fs: remove noop_set_page_dirty()
[linux-2.6-block.git] / fs / btrfs / file-item.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
065631f6 6#include <linux/bio.h>
5a0e3ad6 7#include <linux/slab.h>
065631f6
CM
8#include <linux/pagemap.h>
9#include <linux/highmem.h>
a3d46aea 10#include <linux/sched/mm.h>
d5178578 11#include <crypto/hash.h>
cea62800 12#include "misc.h"
1e1d2701 13#include "ctree.h"
dee26a9f 14#include "disk-io.h"
9f5fae2f 15#include "transaction.h"
facc8a22 16#include "volumes.h"
1de037a4 17#include "print-tree.h"
ebb8765b 18#include "compression.h"
1e1d2701 19
42049bf6
CM
20#define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 sizeof(struct btrfs_item) * 2) / \
22 size) - 1))
07d400a6 23
221b8318 24#define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
09cbfeaf 25 PAGE_SIZE))
7ca4be45 26
41a2ee75 27/**
ca4207ae
NB
28 * Set inode's size according to filesystem options
29 *
30 * @inode: inode we want to update the disk_i_size for
31 * @new_i_size: i_size we want to set to, 0 if we use i_size
41a2ee75
JB
32 *
33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34 * returns as it is perfectly fine with a file that has holes without hole file
35 * extent items.
36 *
37 * However without NO_HOLES we need to only return the area that is contiguous
38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
39 * to an extent that has a gap in between.
40 *
41 * Finally new_i_size should only be set in the case of truncate where we're not
42 * ready to use i_size_read() as the limiter yet.
43 */
76aea537 44void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
41a2ee75 45{
76aea537 46 struct btrfs_fs_info *fs_info = inode->root->fs_info;
41a2ee75
JB
47 u64 start, end, i_size;
48 int ret;
49
76aea537 50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
41a2ee75 51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
76aea537 52 inode->disk_i_size = i_size;
41a2ee75
JB
53 return;
54 }
55
76aea537
NB
56 spin_lock(&inode->lock);
57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 &end, EXTENT_DIRTY);
41a2ee75
JB
59 if (!ret && start == 0)
60 i_size = min(i_size, end + 1);
61 else
62 i_size = 0;
76aea537
NB
63 inode->disk_i_size = i_size;
64 spin_unlock(&inode->lock);
41a2ee75
JB
65}
66
67/**
ca4207ae
NB
68 * Mark range within a file as having a new extent inserted
69 *
70 * @inode: inode being modified
71 * @start: start file offset of the file extent we've inserted
72 * @len: logical length of the file extent item
41a2ee75
JB
73 *
74 * Call when we are inserting a new file extent where there was none before.
75 * Does not need to call this in the case where we're replacing an existing file
76 * extent, however if not sure it's fine to call this multiple times.
77 *
78 * The start and len must match the file extent item, so thus must be sectorsize
79 * aligned.
80 */
81int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 u64 len)
83{
84 if (len == 0)
85 return 0;
86
87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 return 0;
91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 EXTENT_DIRTY);
93}
94
95/**
ca4207ae
NB
96 * Marks an inode range as not having a backing extent
97 *
98 * @inode: inode being modified
99 * @start: start file offset of the file extent we've inserted
100 * @len: logical length of the file extent item
41a2ee75
JB
101 *
102 * Called when we drop a file extent, for example when we truncate. Doesn't
103 * need to be called for cases where we're replacing a file extent, like when
104 * we've COWed a file extent.
105 *
106 * The start and len must match the file extent item, so thus must be sectorsize
107 * aligned.
108 */
109int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 u64 len)
111{
112 if (len == 0)
113 return 0;
114
115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 len == (u64)-1);
117
118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 return 0;
120 return clear_extent_bit(&inode->file_extent_tree, start,
121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122}
123
1e25a2e3
JT
124static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 u16 csum_size)
126{
127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129 return ncsums * fs_info->sectorsize;
130}
07d400a6 131
b18c6685 132int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
f2eb0a24
SW
133 struct btrfs_root *root,
134 u64 objectid, u64 pos,
135 u64 disk_offset, u64 disk_num_bytes,
c8b97818
CM
136 u64 num_bytes, u64 offset, u64 ram_bytes,
137 u8 compression, u8 encryption, u16 other_encoding)
9f5fae2f 138{
dee26a9f
CM
139 int ret = 0;
140 struct btrfs_file_extent_item *item;
141 struct btrfs_key file_key;
5caf2a00 142 struct btrfs_path *path;
5f39d397 143 struct extent_buffer *leaf;
dee26a9f 144
5caf2a00 145 path = btrfs_alloc_path();
db5b493a
TI
146 if (!path)
147 return -ENOMEM;
dee26a9f 148 file_key.objectid = objectid;
b18c6685 149 file_key.offset = pos;
962a298f 150 file_key.type = BTRFS_EXTENT_DATA_KEY;
dee26a9f 151
5caf2a00 152 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
dee26a9f 153 sizeof(*item));
54aa1f4d
CM
154 if (ret < 0)
155 goto out;
79787eaa 156 BUG_ON(ret); /* Can't happen */
5f39d397
CM
157 leaf = path->nodes[0];
158 item = btrfs_item_ptr(leaf, path->slots[0],
dee26a9f 159 struct btrfs_file_extent_item);
f2eb0a24 160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
db94535d 161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
f2eb0a24 162 btrfs_set_file_extent_offset(leaf, item, offset);
db94535d 163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
c8b97818 164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
5f39d397
CM
165 btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
c8b97818
CM
167 btrfs_set_file_extent_compression(leaf, item, compression);
168 btrfs_set_file_extent_encryption(leaf, item, encryption);
169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170
5f39d397 171 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 172out:
5caf2a00 173 btrfs_free_path(path);
54aa1f4d 174 return ret;
9f5fae2f 175}
dee26a9f 176
48a3b636
ES
177static struct btrfs_csum_item *
178btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root,
180 struct btrfs_path *path,
181 u64 bytenr, int cow)
6567e837 182{
0b246afa 183 struct btrfs_fs_info *fs_info = root->fs_info;
6567e837
CM
184 int ret;
185 struct btrfs_key file_key;
186 struct btrfs_key found_key;
187 struct btrfs_csum_item *item;
5f39d397 188 struct extent_buffer *leaf;
6567e837 189 u64 csum_offset = 0;
223486c2 190 const u32 csum_size = fs_info->csum_size;
a429e513 191 int csums_in_item;
6567e837 192
d20f7043
CM
193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 file_key.offset = bytenr;
962a298f 195 file_key.type = BTRFS_EXTENT_CSUM_KEY;
b18c6685 196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
6567e837
CM
197 if (ret < 0)
198 goto fail;
5f39d397 199 leaf = path->nodes[0];
6567e837
CM
200 if (ret > 0) {
201 ret = 1;
70b2befd 202 if (path->slots[0] == 0)
6567e837
CM
203 goto fail;
204 path->slots[0]--;
5f39d397 205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
6567e837 207 goto fail;
d20f7043
CM
208
209 csum_offset = (bytenr - found_key.offset) >>
265fdfa6 210 fs_info->sectorsize_bits;
5f39d397 211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
607d432d 212 csums_in_item /= csum_size;
a429e513 213
82d130ff 214 if (csum_offset == csums_in_item) {
a429e513 215 ret = -EFBIG;
6567e837 216 goto fail;
82d130ff
MX
217 } else if (csum_offset > csums_in_item) {
218 goto fail;
6567e837
CM
219 }
220 }
221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
509659cd 222 item = (struct btrfs_csum_item *)((unsigned char *)item +
607d432d 223 csum_offset * csum_size);
6567e837
CM
224 return item;
225fail:
226 if (ret > 0)
b18c6685 227 ret = -ENOENT;
6567e837
CM
228 return ERR_PTR(ret);
229}
230
dee26a9f
CM
231int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 struct btrfs_root *root,
233 struct btrfs_path *path, u64 objectid,
9773a788 234 u64 offset, int mod)
dee26a9f
CM
235{
236 int ret;
237 struct btrfs_key file_key;
238 int ins_len = mod < 0 ? -1 : 0;
239 int cow = mod != 0;
240
241 file_key.objectid = objectid;
70b2befd 242 file_key.offset = offset;
962a298f 243 file_key.type = BTRFS_EXTENT_DATA_KEY;
dee26a9f
CM
244 ret = btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 return ret;
246}
f254e52c 247
6275193e
QW
248/*
249 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
250 * estore the result to @dst.
251 *
252 * Return >0 for the number of sectors we found.
253 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
254 * for it. Caller may want to try next sector until one range is hit.
255 * Return <0 for fatal error.
256 */
257static int search_csum_tree(struct btrfs_fs_info *fs_info,
258 struct btrfs_path *path, u64 disk_bytenr,
259 u64 len, u8 *dst)
260{
261 struct btrfs_csum_item *item = NULL;
262 struct btrfs_key key;
263 const u32 sectorsize = fs_info->sectorsize;
264 const u32 csum_size = fs_info->csum_size;
265 u32 itemsize;
266 int ret;
267 u64 csum_start;
268 u64 csum_len;
269
270 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
271 IS_ALIGNED(len, sectorsize));
272
273 /* Check if the current csum item covers disk_bytenr */
274 if (path->nodes[0]) {
275 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
276 struct btrfs_csum_item);
277 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
278 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
279
280 csum_start = key.offset;
281 csum_len = (itemsize / csum_size) * sectorsize;
282
283 if (in_range(disk_bytenr, csum_start, csum_len))
284 goto found;
285 }
286
287 /* Current item doesn't contain the desired range, search again */
288 btrfs_release_path(path);
289 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
290 if (IS_ERR(item)) {
291 ret = PTR_ERR(item);
292 goto out;
293 }
294 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
295 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
296
297 csum_start = key.offset;
298 csum_len = (itemsize / csum_size) * sectorsize;
299 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
300
301found:
302 ret = (min(csum_start + csum_len, disk_bytenr + len) -
303 disk_bytenr) >> fs_info->sectorsize_bits;
304 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
305 ret * csum_size);
306out:
307 if (ret == -ENOENT)
308 ret = 0;
309 return ret;
310}
311
312/*
313 * Locate the file_offset of @cur_disk_bytenr of a @bio.
314 *
315 * Bio of btrfs represents read range of
316 * [bi_sector << 9, bi_sector << 9 + bi_size).
317 * Knowing this, we can iterate through each bvec to locate the page belong to
318 * @cur_disk_bytenr and get the file offset.
319 *
320 * @inode is used to determine if the bvec page really belongs to @inode.
321 *
322 * Return 0 if we can't find the file offset
323 * Return >0 if we find the file offset and restore it to @file_offset_ret
324 */
325static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
326 u64 disk_bytenr, u64 *file_offset_ret)
327{
328 struct bvec_iter iter;
329 struct bio_vec bvec;
330 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
331 int ret = 0;
332
333 bio_for_each_segment(bvec, bio, iter) {
334 struct page *page = bvec.bv_page;
335
336 if (cur > disk_bytenr)
337 break;
338 if (cur + bvec.bv_len <= disk_bytenr) {
339 cur += bvec.bv_len;
340 continue;
341 }
342 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
343 if (page->mapping && page->mapping->host &&
344 page->mapping->host == inode) {
345 ret = 1;
346 *file_offset_ret = page_offset(page) + bvec.bv_offset +
347 disk_bytenr - cur;
348 break;
349 }
350 }
351 return ret;
352}
353
e62958fc 354/**
6275193e 355 * Lookup the checksum for the read bio in csum tree.
9e46458a 356 *
e62958fc 357 * @inode: inode that the bio is for.
fb30f470 358 * @bio: bio to look up.
fb30f470
OS
359 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
360 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
361 * NULL, the checksum buffer is allocated and returned in
362 * btrfs_io_bio(bio)->csum instead.
e62958fc
OS
363 *
364 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
365 */
6275193e 366blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
61b49440 367{
0b246afa 368 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22
MX
369 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
370 struct btrfs_path *path;
6275193e
QW
371 const u32 sectorsize = fs_info->sectorsize;
372 const u32 csum_size = fs_info->csum_size;
373 u32 orig_len = bio->bi_iter.bi_size;
374 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
375 u64 cur_disk_bytenr;
facc8a22 376 u8 *csum;
6275193e 377 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
17347cec 378 int count = 0;
61b49440 379
42437a63 380 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
334c16d8
JB
381 return BLK_STS_OK;
382
9e46458a
QW
383 /*
384 * This function is only called for read bio.
385 *
386 * This means two things:
387 * - All our csums should only be in csum tree
388 * No ordered extents csums, as ordered extents are only for write
389 * path.
6275193e
QW
390 * - No need to bother any other info from bvec
391 * Since we're looking up csums, the only important info is the
392 * disk_bytenr and the length, which can be extracted from bi_iter
393 * directly.
9e46458a
QW
394 */
395 ASSERT(bio_op(bio) == REQ_OP_READ);
61b49440 396 path = btrfs_alloc_path();
c2db1073 397 if (!path)
4e4cbee9 398 return BLK_STS_RESOURCE;
facc8a22 399
facc8a22 400 if (!dst) {
fb30f470
OS
401 struct btrfs_io_bio *btrfs_bio = btrfs_io_bio(bio);
402
facc8a22 403 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
31fecccb
DS
404 btrfs_bio->csum = kmalloc_array(nblocks, csum_size,
405 GFP_NOFS);
406 if (!btrfs_bio->csum) {
facc8a22 407 btrfs_free_path(path);
4e4cbee9 408 return BLK_STS_RESOURCE;
facc8a22 409 }
facc8a22
MX
410 } else {
411 btrfs_bio->csum = btrfs_bio->csum_inline;
412 }
413 csum = btrfs_bio->csum;
414 } else {
10fe6ca8 415 csum = dst;
facc8a22
MX
416 }
417
35478d05
QW
418 /*
419 * If requested number of sectors is larger than one leaf can contain,
420 * kick the readahead for csum tree.
421 */
422 if (nblocks > fs_info->csums_per_leaf)
e4058b54 423 path->reada = READA_FORWARD;
61b49440 424
2cf8572d
CM
425 /*
426 * the free space stuff is only read when it hasn't been
427 * updated in the current transaction. So, we can safely
428 * read from the commit root and sidestep a nasty deadlock
429 * between reading the free space cache and updating the csum tree.
430 */
70ddc553 431 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
2cf8572d 432 path->search_commit_root = 1;
ddf23b3f
JB
433 path->skip_locking = 1;
434 }
2cf8572d 435
6275193e
QW
436 for (cur_disk_bytenr = orig_disk_bytenr;
437 cur_disk_bytenr < orig_disk_bytenr + orig_len;
438 cur_disk_bytenr += (count * sectorsize)) {
439 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
440 unsigned int sector_offset;
441 u8 *csum_dst;
c40a3d38 442
61b49440 443 /*
6275193e
QW
444 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
445 * we're calculating the offset to the bio start.
446 *
447 * Bio size is limited to UINT_MAX, thus unsigned int is large
448 * enough to contain the raw result, not to mention the right
449 * shifted result.
61b49440 450 */
6275193e
QW
451 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
452 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
453 fs_info->sectorsize_bits;
454 csum_dst = csum + sector_offset * csum_size;
455
456 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
457 search_len, csum_dst);
458 if (count <= 0) {
459 /*
460 * Either we hit a critical error or we didn't find
461 * the csum.
462 * Either way, we put zero into the csums dst, and skip
463 * to the next sector.
464 */
465 memset(csum_dst, 0, csum_size);
466 count = 1;
467
468 /*
469 * For data reloc inode, we need to mark the range
470 * NODATASUM so that balance won't report false csum
471 * error.
472 */
473 if (BTRFS_I(inode)->root->root_key.objectid ==
474 BTRFS_DATA_RELOC_TREE_OBJECTID) {
475 u64 file_offset;
476 int ret;
477
478 ret = search_file_offset_in_bio(bio, inode,
479 cur_disk_bytenr, &file_offset);
480 if (ret)
481 set_extent_bits(io_tree, file_offset,
482 file_offset + sectorsize - 1,
483 EXTENT_NODATASUM);
484 } else {
485 btrfs_warn_rl(fs_info,
486 "csum hole found for disk bytenr range [%llu, %llu)",
487 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
488 }
e4100d98 489 }
61b49440 490 }
389f239c 491
61b49440 492 btrfs_free_path(path);
e62958fc 493 return BLK_STS_OK;
4b46fce2
JB
494}
495
17d217fe 496int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
a2de733c 497 struct list_head *list, int search_commit)
17d217fe 498{
0b246afa 499 struct btrfs_fs_info *fs_info = root->fs_info;
17d217fe
YZ
500 struct btrfs_key key;
501 struct btrfs_path *path;
502 struct extent_buffer *leaf;
503 struct btrfs_ordered_sum *sums;
17d217fe 504 struct btrfs_csum_item *item;
0678b618 505 LIST_HEAD(tmplist);
17d217fe
YZ
506 unsigned long offset;
507 int ret;
508 size_t size;
509 u64 csum_end;
223486c2 510 const u32 csum_size = fs_info->csum_size;
17d217fe 511
0b246afa
JM
512 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
513 IS_ALIGNED(end + 1, fs_info->sectorsize));
4277a9c3 514
17d217fe 515 path = btrfs_alloc_path();
d8926bb3
MF
516 if (!path)
517 return -ENOMEM;
17d217fe 518
a2de733c
AJ
519 if (search_commit) {
520 path->skip_locking = 1;
e4058b54 521 path->reada = READA_FORWARD;
a2de733c
AJ
522 path->search_commit_root = 1;
523 }
524
17d217fe
YZ
525 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
526 key.offset = start;
527 key.type = BTRFS_EXTENT_CSUM_KEY;
528
07d400a6 529 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
17d217fe
YZ
530 if (ret < 0)
531 goto fail;
532 if (ret > 0 && path->slots[0] > 0) {
533 leaf = path->nodes[0];
534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
535 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
536 key.type == BTRFS_EXTENT_CSUM_KEY) {
265fdfa6 537 offset = (start - key.offset) >> fs_info->sectorsize_bits;
17d217fe
YZ
538 if (offset * csum_size <
539 btrfs_item_size_nr(leaf, path->slots[0] - 1))
540 path->slots[0]--;
541 }
542 }
543
544 while (start <= end) {
545 leaf = path->nodes[0];
546 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
07d400a6 547 ret = btrfs_next_leaf(root, path);
17d217fe
YZ
548 if (ret < 0)
549 goto fail;
550 if (ret > 0)
551 break;
552 leaf = path->nodes[0];
553 }
554
555 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
556 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
628c8282
ZYW
557 key.type != BTRFS_EXTENT_CSUM_KEY ||
558 key.offset > end)
17d217fe
YZ
559 break;
560
561 if (key.offset > start)
562 start = key.offset;
563
564 size = btrfs_item_size_nr(leaf, path->slots[0]);
0b246afa 565 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
87b29b20
YZ
566 if (csum_end <= start) {
567 path->slots[0]++;
568 continue;
569 }
17d217fe 570
07d400a6 571 csum_end = min(csum_end, end + 1);
17d217fe
YZ
572 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
573 struct btrfs_csum_item);
07d400a6
YZ
574 while (start < csum_end) {
575 size = min_t(size_t, csum_end - start,
1e25a2e3 576 max_ordered_sum_bytes(fs_info, csum_size));
0b246afa 577 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
f51a4a18 578 GFP_NOFS);
0678b618
MF
579 if (!sums) {
580 ret = -ENOMEM;
581 goto fail;
582 }
17d217fe 583
07d400a6 584 sums->bytenr = start;
f51a4a18 585 sums->len = (int)size;
07d400a6 586
265fdfa6 587 offset = (start - key.offset) >> fs_info->sectorsize_bits;
07d400a6 588 offset *= csum_size;
265fdfa6 589 size >>= fs_info->sectorsize_bits;
07d400a6 590
f51a4a18
MX
591 read_extent_buffer(path->nodes[0],
592 sums->sums,
593 ((unsigned long)item) + offset,
594 csum_size * size);
595
0b246afa 596 start += fs_info->sectorsize * size;
0678b618 597 list_add_tail(&sums->list, &tmplist);
07d400a6 598 }
17d217fe
YZ
599 path->slots[0]++;
600 }
601 ret = 0;
602fail:
0678b618 603 while (ret < 0 && !list_empty(&tmplist)) {
6e5aafb2 604 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
0678b618
MF
605 list_del(&sums->list);
606 kfree(sums);
607 }
608 list_splice_tail(&tmplist, list);
609
17d217fe
YZ
610 btrfs_free_path(path);
611 return ret;
612}
613
51d470ae
NB
614/*
615 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
616 * @inode: Owner of the data inside the bio
617 * @bio: Contains the data to be checksummed
618 * @file_start: offset in file this bio begins to describe
619 * @contig: Boolean. If true/1 means all bio vecs in this bio are
620 * contiguous and they begin at @file_start in the file. False/0
621 * means this bio can contains potentially discontigous bio vecs
622 * so the logical offset of each should be calculated separately.
623 */
bd242a08 624blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
2ff7e61e 625 u64 file_start, int contig)
e015640f 626{
c3504372 627 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d5178578 628 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
e6dcd2dc 629 struct btrfs_ordered_sum *sums;
6cd7ce49 630 struct btrfs_ordered_extent *ordered = NULL;
e015640f 631 char *data;
17347cec
LB
632 struct bvec_iter iter;
633 struct bio_vec bvec;
f51a4a18 634 int index;
c40a3d38 635 int nr_sectors;
3edf7d33
CM
636 unsigned long total_bytes = 0;
637 unsigned long this_sum_bytes = 0;
17347cec 638 int i;
3edf7d33 639 u64 offset;
a3d46aea
NB
640 unsigned nofs_flag;
641
642 nofs_flag = memalloc_nofs_save();
643 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
644 GFP_KERNEL);
645 memalloc_nofs_restore(nofs_flag);
e015640f 646
e015640f 647 if (!sums)
4e4cbee9 648 return BLK_STS_RESOURCE;
3edf7d33 649
4f024f37 650 sums->len = bio->bi_iter.bi_size;
e6dcd2dc 651 INIT_LIST_HEAD(&sums->list);
d20f7043
CM
652
653 if (contig)
654 offset = file_start;
655 else
6cd7ce49 656 offset = 0; /* shut up gcc */
d20f7043 657
1201b58b 658 sums->bytenr = bio->bi_iter.bi_sector << 9;
f51a4a18 659 index = 0;
e015640f 660
d5178578
JT
661 shash->tfm = fs_info->csum_shash;
662
17347cec 663 bio_for_each_segment(bvec, bio, iter) {
d20f7043 664 if (!contig)
17347cec 665 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
d20f7043 666
6cd7ce49
CH
667 if (!ordered) {
668 ordered = btrfs_lookup_ordered_extent(inode, offset);
669 BUG_ON(!ordered); /* Logic error */
670 }
671
0b246afa 672 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
17347cec 673 bvec.bv_len + fs_info->sectorsize
0b246afa 674 - 1);
c40a3d38
CR
675
676 for (i = 0; i < nr_sectors; i++) {
bffe633e
OS
677 if (offset >= ordered->file_offset + ordered->num_bytes ||
678 offset < ordered->file_offset) {
c40a3d38
CR
679 unsigned long bytes_left;
680
c40a3d38
CR
681 sums->len = this_sum_bytes;
682 this_sum_bytes = 0;
f9756261 683 btrfs_add_ordered_sum(ordered, sums);
c40a3d38
CR
684 btrfs_put_ordered_extent(ordered);
685
686 bytes_left = bio->bi_iter.bi_size - total_bytes;
687
a3d46aea
NB
688 nofs_flag = memalloc_nofs_save();
689 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
690 bytes_left), GFP_KERNEL);
691 memalloc_nofs_restore(nofs_flag);
c40a3d38
CR
692 BUG_ON(!sums); /* -ENOMEM */
693 sums->len = bytes_left;
694 ordered = btrfs_lookup_ordered_extent(inode,
695 offset);
696 ASSERT(ordered); /* Logic error */
1201b58b 697 sums->bytenr = (bio->bi_iter.bi_sector << 9)
c40a3d38
CR
698 + total_bytes;
699 index = 0;
c40a3d38 700 }
3edf7d33 701
443c8e2a 702 data = kmap_atomic(bvec.bv_page);
fd08001f 703 crypto_shash_digest(shash, data + bvec.bv_offset
d5178578 704 + (i * fs_info->sectorsize),
fd08001f
EB
705 fs_info->sectorsize,
706 sums->sums + index);
443c8e2a 707 kunmap_atomic(data);
713cebfb 708 index += fs_info->csum_size;
0b246afa
JM
709 offset += fs_info->sectorsize;
710 this_sum_bytes += fs_info->sectorsize;
711 total_bytes += fs_info->sectorsize;
3edf7d33
CM
712 }
713
e015640f 714 }
ed98b56a 715 this_sum_bytes = 0;
f9756261 716 btrfs_add_ordered_sum(ordered, sums);
3edf7d33 717 btrfs_put_ordered_extent(ordered);
e015640f
CM
718 return 0;
719}
720
459931ec
CM
721/*
722 * helper function for csum removal, this expects the
723 * key to describe the csum pointed to by the path, and it expects
724 * the csum to overlap the range [bytenr, len]
725 *
726 * The csum should not be entirely contained in the range and the
727 * range should not be entirely contained in the csum.
728 *
729 * This calls btrfs_truncate_item with the correct args based on the
730 * overlap, and fixes up the key as required.
731 */
2ff7e61e 732static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
143bede5
JM
733 struct btrfs_path *path,
734 struct btrfs_key *key,
735 u64 bytenr, u64 len)
459931ec
CM
736{
737 struct extent_buffer *leaf;
223486c2 738 const u32 csum_size = fs_info->csum_size;
459931ec
CM
739 u64 csum_end;
740 u64 end_byte = bytenr + len;
265fdfa6 741 u32 blocksize_bits = fs_info->sectorsize_bits;
459931ec
CM
742
743 leaf = path->nodes[0];
744 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
265fdfa6 745 csum_end <<= blocksize_bits;
459931ec
CM
746 csum_end += key->offset;
747
748 if (key->offset < bytenr && csum_end <= end_byte) {
749 /*
750 * [ bytenr - len ]
751 * [ ]
752 * [csum ]
753 * A simple truncate off the end of the item
754 */
755 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
756 new_size *= csum_size;
78ac4f9e 757 btrfs_truncate_item(path, new_size, 1);
459931ec
CM
758 } else if (key->offset >= bytenr && csum_end > end_byte &&
759 end_byte > key->offset) {
760 /*
761 * [ bytenr - len ]
762 * [ ]
763 * [csum ]
764 * we need to truncate from the beginning of the csum
765 */
766 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
767 new_size *= csum_size;
768
78ac4f9e 769 btrfs_truncate_item(path, new_size, 0);
459931ec
CM
770
771 key->offset = end_byte;
0b246afa 772 btrfs_set_item_key_safe(fs_info, path, key);
459931ec
CM
773 } else {
774 BUG();
775 }
459931ec
CM
776}
777
778/*
779 * deletes the csum items from the csum tree for a given
780 * range of bytes.
781 */
782int btrfs_del_csums(struct btrfs_trans_handle *trans,
40e046ac 783 struct btrfs_root *root, u64 bytenr, u64 len)
459931ec 784{
40e046ac 785 struct btrfs_fs_info *fs_info = trans->fs_info;
459931ec
CM
786 struct btrfs_path *path;
787 struct btrfs_key key;
788 u64 end_byte = bytenr + len;
789 u64 csum_end;
790 struct extent_buffer *leaf;
b86652be 791 int ret = 0;
223486c2 792 const u32 csum_size = fs_info->csum_size;
265fdfa6 793 u32 blocksize_bits = fs_info->sectorsize_bits;
459931ec 794
40e046ac
FM
795 ASSERT(root == fs_info->csum_root ||
796 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
797
459931ec 798 path = btrfs_alloc_path();
2a29edc6 799 if (!path)
800 return -ENOMEM;
459931ec 801
d397712b 802 while (1) {
459931ec
CM
803 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
804 key.offset = end_byte - 1;
805 key.type = BTRFS_EXTENT_CSUM_KEY;
806
807 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
808 if (ret > 0) {
b86652be 809 ret = 0;
459931ec 810 if (path->slots[0] == 0)
65a246c5 811 break;
459931ec 812 path->slots[0]--;
ad0397a7 813 } else if (ret < 0) {
65a246c5 814 break;
459931ec 815 }
ad0397a7 816
459931ec
CM
817 leaf = path->nodes[0];
818 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
819
820 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
821 key.type != BTRFS_EXTENT_CSUM_KEY) {
822 break;
823 }
824
825 if (key.offset >= end_byte)
826 break;
827
828 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
829 csum_end <<= blocksize_bits;
830 csum_end += key.offset;
831
832 /* this csum ends before we start, we're done */
833 if (csum_end <= bytenr)
834 break;
835
836 /* delete the entire item, it is inside our range */
837 if (key.offset >= bytenr && csum_end <= end_byte) {
6f546216
FM
838 int del_nr = 1;
839
840 /*
841 * Check how many csum items preceding this one in this
842 * leaf correspond to our range and then delete them all
843 * at once.
844 */
845 if (key.offset > bytenr && path->slots[0] > 0) {
846 int slot = path->slots[0] - 1;
847
848 while (slot >= 0) {
849 struct btrfs_key pk;
850
851 btrfs_item_key_to_cpu(leaf, &pk, slot);
852 if (pk.offset < bytenr ||
853 pk.type != BTRFS_EXTENT_CSUM_KEY ||
854 pk.objectid !=
855 BTRFS_EXTENT_CSUM_OBJECTID)
856 break;
857 path->slots[0] = slot;
858 del_nr++;
859 key.offset = pk.offset;
860 slot--;
861 }
862 }
863 ret = btrfs_del_items(trans, root, path,
864 path->slots[0], del_nr);
65a246c5 865 if (ret)
b86652be 866 break;
dcbdd4dc
CM
867 if (key.offset == bytenr)
868 break;
459931ec
CM
869 } else if (key.offset < bytenr && csum_end > end_byte) {
870 unsigned long offset;
871 unsigned long shift_len;
872 unsigned long item_offset;
873 /*
874 * [ bytenr - len ]
875 * [csum ]
876 *
877 * Our bytes are in the middle of the csum,
878 * we need to split this item and insert a new one.
879 *
880 * But we can't drop the path because the
881 * csum could change, get removed, extended etc.
882 *
883 * The trick here is the max size of a csum item leaves
884 * enough room in the tree block for a single
885 * item header. So, we split the item in place,
886 * adding a new header pointing to the existing
887 * bytes. Then we loop around again and we have
888 * a nicely formed csum item that we can neatly
889 * truncate.
890 */
891 offset = (bytenr - key.offset) >> blocksize_bits;
892 offset *= csum_size;
893
894 shift_len = (len >> blocksize_bits) * csum_size;
895
896 item_offset = btrfs_item_ptr_offset(leaf,
897 path->slots[0]);
898
b159fa28 899 memzero_extent_buffer(leaf, item_offset + offset,
459931ec
CM
900 shift_len);
901 key.offset = bytenr;
902
903 /*
904 * btrfs_split_item returns -EAGAIN when the
905 * item changed size or key
906 */
907 ret = btrfs_split_item(trans, root, path, &key, offset);
79787eaa 908 if (ret && ret != -EAGAIN) {
66642832 909 btrfs_abort_transaction(trans, ret);
b86652be 910 break;
79787eaa 911 }
b86652be 912 ret = 0;
459931ec
CM
913
914 key.offset = end_byte - 1;
915 } else {
2ff7e61e 916 truncate_one_csum(fs_info, path, &key, bytenr, len);
dcbdd4dc
CM
917 if (key.offset < bytenr)
918 break;
459931ec 919 }
b3b4aa74 920 btrfs_release_path(path);
459931ec 921 }
459931ec 922 btrfs_free_path(path);
65a246c5 923 return ret;
459931ec
CM
924}
925
ea7036de
FM
926static int find_next_csum_offset(struct btrfs_root *root,
927 struct btrfs_path *path,
928 u64 *next_offset)
929{
930 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
931 struct btrfs_key found_key;
932 int slot = path->slots[0] + 1;
933 int ret;
934
935 if (nritems == 0 || slot >= nritems) {
936 ret = btrfs_next_leaf(root, path);
937 if (ret < 0) {
938 return ret;
939 } else if (ret > 0) {
940 *next_offset = (u64)-1;
941 return 0;
942 }
943 slot = path->slots[0];
944 }
945
946 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
947
948 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
949 found_key.type != BTRFS_EXTENT_CSUM_KEY)
950 *next_offset = (u64)-1;
951 else
952 *next_offset = found_key.offset;
953
954 return 0;
955}
956
065631f6 957int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
d20f7043 958 struct btrfs_root *root,
e6dcd2dc 959 struct btrfs_ordered_sum *sums)
f254e52c 960{
0b246afa 961 struct btrfs_fs_info *fs_info = root->fs_info;
f254e52c 962 struct btrfs_key file_key;
6567e837 963 struct btrfs_key found_key;
5caf2a00 964 struct btrfs_path *path;
f254e52c 965 struct btrfs_csum_item *item;
065631f6 966 struct btrfs_csum_item *item_end;
ff79f819 967 struct extent_buffer *leaf = NULL;
f51a4a18
MX
968 u64 next_offset;
969 u64 total_bytes = 0;
6567e837 970 u64 csum_offset;
f51a4a18 971 u64 bytenr;
f578d4bd 972 u32 ins_size;
f51a4a18
MX
973 int index = 0;
974 int found_next;
975 int ret;
223486c2 976 const u32 csum_size = fs_info->csum_size;
6e92f5e6 977
5caf2a00 978 path = btrfs_alloc_path();
d8926bb3
MF
979 if (!path)
980 return -ENOMEM;
065631f6
CM
981again:
982 next_offset = (u64)-1;
983 found_next = 0;
f51a4a18 984 bytenr = sums->bytenr + total_bytes;
d20f7043 985 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
f51a4a18 986 file_key.offset = bytenr;
962a298f 987 file_key.type = BTRFS_EXTENT_CSUM_KEY;
a429e513 988
f51a4a18 989 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
ff79f819 990 if (!IS_ERR(item)) {
639cb586 991 ret = 0;
f51a4a18
MX
992 leaf = path->nodes[0];
993 item_end = btrfs_item_ptr(leaf, path->slots[0],
994 struct btrfs_csum_item);
995 item_end = (struct btrfs_csum_item *)((char *)item_end +
996 btrfs_item_size_nr(leaf, path->slots[0]));
a429e513 997 goto found;
ff79f819 998 }
a429e513 999 ret = PTR_ERR(item);
4a500fd1 1000 if (ret != -EFBIG && ret != -ENOENT)
918cdf44 1001 goto out;
4a500fd1 1002
a429e513
CM
1003 if (ret == -EFBIG) {
1004 u32 item_size;
1005 /* we found one, but it isn't big enough yet */
5f39d397
CM
1006 leaf = path->nodes[0];
1007 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
607d432d 1008 if ((item_size / csum_size) >=
0b246afa 1009 MAX_CSUM_ITEMS(fs_info, csum_size)) {
a429e513
CM
1010 /* already at max size, make a new one */
1011 goto insert;
1012 }
1013 } else {
ea7036de
FM
1014 /* We didn't find a csum item, insert one. */
1015 ret = find_next_csum_offset(root, path, &next_offset);
1016 if (ret < 0)
1017 goto out;
f578d4bd 1018 found_next = 1;
a429e513
CM
1019 goto insert;
1020 }
1021
1022 /*
cc14600c
FM
1023 * At this point, we know the tree has a checksum item that ends at an
1024 * offset matching the start of the checksum range we want to insert.
1025 * We try to extend that item as much as possible and then add as many
1026 * checksums to it as they fit.
1027 *
1028 * First check if the leaf has enough free space for at least one
1029 * checksum. If it has go directly to the item extension code, otherwise
1030 * release the path and do a search for insertion before the extension.
a429e513 1031 */
cc14600c
FM
1032 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1033 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1034 csum_offset = (bytenr - found_key.offset) >>
265fdfa6 1035 fs_info->sectorsize_bits;
cc14600c
FM
1036 goto extend_csum;
1037 }
1038
b3b4aa74 1039 btrfs_release_path(path);
9a664971 1040 path->search_for_extension = 1;
6567e837 1041 ret = btrfs_search_slot(trans, root, &file_key, path,
607d432d 1042 csum_size, 1);
9a664971 1043 path->search_for_extension = 0;
6567e837 1044 if (ret < 0)
918cdf44 1045 goto out;
459931ec
CM
1046
1047 if (ret > 0) {
1048 if (path->slots[0] == 0)
1049 goto insert;
1050 path->slots[0]--;
6567e837 1051 }
459931ec 1052
5f39d397
CM
1053 leaf = path->nodes[0];
1054 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
265fdfa6 1055 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
459931ec 1056
962a298f 1057 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
d20f7043 1058 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
0b246afa 1059 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
6567e837
CM
1060 goto insert;
1061 }
459931ec 1062
cc14600c 1063extend_csum:
2f697dc6 1064 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
607d432d 1065 csum_size) {
2f697dc6
LB
1066 int extend_nr;
1067 u64 tmp;
1068 u32 diff;
2f697dc6 1069
f51a4a18 1070 tmp = sums->len - total_bytes;
265fdfa6 1071 tmp >>= fs_info->sectorsize_bits;
2f697dc6 1072 WARN_ON(tmp < 1);
ea7036de
FM
1073 extend_nr = max_t(int, 1, tmp);
1074
1075 /*
1076 * A log tree can already have checksum items with a subset of
1077 * the checksums we are trying to log. This can happen after
1078 * doing a sequence of partial writes into prealloc extents and
1079 * fsyncs in between, with a full fsync logging a larger subrange
1080 * of an extent for which a previous fast fsync logged a smaller
1081 * subrange. And this happens in particular due to merging file
1082 * extent items when we complete an ordered extent for a range
1083 * covered by a prealloc extent - this is done at
1084 * btrfs_mark_extent_written().
1085 *
1086 * So if we try to extend the previous checksum item, which has
1087 * a range that ends at the start of the range we want to insert,
1088 * make sure we don't extend beyond the start offset of the next
1089 * checksum item. If we are at the last item in the leaf, then
1090 * forget the optimization of extending and add a new checksum
1091 * item - it is not worth the complexity of releasing the path,
1092 * getting the first key for the next leaf, repeat the btree
1093 * search, etc, because log trees are temporary anyway and it
1094 * would only save a few bytes of leaf space.
1095 */
1096 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1097 if (path->slots[0] + 1 >=
1098 btrfs_header_nritems(path->nodes[0])) {
1099 ret = find_next_csum_offset(root, path, &next_offset);
1100 if (ret < 0)
1101 goto out;
1102 found_next = 1;
1103 goto insert;
1104 }
1105
1106 ret = find_next_csum_offset(root, path, &next_offset);
1107 if (ret < 0)
1108 goto out;
1109
1110 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1111 if (tmp <= INT_MAX)
1112 extend_nr = min_t(int, extend_nr, tmp);
1113 }
2f697dc6 1114
2f697dc6 1115 diff = (csum_offset + extend_nr) * csum_size;
0b246afa
JM
1116 diff = min(diff,
1117 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
459931ec 1118
5f39d397 1119 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
cc14600c 1120 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
2f697dc6
LB
1121 diff /= csum_size;
1122 diff *= csum_size;
459931ec 1123
c71dd880 1124 btrfs_extend_item(path, diff);
f51a4a18 1125 ret = 0;
6567e837
CM
1126 goto csum;
1127 }
1128
1129insert:
b3b4aa74 1130 btrfs_release_path(path);
6567e837 1131 csum_offset = 0;
f578d4bd 1132 if (found_next) {
2f697dc6 1133 u64 tmp;
d20f7043 1134
f51a4a18 1135 tmp = sums->len - total_bytes;
265fdfa6 1136 tmp >>= fs_info->sectorsize_bits;
2f697dc6 1137 tmp = min(tmp, (next_offset - file_key.offset) >>
265fdfa6 1138 fs_info->sectorsize_bits);
2f697dc6 1139
50d0446e
SK
1140 tmp = max_t(u64, 1, tmp);
1141 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
607d432d 1142 ins_size = csum_size * tmp;
f578d4bd 1143 } else {
607d432d 1144 ins_size = csum_size;
f578d4bd 1145 }
5caf2a00 1146 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
f578d4bd 1147 ins_size);
54aa1f4d 1148 if (ret < 0)
918cdf44 1149 goto out;
fae7f21c 1150 if (WARN_ON(ret != 0))
918cdf44 1151 goto out;
5f39d397 1152 leaf = path->nodes[0];
f51a4a18 1153csum:
5f39d397 1154 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
f51a4a18
MX
1155 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1156 btrfs_item_size_nr(leaf, path->slots[0]));
509659cd 1157 item = (struct btrfs_csum_item *)((unsigned char *)item +
607d432d 1158 csum_offset * csum_size);
b18c6685 1159found:
265fdfa6 1160 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
f51a4a18
MX
1161 ins_size *= csum_size;
1162 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1163 ins_size);
1164 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1165 ins_size);
1166
1e25a2e3 1167 index += ins_size;
f51a4a18 1168 ins_size /= csum_size;
0b246afa 1169 total_bytes += ins_size * fs_info->sectorsize;
a6591715 1170
5caf2a00 1171 btrfs_mark_buffer_dirty(path->nodes[0]);
e6dcd2dc 1172 if (total_bytes < sums->len) {
b3b4aa74 1173 btrfs_release_path(path);
b9473439 1174 cond_resched();
065631f6
CM
1175 goto again;
1176 }
53863232 1177out:
5caf2a00 1178 btrfs_free_path(path);
f254e52c
CM
1179 return ret;
1180}
7ffbb598 1181
9cdc5124 1182void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
7ffbb598
FM
1183 const struct btrfs_path *path,
1184 struct btrfs_file_extent_item *fi,
1185 const bool new_inline,
1186 struct extent_map *em)
1187{
3ffbd68c 1188 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9cdc5124 1189 struct btrfs_root *root = inode->root;
7ffbb598
FM
1190 struct extent_buffer *leaf = path->nodes[0];
1191 const int slot = path->slots[0];
1192 struct btrfs_key key;
1193 u64 extent_start, extent_end;
1194 u64 bytenr;
1195 u8 type = btrfs_file_extent_type(leaf, fi);
1196 int compress_type = btrfs_file_extent_compression(leaf, fi);
1197
7ffbb598
FM
1198 btrfs_item_key_to_cpu(leaf, &key, slot);
1199 extent_start = key.offset;
a5eeb3d1 1200 extent_end = btrfs_file_extent_end(path);
7ffbb598
FM
1201 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1202 if (type == BTRFS_FILE_EXTENT_REG ||
1203 type == BTRFS_FILE_EXTENT_PREALLOC) {
1204 em->start = extent_start;
1205 em->len = extent_end - extent_start;
1206 em->orig_start = extent_start -
1207 btrfs_file_extent_offset(leaf, fi);
1208 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1209 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1210 if (bytenr == 0) {
1211 em->block_start = EXTENT_MAP_HOLE;
1212 return;
1213 }
1214 if (compress_type != BTRFS_COMPRESS_NONE) {
1215 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1216 em->compress_type = compress_type;
1217 em->block_start = bytenr;
1218 em->block_len = em->orig_block_len;
1219 } else {
1220 bytenr += btrfs_file_extent_offset(leaf, fi);
1221 em->block_start = bytenr;
1222 em->block_len = em->len;
1223 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1224 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1225 }
1226 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1227 em->block_start = EXTENT_MAP_INLINE;
1228 em->start = extent_start;
1229 em->len = extent_end - extent_start;
1230 /*
1231 * Initialize orig_start and block_len with the same values
1232 * as in inode.c:btrfs_get_extent().
1233 */
1234 em->orig_start = EXTENT_MAP_HOLE;
1235 em->block_len = (u64)-1;
1236 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1237 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1238 em->compress_type = compress_type;
1239 }
1240 } else {
0b246afa 1241 btrfs_err(fs_info,
9cdc5124
NB
1242 "unknown file extent item type %d, inode %llu, offset %llu, "
1243 "root %llu", type, btrfs_ino(inode), extent_start,
7ffbb598
FM
1244 root->root_key.objectid);
1245 }
1246}
a5eeb3d1
FM
1247
1248/*
1249 * Returns the end offset (non inclusive) of the file extent item the given path
1250 * points to. If it points to an inline extent, the returned offset is rounded
1251 * up to the sector size.
1252 */
1253u64 btrfs_file_extent_end(const struct btrfs_path *path)
1254{
1255 const struct extent_buffer *leaf = path->nodes[0];
1256 const int slot = path->slots[0];
1257 struct btrfs_file_extent_item *fi;
1258 struct btrfs_key key;
1259 u64 end;
1260
1261 btrfs_item_key_to_cpu(leaf, &key, slot);
1262 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1263 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1264
1265 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1266 end = btrfs_file_extent_ram_bytes(leaf, fi);
1267 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1268 } else {
1269 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1270 }
1271
1272 return end;
1273}