btrfs: remove inode_dio_wait() calls when starting reflink operations
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
39279cc3
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
39279cc3 24#include "print-tree.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
2aaa6655 27#include "volumes.h"
fcebe456 28#include "qgroup.h"
ebb8765b 29#include "compression.h"
86736342 30#include "delalloc-space.h"
6a177381 31#include "reflink.h"
f02a85d2 32#include "subpage.h"
39279cc3 33
9247f317 34static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
35/*
36 * when auto defrag is enabled we
37 * queue up these defrag structs to remember which
38 * inodes need defragging passes
39 */
40struct inode_defrag {
41 struct rb_node rb_node;
42 /* objectid */
43 u64 ino;
44 /*
45 * transid where the defrag was added, we search for
46 * extents newer than this
47 */
48 u64 transid;
49
50 /* root objectid */
51 u64 root;
558732df
QW
52
53 /*
54 * The extent size threshold for autodefrag.
55 *
56 * This value is different for compressed/non-compressed extents,
57 * thus needs to be passed from higher layer.
58 * (aka, inode_should_defrag())
59 */
60 u32 extent_thresh;
4cb5300b
CM
61};
62
762f2263
MX
63static int __compare_inode_defrag(struct inode_defrag *defrag1,
64 struct inode_defrag *defrag2)
65{
66 if (defrag1->root > defrag2->root)
67 return 1;
68 else if (defrag1->root < defrag2->root)
69 return -1;
70 else if (defrag1->ino > defrag2->ino)
71 return 1;
72 else if (defrag1->ino < defrag2->ino)
73 return -1;
74 else
75 return 0;
76}
77
4cb5300b
CM
78/* pop a record for an inode into the defrag tree. The lock
79 * must be held already
80 *
81 * If you're inserting a record for an older transid than an
82 * existing record, the transid already in the tree is lowered
83 *
84 * If an existing record is found the defrag item you
85 * pass in is freed
86 */
6158e1ce 87static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
88 struct inode_defrag *defrag)
89{
3ffbd68c 90 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
91 struct inode_defrag *entry;
92 struct rb_node **p;
93 struct rb_node *parent = NULL;
762f2263 94 int ret;
4cb5300b 95
0b246afa 96 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
97 while (*p) {
98 parent = *p;
99 entry = rb_entry(parent, struct inode_defrag, rb_node);
100
762f2263
MX
101 ret = __compare_inode_defrag(defrag, entry);
102 if (ret < 0)
4cb5300b 103 p = &parent->rb_left;
762f2263 104 else if (ret > 0)
4cb5300b
CM
105 p = &parent->rb_right;
106 else {
107 /* if we're reinserting an entry for
108 * an old defrag run, make sure to
109 * lower the transid of our existing record
110 */
111 if (defrag->transid < entry->transid)
112 entry->transid = defrag->transid;
558732df
QW
113 entry->extent_thresh = min(defrag->extent_thresh,
114 entry->extent_thresh);
8ddc4734 115 return -EEXIST;
4cb5300b
CM
116 }
117 }
6158e1ce 118 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 119 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 120 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
121 return 0;
122}
4cb5300b 123
2ff7e61e 124static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 125{
0b246afa 126 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
127 return 0;
128
0b246afa 129 if (btrfs_fs_closing(fs_info))
8ddc4734 130 return 0;
4cb5300b 131
8ddc4734 132 return 1;
4cb5300b
CM
133}
134
135/*
136 * insert a defrag record for this inode if auto defrag is
137 * enabled
138 */
139int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
558732df 140 struct btrfs_inode *inode, u32 extent_thresh)
4cb5300b 141{
6158e1ce 142 struct btrfs_root *root = inode->root;
3ffbd68c 143 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 144 struct inode_defrag *defrag;
4cb5300b 145 u64 transid;
8ddc4734 146 int ret;
4cb5300b 147
2ff7e61e 148 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
149 return 0;
150
6158e1ce 151 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
152 return 0;
153
154 if (trans)
155 transid = trans->transid;
156 else
6158e1ce 157 transid = inode->root->last_trans;
4cb5300b 158
9247f317 159 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
160 if (!defrag)
161 return -ENOMEM;
162
6158e1ce 163 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
164 defrag->transid = transid;
165 defrag->root = root->root_key.objectid;
558732df 166 defrag->extent_thresh = extent_thresh;
4cb5300b 167
0b246afa 168 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 169 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
170 /*
171 * If we set IN_DEFRAG flag and evict the inode from memory,
172 * and then re-read this inode, this new inode doesn't have
173 * IN_DEFRAG flag. At the case, we may find the existed defrag.
174 */
175 ret = __btrfs_add_inode_defrag(inode, defrag);
176 if (ret)
177 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
178 } else {
9247f317 179 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 180 }
0b246afa 181 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 182 return 0;
4cb5300b
CM
183}
184
185/*
26176e7c
MX
186 * pick the defragable inode that we want, if it doesn't exist, we will get
187 * the next one.
4cb5300b 188 */
26176e7c
MX
189static struct inode_defrag *
190btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
191{
192 struct inode_defrag *entry = NULL;
762f2263 193 struct inode_defrag tmp;
4cb5300b
CM
194 struct rb_node *p;
195 struct rb_node *parent = NULL;
762f2263
MX
196 int ret;
197
198 tmp.ino = ino;
199 tmp.root = root;
4cb5300b 200
26176e7c
MX
201 spin_lock(&fs_info->defrag_inodes_lock);
202 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
203 while (p) {
204 parent = p;
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
206
762f2263
MX
207 ret = __compare_inode_defrag(&tmp, entry);
208 if (ret < 0)
4cb5300b 209 p = parent->rb_left;
762f2263 210 else if (ret > 0)
4cb5300b
CM
211 p = parent->rb_right;
212 else
26176e7c 213 goto out;
4cb5300b
CM
214 }
215
26176e7c
MX
216 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
217 parent = rb_next(parent);
218 if (parent)
4cb5300b 219 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
220 else
221 entry = NULL;
4cb5300b 222 }
26176e7c
MX
223out:
224 if (entry)
225 rb_erase(parent, &fs_info->defrag_inodes);
226 spin_unlock(&fs_info->defrag_inodes_lock);
227 return entry;
4cb5300b
CM
228}
229
26176e7c 230void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
231{
232 struct inode_defrag *defrag;
26176e7c
MX
233 struct rb_node *node;
234
235 spin_lock(&fs_info->defrag_inodes_lock);
236 node = rb_first(&fs_info->defrag_inodes);
237 while (node) {
238 rb_erase(node, &fs_info->defrag_inodes);
239 defrag = rb_entry(node, struct inode_defrag, rb_node);
240 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
241
351810c1 242 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
243
244 node = rb_first(&fs_info->defrag_inodes);
245 }
246 spin_unlock(&fs_info->defrag_inodes_lock);
247}
248
249#define BTRFS_DEFRAG_BATCH 1024
250
251static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
252 struct inode_defrag *defrag)
253{
4cb5300b
CM
254 struct btrfs_root *inode_root;
255 struct inode *inode;
4cb5300b 256 struct btrfs_ioctl_defrag_range_args range;
26fbac25
QW
257 int ret = 0;
258 u64 cur = 0;
259
260again:
261 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
262 goto cleanup;
263 if (!__need_auto_defrag(fs_info))
264 goto cleanup;
4cb5300b 265
26176e7c 266 /* get the inode */
56e9357a 267 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
26176e7c 268 if (IS_ERR(inode_root)) {
6f1c3605
LB
269 ret = PTR_ERR(inode_root);
270 goto cleanup;
271 }
26176e7c 272
0202e83f 273 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
00246528 274 btrfs_put_root(inode_root);
26176e7c 275 if (IS_ERR(inode)) {
6f1c3605
LB
276 ret = PTR_ERR(inode);
277 goto cleanup;
26176e7c
MX
278 }
279
26fbac25
QW
280 if (cur >= i_size_read(inode)) {
281 iput(inode);
282 goto cleanup;
283 }
284
26176e7c
MX
285 /* do a chunk of defrag */
286 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
287 memset(&range, 0, sizeof(range));
288 range.len = (u64)-1;
26fbac25 289 range.start = cur;
558732df 290 range.extent_thresh = defrag->extent_thresh;
b66f00da
MX
291
292 sb_start_write(fs_info->sb);
26fbac25 293 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
26176e7c 294 BTRFS_DEFRAG_BATCH);
b66f00da 295 sb_end_write(fs_info->sb);
26176e7c 296 iput(inode);
26fbac25
QW
297
298 if (ret < 0)
299 goto cleanup;
300
301 cur = max(cur + fs_info->sectorsize, range.start);
302 goto again;
303
6f1c3605 304cleanup:
6f1c3605
LB
305 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
306 return ret;
26176e7c
MX
307}
308
309/*
310 * run through the list of inodes in the FS that need
311 * defragging
312 */
313int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
314{
315 struct inode_defrag *defrag;
316 u64 first_ino = 0;
317 u64 root_objectid = 0;
4cb5300b
CM
318
319 atomic_inc(&fs_info->defrag_running);
67871254 320 while (1) {
dc81cdc5
MX
321 /* Pause the auto defragger. */
322 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
323 &fs_info->fs_state))
324 break;
325
2ff7e61e 326 if (!__need_auto_defrag(fs_info))
26176e7c 327 break;
4cb5300b
CM
328
329 /* find an inode to defrag */
26176e7c
MX
330 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
331 first_ino);
4cb5300b 332 if (!defrag) {
26176e7c 333 if (root_objectid || first_ino) {
762f2263 334 root_objectid = 0;
4cb5300b
CM
335 first_ino = 0;
336 continue;
337 } else {
338 break;
339 }
340 }
341
4cb5300b 342 first_ino = defrag->ino + 1;
762f2263 343 root_objectid = defrag->root;
4cb5300b 344
26176e7c 345 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 346 }
4cb5300b
CM
347 atomic_dec(&fs_info->defrag_running);
348
349 /*
350 * during unmount, we use the transaction_wait queue to
351 * wait for the defragger to stop
352 */
353 wake_up(&fs_info->transaction_wait);
354 return 0;
355}
39279cc3 356
d352ac68
CM
357/* simple helper to fault in pages and copy. This should go away
358 * and be replaced with calls into generic code.
359 */
ee22f0c4 360static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 361 struct page **prepared_pages,
11c65dcc 362 struct iov_iter *i)
39279cc3 363{
914ee295 364 size_t copied = 0;
d0215f3e 365 size_t total_copied = 0;
11c65dcc 366 int pg = 0;
7073017a 367 int offset = offset_in_page(pos);
39279cc3 368
11c65dcc 369 while (write_bytes > 0) {
39279cc3 370 size_t count = min_t(size_t,
09cbfeaf 371 PAGE_SIZE - offset, write_bytes);
11c65dcc 372 struct page *page = prepared_pages[pg];
914ee295
XZ
373 /*
374 * Copy data from userspace to the current page
914ee295 375 */
f0b65f39 376 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 377
39279cc3
CM
378 /* Flush processor's dcache for this page */
379 flush_dcache_page(page);
31339acd
CM
380
381 /*
382 * if we get a partial write, we can end up with
383 * partially up to date pages. These add
384 * a lot of complexity, so make sure they don't
385 * happen by forcing this copy to be retried.
386 *
387 * The rest of the btrfs_file_write code will fall
388 * back to page at a time copies after we return 0.
389 */
f0b65f39
AV
390 if (unlikely(copied < count)) {
391 if (!PageUptodate(page)) {
392 iov_iter_revert(i, copied);
393 copied = 0;
394 }
395 if (!copied)
396 break;
397 }
31339acd 398
11c65dcc 399 write_bytes -= copied;
914ee295 400 total_copied += copied;
f0b65f39
AV
401 offset += copied;
402 if (offset == PAGE_SIZE) {
11c65dcc
JB
403 pg++;
404 offset = 0;
405 }
39279cc3 406 }
914ee295 407 return total_copied;
39279cc3
CM
408}
409
d352ac68
CM
410/*
411 * unlocks pages after btrfs_file_write is done with them
412 */
e4f94347
QW
413static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
414 struct page **pages, size_t num_pages,
415 u64 pos, u64 copied)
39279cc3
CM
416{
417 size_t i;
e4f94347
QW
418 u64 block_start = round_down(pos, fs_info->sectorsize);
419 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
420
421 ASSERT(block_len <= U32_MAX);
39279cc3 422 for (i = 0; i < num_pages; i++) {
d352ac68
CM
423 /* page checked is some magic around finding pages that
424 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
425 * clear it here. There should be no need to mark the pages
426 * accessed as prepare_pages should have marked them accessed
427 * in prepare_pages via find_or_create_page()
d352ac68 428 */
e4f94347
QW
429 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
430 block_len);
39279cc3 431 unlock_page(pages[i]);
09cbfeaf 432 put_page(pages[i]);
39279cc3
CM
433 }
434}
435
d352ac68 436/*
c0fab480
QW
437 * After btrfs_copy_from_user(), update the following things for delalloc:
438 * - Mark newly dirtied pages as DELALLOC in the io tree.
439 * Used to advise which range is to be written back.
440 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
441 * - Update inode size for past EOF write
d352ac68 442 */
088545f6 443int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 444 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 445 struct extent_state **cached, bool noreserve)
39279cc3 446{
088545f6 447 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 448 int err = 0;
a52d9a80 449 int i;
db94535d 450 u64 num_bytes;
a52d9a80
CM
451 u64 start_pos;
452 u64 end_of_last_block;
453 u64 end_pos = pos + write_bytes;
088545f6 454 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 455 unsigned int extra_bits = 0;
39279cc3 456
aa8c1a41
GR
457 if (write_bytes == 0)
458 return 0;
459
460 if (noreserve)
461 extra_bits |= EXTENT_NORESERVE;
462
13f0dd8f 463 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 464 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 465 fs_info->sectorsize);
f02a85d2 466 ASSERT(num_bytes <= U32_MAX);
39279cc3 467
db94535d 468 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 469
7703bdd8
CM
470 /*
471 * The pages may have already been dirty, clear out old accounting so
472 * we can set things up properly
473 */
088545f6 474 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d
OS
475 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
476 0, 0, cached);
7703bdd8 477
088545f6 478 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 479 extra_bits, cached);
d0215f3e
JB
480 if (err)
481 return err;
9ed74f2d 482
c8b97818
CM
483 for (i = 0; i < num_pages; i++) {
484 struct page *p = pages[i];
f02a85d2
QW
485
486 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
e4f94347 487 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
f02a85d2 488 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
a52d9a80 489 }
9f570b8d
JB
490
491 /*
492 * we've only changed i_size in ram, and we haven't updated
493 * the disk i_size. There is no need to log the inode
494 * at this time.
495 */
496 if (end_pos > isize)
088545f6 497 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 498 return 0;
39279cc3
CM
499}
500
d352ac68
CM
501/*
502 * this drops all the extents in the cache that intersect the range
503 * [start, end]. Existing extents are split as required.
504 */
dcdbc059 505void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 506 int skip_pinned)
a52d9a80
CM
507{
508 struct extent_map *em;
3b951516
CM
509 struct extent_map *split = NULL;
510 struct extent_map *split2 = NULL;
dcdbc059 511 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 512 u64 len = end - start + 1;
5dc562c5 513 u64 gen;
3b951516
CM
514 int ret;
515 int testend = 1;
5b21f2ed 516 unsigned long flags;
c8b97818 517 int compressed = 0;
09a2a8f9 518 bool modified;
a52d9a80 519
e6dcd2dc 520 WARN_ON(end < start);
3b951516 521 if (end == (u64)-1) {
39b5637f 522 len = (u64)-1;
3b951516
CM
523 testend = 0;
524 }
d397712b 525 while (1) {
7014cdb4
JB
526 int no_splits = 0;
527
09a2a8f9 528 modified = false;
3b951516 529 if (!split)
172ddd60 530 split = alloc_extent_map();
3b951516 531 if (!split2)
172ddd60 532 split2 = alloc_extent_map();
7014cdb4
JB
533 if (!split || !split2)
534 no_splits = 1;
3b951516 535
890871be 536 write_lock(&em_tree->lock);
39b5637f 537 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 538 if (!em) {
890871be 539 write_unlock(&em_tree->lock);
a52d9a80 540 break;
d1310b2e 541 }
5b21f2ed 542 flags = em->flags;
5dc562c5 543 gen = em->generation;
5b21f2ed 544 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 545 if (testend && em->start + em->len >= start + len) {
5b21f2ed 546 free_extent_map(em);
a1ed835e 547 write_unlock(&em_tree->lock);
5b21f2ed
ZY
548 break;
549 }
55ef6899
YZ
550 start = em->start + em->len;
551 if (testend)
5b21f2ed 552 len = start + len - (em->start + em->len);
5b21f2ed 553 free_extent_map(em);
a1ed835e 554 write_unlock(&em_tree->lock);
5b21f2ed
ZY
555 continue;
556 }
c8b97818 557 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 558 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 559 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 560 modified = !list_empty(&em->list);
7014cdb4
JB
561 if (no_splits)
562 goto next;
3b951516 563
ee20a983 564 if (em->start < start) {
3b951516
CM
565 split->start = em->start;
566 split->len = start - em->start;
ee20a983
JB
567
568 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
569 split->orig_start = em->orig_start;
570 split->block_start = em->block_start;
571
572 if (compressed)
573 split->block_len = em->block_len;
574 else
575 split->block_len = split->len;
576 split->orig_block_len = max(split->block_len,
577 em->orig_block_len);
578 split->ram_bytes = em->ram_bytes;
579 } else {
580 split->orig_start = split->start;
581 split->block_len = 0;
582 split->block_start = em->block_start;
583 split->orig_block_len = 0;
584 split->ram_bytes = split->len;
585 }
586
5dc562c5 587 split->generation = gen;
5b21f2ed 588 split->flags = flags;
261507a0 589 split->compress_type = em->compress_type;
176840b3 590 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
591 free_extent_map(split);
592 split = split2;
593 split2 = NULL;
594 }
ee20a983 595 if (testend && em->start + em->len > start + len) {
3b951516
CM
596 u64 diff = start + len - em->start;
597
598 split->start = start + len;
599 split->len = em->start + em->len - (start + len);
5b21f2ed 600 split->flags = flags;
261507a0 601 split->compress_type = em->compress_type;
5dc562c5 602 split->generation = gen;
ee20a983
JB
603
604 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
605 split->orig_block_len = max(em->block_len,
b4939680 606 em->orig_block_len);
3b951516 607
ee20a983
JB
608 split->ram_bytes = em->ram_bytes;
609 if (compressed) {
610 split->block_len = em->block_len;
611 split->block_start = em->block_start;
612 split->orig_start = em->orig_start;
613 } else {
614 split->block_len = split->len;
615 split->block_start = em->block_start
616 + diff;
617 split->orig_start = em->orig_start;
618 }
c8b97818 619 } else {
ee20a983
JB
620 split->ram_bytes = split->len;
621 split->orig_start = split->start;
622 split->block_len = 0;
623 split->block_start = em->block_start;
624 split->orig_block_len = 0;
c8b97818 625 }
3b951516 626
176840b3
FM
627 if (extent_map_in_tree(em)) {
628 replace_extent_mapping(em_tree, em, split,
629 modified);
630 } else {
631 ret = add_extent_mapping(em_tree, split,
632 modified);
633 ASSERT(ret == 0); /* Logic error */
634 }
3b951516
CM
635 free_extent_map(split);
636 split = NULL;
637 }
7014cdb4 638next:
176840b3
FM
639 if (extent_map_in_tree(em))
640 remove_extent_mapping(em_tree, em);
890871be 641 write_unlock(&em_tree->lock);
d1310b2e 642
a52d9a80
CM
643 /* once for us */
644 free_extent_map(em);
645 /* once for the tree*/
646 free_extent_map(em);
647 }
3b951516
CM
648 if (split)
649 free_extent_map(split);
650 if (split2)
651 free_extent_map(split2);
a52d9a80
CM
652}
653
39279cc3
CM
654/*
655 * this is very complex, but the basic idea is to drop all extents
656 * in the range start - end. hint_block is filled in with a block number
657 * that would be a good hint to the block allocator for this file.
658 *
659 * If an extent intersects the range but is not entirely inside the range
660 * it is either truncated or split. Anything entirely inside the range
661 * is deleted from the tree.
2766ff61
FM
662 *
663 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
664 * to deal with that. We set the field 'bytes_found' of the arguments structure
665 * with the number of allocated bytes found in the target range, so that the
666 * caller can update the inode's number of bytes in an atomic way when
667 * replacing extents in a range to avoid races with stat(2).
39279cc3 668 */
5893dfb9
FM
669int btrfs_drop_extents(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root, struct btrfs_inode *inode,
671 struct btrfs_drop_extents_args *args)
39279cc3 672{
0b246afa 673 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 674 struct extent_buffer *leaf;
920bbbfb 675 struct btrfs_file_extent_item *fi;
82fa113f 676 struct btrfs_ref ref = { 0 };
00f5c795 677 struct btrfs_key key;
920bbbfb 678 struct btrfs_key new_key;
906c448c 679 u64 ino = btrfs_ino(inode);
5893dfb9 680 u64 search_start = args->start;
920bbbfb
YZ
681 u64 disk_bytenr = 0;
682 u64 num_bytes = 0;
683 u64 extent_offset = 0;
684 u64 extent_end = 0;
5893dfb9 685 u64 last_end = args->start;
920bbbfb
YZ
686 int del_nr = 0;
687 int del_slot = 0;
688 int extent_type;
ccd467d6 689 int recow;
00f5c795 690 int ret;
dc7fdde3 691 int modify_tree = -1;
27cdeb70 692 int update_refs;
c3308f84 693 int found = 0;
5893dfb9
FM
694 struct btrfs_path *path = args->path;
695
2766ff61 696 args->bytes_found = 0;
5893dfb9
FM
697 args->extent_inserted = false;
698
699 /* Must always have a path if ->replace_extent is true */
700 ASSERT(!(args->replace_extent && !args->path));
701
702 if (!path) {
703 path = btrfs_alloc_path();
704 if (!path) {
705 ret = -ENOMEM;
706 goto out;
707 }
708 }
39279cc3 709
5893dfb9
FM
710 if (args->drop_cache)
711 btrfs_drop_extent_cache(inode, args->start, args->end - 1, 0);
a52d9a80 712
5893dfb9 713 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
714 modify_tree = 0;
715
d175209b 716 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 717 while (1) {
ccd467d6 718 recow = 0;
33345d01 719 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 720 search_start, modify_tree);
39279cc3 721 if (ret < 0)
920bbbfb 722 break;
5893dfb9 723 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
724 leaf = path->nodes[0];
725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 726 if (key.objectid == ino &&
920bbbfb
YZ
727 key.type == BTRFS_EXTENT_DATA_KEY)
728 path->slots[0]--;
39279cc3 729 }
920bbbfb 730 ret = 0;
8c2383c3 731next_slot:
5f39d397 732 leaf = path->nodes[0];
920bbbfb
YZ
733 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
734 BUG_ON(del_nr > 0);
735 ret = btrfs_next_leaf(root, path);
736 if (ret < 0)
737 break;
738 if (ret > 0) {
739 ret = 0;
740 break;
8c2383c3 741 }
920bbbfb
YZ
742 leaf = path->nodes[0];
743 recow = 1;
744 }
745
746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
747
748 if (key.objectid > ino)
749 break;
750 if (WARN_ON_ONCE(key.objectid < ino) ||
751 key.type < BTRFS_EXTENT_DATA_KEY) {
752 ASSERT(del_nr == 0);
753 path->slots[0]++;
754 goto next_slot;
755 }
5893dfb9 756 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
757 break;
758
759 fi = btrfs_item_ptr(leaf, path->slots[0],
760 struct btrfs_file_extent_item);
761 extent_type = btrfs_file_extent_type(leaf, fi);
762
763 if (extent_type == BTRFS_FILE_EXTENT_REG ||
764 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
765 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
766 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
767 extent_offset = btrfs_file_extent_offset(leaf, fi);
768 extent_end = key.offset +
769 btrfs_file_extent_num_bytes(leaf, fi);
770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
771 extent_end = key.offset +
e41ca589 772 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 773 } else {
aeafbf84
FM
774 /* can't happen */
775 BUG();
39279cc3
CM
776 }
777
fc19c5e7
FM
778 /*
779 * Don't skip extent items representing 0 byte lengths. They
780 * used to be created (bug) if while punching holes we hit
781 * -ENOSPC condition. So if we find one here, just ensure we
782 * delete it, otherwise we would insert a new file extent item
783 * with the same key (offset) as that 0 bytes length file
784 * extent item in the call to setup_items_for_insert() later
785 * in this function.
786 */
62fe51c1
JB
787 if (extent_end == key.offset && extent_end >= search_start) {
788 last_end = extent_end;
fc19c5e7 789 goto delete_extent_item;
62fe51c1 790 }
fc19c5e7 791
920bbbfb
YZ
792 if (extent_end <= search_start) {
793 path->slots[0]++;
8c2383c3 794 goto next_slot;
39279cc3
CM
795 }
796
c3308f84 797 found = 1;
5893dfb9 798 search_start = max(key.offset, args->start);
dc7fdde3
CM
799 if (recow || !modify_tree) {
800 modify_tree = -1;
b3b4aa74 801 btrfs_release_path(path);
920bbbfb 802 continue;
39279cc3 803 }
6643558d 804
920bbbfb
YZ
805 /*
806 * | - range to drop - |
807 * | -------- extent -------- |
808 */
5893dfb9 809 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 810 BUG_ON(del_nr > 0);
00fdf13a 811 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 812 ret = -EOPNOTSUPP;
00fdf13a
LB
813 break;
814 }
920bbbfb
YZ
815
816 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 817 new_key.offset = args->start;
920bbbfb
YZ
818 ret = btrfs_duplicate_item(trans, root, path,
819 &new_key);
820 if (ret == -EAGAIN) {
b3b4aa74 821 btrfs_release_path(path);
920bbbfb 822 continue;
6643558d 823 }
920bbbfb
YZ
824 if (ret < 0)
825 break;
826
827 leaf = path->nodes[0];
828 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
829 struct btrfs_file_extent_item);
830 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 831 args->start - key.offset);
920bbbfb
YZ
832
833 fi = btrfs_item_ptr(leaf, path->slots[0],
834 struct btrfs_file_extent_item);
835
5893dfb9 836 extent_offset += args->start - key.offset;
920bbbfb
YZ
837 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
838 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 839 extent_end - args->start);
920bbbfb
YZ
840 btrfs_mark_buffer_dirty(leaf);
841
5dc562c5 842 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
843 btrfs_init_generic_ref(&ref,
844 BTRFS_ADD_DELAYED_REF,
845 disk_bytenr, num_bytes, 0);
846 btrfs_init_data_ref(&ref,
920bbbfb
YZ
847 root->root_key.objectid,
848 new_key.objectid,
f42c5da6
NB
849 args->start - extent_offset,
850 0, false);
82fa113f 851 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 852 BUG_ON(ret); /* -ENOMEM */
771ed689 853 }
5893dfb9 854 key.offset = args->start;
6643558d 855 }
62fe51c1
JB
856 /*
857 * From here on out we will have actually dropped something, so
858 * last_end can be updated.
859 */
860 last_end = extent_end;
861
920bbbfb
YZ
862 /*
863 * | ---- range to drop ----- |
864 * | -------- extent -------- |
865 */
5893dfb9 866 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 867 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 868 ret = -EOPNOTSUPP;
00fdf13a
LB
869 break;
870 }
6643558d 871
920bbbfb 872 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 873 new_key.offset = args->end;
0b246afa 874 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 875
5893dfb9 876 extent_offset += args->end - key.offset;
920bbbfb
YZ
877 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
878 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 879 extent_end - args->end);
920bbbfb 880 btrfs_mark_buffer_dirty(leaf);
2671485d 881 if (update_refs && disk_bytenr > 0)
2766ff61 882 args->bytes_found += args->end - key.offset;
920bbbfb 883 break;
39279cc3 884 }
771ed689 885
920bbbfb
YZ
886 search_start = extent_end;
887 /*
888 * | ---- range to drop ----- |
889 * | -------- extent -------- |
890 */
5893dfb9 891 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 892 BUG_ON(del_nr > 0);
00fdf13a 893 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 894 ret = -EOPNOTSUPP;
00fdf13a
LB
895 break;
896 }
8c2383c3 897
920bbbfb 898 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 899 args->start - key.offset);
920bbbfb 900 btrfs_mark_buffer_dirty(leaf);
2671485d 901 if (update_refs && disk_bytenr > 0)
2766ff61 902 args->bytes_found += extent_end - args->start;
5893dfb9 903 if (args->end == extent_end)
920bbbfb 904 break;
c8b97818 905
920bbbfb
YZ
906 path->slots[0]++;
907 goto next_slot;
31840ae1
ZY
908 }
909
920bbbfb
YZ
910 /*
911 * | ---- range to drop ----- |
912 * | ------ extent ------ |
913 */
5893dfb9 914 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 915delete_extent_item:
920bbbfb
YZ
916 if (del_nr == 0) {
917 del_slot = path->slots[0];
918 del_nr = 1;
919 } else {
920 BUG_ON(del_slot + del_nr != path->slots[0]);
921 del_nr++;
922 }
31840ae1 923
5dc562c5
JB
924 if (update_refs &&
925 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 926 args->bytes_found += extent_end - key.offset;
920bbbfb 927 extent_end = ALIGN(extent_end,
0b246afa 928 fs_info->sectorsize);
5dc562c5 929 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
930 btrfs_init_generic_ref(&ref,
931 BTRFS_DROP_DELAYED_REF,
932 disk_bytenr, num_bytes, 0);
933 btrfs_init_data_ref(&ref,
920bbbfb 934 root->root_key.objectid,
ffd4bb2a 935 key.objectid,
f42c5da6
NB
936 key.offset - extent_offset, 0,
937 false);
ffd4bb2a 938 ret = btrfs_free_extent(trans, &ref);
79787eaa 939 BUG_ON(ret); /* -ENOMEM */
2766ff61 940 args->bytes_found += extent_end - key.offset;
31840ae1 941 }
31840ae1 942
5893dfb9 943 if (args->end == extent_end)
920bbbfb
YZ
944 break;
945
946 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
947 path->slots[0]++;
948 goto next_slot;
949 }
950
951 ret = btrfs_del_items(trans, root, path, del_slot,
952 del_nr);
79787eaa 953 if (ret) {
66642832 954 btrfs_abort_transaction(trans, ret);
5dc562c5 955 break;
79787eaa 956 }
920bbbfb
YZ
957
958 del_nr = 0;
959 del_slot = 0;
960
b3b4aa74 961 btrfs_release_path(path);
920bbbfb 962 continue;
39279cc3 963 }
920bbbfb 964
290342f6 965 BUG();
39279cc3 966 }
920bbbfb 967
79787eaa 968 if (!ret && del_nr > 0) {
1acae57b
FDBM
969 /*
970 * Set path->slots[0] to first slot, so that after the delete
971 * if items are move off from our leaf to its immediate left or
972 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 973 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
974 */
975 path->slots[0] = del_slot;
920bbbfb 976 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 977 if (ret)
66642832 978 btrfs_abort_transaction(trans, ret);
d5f37527 979 }
1acae57b 980
d5f37527
FDBM
981 leaf = path->nodes[0];
982 /*
983 * If btrfs_del_items() was called, it might have deleted a leaf, in
984 * which case it unlocked our path, so check path->locks[0] matches a
985 * write lock.
986 */
7ecb4c31 987 if (!ret && args->replace_extent &&
ac5887c8 988 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 989 btrfs_leaf_free_space(leaf) >=
5893dfb9 990 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
991
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 994 key.offset = args->start;
d5f37527
FDBM
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
997
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1acae57b 1001 }
f0641656 1002 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
5893dfb9 1003 args->extent_inserted = true;
6643558d 1004 }
920bbbfb 1005
5893dfb9
FM
1006 if (!args->path)
1007 btrfs_free_path(path);
1008 else if (!args->extent_inserted)
1acae57b 1009 btrfs_release_path(path);
5893dfb9
FM
1010out:
1011 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 1012
39279cc3
CM
1013 return ret;
1014}
1015
d899e052 1016static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1017 u64 objectid, u64 bytenr, u64 orig_offset,
1018 u64 *start, u64 *end)
d899e052
YZ
1019{
1020 struct btrfs_file_extent_item *fi;
1021 struct btrfs_key key;
1022 u64 extent_end;
1023
1024 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1025 return 0;
1026
1027 btrfs_item_key_to_cpu(leaf, &key, slot);
1028 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1029 return 0;
1030
1031 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1032 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1033 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1034 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1035 btrfs_file_extent_compression(leaf, fi) ||
1036 btrfs_file_extent_encryption(leaf, fi) ||
1037 btrfs_file_extent_other_encoding(leaf, fi))
1038 return 0;
1039
1040 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1041 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1042 return 0;
1043
1044 *start = key.offset;
1045 *end = extent_end;
1046 return 1;
1047}
1048
1049/*
1050 * Mark extent in the range start - end as written.
1051 *
1052 * This changes extent type from 'pre-allocated' to 'regular'. If only
1053 * part of extent is marked as written, the extent will be split into
1054 * two or three.
1055 */
1056int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1057 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1058{
3ffbd68c 1059 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1060 struct btrfs_root *root = inode->root;
d899e052
YZ
1061 struct extent_buffer *leaf;
1062 struct btrfs_path *path;
1063 struct btrfs_file_extent_item *fi;
82fa113f 1064 struct btrfs_ref ref = { 0 };
d899e052 1065 struct btrfs_key key;
920bbbfb 1066 struct btrfs_key new_key;
d899e052
YZ
1067 u64 bytenr;
1068 u64 num_bytes;
1069 u64 extent_end;
5d4f98a2 1070 u64 orig_offset;
d899e052
YZ
1071 u64 other_start;
1072 u64 other_end;
920bbbfb
YZ
1073 u64 split;
1074 int del_nr = 0;
1075 int del_slot = 0;
6c7d54ac 1076 int recow;
e7b2ec3d 1077 int ret = 0;
7a6d7067 1078 u64 ino = btrfs_ino(inode);
d899e052 1079
d899e052 1080 path = btrfs_alloc_path();
d8926bb3
MF
1081 if (!path)
1082 return -ENOMEM;
d899e052 1083again:
6c7d54ac 1084 recow = 0;
920bbbfb 1085 split = start;
33345d01 1086 key.objectid = ino;
d899e052 1087 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1088 key.offset = split;
d899e052
YZ
1089
1090 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1091 if (ret < 0)
1092 goto out;
d899e052
YZ
1093 if (ret > 0 && path->slots[0] > 0)
1094 path->slots[0]--;
1095
1096 leaf = path->nodes[0];
1097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1098 if (key.objectid != ino ||
1099 key.type != BTRFS_EXTENT_DATA_KEY) {
1100 ret = -EINVAL;
1101 btrfs_abort_transaction(trans, ret);
1102 goto out;
1103 }
d899e052
YZ
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
9c8e63db
JB
1106 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1107 ret = -EINVAL;
1108 btrfs_abort_transaction(trans, ret);
1109 goto out;
1110 }
d899e052 1111 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1112 if (key.offset > start || extent_end < end) {
1113 ret = -EINVAL;
1114 btrfs_abort_transaction(trans, ret);
1115 goto out;
1116 }
d899e052
YZ
1117
1118 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1119 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1120 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1121 memcpy(&new_key, &key, sizeof(new_key));
1122
1123 if (start == key.offset && end < extent_end) {
1124 other_start = 0;
1125 other_end = start;
1126 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1127 ino, bytenr, orig_offset,
6c7d54ac
YZ
1128 &other_start, &other_end)) {
1129 new_key.offset = end;
0b246afa 1130 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1131 fi = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_file_extent_item);
224ecce5
JB
1133 btrfs_set_file_extent_generation(leaf, fi,
1134 trans->transid);
6c7d54ac
YZ
1135 btrfs_set_file_extent_num_bytes(leaf, fi,
1136 extent_end - end);
1137 btrfs_set_file_extent_offset(leaf, fi,
1138 end - orig_offset);
1139 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1140 struct btrfs_file_extent_item);
224ecce5
JB
1141 btrfs_set_file_extent_generation(leaf, fi,
1142 trans->transid);
6c7d54ac
YZ
1143 btrfs_set_file_extent_num_bytes(leaf, fi,
1144 end - other_start);
1145 btrfs_mark_buffer_dirty(leaf);
1146 goto out;
1147 }
1148 }
1149
1150 if (start > key.offset && end == extent_end) {
1151 other_start = end;
1152 other_end = 0;
1153 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1154 ino, bytenr, orig_offset,
6c7d54ac
YZ
1155 &other_start, &other_end)) {
1156 fi = btrfs_item_ptr(leaf, path->slots[0],
1157 struct btrfs_file_extent_item);
1158 btrfs_set_file_extent_num_bytes(leaf, fi,
1159 start - key.offset);
224ecce5
JB
1160 btrfs_set_file_extent_generation(leaf, fi,
1161 trans->transid);
6c7d54ac
YZ
1162 path->slots[0]++;
1163 new_key.offset = start;
0b246afa 1164 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1165
1166 fi = btrfs_item_ptr(leaf, path->slots[0],
1167 struct btrfs_file_extent_item);
224ecce5
JB
1168 btrfs_set_file_extent_generation(leaf, fi,
1169 trans->transid);
6c7d54ac
YZ
1170 btrfs_set_file_extent_num_bytes(leaf, fi,
1171 other_end - start);
1172 btrfs_set_file_extent_offset(leaf, fi,
1173 start - orig_offset);
1174 btrfs_mark_buffer_dirty(leaf);
1175 goto out;
1176 }
1177 }
d899e052 1178
920bbbfb
YZ
1179 while (start > key.offset || end < extent_end) {
1180 if (key.offset == start)
1181 split = end;
1182
920bbbfb
YZ
1183 new_key.offset = split;
1184 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1185 if (ret == -EAGAIN) {
b3b4aa74 1186 btrfs_release_path(path);
920bbbfb 1187 goto again;
d899e052 1188 }
79787eaa 1189 if (ret < 0) {
66642832 1190 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1191 goto out;
1192 }
d899e052 1193
920bbbfb
YZ
1194 leaf = path->nodes[0];
1195 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1196 struct btrfs_file_extent_item);
224ecce5 1197 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1198 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1199 split - key.offset);
1200
1201 fi = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_file_extent_item);
1203
224ecce5 1204 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1205 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1206 btrfs_set_file_extent_num_bytes(leaf, fi,
1207 extent_end - split);
d899e052
YZ
1208 btrfs_mark_buffer_dirty(leaf);
1209
82fa113f
QW
1210 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1211 num_bytes, 0);
1212 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 1213 orig_offset, 0, false);
82fa113f 1214 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1215 if (ret) {
1216 btrfs_abort_transaction(trans, ret);
1217 goto out;
1218 }
d899e052 1219
920bbbfb
YZ
1220 if (split == start) {
1221 key.offset = start;
1222 } else {
9c8e63db
JB
1223 if (start != key.offset) {
1224 ret = -EINVAL;
1225 btrfs_abort_transaction(trans, ret);
1226 goto out;
1227 }
d899e052 1228 path->slots[0]--;
920bbbfb 1229 extent_end = end;
d899e052 1230 }
6c7d54ac 1231 recow = 1;
d899e052
YZ
1232 }
1233
920bbbfb
YZ
1234 other_start = end;
1235 other_end = 0;
ffd4bb2a
QW
1236 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1237 num_bytes, 0);
f42c5da6
NB
1238 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
1239 0, false);
6c7d54ac 1240 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1241 ino, bytenr, orig_offset,
6c7d54ac
YZ
1242 &other_start, &other_end)) {
1243 if (recow) {
b3b4aa74 1244 btrfs_release_path(path);
6c7d54ac
YZ
1245 goto again;
1246 }
920bbbfb
YZ
1247 extent_end = other_end;
1248 del_slot = path->slots[0] + 1;
1249 del_nr++;
ffd4bb2a 1250 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1251 if (ret) {
1252 btrfs_abort_transaction(trans, ret);
1253 goto out;
1254 }
d899e052 1255 }
920bbbfb
YZ
1256 other_start = 0;
1257 other_end = start;
6c7d54ac 1258 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1259 ino, bytenr, orig_offset,
6c7d54ac
YZ
1260 &other_start, &other_end)) {
1261 if (recow) {
b3b4aa74 1262 btrfs_release_path(path);
6c7d54ac
YZ
1263 goto again;
1264 }
920bbbfb
YZ
1265 key.offset = other_start;
1266 del_slot = path->slots[0];
1267 del_nr++;
ffd4bb2a 1268 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1269 if (ret) {
1270 btrfs_abort_transaction(trans, ret);
1271 goto out;
1272 }
920bbbfb
YZ
1273 }
1274 if (del_nr == 0) {
3f6fae95
SL
1275 fi = btrfs_item_ptr(leaf, path->slots[0],
1276 struct btrfs_file_extent_item);
920bbbfb
YZ
1277 btrfs_set_file_extent_type(leaf, fi,
1278 BTRFS_FILE_EXTENT_REG);
224ecce5 1279 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1280 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1281 } else {
3f6fae95
SL
1282 fi = btrfs_item_ptr(leaf, del_slot - 1,
1283 struct btrfs_file_extent_item);
6c7d54ac
YZ
1284 btrfs_set_file_extent_type(leaf, fi,
1285 BTRFS_FILE_EXTENT_REG);
224ecce5 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1287 btrfs_set_file_extent_num_bytes(leaf, fi,
1288 extent_end - key.offset);
1289 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1290
6c7d54ac 1291 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1292 if (ret < 0) {
66642832 1293 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1294 goto out;
1295 }
6c7d54ac 1296 }
920bbbfb 1297out:
d899e052 1298 btrfs_free_path(path);
e7b2ec3d 1299 return ret;
d899e052
YZ
1300}
1301
b1bf862e
CM
1302/*
1303 * on error we return an unlocked page and the error value
1304 * on success we return a locked page and 0
1305 */
bb1591b4
CM
1306static int prepare_uptodate_page(struct inode *inode,
1307 struct page *page, u64 pos,
b6316429 1308 bool force_uptodate)
b1bf862e
CM
1309{
1310 int ret = 0;
1311
09cbfeaf 1312 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1313 !PageUptodate(page)) {
b1bf862e
CM
1314 ret = btrfs_readpage(NULL, page);
1315 if (ret)
1316 return ret;
1317 lock_page(page);
1318 if (!PageUptodate(page)) {
1319 unlock_page(page);
1320 return -EIO;
1321 }
e0467866
QW
1322
1323 /*
1324 * Since btrfs_readpage() will unlock the page before it
7c11d0ae
QW
1325 * returns, there is a window where btrfs_releasepage() can be
1326 * called to release the page. Here we check both inode
1327 * mapping and PagePrivate() to make sure the page was not
1328 * released.
e0467866
QW
1329 *
1330 * The private flag check is essential for subpage as we need
1331 * to store extra bitmap using page->private.
1332 */
1333 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
bb1591b4
CM
1334 unlock_page(page);
1335 return -EAGAIN;
1336 }
b1bf862e
CM
1337 }
1338 return 0;
1339}
1340
39279cc3 1341/*
376cc685 1342 * this just gets pages into the page cache and locks them down.
39279cc3 1343 */
b37392ea
MX
1344static noinline int prepare_pages(struct inode *inode, struct page **pages,
1345 size_t num_pages, loff_t pos,
1346 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1347{
1348 int i;
09cbfeaf 1349 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1350 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1351 int err = 0;
376cc685 1352 int faili;
8c2383c3 1353
39279cc3 1354 for (i = 0; i < num_pages; i++) {
bb1591b4 1355again:
a94733d0 1356 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1357 mask | __GFP_WRITE);
39279cc3 1358 if (!pages[i]) {
b1bf862e
CM
1359 faili = i - 1;
1360 err = -ENOMEM;
1361 goto fail;
1362 }
1363
32443de3
QW
1364 err = set_page_extent_mapped(pages[i]);
1365 if (err < 0) {
1366 faili = i;
1367 goto fail;
1368 }
1369
b1bf862e 1370 if (i == 0)
bb1591b4 1371 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1372 force_uptodate);
bb1591b4
CM
1373 if (!err && i == num_pages - 1)
1374 err = prepare_uptodate_page(inode, pages[i],
b6316429 1375 pos + write_bytes, false);
b1bf862e 1376 if (err) {
09cbfeaf 1377 put_page(pages[i]);
bb1591b4
CM
1378 if (err == -EAGAIN) {
1379 err = 0;
1380 goto again;
1381 }
b1bf862e
CM
1382 faili = i - 1;
1383 goto fail;
39279cc3 1384 }
ccd467d6 1385 wait_on_page_writeback(pages[i]);
39279cc3 1386 }
376cc685
MX
1387
1388 return 0;
1389fail:
1390 while (faili >= 0) {
1391 unlock_page(pages[faili]);
09cbfeaf 1392 put_page(pages[faili]);
376cc685
MX
1393 faili--;
1394 }
1395 return err;
1396
1397}
1398
1399/*
1400 * This function locks the extent and properly waits for data=ordered extents
1401 * to finish before allowing the pages to be modified if need.
1402 *
1403 * The return value:
1404 * 1 - the extent is locked
1405 * 0 - the extent is not locked, and everything is OK
1406 * -EAGAIN - need re-prepare the pages
1407 * the other < 0 number - Something wrong happens
1408 */
1409static noinline int
2cff578c 1410lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1411 size_t num_pages, loff_t pos,
2e78c927 1412 size_t write_bytes,
376cc685
MX
1413 u64 *lockstart, u64 *lockend,
1414 struct extent_state **cached_state)
1415{
3ffbd68c 1416 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1417 u64 start_pos;
1418 u64 last_pos;
1419 int i;
1420 int ret = 0;
1421
0b246afa 1422 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 1423 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 1424
e3b8a485 1425 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1426 struct btrfs_ordered_extent *ordered;
a7e3b975 1427
2cff578c
NB
1428 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1429 cached_state);
b88935bf
MX
1430 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1431 last_pos - start_pos + 1);
e6dcd2dc 1432 if (ordered &&
bffe633e 1433 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1434 ordered->file_offset <= last_pos) {
2cff578c 1435 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1436 last_pos, cached_state);
e6dcd2dc
CM
1437 for (i = 0; i < num_pages; i++) {
1438 unlock_page(pages[i]);
09cbfeaf 1439 put_page(pages[i]);
e6dcd2dc 1440 }
c0a43603 1441 btrfs_start_ordered_extent(ordered, 1);
b88935bf
MX
1442 btrfs_put_ordered_extent(ordered);
1443 return -EAGAIN;
e6dcd2dc
CM
1444 }
1445 if (ordered)
1446 btrfs_put_ordered_extent(ordered);
7703bdd8 1447
376cc685
MX
1448 *lockstart = start_pos;
1449 *lockend = last_pos;
1450 ret = 1;
0762704b 1451 }
376cc685 1452
7703bdd8 1453 /*
32443de3
QW
1454 * We should be called after prepare_pages() which should have locked
1455 * all pages in the range.
7703bdd8 1456 */
32443de3 1457 for (i = 0; i < num_pages; i++)
e6dcd2dc 1458 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1459
376cc685 1460 return ret;
39279cc3
CM
1461}
1462
38d37aa9
QW
1463static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1464 size_t *write_bytes, bool nowait)
7ee9e440 1465{
3ffbd68c 1466 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1467 struct btrfs_root *root = inode->root;
7ee9e440
JB
1468 u64 lockstart, lockend;
1469 u64 num_bytes;
1470 int ret;
1471
38d37aa9
QW
1472 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1473 return 0;
1474
5dbb75ed 1475 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1476 return -EAGAIN;
8257b2dc 1477
0b246afa 1478 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1479 lockend = round_up(pos + *write_bytes,
0b246afa 1480 fs_info->sectorsize) - 1;
5dbb75ed 1481 num_bytes = lockend - lockstart + 1;
7ee9e440 1482
5dbb75ed
FM
1483 if (nowait) {
1484 struct btrfs_ordered_extent *ordered;
1485
1486 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1487 return -EAGAIN;
1488
1489 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1490 num_bytes);
1491 if (ordered) {
1492 btrfs_put_ordered_extent(ordered);
1493 ret = -EAGAIN;
1494 goto out_unlock;
1495 }
1496 } else {
1497 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1498 lockend, NULL);
1499 }
7ee9e440 1500
85b7ab67 1501 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
a84d5d42 1502 NULL, NULL, NULL, false);
7ee9e440
JB
1503 if (ret <= 0) {
1504 ret = 0;
5dbb75ed
FM
1505 if (!nowait)
1506 btrfs_drew_write_unlock(&root->snapshot_lock);
7ee9e440 1507 } else {
c933956d
MX
1508 *write_bytes = min_t(size_t, *write_bytes ,
1509 num_bytes - pos + lockstart);
7ee9e440 1510 }
5dbb75ed 1511out_unlock:
85b7ab67 1512 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1513
1514 return ret;
1515}
1516
38d37aa9
QW
1517static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1518 size_t *write_bytes)
1519{
1520 return check_can_nocow(inode, pos, write_bytes, true);
1521}
1522
1523/*
1524 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1525 *
1526 * @pos: File offset
1527 * @write_bytes: The length to write, will be updated to the nocow writeable
1528 * range
1529 *
1530 * This function will flush ordered extents in the range to ensure proper
1531 * nocow checks.
1532 *
1533 * Return:
1534 * >0 and update @write_bytes if we can do nocow write
1535 * 0 if we can't do nocow write
1536 * -EAGAIN if we can't get the needed lock or there are ordered extents
1537 * for * (nowait == true) case
1538 * <0 if other error happened
1539 *
1540 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1541 */
1542int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1543 size_t *write_bytes)
1544{
1545 return check_can_nocow(inode, pos, write_bytes, false);
1546}
1547
1548void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1549{
1550 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1551}
1552
b8d8e1fd
GR
1553static void update_time_for_write(struct inode *inode)
1554{
1555 struct timespec64 now;
1556
1557 if (IS_NOCMTIME(inode))
1558 return;
1559
1560 now = current_time(inode);
1561 if (!timespec64_equal(&inode->i_mtime, &now))
1562 inode->i_mtime = now;
1563
1564 if (!timespec64_equal(&inode->i_ctime, &now))
1565 inode->i_ctime = now;
1566
1567 if (IS_I_VERSION(inode))
1568 inode_inc_iversion(inode);
1569}
1570
1571static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1572 size_t count)
1573{
1574 struct file *file = iocb->ki_filp;
1575 struct inode *inode = file_inode(file);
1576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1577 loff_t pos = iocb->ki_pos;
1578 int ret;
1579 loff_t oldsize;
1580 loff_t start_pos;
1581
1582 if (iocb->ki_flags & IOCB_NOWAIT) {
1583 size_t nocow_bytes = count;
1584
1585 /* We will allocate space in case nodatacow is not set, so bail */
1586 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes) <= 0)
1587 return -EAGAIN;
1588 /*
1589 * There are holes in the range or parts of the range that must
1590 * be COWed (shared extents, RO block groups, etc), so just bail
1591 * out.
1592 */
1593 if (nocow_bytes < count)
1594 return -EAGAIN;
1595 }
1596
1597 current->backing_dev_info = inode_to_bdi(inode);
1598 ret = file_remove_privs(file);
1599 if (ret)
1600 return ret;
1601
1602 /*
1603 * We reserve space for updating the inode when we reserve space for the
1604 * extent we are going to write, so we will enospc out there. We don't
1605 * need to start yet another transaction to update the inode as we will
1606 * update the inode when we finish writing whatever data we write.
1607 */
1608 update_time_for_write(inode);
1609
1610 start_pos = round_down(pos, fs_info->sectorsize);
1611 oldsize = i_size_read(inode);
1612 if (start_pos > oldsize) {
1613 /* Expand hole size to cover write data, preventing empty gap */
1614 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1615
b06359a3 1616 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
b8d8e1fd
GR
1617 if (ret) {
1618 current->backing_dev_info = NULL;
1619 return ret;
1620 }
1621 }
1622
1623 return 0;
1624}
1625
e4af400a
GR
1626static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1627 struct iov_iter *i)
4b46fce2 1628{
e4af400a 1629 struct file *file = iocb->ki_filp;
c3523706 1630 loff_t pos;
496ad9aa 1631 struct inode *inode = file_inode(file);
0b246afa 1632 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1633 struct page **pages = NULL;
364ecf36 1634 struct extent_changeset *data_reserved = NULL;
7ee9e440 1635 u64 release_bytes = 0;
376cc685
MX
1636 u64 lockstart;
1637 u64 lockend;
d0215f3e
JB
1638 size_t num_written = 0;
1639 int nrptrs;
c3523706 1640 ssize_t ret;
7ee9e440 1641 bool only_release_metadata = false;
b6316429 1642 bool force_page_uptodate = false;
5e8b9ef3 1643 loff_t old_isize = i_size_read(inode);
c3523706
GR
1644 unsigned int ilock_flags = 0;
1645
1646 if (iocb->ki_flags & IOCB_NOWAIT)
1647 ilock_flags |= BTRFS_ILOCK_TRY;
1648
1649 ret = btrfs_inode_lock(inode, ilock_flags);
1650 if (ret < 0)
1651 return ret;
4b46fce2 1652
c3523706
GR
1653 ret = generic_write_checks(iocb, i);
1654 if (ret <= 0)
1655 goto out;
1656
1657 ret = btrfs_write_check(iocb, i, ret);
1658 if (ret < 0)
1659 goto out;
1660
1661 pos = iocb->ki_pos;
09cbfeaf
KS
1662 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1663 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1664 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1665 nrptrs = max(nrptrs, 8);
31e818fe 1666 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1667 if (!pages) {
1668 ret = -ENOMEM;
1669 goto out;
1670 }
ab93dbec 1671
d0215f3e 1672 while (iov_iter_count(i) > 0) {
c67d970f 1673 struct extent_state *cached_state = NULL;
7073017a 1674 size_t offset = offset_in_page(pos);
2e78c927 1675 size_t sector_offset;
d0215f3e 1676 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1677 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1678 offset);
eefa45f5 1679 size_t num_pages;
7ee9e440 1680 size_t reserve_bytes;
d0215f3e
JB
1681 size_t dirty_pages;
1682 size_t copied;
2e78c927
CR
1683 size_t dirty_sectors;
1684 size_t num_sectors;
79f015f2 1685 int extents_locked;
39279cc3 1686
914ee295
XZ
1687 /*
1688 * Fault pages before locking them in prepare_pages
1689 * to avoid recursive lock
1690 */
a6294593 1691 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1692 ret = -EFAULT;
d0215f3e 1693 break;
914ee295
XZ
1694 }
1695
a0e248bb 1696 only_release_metadata = false;
da17066c 1697 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1698
364ecf36 1699 extent_changeset_release(data_reserved);
36ea6f3e
NB
1700 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1701 &data_reserved, pos,
364ecf36 1702 write_bytes);
c6887cd1 1703 if (ret < 0) {
eefa45f5
GR
1704 /*
1705 * If we don't have to COW at the offset, reserve
1706 * metadata only. write_bytes may get smaller than
1707 * requested here.
1708 */
38d37aa9 1709 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
eefa45f5 1710 &write_bytes) > 0)
c6887cd1 1711 only_release_metadata = true;
eefa45f5 1712 else
c6887cd1 1713 break;
c6887cd1 1714 }
1832a6d5 1715
eefa45f5
GR
1716 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1717 WARN_ON(num_pages > nrptrs);
1718 reserve_bytes = round_up(write_bytes + sector_offset,
1719 fs_info->sectorsize);
8b62f87b 1720 WARN_ON(reserve_bytes == 0);
9f3db423 1721 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7
OS
1722 reserve_bytes,
1723 reserve_bytes);
7ee9e440
JB
1724 if (ret) {
1725 if (!only_release_metadata)
25ce28ca 1726 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1727 data_reserved, pos,
1728 write_bytes);
8257b2dc 1729 else
38d37aa9 1730 btrfs_check_nocow_unlock(BTRFS_I(inode));
7ee9e440
JB
1731 break;
1732 }
1733
1734 release_bytes = reserve_bytes;
376cc685 1735again:
4a64001f
JB
1736 /*
1737 * This is going to setup the pages array with the number of
1738 * pages we want, so we don't really need to worry about the
1739 * contents of pages from loop to loop
1740 */
b37392ea
MX
1741 ret = prepare_pages(inode, pages, num_pages,
1742 pos, write_bytes,
b6316429 1743 force_page_uptodate);
8b62f87b
JB
1744 if (ret) {
1745 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1746 reserve_bytes);
d0215f3e 1747 break;
8b62f87b 1748 }
39279cc3 1749
79f015f2
GR
1750 extents_locked = lock_and_cleanup_extent_if_need(
1751 BTRFS_I(inode), pages,
2cff578c
NB
1752 num_pages, pos, write_bytes, &lockstart,
1753 &lockend, &cached_state);
79f015f2
GR
1754 if (extents_locked < 0) {
1755 if (extents_locked == -EAGAIN)
376cc685 1756 goto again;
8b62f87b 1757 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1758 reserve_bytes);
79f015f2 1759 ret = extents_locked;
376cc685 1760 break;
376cc685
MX
1761 }
1762
ee22f0c4 1763 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1764
0b246afa 1765 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1766 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1767 fs_info->sectorsize);
1768 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1769
b1bf862e
CM
1770 /*
1771 * if we have trouble faulting in the pages, fall
1772 * back to one page at a time
1773 */
1774 if (copied < write_bytes)
1775 nrptrs = 1;
1776
b6316429
JB
1777 if (copied == 0) {
1778 force_page_uptodate = true;
56244ef1 1779 dirty_sectors = 0;
b1bf862e 1780 dirty_pages = 0;
b6316429
JB
1781 } else {
1782 force_page_uptodate = false;
ed6078f7 1783 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1784 PAGE_SIZE);
b6316429 1785 }
914ee295 1786
2e78c927 1787 if (num_sectors > dirty_sectors) {
8b8b08cb 1788 /* release everything except the sectors we dirtied */
265fdfa6 1789 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1790 if (only_release_metadata) {
691fa059 1791 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1792 release_bytes, true);
485290a7
QW
1793 } else {
1794 u64 __pos;
1795
da17066c 1796 __pos = round_down(pos,
0b246afa 1797 fs_info->sectorsize) +
09cbfeaf 1798 (dirty_pages << PAGE_SHIFT);
86d52921 1799 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1800 data_reserved, __pos,
43b18595 1801 release_bytes, true);
485290a7 1802 }
914ee295
XZ
1803 }
1804
2e78c927 1805 release_bytes = round_up(copied + sector_offset,
0b246afa 1806 fs_info->sectorsize);
376cc685 1807
aa8c1a41
GR
1808 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1809 dirty_pages, pos, copied,
1810 &cached_state, only_release_metadata);
c67d970f
FM
1811
1812 /*
1813 * If we have not locked the extent range, because the range's
1814 * start offset is >= i_size, we might still have a non-NULL
1815 * cached extent state, acquired while marking the extent range
1816 * as delalloc through btrfs_dirty_pages(). Therefore free any
1817 * possible cached extent state to avoid a memory leak.
1818 */
79f015f2 1819 if (extents_locked)
376cc685 1820 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1821 lockstart, lockend, &cached_state);
c67d970f
FM
1822 else
1823 free_extent_state(cached_state);
1824
8702ba93 1825 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1826 if (ret) {
e4f94347 1827 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1828 break;
f1de9683 1829 }
39279cc3 1830
376cc685 1831 release_bytes = 0;
8257b2dc 1832 if (only_release_metadata)
38d37aa9 1833 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1834
e4f94347 1835 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1836
d0215f3e
JB
1837 cond_resched();
1838
d0e1d66b 1839 balance_dirty_pages_ratelimited(inode->i_mapping);
cb843a6f 1840
914ee295
XZ
1841 pos += copied;
1842 num_written += copied;
d0215f3e 1843 }
39279cc3 1844
d0215f3e
JB
1845 kfree(pages);
1846
7ee9e440 1847 if (release_bytes) {
8257b2dc 1848 if (only_release_metadata) {
38d37aa9 1849 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1850 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1851 release_bytes, true);
8257b2dc 1852 } else {
86d52921
NB
1853 btrfs_delalloc_release_space(BTRFS_I(inode),
1854 data_reserved,
bc42bda2 1855 round_down(pos, fs_info->sectorsize),
43b18595 1856 release_bytes, true);
8257b2dc 1857 }
7ee9e440
JB
1858 }
1859
364ecf36 1860 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1861 if (num_written > 0) {
1862 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1863 iocb->ki_pos += num_written;
1864 }
c3523706
GR
1865out:
1866 btrfs_inode_unlock(inode, ilock_flags);
d0215f3e
JB
1867 return num_written ? num_written : ret;
1868}
1869
4e4cabec
GR
1870static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1871 const struct iov_iter *iter, loff_t offset)
1872{
1873 const u32 blocksize_mask = fs_info->sectorsize - 1;
1874
1875 if (offset & blocksize_mask)
1876 return -EINVAL;
1877
1878 if (iov_iter_alignment(iter) & blocksize_mask)
1879 return -EINVAL;
1880
1881 return 0;
1882}
1883
1884static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e 1885{
51bd9563 1886 const bool is_sync_write = (iocb->ki_flags & IOCB_DSYNC);
d0215f3e 1887 struct file *file = iocb->ki_filp;
728404da 1888 struct inode *inode = file_inode(file);
4e4cabec 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1890 loff_t pos;
4e4cabec 1891 ssize_t written = 0;
d0215f3e 1892 ssize_t written_buffered;
51bd9563 1893 size_t prev_left = 0;
d0215f3e 1894 loff_t endbyte;
c3523706
GR
1895 ssize_t err;
1896 unsigned int ilock_flags = 0;
1897
1898 if (iocb->ki_flags & IOCB_NOWAIT)
1899 ilock_flags |= BTRFS_ILOCK_TRY;
1900
e9adabb9
GR
1901 /* If the write DIO is within EOF, use a shared lock */
1902 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1903 ilock_flags |= BTRFS_ILOCK_SHARED;
1904
1905relock:
c3523706
GR
1906 err = btrfs_inode_lock(inode, ilock_flags);
1907 if (err < 0)
1908 return err;
1909
1910 err = generic_write_checks(iocb, from);
1911 if (err <= 0) {
1912 btrfs_inode_unlock(inode, ilock_flags);
1913 return err;
1914 }
d0215f3e 1915
c3523706
GR
1916 err = btrfs_write_check(iocb, from, err);
1917 if (err < 0) {
1918 btrfs_inode_unlock(inode, ilock_flags);
1919 goto out;
1920 }
1921
1922 pos = iocb->ki_pos;
e9adabb9
GR
1923 /*
1924 * Re-check since file size may have changed just before taking the
1925 * lock or pos may have changed because of O_APPEND in generic_write_check()
1926 */
1927 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1928 pos + iov_iter_count(from) > i_size_read(inode)) {
1929 btrfs_inode_unlock(inode, ilock_flags);
1930 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1931 goto relock;
1932 }
c3523706
GR
1933
1934 if (check_direct_IO(fs_info, from, pos)) {
1935 btrfs_inode_unlock(inode, ilock_flags);
4e4cabec 1936 goto buffered;
c3523706 1937 }
4e4cabec 1938
51bd9563
FM
1939 /*
1940 * We remove IOCB_DSYNC so that we don't deadlock when iomap_dio_rw()
1941 * calls generic_write_sync() (through iomap_dio_complete()), because
1942 * that results in calling fsync (btrfs_sync_file()) which will try to
1943 * lock the inode in exclusive/write mode.
1944 */
1945 if (is_sync_write)
1946 iocb->ki_flags &= ~IOCB_DSYNC;
4e4cabec 1947
51bd9563
FM
1948 /*
1949 * The iov_iter can be mapped to the same file range we are writing to.
1950 * If that's the case, then we will deadlock in the iomap code, because
1951 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1952 * an ordered extent, and after that it will fault in the pages that the
1953 * iov_iter refers to. During the fault in we end up in the readahead
1954 * pages code (starting at btrfs_readahead()), which will lock the range,
1955 * find that ordered extent and then wait for it to complete (at
1956 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1957 * obviously the ordered extent can never complete as we didn't submit
1958 * yet the respective bio(s). This always happens when the buffer is
1959 * memory mapped to the same file range, since the iomap DIO code always
1960 * invalidates pages in the target file range (after starting and waiting
1961 * for any writeback).
1962 *
1963 * So here we disable page faults in the iov_iter and then retry if we
1964 * got -EFAULT, faulting in the pages before the retry.
1965 */
1966again:
1967 from->nofault = true;
1968 err = iomap_dio_rw(iocb, from, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
1969 IOMAP_DIO_PARTIAL, written);
1970 from->nofault = false;
d0215f3e 1971
51bd9563
FM
1972 /* No increment (+=) because iomap returns a cumulative value. */
1973 if (err > 0)
1974 written = err;
1975
1976 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1977 const size_t left = iov_iter_count(from);
1978 /*
1979 * We have more data left to write. Try to fault in as many as
1980 * possible of the remainder pages and retry. We do this without
1981 * releasing and locking again the inode, to prevent races with
1982 * truncate.
1983 *
1984 * Also, in case the iov refers to pages in the file range of the
1985 * file we want to write to (due to a mmap), we could enter an
1986 * infinite loop if we retry after faulting the pages in, since
1987 * iomap will invalidate any pages in the range early on, before
1988 * it tries to fault in the pages of the iov. So we keep track of
1989 * how much was left of iov in the previous EFAULT and fallback
1990 * to buffered IO in case we haven't made any progress.
1991 */
1992 if (left == prev_left) {
1993 err = -ENOTBLK;
1994 } else {
1995 fault_in_iov_iter_readable(from, left);
1996 prev_left = left;
1997 goto again;
1998 }
a42fa643
GR
1999 }
2000
51bd9563
FM
2001 btrfs_inode_unlock(inode, ilock_flags);
2002
2003 /*
2004 * Add back IOCB_DSYNC. Our caller, btrfs_file_write_iter(), will do
2005 * the fsync (call generic_write_sync()).
2006 */
2007 if (is_sync_write)
2008 iocb->ki_flags |= IOCB_DSYNC;
2009
2010 /* If 'err' is -ENOTBLK then it means we must fallback to buffered IO. */
2011 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 2012 goto out;
d0215f3e 2013
4e4cabec 2014buffered:
e4af400a
GR
2015 pos = iocb->ki_pos;
2016 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
2017 if (written_buffered < 0) {
2018 err = written_buffered;
2019 goto out;
39279cc3 2020 }
075bdbdb
FM
2021 /*
2022 * Ensure all data is persisted. We want the next direct IO read to be
2023 * able to read what was just written.
2024 */
d0215f3e 2025 endbyte = pos + written_buffered - 1;
728404da 2026 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
2027 if (err)
2028 goto out;
728404da 2029 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
2030 if (err)
2031 goto out;
2032 written += written_buffered;
867c4f93 2033 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
2034 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
2035 endbyte >> PAGE_SHIFT);
39279cc3 2036out:
51bd9563 2037 return err < 0 ? err : written;
d0215f3e 2038}
5b92ee72 2039
7c0c7269
OS
2040static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
2041 const struct btrfs_ioctl_encoded_io_args *encoded)
2042{
2043 struct file *file = iocb->ki_filp;
2044 struct inode *inode = file_inode(file);
2045 loff_t count;
2046 ssize_t ret;
2047
2048 btrfs_inode_lock(inode, 0);
2049 count = encoded->len;
2050 ret = generic_write_checks_count(iocb, &count);
2051 if (ret == 0 && count != encoded->len) {
2052 /*
2053 * The write got truncated by generic_write_checks_count(). We
2054 * can't do a partial encoded write.
2055 */
2056 ret = -EFBIG;
2057 }
2058 if (ret || encoded->len == 0)
2059 goto out;
2060
2061 ret = btrfs_write_check(iocb, from, encoded->len);
2062 if (ret < 0)
2063 goto out;
2064
2065 ret = btrfs_do_encoded_write(iocb, from, encoded);
2066out:
2067 btrfs_inode_unlock(inode, 0);
2068 return ret;
2069}
2070
2071ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
2072 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
2073{
2074 struct file *file = iocb->ki_filp;
14971657 2075 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 2076 ssize_t num_written, num_sync;
f50cb7af 2077 const bool sync = iocb->ki_flags & IOCB_DSYNC;
d0215f3e 2078
c86537a4
GR
2079 /*
2080 * If the fs flips readonly due to some impossible error, although we
2081 * have opened a file as writable, we have to stop this write operation
2082 * to ensure consistency.
2083 */
84961539 2084 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
2085 return -EROFS;
2086
7c0c7269 2087 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
91f9943e
CH
2088 return -EOPNOTSUPP;
2089
b812ce28 2090 if (sync)
14971657 2091 atomic_inc(&inode->sync_writers);
b812ce28 2092
7c0c7269
OS
2093 if (encoded) {
2094 num_written = btrfs_encoded_write(iocb, from, encoded);
2095 num_sync = encoded->len;
2096 } else if (iocb->ki_flags & IOCB_DIRECT) {
2097 num_written = num_sync = btrfs_direct_write(iocb, from);
2098 } else {
2099 num_written = num_sync = btrfs_buffered_write(iocb, from);
2100 }
d0215f3e 2101
bc0939fc
FM
2102 btrfs_set_inode_last_sub_trans(inode);
2103
7c0c7269
OS
2104 if (num_sync > 0) {
2105 num_sync = generic_write_sync(iocb, num_sync);
2106 if (num_sync < 0)
2107 num_written = num_sync;
2108 }
0a3404dc 2109
b812ce28 2110 if (sync)
14971657 2111 atomic_dec(&inode->sync_writers);
b8d8e1fd 2112
39279cc3 2113 current->backing_dev_info = NULL;
c3523706 2114 return num_written;
39279cc3
CM
2115}
2116
7c0c7269
OS
2117static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2118{
2119 return btrfs_do_write_iter(iocb, from, NULL);
2120}
2121
d397712b 2122int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 2123{
23b5ec74
JB
2124 struct btrfs_file_private *private = filp->private_data;
2125
23b5ec74
JB
2126 if (private && private->filldir_buf)
2127 kfree(private->filldir_buf);
2128 kfree(private);
2129 filp->private_data = NULL;
2130
f6dc45c7 2131 /*
1fd4033d
NB
2132 * Set by setattr when we are about to truncate a file from a non-zero
2133 * size to a zero size. This tries to flush down new bytes that may
2134 * have been written if the application were using truncate to replace
2135 * a file in place.
f6dc45c7 2136 */
1fd4033d 2137 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
2138 &BTRFS_I(inode)->runtime_flags))
2139 filemap_flush(inode->i_mapping);
e1b81e67
M
2140 return 0;
2141}
2142
669249ee
FM
2143static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2144{
2145 int ret;
343e4fc1 2146 struct blk_plug plug;
669249ee 2147
343e4fc1
LB
2148 /*
2149 * This is only called in fsync, which would do synchronous writes, so
2150 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2151 * multiple disks using raid profile, a large IO can be split to
2152 * several segments of stripe length (currently 64K).
2153 */
2154 blk_start_plug(&plug);
669249ee 2155 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2156 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2157 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2158 blk_finish_plug(&plug);
669249ee
FM
2159
2160 return ret;
2161}
2162
626e9f41
FM
2163static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
2164{
2165 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2166 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2167
2168 if (btrfs_inode_in_log(inode, fs_info->generation) &&
2169 list_empty(&ctx->ordered_extents))
2170 return true;
2171
2172 /*
2173 * If we are doing a fast fsync we can not bail out if the inode's
2174 * last_trans is <= then the last committed transaction, because we only
2175 * update the last_trans of the inode during ordered extent completion,
2176 * and for a fast fsync we don't wait for that, we only wait for the
2177 * writeback to complete.
2178 */
2179 if (inode->last_trans <= fs_info->last_trans_committed &&
2180 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
2181 list_empty(&ctx->ordered_extents)))
2182 return true;
2183
2184 return false;
2185}
2186
d352ac68
CM
2187/*
2188 * fsync call for both files and directories. This logs the inode into
2189 * the tree log instead of forcing full commits whenever possible.
2190 *
2191 * It needs to call filemap_fdatawait so that all ordered extent updates are
2192 * in the metadata btree are up to date for copying to the log.
2193 *
2194 * It drops the inode mutex before doing the tree log commit. This is an
2195 * important optimization for directories because holding the mutex prevents
2196 * new operations on the dir while we write to disk.
2197 */
02c24a82 2198int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2199{
de17e793 2200 struct dentry *dentry = file_dentry(file);
2b0143b5 2201 struct inode *inode = d_inode(dentry);
0b246afa 2202 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2203 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2204 struct btrfs_trans_handle *trans;
8b050d35 2205 struct btrfs_log_ctx ctx;
333427a5 2206 int ret = 0, err;
48778179
FM
2207 u64 len;
2208 bool full_sync;
39279cc3 2209
1abe9b8a 2210 trace_btrfs_sync_file(file, datasync);
257c62e1 2211
ebb70442
LB
2212 btrfs_init_log_ctx(&ctx, inode);
2213
95418ed1 2214 /*
48778179
FM
2215 * Always set the range to a full range, otherwise we can get into
2216 * several problems, from missing file extent items to represent holes
2217 * when not using the NO_HOLES feature, to log tree corruption due to
2218 * races between hole detection during logging and completion of ordered
2219 * extents outside the range, to missing checksums due to ordered extents
2220 * for which we flushed only a subset of their pages.
95418ed1 2221 */
48778179
FM
2222 start = 0;
2223 end = LLONG_MAX;
2224 len = (u64)LLONG_MAX + 1;
95418ed1 2225
90abccf2
MX
2226 /*
2227 * We write the dirty pages in the range and wait until they complete
2228 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2229 * multi-task, and make the performance up. See
2230 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2231 */
669249ee 2232 ret = start_ordered_ops(inode, start, end);
90abccf2 2233 if (ret)
333427a5 2234 goto out;
90abccf2 2235
885f46d8 2236 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
c495144b 2237
2ecb7923 2238 atomic_inc(&root->log_batch);
b5e6c3e1 2239
7af59743 2240 /*
48778179
FM
2241 * Always check for the full sync flag while holding the inode's lock,
2242 * to avoid races with other tasks. The flag must be either set all the
2243 * time during logging or always off all the time while logging.
7af59743 2244 */
48778179
FM
2245 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2246 &BTRFS_I(inode)->runtime_flags);
7af59743 2247
aab15e8e 2248 /*
885f46d8
FM
2249 * Before we acquired the inode's lock and the mmap lock, someone may
2250 * have dirtied more pages in the target range. We need to make sure
2251 * that writeback for any such pages does not start while we are logging
2252 * the inode, because if it does, any of the following might happen when
2253 * we are not doing a full inode sync:
aab15e8e
FM
2254 *
2255 * 1) We log an extent after its writeback finishes but before its
2256 * checksums are added to the csum tree, leading to -EIO errors
2257 * when attempting to read the extent after a log replay.
2258 *
2259 * 2) We can end up logging an extent before its writeback finishes.
2260 * Therefore after the log replay we will have a file extent item
2261 * pointing to an unwritten extent (and no data checksums as well).
2262 *
2263 * So trigger writeback for any eventual new dirty pages and then we
2264 * wait for all ordered extents to complete below.
2265 */
2266 ret = start_ordered_ops(inode, start, end);
2267 if (ret) {
885f46d8 2268 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
aab15e8e
FM
2269 goto out;
2270 }
2271
669249ee 2272 /*
b5e6c3e1 2273 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2274 * IO of a lower priority task while holding a transaction open.
ba0b084a 2275 *
48778179
FM
2276 * For a full fsync we wait for the ordered extents to complete while
2277 * for a fast fsync we wait just for writeback to complete, and then
2278 * attach the ordered extents to the transaction so that a transaction
2279 * commit waits for their completion, to avoid data loss if we fsync,
2280 * the current transaction commits before the ordered extents complete
2281 * and a power failure happens right after that.
d8e3fb10
NA
2282 *
2283 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
2284 * logical address recorded in the ordered extent may change. We need
2285 * to wait for the IO to stabilize the logical address.
669249ee 2286 */
d8e3fb10 2287 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
2288 ret = btrfs_wait_ordered_range(inode, start, len);
2289 } else {
2290 /*
2291 * Get our ordered extents as soon as possible to avoid doing
2292 * checksum lookups in the csum tree, and use instead the
2293 * checksums attached to the ordered extents.
2294 */
2295 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2296 &ctx.ordered_extents);
2297 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 2298 }
48778179
FM
2299
2300 if (ret)
2301 goto out_release_extents;
2302
2ecb7923 2303 atomic_inc(&root->log_batch);
257c62e1 2304
a4abeea4 2305 smp_mb();
626e9f41 2306 if (skip_inode_logging(&ctx)) {
5dc562c5 2307 /*
01327610 2308 * We've had everything committed since the last time we were
5dc562c5
JB
2309 * modified so clear this flag in case it was set for whatever
2310 * reason, it's no longer relevant.
2311 */
2312 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2313 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2314 /*
2315 * An ordered extent might have started before and completed
2316 * already with io errors, in which case the inode was not
2317 * updated and we end up here. So check the inode's mapping
333427a5
JL
2318 * for any errors that might have happened since we last
2319 * checked called fsync.
0596a904 2320 */
333427a5 2321 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 2322 goto out_release_extents;
15ee9bc7 2323 }
15ee9bc7 2324
5039eddc
JB
2325 /*
2326 * We use start here because we will need to wait on the IO to complete
2327 * in btrfs_sync_log, which could require joining a transaction (for
2328 * example checking cross references in the nocow path). If we use join
2329 * here we could get into a situation where we're waiting on IO to
2330 * happen that is blocked on a transaction trying to commit. With start
2331 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2332 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2333 * from thinking they are super smart and changing this to
2334 * btrfs_join_transaction *cough*Josef*cough*.
2335 */
a22285a6
YZ
2336 trans = btrfs_start_transaction(root, 0);
2337 if (IS_ERR(trans)) {
2338 ret = PTR_ERR(trans);
48778179 2339 goto out_release_extents;
39279cc3 2340 }
d0c2f4fa 2341 trans->in_fsync = true;
e02119d5 2342
48778179
FM
2343 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2344 btrfs_release_log_ctx_extents(&ctx);
02c24a82 2345 if (ret < 0) {
a0634be5
FDBM
2346 /* Fallthrough and commit/free transaction. */
2347 ret = 1;
02c24a82 2348 }
49eb7e46
CM
2349
2350 /* we've logged all the items and now have a consistent
2351 * version of the file in the log. It is possible that
2352 * someone will come in and modify the file, but that's
2353 * fine because the log is consistent on disk, and we
2354 * have references to all of the file's extents
2355 *
2356 * It is possible that someone will come in and log the
2357 * file again, but that will end up using the synchronization
2358 * inside btrfs_sync_log to keep things safe.
2359 */
885f46d8 2360 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
49eb7e46 2361
257c62e1 2362 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2363 if (!ret) {
8b050d35 2364 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2365 if (!ret) {
3a45bb20 2366 ret = btrfs_end_transaction(trans);
0ef8b726 2367 goto out;
2ab28f32 2368 }
257c62e1 2369 }
48778179
FM
2370 if (!full_sync) {
2371 ret = btrfs_wait_ordered_range(inode, start, len);
2372 if (ret) {
2373 btrfs_end_transaction(trans);
2374 goto out;
2375 }
2376 }
3a45bb20 2377 ret = btrfs_commit_transaction(trans);
257c62e1 2378 } else {
3a45bb20 2379 ret = btrfs_end_transaction(trans);
e02119d5 2380 }
39279cc3 2381out:
ebb70442 2382 ASSERT(list_empty(&ctx.list));
333427a5
JL
2383 err = file_check_and_advance_wb_err(file);
2384 if (!ret)
2385 ret = err;
014e4ac4 2386 return ret > 0 ? -EIO : ret;
48778179
FM
2387
2388out_release_extents:
2389 btrfs_release_log_ctx_extents(&ctx);
885f46d8 2390 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
48778179 2391 goto out;
39279cc3
CM
2392}
2393
f0f37e2f 2394static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2395 .fault = filemap_fault,
f1820361 2396 .map_pages = filemap_map_pages,
9ebefb18
CM
2397 .page_mkwrite = btrfs_page_mkwrite,
2398};
2399
2400static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2401{
058a457e
MX
2402 struct address_space *mapping = filp->f_mapping;
2403
2404 if (!mapping->a_ops->readpage)
2405 return -ENOEXEC;
2406
9ebefb18 2407 file_accessed(filp);
058a457e 2408 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2409
9ebefb18
CM
2410 return 0;
2411}
2412
35339c24 2413static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2414 int slot, u64 start, u64 end)
2415{
2416 struct btrfs_file_extent_item *fi;
2417 struct btrfs_key key;
2418
2419 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2420 return 0;
2421
2422 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2423 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2424 key.type != BTRFS_EXTENT_DATA_KEY)
2425 return 0;
2426
2427 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2428
2429 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2430 return 0;
2431
2432 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2433 return 0;
2434
2435 if (key.offset == end)
2436 return 1;
2437 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2438 return 1;
2439 return 0;
2440}
2441
a012a74e
NB
2442static int fill_holes(struct btrfs_trans_handle *trans,
2443 struct btrfs_inode *inode,
2444 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2445{
3ffbd68c 2446 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2447 struct btrfs_root *root = inode->root;
2aaa6655
JB
2448 struct extent_buffer *leaf;
2449 struct btrfs_file_extent_item *fi;
2450 struct extent_map *hole_em;
a012a74e 2451 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2452 struct btrfs_key key;
2453 int ret;
2454
0b246afa 2455 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2456 goto out;
2457
a012a74e 2458 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2459 key.type = BTRFS_EXTENT_DATA_KEY;
2460 key.offset = offset;
2461
2aaa6655 2462 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2463 if (ret <= 0) {
2464 /*
2465 * We should have dropped this offset, so if we find it then
2466 * something has gone horribly wrong.
2467 */
2468 if (ret == 0)
2469 ret = -EINVAL;
2aaa6655 2470 return ret;
f94480bd 2471 }
2aaa6655
JB
2472
2473 leaf = path->nodes[0];
a012a74e 2474 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2475 u64 num_bytes;
2476
2477 path->slots[0]--;
2478 fi = btrfs_item_ptr(leaf, path->slots[0],
2479 struct btrfs_file_extent_item);
2480 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2481 end - offset;
2482 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2483 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2484 btrfs_set_file_extent_offset(leaf, fi, 0);
2485 btrfs_mark_buffer_dirty(leaf);
2486 goto out;
2487 }
2488
1707e26d 2489 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2490 u64 num_bytes;
2491
2aaa6655 2492 key.offset = offset;
0b246afa 2493 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2494 fi = btrfs_item_ptr(leaf, path->slots[0],
2495 struct btrfs_file_extent_item);
2496 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2497 offset;
2498 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2499 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2500 btrfs_set_file_extent_offset(leaf, fi, 0);
2501 btrfs_mark_buffer_dirty(leaf);
2502 goto out;
2503 }
2504 btrfs_release_path(path);
2505
a012a74e 2506 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2507 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2508 if (ret)
2509 return ret;
2510
2511out:
2512 btrfs_release_path(path);
2513
2514 hole_em = alloc_extent_map();
2515 if (!hole_em) {
2516 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
23e3337f 2517 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2518 } else {
2519 hole_em->start = offset;
2520 hole_em->len = end - offset;
cc95bef6 2521 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2522 hole_em->orig_start = offset;
2523
2524 hole_em->block_start = EXTENT_MAP_HOLE;
2525 hole_em->block_len = 0;
b4939680 2526 hole_em->orig_block_len = 0;
2aaa6655
JB
2527 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2528 hole_em->generation = trans->transid;
2529
2530 do {
2531 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2532 write_lock(&em_tree->lock);
09a2a8f9 2533 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2534 write_unlock(&em_tree->lock);
2535 } while (ret == -EEXIST);
2536 free_extent_map(hole_em);
2537 if (ret)
23e3337f 2538 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2539 }
2540
2541 return 0;
2542}
2543
d7781546
QW
2544/*
2545 * Find a hole extent on given inode and change start/len to the end of hole
2546 * extent.(hole/vacuum extent whose em->start <= start &&
2547 * em->start + em->len > start)
2548 * When a hole extent is found, return 1 and modify start/len.
2549 */
dea46d84 2550static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2551{
dea46d84 2552 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2553 struct extent_map *em;
2554 int ret = 0;
2555
dea46d84 2556 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2557 round_down(*start, fs_info->sectorsize),
39b07b5d 2558 round_up(*len, fs_info->sectorsize));
9986277e
DC
2559 if (IS_ERR(em))
2560 return PTR_ERR(em);
d7781546
QW
2561
2562 /* Hole or vacuum extent(only exists in no-hole mode) */
2563 if (em->block_start == EXTENT_MAP_HOLE) {
2564 ret = 1;
2565 *len = em->start + em->len > *start + *len ?
2566 0 : *start + *len - em->start - em->len;
2567 *start = em->start + em->len;
2568 }
2569 free_extent_map(em);
2570 return ret;
2571}
2572
f27451f2
FM
2573static int btrfs_punch_hole_lock_range(struct inode *inode,
2574 const u64 lockstart,
2575 const u64 lockend,
2576 struct extent_state **cached_state)
2577{
0528476b
QW
2578 /*
2579 * For subpage case, if the range is not at page boundary, we could
2580 * have pages at the leading/tailing part of the range.
2581 * This could lead to dead loop since filemap_range_has_page()
2582 * will always return true.
2583 * So here we need to do extra page alignment for
2584 * filemap_range_has_page().
2585 */
2586 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2587 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2588
f27451f2
FM
2589 while (1) {
2590 struct btrfs_ordered_extent *ordered;
2591 int ret;
2592
2593 truncate_pagecache_range(inode, lockstart, lockend);
2594
2595 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2596 cached_state);
6d072c8e
NB
2597 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2598 lockend);
f27451f2
FM
2599
2600 /*
2601 * We need to make sure we have no ordered extents in this range
2602 * and nobody raced in and read a page in this range, if we did
2603 * we need to try again.
2604 */
2605 if ((!ordered ||
bffe633e 2606 (ordered->file_offset + ordered->num_bytes <= lockstart ||
f27451f2 2607 ordered->file_offset > lockend)) &&
051c98eb 2608 !filemap_range_has_page(inode->i_mapping,
0528476b 2609 page_lockstart, page_lockend)) {
f27451f2
FM
2610 if (ordered)
2611 btrfs_put_ordered_extent(ordered);
2612 break;
2613 }
2614 if (ordered)
2615 btrfs_put_ordered_extent(ordered);
2616 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2617 lockend, cached_state);
2618 ret = btrfs_wait_ordered_range(inode, lockstart,
2619 lockend - lockstart + 1);
2620 if (ret)
2621 return ret;
2622 }
2623 return 0;
2624}
2625
0cbb5bdf 2626static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2627 struct btrfs_inode *inode,
690a5dbf 2628 struct btrfs_path *path,
bf385648 2629 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2630 const u64 replace_len,
2631 const u64 bytes_to_drop)
690a5dbf 2632{
03fcb1ab
NB
2633 struct btrfs_fs_info *fs_info = trans->fs_info;
2634 struct btrfs_root *root = inode->root;
690a5dbf
FM
2635 struct btrfs_file_extent_item *extent;
2636 struct extent_buffer *leaf;
2637 struct btrfs_key key;
2638 int slot;
2639 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2640 int ret;
2641
bf385648 2642 if (replace_len == 0)
690a5dbf
FM
2643 return 0;
2644
bf385648 2645 if (extent_info->disk_offset == 0 &&
2766ff61 2646 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2647 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2648 return 0;
2766ff61 2649 }
690a5dbf 2650
03fcb1ab 2651 key.objectid = btrfs_ino(inode);
690a5dbf 2652 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2653 key.offset = extent_info->file_offset;
690a5dbf 2654 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2655 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2656 if (ret)
2657 return ret;
2658 leaf = path->nodes[0];
2659 slot = path->slots[0];
bf385648 2660 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2661 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2662 sizeof(struct btrfs_file_extent_item));
690a5dbf 2663 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2664 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2665 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2666 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2667 if (extent_info->is_new_extent)
8fccebfa 2668 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
690a5dbf
FM
2669 btrfs_mark_buffer_dirty(leaf);
2670 btrfs_release_path(path);
2671
03fcb1ab
NB
2672 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2673 replace_len);
9ddc959e
JB
2674 if (ret)
2675 return ret;
2676
690a5dbf 2677 /* If it's a hole, nothing more needs to be done. */
2766ff61 2678 if (extent_info->disk_offset == 0) {
03fcb1ab 2679 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2680 return 0;
2766ff61 2681 }
690a5dbf 2682
03fcb1ab 2683 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2684
bf385648
FM
2685 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2686 key.objectid = extent_info->disk_offset;
8fccebfa 2687 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2688 key.offset = extent_info->disk_len;
8fccebfa 2689 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2690 btrfs_ino(inode),
bf385648
FM
2691 extent_info->file_offset,
2692 extent_info->qgroup_reserved,
8fccebfa
FM
2693 &key);
2694 } else {
2695 u64 ref_offset;
2696
2697 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648
FM
2698 extent_info->disk_offset,
2699 extent_info->disk_len, 0);
2700 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2701 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2702 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2703 ret = btrfs_inc_extent_ref(trans, &ref);
2704 }
2705
bf385648 2706 extent_info->insertions++;
690a5dbf
FM
2707
2708 return ret;
2709}
2710
9cba40a6
FM
2711/*
2712 * The respective range must have been previously locked, as well as the inode.
2713 * The end offset is inclusive (last byte of the range).
bf385648
FM
2714 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2715 * the file range with an extent.
2716 * When not punching a hole, we don't want to end up in a state where we dropped
2717 * extents without inserting a new one, so we must abort the transaction to avoid
2718 * a corruption.
9cba40a6 2719 */
bfc78479
NB
2720int btrfs_replace_file_extents(struct btrfs_inode *inode,
2721 struct btrfs_path *path, const u64 start,
2722 const u64 end,
2723 struct btrfs_replace_extent_info *extent_info,
2724 struct btrfs_trans_handle **trans_out)
9cba40a6 2725{
5893dfb9 2726 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2727 struct btrfs_root *root = inode->root;
2728 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2729 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2730 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2731 struct btrfs_trans_handle *trans = NULL;
2732 struct btrfs_block_rsv *rsv;
2733 unsigned int rsv_count;
2734 u64 cur_offset;
9cba40a6
FM
2735 u64 len = end - start;
2736 int ret = 0;
2737
2738 if (end <= start)
2739 return -EINVAL;
2740
2741 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2742 if (!rsv) {
2743 ret = -ENOMEM;
2744 goto out;
2745 }
2bd36e7b 2746 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
9cba40a6
FM
2747 rsv->failfast = 1;
2748
2749 /*
2750 * 1 - update the inode
2751 * 1 - removing the extents in the range
bf385648
FM
2752 * 1 - adding the hole extent if no_holes isn't set or if we are
2753 * replacing the range with a new extent
9cba40a6 2754 */
bf385648 2755 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2756 rsv_count = 3;
2757 else
2758 rsv_count = 2;
2759
9cba40a6
FM
2760 trans = btrfs_start_transaction(root, rsv_count);
2761 if (IS_ERR(trans)) {
2762 ret = PTR_ERR(trans);
2763 trans = NULL;
2764 goto out_free;
2765 }
2766
2767 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2768 min_size, false);
2769 BUG_ON(ret);
2770 trans->block_rsv = rsv;
2771
2772 cur_offset = start;
5893dfb9
FM
2773 drop_args.path = path;
2774 drop_args.end = end + 1;
2775 drop_args.drop_cache = true;
9cba40a6 2776 while (cur_offset < end) {
5893dfb9 2777 drop_args.start = cur_offset;
bfc78479 2778 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2779 /* If we are punching a hole decrement the inode's byte count */
2780 if (!extent_info)
bfc78479 2781 btrfs_update_inode_bytes(inode, 0,
2766ff61 2782 drop_args.bytes_found);
690a5dbf
FM
2783 if (ret != -ENOSPC) {
2784 /*
4afb912f
JB
2785 * The only time we don't want to abort is if we are
2786 * attempting to clone a partial inline extent, in which
2787 * case we'll get EOPNOTSUPP. However if we aren't
2788 * clone we need to abort no matter what, because if we
2789 * got EOPNOTSUPP via prealloc then we messed up and
2790 * need to abort.
690a5dbf 2791 */
4afb912f
JB
2792 if (ret &&
2793 (ret != -EOPNOTSUPP ||
2794 (extent_info && extent_info->is_new_extent)))
690a5dbf 2795 btrfs_abort_transaction(trans, ret);
9cba40a6 2796 break;
690a5dbf 2797 }
9cba40a6
FM
2798
2799 trans->block_rsv = &fs_info->trans_block_rsv;
2800
5893dfb9 2801 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2802 cur_offset < ino_size) {
bfc78479
NB
2803 ret = fill_holes(trans, inode, path, cur_offset,
2804 drop_args.drop_end);
9cba40a6
FM
2805 if (ret) {
2806 /*
2807 * If we failed then we didn't insert our hole
2808 * entries for the area we dropped, so now the
2809 * fs is corrupted, so we must abort the
2810 * transaction.
2811 */
2812 btrfs_abort_transaction(trans, ret);
2813 break;
2814 }
5893dfb9 2815 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2816 /*
2817 * We are past the i_size here, but since we didn't
2818 * insert holes we need to clear the mapped area so we
2819 * know to not set disk_i_size in this area until a new
2820 * file extent is inserted here.
2821 */
bfc78479 2822 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2823 cur_offset,
2824 drop_args.drop_end - cur_offset);
9ddc959e
JB
2825 if (ret) {
2826 /*
2827 * We couldn't clear our area, so we could
2828 * presumably adjust up and corrupt the fs, so
2829 * we need to abort.
2830 */
2831 btrfs_abort_transaction(trans, ret);
2832 break;
2833 }
9cba40a6
FM
2834 }
2835
5893dfb9
FM
2836 if (extent_info &&
2837 drop_args.drop_end > extent_info->file_offset) {
2838 u64 replace_len = drop_args.drop_end -
2839 extent_info->file_offset;
690a5dbf 2840
bfc78479
NB
2841 ret = btrfs_insert_replace_extent(trans, inode, path,
2842 extent_info, replace_len,
03fcb1ab 2843 drop_args.bytes_found);
690a5dbf
FM
2844 if (ret) {
2845 btrfs_abort_transaction(trans, ret);
2846 break;
2847 }
bf385648
FM
2848 extent_info->data_len -= replace_len;
2849 extent_info->data_offset += replace_len;
2850 extent_info->file_offset += replace_len;
690a5dbf
FM
2851 }
2852
bfc78479 2853 ret = btrfs_update_inode(trans, root, inode);
9cba40a6
FM
2854 if (ret)
2855 break;
2856
2857 btrfs_end_transaction(trans);
2858 btrfs_btree_balance_dirty(fs_info);
2859
2860 trans = btrfs_start_transaction(root, rsv_count);
2861 if (IS_ERR(trans)) {
2862 ret = PTR_ERR(trans);
2863 trans = NULL;
2864 break;
2865 }
2866
2867 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2868 rsv, min_size, false);
2869 BUG_ON(ret); /* shouldn't happen */
2870 trans->block_rsv = rsv;
2871
3227788c
BC
2872 cur_offset = drop_args.drop_end;
2873 len = end - cur_offset;
2874 if (!extent_info && len) {
bfc78479 2875 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2876 if (unlikely(ret < 0))
2877 break;
2878 if (ret && !len) {
2879 ret = 0;
2880 break;
2881 }
9cba40a6
FM
2882 }
2883 }
2884
690a5dbf
FM
2885 /*
2886 * If we were cloning, force the next fsync to be a full one since we
2887 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2888 * NO_HOLES is enabled) file extent items and did not setup new extent
2889 * maps for the replacement extents (or holes).
690a5dbf 2890 */
bf385648 2891 if (extent_info && !extent_info->is_new_extent)
23e3337f 2892 btrfs_set_inode_full_sync(inode);
690a5dbf 2893
9cba40a6
FM
2894 if (ret)
2895 goto out_trans;
2896
2897 trans->block_rsv = &fs_info->trans_block_rsv;
2898 /*
2899 * If we are using the NO_HOLES feature we might have had already an
2900 * hole that overlaps a part of the region [lockstart, lockend] and
2901 * ends at (or beyond) lockend. Since we have no file extent items to
2902 * represent holes, drop_end can be less than lockend and so we must
2903 * make sure we have an extent map representing the existing hole (the
2904 * call to __btrfs_drop_extents() might have dropped the existing extent
2905 * map representing the existing hole), otherwise the fast fsync path
2906 * will not record the existence of the hole region
2907 * [existing_hole_start, lockend].
2908 */
5893dfb9
FM
2909 if (drop_args.drop_end <= end)
2910 drop_args.drop_end = end + 1;
9cba40a6
FM
2911 /*
2912 * Don't insert file hole extent item if it's for a range beyond eof
2913 * (because it's useless) or if it represents a 0 bytes range (when
2914 * cur_offset == drop_end).
2915 */
5893dfb9
FM
2916 if (!extent_info && cur_offset < ino_size &&
2917 cur_offset < drop_args.drop_end) {
bfc78479
NB
2918 ret = fill_holes(trans, inode, path, cur_offset,
2919 drop_args.drop_end);
9cba40a6
FM
2920 if (ret) {
2921 /* Same comment as above. */
2922 btrfs_abort_transaction(trans, ret);
2923 goto out_trans;
2924 }
5893dfb9 2925 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2926 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2927 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2928 drop_args.drop_end - cur_offset);
9ddc959e
JB
2929 if (ret) {
2930 btrfs_abort_transaction(trans, ret);
2931 goto out_trans;
2932 }
2933
9cba40a6 2934 }
bf385648 2935 if (extent_info) {
bfc78479 2936 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2937 extent_info, extent_info->data_len,
2938 drop_args.bytes_found);
690a5dbf
FM
2939 if (ret) {
2940 btrfs_abort_transaction(trans, ret);
2941 goto out_trans;
2942 }
2943 }
9cba40a6
FM
2944
2945out_trans:
2946 if (!trans)
2947 goto out_free;
2948
2949 trans->block_rsv = &fs_info->trans_block_rsv;
2950 if (ret)
2951 btrfs_end_transaction(trans);
2952 else
2953 *trans_out = trans;
2954out_free:
2955 btrfs_free_block_rsv(fs_info, rsv);
2956out:
2957 return ret;
2958}
2959
05fd9564 2960static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2961{
05fd9564 2962 struct inode *inode = file_inode(file);
0b246afa 2963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2964 struct btrfs_root *root = BTRFS_I(inode)->root;
2965 struct extent_state *cached_state = NULL;
2966 struct btrfs_path *path;
9cba40a6 2967 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2968 u64 lockstart;
2969 u64 lockend;
2970 u64 tail_start;
2971 u64 tail_len;
2972 u64 orig_start = offset;
2aaa6655 2973 int ret = 0;
9703fefe 2974 bool same_block;
a1a50f60 2975 u64 ino_size;
9703fefe 2976 bool truncated_block = false;
e8c1c76e 2977 bool updated_inode = false;
2aaa6655 2978
0ef8b726
JB
2979 ret = btrfs_wait_ordered_range(inode, offset, len);
2980 if (ret)
2981 return ret;
2aaa6655 2982
8d9b4a16 2983 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
0b246afa 2984 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2985 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2986 if (ret < 0)
2987 goto out_only_mutex;
2988 if (ret && !len) {
2989 /* Already in a large hole */
2990 ret = 0;
2991 goto out_only_mutex;
2992 }
2993
05fd9564
DW
2994 ret = file_modified(file);
2995 if (ret)
2996 goto out_only_mutex;
2997
6fee248d 2998 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
d7781546 2999 lockend = round_down(offset + len,
6fee248d 3000 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
0b246afa
JM
3001 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
3002 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 3003 /*
9703fefe 3004 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
3005 * because we are sure there is no data there.
3006 */
2aaa6655 3007 /*
9703fefe
CR
3008 * Only do this if we are in the same block and we aren't doing the
3009 * entire block.
2aaa6655 3010 */
0b246afa 3011 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 3012 if (offset < ino_size) {
9703fefe 3013 truncated_block = true;
217f42eb
NB
3014 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3015 0);
e8c1c76e
FM
3016 } else {
3017 ret = 0;
3018 }
d7781546 3019 goto out_only_mutex;
2aaa6655
JB
3020 }
3021
9703fefe 3022 /* zero back part of the first block */
12870f1c 3023 if (offset < ino_size) {
9703fefe 3024 truncated_block = true;
217f42eb 3025 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 3026 if (ret) {
8d9b4a16 3027 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
7426cc04
MX
3028 return ret;
3029 }
2aaa6655
JB
3030 }
3031
d7781546
QW
3032 /* Check the aligned pages after the first unaligned page,
3033 * if offset != orig_start, which means the first unaligned page
01327610 3034 * including several following pages are already in holes,
d7781546
QW
3035 * the extra check can be skipped */
3036 if (offset == orig_start) {
3037 /* after truncate page, check hole again */
3038 len = offset + len - lockstart;
3039 offset = lockstart;
dea46d84 3040 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
3041 if (ret < 0)
3042 goto out_only_mutex;
3043 if (ret && !len) {
3044 ret = 0;
3045 goto out_only_mutex;
3046 }
3047 lockstart = offset;
3048 }
3049
3050 /* Check the tail unaligned part is in a hole */
3051 tail_start = lockend + 1;
3052 tail_len = offset + len - tail_start;
3053 if (tail_len) {
dea46d84 3054 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
3055 if (unlikely(ret < 0))
3056 goto out_only_mutex;
3057 if (!ret) {
3058 /* zero the front end of the last page */
3059 if (tail_start + tail_len < ino_size) {
9703fefe 3060 truncated_block = true;
217f42eb 3061 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
3062 tail_start + tail_len,
3063 0, 1);
d7781546
QW
3064 if (ret)
3065 goto out_only_mutex;
51f395ad 3066 }
0061280d 3067 }
2aaa6655
JB
3068 }
3069
3070 if (lockend < lockstart) {
e8c1c76e
FM
3071 ret = 0;
3072 goto out_only_mutex;
2aaa6655
JB
3073 }
3074
f27451f2
FM
3075 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3076 &cached_state);
8fca9550 3077 if (ret)
f27451f2 3078 goto out_only_mutex;
2aaa6655
JB
3079
3080 path = btrfs_alloc_path();
3081 if (!path) {
3082 ret = -ENOMEM;
3083 goto out;
3084 }
3085
bfc78479
NB
3086 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
3087 lockend, NULL, &trans);
9cba40a6
FM
3088 btrfs_free_path(path);
3089 if (ret)
3090 goto out;
2aaa6655 3091
9cba40a6 3092 ASSERT(trans != NULL);
e1f5790e 3093 inode_inc_iversion(inode);
c2050a45 3094 inode->i_mtime = inode->i_ctime = current_time(inode);
9a56fcd1 3095 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e8c1c76e 3096 updated_inode = true;
3a45bb20 3097 btrfs_end_transaction(trans);
2ff7e61e 3098 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
3099out:
3100 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3101 &cached_state);
d7781546 3102out_only_mutex:
9cba40a6 3103 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
3104 /*
3105 * If we only end up zeroing part of a page, we still need to
3106 * update the inode item, so that all the time fields are
3107 * updated as well as the necessary btrfs inode in memory fields
3108 * for detecting, at fsync time, if the inode isn't yet in the
3109 * log tree or it's there but not up to date.
3110 */
17900668
FM
3111 struct timespec64 now = current_time(inode);
3112
3113 inode_inc_iversion(inode);
3114 inode->i_mtime = now;
3115 inode->i_ctime = now;
e8c1c76e
FM
3116 trans = btrfs_start_transaction(root, 1);
3117 if (IS_ERR(trans)) {
9cba40a6 3118 ret = PTR_ERR(trans);
e8c1c76e 3119 } else {
9cba40a6
FM
3120 int ret2;
3121
9a56fcd1 3122 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9cba40a6
FM
3123 ret2 = btrfs_end_transaction(trans);
3124 if (!ret)
3125 ret = ret2;
e8c1c76e
FM
3126 }
3127 }
8d9b4a16 3128 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
9cba40a6 3129 return ret;
2aaa6655
JB
3130}
3131
14524a84
QW
3132/* Helper structure to record which range is already reserved */
3133struct falloc_range {
3134 struct list_head list;
3135 u64 start;
3136 u64 len;
3137};
3138
3139/*
3140 * Helper function to add falloc range
3141 *
3142 * Caller should have locked the larger range of extent containing
3143 * [start, len)
3144 */
3145static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3146{
14524a84
QW
3147 struct falloc_range *range = NULL;
3148
77d25534
NB
3149 if (!list_empty(head)) {
3150 /*
3151 * As fallocate iterates by bytenr order, we only need to check
3152 * the last range.
3153 */
3154 range = list_last_entry(head, struct falloc_range, list);
3155 if (range->start + range->len == start) {
3156 range->len += len;
3157 return 0;
3158 }
14524a84 3159 }
77d25534 3160
32fc932e 3161 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
3162 if (!range)
3163 return -ENOMEM;
3164 range->start = start;
3165 range->len = len;
3166 list_add_tail(&range->list, head);
3167 return 0;
3168}
3169
f27451f2
FM
3170static int btrfs_fallocate_update_isize(struct inode *inode,
3171 const u64 end,
3172 const int mode)
3173{
3174 struct btrfs_trans_handle *trans;
3175 struct btrfs_root *root = BTRFS_I(inode)->root;
3176 int ret;
3177 int ret2;
3178
3179 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3180 return 0;
3181
3182 trans = btrfs_start_transaction(root, 1);
3183 if (IS_ERR(trans))
3184 return PTR_ERR(trans);
3185
3186 inode->i_ctime = current_time(inode);
3187 i_size_write(inode, end);
76aea537 3188 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 3189 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
f27451f2
FM
3190 ret2 = btrfs_end_transaction(trans);
3191
3192 return ret ? ret : ret2;
3193}
3194
81fdf638 3195enum {
f262fa8d
DS
3196 RANGE_BOUNDARY_WRITTEN_EXTENT,
3197 RANGE_BOUNDARY_PREALLOC_EXTENT,
3198 RANGE_BOUNDARY_HOLE,
81fdf638
FM
3199};
3200
948dfeb8 3201static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
3202 u64 offset)
3203{
948dfeb8 3204 const u64 sectorsize = btrfs_inode_sectorsize(inode);
f27451f2 3205 struct extent_map *em;
81fdf638 3206 int ret;
f27451f2
FM
3207
3208 offset = round_down(offset, sectorsize);
948dfeb8 3209 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
3210 if (IS_ERR(em))
3211 return PTR_ERR(em);
3212
3213 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
3214 ret = RANGE_BOUNDARY_HOLE;
3215 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3216 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3217 else
3218 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
3219
3220 free_extent_map(em);
3221 return ret;
3222}
3223
3224static int btrfs_zero_range(struct inode *inode,
3225 loff_t offset,
3226 loff_t len,
3227 const int mode)
3228{
3229 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3230 struct extent_map *em;
3231 struct extent_changeset *data_reserved = NULL;
3232 int ret;
3233 u64 alloc_hint = 0;
6fee248d 3234 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
f27451f2
FM
3235 u64 alloc_start = round_down(offset, sectorsize);
3236 u64 alloc_end = round_up(offset + len, sectorsize);
3237 u64 bytes_to_reserve = 0;
3238 bool space_reserved = false;
3239
39b07b5d
OS
3240 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3241 alloc_end - alloc_start);
f27451f2
FM
3242 if (IS_ERR(em)) {
3243 ret = PTR_ERR(em);
3244 goto out;
3245 }
3246
3247 /*
3248 * Avoid hole punching and extent allocation for some cases. More cases
3249 * could be considered, but these are unlikely common and we keep things
3250 * as simple as possible for now. Also, intentionally, if the target
3251 * range contains one or more prealloc extents together with regular
3252 * extents and holes, we drop all the existing extents and allocate a
3253 * new prealloc extent, so that we get a larger contiguous disk extent.
3254 */
3255 if (em->start <= alloc_start &&
3256 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3257 const u64 em_end = em->start + em->len;
3258
3259 if (em_end >= offset + len) {
3260 /*
3261 * The whole range is already a prealloc extent,
3262 * do nothing except updating the inode's i_size if
3263 * needed.
3264 */
3265 free_extent_map(em);
3266 ret = btrfs_fallocate_update_isize(inode, offset + len,
3267 mode);
3268 goto out;
3269 }
3270 /*
3271 * Part of the range is already a prealloc extent, so operate
3272 * only on the remaining part of the range.
3273 */
3274 alloc_start = em_end;
3275 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3276 len = offset + len - alloc_start;
3277 offset = alloc_start;
3278 alloc_hint = em->block_start + em->len;
3279 }
3280 free_extent_map(em);
3281
3282 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3283 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
3284 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3285 sectorsize);
f27451f2
FM
3286 if (IS_ERR(em)) {
3287 ret = PTR_ERR(em);
3288 goto out;
3289 }
3290
3291 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3292 free_extent_map(em);
3293 ret = btrfs_fallocate_update_isize(inode, offset + len,
3294 mode);
3295 goto out;
3296 }
3297 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3298 free_extent_map(em);
217f42eb
NB
3299 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
3300 0);
f27451f2
FM
3301 if (!ret)
3302 ret = btrfs_fallocate_update_isize(inode,
3303 offset + len,
3304 mode);
3305 return ret;
3306 }
3307 free_extent_map(em);
3308 alloc_start = round_down(offset, sectorsize);
3309 alloc_end = alloc_start + sectorsize;
3310 goto reserve_space;
3311 }
3312
3313 alloc_start = round_up(offset, sectorsize);
3314 alloc_end = round_down(offset + len, sectorsize);
3315
3316 /*
3317 * For unaligned ranges, check the pages at the boundaries, they might
3318 * map to an extent, in which case we need to partially zero them, or
3319 * they might map to a hole, in which case we need our allocation range
3320 * to cover them.
3321 */
3322 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
3323 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3324 offset);
f27451f2
FM
3325 if (ret < 0)
3326 goto out;
81fdf638 3327 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3328 alloc_start = round_down(offset, sectorsize);
3329 ret = 0;
81fdf638 3330 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 3331 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
3332 if (ret)
3333 goto out;
81fdf638
FM
3334 } else {
3335 ret = 0;
f27451f2
FM
3336 }
3337 }
3338
3339 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 3340 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
3341 offset + len);
3342 if (ret < 0)
3343 goto out;
81fdf638 3344 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
3345 alloc_end = round_up(offset + len, sectorsize);
3346 ret = 0;
81fdf638 3347 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
3348 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
3349 0, 1);
f27451f2
FM
3350 if (ret)
3351 goto out;
81fdf638
FM
3352 } else {
3353 ret = 0;
f27451f2
FM
3354 }
3355 }
3356
3357reserve_space:
3358 if (alloc_start < alloc_end) {
3359 struct extent_state *cached_state = NULL;
3360 const u64 lockstart = alloc_start;
3361 const u64 lockend = alloc_end - 1;
3362
3363 bytes_to_reserve = alloc_end - alloc_start;
3364 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3365 bytes_to_reserve);
3366 if (ret < 0)
3367 goto out;
3368 space_reserved = true;
f27451f2
FM
3369 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3370 &cached_state);
3371 if (ret)
3372 goto out;
7661a3e0 3373 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 3374 alloc_start, bytes_to_reserve);
4f6a49de
NB
3375 if (ret) {
3376 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3377 lockend, &cached_state);
a7f8b1c2 3378 goto out;
4f6a49de 3379 }
f27451f2
FM
3380 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3381 alloc_end - alloc_start,
3382 i_blocksize(inode),
3383 offset + len, &alloc_hint);
3384 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3385 lockend, &cached_state);
3386 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3387 if (ret) {
f27451f2 3388 space_reserved = false;
9f13ce74
FM
3389 goto out;
3390 }
f27451f2 3391 }
9f13ce74 3392 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3393 out:
3394 if (ret && space_reserved)
25ce28ca 3395 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3396 alloc_start, bytes_to_reserve);
3397 extent_changeset_free(data_reserved);
3398
3399 return ret;
3400}
3401
2fe17c10
CH
3402static long btrfs_fallocate(struct file *file, int mode,
3403 loff_t offset, loff_t len)
3404{
496ad9aa 3405 struct inode *inode = file_inode(file);
2fe17c10 3406 struct extent_state *cached_state = NULL;
364ecf36 3407 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3408 struct falloc_range *range;
3409 struct falloc_range *tmp;
3410 struct list_head reserve_list;
2fe17c10
CH
3411 u64 cur_offset;
3412 u64 last_byte;
3413 u64 alloc_start;
3414 u64 alloc_end;
3415 u64 alloc_hint = 0;
3416 u64 locked_end;
14524a84 3417 u64 actual_end = 0;
47e1d1c7
FM
3418 u64 data_space_needed = 0;
3419 u64 data_space_reserved = 0;
3420 u64 qgroup_reserved = 0;
2fe17c10 3421 struct extent_map *em;
6fee248d 3422 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
2fe17c10
CH
3423 int ret;
3424
f1569c4c
NA
3425 /* Do not allow fallocate in ZONED mode */
3426 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3427 return -EOPNOTSUPP;
3428
797f4277
MX
3429 alloc_start = round_down(offset, blocksize);
3430 alloc_end = round_up(offset + len, blocksize);
18513091 3431 cur_offset = alloc_start;
2fe17c10 3432
2aaa6655 3433 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3434 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3435 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3436 return -EOPNOTSUPP;
3437
2aaa6655 3438 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3439 return btrfs_punch_hole(file, offset, len);
2aaa6655 3440
8d9b4a16 3441 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
2a162ce9
DI
3442
3443 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3444 ret = inode_newsize_ok(inode, offset + len);
3445 if (ret)
3446 goto out;
3447 }
2fe17c10 3448
05fd9564
DW
3449 ret = file_modified(file);
3450 if (ret)
3451 goto out;
3452
14524a84
QW
3453 /*
3454 * TODO: Move these two operations after we have checked
3455 * accurate reserved space, or fallocate can still fail but
3456 * with page truncated or size expanded.
3457 *
3458 * But that's a minor problem and won't do much harm BTW.
3459 */
2fe17c10 3460 if (alloc_start > inode->i_size) {
b06359a3 3461 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3462 alloc_start);
2fe17c10
CH
3463 if (ret)
3464 goto out;
0f6925fa 3465 } else if (offset + len > inode->i_size) {
a71754fc
JB
3466 /*
3467 * If we are fallocating from the end of the file onward we
9703fefe
CR
3468 * need to zero out the end of the block if i_size lands in the
3469 * middle of a block.
a71754fc 3470 */
217f42eb 3471 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3472 if (ret)
3473 goto out;
2fe17c10
CH
3474 }
3475
a71754fc
JB
3476 /*
3477 * wait for ordered IO before we have any locks. We'll loop again
3478 * below with the locks held.
3479 */
0ef8b726
JB
3480 ret = btrfs_wait_ordered_range(inode, alloc_start,
3481 alloc_end - alloc_start);
3482 if (ret)
3483 goto out;
a71754fc 3484
f27451f2
FM
3485 if (mode & FALLOC_FL_ZERO_RANGE) {
3486 ret = btrfs_zero_range(inode, offset, len, mode);
8d9b4a16 3487 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
f27451f2
FM
3488 return ret;
3489 }
3490
2fe17c10
CH
3491 locked_end = alloc_end - 1;
3492 while (1) {
3493 struct btrfs_ordered_extent *ordered;
3494
3495 /* the extent lock is ordered inside the running
3496 * transaction
3497 */
3498 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3499 locked_end, &cached_state);
6d072c8e
NB
3500 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3501 locked_end);
96b09dde 3502
2fe17c10 3503 if (ordered &&
bffe633e 3504 ordered->file_offset + ordered->num_bytes > alloc_start &&
2fe17c10
CH
3505 ordered->file_offset < alloc_end) {
3506 btrfs_put_ordered_extent(ordered);
3507 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3508 alloc_start, locked_end,
e43bbe5e 3509 &cached_state);
2fe17c10
CH
3510 /*
3511 * we can't wait on the range with the transaction
3512 * running or with the extent lock held
3513 */
0ef8b726
JB
3514 ret = btrfs_wait_ordered_range(inode, alloc_start,
3515 alloc_end - alloc_start);
3516 if (ret)
3517 goto out;
2fe17c10
CH
3518 } else {
3519 if (ordered)
3520 btrfs_put_ordered_extent(ordered);
3521 break;
3522 }
3523 }
3524
14524a84
QW
3525 /* First, check if we exceed the qgroup limit */
3526 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3527 while (cur_offset < alloc_end) {
fc4f21b1 3528 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3529 alloc_end - cur_offset);
9986277e
DC
3530 if (IS_ERR(em)) {
3531 ret = PTR_ERR(em);
79787eaa
JM
3532 break;
3533 }
2fe17c10 3534 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3535 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3536 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3537 if (em->block_start == EXTENT_MAP_HOLE ||
3538 (cur_offset >= inode->i_size &&
3539 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
47e1d1c7
FM
3540 const u64 range_len = last_byte - cur_offset;
3541
3542 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3543 if (ret < 0) {
3544 free_extent_map(em);
3545 break;
3d850dd4 3546 }
7661a3e0 3547 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3548 &data_reserved, cur_offset, range_len);
be2d253c
FM
3549 if (ret < 0) {
3550 free_extent_map(em);
14524a84 3551 break;
be2d253c 3552 }
47e1d1c7
FM
3553 qgroup_reserved += range_len;
3554 data_space_needed += range_len;
2fe17c10
CH
3555 }
3556 free_extent_map(em);
2fe17c10 3557 cur_offset = last_byte;
14524a84
QW
3558 }
3559
47e1d1c7
FM
3560 if (!ret && data_space_needed > 0) {
3561 /*
3562 * We are safe to reserve space here as we can't have delalloc
3563 * in the range, see above.
3564 */
3565 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3566 data_space_needed);
3567 if (!ret)
3568 data_space_reserved = data_space_needed;
3569 }
3570
14524a84
QW
3571 /*
3572 * If ret is still 0, means we're OK to fallocate.
3573 * Or just cleanup the list and exit.
3574 */
3575 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3576 if (!ret) {
14524a84
QW
3577 ret = btrfs_prealloc_file_range(inode, mode,
3578 range->start,
93407472 3579 range->len, i_blocksize(inode),
14524a84 3580 offset + len, &alloc_hint);
47e1d1c7
FM
3581 /*
3582 * btrfs_prealloc_file_range() releases space even
3583 * if it returns an error.
3584 */
3585 data_space_reserved -= range->len;
3586 qgroup_reserved -= range->len;
3587 } else if (data_space_reserved > 0) {
25ce28ca 3588 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3589 data_reserved, range->start,
3590 range->len);
3591 data_space_reserved -= range->len;
3592 qgroup_reserved -= range->len;
3593 } else if (qgroup_reserved > 0) {
3594 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3595 range->start, range->len);
3596 qgroup_reserved -= range->len;
3597 }
14524a84
QW
3598 list_del(&range->list);
3599 kfree(range);
3600 }
3601 if (ret < 0)
3602 goto out_unlock;
3603
f27451f2
FM
3604 /*
3605 * We didn't need to allocate any more space, but we still extended the
3606 * size of the file so we need to update i_size and the inode item.
3607 */
3608 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3609out_unlock:
2fe17c10 3610 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3611 &cached_state);
2fe17c10 3612out:
8d9b4a16 3613 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
364ecf36 3614 extent_changeset_free(data_reserved);
2fe17c10
CH
3615 return ret;
3616}
3617
cca5de97 3618static loff_t find_desired_extent(struct btrfs_inode *inode, loff_t offset,
bc80230e 3619 int whence)
b2675157 3620{
cca5de97 3621 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7f4ca37c 3622 struct extent_map *em = NULL;
b2675157 3623 struct extent_state *cached_state = NULL;
cca5de97 3624 loff_t i_size = inode->vfs_inode.i_size;
4d1a40c6
LB
3625 u64 lockstart;
3626 u64 lockend;
3627 u64 start;
3628 u64 len;
b2675157
JB
3629 int ret = 0;
3630
bc80230e 3631 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3632 return -ENXIO;
3633
3634 /*
bc80230e 3635 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3636 * the very start of the file.
3637 */
bc80230e 3638 start = max_t(loff_t, 0, offset);
4d1a40c6 3639
0b246afa 3640 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3641 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3642 if (lockend <= lockstart)
0b246afa 3643 lockend = lockstart + fs_info->sectorsize;
1214b53f 3644 lockend--;
b2675157
JB
3645 len = lockend - lockstart + 1;
3646
cca5de97 3647 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3648
d79b7c26 3649 while (start < i_size) {
cca5de97 3650 em = btrfs_get_extent_fiemap(inode, start, len);
b2675157 3651 if (IS_ERR(em)) {
6af021d8 3652 ret = PTR_ERR(em);
7f4ca37c 3653 em = NULL;
b2675157
JB
3654 break;
3655 }
3656
7f4ca37c
JB
3657 if (whence == SEEK_HOLE &&
3658 (em->block_start == EXTENT_MAP_HOLE ||
3659 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3660 break;
3661 else if (whence == SEEK_DATA &&
3662 (em->block_start != EXTENT_MAP_HOLE &&
3663 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3664 break;
b2675157
JB
3665
3666 start = em->start + em->len;
b2675157 3667 free_extent_map(em);
7f4ca37c 3668 em = NULL;
b2675157
JB
3669 cond_resched();
3670 }
7f4ca37c 3671 free_extent_map(em);
cca5de97 3672 unlock_extent_cached(&inode->io_tree, lockstart, lockend,
bc80230e
NB
3673 &cached_state);
3674 if (ret) {
3675 offset = ret;
3676 } else {
d79b7c26 3677 if (whence == SEEK_DATA && start >= i_size)
bc80230e 3678 offset = -ENXIO;
7f4ca37c 3679 else
bc80230e 3680 offset = min_t(loff_t, start, i_size);
7f4ca37c 3681 }
bc80230e
NB
3682
3683 return offset;
b2675157
JB
3684}
3685
965c8e59 3686static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3687{
3688 struct inode *inode = file->f_mapping->host;
b2675157 3689
965c8e59 3690 switch (whence) {
2034f3b4
NB
3691 default:
3692 return generic_file_llseek(file, offset, whence);
b2675157
JB
3693 case SEEK_DATA:
3694 case SEEK_HOLE:
a14b78ad 3695 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
cca5de97 3696 offset = find_desired_extent(BTRFS_I(inode), offset, whence);
a14b78ad 3697 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
bc80230e 3698 break;
b2675157
JB
3699 }
3700
bc80230e
NB
3701 if (offset < 0)
3702 return offset;
3703
2034f3b4 3704 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3705}
3706
edf064e7
GR
3707static int btrfs_file_open(struct inode *inode, struct file *filp)
3708{
14605409
BB
3709 int ret;
3710
8730f12b 3711 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
14605409
BB
3712
3713 ret = fsverity_file_open(inode, filp);
3714 if (ret)
3715 return ret;
edf064e7
GR
3716 return generic_file_open(inode, filp);
3717}
3718
4e4cabec
GR
3719static int check_direct_read(struct btrfs_fs_info *fs_info,
3720 const struct iov_iter *iter, loff_t offset)
3721{
3722 int ret;
3723 int i, seg;
3724
3725 ret = check_direct_IO(fs_info, iter, offset);
3726 if (ret < 0)
3727 return ret;
3728
3729 if (!iter_is_iovec(iter))
3730 return 0;
3731
3732 for (seg = 0; seg < iter->nr_segs; seg++)
3733 for (i = seg + 1; i < iter->nr_segs; i++)
3734 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
3735 return -EINVAL;
3736 return 0;
3737}
3738
3739static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3740{
3741 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3742 size_t prev_left = 0;
3743 ssize_t read = 0;
4e4cabec
GR
3744 ssize_t ret;
3745
14605409
BB
3746 if (fsverity_active(inode))
3747 return 0;
3748
4e4cabec
GR
3749 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3750 return 0;
3751
a14b78ad 3752 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
51bd9563
FM
3753again:
3754 /*
3755 * This is similar to what we do for direct IO writes, see the comment
3756 * at btrfs_direct_write(), but we also disable page faults in addition
3757 * to disabling them only at the iov_iter level. This is because when
3758 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3759 * which can still trigger page fault ins despite having set ->nofault
3760 * to true of our 'to' iov_iter.
3761 *
3762 * The difference to direct IO writes is that we deadlock when trying
3763 * to lock the extent range in the inode's tree during he page reads
3764 * triggered by the fault in (while for writes it is due to waiting for
3765 * our own ordered extent). This is because for direct IO reads,
3766 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3767 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3768 */
3769 pagefault_disable();
3770 to->nofault = true;
4fdccaa0 3771 ret = iomap_dio_rw(iocb, to, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
51bd9563
FM
3772 IOMAP_DIO_PARTIAL, read);
3773 to->nofault = false;
3774 pagefault_enable();
3775
3776 /* No increment (+=) because iomap returns a cumulative value. */
3777 if (ret > 0)
3778 read = ret;
3779
3780 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3781 const size_t left = iov_iter_count(to);
3782
3783 if (left == prev_left) {
3784 /*
3785 * We didn't make any progress since the last attempt,
3786 * fallback to a buffered read for the remainder of the
3787 * range. This is just to avoid any possibility of looping
3788 * for too long.
3789 */
3790 ret = read;
3791 } else {
3792 /*
3793 * We made some progress since the last retry or this is
3794 * the first time we are retrying. Fault in as many pages
3795 * as possible and retry.
3796 */
3797 fault_in_iov_iter_writeable(to, left);
3798 prev_left = left;
3799 goto again;
3800 }
3801 }
a14b78ad 3802 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
51bd9563 3803 return ret < 0 ? ret : read;
4e4cabec
GR
3804}
3805
f85781fb
GR
3806static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3807{
3808 ssize_t ret = 0;
3809
3810 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3811 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3812 if (ret < 0 || !iov_iter_count(to) ||
3813 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3814 return ret;
3815 }
3816
87fa0f3e 3817 return filemap_read(iocb, to, ret);
f85781fb
GR
3818}
3819
828c0950 3820const struct file_operations btrfs_file_operations = {
b2675157 3821 .llseek = btrfs_file_llseek,
f85781fb 3822 .read_iter = btrfs_file_read_iter,
e9906a98 3823 .splice_read = generic_file_splice_read,
b30ac0fc 3824 .write_iter = btrfs_file_write_iter,
d7776591 3825 .splice_write = iter_file_splice_write,
9ebefb18 3826 .mmap = btrfs_file_mmap,
edf064e7 3827 .open = btrfs_file_open,
e1b81e67 3828 .release = btrfs_release_file,
39279cc3 3829 .fsync = btrfs_sync_file,
2fe17c10 3830 .fallocate = btrfs_fallocate,
34287aa3 3831 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3832#ifdef CONFIG_COMPAT
4c63c245 3833 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3834#endif
2e5dfc99 3835 .remap_file_range = btrfs_remap_file_range,
39279cc3 3836};
9247f317 3837
e67c718b 3838void __cold btrfs_auto_defrag_exit(void)
9247f317 3839{
5598e900 3840 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3841}
3842
f5c29bd9 3843int __init btrfs_auto_defrag_init(void)
9247f317
MX
3844{
3845 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3846 sizeof(struct inode_defrag), 0,
fba4b697 3847 SLAB_MEM_SPREAD,
9247f317
MX
3848 NULL);
3849 if (!btrfs_inode_defrag_cachep)
3850 return -ENOMEM;
3851
3852 return 0;
3853}
728404da
FM
3854
3855int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3856{
3857 int ret;
3858
3859 /*
3860 * So with compression we will find and lock a dirty page and clear the
3861 * first one as dirty, setup an async extent, and immediately return
3862 * with the entire range locked but with nobody actually marked with
3863 * writeback. So we can't just filemap_write_and_wait_range() and
3864 * expect it to work since it will just kick off a thread to do the
3865 * actual work. So we need to call filemap_fdatawrite_range _again_
3866 * since it will wait on the page lock, which won't be unlocked until
3867 * after the pages have been marked as writeback and so we're good to go
3868 * from there. We have to do this otherwise we'll miss the ordered
3869 * extents and that results in badness. Please Josef, do not think you
3870 * know better and pull this out at some point in the future, it is
3871 * right and you are wrong.
3872 */
3873 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3874 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3875 &BTRFS_I(inode)->runtime_flags))
3876 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3877
3878 return ret;
3879}