Merge tag 'thermal-6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
14605409 19#include <linux/fsverity.h>
39279cc3
CM
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
39279cc3 24#include "print-tree.h"
e02119d5
CM
25#include "tree-log.h"
26#include "locking.h"
2aaa6655 27#include "volumes.h"
fcebe456 28#include "qgroup.h"
ebb8765b 29#include "compression.h"
86736342 30#include "delalloc-space.h"
6a177381 31#include "reflink.h"
f02a85d2 32#include "subpage.h"
c7f13d42 33#include "fs.h"
07e81dc9 34#include "accessors.h"
a0231804 35#include "extent-tree.h"
7c8ede16 36#include "file-item.h"
7572dec8 37#include "ioctl.h"
af142b6f 38#include "file.h"
7f0add25 39#include "super.h"
39279cc3 40
d352ac68
CM
41/* simple helper to fault in pages and copy. This should go away
42 * and be replaced with calls into generic code.
43 */
ee22f0c4 44static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 45 struct page **prepared_pages,
11c65dcc 46 struct iov_iter *i)
39279cc3 47{
914ee295 48 size_t copied = 0;
d0215f3e 49 size_t total_copied = 0;
11c65dcc 50 int pg = 0;
7073017a 51 int offset = offset_in_page(pos);
39279cc3 52
11c65dcc 53 while (write_bytes > 0) {
39279cc3 54 size_t count = min_t(size_t,
09cbfeaf 55 PAGE_SIZE - offset, write_bytes);
11c65dcc 56 struct page *page = prepared_pages[pg];
914ee295
XZ
57 /*
58 * Copy data from userspace to the current page
914ee295 59 */
f0b65f39 60 copied = copy_page_from_iter_atomic(page, offset, count, i);
11c65dcc 61
39279cc3
CM
62 /* Flush processor's dcache for this page */
63 flush_dcache_page(page);
31339acd
CM
64
65 /*
66 * if we get a partial write, we can end up with
67 * partially up to date pages. These add
68 * a lot of complexity, so make sure they don't
69 * happen by forcing this copy to be retried.
70 *
71 * The rest of the btrfs_file_write code will fall
72 * back to page at a time copies after we return 0.
73 */
f0b65f39
AV
74 if (unlikely(copied < count)) {
75 if (!PageUptodate(page)) {
76 iov_iter_revert(i, copied);
77 copied = 0;
78 }
79 if (!copied)
80 break;
81 }
31339acd 82
11c65dcc 83 write_bytes -= copied;
914ee295 84 total_copied += copied;
f0b65f39
AV
85 offset += copied;
86 if (offset == PAGE_SIZE) {
11c65dcc
JB
87 pg++;
88 offset = 0;
89 }
39279cc3 90 }
914ee295 91 return total_copied;
39279cc3
CM
92}
93
d352ac68
CM
94/*
95 * unlocks pages after btrfs_file_write is done with them
96 */
e4f94347
QW
97static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
98 struct page **pages, size_t num_pages,
99 u64 pos, u64 copied)
39279cc3
CM
100{
101 size_t i;
e4f94347
QW
102 u64 block_start = round_down(pos, fs_info->sectorsize);
103 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
104
105 ASSERT(block_len <= U32_MAX);
39279cc3 106 for (i = 0; i < num_pages; i++) {
d352ac68
CM
107 /* page checked is some magic around finding pages that
108 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
109 * clear it here. There should be no need to mark the pages
110 * accessed as prepare_pages should have marked them accessed
111 * in prepare_pages via find_or_create_page()
d352ac68 112 */
e4f94347
QW
113 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
114 block_len);
39279cc3 115 unlock_page(pages[i]);
09cbfeaf 116 put_page(pages[i]);
39279cc3
CM
117 }
118}
119
d352ac68 120/*
c0fab480
QW
121 * After btrfs_copy_from_user(), update the following things for delalloc:
122 * - Mark newly dirtied pages as DELALLOC in the io tree.
123 * Used to advise which range is to be written back.
124 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
125 * - Update inode size for past EOF write
d352ac68 126 */
088545f6 127int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
2ff7e61e 128 size_t num_pages, loff_t pos, size_t write_bytes,
aa8c1a41 129 struct extent_state **cached, bool noreserve)
39279cc3 130{
088545f6 131 struct btrfs_fs_info *fs_info = inode->root->fs_info;
39279cc3 132 int err = 0;
a52d9a80 133 int i;
db94535d 134 u64 num_bytes;
a52d9a80
CM
135 u64 start_pos;
136 u64 end_of_last_block;
137 u64 end_pos = pos + write_bytes;
088545f6 138 loff_t isize = i_size_read(&inode->vfs_inode);
e3b8a485 139 unsigned int extra_bits = 0;
39279cc3 140
aa8c1a41
GR
141 if (write_bytes == 0)
142 return 0;
143
144 if (noreserve)
145 extra_bits |= EXTENT_NORESERVE;
146
13f0dd8f 147 start_pos = round_down(pos, fs_info->sectorsize);
da17066c 148 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 149 fs_info->sectorsize);
f02a85d2 150 ASSERT(num_bytes <= U32_MAX);
39279cc3 151
db94535d 152 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 153
7703bdd8
CM
154 /*
155 * The pages may have already been dirty, clear out old accounting so
156 * we can set things up properly
157 */
088545f6 158 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
e182163d 159 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 160 cached);
7703bdd8 161
088545f6 162 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
330a5827 163 extra_bits, cached);
d0215f3e
JB
164 if (err)
165 return err;
9ed74f2d 166
c8b97818
CM
167 for (i = 0; i < num_pages; i++) {
168 struct page *p = pages[i];
f02a85d2
QW
169
170 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
e4f94347 171 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
f02a85d2 172 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
a52d9a80 173 }
9f570b8d
JB
174
175 /*
176 * we've only changed i_size in ram, and we haven't updated
177 * the disk i_size. There is no need to log the inode
178 * at this time.
179 */
180 if (end_pos > isize)
088545f6 181 i_size_write(&inode->vfs_inode, end_pos);
a22285a6 182 return 0;
39279cc3
CM
183}
184
185/*
186 * this is very complex, but the basic idea is to drop all extents
187 * in the range start - end. hint_block is filled in with a block number
188 * that would be a good hint to the block allocator for this file.
189 *
190 * If an extent intersects the range but is not entirely inside the range
191 * it is either truncated or split. Anything entirely inside the range
192 * is deleted from the tree.
2766ff61
FM
193 *
194 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
195 * to deal with that. We set the field 'bytes_found' of the arguments structure
196 * with the number of allocated bytes found in the target range, so that the
197 * caller can update the inode's number of bytes in an atomic way when
198 * replacing extents in a range to avoid races with stat(2).
39279cc3 199 */
5893dfb9
FM
200int btrfs_drop_extents(struct btrfs_trans_handle *trans,
201 struct btrfs_root *root, struct btrfs_inode *inode,
202 struct btrfs_drop_extents_args *args)
39279cc3 203{
0b246afa 204 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 205 struct extent_buffer *leaf;
920bbbfb 206 struct btrfs_file_extent_item *fi;
82fa113f 207 struct btrfs_ref ref = { 0 };
00f5c795 208 struct btrfs_key key;
920bbbfb 209 struct btrfs_key new_key;
906c448c 210 u64 ino = btrfs_ino(inode);
5893dfb9 211 u64 search_start = args->start;
920bbbfb
YZ
212 u64 disk_bytenr = 0;
213 u64 num_bytes = 0;
214 u64 extent_offset = 0;
215 u64 extent_end = 0;
5893dfb9 216 u64 last_end = args->start;
920bbbfb
YZ
217 int del_nr = 0;
218 int del_slot = 0;
219 int extent_type;
ccd467d6 220 int recow;
00f5c795 221 int ret;
dc7fdde3 222 int modify_tree = -1;
27cdeb70 223 int update_refs;
c3308f84 224 int found = 0;
5893dfb9
FM
225 struct btrfs_path *path = args->path;
226
2766ff61 227 args->bytes_found = 0;
5893dfb9
FM
228 args->extent_inserted = false;
229
230 /* Must always have a path if ->replace_extent is true */
231 ASSERT(!(args->replace_extent && !args->path));
232
233 if (!path) {
234 path = btrfs_alloc_path();
235 if (!path) {
236 ret = -ENOMEM;
237 goto out;
238 }
239 }
39279cc3 240
5893dfb9 241 if (args->drop_cache)
4c0c8cfc 242 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
a52d9a80 243
5893dfb9 244 if (args->start >= inode->disk_i_size && !args->replace_extent)
dc7fdde3
CM
245 modify_tree = 0;
246
d175209b 247 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
d397712b 248 while (1) {
ccd467d6 249 recow = 0;
33345d01 250 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 251 search_start, modify_tree);
39279cc3 252 if (ret < 0)
920bbbfb 253 break;
5893dfb9 254 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
920bbbfb
YZ
255 leaf = path->nodes[0];
256 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 257 if (key.objectid == ino &&
920bbbfb
YZ
258 key.type == BTRFS_EXTENT_DATA_KEY)
259 path->slots[0]--;
39279cc3 260 }
920bbbfb 261 ret = 0;
8c2383c3 262next_slot:
5f39d397 263 leaf = path->nodes[0];
920bbbfb
YZ
264 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
265 BUG_ON(del_nr > 0);
266 ret = btrfs_next_leaf(root, path);
267 if (ret < 0)
268 break;
269 if (ret > 0) {
270 ret = 0;
271 break;
8c2383c3 272 }
920bbbfb
YZ
273 leaf = path->nodes[0];
274 recow = 1;
275 }
276
277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
278
279 if (key.objectid > ino)
280 break;
281 if (WARN_ON_ONCE(key.objectid < ino) ||
282 key.type < BTRFS_EXTENT_DATA_KEY) {
283 ASSERT(del_nr == 0);
284 path->slots[0]++;
285 goto next_slot;
286 }
5893dfb9 287 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
920bbbfb
YZ
288 break;
289
290 fi = btrfs_item_ptr(leaf, path->slots[0],
291 struct btrfs_file_extent_item);
292 extent_type = btrfs_file_extent_type(leaf, fi);
293
294 if (extent_type == BTRFS_FILE_EXTENT_REG ||
295 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
296 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
297 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
298 extent_offset = btrfs_file_extent_offset(leaf, fi);
299 extent_end = key.offset +
300 btrfs_file_extent_num_bytes(leaf, fi);
301 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
302 extent_end = key.offset +
e41ca589 303 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 304 } else {
aeafbf84
FM
305 /* can't happen */
306 BUG();
39279cc3
CM
307 }
308
fc19c5e7
FM
309 /*
310 * Don't skip extent items representing 0 byte lengths. They
311 * used to be created (bug) if while punching holes we hit
312 * -ENOSPC condition. So if we find one here, just ensure we
313 * delete it, otherwise we would insert a new file extent item
314 * with the same key (offset) as that 0 bytes length file
315 * extent item in the call to setup_items_for_insert() later
316 * in this function.
317 */
62fe51c1
JB
318 if (extent_end == key.offset && extent_end >= search_start) {
319 last_end = extent_end;
fc19c5e7 320 goto delete_extent_item;
62fe51c1 321 }
fc19c5e7 322
920bbbfb
YZ
323 if (extent_end <= search_start) {
324 path->slots[0]++;
8c2383c3 325 goto next_slot;
39279cc3
CM
326 }
327
c3308f84 328 found = 1;
5893dfb9 329 search_start = max(key.offset, args->start);
dc7fdde3
CM
330 if (recow || !modify_tree) {
331 modify_tree = -1;
b3b4aa74 332 btrfs_release_path(path);
920bbbfb 333 continue;
39279cc3 334 }
6643558d 335
920bbbfb
YZ
336 /*
337 * | - range to drop - |
338 * | -------- extent -------- |
339 */
5893dfb9 340 if (args->start > key.offset && args->end < extent_end) {
920bbbfb 341 BUG_ON(del_nr > 0);
00fdf13a 342 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 343 ret = -EOPNOTSUPP;
00fdf13a
LB
344 break;
345 }
920bbbfb
YZ
346
347 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 348 new_key.offset = args->start;
920bbbfb
YZ
349 ret = btrfs_duplicate_item(trans, root, path,
350 &new_key);
351 if (ret == -EAGAIN) {
b3b4aa74 352 btrfs_release_path(path);
920bbbfb 353 continue;
6643558d 354 }
920bbbfb
YZ
355 if (ret < 0)
356 break;
357
358 leaf = path->nodes[0];
359 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
360 struct btrfs_file_extent_item);
361 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 362 args->start - key.offset);
920bbbfb
YZ
363
364 fi = btrfs_item_ptr(leaf, path->slots[0],
365 struct btrfs_file_extent_item);
366
5893dfb9 367 extent_offset += args->start - key.offset;
920bbbfb
YZ
368 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
369 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 370 extent_end - args->start);
920bbbfb
YZ
371 btrfs_mark_buffer_dirty(leaf);
372
5dc562c5 373 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
374 btrfs_init_generic_ref(&ref,
375 BTRFS_ADD_DELAYED_REF,
376 disk_bytenr, num_bytes, 0);
377 btrfs_init_data_ref(&ref,
920bbbfb
YZ
378 root->root_key.objectid,
379 new_key.objectid,
f42c5da6
NB
380 args->start - extent_offset,
381 0, false);
82fa113f 382 ret = btrfs_inc_extent_ref(trans, &ref);
162d053e
FM
383 if (ret) {
384 btrfs_abort_transaction(trans, ret);
385 break;
386 }
771ed689 387 }
5893dfb9 388 key.offset = args->start;
6643558d 389 }
62fe51c1
JB
390 /*
391 * From here on out we will have actually dropped something, so
392 * last_end can be updated.
393 */
394 last_end = extent_end;
395
920bbbfb
YZ
396 /*
397 * | ---- range to drop ----- |
398 * | -------- extent -------- |
399 */
5893dfb9 400 if (args->start <= key.offset && args->end < extent_end) {
00fdf13a 401 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 402 ret = -EOPNOTSUPP;
00fdf13a
LB
403 break;
404 }
6643558d 405
920bbbfb 406 memcpy(&new_key, &key, sizeof(new_key));
5893dfb9 407 new_key.offset = args->end;
0b246afa 408 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 409
5893dfb9 410 extent_offset += args->end - key.offset;
920bbbfb
YZ
411 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
412 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 413 extent_end - args->end);
920bbbfb 414 btrfs_mark_buffer_dirty(leaf);
2671485d 415 if (update_refs && disk_bytenr > 0)
2766ff61 416 args->bytes_found += args->end - key.offset;
920bbbfb 417 break;
39279cc3 418 }
771ed689 419
920bbbfb
YZ
420 search_start = extent_end;
421 /*
422 * | ---- range to drop ----- |
423 * | -------- extent -------- |
424 */
5893dfb9 425 if (args->start > key.offset && args->end >= extent_end) {
920bbbfb 426 BUG_ON(del_nr > 0);
00fdf13a 427 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 428 ret = -EOPNOTSUPP;
00fdf13a
LB
429 break;
430 }
8c2383c3 431
920bbbfb 432 btrfs_set_file_extent_num_bytes(leaf, fi,
5893dfb9 433 args->start - key.offset);
920bbbfb 434 btrfs_mark_buffer_dirty(leaf);
2671485d 435 if (update_refs && disk_bytenr > 0)
2766ff61 436 args->bytes_found += extent_end - args->start;
5893dfb9 437 if (args->end == extent_end)
920bbbfb 438 break;
c8b97818 439
920bbbfb
YZ
440 path->slots[0]++;
441 goto next_slot;
31840ae1
ZY
442 }
443
920bbbfb
YZ
444 /*
445 * | ---- range to drop ----- |
446 * | ------ extent ------ |
447 */
5893dfb9 448 if (args->start <= key.offset && args->end >= extent_end) {
fc19c5e7 449delete_extent_item:
920bbbfb
YZ
450 if (del_nr == 0) {
451 del_slot = path->slots[0];
452 del_nr = 1;
453 } else {
454 BUG_ON(del_slot + del_nr != path->slots[0]);
455 del_nr++;
456 }
31840ae1 457
5dc562c5
JB
458 if (update_refs &&
459 extent_type == BTRFS_FILE_EXTENT_INLINE) {
2766ff61 460 args->bytes_found += extent_end - key.offset;
920bbbfb 461 extent_end = ALIGN(extent_end,
0b246afa 462 fs_info->sectorsize);
5dc562c5 463 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
464 btrfs_init_generic_ref(&ref,
465 BTRFS_DROP_DELAYED_REF,
466 disk_bytenr, num_bytes, 0);
467 btrfs_init_data_ref(&ref,
920bbbfb 468 root->root_key.objectid,
ffd4bb2a 469 key.objectid,
f42c5da6
NB
470 key.offset - extent_offset, 0,
471 false);
ffd4bb2a 472 ret = btrfs_free_extent(trans, &ref);
162d053e
FM
473 if (ret) {
474 btrfs_abort_transaction(trans, ret);
475 break;
476 }
2766ff61 477 args->bytes_found += extent_end - key.offset;
31840ae1 478 }
31840ae1 479
5893dfb9 480 if (args->end == extent_end)
920bbbfb
YZ
481 break;
482
483 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
484 path->slots[0]++;
485 goto next_slot;
486 }
487
488 ret = btrfs_del_items(trans, root, path, del_slot,
489 del_nr);
79787eaa 490 if (ret) {
66642832 491 btrfs_abort_transaction(trans, ret);
5dc562c5 492 break;
79787eaa 493 }
920bbbfb
YZ
494
495 del_nr = 0;
496 del_slot = 0;
497
b3b4aa74 498 btrfs_release_path(path);
920bbbfb 499 continue;
39279cc3 500 }
920bbbfb 501
290342f6 502 BUG();
39279cc3 503 }
920bbbfb 504
79787eaa 505 if (!ret && del_nr > 0) {
1acae57b
FDBM
506 /*
507 * Set path->slots[0] to first slot, so that after the delete
508 * if items are move off from our leaf to its immediate left or
509 * right neighbor leafs, we end up with a correct and adjusted
5893dfb9 510 * path->slots[0] for our insertion (if args->replace_extent).
1acae57b
FDBM
511 */
512 path->slots[0] = del_slot;
920bbbfb 513 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 514 if (ret)
66642832 515 btrfs_abort_transaction(trans, ret);
d5f37527 516 }
1acae57b 517
d5f37527
FDBM
518 leaf = path->nodes[0];
519 /*
520 * If btrfs_del_items() was called, it might have deleted a leaf, in
521 * which case it unlocked our path, so check path->locks[0] matches a
522 * write lock.
523 */
7ecb4c31 524 if (!ret && args->replace_extent &&
ac5887c8 525 path->locks[0] == BTRFS_WRITE_LOCK &&
e902baac 526 btrfs_leaf_free_space(leaf) >=
5893dfb9 527 sizeof(struct btrfs_item) + args->extent_item_size) {
d5f37527
FDBM
528
529 key.objectid = ino;
530 key.type = BTRFS_EXTENT_DATA_KEY;
5893dfb9 531 key.offset = args->start;
d5f37527
FDBM
532 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
533 struct btrfs_key slot_key;
534
535 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
536 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
537 path->slots[0]++;
1acae57b 538 }
f0641656 539 btrfs_setup_item_for_insert(root, path, &key, args->extent_item_size);
5893dfb9 540 args->extent_inserted = true;
6643558d 541 }
920bbbfb 542
5893dfb9
FM
543 if (!args->path)
544 btrfs_free_path(path);
545 else if (!args->extent_inserted)
1acae57b 546 btrfs_release_path(path);
5893dfb9
FM
547out:
548 args->drop_end = found ? min(args->end, last_end) : args->end;
5dc562c5 549
39279cc3
CM
550 return ret;
551}
552
d899e052 553static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
554 u64 objectid, u64 bytenr, u64 orig_offset,
555 u64 *start, u64 *end)
d899e052
YZ
556{
557 struct btrfs_file_extent_item *fi;
558 struct btrfs_key key;
559 u64 extent_end;
560
561 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
562 return 0;
563
564 btrfs_item_key_to_cpu(leaf, &key, slot);
565 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
566 return 0;
567
568 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
569 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
570 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 571 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
572 btrfs_file_extent_compression(leaf, fi) ||
573 btrfs_file_extent_encryption(leaf, fi) ||
574 btrfs_file_extent_other_encoding(leaf, fi))
575 return 0;
576
577 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
578 if ((*start && *start != key.offset) || (*end && *end != extent_end))
579 return 0;
580
581 *start = key.offset;
582 *end = extent_end;
583 return 1;
584}
585
586/*
587 * Mark extent in the range start - end as written.
588 *
589 * This changes extent type from 'pre-allocated' to 'regular'. If only
590 * part of extent is marked as written, the extent will be split into
591 * two or three.
592 */
593int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 594 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 595{
3ffbd68c 596 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 597 struct btrfs_root *root = inode->root;
d899e052
YZ
598 struct extent_buffer *leaf;
599 struct btrfs_path *path;
600 struct btrfs_file_extent_item *fi;
82fa113f 601 struct btrfs_ref ref = { 0 };
d899e052 602 struct btrfs_key key;
920bbbfb 603 struct btrfs_key new_key;
d899e052
YZ
604 u64 bytenr;
605 u64 num_bytes;
606 u64 extent_end;
5d4f98a2 607 u64 orig_offset;
d899e052
YZ
608 u64 other_start;
609 u64 other_end;
920bbbfb
YZ
610 u64 split;
611 int del_nr = 0;
612 int del_slot = 0;
6c7d54ac 613 int recow;
e7b2ec3d 614 int ret = 0;
7a6d7067 615 u64 ino = btrfs_ino(inode);
d899e052 616
d899e052 617 path = btrfs_alloc_path();
d8926bb3
MF
618 if (!path)
619 return -ENOMEM;
d899e052 620again:
6c7d54ac 621 recow = 0;
920bbbfb 622 split = start;
33345d01 623 key.objectid = ino;
d899e052 624 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 625 key.offset = split;
d899e052
YZ
626
627 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
628 if (ret < 0)
629 goto out;
d899e052
YZ
630 if (ret > 0 && path->slots[0] > 0)
631 path->slots[0]--;
632
633 leaf = path->nodes[0];
634 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
635 if (key.objectid != ino ||
636 key.type != BTRFS_EXTENT_DATA_KEY) {
637 ret = -EINVAL;
638 btrfs_abort_transaction(trans, ret);
639 goto out;
640 }
d899e052
YZ
641 fi = btrfs_item_ptr(leaf, path->slots[0],
642 struct btrfs_file_extent_item);
9c8e63db
JB
643 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
644 ret = -EINVAL;
645 btrfs_abort_transaction(trans, ret);
646 goto out;
647 }
d899e052 648 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
649 if (key.offset > start || extent_end < end) {
650 ret = -EINVAL;
651 btrfs_abort_transaction(trans, ret);
652 goto out;
653 }
d899e052
YZ
654
655 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
656 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 657 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
658 memcpy(&new_key, &key, sizeof(new_key));
659
660 if (start == key.offset && end < extent_end) {
661 other_start = 0;
662 other_end = start;
663 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 664 ino, bytenr, orig_offset,
6c7d54ac
YZ
665 &other_start, &other_end)) {
666 new_key.offset = end;
0b246afa 667 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
668 fi = btrfs_item_ptr(leaf, path->slots[0],
669 struct btrfs_file_extent_item);
224ecce5
JB
670 btrfs_set_file_extent_generation(leaf, fi,
671 trans->transid);
6c7d54ac
YZ
672 btrfs_set_file_extent_num_bytes(leaf, fi,
673 extent_end - end);
674 btrfs_set_file_extent_offset(leaf, fi,
675 end - orig_offset);
676 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
677 struct btrfs_file_extent_item);
224ecce5
JB
678 btrfs_set_file_extent_generation(leaf, fi,
679 trans->transid);
6c7d54ac
YZ
680 btrfs_set_file_extent_num_bytes(leaf, fi,
681 end - other_start);
682 btrfs_mark_buffer_dirty(leaf);
683 goto out;
684 }
685 }
686
687 if (start > key.offset && end == extent_end) {
688 other_start = end;
689 other_end = 0;
690 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 691 ino, bytenr, orig_offset,
6c7d54ac
YZ
692 &other_start, &other_end)) {
693 fi = btrfs_item_ptr(leaf, path->slots[0],
694 struct btrfs_file_extent_item);
695 btrfs_set_file_extent_num_bytes(leaf, fi,
696 start - key.offset);
224ecce5
JB
697 btrfs_set_file_extent_generation(leaf, fi,
698 trans->transid);
6c7d54ac
YZ
699 path->slots[0]++;
700 new_key.offset = start;
0b246afa 701 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
702
703 fi = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
224ecce5
JB
705 btrfs_set_file_extent_generation(leaf, fi,
706 trans->transid);
6c7d54ac
YZ
707 btrfs_set_file_extent_num_bytes(leaf, fi,
708 other_end - start);
709 btrfs_set_file_extent_offset(leaf, fi,
710 start - orig_offset);
711 btrfs_mark_buffer_dirty(leaf);
712 goto out;
713 }
714 }
d899e052 715
920bbbfb
YZ
716 while (start > key.offset || end < extent_end) {
717 if (key.offset == start)
718 split = end;
719
920bbbfb
YZ
720 new_key.offset = split;
721 ret = btrfs_duplicate_item(trans, root, path, &new_key);
722 if (ret == -EAGAIN) {
b3b4aa74 723 btrfs_release_path(path);
920bbbfb 724 goto again;
d899e052 725 }
79787eaa 726 if (ret < 0) {
66642832 727 btrfs_abort_transaction(trans, ret);
79787eaa
JM
728 goto out;
729 }
d899e052 730
920bbbfb
YZ
731 leaf = path->nodes[0];
732 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 733 struct btrfs_file_extent_item);
224ecce5 734 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 735 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
736 split - key.offset);
737
738 fi = btrfs_item_ptr(leaf, path->slots[0],
739 struct btrfs_file_extent_item);
740
224ecce5 741 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
742 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
743 btrfs_set_file_extent_num_bytes(leaf, fi,
744 extent_end - split);
d899e052
YZ
745 btrfs_mark_buffer_dirty(leaf);
746
82fa113f
QW
747 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
748 num_bytes, 0);
749 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
f42c5da6 750 orig_offset, 0, false);
82fa113f 751 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
d899e052 756
920bbbfb
YZ
757 if (split == start) {
758 key.offset = start;
759 } else {
9c8e63db
JB
760 if (start != key.offset) {
761 ret = -EINVAL;
762 btrfs_abort_transaction(trans, ret);
763 goto out;
764 }
d899e052 765 path->slots[0]--;
920bbbfb 766 extent_end = end;
d899e052 767 }
6c7d54ac 768 recow = 1;
d899e052
YZ
769 }
770
920bbbfb
YZ
771 other_start = end;
772 other_end = 0;
ffd4bb2a
QW
773 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
774 num_bytes, 0);
f42c5da6
NB
775 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
776 0, false);
6c7d54ac 777 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 778 ino, bytenr, orig_offset,
6c7d54ac
YZ
779 &other_start, &other_end)) {
780 if (recow) {
b3b4aa74 781 btrfs_release_path(path);
6c7d54ac
YZ
782 goto again;
783 }
920bbbfb
YZ
784 extent_end = other_end;
785 del_slot = path->slots[0] + 1;
786 del_nr++;
ffd4bb2a 787 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
788 if (ret) {
789 btrfs_abort_transaction(trans, ret);
790 goto out;
791 }
d899e052 792 }
920bbbfb
YZ
793 other_start = 0;
794 other_end = start;
6c7d54ac 795 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 796 ino, bytenr, orig_offset,
6c7d54ac
YZ
797 &other_start, &other_end)) {
798 if (recow) {
b3b4aa74 799 btrfs_release_path(path);
6c7d54ac
YZ
800 goto again;
801 }
920bbbfb
YZ
802 key.offset = other_start;
803 del_slot = path->slots[0];
804 del_nr++;
ffd4bb2a 805 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
806 if (ret) {
807 btrfs_abort_transaction(trans, ret);
808 goto out;
809 }
920bbbfb
YZ
810 }
811 if (del_nr == 0) {
3f6fae95
SL
812 fi = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_file_extent_item);
920bbbfb
YZ
814 btrfs_set_file_extent_type(leaf, fi,
815 BTRFS_FILE_EXTENT_REG);
224ecce5 816 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 817 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 818 } else {
3f6fae95
SL
819 fi = btrfs_item_ptr(leaf, del_slot - 1,
820 struct btrfs_file_extent_item);
6c7d54ac
YZ
821 btrfs_set_file_extent_type(leaf, fi,
822 BTRFS_FILE_EXTENT_REG);
224ecce5 823 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
824 btrfs_set_file_extent_num_bytes(leaf, fi,
825 extent_end - key.offset);
826 btrfs_mark_buffer_dirty(leaf);
920bbbfb 827
6c7d54ac 828 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 829 if (ret < 0) {
66642832 830 btrfs_abort_transaction(trans, ret);
79787eaa
JM
831 goto out;
832 }
6c7d54ac 833 }
920bbbfb 834out:
d899e052 835 btrfs_free_path(path);
e7b2ec3d 836 return ret;
d899e052
YZ
837}
838
b1bf862e
CM
839/*
840 * on error we return an unlocked page and the error value
841 * on success we return a locked page and 0
842 */
bb1591b4
CM
843static int prepare_uptodate_page(struct inode *inode,
844 struct page *page, u64 pos,
b6316429 845 bool force_uptodate)
b1bf862e 846{
fb12489b 847 struct folio *folio = page_folio(page);
b1bf862e
CM
848 int ret = 0;
849
09cbfeaf 850 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 851 !PageUptodate(page)) {
fb12489b 852 ret = btrfs_read_folio(NULL, folio);
b1bf862e
CM
853 if (ret)
854 return ret;
855 lock_page(page);
856 if (!PageUptodate(page)) {
857 unlock_page(page);
858 return -EIO;
859 }
e0467866
QW
860
861 /*
fb12489b 862 * Since btrfs_read_folio() will unlock the folio before it
f913cff3 863 * returns, there is a window where btrfs_release_folio() can be
7c11d0ae
QW
864 * called to release the page. Here we check both inode
865 * mapping and PagePrivate() to make sure the page was not
866 * released.
e0467866
QW
867 *
868 * The private flag check is essential for subpage as we need
869 * to store extra bitmap using page->private.
870 */
871 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
bb1591b4
CM
872 unlock_page(page);
873 return -EAGAIN;
874 }
b1bf862e
CM
875 }
876 return 0;
877}
878
fc226000
SR
879static unsigned int get_prepare_fgp_flags(bool nowait)
880{
881 unsigned int fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
882
883 if (nowait)
884 fgp_flags |= FGP_NOWAIT;
885
886 return fgp_flags;
887}
888
889static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
890{
891 gfp_t gfp;
892
893 gfp = btrfs_alloc_write_mask(inode->i_mapping);
894 if (nowait) {
895 gfp &= ~__GFP_DIRECT_RECLAIM;
896 gfp |= GFP_NOWAIT;
897 }
898
899 return gfp;
900}
901
39279cc3 902/*
376cc685 903 * this just gets pages into the page cache and locks them down.
39279cc3 904 */
b37392ea
MX
905static noinline int prepare_pages(struct inode *inode, struct page **pages,
906 size_t num_pages, loff_t pos,
fc226000
SR
907 size_t write_bytes, bool force_uptodate,
908 bool nowait)
39279cc3
CM
909{
910 int i;
09cbfeaf 911 unsigned long index = pos >> PAGE_SHIFT;
fc226000
SR
912 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
913 unsigned int fgp_flags = get_prepare_fgp_flags(nowait);
fc28b62d 914 int err = 0;
376cc685 915 int faili;
8c2383c3 916
39279cc3 917 for (i = 0; i < num_pages; i++) {
bb1591b4 918again:
fc226000
SR
919 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
920 fgp_flags, mask | __GFP_WRITE);
39279cc3 921 if (!pages[i]) {
b1bf862e 922 faili = i - 1;
fc226000
SR
923 if (nowait)
924 err = -EAGAIN;
925 else
926 err = -ENOMEM;
b1bf862e
CM
927 goto fail;
928 }
929
32443de3
QW
930 err = set_page_extent_mapped(pages[i]);
931 if (err < 0) {
932 faili = i;
933 goto fail;
934 }
935
b1bf862e 936 if (i == 0)
bb1591b4 937 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 938 force_uptodate);
bb1591b4
CM
939 if (!err && i == num_pages - 1)
940 err = prepare_uptodate_page(inode, pages[i],
b6316429 941 pos + write_bytes, false);
b1bf862e 942 if (err) {
09cbfeaf 943 put_page(pages[i]);
fc226000 944 if (!nowait && err == -EAGAIN) {
bb1591b4
CM
945 err = 0;
946 goto again;
947 }
b1bf862e
CM
948 faili = i - 1;
949 goto fail;
39279cc3 950 }
ccd467d6 951 wait_on_page_writeback(pages[i]);
39279cc3 952 }
376cc685
MX
953
954 return 0;
955fail:
956 while (faili >= 0) {
957 unlock_page(pages[faili]);
09cbfeaf 958 put_page(pages[faili]);
376cc685
MX
959 faili--;
960 }
961 return err;
962
963}
964
965/*
966 * This function locks the extent and properly waits for data=ordered extents
967 * to finish before allowing the pages to be modified if need.
968 *
969 * The return value:
970 * 1 - the extent is locked
971 * 0 - the extent is not locked, and everything is OK
972 * -EAGAIN - need re-prepare the pages
973 * the other < 0 number - Something wrong happens
974 */
975static noinline int
2cff578c 976lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 977 size_t num_pages, loff_t pos,
2e78c927 978 size_t write_bytes,
2fcab928 979 u64 *lockstart, u64 *lockend, bool nowait,
376cc685
MX
980 struct extent_state **cached_state)
981{
3ffbd68c 982 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
983 u64 start_pos;
984 u64 last_pos;
985 int i;
986 int ret = 0;
987
0b246afa 988 start_pos = round_down(pos, fs_info->sectorsize);
e21139c6 989 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
376cc685 990
e3b8a485 991 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 992 struct btrfs_ordered_extent *ordered;
a7e3b975 993
2fcab928 994 if (nowait) {
83ae4133
JB
995 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
996 cached_state)) {
2fcab928
SR
997 for (i = 0; i < num_pages; i++) {
998 unlock_page(pages[i]);
999 put_page(pages[i]);
1000 pages[i] = NULL;
1001 }
1002
1003 return -EAGAIN;
1004 }
1005 } else {
1006 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1007 }
1008
b88935bf
MX
1009 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1010 last_pos - start_pos + 1);
e6dcd2dc 1011 if (ordered &&
bffe633e 1012 ordered->file_offset + ordered->num_bytes > start_pos &&
376cc685 1013 ordered->file_offset <= last_pos) {
570eb97b
JB
1014 unlock_extent(&inode->io_tree, start_pos, last_pos,
1015 cached_state);
e6dcd2dc
CM
1016 for (i = 0; i < num_pages; i++) {
1017 unlock_page(pages[i]);
09cbfeaf 1018 put_page(pages[i]);
e6dcd2dc 1019 }
36d45567 1020 btrfs_start_ordered_extent(ordered);
b88935bf
MX
1021 btrfs_put_ordered_extent(ordered);
1022 return -EAGAIN;
e6dcd2dc
CM
1023 }
1024 if (ordered)
1025 btrfs_put_ordered_extent(ordered);
7703bdd8 1026
376cc685
MX
1027 *lockstart = start_pos;
1028 *lockend = last_pos;
1029 ret = 1;
0762704b 1030 }
376cc685 1031
7703bdd8 1032 /*
32443de3
QW
1033 * We should be called after prepare_pages() which should have locked
1034 * all pages in the range.
7703bdd8 1035 */
32443de3 1036 for (i = 0; i < num_pages; i++)
e6dcd2dc 1037 WARN_ON(!PageLocked(pages[i]));
b1bf862e 1038
376cc685 1039 return ret;
39279cc3
CM
1040}
1041
d7a8ab4e
FM
1042/*
1043 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1044 *
1045 * @pos: File offset.
1046 * @write_bytes: The length to write, will be updated to the nocow writeable
1047 * range.
1048 *
1049 * This function will flush ordered extents in the range to ensure proper
1050 * nocow checks.
1051 *
1052 * Return:
1053 * > 0 If we can nocow, and updates @write_bytes.
1054 * 0 If we can't do a nocow write.
1055 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1056 * root is in progress.
1057 * < 0 If an error happened.
1058 *
1059 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1060 */
1061int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
80f9d241 1062 size_t *write_bytes, bool nowait)
7ee9e440 1063{
3ffbd68c 1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1065 struct btrfs_root *root = inode->root;
632ddfa2 1066 struct extent_state *cached_state = NULL;
7ee9e440
JB
1067 u64 lockstart, lockend;
1068 u64 num_bytes;
1069 int ret;
1070
38d37aa9
QW
1071 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1072 return 0;
1073
d7a8ab4e 1074 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
5f791ec3 1075 return -EAGAIN;
8257b2dc 1076
0b246afa 1077 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1078 lockend = round_up(pos + *write_bytes,
0b246afa 1079 fs_info->sectorsize) - 1;
5dbb75ed 1080 num_bytes = lockend - lockstart + 1;
7ee9e440 1081
80f9d241 1082 if (nowait) {
632ddfa2
JB
1083 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1084 &cached_state)) {
80f9d241
JB
1085 btrfs_drew_write_unlock(&root->snapshot_lock);
1086 return -EAGAIN;
1087 }
1088 } else {
632ddfa2
JB
1089 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1090 &cached_state);
80f9d241 1091 }
85b7ab67 1092 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
80f9d241
JB
1093 NULL, NULL, NULL, nowait, false);
1094 if (ret <= 0)
d7a8ab4e 1095 btrfs_drew_write_unlock(&root->snapshot_lock);
80f9d241 1096 else
c933956d
MX
1097 *write_bytes = min_t(size_t, *write_bytes ,
1098 num_bytes - pos + lockstart);
632ddfa2 1099 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
7ee9e440
JB
1100
1101 return ret;
1102}
1103
38d37aa9
QW
1104void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1105{
1106 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1107}
1108
b8d8e1fd
GR
1109static void update_time_for_write(struct inode *inode)
1110{
1111 struct timespec64 now;
1112
1113 if (IS_NOCMTIME(inode))
1114 return;
1115
1116 now = current_time(inode);
1117 if (!timespec64_equal(&inode->i_mtime, &now))
1118 inode->i_mtime = now;
1119
1120 if (!timespec64_equal(&inode->i_ctime, &now))
1121 inode->i_ctime = now;
1122
1123 if (IS_I_VERSION(inode))
1124 inode_inc_iversion(inode);
1125}
1126
1127static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1128 size_t count)
1129{
1130 struct file *file = iocb->ki_filp;
1131 struct inode *inode = file_inode(file);
1132 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1133 loff_t pos = iocb->ki_pos;
1134 int ret;
1135 loff_t oldsize;
1136 loff_t start_pos;
1137
d7a8ab4e
FM
1138 /*
1139 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1140 * prealloc flags, as without those flags we always have to COW. We will
1141 * later check if we can really COW into the target range (using
1142 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1143 */
1144 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1145 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1146 return -EAGAIN;
b8d8e1fd
GR
1147
1148 current->backing_dev_info = inode_to_bdi(inode);
1149 ret = file_remove_privs(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * We reserve space for updating the inode when we reserve space for the
1155 * extent we are going to write, so we will enospc out there. We don't
1156 * need to start yet another transaction to update the inode as we will
1157 * update the inode when we finish writing whatever data we write.
1158 */
1159 update_time_for_write(inode);
1160
1161 start_pos = round_down(pos, fs_info->sectorsize);
1162 oldsize = i_size_read(inode);
1163 if (start_pos > oldsize) {
1164 /* Expand hole size to cover write data, preventing empty gap */
1165 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1166
b06359a3 1167 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
b8d8e1fd
GR
1168 if (ret) {
1169 current->backing_dev_info = NULL;
1170 return ret;
1171 }
1172 }
1173
1174 return 0;
1175}
1176
e4af400a
GR
1177static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1178 struct iov_iter *i)
4b46fce2 1179{
e4af400a 1180 struct file *file = iocb->ki_filp;
c3523706 1181 loff_t pos;
496ad9aa 1182 struct inode *inode = file_inode(file);
0b246afa 1183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1184 struct page **pages = NULL;
364ecf36 1185 struct extent_changeset *data_reserved = NULL;
7ee9e440 1186 u64 release_bytes = 0;
376cc685
MX
1187 u64 lockstart;
1188 u64 lockend;
d0215f3e
JB
1189 size_t num_written = 0;
1190 int nrptrs;
c3523706 1191 ssize_t ret;
7ee9e440 1192 bool only_release_metadata = false;
b6316429 1193 bool force_page_uptodate = false;
5e8b9ef3 1194 loff_t old_isize = i_size_read(inode);
c3523706 1195 unsigned int ilock_flags = 0;
304e45ac 1196 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
965f47ae 1197 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
c3523706 1198
304e45ac 1199 if (nowait)
c3523706
GR
1200 ilock_flags |= BTRFS_ILOCK_TRY;
1201
29b6352b 1202 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1203 if (ret < 0)
1204 return ret;
4b46fce2 1205
c3523706
GR
1206 ret = generic_write_checks(iocb, i);
1207 if (ret <= 0)
1208 goto out;
1209
1210 ret = btrfs_write_check(iocb, i, ret);
1211 if (ret < 0)
1212 goto out;
1213
1214 pos = iocb->ki_pos;
09cbfeaf
KS
1215 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1216 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1217 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1218 nrptrs = max(nrptrs, 8);
31e818fe 1219 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
c3523706
GR
1220 if (!pages) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
ab93dbec 1224
d0215f3e 1225 while (iov_iter_count(i) > 0) {
c67d970f 1226 struct extent_state *cached_state = NULL;
7073017a 1227 size_t offset = offset_in_page(pos);
2e78c927 1228 size_t sector_offset;
d0215f3e 1229 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1230 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1231 offset);
eefa45f5 1232 size_t num_pages;
7ee9e440 1233 size_t reserve_bytes;
d0215f3e
JB
1234 size_t dirty_pages;
1235 size_t copied;
2e78c927
CR
1236 size_t dirty_sectors;
1237 size_t num_sectors;
79f015f2 1238 int extents_locked;
39279cc3 1239
914ee295
XZ
1240 /*
1241 * Fault pages before locking them in prepare_pages
1242 * to avoid recursive lock
1243 */
a6294593 1244 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
914ee295 1245 ret = -EFAULT;
d0215f3e 1246 break;
914ee295
XZ
1247 }
1248
a0e248bb 1249 only_release_metadata = false;
da17066c 1250 sector_offset = pos & (fs_info->sectorsize - 1);
d9d8b2a5 1251
364ecf36 1252 extent_changeset_release(data_reserved);
36ea6f3e
NB
1253 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1254 &data_reserved, pos,
304e45ac 1255 write_bytes, nowait);
c6887cd1 1256 if (ret < 0) {
80f9d241
JB
1257 int can_nocow;
1258
304e45ac
SR
1259 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1260 ret = -EAGAIN;
1261 break;
1262 }
1263
eefa45f5
GR
1264 /*
1265 * If we don't have to COW at the offset, reserve
1266 * metadata only. write_bytes may get smaller than
1267 * requested here.
1268 */
80f9d241 1269 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
304e45ac 1270 &write_bytes, nowait);
80f9d241
JB
1271 if (can_nocow < 0)
1272 ret = can_nocow;
1273 if (can_nocow > 0)
1274 ret = 0;
1275 if (ret)
c6887cd1 1276 break;
80f9d241 1277 only_release_metadata = true;
c6887cd1 1278 }
1832a6d5 1279
eefa45f5
GR
1280 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1281 WARN_ON(num_pages > nrptrs);
1282 reserve_bytes = round_up(write_bytes + sector_offset,
1283 fs_info->sectorsize);
8b62f87b 1284 WARN_ON(reserve_bytes == 0);
9f3db423 1285 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
28c9b1e7 1286 reserve_bytes,
304e45ac 1287 reserve_bytes, nowait);
7ee9e440
JB
1288 if (ret) {
1289 if (!only_release_metadata)
25ce28ca 1290 btrfs_free_reserved_data_space(BTRFS_I(inode),
bc42bda2
QW
1291 data_reserved, pos,
1292 write_bytes);
8257b2dc 1293 else
38d37aa9 1294 btrfs_check_nocow_unlock(BTRFS_I(inode));
a348c8d4
FM
1295
1296 if (nowait && ret == -ENOSPC)
1297 ret = -EAGAIN;
7ee9e440
JB
1298 break;
1299 }
1300
1301 release_bytes = reserve_bytes;
376cc685 1302again:
965f47ae 1303 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
eb81b682
FM
1304 if (ret) {
1305 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
965f47ae 1306 break;
eb81b682 1307 }
965f47ae 1308
4a64001f
JB
1309 /*
1310 * This is going to setup the pages array with the number of
1311 * pages we want, so we don't really need to worry about the
1312 * contents of pages from loop to loop
1313 */
b37392ea 1314 ret = prepare_pages(inode, pages, num_pages,
fc226000 1315 pos, write_bytes, force_page_uptodate, false);
8b62f87b
JB
1316 if (ret) {
1317 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1318 reserve_bytes);
d0215f3e 1319 break;
8b62f87b 1320 }
39279cc3 1321
79f015f2
GR
1322 extents_locked = lock_and_cleanup_extent_if_need(
1323 BTRFS_I(inode), pages,
2cff578c 1324 num_pages, pos, write_bytes, &lockstart,
304e45ac 1325 &lockend, nowait, &cached_state);
79f015f2 1326 if (extents_locked < 0) {
304e45ac 1327 if (!nowait && extents_locked == -EAGAIN)
376cc685 1328 goto again;
304e45ac 1329
8b62f87b 1330 btrfs_delalloc_release_extents(BTRFS_I(inode),
8702ba93 1331 reserve_bytes);
79f015f2 1332 ret = extents_locked;
376cc685 1333 break;
376cc685
MX
1334 }
1335
ee22f0c4 1336 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1337
0b246afa 1338 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1339 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1340 fs_info->sectorsize);
1341 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1342
b1bf862e
CM
1343 /*
1344 * if we have trouble faulting in the pages, fall
1345 * back to one page at a time
1346 */
1347 if (copied < write_bytes)
1348 nrptrs = 1;
1349
b6316429
JB
1350 if (copied == 0) {
1351 force_page_uptodate = true;
56244ef1 1352 dirty_sectors = 0;
b1bf862e 1353 dirty_pages = 0;
b6316429
JB
1354 } else {
1355 force_page_uptodate = false;
ed6078f7 1356 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1357 PAGE_SIZE);
b6316429 1358 }
914ee295 1359
2e78c927 1360 if (num_sectors > dirty_sectors) {
8b8b08cb 1361 /* release everything except the sectors we dirtied */
265fdfa6 1362 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
485290a7 1363 if (only_release_metadata) {
691fa059 1364 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1365 release_bytes, true);
485290a7
QW
1366 } else {
1367 u64 __pos;
1368
da17066c 1369 __pos = round_down(pos,
0b246afa 1370 fs_info->sectorsize) +
09cbfeaf 1371 (dirty_pages << PAGE_SHIFT);
86d52921 1372 btrfs_delalloc_release_space(BTRFS_I(inode),
bc42bda2 1373 data_reserved, __pos,
43b18595 1374 release_bytes, true);
485290a7 1375 }
914ee295
XZ
1376 }
1377
2e78c927 1378 release_bytes = round_up(copied + sector_offset,
0b246afa 1379 fs_info->sectorsize);
376cc685 1380
aa8c1a41
GR
1381 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1382 dirty_pages, pos, copied,
1383 &cached_state, only_release_metadata);
c67d970f
FM
1384
1385 /*
1386 * If we have not locked the extent range, because the range's
1387 * start offset is >= i_size, we might still have a non-NULL
1388 * cached extent state, acquired while marking the extent range
1389 * as delalloc through btrfs_dirty_pages(). Therefore free any
1390 * possible cached extent state to avoid a memory leak.
1391 */
79f015f2 1392 if (extents_locked)
570eb97b
JB
1393 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1394 lockend, &cached_state);
c67d970f
FM
1395 else
1396 free_extent_state(cached_state);
1397
8702ba93 1398 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
f1de9683 1399 if (ret) {
e4f94347 1400 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
376cc685 1401 break;
f1de9683 1402 }
39279cc3 1403
376cc685 1404 release_bytes = 0;
8257b2dc 1405 if (only_release_metadata)
38d37aa9 1406 btrfs_check_nocow_unlock(BTRFS_I(inode));
8257b2dc 1407
e4f94347 1408 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
f1de9683 1409
d0215f3e
JB
1410 cond_resched();
1411
914ee295
XZ
1412 pos += copied;
1413 num_written += copied;
d0215f3e 1414 }
39279cc3 1415
d0215f3e
JB
1416 kfree(pages);
1417
7ee9e440 1418 if (release_bytes) {
8257b2dc 1419 if (only_release_metadata) {
38d37aa9 1420 btrfs_check_nocow_unlock(BTRFS_I(inode));
691fa059 1421 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1422 release_bytes, true);
8257b2dc 1423 } else {
86d52921
NB
1424 btrfs_delalloc_release_space(BTRFS_I(inode),
1425 data_reserved,
bc42bda2 1426 round_down(pos, fs_info->sectorsize),
43b18595 1427 release_bytes, true);
8257b2dc 1428 }
7ee9e440
JB
1429 }
1430
364ecf36 1431 extent_changeset_free(data_reserved);
5e8b9ef3
GR
1432 if (num_written > 0) {
1433 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1434 iocb->ki_pos += num_written;
1435 }
c3523706 1436out:
e5d4d75b 1437 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
d0215f3e
JB
1438 return num_written ? num_written : ret;
1439}
1440
4e4cabec
GR
1441static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1442 const struct iov_iter *iter, loff_t offset)
1443{
1444 const u32 blocksize_mask = fs_info->sectorsize - 1;
1445
1446 if (offset & blocksize_mask)
1447 return -EINVAL;
1448
1449 if (iov_iter_alignment(iter) & blocksize_mask)
1450 return -EINVAL;
1451
1452 return 0;
1453}
1454
1455static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1456{
1457 struct file *file = iocb->ki_filp;
728404da 1458 struct inode *inode = file_inode(file);
4e4cabec 1459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c3523706 1460 loff_t pos;
4e4cabec 1461 ssize_t written = 0;
d0215f3e 1462 ssize_t written_buffered;
51bd9563 1463 size_t prev_left = 0;
d0215f3e 1464 loff_t endbyte;
c3523706
GR
1465 ssize_t err;
1466 unsigned int ilock_flags = 0;
8184620a 1467 struct iomap_dio *dio;
c3523706
GR
1468
1469 if (iocb->ki_flags & IOCB_NOWAIT)
1470 ilock_flags |= BTRFS_ILOCK_TRY;
1471
e9adabb9
GR
1472 /* If the write DIO is within EOF, use a shared lock */
1473 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode))
1474 ilock_flags |= BTRFS_ILOCK_SHARED;
1475
1476relock:
29b6352b 1477 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1478 if (err < 0)
1479 return err;
1480
1481 err = generic_write_checks(iocb, from);
1482 if (err <= 0) {
e5d4d75b 1483 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1484 return err;
1485 }
d0215f3e 1486
c3523706
GR
1487 err = btrfs_write_check(iocb, from, err);
1488 if (err < 0) {
e5d4d75b 1489 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
c3523706
GR
1490 goto out;
1491 }
1492
1493 pos = iocb->ki_pos;
e9adabb9
GR
1494 /*
1495 * Re-check since file size may have changed just before taking the
1496 * lock or pos may have changed because of O_APPEND in generic_write_check()
1497 */
1498 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1499 pos + iov_iter_count(from) > i_size_read(inode)) {
e5d4d75b 1500 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
e9adabb9
GR
1501 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1502 goto relock;
1503 }
c3523706
GR
1504
1505 if (check_direct_IO(fs_info, from, pos)) {
e5d4d75b 1506 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
4e4cabec 1507 goto buffered;
c3523706 1508 }
4e4cabec 1509
51bd9563
FM
1510 /*
1511 * The iov_iter can be mapped to the same file range we are writing to.
1512 * If that's the case, then we will deadlock in the iomap code, because
1513 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1514 * an ordered extent, and after that it will fault in the pages that the
1515 * iov_iter refers to. During the fault in we end up in the readahead
1516 * pages code (starting at btrfs_readahead()), which will lock the range,
1517 * find that ordered extent and then wait for it to complete (at
1518 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1519 * obviously the ordered extent can never complete as we didn't submit
1520 * yet the respective bio(s). This always happens when the buffer is
1521 * memory mapped to the same file range, since the iomap DIO code always
1522 * invalidates pages in the target file range (after starting and waiting
1523 * for any writeback).
1524 *
1525 * So here we disable page faults in the iov_iter and then retry if we
1526 * got -EFAULT, faulting in the pages before the retry.
1527 */
51bd9563 1528 from->nofault = true;
8184620a 1529 dio = btrfs_dio_write(iocb, from, written);
51bd9563 1530 from->nofault = false;
d0215f3e 1531
8184620a
FM
1532 /*
1533 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1534 * iocb, and that needs to lock the inode. So unlock it before calling
1535 * iomap_dio_complete() to avoid a deadlock.
1536 */
e5d4d75b 1537 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
8184620a
FM
1538
1539 if (IS_ERR_OR_NULL(dio))
1540 err = PTR_ERR_OR_ZERO(dio);
1541 else
1542 err = iomap_dio_complete(dio);
1543
51bd9563
FM
1544 /* No increment (+=) because iomap returns a cumulative value. */
1545 if (err > 0)
1546 written = err;
1547
1548 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1549 const size_t left = iov_iter_count(from);
1550 /*
1551 * We have more data left to write. Try to fault in as many as
1552 * possible of the remainder pages and retry. We do this without
1553 * releasing and locking again the inode, to prevent races with
1554 * truncate.
1555 *
1556 * Also, in case the iov refers to pages in the file range of the
1557 * file we want to write to (due to a mmap), we could enter an
1558 * infinite loop if we retry after faulting the pages in, since
1559 * iomap will invalidate any pages in the range early on, before
1560 * it tries to fault in the pages of the iov. So we keep track of
1561 * how much was left of iov in the previous EFAULT and fallback
1562 * to buffered IO in case we haven't made any progress.
1563 */
1564 if (left == prev_left) {
1565 err = -ENOTBLK;
1566 } else {
1567 fault_in_iov_iter_readable(from, left);
1568 prev_left = left;
8184620a 1569 goto relock;
51bd9563 1570 }
a42fa643
GR
1571 }
1572
ac5e6669
FM
1573 /*
1574 * If 'err' is -ENOTBLK or we have not written all data, then it means
1575 * we must fallback to buffered IO.
1576 */
51bd9563 1577 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
c3523706 1578 goto out;
d0215f3e 1579
4e4cabec 1580buffered:
ac5e6669
FM
1581 /*
1582 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1583 * it must retry the operation in a context where blocking is acceptable,
20af93d9
FM
1584 * because even if we end up not blocking during the buffered IO attempt
1585 * below, we will block when flushing and waiting for the IO.
ac5e6669
FM
1586 */
1587 if (iocb->ki_flags & IOCB_NOWAIT) {
1588 err = -EAGAIN;
1589 goto out;
1590 }
1591
e4af400a
GR
1592 pos = iocb->ki_pos;
1593 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1594 if (written_buffered < 0) {
1595 err = written_buffered;
1596 goto out;
39279cc3 1597 }
075bdbdb
FM
1598 /*
1599 * Ensure all data is persisted. We want the next direct IO read to be
1600 * able to read what was just written.
1601 */
d0215f3e 1602 endbyte = pos + written_buffered - 1;
728404da 1603 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1604 if (err)
1605 goto out;
728404da 1606 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1607 if (err)
1608 goto out;
1609 written += written_buffered;
867c4f93 1610 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1611 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1612 endbyte >> PAGE_SHIFT);
39279cc3 1613out:
51bd9563 1614 return err < 0 ? err : written;
d0215f3e 1615}
5b92ee72 1616
7c0c7269
OS
1617static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1618 const struct btrfs_ioctl_encoded_io_args *encoded)
1619{
1620 struct file *file = iocb->ki_filp;
1621 struct inode *inode = file_inode(file);
1622 loff_t count;
1623 ssize_t ret;
1624
29b6352b 1625 btrfs_inode_lock(BTRFS_I(inode), 0);
7c0c7269
OS
1626 count = encoded->len;
1627 ret = generic_write_checks_count(iocb, &count);
1628 if (ret == 0 && count != encoded->len) {
1629 /*
1630 * The write got truncated by generic_write_checks_count(). We
1631 * can't do a partial encoded write.
1632 */
1633 ret = -EFBIG;
1634 }
1635 if (ret || encoded->len == 0)
1636 goto out;
1637
1638 ret = btrfs_write_check(iocb, from, encoded->len);
1639 if (ret < 0)
1640 goto out;
1641
1642 ret = btrfs_do_encoded_write(iocb, from, encoded);
1643out:
e5d4d75b 1644 btrfs_inode_unlock(BTRFS_I(inode), 0);
7c0c7269
OS
1645 return ret;
1646}
1647
1648ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1649 const struct btrfs_ioctl_encoded_io_args *encoded)
d0215f3e
JB
1650{
1651 struct file *file = iocb->ki_filp;
14971657 1652 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
7c0c7269 1653 ssize_t num_written, num_sync;
d0215f3e 1654
c86537a4
GR
1655 /*
1656 * If the fs flips readonly due to some impossible error, although we
1657 * have opened a file as writable, we have to stop this write operation
1658 * to ensure consistency.
1659 */
84961539 1660 if (BTRFS_FS_ERROR(inode->root->fs_info))
c86537a4
GR
1661 return -EROFS;
1662
926078b2 1663 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
91f9943e
CH
1664 return -EOPNOTSUPP;
1665
7c0c7269
OS
1666 if (encoded) {
1667 num_written = btrfs_encoded_write(iocb, from, encoded);
1668 num_sync = encoded->len;
1669 } else if (iocb->ki_flags & IOCB_DIRECT) {
c1867eb3
DS
1670 num_written = btrfs_direct_write(iocb, from);
1671 num_sync = num_written;
7c0c7269 1672 } else {
c1867eb3
DS
1673 num_written = btrfs_buffered_write(iocb, from);
1674 num_sync = num_written;
7c0c7269 1675 }
d0215f3e 1676
bc0939fc
FM
1677 btrfs_set_inode_last_sub_trans(inode);
1678
7c0c7269
OS
1679 if (num_sync > 0) {
1680 num_sync = generic_write_sync(iocb, num_sync);
1681 if (num_sync < 0)
1682 num_written = num_sync;
1683 }
0a3404dc 1684
39279cc3 1685 current->backing_dev_info = NULL;
c3523706 1686 return num_written;
39279cc3
CM
1687}
1688
7c0c7269
OS
1689static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1690{
1691 return btrfs_do_write_iter(iocb, from, NULL);
1692}
1693
d397712b 1694int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1695{
23b5ec74
JB
1696 struct btrfs_file_private *private = filp->private_data;
1697
3c32c721 1698 if (private) {
23b5ec74 1699 kfree(private->filldir_buf);
3c32c721
FM
1700 free_extent_state(private->llseek_cached_state);
1701 kfree(private);
1702 filp->private_data = NULL;
1703 }
23b5ec74 1704
f6dc45c7 1705 /*
1fd4033d
NB
1706 * Set by setattr when we are about to truncate a file from a non-zero
1707 * size to a zero size. This tries to flush down new bytes that may
1708 * have been written if the application were using truncate to replace
1709 * a file in place.
f6dc45c7 1710 */
1fd4033d 1711 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
f6dc45c7
CM
1712 &BTRFS_I(inode)->runtime_flags))
1713 filemap_flush(inode->i_mapping);
e1b81e67
M
1714 return 0;
1715}
1716
669249ee
FM
1717static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1718{
1719 int ret;
343e4fc1 1720 struct blk_plug plug;
669249ee 1721
343e4fc1
LB
1722 /*
1723 * This is only called in fsync, which would do synchronous writes, so
1724 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1725 * multiple disks using raid profile, a large IO can be split to
1726 * several segments of stripe length (currently 64K).
1727 */
1728 blk_start_plug(&plug);
728404da 1729 ret = btrfs_fdatawrite_range(inode, start, end);
343e4fc1 1730 blk_finish_plug(&plug);
669249ee
FM
1731
1732 return ret;
1733}
1734
626e9f41
FM
1735static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1736{
1737 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1738 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1739
1740 if (btrfs_inode_in_log(inode, fs_info->generation) &&
1741 list_empty(&ctx->ordered_extents))
1742 return true;
1743
1744 /*
1745 * If we are doing a fast fsync we can not bail out if the inode's
1746 * last_trans is <= then the last committed transaction, because we only
1747 * update the last_trans of the inode during ordered extent completion,
1748 * and for a fast fsync we don't wait for that, we only wait for the
1749 * writeback to complete.
1750 */
1751 if (inode->last_trans <= fs_info->last_trans_committed &&
1752 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1753 list_empty(&ctx->ordered_extents)))
1754 return true;
1755
1756 return false;
1757}
1758
d352ac68
CM
1759/*
1760 * fsync call for both files and directories. This logs the inode into
1761 * the tree log instead of forcing full commits whenever possible.
1762 *
1763 * It needs to call filemap_fdatawait so that all ordered extent updates are
1764 * in the metadata btree are up to date for copying to the log.
1765 *
1766 * It drops the inode mutex before doing the tree log commit. This is an
1767 * important optimization for directories because holding the mutex prevents
1768 * new operations on the dir while we write to disk.
1769 */
02c24a82 1770int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1771{
de17e793 1772 struct dentry *dentry = file_dentry(file);
2b0143b5 1773 struct inode *inode = d_inode(dentry);
0b246afa 1774 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 1775 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1776 struct btrfs_trans_handle *trans;
8b050d35 1777 struct btrfs_log_ctx ctx;
333427a5 1778 int ret = 0, err;
48778179
FM
1779 u64 len;
1780 bool full_sync;
39279cc3 1781
1abe9b8a 1782 trace_btrfs_sync_file(file, datasync);
257c62e1 1783
ebb70442
LB
1784 btrfs_init_log_ctx(&ctx, inode);
1785
95418ed1 1786 /*
48778179
FM
1787 * Always set the range to a full range, otherwise we can get into
1788 * several problems, from missing file extent items to represent holes
1789 * when not using the NO_HOLES feature, to log tree corruption due to
1790 * races between hole detection during logging and completion of ordered
1791 * extents outside the range, to missing checksums due to ordered extents
1792 * for which we flushed only a subset of their pages.
95418ed1 1793 */
48778179
FM
1794 start = 0;
1795 end = LLONG_MAX;
1796 len = (u64)LLONG_MAX + 1;
95418ed1 1797
90abccf2
MX
1798 /*
1799 * We write the dirty pages in the range and wait until they complete
1800 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1801 * multi-task, and make the performance up. See
1802 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1803 */
669249ee 1804 ret = start_ordered_ops(inode, start, end);
90abccf2 1805 if (ret)
333427a5 1806 goto out;
90abccf2 1807
29b6352b 1808 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
c495144b 1809
2ecb7923 1810 atomic_inc(&root->log_batch);
b5e6c3e1 1811
aab15e8e 1812 /*
885f46d8
FM
1813 * Before we acquired the inode's lock and the mmap lock, someone may
1814 * have dirtied more pages in the target range. We need to make sure
1815 * that writeback for any such pages does not start while we are logging
1816 * the inode, because if it does, any of the following might happen when
1817 * we are not doing a full inode sync:
aab15e8e
FM
1818 *
1819 * 1) We log an extent after its writeback finishes but before its
1820 * checksums are added to the csum tree, leading to -EIO errors
1821 * when attempting to read the extent after a log replay.
1822 *
1823 * 2) We can end up logging an extent before its writeback finishes.
1824 * Therefore after the log replay we will have a file extent item
1825 * pointing to an unwritten extent (and no data checksums as well).
1826 *
1827 * So trigger writeback for any eventual new dirty pages and then we
1828 * wait for all ordered extents to complete below.
1829 */
1830 ret = start_ordered_ops(inode, start, end);
1831 if (ret) {
e5d4d75b 1832 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
aab15e8e
FM
1833 goto out;
1834 }
1835
cef7820d
FM
1836 /*
1837 * Always check for the full sync flag while holding the inode's lock,
1838 * to avoid races with other tasks. The flag must be either set all the
1839 * time during logging or always off all the time while logging.
1840 * We check the flag here after starting delalloc above, because when
1841 * running delalloc the full sync flag may be set if we need to drop
1842 * extra extent map ranges due to temporary memory allocation failures.
1843 */
1844 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1845 &BTRFS_I(inode)->runtime_flags);
1846
669249ee 1847 /*
b5e6c3e1 1848 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 1849 * IO of a lower priority task while holding a transaction open.
ba0b084a 1850 *
48778179
FM
1851 * For a full fsync we wait for the ordered extents to complete while
1852 * for a fast fsync we wait just for writeback to complete, and then
1853 * attach the ordered extents to the transaction so that a transaction
1854 * commit waits for their completion, to avoid data loss if we fsync,
1855 * the current transaction commits before the ordered extents complete
1856 * and a power failure happens right after that.
d8e3fb10
NA
1857 *
1858 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1859 * logical address recorded in the ordered extent may change. We need
1860 * to wait for the IO to stabilize the logical address.
669249ee 1861 */
d8e3fb10 1862 if (full_sync || btrfs_is_zoned(fs_info)) {
48778179
FM
1863 ret = btrfs_wait_ordered_range(inode, start, len);
1864 } else {
1865 /*
1866 * Get our ordered extents as soon as possible to avoid doing
1867 * checksum lookups in the csum tree, and use instead the
1868 * checksums attached to the ordered extents.
1869 */
1870 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1871 &ctx.ordered_extents);
1872 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
0ef8b726 1873 }
48778179
FM
1874
1875 if (ret)
1876 goto out_release_extents;
1877
2ecb7923 1878 atomic_inc(&root->log_batch);
257c62e1 1879
a4abeea4 1880 smp_mb();
626e9f41 1881 if (skip_inode_logging(&ctx)) {
5dc562c5 1882 /*
01327610 1883 * We've had everything committed since the last time we were
5dc562c5
JB
1884 * modified so clear this flag in case it was set for whatever
1885 * reason, it's no longer relevant.
1886 */
1887 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1888 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
1889 /*
1890 * An ordered extent might have started before and completed
1891 * already with io errors, in which case the inode was not
1892 * updated and we end up here. So check the inode's mapping
333427a5
JL
1893 * for any errors that might have happened since we last
1894 * checked called fsync.
0596a904 1895 */
333427a5 1896 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
48778179 1897 goto out_release_extents;
15ee9bc7 1898 }
15ee9bc7 1899
5039eddc
JB
1900 /*
1901 * We use start here because we will need to wait on the IO to complete
1902 * in btrfs_sync_log, which could require joining a transaction (for
1903 * example checking cross references in the nocow path). If we use join
1904 * here we could get into a situation where we're waiting on IO to
1905 * happen that is blocked on a transaction trying to commit. With start
1906 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 1907 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
1908 * from thinking they are super smart and changing this to
1909 * btrfs_join_transaction *cough*Josef*cough*.
1910 */
a22285a6
YZ
1911 trans = btrfs_start_transaction(root, 0);
1912 if (IS_ERR(trans)) {
1913 ret = PTR_ERR(trans);
48778179 1914 goto out_release_extents;
39279cc3 1915 }
d0c2f4fa 1916 trans->in_fsync = true;
e02119d5 1917
48778179
FM
1918 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1919 btrfs_release_log_ctx_extents(&ctx);
02c24a82 1920 if (ret < 0) {
a0634be5 1921 /* Fallthrough and commit/free transaction. */
f31f09f6 1922 ret = BTRFS_LOG_FORCE_COMMIT;
02c24a82 1923 }
49eb7e46
CM
1924
1925 /* we've logged all the items and now have a consistent
1926 * version of the file in the log. It is possible that
1927 * someone will come in and modify the file, but that's
1928 * fine because the log is consistent on disk, and we
1929 * have references to all of the file's extents
1930 *
1931 * It is possible that someone will come in and log the
1932 * file again, but that will end up using the synchronization
1933 * inside btrfs_sync_log to keep things safe.
1934 */
e5d4d75b 1935 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
49eb7e46 1936
bf7ba8ee
JB
1937 if (ret == BTRFS_NO_LOG_SYNC) {
1938 ret = btrfs_end_transaction(trans);
1939 goto out;
1940 }
1941
1942 /* We successfully logged the inode, attempt to sync the log. */
1943 if (!ret) {
1944 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 1945 if (!ret) {
bf7ba8ee
JB
1946 ret = btrfs_end_transaction(trans);
1947 goto out;
48778179 1948 }
bf7ba8ee
JB
1949 }
1950
1951 /*
1952 * At this point we need to commit the transaction because we had
1953 * btrfs_need_log_full_commit() or some other error.
1954 *
1955 * If we didn't do a full sync we have to stop the trans handle, wait on
1956 * the ordered extents, start it again and commit the transaction. If
1957 * we attempt to wait on the ordered extents here we could deadlock with
1958 * something like fallocate() that is holding the extent lock trying to
1959 * start a transaction while some other thread is trying to commit the
1960 * transaction while we (fsync) are currently holding the transaction
1961 * open.
1962 */
1963 if (!full_sync) {
3a45bb20 1964 ret = btrfs_end_transaction(trans);
bf7ba8ee
JB
1965 if (ret)
1966 goto out;
1967 ret = btrfs_wait_ordered_range(inode, start, len);
1968 if (ret)
1969 goto out;
1970
1971 /*
1972 * This is safe to use here because we're only interested in
1973 * making sure the transaction that had the ordered extents is
1974 * committed. We aren't waiting on anything past this point,
1975 * we're purely getting the transaction and committing it.
1976 */
1977 trans = btrfs_attach_transaction_barrier(root);
1978 if (IS_ERR(trans)) {
1979 ret = PTR_ERR(trans);
1980
1981 /*
1982 * We committed the transaction and there's no currently
1983 * running transaction, this means everything we care
1984 * about made it to disk and we are done.
1985 */
1986 if (ret == -ENOENT)
1987 ret = 0;
1988 goto out;
1989 }
e02119d5 1990 }
bf7ba8ee
JB
1991
1992 ret = btrfs_commit_transaction(trans);
39279cc3 1993out:
ebb70442 1994 ASSERT(list_empty(&ctx.list));
e09d94c9 1995 ASSERT(list_empty(&ctx.conflict_inodes));
333427a5
JL
1996 err = file_check_and_advance_wb_err(file);
1997 if (!ret)
1998 ret = err;
014e4ac4 1999 return ret > 0 ? -EIO : ret;
48778179
FM
2000
2001out_release_extents:
2002 btrfs_release_log_ctx_extents(&ctx);
e5d4d75b 2003 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
48778179 2004 goto out;
39279cc3
CM
2005}
2006
f0f37e2f 2007static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2008 .fault = filemap_fault,
f1820361 2009 .map_pages = filemap_map_pages,
9ebefb18
CM
2010 .page_mkwrite = btrfs_page_mkwrite,
2011};
2012
2013static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2014{
058a457e
MX
2015 struct address_space *mapping = filp->f_mapping;
2016
7e0a1265 2017 if (!mapping->a_ops->read_folio)
058a457e
MX
2018 return -ENOEXEC;
2019
9ebefb18 2020 file_accessed(filp);
058a457e 2021 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2022
9ebefb18
CM
2023 return 0;
2024}
2025
35339c24 2026static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2027 int slot, u64 start, u64 end)
2028{
2029 struct btrfs_file_extent_item *fi;
2030 struct btrfs_key key;
2031
2032 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2033 return 0;
2034
2035 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2036 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2037 key.type != BTRFS_EXTENT_DATA_KEY)
2038 return 0;
2039
2040 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2041
2042 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2043 return 0;
2044
2045 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2046 return 0;
2047
2048 if (key.offset == end)
2049 return 1;
2050 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2051 return 1;
2052 return 0;
2053}
2054
a012a74e
NB
2055static int fill_holes(struct btrfs_trans_handle *trans,
2056 struct btrfs_inode *inode,
2057 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2058{
3ffbd68c 2059 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2060 struct btrfs_root *root = inode->root;
2aaa6655
JB
2061 struct extent_buffer *leaf;
2062 struct btrfs_file_extent_item *fi;
2063 struct extent_map *hole_em;
2aaa6655
JB
2064 struct btrfs_key key;
2065 int ret;
2066
0b246afa 2067 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2068 goto out;
2069
a012a74e 2070 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2071 key.type = BTRFS_EXTENT_DATA_KEY;
2072 key.offset = offset;
2073
2aaa6655 2074 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2075 if (ret <= 0) {
2076 /*
2077 * We should have dropped this offset, so if we find it then
2078 * something has gone horribly wrong.
2079 */
2080 if (ret == 0)
2081 ret = -EINVAL;
2aaa6655 2082 return ret;
f94480bd 2083 }
2aaa6655
JB
2084
2085 leaf = path->nodes[0];
a012a74e 2086 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2087 u64 num_bytes;
2088
2089 path->slots[0]--;
2090 fi = btrfs_item_ptr(leaf, path->slots[0],
2091 struct btrfs_file_extent_item);
2092 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2093 end - offset;
2094 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2095 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2096 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2098 btrfs_mark_buffer_dirty(leaf);
2099 goto out;
2100 }
2101
1707e26d 2102 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2103 u64 num_bytes;
2104
2aaa6655 2105 key.offset = offset;
0b246afa 2106 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2107 fi = btrfs_item_ptr(leaf, path->slots[0],
2108 struct btrfs_file_extent_item);
2109 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2110 offset;
2111 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2112 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2113 btrfs_set_file_extent_offset(leaf, fi, 0);
e6e3dec6 2114 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2aaa6655
JB
2115 btrfs_mark_buffer_dirty(leaf);
2116 goto out;
2117 }
2118 btrfs_release_path(path);
2119
d1f68ba0
OS
2120 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2121 end - offset);
2aaa6655
JB
2122 if (ret)
2123 return ret;
2124
2125out:
2126 btrfs_release_path(path);
2127
2128 hole_em = alloc_extent_map();
2129 if (!hole_em) {
4c0c8cfc 2130 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
23e3337f 2131 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2132 } else {
2133 hole_em->start = offset;
2134 hole_em->len = end - offset;
cc95bef6 2135 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2136 hole_em->orig_start = offset;
2137
2138 hole_em->block_start = EXTENT_MAP_HOLE;
2139 hole_em->block_len = 0;
b4939680 2140 hole_em->orig_block_len = 0;
2aaa6655
JB
2141 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2142 hole_em->generation = trans->transid;
2143
a1ba4c08 2144 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2aaa6655
JB
2145 free_extent_map(hole_em);
2146 if (ret)
23e3337f 2147 btrfs_set_inode_full_sync(inode);
2aaa6655
JB
2148 }
2149
2150 return 0;
2151}
2152
d7781546
QW
2153/*
2154 * Find a hole extent on given inode and change start/len to the end of hole
2155 * extent.(hole/vacuum extent whose em->start <= start &&
2156 * em->start + em->len > start)
2157 * When a hole extent is found, return 1 and modify start/len.
2158 */
dea46d84 2159static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
d7781546 2160{
dea46d84 2161 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d7781546
QW
2162 struct extent_map *em;
2163 int ret = 0;
2164
dea46d84 2165 em = btrfs_get_extent(inode, NULL, 0,
609805d8 2166 round_down(*start, fs_info->sectorsize),
39b07b5d 2167 round_up(*len, fs_info->sectorsize));
9986277e
DC
2168 if (IS_ERR(em))
2169 return PTR_ERR(em);
d7781546
QW
2170
2171 /* Hole or vacuum extent(only exists in no-hole mode) */
2172 if (em->block_start == EXTENT_MAP_HOLE) {
2173 ret = 1;
2174 *len = em->start + em->len > *start + *len ?
2175 0 : *start + *len - em->start - em->len;
2176 *start = em->start + em->len;
2177 }
2178 free_extent_map(em);
2179 return ret;
2180}
2181
55961c8a
FM
2182static void btrfs_punch_hole_lock_range(struct inode *inode,
2183 const u64 lockstart,
2184 const u64 lockend,
2185 struct extent_state **cached_state)
f27451f2 2186{
0528476b
QW
2187 /*
2188 * For subpage case, if the range is not at page boundary, we could
2189 * have pages at the leading/tailing part of the range.
2190 * This could lead to dead loop since filemap_range_has_page()
2191 * will always return true.
2192 * So here we need to do extra page alignment for
2193 * filemap_range_has_page().
2194 */
2195 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2196 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2197
f27451f2 2198 while (1) {
f27451f2
FM
2199 truncate_pagecache_range(inode, lockstart, lockend);
2200
570eb97b
JB
2201 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2202 cached_state);
f27451f2 2203 /*
55961c8a
FM
2204 * We can't have ordered extents in the range, nor dirty/writeback
2205 * pages, because we have locked the inode's VFS lock in exclusive
2206 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2207 * we have flushed all delalloc in the range and we have waited
2208 * for any ordered extents in the range to complete.
2209 * We can race with anyone reading pages from this range, so after
2210 * locking the range check if we have pages in the range, and if
2211 * we do, unlock the range and retry.
f27451f2 2212 */
55961c8a
FM
2213 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2214 page_lockend))
f27451f2 2215 break;
55961c8a 2216
570eb97b
JB
2217 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2218 cached_state);
f27451f2 2219 }
63c34cb4
FM
2220
2221 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
f27451f2
FM
2222}
2223
0cbb5bdf 2224static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
03fcb1ab 2225 struct btrfs_inode *inode,
690a5dbf 2226 struct btrfs_path *path,
bf385648 2227 struct btrfs_replace_extent_info *extent_info,
2766ff61
FM
2228 const u64 replace_len,
2229 const u64 bytes_to_drop)
690a5dbf 2230{
03fcb1ab
NB
2231 struct btrfs_fs_info *fs_info = trans->fs_info;
2232 struct btrfs_root *root = inode->root;
690a5dbf
FM
2233 struct btrfs_file_extent_item *extent;
2234 struct extent_buffer *leaf;
2235 struct btrfs_key key;
2236 int slot;
2237 struct btrfs_ref ref = { 0 };
690a5dbf
FM
2238 int ret;
2239
bf385648 2240 if (replace_len == 0)
690a5dbf
FM
2241 return 0;
2242
bf385648 2243 if (extent_info->disk_offset == 0 &&
2766ff61 2244 btrfs_fs_incompat(fs_info, NO_HOLES)) {
03fcb1ab 2245 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2246 return 0;
2766ff61 2247 }
690a5dbf 2248
03fcb1ab 2249 key.objectid = btrfs_ino(inode);
690a5dbf 2250 key.type = BTRFS_EXTENT_DATA_KEY;
bf385648 2251 key.offset = extent_info->file_offset;
690a5dbf 2252 ret = btrfs_insert_empty_item(trans, root, path, &key,
fb870f6c 2253 sizeof(struct btrfs_file_extent_item));
690a5dbf
FM
2254 if (ret)
2255 return ret;
2256 leaf = path->nodes[0];
2257 slot = path->slots[0];
bf385648 2258 write_extent_buffer(leaf, extent_info->extent_buf,
690a5dbf 2259 btrfs_item_ptr_offset(leaf, slot),
fb870f6c 2260 sizeof(struct btrfs_file_extent_item));
690a5dbf 2261 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
fb870f6c 2262 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
bf385648
FM
2263 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2264 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2265 if (extent_info->is_new_extent)
8fccebfa 2266 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
690a5dbf
FM
2267 btrfs_mark_buffer_dirty(leaf);
2268 btrfs_release_path(path);
2269
03fcb1ab
NB
2270 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2271 replace_len);
9ddc959e
JB
2272 if (ret)
2273 return ret;
2274
690a5dbf 2275 /* If it's a hole, nothing more needs to be done. */
2766ff61 2276 if (extent_info->disk_offset == 0) {
03fcb1ab 2277 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
690a5dbf 2278 return 0;
2766ff61 2279 }
690a5dbf 2280
03fcb1ab 2281 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
8fccebfa 2282
bf385648
FM
2283 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2284 key.objectid = extent_info->disk_offset;
8fccebfa 2285 key.type = BTRFS_EXTENT_ITEM_KEY;
bf385648 2286 key.offset = extent_info->disk_len;
8fccebfa 2287 ret = btrfs_alloc_reserved_file_extent(trans, root,
03fcb1ab 2288 btrfs_ino(inode),
bf385648
FM
2289 extent_info->file_offset,
2290 extent_info->qgroup_reserved,
8fccebfa
FM
2291 &key);
2292 } else {
2293 u64 ref_offset;
2294
2295 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
bf385648
FM
2296 extent_info->disk_offset,
2297 extent_info->disk_len, 0);
2298 ref_offset = extent_info->file_offset - extent_info->data_offset;
8fccebfa 2299 btrfs_init_data_ref(&ref, root->root_key.objectid,
f42c5da6 2300 btrfs_ino(inode), ref_offset, 0, false);
8fccebfa
FM
2301 ret = btrfs_inc_extent_ref(trans, &ref);
2302 }
2303
bf385648 2304 extent_info->insertions++;
690a5dbf
FM
2305
2306 return ret;
2307}
2308
9cba40a6
FM
2309/*
2310 * The respective range must have been previously locked, as well as the inode.
2311 * The end offset is inclusive (last byte of the range).
bf385648
FM
2312 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2313 * the file range with an extent.
2314 * When not punching a hole, we don't want to end up in a state where we dropped
2315 * extents without inserting a new one, so we must abort the transaction to avoid
2316 * a corruption.
9cba40a6 2317 */
bfc78479
NB
2318int btrfs_replace_file_extents(struct btrfs_inode *inode,
2319 struct btrfs_path *path, const u64 start,
2320 const u64 end,
2321 struct btrfs_replace_extent_info *extent_info,
2322 struct btrfs_trans_handle **trans_out)
9cba40a6 2323{
5893dfb9 2324 struct btrfs_drop_extents_args drop_args = { 0 };
bfc78479
NB
2325 struct btrfs_root *root = inode->root;
2326 struct btrfs_fs_info *fs_info = root->fs_info;
2bd36e7b 2327 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
bfc78479 2328 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
9cba40a6
FM
2329 struct btrfs_trans_handle *trans = NULL;
2330 struct btrfs_block_rsv *rsv;
2331 unsigned int rsv_count;
2332 u64 cur_offset;
9cba40a6
FM
2333 u64 len = end - start;
2334 int ret = 0;
2335
2336 if (end <= start)
2337 return -EINVAL;
2338
2339 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2340 if (!rsv) {
2341 ret = -ENOMEM;
2342 goto out;
2343 }
2bd36e7b 2344 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
710d5921 2345 rsv->failfast = true;
9cba40a6
FM
2346
2347 /*
2348 * 1 - update the inode
2349 * 1 - removing the extents in the range
bf385648
FM
2350 * 1 - adding the hole extent if no_holes isn't set or if we are
2351 * replacing the range with a new extent
9cba40a6 2352 */
bf385648 2353 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
690a5dbf
FM
2354 rsv_count = 3;
2355 else
2356 rsv_count = 2;
2357
9cba40a6
FM
2358 trans = btrfs_start_transaction(root, rsv_count);
2359 if (IS_ERR(trans)) {
2360 ret = PTR_ERR(trans);
2361 trans = NULL;
2362 goto out_free;
2363 }
2364
2365 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2366 min_size, false);
650c9cab
FM
2367 if (WARN_ON(ret))
2368 goto out_trans;
9cba40a6
FM
2369 trans->block_rsv = rsv;
2370
2371 cur_offset = start;
5893dfb9
FM
2372 drop_args.path = path;
2373 drop_args.end = end + 1;
2374 drop_args.drop_cache = true;
9cba40a6 2375 while (cur_offset < end) {
5893dfb9 2376 drop_args.start = cur_offset;
bfc78479 2377 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2766ff61
FM
2378 /* If we are punching a hole decrement the inode's byte count */
2379 if (!extent_info)
bfc78479 2380 btrfs_update_inode_bytes(inode, 0,
2766ff61 2381 drop_args.bytes_found);
690a5dbf
FM
2382 if (ret != -ENOSPC) {
2383 /*
4afb912f
JB
2384 * The only time we don't want to abort is if we are
2385 * attempting to clone a partial inline extent, in which
2386 * case we'll get EOPNOTSUPP. However if we aren't
2387 * clone we need to abort no matter what, because if we
2388 * got EOPNOTSUPP via prealloc then we messed up and
2389 * need to abort.
690a5dbf 2390 */
4afb912f
JB
2391 if (ret &&
2392 (ret != -EOPNOTSUPP ||
2393 (extent_info && extent_info->is_new_extent)))
690a5dbf 2394 btrfs_abort_transaction(trans, ret);
9cba40a6 2395 break;
690a5dbf 2396 }
9cba40a6
FM
2397
2398 trans->block_rsv = &fs_info->trans_block_rsv;
2399
5893dfb9 2400 if (!extent_info && cur_offset < drop_args.drop_end &&
690a5dbf 2401 cur_offset < ino_size) {
bfc78479
NB
2402 ret = fill_holes(trans, inode, path, cur_offset,
2403 drop_args.drop_end);
9cba40a6
FM
2404 if (ret) {
2405 /*
2406 * If we failed then we didn't insert our hole
2407 * entries for the area we dropped, so now the
2408 * fs is corrupted, so we must abort the
2409 * transaction.
2410 */
2411 btrfs_abort_transaction(trans, ret);
2412 break;
2413 }
5893dfb9 2414 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e
JB
2415 /*
2416 * We are past the i_size here, but since we didn't
2417 * insert holes we need to clear the mapped area so we
2418 * know to not set disk_i_size in this area until a new
2419 * file extent is inserted here.
2420 */
bfc78479 2421 ret = btrfs_inode_clear_file_extent_range(inode,
5893dfb9
FM
2422 cur_offset,
2423 drop_args.drop_end - cur_offset);
9ddc959e
JB
2424 if (ret) {
2425 /*
2426 * We couldn't clear our area, so we could
2427 * presumably adjust up and corrupt the fs, so
2428 * we need to abort.
2429 */
2430 btrfs_abort_transaction(trans, ret);
2431 break;
2432 }
9cba40a6
FM
2433 }
2434
5893dfb9
FM
2435 if (extent_info &&
2436 drop_args.drop_end > extent_info->file_offset) {
2437 u64 replace_len = drop_args.drop_end -
2438 extent_info->file_offset;
690a5dbf 2439
bfc78479
NB
2440 ret = btrfs_insert_replace_extent(trans, inode, path,
2441 extent_info, replace_len,
03fcb1ab 2442 drop_args.bytes_found);
690a5dbf
FM
2443 if (ret) {
2444 btrfs_abort_transaction(trans, ret);
2445 break;
2446 }
bf385648
FM
2447 extent_info->data_len -= replace_len;
2448 extent_info->data_offset += replace_len;
2449 extent_info->file_offset += replace_len;
690a5dbf
FM
2450 }
2451
983d8209
FM
2452 /*
2453 * We are releasing our handle on the transaction, balance the
2454 * dirty pages of the btree inode and flush delayed items, and
2455 * then get a new transaction handle, which may now point to a
2456 * new transaction in case someone else may have committed the
2457 * transaction we used to replace/drop file extent items. So
2458 * bump the inode's iversion and update mtime and ctime except
2459 * if we are called from a dedupe context. This is because a
2460 * power failure/crash may happen after the transaction is
2461 * committed and before we finish replacing/dropping all the
2462 * file extent items we need.
2463 */
2464 inode_inc_iversion(&inode->vfs_inode);
2465
2466 if (!extent_info || extent_info->update_times) {
2467 inode->vfs_inode.i_mtime = current_time(&inode->vfs_inode);
2468 inode->vfs_inode.i_ctime = inode->vfs_inode.i_mtime;
2469 }
2470
bfc78479 2471 ret = btrfs_update_inode(trans, root, inode);
9cba40a6
FM
2472 if (ret)
2473 break;
2474
2475 btrfs_end_transaction(trans);
2476 btrfs_btree_balance_dirty(fs_info);
2477
2478 trans = btrfs_start_transaction(root, rsv_count);
2479 if (IS_ERR(trans)) {
2480 ret = PTR_ERR(trans);
2481 trans = NULL;
2482 break;
2483 }
2484
2485 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2486 rsv, min_size, false);
650c9cab
FM
2487 if (WARN_ON(ret))
2488 break;
9cba40a6
FM
2489 trans->block_rsv = rsv;
2490
3227788c
BC
2491 cur_offset = drop_args.drop_end;
2492 len = end - cur_offset;
2493 if (!extent_info && len) {
bfc78479 2494 ret = find_first_non_hole(inode, &cur_offset, &len);
690a5dbf
FM
2495 if (unlikely(ret < 0))
2496 break;
2497 if (ret && !len) {
2498 ret = 0;
2499 break;
2500 }
9cba40a6
FM
2501 }
2502 }
2503
690a5dbf
FM
2504 /*
2505 * If we were cloning, force the next fsync to be a full one since we
2506 * we replaced (or just dropped in the case of cloning holes when
e2b84217
FM
2507 * NO_HOLES is enabled) file extent items and did not setup new extent
2508 * maps for the replacement extents (or holes).
690a5dbf 2509 */
bf385648 2510 if (extent_info && !extent_info->is_new_extent)
23e3337f 2511 btrfs_set_inode_full_sync(inode);
690a5dbf 2512
9cba40a6
FM
2513 if (ret)
2514 goto out_trans;
2515
2516 trans->block_rsv = &fs_info->trans_block_rsv;
2517 /*
2518 * If we are using the NO_HOLES feature we might have had already an
2519 * hole that overlaps a part of the region [lockstart, lockend] and
2520 * ends at (or beyond) lockend. Since we have no file extent items to
2521 * represent holes, drop_end can be less than lockend and so we must
2522 * make sure we have an extent map representing the existing hole (the
2523 * call to __btrfs_drop_extents() might have dropped the existing extent
2524 * map representing the existing hole), otherwise the fast fsync path
2525 * will not record the existence of the hole region
2526 * [existing_hole_start, lockend].
2527 */
5893dfb9
FM
2528 if (drop_args.drop_end <= end)
2529 drop_args.drop_end = end + 1;
9cba40a6
FM
2530 /*
2531 * Don't insert file hole extent item if it's for a range beyond eof
2532 * (because it's useless) or if it represents a 0 bytes range (when
2533 * cur_offset == drop_end).
2534 */
5893dfb9
FM
2535 if (!extent_info && cur_offset < ino_size &&
2536 cur_offset < drop_args.drop_end) {
bfc78479
NB
2537 ret = fill_holes(trans, inode, path, cur_offset,
2538 drop_args.drop_end);
9cba40a6
FM
2539 if (ret) {
2540 /* Same comment as above. */
2541 btrfs_abort_transaction(trans, ret);
2542 goto out_trans;
2543 }
5893dfb9 2544 } else if (!extent_info && cur_offset < drop_args.drop_end) {
9ddc959e 2545 /* See the comment in the loop above for the reasoning here. */
bfc78479
NB
2546 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2547 drop_args.drop_end - cur_offset);
9ddc959e
JB
2548 if (ret) {
2549 btrfs_abort_transaction(trans, ret);
2550 goto out_trans;
2551 }
2552
9cba40a6 2553 }
bf385648 2554 if (extent_info) {
bfc78479 2555 ret = btrfs_insert_replace_extent(trans, inode, path,
03fcb1ab
NB
2556 extent_info, extent_info->data_len,
2557 drop_args.bytes_found);
690a5dbf
FM
2558 if (ret) {
2559 btrfs_abort_transaction(trans, ret);
2560 goto out_trans;
2561 }
2562 }
9cba40a6
FM
2563
2564out_trans:
2565 if (!trans)
2566 goto out_free;
2567
2568 trans->block_rsv = &fs_info->trans_block_rsv;
2569 if (ret)
2570 btrfs_end_transaction(trans);
2571 else
2572 *trans_out = trans;
2573out_free:
2574 btrfs_free_block_rsv(fs_info, rsv);
2575out:
2576 return ret;
2577}
2578
05fd9564 2579static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2aaa6655 2580{
05fd9564 2581 struct inode *inode = file_inode(file);
0b246afa 2582 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2583 struct btrfs_root *root = BTRFS_I(inode)->root;
2584 struct extent_state *cached_state = NULL;
2585 struct btrfs_path *path;
9cba40a6 2586 struct btrfs_trans_handle *trans = NULL;
d7781546
QW
2587 u64 lockstart;
2588 u64 lockend;
2589 u64 tail_start;
2590 u64 tail_len;
2591 u64 orig_start = offset;
2aaa6655 2592 int ret = 0;
9703fefe 2593 bool same_block;
a1a50f60 2594 u64 ino_size;
9703fefe 2595 bool truncated_block = false;
e8c1c76e 2596 bool updated_inode = false;
2aaa6655 2597
29b6352b 2598 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
bd6526d0 2599
0ef8b726
JB
2600 ret = btrfs_wait_ordered_range(inode, offset, len);
2601 if (ret)
bd6526d0 2602 goto out_only_mutex;
2aaa6655 2603
0b246afa 2604 ino_size = round_up(inode->i_size, fs_info->sectorsize);
dea46d84 2605 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2606 if (ret < 0)
2607 goto out_only_mutex;
2608 if (ret && !len) {
2609 /* Already in a large hole */
2610 ret = 0;
2611 goto out_only_mutex;
2612 }
2613
05fd9564
DW
2614 ret = file_modified(file);
2615 if (ret)
2616 goto out_only_mutex;
2617
ee8ba05c
JB
2618 lockstart = round_up(offset, fs_info->sectorsize);
2619 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
0b246afa
JM
2620 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2621 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2622 /*
9703fefe 2623 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2624 * because we are sure there is no data there.
2625 */
2aaa6655 2626 /*
9703fefe
CR
2627 * Only do this if we are in the same block and we aren't doing the
2628 * entire block.
2aaa6655 2629 */
0b246afa 2630 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2631 if (offset < ino_size) {
9703fefe 2632 truncated_block = true;
217f42eb
NB
2633 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2634 0);
e8c1c76e
FM
2635 } else {
2636 ret = 0;
2637 }
d7781546 2638 goto out_only_mutex;
2aaa6655
JB
2639 }
2640
9703fefe 2641 /* zero back part of the first block */
12870f1c 2642 if (offset < ino_size) {
9703fefe 2643 truncated_block = true;
217f42eb 2644 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
7426cc04 2645 if (ret) {
e5d4d75b 2646 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
7426cc04
MX
2647 return ret;
2648 }
2aaa6655
JB
2649 }
2650
d7781546
QW
2651 /* Check the aligned pages after the first unaligned page,
2652 * if offset != orig_start, which means the first unaligned page
01327610 2653 * including several following pages are already in holes,
d7781546
QW
2654 * the extra check can be skipped */
2655 if (offset == orig_start) {
2656 /* after truncate page, check hole again */
2657 len = offset + len - lockstart;
2658 offset = lockstart;
dea46d84 2659 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
d7781546
QW
2660 if (ret < 0)
2661 goto out_only_mutex;
2662 if (ret && !len) {
2663 ret = 0;
2664 goto out_only_mutex;
2665 }
2666 lockstart = offset;
2667 }
2668
2669 /* Check the tail unaligned part is in a hole */
2670 tail_start = lockend + 1;
2671 tail_len = offset + len - tail_start;
2672 if (tail_len) {
dea46d84 2673 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
d7781546
QW
2674 if (unlikely(ret < 0))
2675 goto out_only_mutex;
2676 if (!ret) {
2677 /* zero the front end of the last page */
2678 if (tail_start + tail_len < ino_size) {
9703fefe 2679 truncated_block = true;
217f42eb 2680 ret = btrfs_truncate_block(BTRFS_I(inode),
9703fefe
CR
2681 tail_start + tail_len,
2682 0, 1);
d7781546
QW
2683 if (ret)
2684 goto out_only_mutex;
51f395ad 2685 }
0061280d 2686 }
2aaa6655
JB
2687 }
2688
2689 if (lockend < lockstart) {
e8c1c76e
FM
2690 ret = 0;
2691 goto out_only_mutex;
2aaa6655
JB
2692 }
2693
55961c8a 2694 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2aaa6655
JB
2695
2696 path = btrfs_alloc_path();
2697 if (!path) {
2698 ret = -ENOMEM;
2699 goto out;
2700 }
2701
bfc78479
NB
2702 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2703 lockend, NULL, &trans);
9cba40a6
FM
2704 btrfs_free_path(path);
2705 if (ret)
2706 goto out;
2aaa6655 2707
9cba40a6 2708 ASSERT(trans != NULL);
e1f5790e 2709 inode_inc_iversion(inode);
c1867eb3
DS
2710 inode->i_mtime = current_time(inode);
2711 inode->i_ctime = inode->i_mtime;
9a56fcd1 2712 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e8c1c76e 2713 updated_inode = true;
3a45bb20 2714 btrfs_end_transaction(trans);
2ff7e61e 2715 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2716out:
570eb97b
JB
2717 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2718 &cached_state);
d7781546 2719out_only_mutex:
9cba40a6 2720 if (!updated_inode && truncated_block && !ret) {
e8c1c76e
FM
2721 /*
2722 * If we only end up zeroing part of a page, we still need to
2723 * update the inode item, so that all the time fields are
2724 * updated as well as the necessary btrfs inode in memory fields
2725 * for detecting, at fsync time, if the inode isn't yet in the
2726 * log tree or it's there but not up to date.
2727 */
17900668
FM
2728 struct timespec64 now = current_time(inode);
2729
2730 inode_inc_iversion(inode);
2731 inode->i_mtime = now;
2732 inode->i_ctime = now;
e8c1c76e
FM
2733 trans = btrfs_start_transaction(root, 1);
2734 if (IS_ERR(trans)) {
9cba40a6 2735 ret = PTR_ERR(trans);
e8c1c76e 2736 } else {
9cba40a6
FM
2737 int ret2;
2738
9a56fcd1 2739 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9cba40a6
FM
2740 ret2 = btrfs_end_transaction(trans);
2741 if (!ret)
2742 ret = ret2;
e8c1c76e
FM
2743 }
2744 }
e5d4d75b 2745 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
9cba40a6 2746 return ret;
2aaa6655
JB
2747}
2748
14524a84
QW
2749/* Helper structure to record which range is already reserved */
2750struct falloc_range {
2751 struct list_head list;
2752 u64 start;
2753 u64 len;
2754};
2755
2756/*
2757 * Helper function to add falloc range
2758 *
2759 * Caller should have locked the larger range of extent containing
2760 * [start, len)
2761 */
2762static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2763{
14524a84
QW
2764 struct falloc_range *range = NULL;
2765
77d25534
NB
2766 if (!list_empty(head)) {
2767 /*
2768 * As fallocate iterates by bytenr order, we only need to check
2769 * the last range.
2770 */
2771 range = list_last_entry(head, struct falloc_range, list);
2772 if (range->start + range->len == start) {
2773 range->len += len;
2774 return 0;
2775 }
14524a84 2776 }
77d25534 2777
32fc932e 2778 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2779 if (!range)
2780 return -ENOMEM;
2781 range->start = start;
2782 range->len = len;
2783 list_add_tail(&range->list, head);
2784 return 0;
2785}
2786
f27451f2
FM
2787static int btrfs_fallocate_update_isize(struct inode *inode,
2788 const u64 end,
2789 const int mode)
2790{
2791 struct btrfs_trans_handle *trans;
2792 struct btrfs_root *root = BTRFS_I(inode)->root;
2793 int ret;
2794 int ret2;
2795
2796 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2797 return 0;
2798
2799 trans = btrfs_start_transaction(root, 1);
2800 if (IS_ERR(trans))
2801 return PTR_ERR(trans);
2802
2803 inode->i_ctime = current_time(inode);
2804 i_size_write(inode, end);
76aea537 2805 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9a56fcd1 2806 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
f27451f2
FM
2807 ret2 = btrfs_end_transaction(trans);
2808
2809 return ret ? ret : ret2;
2810}
2811
81fdf638 2812enum {
f262fa8d
DS
2813 RANGE_BOUNDARY_WRITTEN_EXTENT,
2814 RANGE_BOUNDARY_PREALLOC_EXTENT,
2815 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2816};
2817
948dfeb8 2818static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
f27451f2
FM
2819 u64 offset)
2820{
ee8ba05c 2821 const u64 sectorsize = inode->root->fs_info->sectorsize;
f27451f2 2822 struct extent_map *em;
81fdf638 2823 int ret;
f27451f2
FM
2824
2825 offset = round_down(offset, sectorsize);
948dfeb8 2826 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
f27451f2
FM
2827 if (IS_ERR(em))
2828 return PTR_ERR(em);
2829
2830 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2831 ret = RANGE_BOUNDARY_HOLE;
2832 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2833 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2834 else
2835 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2836
2837 free_extent_map(em);
2838 return ret;
2839}
2840
2841static int btrfs_zero_range(struct inode *inode,
2842 loff_t offset,
2843 loff_t len,
2844 const int mode)
2845{
2846 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2847 struct extent_map *em;
2848 struct extent_changeset *data_reserved = NULL;
2849 int ret;
2850 u64 alloc_hint = 0;
ee8ba05c 2851 const u64 sectorsize = fs_info->sectorsize;
f27451f2
FM
2852 u64 alloc_start = round_down(offset, sectorsize);
2853 u64 alloc_end = round_up(offset + len, sectorsize);
2854 u64 bytes_to_reserve = 0;
2855 bool space_reserved = false;
2856
39b07b5d
OS
2857 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2858 alloc_end - alloc_start);
f27451f2
FM
2859 if (IS_ERR(em)) {
2860 ret = PTR_ERR(em);
2861 goto out;
2862 }
2863
2864 /*
2865 * Avoid hole punching and extent allocation for some cases. More cases
2866 * could be considered, but these are unlikely common and we keep things
2867 * as simple as possible for now. Also, intentionally, if the target
2868 * range contains one or more prealloc extents together with regular
2869 * extents and holes, we drop all the existing extents and allocate a
2870 * new prealloc extent, so that we get a larger contiguous disk extent.
2871 */
2872 if (em->start <= alloc_start &&
2873 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2874 const u64 em_end = em->start + em->len;
2875
2876 if (em_end >= offset + len) {
2877 /*
2878 * The whole range is already a prealloc extent,
2879 * do nothing except updating the inode's i_size if
2880 * needed.
2881 */
2882 free_extent_map(em);
2883 ret = btrfs_fallocate_update_isize(inode, offset + len,
2884 mode);
2885 goto out;
2886 }
2887 /*
2888 * Part of the range is already a prealloc extent, so operate
2889 * only on the remaining part of the range.
2890 */
2891 alloc_start = em_end;
2892 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2893 len = offset + len - alloc_start;
2894 offset = alloc_start;
2895 alloc_hint = em->block_start + em->len;
2896 }
2897 free_extent_map(em);
2898
2899 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2900 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
39b07b5d
OS
2901 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2902 sectorsize);
f27451f2
FM
2903 if (IS_ERR(em)) {
2904 ret = PTR_ERR(em);
2905 goto out;
2906 }
2907
2908 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2909 free_extent_map(em);
2910 ret = btrfs_fallocate_update_isize(inode, offset + len,
2911 mode);
2912 goto out;
2913 }
2914 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2915 free_extent_map(em);
217f42eb
NB
2916 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2917 0);
f27451f2
FM
2918 if (!ret)
2919 ret = btrfs_fallocate_update_isize(inode,
2920 offset + len,
2921 mode);
2922 return ret;
2923 }
2924 free_extent_map(em);
2925 alloc_start = round_down(offset, sectorsize);
2926 alloc_end = alloc_start + sectorsize;
2927 goto reserve_space;
2928 }
2929
2930 alloc_start = round_up(offset, sectorsize);
2931 alloc_end = round_down(offset + len, sectorsize);
2932
2933 /*
2934 * For unaligned ranges, check the pages at the boundaries, they might
2935 * map to an extent, in which case we need to partially zero them, or
2936 * they might map to a hole, in which case we need our allocation range
2937 * to cover them.
2938 */
2939 if (!IS_ALIGNED(offset, sectorsize)) {
948dfeb8
NB
2940 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2941 offset);
f27451f2
FM
2942 if (ret < 0)
2943 goto out;
81fdf638 2944 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2945 alloc_start = round_down(offset, sectorsize);
2946 ret = 0;
81fdf638 2947 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb 2948 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
f27451f2
FM
2949 if (ret)
2950 goto out;
81fdf638
FM
2951 } else {
2952 ret = 0;
f27451f2
FM
2953 }
2954 }
2955
2956 if (!IS_ALIGNED(offset + len, sectorsize)) {
948dfeb8 2957 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
f27451f2
FM
2958 offset + len);
2959 if (ret < 0)
2960 goto out;
81fdf638 2961 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2962 alloc_end = round_up(offset + len, sectorsize);
2963 ret = 0;
81fdf638 2964 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
217f42eb
NB
2965 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2966 0, 1);
f27451f2
FM
2967 if (ret)
2968 goto out;
81fdf638
FM
2969 } else {
2970 ret = 0;
f27451f2
FM
2971 }
2972 }
2973
2974reserve_space:
2975 if (alloc_start < alloc_end) {
2976 struct extent_state *cached_state = NULL;
2977 const u64 lockstart = alloc_start;
2978 const u64 lockend = alloc_end - 1;
2979
2980 bytes_to_reserve = alloc_end - alloc_start;
2981 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2982 bytes_to_reserve);
2983 if (ret < 0)
2984 goto out;
2985 space_reserved = true;
55961c8a
FM
2986 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2987 &cached_state);
7661a3e0 2988 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
a7f8b1c2 2989 alloc_start, bytes_to_reserve);
4f6a49de 2990 if (ret) {
570eb97b
JB
2991 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2992 lockend, &cached_state);
a7f8b1c2 2993 goto out;
4f6a49de 2994 }
f27451f2
FM
2995 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2996 alloc_end - alloc_start,
2997 i_blocksize(inode),
2998 offset + len, &alloc_hint);
570eb97b
JB
2999 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3000 &cached_state);
f27451f2 3001 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 3002 if (ret) {
f27451f2 3003 space_reserved = false;
9f13ce74
FM
3004 goto out;
3005 }
f27451f2 3006 }
9f13ce74 3007 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
3008 out:
3009 if (ret && space_reserved)
25ce28ca 3010 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
f27451f2
FM
3011 alloc_start, bytes_to_reserve);
3012 extent_changeset_free(data_reserved);
3013
3014 return ret;
3015}
3016
2fe17c10
CH
3017static long btrfs_fallocate(struct file *file, int mode,
3018 loff_t offset, loff_t len)
3019{
496ad9aa 3020 struct inode *inode = file_inode(file);
2fe17c10 3021 struct extent_state *cached_state = NULL;
364ecf36 3022 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3023 struct falloc_range *range;
3024 struct falloc_range *tmp;
3025 struct list_head reserve_list;
2fe17c10
CH
3026 u64 cur_offset;
3027 u64 last_byte;
3028 u64 alloc_start;
3029 u64 alloc_end;
3030 u64 alloc_hint = 0;
3031 u64 locked_end;
14524a84 3032 u64 actual_end = 0;
47e1d1c7
FM
3033 u64 data_space_needed = 0;
3034 u64 data_space_reserved = 0;
3035 u64 qgroup_reserved = 0;
2fe17c10 3036 struct extent_map *em;
ee8ba05c 3037 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2fe17c10
CH
3038 int ret;
3039
f1569c4c
NA
3040 /* Do not allow fallocate in ZONED mode */
3041 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3042 return -EOPNOTSUPP;
3043
797f4277
MX
3044 alloc_start = round_down(offset, blocksize);
3045 alloc_end = round_up(offset + len, blocksize);
18513091 3046 cur_offset = alloc_start;
2fe17c10 3047
2aaa6655 3048 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3049 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3050 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3051 return -EOPNOTSUPP;
3052
2aaa6655 3053 if (mode & FALLOC_FL_PUNCH_HOLE)
05fd9564 3054 return btrfs_punch_hole(file, offset, len);
2aaa6655 3055
29b6352b 3056 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2a162ce9
DI
3057
3058 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3059 ret = inode_newsize_ok(inode, offset + len);
3060 if (ret)
3061 goto out;
3062 }
2fe17c10 3063
05fd9564
DW
3064 ret = file_modified(file);
3065 if (ret)
3066 goto out;
3067
14524a84
QW
3068 /*
3069 * TODO: Move these two operations after we have checked
3070 * accurate reserved space, or fallocate can still fail but
3071 * with page truncated or size expanded.
3072 *
3073 * But that's a minor problem and won't do much harm BTW.
3074 */
2fe17c10 3075 if (alloc_start > inode->i_size) {
b06359a3 3076 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
a41ad394 3077 alloc_start);
2fe17c10
CH
3078 if (ret)
3079 goto out;
0f6925fa 3080 } else if (offset + len > inode->i_size) {
a71754fc
JB
3081 /*
3082 * If we are fallocating from the end of the file onward we
9703fefe
CR
3083 * need to zero out the end of the block if i_size lands in the
3084 * middle of a block.
a71754fc 3085 */
217f42eb 3086 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
a71754fc
JB
3087 if (ret)
3088 goto out;
2fe17c10
CH
3089 }
3090
a71754fc 3091 /*
ffa8fc60
FM
3092 * We have locked the inode at the VFS level (in exclusive mode) and we
3093 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3094 * locking the file range, flush all dealloc in the range and wait for
3095 * all ordered extents in the range to complete. After this we can lock
3096 * the file range and, due to the previous locking we did, we know there
3097 * can't be more delalloc or ordered extents in the range.
a71754fc 3098 */
0ef8b726
JB
3099 ret = btrfs_wait_ordered_range(inode, alloc_start,
3100 alloc_end - alloc_start);
3101 if (ret)
3102 goto out;
a71754fc 3103
f27451f2
FM
3104 if (mode & FALLOC_FL_ZERO_RANGE) {
3105 ret = btrfs_zero_range(inode, offset, len, mode);
e5d4d75b 3106 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
f27451f2
FM
3107 return ret;
3108 }
3109
2fe17c10 3110 locked_end = alloc_end - 1;
570eb97b
JB
3111 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3112 &cached_state);
2fe17c10 3113
63c34cb4
FM
3114 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3115
14524a84
QW
3116 /* First, check if we exceed the qgroup limit */
3117 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3118 while (cur_offset < alloc_end) {
fc4f21b1 3119 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
39b07b5d 3120 alloc_end - cur_offset);
9986277e
DC
3121 if (IS_ERR(em)) {
3122 ret = PTR_ERR(em);
79787eaa
JM
3123 break;
3124 }
2fe17c10 3125 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3126 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3127 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3128 if (em->block_start == EXTENT_MAP_HOLE ||
3129 (cur_offset >= inode->i_size &&
3130 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
47e1d1c7
FM
3131 const u64 range_len = last_byte - cur_offset;
3132
3133 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
14524a84
QW
3134 if (ret < 0) {
3135 free_extent_map(em);
3136 break;
3d850dd4 3137 }
7661a3e0 3138 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
47e1d1c7 3139 &data_reserved, cur_offset, range_len);
be2d253c
FM
3140 if (ret < 0) {
3141 free_extent_map(em);
14524a84 3142 break;
be2d253c 3143 }
47e1d1c7
FM
3144 qgroup_reserved += range_len;
3145 data_space_needed += range_len;
2fe17c10
CH
3146 }
3147 free_extent_map(em);
2fe17c10 3148 cur_offset = last_byte;
14524a84
QW
3149 }
3150
47e1d1c7
FM
3151 if (!ret && data_space_needed > 0) {
3152 /*
3153 * We are safe to reserve space here as we can't have delalloc
3154 * in the range, see above.
3155 */
3156 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3157 data_space_needed);
3158 if (!ret)
3159 data_space_reserved = data_space_needed;
3160 }
3161
14524a84
QW
3162 /*
3163 * If ret is still 0, means we're OK to fallocate.
3164 * Or just cleanup the list and exit.
3165 */
3166 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
47e1d1c7 3167 if (!ret) {
14524a84
QW
3168 ret = btrfs_prealloc_file_range(inode, mode,
3169 range->start,
93407472 3170 range->len, i_blocksize(inode),
14524a84 3171 offset + len, &alloc_hint);
47e1d1c7
FM
3172 /*
3173 * btrfs_prealloc_file_range() releases space even
3174 * if it returns an error.
3175 */
3176 data_space_reserved -= range->len;
3177 qgroup_reserved -= range->len;
3178 } else if (data_space_reserved > 0) {
25ce28ca 3179 btrfs_free_reserved_data_space(BTRFS_I(inode),
47e1d1c7
FM
3180 data_reserved, range->start,
3181 range->len);
3182 data_space_reserved -= range->len;
3183 qgroup_reserved -= range->len;
3184 } else if (qgroup_reserved > 0) {
3185 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3186 range->start, range->len);
3187 qgroup_reserved -= range->len;
3188 }
14524a84
QW
3189 list_del(&range->list);
3190 kfree(range);
3191 }
3192 if (ret < 0)
3193 goto out_unlock;
3194
f27451f2
FM
3195 /*
3196 * We didn't need to allocate any more space, but we still extended the
3197 * size of the file so we need to update i_size and the inode item.
3198 */
3199 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3200out_unlock:
570eb97b
JB
3201 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3202 &cached_state);
2fe17c10 3203out:
e5d4d75b 3204 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
364ecf36 3205 extent_changeset_free(data_reserved);
2fe17c10
CH
3206 return ret;
3207}
3208
b6e83356 3209/*
ac3c0d36
FM
3210 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3211 * that has unflushed and/or flushing delalloc. There might be other adjacent
3212 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3213 * looping while it gets adjacent subranges, and merging them together.
b6e83356
FM
3214 */
3215static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3216 struct extent_state **cached_state,
af979fd6 3217 bool *search_io_tree,
b6e83356
FM
3218 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3219{
40daf3e0 3220 u64 len = end + 1 - start;
8ddc8274
FM
3221 u64 delalloc_len = 0;
3222 struct btrfs_ordered_extent *oe;
3223 u64 oe_start;
3224 u64 oe_end;
b6e83356
FM
3225
3226 /*
3227 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3228 * means we have delalloc (dirty pages) for which writeback has not
3229 * started yet.
3230 */
8ddc8274
FM
3231 if (*search_io_tree) {
3232 spin_lock(&inode->lock);
3233 if (inode->delalloc_bytes > 0) {
3234 spin_unlock(&inode->lock);
3235 *delalloc_start_ret = start;
3236 delalloc_len = count_range_bits(&inode->io_tree,
3237 delalloc_start_ret, end,
8c6e53a7 3238 len, EXTENT_DELALLOC, 1,
b3e744fe 3239 cached_state);
8ddc8274
FM
3240 } else {
3241 spin_unlock(&inode->lock);
3242 }
a2853ffc
FM
3243 }
3244
40daf3e0
FM
3245 if (delalloc_len > 0) {
3246 /*
3247 * If delalloc was found then *delalloc_start_ret has a sector size
3248 * aligned value (rounded down).
3249 */
b6e83356
FM
3250 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3251
40daf3e0
FM
3252 if (*delalloc_start_ret == start) {
3253 /* Delalloc for the whole range, nothing more to do. */
3254 if (*delalloc_end_ret == end)
3255 return true;
8ddc8274 3256 /* Else trim our search range for ordered extents. */
40daf3e0
FM
3257 start = *delalloc_end_ret + 1;
3258 len = end + 1 - start;
3259 }
af979fd6
FM
3260 } else {
3261 /* No delalloc, future calls don't need to search again. */
3262 *search_io_tree = false;
40daf3e0
FM
3263 }
3264
a2853ffc 3265 /*
8ddc8274
FM
3266 * Now also check if there's any ordered extent in the range.
3267 * We do this because:
b6e83356
FM
3268 *
3269 * 1) When delalloc is flushed, the file range is locked, we clear the
8ddc8274
FM
3270 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3271 * an ordered extent for the write. So we might just have been called
3272 * after delalloc is flushed and before the ordered extent completes
3273 * and inserts the new file extent item in the subvolume's btree;
b6e83356 3274 *
8ddc8274 3275 * 2) We may have an ordered extent created by flushing delalloc for a
b6e83356
FM
3276 * subrange that starts before the subrange we found marked with
3277 * EXTENT_DELALLOC in the io tree.
8ddc8274
FM
3278 *
3279 * We could also use the extent map tree to find such delalloc that is
3280 * being flushed, but using the ordered extents tree is more efficient
3281 * because it's usually much smaller as ordered extents are removed from
3282 * the tree once they complete. With the extent maps, we mau have them
3283 * in the extent map tree for a very long time, and they were either
3284 * created by previous writes or loaded by read operations.
b6e83356 3285 */
8ddc8274
FM
3286 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3287 if (!oe)
d47704bd 3288 return (delalloc_len > 0);
d47704bd 3289
8ddc8274
FM
3290 /* The ordered extent may span beyond our search range. */
3291 oe_start = max(oe->file_offset, start);
3292 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
b6e83356 3293
8ddc8274 3294 btrfs_put_ordered_extent(oe);
b6e83356 3295
8ddc8274 3296 /* Don't have unflushed delalloc, return the ordered extent range. */
b6e83356 3297 if (delalloc_len == 0) {
8ddc8274
FM
3298 *delalloc_start_ret = oe_start;
3299 *delalloc_end_ret = oe_end;
b6e83356
FM
3300 return true;
3301 }
3302
3303 /*
8ddc8274
FM
3304 * We have both unflushed delalloc (io_tree) and an ordered extent.
3305 * If the ranges are adjacent returned a combined range, otherwise
3306 * return the leftmost range.
b6e83356 3307 */
8ddc8274
FM
3308 if (oe_start < *delalloc_start_ret) {
3309 if (oe_end < *delalloc_start_ret)
3310 *delalloc_end_ret = oe_end;
3311 *delalloc_start_ret = oe_start;
3312 } else if (*delalloc_end_ret + 1 == oe_start) {
3313 *delalloc_end_ret = oe_end;
b6e83356
FM
3314 }
3315
b6e83356
FM
3316 return true;
3317}
3318
3319/*
3320 * Check if there's delalloc in a given range.
3321 *
3322 * @inode: The inode.
3323 * @start: The start offset of the range. It does not need to be
3324 * sector size aligned.
3325 * @end: The end offset (inclusive value) of the search range.
3326 * It does not need to be sector size aligned.
b3e744fe
FM
3327 * @cached_state: Extent state record used for speeding up delalloc
3328 * searches in the inode's io_tree. Can be NULL.
b6e83356
FM
3329 * @delalloc_start_ret: Output argument, set to the start offset of the
3330 * subrange found with delalloc (may not be sector size
3331 * aligned).
3332 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3333 * of the subrange found with delalloc.
3334 *
3335 * Returns true if a subrange with delalloc is found within the given range, and
3336 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3337 * end offsets of the subrange.
3338 */
ac3c0d36 3339bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
b3e744fe 3340 struct extent_state **cached_state,
ac3c0d36 3341 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
b6e83356
FM
3342{
3343 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3344 u64 prev_delalloc_end = 0;
af979fd6 3345 bool search_io_tree = true;
b6e83356
FM
3346 bool ret = false;
3347
2f2e84ca 3348 while (cur_offset <= end) {
b6e83356
FM
3349 u64 delalloc_start;
3350 u64 delalloc_end;
3351 bool delalloc;
3352
3353 delalloc = find_delalloc_subrange(inode, cur_offset, end,
b3e744fe 3354 cached_state, &search_io_tree,
b6e83356
FM
3355 &delalloc_start,
3356 &delalloc_end);
3357 if (!delalloc)
3358 break;
3359
3360 if (prev_delalloc_end == 0) {
3361 /* First subrange found. */
3362 *delalloc_start_ret = max(delalloc_start, start);
3363 *delalloc_end_ret = delalloc_end;
3364 ret = true;
3365 } else if (delalloc_start == prev_delalloc_end + 1) {
3366 /* Subrange adjacent to the previous one, merge them. */
3367 *delalloc_end_ret = delalloc_end;
3368 } else {
3369 /* Subrange not adjacent to the previous one, exit. */
3370 break;
3371 }
3372
3373 prev_delalloc_end = delalloc_end;
3374 cur_offset = delalloc_end + 1;
3375 cond_resched();
3376 }
3377
3378 return ret;
3379}
3380
3381/*
3382 * Check if there's a hole or delalloc range in a range representing a hole (or
3383 * prealloc extent) found in the inode's subvolume btree.
3384 *
3385 * @inode: The inode.
3386 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3387 * @start: Start offset of the hole region. It does not need to be sector
3388 * size aligned.
3389 * @end: End offset (inclusive value) of the hole region. It does not
3390 * need to be sector size aligned.
3391 * @start_ret: Return parameter, used to set the start of the subrange in the
3392 * hole that matches the search criteria (seek mode), if such
3393 * subrange is found (return value of the function is true).
3394 * The value returned here may not be sector size aligned.
3395 *
3396 * Returns true if a subrange matching the given seek mode is found, and if one
3397 * is found, it updates @start_ret with the start of the subrange.
3398 */
3399static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3c32c721 3400 struct extent_state **cached_state,
b6e83356
FM
3401 u64 start, u64 end, u64 *start_ret)
3402{
3403 u64 delalloc_start;
3404 u64 delalloc_end;
3405 bool delalloc;
3406
3c32c721 3407 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
ac3c0d36 3408 &delalloc_start, &delalloc_end);
b6e83356
FM
3409 if (delalloc && whence == SEEK_DATA) {
3410 *start_ret = delalloc_start;
3411 return true;
3412 }
3413
3414 if (delalloc && whence == SEEK_HOLE) {
3415 /*
3416 * We found delalloc but it starts after out start offset. So we
3417 * have a hole between our start offset and the delalloc start.
3418 */
3419 if (start < delalloc_start) {
3420 *start_ret = start;
3421 return true;
3422 }
3423 /*
3424 * Delalloc range starts at our start offset.
3425 * If the delalloc range's length is smaller than our range,
3426 * then it means we have a hole that starts where the delalloc
3427 * subrange ends.
3428 */
3429 if (delalloc_end < end) {
3430 *start_ret = delalloc_end + 1;
3431 return true;
3432 }
3433
3434 /* There's delalloc for the whole range. */
3435 return false;
3436 }
3437
3438 if (!delalloc && whence == SEEK_HOLE) {
3439 *start_ret = start;
3440 return true;
3441 }
3442
3443 /*
3444 * No delalloc in the range and we are seeking for data. The caller has
3445 * to iterate to the next extent item in the subvolume btree.
3446 */
3447 return false;
3448}
3449
3c32c721 3450static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
b2675157 3451{
3c32c721
FM
3452 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3453 struct btrfs_file_private *private = file->private_data;
cca5de97 3454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b2675157 3455 struct extent_state *cached_state = NULL;
3c32c721 3456 struct extent_state **delalloc_cached_state;
b6e83356
FM
3457 const loff_t i_size = i_size_read(&inode->vfs_inode);
3458 const u64 ino = btrfs_ino(inode);
3459 struct btrfs_root *root = inode->root;
3460 struct btrfs_path *path;
3461 struct btrfs_key key;
3462 u64 last_extent_end;
4d1a40c6
LB
3463 u64 lockstart;
3464 u64 lockend;
3465 u64 start;
b6e83356
FM
3466 int ret;
3467 bool found = false;
b2675157 3468
bc80230e 3469 if (i_size == 0 || offset >= i_size)
4d1a40c6
LB
3470 return -ENXIO;
3471
b6e83356
FM
3472 /*
3473 * Quick path. If the inode has no prealloc extents and its number of
3474 * bytes used matches its i_size, then it can not have holes.
3475 */
3476 if (whence == SEEK_HOLE &&
3477 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3478 inode_get_bytes(&inode->vfs_inode) == i_size)
3479 return i_size;
3480
3c32c721
FM
3481 if (!private) {
3482 private = kzalloc(sizeof(*private), GFP_KERNEL);
3483 /*
3484 * No worries if memory allocation failed.
3485 * The private structure is used only for speeding up multiple
3486 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3487 * so everything will still be correct.
3488 */
3489 file->private_data = private;
3490 }
3491
3492 if (private)
3493 delalloc_cached_state = &private->llseek_cached_state;
3494 else
3495 delalloc_cached_state = NULL;
3496
4d1a40c6 3497 /*
bc80230e 3498 * offset can be negative, in this case we start finding DATA/HOLE from
4d1a40c6
LB
3499 * the very start of the file.
3500 */
bc80230e 3501 start = max_t(loff_t, 0, offset);
4d1a40c6 3502
0b246afa 3503 lockstart = round_down(start, fs_info->sectorsize);
d79b7c26 3504 lockend = round_up(i_size, fs_info->sectorsize);
b2675157 3505 if (lockend <= lockstart)
0b246afa 3506 lockend = lockstart + fs_info->sectorsize;
1214b53f 3507 lockend--;
b6e83356
FM
3508
3509 path = btrfs_alloc_path();
3510 if (!path)
3511 return -ENOMEM;
3512 path->reada = READA_FORWARD;
3513
3514 key.objectid = ino;
3515 key.type = BTRFS_EXTENT_DATA_KEY;
3516 key.offset = start;
3517
3518 last_extent_end = lockstart;
b2675157 3519
570eb97b 3520 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b2675157 3521
b6e83356
FM
3522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523 if (ret < 0) {
3524 goto out;
3525 } else if (ret > 0 && path->slots[0] > 0) {
3526 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3527 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3528 path->slots[0]--;
3529 }
3530
d79b7c26 3531 while (start < i_size) {
b6e83356
FM
3532 struct extent_buffer *leaf = path->nodes[0];
3533 struct btrfs_file_extent_item *extent;
3534 u64 extent_end;
1f55ee6d 3535 u8 type;
b6e83356
FM
3536
3537 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3538 ret = btrfs_next_leaf(root, path);
3539 if (ret < 0)
3540 goto out;
3541 else if (ret > 0)
3542 break;
3543
3544 leaf = path->nodes[0];
b2675157
JB
3545 }
3546
b6e83356
FM
3547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3548 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
7f4ca37c 3549 break;
b2675157 3550
b6e83356
FM
3551 extent_end = btrfs_file_extent_end(path);
3552
3553 /*
3554 * In the first iteration we may have a slot that points to an
3555 * extent that ends before our start offset, so skip it.
3556 */
3557 if (extent_end <= start) {
3558 path->slots[0]++;
3559 continue;
3560 }
3561
3562 /* We have an implicit hole, NO_HOLES feature is likely set. */
3563 if (last_extent_end < key.offset) {
3564 u64 search_start = last_extent_end;
3565 u64 found_start;
3566
3567 /*
3568 * First iteration, @start matches @offset and it's
3569 * within the hole.
3570 */
3571 if (start == offset)
3572 search_start = offset;
3573
3574 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3575 delalloc_cached_state,
b6e83356
FM
3576 search_start,
3577 key.offset - 1,
3578 &found_start);
3579 if (found) {
3580 start = found_start;
3581 break;
3582 }
3583 /*
3584 * Didn't find data or a hole (due to delalloc) in the
3585 * implicit hole range, so need to analyze the extent.
3586 */
3587 }
3588
3589 extent = btrfs_item_ptr(leaf, path->slots[0],
3590 struct btrfs_file_extent_item);
1f55ee6d 3591 type = btrfs_file_extent_type(leaf, extent);
b6e83356 3592
1f55ee6d
FM
3593 /*
3594 * Can't access the extent's disk_bytenr field if this is an
3595 * inline extent, since at that offset, it's where the extent
3596 * data starts.
3597 */
3598 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3599 (type == BTRFS_FILE_EXTENT_REG &&
3600 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
b6e83356
FM
3601 /*
3602 * Explicit hole or prealloc extent, search for delalloc.
3603 * A prealloc extent is treated like a hole.
3604 */
3605 u64 search_start = key.offset;
3606 u64 found_start;
3607
3608 /*
3609 * First iteration, @start matches @offset and it's
3610 * within the hole.
3611 */
3612 if (start == offset)
3613 search_start = offset;
3614
3615 found = find_desired_extent_in_hole(inode, whence,
3c32c721 3616 delalloc_cached_state,
b6e83356
FM
3617 search_start,
3618 extent_end - 1,
3619 &found_start);
3620 if (found) {
3621 start = found_start;
3622 break;
3623 }
3624 /*
3625 * Didn't find data or a hole (due to delalloc) in the
3626 * implicit hole range, so need to analyze the next
3627 * extent item.
3628 */
3629 } else {
3630 /*
3631 * Found a regular or inline extent.
3632 * If we are seeking for data, adjust the start offset
3633 * and stop, we're done.
3634 */
3635 if (whence == SEEK_DATA) {
3636 start = max_t(u64, key.offset, offset);
3637 found = true;
3638 break;
3639 }
3640 /*
3641 * Else, we are seeking for a hole, check the next file
3642 * extent item.
3643 */
3644 }
3645
3646 start = extent_end;
3647 last_extent_end = extent_end;
3648 path->slots[0]++;
aed0ca18
FM
3649 if (fatal_signal_pending(current)) {
3650 ret = -EINTR;
b6e83356 3651 goto out;
aed0ca18 3652 }
b2675157
JB
3653 cond_resched();
3654 }
b6e83356
FM
3655
3656 /* We have an implicit hole from the last extent found up to i_size. */
3657 if (!found && start < i_size) {
3c32c721
FM
3658 found = find_desired_extent_in_hole(inode, whence,
3659 delalloc_cached_state, start,
b6e83356
FM
3660 i_size - 1, &start);
3661 if (!found)
3662 start = i_size;
3663 }
3664
3665out:
570eb97b 3666 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
b6e83356
FM
3667 btrfs_free_path(path);
3668
3669 if (ret < 0)
3670 return ret;
3671
3672 if (whence == SEEK_DATA && start >= i_size)
3673 return -ENXIO;
bc80230e 3674
b6e83356 3675 return min_t(loff_t, start, i_size);
b2675157
JB
3676}
3677
965c8e59 3678static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3679{
3680 struct inode *inode = file->f_mapping->host;
b2675157 3681
965c8e59 3682 switch (whence) {
2034f3b4
NB
3683 default:
3684 return generic_file_llseek(file, offset, whence);
b2675157
JB
3685 case SEEK_DATA:
3686 case SEEK_HOLE:
29b6352b 3687 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3c32c721 3688 offset = find_desired_extent(file, offset, whence);
e5d4d75b 3689 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
bc80230e 3690 break;
b2675157
JB
3691 }
3692
bc80230e
NB
3693 if (offset < 0)
3694 return offset;
3695
2034f3b4 3696 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157
JB
3697}
3698
edf064e7
GR
3699static int btrfs_file_open(struct inode *inode, struct file *filp)
3700{
14605409
BB
3701 int ret;
3702
f02c75e6
CH
3703 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3704 FMODE_CAN_ODIRECT;
14605409
BB
3705
3706 ret = fsverity_file_open(inode, filp);
3707 if (ret)
3708 return ret;
edf064e7
GR
3709 return generic_file_open(inode, filp);
3710}
3711
4e4cabec
GR
3712static int check_direct_read(struct btrfs_fs_info *fs_info,
3713 const struct iov_iter *iter, loff_t offset)
3714{
3715 int ret;
3716 int i, seg;
3717
3718 ret = check_direct_IO(fs_info, iter, offset);
3719 if (ret < 0)
3720 return ret;
3721
3722 if (!iter_is_iovec(iter))
3723 return 0;
3724
de4f5fed
JA
3725 for (seg = 0; seg < iter->nr_segs; seg++) {
3726 for (i = seg + 1; i < iter->nr_segs; i++) {
3727 const struct iovec *iov1 = iter_iov(iter) + seg;
3728 const struct iovec *iov2 = iter_iov(iter) + i;
3729
3730 if (iov1->iov_base == iov2->iov_base)
4e4cabec 3731 return -EINVAL;
de4f5fed
JA
3732 }
3733 }
4e4cabec
GR
3734 return 0;
3735}
3736
3737static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3738{
3739 struct inode *inode = file_inode(iocb->ki_filp);
51bd9563
FM
3740 size_t prev_left = 0;
3741 ssize_t read = 0;
4e4cabec
GR
3742 ssize_t ret;
3743
14605409
BB
3744 if (fsverity_active(inode))
3745 return 0;
3746
4e4cabec
GR
3747 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3748 return 0;
3749
29b6352b 3750 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563
FM
3751again:
3752 /*
3753 * This is similar to what we do for direct IO writes, see the comment
3754 * at btrfs_direct_write(), but we also disable page faults in addition
3755 * to disabling them only at the iov_iter level. This is because when
3756 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3757 * which can still trigger page fault ins despite having set ->nofault
3758 * to true of our 'to' iov_iter.
3759 *
3760 * The difference to direct IO writes is that we deadlock when trying
3761 * to lock the extent range in the inode's tree during he page reads
3762 * triggered by the fault in (while for writes it is due to waiting for
3763 * our own ordered extent). This is because for direct IO reads,
3764 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3765 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3766 */
3767 pagefault_disable();
3768 to->nofault = true;
8184620a 3769 ret = btrfs_dio_read(iocb, to, read);
51bd9563
FM
3770 to->nofault = false;
3771 pagefault_enable();
3772
3773 /* No increment (+=) because iomap returns a cumulative value. */
3774 if (ret > 0)
3775 read = ret;
3776
3777 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3778 const size_t left = iov_iter_count(to);
3779
3780 if (left == prev_left) {
3781 /*
3782 * We didn't make any progress since the last attempt,
3783 * fallback to a buffered read for the remainder of the
3784 * range. This is just to avoid any possibility of looping
3785 * for too long.
3786 */
3787 ret = read;
3788 } else {
3789 /*
3790 * We made some progress since the last retry or this is
3791 * the first time we are retrying. Fault in as many pages
3792 * as possible and retry.
3793 */
3794 fault_in_iov_iter_writeable(to, left);
3795 prev_left = left;
3796 goto again;
3797 }
3798 }
e5d4d75b 3799 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
51bd9563 3800 return ret < 0 ? ret : read;
4e4cabec
GR
3801}
3802
f85781fb
GR
3803static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3804{
3805 ssize_t ret = 0;
3806
3807 if (iocb->ki_flags & IOCB_DIRECT) {
4e4cabec 3808 ret = btrfs_direct_read(iocb, to);
0425e7ba
JT
3809 if (ret < 0 || !iov_iter_count(to) ||
3810 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
f85781fb
GR
3811 return ret;
3812 }
3813
87fa0f3e 3814 return filemap_read(iocb, to, ret);
f85781fb
GR
3815}
3816
828c0950 3817const struct file_operations btrfs_file_operations = {
b2675157 3818 .llseek = btrfs_file_llseek,
f85781fb 3819 .read_iter = btrfs_file_read_iter,
2cb1e089 3820 .splice_read = filemap_splice_read,
b30ac0fc 3821 .write_iter = btrfs_file_write_iter,
d7776591 3822 .splice_write = iter_file_splice_write,
9ebefb18 3823 .mmap = btrfs_file_mmap,
edf064e7 3824 .open = btrfs_file_open,
e1b81e67 3825 .release = btrfs_release_file,
b0c58223 3826 .get_unmapped_area = thp_get_unmapped_area,
39279cc3 3827 .fsync = btrfs_sync_file,
2fe17c10 3828 .fallocate = btrfs_fallocate,
34287aa3 3829 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3830#ifdef CONFIG_COMPAT
4c63c245 3831 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3832#endif
2e5dfc99 3833 .remap_file_range = btrfs_remap_file_range,
39279cc3 3834};
9247f317 3835
728404da
FM
3836int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3837{
3838 int ret;
3839
3840 /*
3841 * So with compression we will find and lock a dirty page and clear the
3842 * first one as dirty, setup an async extent, and immediately return
3843 * with the entire range locked but with nobody actually marked with
3844 * writeback. So we can't just filemap_write_and_wait_range() and
3845 * expect it to work since it will just kick off a thread to do the
3846 * actual work. So we need to call filemap_fdatawrite_range _again_
3847 * since it will wait on the page lock, which won't be unlocked until
3848 * after the pages have been marked as writeback and so we're good to go
3849 * from there. We have to do this otherwise we'll miss the ordered
3850 * extents and that results in badness. Please Josef, do not think you
3851 * know better and pull this out at some point in the future, it is
3852 * right and you are wrong.
3853 */
3854 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3855 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3856 &BTRFS_I(inode)->runtime_flags))
3857 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3858
3859 return ret;
3860}