Merge tag 'v5.3-rc1' into docs-next
[linux-2.6-block.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
86736342 29#include "delalloc-space.h"
39279cc3 30
9247f317 31static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
32/*
33 * when auto defrag is enabled we
34 * queue up these defrag structs to remember which
35 * inodes need defragging passes
36 */
37struct inode_defrag {
38 struct rb_node rb_node;
39 /* objectid */
40 u64 ino;
41 /*
42 * transid where the defrag was added, we search for
43 * extents newer than this
44 */
45 u64 transid;
46
47 /* root objectid */
48 u64 root;
49
50 /* last offset we were able to defrag */
51 u64 last_offset;
52
53 /* if we've wrapped around back to zero once already */
54 int cycled;
55};
56
762f2263
MX
57static int __compare_inode_defrag(struct inode_defrag *defrag1,
58 struct inode_defrag *defrag2)
59{
60 if (defrag1->root > defrag2->root)
61 return 1;
62 else if (defrag1->root < defrag2->root)
63 return -1;
64 else if (defrag1->ino > defrag2->ino)
65 return 1;
66 else if (defrag1->ino < defrag2->ino)
67 return -1;
68 else
69 return 0;
70}
71
4cb5300b
CM
72/* pop a record for an inode into the defrag tree. The lock
73 * must be held already
74 *
75 * If you're inserting a record for an older transid than an
76 * existing record, the transid already in the tree is lowered
77 *
78 * If an existing record is found the defrag item you
79 * pass in is freed
80 */
6158e1ce 81static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
82 struct inode_defrag *defrag)
83{
3ffbd68c 84 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
85 struct inode_defrag *entry;
86 struct rb_node **p;
87 struct rb_node *parent = NULL;
762f2263 88 int ret;
4cb5300b 89
0b246afa 90 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
91 while (*p) {
92 parent = *p;
93 entry = rb_entry(parent, struct inode_defrag, rb_node);
94
762f2263
MX
95 ret = __compare_inode_defrag(defrag, entry);
96 if (ret < 0)
4cb5300b 97 p = &parent->rb_left;
762f2263 98 else if (ret > 0)
4cb5300b
CM
99 p = &parent->rb_right;
100 else {
101 /* if we're reinserting an entry for
102 * an old defrag run, make sure to
103 * lower the transid of our existing record
104 */
105 if (defrag->transid < entry->transid)
106 entry->transid = defrag->transid;
107 if (defrag->last_offset > entry->last_offset)
108 entry->last_offset = defrag->last_offset;
8ddc4734 109 return -EEXIST;
4cb5300b
CM
110 }
111 }
6158e1ce 112 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 113 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 114 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
115 return 0;
116}
4cb5300b 117
2ff7e61e 118static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 119{
0b246afa 120 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
121 return 0;
122
0b246afa 123 if (btrfs_fs_closing(fs_info))
8ddc4734 124 return 0;
4cb5300b 125
8ddc4734 126 return 1;
4cb5300b
CM
127}
128
129/*
130 * insert a defrag record for this inode if auto defrag is
131 * enabled
132 */
133int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 134 struct btrfs_inode *inode)
4cb5300b 135{
6158e1ce 136 struct btrfs_root *root = inode->root;
3ffbd68c 137 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 138 struct inode_defrag *defrag;
4cb5300b 139 u64 transid;
8ddc4734 140 int ret;
4cb5300b 141
2ff7e61e 142 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
143 return 0;
144
6158e1ce 145 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
146 return 0;
147
148 if (trans)
149 transid = trans->transid;
150 else
6158e1ce 151 transid = inode->root->last_trans;
4cb5300b 152
9247f317 153 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
154 if (!defrag)
155 return -ENOMEM;
156
6158e1ce 157 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
158 defrag->transid = transid;
159 defrag->root = root->root_key.objectid;
160
0b246afa 161 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 162 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
163 /*
164 * If we set IN_DEFRAG flag and evict the inode from memory,
165 * and then re-read this inode, this new inode doesn't have
166 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 */
168 ret = __btrfs_add_inode_defrag(inode, defrag);
169 if (ret)
170 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
171 } else {
9247f317 172 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 173 }
0b246afa 174 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 175 return 0;
4cb5300b
CM
176}
177
178/*
8ddc4734
MX
179 * Requeue the defrag object. If there is a defrag object that points to
180 * the same inode in the tree, we will merge them together (by
181 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 182 */
46e59791 183static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 184 struct inode_defrag *defrag)
8ddc4734 185{
3ffbd68c 186 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
187 int ret;
188
2ff7e61e 189 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
190 goto out;
191
192 /*
193 * Here we don't check the IN_DEFRAG flag, because we need merge
194 * them together.
195 */
0b246afa 196 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 197 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 198 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
199 if (ret)
200 goto out;
201 return;
202out:
203 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
204}
205
4cb5300b 206/*
26176e7c
MX
207 * pick the defragable inode that we want, if it doesn't exist, we will get
208 * the next one.
4cb5300b 209 */
26176e7c
MX
210static struct inode_defrag *
211btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
212{
213 struct inode_defrag *entry = NULL;
762f2263 214 struct inode_defrag tmp;
4cb5300b
CM
215 struct rb_node *p;
216 struct rb_node *parent = NULL;
762f2263
MX
217 int ret;
218
219 tmp.ino = ino;
220 tmp.root = root;
4cb5300b 221
26176e7c
MX
222 spin_lock(&fs_info->defrag_inodes_lock);
223 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
224 while (p) {
225 parent = p;
226 entry = rb_entry(parent, struct inode_defrag, rb_node);
227
762f2263
MX
228 ret = __compare_inode_defrag(&tmp, entry);
229 if (ret < 0)
4cb5300b 230 p = parent->rb_left;
762f2263 231 else if (ret > 0)
4cb5300b
CM
232 p = parent->rb_right;
233 else
26176e7c 234 goto out;
4cb5300b
CM
235 }
236
26176e7c
MX
237 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
238 parent = rb_next(parent);
239 if (parent)
4cb5300b 240 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
241 else
242 entry = NULL;
4cb5300b 243 }
26176e7c
MX
244out:
245 if (entry)
246 rb_erase(parent, &fs_info->defrag_inodes);
247 spin_unlock(&fs_info->defrag_inodes_lock);
248 return entry;
4cb5300b
CM
249}
250
26176e7c 251void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
252{
253 struct inode_defrag *defrag;
26176e7c
MX
254 struct rb_node *node;
255
256 spin_lock(&fs_info->defrag_inodes_lock);
257 node = rb_first(&fs_info->defrag_inodes);
258 while (node) {
259 rb_erase(node, &fs_info->defrag_inodes);
260 defrag = rb_entry(node, struct inode_defrag, rb_node);
261 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
262
351810c1 263 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
264
265 node = rb_first(&fs_info->defrag_inodes);
266 }
267 spin_unlock(&fs_info->defrag_inodes_lock);
268}
269
270#define BTRFS_DEFRAG_BATCH 1024
271
272static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
273 struct inode_defrag *defrag)
274{
4cb5300b
CM
275 struct btrfs_root *inode_root;
276 struct inode *inode;
4cb5300b
CM
277 struct btrfs_key key;
278 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 279 int num_defrag;
6f1c3605
LB
280 int index;
281 int ret;
4cb5300b 282
26176e7c
MX
283 /* get the inode */
284 key.objectid = defrag->root;
962a298f 285 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 286 key.offset = (u64)-1;
6f1c3605
LB
287
288 index = srcu_read_lock(&fs_info->subvol_srcu);
289
26176e7c
MX
290 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
291 if (IS_ERR(inode_root)) {
6f1c3605
LB
292 ret = PTR_ERR(inode_root);
293 goto cleanup;
294 }
26176e7c
MX
295
296 key.objectid = defrag->ino;
962a298f 297 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
298 key.offset = 0;
299 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
300 if (IS_ERR(inode)) {
6f1c3605
LB
301 ret = PTR_ERR(inode);
302 goto cleanup;
26176e7c 303 }
6f1c3605 304 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
305
306 /* do a chunk of defrag */
307 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
308 memset(&range, 0, sizeof(range));
309 range.len = (u64)-1;
26176e7c 310 range.start = defrag->last_offset;
b66f00da
MX
311
312 sb_start_write(fs_info->sb);
26176e7c
MX
313 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
314 BTRFS_DEFRAG_BATCH);
b66f00da 315 sb_end_write(fs_info->sb);
26176e7c
MX
316 /*
317 * if we filled the whole defrag batch, there
318 * must be more work to do. Queue this defrag
319 * again
320 */
321 if (num_defrag == BTRFS_DEFRAG_BATCH) {
322 defrag->last_offset = range.start;
46e59791 323 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
324 } else if (defrag->last_offset && !defrag->cycled) {
325 /*
326 * we didn't fill our defrag batch, but
327 * we didn't start at zero. Make sure we loop
328 * around to the start of the file.
329 */
330 defrag->last_offset = 0;
331 defrag->cycled = 1;
46e59791 332 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
333 } else {
334 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
335 }
336
337 iput(inode);
338 return 0;
6f1c3605
LB
339cleanup:
340 srcu_read_unlock(&fs_info->subvol_srcu, index);
341 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
342 return ret;
26176e7c
MX
343}
344
345/*
346 * run through the list of inodes in the FS that need
347 * defragging
348 */
349int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
350{
351 struct inode_defrag *defrag;
352 u64 first_ino = 0;
353 u64 root_objectid = 0;
4cb5300b
CM
354
355 atomic_inc(&fs_info->defrag_running);
67871254 356 while (1) {
dc81cdc5
MX
357 /* Pause the auto defragger. */
358 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
359 &fs_info->fs_state))
360 break;
361
2ff7e61e 362 if (!__need_auto_defrag(fs_info))
26176e7c 363 break;
4cb5300b
CM
364
365 /* find an inode to defrag */
26176e7c
MX
366 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
367 first_ino);
4cb5300b 368 if (!defrag) {
26176e7c 369 if (root_objectid || first_ino) {
762f2263 370 root_objectid = 0;
4cb5300b
CM
371 first_ino = 0;
372 continue;
373 } else {
374 break;
375 }
376 }
377
4cb5300b 378 first_ino = defrag->ino + 1;
762f2263 379 root_objectid = defrag->root;
4cb5300b 380
26176e7c 381 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 382 }
4cb5300b
CM
383 atomic_dec(&fs_info->defrag_running);
384
385 /*
386 * during unmount, we use the transaction_wait queue to
387 * wait for the defragger to stop
388 */
389 wake_up(&fs_info->transaction_wait);
390 return 0;
391}
39279cc3 392
d352ac68
CM
393/* simple helper to fault in pages and copy. This should go away
394 * and be replaced with calls into generic code.
395 */
ee22f0c4 396static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 397 struct page **prepared_pages,
11c65dcc 398 struct iov_iter *i)
39279cc3 399{
914ee295 400 size_t copied = 0;
d0215f3e 401 size_t total_copied = 0;
11c65dcc 402 int pg = 0;
7073017a 403 int offset = offset_in_page(pos);
39279cc3 404
11c65dcc 405 while (write_bytes > 0) {
39279cc3 406 size_t count = min_t(size_t,
09cbfeaf 407 PAGE_SIZE - offset, write_bytes);
11c65dcc 408 struct page *page = prepared_pages[pg];
914ee295
XZ
409 /*
410 * Copy data from userspace to the current page
914ee295 411 */
914ee295 412 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 413
39279cc3
CM
414 /* Flush processor's dcache for this page */
415 flush_dcache_page(page);
31339acd
CM
416
417 /*
418 * if we get a partial write, we can end up with
419 * partially up to date pages. These add
420 * a lot of complexity, so make sure they don't
421 * happen by forcing this copy to be retried.
422 *
423 * The rest of the btrfs_file_write code will fall
424 * back to page at a time copies after we return 0.
425 */
426 if (!PageUptodate(page) && copied < count)
427 copied = 0;
428
11c65dcc
JB
429 iov_iter_advance(i, copied);
430 write_bytes -= copied;
914ee295 431 total_copied += copied;
39279cc3 432
b30ac0fc 433 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 434 if (unlikely(copied == 0))
914ee295 435 break;
11c65dcc 436
09cbfeaf 437 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
438 offset += copied;
439 } else {
440 pg++;
441 offset = 0;
442 }
39279cc3 443 }
914ee295 444 return total_copied;
39279cc3
CM
445}
446
d352ac68
CM
447/*
448 * unlocks pages after btrfs_file_write is done with them
449 */
48a3b636 450static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
451{
452 size_t i;
453 for (i = 0; i < num_pages; i++) {
d352ac68
CM
454 /* page checked is some magic around finding pages that
455 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
456 * clear it here. There should be no need to mark the pages
457 * accessed as prepare_pages should have marked them accessed
458 * in prepare_pages via find_or_create_page()
d352ac68 459 */
4a096752 460 ClearPageChecked(pages[i]);
39279cc3 461 unlock_page(pages[i]);
09cbfeaf 462 put_page(pages[i]);
39279cc3
CM
463 }
464}
465
f48bf66b
FM
466static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
467 const u64 start,
468 const u64 len,
469 struct extent_state **cached_state)
470{
471 u64 search_start = start;
472 const u64 end = start + len - 1;
473
474 while (search_start < end) {
475 const u64 search_len = end - search_start + 1;
476 struct extent_map *em;
477 u64 em_len;
478 int ret = 0;
479
480 em = btrfs_get_extent(inode, NULL, 0, search_start,
481 search_len, 0);
482 if (IS_ERR(em))
483 return PTR_ERR(em);
484
485 if (em->block_start != EXTENT_MAP_HOLE)
486 goto next;
487
488 em_len = em->len;
489 if (em->start < search_start)
490 em_len -= search_start - em->start;
491 if (em_len > search_len)
492 em_len = search_len;
493
494 ret = set_extent_bit(&inode->io_tree, search_start,
495 search_start + em_len - 1,
496 EXTENT_DELALLOC_NEW,
497 NULL, cached_state, GFP_NOFS);
498next:
499 search_start = extent_map_end(em);
500 free_extent_map(em);
501 if (ret)
502 return ret;
503 }
504 return 0;
505}
506
d352ac68
CM
507/*
508 * after copy_from_user, pages need to be dirtied and we need to make
509 * sure holes are created between the current EOF and the start of
510 * any next extents (if required).
511 *
512 * this also makes the decision about creating an inline extent vs
513 * doing real data extents, marking pages dirty and delalloc as required.
514 */
2ff7e61e
JM
515int btrfs_dirty_pages(struct inode *inode, struct page **pages,
516 size_t num_pages, loff_t pos, size_t write_bytes,
517 struct extent_state **cached)
39279cc3 518{
0b246afa 519 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 520 int err = 0;
a52d9a80 521 int i;
db94535d 522 u64 num_bytes;
a52d9a80
CM
523 u64 start_pos;
524 u64 end_of_last_block;
525 u64 end_pos = pos + write_bytes;
526 loff_t isize = i_size_read(inode);
e3b8a485 527 unsigned int extra_bits = 0;
39279cc3 528
0b246afa 529 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 530 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 531 fs_info->sectorsize);
39279cc3 532
db94535d 533 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485 534
7703bdd8
CM
535 /*
536 * The pages may have already been dirty, clear out old accounting so
537 * we can set things up properly
538 */
539 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
540 EXTENT_DIRTY | EXTENT_DELALLOC |
541 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, cached);
542
e3b8a485
FM
543 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
544 if (start_pos >= isize &&
545 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
546 /*
547 * There can't be any extents following eof in this case
548 * so just set the delalloc new bit for the range
549 * directly.
550 */
551 extra_bits |= EXTENT_DELALLOC_NEW;
552 } else {
553 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
554 start_pos,
555 num_bytes, cached);
556 if (err)
557 return err;
558 }
559 }
560
2ac55d41 561 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
e3b8a485 562 extra_bits, cached, 0);
d0215f3e
JB
563 if (err)
564 return err;
9ed74f2d 565
c8b97818
CM
566 for (i = 0; i < num_pages; i++) {
567 struct page *p = pages[i];
568 SetPageUptodate(p);
569 ClearPageChecked(p);
570 set_page_dirty(p);
a52d9a80 571 }
9f570b8d
JB
572
573 /*
574 * we've only changed i_size in ram, and we haven't updated
575 * the disk i_size. There is no need to log the inode
576 * at this time.
577 */
578 if (end_pos > isize)
a52d9a80 579 i_size_write(inode, end_pos);
a22285a6 580 return 0;
39279cc3
CM
581}
582
d352ac68
CM
583/*
584 * this drops all the extents in the cache that intersect the range
585 * [start, end]. Existing extents are split as required.
586 */
dcdbc059 587void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 588 int skip_pinned)
a52d9a80
CM
589{
590 struct extent_map *em;
3b951516
CM
591 struct extent_map *split = NULL;
592 struct extent_map *split2 = NULL;
dcdbc059 593 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 594 u64 len = end - start + 1;
5dc562c5 595 u64 gen;
3b951516
CM
596 int ret;
597 int testend = 1;
5b21f2ed 598 unsigned long flags;
c8b97818 599 int compressed = 0;
09a2a8f9 600 bool modified;
a52d9a80 601
e6dcd2dc 602 WARN_ON(end < start);
3b951516 603 if (end == (u64)-1) {
39b5637f 604 len = (u64)-1;
3b951516
CM
605 testend = 0;
606 }
d397712b 607 while (1) {
7014cdb4
JB
608 int no_splits = 0;
609
09a2a8f9 610 modified = false;
3b951516 611 if (!split)
172ddd60 612 split = alloc_extent_map();
3b951516 613 if (!split2)
172ddd60 614 split2 = alloc_extent_map();
7014cdb4
JB
615 if (!split || !split2)
616 no_splits = 1;
3b951516 617
890871be 618 write_lock(&em_tree->lock);
39b5637f 619 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 620 if (!em) {
890871be 621 write_unlock(&em_tree->lock);
a52d9a80 622 break;
d1310b2e 623 }
5b21f2ed 624 flags = em->flags;
5dc562c5 625 gen = em->generation;
5b21f2ed 626 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 627 if (testend && em->start + em->len >= start + len) {
5b21f2ed 628 free_extent_map(em);
a1ed835e 629 write_unlock(&em_tree->lock);
5b21f2ed
ZY
630 break;
631 }
55ef6899
YZ
632 start = em->start + em->len;
633 if (testend)
5b21f2ed 634 len = start + len - (em->start + em->len);
5b21f2ed 635 free_extent_map(em);
a1ed835e 636 write_unlock(&em_tree->lock);
5b21f2ed
ZY
637 continue;
638 }
c8b97818 639 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 640 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 641 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 642 modified = !list_empty(&em->list);
7014cdb4
JB
643 if (no_splits)
644 goto next;
3b951516 645
ee20a983 646 if (em->start < start) {
3b951516
CM
647 split->start = em->start;
648 split->len = start - em->start;
ee20a983
JB
649
650 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
651 split->orig_start = em->orig_start;
652 split->block_start = em->block_start;
653
654 if (compressed)
655 split->block_len = em->block_len;
656 else
657 split->block_len = split->len;
658 split->orig_block_len = max(split->block_len,
659 em->orig_block_len);
660 split->ram_bytes = em->ram_bytes;
661 } else {
662 split->orig_start = split->start;
663 split->block_len = 0;
664 split->block_start = em->block_start;
665 split->orig_block_len = 0;
666 split->ram_bytes = split->len;
667 }
668
5dc562c5 669 split->generation = gen;
3b951516 670 split->bdev = em->bdev;
5b21f2ed 671 split->flags = flags;
261507a0 672 split->compress_type = em->compress_type;
176840b3 673 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
674 free_extent_map(split);
675 split = split2;
676 split2 = NULL;
677 }
ee20a983 678 if (testend && em->start + em->len > start + len) {
3b951516
CM
679 u64 diff = start + len - em->start;
680
681 split->start = start + len;
682 split->len = em->start + em->len - (start + len);
683 split->bdev = em->bdev;
5b21f2ed 684 split->flags = flags;
261507a0 685 split->compress_type = em->compress_type;
5dc562c5 686 split->generation = gen;
ee20a983
JB
687
688 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
689 split->orig_block_len = max(em->block_len,
b4939680 690 em->orig_block_len);
3b951516 691
ee20a983
JB
692 split->ram_bytes = em->ram_bytes;
693 if (compressed) {
694 split->block_len = em->block_len;
695 split->block_start = em->block_start;
696 split->orig_start = em->orig_start;
697 } else {
698 split->block_len = split->len;
699 split->block_start = em->block_start
700 + diff;
701 split->orig_start = em->orig_start;
702 }
c8b97818 703 } else {
ee20a983
JB
704 split->ram_bytes = split->len;
705 split->orig_start = split->start;
706 split->block_len = 0;
707 split->block_start = em->block_start;
708 split->orig_block_len = 0;
c8b97818 709 }
3b951516 710
176840b3
FM
711 if (extent_map_in_tree(em)) {
712 replace_extent_mapping(em_tree, em, split,
713 modified);
714 } else {
715 ret = add_extent_mapping(em_tree, split,
716 modified);
717 ASSERT(ret == 0); /* Logic error */
718 }
3b951516
CM
719 free_extent_map(split);
720 split = NULL;
721 }
7014cdb4 722next:
176840b3
FM
723 if (extent_map_in_tree(em))
724 remove_extent_mapping(em_tree, em);
890871be 725 write_unlock(&em_tree->lock);
d1310b2e 726
a52d9a80
CM
727 /* once for us */
728 free_extent_map(em);
729 /* once for the tree*/
730 free_extent_map(em);
731 }
3b951516
CM
732 if (split)
733 free_extent_map(split);
734 if (split2)
735 free_extent_map(split2);
a52d9a80
CM
736}
737
39279cc3
CM
738/*
739 * this is very complex, but the basic idea is to drop all extents
740 * in the range start - end. hint_block is filled in with a block number
741 * that would be a good hint to the block allocator for this file.
742 *
743 * If an extent intersects the range but is not entirely inside the range
744 * it is either truncated or split. Anything entirely inside the range
745 * is deleted from the tree.
746 */
5dc562c5
JB
747int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
748 struct btrfs_root *root, struct inode *inode,
749 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
750 u64 *drop_end, int drop_cache,
751 int replace_extent,
752 u32 extent_item_size,
753 int *key_inserted)
39279cc3 754{
0b246afa 755 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 756 struct extent_buffer *leaf;
920bbbfb 757 struct btrfs_file_extent_item *fi;
82fa113f 758 struct btrfs_ref ref = { 0 };
00f5c795 759 struct btrfs_key key;
920bbbfb 760 struct btrfs_key new_key;
4a0cc7ca 761 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
762 u64 search_start = start;
763 u64 disk_bytenr = 0;
764 u64 num_bytes = 0;
765 u64 extent_offset = 0;
766 u64 extent_end = 0;
62fe51c1 767 u64 last_end = start;
920bbbfb
YZ
768 int del_nr = 0;
769 int del_slot = 0;
770 int extent_type;
ccd467d6 771 int recow;
00f5c795 772 int ret;
dc7fdde3 773 int modify_tree = -1;
27cdeb70 774 int update_refs;
c3308f84 775 int found = 0;
1acae57b 776 int leafs_visited = 0;
39279cc3 777
a1ed835e 778 if (drop_cache)
dcdbc059 779 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 780
d5f37527 781 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
782 modify_tree = 0;
783
27cdeb70 784 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 785 root == fs_info->tree_root);
d397712b 786 while (1) {
ccd467d6 787 recow = 0;
33345d01 788 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 789 search_start, modify_tree);
39279cc3 790 if (ret < 0)
920bbbfb
YZ
791 break;
792 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
793 leaf = path->nodes[0];
794 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 795 if (key.objectid == ino &&
920bbbfb
YZ
796 key.type == BTRFS_EXTENT_DATA_KEY)
797 path->slots[0]--;
39279cc3 798 }
920bbbfb 799 ret = 0;
1acae57b 800 leafs_visited++;
8c2383c3 801next_slot:
5f39d397 802 leaf = path->nodes[0];
920bbbfb
YZ
803 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
804 BUG_ON(del_nr > 0);
805 ret = btrfs_next_leaf(root, path);
806 if (ret < 0)
807 break;
808 if (ret > 0) {
809 ret = 0;
810 break;
8c2383c3 811 }
1acae57b 812 leafs_visited++;
920bbbfb
YZ
813 leaf = path->nodes[0];
814 recow = 1;
815 }
816
817 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
818
819 if (key.objectid > ino)
820 break;
821 if (WARN_ON_ONCE(key.objectid < ino) ||
822 key.type < BTRFS_EXTENT_DATA_KEY) {
823 ASSERT(del_nr == 0);
824 path->slots[0]++;
825 goto next_slot;
826 }
827 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
828 break;
829
830 fi = btrfs_item_ptr(leaf, path->slots[0],
831 struct btrfs_file_extent_item);
832 extent_type = btrfs_file_extent_type(leaf, fi);
833
834 if (extent_type == BTRFS_FILE_EXTENT_REG ||
835 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
836 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
837 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
838 extent_offset = btrfs_file_extent_offset(leaf, fi);
839 extent_end = key.offset +
840 btrfs_file_extent_num_bytes(leaf, fi);
841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
842 extent_end = key.offset +
e41ca589 843 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 844 } else {
aeafbf84
FM
845 /* can't happen */
846 BUG();
39279cc3
CM
847 }
848
fc19c5e7
FM
849 /*
850 * Don't skip extent items representing 0 byte lengths. They
851 * used to be created (bug) if while punching holes we hit
852 * -ENOSPC condition. So if we find one here, just ensure we
853 * delete it, otherwise we would insert a new file extent item
854 * with the same key (offset) as that 0 bytes length file
855 * extent item in the call to setup_items_for_insert() later
856 * in this function.
857 */
62fe51c1
JB
858 if (extent_end == key.offset && extent_end >= search_start) {
859 last_end = extent_end;
fc19c5e7 860 goto delete_extent_item;
62fe51c1 861 }
fc19c5e7 862
920bbbfb
YZ
863 if (extent_end <= search_start) {
864 path->slots[0]++;
8c2383c3 865 goto next_slot;
39279cc3
CM
866 }
867
c3308f84 868 found = 1;
920bbbfb 869 search_start = max(key.offset, start);
dc7fdde3
CM
870 if (recow || !modify_tree) {
871 modify_tree = -1;
b3b4aa74 872 btrfs_release_path(path);
920bbbfb 873 continue;
39279cc3 874 }
6643558d 875
920bbbfb
YZ
876 /*
877 * | - range to drop - |
878 * | -------- extent -------- |
879 */
880 if (start > key.offset && end < extent_end) {
881 BUG_ON(del_nr > 0);
00fdf13a 882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 883 ret = -EOPNOTSUPP;
00fdf13a
LB
884 break;
885 }
920bbbfb
YZ
886
887 memcpy(&new_key, &key, sizeof(new_key));
888 new_key.offset = start;
889 ret = btrfs_duplicate_item(trans, root, path,
890 &new_key);
891 if (ret == -EAGAIN) {
b3b4aa74 892 btrfs_release_path(path);
920bbbfb 893 continue;
6643558d 894 }
920bbbfb
YZ
895 if (ret < 0)
896 break;
897
898 leaf = path->nodes[0];
899 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
900 struct btrfs_file_extent_item);
901 btrfs_set_file_extent_num_bytes(leaf, fi,
902 start - key.offset);
903
904 fi = btrfs_item_ptr(leaf, path->slots[0],
905 struct btrfs_file_extent_item);
906
907 extent_offset += start - key.offset;
908 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
909 btrfs_set_file_extent_num_bytes(leaf, fi,
910 extent_end - start);
911 btrfs_mark_buffer_dirty(leaf);
912
5dc562c5 913 if (update_refs && disk_bytenr > 0) {
82fa113f
QW
914 btrfs_init_generic_ref(&ref,
915 BTRFS_ADD_DELAYED_REF,
916 disk_bytenr, num_bytes, 0);
917 btrfs_init_data_ref(&ref,
920bbbfb
YZ
918 root->root_key.objectid,
919 new_key.objectid,
b06c4bf5 920 start - extent_offset);
82fa113f 921 ret = btrfs_inc_extent_ref(trans, &ref);
79787eaa 922 BUG_ON(ret); /* -ENOMEM */
771ed689 923 }
920bbbfb 924 key.offset = start;
6643558d 925 }
62fe51c1
JB
926 /*
927 * From here on out we will have actually dropped something, so
928 * last_end can be updated.
929 */
930 last_end = extent_end;
931
920bbbfb
YZ
932 /*
933 * | ---- range to drop ----- |
934 * | -------- extent -------- |
935 */
936 if (start <= key.offset && end < extent_end) {
00fdf13a 937 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 938 ret = -EOPNOTSUPP;
00fdf13a
LB
939 break;
940 }
6643558d 941
920bbbfb
YZ
942 memcpy(&new_key, &key, sizeof(new_key));
943 new_key.offset = end;
0b246afa 944 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 945
920bbbfb
YZ
946 extent_offset += end - key.offset;
947 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
948 btrfs_set_file_extent_num_bytes(leaf, fi,
949 extent_end - end);
950 btrfs_mark_buffer_dirty(leaf);
2671485d 951 if (update_refs && disk_bytenr > 0)
920bbbfb 952 inode_sub_bytes(inode, end - key.offset);
920bbbfb 953 break;
39279cc3 954 }
771ed689 955
920bbbfb
YZ
956 search_start = extent_end;
957 /*
958 * | ---- range to drop ----- |
959 * | -------- extent -------- |
960 */
961 if (start > key.offset && end >= extent_end) {
962 BUG_ON(del_nr > 0);
00fdf13a 963 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 964 ret = -EOPNOTSUPP;
00fdf13a
LB
965 break;
966 }
8c2383c3 967
920bbbfb
YZ
968 btrfs_set_file_extent_num_bytes(leaf, fi,
969 start - key.offset);
970 btrfs_mark_buffer_dirty(leaf);
2671485d 971 if (update_refs && disk_bytenr > 0)
920bbbfb 972 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
973 if (end == extent_end)
974 break;
c8b97818 975
920bbbfb
YZ
976 path->slots[0]++;
977 goto next_slot;
31840ae1
ZY
978 }
979
920bbbfb
YZ
980 /*
981 * | ---- range to drop ----- |
982 * | ------ extent ------ |
983 */
984 if (start <= key.offset && end >= extent_end) {
fc19c5e7 985delete_extent_item:
920bbbfb
YZ
986 if (del_nr == 0) {
987 del_slot = path->slots[0];
988 del_nr = 1;
989 } else {
990 BUG_ON(del_slot + del_nr != path->slots[0]);
991 del_nr++;
992 }
31840ae1 993
5dc562c5
JB
994 if (update_refs &&
995 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 996 inode_sub_bytes(inode,
920bbbfb
YZ
997 extent_end - key.offset);
998 extent_end = ALIGN(extent_end,
0b246afa 999 fs_info->sectorsize);
5dc562c5 1000 } else if (update_refs && disk_bytenr > 0) {
ffd4bb2a
QW
1001 btrfs_init_generic_ref(&ref,
1002 BTRFS_DROP_DELAYED_REF,
1003 disk_bytenr, num_bytes, 0);
1004 btrfs_init_data_ref(&ref,
920bbbfb 1005 root->root_key.objectid,
ffd4bb2a
QW
1006 key.objectid,
1007 key.offset - extent_offset);
1008 ret = btrfs_free_extent(trans, &ref);
79787eaa 1009 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
1010 inode_sub_bytes(inode,
1011 extent_end - key.offset);
31840ae1 1012 }
31840ae1 1013
920bbbfb
YZ
1014 if (end == extent_end)
1015 break;
1016
1017 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1018 path->slots[0]++;
1019 goto next_slot;
1020 }
1021
1022 ret = btrfs_del_items(trans, root, path, del_slot,
1023 del_nr);
79787eaa 1024 if (ret) {
66642832 1025 btrfs_abort_transaction(trans, ret);
5dc562c5 1026 break;
79787eaa 1027 }
920bbbfb
YZ
1028
1029 del_nr = 0;
1030 del_slot = 0;
1031
b3b4aa74 1032 btrfs_release_path(path);
920bbbfb 1033 continue;
39279cc3 1034 }
920bbbfb 1035
290342f6 1036 BUG();
39279cc3 1037 }
920bbbfb 1038
79787eaa 1039 if (!ret && del_nr > 0) {
1acae57b
FDBM
1040 /*
1041 * Set path->slots[0] to first slot, so that after the delete
1042 * if items are move off from our leaf to its immediate left or
1043 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1044 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1045 */
1046 path->slots[0] = del_slot;
920bbbfb 1047 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1048 if (ret)
66642832 1049 btrfs_abort_transaction(trans, ret);
d5f37527 1050 }
1acae57b 1051
d5f37527
FDBM
1052 leaf = path->nodes[0];
1053 /*
1054 * If btrfs_del_items() was called, it might have deleted a leaf, in
1055 * which case it unlocked our path, so check path->locks[0] matches a
1056 * write lock.
1057 */
1058 if (!ret && replace_extent && leafs_visited == 1 &&
1059 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1060 path->locks[0] == BTRFS_WRITE_LOCK) &&
e902baac 1061 btrfs_leaf_free_space(leaf) >=
d5f37527
FDBM
1062 sizeof(struct btrfs_item) + extent_item_size) {
1063
1064 key.objectid = ino;
1065 key.type = BTRFS_EXTENT_DATA_KEY;
1066 key.offset = start;
1067 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1068 struct btrfs_key slot_key;
1069
1070 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1071 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1072 path->slots[0]++;
1acae57b 1073 }
d5f37527
FDBM
1074 setup_items_for_insert(root, path, &key,
1075 &extent_item_size,
1076 extent_item_size,
1077 sizeof(struct btrfs_item) +
1078 extent_item_size, 1);
1079 *key_inserted = 1;
6643558d 1080 }
920bbbfb 1081
1acae57b
FDBM
1082 if (!replace_extent || !(*key_inserted))
1083 btrfs_release_path(path);
2aaa6655 1084 if (drop_end)
62fe51c1 1085 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1086 return ret;
1087}
1088
1089int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1091 u64 end, int drop_cache)
5dc562c5
JB
1092{
1093 struct btrfs_path *path;
1094 int ret;
1095
1096 path = btrfs_alloc_path();
1097 if (!path)
1098 return -ENOMEM;
2aaa6655 1099 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1100 drop_cache, 0, 0, NULL);
920bbbfb 1101 btrfs_free_path(path);
39279cc3
CM
1102 return ret;
1103}
1104
d899e052 1105static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1106 u64 objectid, u64 bytenr, u64 orig_offset,
1107 u64 *start, u64 *end)
d899e052
YZ
1108{
1109 struct btrfs_file_extent_item *fi;
1110 struct btrfs_key key;
1111 u64 extent_end;
1112
1113 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1114 return 0;
1115
1116 btrfs_item_key_to_cpu(leaf, &key, slot);
1117 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1118 return 0;
1119
1120 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1122 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1123 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1124 btrfs_file_extent_compression(leaf, fi) ||
1125 btrfs_file_extent_encryption(leaf, fi) ||
1126 btrfs_file_extent_other_encoding(leaf, fi))
1127 return 0;
1128
1129 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1130 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1131 return 0;
1132
1133 *start = key.offset;
1134 *end = extent_end;
1135 return 1;
1136}
1137
1138/*
1139 * Mark extent in the range start - end as written.
1140 *
1141 * This changes extent type from 'pre-allocated' to 'regular'. If only
1142 * part of extent is marked as written, the extent will be split into
1143 * two or three.
1144 */
1145int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1146 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1147{
3ffbd68c 1148 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1149 struct btrfs_root *root = inode->root;
d899e052
YZ
1150 struct extent_buffer *leaf;
1151 struct btrfs_path *path;
1152 struct btrfs_file_extent_item *fi;
82fa113f 1153 struct btrfs_ref ref = { 0 };
d899e052 1154 struct btrfs_key key;
920bbbfb 1155 struct btrfs_key new_key;
d899e052
YZ
1156 u64 bytenr;
1157 u64 num_bytes;
1158 u64 extent_end;
5d4f98a2 1159 u64 orig_offset;
d899e052
YZ
1160 u64 other_start;
1161 u64 other_end;
920bbbfb
YZ
1162 u64 split;
1163 int del_nr = 0;
1164 int del_slot = 0;
6c7d54ac 1165 int recow;
d899e052 1166 int ret;
7a6d7067 1167 u64 ino = btrfs_ino(inode);
d899e052 1168
d899e052 1169 path = btrfs_alloc_path();
d8926bb3
MF
1170 if (!path)
1171 return -ENOMEM;
d899e052 1172again:
6c7d54ac 1173 recow = 0;
920bbbfb 1174 split = start;
33345d01 1175 key.objectid = ino;
d899e052 1176 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1177 key.offset = split;
d899e052
YZ
1178
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1180 if (ret < 0)
1181 goto out;
d899e052
YZ
1182 if (ret > 0 && path->slots[0] > 0)
1183 path->slots[0]--;
1184
1185 leaf = path->nodes[0];
1186 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1187 if (key.objectid != ino ||
1188 key.type != BTRFS_EXTENT_DATA_KEY) {
1189 ret = -EINVAL;
1190 btrfs_abort_transaction(trans, ret);
1191 goto out;
1192 }
d899e052
YZ
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
9c8e63db
JB
1195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1196 ret = -EINVAL;
1197 btrfs_abort_transaction(trans, ret);
1198 goto out;
1199 }
d899e052 1200 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1201 if (key.offset > start || extent_end < end) {
1202 ret = -EINVAL;
1203 btrfs_abort_transaction(trans, ret);
1204 goto out;
1205 }
d899e052
YZ
1206
1207 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1208 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1209 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1210 memcpy(&new_key, &key, sizeof(new_key));
1211
1212 if (start == key.offset && end < extent_end) {
1213 other_start = 0;
1214 other_end = start;
1215 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1216 ino, bytenr, orig_offset,
6c7d54ac
YZ
1217 &other_start, &other_end)) {
1218 new_key.offset = end;
0b246afa 1219 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1220 fi = btrfs_item_ptr(leaf, path->slots[0],
1221 struct btrfs_file_extent_item);
224ecce5
JB
1222 btrfs_set_file_extent_generation(leaf, fi,
1223 trans->transid);
6c7d54ac
YZ
1224 btrfs_set_file_extent_num_bytes(leaf, fi,
1225 extent_end - end);
1226 btrfs_set_file_extent_offset(leaf, fi,
1227 end - orig_offset);
1228 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1229 struct btrfs_file_extent_item);
224ecce5
JB
1230 btrfs_set_file_extent_generation(leaf, fi,
1231 trans->transid);
6c7d54ac
YZ
1232 btrfs_set_file_extent_num_bytes(leaf, fi,
1233 end - other_start);
1234 btrfs_mark_buffer_dirty(leaf);
1235 goto out;
1236 }
1237 }
1238
1239 if (start > key.offset && end == extent_end) {
1240 other_start = end;
1241 other_end = 0;
1242 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1243 ino, bytenr, orig_offset,
6c7d54ac
YZ
1244 &other_start, &other_end)) {
1245 fi = btrfs_item_ptr(leaf, path->slots[0],
1246 struct btrfs_file_extent_item);
1247 btrfs_set_file_extent_num_bytes(leaf, fi,
1248 start - key.offset);
224ecce5
JB
1249 btrfs_set_file_extent_generation(leaf, fi,
1250 trans->transid);
6c7d54ac
YZ
1251 path->slots[0]++;
1252 new_key.offset = start;
0b246afa 1253 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1254
1255 fi = btrfs_item_ptr(leaf, path->slots[0],
1256 struct btrfs_file_extent_item);
224ecce5
JB
1257 btrfs_set_file_extent_generation(leaf, fi,
1258 trans->transid);
6c7d54ac
YZ
1259 btrfs_set_file_extent_num_bytes(leaf, fi,
1260 other_end - start);
1261 btrfs_set_file_extent_offset(leaf, fi,
1262 start - orig_offset);
1263 btrfs_mark_buffer_dirty(leaf);
1264 goto out;
1265 }
1266 }
d899e052 1267
920bbbfb
YZ
1268 while (start > key.offset || end < extent_end) {
1269 if (key.offset == start)
1270 split = end;
1271
920bbbfb
YZ
1272 new_key.offset = split;
1273 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1274 if (ret == -EAGAIN) {
b3b4aa74 1275 btrfs_release_path(path);
920bbbfb 1276 goto again;
d899e052 1277 }
79787eaa 1278 if (ret < 0) {
66642832 1279 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1280 goto out;
1281 }
d899e052 1282
920bbbfb
YZ
1283 leaf = path->nodes[0];
1284 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1285 struct btrfs_file_extent_item);
224ecce5 1286 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1287 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1288 split - key.offset);
1289
1290 fi = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_file_extent_item);
1292
224ecce5 1293 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1294 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1295 btrfs_set_file_extent_num_bytes(leaf, fi,
1296 extent_end - split);
d899e052
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298
82fa113f
QW
1299 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1300 num_bytes, 0);
1301 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1302 orig_offset);
1303 ret = btrfs_inc_extent_ref(trans, &ref);
9c8e63db
JB
1304 if (ret) {
1305 btrfs_abort_transaction(trans, ret);
1306 goto out;
1307 }
d899e052 1308
920bbbfb
YZ
1309 if (split == start) {
1310 key.offset = start;
1311 } else {
9c8e63db
JB
1312 if (start != key.offset) {
1313 ret = -EINVAL;
1314 btrfs_abort_transaction(trans, ret);
1315 goto out;
1316 }
d899e052 1317 path->slots[0]--;
920bbbfb 1318 extent_end = end;
d899e052 1319 }
6c7d54ac 1320 recow = 1;
d899e052
YZ
1321 }
1322
920bbbfb
YZ
1323 other_start = end;
1324 other_end = 0;
ffd4bb2a
QW
1325 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1326 num_bytes, 0);
1327 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
6c7d54ac 1328 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1329 ino, bytenr, orig_offset,
6c7d54ac
YZ
1330 &other_start, &other_end)) {
1331 if (recow) {
b3b4aa74 1332 btrfs_release_path(path);
6c7d54ac
YZ
1333 goto again;
1334 }
920bbbfb
YZ
1335 extent_end = other_end;
1336 del_slot = path->slots[0] + 1;
1337 del_nr++;
ffd4bb2a 1338 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1339 if (ret) {
1340 btrfs_abort_transaction(trans, ret);
1341 goto out;
1342 }
d899e052 1343 }
920bbbfb
YZ
1344 other_start = 0;
1345 other_end = start;
6c7d54ac 1346 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1347 ino, bytenr, orig_offset,
6c7d54ac
YZ
1348 &other_start, &other_end)) {
1349 if (recow) {
b3b4aa74 1350 btrfs_release_path(path);
6c7d54ac
YZ
1351 goto again;
1352 }
920bbbfb
YZ
1353 key.offset = other_start;
1354 del_slot = path->slots[0];
1355 del_nr++;
ffd4bb2a 1356 ret = btrfs_free_extent(trans, &ref);
9c8e63db
JB
1357 if (ret) {
1358 btrfs_abort_transaction(trans, ret);
1359 goto out;
1360 }
920bbbfb
YZ
1361 }
1362 if (del_nr == 0) {
3f6fae95
SL
1363 fi = btrfs_item_ptr(leaf, path->slots[0],
1364 struct btrfs_file_extent_item);
920bbbfb
YZ
1365 btrfs_set_file_extent_type(leaf, fi,
1366 BTRFS_FILE_EXTENT_REG);
224ecce5 1367 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1368 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1369 } else {
3f6fae95
SL
1370 fi = btrfs_item_ptr(leaf, del_slot - 1,
1371 struct btrfs_file_extent_item);
6c7d54ac
YZ
1372 btrfs_set_file_extent_type(leaf, fi,
1373 BTRFS_FILE_EXTENT_REG);
224ecce5 1374 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1375 btrfs_set_file_extent_num_bytes(leaf, fi,
1376 extent_end - key.offset);
1377 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1378
6c7d54ac 1379 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1380 if (ret < 0) {
66642832 1381 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1382 goto out;
1383 }
6c7d54ac 1384 }
920bbbfb 1385out:
d899e052
YZ
1386 btrfs_free_path(path);
1387 return 0;
1388}
1389
b1bf862e
CM
1390/*
1391 * on error we return an unlocked page and the error value
1392 * on success we return a locked page and 0
1393 */
bb1591b4
CM
1394static int prepare_uptodate_page(struct inode *inode,
1395 struct page *page, u64 pos,
b6316429 1396 bool force_uptodate)
b1bf862e
CM
1397{
1398 int ret = 0;
1399
09cbfeaf 1400 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1401 !PageUptodate(page)) {
b1bf862e
CM
1402 ret = btrfs_readpage(NULL, page);
1403 if (ret)
1404 return ret;
1405 lock_page(page);
1406 if (!PageUptodate(page)) {
1407 unlock_page(page);
1408 return -EIO;
1409 }
bb1591b4
CM
1410 if (page->mapping != inode->i_mapping) {
1411 unlock_page(page);
1412 return -EAGAIN;
1413 }
b1bf862e
CM
1414 }
1415 return 0;
1416}
1417
39279cc3 1418/*
376cc685 1419 * this just gets pages into the page cache and locks them down.
39279cc3 1420 */
b37392ea
MX
1421static noinline int prepare_pages(struct inode *inode, struct page **pages,
1422 size_t num_pages, loff_t pos,
1423 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1424{
1425 int i;
09cbfeaf 1426 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1427 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1428 int err = 0;
376cc685 1429 int faili;
8c2383c3 1430
39279cc3 1431 for (i = 0; i < num_pages; i++) {
bb1591b4 1432again:
a94733d0 1433 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1434 mask | __GFP_WRITE);
39279cc3 1435 if (!pages[i]) {
b1bf862e
CM
1436 faili = i - 1;
1437 err = -ENOMEM;
1438 goto fail;
1439 }
1440
1441 if (i == 0)
bb1591b4 1442 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1443 force_uptodate);
bb1591b4
CM
1444 if (!err && i == num_pages - 1)
1445 err = prepare_uptodate_page(inode, pages[i],
b6316429 1446 pos + write_bytes, false);
b1bf862e 1447 if (err) {
09cbfeaf 1448 put_page(pages[i]);
bb1591b4
CM
1449 if (err == -EAGAIN) {
1450 err = 0;
1451 goto again;
1452 }
b1bf862e
CM
1453 faili = i - 1;
1454 goto fail;
39279cc3 1455 }
ccd467d6 1456 wait_on_page_writeback(pages[i]);
39279cc3 1457 }
376cc685
MX
1458
1459 return 0;
1460fail:
1461 while (faili >= 0) {
1462 unlock_page(pages[faili]);
09cbfeaf 1463 put_page(pages[faili]);
376cc685
MX
1464 faili--;
1465 }
1466 return err;
1467
1468}
1469
1470/*
1471 * This function locks the extent and properly waits for data=ordered extents
1472 * to finish before allowing the pages to be modified if need.
1473 *
1474 * The return value:
1475 * 1 - the extent is locked
1476 * 0 - the extent is not locked, and everything is OK
1477 * -EAGAIN - need re-prepare the pages
1478 * the other < 0 number - Something wrong happens
1479 */
1480static noinline int
2cff578c 1481lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1482 size_t num_pages, loff_t pos,
2e78c927 1483 size_t write_bytes,
376cc685
MX
1484 u64 *lockstart, u64 *lockend,
1485 struct extent_state **cached_state)
1486{
3ffbd68c 1487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1488 u64 start_pos;
1489 u64 last_pos;
1490 int i;
1491 int ret = 0;
1492
0b246afa 1493 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1494 last_pos = start_pos
da17066c 1495 + round_up(pos + write_bytes - start_pos,
0b246afa 1496 fs_info->sectorsize) - 1;
376cc685 1497
e3b8a485 1498 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1499 struct btrfs_ordered_extent *ordered;
a7e3b975 1500
2cff578c
NB
1501 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1502 cached_state);
b88935bf
MX
1503 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1504 last_pos - start_pos + 1);
e6dcd2dc
CM
1505 if (ordered &&
1506 ordered->file_offset + ordered->len > start_pos &&
376cc685 1507 ordered->file_offset <= last_pos) {
2cff578c 1508 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1509 last_pos, cached_state);
e6dcd2dc
CM
1510 for (i = 0; i < num_pages; i++) {
1511 unlock_page(pages[i]);
09cbfeaf 1512 put_page(pages[i]);
e6dcd2dc 1513 }
2cff578c
NB
1514 btrfs_start_ordered_extent(&inode->vfs_inode,
1515 ordered, 1);
b88935bf
MX
1516 btrfs_put_ordered_extent(ordered);
1517 return -EAGAIN;
e6dcd2dc
CM
1518 }
1519 if (ordered)
1520 btrfs_put_ordered_extent(ordered);
7703bdd8 1521
376cc685
MX
1522 *lockstart = start_pos;
1523 *lockend = last_pos;
1524 ret = 1;
0762704b 1525 }
376cc685 1526
7703bdd8
CM
1527 /*
1528 * It's possible the pages are dirty right now, but we don't want
1529 * to clean them yet because copy_from_user may catch a page fault
1530 * and we might have to fall back to one page at a time. If that
1531 * happens, we'll unlock these pages and we'd have a window where
1532 * reclaim could sneak in and drop the once-dirty page on the floor
1533 * without writing it.
1534 *
1535 * We have the pages locked and the extent range locked, so there's
1536 * no way someone can start IO on any dirty pages in this range.
1537 *
1538 * We'll call btrfs_dirty_pages() later on, and that will flip around
1539 * delalloc bits and dirty the pages as required.
1540 */
e6dcd2dc 1541 for (i = 0; i < num_pages; i++) {
e6dcd2dc
CM
1542 set_page_extent_mapped(pages[i]);
1543 WARN_ON(!PageLocked(pages[i]));
1544 }
b1bf862e 1545
376cc685 1546 return ret;
39279cc3
CM
1547}
1548
85b7ab67 1549static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1550 size_t *write_bytes)
1551{
3ffbd68c 1552 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1553 struct btrfs_root *root = inode->root;
7ee9e440
JB
1554 u64 lockstart, lockend;
1555 u64 num_bytes;
1556 int ret;
1557
ea14b57f 1558 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc 1559 if (!ret)
5f791ec3 1560 return -EAGAIN;
8257b2dc 1561
0b246afa 1562 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1563 lockend = round_up(pos + *write_bytes,
0b246afa 1564 fs_info->sectorsize) - 1;
7ee9e440 1565
23d31bd4
NB
1566 btrfs_lock_and_flush_ordered_range(&inode->io_tree, inode, lockstart,
1567 lockend, NULL);
7ee9e440 1568
7ee9e440 1569 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1570 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1571 NULL, NULL, NULL);
7ee9e440
JB
1572 if (ret <= 0) {
1573 ret = 0;
ea14b57f 1574 btrfs_end_write_no_snapshotting(root);
7ee9e440 1575 } else {
c933956d
MX
1576 *write_bytes = min_t(size_t, *write_bytes ,
1577 num_bytes - pos + lockstart);
7ee9e440
JB
1578 }
1579
85b7ab67 1580 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1581
1582 return ret;
1583}
1584
e4af400a
GR
1585static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1586 struct iov_iter *i)
4b46fce2 1587{
e4af400a
GR
1588 struct file *file = iocb->ki_filp;
1589 loff_t pos = iocb->ki_pos;
496ad9aa 1590 struct inode *inode = file_inode(file);
0b246afa 1591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1592 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1593 struct page **pages = NULL;
376cc685 1594 struct extent_state *cached_state = NULL;
364ecf36 1595 struct extent_changeset *data_reserved = NULL;
7ee9e440 1596 u64 release_bytes = 0;
376cc685
MX
1597 u64 lockstart;
1598 u64 lockend;
d0215f3e
JB
1599 size_t num_written = 0;
1600 int nrptrs;
c9149235 1601 int ret = 0;
7ee9e440 1602 bool only_release_metadata = false;
b6316429 1603 bool force_page_uptodate = false;
4b46fce2 1604
09cbfeaf
KS
1605 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1606 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1607 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1608 nrptrs = max(nrptrs, 8);
31e818fe 1609 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1610 if (!pages)
1611 return -ENOMEM;
ab93dbec 1612
d0215f3e 1613 while (iov_iter_count(i) > 0) {
7073017a 1614 size_t offset = offset_in_page(pos);
2e78c927 1615 size_t sector_offset;
d0215f3e 1616 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1617 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1618 offset);
ed6078f7 1619 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1620 PAGE_SIZE);
7ee9e440 1621 size_t reserve_bytes;
d0215f3e
JB
1622 size_t dirty_pages;
1623 size_t copied;
2e78c927
CR
1624 size_t dirty_sectors;
1625 size_t num_sectors;
79f015f2 1626 int extents_locked;
39279cc3 1627
8c2383c3 1628 WARN_ON(num_pages > nrptrs);
1832a6d5 1629
914ee295
XZ
1630 /*
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1633 */
d0215f3e 1634 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1635 ret = -EFAULT;
d0215f3e 1636 break;
914ee295
XZ
1637 }
1638
da17066c 1639 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1640 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1641 fs_info->sectorsize);
d9d8b2a5 1642
364ecf36
QW
1643 extent_changeset_release(data_reserved);
1644 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1645 write_bytes);
c6887cd1
JB
1646 if (ret < 0) {
1647 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1648 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1649 check_can_nocow(BTRFS_I(inode), pos,
1650 &write_bytes) > 0) {
c6887cd1
JB
1651 /*
1652 * For nodata cow case, no need to reserve
1653 * data space.
1654 */
1655 only_release_metadata = true;
1656 /*
1657 * our prealloc extent may be smaller than
1658 * write_bytes, so scale down.
1659 */
1660 num_pages = DIV_ROUND_UP(write_bytes + offset,
1661 PAGE_SIZE);
1662 reserve_bytes = round_up(write_bytes +
1663 sector_offset,
da17066c 1664 fs_info->sectorsize);
c6887cd1
JB
1665 } else {
1666 break;
1667 }
1668 }
1832a6d5 1669
8b62f87b 1670 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1671 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1672 reserve_bytes);
7ee9e440
JB
1673 if (ret) {
1674 if (!only_release_metadata)
bc42bda2
QW
1675 btrfs_free_reserved_data_space(inode,
1676 data_reserved, pos,
1677 write_bytes);
8257b2dc 1678 else
ea14b57f 1679 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1680 break;
1681 }
1682
1683 release_bytes = reserve_bytes;
376cc685 1684again:
4a64001f
JB
1685 /*
1686 * This is going to setup the pages array with the number of
1687 * pages we want, so we don't really need to worry about the
1688 * contents of pages from loop to loop
1689 */
b37392ea
MX
1690 ret = prepare_pages(inode, pages, num_pages,
1691 pos, write_bytes,
b6316429 1692 force_page_uptodate);
8b62f87b
JB
1693 if (ret) {
1694 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1695 reserve_bytes, true);
d0215f3e 1696 break;
8b62f87b 1697 }
39279cc3 1698
79f015f2
GR
1699 extents_locked = lock_and_cleanup_extent_if_need(
1700 BTRFS_I(inode), pages,
2cff578c
NB
1701 num_pages, pos, write_bytes, &lockstart,
1702 &lockend, &cached_state);
79f015f2
GR
1703 if (extents_locked < 0) {
1704 if (extents_locked == -EAGAIN)
376cc685 1705 goto again;
8b62f87b 1706 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1707 reserve_bytes, true);
79f015f2 1708 ret = extents_locked;
376cc685 1709 break;
376cc685
MX
1710 }
1711
ee22f0c4 1712 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1713
0b246afa 1714 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1715 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1716 fs_info->sectorsize);
1717 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1718
b1bf862e
CM
1719 /*
1720 * if we have trouble faulting in the pages, fall
1721 * back to one page at a time
1722 */
1723 if (copied < write_bytes)
1724 nrptrs = 1;
1725
b6316429
JB
1726 if (copied == 0) {
1727 force_page_uptodate = true;
56244ef1 1728 dirty_sectors = 0;
b1bf862e 1729 dirty_pages = 0;
b6316429
JB
1730 } else {
1731 force_page_uptodate = false;
ed6078f7 1732 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1733 PAGE_SIZE);
b6316429 1734 }
914ee295 1735
2e78c927 1736 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1737 /* release everything except the sectors we dirtied */
1738 release_bytes -= dirty_sectors <<
0b246afa 1739 fs_info->sb->s_blocksize_bits;
485290a7 1740 if (only_release_metadata) {
691fa059 1741 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1742 release_bytes, true);
485290a7
QW
1743 } else {
1744 u64 __pos;
1745
da17066c 1746 __pos = round_down(pos,
0b246afa 1747 fs_info->sectorsize) +
09cbfeaf 1748 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1749 btrfs_delalloc_release_space(inode,
1750 data_reserved, __pos,
43b18595 1751 release_bytes, true);
485290a7 1752 }
914ee295
XZ
1753 }
1754
2e78c927 1755 release_bytes = round_up(copied + sector_offset,
0b246afa 1756 fs_info->sectorsize);
376cc685
MX
1757
1758 if (copied > 0)
2ff7e61e 1759 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
94f45071 1760 pos, copied, &cached_state);
79f015f2 1761 if (extents_locked)
376cc685 1762 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1763 lockstart, lockend, &cached_state);
43b18595 1764 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
336a8bb8 1765 true);
f1de9683
MX
1766 if (ret) {
1767 btrfs_drop_pages(pages, num_pages);
376cc685 1768 break;
f1de9683 1769 }
39279cc3 1770
376cc685 1771 release_bytes = 0;
8257b2dc 1772 if (only_release_metadata)
ea14b57f 1773 btrfs_end_write_no_snapshotting(root);
8257b2dc 1774
7ee9e440 1775 if (only_release_metadata && copied > 0) {
da17066c 1776 lockstart = round_down(pos,
0b246afa 1777 fs_info->sectorsize);
da17066c 1778 lockend = round_up(pos + copied,
0b246afa 1779 fs_info->sectorsize) - 1;
7ee9e440
JB
1780
1781 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1782 lockend, EXTENT_NORESERVE, NULL,
1783 NULL, GFP_NOFS);
1784 only_release_metadata = false;
1785 }
1786
f1de9683
MX
1787 btrfs_drop_pages(pages, num_pages);
1788
d0215f3e
JB
1789 cond_resched();
1790
d0e1d66b 1791 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1792 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1793 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1794
914ee295
XZ
1795 pos += copied;
1796 num_written += copied;
d0215f3e 1797 }
39279cc3 1798
d0215f3e
JB
1799 kfree(pages);
1800
7ee9e440 1801 if (release_bytes) {
8257b2dc 1802 if (only_release_metadata) {
ea14b57f 1803 btrfs_end_write_no_snapshotting(root);
691fa059 1804 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1805 release_bytes, true);
8257b2dc 1806 } else {
bc42bda2
QW
1807 btrfs_delalloc_release_space(inode, data_reserved,
1808 round_down(pos, fs_info->sectorsize),
43b18595 1809 release_bytes, true);
8257b2dc 1810 }
7ee9e440
JB
1811 }
1812
364ecf36 1813 extent_changeset_free(data_reserved);
d0215f3e
JB
1814 return num_written ? num_written : ret;
1815}
1816
1af5bb49 1817static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1818{
1819 struct file *file = iocb->ki_filp;
728404da 1820 struct inode *inode = file_inode(file);
e4af400a 1821 loff_t pos;
d0215f3e
JB
1822 ssize_t written;
1823 ssize_t written_buffered;
1824 loff_t endbyte;
1825 int err;
1826
1af5bb49 1827 written = generic_file_direct_write(iocb, from);
d0215f3e 1828
0c949334 1829 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1830 return written;
1831
e4af400a
GR
1832 pos = iocb->ki_pos;
1833 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1834 if (written_buffered < 0) {
1835 err = written_buffered;
1836 goto out;
39279cc3 1837 }
075bdbdb
FM
1838 /*
1839 * Ensure all data is persisted. We want the next direct IO read to be
1840 * able to read what was just written.
1841 */
d0215f3e 1842 endbyte = pos + written_buffered - 1;
728404da 1843 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1844 if (err)
1845 goto out;
728404da 1846 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1847 if (err)
1848 goto out;
1849 written += written_buffered;
867c4f93 1850 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1851 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1852 endbyte >> PAGE_SHIFT);
39279cc3 1853out:
d0215f3e
JB
1854 return written ? written : err;
1855}
5b92ee72 1856
6c760c07
JB
1857static void update_time_for_write(struct inode *inode)
1858{
95582b00 1859 struct timespec64 now;
6c760c07
JB
1860
1861 if (IS_NOCMTIME(inode))
1862 return;
1863
c2050a45 1864 now = current_time(inode);
95582b00 1865 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1866 inode->i_mtime = now;
1867
95582b00 1868 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1869 inode->i_ctime = now;
1870
1871 if (IS_I_VERSION(inode))
1872 inode_inc_iversion(inode);
1873}
1874
b30ac0fc
AV
1875static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1876 struct iov_iter *from)
d0215f3e
JB
1877{
1878 struct file *file = iocb->ki_filp;
496ad9aa 1879 struct inode *inode = file_inode(file);
0b246afa 1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1881 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1882 u64 start_pos;
3ac0d7b9 1883 u64 end_pos;
d0215f3e 1884 ssize_t num_written = 0;
b812ce28 1885 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1886 ssize_t err;
ff0fa732 1887 loff_t pos;
edf064e7 1888 size_t count = iov_iter_count(from);
27772b68
CR
1889 loff_t oldsize;
1890 int clean_page = 0;
d0215f3e 1891
91f9943e
CH
1892 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1893 (iocb->ki_flags & IOCB_NOWAIT))
1894 return -EOPNOTSUPP;
1895
ff0fa732
GR
1896 if (!inode_trylock(inode)) {
1897 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1898 return -EAGAIN;
ff0fa732
GR
1899 inode_lock(inode);
1900 }
1901
1902 err = generic_write_checks(iocb, from);
1903 if (err <= 0) {
1904 inode_unlock(inode);
1905 return err;
1906 }
1907
1908 pos = iocb->ki_pos;
1909 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1910 /*
1911 * We will allocate space in case nodatacow is not set,
1912 * so bail
1913 */
1914 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1915 BTRFS_INODE_PREALLOC)) ||
1916 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1917 inode_unlock(inode);
1918 return -EAGAIN;
1919 }
d0215f3e
JB
1920 }
1921
3309dd04 1922 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1923 err = file_remove_privs(file);
d0215f3e 1924 if (err) {
5955102c 1925 inode_unlock(inode);
d0215f3e
JB
1926 goto out;
1927 }
1928
1929 /*
1930 * If BTRFS flips readonly due to some impossible error
1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932 * although we have opened a file as writable, we have
1933 * to stop this write operation to ensure FS consistency.
1934 */
0b246afa 1935 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1936 inode_unlock(inode);
d0215f3e
JB
1937 err = -EROFS;
1938 goto out;
1939 }
1940
6c760c07
JB
1941 /*
1942 * We reserve space for updating the inode when we reserve space for the
1943 * extent we are going to write, so we will enospc out there. We don't
1944 * need to start yet another transaction to update the inode as we will
1945 * update the inode when we finish writing whatever data we write.
1946 */
1947 update_time_for_write(inode);
d0215f3e 1948
0b246afa 1949 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1950 oldsize = i_size_read(inode);
1951 if (start_pos > oldsize) {
3ac0d7b9 1952 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1953 end_pos = round_up(pos + count,
0b246afa 1954 fs_info->sectorsize);
27772b68 1955 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1956 if (err) {
5955102c 1957 inode_unlock(inode);
0c1a98c8
MX
1958 goto out;
1959 }
0b246afa 1960 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1961 clean_page = 1;
0c1a98c8
MX
1962 }
1963
b812ce28
JB
1964 if (sync)
1965 atomic_inc(&BTRFS_I(inode)->sync_writers);
1966
2ba48ce5 1967 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1968 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1969 } else {
e4af400a 1970 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 1971 if (num_written > 0)
867c4f93 1972 iocb->ki_pos = pos + num_written;
27772b68
CR
1973 if (clean_page)
1974 pagecache_isize_extended(inode, oldsize,
1975 i_size_read(inode));
d0215f3e
JB
1976 }
1977
5955102c 1978 inode_unlock(inode);
2ff3e9b6 1979
5a3f23d5 1980 /*
6c760c07
JB
1981 * We also have to set last_sub_trans to the current log transid,
1982 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1983 * transaction will appear to have already occurred.
5a3f23d5 1984 */
2f2ff0ee 1985 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1986 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1987 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1988 if (num_written > 0)
1989 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1990
b812ce28
JB
1991 if (sync)
1992 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1993out:
39279cc3 1994 current->backing_dev_info = NULL;
39279cc3
CM
1995 return num_written ? num_written : err;
1996}
1997
d397712b 1998int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1999{
23b5ec74
JB
2000 struct btrfs_file_private *private = filp->private_data;
2001
23b5ec74
JB
2002 if (private && private->filldir_buf)
2003 kfree(private->filldir_buf);
2004 kfree(private);
2005 filp->private_data = NULL;
2006
f6dc45c7 2007 /*
52042d8e 2008 * ordered_data_close is set by setattr when we are about to truncate
f6dc45c7
CM
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2012 */
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2014 &BTRFS_I(inode)->runtime_flags))
2015 filemap_flush(inode->i_mapping);
e1b81e67
M
2016 return 0;
2017}
2018
669249ee
FM
2019static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2020{
2021 int ret;
343e4fc1 2022 struct blk_plug plug;
669249ee 2023
343e4fc1
LB
2024 /*
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2029 */
2030 blk_start_plug(&plug);
669249ee 2031 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2032 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2033 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2034 blk_finish_plug(&plug);
669249ee
FM
2035
2036 return ret;
2037}
2038
d352ac68
CM
2039/*
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2042 *
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2045 *
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2049 */
02c24a82 2050int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2051{
de17e793 2052 struct dentry *dentry = file_dentry(file);
2b0143b5 2053 struct inode *inode = d_inode(dentry);
0b246afa 2054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2055 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2056 struct btrfs_trans_handle *trans;
8b050d35 2057 struct btrfs_log_ctx ctx;
333427a5 2058 int ret = 0, err;
9dcbeed4 2059 u64 len;
39279cc3 2060
0c713cba
FM
2061 /*
2062 * If the inode needs a full sync, make sure we use a full range to
2063 * avoid log tree corruption, due to hole detection racing with ordered
2064 * extent completion for adjacent ranges, and assertion failures during
2065 * hole detection.
2066 */
2067 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2068 &BTRFS_I(inode)->runtime_flags)) {
2069 start = 0;
2070 end = LLONG_MAX;
2071 }
2072
9dcbeed4
DS
2073 /*
2074 * The range length can be represented by u64, we have to do the typecasts
2075 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2076 */
2077 len = (u64)end - (u64)start + 1;
1abe9b8a 2078 trace_btrfs_sync_file(file, datasync);
257c62e1 2079
ebb70442
LB
2080 btrfs_init_log_ctx(&ctx, inode);
2081
90abccf2
MX
2082 /*
2083 * We write the dirty pages in the range and wait until they complete
2084 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2085 * multi-task, and make the performance up. See
2086 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2087 */
669249ee 2088 ret = start_ordered_ops(inode, start, end);
90abccf2 2089 if (ret)
333427a5 2090 goto out;
90abccf2 2091
5955102c 2092 inode_lock(inode);
c495144b
JB
2093
2094 /*
2095 * We take the dio_sem here because the tree log stuff can race with
2096 * lockless dio writes and get an extent map logged for an extent we
2097 * never waited on. We need it this high up for lockdep reasons.
2098 */
2099 down_write(&BTRFS_I(inode)->dio_sem);
2100
2ecb7923 2101 atomic_inc(&root->log_batch);
b5e6c3e1 2102
aab15e8e
FM
2103 /*
2104 * Before we acquired the inode's lock, someone may have dirtied more
2105 * pages in the target range. We need to make sure that writeback for
2106 * any such pages does not start while we are logging the inode, because
2107 * if it does, any of the following might happen when we are not doing a
2108 * full inode sync:
2109 *
2110 * 1) We log an extent after its writeback finishes but before its
2111 * checksums are added to the csum tree, leading to -EIO errors
2112 * when attempting to read the extent after a log replay.
2113 *
2114 * 2) We can end up logging an extent before its writeback finishes.
2115 * Therefore after the log replay we will have a file extent item
2116 * pointing to an unwritten extent (and no data checksums as well).
2117 *
2118 * So trigger writeback for any eventual new dirty pages and then we
2119 * wait for all ordered extents to complete below.
2120 */
2121 ret = start_ordered_ops(inode, start, end);
2122 if (ret) {
2123 inode_unlock(inode);
2124 goto out;
2125 }
2126
669249ee 2127 /*
b5e6c3e1 2128 * We have to do this here to avoid the priority inversion of waiting on
52042d8e 2129 * IO of a lower priority task while holding a transaction open.
669249ee 2130 */
b5e6c3e1 2131 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee 2132 if (ret) {
c495144b 2133 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2134 inode_unlock(inode);
669249ee 2135 goto out;
0ef8b726 2136 }
2ecb7923 2137 atomic_inc(&root->log_batch);
257c62e1 2138
a4abeea4 2139 smp_mb();
0f8939b8 2140 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
ca5788ab 2141 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
5dc562c5 2142 /*
01327610 2143 * We've had everything committed since the last time we were
5dc562c5
JB
2144 * modified so clear this flag in case it was set for whatever
2145 * reason, it's no longer relevant.
2146 */
2147 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2148 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2149 /*
2150 * An ordered extent might have started before and completed
2151 * already with io errors, in which case the inode was not
2152 * updated and we end up here. So check the inode's mapping
333427a5
JL
2153 * for any errors that might have happened since we last
2154 * checked called fsync.
0596a904 2155 */
333427a5 2156 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
c495144b 2157 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2158 inode_unlock(inode);
15ee9bc7
JB
2159 goto out;
2160 }
15ee9bc7 2161
5039eddc
JB
2162 /*
2163 * We use start here because we will need to wait on the IO to complete
2164 * in btrfs_sync_log, which could require joining a transaction (for
2165 * example checking cross references in the nocow path). If we use join
2166 * here we could get into a situation where we're waiting on IO to
2167 * happen that is blocked on a transaction trying to commit. With start
2168 * we inc the extwriter counter, so we wait for all extwriters to exit
52042d8e 2169 * before we start blocking joiners. This comment is to keep somebody
5039eddc
JB
2170 * from thinking they are super smart and changing this to
2171 * btrfs_join_transaction *cough*Josef*cough*.
2172 */
a22285a6
YZ
2173 trans = btrfs_start_transaction(root, 0);
2174 if (IS_ERR(trans)) {
2175 ret = PTR_ERR(trans);
c495144b 2176 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2177 inode_unlock(inode);
39279cc3
CM
2178 goto out;
2179 }
e02119d5 2180
e5b84f7a 2181 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
02c24a82 2182 if (ret < 0) {
a0634be5
FDBM
2183 /* Fallthrough and commit/free transaction. */
2184 ret = 1;
02c24a82 2185 }
49eb7e46
CM
2186
2187 /* we've logged all the items and now have a consistent
2188 * version of the file in the log. It is possible that
2189 * someone will come in and modify the file, but that's
2190 * fine because the log is consistent on disk, and we
2191 * have references to all of the file's extents
2192 *
2193 * It is possible that someone will come in and log the
2194 * file again, but that will end up using the synchronization
2195 * inside btrfs_sync_log to keep things safe.
2196 */
c495144b 2197 up_write(&BTRFS_I(inode)->dio_sem);
5955102c 2198 inode_unlock(inode);
49eb7e46 2199
257c62e1 2200 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2201 if (!ret) {
8b050d35 2202 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2203 if (!ret) {
3a45bb20 2204 ret = btrfs_end_transaction(trans);
0ef8b726 2205 goto out;
2ab28f32 2206 }
257c62e1 2207 }
3a45bb20 2208 ret = btrfs_commit_transaction(trans);
257c62e1 2209 } else {
3a45bb20 2210 ret = btrfs_end_transaction(trans);
e02119d5 2211 }
39279cc3 2212out:
ebb70442 2213 ASSERT(list_empty(&ctx.list));
333427a5
JL
2214 err = file_check_and_advance_wb_err(file);
2215 if (!ret)
2216 ret = err;
014e4ac4 2217 return ret > 0 ? -EIO : ret;
39279cc3
CM
2218}
2219
f0f37e2f 2220static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2221 .fault = filemap_fault,
f1820361 2222 .map_pages = filemap_map_pages,
9ebefb18
CM
2223 .page_mkwrite = btrfs_page_mkwrite,
2224};
2225
2226static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2227{
058a457e
MX
2228 struct address_space *mapping = filp->f_mapping;
2229
2230 if (!mapping->a_ops->readpage)
2231 return -ENOEXEC;
2232
9ebefb18 2233 file_accessed(filp);
058a457e 2234 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2235
9ebefb18
CM
2236 return 0;
2237}
2238
35339c24 2239static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2240 int slot, u64 start, u64 end)
2241{
2242 struct btrfs_file_extent_item *fi;
2243 struct btrfs_key key;
2244
2245 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2246 return 0;
2247
2248 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2249 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2250 key.type != BTRFS_EXTENT_DATA_KEY)
2251 return 0;
2252
2253 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2254
2255 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2256 return 0;
2257
2258 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2259 return 0;
2260
2261 if (key.offset == end)
2262 return 1;
2263 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2264 return 1;
2265 return 0;
2266}
2267
a012a74e
NB
2268static int fill_holes(struct btrfs_trans_handle *trans,
2269 struct btrfs_inode *inode,
2270 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2271{
3ffbd68c 2272 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2273 struct btrfs_root *root = inode->root;
2aaa6655
JB
2274 struct extent_buffer *leaf;
2275 struct btrfs_file_extent_item *fi;
2276 struct extent_map *hole_em;
a012a74e 2277 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2278 struct btrfs_key key;
2279 int ret;
2280
0b246afa 2281 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2282 goto out;
2283
a012a74e 2284 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2285 key.type = BTRFS_EXTENT_DATA_KEY;
2286 key.offset = offset;
2287
2aaa6655 2288 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2289 if (ret <= 0) {
2290 /*
2291 * We should have dropped this offset, so if we find it then
2292 * something has gone horribly wrong.
2293 */
2294 if (ret == 0)
2295 ret = -EINVAL;
2aaa6655 2296 return ret;
f94480bd 2297 }
2aaa6655
JB
2298
2299 leaf = path->nodes[0];
a012a74e 2300 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2301 u64 num_bytes;
2302
2303 path->slots[0]--;
2304 fi = btrfs_item_ptr(leaf, path->slots[0],
2305 struct btrfs_file_extent_item);
2306 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2307 end - offset;
2308 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2309 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2310 btrfs_set_file_extent_offset(leaf, fi, 0);
2311 btrfs_mark_buffer_dirty(leaf);
2312 goto out;
2313 }
2314
1707e26d 2315 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2316 u64 num_bytes;
2317
2aaa6655 2318 key.offset = offset;
0b246afa 2319 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2320 fi = btrfs_item_ptr(leaf, path->slots[0],
2321 struct btrfs_file_extent_item);
2322 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2323 offset;
2324 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2326 btrfs_set_file_extent_offset(leaf, fi, 0);
2327 btrfs_mark_buffer_dirty(leaf);
2328 goto out;
2329 }
2330 btrfs_release_path(path);
2331
a012a74e 2332 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2333 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2334 if (ret)
2335 return ret;
2336
2337out:
2338 btrfs_release_path(path);
2339
2340 hole_em = alloc_extent_map();
2341 if (!hole_em) {
2342 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2344 } else {
2345 hole_em->start = offset;
2346 hole_em->len = end - offset;
cc95bef6 2347 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2348 hole_em->orig_start = offset;
2349
2350 hole_em->block_start = EXTENT_MAP_HOLE;
2351 hole_em->block_len = 0;
b4939680 2352 hole_em->orig_block_len = 0;
0b246afa 2353 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2354 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2355 hole_em->generation = trans->transid;
2356
2357 do {
2358 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2359 write_lock(&em_tree->lock);
09a2a8f9 2360 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2361 write_unlock(&em_tree->lock);
2362 } while (ret == -EEXIST);
2363 free_extent_map(hole_em);
2364 if (ret)
2365 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2366 &inode->runtime_flags);
2aaa6655
JB
2367 }
2368
2369 return 0;
2370}
2371
d7781546
QW
2372/*
2373 * Find a hole extent on given inode and change start/len to the end of hole
2374 * extent.(hole/vacuum extent whose em->start <= start &&
2375 * em->start + em->len > start)
2376 * When a hole extent is found, return 1 and modify start/len.
2377 */
2378static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2379{
609805d8 2380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2381 struct extent_map *em;
2382 int ret = 0;
2383
609805d8
FM
2384 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2385 round_down(*start, fs_info->sectorsize),
2386 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2387 if (IS_ERR(em))
2388 return PTR_ERR(em);
d7781546
QW
2389
2390 /* Hole or vacuum extent(only exists in no-hole mode) */
2391 if (em->block_start == EXTENT_MAP_HOLE) {
2392 ret = 1;
2393 *len = em->start + em->len > *start + *len ?
2394 0 : *start + *len - em->start - em->len;
2395 *start = em->start + em->len;
2396 }
2397 free_extent_map(em);
2398 return ret;
2399}
2400
f27451f2
FM
2401static int btrfs_punch_hole_lock_range(struct inode *inode,
2402 const u64 lockstart,
2403 const u64 lockend,
2404 struct extent_state **cached_state)
2405{
2406 while (1) {
2407 struct btrfs_ordered_extent *ordered;
2408 int ret;
2409
2410 truncate_pagecache_range(inode, lockstart, lockend);
2411
2412 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2413 cached_state);
2414 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2415
2416 /*
2417 * We need to make sure we have no ordered extents in this range
2418 * and nobody raced in and read a page in this range, if we did
2419 * we need to try again.
2420 */
2421 if ((!ordered ||
2422 (ordered->file_offset + ordered->len <= lockstart ||
2423 ordered->file_offset > lockend)) &&
051c98eb
DS
2424 !filemap_range_has_page(inode->i_mapping,
2425 lockstart, lockend)) {
f27451f2
FM
2426 if (ordered)
2427 btrfs_put_ordered_extent(ordered);
2428 break;
2429 }
2430 if (ordered)
2431 btrfs_put_ordered_extent(ordered);
2432 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2433 lockend, cached_state);
2434 ret = btrfs_wait_ordered_range(inode, lockstart,
2435 lockend - lockstart + 1);
2436 if (ret)
2437 return ret;
2438 }
2439 return 0;
2440}
2441
2aaa6655
JB
2442static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2443{
0b246afa 2444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2445 struct btrfs_root *root = BTRFS_I(inode)->root;
2446 struct extent_state *cached_state = NULL;
2447 struct btrfs_path *path;
2448 struct btrfs_block_rsv *rsv;
2449 struct btrfs_trans_handle *trans;
d7781546
QW
2450 u64 lockstart;
2451 u64 lockend;
2452 u64 tail_start;
2453 u64 tail_len;
2454 u64 orig_start = offset;
2455 u64 cur_offset;
5f52a2c5 2456 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2457 u64 drop_end;
2aaa6655
JB
2458 int ret = 0;
2459 int err = 0;
6e4d6fa1 2460 unsigned int rsv_count;
9703fefe 2461 bool same_block;
0b246afa 2462 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2463 u64 ino_size;
9703fefe 2464 bool truncated_block = false;
e8c1c76e 2465 bool updated_inode = false;
2aaa6655 2466
0ef8b726
JB
2467 ret = btrfs_wait_ordered_range(inode, offset, len);
2468 if (ret)
2469 return ret;
2aaa6655 2470
5955102c 2471 inode_lock(inode);
0b246afa 2472 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2473 ret = find_first_non_hole(inode, &offset, &len);
2474 if (ret < 0)
2475 goto out_only_mutex;
2476 if (ret && !len) {
2477 /* Already in a large hole */
2478 ret = 0;
2479 goto out_only_mutex;
2480 }
2481
da17066c 2482 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2483 lockend = round_down(offset + len,
da17066c 2484 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2485 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2486 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2487 /*
9703fefe 2488 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2489 * because we are sure there is no data there.
2490 */
2aaa6655 2491 /*
9703fefe
CR
2492 * Only do this if we are in the same block and we aren't doing the
2493 * entire block.
2aaa6655 2494 */
0b246afa 2495 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2496 if (offset < ino_size) {
9703fefe
CR
2497 truncated_block = true;
2498 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2499 } else {
2500 ret = 0;
2501 }
d7781546 2502 goto out_only_mutex;
2aaa6655
JB
2503 }
2504
9703fefe 2505 /* zero back part of the first block */
12870f1c 2506 if (offset < ino_size) {
9703fefe
CR
2507 truncated_block = true;
2508 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2509 if (ret) {
5955102c 2510 inode_unlock(inode);
7426cc04
MX
2511 return ret;
2512 }
2aaa6655
JB
2513 }
2514
d7781546
QW
2515 /* Check the aligned pages after the first unaligned page,
2516 * if offset != orig_start, which means the first unaligned page
01327610 2517 * including several following pages are already in holes,
d7781546
QW
2518 * the extra check can be skipped */
2519 if (offset == orig_start) {
2520 /* after truncate page, check hole again */
2521 len = offset + len - lockstart;
2522 offset = lockstart;
2523 ret = find_first_non_hole(inode, &offset, &len);
2524 if (ret < 0)
2525 goto out_only_mutex;
2526 if (ret && !len) {
2527 ret = 0;
2528 goto out_only_mutex;
2529 }
2530 lockstart = offset;
2531 }
2532
2533 /* Check the tail unaligned part is in a hole */
2534 tail_start = lockend + 1;
2535 tail_len = offset + len - tail_start;
2536 if (tail_len) {
2537 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2538 if (unlikely(ret < 0))
2539 goto out_only_mutex;
2540 if (!ret) {
2541 /* zero the front end of the last page */
2542 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2543 truncated_block = true;
2544 ret = btrfs_truncate_block(inode,
2545 tail_start + tail_len,
2546 0, 1);
d7781546
QW
2547 if (ret)
2548 goto out_only_mutex;
51f395ad 2549 }
0061280d 2550 }
2aaa6655
JB
2551 }
2552
2553 if (lockend < lockstart) {
e8c1c76e
FM
2554 ret = 0;
2555 goto out_only_mutex;
2aaa6655
JB
2556 }
2557
f27451f2
FM
2558 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2559 &cached_state);
8fca9550 2560 if (ret)
f27451f2 2561 goto out_only_mutex;
2aaa6655
JB
2562
2563 path = btrfs_alloc_path();
2564 if (!path) {
2565 ret = -ENOMEM;
2566 goto out;
2567 }
2568
2ff7e61e 2569 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2570 if (!rsv) {
2571 ret = -ENOMEM;
2572 goto out_free;
2573 }
5f52a2c5 2574 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2575 rsv->failfast = 1;
2576
2577 /*
2578 * 1 - update the inode
2579 * 1 - removing the extents in the range
16e7549f 2580 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2581 */
16e7549f
JB
2582 rsv_count = no_holes ? 2 : 3;
2583 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2584 if (IS_ERR(trans)) {
2585 err = PTR_ERR(trans);
2586 goto out_free;
2587 }
2588
0b246afa 2589 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 2590 min_size, false);
2aaa6655
JB
2591 BUG_ON(ret);
2592 trans->block_rsv = rsv;
2593
d7781546
QW
2594 cur_offset = lockstart;
2595 len = lockend - cur_offset;
2aaa6655
JB
2596 while (cur_offset < lockend) {
2597 ret = __btrfs_drop_extents(trans, root, inode, path,
2598 cur_offset, lockend + 1,
1acae57b 2599 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2600 if (ret != -ENOSPC)
2601 break;
2602
0b246afa 2603 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2604
62fe51c1 2605 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2606 ret = fill_holes(trans, BTRFS_I(inode), path,
2607 cur_offset, drop_end);
12870f1c 2608 if (ret) {
f94480bd
JB
2609 /*
2610 * If we failed then we didn't insert our hole
2611 * entries for the area we dropped, so now the
2612 * fs is corrupted, so we must abort the
2613 * transaction.
2614 */
2615 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2616 err = ret;
2617 break;
2618 }
2aaa6655
JB
2619 }
2620
2621 cur_offset = drop_end;
2622
2623 ret = btrfs_update_inode(trans, root, inode);
2624 if (ret) {
2625 err = ret;
2626 break;
2627 }
2628
3a45bb20 2629 btrfs_end_transaction(trans);
2ff7e61e 2630 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2631
16e7549f 2632 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2633 if (IS_ERR(trans)) {
2634 ret = PTR_ERR(trans);
2635 trans = NULL;
2636 break;
2637 }
2638
0b246afa 2639 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 2640 rsv, min_size, false);
2aaa6655
JB
2641 BUG_ON(ret); /* shouldn't happen */
2642 trans->block_rsv = rsv;
d7781546
QW
2643
2644 ret = find_first_non_hole(inode, &cur_offset, &len);
2645 if (unlikely(ret < 0))
2646 break;
2647 if (ret && !len) {
2648 ret = 0;
2649 break;
2650 }
2aaa6655
JB
2651 }
2652
2653 if (ret) {
2654 err = ret;
2655 goto out_trans;
2656 }
2657
0b246afa 2658 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2659 /*
2660 * If we are using the NO_HOLES feature we might have had already an
2661 * hole that overlaps a part of the region [lockstart, lockend] and
2662 * ends at (or beyond) lockend. Since we have no file extent items to
2663 * represent holes, drop_end can be less than lockend and so we must
2664 * make sure we have an extent map representing the existing hole (the
2665 * call to __btrfs_drop_extents() might have dropped the existing extent
2666 * map representing the existing hole), otherwise the fast fsync path
2667 * will not record the existence of the hole region
2668 * [existing_hole_start, lockend].
2669 */
2670 if (drop_end <= lockend)
2671 drop_end = lockend + 1;
fc19c5e7
FM
2672 /*
2673 * Don't insert file hole extent item if it's for a range beyond eof
2674 * (because it's useless) or if it represents a 0 bytes range (when
2675 * cur_offset == drop_end).
2676 */
2677 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2678 ret = fill_holes(trans, BTRFS_I(inode), path,
2679 cur_offset, drop_end);
12870f1c 2680 if (ret) {
f94480bd
JB
2681 /* Same comment as above. */
2682 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2683 err = ret;
2684 goto out_trans;
2685 }
2aaa6655
JB
2686 }
2687
2688out_trans:
2689 if (!trans)
2690 goto out_free;
2691
e1f5790e 2692 inode_inc_iversion(inode);
c2050a45 2693 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2694
0b246afa 2695 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2696 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2697 updated_inode = true;
3a45bb20 2698 btrfs_end_transaction(trans);
2ff7e61e 2699 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2700out_free:
2701 btrfs_free_path(path);
2ff7e61e 2702 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2703out:
2704 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2705 &cached_state);
d7781546 2706out_only_mutex:
9703fefe 2707 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2708 /*
2709 * If we only end up zeroing part of a page, we still need to
2710 * update the inode item, so that all the time fields are
2711 * updated as well as the necessary btrfs inode in memory fields
2712 * for detecting, at fsync time, if the inode isn't yet in the
2713 * log tree or it's there but not up to date.
2714 */
17900668
FM
2715 struct timespec64 now = current_time(inode);
2716
2717 inode_inc_iversion(inode);
2718 inode->i_mtime = now;
2719 inode->i_ctime = now;
e8c1c76e
FM
2720 trans = btrfs_start_transaction(root, 1);
2721 if (IS_ERR(trans)) {
2722 err = PTR_ERR(trans);
2723 } else {
2724 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2725 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2726 }
2727 }
5955102c 2728 inode_unlock(inode);
2aaa6655
JB
2729 if (ret && !err)
2730 err = ret;
2731 return err;
2732}
2733
14524a84
QW
2734/* Helper structure to record which range is already reserved */
2735struct falloc_range {
2736 struct list_head list;
2737 u64 start;
2738 u64 len;
2739};
2740
2741/*
2742 * Helper function to add falloc range
2743 *
2744 * Caller should have locked the larger range of extent containing
2745 * [start, len)
2746 */
2747static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2748{
2749 struct falloc_range *prev = NULL;
2750 struct falloc_range *range = NULL;
2751
2752 if (list_empty(head))
2753 goto insert;
2754
2755 /*
2756 * As fallocate iterate by bytenr order, we only need to check
2757 * the last range.
2758 */
2759 prev = list_entry(head->prev, struct falloc_range, list);
2760 if (prev->start + prev->len == start) {
2761 prev->len += len;
2762 return 0;
2763 }
2764insert:
32fc932e 2765 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2766 if (!range)
2767 return -ENOMEM;
2768 range->start = start;
2769 range->len = len;
2770 list_add_tail(&range->list, head);
2771 return 0;
2772}
2773
f27451f2
FM
2774static int btrfs_fallocate_update_isize(struct inode *inode,
2775 const u64 end,
2776 const int mode)
2777{
2778 struct btrfs_trans_handle *trans;
2779 struct btrfs_root *root = BTRFS_I(inode)->root;
2780 int ret;
2781 int ret2;
2782
2783 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2784 return 0;
2785
2786 trans = btrfs_start_transaction(root, 1);
2787 if (IS_ERR(trans))
2788 return PTR_ERR(trans);
2789
2790 inode->i_ctime = current_time(inode);
2791 i_size_write(inode, end);
2792 btrfs_ordered_update_i_size(inode, end, NULL);
2793 ret = btrfs_update_inode(trans, root, inode);
2794 ret2 = btrfs_end_transaction(trans);
2795
2796 return ret ? ret : ret2;
2797}
2798
81fdf638 2799enum {
f262fa8d
DS
2800 RANGE_BOUNDARY_WRITTEN_EXTENT,
2801 RANGE_BOUNDARY_PREALLOC_EXTENT,
2802 RANGE_BOUNDARY_HOLE,
81fdf638
FM
2803};
2804
f27451f2
FM
2805static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2806 u64 offset)
2807{
2808 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2809 struct extent_map *em;
81fdf638 2810 int ret;
f27451f2
FM
2811
2812 offset = round_down(offset, sectorsize);
2813 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2814 if (IS_ERR(em))
2815 return PTR_ERR(em);
2816
2817 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2818 ret = RANGE_BOUNDARY_HOLE;
2819 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2820 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2821 else
2822 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2823
2824 free_extent_map(em);
2825 return ret;
2826}
2827
2828static int btrfs_zero_range(struct inode *inode,
2829 loff_t offset,
2830 loff_t len,
2831 const int mode)
2832{
2833 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2834 struct extent_map *em;
2835 struct extent_changeset *data_reserved = NULL;
2836 int ret;
2837 u64 alloc_hint = 0;
2838 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2839 u64 alloc_start = round_down(offset, sectorsize);
2840 u64 alloc_end = round_up(offset + len, sectorsize);
2841 u64 bytes_to_reserve = 0;
2842 bool space_reserved = false;
2843
2844 inode_dio_wait(inode);
2845
2846 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2847 alloc_start, alloc_end - alloc_start, 0);
2848 if (IS_ERR(em)) {
2849 ret = PTR_ERR(em);
2850 goto out;
2851 }
2852
2853 /*
2854 * Avoid hole punching and extent allocation for some cases. More cases
2855 * could be considered, but these are unlikely common and we keep things
2856 * as simple as possible for now. Also, intentionally, if the target
2857 * range contains one or more prealloc extents together with regular
2858 * extents and holes, we drop all the existing extents and allocate a
2859 * new prealloc extent, so that we get a larger contiguous disk extent.
2860 */
2861 if (em->start <= alloc_start &&
2862 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2863 const u64 em_end = em->start + em->len;
2864
2865 if (em_end >= offset + len) {
2866 /*
2867 * The whole range is already a prealloc extent,
2868 * do nothing except updating the inode's i_size if
2869 * needed.
2870 */
2871 free_extent_map(em);
2872 ret = btrfs_fallocate_update_isize(inode, offset + len,
2873 mode);
2874 goto out;
2875 }
2876 /*
2877 * Part of the range is already a prealloc extent, so operate
2878 * only on the remaining part of the range.
2879 */
2880 alloc_start = em_end;
2881 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2882 len = offset + len - alloc_start;
2883 offset = alloc_start;
2884 alloc_hint = em->block_start + em->len;
2885 }
2886 free_extent_map(em);
2887
2888 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2889 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2890 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2891 alloc_start, sectorsize, 0);
2892 if (IS_ERR(em)) {
2893 ret = PTR_ERR(em);
2894 goto out;
2895 }
2896
2897 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2898 free_extent_map(em);
2899 ret = btrfs_fallocate_update_isize(inode, offset + len,
2900 mode);
2901 goto out;
2902 }
2903 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2904 free_extent_map(em);
2905 ret = btrfs_truncate_block(inode, offset, len, 0);
2906 if (!ret)
2907 ret = btrfs_fallocate_update_isize(inode,
2908 offset + len,
2909 mode);
2910 return ret;
2911 }
2912 free_extent_map(em);
2913 alloc_start = round_down(offset, sectorsize);
2914 alloc_end = alloc_start + sectorsize;
2915 goto reserve_space;
2916 }
2917
2918 alloc_start = round_up(offset, sectorsize);
2919 alloc_end = round_down(offset + len, sectorsize);
2920
2921 /*
2922 * For unaligned ranges, check the pages at the boundaries, they might
2923 * map to an extent, in which case we need to partially zero them, or
2924 * they might map to a hole, in which case we need our allocation range
2925 * to cover them.
2926 */
2927 if (!IS_ALIGNED(offset, sectorsize)) {
2928 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2929 if (ret < 0)
2930 goto out;
81fdf638 2931 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2932 alloc_start = round_down(offset, sectorsize);
2933 ret = 0;
81fdf638 2934 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2935 ret = btrfs_truncate_block(inode, offset, 0, 0);
2936 if (ret)
2937 goto out;
81fdf638
FM
2938 } else {
2939 ret = 0;
f27451f2
FM
2940 }
2941 }
2942
2943 if (!IS_ALIGNED(offset + len, sectorsize)) {
2944 ret = btrfs_zero_range_check_range_boundary(inode,
2945 offset + len);
2946 if (ret < 0)
2947 goto out;
81fdf638 2948 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2949 alloc_end = round_up(offset + len, sectorsize);
2950 ret = 0;
81fdf638 2951 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2952 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2953 if (ret)
2954 goto out;
81fdf638
FM
2955 } else {
2956 ret = 0;
f27451f2
FM
2957 }
2958 }
2959
2960reserve_space:
2961 if (alloc_start < alloc_end) {
2962 struct extent_state *cached_state = NULL;
2963 const u64 lockstart = alloc_start;
2964 const u64 lockend = alloc_end - 1;
2965
2966 bytes_to_reserve = alloc_end - alloc_start;
2967 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2968 bytes_to_reserve);
2969 if (ret < 0)
2970 goto out;
2971 space_reserved = true;
2972 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2973 alloc_start, bytes_to_reserve);
2974 if (ret)
2975 goto out;
2976 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2977 &cached_state);
2978 if (ret)
2979 goto out;
2980 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2981 alloc_end - alloc_start,
2982 i_blocksize(inode),
2983 offset + len, &alloc_hint);
2984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2985 lockend, &cached_state);
2986 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 2987 if (ret) {
f27451f2 2988 space_reserved = false;
9f13ce74
FM
2989 goto out;
2990 }
f27451f2 2991 }
9f13ce74 2992 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
2993 out:
2994 if (ret && space_reserved)
2995 btrfs_free_reserved_data_space(inode, data_reserved,
2996 alloc_start, bytes_to_reserve);
2997 extent_changeset_free(data_reserved);
2998
2999 return ret;
3000}
3001
2fe17c10
CH
3002static long btrfs_fallocate(struct file *file, int mode,
3003 loff_t offset, loff_t len)
3004{
496ad9aa 3005 struct inode *inode = file_inode(file);
2fe17c10 3006 struct extent_state *cached_state = NULL;
364ecf36 3007 struct extent_changeset *data_reserved = NULL;
14524a84
QW
3008 struct falloc_range *range;
3009 struct falloc_range *tmp;
3010 struct list_head reserve_list;
2fe17c10
CH
3011 u64 cur_offset;
3012 u64 last_byte;
3013 u64 alloc_start;
3014 u64 alloc_end;
3015 u64 alloc_hint = 0;
3016 u64 locked_end;
14524a84 3017 u64 actual_end = 0;
2fe17c10 3018 struct extent_map *em;
da17066c 3019 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
3020 int ret;
3021
797f4277
MX
3022 alloc_start = round_down(offset, blocksize);
3023 alloc_end = round_up(offset + len, blocksize);
18513091 3024 cur_offset = alloc_start;
2fe17c10 3025
2aaa6655 3026 /* Make sure we aren't being give some crap mode */
f27451f2
FM
3027 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3028 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
3029 return -EOPNOTSUPP;
3030
2aaa6655
JB
3031 if (mode & FALLOC_FL_PUNCH_HOLE)
3032 return btrfs_punch_hole(inode, offset, len);
3033
d98456fc 3034 /*
14524a84
QW
3035 * Only trigger disk allocation, don't trigger qgroup reserve
3036 *
3037 * For qgroup space, it will be checked later.
d98456fc 3038 */
f27451f2
FM
3039 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3040 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3041 alloc_end - alloc_start);
3042 if (ret < 0)
3043 return ret;
3044 }
d98456fc 3045
5955102c 3046 inode_lock(inode);
2a162ce9
DI
3047
3048 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3049 ret = inode_newsize_ok(inode, offset + len);
3050 if (ret)
3051 goto out;
3052 }
2fe17c10 3053
14524a84
QW
3054 /*
3055 * TODO: Move these two operations after we have checked
3056 * accurate reserved space, or fallocate can still fail but
3057 * with page truncated or size expanded.
3058 *
3059 * But that's a minor problem and won't do much harm BTW.
3060 */
2fe17c10 3061 if (alloc_start > inode->i_size) {
a41ad394
JB
3062 ret = btrfs_cont_expand(inode, i_size_read(inode),
3063 alloc_start);
2fe17c10
CH
3064 if (ret)
3065 goto out;
0f6925fa 3066 } else if (offset + len > inode->i_size) {
a71754fc
JB
3067 /*
3068 * If we are fallocating from the end of the file onward we
9703fefe
CR
3069 * need to zero out the end of the block if i_size lands in the
3070 * middle of a block.
a71754fc 3071 */
9703fefe 3072 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3073 if (ret)
3074 goto out;
2fe17c10
CH
3075 }
3076
a71754fc
JB
3077 /*
3078 * wait for ordered IO before we have any locks. We'll loop again
3079 * below with the locks held.
3080 */
0ef8b726
JB
3081 ret = btrfs_wait_ordered_range(inode, alloc_start,
3082 alloc_end - alloc_start);
3083 if (ret)
3084 goto out;
a71754fc 3085
f27451f2
FM
3086 if (mode & FALLOC_FL_ZERO_RANGE) {
3087 ret = btrfs_zero_range(inode, offset, len, mode);
3088 inode_unlock(inode);
3089 return ret;
3090 }
3091
2fe17c10
CH
3092 locked_end = alloc_end - 1;
3093 while (1) {
3094 struct btrfs_ordered_extent *ordered;
3095
3096 /* the extent lock is ordered inside the running
3097 * transaction
3098 */
3099 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3100 locked_end, &cached_state);
96b09dde
NB
3101 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3102
2fe17c10
CH
3103 if (ordered &&
3104 ordered->file_offset + ordered->len > alloc_start &&
3105 ordered->file_offset < alloc_end) {
3106 btrfs_put_ordered_extent(ordered);
3107 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3108 alloc_start, locked_end,
e43bbe5e 3109 &cached_state);
2fe17c10
CH
3110 /*
3111 * we can't wait on the range with the transaction
3112 * running or with the extent lock held
3113 */
0ef8b726
JB
3114 ret = btrfs_wait_ordered_range(inode, alloc_start,
3115 alloc_end - alloc_start);
3116 if (ret)
3117 goto out;
2fe17c10
CH
3118 } else {
3119 if (ordered)
3120 btrfs_put_ordered_extent(ordered);
3121 break;
3122 }
3123 }
3124
14524a84
QW
3125 /* First, check if we exceed the qgroup limit */
3126 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3127 while (cur_offset < alloc_end) {
fc4f21b1 3128 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 3129 alloc_end - cur_offset, 0);
9986277e
DC
3130 if (IS_ERR(em)) {
3131 ret = PTR_ERR(em);
79787eaa
JM
3132 break;
3133 }
2fe17c10 3134 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3135 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3136 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3137 if (em->block_start == EXTENT_MAP_HOLE ||
3138 (cur_offset >= inode->i_size &&
3139 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3140 ret = add_falloc_range(&reserve_list, cur_offset,
3141 last_byte - cur_offset);
3142 if (ret < 0) {
3143 free_extent_map(em);
3144 break;
3d850dd4 3145 }
364ecf36
QW
3146 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3147 cur_offset, last_byte - cur_offset);
be2d253c 3148 if (ret < 0) {
39ad3173 3149 cur_offset = last_byte;
be2d253c 3150 free_extent_map(em);
14524a84 3151 break;
be2d253c 3152 }
18513091
WX
3153 } else {
3154 /*
3155 * Do not need to reserve unwritten extent for this
3156 * range, free reserved data space first, otherwise
3157 * it'll result in false ENOSPC error.
3158 */
bc42bda2
QW
3159 btrfs_free_reserved_data_space(inode, data_reserved,
3160 cur_offset, last_byte - cur_offset);
2fe17c10
CH
3161 }
3162 free_extent_map(em);
2fe17c10 3163 cur_offset = last_byte;
14524a84
QW
3164 }
3165
3166 /*
3167 * If ret is still 0, means we're OK to fallocate.
3168 * Or just cleanup the list and exit.
3169 */
3170 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3171 if (!ret)
3172 ret = btrfs_prealloc_file_range(inode, mode,
3173 range->start,
93407472 3174 range->len, i_blocksize(inode),
14524a84 3175 offset + len, &alloc_hint);
18513091 3176 else
bc42bda2
QW
3177 btrfs_free_reserved_data_space(inode,
3178 data_reserved, range->start,
3179 range->len);
14524a84
QW
3180 list_del(&range->list);
3181 kfree(range);
3182 }
3183 if (ret < 0)
3184 goto out_unlock;
3185
f27451f2
FM
3186 /*
3187 * We didn't need to allocate any more space, but we still extended the
3188 * size of the file so we need to update i_size and the inode item.
3189 */
3190 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3191out_unlock:
2fe17c10 3192 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3193 &cached_state);
2fe17c10 3194out:
5955102c 3195 inode_unlock(inode);
d98456fc 3196 /* Let go of our reservation. */
f27451f2 3197 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
bc42bda2 3198 btrfs_free_reserved_data_space(inode, data_reserved,
39ad3173 3199 cur_offset, alloc_end - cur_offset);
364ecf36 3200 extent_changeset_free(data_reserved);
2fe17c10
CH
3201 return ret;
3202}
3203
965c8e59 3204static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3205{
0b246afa 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3207 struct extent_map *em = NULL;
b2675157 3208 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3209 u64 lockstart;
3210 u64 lockend;
3211 u64 start;
3212 u64 len;
b2675157
JB
3213 int ret = 0;
3214
4d1a40c6
LB
3215 if (inode->i_size == 0)
3216 return -ENXIO;
3217
3218 /*
3219 * *offset can be negative, in this case we start finding DATA/HOLE from
3220 * the very start of the file.
3221 */
3222 start = max_t(loff_t, 0, *offset);
3223
0b246afa 3224 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3225 lockend = round_up(i_size_read(inode),
0b246afa 3226 fs_info->sectorsize);
b2675157 3227 if (lockend <= lockstart)
0b246afa 3228 lockend = lockstart + fs_info->sectorsize;
1214b53f 3229 lockend--;
b2675157
JB
3230 len = lockend - lockstart + 1;
3231
ff13db41 3232 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3233 &cached_state);
b2675157 3234
7f4ca37c 3235 while (start < inode->i_size) {
4ab47a8d 3236 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
b2675157 3237 if (IS_ERR(em)) {
6af021d8 3238 ret = PTR_ERR(em);
7f4ca37c 3239 em = NULL;
b2675157
JB
3240 break;
3241 }
3242
7f4ca37c
JB
3243 if (whence == SEEK_HOLE &&
3244 (em->block_start == EXTENT_MAP_HOLE ||
3245 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3246 break;
3247 else if (whence == SEEK_DATA &&
3248 (em->block_start != EXTENT_MAP_HOLE &&
3249 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3250 break;
b2675157
JB
3251
3252 start = em->start + em->len;
b2675157 3253 free_extent_map(em);
7f4ca37c 3254 em = NULL;
b2675157
JB
3255 cond_resched();
3256 }
7f4ca37c
JB
3257 free_extent_map(em);
3258 if (!ret) {
3259 if (whence == SEEK_DATA && start >= inode->i_size)
3260 ret = -ENXIO;
3261 else
3262 *offset = min_t(loff_t, start, inode->i_size);
3263 }
b2675157 3264 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3265 &cached_state);
b2675157
JB
3266 return ret;
3267}
3268
965c8e59 3269static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3270{
3271 struct inode *inode = file->f_mapping->host;
3272 int ret;
3273
5955102c 3274 inode_lock(inode);
965c8e59 3275 switch (whence) {
b2675157
JB
3276 case SEEK_END:
3277 case SEEK_CUR:
965c8e59 3278 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3279 goto out;
3280 case SEEK_DATA:
3281 case SEEK_HOLE:
48802c8a 3282 if (offset >= i_size_read(inode)) {
5955102c 3283 inode_unlock(inode);
48802c8a
JL
3284 return -ENXIO;
3285 }
3286
965c8e59 3287 ret = find_desired_extent(inode, &offset, whence);
b2675157 3288 if (ret) {
5955102c 3289 inode_unlock(inode);
b2675157
JB
3290 return ret;
3291 }
3292 }
3293
46a1c2c7 3294 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3295out:
5955102c 3296 inode_unlock(inode);
b2675157
JB
3297 return offset;
3298}
3299
edf064e7
GR
3300static int btrfs_file_open(struct inode *inode, struct file *filp)
3301{
91f9943e 3302 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3303 return generic_file_open(inode, filp);
3304}
3305
828c0950 3306const struct file_operations btrfs_file_operations = {
b2675157 3307 .llseek = btrfs_file_llseek,
aad4f8bb 3308 .read_iter = generic_file_read_iter,
e9906a98 3309 .splice_read = generic_file_splice_read,
b30ac0fc 3310 .write_iter = btrfs_file_write_iter,
9ebefb18 3311 .mmap = btrfs_file_mmap,
edf064e7 3312 .open = btrfs_file_open,
e1b81e67 3313 .release = btrfs_release_file,
39279cc3 3314 .fsync = btrfs_sync_file,
2fe17c10 3315 .fallocate = btrfs_fallocate,
34287aa3 3316 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3317#ifdef CONFIG_COMPAT
4c63c245 3318 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3319#endif
2e5dfc99 3320 .remap_file_range = btrfs_remap_file_range,
39279cc3 3321};
9247f317 3322
e67c718b 3323void __cold btrfs_auto_defrag_exit(void)
9247f317 3324{
5598e900 3325 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3326}
3327
f5c29bd9 3328int __init btrfs_auto_defrag_init(void)
9247f317
MX
3329{
3330 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3331 sizeof(struct inode_defrag), 0,
fba4b697 3332 SLAB_MEM_SPREAD,
9247f317
MX
3333 NULL);
3334 if (!btrfs_inode_defrag_cachep)
3335 return -ENOMEM;
3336
3337 return 0;
3338}
728404da
FM
3339
3340int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3341{
3342 int ret;
3343
3344 /*
3345 * So with compression we will find and lock a dirty page and clear the
3346 * first one as dirty, setup an async extent, and immediately return
3347 * with the entire range locked but with nobody actually marked with
3348 * writeback. So we can't just filemap_write_and_wait_range() and
3349 * expect it to work since it will just kick off a thread to do the
3350 * actual work. So we need to call filemap_fdatawrite_range _again_
3351 * since it will wait on the page lock, which won't be unlocked until
3352 * after the pages have been marked as writeback and so we're good to go
3353 * from there. We have to do this otherwise we'll miss the ordered
3354 * extents and that results in badness. Please Josef, do not think you
3355 * know better and pull this out at some point in the future, it is
3356 * right and you are wrong.
3357 */
3358 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3359 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3360 &BTRFS_I(inode)->runtime_flags))
3361 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3362
3363 return ret;
3364}