btrfs: add helper to get fs_info from struct inode pointer
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
3ecb43cb 20#include <linux/iomap.h>
39279cc3
CM
21#include "ctree.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "btrfs_inode.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
86736342 29#include "delalloc-space.h"
6a177381 30#include "reflink.h"
f02a85d2 31#include "subpage.h"
c7f13d42 32#include "fs.h"
07e81dc9 33#include "accessors.h"
a0231804 34#include "extent-tree.h"
7c8ede16 35#include "file-item.h"
7572dec8 36#include "ioctl.h"
af142b6f 37#include "file.h"
7f0add25 38#include "super.h"
39279cc3 39
d352ac68
CM
40/* simple helper to fault in pages and copy. This should go away
41 * and be replaced with calls into generic code.
42 */
ee22f0c4 43static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 44 struct page **prepared_pages,
11c65dcc 45 struct iov_iter *i)
39279cc3 46{
914ee295 47 size_t copied = 0;
d0215f3e 48 size_t total_copied = 0;
11c65dcc 49 int pg = 0;
7073017a 50 int offset = offset_in_page(pos);
39279cc3 51
11c65dcc 52 while (write_bytes > 0) {
39279cc3 53 size_t count = min_t(size_t,
09cbfeaf 54 PAGE_SIZE - offset, write_bytes);
11c65dcc 55 struct page *page = prepared_pages[pg];
914ee295
XZ
56 /*
57 * Copy data from userspace to the current page
914ee295 58 */
f0b65f39 59 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 60
39279cc3
CM
61 /* Flush processor's dcache for this page */
62 flush_dcache_page(page);
31339acd
CM
63
64 /*
65 * if we get a partial write, we can end up with
66 * partially up to date pages. These add
67 * a lot of complexity, so make sure they don't
68 * happen by forcing this copy to be retried.
69 *
70 * The rest of the btrfs_file_write code will fall
71 * back to page at a time copies after we return 0.
72 */
f0b65f39
AV
73 if (unlikely(copied < count)) {
74 if (!PageUptodate(page)) {
75 iov_iter_revert(i, copied);
76 copied = 0;
77 }
78 if (!copied)
79 break;
80 }
31339acd 81
11c65dcc 82 write_bytes -= copied;
914ee295 83 total_copied += copied;
f0b65f39
AV
84 offset += copied;
85 if (offset == PAGE_SIZE) {
11c65dcc
JB
86 pg++;
87 offset = 0;
88 }
39279cc3 89 }
914ee295 90 return total_copied;
39279cc3
CM
91}
92
d352ac68
CM
93/*
94 * unlocks pages after btrfs_file_write is done with them
95 */
e4f94347
QW
96static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
97 struct page **pages, size_t num_pages,
98 u64 pos, u64 copied)
39279cc3
CM
99{
100 size_t i;
e4f94347
QW
101 u64 block_start = round_down(pos, fs_info->sectorsize);
102 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
103
104 ASSERT(block_len <= U32_MAX);
39279cc3 105 for (i = 0; i < num_pages; i++) {
d352ac68
CM
106 /* page checked is some magic around finding pages that
107 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
108 * clear it here. There should be no need to mark the pages
109 * accessed as prepare_pages should have marked them accessed
110 * in prepare_pages via find_or_create_page()
d352ac68 111 */
55151ea9
QW
112 btrfs_folio_clamp_clear_checked(fs_info, page_folio(pages[i]),
113 block_start, block_len);
39279cc3 114 unlock_page(pages[i]);
09cbfeaf 115 put_page(pages[i]);
39279cc3
CM
116 }
117}
118
d352ac68 119/*
c0fab480
QW
120 * After btrfs_copy_from_user(), update the following things for delalloc:
121 * - Mark newly dirtied pages as DELALLOC in the io tree.
122 * Used to advise which range is to be written back.
123 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
124 * - Update inode size for past EOF write
d352ac68 125 */
088545f6 126int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 127 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 128 struct extent_state **cached, bool noreserve)
39279cc3 129{
088545f6 130 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 131 int err = 0;
a52d9a80 132 int i;
db94535d 133 u64 num_bytes;
a52d9a80
CM
134 u64 start_pos;
135 u64 end_of_last_block;
136 u64 end_pos = pos + write_bytes;
088545f6 137 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 138 unsigned int extra_bits = 0;
39279cc3 139
aa8c1a41
GR
140 if (write_bytes == 0)
141 return 0;
142
143 if (noreserve)
144 extra_bits |= EXTENT_NORESERVE;
145
13f0dd8f 146 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 147 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 148 fs_info->sectorsize);
f02a85d2 149 ASSERT(num_bytes <= U32_MAX);
39279cc3 150
db94535d 151 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 152
7703bdd8
CM
153 /*
154 * The pages may have already been dirty, clear out old accounting so
155 * we can set things up properly
156 */
088545f6 157 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d 158 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 159 cached);
7703bdd8 160
088545f6 161 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 162 extra_bits, cached);
d0215f3e
JB
163 if (err)
164 return err;
9ed74f2d 165
c8b97818
CM
166 for (i = 0; i < num_pages; i++) {
167 struct page *p = pages[i];
f02a85d2 168
55151ea9
QW
169 btrfs_folio_clamp_set_uptodate(fs_info, page_folio(p),
170 start_pos, num_bytes);
171 btrfs_folio_clamp_clear_checked(fs_info, page_folio(p),
172 start_pos, num_bytes);
173 btrfs_folio_clamp_set_dirty(fs_info, page_folio(p),
174 start_pos, num_bytes);
a52d9a80 175 }
9f570b8d
JB
176
177 /*
178 * we've only changed i_size in ram, and we haven't updated
179 * the disk i_size. There is no need to log the inode
180 * at this time.
181 */
182 if (end_pos > isize)
088545f6 183 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 184 return 0;
39279cc3
CM
185}
186
187/*
188 * this is very complex, but the basic idea is to drop all extents
189 * in the range start - end. hint_block is filled in with a block number
190 * that would be a good hint to the block allocator for this file.
191 *
192 * If an extent intersects the range but is not entirely inside the range
193 * it is either truncated or split. Anything entirely inside the range
194 * is deleted from the tree.
2766ff61
FM
195 *
196 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
197 * to deal with that. We set the field 'bytes_found' of the arguments structure
198 * with the number of allocated bytes found in the target range, so that the
199 * caller can update the inode's number of bytes in an atomic way when
200 * replacing extents in a range to avoid races with stat(2).
39279cc3 201 */
5893dfb9
FM
202int btrfs_drop_extents(struct btrfs_trans_handle *trans,
203 struct btrfs_root *root, struct btrfs_inode *inode,
204 struct btrfs_drop_extents_args *args)
39279cc3 205{
0b246afa 206 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 207 struct extent_buffer *leaf;
920bbbfb 208 struct btrfs_file_extent_item *fi;
82fa113f 209 struct btrfs_ref ref = { 0 };
00f5c795 210 struct btrfs_key key;
920bbbfb 211 struct btrfs_key new_key;
906c448c 212 u64 ino = btrfs_ino(inode);
5893dfb9 213 u64 search_start = args->start;
920bbbfb
YZ
214 u64 disk_bytenr = 0;
215 u64 num_bytes = 0;
216 u64 extent_offset = 0;
217 u64 extent_end = 0;
5893dfb9 218 u64 last_end = args->start;
920bbbfb
YZ
219 int del_nr = 0;
220 int del_slot = 0;
221 int extent_type;
ccd467d6 222 int recow;
00f5c795 223 int ret;
dc7fdde3 224 int modify_tree = -1;
27cdeb70 225 int update_refs;
c3308f84 226 int found = 0;
5893dfb9
FM
227 struct btrfs_path *path = args->path;
228
2766ff61 229 args->bytes_found = 0;
5893dfb9
FM
230 args->extent_inserted = false;
231
232 /* Must always have a path if ->replace_extent is true */
233 ASSERT(!(args->replace_extent && !args->path));
234
235 if (!path) {
236 path = btrfs_alloc_path();
237 if (!path) {
238 ret = -ENOMEM;
239 goto out;
240 }
241 }
39279cc3 242
5893dfb9 243 if (args->drop_cache)
4c0c8cfc 244 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
a52d9a80 245
5893dfb9 246 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
247 modify_tree = 0;
248
d175209b 249 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 250 while (1) {
ccd467d6 251 recow = 0;
33345d01 252 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 253 search_start, modify_tree);
39279cc3 254 if (ret < 0)
920bbbfb 255 break;
5893dfb9 256 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
257 leaf = path->nodes[0];
258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 259 if (key.objectid == ino &&
920bbbfb
YZ
260 key.type == BTRFS_EXTENT_DATA_KEY)
261 path->slots[0]--;
39279cc3 262 }
920bbbfb 263 ret = 0;
8c2383c3 264next_slot:
5f39d397 265 leaf = path->nodes[0];
920bbbfb
YZ
266 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
267 BUG_ON(del_nr > 0);
268 ret = btrfs_next_leaf(root, path);
269 if (ret < 0)
270 break;
271 if (ret > 0) {
272 ret = 0;
273 break;
8c2383c3 274 }
920bbbfb
YZ
275 leaf = path->nodes[0];
276 recow = 1;
277 }
278
279 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
280
281 if (key.objectid > ino)
282 break;
283 if (WARN_ON_ONCE(key.objectid < ino) ||
284 key.type < BTRFS_EXTENT_DATA_KEY) {
285 ASSERT(del_nr == 0);
286 path->slots[0]++;
287 goto next_slot;
288 }
5893dfb9 289 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
290 break;
291
292 fi = btrfs_item_ptr(leaf, path->slots[0],
293 struct btrfs_file_extent_item);
294 extent_type = btrfs_file_extent_type(leaf, fi);
295
296 if (extent_type == BTRFS_FILE_EXTENT_REG ||
297 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
298 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
299 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
300 extent_offset = btrfs_file_extent_offset(leaf, fi);
301 extent_end = key.offset +
302 btrfs_file_extent_num_bytes(leaf, fi);
303 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
304 extent_end = key.offset +
e41ca589 305 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 306 } else {
aeafbf84
FM
307 /* can't happen */
308 BUG();
39279cc3
CM
309 }
310
fc19c5e7
FM
311 /*
312 * Don't skip extent items representing 0 byte lengths. They
313 * used to be created (bug) if while punching holes we hit
314 * -ENOSPC condition. So if we find one here, just ensure we
315 * delete it, otherwise we would insert a new file extent item
316 * with the same key (offset) as that 0 bytes length file
317 * extent item in the call to setup_items_for_insert() later
318 * in this function.
319 */
62fe51c1
JB
320 if (extent_end == key.offset && extent_end >= search_start) {
321 last_end = extent_end;
fc19c5e7 322 goto delete_extent_item;
62fe51c1 323 }
fc19c5e7 324
920bbbfb
YZ
325 if (extent_end <= search_start) {
326 path->slots[0]++;
8c2383c3 327 goto next_slot;
39279cc3
CM
328 }
329
c3308f84 330 found = 1;
5893dfb9 331 search_start = max(key.offset, args->start);
dc7fdde3
CM
332 if (recow || !modify_tree) {
333 modify_tree = -1;
b3b4aa74 334 btrfs_release_path(path);
920bbbfb 335 continue;
39279cc3 336 }
6643558d 337
920bbbfb
YZ
338 /*
339 * | - range to drop - |
340 * | -------- extent -------- |
341 */
5893dfb9 342 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 343 BUG_ON(del_nr > 0);
00fdf13a 344 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 345 ret = -EOPNOTSUPP;
00fdf13a
LB
346 break;
347 }
920bbbfb
YZ
348
349 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 350 new_key.offset = args->start;
920bbbfb
YZ
351 ret = btrfs_duplicate_item(trans, root, path,
352 &new_key);
353 if (ret == -EAGAIN) {
b3b4aa74 354 btrfs_release_path(path);
920bbbfb 355 continue;
6643558d 356 }
920bbbfb
YZ
357 if (ret < 0)
358 break;
359
360 leaf = path->nodes[0];
361 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
362 struct btrfs_file_extent_item);
363 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 364 args->start - key.offset);
920bbbfb
YZ
365
366 fi = btrfs_item_ptr(leaf, path->slots[0],
367 struct btrfs_file_extent_item);
368
5893dfb9 369 extent_offset += args->start - key.offset;
920bbbfb
YZ
370 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
371 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 372 extent_end - args->start);
50564b65 373 btrfs_mark_buffer_dirty(trans, leaf);
920bbbfb 374
5dc562c5 375 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
376 btrfs_init_generic_ref(&ref,
377 BTRFS_ADD_DELAYED_REF,
457cb1dd
BB
378 disk_bytenr, num_bytes, 0,
379 root->root_key.objectid);
82fa113f 380 btrfs_init_data_ref(&ref,
920bbbfb
YZ
381 root->root_key.objectid,
382 new_key.objectid,
f42c5da6
NB
383 args->start - extent_offset,
384 0, false);
82fa113f 385 ret = btrfs_inc_extent_ref(trans, &ref);
162d053e
FM
386 if (ret) {
387 btrfs_abort_transaction(trans, ret);
388 break;
389 }
771ed689 390 }
5893dfb9 391 key.offset = args->start;
6643558d 392 }
62fe51c1
JB
393 /*
394 * From here on out we will have actually dropped something, so
395 * last_end can be updated.
396 */
397 last_end = extent_end;
398
920bbbfb
YZ
399 /*
400 * | ---- range to drop ----- |
401 * | -------- extent -------- |
402 */
5893dfb9 403 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 404 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 405 ret = -EOPNOTSUPP;
00fdf13a
LB
406 break;
407 }
6643558d 408
920bbbfb 409 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 410 new_key.offset = args->end;
50564b65 411 btrfs_set_item_key_safe(trans, path, &new_key);
6643558d 412
5893dfb9 413 extent_offset += args->end - key.offset;
920bbbfb
YZ
414 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
415 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 416 extent_end - args->end);
50564b65 417 btrfs_mark_buffer_dirty(trans, leaf);
2671485d 418 if (update_refs && disk_bytenr > 0)
2766ff61 419 args->bytes_found += args->end - key.offset;
920bbbfb 420 break;
39279cc3 421 }
771ed689 422
920bbbfb
YZ
423 search_start = extent_end;
424 /*
425 * | ---- range to drop ----- |
426 * | -------- extent -------- |
427 */
5893dfb9 428 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 429 BUG_ON(del_nr > 0);
00fdf13a 430 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 431 ret = -EOPNOTSUPP;
00fdf13a
LB
432 break;
433 }
8c2383c3 434
920bbbfb 435 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 436 args->start - key.offset);
50564b65 437 btrfs_mark_buffer_dirty(trans, leaf);
2671485d 438 if (update_refs && disk_bytenr > 0)
2766ff61 439 args->bytes_found += extent_end - args->start;
5893dfb9 440 if (args->end == extent_end)
920bbbfb 441 break;
c8b97818 442
920bbbfb
YZ
443 path->slots[0]++;
444 goto next_slot;
31840ae1
ZY
445 }
446
920bbbfb
YZ
447 /*
448 * | ---- range to drop ----- |
449 * | ------ extent ------ |
450 */
5893dfb9 451 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 452delete_extent_item:
920bbbfb
YZ
453 if (del_nr == 0) {
454 del_slot = path->slots[0];
455 del_nr = 1;
456 } else {
457 BUG_ON(del_slot + del_nr != path->slots[0]);
458 del_nr++;
459 }
31840ae1 460
5dc562c5
JB
461 if (update_refs &&
462 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 463 args->bytes_found += extent_end - key.offset;
920bbbfb 464 extent_end = ALIGN(extent_end,
0b246afa 465 fs_info->sectorsize);
5dc562c5 466 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
467 btrfs_init_generic_ref(&ref,
468 BTRFS_DROP_DELAYED_REF,
457cb1dd
BB
469 disk_bytenr, num_bytes, 0,
470 root->root_key.objectid);
ffd4bb2a 471 btrfs_init_data_ref(&ref,
920bbbfb 472 root->root_key.objectid,
ffd4bb2a 473 key.objectid,
f42c5da6
NB
474 key.offset - extent_offset, 0,
475 false);
ffd4bb2a 476 ret = btrfs_free_extent(trans, &ref);
162d053e
FM
477 if (ret) {
478 btrfs_abort_transaction(trans, ret);
479 break;
480 }
2766ff61 481 args->bytes_found += extent_end - key.offset;
31840ae1 482 }
31840ae1 483
5893dfb9 484 if (args->end == extent_end)
920bbbfb
YZ
485 break;
486
487 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
488 path->slots[0]++;
489 goto next_slot;
490 }
491
492 ret = btrfs_del_items(trans, root, path, del_slot,
493 del_nr);
79787eaa 494 if (ret) {
66642832 495 btrfs_abort_transaction(trans, ret);
5dc562c5 496 break;
79787eaa 497 }
920bbbfb
YZ
498
499 del_nr = 0;
500 del_slot = 0;
501
b3b4aa74 502 btrfs_release_path(path);
920bbbfb 503 continue;
39279cc3 504 }
920bbbfb 505
290342f6 506 BUG();
39279cc3 507 }
920bbbfb 508
79787eaa 509 if (!ret && del_nr > 0) {
1acae57b
FDBM
510 /*
511 * Set path->slots[0] to first slot, so that after the delete
512 * if items are move off from our leaf to its immediate left or
513 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 514 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
515 */
516 path->slots[0] = del_slot;
920bbbfb 517 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 518 if (ret)
66642832 519 btrfs_abort_transaction(trans, ret);
d5f37527 520 }
1acae57b 521
d5f37527
FDBM
522 leaf = path->nodes[0];
523 /*
524 * If btrfs_del_items() was called, it might have deleted a leaf, in
525 * which case it unlocked our path, so check path->locks[0] matches a
526 * write lock.
527 */
7ecb4c31 528 if (!ret && args->replace_extent &&
ac5887c8 529 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 530 btrfs_leaf_free_space(leaf) >=
5893dfb9 531 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
532
533 key.objectid = ino;
534 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 535 key.offset = args->start;
d5f37527
FDBM
536 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
537 struct btrfs_key slot_key;
538
539 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
540 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
541 path->slots[0]++;
1acae57b 542 }
50564b65
FM
543 btrfs_setup_item_for_insert(trans, root, path, &key,
544 args->extent_item_size);
5893dfb9 545 args->extent_inserted = true;
6643558d 546 }
920bbbfb 547
5893dfb9
FM
548 if (!args->path)
549 btrfs_free_path(path);
550 else if (!args->extent_inserted)
1acae57b 551 btrfs_release_path(path);
5893dfb9
FM
552out:
553 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 554
39279cc3
CM
555 return ret;
556}
557
d899e052 558static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
559 u64 objectid, u64 bytenr, u64 orig_offset,
560 u64 *start, u64 *end)
d899e052
YZ
561{
562 struct btrfs_file_extent_item *fi;
563 struct btrfs_key key;
564 u64 extent_end;
565
566 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
567 return 0;
568
569 btrfs_item_key_to_cpu(leaf, &key, slot);
570 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
571 return 0;
572
573 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
574 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
575 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 576 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
577 btrfs_file_extent_compression(leaf, fi) ||
578 btrfs_file_extent_encryption(leaf, fi) ||
579 btrfs_file_extent_other_encoding(leaf, fi))
580 return 0;
581
582 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
583 if ((*start && *start != key.offset) || (*end && *end != extent_end))
584 return 0;
585
586 *start = key.offset;
587 *end = extent_end;
588 return 1;
589}
590
591/*
592 * Mark extent in the range start - end as written.
593 *
594 * This changes extent type from 'pre-allocated' to 'regular'. If only
595 * part of extent is marked as written, the extent will be split into
596 * two or three.
597 */
598int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 599 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 600{
7a6d7067 601 struct btrfs_root *root = inode->root;
d899e052
YZ
602 struct extent_buffer *leaf;
603 struct btrfs_path *path;
604 struct btrfs_file_extent_item *fi;
82fa113f 605 struct btrfs_ref ref = { 0 };
d899e052 606 struct btrfs_key key;
920bbbfb 607 struct btrfs_key new_key;
d899e052
YZ
608 u64 bytenr;
609 u64 num_bytes;
610 u64 extent_end;
5d4f98a2 611 u64 orig_offset;
d899e052
YZ
612 u64 other_start;
613 u64 other_end;
920bbbfb
YZ
614 u64 split;
615 int del_nr = 0;
616 int del_slot = 0;
6c7d54ac 617 int recow;
e7b2ec3d 618 int ret = 0;
7a6d7067 619 u64 ino = btrfs_ino(inode);
d899e052 620
d899e052 621 path = btrfs_alloc_path();
d8926bb3
MF
622 if (!path)
623 return -ENOMEM;
d899e052 624again:
6c7d54ac 625 recow = 0;
920bbbfb 626 split = start;
33345d01 627 key.objectid = ino;
d899e052 628 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 629 key.offset = split;
d899e052
YZ
630
631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
632 if (ret < 0)
633 goto out;
d899e052
YZ
634 if (ret > 0 && path->slots[0] > 0)
635 path->slots[0]--;
636
637 leaf = path->nodes[0];
638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
639 if (key.objectid != ino ||
640 key.type != BTRFS_EXTENT_DATA_KEY) {
641 ret = -EINVAL;
642 btrfs_abort_transaction(trans, ret);
643 goto out;
644 }
d899e052
YZ
645 fi = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
9c8e63db
JB
647 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
648 ret = -EINVAL;
649 btrfs_abort_transaction(trans, ret);
650 goto out;
651 }
d899e052 652 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
653 if (key.offset > start || extent_end < end) {
654 ret = -EINVAL;
655 btrfs_abort_transaction(trans, ret);
656 goto out;
657 }
d899e052
YZ
658
659 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
660 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 661 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
662 memcpy(&new_key, &key, sizeof(new_key));
663
664 if (start == key.offset && end < extent_end) {
665 other_start = 0;
666 other_end = start;
667 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 668 ino, bytenr, orig_offset,
6c7d54ac
YZ
669 &other_start, &other_end)) {
670 new_key.offset = end;
50564b65 671 btrfs_set_item_key_safe(trans, path, &new_key);
6c7d54ac
YZ
672 fi = btrfs_item_ptr(leaf, path->slots[0],
673 struct btrfs_file_extent_item);
224ecce5
JB
674 btrfs_set_file_extent_generation(leaf, fi,
675 trans->transid);
6c7d54ac
YZ
676 btrfs_set_file_extent_num_bytes(leaf, fi,
677 extent_end - end);
678 btrfs_set_file_extent_offset(leaf, fi,
679 end - orig_offset);
680 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
681 struct btrfs_file_extent_item);
224ecce5
JB
682 btrfs_set_file_extent_generation(leaf, fi,
683 trans->transid);
6c7d54ac
YZ
684 btrfs_set_file_extent_num_bytes(leaf, fi,
685 end - other_start);
50564b65 686 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac
YZ
687 goto out;
688 }
689 }
690
691 if (start > key.offset && end == extent_end) {
692 other_start = end;
693 other_end = 0;
694 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 695 ino, bytenr, orig_offset,
6c7d54ac
YZ
696 &other_start, &other_end)) {
697 fi = btrfs_item_ptr(leaf, path->slots[0],
698 struct btrfs_file_extent_item);
699 btrfs_set_file_extent_num_bytes(leaf, fi,
700 start - key.offset);
224ecce5
JB
701 btrfs_set_file_extent_generation(leaf, fi,
702 trans->transid);
6c7d54ac
YZ
703 path->slots[0]++;
704 new_key.offset = start;
50564b65 705 btrfs_set_item_key_safe(trans, path, &new_key);
6c7d54ac
YZ
706
707 fi = btrfs_item_ptr(leaf, path->slots[0],
708 struct btrfs_file_extent_item);
224ecce5
JB
709 btrfs_set_file_extent_generation(leaf, fi,
710 trans->transid);
6c7d54ac
YZ
711 btrfs_set_file_extent_num_bytes(leaf, fi,
712 other_end - start);
713 btrfs_set_file_extent_offset(leaf, fi,
714 start - orig_offset);
50564b65 715 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac
YZ
716 goto out;
717 }
718 }
d899e052 719
920bbbfb
YZ
720 while (start > key.offset || end < extent_end) {
721 if (key.offset == start)
722 split = end;
723
920bbbfb
YZ
724 new_key.offset = split;
725 ret = btrfs_duplicate_item(trans, root, path, &new_key);
726 if (ret == -EAGAIN) {
b3b4aa74 727 btrfs_release_path(path);
920bbbfb 728 goto again;
d899e052 729 }
79787eaa 730 if (ret < 0) {
66642832 731 btrfs_abort_transaction(trans, ret);
79787eaa
JM
732 goto out;
733 }
d899e052 734
920bbbfb
YZ
735 leaf = path->nodes[0];
736 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 737 struct btrfs_file_extent_item);
224ecce5 738 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 739 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
740 split - key.offset);
741
742 fi = btrfs_item_ptr(leaf, path->slots[0],
743 struct btrfs_file_extent_item);
744
224ecce5 745 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
746 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
747 btrfs_set_file_extent_num_bytes(leaf, fi,
748 extent_end - split);
50564b65 749 btrfs_mark_buffer_dirty(trans, leaf);
d899e052 750
82fa113f 751 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
457cb1dd 752 num_bytes, 0, root->root_key.objectid);
82fa113f 753 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 754 orig_offset, 0, false);
82fa113f 755 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
756 if (ret) {
757 btrfs_abort_transaction(trans, ret);
758 goto out;
759 }
d899e052 760
920bbbfb
YZ
761 if (split == start) {
762 key.offset = start;
763 } else {
9c8e63db
JB
764 if (start != key.offset) {
765 ret = -EINVAL;
766 btrfs_abort_transaction(trans, ret);
767 goto out;
768 }
d899e052 769 path->slots[0]--;
920bbbfb 770 extent_end = end;
d899e052 771 }
6c7d54ac 772 recow = 1;
d899e052
YZ
773 }
774
920bbbfb
YZ
775 other_start = end;
776 other_end = 0;
ffd4bb2a 777 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
457cb1dd 778 num_bytes, 0, root->root_key.objectid);
f42c5da6
NB
779 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
780 0, false);
6c7d54ac 781 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 782 ino, bytenr, orig_offset,
6c7d54ac
YZ
783 &other_start, &other_end)) {
784 if (recow) {
b3b4aa74 785 btrfs_release_path(path);
6c7d54ac
YZ
786 goto again;
787 }
920bbbfb
YZ
788 extent_end = other_end;
789 del_slot = path->slots[0] + 1;
790 del_nr++;
ffd4bb2a 791 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
792 if (ret) {
793 btrfs_abort_transaction(trans, ret);
794 goto out;
795 }
d899e052 796 }
920bbbfb
YZ
797 other_start = 0;
798 other_end = start;
6c7d54ac 799 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 800 ino, bytenr, orig_offset,
6c7d54ac
YZ
801 &other_start, &other_end)) {
802 if (recow) {
b3b4aa74 803 btrfs_release_path(path);
6c7d54ac
YZ
804 goto again;
805 }
920bbbfb
YZ
806 key.offset = other_start;
807 del_slot = path->slots[0];
808 del_nr++;
ffd4bb2a 809 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
810 if (ret) {
811 btrfs_abort_transaction(trans, ret);
812 goto out;
813 }
920bbbfb
YZ
814 }
815 if (del_nr == 0) {
3f6fae95
SL
816 fi = btrfs_item_ptr(leaf, path->slots[0],
817 struct btrfs_file_extent_item);
920bbbfb
YZ
818 btrfs_set_file_extent_type(leaf, fi,
819 BTRFS_FILE_EXTENT_REG);
224ecce5 820 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 821 btrfs_mark_buffer_dirty(trans, leaf);
6c7d54ac 822 } else {
3f6fae95
SL
823 fi = btrfs_item_ptr(leaf, del_slot - 1,
824 struct btrfs_file_extent_item);
6c7d54ac
YZ
825 btrfs_set_file_extent_type(leaf, fi,
826 BTRFS_FILE_EXTENT_REG);
224ecce5 827 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
828 btrfs_set_file_extent_num_bytes(leaf, fi,
829 extent_end - key.offset);
50564b65 830 btrfs_mark_buffer_dirty(trans, leaf);
920bbbfb 831
6c7d54ac 832 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 833 if (ret < 0) {
66642832 834 btrfs_abort_transaction(trans, ret);
79787eaa
JM
835 goto out;
836 }
6c7d54ac 837 }
920bbbfb 838out:
d899e052 839 btrfs_free_path(path);
e7b2ec3d 840 return ret;
d899e052
YZ
841}
842
b1bf862e
CM
843/*
844 * on error we return an unlocked page and the error value
845 * on success we return a locked page and 0
846 */
bb1591b4
CM
847static int prepare_uptodate_page(struct inode *inode,
848 struct page *page, u64 pos,
b6316429 849 bool force_uptodate)
b1bf862e 850{
fb12489b 851 struct folio *folio = page_folio(page);
b1bf862e
CM
852 int ret = 0;
853
09cbfeaf 854 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 855 !PageUptodate(page)) {
fb12489b 856 ret = btrfs_read_folio(NULL, folio);
b1bf862e
CM
857 if (ret)
858 return ret;
859 lock_page(page);
860 if (!PageUptodate(page)) {
861 unlock_page(page);
862 return -EIO;
863 }
e0467866
QW
864
865 /*
fb12489b 866 * Since btrfs_read_folio() will unlock the folio before it
f913cff3 867 * returns, there is a window where btrfs_release_folio() can be
7c11d0ae
QW
868 * called to release the page. Here we check both inode
869 * mapping and PagePrivate() to make sure the page was not
870 * released.
e0467866
QW
871 *
872 * The private flag check is essential for subpage as we need
cfbf07e2 873 * to store extra bitmap using folio private.
e0467866 874 */
cfbf07e2 875 if (page->mapping != inode->i_mapping || !folio_test_private(folio)) {
bb1591b4
CM
876 unlock_page(page);
877 return -EAGAIN;
878 }
b1bf862e
CM
879 }
880 return 0;
881}
882
ffc143db 883static fgf_t get_prepare_fgp_flags(bool nowait)
fc226000 884{
ffc143db 885 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
fc226000
SR
886
887 if (nowait)
888 fgp_flags |= FGP_NOWAIT;
889
890 return fgp_flags;
891}
892
893static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
894{
895 gfp_t gfp;
896
897 gfp = btrfs_alloc_write_mask(inode->i_mapping);
898 if (nowait) {
899 gfp &= ~__GFP_DIRECT_RECLAIM;
900 gfp |= GFP_NOWAIT;
901 }
902
903 return gfp;
904}
905
39279cc3 906/*
376cc685 907 * this just gets pages into the page cache and locks them down.
39279cc3 908 */
b37392ea
MX
909static noinline int prepare_pages(struct inode *inode, struct page **pages,
910 size_t num_pages, loff_t pos,
fc226000
SR
911 size_t write_bytes, bool force_uptodate,
912 bool nowait)
39279cc3
CM
913{
914 int i;
09cbfeaf 915 unsigned long index = pos >> PAGE_SHIFT;
fc226000 916 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
ffc143db 917 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
fc28b62d 918 int err = 0;
376cc685 919 int faili;
8c2383c3 920
39279cc3 921 for (i = 0; i < num_pages; i++) {
bb1591b4 922again:
fc226000
SR
923 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
924 fgp_flags, mask | __GFP_WRITE);
39279cc3 925 if (!pages[i]) {
b1bf862e 926 faili = i - 1;
fc226000
SR
927 if (nowait)
928 err = -EAGAIN;
929 else
930 err = -ENOMEM;
b1bf862e
CM
931 goto fail;
932 }
933
32443de3
QW
934 err = set_page_extent_mapped(pages[i]);
935 if (err < 0) {
936 faili = i;
937 goto fail;
938 }
939
b1bf862e 940 if (i == 0)
bb1591b4 941 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 942 force_uptodate);
bb1591b4
CM
943 if (!err && i == num_pages - 1)
944 err = prepare_uptodate_page(inode, pages[i],
b6316429 945 pos + write_bytes, false);
b1bf862e 946 if (err) {
09cbfeaf 947 put_page(pages[i]);
fc226000 948 if (!nowait && err == -EAGAIN) {
bb1591b4
CM
949 err = 0;
950 goto again;
951 }
b1bf862e
CM
952 faili = i - 1;
953 goto fail;
39279cc3 954 }
ccd467d6 955 wait_on_page_writeback(pages[i]);
39279cc3 956 }
376cc685
MX
957
958 return 0;
959fail:
960 while (faili >= 0) {
961 unlock_page(pages[faili]);
09cbfeaf 962 put_page(pages[faili]);
376cc685
MX
963 faili--;
964 }
965 return err;
966
967}
968
969/*
970 * This function locks the extent and properly waits for data=ordered extents
971 * to finish before allowing the pages to be modified if need.
972 *
973 * The return value:
974 * 1 - the extent is locked
975 * 0 - the extent is not locked, and everything is OK
976 * -EAGAIN - need re-prepare the pages
977 * the other < 0 number - Something wrong happens
978 */
979static noinline int
2cff578c 980lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 981 size_t num_pages, loff_t pos,
2e78c927 982 size_t write_bytes,
2fcab928 983 u64 *lockstart, u64 *lockend, bool nowait,
376cc685
MX
984 struct extent_state **cached_state)
985{
3ffbd68c 986 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
987 u64 start_pos;
988 u64 last_pos;
989 int i;
990 int ret = 0;
991
0b246afa 992 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 993 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 994
e3b8a485 995 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 996 struct btrfs_ordered_extent *ordered;
a7e3b975 997
2fcab928 998 if (nowait) {
83ae4133
JB
999 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
1000 cached_state)) {
2fcab928
SR
1001 for (i = 0; i < num_pages; i++) {
1002 unlock_page(pages[i]);
1003 put_page(pages[i]);
1004 pages[i] = NULL;
1005 }
1006
1007 return -EAGAIN;
1008 }
1009 } else {
1010 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1011 }
1012
b88935bf
MX
1013 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1014 last_pos - start_pos + 1);
e6dcd2dc 1015 if (ordered &&
bffe633e 1016 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1017 ordered->file_offset <= last_pos) {
570eb97b
JB
1018 unlock_extent(&inode->io_tree, start_pos, last_pos,
1019 cached_state);
e6dcd2dc
CM
1020 for (i = 0; i < num_pages; i++) {
1021 unlock_page(pages[i]);
09cbfeaf 1022 put_page(pages[i]);
e6dcd2dc 1023 }
36d45567 1024 btrfs_start_ordered_extent(ordered);
b88935bf
MX
1025 btrfs_put_ordered_extent(ordered);
1026 return -EAGAIN;
e6dcd2dc
CM
1027 }
1028 if (ordered)
1029 btrfs_put_ordered_extent(ordered);
7703bdd8 1030
376cc685
MX
1031 *lockstart = start_pos;
1032 *lockend = last_pos;
1033 ret = 1;
0762704b 1034 }
376cc685 1035
7703bdd8 1036 /*
32443de3
QW
1037 * We should be called after prepare_pages() which should have locked
1038 * all pages in the range.
7703bdd8 1039 */
32443de3 1040 for (i = 0; i < num_pages; i++)
e6dcd2dc 1041 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1042
376cc685 1043 return ret;
39279cc3
CM
1044}
1045
d7a8ab4e
FM
1046/*
1047 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1048 *
1049 * @pos: File offset.
1050 * @write_bytes: The length to write, will be updated to the nocow writeable
1051 * range.
1052 *
1053 * This function will flush ordered extents in the range to ensure proper
1054 * nocow checks.
1055 *
1056 * Return:
1057 * > 0 If we can nocow, and updates @write_bytes.
1058 * 0 If we can't do a nocow write.
1059 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1060 * root is in progress.
1061 * < 0 If an error happened.
1062 *
1063 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1064 */
1065int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
80f9d241 1066 size_t *write_bytes, bool nowait)
7ee9e440 1067{
3ffbd68c 1068 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1069 struct btrfs_root *root = inode->root;
632ddfa2 1070 struct extent_state *cached_state = NULL;
7ee9e440
JB
1071 u64 lockstart, lockend;
1072 u64 num_bytes;
1073 int ret;
1074
38d37aa9
QW
1075 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1076 return 0;
1077
d7a8ab4e 1078 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1079 return -EAGAIN;
8257b2dc 1080
0b246afa 1081 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1082 lockend = round_up(pos + *write_bytes,
0b246afa 1083 fs_info->sectorsize) - 1;
5dbb75ed 1084 num_bytes = lockend - lockstart + 1;
7ee9e440 1085
80f9d241 1086 if (nowait) {
632ddfa2
JB
1087 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1088 &cached_state)) {
80f9d241
JB
1089 btrfs_drew_write_unlock(&root->snapshot_lock);
1090 return -EAGAIN;
1091 }
1092 } else {
632ddfa2
JB
1093 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1094 &cached_state);
80f9d241 1095 }
85b7ab67 1096 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
80f9d241
JB
1097 NULL, NULL, NULL, nowait, false);
1098 if (ret <= 0)
d7a8ab4e 1099 btrfs_drew_write_unlock(&root->snapshot_lock);
80f9d241 1100 else
c933956d
MX
1101 *write_bytes = min_t(size_t, *write_bytes ,
1102 num_bytes - pos + lockstart);
632ddfa2 1103 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
7ee9e440
JB
1104
1105 return ret;
1106}
1107
38d37aa9
QW
1108void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1109{
1110 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1111}
1112
efd34f03
CB
1113static void update_time_for_write(struct inode *inode)
1114{
b1c38a13 1115 struct timespec64 now, ts;
efd34f03
CB
1116
1117 if (IS_NOCMTIME(inode))
1118 return;
1119
1120 now = current_time(inode);
b1c38a13
JL
1121 ts = inode_get_mtime(inode);
1122 if (!timespec64_equal(&ts, &now))
1123 inode_set_mtime_to_ts(inode, now);
efd34f03 1124
b1c38a13
JL
1125 ts = inode_get_ctime(inode);
1126 if (!timespec64_equal(&ts, &now))
efd34f03
CB
1127 inode_set_ctime_to_ts(inode, now);
1128
1129 if (IS_I_VERSION(inode))
1130 inode_inc_iversion(inode);
1131}
1132
b8d8e1fd
GR
1133static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1134 size_t count)
1135{
1136 struct file *file = iocb->ki_filp;
1137 struct inode *inode = file_inode(file);
41044b41 1138 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
b8d8e1fd
GR
1139 loff_t pos = iocb->ki_pos;
1140 int ret;
1141 loff_t oldsize;
1142 loff_t start_pos;
1143
d7a8ab4e
FM
1144 /*
1145 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1146 * prealloc flags, as without those flags we always have to COW. We will
1147 * later check if we can really COW into the target range (using
1148 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1149 */
1150 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1151 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1152 return -EAGAIN;
b8d8e1fd 1153
b8d8e1fd
GR
1154 ret = file_remove_privs(file);
1155 if (ret)
1156 return ret;
1157
1158 /*
1159 * We reserve space for updating the inode when we reserve space for the
1160 * extent we are going to write, so we will enospc out there. We don't
1161 * need to start yet another transaction to update the inode as we will
1162 * update the inode when we finish writing whatever data we write.
1163 */
efd34f03 1164 update_time_for_write(inode);
b8d8e1fd
GR
1165
1166 start_pos = round_down(pos, fs_info->sectorsize);
1167 oldsize = i_size_read(inode);
1168 if (start_pos > oldsize) {
1169 /* Expand hole size to cover write data, preventing empty gap */
1170 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1171
b06359a3 1172 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
0d625446 1173 if (ret)
b8d8e1fd 1174 return ret;
b8d8e1fd
GR
1175 }
1176
1177 return 0;
1178}
1179
e4af400a
GR
1180static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1181 struct iov_iter *i)
4b46fce2 1182{
e4af400a 1183 struct file *file = iocb->ki_filp;
c3523706 1184 loff_t pos;
496ad9aa 1185 struct inode *inode = file_inode(file);
41044b41 1186 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
11c65dcc 1187 struct page **pages = NULL;
364ecf36 1188 struct extent_changeset *data_reserved = NULL;
7ee9e440 1189 u64 release_bytes = 0;
376cc685
MX
1190 u64 lockstart;
1191 u64 lockend;
d0215f3e
JB
1192 size_t num_written = 0;
1193 int nrptrs;
c3523706 1194 ssize_t ret;
7ee9e440 1195 bool only_release_metadata = false;
b6316429 1196 bool force_page_uptodate = false;
5e8b9ef3 1197 loff_t old_isize = i_size_read(inode);
c3523706 1198 unsigned int ilock_flags = 0;
304e45ac 1199 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
965f47ae 1200 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
c3523706 1201
304e45ac 1202 if (nowait)
c3523706
GR
1203 ilock_flags |= BTRFS_ILOCK_TRY;
1204
29b6352b 1205 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1206 if (ret < 0)
1207 return ret;
4b46fce2 1208
c3523706
GR
1209 ret = generic_write_checks(iocb, i);
1210 if (ret <= 0)
1211 goto out;
1212
1213 ret = btrfs_write_check(iocb, i, ret);
1214 if (ret < 0)
1215 goto out;
1216
1217 pos = iocb->ki_pos;
09cbfeaf
KS
1218 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1219 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1220 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1221 nrptrs = max(nrptrs, 8);
31e818fe 1222 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1223 if (!pages) {
1224 ret = -ENOMEM;
1225 goto out;
1226 }
ab93dbec 1227
d0215f3e 1228 while (iov_iter_count(i) > 0) {
c67d970f 1229 struct extent_state *cached_state = NULL;
7073017a 1230 size_t offset = offset_in_page(pos);
2e78c927 1231 size_t sector_offset;
d0215f3e 1232 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1233 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1234 offset);
eefa45f5 1235 size_t num_pages;
7ee9e440 1236 size_t reserve_bytes;
d0215f3e
JB
1237 size_t dirty_pages;
1238 size_t copied;
2e78c927
CR
1239 size_t dirty_sectors;
1240 size_t num_sectors;
79f015f2 1241 int extents_locked;
39279cc3 1242
914ee295
XZ
1243 /*
1244 * Fault pages before locking them in prepare_pages
1245 * to avoid recursive lock
1246 */
a6294593 1247 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1248 ret = -EFAULT;
d0215f3e 1249 break;
914ee295
XZ
1250 }
1251
a0e248bb 1252 only_release_metadata = false;
da17066c 1253 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1254
364ecf36 1255 extent_changeset_release(data_reserved);
36ea6f3e
NB
1256 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1257 &data_reserved, pos,
304e45ac 1258 write_bytes, nowait);
c6887cd1 1259 if (ret < 0) {
80f9d241
JB
1260 int can_nocow;
1261
304e45ac
SR
1262 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1263 ret = -EAGAIN;
1264 break;
1265 }
1266
eefa45f5
GR
1267 /*
1268 * If we don't have to COW at the offset, reserve
1269 * metadata only. write_bytes may get smaller than
1270 * requested here.
1271 */
80f9d241 1272 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
304e45ac 1273 &write_bytes, nowait);
80f9d241
JB
1274 if (can_nocow < 0)
1275 ret = can_nocow;
1276 if (can_nocow > 0)
1277 ret = 0;
1278 if (ret)
c6887cd1 1279 break;
80f9d241 1280 only_release_metadata = true;
c6887cd1 1281 }
1832a6d5 1282
eefa45f5
GR
1283 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1284 WARN_ON(num_pages > nrptrs);
1285 reserve_bytes = round_up(write_bytes + sector_offset,
1286 fs_info->sectorsize);
8b62f87b 1287 WARN_ON(reserve_bytes == 0);
9f3db423 1288 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7 1289 reserve_bytes,
304e45ac 1290 reserve_bytes, nowait);
7ee9e440
JB
1291 if (ret) {
1292 if (!only_release_metadata)
25ce28ca 1293 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1294 data_reserved, pos,
1295 write_bytes);
8257b2dc 1296 else
38d37aa9 1297 btrfs_check_nocow_unlock(BTRFS_I(inode));
a348c8d4
FM
1298
1299 if (nowait && ret == -ENOSPC)
1300 ret = -EAGAIN;
7ee9e440
JB
1301 break;
1302 }
1303
1304 release_bytes = reserve_bytes;
376cc685 1305again:
965f47ae 1306 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
eb81b682
FM
1307 if (ret) {
1308 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
965f47ae 1309 break;
eb81b682 1310 }
965f47ae 1311
4a64001f
JB
1312 /*
1313 * This is going to setup the pages array with the number of
1314 * pages we want, so we don't really need to worry about the
1315 * contents of pages from loop to loop
1316 */
b37392ea 1317 ret = prepare_pages(inode, pages, num_pages,
fc226000 1318 pos, write_bytes, force_page_uptodate, false);
8b62f87b
JB
1319 if (ret) {
1320 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1321 reserve_bytes);
d0215f3e 1322 break;
8b62f87b 1323 }
39279cc3 1324
79f015f2
GR
1325 extents_locked = lock_and_cleanup_extent_if_need(
1326 BTRFS_I(inode), pages,
2cff578c 1327 num_pages, pos, write_bytes, &lockstart,
304e45ac 1328 &lockend, nowait, &cached_state);
79f015f2 1329 if (extents_locked < 0) {
304e45ac 1330 if (!nowait && extents_locked == -EAGAIN)
376cc685 1331 goto again;
304e45ac 1332
8b62f87b 1333 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1334 reserve_bytes);
79f015f2 1335 ret = extents_locked;
376cc685 1336 break;
376cc685
MX
1337 }
1338
ee22f0c4 1339 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1340
0b246afa 1341 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1342 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1343 fs_info->sectorsize);
1344 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1345
b1bf862e
CM
1346 /*
1347 * if we have trouble faulting in the pages, fall
1348 * back to one page at a time
1349 */
1350 if (copied < write_bytes)
1351 nrptrs = 1;
1352
b6316429
JB
1353 if (copied == 0) {
1354 force_page_uptodate = true;
56244ef1 1355 dirty_sectors = 0;
b1bf862e 1356 dirty_pages = 0;
b6316429
JB
1357 } else {
1358 force_page_uptodate = false;
ed6078f7 1359 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1360 PAGE_SIZE);
b6316429 1361 }
914ee295 1362
2e78c927 1363 if (num_sectors > dirty_sectors) {
8b8b08cb 1364 /* release everything except the sectors we dirtied */
265fdfa6 1365 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1366 if (only_release_metadata) {
691fa059 1367 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1368 release_bytes, true);
485290a7
QW
1369 } else {
1370 u64 __pos;
1371
da17066c 1372 __pos = round_down(pos,
0b246afa 1373 fs_info->sectorsize) +
09cbfeaf 1374 (dirty_pages << PAGE_SHIFT);
86d52921 1375 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1376 data_reserved, __pos,
43b18595 1377 release_bytes, true);
485290a7 1378 }
914ee295
XZ
1379 }
1380
2e78c927 1381 release_bytes = round_up(copied + sector_offset,
0b246afa 1382 fs_info->sectorsize);
376cc685 1383
aa8c1a41
GR
1384 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1385 dirty_pages, pos, copied,
1386 &cached_state, only_release_metadata);
c67d970f
FM
1387
1388 /*
1389 * If we have not locked the extent range, because the range's
1390 * start offset is >= i_size, we might still have a non-NULL
1391 * cached extent state, acquired while marking the extent range
1392 * as delalloc through btrfs_dirty_pages(). Therefore free any
1393 * possible cached extent state to avoid a memory leak.
1394 */
79f015f2 1395 if (extents_locked)
570eb97b
JB
1396 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1397 lockend, &cached_state);
c67d970f
FM
1398 else
1399 free_extent_state(cached_state);
1400
8702ba93 1401 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1402 if (ret) {
e4f94347 1403 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1404 break;
f1de9683 1405 }
39279cc3 1406
376cc685 1407 release_bytes = 0;
8257b2dc 1408 if (only_release_metadata)
38d37aa9 1409 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1410
e4f94347 1411 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1412
d0215f3e
JB
1413 cond_resched();
1414
914ee295
XZ
1415 pos += copied;
1416 num_written += copied;
d0215f3e 1417 }
39279cc3 1418
d0215f3e
JB
1419 kfree(pages);
1420
7ee9e440 1421 if (release_bytes) {
8257b2dc 1422 if (only_release_metadata) {
38d37aa9 1423 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1424 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1425 release_bytes, true);
8257b2dc 1426 } else {
86d52921
NB
1427 btrfs_delalloc_release_space(BTRFS_I(inode),
1428 data_reserved,
bc42bda2 1429 round_down(pos, fs_info->sectorsize),
43b18595 1430 release_bytes, true);
8257b2dc 1431 }
7ee9e440
JB
1432 }
1433
364ecf36 1434 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1435 if (num_written > 0) {
1436 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1437 iocb->ki_pos += num_written;
1438 }
c3523706 1439out:
e5d4d75b 1440 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
d0215f3e
JB
1441 return num_written ? num_written : ret;
1442}
1443
4e4cabec
GR
1444static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1445 const struct iov_iter *iter, loff_t offset)
1446{
1447 const u32 blocksize_mask = fs_info->sectorsize - 1;
1448
1449 if (offset & blocksize_mask)
1450 return -EINVAL;
1451
1452 if (iov_iter_alignment(iter) & blocksize_mask)
1453 return -EINVAL;
1454
1455 return 0;
1456}
1457
1458static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1459{
1460 struct file *file = iocb->ki_filp;
728404da 1461 struct inode *inode = file_inode(file);
41044b41 1462 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
c3523706 1463 loff_t pos;
4e4cabec 1464 ssize_t written = 0;
d0215f3e 1465 ssize_t written_buffered;
51bd9563 1466 size_t prev_left = 0;
d0215f3e 1467 loff_t endbyte;
c3523706
GR
1468 ssize_t err;
1469 unsigned int ilock_flags = 0;
8184620a 1470 struct iomap_dio *dio;
c3523706
GR
1471
1472 if (iocb->ki_flags & IOCB_NOWAIT)
1473 ilock_flags |= BTRFS_ILOCK_TRY;
1474
9af86694
BS
1475 /*
1476 * If the write DIO is within EOF, use a shared lock and also only if
1477 * security bits will likely not be dropped by file_remove_privs() called
1478 * from btrfs_write_check(). Either will need to be rechecked after the
1479 * lock was acquired.
1480 */
1481 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
e9adabb9
GR
1482 ilock_flags |= BTRFS_ILOCK_SHARED;
1483
1484relock:
29b6352b 1485 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1486 if (err < 0)
1487 return err;
1488
9af86694
BS
1489 /* Shared lock cannot be used with security bits set. */
1490 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1491 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1492 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1493 goto relock;
1494 }
1495
c3523706
GR
1496 err = generic_write_checks(iocb, from);
1497 if (err <= 0) {
e5d4d75b 1498 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1499 return err;
1500 }
d0215f3e 1501
c3523706
GR
1502 err = btrfs_write_check(iocb, from, err);
1503 if (err < 0) {
e5d4d75b 1504 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1505 goto out;
1506 }
1507
1508 pos = iocb->ki_pos;
e9adabb9
GR
1509 /*
1510 * Re-check since file size may have changed just before taking the
1511 * lock or pos may have changed because of O_APPEND in generic_write_check()
1512 */
1513 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1514 pos + iov_iter_count(from) > i_size_read(inode)) {
e5d4d75b 1515 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
e9adabb9
GR
1516 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1517 goto relock;
1518 }
c3523706
GR
1519
1520 if (check_direct_IO(fs_info, from, pos)) {
e5d4d75b 1521 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
4e4cabec 1522 goto buffered;
c3523706 1523 }
4e4cabec 1524
51bd9563
FM
1525 /*
1526 * The iov_iter can be mapped to the same file range we are writing to.
1527 * If that's the case, then we will deadlock in the iomap code, because
1528 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1529 * an ordered extent, and after that it will fault in the pages that the
1530 * iov_iter refers to. During the fault in we end up in the readahead
1531 * pages code (starting at btrfs_readahead()), which will lock the range,
1532 * find that ordered extent and then wait for it to complete (at
1533 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1534 * obviously the ordered extent can never complete as we didn't submit
1535 * yet the respective bio(s). This always happens when the buffer is
1536 * memory mapped to the same file range, since the iomap DIO code always
1537 * invalidates pages in the target file range (after starting and waiting
1538 * for any writeback).
1539 *
1540 * So here we disable page faults in the iov_iter and then retry if we
1541 * got -EFAULT, faulting in the pages before the retry.
1542 */
51bd9563 1543 from->nofault = true;
8184620a 1544 dio = btrfs_dio_write(iocb, from, written);
51bd9563 1545 from->nofault = false;
d0215f3e 1546
8184620a
FM
1547 /*
1548 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1549 * iocb, and that needs to lock the inode. So unlock it before calling
1550 * iomap_dio_complete() to avoid a deadlock.
1551 */
e5d4d75b 1552 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
8184620a
FM
1553
1554 if (IS_ERR_OR_NULL(dio))
1555 err = PTR_ERR_OR_ZERO(dio);
1556 else
1557 err = iomap_dio_complete(dio);
1558
51bd9563
FM
1559 /* No increment (+=) because iomap returns a cumulative value. */
1560 if (err > 0)
1561 written = err;
1562
1563 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1564 const size_t left = iov_iter_count(from);
1565 /*
1566 * We have more data left to write. Try to fault in as many as
1567 * possible of the remainder pages and retry. We do this without
1568 * releasing and locking again the inode, to prevent races with
1569 * truncate.
1570 *
1571 * Also, in case the iov refers to pages in the file range of the
1572 * file we want to write to (due to a mmap), we could enter an
1573 * infinite loop if we retry after faulting the pages in, since
1574 * iomap will invalidate any pages in the range early on, before
1575 * it tries to fault in the pages of the iov. So we keep track of
1576 * how much was left of iov in the previous EFAULT and fallback
1577 * to buffered IO in case we haven't made any progress.
1578 */
1579 if (left == prev_left) {
1580 err = -ENOTBLK;
1581 } else {
1582 fault_in_iov_iter_readable(from, left);
1583 prev_left = left;
8184620a 1584 goto relock;
51bd9563 1585 }
a42fa643
GR
1586 }
1587
ac5e6669
FM
1588 /*
1589 * If 'err' is -ENOTBLK or we have not written all data, then it means
1590 * we must fallback to buffered IO.
1591 */
51bd9563 1592 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 1593 goto out;
d0215f3e 1594
4e4cabec 1595buffered:
ac5e6669
FM
1596 /*
1597 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1598 * it must retry the operation in a context where blocking is acceptable,
20af93d9
FM
1599 * because even if we end up not blocking during the buffered IO attempt
1600 * below, we will block when flushing and waiting for the IO.
ac5e6669
FM
1601 */
1602 if (iocb->ki_flags & IOCB_NOWAIT) {
1603 err = -EAGAIN;
1604 goto out;
1605 }
1606
e4af400a
GR
1607 pos = iocb->ki_pos;
1608 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1609 if (written_buffered < 0) {
1610 err = written_buffered;
1611 goto out;
39279cc3 1612 }
075bdbdb
FM
1613 /*
1614 * Ensure all data is persisted. We want the next direct IO read to be
1615 * able to read what was just written.
1616 */
d0215f3e 1617 endbyte = pos + written_buffered - 1;
728404da 1618 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1619 if (err)
1620 goto out;
728404da 1621 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1622 if (err)
1623 goto out;
1624 written += written_buffered;
867c4f93 1625 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1626 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1627 endbyte >> PAGE_SHIFT);
39279cc3 1628out:
51bd9563 1629 return err < 0 ? err : written;
d0215f3e 1630}
5b92ee72 1631
7c0c7269
OS
1632static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1633 const struct btrfs_ioctl_encoded_io_args *encoded)
1634{
1635 struct file *file = iocb->ki_filp;
1636 struct inode *inode = file_inode(file);
1637 loff_t count;
1638 ssize_t ret;
1639
29b6352b 1640 btrfs_inode_lock(BTRFS_I(inode), 0);
7c0c7269
OS
1641 count = encoded->len;
1642 ret = generic_write_checks_count(iocb, &count);
1643 if (ret == 0 && count != encoded->len) {
1644 /*
1645 * The write got truncated by generic_write_checks_count(). We
1646 * can't do a partial encoded write.
1647 */
1648 ret = -EFBIG;
1649 }
1650 if (ret || encoded->len == 0)
1651 goto out;
1652
1653 ret = btrfs_write_check(iocb, from, encoded->len);
1654 if (ret < 0)
1655 goto out;
1656
1657 ret = btrfs_do_encoded_write(iocb, from, encoded);
1658out:
e5d4d75b 1659 btrfs_inode_unlock(BTRFS_I(inode), 0);
7c0c7269
OS
1660 return ret;
1661}
1662
1663ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1664 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
1665{
1666 struct file *file = iocb->ki_filp;
14971657 1667 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 1668 ssize_t num_written, num_sync;
d0215f3e 1669
c86537a4
GR
1670 /*
1671 * If the fs flips readonly due to some impossible error, although we
1672 * have opened a file as writable, we have to stop this write operation
1673 * to ensure consistency.
1674 */
84961539 1675 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
1676 return -EROFS;
1677
926078b2 1678 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
91f9943e
CH
1679 return -EOPNOTSUPP;
1680
7c0c7269
OS
1681 if (encoded) {
1682 num_written = btrfs_encoded_write(iocb, from, encoded);
1683 num_sync = encoded->len;
1684 } else if (iocb->ki_flags & IOCB_DIRECT) {
c1867eb3
DS
1685 num_written = btrfs_direct_write(iocb, from);
1686 num_sync = num_written;
7c0c7269 1687 } else {
c1867eb3
DS
1688 num_written = btrfs_buffered_write(iocb, from);
1689 num_sync = num_written;
7c0c7269 1690 }
d0215f3e 1691
bc0939fc
FM
1692 btrfs_set_inode_last_sub_trans(inode);
1693
7c0c7269
OS
1694 if (num_sync > 0) {
1695 num_sync = generic_write_sync(iocb, num_sync);
1696 if (num_sync < 0)
1697 num_written = num_sync;
1698 }
0a3404dc 1699
c3523706 1700 return num_written;
39279cc3
CM
1701}
1702
7c0c7269
OS
1703static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1704{
1705 return btrfs_do_write_iter(iocb, from, NULL);
1706}
1707
d397712b 1708int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1709{
23b5ec74
JB
1710 struct btrfs_file_private *private = filp->private_data;
1711
3c32c721 1712 if (private) {
23b5ec74 1713 kfree(private->filldir_buf);
3c32c721
FM
1714 free_extent_state(private->llseek_cached_state);
1715 kfree(private);
1716 filp->private_data = NULL;
1717 }
23b5ec74 1718
f6dc45c7 1719 /*
1fd4033d
NB
1720 * Set by setattr when we are about to truncate a file from a non-zero
1721 * size to a zero size. This tries to flush down new bytes that may
1722 * have been written if the application were using truncate to replace
1723 * a file in place.
f6dc45c7 1724 */
1fd4033d 1725 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
1726 &BTRFS_I(inode)->runtime_flags))
1727 filemap_flush(inode->i_mapping);
e1b81e67
M
1728 return 0;
1729}
1730
669249ee
FM
1731static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1732{
1733 int ret;
343e4fc1 1734 struct blk_plug plug;
669249ee 1735
343e4fc1
LB
1736 /*
1737 * This is only called in fsync, which would do synchronous writes, so
1738 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1739 * multiple disks using raid profile, a large IO can be split to
1740 * several segments of stripe length (currently 64K).
1741 */
1742 blk_start_plug(&plug);
728404da 1743 ret = btrfs_fdatawrite_range(inode, start, end);
343e4fc1 1744 blk_finish_plug(&plug);
669249ee
FM
1745
1746 return ret;
1747}
1748
626e9f41
FM
1749static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1750{
1751 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1752 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1753
4a4f8fe2 1754 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
626e9f41
FM
1755 list_empty(&ctx->ordered_extents))
1756 return true;
1757
1758 /*
1759 * If we are doing a fast fsync we can not bail out if the inode's
1760 * last_trans is <= then the last committed transaction, because we only
1761 * update the last_trans of the inode during ordered extent completion,
1762 * and for a fast fsync we don't wait for that, we only wait for the
1763 * writeback to complete.
1764 */
0124855f 1765 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
626e9f41
FM
1766 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1767 list_empty(&ctx->ordered_extents)))
1768 return true;
1769
1770 return false;
1771}
1772
d352ac68
CM
1773/*
1774 * fsync call for both files and directories. This logs the inode into
1775 * the tree log instead of forcing full commits whenever possible.
1776 *
1777 * It needs to call filemap_fdatawait so that all ordered extent updates are
1778 * in the metadata btree are up to date for copying to the log.
1779 *
1780 * It drops the inode mutex before doing the tree log commit. This is an
1781 * important optimization for directories because holding the mutex prevents
1782 * new operations on the dir while we write to disk.
1783 */
02c24a82 1784int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1785{
de17e793 1786 struct dentry *dentry = file_dentry(file);
2b0143b5 1787 struct inode *inode = d_inode(dentry);
41044b41 1788 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
39279cc3 1789 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1790 struct btrfs_trans_handle *trans;
8b050d35 1791 struct btrfs_log_ctx ctx;
333427a5 1792 int ret = 0, err;
48778179
FM
1793 u64 len;
1794 bool full_sync;
39279cc3 1795
1abe9b8a 1796 trace_btrfs_sync_file(file, datasync);
257c62e1 1797
ebb70442
LB
1798 btrfs_init_log_ctx(&ctx, inode);
1799
95418ed1 1800 /*
48778179
FM
1801 * Always set the range to a full range, otherwise we can get into
1802 * several problems, from missing file extent items to represent holes
1803 * when not using the NO_HOLES feature, to log tree corruption due to
1804 * races between hole detection during logging and completion of ordered
1805 * extents outside the range, to missing checksums due to ordered extents
1806 * for which we flushed only a subset of their pages.
95418ed1 1807 */
48778179
FM
1808 start = 0;
1809 end = LLONG_MAX;
1810 len = (u64)LLONG_MAX + 1;
95418ed1 1811
90abccf2
MX
1812 /*
1813 * We write the dirty pages in the range and wait until they complete
1814 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1815 * multi-task, and make the performance up. See
1816 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1817 */
669249ee 1818 ret = start_ordered_ops(inode, start, end);
90abccf2 1819 if (ret)
333427a5 1820 goto out;
90abccf2 1821
29b6352b 1822 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
c495144b 1823
2ecb7923 1824 atomic_inc(&root->log_batch);
b5e6c3e1 1825
aab15e8e 1826 /*
885f46d8
FM
1827 * Before we acquired the inode's lock and the mmap lock, someone may
1828 * have dirtied more pages in the target range. We need to make sure
1829 * that writeback for any such pages does not start while we are logging
1830 * the inode, because if it does, any of the following might happen when
1831 * we are not doing a full inode sync:
aab15e8e
FM
1832 *
1833 * 1) We log an extent after its writeback finishes but before its
1834 * checksums are added to the csum tree, leading to -EIO errors
1835 * when attempting to read the extent after a log replay.
1836 *
1837 * 2) We can end up logging an extent before its writeback finishes.
1838 * Therefore after the log replay we will have a file extent item
1839 * pointing to an unwritten extent (and no data checksums as well).
1840 *
1841 * So trigger writeback for any eventual new dirty pages and then we
1842 * wait for all ordered extents to complete below.
1843 */
1844 ret = start_ordered_ops(inode, start, end);
1845 if (ret) {
e5d4d75b 1846 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
aab15e8e
FM
1847 goto out;
1848 }
1849
cef7820d
FM
1850 /*
1851 * Always check for the full sync flag while holding the inode's lock,
1852 * to avoid races with other tasks. The flag must be either set all the
1853 * time during logging or always off all the time while logging.
1854 * We check the flag here after starting delalloc above, because when
1855 * running delalloc the full sync flag may be set if we need to drop
1856 * extra extent map ranges due to temporary memory allocation failures.
1857 */
1858 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1859 &BTRFS_I(inode)->runtime_flags);
1860
669249ee 1861 /*
b5e6c3e1 1862 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 1863 * IO of a lower priority task while holding a transaction open.
ba0b084a 1864 *
48778179
FM
1865 * For a full fsync we wait for the ordered extents to complete while
1866 * for a fast fsync we wait just for writeback to complete, and then
1867 * attach the ordered extents to the transaction so that a transaction
1868 * commit waits for their completion, to avoid data loss if we fsync,
1869 * the current transaction commits before the ordered extents complete
1870 * and a power failure happens right after that.
d8e3fb10
NA
1871 *
1872 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1873 * logical address recorded in the ordered extent may change. We need
1874 * to wait for the IO to stabilize the logical address.
669249ee 1875 */
d8e3fb10 1876 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
1877 ret = btrfs_wait_ordered_range(inode, start, len);
1878 } else {
1879 /*
1880 * Get our ordered extents as soon as possible to avoid doing
1881 * checksum lookups in the csum tree, and use instead the
1882 * checksums attached to the ordered extents.
1883 */
1884 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1885 &ctx.ordered_extents);
1886 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 1887 }
48778179
FM
1888
1889 if (ret)
1890 goto out_release_extents;
1891
2ecb7923 1892 atomic_inc(&root->log_batch);
257c62e1 1893
626e9f41 1894 if (skip_inode_logging(&ctx)) {
5dc562c5 1895 /*
01327610 1896 * We've had everything committed since the last time we were
5dc562c5
JB
1897 * modified so clear this flag in case it was set for whatever
1898 * reason, it's no longer relevant.
1899 */
1900 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1901 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
1902 /*
1903 * An ordered extent might have started before and completed
1904 * already with io errors, in which case the inode was not
1905 * updated and we end up here. So check the inode's mapping
333427a5
JL
1906 * for any errors that might have happened since we last
1907 * checked called fsync.
0596a904 1908 */
333427a5 1909 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 1910 goto out_release_extents;
15ee9bc7 1911 }
15ee9bc7 1912
e383e158
FM
1913 btrfs_init_log_ctx_scratch_eb(&ctx);
1914
5039eddc
JB
1915 /*
1916 * We use start here because we will need to wait on the IO to complete
1917 * in btrfs_sync_log, which could require joining a transaction (for
1918 * example checking cross references in the nocow path). If we use join
1919 * here we could get into a situation where we're waiting on IO to
1920 * happen that is blocked on a transaction trying to commit. With start
1921 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 1922 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
1923 * from thinking they are super smart and changing this to
1924 * btrfs_join_transaction *cough*Josef*cough*.
1925 */
a22285a6
YZ
1926 trans = btrfs_start_transaction(root, 0);
1927 if (IS_ERR(trans)) {
1928 ret = PTR_ERR(trans);
48778179 1929 goto out_release_extents;
39279cc3 1930 }
d0c2f4fa 1931 trans->in_fsync = true;
e02119d5 1932
48778179 1933 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
e383e158
FM
1934 /*
1935 * Scratch eb no longer needed, release before syncing log or commit
1936 * transaction, to avoid holding unnecessary memory during such long
1937 * operations.
1938 */
1939 if (ctx.scratch_eb) {
1940 free_extent_buffer(ctx.scratch_eb);
1941 ctx.scratch_eb = NULL;
1942 }
48778179 1943 btrfs_release_log_ctx_extents(&ctx);
02c24a82 1944 if (ret < 0) {
a0634be5 1945 /* Fallthrough and commit/free transaction. */
f31f09f6 1946 ret = BTRFS_LOG_FORCE_COMMIT;
02c24a82 1947 }
49eb7e46
CM
1948
1949 /* we've logged all the items and now have a consistent
1950 * version of the file in the log. It is possible that
1951 * someone will come in and modify the file, but that's
1952 * fine because the log is consistent on disk, and we
1953 * have references to all of the file's extents
1954 *
1955 * It is possible that someone will come in and log the
1956 * file again, but that will end up using the synchronization
1957 * inside btrfs_sync_log to keep things safe.
1958 */
e5d4d75b 1959 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
49eb7e46 1960
bf7ba8ee
JB
1961 if (ret == BTRFS_NO_LOG_SYNC) {
1962 ret = btrfs_end_transaction(trans);
1963 goto out;
1964 }
1965
1966 /* We successfully logged the inode, attempt to sync the log. */
1967 if (!ret) {
1968 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 1969 if (!ret) {
bf7ba8ee
JB
1970 ret = btrfs_end_transaction(trans);
1971 goto out;
48778179 1972 }
bf7ba8ee
JB
1973 }
1974
1975 /*
1976 * At this point we need to commit the transaction because we had
1977 * btrfs_need_log_full_commit() or some other error.
1978 *
1979 * If we didn't do a full sync we have to stop the trans handle, wait on
1980 * the ordered extents, start it again and commit the transaction. If
1981 * we attempt to wait on the ordered extents here we could deadlock with
1982 * something like fallocate() that is holding the extent lock trying to
1983 * start a transaction while some other thread is trying to commit the
1984 * transaction while we (fsync) are currently holding the transaction
1985 * open.
1986 */
1987 if (!full_sync) {
3a45bb20 1988 ret = btrfs_end_transaction(trans);
bf7ba8ee
JB
1989 if (ret)
1990 goto out;
1991 ret = btrfs_wait_ordered_range(inode, start, len);
1992 if (ret)
1993 goto out;
1994
1995 /*
1996 * This is safe to use here because we're only interested in
1997 * making sure the transaction that had the ordered extents is
1998 * committed. We aren't waiting on anything past this point,
1999 * we're purely getting the transaction and committing it.
2000 */
2001 trans = btrfs_attach_transaction_barrier(root);
2002 if (IS_ERR(trans)) {
2003 ret = PTR_ERR(trans);
2004
2005 /*
2006 * We committed the transaction and there's no currently
2007 * running transaction, this means everything we care
2008 * about made it to disk and we are done.
2009 */
2010 if (ret == -ENOENT)
2011 ret = 0;
2012 goto out;
2013 }
e02119d5 2014 }
bf7ba8ee
JB
2015
2016 ret = btrfs_commit_transaction(trans);
39279cc3 2017out:
e383e158 2018 free_extent_buffer(ctx.scratch_eb);
ebb70442 2019 ASSERT(list_empty(&ctx.list));
e09d94c9 2020 ASSERT(list_empty(&ctx.conflict_inodes));
333427a5
JL
2021 err = file_check_and_advance_wb_err(file);
2022 if (!ret)
2023 ret = err;
014e4ac4 2024 return ret > 0 ? -EIO : ret;
48778179
FM
2025
2026out_release_extents:
2027 btrfs_release_log_ctx_extents(&ctx);
e5d4d75b 2028 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
48778179 2029 goto out;
39279cc3
CM
2030}
2031
f0f37e2f 2032static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2033 .fault = filemap_fault,
f1820361 2034 .map_pages = filemap_map_pages,
9ebefb18
CM
2035 .page_mkwrite = btrfs_page_mkwrite,
2036};
2037
2038static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2039{
058a457e
MX
2040 struct address_space *mapping = filp->f_mapping;
2041
7e0a1265 2042 if (!mapping->a_ops->read_folio)
058a457e
MX
2043 return -ENOEXEC;
2044
9ebefb18 2045 file_accessed(filp);
058a457e 2046 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2047
9ebefb18
CM
2048 return 0;
2049}
2050
35339c24 2051static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2052 int slot, u64 start, u64 end)
2053{
2054 struct btrfs_file_extent_item *fi;
2055 struct btrfs_key key;
2056
2057 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2058 return 0;
2059
2060 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2061 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2062 key.type != BTRFS_EXTENT_DATA_KEY)
2063 return 0;
2064
2065 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2066
2067 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2068 return 0;
2069
2070 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2071 return 0;
2072
2073 if (key.offset == end)
2074 return 1;
2075 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2076 return 1;
2077 return 0;
2078}
2079
a012a74e
NB
2080static int fill_holes(struct btrfs_trans_handle *trans,
2081 struct btrfs_inode *inode,
2082 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2083{
3ffbd68c 2084 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2085 struct btrfs_root *root = inode->root;
2aaa6655
JB
2086 struct extent_buffer *leaf;
2087 struct btrfs_file_extent_item *fi;
2088 struct extent_map *hole_em;
2aaa6655
JB
2089 struct btrfs_key key;
2090 int ret;
2091
0b246afa 2092 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2093 goto out;
2094
a012a74e 2095 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2096 key.type = BTRFS_EXTENT_DATA_KEY;
2097 key.offset = offset;
2098
2aaa6655 2099 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2100 if (ret <= 0) {
2101 /*
2102 * We should have dropped this offset, so if we find it then
2103 * something has gone horribly wrong.
2104 */
2105 if (ret == 0)
2106 ret = -EINVAL;
2aaa6655 2107 return ret;
f94480bd 2108 }
2aaa6655
JB
2109
2110 leaf = path->nodes[0];
a012a74e 2111 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2112 u64 num_bytes;
2113
2114 path->slots[0]--;
2115 fi = btrfs_item_ptr(leaf, path->slots[0],
2116 struct btrfs_file_extent_item);
2117 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2118 end - offset;
2119 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2120 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2121 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2122 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 2123 btrfs_mark_buffer_dirty(trans, leaf);
2aaa6655
JB
2124 goto out;
2125 }
2126
1707e26d 2127 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2128 u64 num_bytes;
2129
2aaa6655 2130 key.offset = offset;
50564b65 2131 btrfs_set_item_key_safe(trans, path, &key);
2aaa6655
JB
2132 fi = btrfs_item_ptr(leaf, path->slots[0],
2133 struct btrfs_file_extent_item);
2134 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2135 offset;
2136 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2137 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2138 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2139 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
50564b65 2140 btrfs_mark_buffer_dirty(trans, leaf);
2aaa6655
JB
2141 goto out;
2142 }
2143 btrfs_release_path(path);
2144
d1f68ba0
OS
2145 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2146 end - offset);
2aaa6655
JB
2147 if (ret)
2148 return ret;
2149
2150out:
2151 btrfs_release_path(path);
2152
2153 hole_em = alloc_extent_map();
2154 if (!hole_em) {
4c0c8cfc 2155 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
23e3337f 2156 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2157 } else {
2158 hole_em->start = offset;
2159 hole_em->len = end - offset;
cc95bef6 2160 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2161 hole_em->orig_start = offset;
2162
2163 hole_em->block_start = EXTENT_MAP_HOLE;
2164 hole_em->block_len = 0;
b4939680 2165 hole_em->orig_block_len = 0;
2aaa6655
JB
2166 hole_em->generation = trans->transid;
2167
a1ba4c08 2168 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2aaa6655
JB
2169 free_extent_map(hole_em);
2170 if (ret)
23e3337f 2171 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2172 }
2173
2174 return 0;
2175}
2176
d7781546
QW
2177/*
2178 * Find a hole extent on given inode and change start/len to the end of hole
2179 * extent.(hole/vacuum extent whose em->start <= start &&
2180 * em->start + em->len > start)
2181 * When a hole extent is found, return 1 and modify start/len.
2182 */
dea46d84 2183static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2184{
dea46d84 2185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2186 struct extent_map *em;
2187 int ret = 0;
2188
8bab0a30 2189 em = btrfs_get_extent(inode, NULL,
609805d8 2190 round_down(*start, fs_info->sectorsize),
39b07b5d 2191 round_up(*len, fs_info->sectorsize));
9986277e
DC
2192 if (IS_ERR(em))
2193 return PTR_ERR(em);
d7781546
QW
2194
2195 /* Hole or vacuum extent(only exists in no-hole mode) */
2196 if (em->block_start == EXTENT_MAP_HOLE) {
2197 ret = 1;
2198 *len = em->start + em->len > *start + *len ?
2199 0 : *start + *len - em->start - em->len;
2200 *start = em->start + em->len;
2201 }
2202 free_extent_map(em);
2203 return ret;
2204}
2205
55961c8a
FM
2206static void btrfs_punch_hole_lock_range(struct inode *inode,
2207 const u64 lockstart,
2208 const u64 lockend,
2209 struct extent_state **cached_state)
f27451f2 2210{
0528476b
QW
2211 /*
2212 * For subpage case, if the range is not at page boundary, we could
2213 * have pages at the leading/tailing part of the range.
2214 * This could lead to dead loop since filemap_range_has_page()
2215 * will always return true.
2216 * So here we need to do extra page alignment for
2217 * filemap_range_has_page().
2218 */
2219 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2220 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2221
f27451f2 2222 while (1) {
f27451f2
FM
2223 truncate_pagecache_range(inode, lockstart, lockend);
2224
570eb97b
JB
2225 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2226 cached_state);
f27451f2 2227 /*
55961c8a
FM
2228 * We can't have ordered extents in the range, nor dirty/writeback
2229 * pages, because we have locked the inode's VFS lock in exclusive
2230 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2231 * we have flushed all delalloc in the range and we have waited
2232 * for any ordered extents in the range to complete.
2233 * We can race with anyone reading pages from this range, so after
2234 * locking the range check if we have pages in the range, and if
2235 * we do, unlock the range and retry.
f27451f2 2236 */
55961c8a
FM
2237 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2238 page_lockend))
f27451f2 2239 break;
55961c8a 2240
570eb97b
JB
2241 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2242 cached_state);
f27451f2 2243 }
63c34cb4
FM
2244
2245 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
f27451f2
FM
2246}
2247
0cbb5bdf 2248static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2249 struct btrfs_inode *inode,
690a5dbf 2250 struct btrfs_path *path,
bf385648 2251 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2252 const u64 replace_len,
2253 const u64 bytes_to_drop)
690a5dbf 2254{
03fcb1ab
NB
2255 struct btrfs_fs_info *fs_info = trans->fs_info;
2256 struct btrfs_root *root = inode->root;
690a5dbf
FM
2257 struct btrfs_file_extent_item *extent;
2258 struct extent_buffer *leaf;
2259 struct btrfs_key key;
2260 int slot;
2261 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2262 int ret;
2263
bf385648 2264 if (replace_len == 0)
690a5dbf
FM
2265 return 0;
2266
bf385648 2267 if (extent_info->disk_offset == 0 &&
2766ff61 2268 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2269 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2270 return 0;
2766ff61 2271 }
690a5dbf 2272
03fcb1ab 2273 key.objectid = btrfs_ino(inode);
690a5dbf 2274 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2275 key.offset = extent_info->file_offset;
690a5dbf 2276 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2277 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2278 if (ret)
2279 return ret;
2280 leaf = path->nodes[0];
2281 slot = path->slots[0];
bf385648 2282 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2283 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2284 sizeof(struct btrfs_file_extent_item));
690a5dbf 2285 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2286 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2287 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2288 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2289 if (extent_info->is_new_extent)
8fccebfa 2290 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
50564b65 2291 btrfs_mark_buffer_dirty(trans, leaf);
690a5dbf
FM
2292 btrfs_release_path(path);
2293
03fcb1ab
NB
2294 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2295 replace_len);
9ddc959e
JB
2296 if (ret)
2297 return ret;
2298
690a5dbf 2299 /* If it's a hole, nothing more needs to be done. */
2766ff61 2300 if (extent_info->disk_offset == 0) {
03fcb1ab 2301 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2302 return 0;
2766ff61 2303 }
690a5dbf 2304
03fcb1ab 2305 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2306
bf385648
FM
2307 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2308 key.objectid = extent_info->disk_offset;
8fccebfa 2309 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2310 key.offset = extent_info->disk_len;
8fccebfa 2311 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2312 btrfs_ino(inode),
bf385648
FM
2313 extent_info->file_offset,
2314 extent_info->qgroup_reserved,
8fccebfa
FM
2315 &key);
2316 } else {
2317 u64 ref_offset;
2318
2319 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648 2320 extent_info->disk_offset,
457cb1dd
BB
2321 extent_info->disk_len, 0,
2322 root->root_key.objectid);
bf385648 2323 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2324 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2325 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2326 ret = btrfs_inc_extent_ref(trans, &ref);
2327 }
2328
bf385648 2329 extent_info->insertions++;
690a5dbf
FM
2330
2331 return ret;
2332}
2333
9cba40a6
FM
2334/*
2335 * The respective range must have been previously locked, as well as the inode.
2336 * The end offset is inclusive (last byte of the range).
bf385648
FM
2337 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2338 * the file range with an extent.
2339 * When not punching a hole, we don't want to end up in a state where we dropped
2340 * extents without inserting a new one, so we must abort the transaction to avoid
2341 * a corruption.
9cba40a6 2342 */
bfc78479
NB
2343int btrfs_replace_file_extents(struct btrfs_inode *inode,
2344 struct btrfs_path *path, const u64 start,
2345 const u64 end,
2346 struct btrfs_replace_extent_info *extent_info,
2347 struct btrfs_trans_handle **trans_out)
9cba40a6 2348{
5893dfb9 2349 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2350 struct btrfs_root *root = inode->root;
2351 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2352 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2353 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2354 struct btrfs_trans_handle *trans = NULL;
2355 struct btrfs_block_rsv *rsv;
2356 unsigned int rsv_count;
2357 u64 cur_offset;
9cba40a6
FM
2358 u64 len = end - start;
2359 int ret = 0;
2360
2361 if (end <= start)
2362 return -EINVAL;
2363
2364 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2365 if (!rsv) {
2366 ret = -ENOMEM;
2367 goto out;
2368 }
2bd36e7b 2369 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
710d5921 2370 rsv->failfast = true;
9cba40a6
FM
2371
2372 /*
2373 * 1 - update the inode
2374 * 1 - removing the extents in the range
bf385648
FM
2375 * 1 - adding the hole extent if no_holes isn't set or if we are
2376 * replacing the range with a new extent
9cba40a6 2377 */
bf385648 2378 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2379 rsv_count = 3;
2380 else
2381 rsv_count = 2;
2382
9cba40a6
FM
2383 trans = btrfs_start_transaction(root, rsv_count);
2384 if (IS_ERR(trans)) {
2385 ret = PTR_ERR(trans);
2386 trans = NULL;
2387 goto out_free;
2388 }
2389
2390 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2391 min_size, false);
650c9cab
FM
2392 if (WARN_ON(ret))
2393 goto out_trans;
9cba40a6
FM
2394 trans->block_rsv = rsv;
2395
2396 cur_offset = start;
5893dfb9
FM
2397 drop_args.path = path;
2398 drop_args.end = end + 1;
2399 drop_args.drop_cache = true;
9cba40a6 2400 while (cur_offset < end) {
5893dfb9 2401 drop_args.start = cur_offset;
bfc78479 2402 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2403 /* If we are punching a hole decrement the inode's byte count */
2404 if (!extent_info)
bfc78479 2405 btrfs_update_inode_bytes(inode, 0,
2766ff61 2406 drop_args.bytes_found);
690a5dbf
FM
2407 if (ret != -ENOSPC) {
2408 /*
4afb912f
JB
2409 * The only time we don't want to abort is if we are
2410 * attempting to clone a partial inline extent, in which
2411 * case we'll get EOPNOTSUPP. However if we aren't
2412 * clone we need to abort no matter what, because if we
2413 * got EOPNOTSUPP via prealloc then we messed up and
2414 * need to abort.
690a5dbf 2415 */
4afb912f
JB
2416 if (ret &&
2417 (ret != -EOPNOTSUPP ||
2418 (extent_info && extent_info->is_new_extent)))
690a5dbf 2419 btrfs_abort_transaction(trans, ret);
9cba40a6 2420 break;
690a5dbf 2421 }
9cba40a6
FM
2422
2423 trans->block_rsv = &fs_info->trans_block_rsv;
2424
5893dfb9 2425 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2426 cur_offset < ino_size) {
bfc78479
NB
2427 ret = fill_holes(trans, inode, path, cur_offset,
2428 drop_args.drop_end);
9cba40a6
FM
2429 if (ret) {
2430 /*
2431 * If we failed then we didn't insert our hole
2432 * entries for the area we dropped, so now the
2433 * fs is corrupted, so we must abort the
2434 * transaction.
2435 */
2436 btrfs_abort_transaction(trans, ret);
2437 break;
2438 }
5893dfb9 2439 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2440 /*
2441 * We are past the i_size here, but since we didn't
2442 * insert holes we need to clear the mapped area so we
2443 * know to not set disk_i_size in this area until a new
2444 * file extent is inserted here.
2445 */
bfc78479 2446 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2447 cur_offset,
2448 drop_args.drop_end - cur_offset);
9ddc959e
JB
2449 if (ret) {
2450 /*
2451 * We couldn't clear our area, so we could
2452 * presumably adjust up and corrupt the fs, so
2453 * we need to abort.
2454 */
2455 btrfs_abort_transaction(trans, ret);
2456 break;
2457 }
9cba40a6
FM
2458 }
2459
5893dfb9
FM
2460 if (extent_info &&
2461 drop_args.drop_end > extent_info->file_offset) {
2462 u64 replace_len = drop_args.drop_end -
2463 extent_info->file_offset;
690a5dbf 2464
bfc78479
NB
2465 ret = btrfs_insert_replace_extent(trans, inode, path,
2466 extent_info, replace_len,
03fcb1ab 2467 drop_args.bytes_found);
690a5dbf
FM
2468 if (ret) {
2469 btrfs_abort_transaction(trans, ret);
2470 break;
2471 }
bf385648
FM
2472 extent_info->data_len -= replace_len;
2473 extent_info->data_offset += replace_len;
2474 extent_info->file_offset += replace_len;
690a5dbf
FM
2475 }
2476
983d8209
FM
2477 /*
2478 * We are releasing our handle on the transaction, balance the
2479 * dirty pages of the btree inode and flush delayed items, and
2480 * then get a new transaction handle, which may now point to a
2481 * new transaction in case someone else may have committed the
2482 * transaction we used to replace/drop file extent items. So
2483 * bump the inode's iversion and update mtime and ctime except
2484 * if we are called from a dedupe context. This is because a
2485 * power failure/crash may happen after the transaction is
2486 * committed and before we finish replacing/dropping all the
2487 * file extent items we need.
2488 */
2489 inode_inc_iversion(&inode->vfs_inode);
2490
2a9462de 2491 if (!extent_info || extent_info->update_times)
b1c38a13
JL
2492 inode_set_mtime_to_ts(&inode->vfs_inode,
2493 inode_set_ctime_current(&inode->vfs_inode));
983d8209 2494
8b9d0322 2495 ret = btrfs_update_inode(trans, inode);
9cba40a6
FM
2496 if (ret)
2497 break;
2498
2499 btrfs_end_transaction(trans);
2500 btrfs_btree_balance_dirty(fs_info);
2501
2502 trans = btrfs_start_transaction(root, rsv_count);
2503 if (IS_ERR(trans)) {
2504 ret = PTR_ERR(trans);
2505 trans = NULL;
2506 break;
2507 }
2508
2509 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2510 rsv, min_size, false);
650c9cab
FM
2511 if (WARN_ON(ret))
2512 break;
9cba40a6
FM
2513 trans->block_rsv = rsv;
2514
3227788c
BC
2515 cur_offset = drop_args.drop_end;
2516 len = end - cur_offset;
2517 if (!extent_info && len) {
bfc78479 2518 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2519 if (unlikely(ret < 0))
2520 break;
2521 if (ret && !len) {
2522 ret = 0;
2523 break;
2524 }
9cba40a6
FM
2525 }
2526 }
2527
690a5dbf
FM
2528 /*
2529 * If we were cloning, force the next fsync to be a full one since we
2530 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2531 * NO_HOLES is enabled) file extent items and did not setup new extent
2532 * maps for the replacement extents (or holes).
690a5dbf 2533 */
bf385648 2534 if (extent_info && !extent_info->is_new_extent)
23e3337f 2535 btrfs_set_inode_full_sync(inode);
690a5dbf 2536
9cba40a6
FM
2537 if (ret)
2538 goto out_trans;
2539
2540 trans->block_rsv = &fs_info->trans_block_rsv;
2541 /*
2542 * If we are using the NO_HOLES feature we might have had already an
2543 * hole that overlaps a part of the region [lockstart, lockend] and
2544 * ends at (or beyond) lockend. Since we have no file extent items to
2545 * represent holes, drop_end can be less than lockend and so we must
2546 * make sure we have an extent map representing the existing hole (the
2547 * call to __btrfs_drop_extents() might have dropped the existing extent
2548 * map representing the existing hole), otherwise the fast fsync path
2549 * will not record the existence of the hole region
2550 * [existing_hole_start, lockend].
2551 */
5893dfb9
FM
2552 if (drop_args.drop_end <= end)
2553 drop_args.drop_end = end + 1;
9cba40a6
FM
2554 /*
2555 * Don't insert file hole extent item if it's for a range beyond eof
2556 * (because it's useless) or if it represents a 0 bytes range (when
2557 * cur_offset == drop_end).
2558 */
5893dfb9
FM
2559 if (!extent_info && cur_offset < ino_size &&
2560 cur_offset < drop_args.drop_end) {
bfc78479
NB
2561 ret = fill_holes(trans, inode, path, cur_offset,
2562 drop_args.drop_end);
9cba40a6
FM
2563 if (ret) {
2564 /* Same comment as above. */
2565 btrfs_abort_transaction(trans, ret);
2566 goto out_trans;
2567 }
5893dfb9 2568 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2569 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2570 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2571 drop_args.drop_end - cur_offset);
9ddc959e
JB
2572 if (ret) {
2573 btrfs_abort_transaction(trans, ret);
2574 goto out_trans;
2575 }
2576
9cba40a6 2577 }
bf385648 2578 if (extent_info) {
bfc78479 2579 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2580 extent_info, extent_info->data_len,
2581 drop_args.bytes_found);
690a5dbf
FM
2582 if (ret) {
2583 btrfs_abort_transaction(trans, ret);
2584 goto out_trans;
2585 }
2586 }
9cba40a6
FM
2587
2588out_trans:
2589 if (!trans)
2590 goto out_free;
2591
2592 trans->block_rsv = &fs_info->trans_block_rsv;
2593 if (ret)
2594 btrfs_end_transaction(trans);
2595 else
2596 *trans_out = trans;
2597out_free:
2598 btrfs_free_block_rsv(fs_info, rsv);
2599out:
2600 return ret;
2601}
2602
05fd9564 2603static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2604{
05fd9564 2605 struct inode *inode = file_inode(file);
41044b41 2606 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2aaa6655
JB
2607 struct btrfs_root *root = BTRFS_I(inode)->root;
2608 struct extent_state *cached_state = NULL;
2609 struct btrfs_path *path;
9cba40a6 2610 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2611 u64 lockstart;
2612 u64 lockend;
2613 u64 tail_start;
2614 u64 tail_len;
2615 u64 orig_start = offset;
2aaa6655 2616 int ret = 0;
9703fefe 2617 bool same_block;
a1a50f60 2618 u64 ino_size;
9703fefe 2619 bool truncated_block = false;
e8c1c76e 2620 bool updated_inode = false;
2aaa6655 2621
29b6352b 2622 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
bd6526d0 2623
0ef8b726
JB
2624 ret = btrfs_wait_ordered_range(inode, offset, len);
2625 if (ret)
bd6526d0 2626 goto out_only_mutex;
2aaa6655 2627
0b246afa 2628 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2629 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2630 if (ret < 0)
2631 goto out_only_mutex;
2632 if (ret && !len) {
2633 /* Already in a large hole */
2634 ret = 0;
2635 goto out_only_mutex;
2636 }
2637
05fd9564
DW
2638 ret = file_modified(file);
2639 if (ret)
2640 goto out_only_mutex;
2641
ee8ba05c
JB
2642 lockstart = round_up(offset, fs_info->sectorsize);
2643 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
0b246afa
JM
2644 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2645 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2646 /*
9703fefe 2647 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2648 * because we are sure there is no data there.
2649 */
2aaa6655 2650 /*
9703fefe
CR
2651 * Only do this if we are in the same block and we aren't doing the
2652 * entire block.
2aaa6655 2653 */
0b246afa 2654 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2655 if (offset < ino_size) {
9703fefe 2656 truncated_block = true;
217f42eb
NB
2657 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2658 0);
e8c1c76e
FM
2659 } else {
2660 ret = 0;
2661 }
d7781546 2662 goto out_only_mutex;
2aaa6655
JB
2663 }
2664
9703fefe 2665 /* zero back part of the first block */
12870f1c 2666 if (offset < ino_size) {
9703fefe 2667 truncated_block = true;
217f42eb 2668 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2669 if (ret) {
e5d4d75b 2670 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
7426cc04
MX
2671 return ret;
2672 }
2aaa6655
JB
2673 }
2674
d7781546
QW
2675 /* Check the aligned pages after the first unaligned page,
2676 * if offset != orig_start, which means the first unaligned page
01327610 2677 * including several following pages are already in holes,
d7781546
QW
2678 * the extra check can be skipped */
2679 if (offset == orig_start) {
2680 /* after truncate page, check hole again */
2681 len = offset + len - lockstart;
2682 offset = lockstart;
dea46d84 2683 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2684 if (ret < 0)
2685 goto out_only_mutex;
2686 if (ret && !len) {
2687 ret = 0;
2688 goto out_only_mutex;
2689 }
2690 lockstart = offset;
2691 }
2692
2693 /* Check the tail unaligned part is in a hole */
2694 tail_start = lockend + 1;
2695 tail_len = offset + len - tail_start;
2696 if (tail_len) {
dea46d84 2697 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2698 if (unlikely(ret < 0))
2699 goto out_only_mutex;
2700 if (!ret) {
2701 /* zero the front end of the last page */
2702 if (tail_start + tail_len < ino_size) {
9703fefe 2703 truncated_block = true;
217f42eb 2704 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2705 tail_start + tail_len,
2706 0, 1);
d7781546
QW
2707 if (ret)
2708 goto out_only_mutex;
51f395ad 2709 }
0061280d 2710 }
2aaa6655
JB
2711 }
2712
2713 if (lockend < lockstart) {
e8c1c76e
FM
2714 ret = 0;
2715 goto out_only_mutex;
2aaa6655
JB
2716 }
2717
55961c8a 2718 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2aaa6655
JB
2719
2720 path = btrfs_alloc_path();
2721 if (!path) {
2722 ret = -ENOMEM;
2723 goto out;
2724 }
2725
bfc78479
NB
2726 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2727 lockend, NULL, &trans);
9cba40a6
FM
2728 btrfs_free_path(path);
2729 if (ret)
2730 goto out;
2aaa6655 2731
9cba40a6 2732 ASSERT(trans != NULL);
e1f5790e 2733 inode_inc_iversion(inode);
b1c38a13 2734 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
8b9d0322 2735 ret = btrfs_update_inode(trans, BTRFS_I(inode));
e8c1c76e 2736 updated_inode = true;
3a45bb20 2737 btrfs_end_transaction(trans);
2ff7e61e 2738 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2739out:
570eb97b
JB
2740 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2741 &cached_state);
d7781546 2742out_only_mutex:
9cba40a6 2743 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2744 /*
2745 * If we only end up zeroing part of a page, we still need to
2746 * update the inode item, so that all the time fields are
2747 * updated as well as the necessary btrfs inode in memory fields
2748 * for detecting, at fsync time, if the inode isn't yet in the
2749 * log tree or it's there but not up to date.
2750 */
2a9462de 2751 struct timespec64 now = inode_set_ctime_current(inode);
17900668
FM
2752
2753 inode_inc_iversion(inode);
b1c38a13 2754 inode_set_mtime_to_ts(inode, now);
e8c1c76e
FM
2755 trans = btrfs_start_transaction(root, 1);
2756 if (IS_ERR(trans)) {
9cba40a6 2757 ret = PTR_ERR(trans);
e8c1c76e 2758 } else {
9cba40a6
FM
2759 int ret2;
2760
8b9d0322 2761 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9cba40a6
FM
2762 ret2 = btrfs_end_transaction(trans);
2763 if (!ret)
2764 ret = ret2;
e8c1c76e
FM
2765 }
2766 }
e5d4d75b 2767 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
9cba40a6 2768 return ret;
2aaa6655
JB
2769}
2770
14524a84
QW
2771/* Helper structure to record which range is already reserved */
2772struct falloc_range {
2773 struct list_head list;
2774 u64 start;
2775 u64 len;
2776};
2777
2778/*
2779 * Helper function to add falloc range
2780 *
2781 * Caller should have locked the larger range of extent containing
2782 * [start, len)
2783 */
2784static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2785{
14524a84
QW
2786 struct falloc_range *range = NULL;
2787
77d25534
NB
2788 if (!list_empty(head)) {
2789 /*
2790 * As fallocate iterates by bytenr order, we only need to check
2791 * the last range.
2792 */
2793 range = list_last_entry(head, struct falloc_range, list);
2794 if (range->start + range->len == start) {
2795 range->len += len;
2796 return 0;
2797 }
14524a84 2798 }
77d25534 2799
32fc932e 2800 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2801 if (!range)
2802 return -ENOMEM;
2803 range->start = start;
2804 range->len = len;
2805 list_add_tail(&range->list, head);
2806 return 0;
2807}
2808
f27451f2
FM
2809static int btrfs_fallocate_update_isize(struct inode *inode,
2810 const u64 end,
2811 const int mode)
2812{
2813 struct btrfs_trans_handle *trans;
2814 struct btrfs_root *root = BTRFS_I(inode)->root;
2815 int ret;
2816 int ret2;
2817
2818 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2819 return 0;
2820
2821 trans = btrfs_start_transaction(root, 1);
2822 if (IS_ERR(trans))
2823 return PTR_ERR(trans);
2824
2a9462de 2825 inode_set_ctime_current(inode);
f27451f2 2826 i_size_write(inode, end);
76aea537 2827 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8b9d0322 2828 ret = btrfs_update_inode(trans, BTRFS_I(inode));
f27451f2
FM
2829 ret2 = btrfs_end_transaction(trans);
2830
2831 return ret ? ret : ret2;
2832}
2833
81fdf638 2834enum {
f262fa8d
DS
2835 RANGE_BOUNDARY_WRITTEN_EXTENT,
2836 RANGE_BOUNDARY_PREALLOC_EXTENT,
2837 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2838};
2839
948dfeb8 2840static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
2841 u64 offset)
2842{
ee8ba05c 2843 const u64 sectorsize = inode->root->fs_info->sectorsize;
f27451f2 2844 struct extent_map *em;
81fdf638 2845 int ret;
f27451f2
FM
2846
2847 offset = round_down(offset, sectorsize);
8bab0a30 2848 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
f27451f2
FM
2849 if (IS_ERR(em))
2850 return PTR_ERR(em);
2851
2852 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638 2853 ret = RANGE_BOUNDARY_HOLE;
f86f7a75 2854 else if (em->flags & EXTENT_FLAG_PREALLOC)
81fdf638
FM
2855 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2856 else
2857 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2858
2859 free_extent_map(em);
2860 return ret;
2861}
2862
2863static int btrfs_zero_range(struct inode *inode,
2864 loff_t offset,
2865 loff_t len,
2866 const int mode)
2867{
2868 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2869 struct extent_map *em;
2870 struct extent_changeset *data_reserved = NULL;
2871 int ret;
2872 u64 alloc_hint = 0;
ee8ba05c 2873 const u64 sectorsize = fs_info->sectorsize;
f27451f2
FM
2874 u64 alloc_start = round_down(offset, sectorsize);
2875 u64 alloc_end = round_up(offset + len, sectorsize);
2876 u64 bytes_to_reserve = 0;
2877 bool space_reserved = false;
2878
8bab0a30 2879 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
39b07b5d 2880 alloc_end - alloc_start);
f27451f2
FM
2881 if (IS_ERR(em)) {
2882 ret = PTR_ERR(em);
2883 goto out;
2884 }
2885
2886 /*
2887 * Avoid hole punching and extent allocation for some cases. More cases
2888 * could be considered, but these are unlikely common and we keep things
2889 * as simple as possible for now. Also, intentionally, if the target
2890 * range contains one or more prealloc extents together with regular
2891 * extents and holes, we drop all the existing extents and allocate a
2892 * new prealloc extent, so that we get a larger contiguous disk extent.
2893 */
f86f7a75 2894 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
f27451f2
FM
2895 const u64 em_end = em->start + em->len;
2896
2897 if (em_end >= offset + len) {
2898 /*
2899 * The whole range is already a prealloc extent,
2900 * do nothing except updating the inode's i_size if
2901 * needed.
2902 */
2903 free_extent_map(em);
2904 ret = btrfs_fallocate_update_isize(inode, offset + len,
2905 mode);
2906 goto out;
2907 }
2908 /*
2909 * Part of the range is already a prealloc extent, so operate
2910 * only on the remaining part of the range.
2911 */
2912 alloc_start = em_end;
2913 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2914 len = offset + len - alloc_start;
2915 offset = alloc_start;
2916 alloc_hint = em->block_start + em->len;
2917 }
2918 free_extent_map(em);
2919
2920 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2921 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
8bab0a30 2922 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
f27451f2
FM
2923 if (IS_ERR(em)) {
2924 ret = PTR_ERR(em);
2925 goto out;
2926 }
2927
f86f7a75 2928 if (em->flags & EXTENT_FLAG_PREALLOC) {
f27451f2
FM
2929 free_extent_map(em);
2930 ret = btrfs_fallocate_update_isize(inode, offset + len,
2931 mode);
2932 goto out;
2933 }
2934 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2935 free_extent_map(em);
217f42eb
NB
2936 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2937 0);
f27451f2
FM
2938 if (!ret)
2939 ret = btrfs_fallocate_update_isize(inode,
2940 offset + len,
2941 mode);
2942 return ret;
2943 }
2944 free_extent_map(em);
2945 alloc_start = round_down(offset, sectorsize);
2946 alloc_end = alloc_start + sectorsize;
2947 goto reserve_space;
2948 }
2949
2950 alloc_start = round_up(offset, sectorsize);
2951 alloc_end = round_down(offset + len, sectorsize);
2952
2953 /*
2954 * For unaligned ranges, check the pages at the boundaries, they might
2955 * map to an extent, in which case we need to partially zero them, or
2956 * they might map to a hole, in which case we need our allocation range
2957 * to cover them.
2958 */
2959 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
2960 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2961 offset);
f27451f2
FM
2962 if (ret < 0)
2963 goto out;
81fdf638 2964 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2965 alloc_start = round_down(offset, sectorsize);
2966 ret = 0;
81fdf638 2967 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 2968 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
2969 if (ret)
2970 goto out;
81fdf638
FM
2971 } else {
2972 ret = 0;
f27451f2
FM
2973 }
2974 }
2975
2976 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 2977 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
2978 offset + len);
2979 if (ret < 0)
2980 goto out;
81fdf638 2981 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2982 alloc_end = round_up(offset + len, sectorsize);
2983 ret = 0;
81fdf638 2984 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
2985 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2986 0, 1);
f27451f2
FM
2987 if (ret)
2988 goto out;
81fdf638
FM
2989 } else {
2990 ret = 0;
f27451f2
FM
2991 }
2992 }
2993
2994reserve_space:
2995 if (alloc_start < alloc_end) {
2996 struct extent_state *cached_state = NULL;
2997 const u64 lockstart = alloc_start;
2998 const u64 lockend = alloc_end - 1;
2999
3000 bytes_to_reserve = alloc_end - alloc_start;
3001 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3002 bytes_to_reserve);
3003 if (ret < 0)
3004 goto out;
3005 space_reserved = true;
55961c8a
FM
3006 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3007 &cached_state);
7661a3e0 3008 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 3009 alloc_start, bytes_to_reserve);
4f6a49de 3010 if (ret) {
570eb97b
JB
3011 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3012 lockend, &cached_state);
a7f8b1c2 3013 goto out;
4f6a49de 3014 }
f27451f2
FM
3015 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3016 alloc_end - alloc_start,
dc527961 3017 fs_info->sectorsize,
f27451f2 3018 offset + len, &alloc_hint);
570eb97b
JB
3019 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3020 &cached_state);
f27451f2 3021 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3022 if (ret) {
f27451f2 3023 space_reserved = false;
9f13ce74
FM
3024 goto out;
3025 }
f27451f2 3026 }
9f13ce74 3027 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3028 out:
3029 if (ret && space_reserved)
25ce28ca 3030 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3031 alloc_start, bytes_to_reserve);
3032 extent_changeset_free(data_reserved);
3033
3034 return ret;
3035}
3036
2fe17c10
CH
3037static long btrfs_fallocate(struct file *file, int mode,
3038 loff_t offset, loff_t len)
3039{
496ad9aa 3040 struct inode *inode = file_inode(file);
2fe17c10 3041 struct extent_state *cached_state = NULL;
364ecf36 3042 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3043 struct falloc_range *range;
3044 struct falloc_range *tmp;
84af994b 3045 LIST_HEAD(reserve_list);
2fe17c10
CH
3046 u64 cur_offset;
3047 u64 last_byte;
3048 u64 alloc_start;
3049 u64 alloc_end;
3050 u64 alloc_hint = 0;
3051 u64 locked_end;
14524a84 3052 u64 actual_end = 0;
47e1d1c7
FM
3053 u64 data_space_needed = 0;
3054 u64 data_space_reserved = 0;
3055 u64 qgroup_reserved = 0;
2fe17c10 3056 struct extent_map *em;
ee8ba05c 3057 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2fe17c10
CH
3058 int ret;
3059
f1569c4c 3060 /* Do not allow fallocate in ZONED mode */
41044b41 3061 if (btrfs_is_zoned(inode_to_fs_info(inode)))
f1569c4c
NA
3062 return -EOPNOTSUPP;
3063
797f4277
MX
3064 alloc_start = round_down(offset, blocksize);
3065 alloc_end = round_up(offset + len, blocksize);
18513091 3066 cur_offset = alloc_start;
2fe17c10 3067
2aaa6655 3068 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3069 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3070 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3071 return -EOPNOTSUPP;
3072
2aaa6655 3073 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3074 return btrfs_punch_hole(file, offset, len);
2aaa6655 3075
29b6352b 3076 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2a162ce9
DI
3077
3078 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3079 ret = inode_newsize_ok(inode, offset + len);
3080 if (ret)
3081 goto out;
3082 }
2fe17c10 3083
05fd9564
DW
3084 ret = file_modified(file);
3085 if (ret)
3086 goto out;
3087
14524a84
QW
3088 /*
3089 * TODO: Move these two operations after we have checked
3090 * accurate reserved space, or fallocate can still fail but
3091 * with page truncated or size expanded.
3092 *
3093 * But that's a minor problem and won't do much harm BTW.
3094 */
2fe17c10 3095 if (alloc_start > inode->i_size) {
b06359a3 3096 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3097 alloc_start);
2fe17c10
CH
3098 if (ret)
3099 goto out;
0f6925fa 3100 } else if (offset + len > inode->i_size) {
a71754fc
JB
3101 /*
3102 * If we are fallocating from the end of the file onward we
9703fefe
CR
3103 * need to zero out the end of the block if i_size lands in the
3104 * middle of a block.
a71754fc 3105 */
217f42eb 3106 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3107 if (ret)
3108 goto out;
2fe17c10
CH
3109 }
3110
a71754fc 3111 /*
ffa8fc60
FM
3112 * We have locked the inode at the VFS level (in exclusive mode) and we
3113 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3114 * locking the file range, flush all dealloc in the range and wait for
3115 * all ordered extents in the range to complete. After this we can lock
3116 * the file range and, due to the previous locking we did, we know there
3117 * can't be more delalloc or ordered extents in the range.
a71754fc 3118 */
0ef8b726
JB
3119 ret = btrfs_wait_ordered_range(inode, alloc_start,
3120 alloc_end - alloc_start);
3121 if (ret)
3122 goto out;
a71754fc 3123
f27451f2
FM
3124 if (mode & FALLOC_FL_ZERO_RANGE) {
3125 ret = btrfs_zero_range(inode, offset, len, mode);
e5d4d75b 3126 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
f27451f2
FM
3127 return ret;
3128 }
3129
2fe17c10 3130 locked_end = alloc_end - 1;
570eb97b
JB
3131 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3132 &cached_state);
2fe17c10 3133
63c34cb4
FM
3134 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3135
14524a84 3136 /* First, check if we exceed the qgroup limit */
6b7d6e93 3137 while (cur_offset < alloc_end) {
8bab0a30 3138 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
39b07b5d 3139 alloc_end - cur_offset);
9986277e
DC
3140 if (IS_ERR(em)) {
3141 ret = PTR_ERR(em);
79787eaa
JM
3142 break;
3143 }
2fe17c10 3144 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3145 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3146 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3147 if (em->block_start == EXTENT_MAP_HOLE ||
3148 (cur_offset >= inode->i_size &&
f86f7a75 3149 !(em->flags & EXTENT_FLAG_PREALLOC))) {
47e1d1c7
FM
3150 const u64 range_len = last_byte - cur_offset;
3151
3152 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3153 if (ret < 0) {
3154 free_extent_map(em);
3155 break;
3d850dd4 3156 }
7661a3e0 3157 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3158 &data_reserved, cur_offset, range_len);
be2d253c
FM
3159 if (ret < 0) {
3160 free_extent_map(em);
14524a84 3161 break;
be2d253c 3162 }
47e1d1c7
FM
3163 qgroup_reserved += range_len;
3164 data_space_needed += range_len;
2fe17c10
CH
3165 }
3166 free_extent_map(em);
2fe17c10 3167 cur_offset = last_byte;
14524a84
QW
3168 }
3169
47e1d1c7
FM
3170 if (!ret && data_space_needed > 0) {
3171 /*
3172 * We are safe to reserve space here as we can't have delalloc
3173 * in the range, see above.
3174 */
3175 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3176 data_space_needed);
3177 if (!ret)
3178 data_space_reserved = data_space_needed;
3179 }
3180
14524a84
QW
3181 /*
3182 * If ret is still 0, means we're OK to fallocate.
3183 * Or just cleanup the list and exit.
3184 */
3185 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3186 if (!ret) {
14524a84
QW
3187 ret = btrfs_prealloc_file_range(inode, mode,
3188 range->start,
dc527961 3189 range->len, blocksize,
14524a84 3190 offset + len, &alloc_hint);
47e1d1c7
FM
3191 /*
3192 * btrfs_prealloc_file_range() releases space even
3193 * if it returns an error.
3194 */
3195 data_space_reserved -= range->len;
3196 qgroup_reserved -= range->len;
3197 } else if (data_space_reserved > 0) {
25ce28ca 3198 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3199 data_reserved, range->start,
3200 range->len);
3201 data_space_reserved -= range->len;
3202 qgroup_reserved -= range->len;
3203 } else if (qgroup_reserved > 0) {
3204 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
9e65bfca 3205 range->start, range->len, NULL);
47e1d1c7
FM
3206 qgroup_reserved -= range->len;
3207 }
14524a84
QW
3208 list_del(&range->list);
3209 kfree(range);
3210 }
3211 if (ret < 0)
3212 goto out_unlock;
3213
f27451f2
FM
3214 /*
3215 * We didn't need to allocate any more space, but we still extended the
3216 * size of the file so we need to update i_size and the inode item.
3217 */
3218 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3219out_unlock:
570eb97b
JB
3220 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3221 &cached_state);
2fe17c10 3222out:
e5d4d75b 3223 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
364ecf36 3224 extent_changeset_free(data_reserved);
2fe17c10
CH
3225 return ret;
3226}
3227
b6e83356 3228/*
ac3c0d36
FM
3229 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3230 * that has unflushed and/or flushing delalloc. There might be other adjacent
3231 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3232 * looping while it gets adjacent subranges, and merging them together.
b6e83356
FM
3233 */
3234static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3235 struct extent_state **cached_state,
af979fd6 3236 bool *search_io_tree,
b6e83356
FM
3237 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3238{
40daf3e0 3239 u64 len = end + 1 - start;
8ddc8274
FM
3240 u64 delalloc_len = 0;
3241 struct btrfs_ordered_extent *oe;
3242 u64 oe_start;
3243 u64 oe_end;
b6e83356
FM
3244
3245 /*
3246 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3247 * means we have delalloc (dirty pages) for which writeback has not
3248 * started yet.
3249 */
8ddc8274
FM
3250 if (*search_io_tree) {
3251 spin_lock(&inode->lock);
3252 if (inode->delalloc_bytes > 0) {
3253 spin_unlock(&inode->lock);
3254 *delalloc_start_ret = start;
3255 delalloc_len = count_range_bits(&inode->io_tree,
3256 delalloc_start_ret, end,
8c6e53a7 3257 len, EXTENT_DELALLOC, 1,
b3e744fe 3258 cached_state);
8ddc8274
FM
3259 } else {
3260 spin_unlock(&inode->lock);
3261 }
a2853ffc
FM
3262 }
3263
40daf3e0
FM
3264 if (delalloc_len > 0) {
3265 /*
3266 * If delalloc was found then *delalloc_start_ret has a sector size
3267 * aligned value (rounded down).
3268 */
b6e83356
FM
3269 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3270
40daf3e0
FM
3271 if (*delalloc_start_ret == start) {
3272 /* Delalloc for the whole range, nothing more to do. */
3273 if (*delalloc_end_ret == end)
3274 return true;
8ddc8274 3275 /* Else trim our search range for ordered extents. */
40daf3e0
FM
3276 start = *delalloc_end_ret + 1;
3277 len = end + 1 - start;
3278 }
af979fd6
FM
3279 } else {
3280 /* No delalloc, future calls don't need to search again. */
3281 *search_io_tree = false;
40daf3e0
FM
3282 }
3283
a2853ffc 3284 /*
8ddc8274
FM
3285 * Now also check if there's any ordered extent in the range.
3286 * We do this because:
b6e83356
FM
3287 *
3288 * 1) When delalloc is flushed, the file range is locked, we clear the
8ddc8274
FM
3289 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3290 * an ordered extent for the write. So we might just have been called
3291 * after delalloc is flushed and before the ordered extent completes
3292 * and inserts the new file extent item in the subvolume's btree;
b6e83356 3293 *
8ddc8274 3294 * 2) We may have an ordered extent created by flushing delalloc for a
b6e83356
FM
3295 * subrange that starts before the subrange we found marked with
3296 * EXTENT_DELALLOC in the io tree.
8ddc8274
FM
3297 *
3298 * We could also use the extent map tree to find such delalloc that is
3299 * being flushed, but using the ordered extents tree is more efficient
3300 * because it's usually much smaller as ordered extents are removed from
3301 * the tree once they complete. With the extent maps, we mau have them
3302 * in the extent map tree for a very long time, and they were either
3303 * created by previous writes or loaded by read operations.
b6e83356 3304 */
8ddc8274
FM
3305 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3306 if (!oe)
d47704bd 3307 return (delalloc_len > 0);
d47704bd 3308
8ddc8274
FM
3309 /* The ordered extent may span beyond our search range. */
3310 oe_start = max(oe->file_offset, start);
3311 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
b6e83356 3312
8ddc8274 3313 btrfs_put_ordered_extent(oe);
b6e83356 3314
8ddc8274 3315 /* Don't have unflushed delalloc, return the ordered extent range. */
b6e83356 3316 if (delalloc_len == 0) {
8ddc8274
FM
3317 *delalloc_start_ret = oe_start;
3318 *delalloc_end_ret = oe_end;
b6e83356
FM
3319 return true;
3320 }
3321
3322 /*
8ddc8274
FM
3323 * We have both unflushed delalloc (io_tree) and an ordered extent.
3324 * If the ranges are adjacent returned a combined range, otherwise
3325 * return the leftmost range.
b6e83356 3326 */
8ddc8274
FM
3327 if (oe_start < *delalloc_start_ret) {
3328 if (oe_end < *delalloc_start_ret)
3329 *delalloc_end_ret = oe_end;
3330 *delalloc_start_ret = oe_start;
3331 } else if (*delalloc_end_ret + 1 == oe_start) {
3332 *delalloc_end_ret = oe_end;
b6e83356
FM
3333 }
3334
b6e83356
FM
3335 return true;
3336}
3337
3338/*
3339 * Check if there's delalloc in a given range.
3340 *
3341 * @inode: The inode.
3342 * @start: The start offset of the range. It does not need to be
3343 * sector size aligned.
3344 * @end: The end offset (inclusive value) of the search range.
3345 * It does not need to be sector size aligned.
b3e744fe
FM
3346 * @cached_state: Extent state record used for speeding up delalloc
3347 * searches in the inode's io_tree. Can be NULL.
b6e83356
FM
3348 * @delalloc_start_ret: Output argument, set to the start offset of the
3349 * subrange found with delalloc (may not be sector size
3350 * aligned).
3351 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3352 * of the subrange found with delalloc.
3353 *
3354 * Returns true if a subrange with delalloc is found within the given range, and
3355 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3356 * end offsets of the subrange.
3357 */
ac3c0d36 3358bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3359 struct extent_state **cached_state,
ac3c0d36 3360 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
b6e83356
FM
3361{
3362 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3363 u64 prev_delalloc_end = 0;
af979fd6 3364 bool search_io_tree = true;
b6e83356
FM
3365 bool ret = false;
3366
2f2e84ca 3367 while (cur_offset <= end) {
b6e83356
FM
3368 u64 delalloc_start;
3369 u64 delalloc_end;
3370 bool delalloc;
3371
3372 delalloc = find_delalloc_subrange(inode, cur_offset, end,
b3e744fe 3373 cached_state, &search_io_tree,
b6e83356
FM
3374 &delalloc_start,
3375 &delalloc_end);
3376 if (!delalloc)
3377 break;
3378
3379 if (prev_delalloc_end == 0) {
3380 /* First subrange found. */
3381 *delalloc_start_ret = max(delalloc_start, start);
3382 *delalloc_end_ret = delalloc_end;
3383 ret = true;
3384 } else if (delalloc_start == prev_delalloc_end + 1) {
3385 /* Subrange adjacent to the previous one, merge them. */
3386 *delalloc_end_ret = delalloc_end;
3387 } else {
3388 /* Subrange not adjacent to the previous one, exit. */
3389 break;
3390 }
3391
3392 prev_delalloc_end = delalloc_end;
3393 cur_offset = delalloc_end + 1;
3394 cond_resched();
3395 }
3396
3397 return ret;
3398}
3399
3400/*
3401 * Check if there's a hole or delalloc range in a range representing a hole (or
3402 * prealloc extent) found in the inode's subvolume btree.
3403 *
3404 * @inode: The inode.
3405 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3406 * @start: Start offset of the hole region. It does not need to be sector
3407 * size aligned.
3408 * @end: End offset (inclusive value) of the hole region. It does not
3409 * need to be sector size aligned.
3410 * @start_ret: Return parameter, used to set the start of the subrange in the
3411 * hole that matches the search criteria (seek mode), if such
3412 * subrange is found (return value of the function is true).
3413 * The value returned here may not be sector size aligned.
3414 *
3415 * Returns true if a subrange matching the given seek mode is found, and if one
3416 * is found, it updates @start_ret with the start of the subrange.
3417 */
3418static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3c32c721 3419 struct extent_state **cached_state,
b6e83356
FM
3420 u64 start, u64 end, u64 *start_ret)
3421{
3422 u64 delalloc_start;
3423 u64 delalloc_end;
3424 bool delalloc;
3425
3c32c721 3426 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
ac3c0d36 3427 &delalloc_start, &delalloc_end);
b6e83356
FM
3428 if (delalloc && whence == SEEK_DATA) {
3429 *start_ret = delalloc_start;
3430 return true;
3431 }
3432
3433 if (delalloc && whence == SEEK_HOLE) {
3434 /*
3435 * We found delalloc but it starts after out start offset. So we
3436 * have a hole between our start offset and the delalloc start.
3437 */
3438 if (start < delalloc_start) {
3439 *start_ret = start;
3440 return true;
3441 }
3442 /*
3443 * Delalloc range starts at our start offset.
3444 * If the delalloc range's length is smaller than our range,
3445 * then it means we have a hole that starts where the delalloc
3446 * subrange ends.
3447 */
3448 if (delalloc_end < end) {
3449 *start_ret = delalloc_end + 1;
3450 return true;
3451 }
3452
3453 /* There's delalloc for the whole range. */
3454 return false;
3455 }
3456
3457 if (!delalloc && whence == SEEK_HOLE) {
3458 *start_ret = start;
3459 return true;
3460 }
3461
3462 /*
3463 * No delalloc in the range and we are seeking for data. The caller has
3464 * to iterate to the next extent item in the subvolume btree.
3465 */
3466 return false;
3467}
3468
3c32c721 3469static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
b2675157 3470{
3c32c721
FM
3471 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3472 struct btrfs_file_private *private = file->private_data;
cca5de97 3473 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b2675157 3474 struct extent_state *cached_state = NULL;
3c32c721 3475 struct extent_state **delalloc_cached_state;
b6e83356
FM
3476 const loff_t i_size = i_size_read(&inode->vfs_inode);
3477 const u64 ino = btrfs_ino(inode);
3478 struct btrfs_root *root = inode->root;
3479 struct btrfs_path *path;
3480 struct btrfs_key key;
3481 u64 last_extent_end;
4d1a40c6
LB
3482 u64 lockstart;
3483 u64 lockend;
3484 u64 start;
b6e83356
FM
3485 int ret;
3486 bool found = false;
b2675157 3487
bc80230e 3488 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3489 return -ENXIO;
3490
b6e83356
FM
3491 /*
3492 * Quick path. If the inode has no prealloc extents and its number of
3493 * bytes used matches its i_size, then it can not have holes.
3494 */
3495 if (whence == SEEK_HOLE &&
3496 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3497 inode_get_bytes(&inode->vfs_inode) == i_size)
3498 return i_size;
3499
3c32c721
FM
3500 if (!private) {
3501 private = kzalloc(sizeof(*private), GFP_KERNEL);
3502 /*
3503 * No worries if memory allocation failed.
3504 * The private structure is used only for speeding up multiple
3505 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3506 * so everything will still be correct.
3507 */
3508 file->private_data = private;
3509 }
3510
3511 if (private)
3512 delalloc_cached_state = &private->llseek_cached_state;
3513 else
3514 delalloc_cached_state = NULL;
3515
4d1a40c6 3516 /*
bc80230e 3517 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3518 * the very start of the file.
3519 */
bc80230e 3520 start = max_t(loff_t, 0, offset);
4d1a40c6 3521
0b246afa 3522 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3523 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3524 if (lockend <= lockstart)
0b246afa 3525 lockend = lockstart + fs_info->sectorsize;
1214b53f 3526 lockend--;
b6e83356
FM
3527
3528 path = btrfs_alloc_path();
3529 if (!path)
3530 return -ENOMEM;
3531 path->reada = READA_FORWARD;
3532
3533 key.objectid = ino;
3534 key.type = BTRFS_EXTENT_DATA_KEY;
3535 key.offset = start;
3536
3537 last_extent_end = lockstart;
b2675157 3538
570eb97b 3539 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3540
b6e83356
FM
3541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3542 if (ret < 0) {
3543 goto out;
3544 } else if (ret > 0 && path->slots[0] > 0) {
3545 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3546 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3547 path->slots[0]--;
3548 }
3549
d79b7c26 3550 while (start < i_size) {
b6e83356
FM
3551 struct extent_buffer *leaf = path->nodes[0];
3552 struct btrfs_file_extent_item *extent;
3553 u64 extent_end;
1f55ee6d 3554 u8 type;
b6e83356
FM
3555
3556 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3557 ret = btrfs_next_leaf(root, path);
3558 if (ret < 0)
3559 goto out;
3560 else if (ret > 0)
3561 break;
3562
3563 leaf = path->nodes[0];
b2675157
JB
3564 }
3565
b6e83356
FM
3566 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3567 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
7f4ca37c 3568 break;
b2675157 3569
b6e83356
FM
3570 extent_end = btrfs_file_extent_end(path);
3571
3572 /*
3573 * In the first iteration we may have a slot that points to an
3574 * extent that ends before our start offset, so skip it.
3575 */
3576 if (extent_end <= start) {
3577 path->slots[0]++;
3578 continue;
3579 }
3580
3581 /* We have an implicit hole, NO_HOLES feature is likely set. */
3582 if (last_extent_end < key.offset) {
3583 u64 search_start = last_extent_end;
3584 u64 found_start;
3585
3586 /*
3587 * First iteration, @start matches @offset and it's
3588 * within the hole.
3589 */
3590 if (start == offset)
3591 search_start = offset;
3592
3593 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3594 delalloc_cached_state,
b6e83356
FM
3595 search_start,
3596 key.offset - 1,
3597 &found_start);
3598 if (found) {
3599 start = found_start;
3600 break;
3601 }
3602 /*
3603 * Didn't find data or a hole (due to delalloc) in the
3604 * implicit hole range, so need to analyze the extent.
3605 */
3606 }
3607
3608 extent = btrfs_item_ptr(leaf, path->slots[0],
3609 struct btrfs_file_extent_item);
1f55ee6d 3610 type = btrfs_file_extent_type(leaf, extent);
b6e83356 3611
1f55ee6d
FM
3612 /*
3613 * Can't access the extent's disk_bytenr field if this is an
3614 * inline extent, since at that offset, it's where the extent
3615 * data starts.
3616 */
3617 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3618 (type == BTRFS_FILE_EXTENT_REG &&
3619 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
b6e83356
FM
3620 /*
3621 * Explicit hole or prealloc extent, search for delalloc.
3622 * A prealloc extent is treated like a hole.
3623 */
3624 u64 search_start = key.offset;
3625 u64 found_start;
3626
3627 /*
3628 * First iteration, @start matches @offset and it's
3629 * within the hole.
3630 */
3631 if (start == offset)
3632 search_start = offset;
3633
3634 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3635 delalloc_cached_state,
b6e83356
FM
3636 search_start,
3637 extent_end - 1,
3638 &found_start);
3639 if (found) {
3640 start = found_start;
3641 break;
3642 }
3643 /*
3644 * Didn't find data or a hole (due to delalloc) in the
3645 * implicit hole range, so need to analyze the next
3646 * extent item.
3647 */
3648 } else {
3649 /*
3650 * Found a regular or inline extent.
3651 * If we are seeking for data, adjust the start offset
3652 * and stop, we're done.
3653 */
3654 if (whence == SEEK_DATA) {
3655 start = max_t(u64, key.offset, offset);
3656 found = true;
3657 break;
3658 }
3659 /*
3660 * Else, we are seeking for a hole, check the next file
3661 * extent item.
3662 */
3663 }
3664
3665 start = extent_end;
3666 last_extent_end = extent_end;
3667 path->slots[0]++;
aed0ca18
FM
3668 if (fatal_signal_pending(current)) {
3669 ret = -EINTR;
b6e83356 3670 goto out;
aed0ca18 3671 }
b2675157
JB
3672 cond_resched();
3673 }
b6e83356
FM
3674
3675 /* We have an implicit hole from the last extent found up to i_size. */
3676 if (!found && start < i_size) {
3c32c721
FM
3677 found = find_desired_extent_in_hole(inode, whence,
3678 delalloc_cached_state, start,
b6e83356
FM
3679 i_size - 1, &start);
3680 if (!found)
3681 start = i_size;
3682 }
3683
3684out:
570eb97b 3685 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b6e83356
FM
3686 btrfs_free_path(path);
3687
3688 if (ret < 0)
3689 return ret;
3690
3691 if (whence == SEEK_DATA && start >= i_size)
3692 return -ENXIO;
bc80230e 3693
b6e83356 3694 return min_t(loff_t, start, i_size);
b2675157
JB
3695}
3696
965c8e59 3697static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3698{
3699 struct inode *inode = file->f_mapping->host;
b2675157 3700
965c8e59 3701 switch (whence) {
2034f3b4
NB
3702 default:
3703 return generic_file_llseek(file, offset, whence);
b2675157
JB
3704 case SEEK_DATA:
3705 case SEEK_HOLE:
29b6352b 3706 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3c32c721 3707 offset = find_desired_extent(file, offset, whence);
e5d4d75b 3708 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
bc80230e 3709 break;
b2675157
JB
3710 }
3711
bc80230e
NB
3712 if (offset < 0)
3713 return offset;
3714
2034f3b4 3715 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3716}
3717
edf064e7
GR
3718static int btrfs_file_open(struct inode *inode, struct file *filp)
3719{
14605409
BB
3720 int ret;
3721
f02c75e6
CH
3722 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3723 FMODE_CAN_ODIRECT;
14605409
BB
3724
3725 ret = fsverity_file_open(inode, filp);
3726 if (ret)
3727 return ret;
edf064e7
GR
3728 return generic_file_open(inode, filp);
3729}
3730
4e4cabec
GR
3731static int check_direct_read(struct btrfs_fs_info *fs_info,
3732 const struct iov_iter *iter, loff_t offset)
3733{
3734 int ret;
3735 int i, seg;
3736
3737 ret = check_direct_IO(fs_info, iter, offset);
3738 if (ret < 0)
3739 return ret;
3740
3741 if (!iter_is_iovec(iter))
3742 return 0;
3743
de4f5fed
JA
3744 for (seg = 0; seg < iter->nr_segs; seg++) {
3745 for (i = seg + 1; i < iter->nr_segs; i++) {
3746 const struct iovec *iov1 = iter_iov(iter) + seg;
3747 const struct iovec *iov2 = iter_iov(iter) + i;
3748
3749 if (iov1->iov_base == iov2->iov_base)
4e4cabec 3750 return -EINVAL;
de4f5fed
JA
3751 }
3752 }
4e4cabec
GR
3753 return 0;
3754}
3755
3756static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3757{
3758 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3759 size_t prev_left = 0;
3760 ssize_t read = 0;
4e4cabec
GR
3761 ssize_t ret;
3762
14605409
BB
3763 if (fsverity_active(inode))
3764 return 0;
3765
41044b41 3766 if (check_direct_read(inode_to_fs_info(inode), to, iocb->ki_pos))
4e4cabec
GR
3767 return 0;
3768
29b6352b 3769 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563
FM
3770again:
3771 /*
3772 * This is similar to what we do for direct IO writes, see the comment
3773 * at btrfs_direct_write(), but we also disable page faults in addition
3774 * to disabling them only at the iov_iter level. This is because when
3775 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3776 * which can still trigger page fault ins despite having set ->nofault
3777 * to true of our 'to' iov_iter.
3778 *
3779 * The difference to direct IO writes is that we deadlock when trying
3780 * to lock the extent range in the inode's tree during he page reads
3781 * triggered by the fault in (while for writes it is due to waiting for
3782 * our own ordered extent). This is because for direct IO reads,
3783 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3784 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3785 */
3786 pagefault_disable();
3787 to->nofault = true;
8184620a 3788 ret = btrfs_dio_read(iocb, to, read);
51bd9563
FM
3789 to->nofault = false;
3790 pagefault_enable();
3791
3792 /* No increment (+=) because iomap returns a cumulative value. */
3793 if (ret > 0)
3794 read = ret;
3795
3796 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3797 const size_t left = iov_iter_count(to);
3798
3799 if (left == prev_left) {
3800 /*
3801 * We didn't make any progress since the last attempt,
3802 * fallback to a buffered read for the remainder of the
3803 * range. This is just to avoid any possibility of looping
3804 * for too long.
3805 */
3806 ret = read;
3807 } else {
3808 /*
3809 * We made some progress since the last retry or this is
3810 * the first time we are retrying. Fault in as many pages
3811 * as possible and retry.
3812 */
3813 fault_in_iov_iter_writeable(to, left);
3814 prev_left = left;
3815 goto again;
3816 }
3817 }
e5d4d75b 3818 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563 3819 return ret < 0 ? ret : read;
4e4cabec
GR
3820}
3821
f85781fb
GR
3822static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3823{
3824 ssize_t ret = 0;
3825
3826 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3827 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3828 if (ret < 0 || !iov_iter_count(to) ||
3829 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3830 return ret;
3831 }
3832
87fa0f3e 3833 return filemap_read(iocb, to, ret);
f85781fb
GR
3834}
3835
828c0950 3836const struct file_operations btrfs_file_operations = {
b2675157 3837 .llseek = btrfs_file_llseek,
f85781fb 3838 .read_iter = btrfs_file_read_iter,
2cb1e089 3839 .splice_read = filemap_splice_read,
b30ac0fc 3840 .write_iter = btrfs_file_write_iter,
d7776591 3841 .splice_write = iter_file_splice_write,
9ebefb18 3842 .mmap = btrfs_file_mmap,
edf064e7 3843 .open = btrfs_file_open,
e1b81e67 3844 .release = btrfs_release_file,
b0c58223 3845 .get_unmapped_area = thp_get_unmapped_area,
39279cc3 3846 .fsync = btrfs_sync_file,
2fe17c10 3847 .fallocate = btrfs_fallocate,
34287aa3 3848 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3849#ifdef CONFIG_COMPAT
4c63c245 3850 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3851#endif
2e5dfc99 3852 .remap_file_range = btrfs_remap_file_range,
39279cc3 3853};
9247f317 3854
728404da
FM
3855int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3856{
3857 int ret;
3858
3859 /*
3860 * So with compression we will find and lock a dirty page and clear the
3861 * first one as dirty, setup an async extent, and immediately return
3862 * with the entire range locked but with nobody actually marked with
3863 * writeback. So we can't just filemap_write_and_wait_range() and
3864 * expect it to work since it will just kick off a thread to do the
3865 * actual work. So we need to call filemap_fdatawrite_range _again_
3866 * since it will wait on the page lock, which won't be unlocked until
3867 * after the pages have been marked as writeback and so we're good to go
3868 * from there. We have to do this otherwise we'll miss the ordered
3869 * extents and that results in badness. Please Josef, do not think you
3870 * know better and pull this out at some point in the future, it is
3871 * right and you are wrong.
3872 */
3873 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3874 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3875 &BTRFS_I(inode)->runtime_flags))
3876 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3877
3878 return ret;
3879}