
1120 *end = extent_end;
1121 return 1;
1122}
1123
1124/*
1125 * Mark extent in the range start - end as written.
1126 *
1127 * This changes extent type from 'pre-allocated' to 'regular'. If only
1128 * part of extent is marked as written, the extent will be split into
1129 * two or three.
1130 */
1131int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1132 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1133{
3ffbd68c 1134 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1135 struct btrfs_root *root = inode->root;
d899e052
YZ
1136 struct extent_buffer *leaf;
1137 struct btrfs_path *path;
1138 struct btrfs_file_extent_item *fi;
82fa113f 1139 struct btrfs_ref ref = { 0 };
d899e052 1140 struct btrfs_key key;
920bbbfb 1141 struct btrfs_key new_key;
d899e052
YZ
1142 u64 bytenr;
1143 u64 num_bytes;
1144 u64 extent_end;
5d4f98a2 1145 u64 orig_offset;
d899e052
YZ
1146 u64 other_start;
1147 u64 other_end;
920bbbfb
YZ
1148 u64 split;
1149 int del_nr = 0;
1150 int del_slot = 0;
6c7d54ac 1151 int recow;
d899e052 1152 int ret;
7a6d7067 1153 u64 ino = btrfs_ino(inode);
d899e052 1154
d899e052 1155 path = btrfs_alloc_path();
d8926bb3
MF
1156 if (!path)
1157 return -ENOMEM;
d899e052 1158again:
6c7d54ac 1159 recow = 0;
920bbbfb 1160 split = start;
33345d01 1161 key.objectid = ino;
d899e052 1162 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1163 key.offset = split;
d899e052
YZ
1164
1165 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1166 if (ret < 0)
1167 goto out;
d899e052
YZ
1168 if (ret > 0 && path->slots[0] > 0)
1169 path->slots[0]--;
1170
1171 leaf = path->nodes[0];
1172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1173 if (key.objectid != ino ||
1174 key.type != BTRFS_EXTENT_DATA_KEY) {
1175 ret = -EINVAL;
1176 btrfs_abort_transaction(trans, ret);
1177 goto out;
1178 }
d899e052
YZ
1179 fi = btrfs_item_ptr(leaf, path->slots[0],
1180 struct btrfs_file_extent_item);
9c8e63db
JB
1181 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1182 ret = -EINVAL;
1183 btrfs_abort_transaction(trans, ret);
1184 goto out;
1185 }
d899e052 1186 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1187 if (key.offset > start || extent_end < end) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
d899e052
YZ
1192
1193 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1194 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1195 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1196 memcpy(&new_key, &key, sizeof(new_key));
1197
1198 if (start == key.offset && end < extent_end) {
1199 other_start = 0;
1200 other_end = start;
1201 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1202 ino, bytenr, orig_offset,
6c7d54ac
YZ
1203 &other_start, &other_end)) {
1204 new_key.offset = end;
0b246afa 1205 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1206 fi = btrfs_item_ptr(leaf, path->slots[0],
1207 struct btrfs_file_extent_item);
224ecce5
JB
1208 btrfs_set_file_extent_generation(leaf, fi,
1209 trans->transid);
6c7d54ac
YZ
1210 btrfs_set_file_extent_num_bytes(leaf, fi,
1211 extent_end - end);
1212 btrfs_set_file_extent_offset(leaf, fi,
1213 end - orig_offset);
1214 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1215 struct btrfs_file_extent_item);
224ecce5
JB
1216 btrfs_set_file_extent_generation(leaf, fi,
1217 trans->transid);
6c7d54ac
YZ
1218 btrfs_set_file_extent_num_bytes(leaf, fi,
1219 end - other_start);
1220 btrfs_mark_buffer_dirty(leaf);
1221 goto out;
1222 }
1223 }
1224
1225 if (start > key.offset && end == extent_end) {
1226 other_start = end;
1227 other_end = 0;
1228 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1229 ino, bytenr, orig_offset,
6c7d54ac
YZ
1230 &other_start, &other_end)) {
1231 fi = btrfs_item_ptr(leaf, path->slots[0],
1232 struct btrfs_file_extent_item);
1233 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 start - key.offset);
224ecce5
JB
1235 btrfs_set_file_extent_generation(leaf, fi,
1236 trans->transid);
6c7d54ac
YZ
1237 path->slots[0]++;
1238 new_key.offset = start;
0b246afa 1239 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1240
1241 fi = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_file_extent_item);
224ecce5
JB
1243 btrfs_set_file_extent_generation(leaf, fi,
1244 trans->transid);
6c7d54ac
YZ
1245 btrfs_set_file_extent_num_bytes(leaf, fi,
1246 other_end - start);
1247 btrfs_set_file_extent_offset(leaf, fi,
1248 start - orig_offset);
1249 btrfs_mark_buffer_dirty(leaf);
1250 goto out;
1251 }
1252 }
d899e052 1253
920bbbfb
YZ
1254 while (start > key.offset || end < extent_end) {
1255 if (key.offset == start)
1256 split = end;
1257
920bbbfb
YZ
1258 new_key.offset = split;
1259 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1260 if (ret == -EAGAIN) {
b3b4aa74 1261 btrfs_release_path(path);
920bbbfb 1262 goto again;
d899e052 1263 }
79787eaa 1264 if (ret < 0) {
66642832 1265 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1266 goto out;
1267 }
d899e052 1268
920bbbfb
YZ
1269 leaf = path->nodes[0];
1270 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1271 struct btrfs_file_extent_item);
224ecce5 1272 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1273 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1274 split - key.offset);
1275
1276 fi = btrfs_item_ptr(leaf, path->slots[0],
1277 struct btrfs_file_extent_item);
1278
224ecce5 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1280 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1281 btrfs_set_file_extent_num_bytes(leaf, fi,
1282 extent_end - split);
d899e052
YZ
1283 btrfs_mark_buffer_dirty(leaf);
1284
82fa113f
QW
1285 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1286 num_bytes, 0);
1287 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1288 orig_offset);
1289 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1290 if (ret) {
1291 btrfs_abort_transaction(trans, ret);
1292 goto out;
1293 }
d899e052 1294
920bbbfb
YZ
1295 if (split == start) {
1296 key.offset = start;
1297 } else {
9c8e63db
JB
1298 if (start != key.offset) {
1299 ret = -EINVAL;
1300 btrfs_abort_transaction(trans, ret);
1301 goto out;
1302 }
d899e052 1303 path->slots[0]--;
920bbbfb 1304 extent_end = end;
d899e052 1305 }
6c7d54ac 1306 recow = 1;
d899e052
YZ
1307 }
1308
920bbbfb
YZ
1309 other_start = end;
1310 other_end = 0;
ffd4bb2a
QW
1311 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1312 num_bytes, 0);
1313 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
6c7d54ac 1314 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1315 ino, bytenr, orig_offset,
6c7d54ac
YZ
1316 &other_start, &other_end)) {
1317 if (recow) {
b3b4aa74 1318 btrfs_release_path(path);
6c7d54ac
YZ
1319 goto again;
1320 }
920bbbfb
YZ
1321 extent_end = other_end;
1322 del_slot = path->slots[0] + 1;
1323 del_nr++;
ffd4bb2a 1324 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1325 if (ret) {
1326 btrfs_abort_transaction(trans, ret);
1327 goto out;
1328 }
d899e052 1329 }
920bbbfb
YZ
1330 other_start = 0;
1331 other_end = start;
6c7d54ac 1332 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1333 ino, bytenr, orig_offset,
6c7d54ac
YZ
1334 &other_start, &other_end)) {
1335 if (recow) {
b3b4aa74 1336 btrfs_release_path(path);
6c7d54ac
YZ
1337 goto again;
1338 }
920bbbfb
YZ
1339 key.offset = other_start;
1340 del_slot = path->slots[0];
1341 del_nr++;
ffd4bb2a 1342 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1343 if (ret) {
1344 btrfs_abort_transaction(trans, ret);
1345 goto out;
1346 }
920bbbfb
YZ
1347 }
1348 if (del_nr == 0) {
3f6fae95
SL
1349 fi = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_file_extent_item);
920bbbfb
YZ
1351 btrfs_set_file_extent_type(leaf, fi,
1352 BTRFS_FILE_EXTENT_REG);
224ecce5 1353 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1354 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1355 } else {
3f6fae95
SL
1356 fi = btrfs_item_ptr(leaf, del_slot - 1,
1357 struct btrfs_file_extent_item);
6c7d54ac
YZ
1358 btrfs_set_file_extent_type(leaf, fi,
1359 BTRFS_FILE_EXTENT_REG);
224ecce5 1360 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1361 btrfs_set_file_extent_num_bytes(leaf, fi,
1362 extent_end - key.offset);
1363 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1364
6c7d54ac 1365 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1366 if (ret < 0) {
66642832 1367 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1368 goto out;
1369 }
6c7d54ac 1370 }
920bbbfb 1371out:
d899e052
YZ
1372 btrfs_free_path(path);
1373 return 0;
1374}
1375
b1bf862e
CM
1376/*
1377 * on error we return an unlocked page and the error value
1378 * on success we return a locked page and 0
1379 */
bb1591b4
CM
1380static int prepare_uptodate_page(struct inode *inode,
1381 struct page *page, u64 pos,
b6316429 1382 bool force_uptodate)
b1bf862e
CM
1383{
1384 int ret = 0;
1385
09cbfeaf 1386 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1387 !PageUptodate(page)) {
b1bf862e
CM
1388 ret = btrfs_readpage(NULL, page);
1389 if (ret)
1390 return ret;
1391 lock_page(page);
1392 if (!PageUptodate(page)) {
1393 unlock_page(page);
1394 return -EIO;
1395 }
bb1591b4
CM
1396 if (page->mapping != inode->i_mapping) {
1397 unlock_page(page);
1398 return -EAGAIN;
1399 }
b1bf862e
CM
1400 }
1401 return 0;
1402}
1403
39279cc3 1404/*
376cc685 1405 * this just gets pages into the page cache and locks them down.
39279cc3 1406 */
b37392ea
MX
1407static noinline int prepare_pages(struct inode *inode, struct page **pages,
1408 size_t num_pages, loff_t pos,
1409 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1410{
1411 int i;
09cbfeaf 1412 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1413 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1414 int err = 0;
376cc685 1415 int faili;
8c2383c3 1416
39279cc3 1417 for (i = 0; i < num_pages; i++) {
bb1591b4 1418again:
a94733d0 1419 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1420 mask | __GFP_WRITE);
39279cc3 1421 if (!pages[i]) {
b1bf862e
CM
1422 faili = i - 1;
1423 err = -ENOMEM;
1424 goto fail;
1425 }
1426
1427 if (i == 0)
bb1591b4 1428 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1429 force_uptodate);
bb1591b4
CM
1430 if (!err && i == num_pages - 1)
1431 err = prepare_uptodate_page(inode, pages[i],
b6316429 1432 pos + write_bytes, false);
b1bf862e 1433 if (err) {
09cbfeaf 1434 put_page(pages[i]);
bb1591b4
CM
1435 if (err == -EAGAIN) {
1436 err = 0;
1437 goto again;
1438 }
b1bf862e
CM
1439 faili = i - 1;
1440 goto fail;
39279cc3 1441 }
ccd467d6 1442 wait_on_page_writeback(pages[i]);
39279cc3 1443 }
376cc685
MX
1444
1445 return 0;
1446fail:
1447 while (faili >= 0) {
1448 unlock_page(pages[faili]);
09cbfeaf 1449 put_page(pages[faili]);
376cc685
MX
1450 faili--;
1451 }
1452 return err;
1453
1454}
1455
1456/*
1457 * This function locks the extent and properly waits for data=ordered extents
1458 * to finish before allowing the pages to be modified if need.
1459 *
1460 * The return value:
1461 * 1 - the extent is locked
1462 * 0 - the extent is not locked, and everything is OK
1463 * -EAGAIN - need re-prepare the pages
1464 * the other < 0 number - Something wrong happens
1465 */
1466static noinline int
2cff578c 1467lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1468 size_t num_pages, loff_t pos,
2e78c927 1469 size_t write_bytes,
376cc685
MX
1470 u64 *lockstart, u64 *lockend,
1471 struct extent_state **cached_state)
1472{
3ffbd68c 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1474 u64 start_pos;
1475 u64 last_pos;
1476 int i;
1477 int ret = 0;
1478
0b246afa 1479 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 1480 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 1481
e3b8a485 1482 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1483 struct btrfs_ordered_extent *ordered;
a7e3b975 1484
2cff578c
NB
1485 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1486 cached_state);
b88935bf
MX
1487 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1488 last_pos - start_pos + 1);
e6dcd2dc 1489 if (ordered &&
bffe633e 1490 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1491 ordered->file_offset <= last_pos) {
2cff578c 1492 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1493 last_pos, cached_state);
e6dcd2dc
CM
1494 for (i = 0; i < num_pages; i++) {
1495 unlock_page(pages[i]);
09cbfeaf 1496 put_page(pages[i]);
e6dcd2dc 1497 }
2cff578c
NB
1498 btrfs_start_ordered_extent(&inode->vfs_inode,
1499 ordered, 1);
b88935bf
MX
1500 btrfs_put_ordered_extent(ordered);
1501 return -EAGAIN;
e6dcd2dc
CM
1502 }
1503 if (ordered)
1504 btrfs_put_ordered_extent(ordered);
7703bdd8 1505
376cc685
MX
1506 *lockstart = start_pos;
1507 *lockend = last_pos;
1508 ret = 1;
0762704b 1509 }
376cc685 1510
7703bdd8
CM
1511 /*
1512 * It's possible the pages are dirty right now, but we don't want
1513 * to clean them yet because copy_from_user may catch a page fault
1514 * and we might have to fall back to one page at a time. If that
1515 * happens, we'll unlock these pages and we'd have a window where
1516 * reclaim could sneak in and drop the once-dirty page on the floor
1517 * without writing it.
1518 *
1519 * We have the pages locked and the extent range locked, so there's
1520 * no way someone can start IO on any dirty pages in this range.
1521 *
1522 * We'll call btrfs_dirty_pages() later on, and that will flip around
1523 * delalloc bits and dirty the pages as required.
1524 */
e6dcd2dc 1525 for (i = 0; i < num_pages; i++) {
e6dcd2dc
CM
1526 set_page_extent_mapped(pages[i]);
1527 WARN_ON(!PageLocked(pages[i]));
1528 }
b1bf862e 1529
376cc685 1530 return ret;
39279cc3
CM
1531}
1532
38d37aa9
QW
1533static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1534 size_t *write_bytes, bool nowait)
7ee9e440 1535{
3ffbd68c 1536 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1537 struct btrfs_root *root = inode->root;
7ee9e440
JB
1538 u64 lockstart, lockend;
1539 u64 num_bytes;
1540 int ret;
1541
38d37aa9
QW
1542 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1543 return 0;
1544
5dbb75ed 1545 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1546 return -EAGAIN;
8257b2dc 1547
0b246afa 1548 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1549 lockend = round_up(pos + *write_bytes,
0b246afa 1550 fs_info->sectorsize) - 1;
5dbb75ed 1551 num_bytes = lockend - lockstart + 1;
7ee9e440 1552
5dbb75ed
FM
1553 if (nowait) {
1554 struct btrfs_ordered_extent *ordered;
1555
1556 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1557 return -EAGAIN;
1558
1559 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1560 num_bytes);
1561 if (ordered) {
1562 btrfs_put_ordered_extent(ordered);
1563 ret = -EAGAIN;
1564 goto out_unlock;
1565 }
1566 } else {
1567 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1568 lockend, NULL);
1569 }
7ee9e440 1570
85b7ab67 1571 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
a84d5d42 1572 NULL, NULL, NULL, false);
7ee9e440
JB
1573 if (ret <= 0) {
1574 ret = 0;
5dbb75ed
FM
1575 if (!nowait)
1576 btrfs_drew_write_unlock(&root->snapshot_lock);
7ee9e440 1577 } else {
c933956d
MX
1578 *write_bytes = min_t(size_t, *write_bytes ,
1579 num_bytes - pos + lockstart);
7ee9e440 1580 }
5dbb75ed 1581out_unlock:
85b7ab67 1582 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1583
1584 return ret;
1585}
1586
38d37aa9
QW
1587static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1588 size_t *write_bytes)
1589{
1590 return check_can_nocow(inode, pos, write_bytes, true);
1591}
1592
1593/*
1594 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1595 *
1596 * @pos: File offset
1597 * @write_bytes: The length to write, will be updated to the nocow writeable
1598 * range
1599 *
1600 * This function will flush ordered extents in the range to ensure proper
1601 * nocow checks.
1602 *
1603 * Return:
1604 * >0 and update @write_bytes if we can do nocow write
1605 * 0 if we can't do nocow write
1606 * -EAGAIN if we can't get the needed lock or there are ordered extents
1607 * for * (nowait == true) case
1608 * <0 if other error happened
1609 *
1610 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1611 */
1612int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1613 size_t *write_bytes)
1614{
1615 return check_can_nocow(inode, pos, write_bytes, false);
1616}
1617
1618void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1619{
1620 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1621}
1622
e4af400a
GR
1623static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1624 struct iov_iter *i)
4b46fce2 1625{
e4af400a
GR
1626 struct file *file = iocb->ki_filp;
1627 loff_t pos = iocb->ki_pos;
496ad9aa 1628 struct inode *inode = file_inode(file);
0b246afa 1629 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1630 struct page **pages = NULL;
364ecf36 1631 struct extent_changeset *data_reserved = NULL;
7ee9e440 1632 u64 release_bytes = 0;
376cc685
MX
1633 u64 lockstart;
1634 u64 lockend;
d0215f3e
JB
1635 size_t num_written = 0;
1636 int nrptrs;
c9149235 1637 int ret = 0;
7ee9e440 1638 bool only_release_metadata = false;
b6316429 1639 bool force_page_uptodate = false;
4b46fce2 1640
09cbfeaf
KS
1641 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1642 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1643 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1644 nrptrs = max(nrptrs, 8);
31e818fe 1645 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1646 if (!pages)
1647 return -ENOMEM;
ab93dbec 1648
d0215f3e 1649 while (iov_iter_count(i) > 0) {
c67d970f 1650 struct extent_state *cached_state = NULL;
7073017a 1651 size_t offset = offset_in_page(pos);
2e78c927 1652 size_t sector_offset;
d0215f3e 1653 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1654 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1655 offset);
ed6078f7 1656 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1657 PAGE_SIZE);
7ee9e440 1658 size_t reserve_bytes;
d0215f3e
JB
1659 size_t dirty_pages;
1660 size_t copied;
2e78c927
CR
1661 size_t dirty_sectors;
1662 size_t num_sectors;
79f015f2 1663 int extents_locked;
39279cc3 1664
8c2383c3 1665 WARN_ON(num_pages > nrptrs);
1832a6d5 1666
914ee295
XZ
1667 /*
1668 * Fault pages before locking them in prepare_pages
1669 * to avoid recursive lock
1670 */
d0215f3e 1671 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1672 ret = -EFAULT;
d0215f3e 1673 break;
914ee295
XZ
1674 }
1675
a0e248bb 1676 only_release_metadata = false;
da17066c 1677 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1678 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1679 fs_info->sectorsize);
d9d8b2a5 1680
364ecf36 1681 extent_changeset_release(data_reserved);
36ea6f3e
NB
1682 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1683 &data_reserved, pos,
364ecf36 1684 write_bytes);
c6887cd1 1685 if (ret < 0) {
38d37aa9
QW
1686 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1687 &write_bytes) > 0) {
c6887cd1
JB
1688 /*
1689 * For nodata cow case, no need to reserve
1690 * data space.
1691 */
1692 only_release_metadata = true;
1693 /*
1694 * our prealloc extent may be smaller than
1695 * write_bytes, so scale down.
1696 */
1697 num_pages = DIV_ROUND_UP(write_bytes + offset,
1698 PAGE_SIZE);
1699 reserve_bytes = round_up(write_bytes +
1700 sector_offset,
da17066c 1701 fs_info->sectorsize);
c6887cd1
JB
1702 } else {
1703 break;
1704 }
1705 }
1832a6d5 1706
8b62f87b 1707 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1708 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1709 reserve_bytes);
7ee9e440
JB
1710 if (ret) {
1711 if (!only_release_metadata)
25ce28ca 1712 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1713 data_reserved, pos,
1714 write_bytes);
8257b2dc 1715 else
38d37aa9 1716 btrfs_check_nocow_unlock(BTRFS_I(inode));
7ee9e440
JB
1717 break;
1718 }
1719
1720 release_bytes = reserve_bytes;
376cc685 1721again:
4a64001f
JB
1722 /*
1723 * This is going to setup the pages array with the number of
1724 * pages we want, so we don't really need to worry about the
1725 * contents of pages from loop to loop
1726 */
b37392ea
MX
1727 ret = prepare_pages(inode, pages, num_pages,
1728 pos, write_bytes,
b6316429 1729 force_page_uptodate);
8b62f87b
JB
1730 if (ret) {
1731 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1732 reserve_bytes);
d0215f3e 1733 break;
8b62f87b 1734 }
39279cc3 1735
79f015f2
GR
1736 extents_locked = lock_and_cleanup_extent_if_need(
1737 BTRFS_I(inode), pages,
2cff578c
NB
1738 num_pages, pos, write_bytes, &lockstart,
1739 &lockend, &cached_state);
79f015f2
GR
1740 if (extents_locked < 0) {
1741 if (extents_locked == -EAGAIN)
376cc685 1742 goto again;
8b62f87b 1743 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1744 reserve_bytes);
79f015f2 1745 ret = extents_locked;
376cc685 1746 break;
376cc685
MX
1747 }
1748
ee22f0c4 1749 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1750
0b246afa 1751 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1752 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1753 fs_info->sectorsize);
1754 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1755
b1bf862e
CM
1756 /*
1757 * if we have trouble faulting in the pages, fall
1758 * back to one page at a time
1759 */
1760 if (copied < write_bytes)
1761 nrptrs = 1;
1762
b6316429
JB
1763 if (copied == 0) {
1764 force_page_uptodate = true;
56244ef1 1765 dirty_sectors = 0;
b1bf862e 1766 dirty_pages = 0;
b6316429
JB
1767 } else {
1768 force_page_uptodate = false;
ed6078f7 1769 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1770 PAGE_SIZE);
b6316429 1771 }
914ee295 1772
2e78c927 1773 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1774 /* release everything except the sectors we dirtied */
1775 release_bytes -= dirty_sectors <<
0b246afa 1776 fs_info->sb->s_blocksize_bits;
485290a7 1777 if (only_release_metadata) {
691fa059 1778 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1779 release_bytes, true);
485290a7
QW
1780 } else {
1781 u64 __pos;
1782
da17066c 1783 __pos = round_down(pos,
0b246afa 1784 fs_info->sectorsize) +
09cbfeaf 1785 (dirty_pages << PAGE_SHIFT);
86d52921 1786 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1787 data_reserved, __pos,
43b18595 1788 release_bytes, true);
485290a7 1789 }
914ee295
XZ
1790 }
1791
2e78c927 1792 release_bytes = round_up(copied + sector_offset,
0b246afa 1793 fs_info->sectorsize);
376cc685
MX
1794
1795 if (copied > 0)
088545f6
NB
1796 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1797 dirty_pages, pos, copied,
1798 &cached_state);
c67d970f
FM
1799
1800 /*
1801 * If we have not locked the extent range, because the range's
1802 * start offset is >= i_size, we might still have a non-NULL
1803 * cached extent state, acquired while marking the extent range
1804 * as delalloc through btrfs_dirty_pages(). Therefore free any
1805 * possible cached extent state to avoid a memory leak.
1806 */
79f015f2 1807 if (extents_locked)
376cc685 1808 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1809 lockstart, lockend, &cached_state);
c67d970f
FM
1810 else
1811 free_extent_state(cached_state);
1812
8702ba93 1813 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683
MX
1814 if (ret) {
1815 btrfs_drop_pages(pages, num_pages);
376cc685 1816 break;
f1de9683 1817 }
39279cc3 1818
376cc685 1819 release_bytes = 0;
8257b2dc 1820 if (only_release_metadata)
38d37aa9 1821 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1822
7ee9e440 1823 if (only_release_metadata && copied > 0) {
da17066c 1824 lockstart = round_down(pos,
0b246afa 1825 fs_info->sectorsize);
da17066c 1826 lockend = round_up(pos + copied,
0b246afa 1827 fs_info->sectorsize) - 1;
7ee9e440
JB
1828
1829 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1830 lockend, EXTENT_NORESERVE, NULL,
1831 NULL, GFP_NOFS);
7ee9e440
JB
1832 }
1833
f1de9683
MX
1834 btrfs_drop_pages(pages, num_pages);
1835
d0215f3e
JB
1836 cond_resched();
1837
d0e1d66b 1838 balance_dirty_pages_ratelimited(inode->i_mapping);
cb843a6f 1839
914ee295
XZ
1840 pos += copied;
1841 num_written += copied;
d0215f3e 1842 }
39279cc3 1843
d0215f3e
JB
1844 kfree(pages);
1845
7ee9e440 1846 if (release_bytes) {
8257b2dc 1847 if (only_release_metadata) {
38d37aa9 1848 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1849 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1850 release_bytes, true);
8257b2dc 1851 } else {
86d52921
NB
1852 btrfs_delalloc_release_space(BTRFS_I(inode),
1853 data_reserved,
bc42bda2 1854 round_down(pos, fs_info->sectorsize),
43b18595 1855 release_bytes, true);
8257b2dc 1856 }
7ee9e440
JB
1857 }
1858
364ecf36 1859 extent_changeset_free(data_reserved);
d0215f3e
JB
1860 return num_written ? num_written : ret;
1861}
1862
f4c48b44 1863static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1864{
1865 struct file *file = iocb->ki_filp;
728404da 1866 struct inode *inode = file_inode(file);
f4c48b44
DS
1867 loff_t pos;
1868 ssize_t written;
d0215f3e
JB
1869 ssize_t written_buffered;
1870 loff_t endbyte;
1871 int err;
1872
f85781fb 1873 written = btrfs_direct_IO(iocb, from);
d0215f3e 1874
0c949334 1875 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1876 return written;
1877
e4af400a
GR
1878 pos = iocb->ki_pos;
1879 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1880 if (written_buffered < 0) {
1881 err = written_buffered;
1882 goto out;
39279cc3 1883 }
075bdbdb
FM
1884 /*
1885 * Ensure all data is persisted. We want the next direct IO read to be
1886 * able to read what was just written.
1887 */
d0215f3e 1888 endbyte = pos + written_buffered - 1;
728404da 1889 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1890 if (err)
1891 goto out;
728404da 1892 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1893 if (err)
1894 goto out;
1895 written += written_buffered;
867c4f93 1896 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1897 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1898 endbyte >> PAGE_SHIFT);
39279cc3 1899out:
d0215f3e
JB
1900 return written ? written : err;
1901}
5b92ee72 1902
6c760c07
JB
1903static void update_time_for_write(struct inode *inode)
1904{
95582b00 1905 struct timespec64 now;
6c760c07
JB
1906
1907 if (IS_NOCMTIME(inode))
1908 return;
1909
c2050a45 1910 now = current_time(inode);
95582b00 1911 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1912 inode->i_mtime = now;
1913
95582b00 1914 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1915 inode->i_ctime = now;
1916
1917 if (IS_I_VERSION(inode))
1918 inode_inc_iversion(inode);
1919}
1920
b30ac0fc
AV
1921static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1922 struct iov_iter *from)
d0215f3e
JB
1923{
1924 struct file *file = iocb->ki_filp;
496ad9aa 1925 struct inode *inode = file_inode(file);
0b246afa 1926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1927 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1928 u64 start_pos;
3ac0d7b9 1929 u64 end_pos;
d0215f3e 1930 ssize_t num_written = 0;
f50cb7af 1931 const bool sync = iocb->ki_flags & IOCB_DSYNC;
3309dd04 1932 ssize_t err;
ff0fa732 1933 loff_t pos;
c09767a8 1934 size_t count;
27772b68
CR
1935 loff_t oldsize;
1936 int clean_page = 0;
d0215f3e 1937
91f9943e
CH
1938 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1939 (iocb->ki_flags & IOCB_NOWAIT))
1940 return -EOPNOTSUPP;
1941
9cf35f67
GR
1942 if (iocb->ki_flags & IOCB_NOWAIT) {
1943 if (!inode_trylock(inode))
edf064e7 1944 return -EAGAIN;
9cf35f67 1945 } else {
ff0fa732
GR
1946 inode_lock(inode);
1947 }
1948
1949 err = generic_write_checks(iocb, from);
1950 if (err <= 0) {
1951 inode_unlock(inode);
1952 return err;
1953 }
1954
1955 pos = iocb->ki_pos;
c09767a8 1956 count = iov_iter_count(from);
ff0fa732 1957 if (iocb->ki_flags & IOCB_NOWAIT) {
260a6339
FM
1958 size_t nocow_bytes = count;
1959
edf064e7
GR
1960 /*
1961 * We will allocate space in case nodatacow is not set,
1962 * so bail
1963 */
38d37aa9
QW
1964 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1965 <= 0) {
edf064e7
GR
1966 inode_unlock(inode);
1967 return -EAGAIN;
1968 }
260a6339
FM
1969 /*
1970 * There are holes in the range or parts of the range that must
1971 * be COWed (shared extents, RO block groups, etc), so just bail
1972 * out.
1973 */
1974 if (nocow_bytes < count) {
1975 inode_unlock(inode);
1976 return -EAGAIN;
1977 }
d0215f3e
JB
1978 }
1979
3309dd04 1980 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1981 err = file_remove_privs(file);
d0215f3e 1982 if (err) {
5955102c 1983 inode_unlock(inode);
d0215f3e
JB
1984 goto out;
1985 }
1986
1987 /*
1988 * If BTRFS flips readonly due to some impossible error
1989 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1990 * although we have opened a file as writable, we have
1991 * to stop this write operation to ensure FS consistency.
1992 */
0b246afa 1993 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1994 inode_unlock(inode);
d0215f3e
JB
1995 err = -EROFS;
1996 goto out;
1997 }
1998
6c760c07
JB
1999 /*
2000 * We reserve space for updating the inode when we reserve space for the
2001 * extent we are going to write, so we will enospc out there. We don't
2002 * need to start yet another transaction to update the inode as we will
2003 * update the inode when we finish writing whatever data we write.
2004 */
2005 update_time_for_write(inode);
d0215f3e 2006
0b246afa 2007 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
2008 oldsize = i_size_read(inode);
2009 if (start_pos > oldsize) {
3ac0d7b9 2010 /* Expand hole size to cover write data, preventing empty gap */
da17066c 2011 end_pos = round_up(pos + count,
0b246afa 2012 fs_info->sectorsize);
27772b68 2013 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 2014 if (err) {
5955102c 2015 inode_unlock(inode);
0c1a98c8
MX
2016 goto out;
2017 }
0b246afa 2018 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 2019 clean_page = 1;
0c1a98c8
MX
2020 }
2021
b812ce28
JB
2022 if (sync)
2023 atomic_inc(&BTRFS_I(inode)->sync_writers);
2024
2ba48ce5 2025 if (iocb->ki_flags & IOCB_DIRECT) {
0eb79294
JB
2026 /*
2027 * 1. We must always clear IOCB_DSYNC in order to not deadlock
2028 * in iomap, as it calls generic_write_sync() in this case.
2029 * 2. If we are async, we can call iomap_dio_complete() either
2030 * in
2031 *
2032 * 2.1. A worker thread from the last bio completed. In this
2033 * case we need to mark the btrfs_dio_data that it is
2034 * async in order to call generic_write_sync() properly.
2035 * This is handled by setting BTRFS_DIO_SYNC_STUB in the
2036 * current->journal_info.
2037 * 2.2 The submitter context, because all IO completed
2038 * before we exited iomap_dio_rw(). In this case we can
2039 * just re-set the IOCB_DSYNC on the iocb and we'll do
2040 * the sync below. If our ->end_io() gets called and
2041 * current->journal_info is set, then we know we're in
2042 * our current context and we will clear
2043 * current->journal_info to indicate that we need to
2044 * sync below.
2045 */
2046 if (sync) {
2047 ASSERT(current->journal_info == NULL);
2048 iocb->ki_flags &= ~IOCB_DSYNC;
2049 current->journal_info = BTRFS_DIO_SYNC_STUB;
2050 }
f4c48b44 2051 num_written = __btrfs_direct_write(iocb, from);
0eb79294
JB
2052
2053 /*
2054 * As stated above, we cleared journal_info, so we need to do
2055 * the sync ourselves.
2056 */
2057 if (sync && current->journal_info == NULL)
2058 iocb->ki_flags |= IOCB_DSYNC;
2059 current->journal_info = NULL;
d0215f3e 2060 } else {
e4af400a 2061 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 2062 if (num_written > 0)
867c4f93 2063 iocb->ki_pos = pos + num_written;
27772b68
CR
2064 if (clean_page)
2065 pagecache_isize_extended(inode, oldsize,
2066 i_size_read(inode));
d0215f3e
JB
2067 }
2068
5955102c 2069 inode_unlock(inode);
2ff3e9b6 2070
5a3f23d5 2071 /*
6c760c07
JB
2072 * We also have to set last_sub_trans to the current log transid,
2073 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 2074 * transaction will appear to have already occurred.
5a3f23d5 2075 */
2f2ff0ee 2076 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 2077 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 2078 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
2079 if (num_written > 0)
2080 num_written = generic_write_sync(iocb, num_written);
0a3404dc 2081
b812ce28
JB
2082 if (sync)
2083 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 2084out:
39279cc3 2085 current->backing_dev_info = NULL;
39279cc3
CM
2086 return num_written ? num_written : err;
2087}
2088
d397712b 2089int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 2090{
23b5ec74
JB
2091 struct btrfs_file_private *private = filp->private_data;
2092
23b5ec74
JB
2093 if (private && private->filldir_buf)
2094 kfree(private->filldir_buf);
2095 kfree(private);
2096 filp->private_data = NULL;
2097
f6dc45c7 2098 /*
52042d8e 2099 * ordered_data_close is set by setattr when we are about to truncate
f6dc45c7
CM
2100 * a file from a non-zero size to a zero size. This tries to
2101 * flush down new bytes that may have been written if the
2102 * application were using truncate to replace a file in place.
2103 */
2104 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2105 &BTRFS_I(inode)->runtime_flags))
2106 filemap_flush(inode->i_mapping);
e1b81e67
M
2107 return 0;
2108}
2109
669249ee
FM
2110static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2111{
2112 int ret;
343e4fc1 2113 struct blk_plug plug;
669249ee 2114
343e4fc1
LB
2115 /*
2116 * This is only called in fsync, which would do synchronous writes, so
2117 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2118 * multiple disks using raid profile, a large IO can be split to
2119 * several segments of stripe length (currently 64K).
2120 */
2121 blk_start_plug(&plug);
669249ee 2122 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2123 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2124 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2125 blk_finish_plug(&plug);
669249ee
FM
2126
2127 return ret;
2128}
2129
d352ac68
CM
2130/*
2131 * fsync call for both files and directories. This logs the inode into
2132 * the tree log instead of forcing full commits whenever possible.
2133 *
2134 * It needs to call filemap_fdatawait so that all ordered extent updates are
2135 * in the metadata btree are up to date for copying to the log.
2136 *
2137 * It drops the inode mutex before doing the tree log commit. This is an
2138 * important optimization for directories because holding the mutex prevents
2139 * new operations on the dir while we write to disk.
2140 */
02c24a82 2141int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2142{
de17e793 2143 struct dentry *dentry = file_dentry(file);
2b0143b5 2144 struct inode *inode = d_inode(dentry);
0b246afa 2145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2146 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2147 struct btrfs_trans_handle *trans;
8b050d35 2148 struct btrfs_log_ctx ctx;
333427a5 2149 int ret = 0, err;
48778179
FM
2150 u64 len;
2151 bool full_sync;
39279cc3 2152
1abe9b8a 2153 trace_btrfs_sync_file(file, datasync);
257c62e1 2154
ebb70442
LB
2155 btrfs_init_log_ctx(&ctx, inode);
2156
95418ed1 2157 /*
48778179
FM
2158 * Always set the range to a full range, otherwise we can get into
2159 * several problems, from missing file extent items to represent holes
2160 * when not using the NO_HOLES feature, to log tree corruption due to
2161 * races between hole detection during logging and completion of ordered
2162 * extents outside the range, to missing checksums due to ordered extents
2163 * for which we flushed only a subset of their pages.
95418ed1 2164 */
48778179
FM
2165 start = 0;
2166 end = LLONG_MAX;
2167 len = (u64)LLONG_MAX + 1;
95418ed1 2168
90abccf2
MX
2169 /*
2170 * We write the dirty pages in the range and wait until they complete
2171 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2172 * multi-task, and make the performance up. See
2173 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2174 */
669249ee 2175 ret = start_ordered_ops(inode, start, end);
90abccf2 2176 if (ret)
333427a5 2177 goto out;
90abccf2 2178
5955102c 2179 inode_lock(inode);
c495144b
JB
2180
2181 /*
2182 * We take the dio_sem here because the tree log stuff can race with
2183 * lockless dio writes and get an extent map logged for an extent we
2184 * never waited on. We need it this high up for lockdep reasons.
2185 */
2186 down_write(&BTRFS_I(inode)->dio_sem);
2187
2ecb7923 2188 atomic_inc(&root->log_batch);
b5e6c3e1 2189
7af59743 2190 /*
48778179
FM
2191 * Always check for the full sync flag while holding the inode's lock,
2192 * to avoid races with other tasks. The flag must be either set all the
2193 * time during logging or always off all the time while logging.
7af59743 2194 */
48778179
FM
2195 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2196 &BTRFS_I(inode)->runtime_flags);
7af59743 2197
aab15e8e
FM
2198 /*
2199 * Before we acquired the inode's lock, someone may have dirtied more
2200 * pages in the target range. We need to make sure that writeback for
2201 * any such pages does not start while we are logging the inode, because
2202 * if it does, any of the following might happen when we are not doing a
2203 * full inode sync:
2204 *
2205 * 1) We log an extent after its writeback finishes but before its
2206 * checksums are added to the csum tree, leading to -EIO errors
2207 * when attempting to read the extent after a log replay.
2208 *
2209 * 2) We can end up logging an extent before its writeback finishes.
2210 * Therefore after the log replay we will have a file extent item
2211 * pointing to an unwritten extent (and no data checksums as well).
2212 *
2213 * So trigger writeback for any eventual new dirty pages and then we
2214 * wait for all ordered extents to complete below.
2215 */
2216 ret = start_ordered_ops(inode, start, end);
2217 if (ret) {
6ff06729 2218 up_write(&BTRFS_I(inode)->dio_sem);
aab15e8e
FM
2219 inode_unlock(inode);
2220 goto out;
2221 }
2222
669249ee 2223 /*
b5e6c3e1 2224 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2225 * IO of a lower priority task while holding a transaction open.
ba0b084a 2226 *
48778179
FM
2227 * For a full fsync we wait for the ordered extents to complete while
2228 * for a fast fsync we wait just for writeback to complete, and then
2229 * attach the ordered extents to the transaction so that a transaction
2230 * commit waits for their completion, to avoid data loss if we fsync,
2231 * the current transaction commits before the ordered extents complete
2232 * and a power failure happens right after that.
669249ee 2233 */
48778179
FM
2234 if (full_sync) {
2235 ret = btrfs_wait_ordered_range(inode, start, len);
2236 } else {
2237 /*
2238 * Get our ordered extents as soon as possible to avoid doing
2239 * checksum lookups in the csum tree, and use instead the
2240 * checksums attached to the ordered extents.
2241 */
2242 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2243 &ctx.ordered_extents);
2244 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 2245 }
48778179
FM
2246
2247 if (ret)
2248 goto out_release_extents;
2249
2ecb7923 2250 atomic_inc(&root->log_batch);
257c62e1 2251
48778179
FM
2252 /*
2253 * If we are doing a fast fsync we can not bail out if the inode's
2254 * last_trans is <= then the last committed transaction, because we only
2255 * update the last_trans of the inode during ordered extent completion,
2256 * and for a fast fsync we don't wait for that, we only wait for the
2257 * writeback to complete.
2258 */
a4abeea4 2259 smp_mb();
0f8939b8 2260 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
48778179
FM
2261 (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2262 (full_sync || list_empty(&ctx.ordered_extents)))) {
5dc562c5 2263 /*
01327610 2264 * We've had everything committed since the last time we were
5dc562c5
JB
2265 * modified so clear this flag in case it was set for whatever
2266 * reason, it's no longer relevant.
2267 */
2268 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2269 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2270 /*
2271 * An ordered extent might have started before and completed
2272 * already with io errors, in which case the inode was not
2273 * updated and we end up here. So check the inode's mapping
333427a5
JL
2274 * for any errors that might have happened since we last
2275 * checked called fsync.
0596a904 2276 */
333427a5 2277 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 2278 goto out_release_extents;
15ee9bc7 2279 }
15ee9bc7 2280
5039eddc
JB
2281 /*
2282 * We use start here because we will need to wait on the IO to complete
2283 * in btrfs_sync_log, which could require joining a transaction (for
2284 * example checking cross references in the nocow path). If we use join
2285 * here we could get into a situation where we're waiting on IO to
2286 * happen that is blocked on a transaction trying to commit. With start
2287 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2288 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2289 * from thinking they are super smart and changing this to
2290 * btrfs_join_transaction *cough*Josef*cough*.
2291 */
a22285a6
YZ
2292 trans = btrfs_start_transaction(root, 0);
2293 if (IS_ERR(trans)) {
2294 ret = PTR_ERR(trans);
48778179 2295 goto out_release_extents;
39279cc3 2296 }
e02119d5 2297
48778179
FM
2298 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2299 btrfs_release_log_ctx_extents(&ctx);
02c24a82 2300 if (ret < 0) {
a0634be5
FDBM
2301 /* Fallthrough and commit/free transaction. */
2302 ret = 1;
02c24a82 2303 }
49eb7e46
CM
2304
2305 /* we've logged all the items and now have a consistent
2306 * version of the file in the log. It is possible that
2307 * someone will come in and modify the file, but that's
2308 * fine because the log is consistent on disk, and we
2309 * have references to all of the file's extents
2310 *
2311 * It is possible that someone will come in and log the
2312 * file again, but that will end up using the synchronization
2313 * inside btrfs_sync_log to keep things safe.
2314 */
c495144b 2315 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2316 inode_unlock(inode);
49eb7e46 2317
257c62e1 2318 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2319 if (!ret) {
8b050d35 2320 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2321 if (!ret) {
3a45bb20 2322 ret = btrfs_end_transaction(trans);
0ef8b726 2323 goto out;
2ab28f32 2324 }
257c62e1 2325 }
48778179
FM
2326 if (!full_sync) {
2327 ret = btrfs_wait_ordered_range(inode, start, len);
2328 if (ret) {
2329 btrfs_end_transaction(trans);
2330 goto out;
2331 }
2332 }
3a45bb20 2333 ret = btrfs_commit_transaction(trans);
257c62e1 2334 } else {
3a45bb20 2335 ret = btrfs_end_transaction(trans);
e02119d5 2336 }
39279cc3 2337out:
ebb70442 2338 ASSERT(list_empty(&ctx.list));
333427a5
JL
2339 err = file_check_and_advance_wb_err(file);
2340 if (!ret)
2341 ret = err;
014e4ac4 2342 return ret > 0 ? -EIO : ret;
48778179
FM
2343
2344out_release_extents:
2345 btrfs_release_log_ctx_extents(&ctx);
2346 up_write(&BTRFS_I(inode)->dio_sem);
2347 inode_unlock(inode);
2348 goto out;
39279cc3
CM
2349}
2350
f0f37e2f 2351static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2352 .fault = filemap_fault,
f1820361 2353 .map_pages = filemap_map_pages,
9ebefb18
CM
2354 .page_mkwrite = btrfs_page_mkwrite,
2355};
2356
2357static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2358{
058a457e
MX
2359 struct address_space *mapping = filp->f_mapping;
2360
2361 if (!mapping->a_ops->readpage)
2362 return -ENOEXEC;
2363
9ebefb18 2364 file_accessed(filp);
058a457e 2365 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2366
9ebefb18
CM
2367 return 0;
2368}
2369
35339c24 2370static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2371 int slot, u64 start, u64 end)
2372{
2373 struct btrfs_file_extent_item *fi;
2374 struct btrfs_key key;
2375
2376 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2377 return 0;
2378
2379 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2380 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2381 key.type != BTRFS_EXTENT_DATA_KEY)
2382 return 0;
2383
2384 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2385
2386 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2387 return 0;
2388
2389 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2390 return 0;
2391
2392 if (key.offset == end)
2393 return 1;
2394 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2395 return 1;
2396 return 0;
2397}
2398
a012a74e
NB
2399static int fill_holes(struct btrfs_trans_handle *trans,
2400 struct btrfs_inode *inode,
2401 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2402{
3ffbd68c 2403 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2404 struct btrfs_root *root = inode->root;
2aaa6655
JB
2405 struct extent_buffer *leaf;
2406 struct btrfs_file_extent_item *fi;
2407 struct extent_map *hole_em;
a012a74e 2408 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2409 struct btrfs_key key;
2410 int ret;
2411
0b246afa 2412 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2413 goto out;
2414
a012a74e 2415 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2416 key.type = BTRFS_EXTENT_DATA_KEY;
2417 key.offset = offset;
2418
2aaa6655 2419 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2420 if (ret <= 0) {
2421 /*
2422 * We should have dropped this offset, so if we find it then
2423 * something has gone horribly wrong.
2424 */
2425 if (ret == 0)
2426 ret = -EINVAL;
2aaa6655 2427 return ret;
f94480bd 2428 }
2aaa6655
JB
2429
2430 leaf = path->nodes[0];
a012a74e 2431 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2432 u64 num_bytes;
2433
2434 path->slots[0]--;
2435 fi = btrfs_item_ptr(leaf, path->slots[0],
2436 struct btrfs_file_extent_item);
2437 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2438 end - offset;
2439 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2440 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2441 btrfs_set_file_extent_offset(leaf, fi, 0);
2442 btrfs_mark_buffer_dirty(leaf);
2443 goto out;
2444 }
2445
1707e26d 2446 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2447 u64 num_bytes;
2448
2aaa6655 2449 key.offset = offset;
0b246afa 2450 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2451 fi = btrfs_item_ptr(leaf, path->slots[0],
2452 struct btrfs_file_extent_item);
2453 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2454 offset;
2455 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2456 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2457 btrfs_set_file_extent_offset(leaf, fi, 0);
2458 btrfs_mark_buffer_dirty(leaf);
2459 goto out;
2460 }
2461 btrfs_release_path(path);
2462
a012a74e 2463 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2464 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2465 if (ret)
2466 return ret;
2467
2468out:
2469 btrfs_release_path(path);
2470
2471 hole_em = alloc_extent_map();
2472 if (!hole_em) {
2473 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2474 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2475 } else {
2476 hole_em->start = offset;
2477 hole_em->len = end - offset;
cc95bef6 2478 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2479 hole_em->orig_start = offset;
2480
2481 hole_em->block_start = EXTENT_MAP_HOLE;
2482 hole_em->block_len = 0;
b4939680 2483 hole_em->orig_block_len = 0;
2aaa6655
JB
2484 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2485 hole_em->generation = trans->transid;
2486
2487 do {
2488 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2489 write_lock(&em_tree->lock);
09a2a8f9 2490 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2491 write_unlock(&em_tree->lock);
2492 } while (ret == -EEXIST);
2493 free_extent_map(hole_em);
2494 if (ret)
2495 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2496 &inode->runtime_flags);
2aaa6655
JB
2497 }
2498
2499 return 0;
2500}
2501
d7781546
QW
2502/*
2503 * Find a hole extent on given inode and change start/len to the end of hole
2504 * extent.(hole/vacuum extent whose em->start <= start &&
2505 * em->start + em->len > start)
2506 * When a hole extent is found, return 1 and modify start/len.
2507 */
2508static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2509{
609805d8 2510 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2511 struct extent_map *em;
2512 int ret = 0;
2513
609805d8
FM
2514 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2515 round_down(*start, fs_info->sectorsize),
39b07b5d 2516 round_up(*len, fs_info->sectorsize));
9986277e
DC
2517 if (IS_ERR(em))
2518 return PTR_ERR(em);
d7781546
QW
2519
2520 /* Hole or vacuum extent(only exists in no-hole mode) */
2521 if (em->block_start == EXTENT_MAP_HOLE) {
2522 ret = 1;
2523 *len = em->start + em->len > *start + *len ?
2524 0 : *start + *len - em->start - em->len;
2525 *start = em->start + em->len;
2526 }
2527 free_extent_map(em);
2528 return ret;
2529}
2530
f27451f2
FM
2531static int btrfs_punch_hole_lock_range(struct inode *inode,
2532 const u64 lockstart,
2533 const u64 lockend,
2534 struct extent_state **cached_state)
2535{
2536 while (1) {
2537 struct btrfs_ordered_extent *ordered;
2538 int ret;
2539
2540 truncate_pagecache_range(inode, lockstart, lockend);
2541
2542 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2543 cached_state);
6d072c8e
NB
2544 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2545 lockend);
f27451f2
FM
2546
2547 /*
2548 * We need to make sure we have no ordered extents in this range
2549 * and nobody raced in and read a page in this range, if we did
2550 * we need to try again.
2551 */
2552 if ((!ordered ||
bffe633e 2553 (ordered->file_offset + ordered->num_bytes <= lockstart ||
f27451f2 2554 ordered->file_offset > lockend)) &&
051c98eb
DS
2555 !filemap_range_has_page(inode->i_mapping,
2556 lockstart, lockend)) {
f27451f2
FM
2557 if (ordered)
2558 btrfs_put_ordered_extent(ordered);
2559 break;
2560 }
2561 if (ordered)
2562 btrfs_put_ordered_extent(ordered);
2563 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2564 lockend, cached_state);
2565 ret = btrfs_wait_ordered_range(inode, lockstart,
2566 lockend - lockstart + 1);
2567 if (ret)
2568 return ret;
2569 }
2570 return 0;
2571}
2572
690a5dbf
FM
2573static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2574 struct inode *inode,
2575 struct btrfs_path *path,
2576 struct btrfs_clone_extent_info *clone_info,
2577 const u64 clone_len)
2578{
2579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2580 struct btrfs_root *root = BTRFS_I(inode)->root;
2581 struct btrfs_file_extent_item *extent;
2582 struct extent_buffer *leaf;
2583 struct btrfs_key key;
2584 int slot;
2585 struct btrfs_ref ref = { 0 };
2586 u64 ref_offset;
2587 int ret;
2588
2589 if (clone_len == 0)
2590 return 0;
2591
2592 if (clone_info->disk_offset == 0 &&
2593 btrfs_fs_incompat(fs_info, NO_HOLES))
2594 return 0;
2595
2596 key.objectid = btrfs_ino(BTRFS_I(inode));
2597 key.type = BTRFS_EXTENT_DATA_KEY;
2598 key.offset = clone_info->file_offset;
2599 ret = btrfs_insert_empty_item(trans, root, path, &key,
2600 clone_info->item_size);
2601 if (ret)
2602 return ret;
2603 leaf = path->nodes[0];
2604 slot = path->slots[0];
2605 write_extent_buffer(leaf, clone_info->extent_buf,
2606 btrfs_item_ptr_offset(leaf, slot),
2607 clone_info->item_size);
2608 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2609 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2610 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2611 btrfs_mark_buffer_dirty(leaf);
2612 btrfs_release_path(path);
2613
9ddc959e
JB
2614 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2615 clone_info->file_offset, clone_len);
2616 if (ret)
2617 return ret;
2618
690a5dbf
FM
2619 /* If it's a hole, nothing more needs to be done. */
2620 if (clone_info->disk_offset == 0)
2621 return 0;
2622
2623 inode_add_bytes(inode, clone_len);
2624 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2625 clone_info->disk_offset,
2626 clone_info->disk_len, 0);
2627 ref_offset = clone_info->file_offset - clone_info->data_offset;
2628 btrfs_init_data_ref(&ref, root->root_key.objectid,
2629 btrfs_ino(BTRFS_I(inode)), ref_offset);
2630 ret = btrfs_inc_extent_ref(trans, &ref);
2631
2632 return ret;
2633}
2634
9cba40a6
FM
2635/*
2636 * The respective range must have been previously locked, as well as the inode.
2637 * The end offset is inclusive (last byte of the range).
690a5dbf
FM
2638 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2639 * cloning.
2640 * When cloning, we don't want to end up in a state where we dropped extents
2641 * without inserting a new one, so we must abort the transaction to avoid a
2642 * corruption.
9cba40a6 2643 */
690a5dbf
FM
2644int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2645 const u64 start, const u64 end,
2646 struct btrfs_clone_extent_info *clone_info,
2647 struct btrfs_trans_handle **trans_out)
9cba40a6
FM
2648{
2649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2bd36e7b 2650 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2651 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2652 struct btrfs_root *root = BTRFS_I(inode)->root;
2653 struct btrfs_trans_handle *trans = NULL;
2654 struct btrfs_block_rsv *rsv;
2655 unsigned int rsv_count;
2656 u64 cur_offset;
2657 u64 drop_end;
2658 u64 len = end - start;
2659 int ret = 0;
2660
2661 if (end <= start)
2662 return -EINVAL;
2663
2664 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2665 if (!rsv) {
2666 ret = -ENOMEM;
2667 goto out;
2668 }
2bd36e7b 2669 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2670 rsv->failfast = 1;
2671
2672 /*
2673 * 1 - update the inode
2674 * 1 - removing the extents in the range
690a5dbf
FM
2675 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2676 * an extent
9cba40a6 2677 */
690a5dbf
FM
2678 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2679 rsv_count = 3;
2680 else
2681 rsv_count = 2;
2682
9cba40a6
FM
2683 trans = btrfs_start_transaction(root, rsv_count);
2684 if (IS_ERR(trans)) {
2685 ret = PTR_ERR(trans);
2686 trans = NULL;
2687 goto out_free;
2688 }
2689
2690 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2691 min_size, false);
2692 BUG_ON(ret);
2693 trans->block_rsv = rsv;
2694
2695 cur_offset = start;
2696 while (cur_offset < end) {
906c448c 2697 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
9cba40a6
FM
2698 cur_offset, end + 1, &drop_end,
2699 1, 0, 0, NULL);
690a5dbf
FM
2700 if (ret != -ENOSPC) {
2701 /*
2702 * When cloning we want to avoid transaction aborts when
2703 * nothing was done and we are attempting to clone parts
2704 * of inline extents, in such cases -EOPNOTSUPP is
2705 * returned by __btrfs_drop_extents() without having
2706 * changed anything in the file.
2707 */
2708 if (clone_info && ret && ret != -EOPNOTSUPP)
2709 btrfs_abort_transaction(trans, ret);
9cba40a6 2710 break;
690a5dbf 2711 }
9cba40a6
FM
2712
2713 trans->block_rsv = &fs_info->trans_block_rsv;
2714
690a5dbf
FM
2715 if (!clone_info && cur_offset < drop_end &&
2716 cur_offset < ino_size) {
9cba40a6
FM
2717 ret = fill_holes(trans, BTRFS_I(inode), path,
2718 cur_offset, drop_end);
2719 if (ret) {
2720 /*
2721 * If we failed then we didn't insert our hole
2722 * entries for the area we dropped, so now the
2723 * fs is corrupted, so we must abort the
2724 * transaction.
2725 */
2726 btrfs_abort_transaction(trans, ret);
2727 break;
2728 }
9ddc959e
JB
2729 } else if (!clone_info && cur_offset < drop_end) {
2730 /*
2731 * We are past the i_size here, but since we didn't
2732 * insert holes we need to clear the mapped area so we
2733 * know to not set disk_i_size in this area until a new
2734 * file extent is inserted here.
2735 */
2736 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2737 cur_offset, drop_end - cur_offset);
2738 if (ret) {
2739 /*
2740 * We couldn't clear our area, so we could
2741 * presumably adjust up and corrupt the fs, so
2742 * we need to abort.
2743 */
2744 btrfs_abort_transaction(trans, ret);
2745 break;
2746 }
9cba40a6
FM
2747 }
2748
fcb97058
FM
2749 if (clone_info && drop_end > clone_info->file_offset) {
2750 u64 clone_len = drop_end - clone_info->file_offset;
690a5dbf
FM
2751
2752 ret = btrfs_insert_clone_extent(trans, inode, path,
2753 clone_info, clone_len);
2754 if (ret) {
2755 btrfs_abort_transaction(trans, ret);
2756 break;
2757 }
2758 clone_info->data_len -= clone_len;
2759 clone_info->data_offset += clone_len;
2760 clone_info->file_offset += clone_len;
2761 }
2762
9cba40a6
FM
2763 cur_offset = drop_end;
2764
2765 ret = btrfs_update_inode(trans, root, inode);
2766 if (ret)
2767 break;
2768
2769 btrfs_end_transaction(trans);
2770 btrfs_btree_balance_dirty(fs_info);
2771
2772 trans = btrfs_start_transaction(root, rsv_count);
2773 if (IS_ERR(trans)) {
2774 ret = PTR_ERR(trans);
2775 trans = NULL;
2776 break;
2777 }
2778
2779 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2780 rsv, min_size, false);
2781 BUG_ON(ret); /* shouldn't happen */
2782 trans->block_rsv = rsv;
2783
690a5dbf
FM
2784 if (!clone_info) {
2785 ret = find_first_non_hole(inode, &cur_offset, &len);
2786 if (unlikely(ret < 0))
2787 break;
2788 if (ret && !len) {
2789 ret = 0;
2790 break;
2791 }
9cba40a6
FM
2792 }
2793 }
2794
690a5dbf
FM
2795 /*
2796 * If we were cloning, force the next fsync to be a full one since we
2797 * we replaced (or just dropped in the case of cloning holes when
2798 * NO_HOLES is enabled) extents and extent maps.
2799 * This is for the sake of simplicity, and cloning into files larger
2800 * than 16Mb would force the full fsync any way (when
2801 * try_release_extent_mapping() is invoked during page cache truncation.
2802 */
2803 if (clone_info)
2804 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2805 &BTRFS_I(inode)->runtime_flags);
2806
9cba40a6
FM
2807 if (ret)
2808 goto out_trans;
2809
2810 trans->block_rsv = &fs_info->trans_block_rsv;
2811 /*
2812 * If we are using the NO_HOLES feature we might have had already an
2813 * hole that overlaps a part of the region [lockstart, lockend] and
2814 * ends at (or beyond) lockend. Since we have no file extent items to
2815 * represent holes, drop_end can be less than lockend and so we must
2816 * make sure we have an extent map representing the existing hole (the
2817 * call to __btrfs_drop_extents() might have dropped the existing extent
2818 * map representing the existing hole), otherwise the fast fsync path
2819 * will not record the existence of the hole region
2820 * [existing_hole_start, lockend].
2821 */
2822 if (drop_end <= end)
2823 drop_end = end + 1;
2824 /*
2825 * Don't insert file hole extent item if it's for a range beyond eof
2826 * (because it's useless) or if it represents a 0 bytes range (when
2827 * cur_offset == drop_end).
2828 */
690a5dbf 2829 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
9cba40a6
FM
2830 ret = fill_holes(trans, BTRFS_I(inode), path,
2831 cur_offset, drop_end);
2832 if (ret) {
2833 /* Same comment as above. */
2834 btrfs_abort_transaction(trans, ret);
2835 goto out_trans;
2836 }
9ddc959e
JB
2837 } else if (!clone_info && cur_offset < drop_end) {
2838 /* See the comment in the loop above for the reasoning here. */
2839 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2840 cur_offset, drop_end - cur_offset);
2841 if (ret) {
2842 btrfs_abort_transaction(trans, ret);
2843 goto out_trans;
2844 }
2845
9cba40a6 2846 }
690a5dbf
FM
2847 if (clone_info) {
2848 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2849 clone_info->data_len);
2850 if (ret) {
2851 btrfs_abort_transaction(trans, ret);
2852 goto out_trans;
2853 }
2854 }
9cba40a6
FM
2855
2856out_trans:
2857 if (!trans)
2858 goto out_free;
2859
2860 trans->block_rsv = &fs_info->trans_block_rsv;
2861 if (ret)
2862 btrfs_end_transaction(trans);
2863 else
2864 *trans_out = trans;
2865out_free:
2866 btrfs_free_block_rsv(fs_info, rsv);
2867out:
2868 return ret;
2869}
2870
2aaa6655
JB
2871static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2872{
0b246afa 2873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2874 struct btrfs_root *root = BTRFS_I(inode)->root;
2875 struct extent_state *cached_state = NULL;
2876 struct btrfs_path *path;
9cba40a6 2877 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2878 u64 lockstart;
2879 u64 lockend;
2880 u64 tail_start;
2881 u64 tail_len;
2882 u64 orig_start = offset;
2aaa6655 2883 int ret = 0;
9703fefe 2884 bool same_block;
a1a50f60 2885 u64 ino_size;
9703fefe 2886 bool truncated_block = false;
e8c1c76e 2887 bool updated_inode = false;
2aaa6655 2888
0ef8b726
JB
2889 ret = btrfs_wait_ordered_range(inode, offset, len);
2890 if (ret)
2891 return ret;
2aaa6655 2892
5955102c 2893 inode_lock(inode);
0b246afa 2894 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2895 ret = find_first_non_hole(inode, &offset, &len);
2896 if (ret < 0)
2897 goto out_only_mutex;
2898 if (ret && !len) {
2899 /* Already in a large hole */
2900 ret = 0;
2901 goto out_only_mutex;
2902 }
2903
6fee248d 2904 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
d7781546 2905 lockend = round_down(offset + len,
6fee248d 2906 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
0b246afa
JM
2907 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2908 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2909 /*
9703fefe 2910 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2911 * because we are sure there is no data there.
2912 */
2aaa6655 2913 /*
9703fefe
CR
2914 * Only do this if we are in the same block and we aren't doing the
2915 * entire block.
2aaa6655 2916 */
0b246afa 2917 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2918 if (offset < ino_size) {
9703fefe
CR
2919 truncated_block = true;
2920 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2921 } else {
2922 ret = 0;
2923 }
d7781546 2924 goto out_only_mutex;
2aaa6655
JB
2925 }
2926
9703fefe 2927 /* zero back part of the first block */
12870f1c 2928 if (offset < ino_size) {
9703fefe
CR
2929 truncated_block = true;
2930 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2931 if (ret) {
5955102c 2932 inode_unlock(inode);
7426cc04
MX
2933 return ret;
2934 }
2aaa6655
JB
2935 }
2936
d7781546
QW
2937 /* Check the aligned pages after the first unaligned page,
2938 * if offset != orig_start, which means the first unaligned page
01327610 2939 * including several following pages are already in holes,
d7781546
QW
2940 * the extra check can be skipped */
2941 if (offset == orig_start) {
2942 /* after truncate page, check hole again */
2943 len = offset + len - lockstart;
2944 offset = lockstart;
2945 ret = find_first_non_hole(inode, &offset, &len);
2946 if (ret < 0)
2947 goto out_only_mutex;
2948 if (ret && !len) {
2949 ret = 0;
2950 goto out_only_mutex;
2951 }
2952 lockstart = offset;
2953 }
2954
2955 /* Check the tail unaligned part is in a hole */
2956 tail_start = lockend + 1;
2957 tail_len = offset + len - tail_start;
2958 if (tail_len) {
2959 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2960 if (unlikely(ret < 0))
2961 goto out_only_mutex;
2962 if (!ret) {
2963 /* zero the front end of the last page */
2964 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2965 truncated_block = true;
2966 ret = btrfs_truncate_block(inode,
2967 tail_start + tail_len,
2968 0, 1);
d7781546
QW
2969 if (ret)
2970 goto out_only_mutex;
51f395ad 2971 }
0061280d 2972 }
2aaa6655
JB
2973 }
2974
2975 if (lockend < lockstart) {
e8c1c76e
FM
2976 ret = 0;
2977 goto out_only_mutex;
2aaa6655
JB
2978 }
2979
f27451f2
FM
2980 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2981 &cached_state);
8fca9550 2982 if (ret)
f27451f2 2983 goto out_only_mutex;
2aaa6655
JB
2984
2985 path = btrfs_alloc_path();
2986 if (!path) {
2987 ret = -ENOMEM;
2988 goto out;
2989 }
2990
690a5dbf
FM
2991 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2992 &trans);
9cba40a6
FM
2993 btrfs_free_path(path);
2994 if (ret)
2995 goto out;
2aaa6655 2996
9cba40a6 2997 ASSERT(trans != NULL);
e1f5790e 2998 inode_inc_iversion(inode);
c2050a45 2999 inode->i_mtime = inode->i_ctime = current_time(inode);
2aaa6655 3000 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 3001 updated_inode = true;
3a45bb20 3002 btrfs_end_transaction(trans);
2ff7e61e 3003 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
3004out:
3005 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3006 &cached_state);
d7781546 3007out_only_mutex:
9cba40a6 3008 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
3009 /*
3010 * If we only end up zeroing part of a page, we still need to
3011 * update the inode item, so that all the time fields are
3012 * updated as well as the necessary btrfs inode in memory fields
3013 * for detecting, at fsync time, if the inode isn't yet in the
3014 * log tree or it's there but not up to date.
3015 */
17900668
FM
3016 struct timespec64 now = current_time(inode);
3017
3018 inode_inc_iversion(inode);
3019 inode->i_mtime = now;
3020 inode->i_ctime = now;
e8c1c76e
FM
3021 trans = btrfs_start_transaction(root, 1);
3022 if (IS_ERR(trans)) {
9cba40a6 3023 ret = PTR_ERR(trans);
e8c1c76e 3024 } else {
9cba40a6
FM
3025 int ret2;
3026
3027 ret = btrfs_update_inode(trans, root, inode);
3028 ret2 = btrfs_end_transaction(trans);
3029 if (!ret)
3030 ret = ret2;
e8c1c76e
FM
3031 }
3032 }
5955102c 3033 inode_unlock(inode);
9cba40a6 3034 return ret;
2aaa6655
JB
3035}
3036
14524a84
QW
3037/* Helper structure to record which range is already reserved */
3038struct falloc_range {
3039 struct list_head list;
3040 u64 start;
3041 u64 len;
3042};
3043
3044/*
3045 * Helper function to add falloc range
3046 *
3047 * Caller should have locked the larger range of extent containing
3048 * [start, len)
3049 */
3050static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3051{
3052 struct falloc_range *prev = NULL;
3053 struct falloc_range *range = NULL;
3054
3055 if (list_empty(head))
3056 goto insert;
3057
3058 /*
3059 * As fallocate iterate by bytenr order, we only need to check
3060 * the last range.
3061 */
3062 prev = list_entry(head->prev, struct falloc_range, list);
3063 if (prev->start + prev->len == start) {
3064 prev->len += len;
3065 return 0;
3066 }
3067insert:
32fc932e 3068 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
3069 if (!range)
3070 return -ENOMEM;
3071 range->start = start;
3072 range->len = len;
3073 list_add_tail(&range->list, head);
3074 return 0;
3075}
3076
f27451f2
FM
3077static int btrfs_fallocate_update_isize(struct inode *inode,
3078 const u64 end,
3079 const int mode)
3080{
3081 struct btrfs_trans_handle *trans;
3082 struct btrfs_root *root = BTRFS_I(inode)->root;
3083 int ret;
3084 int ret2;
3085
3086 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3087 return 0;
3088
3089 trans = btrfs_start_transaction(root, 1);
3090 if (IS_ERR(trans))
3091 return PTR_ERR(trans);
3092
3093 inode->i_ctime = current_time(inode);
3094 i_size_write(inode, end);
d923afe9 3095 btrfs_inode_safe_disk_i_size_write(inode, 0);
f27451f2
FM
3096 ret = btrfs_update_inode(trans, root, inode);
3097 ret2 = btrfs_end_transaction(trans);
3098
3099 return ret ? ret : ret2;
3100}
3101
81fdf638 3102enum {
f262fa8d
DS
3103 RANGE_BOUNDARY_WRITTEN_EXTENT,
3104 RANGE_BOUNDARY_PREALLOC_EXTENT,
3105 RANGE_BOUNDARY_HOLE,
81fdf638
FM
3106};
3107
948dfeb8 3108static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
3109 u64 offset)
3110{
948dfeb8 3111 const u64 sectorsize = btrfs_inode_sectorsize(inode);
f27451f2 3112 struct extent_map *em;
81fdf638 3113 int ret;
f27451f2
FM
3114
3115 offset = round_down(offset, sectorsize);
948dfeb8 3116 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
3117 if (IS_ERR(em))
3118 return PTR_ERR(em);
3119
3120 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
3121 ret = RANGE_BOUNDARY_HOLE;
3122 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3123 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3124 else
3125 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
3126
3127 free_extent_map(em);
3128 return ret;
3129}
3130
3131static int btrfs_zero_range(struct inode *inode,
3132 loff_t offset,
3133 loff_t len,
3134 const int mode)
3135{
3136 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3137 struct extent_map *em;
3138 struct extent_changeset *data_reserved = NULL;
3139 int ret;
3140 u64 alloc_hint = 0;
6fee248d 3141 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
f27451f2
FM
3142 u64 alloc_start = round_down(offset, sectorsize);
3143 u64 alloc_end = round_up(offset + len, sectorsize);
3144 u64 bytes_to_reserve = 0;
3145 bool space_reserved = false;
3146
3147 inode_dio_wait(inode);
3148
39b07b5d
OS
3149 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3150 alloc_end - alloc_start);
f27451f2
FM
3151 if (IS_ERR(em)) {
3152 ret = PTR_ERR(em);
3153 goto out;
3154 }
3155
3156 /*
3157 * Avoid hole punching and extent allocation for some cases. More cases
3158 * could be considered, but these are unlikely common and we keep things
3159 * as simple as possible for now. Also, intentionally, if the target
3160 * range contains one or more prealloc extents together with regular
3161 * extents and holes, we drop all the existing extents and allocate a
3162 * new prealloc extent, so that we get a larger contiguous disk extent.
3163 */
3164 if (em->start <= alloc_start &&
3165 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3166 const u64 em_end = em->start + em->len;
3167
3168 if (em_end >= offset + len) {
3169 /*
3170 * The whole range is already a prealloc extent,
3171 * do nothing except updating the inode's i_size if
3172 * needed.
3173 */
3174 free_extent_map(em);
3175 ret = btrfs_fallocate_update_isize(inode, offset + len,
3176 mode);
3177 goto out;
3178 }
3179 /*
3180 * Part of the range is already a prealloc extent, so operate
3181 * only on the remaining part of the range.
3182 */
3183 alloc_start = em_end;
3184 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3185 len = offset + len - alloc_start;
3186 offset = alloc_start;
3187 alloc_hint = em->block_start + em->len;
3188 }
3189 free_extent_map(em);
3190
3191 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3192 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
3193 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3194 sectorsize);
f27451f2
FM
3195 if (IS_ERR(em)) {
3196 ret = PTR_ERR(em);
3197 goto out;
3198 }
3199
3200 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3201 free_extent_map(em);
3202 ret = btrfs_fallocate_update_isize(inode, offset + len,
3203 mode);
3204 goto out;
3205 }
3206 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3207 free_extent_map(em);
3208 ret = btrfs_truncate_block(inode, offset, len, 0);
3209 if (!ret)
3210 ret = btrfs_fallocate_update_isize(inode,
3211 offset + len,
3212 mode);
3213 return ret;
3214 }
3215 free_extent_map(em);
3216 alloc_start = round_down(offset, sectorsize);
3217 alloc_end = alloc_start + sectorsize;
3218 goto reserve_space;
3219 }
3220
3221 alloc_start = round_up(offset, sectorsize);
3222 alloc_end = round_down(offset + len, sectorsize);
3223
3224 /*
3225 * For unaligned ranges, check the pages at the boundaries, they might
3226 * map to an extent, in which case we need to partially zero them, or
3227 * they might map to a hole, in which case we need our allocation range
3228 * to cover them.
3229 */
3230 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
3231 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3232 offset);
f27451f2
FM
3233 if (ret < 0)
3234 goto out;
81fdf638 3235 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3236 alloc_start = round_down(offset, sectorsize);
3237 ret = 0;
81fdf638 3238 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
3239 ret = btrfs_truncate_block(inode, offset, 0, 0);
3240 if (ret)
3241 goto out;
81fdf638
FM
3242 } else {
3243 ret = 0;
f27451f2
FM
3244 }
3245 }
3246
3247 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 3248 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
3249 offset + len);
3250 if (ret < 0)
3251 goto out;
81fdf638 3252 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3253 alloc_end = round_up(offset + len, sectorsize);
3254 ret = 0;
81fdf638 3255 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
3256 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3257 if (ret)
3258 goto out;
81fdf638
FM
3259 } else {
3260 ret = 0;
f27451f2
FM
3261 }
3262 }
3263
3264reserve_space:
3265 if (alloc_start < alloc_end) {
3266 struct extent_state *cached_state = NULL;
3267 const u64 lockstart = alloc_start;
3268 const u64 lockend = alloc_end - 1;
3269
3270 bytes_to_reserve = alloc_end - alloc_start;
3271 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3272 bytes_to_reserve);
3273 if (ret < 0)
3274 goto out;
3275 space_reserved = true;
f27451f2
FM
3276 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3277 &cached_state);
3278 if (ret)
3279 goto out;
7661a3e0 3280 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2
QW
3281 alloc_start, bytes_to_reserve);
3282 if (ret)
3283 goto out;
f27451f2
FM
3284 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3285 alloc_end - alloc_start,
3286 i_blocksize(inode),
3287 offset + len, &alloc_hint);
3288 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3289 lockend, &cached_state);
3290 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3291 if (ret) {
f27451f2 3292 space_reserved = false;
9f13ce74
FM
3293 goto out;
3294 }
f27451f2 3295 }
9f13ce74 3296 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3297 out:
3298 if (ret && space_reserved)
25ce28ca 3299 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3300 alloc_start, bytes_to_reserve);
3301 extent_changeset_free(data_reserved);
3302
3303 return ret;
3304}
3305
2fe17c10
CH
3306static long btrfs_fallocate(struct file *file, int mode,
3307 loff_t offset, loff_t len)
3308{
496ad9aa 3309 struct inode *inode = file_inode(file);
2fe17c10 3310 struct extent_state *cached_state = NULL;
364ecf36 3311 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3312 struct falloc_range *range;
3313 struct falloc_range *tmp;
3314 struct list_head reserve_list;
2fe17c10
CH
3315 u64 cur_offset;
3316 u64 last_byte;
3317 u64 alloc_start;
3318 u64 alloc_end;
3319 u64 alloc_hint = 0;
3320 u64 locked_end;
14524a84 3321 u64 actual_end = 0;
2fe17c10 3322 struct extent_map *em;
6fee248d 3323 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
2fe17c10
CH
3324 int ret;
3325
797f4277
MX
3326 alloc_start = round_down(offset, blocksize);
3327 alloc_end = round_up(offset + len, blocksize);
18513091 3328 cur_offset = alloc_start;
2fe17c10 3329
2aaa6655 3330 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3331 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3332 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3333 return -EOPNOTSUPP;
3334
2aaa6655
JB
3335 if (mode & FALLOC_FL_PUNCH_HOLE)
3336 return btrfs_punch_hole(inode, offset, len);
3337
d98456fc 3338 /*
14524a84
QW
3339 * Only trigger disk allocation, don't trigger qgroup reserve
3340 *
3341 * For qgroup space, it will be checked later.
d98456fc 3342 */
f27451f2
FM
3343 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3344 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3345 alloc_end - alloc_start);
3346 if (ret < 0)
3347 return ret;
3348 }
d98456fc 3349
5955102c 3350 inode_lock(inode);
2a162ce9
DI
3351
3352 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3353 ret = inode_newsize_ok(inode, offset + len);
3354 if (ret)
3355 goto out;
3356 }
2fe17c10 3357
14524a84
QW
3358 /*
3359 * TODO: Move these two operations after we have checked
3360 * accurate reserved space, or fallocate can still fail but
3361 * with page truncated or size expanded.
3362 *
3363 * But that's a minor problem and won't do much harm BTW.
3364 */
2fe17c10 3365 if (alloc_start > inode->i_size) {
a41ad394
JB
3366 ret = btrfs_cont_expand(inode, i_size_read(inode),
3367 alloc_start);
2fe17c10
CH
3368 if (ret)
3369 goto out;
0f6925fa 3370 } else if (offset + len > inode->i_size) {
a71754fc
JB
3371 /*
3372 * If we are fallocating from the end of the file onward we
9703fefe
CR
3373 * need to zero out the end of the block if i_size lands in the
3374 * middle of a block.
a71754fc 3375 */
9703fefe 3376 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3377 if (ret)
3378 goto out;
2fe17c10
CH
3379 }
3380
a71754fc
JB
3381 /*
3382 * wait for ordered IO before we have any locks. We'll loop again
3383 * below with the locks held.
3384 */
0ef8b726
JB
3385 ret = btrfs_wait_ordered_range(inode, alloc_start,
3386 alloc_end - alloc_start);
3387 if (ret)
3388 goto out;
a71754fc 3389
f27451f2
FM
3390 if (mode & FALLOC_FL_ZERO_RANGE) {
3391 ret = btrfs_zero_range(inode, offset, len, mode);
3392 inode_unlock(inode);
3393 return ret;
3394 }
3395
2fe17c10
CH
3396 locked_end = alloc_end - 1;
3397 while (1) {
3398 struct btrfs_ordered_extent *ordered;
3399
3400 /* the extent lock is ordered inside the running
3401 * transaction
3402 */
3403 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3404 locked_end, &cached_state);
6d072c8e
NB
3405 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3406 locked_end);
96b09dde 3407
2fe17c10 3408 if (ordered &&
bffe633e 3409 ordered->file_offset + ordered->num_bytes > alloc_start &&
2fe17c10
CH
3410 ordered->file_offset < alloc_end) {
3411 btrfs_put_ordered_extent(ordered);
3412 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3413 alloc_start, locked_end,
e43bbe5e 3414 &cached_state);
2fe17c10
CH
3415 /*
3416 * we can't wait on the range with the transaction
3417 * running or with the extent lock held
3418 */
0ef8b726
JB
3419 ret = btrfs_wait_ordered_range(inode, alloc_start,
3420 alloc_end - alloc_start);
3421 if (ret)
3422 goto out;
2fe17c10
CH
3423 } else {
3424 if (ordered)
3425 btrfs_put_ordered_extent(ordered);
3426 break;
3427 }
3428 }
3429
14524a84
QW
3430 /* First, check if we exceed the qgroup limit */
3431 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3432 while (cur_offset < alloc_end) {
fc4f21b1 3433 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3434 alloc_end - cur_offset);
9986277e
DC
3435 if (IS_ERR(em)) {
3436 ret = PTR_ERR(em);
79787eaa
JM
3437 break;
3438 }
2fe17c10 3439 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3440 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3441 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3442 if (em->block_start == EXTENT_MAP_HOLE ||
3443 (cur_offset >= inode->i_size &&
3444 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3445 ret = add_falloc_range(&reserve_list, cur_offset,
3446 last_byte - cur_offset);
3447 if (ret < 0) {
3448 free_extent_map(em);
3449 break;
3d850dd4 3450 }
7661a3e0
NB
3451 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3452 &data_reserved, cur_offset,
3453 last_byte - cur_offset);
be2d253c 3454 if (ret < 0) {
39ad3173 3455 cur_offset = last_byte;
be2d253c 3456 free_extent_map(em);
14524a84 3457 break;
be2d253c 3458 }
18513091
WX
3459 } else {
3460 /*
3461 * Do not need to reserve unwritten extent for this
3462 * range, free reserved data space first, otherwise
3463 * it'll result in false ENOSPC error.
3464 */
25ce28ca
NB
3465 btrfs_free_reserved_data_space(BTRFS_I(inode),
3466 data_reserved, cur_offset,
3467 last_byte - cur_offset);
2fe17c10
CH
3468 }
3469 free_extent_map(em);
2fe17c10 3470 cur_offset = last_byte;
14524a84
QW
3471 }
3472
3473 /*
3474 * If ret is still 0, means we're OK to fallocate.
3475 * Or just cleanup the list and exit.
3476 */
3477 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3478 if (!ret)
3479 ret = btrfs_prealloc_file_range(inode, mode,
3480 range->start,
93407472 3481 range->len, i_blocksize(inode),
14524a84 3482 offset + len, &alloc_hint);
18513091 3483 else
25ce28ca 3484 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
3485 data_reserved, range->start,
3486 range->len);
14524a84
QW
3487 list_del(&range->list);
3488 kfree(range);
3489 }
3490 if (ret < 0)
3491 goto out_unlock;
3492
f27451f2
FM
3493 /*
3494 * We didn't need to allocate any more space, but we still extended the
3495 * size of the file so we need to update i_size and the inode item.
3496 */
3497 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3498out_unlock:
2fe17c10 3499 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3500 &cached_state);
2fe17c10 3501out:
5955102c 3502 inode_unlock(inode);
d98456fc 3503 /* Let go of our reservation. */
f27451f2 3504 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
25ce28ca 3505 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
39ad3173 3506 cur_offset, alloc_end - cur_offset);
364ecf36 3507 extent_changeset_free(data_reserved);
2fe17c10
CH
3508 return ret;
3509}
3510
bc80230e
NB
3511static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3512 int whence)
b2675157 3513{
0b246afa 3514 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3515 struct extent_map *em = NULL;
b2675157 3516 struct extent_state *cached_state = NULL;
d79b7c26 3517 loff_t i_size = inode->i_size;
4d1a40c6
LB
3518 u64 lockstart;
3519 u64 lockend;
3520 u64 start;
3521 u64 len;
b2675157
JB
3522 int ret = 0;
3523
bc80230e 3524 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3525 return -ENXIO;
3526
3527 /*
bc80230e 3528 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3529 * the very start of the file.
3530 */
bc80230e 3531 start = max_t(loff_t, 0, offset);
4d1a40c6 3532
0b246afa 3533 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3534 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3535 if (lockend <= lockstart)
0b246afa 3536 lockend = lockstart + fs_info->sectorsize;
1214b53f 3537 lockend--;
b2675157
JB
3538 len = lockend - lockstart + 1;
3539
ff13db41 3540 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3541 &cached_state);
b2675157 3542
d79b7c26 3543 while (start < i_size) {
4ab47a8d 3544 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
b2675157 3545 if (IS_ERR(em)) {
6af021d8 3546 ret = PTR_ERR(em);
7f4ca37c 3547 em = NULL;
b2675157
JB
3548 break;
3549 }
3550
7f4ca37c
JB
3551 if (whence == SEEK_HOLE &&
3552 (em->block_start == EXTENT_MAP_HOLE ||
3553 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3554 break;
3555 else if (whence == SEEK_DATA &&
3556 (em->block_start != EXTENT_MAP_HOLE &&
3557 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3558 break;
b2675157
JB
3559
3560 start = em->start + em->len;
b2675157 3561 free_extent_map(em);
7f4ca37c 3562 em = NULL;
b2675157
JB
3563 cond_resched();
3564 }
7f4ca37c 3565 free_extent_map(em);
bc80230e
NB
3566 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3567 &cached_state);
3568 if (ret) {
3569 offset = ret;
3570 } else {
d79b7c26 3571 if (whence == SEEK_DATA && start >= i_size)
bc80230e 3572 offset = -ENXIO;
7f4ca37c 3573 else
bc80230e 3574 offset = min_t(loff_t, start, i_size);
7f4ca37c 3575 }
bc80230e
NB
3576
3577 return offset;
b2675157
JB
3578}
3579
965c8e59 3580static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3581{
3582 struct inode *inode = file->f_mapping->host;
b2675157 3583
965c8e59 3584 switch (whence) {
2034f3b4
NB
3585 default:
3586 return generic_file_llseek(file, offset, whence);
b2675157
JB
3587 case SEEK_DATA:
3588 case SEEK_HOLE:
d79b7c26 3589 inode_lock_shared(inode);
bc80230e 3590 offset = find_desired_extent(inode, offset, whence);
d79b7c26 3591 inode_unlock_shared(inode);
bc80230e 3592 break;
b2675157
JB
3593 }
3594
bc80230e
NB
3595 if (offset < 0)
3596 return offset;
3597
2034f3b4 3598 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3599}
3600
edf064e7
GR
3601static int btrfs_file_open(struct inode *inode, struct file *filp)
3602{
8730f12b 3603 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
edf064e7
GR
3604 return generic_file_open(inode, filp);
3605}
3606
f85781fb
GR
3607static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3608{
3609 ssize_t ret = 0;
3610
3611 if (iocb->ki_flags & IOCB_DIRECT) {
3612 struct inode *inode = file_inode(iocb->ki_filp);
3613
3614 inode_lock_shared(inode);
3615 ret = btrfs_direct_IO(iocb, to);
3616 inode_unlock_shared(inode);
3617 if (ret < 0)
3618 return ret;
3619 }
3620
3621 return generic_file_buffered_read(iocb, to, ret);
3622}
3623
828c0950 3624const struct file_operations btrfs_file_operations = {
b2675157 3625 .llseek = btrfs_file_llseek,
f85781fb 3626 .read_iter = btrfs_file_read_iter,
e9906a98 3627 .splice_read = generic_file_splice_read,
b30ac0fc 3628 .write_iter = btrfs_file_write_iter,
d7776591 3629 .splice_write = iter_file_splice_write,
9ebefb18 3630 .mmap = btrfs_file_mmap,
edf064e7 3631 .open = btrfs_file_open,
e1b81e67 3632 .release = btrfs_release_file,
39279cc3 3633 .fsync = btrfs_sync_file,
2fe17c10 3634 .fallocate = btrfs_fallocate,
34287aa3 3635 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3636#ifdef CONFIG_COMPAT
4c63c245 3637 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3638#endif
2e5dfc99 3639 .remap_file_range = btrfs_remap_file_range,
39279cc3 3640};
9247f317 3641
e67c718b 3642void __cold btrfs_auto_defrag_exit(void)
9247f317 3643{
5598e900 3644 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3645}
3646
f5c29bd9 3647int __init btrfs_auto_defrag_init(void)
9247f317
MX
3648{
3649 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3650 sizeof(struct inode_defrag), 0,
fba4b697 3651 SLAB_MEM_SPREAD,
9247f317
MX
3652 NULL);
3653 if (!btrfs_inode_defrag_cachep)
3654 return -ENOMEM;
3655
3656 return 0;
3657}
728404da
FM
3658
3659int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3660{
3661 int ret;
3662
3663 /*
3664 * So with compression we will find and lock a dirty page and clear the
3665 * first one as dirty, setup an async extent, and immediately return
3666 * with the entire range locked but with nobody actually marked with
3667 * writeback. So we can't just filemap_write_and_wait_range() and
3668 * expect it to work since it will just kick off a thread to do the
3669 * actual work. So we need to call filemap_fdatawrite_range _again_
3670 * since it will wait on the page lock, which won't be unlocked until
3671 * after the pages have been marked as writeback and so we're good to go
3672 * from there. We have to do this otherwise we'll miss the ordered
3673 * extents and that results in badness. Please Josef, do not think you
3674 * know better and pull this out at some point in the future, it is
3675 * right and you are wrong.
3676 */
3677 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3678 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3679 &BTRFS_I(inode)->runtime_flags))
3680 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3681
3682 return ret;
3683}