btrfs: use common helpers for extent IO state insertion messages
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
39279cc3 29
9247f317 30static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
31/*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54};
55
762f2263
MX
56static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58{
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69}
70
4cb5300b
CM
71/* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
6158e1ce 80static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
81 struct inode_defrag *defrag)
82{
3ffbd68c 83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
762f2263 87 int ret;
4cb5300b 88
0b246afa 89 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
762f2263
MX
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
4cb5300b 96 p = &parent->rb_left;
762f2263 97 else if (ret > 0)
4cb5300b
CM
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
8ddc4734 108 return -EEXIST;
4cb5300b
CM
109 }
110 }
6158e1ce 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 112 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
114 return 0;
115}
4cb5300b 116
2ff7e61e 117static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 118{
0b246afa 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
120 return 0;
121
0b246afa 122 if (btrfs_fs_closing(fs_info))
8ddc4734 123 return 0;
4cb5300b 124
8ddc4734 125 return 1;
4cb5300b
CM
126}
127
128/*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 133 struct btrfs_inode *inode)
4cb5300b 134{
6158e1ce 135 struct btrfs_root *root = inode->root;
3ffbd68c 136 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 137 struct inode_defrag *defrag;
4cb5300b 138 u64 transid;
8ddc4734 139 int ret;
4cb5300b 140
2ff7e61e 141 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
142 return 0;
143
6158e1ce 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
6158e1ce 150 transid = inode->root->last_trans;
4cb5300b 151
9247f317 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
153 if (!defrag)
154 return -ENOMEM;
155
6158e1ce 156 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
0b246afa 160 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
9247f317 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 172 }
0b246afa 173 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 174 return 0;
4cb5300b
CM
175}
176
177/*
8ddc4734
MX
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 181 */
46e59791 182static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 183 struct inode_defrag *defrag)
8ddc4734 184{
3ffbd68c 185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
186 int ret;
187
2ff7e61e 188 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
0b246afa 195 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 196 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 197 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
198 if (ret)
199 goto out;
200 return;
201out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203}
204
4cb5300b 205/*
26176e7c
MX
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
4cb5300b 208 */
26176e7c
MX
209static struct inode_defrag *
210btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
211{
212 struct inode_defrag *entry = NULL;
762f2263 213 struct inode_defrag tmp;
4cb5300b
CM
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
762f2263
MX
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
4cb5300b 220
26176e7c
MX
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
762f2263
MX
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
4cb5300b 229 p = parent->rb_left;
762f2263 230 else if (ret > 0)
4cb5300b
CM
231 p = parent->rb_right;
232 else
26176e7c 233 goto out;
4cb5300b
CM
234 }
235
26176e7c
MX
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
4cb5300b 239 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
240 else
241 entry = NULL;
4cb5300b 242 }
26176e7c
MX
243out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
4cb5300b
CM
248}
249
26176e7c 250void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
251{
252 struct inode_defrag *defrag;
26176e7c
MX
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
351810c1 262 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267}
268
269#define BTRFS_DEFRAG_BATCH 1024
270
271static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273{
4cb5300b
CM
274 struct btrfs_root *inode_root;
275 struct inode *inode;
4cb5300b
CM
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 278 int num_defrag;
6f1c3605
LB
279 int index;
280 int ret;
4cb5300b 281
26176e7c
MX
282 /* get the inode */
283 key.objectid = defrag->root;
962a298f 284 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 285 key.offset = (u64)-1;
6f1c3605
LB
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
26176e7c
MX
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
6f1c3605
LB
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
26176e7c
MX
294
295 key.objectid = defrag->ino;
962a298f 296 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
6f1c3605
LB
300 ret = PTR_ERR(inode);
301 goto cleanup;
26176e7c 302 }
6f1c3605 303 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
26176e7c 309 range.start = defrag->last_offset;
b66f00da
MX
310
311 sb_start_write(fs_info->sb);
26176e7c
MX
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
b66f00da 314 sb_end_write(fs_info->sb);
26176e7c
MX
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
46e59791 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
46e59791 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
6f1c3605
LB
338cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
26176e7c
MX
342}
343
344/*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349{
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
4cb5300b
CM
353
354 atomic_inc(&fs_info->defrag_running);
67871254 355 while (1) {
dc81cdc5
MX
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
2ff7e61e 361 if (!__need_auto_defrag(fs_info))
26176e7c 362 break;
4cb5300b
CM
363
364 /* find an inode to defrag */
26176e7c
MX
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
4cb5300b 367 if (!defrag) {
26176e7c 368 if (root_objectid || first_ino) {
762f2263 369 root_objectid = 0;
4cb5300b
CM
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
4cb5300b 377 first_ino = defrag->ino + 1;
762f2263 378 root_objectid = defrag->root;
4cb5300b 379
26176e7c 380 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 381 }
4cb5300b
CM
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390}
39279cc3 391
d352ac68
CM
392/* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
ee22f0c4 395static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 396 struct page **prepared_pages,
11c65dcc 397 struct iov_iter *i)
39279cc3 398{
914ee295 399 size_t copied = 0;
d0215f3e 400 size_t total_copied = 0;
11c65dcc 401 int pg = 0;
7073017a 402 int offset = offset_in_page(pos);
39279cc3 403
11c65dcc 404 while (write_bytes > 0) {
39279cc3 405 size_t count = min_t(size_t,
09cbfeaf 406 PAGE_SIZE - offset, write_bytes);
11c65dcc 407 struct page *page = prepared_pages[pg];
914ee295
XZ
408 /*
409 * Copy data from userspace to the current page
914ee295 410 */
914ee295 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 412
39279cc3
CM
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
31339acd
CM
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
11c65dcc
JB
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
914ee295 430 total_copied += copied;
39279cc3 431
b30ac0fc 432 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 433 if (unlikely(copied == 0))
914ee295 434 break;
11c65dcc 435
09cbfeaf 436 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
39279cc3 442 }
914ee295 443 return total_copied;
39279cc3
CM
444}
445
d352ac68
CM
446/*
447 * unlocks pages after btrfs_file_write is done with them
448 */
48a3b636 449static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
450{
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
d352ac68
CM
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
d352ac68 458 */
4a096752 459 ClearPageChecked(pages[i]);
39279cc3 460 unlock_page(pages[i]);
09cbfeaf 461 put_page(pages[i]);
39279cc3
CM
462 }
463}
464
f48bf66b
FM
465static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469{
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504}
505
d352ac68
CM
506/*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
2ff7e61e
JM
514int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
39279cc3 517{
0b246afa 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 519 int err = 0;
a52d9a80 520 int i;
db94535d 521 u64 num_bytes;
a52d9a80
CM
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
e3b8a485 526 unsigned int extra_bits = 0;
39279cc3 527
0b246afa 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 529 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 530 fs_info->sectorsize);
39279cc3 531
db94535d 532 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 533
7703bdd8
CM
534 /*
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
537 */
538 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
539 EXTENT_DIRTY | EXTENT_DELALLOC |
540 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
541
e3b8a485
FM
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
543 if (start_pos >= isize &&
544 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
545 /*
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
548 * directly.
549 */
550 extra_bits |= EXTENT_DELALLOC_NEW;
551 } else {
552 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
553 start_pos,
554 num_bytes, cached);
555 if (err)
556 return err;
557 }
558 }
559
2ac55d41 560 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
e3b8a485 561 extra_bits, cached, 0);
d0215f3e
JB
562 if (err)
563 return err;
9ed74f2d 564
c8b97818
CM
565 for (i = 0; i < num_pages; i++) {
566 struct page *p = pages[i];
567 SetPageUptodate(p);
568 ClearPageChecked(p);
569 set_page_dirty(p);
a52d9a80 570 }
9f570b8d
JB
571
572 /*
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
575 * at this time.
576 */
577 if (end_pos > isize)
a52d9a80 578 i_size_write(inode, end_pos);
a22285a6 579 return 0;
39279cc3
CM
580}
581
d352ac68
CM
582/*
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
585 */
dcdbc059 586void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 587 int skip_pinned)
a52d9a80
CM
588{
589 struct extent_map *em;
3b951516
CM
590 struct extent_map *split = NULL;
591 struct extent_map *split2 = NULL;
dcdbc059 592 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 593 u64 len = end - start + 1;
5dc562c5 594 u64 gen;
3b951516
CM
595 int ret;
596 int testend = 1;
5b21f2ed 597 unsigned long flags;
c8b97818 598 int compressed = 0;
09a2a8f9 599 bool modified;
a52d9a80 600
e6dcd2dc 601 WARN_ON(end < start);
3b951516 602 if (end == (u64)-1) {
39b5637f 603 len = (u64)-1;
3b951516
CM
604 testend = 0;
605 }
d397712b 606 while (1) {
7014cdb4
JB
607 int no_splits = 0;
608
09a2a8f9 609 modified = false;
3b951516 610 if (!split)
172ddd60 611 split = alloc_extent_map();
3b951516 612 if (!split2)
172ddd60 613 split2 = alloc_extent_map();
7014cdb4
JB
614 if (!split || !split2)
615 no_splits = 1;
3b951516 616
890871be 617 write_lock(&em_tree->lock);
39b5637f 618 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 619 if (!em) {
890871be 620 write_unlock(&em_tree->lock);
a52d9a80 621 break;
d1310b2e 622 }
5b21f2ed 623 flags = em->flags;
5dc562c5 624 gen = em->generation;
5b21f2ed 625 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 626 if (testend && em->start + em->len >= start + len) {
5b21f2ed 627 free_extent_map(em);
a1ed835e 628 write_unlock(&em_tree->lock);
5b21f2ed
ZY
629 break;
630 }
55ef6899
YZ
631 start = em->start + em->len;
632 if (testend)
5b21f2ed 633 len = start + len - (em->start + em->len);
5b21f2ed 634 free_extent_map(em);
a1ed835e 635 write_unlock(&em_tree->lock);
5b21f2ed
ZY
636 continue;
637 }
c8b97818 638 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 639 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 640 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 641 modified = !list_empty(&em->list);
7014cdb4
JB
642 if (no_splits)
643 goto next;
3b951516 644
ee20a983 645 if (em->start < start) {
3b951516
CM
646 split->start = em->start;
647 split->len = start - em->start;
ee20a983
JB
648
649 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
650 split->orig_start = em->orig_start;
651 split->block_start = em->block_start;
652
653 if (compressed)
654 split->block_len = em->block_len;
655 else
656 split->block_len = split->len;
657 split->orig_block_len = max(split->block_len,
658 em->orig_block_len);
659 split->ram_bytes = em->ram_bytes;
660 } else {
661 split->orig_start = split->start;
662 split->block_len = 0;
663 split->block_start = em->block_start;
664 split->orig_block_len = 0;
665 split->ram_bytes = split->len;
666 }
667
5dc562c5 668 split->generation = gen;
3b951516 669 split->bdev = em->bdev;
5b21f2ed 670 split->flags = flags;
261507a0 671 split->compress_type = em->compress_type;
176840b3 672 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
673 free_extent_map(split);
674 split = split2;
675 split2 = NULL;
676 }
ee20a983 677 if (testend && em->start + em->len > start + len) {
3b951516
CM
678 u64 diff = start + len - em->start;
679
680 split->start = start + len;
681 split->len = em->start + em->len - (start + len);
682 split->bdev = em->bdev;
5b21f2ed 683 split->flags = flags;
261507a0 684 split->compress_type = em->compress_type;
5dc562c5 685 split->generation = gen;
ee20a983
JB
686
687 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
688 split->orig_block_len = max(em->block_len,
b4939680 689 em->orig_block_len);
3b951516 690
ee20a983
JB
691 split->ram_bytes = em->ram_bytes;
692 if (compressed) {
693 split->block_len = em->block_len;
694 split->block_start = em->block_start;
695 split->orig_start = em->orig_start;
696 } else {
697 split->block_len = split->len;
698 split->block_start = em->block_start
699 + diff;
700 split->orig_start = em->orig_start;
701 }
c8b97818 702 } else {
ee20a983
JB
703 split->ram_bytes = split->len;
704 split->orig_start = split->start;
705 split->block_len = 0;
706 split->block_start = em->block_start;
707 split->orig_block_len = 0;
c8b97818 708 }
3b951516 709
176840b3
FM
710 if (extent_map_in_tree(em)) {
711 replace_extent_mapping(em_tree, em, split,
712 modified);
713 } else {
714 ret = add_extent_mapping(em_tree, split,
715 modified);
716 ASSERT(ret == 0); /* Logic error */
717 }
3b951516
CM
718 free_extent_map(split);
719 split = NULL;
720 }
7014cdb4 721next:
176840b3
FM
722 if (extent_map_in_tree(em))
723 remove_extent_mapping(em_tree, em);
890871be 724 write_unlock(&em_tree->lock);
d1310b2e 725
a52d9a80
CM
726 /* once for us */
727 free_extent_map(em);
728 /* once for the tree*/
729 free_extent_map(em);
730 }
3b951516
CM
731 if (split)
732 free_extent_map(split);
733 if (split2)
734 free_extent_map(split2);
a52d9a80
CM
735}
736
39279cc3
CM
737/*
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
741 *
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
745 */
5dc562c5
JB
746int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
747 struct btrfs_root *root, struct inode *inode,
748 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
749 u64 *drop_end, int drop_cache,
750 int replace_extent,
751 u32 extent_item_size,
752 int *key_inserted)
39279cc3 753{
0b246afa 754 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 755 struct extent_buffer *leaf;
920bbbfb 756 struct btrfs_file_extent_item *fi;
82fa113f 757 struct btrfs_ref ref = { 0 };
00f5c795 758 struct btrfs_key key;
920bbbfb 759 struct btrfs_key new_key;
4a0cc7ca 760 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
761 u64 search_start = start;
762 u64 disk_bytenr = 0;
763 u64 num_bytes = 0;
764 u64 extent_offset = 0;
765 u64 extent_end = 0;
62fe51c1 766 u64 last_end = start;
920bbbfb
YZ
767 int del_nr = 0;
768 int del_slot = 0;
769 int extent_type;
ccd467d6 770 int recow;
00f5c795 771 int ret;
dc7fdde3 772 int modify_tree = -1;
27cdeb70 773 int update_refs;
c3308f84 774 int found = 0;
1acae57b 775 int leafs_visited = 0;
39279cc3 776
a1ed835e 777 if (drop_cache)
dcdbc059 778 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 779
d5f37527 780 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
781 modify_tree = 0;
782
27cdeb70 783 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 784 root == fs_info->tree_root);
d397712b 785 while (1) {
ccd467d6 786 recow = 0;
33345d01 787 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 788 search_start, modify_tree);
39279cc3 789 if (ret < 0)
920bbbfb
YZ
790 break;
791 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
792 leaf = path->nodes[0];
793 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 794 if (key.objectid == ino &&
920bbbfb
YZ
795 key.type == BTRFS_EXTENT_DATA_KEY)
796 path->slots[0]--;
39279cc3 797 }
920bbbfb 798 ret = 0;
1acae57b 799 leafs_visited++;
8c2383c3 800next_slot:
5f39d397 801 leaf = path->nodes[0];
920bbbfb
YZ
802 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
803 BUG_ON(del_nr > 0);
804 ret = btrfs_next_leaf(root, path);
805 if (ret < 0)
806 break;
807 if (ret > 0) {
808 ret = 0;
809 break;
8c2383c3 810 }
1acae57b 811 leafs_visited++;
920bbbfb
YZ
812 leaf = path->nodes[0];
813 recow = 1;
814 }
815
816 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
817
818 if (key.objectid > ino)
819 break;
820 if (WARN_ON_ONCE(key.objectid < ino) ||
821 key.type < BTRFS_EXTENT_DATA_KEY) {
822 ASSERT(del_nr == 0);
823 path->slots[0]++;
824 goto next_slot;
825 }
826 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
827 break;
828
829 fi = btrfs_item_ptr(leaf, path->slots[0],
830 struct btrfs_file_extent_item);
831 extent_type = btrfs_file_extent_type(leaf, fi);
832
833 if (extent_type == BTRFS_FILE_EXTENT_REG ||
834 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
835 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
836 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
837 extent_offset = btrfs_file_extent_offset(leaf, fi);
838 extent_end = key.offset +
839 btrfs_file_extent_num_bytes(leaf, fi);
840 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
841 extent_end = key.offset +
e41ca589 842 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 843 } else {
aeafbf84
FM
844 /* can't happen */
845 BUG();
39279cc3
CM
846 }
847
fc19c5e7
FM
848 /*
849 * Don't skip extent items representing 0 byte lengths. They
850 * used to be created (bug) if while punching holes we hit
851 * -ENOSPC condition. So if we find one here, just ensure we
852 * delete it, otherwise we would insert a new file extent item
853 * with the same key (offset) as that 0 bytes length file
854 * extent item in the call to setup_items_for_insert() later
855 * in this function.
856 */
62fe51c1
JB
857 if (extent_end == key.offset && extent_end >= search_start) {
858 last_end = extent_end;
fc19c5e7 859 goto delete_extent_item;
62fe51c1 860 }
fc19c5e7 861
920bbbfb
YZ
862 if (extent_end <= search_start) {
863 path->slots[0]++;
8c2383c3 864 goto next_slot;
39279cc3
CM
865 }
866
c3308f84 867 found = 1;
920bbbfb 868 search_start = max(key.offset, start);
dc7fdde3
CM
869 if (recow || !modify_tree) {
870 modify_tree = -1;
b3b4aa74 871 btrfs_release_path(path);
920bbbfb 872 continue;
39279cc3 873 }
6643558d 874
920bbbfb
YZ
875 /*
876 * | - range to drop - |
877 * | -------- extent -------- |
878 */
879 if (start > key.offset && end < extent_end) {
880 BUG_ON(del_nr > 0);
00fdf13a 881 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 882 ret = -EOPNOTSUPP;
00fdf13a
LB
883 break;
884 }
920bbbfb
YZ
885
886 memcpy(&new_key, &key, sizeof(new_key));
887 new_key.offset = start;
888 ret = btrfs_duplicate_item(trans, root, path,
889 &new_key);
890 if (ret == -EAGAIN) {
b3b4aa74 891 btrfs_release_path(path);
920bbbfb 892 continue;
6643558d 893 }
920bbbfb
YZ
894 if (ret < 0)
895 break;
896
897 leaf = path->nodes[0];
898 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
899 struct btrfs_file_extent_item);
900 btrfs_set_file_extent_num_bytes(leaf, fi,
901 start - key.offset);
902
903 fi = btrfs_item_ptr(leaf, path->slots[0],
904 struct btrfs_file_extent_item);
905
906 extent_offset += start - key.offset;
907 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 btrfs_set_file_extent_num_bytes(leaf, fi,
909 extent_end - start);
910 btrfs_mark_buffer_dirty(leaf);
911
5dc562c5 912 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
913 btrfs_init_generic_ref(&ref,
914 BTRFS_ADD_DELAYED_REF,
915 disk_bytenr, num_bytes, 0);
916 btrfs_init_data_ref(&ref,
920bbbfb
YZ
917 root->root_key.objectid,
918 new_key.objectid,
b06c4bf5 919 start - extent_offset);
82fa113f 920 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
771ed689 922 }
920bbbfb 923 key.offset = start;
6643558d 924 }
62fe51c1
JB
925 /*
926 * From here on out we will have actually dropped something, so
927 * last_end can be updated.
928 */
929 last_end = extent_end;
930
920bbbfb
YZ
931 /*
932 * | ---- range to drop ----- |
933 * | -------- extent -------- |
934 */
935 if (start <= key.offset && end < extent_end) {
00fdf13a 936 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 937 ret = -EOPNOTSUPP;
00fdf13a
LB
938 break;
939 }
6643558d 940
920bbbfb
YZ
941 memcpy(&new_key, &key, sizeof(new_key));
942 new_key.offset = end;
0b246afa 943 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 944
920bbbfb
YZ
945 extent_offset += end - key.offset;
946 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
947 btrfs_set_file_extent_num_bytes(leaf, fi,
948 extent_end - end);
949 btrfs_mark_buffer_dirty(leaf);
2671485d 950 if (update_refs && disk_bytenr > 0)
920bbbfb 951 inode_sub_bytes(inode, end - key.offset);
920bbbfb 952 break;
39279cc3 953 }
771ed689 954
920bbbfb
YZ
955 search_start = extent_end;
956 /*
957 * | ---- range to drop ----- |
958 * | -------- extent -------- |
959 */
960 if (start > key.offset && end >= extent_end) {
961 BUG_ON(del_nr > 0);
00fdf13a 962 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 963 ret = -EOPNOTSUPP;
00fdf13a
LB
964 break;
965 }
8c2383c3 966
920bbbfb
YZ
967 btrfs_set_file_extent_num_bytes(leaf, fi,
968 start - key.offset);
969 btrfs_mark_buffer_dirty(leaf);
2671485d 970 if (update_refs && disk_bytenr > 0)
920bbbfb 971 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
972 if (end == extent_end)
973 break;
c8b97818 974
920bbbfb
YZ
975 path->slots[0]++;
976 goto next_slot;
31840ae1
ZY
977 }
978
920bbbfb
YZ
979 /*
980 * | ---- range to drop ----- |
981 * | ------ extent ------ |
982 */
983 if (start <= key.offset && end >= extent_end) {
fc19c5e7 984delete_extent_item:
920bbbfb
YZ
985 if (del_nr == 0) {
986 del_slot = path->slots[0];
987 del_nr = 1;
988 } else {
989 BUG_ON(del_slot + del_nr != path->slots[0]);
990 del_nr++;
991 }
31840ae1 992
5dc562c5
JB
993 if (update_refs &&
994 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 995 inode_sub_bytes(inode,
920bbbfb
YZ
996 extent_end - key.offset);
997 extent_end = ALIGN(extent_end,
0b246afa 998 fs_info->sectorsize);
5dc562c5 999 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
1000 btrfs_init_generic_ref(&ref,
1001 BTRFS_DROP_DELAYED_REF,
1002 disk_bytenr, num_bytes, 0);
1003 btrfs_init_data_ref(&ref,
920bbbfb 1004 root->root_key.objectid,
ffd4bb2a
QW
1005 key.objectid,
1006 key.offset - extent_offset);
1007 ret = btrfs_free_extent(trans, &ref);
79787eaa 1008 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1009 inode_sub_bytes(inode,
1010 extent_end - key.offset);
31840ae1 1011 }
31840ae1 1012
920bbbfb
YZ
1013 if (end == extent_end)
1014 break;
1015
1016 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1017 path->slots[0]++;
1018 goto next_slot;
1019 }
1020
1021 ret = btrfs_del_items(trans, root, path, del_slot,
1022 del_nr);
79787eaa 1023 if (ret) {
66642832 1024 btrfs_abort_transaction(trans, ret);
5dc562c5 1025 break;
79787eaa 1026 }
920bbbfb
YZ
1027
1028 del_nr = 0;
1029 del_slot = 0;
1030
b3b4aa74 1031 btrfs_release_path(path);
920bbbfb 1032 continue;
39279cc3 1033 }
920bbbfb 1034
290342f6 1035 BUG();
39279cc3 1036 }
920bbbfb 1037
79787eaa 1038 if (!ret && del_nr > 0) {
1acae57b
FDBM
1039 /*
1040 * Set path->slots[0] to first slot, so that after the delete
1041 * if items are move off from our leaf to its immediate left or
1042 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1043 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1044 */
1045 path->slots[0] = del_slot;
920bbbfb 1046 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1047 if (ret)
66642832 1048 btrfs_abort_transaction(trans, ret);
d5f37527 1049 }
1acae57b 1050
d5f37527
FDBM
1051 leaf = path->nodes[0];
1052 /*
1053 * If btrfs_del_items() was called, it might have deleted a leaf, in
1054 * which case it unlocked our path, so check path->locks[0] matches a
1055 * write lock.
1056 */
1057 if (!ret && replace_extent && leafs_visited == 1 &&
1058 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1059 path->locks[0] == BTRFS_WRITE_LOCK) &&
e902baac 1060 btrfs_leaf_free_space(leaf) >=
d5f37527
FDBM
1061 sizeof(struct btrfs_item) + extent_item_size) {
1062
1063 key.objectid = ino;
1064 key.type = BTRFS_EXTENT_DATA_KEY;
1065 key.offset = start;
1066 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1067 struct btrfs_key slot_key;
1068
1069 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1070 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1071 path->slots[0]++;
1acae57b 1072 }
d5f37527
FDBM
1073 setup_items_for_insert(root, path, &key,
1074 &extent_item_size,
1075 extent_item_size,
1076 sizeof(struct btrfs_item) +
1077 extent_item_size, 1);
1078 *key_inserted = 1;
6643558d 1079 }
920bbbfb 1080
1acae57b
FDBM
1081 if (!replace_extent || !(*key_inserted))
1082 btrfs_release_path(path);
2aaa6655 1083 if (drop_end)
62fe51c1 1084 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1085 return ret;
1086}
1087
1088int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1090 u64 end, int drop_cache)
5dc562c5
JB
1091{
1092 struct btrfs_path *path;
1093 int ret;
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
2aaa6655 1098 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1099 drop_cache, 0, 0, NULL);
920bbbfb 1100 btrfs_free_path(path);
39279cc3
CM
1101 return ret;
1102}
1103
d899e052 1104static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1105 u64 objectid, u64 bytenr, u64 orig_offset,
1106 u64 *start, u64 *end)
d899e052
YZ
1107{
1108 struct btrfs_file_extent_item *fi;
1109 struct btrfs_key key;
1110 u64 extent_end;
1111
1112 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1113 return 0;
1114
1115 btrfs_item_key_to_cpu(leaf, &key, slot);
1116 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1117 return 0;
1118
1119 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1121 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1122 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1123 btrfs_file_extent_compression(leaf, fi) ||
1124 btrfs_file_extent_encryption(leaf, fi) ||
1125 btrfs_file_extent_other_encoding(leaf, fi))
1126 return 0;
1127
1128 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1129 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1130 return 0;
1131
1132 *start = key.offset;
1133 *end = extent_end;
1134 return 1;
1135}
1136
1137/*
1138 * Mark extent in the range start - end as written.
1139 *
1140 * This changes extent type from 'pre-allocated' to 'regular'. If only
1141 * part of extent is marked as written, the extent will be split into
1142 * two or three.
1143 */
1144int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1145 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1146{
3ffbd68c 1147 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1148 struct btrfs_root *root = inode->root;
d899e052
YZ
1149 struct extent_buffer *leaf;
1150 struct btrfs_path *path;
1151 struct btrfs_file_extent_item *fi;
82fa113f 1152 struct btrfs_ref ref = { 0 };
d899e052 1153 struct btrfs_key key;
920bbbfb 1154 struct btrfs_key new_key;
d899e052
YZ
1155 u64 bytenr;
1156 u64 num_bytes;
1157 u64 extent_end;
5d4f98a2 1158 u64 orig_offset;
d899e052
YZ
1159 u64 other_start;
1160 u64 other_end;
920bbbfb
YZ
1161 u64 split;
1162 int del_nr = 0;
1163 int del_slot = 0;
6c7d54ac 1164 int recow;
d899e052 1165 int ret;
7a6d7067 1166 u64 ino = btrfs_ino(inode);
d899e052 1167
d899e052 1168 path = btrfs_alloc_path();
d8926bb3
MF
1169 if (!path)
1170 return -ENOMEM;
d899e052 1171again:
6c7d54ac 1172 recow = 0;
920bbbfb 1173 split = start;
33345d01 1174 key.objectid = ino;
d899e052 1175 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1176 key.offset = split;
d899e052
YZ
1177
1178 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1179 if (ret < 0)
1180 goto out;
d899e052
YZ
1181 if (ret > 0 && path->slots[0] > 0)
1182 path->slots[0]--;
1183
1184 leaf = path->nodes[0];
1185 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1186 if (key.objectid != ino ||
1187 key.type != BTRFS_EXTENT_DATA_KEY) {
1188 ret = -EINVAL;
1189 btrfs_abort_transaction(trans, ret);
1190 goto out;
1191 }
d899e052
YZ
1192 fi = btrfs_item_ptr(leaf, path->slots[0],
1193 struct btrfs_file_extent_item);
9c8e63db
JB
1194 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1195 ret = -EINVAL;
1196 btrfs_abort_transaction(trans, ret);
1197 goto out;
1198 }
d899e052 1199 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1200 if (key.offset > start || extent_end < end) {
1201 ret = -EINVAL;
1202 btrfs_abort_transaction(trans, ret);
1203 goto out;
1204 }
d899e052
YZ
1205
1206 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1207 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1208 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1209 memcpy(&new_key, &key, sizeof(new_key));
1210
1211 if (start == key.offset && end < extent_end) {
1212 other_start = 0;
1213 other_end = start;
1214 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1215 ino, bytenr, orig_offset,
6c7d54ac
YZ
1216 &other_start, &other_end)) {
1217 new_key.offset = end;
0b246afa 1218 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1219 fi = btrfs_item_ptr(leaf, path->slots[0],
1220 struct btrfs_file_extent_item);
224ecce5
JB
1221 btrfs_set_file_extent_generation(leaf, fi,
1222 trans->transid);
6c7d54ac
YZ
1223 btrfs_set_file_extent_num_bytes(leaf, fi,
1224 extent_end - end);
1225 btrfs_set_file_extent_offset(leaf, fi,
1226 end - orig_offset);
1227 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1228 struct btrfs_file_extent_item);
224ecce5
JB
1229 btrfs_set_file_extent_generation(leaf, fi,
1230 trans->transid);
6c7d54ac
YZ
1231 btrfs_set_file_extent_num_bytes(leaf, fi,
1232 end - other_start);
1233 btrfs_mark_buffer_dirty(leaf);
1234 goto out;
1235 }
1236 }
1237
1238 if (start > key.offset && end == extent_end) {
1239 other_start = end;
1240 other_end = 0;
1241 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1242 ino, bytenr, orig_offset,
6c7d54ac
YZ
1243 &other_start, &other_end)) {
1244 fi = btrfs_item_ptr(leaf, path->slots[0],
1245 struct btrfs_file_extent_item);
1246 btrfs_set_file_extent_num_bytes(leaf, fi,
1247 start - key.offset);
224ecce5
JB
1248 btrfs_set_file_extent_generation(leaf, fi,
1249 trans->transid);
6c7d54ac
YZ
1250 path->slots[0]++;
1251 new_key.offset = start;
0b246afa 1252 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1253
1254 fi = btrfs_item_ptr(leaf, path->slots[0],
1255 struct btrfs_file_extent_item);
224ecce5
JB
1256 btrfs_set_file_extent_generation(leaf, fi,
1257 trans->transid);
6c7d54ac
YZ
1258 btrfs_set_file_extent_num_bytes(leaf, fi,
1259 other_end - start);
1260 btrfs_set_file_extent_offset(leaf, fi,
1261 start - orig_offset);
1262 btrfs_mark_buffer_dirty(leaf);
1263 goto out;
1264 }
1265 }
d899e052 1266
920bbbfb
YZ
1267 while (start > key.offset || end < extent_end) {
1268 if (key.offset == start)
1269 split = end;
1270
920bbbfb
YZ
1271 new_key.offset = split;
1272 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1273 if (ret == -EAGAIN) {
b3b4aa74 1274 btrfs_release_path(path);
920bbbfb 1275 goto again;
d899e052 1276 }
79787eaa 1277 if (ret < 0) {
66642832 1278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1279 goto out;
1280 }
d899e052 1281
920bbbfb
YZ
1282 leaf = path->nodes[0];
1283 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1284 struct btrfs_file_extent_item);
224ecce5 1285 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1286 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1287 split - key.offset);
1288
1289 fi = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_file_extent_item);
1291
224ecce5 1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1293 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1294 btrfs_set_file_extent_num_bytes(leaf, fi,
1295 extent_end - split);
d899e052
YZ
1296 btrfs_mark_buffer_dirty(leaf);
1297
82fa113f
QW
1298 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1299 num_bytes, 0);
1300 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1301 orig_offset);
1302 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1303 if (ret) {
1304 btrfs_abort_transaction(trans, ret);
1305 goto out;
1306 }
d899e052 1307
920bbbfb
YZ
1308 if (split == start) {
1309 key.offset = start;
1310 } else {
9c8e63db
JB
1311 if (start != key.offset) {
1312 ret = -EINVAL;
1313 btrfs_abort_transaction(trans, ret);
1314 goto out;
1315 }
d899e052 1316 path->slots[0]--;
920bbbfb 1317 extent_end = end;
d899e052 1318 }
6c7d54ac 1319 recow = 1;
d899e052
YZ
1320 }
1321
920bbbfb
YZ
1322 other_start = end;
1323 other_end = 0;
ffd4bb2a
QW
1324 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1325 num_bytes, 0);
1326 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
6c7d54ac 1327 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1328 ino, bytenr, orig_offset,
6c7d54ac
YZ
1329 &other_start, &other_end)) {
1330 if (recow) {
b3b4aa74 1331 btrfs_release_path(path);
6c7d54ac
YZ
1332 goto again;
1333 }
920bbbfb
YZ
1334 extent_end = other_end;
1335 del_slot = path->slots[0] + 1;
1336 del_nr++;
ffd4bb2a 1337 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1338 if (ret) {
1339 btrfs_abort_transaction(trans, ret);
1340 goto out;
1341 }
d899e052 1342 }
920bbbfb
YZ
1343 other_start = 0;
1344 other_end = start;
6c7d54ac 1345 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1346 ino, bytenr, orig_offset,
6c7d54ac
YZ
1347 &other_start, &other_end)) {
1348 if (recow) {
b3b4aa74 1349 btrfs_release_path(path);
6c7d54ac
YZ
1350 goto again;
1351 }
920bbbfb
YZ
1352 key.offset = other_start;
1353 del_slot = path->slots[0];
1354 del_nr++;
ffd4bb2a 1355 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1356 if (ret) {
1357 btrfs_abort_transaction(trans, ret);
1358 goto out;
1359 }
920bbbfb
YZ
1360 }
1361 if (del_nr == 0) {
3f6fae95
SL
1362 fi = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_file_extent_item);
920bbbfb
YZ
1364 btrfs_set_file_extent_type(leaf, fi,
1365 BTRFS_FILE_EXTENT_REG);
224ecce5 1366 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1367 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1368 } else {
3f6fae95
SL
1369 fi = btrfs_item_ptr(leaf, del_slot - 1,
1370 struct btrfs_file_extent_item);
6c7d54ac
YZ
1371 btrfs_set_file_extent_type(leaf, fi,
1372 BTRFS_FILE_EXTENT_REG);
224ecce5 1373 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1374 btrfs_set_file_extent_num_bytes(leaf, fi,
1375 extent_end - key.offset);
1376 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1377
6c7d54ac 1378 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1379 if (ret < 0) {
66642832 1380 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1381 goto out;
1382 }
6c7d54ac 1383 }
920bbbfb 1384out:
d899e052
YZ
1385 btrfs_free_path(path);
1386 return 0;
1387}
1388
b1bf862e
CM
1389/*
1390 * on error we return an unlocked page and the error value
1391 * on success we return a locked page and 0
1392 */
bb1591b4
CM
1393static int prepare_uptodate_page(struct inode *inode,
1394 struct page *page, u64 pos,
b6316429 1395 bool force_uptodate)
b1bf862e
CM
1396{
1397 int ret = 0;
1398
09cbfeaf 1399 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1400 !PageUptodate(page)) {
b1bf862e
CM
1401 ret = btrfs_readpage(NULL, page);
1402 if (ret)
1403 return ret;
1404 lock_page(page);
1405 if (!PageUptodate(page)) {
1406 unlock_page(page);
1407 return -EIO;
1408 }
bb1591b4
CM
1409 if (page->mapping != inode->i_mapping) {
1410 unlock_page(page);
1411 return -EAGAIN;
1412 }
b1bf862e
CM
1413 }
1414 return 0;
1415}
1416
39279cc3 1417/*
376cc685 1418 * this just gets pages into the page cache and locks them down.
39279cc3 1419 */
b37392ea
MX
1420static noinline int prepare_pages(struct inode *inode, struct page **pages,
1421 size_t num_pages, loff_t pos,
1422 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1423{
1424 int i;
09cbfeaf 1425 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1426 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1427 int err = 0;
376cc685 1428 int faili;
8c2383c3 1429
39279cc3 1430 for (i = 0; i < num_pages; i++) {
bb1591b4 1431again:
a94733d0 1432 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1433 mask | __GFP_WRITE);
39279cc3 1434 if (!pages[i]) {
b1bf862e
CM
1435 faili = i - 1;
1436 err = -ENOMEM;
1437 goto fail;
1438 }
1439
1440 if (i == 0)
bb1591b4 1441 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1442 force_uptodate);
bb1591b4
CM
1443 if (!err && i == num_pages - 1)
1444 err = prepare_uptodate_page(inode, pages[i],
b6316429 1445 pos + write_bytes, false);
b1bf862e 1446 if (err) {
09cbfeaf 1447 put_page(pages[i]);
bb1591b4
CM
1448 if (err == -EAGAIN) {
1449 err = 0;
1450 goto again;
1451 }
b1bf862e
CM
1452 faili = i - 1;
1453 goto fail;
39279cc3 1454 }
ccd467d6 1455 wait_on_page_writeback(pages[i]);
39279cc3 1456 }
376cc685
MX
1457
1458 return 0;
1459fail:
1460 while (faili >= 0) {
1461 unlock_page(pages[faili]);
09cbfeaf 1462 put_page(pages[faili]);
376cc685
MX
1463 faili--;
1464 }
1465 return err;
1466
1467}
1468
1469/*
1470 * This function locks the extent and properly waits for data=ordered extents
1471 * to finish before allowing the pages to be modified if need.
1472 *
1473 * The return value:
1474 * 1 - the extent is locked
1475 * 0 - the extent is not locked, and everything is OK
1476 * -EAGAIN - need re-prepare the pages
1477 * the other < 0 number - Something wrong happens
1478 */
1479static noinline int
2cff578c 1480lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1481 size_t num_pages, loff_t pos,
2e78c927 1482 size_t write_bytes,
376cc685
MX
1483 u64 *lockstart, u64 *lockend,
1484 struct extent_state **cached_state)
1485{
3ffbd68c 1486 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1487 u64 start_pos;
1488 u64 last_pos;
1489 int i;
1490 int ret = 0;
1491
0b246afa 1492 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1493 last_pos = start_pos
da17066c 1494 + round_up(pos + write_bytes - start_pos,
0b246afa 1495 fs_info->sectorsize) - 1;
376cc685 1496
e3b8a485 1497 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1498 struct btrfs_ordered_extent *ordered;
a7e3b975 1499
2cff578c
NB
1500 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1501 cached_state);
b88935bf
MX
1502 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1503 last_pos - start_pos + 1);
e6dcd2dc
CM
1504 if (ordered &&
1505 ordered->file_offset + ordered->len > start_pos &&
376cc685 1506 ordered->file_offset <= last_pos) {
2cff578c 1507 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1508 last_pos, cached_state);
e6dcd2dc
CM
1509 for (i = 0; i < num_pages; i++) {
1510 unlock_page(pages[i]);
09cbfeaf 1511 put_page(pages[i]);
e6dcd2dc 1512 }
2cff578c
NB
1513 btrfs_start_ordered_extent(&inode->vfs_inode,
1514 ordered, 1);
b88935bf
MX
1515 btrfs_put_ordered_extent(ordered);
1516 return -EAGAIN;
e6dcd2dc
CM
1517 }
1518 if (ordered)
1519 btrfs_put_ordered_extent(ordered);
7703bdd8 1520
376cc685
MX
1521 *lockstart = start_pos;
1522 *lockend = last_pos;
1523 ret = 1;
0762704b 1524 }
376cc685 1525
7703bdd8
CM
1526 /*
1527 * It's possible the pages are dirty right now, but we don't want
1528 * to clean them yet because copy_from_user may catch a page fault
1529 * and we might have to fall back to one page at a time. If that
1530 * happens, we'll unlock these pages and we'd have a window where
1531 * reclaim could sneak in and drop the once-dirty page on the floor
1532 * without writing it.
1533 *
1534 * We have the pages locked and the extent range locked, so there's
1535 * no way someone can start IO on any dirty pages in this range.
1536 *
1537 * We'll call btrfs_dirty_pages() later on, and that will flip around
1538 * delalloc bits and dirty the pages as required.
1539 */
e6dcd2dc 1540 for (i = 0; i < num_pages; i++) {
e6dcd2dc
CM
1541 set_page_extent_mapped(pages[i]);
1542 WARN_ON(!PageLocked(pages[i]));
1543 }
b1bf862e 1544
376cc685 1545 return ret;
39279cc3
CM
1546}
1547
85b7ab67 1548static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1549 size_t *write_bytes)
1550{
3ffbd68c 1551 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1552 struct btrfs_root *root = inode->root;
7ee9e440
JB
1553 u64 lockstart, lockend;
1554 u64 num_bytes;
1555 int ret;
1556
ea14b57f 1557 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc 1558 if (!ret)
5f791ec3 1559 return -EAGAIN;
8257b2dc 1560
0b246afa 1561 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1562 lockend = round_up(pos + *write_bytes,
0b246afa 1563 fs_info->sectorsize) - 1;
7ee9e440 1564
23d31bd4
NB
1565 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1566 lockend, NULL);
7ee9e440 1567
7ee9e440 1568 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1569 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1570 NULL, NULL, NULL);
7ee9e440
JB
1571 if (ret <= 0) {
1572 ret = 0;
ea14b57f 1573 btrfs_end_write_no_snapshotting(root);
7ee9e440 1574 } else {
c933956d
MX
1575 *write_bytes = min_t(size_t, *write_bytes ,
1576 num_bytes - pos + lockstart);
7ee9e440
JB
1577 }
1578
85b7ab67 1579 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1580
1581 return ret;
1582}
1583
e4af400a
GR
1584static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1585 struct iov_iter *i)
4b46fce2 1586{
e4af400a
GR
1587 struct file *file = iocb->ki_filp;
1588 loff_t pos = iocb->ki_pos;
496ad9aa 1589 struct inode *inode = file_inode(file);
0b246afa 1590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1591 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1592 struct page **pages = NULL;
376cc685 1593 struct extent_state *cached_state = NULL;
364ecf36 1594 struct extent_changeset *data_reserved = NULL;
7ee9e440 1595 u64 release_bytes = 0;
376cc685
MX
1596 u64 lockstart;
1597 u64 lockend;
d0215f3e
JB
1598 size_t num_written = 0;
1599 int nrptrs;
c9149235 1600 int ret = 0;
7ee9e440 1601 bool only_release_metadata = false;
b6316429 1602 bool force_page_uptodate = false;
4b46fce2 1603
09cbfeaf
KS
1604 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1605 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1606 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1607 nrptrs = max(nrptrs, 8);
31e818fe 1608 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1609 if (!pages)
1610 return -ENOMEM;
ab93dbec 1611
d0215f3e 1612 while (iov_iter_count(i) > 0) {
7073017a 1613 size_t offset = offset_in_page(pos);
2e78c927 1614 size_t sector_offset;
d0215f3e 1615 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1616 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1617 offset);
ed6078f7 1618 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1619 PAGE_SIZE);
7ee9e440 1620 size_t reserve_bytes;
d0215f3e
JB
1621 size_t dirty_pages;
1622 size_t copied;
2e78c927
CR
1623 size_t dirty_sectors;
1624 size_t num_sectors;
79f015f2 1625 int extents_locked;
39279cc3 1626
8c2383c3 1627 WARN_ON(num_pages > nrptrs);
1832a6d5 1628
914ee295
XZ
1629 /*
1630 * Fault pages before locking them in prepare_pages
1631 * to avoid recursive lock
1632 */
d0215f3e 1633 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1634 ret = -EFAULT;
d0215f3e 1635 break;
914ee295
XZ
1636 }
1637
da17066c 1638 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1639 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1640 fs_info->sectorsize);
d9d8b2a5 1641
364ecf36
QW
1642 extent_changeset_release(data_reserved);
1643 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1644 write_bytes);
c6887cd1
JB
1645 if (ret < 0) {
1646 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1647 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1648 check_can_nocow(BTRFS_I(inode), pos,
1649 &write_bytes) > 0) {
c6887cd1
JB
1650 /*
1651 * For nodata cow case, no need to reserve
1652 * data space.
1653 */
1654 only_release_metadata = true;
1655 /*
1656 * our prealloc extent may be smaller than
1657 * write_bytes, so scale down.
1658 */
1659 num_pages = DIV_ROUND_UP(write_bytes + offset,
1660 PAGE_SIZE);
1661 reserve_bytes = round_up(write_bytes +
1662 sector_offset,
da17066c 1663 fs_info->sectorsize);
c6887cd1
JB
1664 } else {
1665 break;
1666 }
1667 }
1832a6d5 1668
8b62f87b 1669 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1670 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1671 reserve_bytes);
7ee9e440
JB
1672 if (ret) {
1673 if (!only_release_metadata)
bc42bda2
QW
1674 btrfs_free_reserved_data_space(inode,
1675 data_reserved, pos,
1676 write_bytes);
8257b2dc 1677 else
ea14b57f 1678 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1679 break;
1680 }
1681
1682 release_bytes = reserve_bytes;
376cc685 1683again:
4a64001f
JB
1684 /*
1685 * This is going to setup the pages array with the number of
1686 * pages we want, so we don't really need to worry about the
1687 * contents of pages from loop to loop
1688 */
b37392ea
MX
1689 ret = prepare_pages(inode, pages, num_pages,
1690 pos, write_bytes,
b6316429 1691 force_page_uptodate);
8b62f87b
JB
1692 if (ret) {
1693 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1694 reserve_bytes, true);
d0215f3e 1695 break;
8b62f87b 1696 }
39279cc3 1697
79f015f2
GR
1698 extents_locked = lock_and_cleanup_extent_if_need(
1699 BTRFS_I(inode), pages,
2cff578c
NB
1700 num_pages, pos, write_bytes, &lockstart,
1701 &lockend, &cached_state);
79f015f2
GR
1702 if (extents_locked < 0) {
1703 if (extents_locked == -EAGAIN)
376cc685 1704 goto again;
8b62f87b 1705 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1706 reserve_bytes, true);
79f015f2 1707 ret = extents_locked;
376cc685 1708 break;
376cc685
MX
1709 }
1710
ee22f0c4 1711 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1712
0b246afa 1713 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1714 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1715 fs_info->sectorsize);
1716 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1717
b1bf862e
CM
1718 /*
1719 * if we have trouble faulting in the pages, fall
1720 * back to one page at a time
1721 */
1722 if (copied < write_bytes)
1723 nrptrs = 1;
1724
b6316429
JB
1725 if (copied == 0) {
1726 force_page_uptodate = true;
56244ef1 1727 dirty_sectors = 0;
b1bf862e 1728 dirty_pages = 0;
b6316429
JB
1729 } else {
1730 force_page_uptodate = false;
ed6078f7 1731 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1732 PAGE_SIZE);
b6316429 1733 }
914ee295 1734
2e78c927 1735 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1736 /* release everything except the sectors we dirtied */
1737 release_bytes -= dirty_sectors <<
0b246afa 1738 fs_info->sb->s_blocksize_bits;
485290a7 1739 if (only_release_metadata) {
691fa059 1740 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1741 release_bytes, true);
485290a7
QW
1742 } else {
1743 u64 __pos;
1744
da17066c 1745 __pos = round_down(pos,
0b246afa 1746 fs_info->sectorsize) +
09cbfeaf 1747 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1748 btrfs_delalloc_release_space(inode,
1749 data_reserved, __pos,
43b18595 1750 release_bytes, true);
485290a7 1751 }
914ee295
XZ
1752 }
1753
2e78c927 1754 release_bytes = round_up(copied + sector_offset,
0b246afa 1755 fs_info->sectorsize);
376cc685
MX
1756
1757 if (copied > 0)
2ff7e61e 1758 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
94f45071 1759 pos, copied, &cached_state);
79f015f2 1760 if (extents_locked)
376cc685 1761 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1762 lockstart, lockend, &cached_state);
43b18595 1763 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
336a8bb8 1764 true);
f1de9683
MX
1765 if (ret) {
1766 btrfs_drop_pages(pages, num_pages);
376cc685 1767 break;
f1de9683 1768 }
39279cc3 1769
376cc685 1770 release_bytes = 0;
8257b2dc 1771 if (only_release_metadata)
ea14b57f 1772 btrfs_end_write_no_snapshotting(root);
8257b2dc 1773
7ee9e440 1774 if (only_release_metadata && copied > 0) {
da17066c 1775 lockstart = round_down(pos,
0b246afa 1776 fs_info->sectorsize);
da17066c 1777 lockend = round_up(pos + copied,
0b246afa 1778 fs_info->sectorsize) - 1;
7ee9e440
JB
1779
1780 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1781 lockend, EXTENT_NORESERVE, NULL,
1782 NULL, GFP_NOFS);
1783 only_release_metadata = false;
1784 }
1785
f1de9683
MX
1786 btrfs_drop_pages(pages, num_pages);
1787
d0215f3e
JB
1788 cond_resched();
1789
d0e1d66b 1790 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1791 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1792 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1793
914ee295
XZ
1794 pos += copied;
1795 num_written += copied;
d0215f3e 1796 }
39279cc3 1797
d0215f3e
JB
1798 kfree(pages);
1799
7ee9e440 1800 if (release_bytes) {
8257b2dc 1801 if (only_release_metadata) {
ea14b57f 1802 btrfs_end_write_no_snapshotting(root);
691fa059 1803 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1804 release_bytes, true);
8257b2dc 1805 } else {
bc42bda2
QW
1806 btrfs_delalloc_release_space(inode, data_reserved,
1807 round_down(pos, fs_info->sectorsize),
43b18595 1808 release_bytes, true);
8257b2dc 1809 }
7ee9e440
JB
1810 }
1811
364ecf36 1812 extent_changeset_free(data_reserved);
d0215f3e
JB
1813 return num_written ? num_written : ret;
1814}
1815
1af5bb49 1816static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1817{
1818 struct file *file = iocb->ki_filp;
728404da 1819 struct inode *inode = file_inode(file);
e4af400a 1820 loff_t pos;
d0215f3e
JB
1821 ssize_t written;
1822 ssize_t written_buffered;
1823 loff_t endbyte;
1824 int err;
1825
1af5bb49 1826 written = generic_file_direct_write(iocb, from);
d0215f3e 1827
0c949334 1828 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1829 return written;
1830
e4af400a
GR
1831 pos = iocb->ki_pos;
1832 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1833 if (written_buffered < 0) {
1834 err = written_buffered;
1835 goto out;
39279cc3 1836 }
075bdbdb
FM
1837 /*
1838 * Ensure all data is persisted. We want the next direct IO read to be
1839 * able to read what was just written.
1840 */
d0215f3e 1841 endbyte = pos + written_buffered - 1;
728404da 1842 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1843 if (err)
1844 goto out;
728404da 1845 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1846 if (err)
1847 goto out;
1848 written += written_buffered;
867c4f93 1849 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1850 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1851 endbyte >> PAGE_SHIFT);
39279cc3 1852out:
d0215f3e
JB
1853 return written ? written : err;
1854}
5b92ee72 1855
6c760c07
JB
1856static void update_time_for_write(struct inode *inode)
1857{
95582b00 1858 struct timespec64 now;
6c760c07
JB
1859
1860 if (IS_NOCMTIME(inode))
1861 return;
1862
c2050a45 1863 now = current_time(inode);
95582b00 1864 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1865 inode->i_mtime = now;
1866
95582b00 1867 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1868 inode->i_ctime = now;
1869
1870 if (IS_I_VERSION(inode))
1871 inode_inc_iversion(inode);
1872}
1873
b30ac0fc
AV
1874static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1875 struct iov_iter *from)
d0215f3e
JB
1876{
1877 struct file *file = iocb->ki_filp;
496ad9aa 1878 struct inode *inode = file_inode(file);
0b246afa 1879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1880 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1881 u64 start_pos;
3ac0d7b9 1882 u64 end_pos;
d0215f3e 1883 ssize_t num_written = 0;
b812ce28 1884 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1885 ssize_t err;
ff0fa732 1886 loff_t pos;
edf064e7 1887 size_t count = iov_iter_count(from);
27772b68
CR
1888 loff_t oldsize;
1889 int clean_page = 0;
d0215f3e 1890
91f9943e
CH
1891 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1892 (iocb->ki_flags & IOCB_NOWAIT))
1893 return -EOPNOTSUPP;
1894
ff0fa732
GR
1895 if (!inode_trylock(inode)) {
1896 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1897 return -EAGAIN;
ff0fa732
GR
1898 inode_lock(inode);
1899 }
1900
1901 err = generic_write_checks(iocb, from);
1902 if (err <= 0) {
1903 inode_unlock(inode);
1904 return err;
1905 }
1906
1907 pos = iocb->ki_pos;
1908 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1909 /*
1910 * We will allocate space in case nodatacow is not set,
1911 * so bail
1912 */
1913 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1914 BTRFS_INODE_PREALLOC)) ||
1915 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1916 inode_unlock(inode);
1917 return -EAGAIN;
1918 }
d0215f3e
JB
1919 }
1920
3309dd04 1921 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1922 err = file_remove_privs(file);
d0215f3e 1923 if (err) {
5955102c 1924 inode_unlock(inode);
d0215f3e
JB
1925 goto out;
1926 }
1927
1928 /*
1929 * If BTRFS flips readonly due to some impossible error
1930 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1931 * although we have opened a file as writable, we have
1932 * to stop this write operation to ensure FS consistency.
1933 */
0b246afa 1934 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1935 inode_unlock(inode);
d0215f3e
JB
1936 err = -EROFS;
1937 goto out;
1938 }
1939
6c760c07
JB
1940 /*
1941 * We reserve space for updating the inode when we reserve space for the
1942 * extent we are going to write, so we will enospc out there. We don't
1943 * need to start yet another transaction to update the inode as we will
1944 * update the inode when we finish writing whatever data we write.
1945 */
1946 update_time_for_write(inode);
d0215f3e 1947
0b246afa 1948 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1949 oldsize = i_size_read(inode);
1950 if (start_pos > oldsize) {
3ac0d7b9 1951 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1952 end_pos = round_up(pos + count,
0b246afa 1953 fs_info->sectorsize);
27772b68 1954 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1955 if (err) {
5955102c 1956 inode_unlock(inode);
0c1a98c8
MX
1957 goto out;
1958 }
0b246afa 1959 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1960 clean_page = 1;
0c1a98c8
MX
1961 }
1962
b812ce28
JB
1963 if (sync)
1964 atomic_inc(&BTRFS_I(inode)->sync_writers);
1965
2ba48ce5 1966 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1967 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1968 } else {
e4af400a 1969 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 1970 if (num_written > 0)
867c4f93 1971 iocb->ki_pos = pos + num_written;
27772b68
CR
1972 if (clean_page)
1973 pagecache_isize_extended(inode, oldsize,
1974 i_size_read(inode));
d0215f3e
JB
1975 }
1976
5955102c 1977 inode_unlock(inode);
2ff3e9b6 1978
5a3f23d5 1979 /*
6c760c07
JB
1980 * We also have to set last_sub_trans to the current log transid,
1981 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1982 * transaction will appear to have already occurred.
5a3f23d5 1983 */
2f2ff0ee 1984 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1985 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1986 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1987 if (num_written > 0)
1988 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1989
b812ce28
JB
1990 if (sync)
1991 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1992out:
39279cc3 1993 current->backing_dev_info = NULL;
39279cc3
CM
1994 return num_written ? num_written : err;
1995}
1996
d397712b 1997int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1998{
23b5ec74
JB
1999 struct btrfs_file_private *private = filp->private_data;
2000
23b5ec74
JB
2001 if (private && private->filldir_buf)
2002 kfree(private->filldir_buf);
2003 kfree(private);
2004 filp->private_data = NULL;
2005
f6dc45c7 2006 /*
52042d8e 2007 * ordered_data_close is set by setattr when we are about to truncate
f6dc45c7
CM
2008 * a file from a non-zero size to a zero size. This tries to
2009 * flush down new bytes that may have been written if the
2010 * application were using truncate to replace a file in place.
2011 */
2012 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2013 &BTRFS_I(inode)->runtime_flags))
2014 filemap_flush(inode->i_mapping);
e1b81e67
M
2015 return 0;
2016}
2017
669249ee
FM
2018static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2019{
2020 int ret;
343e4fc1 2021 struct blk_plug plug;
669249ee 2022
343e4fc1
LB
2023 /*
2024 * This is only called in fsync, which would do synchronous writes, so
2025 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2026 * multiple disks using raid profile, a large IO can be split to
2027 * several segments of stripe length (currently 64K).
2028 */
2029 blk_start_plug(&plug);
669249ee 2030 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2031 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2032 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2033 blk_finish_plug(&plug);
669249ee
FM
2034
2035 return ret;
2036}
2037
d352ac68
CM
2038/*
2039 * fsync call for both files and directories. This logs the inode into
2040 * the tree log instead of forcing full commits whenever possible.
2041 *
2042 * It needs to call filemap_fdatawait so that all ordered extent updates are
2043 * in the metadata btree are up to date for copying to the log.
2044 *
2045 * It drops the inode mutex before doing the tree log commit. This is an
2046 * important optimization for directories because holding the mutex prevents
2047 * new operations on the dir while we write to disk.
2048 */
02c24a82 2049int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2050{
de17e793 2051 struct dentry *dentry = file_dentry(file);
2b0143b5 2052 struct inode *inode = d_inode(dentry);
0b246afa 2053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2054 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2055 struct btrfs_trans_handle *trans;
8b050d35 2056 struct btrfs_log_ctx ctx;
333427a5 2057 int ret = 0, err;
9dcbeed4 2058 u64 len;
39279cc3 2059
0c713cba
FM
2060 /*
2061 * If the inode needs a full sync, make sure we use a full range to
2062 * avoid log tree corruption, due to hole detection racing with ordered
2063 * extent completion for adjacent ranges, and assertion failures during
2064 * hole detection.
2065 */
2066 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2067 &BTRFS_I(inode)->runtime_flags)) {
2068 start = 0;
2069 end = LLONG_MAX;
2070 }
2071
9dcbeed4
DS
2072 /*
2073 * The range length can be represented by u64, we have to do the typecasts
2074 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2075 */
2076 len = (u64)end - (u64)start + 1;
1abe9b8a 2077 trace_btrfs_sync_file(file, datasync);
257c62e1 2078
ebb70442
LB
2079 btrfs_init_log_ctx(&ctx, inode);
2080
90abccf2
MX
2081 /*
2082 * We write the dirty pages in the range and wait until they complete
2083 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2084 * multi-task, and make the performance up. See
2085 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2086 */
669249ee 2087 ret = start_ordered_ops(inode, start, end);
90abccf2 2088 if (ret)
333427a5 2089 goto out;
90abccf2 2090
5955102c 2091 inode_lock(inode);
c495144b
JB
2092
2093 /*
2094 * We take the dio_sem here because the tree log stuff can race with
2095 * lockless dio writes and get an extent map logged for an extent we
2096 * never waited on. We need it this high up for lockdep reasons.
2097 */
2098 down_write(&BTRFS_I(inode)->dio_sem);
2099
2ecb7923 2100 atomic_inc(&root->log_batch);
b5e6c3e1 2101
aab15e8e
FM
2102 /*
2103 * Before we acquired the inode's lock, someone may have dirtied more
2104 * pages in the target range. We need to make sure that writeback for
2105 * any such pages does not start while we are logging the inode, because
2106 * if it does, any of the following might happen when we are not doing a
2107 * full inode sync:
2108 *
2109 * 1) We log an extent after its writeback finishes but before its
2110 * checksums are added to the csum tree, leading to -EIO errors
2111 * when attempting to read the extent after a log replay.
2112 *
2113 * 2) We can end up logging an extent before its writeback finishes.
2114 * Therefore after the log replay we will have a file extent item
2115 * pointing to an unwritten extent (and no data checksums as well).
2116 *
2117 * So trigger writeback for any eventual new dirty pages and then we
2118 * wait for all ordered extents to complete below.
2119 */
2120 ret = start_ordered_ops(inode, start, end);
2121 if (ret) {
2122 inode_unlock(inode);
2123 goto out;
2124 }
2125
669249ee 2126 /*
b5e6c3e1 2127 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2128 * IO of a lower priority task while holding a transaction open.
669249ee 2129 */
b5e6c3e1 2130 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee 2131 if (ret) {
c495144b 2132 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2133 inode_unlock(inode);
669249ee 2134 goto out;
0ef8b726 2135 }
2ecb7923 2136 atomic_inc(&root->log_batch);
257c62e1 2137
a4abeea4 2138 smp_mb();
0f8939b8 2139 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
ca5788ab 2140 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
5dc562c5 2141 /*
01327610 2142 * We've had everything committed since the last time we were
5dc562c5
JB
2143 * modified so clear this flag in case it was set for whatever
2144 * reason, it's no longer relevant.
2145 */
2146 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2147 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2148 /*
2149 * An ordered extent might have started before and completed
2150 * already with io errors, in which case the inode was not
2151 * updated and we end up here. So check the inode's mapping
333427a5
JL
2152 * for any errors that might have happened since we last
2153 * checked called fsync.
0596a904 2154 */
333427a5 2155 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
c495144b 2156 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2157 inode_unlock(inode);
15ee9bc7
JB
2158 goto out;
2159 }
15ee9bc7 2160
5039eddc
JB
2161 /*
2162 * We use start here because we will need to wait on the IO to complete
2163 * in btrfs_sync_log, which could require joining a transaction (for
2164 * example checking cross references in the nocow path). If we use join
2165 * here we could get into a situation where we're waiting on IO to
2166 * happen that is blocked on a transaction trying to commit. With start
2167 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2168 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2169 * from thinking they are super smart and changing this to
2170 * btrfs_join_transaction *cough*Josef*cough*.
2171 */
a22285a6
YZ
2172 trans = btrfs_start_transaction(root, 0);
2173 if (IS_ERR(trans)) {
2174 ret = PTR_ERR(trans);
c495144b 2175 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2176 inode_unlock(inode);
39279cc3
CM
2177 goto out;
2178 }
e02119d5 2179
e5b84f7a 2180 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
02c24a82 2181 if (ret < 0) {
a0634be5
FDBM
2182 /* Fallthrough and commit/free transaction. */
2183 ret = 1;
02c24a82 2184 }
49eb7e46
CM
2185
2186 /* we've logged all the items and now have a consistent
2187 * version of the file in the log. It is possible that
2188 * someone will come in and modify the file, but that's
2189 * fine because the log is consistent on disk, and we
2190 * have references to all of the file's extents
2191 *
2192 * It is possible that someone will come in and log the
2193 * file again, but that will end up using the synchronization
2194 * inside btrfs_sync_log to keep things safe.
2195 */
c495144b 2196 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2197 inode_unlock(inode);
49eb7e46 2198
257c62e1 2199 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2200 if (!ret) {
8b050d35 2201 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2202 if (!ret) {
3a45bb20 2203 ret = btrfs_end_transaction(trans);
0ef8b726 2204 goto out;
2ab28f32 2205 }
257c62e1 2206 }
3a45bb20 2207 ret = btrfs_commit_transaction(trans);
257c62e1 2208 } else {
3a45bb20 2209 ret = btrfs_end_transaction(trans);
e02119d5 2210 }
39279cc3 2211out:
ebb70442 2212 ASSERT(list_empty(&ctx.list));
333427a5
JL
2213 err = file_check_and_advance_wb_err(file);
2214 if (!ret)
2215 ret = err;
014e4ac4 2216 return ret > 0 ? -EIO : ret;
39279cc3
CM
2217}
2218
f0f37e2f 2219static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2220 .fault = filemap_fault,
f1820361 2221 .map_pages = filemap_map_pages,
9ebefb18
CM
2222 .page_mkwrite = btrfs_page_mkwrite,
2223};
2224
2225static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2226{
058a457e
MX
2227 struct address_space *mapping = filp->f_mapping;
2228
2229 if (!mapping->a_ops->readpage)
2230 return -ENOEXEC;
2231
9ebefb18 2232 file_accessed(filp);
058a457e 2233 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2234
9ebefb18
CM
2235 return 0;
2236}
2237
35339c24 2238static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2239 int slot, u64 start, u64 end)
2240{
2241 struct btrfs_file_extent_item *fi;
2242 struct btrfs_key key;
2243
2244 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2245 return 0;
2246
2247 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2248 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2249 key.type != BTRFS_EXTENT_DATA_KEY)
2250 return 0;
2251
2252 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2253
2254 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2255 return 0;
2256
2257 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2258 return 0;
2259
2260 if (key.offset == end)
2261 return 1;
2262 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2263 return 1;
2264 return 0;
2265}
2266
a012a74e
NB
2267static int fill_holes(struct btrfs_trans_handle *trans,
2268 struct btrfs_inode *inode,
2269 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2270{
3ffbd68c 2271 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2272 struct btrfs_root *root = inode->root;
2aaa6655
JB
2273 struct extent_buffer *leaf;
2274 struct btrfs_file_extent_item *fi;
2275 struct extent_map *hole_em;
a012a74e 2276 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2277 struct btrfs_key key;
2278 int ret;
2279
0b246afa 2280 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2281 goto out;
2282
a012a74e 2283 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2284 key.type = BTRFS_EXTENT_DATA_KEY;
2285 key.offset = offset;
2286
2aaa6655 2287 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2288 if (ret <= 0) {
2289 /*
2290 * We should have dropped this offset, so if we find it then
2291 * something has gone horribly wrong.
2292 */
2293 if (ret == 0)
2294 ret = -EINVAL;
2aaa6655 2295 return ret;
f94480bd 2296 }
2aaa6655
JB
2297
2298 leaf = path->nodes[0];
a012a74e 2299 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2300 u64 num_bytes;
2301
2302 path->slots[0]--;
2303 fi = btrfs_item_ptr(leaf, path->slots[0],
2304 struct btrfs_file_extent_item);
2305 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2306 end - offset;
2307 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2308 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2309 btrfs_set_file_extent_offset(leaf, fi, 0);
2310 btrfs_mark_buffer_dirty(leaf);
2311 goto out;
2312 }
2313
1707e26d 2314 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2315 u64 num_bytes;
2316
2aaa6655 2317 key.offset = offset;
0b246afa 2318 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2319 fi = btrfs_item_ptr(leaf, path->slots[0],
2320 struct btrfs_file_extent_item);
2321 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2322 offset;
2323 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2324 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2325 btrfs_set_file_extent_offset(leaf, fi, 0);
2326 btrfs_mark_buffer_dirty(leaf);
2327 goto out;
2328 }
2329 btrfs_release_path(path);
2330
a012a74e 2331 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2332 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2333 if (ret)
2334 return ret;
2335
2336out:
2337 btrfs_release_path(path);
2338
2339 hole_em = alloc_extent_map();
2340 if (!hole_em) {
2341 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2343 } else {
2344 hole_em->start = offset;
2345 hole_em->len = end - offset;
cc95bef6 2346 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2347 hole_em->orig_start = offset;
2348
2349 hole_em->block_start = EXTENT_MAP_HOLE;
2350 hole_em->block_len = 0;
b4939680 2351 hole_em->orig_block_len = 0;
0b246afa 2352 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2353 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2354 hole_em->generation = trans->transid;
2355
2356 do {
2357 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2358 write_lock(&em_tree->lock);
09a2a8f9 2359 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2360 write_unlock(&em_tree->lock);
2361 } while (ret == -EEXIST);
2362 free_extent_map(hole_em);
2363 if (ret)
2364 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2365 &inode->runtime_flags);
2aaa6655
JB
2366 }
2367
2368 return 0;
2369}
2370
d7781546
QW
2371/*
2372 * Find a hole extent on given inode and change start/len to the end of hole
2373 * extent.(hole/vacuum extent whose em->start <= start &&
2374 * em->start + em->len > start)
2375 * When a hole extent is found, return 1 and modify start/len.
2376 */
2377static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2378{
609805d8 2379 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2380 struct extent_map *em;
2381 int ret = 0;
2382
609805d8
FM
2383 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2384 round_down(*start, fs_info->sectorsize),
2385 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2386 if (IS_ERR(em))
2387 return PTR_ERR(em);
d7781546
QW
2388
2389 /* Hole or vacuum extent(only exists in no-hole mode) */
2390 if (em->block_start == EXTENT_MAP_HOLE) {
2391 ret = 1;
2392 *len = em->start + em->len > *start + *len ?
2393 0 : *start + *len - em->start - em->len;
2394 *start = em->start + em->len;
2395 }
2396 free_extent_map(em);
2397 return ret;
2398}
2399
f27451f2
FM
2400static int btrfs_punch_hole_lock_range(struct inode *inode,
2401 const u64 lockstart,
2402 const u64 lockend,
2403 struct extent_state **cached_state)
2404{
2405 while (1) {
2406 struct btrfs_ordered_extent *ordered;
2407 int ret;
2408
2409 truncate_pagecache_range(inode, lockstart, lockend);
2410
2411 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2412 cached_state);
2413 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2414
2415 /*
2416 * We need to make sure we have no ordered extents in this range
2417 * and nobody raced in and read a page in this range, if we did
2418 * we need to try again.
2419 */
2420 if ((!ordered ||
2421 (ordered->file_offset + ordered->len <= lockstart ||
2422 ordered->file_offset > lockend)) &&
051c98eb
DS
2423 !filemap_range_has_page(inode->i_mapping,
2424 lockstart, lockend)) {
f27451f2
FM
2425 if (ordered)
2426 btrfs_put_ordered_extent(ordered);
2427 break;
2428 }
2429 if (ordered)
2430 btrfs_put_ordered_extent(ordered);
2431 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2432 lockend, cached_state);
2433 ret = btrfs_wait_ordered_range(inode, lockstart,
2434 lockend - lockstart + 1);
2435 if (ret)
2436 return ret;
2437 }
2438 return 0;
2439}
2440
2aaa6655
JB
2441static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2442{
0b246afa 2443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2444 struct btrfs_root *root = BTRFS_I(inode)->root;
2445 struct extent_state *cached_state = NULL;
2446 struct btrfs_path *path;
2447 struct btrfs_block_rsv *rsv;
2448 struct btrfs_trans_handle *trans;
d7781546
QW
2449 u64 lockstart;
2450 u64 lockend;
2451 u64 tail_start;
2452 u64 tail_len;
2453 u64 orig_start = offset;
2454 u64 cur_offset;
5f52a2c5 2455 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2456 u64 drop_end;
2aaa6655
JB
2457 int ret = 0;
2458 int err = 0;
6e4d6fa1 2459 unsigned int rsv_count;
9703fefe 2460 bool same_block;
0b246afa 2461 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2462 u64 ino_size;
9703fefe 2463 bool truncated_block = false;
e8c1c76e 2464 bool updated_inode = false;
2aaa6655 2465
0ef8b726
JB
2466 ret = btrfs_wait_ordered_range(inode, offset, len);
2467 if (ret)
2468 return ret;
2aaa6655 2469
5955102c 2470 inode_lock(inode);
0b246afa 2471 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2472 ret = find_first_non_hole(inode, &offset, &len);
2473 if (ret < 0)
2474 goto out_only_mutex;
2475 if (ret && !len) {
2476 /* Already in a large hole */
2477 ret = 0;
2478 goto out_only_mutex;
2479 }
2480
da17066c 2481 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2482 lockend = round_down(offset + len,
da17066c 2483 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2484 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2485 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2486 /*
9703fefe 2487 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2488 * because we are sure there is no data there.
2489 */
2aaa6655 2490 /*
9703fefe
CR
2491 * Only do this if we are in the same block and we aren't doing the
2492 * entire block.
2aaa6655 2493 */
0b246afa 2494 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2495 if (offset < ino_size) {
9703fefe
CR
2496 truncated_block = true;
2497 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2498 } else {
2499 ret = 0;
2500 }
d7781546 2501 goto out_only_mutex;
2aaa6655
JB
2502 }
2503
9703fefe 2504 /* zero back part of the first block */
12870f1c 2505 if (offset < ino_size) {
9703fefe
CR
2506 truncated_block = true;
2507 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2508 if (ret) {
5955102c 2509 inode_unlock(inode);
7426cc04
MX
2510 return ret;
2511 }
2aaa6655
JB
2512 }
2513
d7781546
QW
2514 /* Check the aligned pages after the first unaligned page,
2515 * if offset != orig_start, which means the first unaligned page
01327610 2516 * including several following pages are already in holes,
d7781546
QW
2517 * the extra check can be skipped */
2518 if (offset == orig_start) {
2519 /* after truncate page, check hole again */
2520 len = offset + len - lockstart;
2521 offset = lockstart;
2522 ret = find_first_non_hole(inode, &offset, &len);
2523 if (ret < 0)
2524 goto out_only_mutex;
2525 if (ret && !len) {
2526 ret = 0;
2527 goto out_only_mutex;
2528 }
2529 lockstart = offset;
2530 }
2531
2532 /* Check the tail unaligned part is in a hole */
2533 tail_start = lockend + 1;
2534 tail_len = offset + len - tail_start;
2535 if (tail_len) {
2536 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2537 if (unlikely(ret < 0))
2538 goto out_only_mutex;
2539 if (!ret) {
2540 /* zero the front end of the last page */
2541 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2542 truncated_block = true;
2543 ret = btrfs_truncate_block(inode,
2544 tail_start + tail_len,
2545 0, 1);
d7781546
QW
2546 if (ret)
2547 goto out_only_mutex;
51f395ad 2548 }
0061280d 2549 }
2aaa6655
JB
2550 }
2551
2552 if (lockend < lockstart) {
e8c1c76e
FM
2553 ret = 0;
2554 goto out_only_mutex;
2aaa6655
JB
2555 }
2556
f27451f2
FM
2557 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2558 &cached_state);
8fca9550 2559 if (ret)
f27451f2 2560 goto out_only_mutex;
2aaa6655
JB
2561
2562 path = btrfs_alloc_path();
2563 if (!path) {
2564 ret = -ENOMEM;
2565 goto out;
2566 }
2567
2ff7e61e 2568 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2569 if (!rsv) {
2570 ret = -ENOMEM;
2571 goto out_free;
2572 }
5f52a2c5 2573 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2574 rsv->failfast = 1;
2575
2576 /*
2577 * 1 - update the inode
2578 * 1 - removing the extents in the range
16e7549f 2579 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2580 */
16e7549f
JB
2581 rsv_count = no_holes ? 2 : 3;
2582 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2583 if (IS_ERR(trans)) {
2584 err = PTR_ERR(trans);
2585 goto out_free;
2586 }
2587
0b246afa 2588 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 2589 min_size, false);
2aaa6655
JB
2590 BUG_ON(ret);
2591 trans->block_rsv = rsv;
2592
d7781546
QW
2593 cur_offset = lockstart;
2594 len = lockend - cur_offset;
2aaa6655
JB
2595 while (cur_offset < lockend) {
2596 ret = __btrfs_drop_extents(trans, root, inode, path,
2597 cur_offset, lockend + 1,
1acae57b 2598 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2599 if (ret != -ENOSPC)
2600 break;
2601
0b246afa 2602 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2603
62fe51c1 2604 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2605 ret = fill_holes(trans, BTRFS_I(inode), path,
2606 cur_offset, drop_end);
12870f1c 2607 if (ret) {
f94480bd
JB
2608 /*
2609 * If we failed then we didn't insert our hole
2610 * entries for the area we dropped, so now the
2611 * fs is corrupted, so we must abort the
2612 * transaction.
2613 */
2614 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2615 err = ret;
2616 break;
2617 }
2aaa6655
JB
2618 }
2619
2620 cur_offset = drop_end;
2621
2622 ret = btrfs_update_inode(trans, root, inode);
2623 if (ret) {
2624 err = ret;
2625 break;
2626 }
2627
3a45bb20 2628 btrfs_end_transaction(trans);
2ff7e61e 2629 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2630
16e7549f 2631 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2632 if (IS_ERR(trans)) {
2633 ret = PTR_ERR(trans);
2634 trans = NULL;
2635 break;
2636 }
2637
0b246afa 2638 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 2639 rsv, min_size, false);
2aaa6655
JB
2640 BUG_ON(ret); /* shouldn't happen */
2641 trans->block_rsv = rsv;
d7781546
QW
2642
2643 ret = find_first_non_hole(inode, &cur_offset, &len);
2644 if (unlikely(ret < 0))
2645 break;
2646 if (ret && !len) {
2647 ret = 0;
2648 break;
2649 }
2aaa6655
JB
2650 }
2651
2652 if (ret) {
2653 err = ret;
2654 goto out_trans;
2655 }
2656
0b246afa 2657 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2658 /*
2659 * If we are using the NO_HOLES feature we might have had already an
2660 * hole that overlaps a part of the region [lockstart, lockend] and
2661 * ends at (or beyond) lockend. Since we have no file extent items to
2662 * represent holes, drop_end can be less than lockend and so we must
2663 * make sure we have an extent map representing the existing hole (the
2664 * call to __btrfs_drop_extents() might have dropped the existing extent
2665 * map representing the existing hole), otherwise the fast fsync path
2666 * will not record the existence of the hole region
2667 * [existing_hole_start, lockend].
2668 */
2669 if (drop_end <= lockend)
2670 drop_end = lockend + 1;
fc19c5e7
FM
2671 /*
2672 * Don't insert file hole extent item if it's for a range beyond eof
2673 * (because it's useless) or if it represents a 0 bytes range (when
2674 * cur_offset == drop_end).
2675 */
2676 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2677 ret = fill_holes(trans, BTRFS_I(inode), path,
2678 cur_offset, drop_end);
12870f1c 2679 if (ret) {
f94480bd
JB
2680 /* Same comment as above. */
2681 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2682 err = ret;
2683 goto out_trans;
2684 }
2aaa6655
JB
2685 }
2686
2687out_trans:
2688 if (!trans)
2689 goto out_free;
2690
e1f5790e 2691 inode_inc_iversion(inode);
c2050a45 2692 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2693
0b246afa 2694 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2695 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2696 updated_inode = true;
3a45bb20 2697 btrfs_end_transaction(trans);
2ff7e61e 2698 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2699out_free:
2700 btrfs_free_path(path);
2ff7e61e 2701 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2702out:
2703 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2704 &cached_state);
d7781546 2705out_only_mutex:
9703fefe 2706 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2707 /*
2708 * If we only end up zeroing part of a page, we still need to
2709 * update the inode item, so that all the time fields are
2710 * updated as well as the necessary btrfs inode in memory fields
2711 * for detecting, at fsync time, if the inode isn't yet in the
2712 * log tree or it's there but not up to date.
2713 */
17900668
FM
2714 struct timespec64 now = current_time(inode);
2715
2716 inode_inc_iversion(inode);
2717 inode->i_mtime = now;
2718 inode->i_ctime = now;
e8c1c76e
FM
2719 trans = btrfs_start_transaction(root, 1);
2720 if (IS_ERR(trans)) {
2721 err = PTR_ERR(trans);
2722 } else {
2723 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2724 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2725 }
2726 }
5955102c 2727 inode_unlock(inode);
2aaa6655
JB
2728 if (ret && !err)
2729 err = ret;
2730 return err;
2731}
2732
14524a84
QW
2733/* Helper structure to record which range is already reserved */
2734struct falloc_range {
2735 struct list_head list;
2736 u64 start;
2737 u64 len;
2738};
2739
2740/*
2741 * Helper function to add falloc range
2742 *
2743 * Caller should have locked the larger range of extent containing
2744 * [start, len)
2745 */
2746static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2747{
2748 struct falloc_range *prev = NULL;
2749 struct falloc_range *range = NULL;
2750
2751 if (list_empty(head))
2752 goto insert;
2753
2754 /*
2755 * As fallocate iterate by bytenr order, we only need to check
2756 * the last range.
2757 */
2758 prev = list_entry(head->prev, struct falloc_range, list);
2759 if (prev->start + prev->len == start) {
2760 prev->len += len;
2761 return 0;
2762 }
2763insert:
32fc932e 2764 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2765 if (!range)
2766 return -ENOMEM;
2767 range->start = start;
2768 range->len = len;
2769 list_add_tail(&range->list, head);
2770 return 0;
2771}
2772
f27451f2
FM
2773static int btrfs_fallocate_update_isize(struct inode *inode,
2774 const u64 end,
2775 const int mode)
2776{
2777 struct btrfs_trans_handle *trans;
2778 struct btrfs_root *root = BTRFS_I(inode)->root;
2779 int ret;
2780 int ret2;
2781
2782 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2783 return 0;
2784
2785 trans = btrfs_start_transaction(root, 1);
2786 if (IS_ERR(trans))
2787 return PTR_ERR(trans);
2788
2789 inode->i_ctime = current_time(inode);
2790 i_size_write(inode, end);
2791 btrfs_ordered_update_i_size(inode, end, NULL);
2792 ret = btrfs_update_inode(trans, root, inode);
2793 ret2 = btrfs_end_transaction(trans);
2794
2795 return ret ? ret : ret2;
2796}
2797
81fdf638
FM
2798enum {
2799 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2800 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2801 RANGE_BOUNDARY_HOLE = 2,
2802};
2803
f27451f2
FM
2804static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2805 u64 offset)
2806{
2807 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2808 struct extent_map *em;
81fdf638 2809 int ret;
f27451f2
FM
2810
2811 offset = round_down(offset, sectorsize);
2812 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2813 if (IS_ERR(em))
2814 return PTR_ERR(em);
2815
2816 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2817 ret = RANGE_BOUNDARY_HOLE;
2818 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2819 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2820 else
2821 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2822
2823 free_extent_map(em);
2824 return ret;
2825}
2826
2827static int btrfs_zero_range(struct inode *inode,
2828 loff_t offset,
2829 loff_t len,
2830 const int mode)
2831{
2832 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2833 struct extent_map *em;
2834 struct extent_changeset *data_reserved = NULL;
2835 int ret;
2836 u64 alloc_hint = 0;
2837 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2838 u64 alloc_start = round_down(offset, sectorsize);
2839 u64 alloc_end = round_up(offset + len, sectorsize);
2840 u64 bytes_to_reserve = 0;
2841 bool space_reserved = false;
2842
2843 inode_dio_wait(inode);
2844
2845 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2846 alloc_start, alloc_end - alloc_start, 0);
2847 if (IS_ERR(em)) {
2848 ret = PTR_ERR(em);
2849 goto out;
2850 }
2851
2852 /*
2853 * Avoid hole punching and extent allocation for some cases. More cases
2854 * could be considered, but these are unlikely common and we keep things
2855 * as simple as possible for now. Also, intentionally, if the target
2856 * range contains one or more prealloc extents together with regular
2857 * extents and holes, we drop all the existing extents and allocate a
2858 * new prealloc extent, so that we get a larger contiguous disk extent.
2859 */
2860 if (em->start <= alloc_start &&
2861 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2862 const u64 em_end = em->start + em->len;
2863
2864 if (em_end >= offset + len) {
2865 /*
2866 * The whole range is already a prealloc extent,
2867 * do nothing except updating the inode's i_size if
2868 * needed.
2869 */
2870 free_extent_map(em);
2871 ret = btrfs_fallocate_update_isize(inode, offset + len,
2872 mode);
2873 goto out;
2874 }
2875 /*
2876 * Part of the range is already a prealloc extent, so operate
2877 * only on the remaining part of the range.
2878 */
2879 alloc_start = em_end;
2880 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2881 len = offset + len - alloc_start;
2882 offset = alloc_start;
2883 alloc_hint = em->block_start + em->len;
2884 }
2885 free_extent_map(em);
2886
2887 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2888 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2889 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2890 alloc_start, sectorsize, 0);
2891 if (IS_ERR(em)) {
2892 ret = PTR_ERR(em);
2893 goto out;
2894 }
2895
2896 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2897 free_extent_map(em);
2898 ret = btrfs_fallocate_update_isize(inode, offset + len,
2899 mode);
2900 goto out;
2901 }
2902 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2903 free_extent_map(em);
2904 ret = btrfs_truncate_block(inode, offset, len, 0);
2905 if (!ret)
2906 ret = btrfs_fallocate_update_isize(inode,
2907 offset + len,
2908 mode);
2909 return ret;
2910 }
2911 free_extent_map(em);
2912 alloc_start = round_down(offset, sectorsize);
2913 alloc_end = alloc_start + sectorsize;
2914 goto reserve_space;
2915 }
2916
2917 alloc_start = round_up(offset, sectorsize);
2918 alloc_end = round_down(offset + len, sectorsize);
2919
2920 /*
2921 * For unaligned ranges, check the pages at the boundaries, they might
2922 * map to an extent, in which case we need to partially zero them, or
2923 * they might map to a hole, in which case we need our allocation range
2924 * to cover them.
2925 */
2926 if (!IS_ALIGNED(offset, sectorsize)) {
2927 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2928 if (ret < 0)
2929 goto out;
81fdf638 2930 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2931 alloc_start = round_down(offset, sectorsize);
2932 ret = 0;
81fdf638 2933 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2934 ret = btrfs_truncate_block(inode, offset, 0, 0);
2935 if (ret)
2936 goto out;
81fdf638
FM
2937 } else {
2938 ret = 0;
f27451f2
FM
2939 }
2940 }
2941
2942 if (!IS_ALIGNED(offset + len, sectorsize)) {
2943 ret = btrfs_zero_range_check_range_boundary(inode,
2944 offset + len);
2945 if (ret < 0)
2946 goto out;
81fdf638 2947 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2948 alloc_end = round_up(offset + len, sectorsize);
2949 ret = 0;
81fdf638 2950 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2951 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2952 if (ret)
2953 goto out;
81fdf638
FM
2954 } else {
2955 ret = 0;
f27451f2
FM
2956 }
2957 }
2958
2959reserve_space:
2960 if (alloc_start < alloc_end) {
2961 struct extent_state *cached_state = NULL;
2962 const u64 lockstart = alloc_start;
2963 const u64 lockend = alloc_end - 1;
2964
2965 bytes_to_reserve = alloc_end - alloc_start;
2966 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2967 bytes_to_reserve);
2968 if (ret < 0)
2969 goto out;
2970 space_reserved = true;
2971 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2972 alloc_start, bytes_to_reserve);
2973 if (ret)
2974 goto out;
2975 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2976 &cached_state);
2977 if (ret)
2978 goto out;
2979 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2980 alloc_end - alloc_start,
2981 i_blocksize(inode),
2982 offset + len, &alloc_hint);
2983 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2984 lockend, &cached_state);
2985 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 2986 if (ret) {
f27451f2 2987 space_reserved = false;
9f13ce74
FM
2988 goto out;
2989 }
f27451f2 2990 }
9f13ce74 2991 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
2992 out:
2993 if (ret && space_reserved)
2994 btrfs_free_reserved_data_space(inode, data_reserved,
2995 alloc_start, bytes_to_reserve);
2996 extent_changeset_free(data_reserved);
2997
2998 return ret;
2999}
3000
2fe17c10
CH
3001static long btrfs_fallocate(struct file *file, int mode,
3002 loff_t offset, loff_t len)
3003{
496ad9aa 3004 struct inode *inode = file_inode(file);
2fe17c10 3005 struct extent_state *cached_state = NULL;
364ecf36 3006 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3007 struct falloc_range *range;
3008 struct falloc_range *tmp;
3009 struct list_head reserve_list;
2fe17c10
CH
3010 u64 cur_offset;
3011 u64 last_byte;
3012 u64 alloc_start;
3013 u64 alloc_end;
3014 u64 alloc_hint = 0;
3015 u64 locked_end;
14524a84 3016 u64 actual_end = 0;
2fe17c10 3017 struct extent_map *em;
da17066c 3018 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
3019 int ret;
3020
797f4277
MX
3021 alloc_start = round_down(offset, blocksize);
3022 alloc_end = round_up(offset + len, blocksize);
18513091 3023 cur_offset = alloc_start;
2fe17c10 3024
2aaa6655 3025 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3026 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3027 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3028 return -EOPNOTSUPP;
3029
2aaa6655
JB
3030 if (mode & FALLOC_FL_PUNCH_HOLE)
3031 return btrfs_punch_hole(inode, offset, len);
3032
d98456fc 3033 /*
14524a84
QW
3034 * Only trigger disk allocation, don't trigger qgroup reserve
3035 *
3036 * For qgroup space, it will be checked later.
d98456fc 3037 */
f27451f2
FM
3038 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3039 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3040 alloc_end - alloc_start);
3041 if (ret < 0)
3042 return ret;
3043 }
d98456fc 3044
5955102c 3045 inode_lock(inode);
2a162ce9
DI
3046
3047 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3048 ret = inode_newsize_ok(inode, offset + len);
3049 if (ret)
3050 goto out;
3051 }
2fe17c10 3052
14524a84
QW
3053 /*
3054 * TODO: Move these two operations after we have checked
3055 * accurate reserved space, or fallocate can still fail but
3056 * with page truncated or size expanded.
3057 *
3058 * But that's a minor problem and won't do much harm BTW.
3059 */
2fe17c10 3060 if (alloc_start > inode->i_size) {
a41ad394
JB
3061 ret = btrfs_cont_expand(inode, i_size_read(inode),
3062 alloc_start);
2fe17c10
CH
3063 if (ret)
3064 goto out;
0f6925fa 3065 } else if (offset + len > inode->i_size) {
a71754fc
JB
3066 /*
3067 * If we are fallocating from the end of the file onward we
9703fefe
CR
3068 * need to zero out the end of the block if i_size lands in the
3069 * middle of a block.
a71754fc 3070 */
9703fefe 3071 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3072 if (ret)
3073 goto out;
2fe17c10
CH
3074 }
3075
a71754fc
JB
3076 /*
3077 * wait for ordered IO before we have any locks. We'll loop again
3078 * below with the locks held.
3079 */
0ef8b726
JB
3080 ret = btrfs_wait_ordered_range(inode, alloc_start,
3081 alloc_end - alloc_start);
3082 if (ret)
3083 goto out;
a71754fc 3084
f27451f2
FM
3085 if (mode & FALLOC_FL_ZERO_RANGE) {
3086 ret = btrfs_zero_range(inode, offset, len, mode);
3087 inode_unlock(inode);
3088 return ret;
3089 }
3090
2fe17c10
CH
3091 locked_end = alloc_end - 1;
3092 while (1) {
3093 struct btrfs_ordered_extent *ordered;
3094
3095 /* the extent lock is ordered inside the running
3096 * transaction
3097 */
3098 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3099 locked_end, &cached_state);
96b09dde
NB
3100 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3101
2fe17c10
CH
3102 if (ordered &&
3103 ordered->file_offset + ordered->len > alloc_start &&
3104 ordered->file_offset < alloc_end) {
3105 btrfs_put_ordered_extent(ordered);
3106 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3107 alloc_start, locked_end,
e43bbe5e 3108 &cached_state);
2fe17c10
CH
3109 /*
3110 * we can't wait on the range with the transaction
3111 * running or with the extent lock held
3112 */
0ef8b726
JB
3113 ret = btrfs_wait_ordered_range(inode, alloc_start,
3114 alloc_end - alloc_start);
3115 if (ret)
3116 goto out;
2fe17c10
CH
3117 } else {
3118 if (ordered)
3119 btrfs_put_ordered_extent(ordered);
3120 break;
3121 }
3122 }
3123
14524a84
QW
3124 /* First, check if we exceed the qgroup limit */
3125 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3126 while (cur_offset < alloc_end) {
fc4f21b1 3127 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 3128 alloc_end - cur_offset, 0);
9986277e
DC
3129 if (IS_ERR(em)) {
3130 ret = PTR_ERR(em);
79787eaa
JM
3131 break;
3132 }
2fe17c10 3133 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3134 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3135 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3136 if (em->block_start == EXTENT_MAP_HOLE ||
3137 (cur_offset >= inode->i_size &&
3138 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3139 ret = add_falloc_range(&reserve_list, cur_offset,
3140 last_byte - cur_offset);
3141 if (ret < 0) {
3142 free_extent_map(em);
3143 break;
3d850dd4 3144 }
364ecf36
QW
3145 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3146 cur_offset, last_byte - cur_offset);
be2d253c 3147 if (ret < 0) {
39ad3173 3148 cur_offset = last_byte;
be2d253c 3149 free_extent_map(em);
14524a84 3150 break;
be2d253c 3151 }
18513091
WX
3152 } else {
3153 /*
3154 * Do not need to reserve unwritten extent for this
3155 * range, free reserved data space first, otherwise
3156 * it'll result in false ENOSPC error.
3157 */
bc42bda2
QW
3158 btrfs_free_reserved_data_space(inode, data_reserved,
3159 cur_offset, last_byte - cur_offset);
2fe17c10
CH
3160 }
3161 free_extent_map(em);
2fe17c10 3162 cur_offset = last_byte;
14524a84
QW
3163 }
3164
3165 /*
3166 * If ret is still 0, means we're OK to fallocate.
3167 * Or just cleanup the list and exit.
3168 */
3169 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3170 if (!ret)
3171 ret = btrfs_prealloc_file_range(inode, mode,
3172 range->start,
93407472 3173 range->len, i_blocksize(inode),
14524a84 3174 offset + len, &alloc_hint);
18513091 3175 else
bc42bda2
QW
3176 btrfs_free_reserved_data_space(inode,
3177 data_reserved, range->start,
3178 range->len);
14524a84
QW
3179 list_del(&range->list);
3180 kfree(range);
3181 }
3182 if (ret < 0)
3183 goto out_unlock;
3184
f27451f2
FM
3185 /*
3186 * We didn't need to allocate any more space, but we still extended the
3187 * size of the file so we need to update i_size and the inode item.
3188 */
3189 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3190out_unlock:
2fe17c10 3191 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3192 &cached_state);
2fe17c10 3193out:
5955102c 3194 inode_unlock(inode);
d98456fc 3195 /* Let go of our reservation. */
f27451f2 3196 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
bc42bda2 3197 btrfs_free_reserved_data_space(inode, data_reserved,
39ad3173 3198 cur_offset, alloc_end - cur_offset);
364ecf36 3199 extent_changeset_free(data_reserved);
2fe17c10
CH
3200 return ret;
3201}
3202
965c8e59 3203static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3204{
0b246afa 3205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3206 struct extent_map *em = NULL;
b2675157 3207 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3208 u64 lockstart;
3209 u64 lockend;
3210 u64 start;
3211 u64 len;
b2675157
JB
3212 int ret = 0;
3213
4d1a40c6
LB
3214 if (inode->i_size == 0)
3215 return -ENXIO;
3216
3217 /*
3218 * *offset can be negative, in this case we start finding DATA/HOLE from
3219 * the very start of the file.
3220 */
3221 start = max_t(loff_t, 0, *offset);
3222
0b246afa 3223 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3224 lockend = round_up(i_size_read(inode),
0b246afa 3225 fs_info->sectorsize);
b2675157 3226 if (lockend <= lockstart)
0b246afa 3227 lockend = lockstart + fs_info->sectorsize;
1214b53f 3228 lockend--;
b2675157
JB
3229 len = lockend - lockstart + 1;
3230
ff13db41 3231 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3232 &cached_state);
b2675157 3233
7f4ca37c 3234 while (start < inode->i_size) {
4ab47a8d 3235 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
b2675157 3236 if (IS_ERR(em)) {
6af021d8 3237 ret = PTR_ERR(em);
7f4ca37c 3238 em = NULL;
b2675157
JB
3239 break;
3240 }
3241
7f4ca37c
JB
3242 if (whence == SEEK_HOLE &&
3243 (em->block_start == EXTENT_MAP_HOLE ||
3244 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3245 break;
3246 else if (whence == SEEK_DATA &&
3247 (em->block_start != EXTENT_MAP_HOLE &&
3248 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3249 break;
b2675157
JB
3250
3251 start = em->start + em->len;
b2675157 3252 free_extent_map(em);
7f4ca37c 3253 em = NULL;
b2675157
JB
3254 cond_resched();
3255 }
7f4ca37c
JB
3256 free_extent_map(em);
3257 if (!ret) {
3258 if (whence == SEEK_DATA && start >= inode->i_size)
3259 ret = -ENXIO;
3260 else
3261 *offset = min_t(loff_t, start, inode->i_size);
3262 }
b2675157 3263 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3264 &cached_state);
b2675157
JB
3265 return ret;
3266}
3267
965c8e59 3268static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3269{
3270 struct inode *inode = file->f_mapping->host;
3271 int ret;
3272
5955102c 3273 inode_lock(inode);
965c8e59 3274 switch (whence) {
b2675157
JB
3275 case SEEK_END:
3276 case SEEK_CUR:
965c8e59 3277 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3278 goto out;
3279 case SEEK_DATA:
3280 case SEEK_HOLE:
48802c8a 3281 if (offset >= i_size_read(inode)) {
5955102c 3282 inode_unlock(inode);
48802c8a
JL
3283 return -ENXIO;
3284 }
3285
965c8e59 3286 ret = find_desired_extent(inode, &offset, whence);
b2675157 3287 if (ret) {
5955102c 3288 inode_unlock(inode);
b2675157
JB
3289 return ret;
3290 }
3291 }
3292
46a1c2c7 3293 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3294out:
5955102c 3295 inode_unlock(inode);
b2675157
JB
3296 return offset;
3297}
3298
edf064e7
GR
3299static int btrfs_file_open(struct inode *inode, struct file *filp)
3300{
91f9943e 3301 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3302 return generic_file_open(inode, filp);
3303}
3304
828c0950 3305const struct file_operations btrfs_file_operations = {
b2675157 3306 .llseek = btrfs_file_llseek,
aad4f8bb 3307 .read_iter = generic_file_read_iter,
e9906a98 3308 .splice_read = generic_file_splice_read,
b30ac0fc 3309 .write_iter = btrfs_file_write_iter,
9ebefb18 3310 .mmap = btrfs_file_mmap,
edf064e7 3311 .open = btrfs_file_open,
e1b81e67 3312 .release = btrfs_release_file,
39279cc3 3313 .fsync = btrfs_sync_file,
2fe17c10 3314 .fallocate = btrfs_fallocate,
34287aa3 3315 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3316#ifdef CONFIG_COMPAT
4c63c245 3317 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3318#endif
2e5dfc99 3319 .remap_file_range = btrfs_remap_file_range,
39279cc3 3320};
9247f317 3321
e67c718b 3322void __cold btrfs_auto_defrag_exit(void)
9247f317 3323{
5598e900 3324 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3325}
3326
f5c29bd9 3327int __init btrfs_auto_defrag_init(void)
9247f317
MX
3328{
3329 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3330 sizeof(struct inode_defrag), 0,
fba4b697 3331 SLAB_MEM_SPREAD,
9247f317
MX
3332 NULL);
3333 if (!btrfs_inode_defrag_cachep)
3334 return -ENOMEM;
3335
3336 return 0;
3337}
728404da
FM
3338
3339int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3340{
3341 int ret;
3342
3343 /*
3344 * So with compression we will find and lock a dirty page and clear the
3345 * first one as dirty, setup an async extent, and immediately return
3346 * with the entire range locked but with nobody actually marked with
3347 * writeback. So we can't just filemap_write_and_wait_range() and
3348 * expect it to work since it will just kick off a thread to do the
3349 * actual work. So we need to call filemap_fdatawrite_range _again_
3350 * since it will wait on the page lock, which won't be unlocked until
3351 * after the pages have been marked as writeback and so we're good to go
3352 * from there. We have to do this otherwise we'll miss the ordered
3353 * extents and that results in badness. Please Josef, do not think you
3354 * know better and pull this out at some point in the future, it is
3355 * right and you are wrong.
3356 */
3357 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3358 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3359 &BTRFS_I(inode)->runtime_flags))
3360 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3361
3362 return ret;
3363}