VFS: normal filesystems (and lustre): d_inode() annotations
[linux-2.6-block.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/statfs.h>
31#include <linux/compat.h>
5a0e3ad6 32#include <linux/slab.h>
55e301fd 33#include <linux/btrfs.h>
e2e40f2c 34#include <linux/uio.h>
39279cc3
CM
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39279cc3 39#include "print-tree.h"
e02119d5
CM
40#include "tree-log.h"
41#include "locking.h"
2aaa6655 42#include "volumes.h"
fcebe456 43#include "qgroup.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
8ddc4734 95static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b
CM
103
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
72ac3c0d 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
8ddc4734
MX
132static inline int __need_auto_defrag(struct btrfs_root *root)
133{
134 if (!btrfs_test_opt(root, AUTO_DEFRAG))
135 return 0;
136
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
149{
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
4cb5300b 152 u64 transid;
8ddc4734 153 int ret;
4cb5300b 154
8ddc4734 155 if (!__need_auto_defrag(root))
4cb5300b
CM
156 return 0;
157
72ac3c0d 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
159 return 0;
160
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
165
9247f317 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
167 if (!defrag)
168 return -ENOMEM;
169
a4689d2b 170 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
173
174 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 /*
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 */
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
9247f317 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 186 }
4cb5300b 187 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 188 return 0;
4cb5300b
CM
189}
190
191/*
8ddc4734
MX
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 195 */
48a3b636
ES
196static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
8ddc4734
MX
198{
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
201
202 if (!__need_auto_defrag(root))
203 goto out;
204
205 /*
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
208 */
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217}
218
4cb5300b 219/*
26176e7c
MX
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
4cb5300b 222 */
26176e7c
MX
223static struct inode_defrag *
224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
225{
226 struct inode_defrag *entry = NULL;
762f2263 227 struct inode_defrag tmp;
4cb5300b
CM
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
762f2263
MX
230 int ret;
231
232 tmp.ino = ino;
233 tmp.root = root;
4cb5300b 234
26176e7c
MX
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
762f2263
MX
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
4cb5300b 243 p = parent->rb_left;
762f2263 244 else if (ret > 0)
4cb5300b
CM
245 p = parent->rb_right;
246 else
26176e7c 247 goto out;
4cb5300b
CM
248 }
249
26176e7c
MX
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
4cb5300b 253 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
254 else
255 entry = NULL;
4cb5300b 256 }
26176e7c
MX
257out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
4cb5300b
CM
262}
263
26176e7c 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
265{
266 struct inode_defrag *defrag;
26176e7c
MX
267 struct rb_node *node;
268
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
276 if (need_resched()) {
277 spin_unlock(&fs_info->defrag_inodes_lock);
278 cond_resched();
279 spin_lock(&fs_info->defrag_inodes_lock);
280 }
281
282 node = rb_first(&fs_info->defrag_inodes);
283 }
284 spin_unlock(&fs_info->defrag_inodes_lock);
285}
286
287#define BTRFS_DEFRAG_BATCH 1024
288
289static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
290 struct inode_defrag *defrag)
291{
4cb5300b
CM
292 struct btrfs_root *inode_root;
293 struct inode *inode;
4cb5300b
CM
294 struct btrfs_key key;
295 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 296 int num_defrag;
6f1c3605
LB
297 int index;
298 int ret;
4cb5300b 299
26176e7c
MX
300 /* get the inode */
301 key.objectid = defrag->root;
962a298f 302 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 303 key.offset = (u64)-1;
6f1c3605
LB
304
305 index = srcu_read_lock(&fs_info->subvol_srcu);
306
26176e7c
MX
307 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
308 if (IS_ERR(inode_root)) {
6f1c3605
LB
309 ret = PTR_ERR(inode_root);
310 goto cleanup;
311 }
26176e7c
MX
312
313 key.objectid = defrag->ino;
962a298f 314 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
315 key.offset = 0;
316 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
317 if (IS_ERR(inode)) {
6f1c3605
LB
318 ret = PTR_ERR(inode);
319 goto cleanup;
26176e7c 320 }
6f1c3605 321 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
322
323 /* do a chunk of defrag */
324 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
325 memset(&range, 0, sizeof(range));
326 range.len = (u64)-1;
26176e7c 327 range.start = defrag->last_offset;
b66f00da
MX
328
329 sb_start_write(fs_info->sb);
26176e7c
MX
330 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
331 BTRFS_DEFRAG_BATCH);
b66f00da 332 sb_end_write(fs_info->sb);
26176e7c
MX
333 /*
334 * if we filled the whole defrag batch, there
335 * must be more work to do. Queue this defrag
336 * again
337 */
338 if (num_defrag == BTRFS_DEFRAG_BATCH) {
339 defrag->last_offset = range.start;
340 btrfs_requeue_inode_defrag(inode, defrag);
341 } else if (defrag->last_offset && !defrag->cycled) {
342 /*
343 * we didn't fill our defrag batch, but
344 * we didn't start at zero. Make sure we loop
345 * around to the start of the file.
346 */
347 defrag->last_offset = 0;
348 defrag->cycled = 1;
349 btrfs_requeue_inode_defrag(inode, defrag);
350 } else {
351 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
352 }
353
354 iput(inode);
355 return 0;
6f1c3605
LB
356cleanup:
357 srcu_read_unlock(&fs_info->subvol_srcu, index);
358 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
359 return ret;
26176e7c
MX
360}
361
362/*
363 * run through the list of inodes in the FS that need
364 * defragging
365 */
366int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
367{
368 struct inode_defrag *defrag;
369 u64 first_ino = 0;
370 u64 root_objectid = 0;
4cb5300b
CM
371
372 atomic_inc(&fs_info->defrag_running);
67871254 373 while (1) {
dc81cdc5
MX
374 /* Pause the auto defragger. */
375 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
376 &fs_info->fs_state))
377 break;
378
26176e7c
MX
379 if (!__need_auto_defrag(fs_info->tree_root))
380 break;
4cb5300b
CM
381
382 /* find an inode to defrag */
26176e7c
MX
383 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
384 first_ino);
4cb5300b 385 if (!defrag) {
26176e7c 386 if (root_objectid || first_ino) {
762f2263 387 root_objectid = 0;
4cb5300b
CM
388 first_ino = 0;
389 continue;
390 } else {
391 break;
392 }
393 }
394
4cb5300b 395 first_ino = defrag->ino + 1;
762f2263 396 root_objectid = defrag->root;
4cb5300b 397
26176e7c 398 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 399 }
4cb5300b
CM
400 atomic_dec(&fs_info->defrag_running);
401
402 /*
403 * during unmount, we use the transaction_wait queue to
404 * wait for the defragger to stop
405 */
406 wake_up(&fs_info->transaction_wait);
407 return 0;
408}
39279cc3 409
d352ac68
CM
410/* simple helper to fault in pages and copy. This should go away
411 * and be replaced with calls into generic code.
412 */
d397712b 413static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
d0215f3e 414 size_t write_bytes,
a1b32a59 415 struct page **prepared_pages,
11c65dcc 416 struct iov_iter *i)
39279cc3 417{
914ee295 418 size_t copied = 0;
d0215f3e 419 size_t total_copied = 0;
11c65dcc 420 int pg = 0;
39279cc3
CM
421 int offset = pos & (PAGE_CACHE_SIZE - 1);
422
11c65dcc 423 while (write_bytes > 0) {
39279cc3
CM
424 size_t count = min_t(size_t,
425 PAGE_CACHE_SIZE - offset, write_bytes);
11c65dcc 426 struct page *page = prepared_pages[pg];
914ee295
XZ
427 /*
428 * Copy data from userspace to the current page
914ee295 429 */
914ee295 430 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 431
39279cc3
CM
432 /* Flush processor's dcache for this page */
433 flush_dcache_page(page);
31339acd
CM
434
435 /*
436 * if we get a partial write, we can end up with
437 * partially up to date pages. These add
438 * a lot of complexity, so make sure they don't
439 * happen by forcing this copy to be retried.
440 *
441 * The rest of the btrfs_file_write code will fall
442 * back to page at a time copies after we return 0.
443 */
444 if (!PageUptodate(page) && copied < count)
445 copied = 0;
446
11c65dcc
JB
447 iov_iter_advance(i, copied);
448 write_bytes -= copied;
914ee295 449 total_copied += copied;
39279cc3 450
b30ac0fc 451 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 452 if (unlikely(copied == 0))
914ee295 453 break;
11c65dcc 454
ee39b432 455 if (copied < PAGE_CACHE_SIZE - offset) {
11c65dcc
JB
456 offset += copied;
457 } else {
458 pg++;
459 offset = 0;
460 }
39279cc3 461 }
914ee295 462 return total_copied;
39279cc3
CM
463}
464
d352ac68
CM
465/*
466 * unlocks pages after btrfs_file_write is done with them
467 */
48a3b636 468static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
469{
470 size_t i;
471 for (i = 0; i < num_pages; i++) {
d352ac68
CM
472 /* page checked is some magic around finding pages that
473 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
474 * clear it here. There should be no need to mark the pages
475 * accessed as prepare_pages should have marked them accessed
476 * in prepare_pages via find_or_create_page()
d352ac68 477 */
4a096752 478 ClearPageChecked(pages[i]);
39279cc3 479 unlock_page(pages[i]);
39279cc3
CM
480 page_cache_release(pages[i]);
481 }
482}
483
d352ac68
CM
484/*
485 * after copy_from_user, pages need to be dirtied and we need to make
486 * sure holes are created between the current EOF and the start of
487 * any next extents (if required).
488 *
489 * this also makes the decision about creating an inline extent vs
490 * doing real data extents, marking pages dirty and delalloc as required.
491 */
be1a12a0 492int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
493 struct page **pages, size_t num_pages,
494 loff_t pos, size_t write_bytes,
495 struct extent_state **cached)
39279cc3 496{
39279cc3 497 int err = 0;
a52d9a80 498 int i;
db94535d 499 u64 num_bytes;
a52d9a80
CM
500 u64 start_pos;
501 u64 end_of_last_block;
502 u64 end_pos = pos + write_bytes;
503 loff_t isize = i_size_read(inode);
39279cc3 504
5f39d397 505 start_pos = pos & ~((u64)root->sectorsize - 1);
fda2832f 506 num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
39279cc3 507
db94535d 508 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 509 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
be1a12a0 510 cached);
d0215f3e
JB
511 if (err)
512 return err;
9ed74f2d 513
c8b97818
CM
514 for (i = 0; i < num_pages; i++) {
515 struct page *p = pages[i];
516 SetPageUptodate(p);
517 ClearPageChecked(p);
518 set_page_dirty(p);
a52d9a80 519 }
9f570b8d
JB
520
521 /*
522 * we've only changed i_size in ram, and we haven't updated
523 * the disk i_size. There is no need to log the inode
524 * at this time.
525 */
526 if (end_pos > isize)
a52d9a80 527 i_size_write(inode, end_pos);
a22285a6 528 return 0;
39279cc3
CM
529}
530
d352ac68
CM
531/*
532 * this drops all the extents in the cache that intersect the range
533 * [start, end]. Existing extents are split as required.
534 */
7014cdb4
JB
535void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
536 int skip_pinned)
a52d9a80
CM
537{
538 struct extent_map *em;
3b951516
CM
539 struct extent_map *split = NULL;
540 struct extent_map *split2 = NULL;
a52d9a80 541 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 542 u64 len = end - start + 1;
5dc562c5 543 u64 gen;
3b951516
CM
544 int ret;
545 int testend = 1;
5b21f2ed 546 unsigned long flags;
c8b97818 547 int compressed = 0;
09a2a8f9 548 bool modified;
a52d9a80 549
e6dcd2dc 550 WARN_ON(end < start);
3b951516 551 if (end == (u64)-1) {
39b5637f 552 len = (u64)-1;
3b951516
CM
553 testend = 0;
554 }
d397712b 555 while (1) {
7014cdb4
JB
556 int no_splits = 0;
557
09a2a8f9 558 modified = false;
3b951516 559 if (!split)
172ddd60 560 split = alloc_extent_map();
3b951516 561 if (!split2)
172ddd60 562 split2 = alloc_extent_map();
7014cdb4
JB
563 if (!split || !split2)
564 no_splits = 1;
3b951516 565
890871be 566 write_lock(&em_tree->lock);
39b5637f 567 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 568 if (!em) {
890871be 569 write_unlock(&em_tree->lock);
a52d9a80 570 break;
d1310b2e 571 }
5b21f2ed 572 flags = em->flags;
5dc562c5 573 gen = em->generation;
5b21f2ed 574 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 575 if (testend && em->start + em->len >= start + len) {
5b21f2ed 576 free_extent_map(em);
a1ed835e 577 write_unlock(&em_tree->lock);
5b21f2ed
ZY
578 break;
579 }
55ef6899
YZ
580 start = em->start + em->len;
581 if (testend)
5b21f2ed 582 len = start + len - (em->start + em->len);
5b21f2ed 583 free_extent_map(em);
a1ed835e 584 write_unlock(&em_tree->lock);
5b21f2ed
ZY
585 continue;
586 }
c8b97818 587 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 588 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 589 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 590 modified = !list_empty(&em->list);
7014cdb4
JB
591 if (no_splits)
592 goto next;
3b951516 593
ee20a983 594 if (em->start < start) {
3b951516
CM
595 split->start = em->start;
596 split->len = start - em->start;
ee20a983
JB
597
598 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
599 split->orig_start = em->orig_start;
600 split->block_start = em->block_start;
601
602 if (compressed)
603 split->block_len = em->block_len;
604 else
605 split->block_len = split->len;
606 split->orig_block_len = max(split->block_len,
607 em->orig_block_len);
608 split->ram_bytes = em->ram_bytes;
609 } else {
610 split->orig_start = split->start;
611 split->block_len = 0;
612 split->block_start = em->block_start;
613 split->orig_block_len = 0;
614 split->ram_bytes = split->len;
615 }
616
5dc562c5 617 split->generation = gen;
3b951516 618 split->bdev = em->bdev;
5b21f2ed 619 split->flags = flags;
261507a0 620 split->compress_type = em->compress_type;
176840b3 621 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
622 free_extent_map(split);
623 split = split2;
624 split2 = NULL;
625 }
ee20a983 626 if (testend && em->start + em->len > start + len) {
3b951516
CM
627 u64 diff = start + len - em->start;
628
629 split->start = start + len;
630 split->len = em->start + em->len - (start + len);
631 split->bdev = em->bdev;
5b21f2ed 632 split->flags = flags;
261507a0 633 split->compress_type = em->compress_type;
5dc562c5 634 split->generation = gen;
ee20a983
JB
635
636 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
637 split->orig_block_len = max(em->block_len,
b4939680 638 em->orig_block_len);
3b951516 639
ee20a983
JB
640 split->ram_bytes = em->ram_bytes;
641 if (compressed) {
642 split->block_len = em->block_len;
643 split->block_start = em->block_start;
644 split->orig_start = em->orig_start;
645 } else {
646 split->block_len = split->len;
647 split->block_start = em->block_start
648 + diff;
649 split->orig_start = em->orig_start;
650 }
c8b97818 651 } else {
ee20a983
JB
652 split->ram_bytes = split->len;
653 split->orig_start = split->start;
654 split->block_len = 0;
655 split->block_start = em->block_start;
656 split->orig_block_len = 0;
c8b97818 657 }
3b951516 658
176840b3
FM
659 if (extent_map_in_tree(em)) {
660 replace_extent_mapping(em_tree, em, split,
661 modified);
662 } else {
663 ret = add_extent_mapping(em_tree, split,
664 modified);
665 ASSERT(ret == 0); /* Logic error */
666 }
3b951516
CM
667 free_extent_map(split);
668 split = NULL;
669 }
7014cdb4 670next:
176840b3
FM
671 if (extent_map_in_tree(em))
672 remove_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
d1310b2e 674
a52d9a80
CM
675 /* once for us */
676 free_extent_map(em);
677 /* once for the tree*/
678 free_extent_map(em);
679 }
3b951516
CM
680 if (split)
681 free_extent_map(split);
682 if (split2)
683 free_extent_map(split2);
a52d9a80
CM
684}
685
39279cc3
CM
686/*
687 * this is very complex, but the basic idea is to drop all extents
688 * in the range start - end. hint_block is filled in with a block number
689 * that would be a good hint to the block allocator for this file.
690 *
691 * If an extent intersects the range but is not entirely inside the range
692 * it is either truncated or split. Anything entirely inside the range
693 * is deleted from the tree.
694 */
5dc562c5
JB
695int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
696 struct btrfs_root *root, struct inode *inode,
697 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
698 u64 *drop_end, int drop_cache,
699 int replace_extent,
700 u32 extent_item_size,
701 int *key_inserted)
39279cc3 702{
5f39d397 703 struct extent_buffer *leaf;
920bbbfb 704 struct btrfs_file_extent_item *fi;
00f5c795 705 struct btrfs_key key;
920bbbfb 706 struct btrfs_key new_key;
33345d01 707 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
708 u64 search_start = start;
709 u64 disk_bytenr = 0;
710 u64 num_bytes = 0;
711 u64 extent_offset = 0;
712 u64 extent_end = 0;
713 int del_nr = 0;
714 int del_slot = 0;
715 int extent_type;
ccd467d6 716 int recow;
00f5c795 717 int ret;
dc7fdde3 718 int modify_tree = -1;
27cdeb70 719 int update_refs;
c3308f84 720 int found = 0;
1acae57b 721 int leafs_visited = 0;
39279cc3 722
a1ed835e
CM
723 if (drop_cache)
724 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 725
d5f37527 726 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
727 modify_tree = 0;
728
27cdeb70
MX
729 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
730 root == root->fs_info->tree_root);
d397712b 731 while (1) {
ccd467d6 732 recow = 0;
33345d01 733 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 734 search_start, modify_tree);
39279cc3 735 if (ret < 0)
920bbbfb
YZ
736 break;
737 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
738 leaf = path->nodes[0];
739 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 740 if (key.objectid == ino &&
920bbbfb
YZ
741 key.type == BTRFS_EXTENT_DATA_KEY)
742 path->slots[0]--;
39279cc3 743 }
920bbbfb 744 ret = 0;
1acae57b 745 leafs_visited++;
8c2383c3 746next_slot:
5f39d397 747 leaf = path->nodes[0];
920bbbfb
YZ
748 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
749 BUG_ON(del_nr > 0);
750 ret = btrfs_next_leaf(root, path);
751 if (ret < 0)
752 break;
753 if (ret > 0) {
754 ret = 0;
755 break;
8c2383c3 756 }
1acae57b 757 leafs_visited++;
920bbbfb
YZ
758 leaf = path->nodes[0];
759 recow = 1;
760 }
761
762 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 763 if (key.objectid > ino ||
920bbbfb
YZ
764 key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
765 break;
766
767 fi = btrfs_item_ptr(leaf, path->slots[0],
768 struct btrfs_file_extent_item);
769 extent_type = btrfs_file_extent_type(leaf, fi);
770
771 if (extent_type == BTRFS_FILE_EXTENT_REG ||
772 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
773 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
774 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
775 extent_offset = btrfs_file_extent_offset(leaf, fi);
776 extent_end = key.offset +
777 btrfs_file_extent_num_bytes(leaf, fi);
778 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
779 extent_end = key.offset +
514ac8ad
CM
780 btrfs_file_extent_inline_len(leaf,
781 path->slots[0], fi);
8c2383c3 782 } else {
920bbbfb 783 WARN_ON(1);
8c2383c3 784 extent_end = search_start;
39279cc3
CM
785 }
786
fc19c5e7
FM
787 /*
788 * Don't skip extent items representing 0 byte lengths. They
789 * used to be created (bug) if while punching holes we hit
790 * -ENOSPC condition. So if we find one here, just ensure we
791 * delete it, otherwise we would insert a new file extent item
792 * with the same key (offset) as that 0 bytes length file
793 * extent item in the call to setup_items_for_insert() later
794 * in this function.
795 */
796 if (extent_end == key.offset && extent_end >= search_start)
797 goto delete_extent_item;
798
920bbbfb
YZ
799 if (extent_end <= search_start) {
800 path->slots[0]++;
8c2383c3 801 goto next_slot;
39279cc3
CM
802 }
803
c3308f84 804 found = 1;
920bbbfb 805 search_start = max(key.offset, start);
dc7fdde3
CM
806 if (recow || !modify_tree) {
807 modify_tree = -1;
b3b4aa74 808 btrfs_release_path(path);
920bbbfb 809 continue;
39279cc3 810 }
6643558d 811
920bbbfb
YZ
812 /*
813 * | - range to drop - |
814 * | -------- extent -------- |
815 */
816 if (start > key.offset && end < extent_end) {
817 BUG_ON(del_nr > 0);
00fdf13a 818 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 819 ret = -EOPNOTSUPP;
00fdf13a
LB
820 break;
821 }
920bbbfb
YZ
822
823 memcpy(&new_key, &key, sizeof(new_key));
824 new_key.offset = start;
825 ret = btrfs_duplicate_item(trans, root, path,
826 &new_key);
827 if (ret == -EAGAIN) {
b3b4aa74 828 btrfs_release_path(path);
920bbbfb 829 continue;
6643558d 830 }
920bbbfb
YZ
831 if (ret < 0)
832 break;
833
834 leaf = path->nodes[0];
835 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
836 struct btrfs_file_extent_item);
837 btrfs_set_file_extent_num_bytes(leaf, fi,
838 start - key.offset);
839
840 fi = btrfs_item_ptr(leaf, path->slots[0],
841 struct btrfs_file_extent_item);
842
843 extent_offset += start - key.offset;
844 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
845 btrfs_set_file_extent_num_bytes(leaf, fi,
846 extent_end - start);
847 btrfs_mark_buffer_dirty(leaf);
848
5dc562c5 849 if (update_refs && disk_bytenr > 0) {
771ed689 850 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
851 disk_bytenr, num_bytes, 0,
852 root->root_key.objectid,
853 new_key.objectid,
fcebe456 854 start - extent_offset, 1);
79787eaa 855 BUG_ON(ret); /* -ENOMEM */
771ed689 856 }
920bbbfb 857 key.offset = start;
6643558d 858 }
920bbbfb
YZ
859 /*
860 * | ---- range to drop ----- |
861 * | -------- extent -------- |
862 */
863 if (start <= key.offset && end < extent_end) {
00fdf13a 864 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 865 ret = -EOPNOTSUPP;
00fdf13a
LB
866 break;
867 }
6643558d 868
920bbbfb
YZ
869 memcpy(&new_key, &key, sizeof(new_key));
870 new_key.offset = end;
afe5fea7 871 btrfs_set_item_key_safe(root, path, &new_key);
6643558d 872
920bbbfb
YZ
873 extent_offset += end - key.offset;
874 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
875 btrfs_set_file_extent_num_bytes(leaf, fi,
876 extent_end - end);
877 btrfs_mark_buffer_dirty(leaf);
2671485d 878 if (update_refs && disk_bytenr > 0)
920bbbfb 879 inode_sub_bytes(inode, end - key.offset);
920bbbfb 880 break;
39279cc3 881 }
771ed689 882
920bbbfb
YZ
883 search_start = extent_end;
884 /*
885 * | ---- range to drop ----- |
886 * | -------- extent -------- |
887 */
888 if (start > key.offset && end >= extent_end) {
889 BUG_ON(del_nr > 0);
00fdf13a 890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 891 ret = -EOPNOTSUPP;
00fdf13a
LB
892 break;
893 }
8c2383c3 894
920bbbfb
YZ
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 start - key.offset);
897 btrfs_mark_buffer_dirty(leaf);
2671485d 898 if (update_refs && disk_bytenr > 0)
920bbbfb 899 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
900 if (end == extent_end)
901 break;
c8b97818 902
920bbbfb
YZ
903 path->slots[0]++;
904 goto next_slot;
31840ae1
ZY
905 }
906
920bbbfb
YZ
907 /*
908 * | ---- range to drop ----- |
909 * | ------ extent ------ |
910 */
911 if (start <= key.offset && end >= extent_end) {
fc19c5e7 912delete_extent_item:
920bbbfb
YZ
913 if (del_nr == 0) {
914 del_slot = path->slots[0];
915 del_nr = 1;
916 } else {
917 BUG_ON(del_slot + del_nr != path->slots[0]);
918 del_nr++;
919 }
31840ae1 920
5dc562c5
JB
921 if (update_refs &&
922 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 923 inode_sub_bytes(inode,
920bbbfb
YZ
924 extent_end - key.offset);
925 extent_end = ALIGN(extent_end,
926 root->sectorsize);
5dc562c5 927 } else if (update_refs && disk_bytenr > 0) {
31840ae1 928 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
929 disk_bytenr, num_bytes, 0,
930 root->root_key.objectid,
5d4f98a2 931 key.objectid, key.offset -
66d7e7f0 932 extent_offset, 0);
79787eaa 933 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
934 inode_sub_bytes(inode,
935 extent_end - key.offset);
31840ae1 936 }
31840ae1 937
920bbbfb
YZ
938 if (end == extent_end)
939 break;
940
941 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
942 path->slots[0]++;
943 goto next_slot;
944 }
945
946 ret = btrfs_del_items(trans, root, path, del_slot,
947 del_nr);
79787eaa
JM
948 if (ret) {
949 btrfs_abort_transaction(trans, root, ret);
5dc562c5 950 break;
79787eaa 951 }
920bbbfb
YZ
952
953 del_nr = 0;
954 del_slot = 0;
955
b3b4aa74 956 btrfs_release_path(path);
920bbbfb 957 continue;
39279cc3 958 }
920bbbfb
YZ
959
960 BUG_ON(1);
39279cc3 961 }
920bbbfb 962
79787eaa 963 if (!ret && del_nr > 0) {
1acae57b
FDBM
964 /*
965 * Set path->slots[0] to first slot, so that after the delete
966 * if items are move off from our leaf to its immediate left or
967 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 968 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
969 */
970 path->slots[0] = del_slot;
920bbbfb 971 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
972 if (ret)
973 btrfs_abort_transaction(trans, root, ret);
d5f37527 974 }
1acae57b 975
d5f37527
FDBM
976 leaf = path->nodes[0];
977 /*
978 * If btrfs_del_items() was called, it might have deleted a leaf, in
979 * which case it unlocked our path, so check path->locks[0] matches a
980 * write lock.
981 */
982 if (!ret && replace_extent && leafs_visited == 1 &&
983 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
984 path->locks[0] == BTRFS_WRITE_LOCK) &&
985 btrfs_leaf_free_space(root, leaf) >=
986 sizeof(struct btrfs_item) + extent_item_size) {
987
988 key.objectid = ino;
989 key.type = BTRFS_EXTENT_DATA_KEY;
990 key.offset = start;
991 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
992 struct btrfs_key slot_key;
993
994 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
995 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
996 path->slots[0]++;
1acae57b 997 }
d5f37527
FDBM
998 setup_items_for_insert(root, path, &key,
999 &extent_item_size,
1000 extent_item_size,
1001 sizeof(struct btrfs_item) +
1002 extent_item_size, 1);
1003 *key_inserted = 1;
6643558d 1004 }
920bbbfb 1005
1acae57b
FDBM
1006 if (!replace_extent || !(*key_inserted))
1007 btrfs_release_path(path);
2aaa6655 1008 if (drop_end)
c3308f84 1009 *drop_end = found ? min(end, extent_end) : end;
5dc562c5
JB
1010 return ret;
1011}
1012
1013int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1015 u64 end, int drop_cache)
5dc562c5
JB
1016{
1017 struct btrfs_path *path;
1018 int ret;
1019
1020 path = btrfs_alloc_path();
1021 if (!path)
1022 return -ENOMEM;
2aaa6655 1023 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1024 drop_cache, 0, 0, NULL);
920bbbfb 1025 btrfs_free_path(path);
39279cc3
CM
1026 return ret;
1027}
1028
d899e052 1029static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1030 u64 objectid, u64 bytenr, u64 orig_offset,
1031 u64 *start, u64 *end)
d899e052
YZ
1032{
1033 struct btrfs_file_extent_item *fi;
1034 struct btrfs_key key;
1035 u64 extent_end;
1036
1037 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1038 return 0;
1039
1040 btrfs_item_key_to_cpu(leaf, &key, slot);
1041 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1042 return 0;
1043
1044 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1045 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1046 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1047 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1048 btrfs_file_extent_compression(leaf, fi) ||
1049 btrfs_file_extent_encryption(leaf, fi) ||
1050 btrfs_file_extent_other_encoding(leaf, fi))
1051 return 0;
1052
1053 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1054 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1055 return 0;
1056
1057 *start = key.offset;
1058 *end = extent_end;
1059 return 1;
1060}
1061
1062/*
1063 * Mark extent in the range start - end as written.
1064 *
1065 * This changes extent type from 'pre-allocated' to 'regular'. If only
1066 * part of extent is marked as written, the extent will be split into
1067 * two or three.
1068 */
1069int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1070 struct inode *inode, u64 start, u64 end)
1071{
920bbbfb 1072 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1073 struct extent_buffer *leaf;
1074 struct btrfs_path *path;
1075 struct btrfs_file_extent_item *fi;
1076 struct btrfs_key key;
920bbbfb 1077 struct btrfs_key new_key;
d899e052
YZ
1078 u64 bytenr;
1079 u64 num_bytes;
1080 u64 extent_end;
5d4f98a2 1081 u64 orig_offset;
d899e052
YZ
1082 u64 other_start;
1083 u64 other_end;
920bbbfb
YZ
1084 u64 split;
1085 int del_nr = 0;
1086 int del_slot = 0;
6c7d54ac 1087 int recow;
d899e052 1088 int ret;
33345d01 1089 u64 ino = btrfs_ino(inode);
d899e052 1090
d899e052 1091 path = btrfs_alloc_path();
d8926bb3
MF
1092 if (!path)
1093 return -ENOMEM;
d899e052 1094again:
6c7d54ac 1095 recow = 0;
920bbbfb 1096 split = start;
33345d01 1097 key.objectid = ino;
d899e052 1098 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1099 key.offset = split;
d899e052
YZ
1100
1101 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1102 if (ret < 0)
1103 goto out;
d899e052
YZ
1104 if (ret > 0 && path->slots[0] > 0)
1105 path->slots[0]--;
1106
1107 leaf = path->nodes[0];
1108 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
33345d01 1109 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
d899e052
YZ
1110 fi = btrfs_item_ptr(leaf, path->slots[0],
1111 struct btrfs_file_extent_item);
920bbbfb
YZ
1112 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1113 BTRFS_FILE_EXTENT_PREALLOC);
d899e052
YZ
1114 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1115 BUG_ON(key.offset > start || extent_end < end);
1116
1117 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1118 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1119 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1120 memcpy(&new_key, &key, sizeof(new_key));
1121
1122 if (start == key.offset && end < extent_end) {
1123 other_start = 0;
1124 other_end = start;
1125 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1126 ino, bytenr, orig_offset,
6c7d54ac
YZ
1127 &other_start, &other_end)) {
1128 new_key.offset = end;
afe5fea7 1129 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1130 fi = btrfs_item_ptr(leaf, path->slots[0],
1131 struct btrfs_file_extent_item);
224ecce5
JB
1132 btrfs_set_file_extent_generation(leaf, fi,
1133 trans->transid);
6c7d54ac
YZ
1134 btrfs_set_file_extent_num_bytes(leaf, fi,
1135 extent_end - end);
1136 btrfs_set_file_extent_offset(leaf, fi,
1137 end - orig_offset);
1138 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1139 struct btrfs_file_extent_item);
224ecce5
JB
1140 btrfs_set_file_extent_generation(leaf, fi,
1141 trans->transid);
6c7d54ac
YZ
1142 btrfs_set_file_extent_num_bytes(leaf, fi,
1143 end - other_start);
1144 btrfs_mark_buffer_dirty(leaf);
1145 goto out;
1146 }
1147 }
1148
1149 if (start > key.offset && end == extent_end) {
1150 other_start = end;
1151 other_end = 0;
1152 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1153 ino, bytenr, orig_offset,
6c7d54ac
YZ
1154 &other_start, &other_end)) {
1155 fi = btrfs_item_ptr(leaf, path->slots[0],
1156 struct btrfs_file_extent_item);
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 start - key.offset);
224ecce5
JB
1159 btrfs_set_file_extent_generation(leaf, fi,
1160 trans->transid);
6c7d54ac
YZ
1161 path->slots[0]++;
1162 new_key.offset = start;
afe5fea7 1163 btrfs_set_item_key_safe(root, path, &new_key);
6c7d54ac
YZ
1164
1165 fi = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_file_extent_item);
224ecce5
JB
1167 btrfs_set_file_extent_generation(leaf, fi,
1168 trans->transid);
6c7d54ac
YZ
1169 btrfs_set_file_extent_num_bytes(leaf, fi,
1170 other_end - start);
1171 btrfs_set_file_extent_offset(leaf, fi,
1172 start - orig_offset);
1173 btrfs_mark_buffer_dirty(leaf);
1174 goto out;
1175 }
1176 }
d899e052 1177
920bbbfb
YZ
1178 while (start > key.offset || end < extent_end) {
1179 if (key.offset == start)
1180 split = end;
1181
920bbbfb
YZ
1182 new_key.offset = split;
1183 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1184 if (ret == -EAGAIN) {
b3b4aa74 1185 btrfs_release_path(path);
920bbbfb 1186 goto again;
d899e052 1187 }
79787eaa
JM
1188 if (ret < 0) {
1189 btrfs_abort_transaction(trans, root, ret);
1190 goto out;
1191 }
d899e052 1192
920bbbfb
YZ
1193 leaf = path->nodes[0];
1194 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1195 struct btrfs_file_extent_item);
224ecce5 1196 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1197 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1198 split - key.offset);
1199
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202
224ecce5 1203 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1204 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1205 btrfs_set_file_extent_num_bytes(leaf, fi,
1206 extent_end - split);
d899e052
YZ
1207 btrfs_mark_buffer_dirty(leaf);
1208
920bbbfb
YZ
1209 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1210 root->root_key.objectid,
fcebe456 1211 ino, orig_offset, 1);
79787eaa 1212 BUG_ON(ret); /* -ENOMEM */
d899e052 1213
920bbbfb
YZ
1214 if (split == start) {
1215 key.offset = start;
1216 } else {
1217 BUG_ON(start != key.offset);
d899e052 1218 path->slots[0]--;
920bbbfb 1219 extent_end = end;
d899e052 1220 }
6c7d54ac 1221 recow = 1;
d899e052
YZ
1222 }
1223
920bbbfb
YZ
1224 other_start = end;
1225 other_end = 0;
6c7d54ac 1226 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1227 ino, bytenr, orig_offset,
6c7d54ac
YZ
1228 &other_start, &other_end)) {
1229 if (recow) {
b3b4aa74 1230 btrfs_release_path(path);
6c7d54ac
YZ
1231 goto again;
1232 }
920bbbfb
YZ
1233 extent_end = other_end;
1234 del_slot = path->slots[0] + 1;
1235 del_nr++;
1236 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237 0, root->root_key.objectid,
66d7e7f0 1238 ino, orig_offset, 0);
79787eaa 1239 BUG_ON(ret); /* -ENOMEM */
d899e052 1240 }
920bbbfb
YZ
1241 other_start = 0;
1242 other_end = start;
6c7d54ac 1243 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1244 ino, bytenr, orig_offset,
6c7d54ac
YZ
1245 &other_start, &other_end)) {
1246 if (recow) {
b3b4aa74 1247 btrfs_release_path(path);
6c7d54ac
YZ
1248 goto again;
1249 }
920bbbfb
YZ
1250 key.offset = other_start;
1251 del_slot = path->slots[0];
1252 del_nr++;
1253 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1254 0, root->root_key.objectid,
66d7e7f0 1255 ino, orig_offset, 0);
79787eaa 1256 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1257 }
1258 if (del_nr == 0) {
3f6fae95
SL
1259 fi = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_file_extent_item);
920bbbfb
YZ
1261 btrfs_set_file_extent_type(leaf, fi,
1262 BTRFS_FILE_EXTENT_REG);
224ecce5 1263 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1264 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1265 } else {
3f6fae95
SL
1266 fi = btrfs_item_ptr(leaf, del_slot - 1,
1267 struct btrfs_file_extent_item);
6c7d54ac
YZ
1268 btrfs_set_file_extent_type(leaf, fi,
1269 BTRFS_FILE_EXTENT_REG);
224ecce5 1270 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1271 btrfs_set_file_extent_num_bytes(leaf, fi,
1272 extent_end - key.offset);
1273 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1274
6c7d54ac 1275 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa
JM
1276 if (ret < 0) {
1277 btrfs_abort_transaction(trans, root, ret);
1278 goto out;
1279 }
6c7d54ac 1280 }
920bbbfb 1281out:
d899e052
YZ
1282 btrfs_free_path(path);
1283 return 0;
1284}
1285
b1bf862e
CM
1286/*
1287 * on error we return an unlocked page and the error value
1288 * on success we return a locked page and 0
1289 */
b6316429
JB
1290static int prepare_uptodate_page(struct page *page, u64 pos,
1291 bool force_uptodate)
b1bf862e
CM
1292{
1293 int ret = 0;
1294
b6316429
JB
1295 if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1296 !PageUptodate(page)) {
b1bf862e
CM
1297 ret = btrfs_readpage(NULL, page);
1298 if (ret)
1299 return ret;
1300 lock_page(page);
1301 if (!PageUptodate(page)) {
1302 unlock_page(page);
1303 return -EIO;
1304 }
1305 }
1306 return 0;
1307}
1308
39279cc3 1309/*
376cc685 1310 * this just gets pages into the page cache and locks them down.
39279cc3 1311 */
b37392ea
MX
1312static noinline int prepare_pages(struct inode *inode, struct page **pages,
1313 size_t num_pages, loff_t pos,
1314 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1315{
1316 int i;
1317 unsigned long index = pos >> PAGE_CACHE_SHIFT;
3b16a4e3 1318 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1319 int err = 0;
376cc685 1320 int faili;
8c2383c3 1321
39279cc3 1322 for (i = 0; i < num_pages; i++) {
a94733d0 1323 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1324 mask | __GFP_WRITE);
39279cc3 1325 if (!pages[i]) {
b1bf862e
CM
1326 faili = i - 1;
1327 err = -ENOMEM;
1328 goto fail;
1329 }
1330
1331 if (i == 0)
b6316429
JB
1332 err = prepare_uptodate_page(pages[i], pos,
1333 force_uptodate);
b1bf862e
CM
1334 if (i == num_pages - 1)
1335 err = prepare_uptodate_page(pages[i],
b6316429 1336 pos + write_bytes, false);
b1bf862e
CM
1337 if (err) {
1338 page_cache_release(pages[i]);
1339 faili = i - 1;
1340 goto fail;
39279cc3 1341 }
ccd467d6 1342 wait_on_page_writeback(pages[i]);
39279cc3 1343 }
376cc685
MX
1344
1345 return 0;
1346fail:
1347 while (faili >= 0) {
1348 unlock_page(pages[faili]);
1349 page_cache_release(pages[faili]);
1350 faili--;
1351 }
1352 return err;
1353
1354}
1355
1356/*
1357 * This function locks the extent and properly waits for data=ordered extents
1358 * to finish before allowing the pages to be modified if need.
1359 *
1360 * The return value:
1361 * 1 - the extent is locked
1362 * 0 - the extent is not locked, and everything is OK
1363 * -EAGAIN - need re-prepare the pages
1364 * the other < 0 number - Something wrong happens
1365 */
1366static noinline int
1367lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1368 size_t num_pages, loff_t pos,
1369 u64 *lockstart, u64 *lockend,
1370 struct extent_state **cached_state)
1371{
1372 u64 start_pos;
1373 u64 last_pos;
1374 int i;
1375 int ret = 0;
1376
1377 start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1378 last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1379
0762704b 1380 if (start_pos < inode->i_size) {
e6dcd2dc 1381 struct btrfs_ordered_extent *ordered;
2ac55d41 1382 lock_extent_bits(&BTRFS_I(inode)->io_tree,
376cc685 1383 start_pos, last_pos, 0, cached_state);
b88935bf
MX
1384 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1385 last_pos - start_pos + 1);
e6dcd2dc
CM
1386 if (ordered &&
1387 ordered->file_offset + ordered->len > start_pos &&
376cc685 1388 ordered->file_offset <= last_pos) {
2ac55d41 1389 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1390 start_pos, last_pos,
1391 cached_state, GFP_NOFS);
e6dcd2dc
CM
1392 for (i = 0; i < num_pages; i++) {
1393 unlock_page(pages[i]);
1394 page_cache_release(pages[i]);
1395 }
b88935bf
MX
1396 btrfs_start_ordered_extent(inode, ordered, 1);
1397 btrfs_put_ordered_extent(ordered);
1398 return -EAGAIN;
e6dcd2dc
CM
1399 }
1400 if (ordered)
1401 btrfs_put_ordered_extent(ordered);
1402
2ac55d41 1403 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1404 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1405 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1406 0, 0, cached_state, GFP_NOFS);
1407 *lockstart = start_pos;
1408 *lockend = last_pos;
1409 ret = 1;
0762704b 1410 }
376cc685 1411
e6dcd2dc 1412 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1413 if (clear_page_dirty_for_io(pages[i]))
1414 account_page_redirty(pages[i]);
e6dcd2dc
CM
1415 set_page_extent_mapped(pages[i]);
1416 WARN_ON(!PageLocked(pages[i]));
1417 }
b1bf862e 1418
376cc685 1419 return ret;
39279cc3
CM
1420}
1421
7ee9e440
JB
1422static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1423 size_t *write_bytes)
1424{
7ee9e440
JB
1425 struct btrfs_root *root = BTRFS_I(inode)->root;
1426 struct btrfs_ordered_extent *ordered;
1427 u64 lockstart, lockend;
1428 u64 num_bytes;
1429 int ret;
1430
9ea24bbe 1431 ret = btrfs_start_write_no_snapshoting(root);
8257b2dc
MX
1432 if (!ret)
1433 return -ENOSPC;
1434
7ee9e440 1435 lockstart = round_down(pos, root->sectorsize);
c933956d 1436 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
7ee9e440
JB
1437
1438 while (1) {
1439 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1440 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1441 lockend - lockstart + 1);
1442 if (!ordered) {
1443 break;
1444 }
1445 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1446 btrfs_start_ordered_extent(inode, ordered, 1);
1447 btrfs_put_ordered_extent(ordered);
1448 }
1449
7ee9e440 1450 num_bytes = lockend - lockstart + 1;
00361589 1451 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1452 if (ret <= 0) {
1453 ret = 0;
9ea24bbe 1454 btrfs_end_write_no_snapshoting(root);
7ee9e440 1455 } else {
c933956d
MX
1456 *write_bytes = min_t(size_t, *write_bytes ,
1457 num_bytes - pos + lockstart);
7ee9e440
JB
1458 }
1459
1460 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1461
1462 return ret;
1463}
1464
d0215f3e
JB
1465static noinline ssize_t __btrfs_buffered_write(struct file *file,
1466 struct iov_iter *i,
1467 loff_t pos)
4b46fce2 1468{
496ad9aa 1469 struct inode *inode = file_inode(file);
11c65dcc 1470 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1471 struct page **pages = NULL;
376cc685 1472 struct extent_state *cached_state = NULL;
7ee9e440 1473 u64 release_bytes = 0;
376cc685
MX
1474 u64 lockstart;
1475 u64 lockend;
39279cc3 1476 unsigned long first_index;
d0215f3e
JB
1477 size_t num_written = 0;
1478 int nrptrs;
c9149235 1479 int ret = 0;
7ee9e440 1480 bool only_release_metadata = false;
b6316429 1481 bool force_page_uptodate = false;
376cc685 1482 bool need_unlock;
4b46fce2 1483
ed6078f7
DS
1484 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_CACHE_SIZE),
1485 PAGE_CACHE_SIZE / (sizeof(struct page *)));
142349f5
WF
1486 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1487 nrptrs = max(nrptrs, 8);
8c2383c3 1488 pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1489 if (!pages)
1490 return -ENOMEM;
ab93dbec 1491
39279cc3 1492 first_index = pos >> PAGE_CACHE_SHIFT;
39279cc3 1493
d0215f3e 1494 while (iov_iter_count(i) > 0) {
39279cc3 1495 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
d0215f3e 1496 size_t write_bytes = min(iov_iter_count(i),
11c65dcc 1497 nrptrs * (size_t)PAGE_CACHE_SIZE -
8c2383c3 1498 offset);
ed6078f7
DS
1499 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1500 PAGE_CACHE_SIZE);
7ee9e440 1501 size_t reserve_bytes;
d0215f3e
JB
1502 size_t dirty_pages;
1503 size_t copied;
39279cc3 1504
8c2383c3 1505 WARN_ON(num_pages > nrptrs);
1832a6d5 1506
914ee295
XZ
1507 /*
1508 * Fault pages before locking them in prepare_pages
1509 * to avoid recursive lock
1510 */
d0215f3e 1511 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1512 ret = -EFAULT;
d0215f3e 1513 break;
914ee295
XZ
1514 }
1515
7ee9e440
JB
1516 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1517 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1518 if (ret == -ENOSPC &&
1519 (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1520 BTRFS_INODE_PREALLOC))) {
1521 ret = check_can_nocow(inode, pos, &write_bytes);
1522 if (ret > 0) {
1523 only_release_metadata = true;
1524 /*
1525 * our prealloc extent may be smaller than
1526 * write_bytes, so scale down.
1527 */
ed6078f7
DS
1528 num_pages = DIV_ROUND_UP(write_bytes + offset,
1529 PAGE_CACHE_SIZE);
7ee9e440
JB
1530 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1531 ret = 0;
1532 } else {
1533 ret = -ENOSPC;
1534 }
1535 }
1536
1832a6d5 1537 if (ret)
d0215f3e 1538 break;
1832a6d5 1539
7ee9e440
JB
1540 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1541 if (ret) {
1542 if (!only_release_metadata)
1543 btrfs_free_reserved_data_space(inode,
1544 reserve_bytes);
8257b2dc 1545 else
9ea24bbe 1546 btrfs_end_write_no_snapshoting(root);
7ee9e440
JB
1547 break;
1548 }
1549
1550 release_bytes = reserve_bytes;
376cc685
MX
1551 need_unlock = false;
1552again:
4a64001f
JB
1553 /*
1554 * This is going to setup the pages array with the number of
1555 * pages we want, so we don't really need to worry about the
1556 * contents of pages from loop to loop
1557 */
b37392ea
MX
1558 ret = prepare_pages(inode, pages, num_pages,
1559 pos, write_bytes,
b6316429 1560 force_page_uptodate);
7ee9e440 1561 if (ret)
d0215f3e 1562 break;
39279cc3 1563
376cc685
MX
1564 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1565 pos, &lockstart, &lockend,
1566 &cached_state);
1567 if (ret < 0) {
1568 if (ret == -EAGAIN)
1569 goto again;
1570 break;
1571 } else if (ret > 0) {
1572 need_unlock = true;
1573 ret = 0;
1574 }
1575
914ee295 1576 copied = btrfs_copy_from_user(pos, num_pages,
d0215f3e 1577 write_bytes, pages, i);
b1bf862e
CM
1578
1579 /*
1580 * if we have trouble faulting in the pages, fall
1581 * back to one page at a time
1582 */
1583 if (copied < write_bytes)
1584 nrptrs = 1;
1585
b6316429
JB
1586 if (copied == 0) {
1587 force_page_uptodate = true;
b1bf862e 1588 dirty_pages = 0;
b6316429
JB
1589 } else {
1590 force_page_uptodate = false;
ed6078f7
DS
1591 dirty_pages = DIV_ROUND_UP(copied + offset,
1592 PAGE_CACHE_SIZE);
b6316429 1593 }
914ee295 1594
d0215f3e
JB
1595 /*
1596 * If we had a short copy we need to release the excess delaloc
1597 * bytes we reserved. We need to increment outstanding_extents
1598 * because btrfs_delalloc_release_space will decrement it, but
1599 * we still have an outstanding extent for the chunk we actually
1600 * managed to copy.
1601 */
914ee295 1602 if (num_pages > dirty_pages) {
7ee9e440
JB
1603 release_bytes = (num_pages - dirty_pages) <<
1604 PAGE_CACHE_SHIFT;
9e0baf60
JB
1605 if (copied > 0) {
1606 spin_lock(&BTRFS_I(inode)->lock);
1607 BTRFS_I(inode)->outstanding_extents++;
1608 spin_unlock(&BTRFS_I(inode)->lock);
1609 }
7ee9e440
JB
1610 if (only_release_metadata)
1611 btrfs_delalloc_release_metadata(inode,
1612 release_bytes);
1613 else
1614 btrfs_delalloc_release_space(inode,
1615 release_bytes);
914ee295
XZ
1616 }
1617
7ee9e440 1618 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
376cc685
MX
1619
1620 if (copied > 0)
be1a12a0
JB
1621 ret = btrfs_dirty_pages(root, inode, pages,
1622 dirty_pages, pos, copied,
1623 NULL);
376cc685
MX
1624 if (need_unlock)
1625 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1626 lockstart, lockend, &cached_state,
1627 GFP_NOFS);
f1de9683
MX
1628 if (ret) {
1629 btrfs_drop_pages(pages, num_pages);
376cc685 1630 break;
f1de9683 1631 }
39279cc3 1632
376cc685 1633 release_bytes = 0;
8257b2dc 1634 if (only_release_metadata)
9ea24bbe 1635 btrfs_end_write_no_snapshoting(root);
8257b2dc 1636
7ee9e440
JB
1637 if (only_release_metadata && copied > 0) {
1638 u64 lockstart = round_down(pos, root->sectorsize);
1639 u64 lockend = lockstart +
1640 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1641
1642 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1643 lockend, EXTENT_NORESERVE, NULL,
1644 NULL, GFP_NOFS);
1645 only_release_metadata = false;
1646 }
1647
f1de9683
MX
1648 btrfs_drop_pages(pages, num_pages);
1649
d0215f3e
JB
1650 cond_resched();
1651
d0e1d66b 1652 balance_dirty_pages_ratelimited(inode->i_mapping);
707e8a07 1653 if (dirty_pages < (root->nodesize >> PAGE_CACHE_SHIFT) + 1)
b53d3f5d 1654 btrfs_btree_balance_dirty(root);
cb843a6f 1655
914ee295
XZ
1656 pos += copied;
1657 num_written += copied;
d0215f3e 1658 }
39279cc3 1659
d0215f3e
JB
1660 kfree(pages);
1661
7ee9e440 1662 if (release_bytes) {
8257b2dc 1663 if (only_release_metadata) {
9ea24bbe 1664 btrfs_end_write_no_snapshoting(root);
7ee9e440 1665 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1666 } else {
7ee9e440 1667 btrfs_delalloc_release_space(inode, release_bytes);
8257b2dc 1668 }
7ee9e440
JB
1669 }
1670
d0215f3e
JB
1671 return num_written ? num_written : ret;
1672}
1673
1674static ssize_t __btrfs_direct_write(struct kiocb *iocb,
0ae5e4d3 1675 struct iov_iter *from,
0c949334 1676 loff_t pos)
d0215f3e
JB
1677{
1678 struct file *file = iocb->ki_filp;
728404da 1679 struct inode *inode = file_inode(file);
d0215f3e
JB
1680 ssize_t written;
1681 ssize_t written_buffered;
1682 loff_t endbyte;
1683 int err;
1684
0c949334 1685 written = generic_file_direct_write(iocb, from, pos);
d0215f3e 1686
0c949334 1687 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1688 return written;
1689
1690 pos += written;
0ae5e4d3 1691 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1692 if (written_buffered < 0) {
1693 err = written_buffered;
1694 goto out;
39279cc3 1695 }
075bdbdb
FM
1696 /*
1697 * Ensure all data is persisted. We want the next direct IO read to be
1698 * able to read what was just written.
1699 */
d0215f3e 1700 endbyte = pos + written_buffered - 1;
728404da 1701 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1702 if (err)
1703 goto out;
728404da 1704 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1705 if (err)
1706 goto out;
1707 written += written_buffered;
867c4f93 1708 iocb->ki_pos = pos + written_buffered;
d0215f3e
JB
1709 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1710 endbyte >> PAGE_CACHE_SHIFT);
39279cc3 1711out:
d0215f3e
JB
1712 return written ? written : err;
1713}
5b92ee72 1714
6c760c07
JB
1715static void update_time_for_write(struct inode *inode)
1716{
1717 struct timespec now;
1718
1719 if (IS_NOCMTIME(inode))
1720 return;
1721
1722 now = current_fs_time(inode->i_sb);
1723 if (!timespec_equal(&inode->i_mtime, &now))
1724 inode->i_mtime = now;
1725
1726 if (!timespec_equal(&inode->i_ctime, &now))
1727 inode->i_ctime = now;
1728
1729 if (IS_I_VERSION(inode))
1730 inode_inc_iversion(inode);
1731}
1732
b30ac0fc
AV
1733static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1734 struct iov_iter *from)
d0215f3e
JB
1735{
1736 struct file *file = iocb->ki_filp;
496ad9aa 1737 struct inode *inode = file_inode(file);
d0215f3e 1738 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1739 u64 start_pos;
3ac0d7b9 1740 u64 end_pos;
d0215f3e 1741 ssize_t num_written = 0;
b812ce28 1742 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04
AV
1743 ssize_t err;
1744 loff_t pos;
1745 size_t count;
d0215f3e 1746
d0215f3e 1747 mutex_lock(&inode->i_mutex);
3309dd04
AV
1748 err = generic_write_checks(iocb, from);
1749 if (err <= 0) {
d0215f3e 1750 mutex_unlock(&inode->i_mutex);
3309dd04 1751 return err;
d0215f3e
JB
1752 }
1753
3309dd04 1754 current->backing_dev_info = inode_to_bdi(inode);
d0215f3e
JB
1755 err = file_remove_suid(file);
1756 if (err) {
1757 mutex_unlock(&inode->i_mutex);
1758 goto out;
1759 }
1760
1761 /*
1762 * If BTRFS flips readonly due to some impossible error
1763 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1764 * although we have opened a file as writable, we have
1765 * to stop this write operation to ensure FS consistency.
1766 */
87533c47 1767 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
d0215f3e
JB
1768 mutex_unlock(&inode->i_mutex);
1769 err = -EROFS;
1770 goto out;
1771 }
1772
6c760c07
JB
1773 /*
1774 * We reserve space for updating the inode when we reserve space for the
1775 * extent we are going to write, so we will enospc out there. We don't
1776 * need to start yet another transaction to update the inode as we will
1777 * update the inode when we finish writing whatever data we write.
1778 */
1779 update_time_for_write(inode);
d0215f3e 1780
3309dd04
AV
1781 pos = iocb->ki_pos;
1782 count = iov_iter_count(from);
0c1a98c8
MX
1783 start_pos = round_down(pos, root->sectorsize);
1784 if (start_pos > i_size_read(inode)) {
3ac0d7b9 1785 /* Expand hole size to cover write data, preventing empty gap */
c5f7d0bb 1786 end_pos = round_up(pos + count, root->sectorsize);
3ac0d7b9 1787 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
0c1a98c8
MX
1788 if (err) {
1789 mutex_unlock(&inode->i_mutex);
1790 goto out;
1791 }
1792 }
1793
b812ce28
JB
1794 if (sync)
1795 atomic_inc(&BTRFS_I(inode)->sync_writers);
1796
2ba48ce5 1797 if (iocb->ki_flags & IOCB_DIRECT) {
b30ac0fc 1798 num_written = __btrfs_direct_write(iocb, from, pos);
d0215f3e 1799 } else {
b30ac0fc 1800 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1801 if (num_written > 0)
867c4f93 1802 iocb->ki_pos = pos + num_written;
d0215f3e
JB
1803 }
1804
1805 mutex_unlock(&inode->i_mutex);
2ff3e9b6 1806
5a3f23d5 1807 /*
6c760c07
JB
1808 * We also have to set last_sub_trans to the current log transid,
1809 * otherwise subsequent syncs to a file that's been synced in this
1810 * transaction will appear to have already occured.
5a3f23d5 1811 */
6c760c07 1812 BTRFS_I(inode)->last_sub_trans = root->log_transid;
02afc27f 1813 if (num_written > 0) {
d0215f3e 1814 err = generic_write_sync(file, pos, num_written);
45d4f855 1815 if (err < 0)
2ff3e9b6
CM
1816 num_written = err;
1817 }
0a3404dc 1818
b812ce28
JB
1819 if (sync)
1820 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1821out:
39279cc3 1822 current->backing_dev_info = NULL;
39279cc3
CM
1823 return num_written ? num_written : err;
1824}
1825
d397712b 1826int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1827{
6bf13c0c
SW
1828 if (filp->private_data)
1829 btrfs_ioctl_trans_end(filp);
f6dc45c7
CM
1830 /*
1831 * ordered_data_close is set by settattr when we are about to truncate
1832 * a file from a non-zero size to a zero size. This tries to
1833 * flush down new bytes that may have been written if the
1834 * application were using truncate to replace a file in place.
1835 */
1836 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1837 &BTRFS_I(inode)->runtime_flags))
1838 filemap_flush(inode->i_mapping);
e1b81e67
M
1839 return 0;
1840}
1841
669249ee
FM
1842static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1843{
1844 int ret;
1845
1846 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1847 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
1848 atomic_dec(&BTRFS_I(inode)->sync_writers);
1849
1850 return ret;
1851}
1852
d352ac68
CM
1853/*
1854 * fsync call for both files and directories. This logs the inode into
1855 * the tree log instead of forcing full commits whenever possible.
1856 *
1857 * It needs to call filemap_fdatawait so that all ordered extent updates are
1858 * in the metadata btree are up to date for copying to the log.
1859 *
1860 * It drops the inode mutex before doing the tree log commit. This is an
1861 * important optimization for directories because holding the mutex prevents
1862 * new operations on the dir while we write to disk.
1863 */
02c24a82 1864int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1865{
7ea80859 1866 struct dentry *dentry = file->f_path.dentry;
2b0143b5 1867 struct inode *inode = d_inode(dentry);
39279cc3 1868 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1869 struct btrfs_trans_handle *trans;
8b050d35
MX
1870 struct btrfs_log_ctx ctx;
1871 int ret = 0;
2ab28f32 1872 bool full_sync = 0;
39279cc3 1873
1abe9b8a 1874 trace_btrfs_sync_file(file, datasync);
257c62e1 1875
90abccf2
MX
1876 /*
1877 * We write the dirty pages in the range and wait until they complete
1878 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1879 * multi-task, and make the performance up. See
1880 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1881 */
669249ee 1882 ret = start_ordered_ops(inode, start, end);
90abccf2
MX
1883 if (ret)
1884 return ret;
1885
02c24a82 1886 mutex_lock(&inode->i_mutex);
2ecb7923 1887 atomic_inc(&root->log_batch);
2ab28f32
JB
1888 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1889 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
1890 /*
1891 * We might have have had more pages made dirty after calling
1892 * start_ordered_ops and before acquiring the inode's i_mutex.
1893 */
0ef8b726 1894 if (full_sync) {
669249ee
FM
1895 /*
1896 * For a full sync, we need to make sure any ordered operations
1897 * start and finish before we start logging the inode, so that
1898 * all extents are persisted and the respective file extent
1899 * items are in the fs/subvol btree.
1900 */
0ef8b726 1901 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
669249ee
FM
1902 } else {
1903 /*
1904 * Start any new ordered operations before starting to log the
1905 * inode. We will wait for them to finish in btrfs_sync_log().
1906 *
1907 * Right before acquiring the inode's mutex, we might have new
1908 * writes dirtying pages, which won't immediately start the
1909 * respective ordered operations - that is done through the
1910 * fill_delalloc callbacks invoked from the writepage and
1911 * writepages address space operations. So make sure we start
1912 * all ordered operations before starting to log our inode. Not
1913 * doing this means that while logging the inode, writeback
1914 * could start and invoke writepage/writepages, which would call
1915 * the fill_delalloc callbacks (cow_file_range,
1916 * submit_compressed_extents). These callbacks add first an
1917 * extent map to the modified list of extents and then create
1918 * the respective ordered operation, which means in
1919 * tree-log.c:btrfs_log_inode() we might capture all existing
1920 * ordered operations (with btrfs_get_logged_extents()) before
1921 * the fill_delalloc callback adds its ordered operation, and by
1922 * the time we visit the modified list of extent maps (with
1923 * btrfs_log_changed_extents()), we see and process the extent
1924 * map they created. We then use the extent map to construct a
1925 * file extent item for logging without waiting for the
1926 * respective ordered operation to finish - this file extent
1927 * item points to a disk location that might not have yet been
1928 * written to, containing random data - so after a crash a log
1929 * replay will make our inode have file extent items that point
1930 * to disk locations containing invalid data, as we returned
1931 * success to userspace without waiting for the respective
1932 * ordered operation to finish, because it wasn't captured by
1933 * btrfs_get_logged_extents().
1934 */
1935 ret = start_ordered_ops(inode, start, end);
1936 }
1937 if (ret) {
1938 mutex_unlock(&inode->i_mutex);
1939 goto out;
0ef8b726 1940 }
2ecb7923 1941 atomic_inc(&root->log_batch);
257c62e1 1942
39279cc3 1943 /*
3a8b36f3
FM
1944 * If the last transaction that changed this file was before the current
1945 * transaction and we have the full sync flag set in our inode, we can
1946 * bail out now without any syncing.
1947 *
1948 * Note that we can't bail out if the full sync flag isn't set. This is
1949 * because when the full sync flag is set we start all ordered extents
1950 * and wait for them to fully complete - when they complete they update
1951 * the inode's last_trans field through:
1952 *
1953 * btrfs_finish_ordered_io() ->
1954 * btrfs_update_inode_fallback() ->
1955 * btrfs_update_inode() ->
1956 * btrfs_set_inode_last_trans()
1957 *
1958 * So we are sure that last_trans is up to date and can do this check to
1959 * bail out safely. For the fast path, when the full sync flag is not
1960 * set in our inode, we can not do it because we start only our ordered
1961 * extents and don't wait for them to complete (that is when
1962 * btrfs_finish_ordered_io runs), so here at this point their last_trans
1963 * value might be less than or equals to fs_info->last_trans_committed,
1964 * and setting a speculative last_trans for an inode when a buffered
1965 * write is made (such as fs_info->generation + 1 for example) would not
1966 * be reliable since after setting the value and before fsync is called
1967 * any number of transactions can start and commit (transaction kthread
1968 * commits the current transaction periodically), and a transaction
1969 * commit does not start nor waits for ordered extents to complete.
257c62e1 1970 */
a4abeea4 1971 smp_mb();
22ee6985 1972 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
3a8b36f3
FM
1973 (full_sync && BTRFS_I(inode)->last_trans <=
1974 root->fs_info->last_trans_committed)) {
5dc562c5
JB
1975 /*
1976 * We'v had everything committed since the last time we were
1977 * modified so clear this flag in case it was set for whatever
1978 * reason, it's no longer relevant.
1979 */
1980 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1981 &BTRFS_I(inode)->runtime_flags);
02c24a82 1982 mutex_unlock(&inode->i_mutex);
15ee9bc7
JB
1983 goto out;
1984 }
15ee9bc7
JB
1985
1986 /*
a52d9a80
CM
1987 * ok we haven't committed the transaction yet, lets do a commit
1988 */
6f902af4 1989 if (file->private_data)
6bf13c0c
SW
1990 btrfs_ioctl_trans_end(file);
1991
5039eddc
JB
1992 /*
1993 * We use start here because we will need to wait on the IO to complete
1994 * in btrfs_sync_log, which could require joining a transaction (for
1995 * example checking cross references in the nocow path). If we use join
1996 * here we could get into a situation where we're waiting on IO to
1997 * happen that is blocked on a transaction trying to commit. With start
1998 * we inc the extwriter counter, so we wait for all extwriters to exit
1999 * before we start blocking join'ers. This comment is to keep somebody
2000 * from thinking they are super smart and changing this to
2001 * btrfs_join_transaction *cough*Josef*cough*.
2002 */
a22285a6
YZ
2003 trans = btrfs_start_transaction(root, 0);
2004 if (IS_ERR(trans)) {
2005 ret = PTR_ERR(trans);
02c24a82 2006 mutex_unlock(&inode->i_mutex);
39279cc3
CM
2007 goto out;
2008 }
5039eddc 2009 trans->sync = true;
e02119d5 2010
8b050d35
MX
2011 btrfs_init_log_ctx(&ctx);
2012
49dae1bc 2013 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2014 if (ret < 0) {
a0634be5
FDBM
2015 /* Fallthrough and commit/free transaction. */
2016 ret = 1;
02c24a82 2017 }
49eb7e46
CM
2018
2019 /* we've logged all the items and now have a consistent
2020 * version of the file in the log. It is possible that
2021 * someone will come in and modify the file, but that's
2022 * fine because the log is consistent on disk, and we
2023 * have references to all of the file's extents
2024 *
2025 * It is possible that someone will come in and log the
2026 * file again, but that will end up using the synchronization
2027 * inside btrfs_sync_log to keep things safe.
2028 */
02c24a82 2029 mutex_unlock(&inode->i_mutex);
49eb7e46 2030
8407f553
FM
2031 /*
2032 * If any of the ordered extents had an error, just return it to user
2033 * space, so that the application knows some writes didn't succeed and
2034 * can take proper action (retry for e.g.). Blindly committing the
2035 * transaction in this case, would fool userspace that everything was
2036 * successful. And we also want to make sure our log doesn't contain
2037 * file extent items pointing to extents that weren't fully written to -
2038 * just like in the non fast fsync path, where we check for the ordered
2039 * operation's error flag before writing to the log tree and return -EIO
2040 * if any of them had this flag set (btrfs_wait_ordered_range) -
2041 * therefore we need to check for errors in the ordered operations,
2042 * which are indicated by ctx.io_err.
2043 */
2044 if (ctx.io_err) {
2045 btrfs_end_transaction(trans, root);
2046 ret = ctx.io_err;
2047 goto out;
2048 }
2049
257c62e1 2050 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2051 if (!ret) {
8b050d35 2052 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2053 if (!ret) {
257c62e1 2054 ret = btrfs_end_transaction(trans, root);
0ef8b726 2055 goto out;
2ab28f32 2056 }
257c62e1 2057 }
0ef8b726
JB
2058 if (!full_sync) {
2059 ret = btrfs_wait_ordered_range(inode, start,
2060 end - start + 1);
b05fd874
FM
2061 if (ret) {
2062 btrfs_end_transaction(trans, root);
0ef8b726 2063 goto out;
b05fd874 2064 }
0ef8b726
JB
2065 }
2066 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2067 } else {
2068 ret = btrfs_end_transaction(trans, root);
e02119d5 2069 }
39279cc3 2070out:
014e4ac4 2071 return ret > 0 ? -EIO : ret;
39279cc3
CM
2072}
2073
f0f37e2f 2074static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2075 .fault = filemap_fault,
f1820361 2076 .map_pages = filemap_map_pages,
9ebefb18
CM
2077 .page_mkwrite = btrfs_page_mkwrite,
2078};
2079
2080static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2081{
058a457e
MX
2082 struct address_space *mapping = filp->f_mapping;
2083
2084 if (!mapping->a_ops->readpage)
2085 return -ENOEXEC;
2086
9ebefb18 2087 file_accessed(filp);
058a457e 2088 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2089
9ebefb18
CM
2090 return 0;
2091}
2092
2aaa6655
JB
2093static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2094 int slot, u64 start, u64 end)
2095{
2096 struct btrfs_file_extent_item *fi;
2097 struct btrfs_key key;
2098
2099 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2100 return 0;
2101
2102 btrfs_item_key_to_cpu(leaf, &key, slot);
2103 if (key.objectid != btrfs_ino(inode) ||
2104 key.type != BTRFS_EXTENT_DATA_KEY)
2105 return 0;
2106
2107 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2108
2109 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2110 return 0;
2111
2112 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2113 return 0;
2114
2115 if (key.offset == end)
2116 return 1;
2117 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2118 return 1;
2119 return 0;
2120}
2121
2122static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2123 struct btrfs_path *path, u64 offset, u64 end)
2124{
2125 struct btrfs_root *root = BTRFS_I(inode)->root;
2126 struct extent_buffer *leaf;
2127 struct btrfs_file_extent_item *fi;
2128 struct extent_map *hole_em;
2129 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2130 struct btrfs_key key;
2131 int ret;
2132
16e7549f
JB
2133 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2134 goto out;
2135
2aaa6655
JB
2136 key.objectid = btrfs_ino(inode);
2137 key.type = BTRFS_EXTENT_DATA_KEY;
2138 key.offset = offset;
2139
2aaa6655
JB
2140 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2141 if (ret < 0)
2142 return ret;
2143 BUG_ON(!ret);
2144
2145 leaf = path->nodes[0];
2146 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2147 u64 num_bytes;
2148
2149 path->slots[0]--;
2150 fi = btrfs_item_ptr(leaf, path->slots[0],
2151 struct btrfs_file_extent_item);
2152 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2153 end - offset;
2154 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2155 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2156 btrfs_set_file_extent_offset(leaf, fi, 0);
2157 btrfs_mark_buffer_dirty(leaf);
2158 goto out;
2159 }
2160
1707e26d 2161 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2162 u64 num_bytes;
2163
2aaa6655 2164 key.offset = offset;
afe5fea7 2165 btrfs_set_item_key_safe(root, path, &key);
2aaa6655
JB
2166 fi = btrfs_item_ptr(leaf, path->slots[0],
2167 struct btrfs_file_extent_item);
2168 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2169 offset;
2170 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2171 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2172 btrfs_set_file_extent_offset(leaf, fi, 0);
2173 btrfs_mark_buffer_dirty(leaf);
2174 goto out;
2175 }
2176 btrfs_release_path(path);
2177
2178 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2179 0, 0, end - offset, 0, end - offset,
2180 0, 0, 0);
2181 if (ret)
2182 return ret;
2183
2184out:
2185 btrfs_release_path(path);
2186
2187 hole_em = alloc_extent_map();
2188 if (!hole_em) {
2189 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2190 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2191 &BTRFS_I(inode)->runtime_flags);
2192 } else {
2193 hole_em->start = offset;
2194 hole_em->len = end - offset;
cc95bef6 2195 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2196 hole_em->orig_start = offset;
2197
2198 hole_em->block_start = EXTENT_MAP_HOLE;
2199 hole_em->block_len = 0;
b4939680 2200 hole_em->orig_block_len = 0;
2aaa6655
JB
2201 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2202 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2203 hole_em->generation = trans->transid;
2204
2205 do {
2206 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2207 write_lock(&em_tree->lock);
09a2a8f9 2208 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2209 write_unlock(&em_tree->lock);
2210 } while (ret == -EEXIST);
2211 free_extent_map(hole_em);
2212 if (ret)
2213 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2214 &BTRFS_I(inode)->runtime_flags);
2215 }
2216
2217 return 0;
2218}
2219
d7781546
QW
2220/*
2221 * Find a hole extent on given inode and change start/len to the end of hole
2222 * extent.(hole/vacuum extent whose em->start <= start &&
2223 * em->start + em->len > start)
2224 * When a hole extent is found, return 1 and modify start/len.
2225 */
2226static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2227{
2228 struct extent_map *em;
2229 int ret = 0;
2230
2231 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2232 if (IS_ERR_OR_NULL(em)) {
2233 if (!em)
2234 ret = -ENOMEM;
2235 else
2236 ret = PTR_ERR(em);
2237 return ret;
2238 }
2239
2240 /* Hole or vacuum extent(only exists in no-hole mode) */
2241 if (em->block_start == EXTENT_MAP_HOLE) {
2242 ret = 1;
2243 *len = em->start + em->len > *start + *len ?
2244 0 : *start + *len - em->start - em->len;
2245 *start = em->start + em->len;
2246 }
2247 free_extent_map(em);
2248 return ret;
2249}
2250
2aaa6655
JB
2251static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2252{
2253 struct btrfs_root *root = BTRFS_I(inode)->root;
2254 struct extent_state *cached_state = NULL;
2255 struct btrfs_path *path;
2256 struct btrfs_block_rsv *rsv;
2257 struct btrfs_trans_handle *trans;
d7781546
QW
2258 u64 lockstart;
2259 u64 lockend;
2260 u64 tail_start;
2261 u64 tail_len;
2262 u64 orig_start = offset;
2263 u64 cur_offset;
2aaa6655
JB
2264 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2265 u64 drop_end;
2aaa6655
JB
2266 int ret = 0;
2267 int err = 0;
16e7549f 2268 int rsv_count;
d7781546 2269 bool same_page;
16e7549f 2270 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
a1a50f60 2271 u64 ino_size;
e8c1c76e
FM
2272 bool truncated_page = false;
2273 bool updated_inode = false;
2aaa6655 2274
0ef8b726
JB
2275 ret = btrfs_wait_ordered_range(inode, offset, len);
2276 if (ret)
2277 return ret;
2aaa6655
JB
2278
2279 mutex_lock(&inode->i_mutex);
a1a50f60 2280 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
d7781546
QW
2281 ret = find_first_non_hole(inode, &offset, &len);
2282 if (ret < 0)
2283 goto out_only_mutex;
2284 if (ret && !len) {
2285 /* Already in a large hole */
2286 ret = 0;
2287 goto out_only_mutex;
2288 }
2289
51f395ad 2290 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
d7781546
QW
2291 lockend = round_down(offset + len,
2292 BTRFS_I(inode)->root->sectorsize) - 1;
2293 same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2294 ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2295
7426cc04
MX
2296 /*
2297 * We needn't truncate any page which is beyond the end of the file
2298 * because we are sure there is no data there.
2299 */
2aaa6655
JB
2300 /*
2301 * Only do this if we are in the same page and we aren't doing the
2302 * entire page.
2303 */
2304 if (same_page && len < PAGE_CACHE_SIZE) {
e8c1c76e
FM
2305 if (offset < ino_size) {
2306 truncated_page = true;
7426cc04 2307 ret = btrfs_truncate_page(inode, offset, len, 0);
e8c1c76e
FM
2308 } else {
2309 ret = 0;
2310 }
d7781546 2311 goto out_only_mutex;
2aaa6655
JB
2312 }
2313
2314 /* zero back part of the first page */
12870f1c 2315 if (offset < ino_size) {
e8c1c76e 2316 truncated_page = true;
7426cc04
MX
2317 ret = btrfs_truncate_page(inode, offset, 0, 0);
2318 if (ret) {
2319 mutex_unlock(&inode->i_mutex);
2320 return ret;
2321 }
2aaa6655
JB
2322 }
2323
d7781546
QW
2324 /* Check the aligned pages after the first unaligned page,
2325 * if offset != orig_start, which means the first unaligned page
2326 * including serveral following pages are already in holes,
2327 * the extra check can be skipped */
2328 if (offset == orig_start) {
2329 /* after truncate page, check hole again */
2330 len = offset + len - lockstart;
2331 offset = lockstart;
2332 ret = find_first_non_hole(inode, &offset, &len);
2333 if (ret < 0)
2334 goto out_only_mutex;
2335 if (ret && !len) {
2336 ret = 0;
2337 goto out_only_mutex;
2338 }
2339 lockstart = offset;
2340 }
2341
2342 /* Check the tail unaligned part is in a hole */
2343 tail_start = lockend + 1;
2344 tail_len = offset + len - tail_start;
2345 if (tail_len) {
2346 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2347 if (unlikely(ret < 0))
2348 goto out_only_mutex;
2349 if (!ret) {
2350 /* zero the front end of the last page */
2351 if (tail_start + tail_len < ino_size) {
e8c1c76e 2352 truncated_page = true;
d7781546
QW
2353 ret = btrfs_truncate_page(inode,
2354 tail_start + tail_len, 0, 1);
2355 if (ret)
2356 goto out_only_mutex;
51f395ad 2357 }
0061280d 2358 }
2aaa6655
JB
2359 }
2360
2361 if (lockend < lockstart) {
e8c1c76e
FM
2362 ret = 0;
2363 goto out_only_mutex;
2aaa6655
JB
2364 }
2365
2366 while (1) {
2367 struct btrfs_ordered_extent *ordered;
2368
2369 truncate_pagecache_range(inode, lockstart, lockend);
2370
2371 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2372 0, &cached_state);
2373 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2374
2375 /*
2376 * We need to make sure we have no ordered extents in this range
2377 * and nobody raced in and read a page in this range, if we did
2378 * we need to try again.
2379 */
2380 if ((!ordered ||
6126e3ca 2381 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2382 ordered->file_offset > lockend)) &&
fc4adbff 2383 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2384 if (ordered)
2385 btrfs_put_ordered_extent(ordered);
2386 break;
2387 }
2388 if (ordered)
2389 btrfs_put_ordered_extent(ordered);
2390 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2391 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2392 ret = btrfs_wait_ordered_range(inode, lockstart,
2393 lockend - lockstart + 1);
2394 if (ret) {
2395 mutex_unlock(&inode->i_mutex);
2396 return ret;
2397 }
2aaa6655
JB
2398 }
2399
2400 path = btrfs_alloc_path();
2401 if (!path) {
2402 ret = -ENOMEM;
2403 goto out;
2404 }
2405
66d8f3dd 2406 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2407 if (!rsv) {
2408 ret = -ENOMEM;
2409 goto out_free;
2410 }
2411 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2412 rsv->failfast = 1;
2413
2414 /*
2415 * 1 - update the inode
2416 * 1 - removing the extents in the range
16e7549f 2417 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2418 */
16e7549f
JB
2419 rsv_count = no_holes ? 2 : 3;
2420 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2421 if (IS_ERR(trans)) {
2422 err = PTR_ERR(trans);
2423 goto out_free;
2424 }
2425
2426 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2427 min_size);
2428 BUG_ON(ret);
2429 trans->block_rsv = rsv;
2430
d7781546
QW
2431 cur_offset = lockstart;
2432 len = lockend - cur_offset;
2aaa6655
JB
2433 while (cur_offset < lockend) {
2434 ret = __btrfs_drop_extents(trans, root, inode, path,
2435 cur_offset, lockend + 1,
1acae57b 2436 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2437 if (ret != -ENOSPC)
2438 break;
2439
2440 trans->block_rsv = &root->fs_info->trans_block_rsv;
2441
12870f1c
FM
2442 if (cur_offset < ino_size) {
2443 ret = fill_holes(trans, inode, path, cur_offset,
2444 drop_end);
2445 if (ret) {
2446 err = ret;
2447 break;
2448 }
2aaa6655
JB
2449 }
2450
2451 cur_offset = drop_end;
2452
2453 ret = btrfs_update_inode(trans, root, inode);
2454 if (ret) {
2455 err = ret;
2456 break;
2457 }
2458
2aaa6655 2459 btrfs_end_transaction(trans, root);
b53d3f5d 2460 btrfs_btree_balance_dirty(root);
2aaa6655 2461
16e7549f 2462 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2463 if (IS_ERR(trans)) {
2464 ret = PTR_ERR(trans);
2465 trans = NULL;
2466 break;
2467 }
2468
2469 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2470 rsv, min_size);
2471 BUG_ON(ret); /* shouldn't happen */
2472 trans->block_rsv = rsv;
d7781546
QW
2473
2474 ret = find_first_non_hole(inode, &cur_offset, &len);
2475 if (unlikely(ret < 0))
2476 break;
2477 if (ret && !len) {
2478 ret = 0;
2479 break;
2480 }
2aaa6655
JB
2481 }
2482
2483 if (ret) {
2484 err = ret;
2485 goto out_trans;
2486 }
2487
2488 trans->block_rsv = &root->fs_info->trans_block_rsv;
fc19c5e7
FM
2489 /*
2490 * Don't insert file hole extent item if it's for a range beyond eof
2491 * (because it's useless) or if it represents a 0 bytes range (when
2492 * cur_offset == drop_end).
2493 */
2494 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2495 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2496 if (ret) {
2497 err = ret;
2498 goto out_trans;
2499 }
2aaa6655
JB
2500 }
2501
2502out_trans:
2503 if (!trans)
2504 goto out_free;
2505
e1f5790e
TI
2506 inode_inc_iversion(inode);
2507 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2508
2aaa6655
JB
2509 trans->block_rsv = &root->fs_info->trans_block_rsv;
2510 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2511 updated_inode = true;
2aaa6655 2512 btrfs_end_transaction(trans, root);
b53d3f5d 2513 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2514out_free:
2515 btrfs_free_path(path);
2516 btrfs_free_block_rsv(root, rsv);
2517out:
2518 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2519 &cached_state, GFP_NOFS);
d7781546 2520out_only_mutex:
e8c1c76e
FM
2521 if (!updated_inode && truncated_page && !ret && !err) {
2522 /*
2523 * If we only end up zeroing part of a page, we still need to
2524 * update the inode item, so that all the time fields are
2525 * updated as well as the necessary btrfs inode in memory fields
2526 * for detecting, at fsync time, if the inode isn't yet in the
2527 * log tree or it's there but not up to date.
2528 */
2529 trans = btrfs_start_transaction(root, 1);
2530 if (IS_ERR(trans)) {
2531 err = PTR_ERR(trans);
2532 } else {
2533 err = btrfs_update_inode(trans, root, inode);
2534 ret = btrfs_end_transaction(trans, root);
2535 }
2536 }
2aaa6655
JB
2537 mutex_unlock(&inode->i_mutex);
2538 if (ret && !err)
2539 err = ret;
2540 return err;
2541}
2542
2fe17c10
CH
2543static long btrfs_fallocate(struct file *file, int mode,
2544 loff_t offset, loff_t len)
2545{
496ad9aa 2546 struct inode *inode = file_inode(file);
2fe17c10 2547 struct extent_state *cached_state = NULL;
6113077c 2548 struct btrfs_root *root = BTRFS_I(inode)->root;
2fe17c10
CH
2549 u64 cur_offset;
2550 u64 last_byte;
2551 u64 alloc_start;
2552 u64 alloc_end;
2553 u64 alloc_hint = 0;
2554 u64 locked_end;
2fe17c10 2555 struct extent_map *em;
797f4277 2556 int blocksize = BTRFS_I(inode)->root->sectorsize;
2fe17c10
CH
2557 int ret;
2558
797f4277
MX
2559 alloc_start = round_down(offset, blocksize);
2560 alloc_end = round_up(offset + len, blocksize);
2fe17c10 2561
2aaa6655
JB
2562 /* Make sure we aren't being give some crap mode */
2563 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2564 return -EOPNOTSUPP;
2565
2aaa6655
JB
2566 if (mode & FALLOC_FL_PUNCH_HOLE)
2567 return btrfs_punch_hole(inode, offset, len);
2568
d98456fc
CM
2569 /*
2570 * Make sure we have enough space before we do the
2571 * allocation.
2572 */
0ff6fabd 2573 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
d98456fc
CM
2574 if (ret)
2575 return ret;
6113077c
WS
2576 if (root->fs_info->quota_enabled) {
2577 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2578 if (ret)
2579 goto out_reserve_fail;
2580 }
d98456fc 2581
2fe17c10
CH
2582 mutex_lock(&inode->i_mutex);
2583 ret = inode_newsize_ok(inode, alloc_end);
2584 if (ret)
2585 goto out;
2586
2587 if (alloc_start > inode->i_size) {
a41ad394
JB
2588 ret = btrfs_cont_expand(inode, i_size_read(inode),
2589 alloc_start);
2fe17c10
CH
2590 if (ret)
2591 goto out;
a71754fc
JB
2592 } else {
2593 /*
2594 * If we are fallocating from the end of the file onward we
2595 * need to zero out the end of the page if i_size lands in the
2596 * middle of a page.
2597 */
2598 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2599 if (ret)
2600 goto out;
2fe17c10
CH
2601 }
2602
a71754fc
JB
2603 /*
2604 * wait for ordered IO before we have any locks. We'll loop again
2605 * below with the locks held.
2606 */
0ef8b726
JB
2607 ret = btrfs_wait_ordered_range(inode, alloc_start,
2608 alloc_end - alloc_start);
2609 if (ret)
2610 goto out;
a71754fc 2611
2fe17c10
CH
2612 locked_end = alloc_end - 1;
2613 while (1) {
2614 struct btrfs_ordered_extent *ordered;
2615
2616 /* the extent lock is ordered inside the running
2617 * transaction
2618 */
2619 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
d0082371 2620 locked_end, 0, &cached_state);
2fe17c10
CH
2621 ordered = btrfs_lookup_first_ordered_extent(inode,
2622 alloc_end - 1);
2623 if (ordered &&
2624 ordered->file_offset + ordered->len > alloc_start &&
2625 ordered->file_offset < alloc_end) {
2626 btrfs_put_ordered_extent(ordered);
2627 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2628 alloc_start, locked_end,
2629 &cached_state, GFP_NOFS);
2630 /*
2631 * we can't wait on the range with the transaction
2632 * running or with the extent lock held
2633 */
0ef8b726
JB
2634 ret = btrfs_wait_ordered_range(inode, alloc_start,
2635 alloc_end - alloc_start);
2636 if (ret)
2637 goto out;
2fe17c10
CH
2638 } else {
2639 if (ordered)
2640 btrfs_put_ordered_extent(ordered);
2641 break;
2642 }
2643 }
2644
2645 cur_offset = alloc_start;
2646 while (1) {
f1e490a7
JB
2647 u64 actual_end;
2648
2fe17c10
CH
2649 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2650 alloc_end - cur_offset, 0);
79787eaa
JM
2651 if (IS_ERR_OR_NULL(em)) {
2652 if (!em)
2653 ret = -ENOMEM;
2654 else
2655 ret = PTR_ERR(em);
2656 break;
2657 }
2fe17c10 2658 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2659 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2660 last_byte = ALIGN(last_byte, blocksize);
f1e490a7 2661
2fe17c10
CH
2662 if (em->block_start == EXTENT_MAP_HOLE ||
2663 (cur_offset >= inode->i_size &&
2664 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2665 ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2666 last_byte - cur_offset,
2667 1 << inode->i_blkbits,
2668 offset + len,
2669 &alloc_hint);
1b9c332b 2670
2fe17c10
CH
2671 if (ret < 0) {
2672 free_extent_map(em);
2673 break;
2674 }
f1e490a7
JB
2675 } else if (actual_end > inode->i_size &&
2676 !(mode & FALLOC_FL_KEEP_SIZE)) {
2677 /*
2678 * We didn't need to allocate any more space, but we
2679 * still extended the size of the file so we need to
2680 * update i_size.
2681 */
2682 inode->i_ctime = CURRENT_TIME;
2683 i_size_write(inode, actual_end);
2684 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2fe17c10
CH
2685 }
2686 free_extent_map(em);
2687
2688 cur_offset = last_byte;
2689 if (cur_offset >= alloc_end) {
2690 ret = 0;
2691 break;
2692 }
2693 }
2694 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2695 &cached_state, GFP_NOFS);
2fe17c10
CH
2696out:
2697 mutex_unlock(&inode->i_mutex);
6113077c
WS
2698 if (root->fs_info->quota_enabled)
2699 btrfs_qgroup_free(root, alloc_end - alloc_start);
2700out_reserve_fail:
d98456fc 2701 /* Let go of our reservation. */
0ff6fabd 2702 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2fe17c10
CH
2703 return ret;
2704}
2705
965c8e59 2706static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2707{
2708 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2709 struct extent_map *em = NULL;
b2675157 2710 struct extent_state *cached_state = NULL;
4d1a40c6
LB
2711 u64 lockstart;
2712 u64 lockend;
2713 u64 start;
2714 u64 len;
b2675157
JB
2715 int ret = 0;
2716
4d1a40c6
LB
2717 if (inode->i_size == 0)
2718 return -ENXIO;
2719
2720 /*
2721 * *offset can be negative, in this case we start finding DATA/HOLE from
2722 * the very start of the file.
2723 */
2724 start = max_t(loff_t, 0, *offset);
2725
2726 lockstart = round_down(start, root->sectorsize);
2727 lockend = round_up(i_size_read(inode), root->sectorsize);
b2675157
JB
2728 if (lockend <= lockstart)
2729 lockend = lockstart + root->sectorsize;
1214b53f 2730 lockend--;
b2675157
JB
2731 len = lockend - lockstart + 1;
2732
b2675157 2733 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
d0082371 2734 &cached_state);
b2675157 2735
7f4ca37c 2736 while (start < inode->i_size) {
b2675157
JB
2737 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2738 if (IS_ERR(em)) {
6af021d8 2739 ret = PTR_ERR(em);
7f4ca37c 2740 em = NULL;
b2675157
JB
2741 break;
2742 }
2743
7f4ca37c
JB
2744 if (whence == SEEK_HOLE &&
2745 (em->block_start == EXTENT_MAP_HOLE ||
2746 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2747 break;
2748 else if (whence == SEEK_DATA &&
2749 (em->block_start != EXTENT_MAP_HOLE &&
2750 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2751 break;
b2675157
JB
2752
2753 start = em->start + em->len;
b2675157 2754 free_extent_map(em);
7f4ca37c 2755 em = NULL;
b2675157
JB
2756 cond_resched();
2757 }
7f4ca37c
JB
2758 free_extent_map(em);
2759 if (!ret) {
2760 if (whence == SEEK_DATA && start >= inode->i_size)
2761 ret = -ENXIO;
2762 else
2763 *offset = min_t(loff_t, start, inode->i_size);
2764 }
b2675157
JB
2765 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2766 &cached_state, GFP_NOFS);
2767 return ret;
2768}
2769
965c8e59 2770static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2771{
2772 struct inode *inode = file->f_mapping->host;
2773 int ret;
2774
2775 mutex_lock(&inode->i_mutex);
965c8e59 2776 switch (whence) {
b2675157
JB
2777 case SEEK_END:
2778 case SEEK_CUR:
965c8e59 2779 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2780 goto out;
2781 case SEEK_DATA:
2782 case SEEK_HOLE:
48802c8a
JL
2783 if (offset >= i_size_read(inode)) {
2784 mutex_unlock(&inode->i_mutex);
2785 return -ENXIO;
2786 }
2787
965c8e59 2788 ret = find_desired_extent(inode, &offset, whence);
b2675157
JB
2789 if (ret) {
2790 mutex_unlock(&inode->i_mutex);
2791 return ret;
2792 }
2793 }
2794
46a1c2c7 2795 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
2796out:
2797 mutex_unlock(&inode->i_mutex);
2798 return offset;
2799}
2800
828c0950 2801const struct file_operations btrfs_file_operations = {
b2675157 2802 .llseek = btrfs_file_llseek,
aad4f8bb 2803 .read_iter = generic_file_read_iter,
e9906a98 2804 .splice_read = generic_file_splice_read,
b30ac0fc 2805 .write_iter = btrfs_file_write_iter,
9ebefb18 2806 .mmap = btrfs_file_mmap,
39279cc3 2807 .open = generic_file_open,
e1b81e67 2808 .release = btrfs_release_file,
39279cc3 2809 .fsync = btrfs_sync_file,
2fe17c10 2810 .fallocate = btrfs_fallocate,
34287aa3 2811 .unlocked_ioctl = btrfs_ioctl,
39279cc3 2812#ifdef CONFIG_COMPAT
34287aa3 2813 .compat_ioctl = btrfs_ioctl,
39279cc3
CM
2814#endif
2815};
9247f317
MX
2816
2817void btrfs_auto_defrag_exit(void)
2818{
2819 if (btrfs_inode_defrag_cachep)
2820 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2821}
2822
2823int btrfs_auto_defrag_init(void)
2824{
2825 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2826 sizeof(struct inode_defrag), 0,
2827 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2828 NULL);
2829 if (!btrfs_inode_defrag_cachep)
2830 return -ENOMEM;
2831
2832 return 0;
2833}
728404da
FM
2834
2835int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2836{
2837 int ret;
2838
2839 /*
2840 * So with compression we will find and lock a dirty page and clear the
2841 * first one as dirty, setup an async extent, and immediately return
2842 * with the entire range locked but with nobody actually marked with
2843 * writeback. So we can't just filemap_write_and_wait_range() and
2844 * expect it to work since it will just kick off a thread to do the
2845 * actual work. So we need to call filemap_fdatawrite_range _again_
2846 * since it will wait on the page lock, which won't be unlocked until
2847 * after the pages have been marked as writeback and so we're good to go
2848 * from there. We have to do this otherwise we'll miss the ordered
2849 * extents and that results in badness. Please Josef, do not think you
2850 * know better and pull this out at some point in the future, it is
2851 * right and you are wrong.
2852 */
2853 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2854 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
2855 &BTRFS_I(inode)->runtime_flags))
2856 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
2857
2858 return ret;
2859}