btrfs: pass btrfs_inode to btrfs_inode_lock
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
39279cc3
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
39279cc3 24#include "print-tree.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
2aaa6655 27#include "volumes.h"
fcebe456 28#include "qgroup.h"
ebb8765b 29#include "compression.h"
86736342 30#include "delalloc-space.h"
6a177381 31#include "reflink.h"
f02a85d2 32#include "subpage.h"
c7f13d42 33#include "fs.h"
07e81dc9 34#include "accessors.h"
a0231804 35#include "extent-tree.h"
7c8ede16 36#include "file-item.h"
7572dec8 37#include "ioctl.h"
af142b6f 38#include "file.h"
7f0add25 39#include "super.h"
39279cc3 40
d352ac68
CM
41/* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
ee22f0c4 44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 45 struct page **prepared_pages,
11c65dcc 46 struct iov_iter *i)
39279cc3 47{
914ee295 48 size_t copied = 0;
d0215f3e 49 size_t total_copied = 0;
11c65dcc 50 int pg = 0;
7073017a 51 int offset = offset_in_page(pos);
39279cc3 52
11c65dcc 53 while (write_bytes > 0) {
39279cc3 54 size_t count = min_t(size_t,
09cbfeaf 55 PAGE_SIZE - offset, write_bytes);
11c65dcc 56 struct page *page = prepared_pages[pg];
914ee295
XZ
57 /*
58 * Copy data from userspace to the current page
914ee295 59 */
f0b65f39 60 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 61
39279cc3
CM
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
31339acd
CM
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
f0b65f39
AV
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
31339acd 82
11c65dcc 83 write_bytes -= copied;
914ee295 84 total_copied += copied;
f0b65f39
AV
85 offset += copied;
86 if (offset == PAGE_SIZE) {
11c65dcc
JB
87 pg++;
88 offset = 0;
89 }
39279cc3 90 }
914ee295 91 return total_copied;
39279cc3
CM
92}
93
d352ac68
CM
94/*
95 * unlocks pages after btrfs_file_write is done with them
96 */
e4f94347
QW
97static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
39279cc3
CM
100{
101 size_t i;
e4f94347
QW
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
39279cc3 106 for (i = 0; i < num_pages; i++) {
d352ac68
CM
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
d352ac68 112 */
e4f94347
QW
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
39279cc3 115 unlock_page(pages[i]);
09cbfeaf 116 put_page(pages[i]);
39279cc3
CM
117 }
118}
119
d352ac68 120/*
c0fab480
QW
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
d352ac68 126 */
088545f6 127int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 128 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 129 struct extent_state **cached, bool noreserve)
39279cc3 130{
088545f6 131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 132 int err = 0;
a52d9a80 133 int i;
db94535d 134 u64 num_bytes;
a52d9a80
CM
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
088545f6 138 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 139 unsigned int extra_bits = 0;
39279cc3 140
aa8c1a41
GR
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
13f0dd8f 147 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 148 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 149 fs_info->sectorsize);
f02a85d2 150 ASSERT(num_bytes <= U32_MAX);
39279cc3 151
db94535d 152 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 153
7703bdd8
CM
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
088545f6 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 160 cached);
7703bdd8 161
088545f6 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 163 extra_bits, cached);
d0215f3e
JB
164 if (err)
165 return err;
9ed74f2d 166
c8b97818
CM
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
f02a85d2
QW
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
e4f94347 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
f02a85d2 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
a52d9a80 173 }
9f570b8d
JB
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
088545f6 181 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 182 return 0;
39279cc3
CM
183}
184
185/*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
2766ff61
FM
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
39279cc3 199 */
5893dfb9
FM
200int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
39279cc3 203{
0b246afa 204 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 205 struct extent_buffer *leaf;
920bbbfb 206 struct btrfs_file_extent_item *fi;
82fa113f 207 struct btrfs_ref ref = { 0 };
00f5c795 208 struct btrfs_key key;
920bbbfb 209 struct btrfs_key new_key;
906c448c 210 u64 ino = btrfs_ino(inode);
5893dfb9 211 u64 search_start = args->start;
920bbbfb
YZ
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
5893dfb9 216 u64 last_end = args->start;
920bbbfb
YZ
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
ccd467d6 220 int recow;
00f5c795 221 int ret;
dc7fdde3 222 int modify_tree = -1;
27cdeb70 223 int update_refs;
c3308f84 224 int found = 0;
5893dfb9
FM
225 struct btrfs_path *path = args->path;
226
2766ff61 227 args->bytes_found = 0;
5893dfb9
FM
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
39279cc3 240
5893dfb9 241 if (args->drop_cache)
4c0c8cfc 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
a52d9a80 243
5893dfb9 244 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
245 modify_tree = 0;
246
d175209b 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 248 while (1) {
ccd467d6 249 recow = 0;
33345d01 250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 251 search_start, modify_tree);
39279cc3 252 if (ret < 0)
920bbbfb 253 break;
5893dfb9 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 257 if (key.objectid == ino &&
920bbbfb
YZ
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
39279cc3 260 }
920bbbfb 261 ret = 0;
8c2383c3 262next_slot:
5f39d397 263 leaf = path->nodes[0];
920bbbfb
YZ
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
8c2383c3 272 }
920bbbfb
YZ
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
5893dfb9 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
e41ca589 303 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 304 } else {
aeafbf84
FM
305 /* can't happen */
306 BUG();
39279cc3
CM
307 }
308
fc19c5e7
FM
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
62fe51c1
JB
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
fc19c5e7 320 goto delete_extent_item;
62fe51c1 321 }
fc19c5e7 322
920bbbfb
YZ
323 if (extent_end <= search_start) {
324 path->slots[0]++;
8c2383c3 325 goto next_slot;
39279cc3
CM
326 }
327
c3308f84 328 found = 1;
5893dfb9 329 search_start = max(key.offset, args->start);
dc7fdde3
CM
330 if (recow || !modify_tree) {
331 modify_tree = -1;
b3b4aa74 332 btrfs_release_path(path);
920bbbfb 333 continue;
39279cc3 334 }
6643558d 335
920bbbfb
YZ
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
5893dfb9 340 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 341 BUG_ON(del_nr > 0);
00fdf13a 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 343 ret = -EOPNOTSUPP;
00fdf13a
LB
344 break;
345 }
920bbbfb
YZ
346
347 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 348 new_key.offset = args->start;
920bbbfb
YZ
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
b3b4aa74 352 btrfs_release_path(path);
920bbbfb 353 continue;
6643558d 354 }
920bbbfb
YZ
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 362 args->start - key.offset);
920bbbfb
YZ
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
5893dfb9 367 extent_offset += args->start - key.offset;
920bbbfb
YZ
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 370 extent_end - args->start);
920bbbfb
YZ
371 btrfs_mark_buffer_dirty(leaf);
372
5dc562c5 373 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
920bbbfb
YZ
378 root->root_key.objectid,
379 new_key.objectid,
f42c5da6
NB
380 args->start - extent_offset,
381 0, false);
82fa113f 382 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 383 BUG_ON(ret); /* -ENOMEM */
771ed689 384 }
5893dfb9 385 key.offset = args->start;
6643558d 386 }
62fe51c1
JB
387 /*
388 * From here on out we will have actually dropped something, so
389 * last_end can be updated.
390 */
391 last_end = extent_end;
392
920bbbfb
YZ
393 /*
394 * | ---- range to drop ----- |
395 * | -------- extent -------- |
396 */
5893dfb9 397 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 398 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 399 ret = -EOPNOTSUPP;
00fdf13a
LB
400 break;
401 }
6643558d 402
920bbbfb 403 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 404 new_key.offset = args->end;
0b246afa 405 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 406
5893dfb9 407 extent_offset += args->end - key.offset;
920bbbfb
YZ
408 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
409 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 410 extent_end - args->end);
920bbbfb 411 btrfs_mark_buffer_dirty(leaf);
2671485d 412 if (update_refs && disk_bytenr > 0)
2766ff61 413 args->bytes_found += args->end - key.offset;
920bbbfb 414 break;
39279cc3 415 }
771ed689 416
920bbbfb
YZ
417 search_start = extent_end;
418 /*
419 * | ---- range to drop ----- |
420 * | -------- extent -------- |
421 */
5893dfb9 422 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 423 BUG_ON(del_nr > 0);
00fdf13a 424 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 425 ret = -EOPNOTSUPP;
00fdf13a
LB
426 break;
427 }
8c2383c3 428
920bbbfb 429 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 430 args->start - key.offset);
920bbbfb 431 btrfs_mark_buffer_dirty(leaf);
2671485d 432 if (update_refs && disk_bytenr > 0)
2766ff61 433 args->bytes_found += extent_end - args->start;
5893dfb9 434 if (args->end == extent_end)
920bbbfb 435 break;
c8b97818 436
920bbbfb
YZ
437 path->slots[0]++;
438 goto next_slot;
31840ae1
ZY
439 }
440
920bbbfb
YZ
441 /*
442 * | ---- range to drop ----- |
443 * | ------ extent ------ |
444 */
5893dfb9 445 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 446delete_extent_item:
920bbbfb
YZ
447 if (del_nr == 0) {
448 del_slot = path->slots[0];
449 del_nr = 1;
450 } else {
451 BUG_ON(del_slot + del_nr != path->slots[0]);
452 del_nr++;
453 }
31840ae1 454
5dc562c5
JB
455 if (update_refs &&
456 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 457 args->bytes_found += extent_end - key.offset;
920bbbfb 458 extent_end = ALIGN(extent_end,
0b246afa 459 fs_info->sectorsize);
5dc562c5 460 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
461 btrfs_init_generic_ref(&ref,
462 BTRFS_DROP_DELAYED_REF,
463 disk_bytenr, num_bytes, 0);
464 btrfs_init_data_ref(&ref,
920bbbfb 465 root->root_key.objectid,
ffd4bb2a 466 key.objectid,
f42c5da6
NB
467 key.offset - extent_offset, 0,
468 false);
ffd4bb2a 469 ret = btrfs_free_extent(trans, &ref);
79787eaa 470 BUG_ON(ret); /* -ENOMEM */
2766ff61 471 args->bytes_found += extent_end - key.offset;
31840ae1 472 }
31840ae1 473
5893dfb9 474 if (args->end == extent_end)
920bbbfb
YZ
475 break;
476
477 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
478 path->slots[0]++;
479 goto next_slot;
480 }
481
482 ret = btrfs_del_items(trans, root, path, del_slot,
483 del_nr);
79787eaa 484 if (ret) {
66642832 485 btrfs_abort_transaction(trans, ret);
5dc562c5 486 break;
79787eaa 487 }
920bbbfb
YZ
488
489 del_nr = 0;
490 del_slot = 0;
491
b3b4aa74 492 btrfs_release_path(path);
920bbbfb 493 continue;
39279cc3 494 }
920bbbfb 495
290342f6 496 BUG();
39279cc3 497 }
920bbbfb 498
79787eaa 499 if (!ret && del_nr > 0) {
1acae57b
FDBM
500 /*
501 * Set path->slots[0] to first slot, so that after the delete
502 * if items are move off from our leaf to its immediate left or
503 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 504 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
505 */
506 path->slots[0] = del_slot;
920bbbfb 507 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 508 if (ret)
66642832 509 btrfs_abort_transaction(trans, ret);
d5f37527 510 }
1acae57b 511
d5f37527
FDBM
512 leaf = path->nodes[0];
513 /*
514 * If btrfs_del_items() was called, it might have deleted a leaf, in
515 * which case it unlocked our path, so check path->locks[0] matches a
516 * write lock.
517 */
7ecb4c31 518 if (!ret && args->replace_extent &&
ac5887c8 519 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 520 btrfs_leaf_free_space(leaf) >=
5893dfb9 521 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
522
523 key.objectid = ino;
524 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 525 key.offset = args->start;
d5f37527
FDBM
526 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
527 struct btrfs_key slot_key;
528
529 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
530 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
531 path->slots[0]++;
1acae57b 532 }
f0641656 533 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
5893dfb9 534 args->extent_inserted = true;
6643558d 535 }
920bbbfb 536
5893dfb9
FM
537 if (!args->path)
538 btrfs_free_path(path);
539 else if (!args->extent_inserted)
1acae57b 540 btrfs_release_path(path);
5893dfb9
FM
541out:
542 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 543
39279cc3
CM
544 return ret;
545}
546
d899e052 547static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
548 u64 objectid, u64 bytenr, u64 orig_offset,
549 u64 *start, u64 *end)
d899e052
YZ
550{
551 struct btrfs_file_extent_item *fi;
552 struct btrfs_key key;
553 u64 extent_end;
554
555 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
556 return 0;
557
558 btrfs_item_key_to_cpu(leaf, &key, slot);
559 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
560 return 0;
561
562 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
563 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
564 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 565 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
566 btrfs_file_extent_compression(leaf, fi) ||
567 btrfs_file_extent_encryption(leaf, fi) ||
568 btrfs_file_extent_other_encoding(leaf, fi))
569 return 0;
570
571 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
572 if ((*start && *start != key.offset) || (*end && *end != extent_end))
573 return 0;
574
575 *start = key.offset;
576 *end = extent_end;
577 return 1;
578}
579
580/*
581 * Mark extent in the range start - end as written.
582 *
583 * This changes extent type from 'pre-allocated' to 'regular'. If only
584 * part of extent is marked as written, the extent will be split into
585 * two or three.
586 */
587int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 588 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 589{
3ffbd68c 590 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 591 struct btrfs_root *root = inode->root;
d899e052
YZ
592 struct extent_buffer *leaf;
593 struct btrfs_path *path;
594 struct btrfs_file_extent_item *fi;
82fa113f 595 struct btrfs_ref ref = { 0 };
d899e052 596 struct btrfs_key key;
920bbbfb 597 struct btrfs_key new_key;
d899e052
YZ
598 u64 bytenr;
599 u64 num_bytes;
600 u64 extent_end;
5d4f98a2 601 u64 orig_offset;
d899e052
YZ
602 u64 other_start;
603 u64 other_end;
920bbbfb
YZ
604 u64 split;
605 int del_nr = 0;
606 int del_slot = 0;
6c7d54ac 607 int recow;
e7b2ec3d 608 int ret = 0;
7a6d7067 609 u64 ino = btrfs_ino(inode);
d899e052 610
d899e052 611 path = btrfs_alloc_path();
d8926bb3
MF
612 if (!path)
613 return -ENOMEM;
d899e052 614again:
6c7d54ac 615 recow = 0;
920bbbfb 616 split = start;
33345d01 617 key.objectid = ino;
d899e052 618 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 619 key.offset = split;
d899e052
YZ
620
621 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
622 if (ret < 0)
623 goto out;
d899e052
YZ
624 if (ret > 0 && path->slots[0] > 0)
625 path->slots[0]--;
626
627 leaf = path->nodes[0];
628 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
629 if (key.objectid != ino ||
630 key.type != BTRFS_EXTENT_DATA_KEY) {
631 ret = -EINVAL;
632 btrfs_abort_transaction(trans, ret);
633 goto out;
634 }
d899e052
YZ
635 fi = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
9c8e63db
JB
637 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
638 ret = -EINVAL;
639 btrfs_abort_transaction(trans, ret);
640 goto out;
641 }
d899e052 642 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
643 if (key.offset > start || extent_end < end) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
d899e052
YZ
648
649 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
650 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 651 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
652 memcpy(&new_key, &key, sizeof(new_key));
653
654 if (start == key.offset && end < extent_end) {
655 other_start = 0;
656 other_end = start;
657 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 658 ino, bytenr, orig_offset,
6c7d54ac
YZ
659 &other_start, &other_end)) {
660 new_key.offset = end;
0b246afa 661 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
662 fi = btrfs_item_ptr(leaf, path->slots[0],
663 struct btrfs_file_extent_item);
224ecce5
JB
664 btrfs_set_file_extent_generation(leaf, fi,
665 trans->transid);
6c7d54ac
YZ
666 btrfs_set_file_extent_num_bytes(leaf, fi,
667 extent_end - end);
668 btrfs_set_file_extent_offset(leaf, fi,
669 end - orig_offset);
670 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
671 struct btrfs_file_extent_item);
224ecce5
JB
672 btrfs_set_file_extent_generation(leaf, fi,
673 trans->transid);
6c7d54ac
YZ
674 btrfs_set_file_extent_num_bytes(leaf, fi,
675 end - other_start);
676 btrfs_mark_buffer_dirty(leaf);
677 goto out;
678 }
679 }
680
681 if (start > key.offset && end == extent_end) {
682 other_start = end;
683 other_end = 0;
684 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 685 ino, bytenr, orig_offset,
6c7d54ac
YZ
686 &other_start, &other_end)) {
687 fi = btrfs_item_ptr(leaf, path->slots[0],
688 struct btrfs_file_extent_item);
689 btrfs_set_file_extent_num_bytes(leaf, fi,
690 start - key.offset);
224ecce5
JB
691 btrfs_set_file_extent_generation(leaf, fi,
692 trans->transid);
6c7d54ac
YZ
693 path->slots[0]++;
694 new_key.offset = start;
0b246afa 695 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
696
697 fi = btrfs_item_ptr(leaf, path->slots[0],
698 struct btrfs_file_extent_item);
224ecce5
JB
699 btrfs_set_file_extent_generation(leaf, fi,
700 trans->transid);
6c7d54ac
YZ
701 btrfs_set_file_extent_num_bytes(leaf, fi,
702 other_end - start);
703 btrfs_set_file_extent_offset(leaf, fi,
704 start - orig_offset);
705 btrfs_mark_buffer_dirty(leaf);
706 goto out;
707 }
708 }
d899e052 709
920bbbfb
YZ
710 while (start > key.offset || end < extent_end) {
711 if (key.offset == start)
712 split = end;
713
920bbbfb
YZ
714 new_key.offset = split;
715 ret = btrfs_duplicate_item(trans, root, path, &new_key);
716 if (ret == -EAGAIN) {
b3b4aa74 717 btrfs_release_path(path);
920bbbfb 718 goto again;
d899e052 719 }
79787eaa 720 if (ret < 0) {
66642832 721 btrfs_abort_transaction(trans, ret);
79787eaa
JM
722 goto out;
723 }
d899e052 724
920bbbfb
YZ
725 leaf = path->nodes[0];
726 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 727 struct btrfs_file_extent_item);
224ecce5 728 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 729 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
730 split - key.offset);
731
732 fi = btrfs_item_ptr(leaf, path->slots[0],
733 struct btrfs_file_extent_item);
734
224ecce5 735 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
736 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
737 btrfs_set_file_extent_num_bytes(leaf, fi,
738 extent_end - split);
d899e052
YZ
739 btrfs_mark_buffer_dirty(leaf);
740
82fa113f
QW
741 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
742 num_bytes, 0);
743 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 744 orig_offset, 0, false);
82fa113f 745 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
746 if (ret) {
747 btrfs_abort_transaction(trans, ret);
748 goto out;
749 }
d899e052 750
920bbbfb
YZ
751 if (split == start) {
752 key.offset = start;
753 } else {
9c8e63db
JB
754 if (start != key.offset) {
755 ret = -EINVAL;
756 btrfs_abort_transaction(trans, ret);
757 goto out;
758 }
d899e052 759 path->slots[0]--;
920bbbfb 760 extent_end = end;
d899e052 761 }
6c7d54ac 762 recow = 1;
d899e052
YZ
763 }
764
920bbbfb
YZ
765 other_start = end;
766 other_end = 0;
ffd4bb2a
QW
767 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
768 num_bytes, 0);
f42c5da6
NB
769 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
770 0, false);
6c7d54ac 771 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 772 ino, bytenr, orig_offset,
6c7d54ac
YZ
773 &other_start, &other_end)) {
774 if (recow) {
b3b4aa74 775 btrfs_release_path(path);
6c7d54ac
YZ
776 goto again;
777 }
920bbbfb
YZ
778 extent_end = other_end;
779 del_slot = path->slots[0] + 1;
780 del_nr++;
ffd4bb2a 781 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
782 if (ret) {
783 btrfs_abort_transaction(trans, ret);
784 goto out;
785 }
d899e052 786 }
920bbbfb
YZ
787 other_start = 0;
788 other_end = start;
6c7d54ac 789 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 790 ino, bytenr, orig_offset,
6c7d54ac
YZ
791 &other_start, &other_end)) {
792 if (recow) {
b3b4aa74 793 btrfs_release_path(path);
6c7d54ac
YZ
794 goto again;
795 }
920bbbfb
YZ
796 key.offset = other_start;
797 del_slot = path->slots[0];
798 del_nr++;
ffd4bb2a 799 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
800 if (ret) {
801 btrfs_abort_transaction(trans, ret);
802 goto out;
803 }
920bbbfb
YZ
804 }
805 if (del_nr == 0) {
3f6fae95
SL
806 fi = btrfs_item_ptr(leaf, path->slots[0],
807 struct btrfs_file_extent_item);
920bbbfb
YZ
808 btrfs_set_file_extent_type(leaf, fi,
809 BTRFS_FILE_EXTENT_REG);
224ecce5 810 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 811 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 812 } else {
3f6fae95
SL
813 fi = btrfs_item_ptr(leaf, del_slot - 1,
814 struct btrfs_file_extent_item);
6c7d54ac
YZ
815 btrfs_set_file_extent_type(leaf, fi,
816 BTRFS_FILE_EXTENT_REG);
224ecce5 817 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
818 btrfs_set_file_extent_num_bytes(leaf, fi,
819 extent_end - key.offset);
820 btrfs_mark_buffer_dirty(leaf);
920bbbfb 821
6c7d54ac 822 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 823 if (ret < 0) {
66642832 824 btrfs_abort_transaction(trans, ret);
79787eaa
JM
825 goto out;
826 }
6c7d54ac 827 }
920bbbfb 828out:
d899e052 829 btrfs_free_path(path);
e7b2ec3d 830 return ret;
d899e052
YZ
831}
832
b1bf862e
CM
833/*
834 * on error we return an unlocked page and the error value
835 * on success we return a locked page and 0
836 */
bb1591b4
CM
837static int prepare_uptodate_page(struct inode *inode,
838 struct page *page, u64 pos,
b6316429 839 bool force_uptodate)
b1bf862e 840{
fb12489b 841 struct folio *folio = page_folio(page);
b1bf862e
CM
842 int ret = 0;
843
09cbfeaf 844 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 845 !PageUptodate(page)) {
fb12489b 846 ret = btrfs_read_folio(NULL, folio);
b1bf862e
CM
847 if (ret)
848 return ret;
849 lock_page(page);
850 if (!PageUptodate(page)) {
851 unlock_page(page);
852 return -EIO;
853 }
e0467866
QW
854
855 /*
fb12489b 856 * Since btrfs_read_folio() will unlock the folio before it
f913cff3 857 * returns, there is a window where btrfs_release_folio() can be
7c11d0ae
QW
858 * called to release the page. Here we check both inode
859 * mapping and PagePrivate() to make sure the page was not
860 * released.
e0467866
QW
861 *
862 * The private flag check is essential for subpage as we need
863 * to store extra bitmap using page->private.
864 */
865 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
bb1591b4
CM
866 unlock_page(page);
867 return -EAGAIN;
868 }
b1bf862e
CM
869 }
870 return 0;
871}
872
fc226000
SR
873static unsigned int get_prepare_fgp_flags(bool nowait)
874{
875 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
876
877 if (nowait)
878 fgp_flags |= FGP_NOWAIT;
879
880 return fgp_flags;
881}
882
883static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
884{
885 gfp_t gfp;
886
887 gfp = btrfs_alloc_write_mask(inode->i_mapping);
888 if (nowait) {
889 gfp &= ~__GFP_DIRECT_RECLAIM;
890 gfp |= GFP_NOWAIT;
891 }
892
893 return gfp;
894}
895
39279cc3 896/*
376cc685 897 * this just gets pages into the page cache and locks them down.
39279cc3 898 */
b37392ea
MX
899static noinline int prepare_pages(struct inode *inode, struct page **pages,
900 size_t num_pages, loff_t pos,
fc226000
SR
901 size_t write_bytes, bool force_uptodate,
902 bool nowait)
39279cc3
CM
903{
904 int i;
09cbfeaf 905 unsigned long index = pos >> PAGE_SHIFT;
fc226000
SR
906 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
907 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
fc28b62d 908 int err = 0;
376cc685 909 int faili;
8c2383c3 910
39279cc3 911 for (i = 0; i < num_pages; i++) {
bb1591b4 912again:
fc226000
SR
913 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
914 fgp_flags, mask | __GFP_WRITE);
39279cc3 915 if (!pages[i]) {
b1bf862e 916 faili = i - 1;
fc226000
SR
917 if (nowait)
918 err = -EAGAIN;
919 else
920 err = -ENOMEM;
b1bf862e
CM
921 goto fail;
922 }
923
32443de3
QW
924 err = set_page_extent_mapped(pages[i]);
925 if (err < 0) {
926 faili = i;
927 goto fail;
928 }
929
b1bf862e 930 if (i == 0)
bb1591b4 931 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 932 force_uptodate);
bb1591b4
CM
933 if (!err && i == num_pages - 1)
934 err = prepare_uptodate_page(inode, pages[i],
b6316429 935 pos + write_bytes, false);
b1bf862e 936 if (err) {
09cbfeaf 937 put_page(pages[i]);
fc226000 938 if (!nowait && err == -EAGAIN) {
bb1591b4
CM
939 err = 0;
940 goto again;
941 }
b1bf862e
CM
942 faili = i - 1;
943 goto fail;
39279cc3 944 }
ccd467d6 945 wait_on_page_writeback(pages[i]);
39279cc3 946 }
376cc685
MX
947
948 return 0;
949fail:
950 while (faili >= 0) {
951 unlock_page(pages[faili]);
09cbfeaf 952 put_page(pages[faili]);
376cc685
MX
953 faili--;
954 }
955 return err;
956
957}
958
959/*
960 * This function locks the extent and properly waits for data=ordered extents
961 * to finish before allowing the pages to be modified if need.
962 *
963 * The return value:
964 * 1 - the extent is locked
965 * 0 - the extent is not locked, and everything is OK
966 * -EAGAIN - need re-prepare the pages
967 * the other < 0 number - Something wrong happens
968 */
969static noinline int
2cff578c 970lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 971 size_t num_pages, loff_t pos,
2e78c927 972 size_t write_bytes,
2fcab928 973 u64 *lockstart, u64 *lockend, bool nowait,
376cc685
MX
974 struct extent_state **cached_state)
975{
3ffbd68c 976 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
977 u64 start_pos;
978 u64 last_pos;
979 int i;
980 int ret = 0;
981
0b246afa 982 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 983 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 984
e3b8a485 985 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 986 struct btrfs_ordered_extent *ordered;
a7e3b975 987
2fcab928 988 if (nowait) {
83ae4133
JB
989 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
990 cached_state)) {
2fcab928
SR
991 for (i = 0; i < num_pages; i++) {
992 unlock_page(pages[i]);
993 put_page(pages[i]);
994 pages[i] = NULL;
995 }
996
997 return -EAGAIN;
998 }
999 } else {
1000 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1001 }
1002
b88935bf
MX
1003 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1004 last_pos - start_pos + 1);
e6dcd2dc 1005 if (ordered &&
bffe633e 1006 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1007 ordered->file_offset <= last_pos) {
570eb97b
JB
1008 unlock_extent(&inode->io_tree, start_pos, last_pos,
1009 cached_state);
e6dcd2dc
CM
1010 for (i = 0; i < num_pages; i++) {
1011 unlock_page(pages[i]);
09cbfeaf 1012 put_page(pages[i]);
e6dcd2dc 1013 }
c0a43603 1014 btrfs_start_ordered_extent(ordered, 1);
b88935bf
MX
1015 btrfs_put_ordered_extent(ordered);
1016 return -EAGAIN;
e6dcd2dc
CM
1017 }
1018 if (ordered)
1019 btrfs_put_ordered_extent(ordered);
7703bdd8 1020
376cc685
MX
1021 *lockstart = start_pos;
1022 *lockend = last_pos;
1023 ret = 1;
0762704b 1024 }
376cc685 1025
7703bdd8 1026 /*
32443de3
QW
1027 * We should be called after prepare_pages() which should have locked
1028 * all pages in the range.
7703bdd8 1029 */
32443de3 1030 for (i = 0; i < num_pages; i++)
e6dcd2dc 1031 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1032
376cc685 1033 return ret;
39279cc3
CM
1034}
1035
d7a8ab4e
FM
1036/*
1037 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1038 *
1039 * @pos: File offset.
1040 * @write_bytes: The length to write, will be updated to the nocow writeable
1041 * range.
1042 *
1043 * This function will flush ordered extents in the range to ensure proper
1044 * nocow checks.
1045 *
1046 * Return:
1047 * > 0 If we can nocow, and updates @write_bytes.
1048 * 0 If we can't do a nocow write.
1049 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1050 * root is in progress.
1051 * < 0 If an error happened.
1052 *
1053 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1054 */
1055int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
80f9d241 1056 size_t *write_bytes, bool nowait)
7ee9e440 1057{
3ffbd68c 1058 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1059 struct btrfs_root *root = inode->root;
632ddfa2 1060 struct extent_state *cached_state = NULL;
7ee9e440
JB
1061 u64 lockstart, lockend;
1062 u64 num_bytes;
1063 int ret;
1064
38d37aa9
QW
1065 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1066 return 0;
1067
d7a8ab4e 1068 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1069 return -EAGAIN;
8257b2dc 1070
0b246afa 1071 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1072 lockend = round_up(pos + *write_bytes,
0b246afa 1073 fs_info->sectorsize) - 1;
5dbb75ed 1074 num_bytes = lockend - lockstart + 1;
7ee9e440 1075
80f9d241 1076 if (nowait) {
632ddfa2
JB
1077 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1078 &cached_state)) {
80f9d241
JB
1079 btrfs_drew_write_unlock(&root->snapshot_lock);
1080 return -EAGAIN;
1081 }
1082 } else {
632ddfa2
JB
1083 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1084 &cached_state);
80f9d241 1085 }
85b7ab67 1086 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
80f9d241
JB
1087 NULL, NULL, NULL, nowait, false);
1088 if (ret <= 0)
d7a8ab4e 1089 btrfs_drew_write_unlock(&root->snapshot_lock);
80f9d241 1090 else
c933956d
MX
1091 *write_bytes = min_t(size_t, *write_bytes ,
1092 num_bytes - pos + lockstart);
632ddfa2 1093 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
7ee9e440
JB
1094
1095 return ret;
1096}
1097
38d37aa9
QW
1098void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1099{
1100 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1101}
1102
b8d8e1fd
GR
1103static void update_time_for_write(struct inode *inode)
1104{
1105 struct timespec64 now;
1106
1107 if (IS_NOCMTIME(inode))
1108 return;
1109
1110 now = current_time(inode);
1111 if (!timespec64_equal(&inode->i_mtime, &now))
1112 inode->i_mtime = now;
1113
1114 if (!timespec64_equal(&inode->i_ctime, &now))
1115 inode->i_ctime = now;
1116
1117 if (IS_I_VERSION(inode))
1118 inode_inc_iversion(inode);
1119}
1120
1121static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1122 size_t count)
1123{
1124 struct file *file = iocb->ki_filp;
1125 struct inode *inode = file_inode(file);
1126 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1127 loff_t pos = iocb->ki_pos;
1128 int ret;
1129 loff_t oldsize;
1130 loff_t start_pos;
1131
d7a8ab4e
FM
1132 /*
1133 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1134 * prealloc flags, as without those flags we always have to COW. We will
1135 * later check if we can really COW into the target range (using
1136 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1137 */
1138 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1139 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1140 return -EAGAIN;
b8d8e1fd
GR
1141
1142 current->backing_dev_info = inode_to_bdi(inode);
1143 ret = file_remove_privs(file);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * We reserve space for updating the inode when we reserve space for the
1149 * extent we are going to write, so we will enospc out there. We don't
1150 * need to start yet another transaction to update the inode as we will
1151 * update the inode when we finish writing whatever data we write.
1152 */
1153 update_time_for_write(inode);
1154
1155 start_pos = round_down(pos, fs_info->sectorsize);
1156 oldsize = i_size_read(inode);
1157 if (start_pos > oldsize) {
1158 /* Expand hole size to cover write data, preventing empty gap */
1159 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1160
b06359a3 1161 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
b8d8e1fd
GR
1162 if (ret) {
1163 current->backing_dev_info = NULL;
1164 return ret;
1165 }
1166 }
1167
1168 return 0;
1169}
1170
e4af400a
GR
1171static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1172 struct iov_iter *i)
4b46fce2 1173{
e4af400a 1174 struct file *file = iocb->ki_filp;
c3523706 1175 loff_t pos;
496ad9aa 1176 struct inode *inode = file_inode(file);
0b246afa 1177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1178 struct page **pages = NULL;
364ecf36 1179 struct extent_changeset *data_reserved = NULL;
7ee9e440 1180 u64 release_bytes = 0;
376cc685
MX
1181 u64 lockstart;
1182 u64 lockend;
d0215f3e
JB
1183 size_t num_written = 0;
1184 int nrptrs;
c3523706 1185 ssize_t ret;
7ee9e440 1186 bool only_release_metadata = false;
b6316429 1187 bool force_page_uptodate = false;
5e8b9ef3 1188 loff_t old_isize = i_size_read(inode);
c3523706 1189 unsigned int ilock_flags = 0;
304e45ac 1190 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
965f47ae 1191 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
c3523706 1192
304e45ac 1193 if (nowait)
c3523706
GR
1194 ilock_flags |= BTRFS_ILOCK_TRY;
1195
29b6352b 1196 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1197 if (ret < 0)
1198 return ret;
4b46fce2 1199
c3523706
GR
1200 ret = generic_write_checks(iocb, i);
1201 if (ret <= 0)
1202 goto out;
1203
1204 ret = btrfs_write_check(iocb, i, ret);
1205 if (ret < 0)
1206 goto out;
1207
1208 pos = iocb->ki_pos;
09cbfeaf
KS
1209 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1210 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1211 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1212 nrptrs = max(nrptrs, 8);
31e818fe 1213 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1214 if (!pages) {
1215 ret = -ENOMEM;
1216 goto out;
1217 }
ab93dbec 1218
d0215f3e 1219 while (iov_iter_count(i) > 0) {
c67d970f 1220 struct extent_state *cached_state = NULL;
7073017a 1221 size_t offset = offset_in_page(pos);
2e78c927 1222 size_t sector_offset;
d0215f3e 1223 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1224 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1225 offset);
eefa45f5 1226 size_t num_pages;
7ee9e440 1227 size_t reserve_bytes;
d0215f3e
JB
1228 size_t dirty_pages;
1229 size_t copied;
2e78c927
CR
1230 size_t dirty_sectors;
1231 size_t num_sectors;
79f015f2 1232 int extents_locked;
39279cc3 1233
914ee295
XZ
1234 /*
1235 * Fault pages before locking them in prepare_pages
1236 * to avoid recursive lock
1237 */
a6294593 1238 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1239 ret = -EFAULT;
d0215f3e 1240 break;
914ee295
XZ
1241 }
1242
a0e248bb 1243 only_release_metadata = false;
da17066c 1244 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1245
364ecf36 1246 extent_changeset_release(data_reserved);
36ea6f3e
NB
1247 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1248 &data_reserved, pos,
304e45ac 1249 write_bytes, nowait);
c6887cd1 1250 if (ret < 0) {
80f9d241
JB
1251 int can_nocow;
1252
304e45ac
SR
1253 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1254 ret = -EAGAIN;
1255 break;
1256 }
1257
eefa45f5
GR
1258 /*
1259 * If we don't have to COW at the offset, reserve
1260 * metadata only. write_bytes may get smaller than
1261 * requested here.
1262 */
80f9d241 1263 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
304e45ac 1264 &write_bytes, nowait);
80f9d241
JB
1265 if (can_nocow < 0)
1266 ret = can_nocow;
1267 if (can_nocow > 0)
1268 ret = 0;
1269 if (ret)
c6887cd1 1270 break;
80f9d241 1271 only_release_metadata = true;
c6887cd1 1272 }
1832a6d5 1273
eefa45f5
GR
1274 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1275 WARN_ON(num_pages > nrptrs);
1276 reserve_bytes = round_up(write_bytes + sector_offset,
1277 fs_info->sectorsize);
8b62f87b 1278 WARN_ON(reserve_bytes == 0);
9f3db423 1279 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7 1280 reserve_bytes,
304e45ac 1281 reserve_bytes, nowait);
7ee9e440
JB
1282 if (ret) {
1283 if (!only_release_metadata)
25ce28ca 1284 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1285 data_reserved, pos,
1286 write_bytes);
8257b2dc 1287 else
38d37aa9 1288 btrfs_check_nocow_unlock(BTRFS_I(inode));
a348c8d4
FM
1289
1290 if (nowait && ret == -ENOSPC)
1291 ret = -EAGAIN;
7ee9e440
JB
1292 break;
1293 }
1294
1295 release_bytes = reserve_bytes;
376cc685 1296again:
965f47ae 1297 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
eb81b682
FM
1298 if (ret) {
1299 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
965f47ae 1300 break;
eb81b682 1301 }
965f47ae 1302
4a64001f
JB
1303 /*
1304 * This is going to setup the pages array with the number of
1305 * pages we want, so we don't really need to worry about the
1306 * contents of pages from loop to loop
1307 */
b37392ea 1308 ret = prepare_pages(inode, pages, num_pages,
fc226000 1309 pos, write_bytes, force_page_uptodate, false);
8b62f87b
JB
1310 if (ret) {
1311 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1312 reserve_bytes);
d0215f3e 1313 break;
8b62f87b 1314 }
39279cc3 1315
79f015f2
GR
1316 extents_locked = lock_and_cleanup_extent_if_need(
1317 BTRFS_I(inode), pages,
2cff578c 1318 num_pages, pos, write_bytes, &lockstart,
304e45ac 1319 &lockend, nowait, &cached_state);
79f015f2 1320 if (extents_locked < 0) {
304e45ac 1321 if (!nowait && extents_locked == -EAGAIN)
376cc685 1322 goto again;
304e45ac 1323
8b62f87b 1324 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1325 reserve_bytes);
79f015f2 1326 ret = extents_locked;
376cc685 1327 break;
376cc685
MX
1328 }
1329
ee22f0c4 1330 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1331
0b246afa 1332 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1333 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1334 fs_info->sectorsize);
1335 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1336
b1bf862e
CM
1337 /*
1338 * if we have trouble faulting in the pages, fall
1339 * back to one page at a time
1340 */
1341 if (copied < write_bytes)
1342 nrptrs = 1;
1343
b6316429
JB
1344 if (copied == 0) {
1345 force_page_uptodate = true;
56244ef1 1346 dirty_sectors = 0;
b1bf862e 1347 dirty_pages = 0;
b6316429
JB
1348 } else {
1349 force_page_uptodate = false;
ed6078f7 1350 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1351 PAGE_SIZE);
b6316429 1352 }
914ee295 1353
2e78c927 1354 if (num_sectors > dirty_sectors) {
8b8b08cb 1355 /* release everything except the sectors we dirtied */
265fdfa6 1356 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1357 if (only_release_metadata) {
691fa059 1358 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1359 release_bytes, true);
485290a7
QW
1360 } else {
1361 u64 __pos;
1362
da17066c 1363 __pos = round_down(pos,
0b246afa 1364 fs_info->sectorsize) +
09cbfeaf 1365 (dirty_pages << PAGE_SHIFT);
86d52921 1366 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1367 data_reserved, __pos,
43b18595 1368 release_bytes, true);
485290a7 1369 }
914ee295
XZ
1370 }
1371
2e78c927 1372 release_bytes = round_up(copied + sector_offset,
0b246afa 1373 fs_info->sectorsize);
376cc685 1374
aa8c1a41
GR
1375 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1376 dirty_pages, pos, copied,
1377 &cached_state, only_release_metadata);
c67d970f
FM
1378
1379 /*
1380 * If we have not locked the extent range, because the range's
1381 * start offset is >= i_size, we might still have a non-NULL
1382 * cached extent state, acquired while marking the extent range
1383 * as delalloc through btrfs_dirty_pages(). Therefore free any
1384 * possible cached extent state to avoid a memory leak.
1385 */
79f015f2 1386 if (extents_locked)
570eb97b
JB
1387 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1388 lockend, &cached_state);
c67d970f
FM
1389 else
1390 free_extent_state(cached_state);
1391
8702ba93 1392 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1393 if (ret) {
e4f94347 1394 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1395 break;
f1de9683 1396 }
39279cc3 1397
376cc685 1398 release_bytes = 0;
8257b2dc 1399 if (only_release_metadata)
38d37aa9 1400 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1401
e4f94347 1402 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1403
d0215f3e
JB
1404 cond_resched();
1405
914ee295
XZ
1406 pos += copied;
1407 num_written += copied;
d0215f3e 1408 }
39279cc3 1409
d0215f3e
JB
1410 kfree(pages);
1411
7ee9e440 1412 if (release_bytes) {
8257b2dc 1413 if (only_release_metadata) {
38d37aa9 1414 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1415 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1416 release_bytes, true);
8257b2dc 1417 } else {
86d52921
NB
1418 btrfs_delalloc_release_space(BTRFS_I(inode),
1419 data_reserved,
bc42bda2 1420 round_down(pos, fs_info->sectorsize),
43b18595 1421 release_bytes, true);
8257b2dc 1422 }
7ee9e440
JB
1423 }
1424
364ecf36 1425 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1426 if (num_written > 0) {
1427 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1428 iocb->ki_pos += num_written;
1429 }
c3523706
GR
1430out:
1431 btrfs_inode_unlock(inode, ilock_flags);
d0215f3e
JB
1432 return num_written ? num_written : ret;
1433}
1434
4e4cabec
GR
1435static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1436 const struct iov_iter *iter, loff_t offset)
1437{
1438 const u32 blocksize_mask = fs_info->sectorsize - 1;
1439
1440 if (offset & blocksize_mask)
1441 return -EINVAL;
1442
1443 if (iov_iter_alignment(iter) & blocksize_mask)
1444 return -EINVAL;
1445
1446 return 0;
1447}
1448
1449static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1450{
1451 struct file *file = iocb->ki_filp;
728404da 1452 struct inode *inode = file_inode(file);
4e4cabec 1453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1454 loff_t pos;
4e4cabec 1455 ssize_t written = 0;
d0215f3e 1456 ssize_t written_buffered;
51bd9563 1457 size_t prev_left = 0;
d0215f3e 1458 loff_t endbyte;
c3523706
GR
1459 ssize_t err;
1460 unsigned int ilock_flags = 0;
8184620a 1461 struct iomap_dio *dio;
c3523706
GR
1462
1463 if (iocb->ki_flags & IOCB_NOWAIT)
1464 ilock_flags |= BTRFS_ILOCK_TRY;
1465
e9adabb9
GR
1466 /* If the write DIO is within EOF, use a shared lock */
1467 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1468 ilock_flags |= BTRFS_ILOCK_SHARED;
1469
1470relock:
29b6352b 1471 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1472 if (err < 0)
1473 return err;
1474
1475 err = generic_write_checks(iocb, from);
1476 if (err <= 0) {
1477 btrfs_inode_unlock(inode, ilock_flags);
1478 return err;
1479 }
d0215f3e 1480
c3523706
GR
1481 err = btrfs_write_check(iocb, from, err);
1482 if (err < 0) {
1483 btrfs_inode_unlock(inode, ilock_flags);
1484 goto out;
1485 }
1486
1487 pos = iocb->ki_pos;
e9adabb9
GR
1488 /*
1489 * Re-check since file size may have changed just before taking the
1490 * lock or pos may have changed because of O_APPEND in generic_write_check()
1491 */
1492 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1493 pos + iov_iter_count(from) > i_size_read(inode)) {
1494 btrfs_inode_unlock(inode, ilock_flags);
1495 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1496 goto relock;
1497 }
c3523706
GR
1498
1499 if (check_direct_IO(fs_info, from, pos)) {
1500 btrfs_inode_unlock(inode, ilock_flags);
4e4cabec 1501 goto buffered;
c3523706 1502 }
4e4cabec 1503
51bd9563
FM
1504 /*
1505 * The iov_iter can be mapped to the same file range we are writing to.
1506 * If that's the case, then we will deadlock in the iomap code, because
1507 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1508 * an ordered extent, and after that it will fault in the pages that the
1509 * iov_iter refers to. During the fault in we end up in the readahead
1510 * pages code (starting at btrfs_readahead()), which will lock the range,
1511 * find that ordered extent and then wait for it to complete (at
1512 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1513 * obviously the ordered extent can never complete as we didn't submit
1514 * yet the respective bio(s). This always happens when the buffer is
1515 * memory mapped to the same file range, since the iomap DIO code always
1516 * invalidates pages in the target file range (after starting and waiting
1517 * for any writeback).
1518 *
1519 * So here we disable page faults in the iov_iter and then retry if we
1520 * got -EFAULT, faulting in the pages before the retry.
1521 */
51bd9563 1522 from->nofault = true;
8184620a 1523 dio = btrfs_dio_write(iocb, from, written);
51bd9563 1524 from->nofault = false;
d0215f3e 1525
8184620a
FM
1526 /*
1527 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1528 * iocb, and that needs to lock the inode. So unlock it before calling
1529 * iomap_dio_complete() to avoid a deadlock.
1530 */
1531 btrfs_inode_unlock(inode, ilock_flags);
1532
1533 if (IS_ERR_OR_NULL(dio))
1534 err = PTR_ERR_OR_ZERO(dio);
1535 else
1536 err = iomap_dio_complete(dio);
1537
51bd9563
FM
1538 /* No increment (+=) because iomap returns a cumulative value. */
1539 if (err > 0)
1540 written = err;
1541
1542 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1543 const size_t left = iov_iter_count(from);
1544 /*
1545 * We have more data left to write. Try to fault in as many as
1546 * possible of the remainder pages and retry. We do this without
1547 * releasing and locking again the inode, to prevent races with
1548 * truncate.
1549 *
1550 * Also, in case the iov refers to pages in the file range of the
1551 * file we want to write to (due to a mmap), we could enter an
1552 * infinite loop if we retry after faulting the pages in, since
1553 * iomap will invalidate any pages in the range early on, before
1554 * it tries to fault in the pages of the iov. So we keep track of
1555 * how much was left of iov in the previous EFAULT and fallback
1556 * to buffered IO in case we haven't made any progress.
1557 */
1558 if (left == prev_left) {
1559 err = -ENOTBLK;
1560 } else {
1561 fault_in_iov_iter_readable(from, left);
1562 prev_left = left;
8184620a 1563 goto relock;
51bd9563 1564 }
a42fa643
GR
1565 }
1566
ac5e6669
FM
1567 /*
1568 * If 'err' is -ENOTBLK or we have not written all data, then it means
1569 * we must fallback to buffered IO.
1570 */
51bd9563 1571 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 1572 goto out;
d0215f3e 1573
4e4cabec 1574buffered:
ac5e6669
FM
1575 /*
1576 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1577 * it must retry the operation in a context where blocking is acceptable,
20af93d9
FM
1578 * because even if we end up not blocking during the buffered IO attempt
1579 * below, we will block when flushing and waiting for the IO.
ac5e6669
FM
1580 */
1581 if (iocb->ki_flags & IOCB_NOWAIT) {
1582 err = -EAGAIN;
1583 goto out;
1584 }
1585
e4af400a
GR
1586 pos = iocb->ki_pos;
1587 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1588 if (written_buffered < 0) {
1589 err = written_buffered;
1590 goto out;
39279cc3 1591 }
075bdbdb
FM
1592 /*
1593 * Ensure all data is persisted. We want the next direct IO read to be
1594 * able to read what was just written.
1595 */
d0215f3e 1596 endbyte = pos + written_buffered - 1;
728404da 1597 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1598 if (err)
1599 goto out;
728404da 1600 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1601 if (err)
1602 goto out;
1603 written += written_buffered;
867c4f93 1604 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1605 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1606 endbyte >> PAGE_SHIFT);
39279cc3 1607out:
51bd9563 1608 return err < 0 ? err : written;
d0215f3e 1609}
5b92ee72 1610
7c0c7269
OS
1611static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1612 const struct btrfs_ioctl_encoded_io_args *encoded)
1613{
1614 struct file *file = iocb->ki_filp;
1615 struct inode *inode = file_inode(file);
1616 loff_t count;
1617 ssize_t ret;
1618
29b6352b 1619 btrfs_inode_lock(BTRFS_I(inode), 0);
7c0c7269
OS
1620 count = encoded->len;
1621 ret = generic_write_checks_count(iocb, &count);
1622 if (ret == 0 && count != encoded->len) {
1623 /*
1624 * The write got truncated by generic_write_checks_count(). We
1625 * can't do a partial encoded write.
1626 */
1627 ret = -EFBIG;
1628 }
1629 if (ret || encoded->len == 0)
1630 goto out;
1631
1632 ret = btrfs_write_check(iocb, from, encoded->len);
1633 if (ret < 0)
1634 goto out;
1635
1636 ret = btrfs_do_encoded_write(iocb, from, encoded);
1637out:
1638 btrfs_inode_unlock(inode, 0);
1639 return ret;
1640}
1641
1642ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1643 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
1644{
1645 struct file *file = iocb->ki_filp;
14971657 1646 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 1647 ssize_t num_written, num_sync;
91b94c5d 1648 const bool sync = iocb_is_dsync(iocb);
d0215f3e 1649
c86537a4
GR
1650 /*
1651 * If the fs flips readonly due to some impossible error, although we
1652 * have opened a file as writable, we have to stop this write operation
1653 * to ensure consistency.
1654 */
84961539 1655 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
1656 return -EROFS;
1657
926078b2 1658 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
91f9943e
CH
1659 return -EOPNOTSUPP;
1660
b812ce28 1661 if (sync)
14971657 1662 atomic_inc(&inode->sync_writers);
b812ce28 1663
7c0c7269
OS
1664 if (encoded) {
1665 num_written = btrfs_encoded_write(iocb, from, encoded);
1666 num_sync = encoded->len;
1667 } else if (iocb->ki_flags & IOCB_DIRECT) {
c1867eb3
DS
1668 num_written = btrfs_direct_write(iocb, from);
1669 num_sync = num_written;
7c0c7269 1670 } else {
c1867eb3
DS
1671 num_written = btrfs_buffered_write(iocb, from);
1672 num_sync = num_written;
7c0c7269 1673 }
d0215f3e 1674
bc0939fc
FM
1675 btrfs_set_inode_last_sub_trans(inode);
1676
7c0c7269
OS
1677 if (num_sync > 0) {
1678 num_sync = generic_write_sync(iocb, num_sync);
1679 if (num_sync < 0)
1680 num_written = num_sync;
1681 }
0a3404dc 1682
b812ce28 1683 if (sync)
14971657 1684 atomic_dec(&inode->sync_writers);
b8d8e1fd 1685
39279cc3 1686 current->backing_dev_info = NULL;
c3523706 1687 return num_written;
39279cc3
CM
1688}
1689
7c0c7269
OS
1690static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1691{
1692 return btrfs_do_write_iter(iocb, from, NULL);
1693}
1694
d397712b 1695int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1696{
23b5ec74
JB
1697 struct btrfs_file_private *private = filp->private_data;
1698
23b5ec74
JB
1699 if (private && private->filldir_buf)
1700 kfree(private->filldir_buf);
1701 kfree(private);
1702 filp->private_data = NULL;
1703
f6dc45c7 1704 /*
1fd4033d
NB
1705 * Set by setattr when we are about to truncate a file from a non-zero
1706 * size to a zero size. This tries to flush down new bytes that may
1707 * have been written if the application were using truncate to replace
1708 * a file in place.
f6dc45c7 1709 */
1fd4033d 1710 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
1711 &BTRFS_I(inode)->runtime_flags))
1712 filemap_flush(inode->i_mapping);
e1b81e67
M
1713 return 0;
1714}
1715
669249ee
FM
1716static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1717{
1718 int ret;
343e4fc1 1719 struct blk_plug plug;
669249ee 1720
343e4fc1
LB
1721 /*
1722 * This is only called in fsync, which would do synchronous writes, so
1723 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1724 * multiple disks using raid profile, a large IO can be split to
1725 * several segments of stripe length (currently 64K).
1726 */
1727 blk_start_plug(&plug);
669249ee 1728 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1729 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 1730 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 1731 blk_finish_plug(&plug);
669249ee
FM
1732
1733 return ret;
1734}
1735
626e9f41
FM
1736static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1737{
1738 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1739 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1740
1741 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1742 list_empty(&ctx->ordered_extents))
1743 return true;
1744
1745 /*
1746 * If we are doing a fast fsync we can not bail out if the inode's
1747 * last_trans is <= then the last committed transaction, because we only
1748 * update the last_trans of the inode during ordered extent completion,
1749 * and for a fast fsync we don't wait for that, we only wait for the
1750 * writeback to complete.
1751 */
1752 if (inode->last_trans <= fs_info->last_trans_committed &&
1753 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1754 list_empty(&ctx->ordered_extents)))
1755 return true;
1756
1757 return false;
1758}
1759
d352ac68
CM
1760/*
1761 * fsync call for both files and directories. This logs the inode into
1762 * the tree log instead of forcing full commits whenever possible.
1763 *
1764 * It needs to call filemap_fdatawait so that all ordered extent updates are
1765 * in the metadata btree are up to date for copying to the log.
1766 *
1767 * It drops the inode mutex before doing the tree log commit. This is an
1768 * important optimization for directories because holding the mutex prevents
1769 * new operations on the dir while we write to disk.
1770 */
02c24a82 1771int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1772{
de17e793 1773 struct dentry *dentry = file_dentry(file);
2b0143b5 1774 struct inode *inode = d_inode(dentry);
0b246afa 1775 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 1776 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1777 struct btrfs_trans_handle *trans;
8b050d35 1778 struct btrfs_log_ctx ctx;
333427a5 1779 int ret = 0, err;
48778179
FM
1780 u64 len;
1781 bool full_sync;
39279cc3 1782
1abe9b8a 1783 trace_btrfs_sync_file(file, datasync);
257c62e1 1784
ebb70442
LB
1785 btrfs_init_log_ctx(&ctx, inode);
1786
95418ed1 1787 /*
48778179
FM
1788 * Always set the range to a full range, otherwise we can get into
1789 * several problems, from missing file extent items to represent holes
1790 * when not using the NO_HOLES feature, to log tree corruption due to
1791 * races between hole detection during logging and completion of ordered
1792 * extents outside the range, to missing checksums due to ordered extents
1793 * for which we flushed only a subset of their pages.
95418ed1 1794 */
48778179
FM
1795 start = 0;
1796 end = LLONG_MAX;
1797 len = (u64)LLONG_MAX + 1;
95418ed1 1798
90abccf2
MX
1799 /*
1800 * We write the dirty pages in the range and wait until they complete
1801 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1802 * multi-task, and make the performance up. See
1803 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1804 */
669249ee 1805 ret = start_ordered_ops(inode, start, end);
90abccf2 1806 if (ret)
333427a5 1807 goto out;
90abccf2 1808
29b6352b 1809 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
c495144b 1810
2ecb7923 1811 atomic_inc(&root->log_batch);
b5e6c3e1 1812
aab15e8e 1813 /*
885f46d8
FM
1814 * Before we acquired the inode's lock and the mmap lock, someone may
1815 * have dirtied more pages in the target range. We need to make sure
1816 * that writeback for any such pages does not start while we are logging
1817 * the inode, because if it does, any of the following might happen when
1818 * we are not doing a full inode sync:
aab15e8e
FM
1819 *
1820 * 1) We log an extent after its writeback finishes but before its
1821 * checksums are added to the csum tree, leading to -EIO errors
1822 * when attempting to read the extent after a log replay.
1823 *
1824 * 2) We can end up logging an extent before its writeback finishes.
1825 * Therefore after the log replay we will have a file extent item
1826 * pointing to an unwritten extent (and no data checksums as well).
1827 *
1828 * So trigger writeback for any eventual new dirty pages and then we
1829 * wait for all ordered extents to complete below.
1830 */
1831 ret = start_ordered_ops(inode, start, end);
1832 if (ret) {
885f46d8 1833 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
aab15e8e
FM
1834 goto out;
1835 }
1836
cef7820d
FM
1837 /*
1838 * Always check for the full sync flag while holding the inode's lock,
1839 * to avoid races with other tasks. The flag must be either set all the
1840 * time during logging or always off all the time while logging.
1841 * We check the flag here after starting delalloc above, because when
1842 * running delalloc the full sync flag may be set if we need to drop
1843 * extra extent map ranges due to temporary memory allocation failures.
1844 */
1845 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1846 &BTRFS_I(inode)->runtime_flags);
1847
669249ee 1848 /*
b5e6c3e1 1849 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 1850 * IO of a lower priority task while holding a transaction open.
ba0b084a 1851 *
48778179
FM
1852 * For a full fsync we wait for the ordered extents to complete while
1853 * for a fast fsync we wait just for writeback to complete, and then
1854 * attach the ordered extents to the transaction so that a transaction
1855 * commit waits for their completion, to avoid data loss if we fsync,
1856 * the current transaction commits before the ordered extents complete
1857 * and a power failure happens right after that.
d8e3fb10
NA
1858 *
1859 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1860 * logical address recorded in the ordered extent may change. We need
1861 * to wait for the IO to stabilize the logical address.
669249ee 1862 */
d8e3fb10 1863 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
1864 ret = btrfs_wait_ordered_range(inode, start, len);
1865 } else {
1866 /*
1867 * Get our ordered extents as soon as possible to avoid doing
1868 * checksum lookups in the csum tree, and use instead the
1869 * checksums attached to the ordered extents.
1870 */
1871 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1872 &ctx.ordered_extents);
1873 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 1874 }
48778179
FM
1875
1876 if (ret)
1877 goto out_release_extents;
1878
2ecb7923 1879 atomic_inc(&root->log_batch);
257c62e1 1880
a4abeea4 1881 smp_mb();
626e9f41 1882 if (skip_inode_logging(&ctx)) {
5dc562c5 1883 /*
01327610 1884 * We've had everything committed since the last time we were
5dc562c5
JB
1885 * modified so clear this flag in case it was set for whatever
1886 * reason, it's no longer relevant.
1887 */
1888 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1889 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
1890 /*
1891 * An ordered extent might have started before and completed
1892 * already with io errors, in which case the inode was not
1893 * updated and we end up here. So check the inode's mapping
333427a5
JL
1894 * for any errors that might have happened since we last
1895 * checked called fsync.
0596a904 1896 */
333427a5 1897 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 1898 goto out_release_extents;
15ee9bc7 1899 }
15ee9bc7 1900
5039eddc
JB
1901 /*
1902 * We use start here because we will need to wait on the IO to complete
1903 * in btrfs_sync_log, which could require joining a transaction (for
1904 * example checking cross references in the nocow path). If we use join
1905 * here we could get into a situation where we're waiting on IO to
1906 * happen that is blocked on a transaction trying to commit. With start
1907 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 1908 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
1909 * from thinking they are super smart and changing this to
1910 * btrfs_join_transaction *cough*Josef*cough*.
1911 */
a22285a6
YZ
1912 trans = btrfs_start_transaction(root, 0);
1913 if (IS_ERR(trans)) {
1914 ret = PTR_ERR(trans);
48778179 1915 goto out_release_extents;
39279cc3 1916 }
d0c2f4fa 1917 trans->in_fsync = true;
e02119d5 1918
48778179
FM
1919 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1920 btrfs_release_log_ctx_extents(&ctx);
02c24a82 1921 if (ret < 0) {
a0634be5 1922 /* Fallthrough and commit/free transaction. */
f31f09f6 1923 ret = BTRFS_LOG_FORCE_COMMIT;
02c24a82 1924 }
49eb7e46
CM
1925
1926 /* we've logged all the items and now have a consistent
1927 * version of the file in the log. It is possible that
1928 * someone will come in and modify the file, but that's
1929 * fine because the log is consistent on disk, and we
1930 * have references to all of the file's extents
1931 *
1932 * It is possible that someone will come in and log the
1933 * file again, but that will end up using the synchronization
1934 * inside btrfs_sync_log to keep things safe.
1935 */
885f46d8 1936 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
49eb7e46 1937
bf7ba8ee
JB
1938 if (ret == BTRFS_NO_LOG_SYNC) {
1939 ret = btrfs_end_transaction(trans);
1940 goto out;
1941 }
1942
1943 /* We successfully logged the inode, attempt to sync the log. */
1944 if (!ret) {
1945 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 1946 if (!ret) {
bf7ba8ee
JB
1947 ret = btrfs_end_transaction(trans);
1948 goto out;
48778179 1949 }
bf7ba8ee
JB
1950 }
1951
1952 /*
1953 * At this point we need to commit the transaction because we had
1954 * btrfs_need_log_full_commit() or some other error.
1955 *
1956 * If we didn't do a full sync we have to stop the trans handle, wait on
1957 * the ordered extents, start it again and commit the transaction. If
1958 * we attempt to wait on the ordered extents here we could deadlock with
1959 * something like fallocate() that is holding the extent lock trying to
1960 * start a transaction while some other thread is trying to commit the
1961 * transaction while we (fsync) are currently holding the transaction
1962 * open.
1963 */
1964 if (!full_sync) {
3a45bb20 1965 ret = btrfs_end_transaction(trans);
bf7ba8ee
JB
1966 if (ret)
1967 goto out;
1968 ret = btrfs_wait_ordered_range(inode, start, len);
1969 if (ret)
1970 goto out;
1971
1972 /*
1973 * This is safe to use here because we're only interested in
1974 * making sure the transaction that had the ordered extents is
1975 * committed. We aren't waiting on anything past this point,
1976 * we're purely getting the transaction and committing it.
1977 */
1978 trans = btrfs_attach_transaction_barrier(root);
1979 if (IS_ERR(trans)) {
1980 ret = PTR_ERR(trans);
1981
1982 /*
1983 * We committed the transaction and there's no currently
1984 * running transaction, this means everything we care
1985 * about made it to disk and we are done.
1986 */
1987 if (ret == -ENOENT)
1988 ret = 0;
1989 goto out;
1990 }
e02119d5 1991 }
bf7ba8ee
JB
1992
1993 ret = btrfs_commit_transaction(trans);
39279cc3 1994out:
ebb70442 1995 ASSERT(list_empty(&ctx.list));
e09d94c9 1996 ASSERT(list_empty(&ctx.conflict_inodes));
333427a5
JL
1997 err = file_check_and_advance_wb_err(file);
1998 if (!ret)
1999 ret = err;
014e4ac4 2000 return ret > 0 ? -EIO : ret;
48778179
FM
2001
2002out_release_extents:
2003 btrfs_release_log_ctx_extents(&ctx);
885f46d8 2004 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
48778179 2005 goto out;
39279cc3
CM
2006}
2007
f0f37e2f 2008static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2009 .fault = filemap_fault,
f1820361 2010 .map_pages = filemap_map_pages,
9ebefb18
CM
2011 .page_mkwrite = btrfs_page_mkwrite,
2012};
2013
2014static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2015{
058a457e
MX
2016 struct address_space *mapping = filp->f_mapping;
2017
7e0a1265 2018 if (!mapping->a_ops->read_folio)
058a457e
MX
2019 return -ENOEXEC;
2020
9ebefb18 2021 file_accessed(filp);
058a457e 2022 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2023
9ebefb18
CM
2024 return 0;
2025}
2026
35339c24 2027static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2028 int slot, u64 start, u64 end)
2029{
2030 struct btrfs_file_extent_item *fi;
2031 struct btrfs_key key;
2032
2033 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2034 return 0;
2035
2036 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2037 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2038 key.type != BTRFS_EXTENT_DATA_KEY)
2039 return 0;
2040
2041 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2042
2043 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2044 return 0;
2045
2046 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2047 return 0;
2048
2049 if (key.offset == end)
2050 return 1;
2051 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2052 return 1;
2053 return 0;
2054}
2055
a012a74e
NB
2056static int fill_holes(struct btrfs_trans_handle *trans,
2057 struct btrfs_inode *inode,
2058 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2059{
3ffbd68c 2060 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2061 struct btrfs_root *root = inode->root;
2aaa6655
JB
2062 struct extent_buffer *leaf;
2063 struct btrfs_file_extent_item *fi;
2064 struct extent_map *hole_em;
2aaa6655
JB
2065 struct btrfs_key key;
2066 int ret;
2067
0b246afa 2068 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2069 goto out;
2070
a012a74e 2071 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2072 key.type = BTRFS_EXTENT_DATA_KEY;
2073 key.offset = offset;
2074
2aaa6655 2075 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2076 if (ret <= 0) {
2077 /*
2078 * We should have dropped this offset, so if we find it then
2079 * something has gone horribly wrong.
2080 */
2081 if (ret == 0)
2082 ret = -EINVAL;
2aaa6655 2083 return ret;
f94480bd 2084 }
2aaa6655
JB
2085
2086 leaf = path->nodes[0];
a012a74e 2087 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2088 u64 num_bytes;
2089
2090 path->slots[0]--;
2091 fi = btrfs_item_ptr(leaf, path->slots[0],
2092 struct btrfs_file_extent_item);
2093 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2094 end - offset;
2095 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2096 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2097 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2098 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2099 btrfs_mark_buffer_dirty(leaf);
2100 goto out;
2101 }
2102
1707e26d 2103 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2104 u64 num_bytes;
2105
2aaa6655 2106 key.offset = offset;
0b246afa 2107 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2108 fi = btrfs_item_ptr(leaf, path->slots[0],
2109 struct btrfs_file_extent_item);
2110 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2111 offset;
2112 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2113 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2114 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2115 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2116 btrfs_mark_buffer_dirty(leaf);
2117 goto out;
2118 }
2119 btrfs_release_path(path);
2120
d1f68ba0
OS
2121 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2122 end - offset);
2aaa6655
JB
2123 if (ret)
2124 return ret;
2125
2126out:
2127 btrfs_release_path(path);
2128
2129 hole_em = alloc_extent_map();
2130 if (!hole_em) {
4c0c8cfc 2131 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
23e3337f 2132 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2133 } else {
2134 hole_em->start = offset;
2135 hole_em->len = end - offset;
cc95bef6 2136 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2137 hole_em->orig_start = offset;
2138
2139 hole_em->block_start = EXTENT_MAP_HOLE;
2140 hole_em->block_len = 0;
b4939680 2141 hole_em->orig_block_len = 0;
2aaa6655
JB
2142 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2143 hole_em->generation = trans->transid;
2144
a1ba4c08 2145 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2aaa6655
JB
2146 free_extent_map(hole_em);
2147 if (ret)
23e3337f 2148 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2149 }
2150
2151 return 0;
2152}
2153
d7781546
QW
2154/*
2155 * Find a hole extent on given inode and change start/len to the end of hole
2156 * extent.(hole/vacuum extent whose em->start <= start &&
2157 * em->start + em->len > start)
2158 * When a hole extent is found, return 1 and modify start/len.
2159 */
dea46d84 2160static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2161{
dea46d84 2162 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2163 struct extent_map *em;
2164 int ret = 0;
2165
dea46d84 2166 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2167 round_down(*start, fs_info->sectorsize),
39b07b5d 2168 round_up(*len, fs_info->sectorsize));
9986277e
DC
2169 if (IS_ERR(em))
2170 return PTR_ERR(em);
d7781546
QW
2171
2172 /* Hole or vacuum extent(only exists in no-hole mode) */
2173 if (em->block_start == EXTENT_MAP_HOLE) {
2174 ret = 1;
2175 *len = em->start + em->len > *start + *len ?
2176 0 : *start + *len - em->start - em->len;
2177 *start = em->start + em->len;
2178 }
2179 free_extent_map(em);
2180 return ret;
2181}
2182
55961c8a
FM
2183static void btrfs_punch_hole_lock_range(struct inode *inode,
2184 const u64 lockstart,
2185 const u64 lockend,
2186 struct extent_state **cached_state)
f27451f2 2187{
0528476b
QW
2188 /*
2189 * For subpage case, if the range is not at page boundary, we could
2190 * have pages at the leading/tailing part of the range.
2191 * This could lead to dead loop since filemap_range_has_page()
2192 * will always return true.
2193 * So here we need to do extra page alignment for
2194 * filemap_range_has_page().
2195 */
2196 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2197 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2198
f27451f2 2199 while (1) {
f27451f2
FM
2200 truncate_pagecache_range(inode, lockstart, lockend);
2201
570eb97b
JB
2202 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2203 cached_state);
f27451f2 2204 /*
55961c8a
FM
2205 * We can't have ordered extents in the range, nor dirty/writeback
2206 * pages, because we have locked the inode's VFS lock in exclusive
2207 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2208 * we have flushed all delalloc in the range and we have waited
2209 * for any ordered extents in the range to complete.
2210 * We can race with anyone reading pages from this range, so after
2211 * locking the range check if we have pages in the range, and if
2212 * we do, unlock the range and retry.
f27451f2 2213 */
55961c8a
FM
2214 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2215 page_lockend))
f27451f2 2216 break;
55961c8a 2217
570eb97b
JB
2218 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2219 cached_state);
f27451f2 2220 }
63c34cb4
FM
2221
2222 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
f27451f2
FM
2223}
2224
0cbb5bdf 2225static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2226 struct btrfs_inode *inode,
690a5dbf 2227 struct btrfs_path *path,
bf385648 2228 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2229 const u64 replace_len,
2230 const u64 bytes_to_drop)
690a5dbf 2231{
03fcb1ab
NB
2232 struct btrfs_fs_info *fs_info = trans->fs_info;
2233 struct btrfs_root *root = inode->root;
690a5dbf
FM
2234 struct btrfs_file_extent_item *extent;
2235 struct extent_buffer *leaf;
2236 struct btrfs_key key;
2237 int slot;
2238 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2239 int ret;
2240
bf385648 2241 if (replace_len == 0)
690a5dbf
FM
2242 return 0;
2243
bf385648 2244 if (extent_info->disk_offset == 0 &&
2766ff61 2245 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2246 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2247 return 0;
2766ff61 2248 }
690a5dbf 2249
03fcb1ab 2250 key.objectid = btrfs_ino(inode);
690a5dbf 2251 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2252 key.offset = extent_info->file_offset;
690a5dbf 2253 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2254 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2255 if (ret)
2256 return ret;
2257 leaf = path->nodes[0];
2258 slot = path->slots[0];
bf385648 2259 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2260 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2261 sizeof(struct btrfs_file_extent_item));
690a5dbf 2262 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2263 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2264 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2265 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2266 if (extent_info->is_new_extent)
8fccebfa 2267 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
690a5dbf
FM
2268 btrfs_mark_buffer_dirty(leaf);
2269 btrfs_release_path(path);
2270
03fcb1ab
NB
2271 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2272 replace_len);
9ddc959e
JB
2273 if (ret)
2274 return ret;
2275
690a5dbf 2276 /* If it's a hole, nothing more needs to be done. */
2766ff61 2277 if (extent_info->disk_offset == 0) {
03fcb1ab 2278 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2279 return 0;
2766ff61 2280 }
690a5dbf 2281
03fcb1ab 2282 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2283
bf385648
FM
2284 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2285 key.objectid = extent_info->disk_offset;
8fccebfa 2286 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2287 key.offset = extent_info->disk_len;
8fccebfa 2288 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2289 btrfs_ino(inode),
bf385648
FM
2290 extent_info->file_offset,
2291 extent_info->qgroup_reserved,
8fccebfa
FM
2292 &key);
2293 } else {
2294 u64 ref_offset;
2295
2296 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648
FM
2297 extent_info->disk_offset,
2298 extent_info->disk_len, 0);
2299 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2300 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2301 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2302 ret = btrfs_inc_extent_ref(trans, &ref);
2303 }
2304
bf385648 2305 extent_info->insertions++;
690a5dbf
FM
2306
2307 return ret;
2308}
2309
9cba40a6
FM
2310/*
2311 * The respective range must have been previously locked, as well as the inode.
2312 * The end offset is inclusive (last byte of the range).
bf385648
FM
2313 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2314 * the file range with an extent.
2315 * When not punching a hole, we don't want to end up in a state where we dropped
2316 * extents without inserting a new one, so we must abort the transaction to avoid
2317 * a corruption.
9cba40a6 2318 */
bfc78479
NB
2319int btrfs_replace_file_extents(struct btrfs_inode *inode,
2320 struct btrfs_path *path, const u64 start,
2321 const u64 end,
2322 struct btrfs_replace_extent_info *extent_info,
2323 struct btrfs_trans_handle **trans_out)
9cba40a6 2324{
5893dfb9 2325 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2326 struct btrfs_root *root = inode->root;
2327 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2328 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2329 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2330 struct btrfs_trans_handle *trans = NULL;
2331 struct btrfs_block_rsv *rsv;
2332 unsigned int rsv_count;
2333 u64 cur_offset;
9cba40a6
FM
2334 u64 len = end - start;
2335 int ret = 0;
2336
2337 if (end <= start)
2338 return -EINVAL;
2339
2340 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2341 if (!rsv) {
2342 ret = -ENOMEM;
2343 goto out;
2344 }
2bd36e7b 2345 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
710d5921 2346 rsv->failfast = true;
9cba40a6
FM
2347
2348 /*
2349 * 1 - update the inode
2350 * 1 - removing the extents in the range
bf385648
FM
2351 * 1 - adding the hole extent if no_holes isn't set or if we are
2352 * replacing the range with a new extent
9cba40a6 2353 */
bf385648 2354 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2355 rsv_count = 3;
2356 else
2357 rsv_count = 2;
2358
9cba40a6
FM
2359 trans = btrfs_start_transaction(root, rsv_count);
2360 if (IS_ERR(trans)) {
2361 ret = PTR_ERR(trans);
2362 trans = NULL;
2363 goto out_free;
2364 }
2365
2366 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2367 min_size, false);
650c9cab
FM
2368 if (WARN_ON(ret))
2369 goto out_trans;
9cba40a6
FM
2370 trans->block_rsv = rsv;
2371
2372 cur_offset = start;
5893dfb9
FM
2373 drop_args.path = path;
2374 drop_args.end = end + 1;
2375 drop_args.drop_cache = true;
9cba40a6 2376 while (cur_offset < end) {
5893dfb9 2377 drop_args.start = cur_offset;
bfc78479 2378 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2379 /* If we are punching a hole decrement the inode's byte count */
2380 if (!extent_info)
bfc78479 2381 btrfs_update_inode_bytes(inode, 0,
2766ff61 2382 drop_args.bytes_found);
690a5dbf
FM
2383 if (ret != -ENOSPC) {
2384 /*
4afb912f
JB
2385 * The only time we don't want to abort is if we are
2386 * attempting to clone a partial inline extent, in which
2387 * case we'll get EOPNOTSUPP. However if we aren't
2388 * clone we need to abort no matter what, because if we
2389 * got EOPNOTSUPP via prealloc then we messed up and
2390 * need to abort.
690a5dbf 2391 */
4afb912f
JB
2392 if (ret &&
2393 (ret != -EOPNOTSUPP ||
2394 (extent_info && extent_info->is_new_extent)))
690a5dbf 2395 btrfs_abort_transaction(trans, ret);
9cba40a6 2396 break;
690a5dbf 2397 }
9cba40a6
FM
2398
2399 trans->block_rsv = &fs_info->trans_block_rsv;
2400
5893dfb9 2401 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2402 cur_offset < ino_size) {
bfc78479
NB
2403 ret = fill_holes(trans, inode, path, cur_offset,
2404 drop_args.drop_end);
9cba40a6
FM
2405 if (ret) {
2406 /*
2407 * If we failed then we didn't insert our hole
2408 * entries for the area we dropped, so now the
2409 * fs is corrupted, so we must abort the
2410 * transaction.
2411 */
2412 btrfs_abort_transaction(trans, ret);
2413 break;
2414 }
5893dfb9 2415 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2416 /*
2417 * We are past the i_size here, but since we didn't
2418 * insert holes we need to clear the mapped area so we
2419 * know to not set disk_i_size in this area until a new
2420 * file extent is inserted here.
2421 */
bfc78479 2422 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2423 cur_offset,
2424 drop_args.drop_end - cur_offset);
9ddc959e
JB
2425 if (ret) {
2426 /*
2427 * We couldn't clear our area, so we could
2428 * presumably adjust up and corrupt the fs, so
2429 * we need to abort.
2430 */
2431 btrfs_abort_transaction(trans, ret);
2432 break;
2433 }
9cba40a6
FM
2434 }
2435
5893dfb9
FM
2436 if (extent_info &&
2437 drop_args.drop_end > extent_info->file_offset) {
2438 u64 replace_len = drop_args.drop_end -
2439 extent_info->file_offset;
690a5dbf 2440
bfc78479
NB
2441 ret = btrfs_insert_replace_extent(trans, inode, path,
2442 extent_info, replace_len,
03fcb1ab 2443 drop_args.bytes_found);
690a5dbf
FM
2444 if (ret) {
2445 btrfs_abort_transaction(trans, ret);
2446 break;
2447 }
bf385648
FM
2448 extent_info->data_len -= replace_len;
2449 extent_info->data_offset += replace_len;
2450 extent_info->file_offset += replace_len;
690a5dbf
FM
2451 }
2452
983d8209
FM
2453 /*
2454 * We are releasing our handle on the transaction, balance the
2455 * dirty pages of the btree inode and flush delayed items, and
2456 * then get a new transaction handle, which may now point to a
2457 * new transaction in case someone else may have committed the
2458 * transaction we used to replace/drop file extent items. So
2459 * bump the inode's iversion and update mtime and ctime except
2460 * if we are called from a dedupe context. This is because a
2461 * power failure/crash may happen after the transaction is
2462 * committed and before we finish replacing/dropping all the
2463 * file extent items we need.
2464 */
2465 inode_inc_iversion(&inode->vfs_inode);
2466
2467 if (!extent_info || extent_info->update_times) {
2468 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2469 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2470 }
2471
bfc78479 2472 ret = btrfs_update_inode(trans, root, inode);
9cba40a6
FM
2473 if (ret)
2474 break;
2475
2476 btrfs_end_transaction(trans);
2477 btrfs_btree_balance_dirty(fs_info);
2478
2479 trans = btrfs_start_transaction(root, rsv_count);
2480 if (IS_ERR(trans)) {
2481 ret = PTR_ERR(trans);
2482 trans = NULL;
2483 break;
2484 }
2485
2486 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2487 rsv, min_size, false);
650c9cab
FM
2488 if (WARN_ON(ret))
2489 break;
9cba40a6
FM
2490 trans->block_rsv = rsv;
2491
3227788c
BC
2492 cur_offset = drop_args.drop_end;
2493 len = end - cur_offset;
2494 if (!extent_info && len) {
bfc78479 2495 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2496 if (unlikely(ret < 0))
2497 break;
2498 if (ret && !len) {
2499 ret = 0;
2500 break;
2501 }
9cba40a6
FM
2502 }
2503 }
2504
690a5dbf
FM
2505 /*
2506 * If we were cloning, force the next fsync to be a full one since we
2507 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2508 * NO_HOLES is enabled) file extent items and did not setup new extent
2509 * maps for the replacement extents (or holes).
690a5dbf 2510 */
bf385648 2511 if (extent_info && !extent_info->is_new_extent)
23e3337f 2512 btrfs_set_inode_full_sync(inode);
690a5dbf 2513
9cba40a6
FM
2514 if (ret)
2515 goto out_trans;
2516
2517 trans->block_rsv = &fs_info->trans_block_rsv;
2518 /*
2519 * If we are using the NO_HOLES feature we might have had already an
2520 * hole that overlaps a part of the region [lockstart, lockend] and
2521 * ends at (or beyond) lockend. Since we have no file extent items to
2522 * represent holes, drop_end can be less than lockend and so we must
2523 * make sure we have an extent map representing the existing hole (the
2524 * call to __btrfs_drop_extents() might have dropped the existing extent
2525 * map representing the existing hole), otherwise the fast fsync path
2526 * will not record the existence of the hole region
2527 * [existing_hole_start, lockend].
2528 */
5893dfb9
FM
2529 if (drop_args.drop_end <= end)
2530 drop_args.drop_end = end + 1;
9cba40a6
FM
2531 /*
2532 * Don't insert file hole extent item if it's for a range beyond eof
2533 * (because it's useless) or if it represents a 0 bytes range (when
2534 * cur_offset == drop_end).
2535 */
5893dfb9
FM
2536 if (!extent_info && cur_offset < ino_size &&
2537 cur_offset < drop_args.drop_end) {
bfc78479
NB
2538 ret = fill_holes(trans, inode, path, cur_offset,
2539 drop_args.drop_end);
9cba40a6
FM
2540 if (ret) {
2541 /* Same comment as above. */
2542 btrfs_abort_transaction(trans, ret);
2543 goto out_trans;
2544 }
5893dfb9 2545 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2546 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2547 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2548 drop_args.drop_end - cur_offset);
9ddc959e
JB
2549 if (ret) {
2550 btrfs_abort_transaction(trans, ret);
2551 goto out_trans;
2552 }
2553
9cba40a6 2554 }
bf385648 2555 if (extent_info) {
bfc78479 2556 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2557 extent_info, extent_info->data_len,
2558 drop_args.bytes_found);
690a5dbf
FM
2559 if (ret) {
2560 btrfs_abort_transaction(trans, ret);
2561 goto out_trans;
2562 }
2563 }
9cba40a6
FM
2564
2565out_trans:
2566 if (!trans)
2567 goto out_free;
2568
2569 trans->block_rsv = &fs_info->trans_block_rsv;
2570 if (ret)
2571 btrfs_end_transaction(trans);
2572 else
2573 *trans_out = trans;
2574out_free:
2575 btrfs_free_block_rsv(fs_info, rsv);
2576out:
2577 return ret;
2578}
2579
05fd9564 2580static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2581{
05fd9564 2582 struct inode *inode = file_inode(file);
0b246afa 2583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2584 struct btrfs_root *root = BTRFS_I(inode)->root;
2585 struct extent_state *cached_state = NULL;
2586 struct btrfs_path *path;
9cba40a6 2587 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2588 u64 lockstart;
2589 u64 lockend;
2590 u64 tail_start;
2591 u64 tail_len;
2592 u64 orig_start = offset;
2aaa6655 2593 int ret = 0;
9703fefe 2594 bool same_block;
a1a50f60 2595 u64 ino_size;
9703fefe 2596 bool truncated_block = false;
e8c1c76e 2597 bool updated_inode = false;
2aaa6655 2598
29b6352b 2599 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
bd6526d0 2600
0ef8b726
JB
2601 ret = btrfs_wait_ordered_range(inode, offset, len);
2602 if (ret)
bd6526d0 2603 goto out_only_mutex;
2aaa6655 2604
0b246afa 2605 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2606 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2607 if (ret < 0)
2608 goto out_only_mutex;
2609 if (ret && !len) {
2610 /* Already in a large hole */
2611 ret = 0;
2612 goto out_only_mutex;
2613 }
2614
05fd9564
DW
2615 ret = file_modified(file);
2616 if (ret)
2617 goto out_only_mutex;
2618
ee8ba05c
JB
2619 lockstart = round_up(offset, fs_info->sectorsize);
2620 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
0b246afa
JM
2621 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2622 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2623 /*
9703fefe 2624 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2625 * because we are sure there is no data there.
2626 */
2aaa6655 2627 /*
9703fefe
CR
2628 * Only do this if we are in the same block and we aren't doing the
2629 * entire block.
2aaa6655 2630 */
0b246afa 2631 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2632 if (offset < ino_size) {
9703fefe 2633 truncated_block = true;
217f42eb
NB
2634 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2635 0);
e8c1c76e
FM
2636 } else {
2637 ret = 0;
2638 }
d7781546 2639 goto out_only_mutex;
2aaa6655
JB
2640 }
2641
9703fefe 2642 /* zero back part of the first block */
12870f1c 2643 if (offset < ino_size) {
9703fefe 2644 truncated_block = true;
217f42eb 2645 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2646 if (ret) {
8d9b4a16 2647 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
7426cc04
MX
2648 return ret;
2649 }
2aaa6655
JB
2650 }
2651
d7781546
QW
2652 /* Check the aligned pages after the first unaligned page,
2653 * if offset != orig_start, which means the first unaligned page
01327610 2654 * including several following pages are already in holes,
d7781546
QW
2655 * the extra check can be skipped */
2656 if (offset == orig_start) {
2657 /* after truncate page, check hole again */
2658 len = offset + len - lockstart;
2659 offset = lockstart;
dea46d84 2660 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2661 if (ret < 0)
2662 goto out_only_mutex;
2663 if (ret && !len) {
2664 ret = 0;
2665 goto out_only_mutex;
2666 }
2667 lockstart = offset;
2668 }
2669
2670 /* Check the tail unaligned part is in a hole */
2671 tail_start = lockend + 1;
2672 tail_len = offset + len - tail_start;
2673 if (tail_len) {
dea46d84 2674 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2675 if (unlikely(ret < 0))
2676 goto out_only_mutex;
2677 if (!ret) {
2678 /* zero the front end of the last page */
2679 if (tail_start + tail_len < ino_size) {
9703fefe 2680 truncated_block = true;
217f42eb 2681 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2682 tail_start + tail_len,
2683 0, 1);
d7781546
QW
2684 if (ret)
2685 goto out_only_mutex;
51f395ad 2686 }
0061280d 2687 }
2aaa6655
JB
2688 }
2689
2690 if (lockend < lockstart) {
e8c1c76e
FM
2691 ret = 0;
2692 goto out_only_mutex;
2aaa6655
JB
2693 }
2694
55961c8a 2695 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2aaa6655
JB
2696
2697 path = btrfs_alloc_path();
2698 if (!path) {
2699 ret = -ENOMEM;
2700 goto out;
2701 }
2702
bfc78479
NB
2703 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2704 lockend, NULL, &trans);
9cba40a6
FM
2705 btrfs_free_path(path);
2706 if (ret)
2707 goto out;
2aaa6655 2708
9cba40a6 2709 ASSERT(trans != NULL);
e1f5790e 2710 inode_inc_iversion(inode);
c1867eb3
DS
2711 inode->i_mtime = current_time(inode);
2712 inode->i_ctime = inode->i_mtime;
9a56fcd1 2713 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e8c1c76e 2714 updated_inode = true;
3a45bb20 2715 btrfs_end_transaction(trans);
2ff7e61e 2716 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2717out:
570eb97b
JB
2718 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2719 &cached_state);
d7781546 2720out_only_mutex:
9cba40a6 2721 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2722 /*
2723 * If we only end up zeroing part of a page, we still need to
2724 * update the inode item, so that all the time fields are
2725 * updated as well as the necessary btrfs inode in memory fields
2726 * for detecting, at fsync time, if the inode isn't yet in the
2727 * log tree or it's there but not up to date.
2728 */
17900668
FM
2729 struct timespec64 now = current_time(inode);
2730
2731 inode_inc_iversion(inode);
2732 inode->i_mtime = now;
2733 inode->i_ctime = now;
e8c1c76e
FM
2734 trans = btrfs_start_transaction(root, 1);
2735 if (IS_ERR(trans)) {
9cba40a6 2736 ret = PTR_ERR(trans);
e8c1c76e 2737 } else {
9cba40a6
FM
2738 int ret2;
2739
9a56fcd1 2740 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9cba40a6
FM
2741 ret2 = btrfs_end_transaction(trans);
2742 if (!ret)
2743 ret = ret2;
e8c1c76e
FM
2744 }
2745 }
8d9b4a16 2746 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
9cba40a6 2747 return ret;
2aaa6655
JB
2748}
2749
14524a84
QW
2750/* Helper structure to record which range is already reserved */
2751struct falloc_range {
2752 struct list_head list;
2753 u64 start;
2754 u64 len;
2755};
2756
2757/*
2758 * Helper function to add falloc range
2759 *
2760 * Caller should have locked the larger range of extent containing
2761 * [start, len)
2762 */
2763static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2764{
14524a84
QW
2765 struct falloc_range *range = NULL;
2766
77d25534
NB
2767 if (!list_empty(head)) {
2768 /*
2769 * As fallocate iterates by bytenr order, we only need to check
2770 * the last range.
2771 */
2772 range = list_last_entry(head, struct falloc_range, list);
2773 if (range->start + range->len == start) {
2774 range->len += len;
2775 return 0;
2776 }
14524a84 2777 }
77d25534 2778
32fc932e 2779 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2780 if (!range)
2781 return -ENOMEM;
2782 range->start = start;
2783 range->len = len;
2784 list_add_tail(&range->list, head);
2785 return 0;
2786}
2787
f27451f2
FM
2788static int btrfs_fallocate_update_isize(struct inode *inode,
2789 const u64 end,
2790 const int mode)
2791{
2792 struct btrfs_trans_handle *trans;
2793 struct btrfs_root *root = BTRFS_I(inode)->root;
2794 int ret;
2795 int ret2;
2796
2797 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2798 return 0;
2799
2800 trans = btrfs_start_transaction(root, 1);
2801 if (IS_ERR(trans))
2802 return PTR_ERR(trans);
2803
2804 inode->i_ctime = current_time(inode);
2805 i_size_write(inode, end);
76aea537 2806 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 2807 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
f27451f2
FM
2808 ret2 = btrfs_end_transaction(trans);
2809
2810 return ret ? ret : ret2;
2811}
2812
81fdf638 2813enum {
f262fa8d
DS
2814 RANGE_BOUNDARY_WRITTEN_EXTENT,
2815 RANGE_BOUNDARY_PREALLOC_EXTENT,
2816 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2817};
2818
948dfeb8 2819static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
2820 u64 offset)
2821{
ee8ba05c 2822 const u64 sectorsize = inode->root->fs_info->sectorsize;
f27451f2 2823 struct extent_map *em;
81fdf638 2824 int ret;
f27451f2
FM
2825
2826 offset = round_down(offset, sectorsize);
948dfeb8 2827 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
2828 if (IS_ERR(em))
2829 return PTR_ERR(em);
2830
2831 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2832 ret = RANGE_BOUNDARY_HOLE;
2833 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2834 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2835 else
2836 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2837
2838 free_extent_map(em);
2839 return ret;
2840}
2841
2842static int btrfs_zero_range(struct inode *inode,
2843 loff_t offset,
2844 loff_t len,
2845 const int mode)
2846{
2847 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2848 struct extent_map *em;
2849 struct extent_changeset *data_reserved = NULL;
2850 int ret;
2851 u64 alloc_hint = 0;
ee8ba05c 2852 const u64 sectorsize = fs_info->sectorsize;
f27451f2
FM
2853 u64 alloc_start = round_down(offset, sectorsize);
2854 u64 alloc_end = round_up(offset + len, sectorsize);
2855 u64 bytes_to_reserve = 0;
2856 bool space_reserved = false;
2857
39b07b5d
OS
2858 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2859 alloc_end - alloc_start);
f27451f2
FM
2860 if (IS_ERR(em)) {
2861 ret = PTR_ERR(em);
2862 goto out;
2863 }
2864
2865 /*
2866 * Avoid hole punching and extent allocation for some cases. More cases
2867 * could be considered, but these are unlikely common and we keep things
2868 * as simple as possible for now. Also, intentionally, if the target
2869 * range contains one or more prealloc extents together with regular
2870 * extents and holes, we drop all the existing extents and allocate a
2871 * new prealloc extent, so that we get a larger contiguous disk extent.
2872 */
2873 if (em->start <= alloc_start &&
2874 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2875 const u64 em_end = em->start + em->len;
2876
2877 if (em_end >= offset + len) {
2878 /*
2879 * The whole range is already a prealloc extent,
2880 * do nothing except updating the inode's i_size if
2881 * needed.
2882 */
2883 free_extent_map(em);
2884 ret = btrfs_fallocate_update_isize(inode, offset + len,
2885 mode);
2886 goto out;
2887 }
2888 /*
2889 * Part of the range is already a prealloc extent, so operate
2890 * only on the remaining part of the range.
2891 */
2892 alloc_start = em_end;
2893 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2894 len = offset + len - alloc_start;
2895 offset = alloc_start;
2896 alloc_hint = em->block_start + em->len;
2897 }
2898 free_extent_map(em);
2899
2900 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2901 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
2902 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2903 sectorsize);
f27451f2
FM
2904 if (IS_ERR(em)) {
2905 ret = PTR_ERR(em);
2906 goto out;
2907 }
2908
2909 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2910 free_extent_map(em);
2911 ret = btrfs_fallocate_update_isize(inode, offset + len,
2912 mode);
2913 goto out;
2914 }
2915 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2916 free_extent_map(em);
217f42eb
NB
2917 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2918 0);
f27451f2
FM
2919 if (!ret)
2920 ret = btrfs_fallocate_update_isize(inode,
2921 offset + len,
2922 mode);
2923 return ret;
2924 }
2925 free_extent_map(em);
2926 alloc_start = round_down(offset, sectorsize);
2927 alloc_end = alloc_start + sectorsize;
2928 goto reserve_space;
2929 }
2930
2931 alloc_start = round_up(offset, sectorsize);
2932 alloc_end = round_down(offset + len, sectorsize);
2933
2934 /*
2935 * For unaligned ranges, check the pages at the boundaries, they might
2936 * map to an extent, in which case we need to partially zero them, or
2937 * they might map to a hole, in which case we need our allocation range
2938 * to cover them.
2939 */
2940 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
2941 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2942 offset);
f27451f2
FM
2943 if (ret < 0)
2944 goto out;
81fdf638 2945 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2946 alloc_start = round_down(offset, sectorsize);
2947 ret = 0;
81fdf638 2948 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 2949 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
2950 if (ret)
2951 goto out;
81fdf638
FM
2952 } else {
2953 ret = 0;
f27451f2
FM
2954 }
2955 }
2956
2957 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 2958 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
2959 offset + len);
2960 if (ret < 0)
2961 goto out;
81fdf638 2962 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2963 alloc_end = round_up(offset + len, sectorsize);
2964 ret = 0;
81fdf638 2965 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
2966 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2967 0, 1);
f27451f2
FM
2968 if (ret)
2969 goto out;
81fdf638
FM
2970 } else {
2971 ret = 0;
f27451f2
FM
2972 }
2973 }
2974
2975reserve_space:
2976 if (alloc_start < alloc_end) {
2977 struct extent_state *cached_state = NULL;
2978 const u64 lockstart = alloc_start;
2979 const u64 lockend = alloc_end - 1;
2980
2981 bytes_to_reserve = alloc_end - alloc_start;
2982 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2983 bytes_to_reserve);
2984 if (ret < 0)
2985 goto out;
2986 space_reserved = true;
55961c8a
FM
2987 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2988 &cached_state);
7661a3e0 2989 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 2990 alloc_start, bytes_to_reserve);
4f6a49de 2991 if (ret) {
570eb97b
JB
2992 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2993 lockend, &cached_state);
a7f8b1c2 2994 goto out;
4f6a49de 2995 }
f27451f2
FM
2996 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2997 alloc_end - alloc_start,
2998 i_blocksize(inode),
2999 offset + len, &alloc_hint);
570eb97b
JB
3000 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3001 &cached_state);
f27451f2 3002 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3003 if (ret) {
f27451f2 3004 space_reserved = false;
9f13ce74
FM
3005 goto out;
3006 }
f27451f2 3007 }
9f13ce74 3008 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3009 out:
3010 if (ret && space_reserved)
25ce28ca 3011 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3012 alloc_start, bytes_to_reserve);
3013 extent_changeset_free(data_reserved);
3014
3015 return ret;
3016}
3017
2fe17c10
CH
3018static long btrfs_fallocate(struct file *file, int mode,
3019 loff_t offset, loff_t len)
3020{
496ad9aa 3021 struct inode *inode = file_inode(file);
2fe17c10 3022 struct extent_state *cached_state = NULL;
364ecf36 3023 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3024 struct falloc_range *range;
3025 struct falloc_range *tmp;
3026 struct list_head reserve_list;
2fe17c10
CH
3027 u64 cur_offset;
3028 u64 last_byte;
3029 u64 alloc_start;
3030 u64 alloc_end;
3031 u64 alloc_hint = 0;
3032 u64 locked_end;
14524a84 3033 u64 actual_end = 0;
47e1d1c7
FM
3034 u64 data_space_needed = 0;
3035 u64 data_space_reserved = 0;
3036 u64 qgroup_reserved = 0;
2fe17c10 3037 struct extent_map *em;
ee8ba05c 3038 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2fe17c10
CH
3039 int ret;
3040
f1569c4c
NA
3041 /* Do not allow fallocate in ZONED mode */
3042 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3043 return -EOPNOTSUPP;
3044
797f4277
MX
3045 alloc_start = round_down(offset, blocksize);
3046 alloc_end = round_up(offset + len, blocksize);
18513091 3047 cur_offset = alloc_start;
2fe17c10 3048
2aaa6655 3049 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3050 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3051 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3052 return -EOPNOTSUPP;
3053
2aaa6655 3054 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3055 return btrfs_punch_hole(file, offset, len);
2aaa6655 3056
29b6352b 3057 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2a162ce9
DI
3058
3059 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3060 ret = inode_newsize_ok(inode, offset + len);
3061 if (ret)
3062 goto out;
3063 }
2fe17c10 3064
05fd9564
DW
3065 ret = file_modified(file);
3066 if (ret)
3067 goto out;
3068
14524a84
QW
3069 /*
3070 * TODO: Move these two operations after we have checked
3071 * accurate reserved space, or fallocate can still fail but
3072 * with page truncated or size expanded.
3073 *
3074 * But that's a minor problem and won't do much harm BTW.
3075 */
2fe17c10 3076 if (alloc_start > inode->i_size) {
b06359a3 3077 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3078 alloc_start);
2fe17c10
CH
3079 if (ret)
3080 goto out;
0f6925fa 3081 } else if (offset + len > inode->i_size) {
a71754fc
JB
3082 /*
3083 * If we are fallocating from the end of the file onward we
9703fefe
CR
3084 * need to zero out the end of the block if i_size lands in the
3085 * middle of a block.
a71754fc 3086 */
217f42eb 3087 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3088 if (ret)
3089 goto out;
2fe17c10
CH
3090 }
3091
a71754fc 3092 /*
ffa8fc60
FM
3093 * We have locked the inode at the VFS level (in exclusive mode) and we
3094 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3095 * locking the file range, flush all dealloc in the range and wait for
3096 * all ordered extents in the range to complete. After this we can lock
3097 * the file range and, due to the previous locking we did, we know there
3098 * can't be more delalloc or ordered extents in the range.
a71754fc 3099 */
0ef8b726
JB
3100 ret = btrfs_wait_ordered_range(inode, alloc_start,
3101 alloc_end - alloc_start);
3102 if (ret)
3103 goto out;
a71754fc 3104
f27451f2
FM
3105 if (mode & FALLOC_FL_ZERO_RANGE) {
3106 ret = btrfs_zero_range(inode, offset, len, mode);
8d9b4a16 3107 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
f27451f2
FM
3108 return ret;
3109 }
3110
2fe17c10 3111 locked_end = alloc_end - 1;
570eb97b
JB
3112 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3113 &cached_state);
2fe17c10 3114
63c34cb4
FM
3115 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3116
14524a84
QW
3117 /* First, check if we exceed the qgroup limit */
3118 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3119 while (cur_offset < alloc_end) {
fc4f21b1 3120 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3121 alloc_end - cur_offset);
9986277e
DC
3122 if (IS_ERR(em)) {
3123 ret = PTR_ERR(em);
79787eaa
JM
3124 break;
3125 }
2fe17c10 3126 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3127 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3128 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3129 if (em->block_start == EXTENT_MAP_HOLE ||
3130 (cur_offset >= inode->i_size &&
3131 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
47e1d1c7
FM
3132 const u64 range_len = last_byte - cur_offset;
3133
3134 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3135 if (ret < 0) {
3136 free_extent_map(em);
3137 break;
3d850dd4 3138 }
7661a3e0 3139 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3140 &data_reserved, cur_offset, range_len);
be2d253c
FM
3141 if (ret < 0) {
3142 free_extent_map(em);
14524a84 3143 break;
be2d253c 3144 }
47e1d1c7
FM
3145 qgroup_reserved += range_len;
3146 data_space_needed += range_len;
2fe17c10
CH
3147 }
3148 free_extent_map(em);
2fe17c10 3149 cur_offset = last_byte;
14524a84
QW
3150 }
3151
47e1d1c7
FM
3152 if (!ret && data_space_needed > 0) {
3153 /*
3154 * We are safe to reserve space here as we can't have delalloc
3155 * in the range, see above.
3156 */
3157 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3158 data_space_needed);
3159 if (!ret)
3160 data_space_reserved = data_space_needed;
3161 }
3162
14524a84
QW
3163 /*
3164 * If ret is still 0, means we're OK to fallocate.
3165 * Or just cleanup the list and exit.
3166 */
3167 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3168 if (!ret) {
14524a84
QW
3169 ret = btrfs_prealloc_file_range(inode, mode,
3170 range->start,
93407472 3171 range->len, i_blocksize(inode),
14524a84 3172 offset + len, &alloc_hint);
47e1d1c7
FM
3173 /*
3174 * btrfs_prealloc_file_range() releases space even
3175 * if it returns an error.
3176 */
3177 data_space_reserved -= range->len;
3178 qgroup_reserved -= range->len;
3179 } else if (data_space_reserved > 0) {
25ce28ca 3180 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3181 data_reserved, range->start,
3182 range->len);
3183 data_space_reserved -= range->len;
3184 qgroup_reserved -= range->len;
3185 } else if (qgroup_reserved > 0) {
3186 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3187 range->start, range->len);
3188 qgroup_reserved -= range->len;
3189 }
14524a84
QW
3190 list_del(&range->list);
3191 kfree(range);
3192 }
3193 if (ret < 0)
3194 goto out_unlock;
3195
f27451f2
FM
3196 /*
3197 * We didn't need to allocate any more space, but we still extended the
3198 * size of the file so we need to update i_size and the inode item.
3199 */
3200 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3201out_unlock:
570eb97b
JB
3202 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3203 &cached_state);
2fe17c10 3204out:
8d9b4a16 3205 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
364ecf36 3206 extent_changeset_free(data_reserved);
2fe17c10
CH
3207 return ret;
3208}
3209
b6e83356 3210/*
ac3c0d36
FM
3211 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3212 * that has unflushed and/or flushing delalloc. There might be other adjacent
3213 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3214 * looping while it gets adjacent subranges, and merging them together.
b6e83356
FM
3215 */
3216static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3217 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3218{
3219 const u64 len = end + 1 - start;
3220 struct extent_map_tree *em_tree = &inode->extent_tree;
3221 struct extent_map *em;
3222 u64 em_end;
3223 u64 delalloc_len;
a2853ffc 3224 unsigned int outstanding_extents;
b6e83356
FM
3225
3226 /*
3227 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3228 * means we have delalloc (dirty pages) for which writeback has not
3229 * started yet.
3230 */
a2853ffc
FM
3231 spin_lock(&inode->lock);
3232 outstanding_extents = inode->outstanding_extents;
3233
3234 if (inode->delalloc_bytes > 0) {
3235 spin_unlock(&inode->lock);
3236 *delalloc_start_ret = start;
3237 delalloc_len = count_range_bits(&inode->io_tree,
3238 delalloc_start_ret, end,
3239 len, EXTENT_DELALLOC, 1);
3240 } else {
3241 spin_unlock(&inode->lock);
3242 delalloc_len = 0;
3243 }
3244
b6e83356
FM
3245 /*
3246 * If delalloc was found then *delalloc_start_ret has a sector size
3247 * aligned value (rounded down).
3248 */
3249 if (delalloc_len > 0)
3250 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3251
a2853ffc
FM
3252 /*
3253 * No outstanding extents means we don't have any delalloc that is
3254 * flushing, so return the unflushed range found in the io tree (if any).
3255 */
3256 if (outstanding_extents == 0)
013f9c70 3257 return (delalloc_len > 0);
013f9c70 3258
b6e83356
FM
3259 /*
3260 * Now also check if there's any extent map in the range that does not
3261 * map to a hole or prealloc extent. We do this because:
3262 *
3263 * 1) When delalloc is flushed, the file range is locked, we clear the
3264 * EXTENT_DELALLOC bit from the io tree and create an extent map for
3265 * an allocated extent. So we might just have been called after
3266 * delalloc is flushed and before the ordered extent completes and
3267 * inserts the new file extent item in the subvolume's btree;
3268 *
3269 * 2) We may have an extent map created by flushing delalloc for a
3270 * subrange that starts before the subrange we found marked with
3271 * EXTENT_DELALLOC in the io tree.
3272 */
3273 read_lock(&em_tree->lock);
3274 em = lookup_extent_mapping(em_tree, start, len);
d47704bd
FM
3275 if (!em) {
3276 read_unlock(&em_tree->lock);
3277 return (delalloc_len > 0);
3278 }
b6e83356
FM
3279
3280 /* extent_map_end() returns a non-inclusive end offset. */
d47704bd 3281 em_end = extent_map_end(em);
b6e83356
FM
3282
3283 /*
3284 * If we have a hole/prealloc extent map, check the next one if this one
3285 * ends before our range's end.
3286 */
d47704bd
FM
3287 if ((em->block_start == EXTENT_MAP_HOLE ||
3288 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) && em_end < end) {
b6e83356
FM
3289 struct extent_map *next_em;
3290
d47704bd 3291 next_em = btrfs_next_extent_map(em_tree, em);
b6e83356 3292 free_extent_map(em);
d47704bd
FM
3293
3294 /*
3295 * There's no next extent map or the next one starts beyond our
3296 * range, return the range found in the io tree (if any).
3297 */
3298 if (!next_em || next_em->start > end) {
3299 read_unlock(&em_tree->lock);
3300 free_extent_map(next_em);
3301 return (delalloc_len > 0);
3302 }
3303
3304 em_end = extent_map_end(next_em);
b6e83356
FM
3305 em = next_em;
3306 }
3307
d47704bd 3308 read_unlock(&em_tree->lock);
b6e83356
FM
3309
3310 /*
d47704bd
FM
3311 * We have a hole or prealloc extent that ends at or beyond our range's
3312 * end, return the range found in the io tree (if any).
b6e83356 3313 */
d47704bd
FM
3314 if (em->block_start == EXTENT_MAP_HOLE ||
3315 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3316 free_extent_map(em);
b6e83356 3317 return (delalloc_len > 0);
d47704bd 3318 }
b6e83356
FM
3319
3320 /*
3321 * We don't have any range as EXTENT_DELALLOC in the io tree, so the
3322 * extent map is the only subrange representing delalloc.
3323 */
3324 if (delalloc_len == 0) {
3325 *delalloc_start_ret = em->start;
3326 *delalloc_end_ret = min(end, em_end - 1);
3327 free_extent_map(em);
3328 return true;
3329 }
3330
3331 /*
3332 * The extent map represents a delalloc range that starts before the
3333 * delalloc range we found in the io tree.
3334 */
3335 if (em->start < *delalloc_start_ret) {
3336 *delalloc_start_ret = em->start;
3337 /*
3338 * If the ranges are adjacent, return a combined range.
3339 * Otherwise return the extent map's range.
3340 */
3341 if (em_end < *delalloc_start_ret)
3342 *delalloc_end_ret = min(end, em_end - 1);
3343
3344 free_extent_map(em);
3345 return true;
3346 }
3347
3348 /*
3349 * The extent map starts after the delalloc range we found in the io
3350 * tree. If it's adjacent, return a combined range, otherwise return
3351 * the range found in the io tree.
3352 */
3353 if (*delalloc_end_ret + 1 == em->start)
3354 *delalloc_end_ret = min(end, em_end - 1);
3355
3356 free_extent_map(em);
3357 return true;
3358}
3359
3360/*
3361 * Check if there's delalloc in a given range.
3362 *
3363 * @inode: The inode.
3364 * @start: The start offset of the range. It does not need to be
3365 * sector size aligned.
3366 * @end: The end offset (inclusive value) of the search range.
3367 * It does not need to be sector size aligned.
3368 * @delalloc_start_ret: Output argument, set to the start offset of the
3369 * subrange found with delalloc (may not be sector size
3370 * aligned).
3371 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3372 * of the subrange found with delalloc.
3373 *
3374 * Returns true if a subrange with delalloc is found within the given range, and
3375 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3376 * end offsets of the subrange.
3377 */
ac3c0d36
FM
3378bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3379 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
b6e83356
FM
3380{
3381 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3382 u64 prev_delalloc_end = 0;
3383 bool ret = false;
3384
3385 while (cur_offset < end) {
3386 u64 delalloc_start;
3387 u64 delalloc_end;
3388 bool delalloc;
3389
3390 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3391 &delalloc_start,
3392 &delalloc_end);
3393 if (!delalloc)
3394 break;
3395
3396 if (prev_delalloc_end == 0) {
3397 /* First subrange found. */
3398 *delalloc_start_ret = max(delalloc_start, start);
3399 *delalloc_end_ret = delalloc_end;
3400 ret = true;
3401 } else if (delalloc_start == prev_delalloc_end + 1) {
3402 /* Subrange adjacent to the previous one, merge them. */
3403 *delalloc_end_ret = delalloc_end;
3404 } else {
3405 /* Subrange not adjacent to the previous one, exit. */
3406 break;
3407 }
3408
3409 prev_delalloc_end = delalloc_end;
3410 cur_offset = delalloc_end + 1;
3411 cond_resched();
3412 }
3413
3414 return ret;
3415}
3416
3417/*
3418 * Check if there's a hole or delalloc range in a range representing a hole (or
3419 * prealloc extent) found in the inode's subvolume btree.
3420 *
3421 * @inode: The inode.
3422 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3423 * @start: Start offset of the hole region. It does not need to be sector
3424 * size aligned.
3425 * @end: End offset (inclusive value) of the hole region. It does not
3426 * need to be sector size aligned.
3427 * @start_ret: Return parameter, used to set the start of the subrange in the
3428 * hole that matches the search criteria (seek mode), if such
3429 * subrange is found (return value of the function is true).
3430 * The value returned here may not be sector size aligned.
3431 *
3432 * Returns true if a subrange matching the given seek mode is found, and if one
3433 * is found, it updates @start_ret with the start of the subrange.
3434 */
3435static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3436 u64 start, u64 end, u64 *start_ret)
3437{
3438 u64 delalloc_start;
3439 u64 delalloc_end;
3440 bool delalloc;
3441
ac3c0d36
FM
3442 delalloc = btrfs_find_delalloc_in_range(inode, start, end,
3443 &delalloc_start, &delalloc_end);
b6e83356
FM
3444 if (delalloc && whence == SEEK_DATA) {
3445 *start_ret = delalloc_start;
3446 return true;
3447 }
3448
3449 if (delalloc && whence == SEEK_HOLE) {
3450 /*
3451 * We found delalloc but it starts after out start offset. So we
3452 * have a hole between our start offset and the delalloc start.
3453 */
3454 if (start < delalloc_start) {
3455 *start_ret = start;
3456 return true;
3457 }
3458 /*
3459 * Delalloc range starts at our start offset.
3460 * If the delalloc range's length is smaller than our range,
3461 * then it means we have a hole that starts where the delalloc
3462 * subrange ends.
3463 */
3464 if (delalloc_end < end) {
3465 *start_ret = delalloc_end + 1;
3466 return true;
3467 }
3468
3469 /* There's delalloc for the whole range. */
3470 return false;
3471 }
3472
3473 if (!delalloc && whence == SEEK_HOLE) {
3474 *start_ret = start;
3475 return true;
3476 }
3477
3478 /*
3479 * No delalloc in the range and we are seeking for data. The caller has
3480 * to iterate to the next extent item in the subvolume btree.
3481 */
3482 return false;
3483}
3484
cca5de97 3485static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
bc80230e 3486 int whence)
b2675157 3487{
cca5de97 3488 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b2675157 3489 struct extent_state *cached_state = NULL;
b6e83356
FM
3490 const loff_t i_size = i_size_read(&inode->vfs_inode);
3491 const u64 ino = btrfs_ino(inode);
3492 struct btrfs_root *root = inode->root;
3493 struct btrfs_path *path;
3494 struct btrfs_key key;
3495 u64 last_extent_end;
4d1a40c6
LB
3496 u64 lockstart;
3497 u64 lockend;
3498 u64 start;
b6e83356
FM
3499 int ret;
3500 bool found = false;
b2675157 3501
bc80230e 3502 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3503 return -ENXIO;
3504
b6e83356
FM
3505 /*
3506 * Quick path. If the inode has no prealloc extents and its number of
3507 * bytes used matches its i_size, then it can not have holes.
3508 */
3509 if (whence == SEEK_HOLE &&
3510 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3511 inode_get_bytes(&inode->vfs_inode) == i_size)
3512 return i_size;
3513
4d1a40c6 3514 /*
bc80230e 3515 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3516 * the very start of the file.
3517 */
bc80230e 3518 start = max_t(loff_t, 0, offset);
4d1a40c6 3519
0b246afa 3520 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3521 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3522 if (lockend <= lockstart)
0b246afa 3523 lockend = lockstart + fs_info->sectorsize;
1214b53f 3524 lockend--;
b6e83356
FM
3525
3526 path = btrfs_alloc_path();
3527 if (!path)
3528 return -ENOMEM;
3529 path->reada = READA_FORWARD;
3530
3531 key.objectid = ino;
3532 key.type = BTRFS_EXTENT_DATA_KEY;
3533 key.offset = start;
3534
3535 last_extent_end = lockstart;
b2675157 3536
570eb97b 3537 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3538
b6e83356
FM
3539 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3540 if (ret < 0) {
3541 goto out;
3542 } else if (ret > 0 && path->slots[0] > 0) {
3543 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3544 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3545 path->slots[0]--;
3546 }
3547
d79b7c26 3548 while (start < i_size) {
b6e83356
FM
3549 struct extent_buffer *leaf = path->nodes[0];
3550 struct btrfs_file_extent_item *extent;
3551 u64 extent_end;
3552
3553 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3554 ret = btrfs_next_leaf(root, path);
3555 if (ret < 0)
3556 goto out;
3557 else if (ret > 0)
3558 break;
3559
3560 leaf = path->nodes[0];
b2675157
JB
3561 }
3562
b6e83356
FM
3563 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3564 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
7f4ca37c 3565 break;
b2675157 3566
b6e83356
FM
3567 extent_end = btrfs_file_extent_end(path);
3568
3569 /*
3570 * In the first iteration we may have a slot that points to an
3571 * extent that ends before our start offset, so skip it.
3572 */
3573 if (extent_end <= start) {
3574 path->slots[0]++;
3575 continue;
3576 }
3577
3578 /* We have an implicit hole, NO_HOLES feature is likely set. */
3579 if (last_extent_end < key.offset) {
3580 u64 search_start = last_extent_end;
3581 u64 found_start;
3582
3583 /*
3584 * First iteration, @start matches @offset and it's
3585 * within the hole.
3586 */
3587 if (start == offset)
3588 search_start = offset;
3589
3590 found = find_desired_extent_in_hole(inode, whence,
3591 search_start,
3592 key.offset - 1,
3593 &found_start);
3594 if (found) {
3595 start = found_start;
3596 break;
3597 }
3598 /*
3599 * Didn't find data or a hole (due to delalloc) in the
3600 * implicit hole range, so need to analyze the extent.
3601 */
3602 }
3603
3604 extent = btrfs_item_ptr(leaf, path->slots[0],
3605 struct btrfs_file_extent_item);
3606
3607 if (btrfs_file_extent_disk_bytenr(leaf, extent) == 0 ||
3608 btrfs_file_extent_type(leaf, extent) ==
3609 BTRFS_FILE_EXTENT_PREALLOC) {
3610 /*
3611 * Explicit hole or prealloc extent, search for delalloc.
3612 * A prealloc extent is treated like a hole.
3613 */
3614 u64 search_start = key.offset;
3615 u64 found_start;
3616
3617 /*
3618 * First iteration, @start matches @offset and it's
3619 * within the hole.
3620 */
3621 if (start == offset)
3622 search_start = offset;
3623
3624 found = find_desired_extent_in_hole(inode, whence,
3625 search_start,
3626 extent_end - 1,
3627 &found_start);
3628 if (found) {
3629 start = found_start;
3630 break;
3631 }
3632 /*
3633 * Didn't find data or a hole (due to delalloc) in the
3634 * implicit hole range, so need to analyze the next
3635 * extent item.
3636 */
3637 } else {
3638 /*
3639 * Found a regular or inline extent.
3640 * If we are seeking for data, adjust the start offset
3641 * and stop, we're done.
3642 */
3643 if (whence == SEEK_DATA) {
3644 start = max_t(u64, key.offset, offset);
3645 found = true;
3646 break;
3647 }
3648 /*
3649 * Else, we are seeking for a hole, check the next file
3650 * extent item.
3651 */
3652 }
3653
3654 start = extent_end;
3655 last_extent_end = extent_end;
3656 path->slots[0]++;
aed0ca18
FM
3657 if (fatal_signal_pending(current)) {
3658 ret = -EINTR;
b6e83356 3659 goto out;
aed0ca18 3660 }
b2675157
JB
3661 cond_resched();
3662 }
b6e83356
FM
3663
3664 /* We have an implicit hole from the last extent found up to i_size. */
3665 if (!found && start < i_size) {
3666 found = find_desired_extent_in_hole(inode, whence, start,
3667 i_size - 1, &start);
3668 if (!found)
3669 start = i_size;
3670 }
3671
3672out:
570eb97b 3673 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b6e83356
FM
3674 btrfs_free_path(path);
3675
3676 if (ret < 0)
3677 return ret;
3678
3679 if (whence == SEEK_DATA && start >= i_size)
3680 return -ENXIO;
bc80230e 3681
b6e83356 3682 return min_t(loff_t, start, i_size);
b2675157
JB
3683}
3684
965c8e59 3685static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3686{
3687 struct inode *inode = file->f_mapping->host;
b2675157 3688
965c8e59 3689 switch (whence) {
2034f3b4
NB
3690 default:
3691 return generic_file_llseek(file, offset, whence);
b2675157
JB
3692 case SEEK_DATA:
3693 case SEEK_HOLE:
29b6352b 3694 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
cca5de97 3695 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
a14b78ad 3696 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
bc80230e 3697 break;
b2675157
JB
3698 }
3699
bc80230e
NB
3700 if (offset < 0)
3701 return offset;
3702
2034f3b4 3703 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3704}
3705
edf064e7
GR
3706static int btrfs_file_open(struct inode *inode, struct file *filp)
3707{
14605409
BB
3708 int ret;
3709
926078b2 3710 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
14605409
BB
3711
3712 ret = fsverity_file_open(inode, filp);
3713 if (ret)
3714 return ret;
edf064e7
GR
3715 return generic_file_open(inode, filp);
3716}
3717
4e4cabec
GR
3718static int check_direct_read(struct btrfs_fs_info *fs_info,
3719 const struct iov_iter *iter, loff_t offset)
3720{
3721 int ret;
3722 int i, seg;
3723
3724 ret = check_direct_IO(fs_info, iter, offset);
3725 if (ret < 0)
3726 return ret;
3727
3728 if (!iter_is_iovec(iter))
3729 return 0;
3730
3731 for (seg = 0; seg < iter->nr_segs; seg++)
3732 for (i = seg + 1; i < iter->nr_segs; i++)
3733 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3734 return -EINVAL;
3735 return 0;
3736}
3737
3738static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3739{
3740 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3741 size_t prev_left = 0;
3742 ssize_t read = 0;
4e4cabec
GR
3743 ssize_t ret;
3744
14605409
BB
3745 if (fsverity_active(inode))
3746 return 0;
3747
4e4cabec
GR
3748 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3749 return 0;
3750
29b6352b 3751 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563
FM
3752again:
3753 /*
3754 * This is similar to what we do for direct IO writes, see the comment
3755 * at btrfs_direct_write(), but we also disable page faults in addition
3756 * to disabling them only at the iov_iter level. This is because when
3757 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3758 * which can still trigger page fault ins despite having set ->nofault
3759 * to true of our 'to' iov_iter.
3760 *
3761 * The difference to direct IO writes is that we deadlock when trying
3762 * to lock the extent range in the inode's tree during he page reads
3763 * triggered by the fault in (while for writes it is due to waiting for
3764 * our own ordered extent). This is because for direct IO reads,
3765 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3766 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3767 */
3768 pagefault_disable();
3769 to->nofault = true;
8184620a 3770 ret = btrfs_dio_read(iocb, to, read);
51bd9563
FM
3771 to->nofault = false;
3772 pagefault_enable();
3773
3774 /* No increment (+=) because iomap returns a cumulative value. */
3775 if (ret > 0)
3776 read = ret;
3777
3778 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3779 const size_t left = iov_iter_count(to);
3780
3781 if (left == prev_left) {
3782 /*
3783 * We didn't make any progress since the last attempt,
3784 * fallback to a buffered read for the remainder of the
3785 * range. This is just to avoid any possibility of looping
3786 * for too long.
3787 */
3788 ret = read;
3789 } else {
3790 /*
3791 * We made some progress since the last retry or this is
3792 * the first time we are retrying. Fault in as many pages
3793 * as possible and retry.
3794 */
3795 fault_in_iov_iter_writeable(to, left);
3796 prev_left = left;
3797 goto again;
3798 }
3799 }
a14b78ad 3800 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
51bd9563 3801 return ret < 0 ? ret : read;
4e4cabec
GR
3802}
3803
f85781fb
GR
3804static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3805{
3806 ssize_t ret = 0;
3807
3808 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3809 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3810 if (ret < 0 || !iov_iter_count(to) ||
3811 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3812 return ret;
3813 }
3814
87fa0f3e 3815 return filemap_read(iocb, to, ret);
f85781fb
GR
3816}
3817
828c0950 3818const struct file_operations btrfs_file_operations = {
b2675157 3819 .llseek = btrfs_file_llseek,
f85781fb 3820 .read_iter = btrfs_file_read_iter,
e9906a98 3821 .splice_read = generic_file_splice_read,
b30ac0fc 3822 .write_iter = btrfs_file_write_iter,
d7776591 3823 .splice_write = iter_file_splice_write,
9ebefb18 3824 .mmap = btrfs_file_mmap,
edf064e7 3825 .open = btrfs_file_open,
e1b81e67 3826 .release = btrfs_release_file,
b0c58223 3827 .get_unmapped_area = thp_get_unmapped_area,
39279cc3 3828 .fsync = btrfs_sync_file,
2fe17c10 3829 .fallocate = btrfs_fallocate,
34287aa3 3830 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3831#ifdef CONFIG_COMPAT
4c63c245 3832 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3833#endif
2e5dfc99 3834 .remap_file_range = btrfs_remap_file_range,
39279cc3 3835};
9247f317 3836
728404da
FM
3837int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3838{
3839 int ret;
3840
3841 /*
3842 * So with compression we will find and lock a dirty page and clear the
3843 * first one as dirty, setup an async extent, and immediately return
3844 * with the entire range locked but with nobody actually marked with
3845 * writeback. So we can't just filemap_write_and_wait_range() and
3846 * expect it to work since it will just kick off a thread to do the
3847 * actual work. So we need to call filemap_fdatawrite_range _again_
3848 * since it will wait on the page lock, which won't be unlocked until
3849 * after the pages have been marked as writeback and so we're good to go
3850 * from there. We have to do this otherwise we'll miss the ordered
3851 * extents and that results in badness. Please Josef, do not think you
3852 * know better and pull this out at some point in the future, it is
3853 * right and you are wrong.
3854 */
3855 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3856 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3857 &BTRFS_I(inode)->runtime_flags))
3858 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3859
3860 return ret;
3861}