btrfs: remove the return value from submit_uncompressed_range
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
103c1972 23#include "bio.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
2a5232a8 32#include "compression.h"
ec8eb376 33#include "fs.h"
07e81dc9 34#include "accessors.h"
7c8ede16 35#include "file-item.h"
af142b6f 36#include "file.h"
77407dc0 37#include "dev-replace.h"
7f0add25 38#include "super.h"
98c8d683 39#include "transaction.h"
d1310b2e 40
d1310b2e
CM
41static struct kmem_cache *extent_buffer_cache;
42
6d49ba1b 43#ifdef CONFIG_BTRFS_DEBUG
a40246e8
JB
44static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45{
46 struct btrfs_fs_info *fs_info = eb->fs_info;
47 unsigned long flags;
48
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52}
53
a40246e8
JB
54static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55{
56 struct btrfs_fs_info *fs_info = eb->fs_info;
57 unsigned long flags;
58
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
6d49ba1b
ES
62}
63
3fd63727 64void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 65{
6d49ba1b 66 struct extent_buffer *eb;
3fd63727 67 unsigned long flags;
6d49ba1b 68
8c38938c
JB
69 /*
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
72 */
73 if (!fs_info->allocated_ebs.next)
74 return;
75
b95b78e6 76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
8c38938c
JB
81 pr_err(
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
33ca832f
JB
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
87 }
3fd63727 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f 89}
6d49ba1b 90#else
a40246e8 91#define btrfs_leak_debug_add_eb(eb) do {} while (0)
a40246e8 92#define btrfs_leak_debug_del_eb(eb) do {} while (0)
4bef0848 93#endif
d1310b2e 94
7aab8b32
CH
95/*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99struct btrfs_bio_ctrl {
9dfde1b4 100 struct btrfs_bio *bbio;
0f07003b 101 enum btrfs_compression_type compress_type;
7aab8b32 102 u32 len_to_oe_boundary;
c000bc04 103 blk_opf_t opf;
5467abba 104 btrfs_bio_end_io_t end_io_func;
72b505dc 105 struct writeback_control *wbc;
d1310b2e
CM
106};
107
722c82ac 108static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 109{
9dfde1b4 110 struct btrfs_bio *bbio = bio_ctrl->bbio;
722c82ac 111
9dfde1b4 112 if (!bbio)
722c82ac 113 return;
bb58eb9e 114
e0eefe07 115 /* Caller should ensure the bio has at least some range added */
9dfde1b4 116 ASSERT(bbio->bio.bi_iter.bi_size);
c9583ada 117
9dfde1b4 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
35a8d7da 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
e1949310 120 btrfs_submit_compressed_read(bbio);
35a8d7da 121 else
b78b98e0 122 btrfs_submit_bio(bbio, 0);
35a8d7da 123
9dfde1b4
CH
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
3065976b
QW
126}
127
f4340622 128/*
ee5f017d 129 * Submit or fail the current bio in the bio_ctrl structure.
f4340622 130 */
ee5f017d 131static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
bb58eb9e 132{
9dfde1b4 133 struct btrfs_bio *bbio = bio_ctrl->bbio;
bb58eb9e 134
9dfde1b4 135 if (!bbio)
9845e5dd
CH
136 return;
137
138 if (ret) {
139 ASSERT(ret < 0);
9dfde1b4 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
917f32a2 141 /* The bio is owned by the end_io handler now */
9dfde1b4 142 bio_ctrl->bbio = NULL;
9845e5dd 143 } else {
ee5f017d 144 submit_one_bio(bio_ctrl);
bb58eb9e
QW
145 }
146}
e2932ee0 147
a62a3bd9
JB
148int __init extent_buffer_init_cachep(void)
149{
837e1972 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 151 sizeof(struct extent_buffer), 0,
fba4b697 152 SLAB_MEM_SPREAD, NULL);
a62a3bd9 153 if (!extent_buffer_cache)
6f0d04f8 154 return -ENOMEM;
b208c2f7 155
d1310b2e 156 return 0;
d1310b2e
CM
157}
158
a62a3bd9 159void __cold extent_buffer_free_cachep(void)
d1310b2e 160{
8c0a8537
KS
161 /*
162 * Make sure all delayed rcu free are flushed before we
163 * destroy caches.
164 */
165 rcu_barrier();
5598e900 166 kmem_cache_destroy(extent_buffer_cache);
d1310b2e
CM
167}
168
bd1fa4f0 169void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 170{
09cbfeaf
KS
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
173 struct page *page;
174
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
09cbfeaf 179 put_page(page);
4adaa611
CM
180 index++;
181 }
4adaa611
CM
182}
183
f6311572 184void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 185{
ebf55c88 186 struct address_space *mapping = inode->i_mapping;
09cbfeaf
KS
187 unsigned long index = start >> PAGE_SHIFT;
188 unsigned long end_index = end >> PAGE_SHIFT;
ebf55c88 189 struct folio *folio;
4adaa611
CM
190
191 while (index <= end_index) {
ebf55c88
MWO
192 folio = filemap_get_folio(mapping, index);
193 filemap_dirty_folio(mapping, folio);
194 folio_account_redirty(folio);
195 index += folio_nr_pages(folio);
196 folio_put(folio);
4adaa611 197 }
4adaa611
CM
198}
199
ef4e88e6
CH
200static void process_one_page(struct btrfs_fs_info *fs_info,
201 struct page *page, struct page *locked_page,
202 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 203{
e38992be
QW
204 u32 len;
205
206 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
207 len = end + 1 - start;
208
ed8f13bf 209 if (page_ops & PAGE_SET_ORDERED)
b945a463 210 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 211 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
212 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
213 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
214 }
215 if (page_ops & PAGE_END_WRITEBACK)
e38992be 216 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a 217
ef4e88e6 218 if (page != locked_page && (page_ops & PAGE_UNLOCK))
1e1de387 219 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
220}
221
ef4e88e6
CH
222static void __process_pages_contig(struct address_space *mapping,
223 struct page *locked_page, u64 start, u64 end,
224 unsigned long page_ops)
ed8f13bf 225{
e38992be 226 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
227 pgoff_t start_index = start >> PAGE_SHIFT;
228 pgoff_t end_index = end >> PAGE_SHIFT;
229 pgoff_t index = start_index;
04c6b79a 230 struct folio_batch fbatch;
ed8f13bf
QW
231 int i;
232
04c6b79a
VMO
233 folio_batch_init(&fbatch);
234 while (index <= end_index) {
235 int found_folios;
236
237 found_folios = filemap_get_folios_contig(mapping, &index,
238 end_index, &fbatch);
04c6b79a 239 for (i = 0; i < found_folios; i++) {
04c6b79a 240 struct folio *folio = fbatch.folios[i];
ef4e88e6
CH
241
242 process_one_page(fs_info, &folio->page, locked_page,
243 page_ops, start, end);
ed8f13bf 244 }
04c6b79a 245 folio_batch_release(&fbatch);
ed8f13bf
QW
246 cond_resched();
247 }
ed8f13bf 248}
da2c7009 249
143bede5
JM
250static noinline void __unlock_for_delalloc(struct inode *inode,
251 struct page *locked_page,
252 u64 start, u64 end)
c8b97818 253{
09cbfeaf
KS
254 unsigned long index = start >> PAGE_SHIFT;
255 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 256
76c0021d 257 ASSERT(locked_page);
c8b97818 258 if (index == locked_page->index && end_index == index)
143bede5 259 return;
c8b97818 260
98af9ab1 261 __process_pages_contig(inode->i_mapping, locked_page, start, end,
ef4e88e6 262 PAGE_UNLOCK);
c8b97818
CM
263}
264
265static noinline int lock_delalloc_pages(struct inode *inode,
266 struct page *locked_page,
ef4e88e6
CH
267 u64 start,
268 u64 end)
c8b97818 269{
ef4e88e6
CH
270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
271 struct address_space *mapping = inode->i_mapping;
272 pgoff_t start_index = start >> PAGE_SHIFT;
273 pgoff_t end_index = end >> PAGE_SHIFT;
274 pgoff_t index = start_index;
275 u64 processed_end = start;
276 struct folio_batch fbatch;
c8b97818 277
c8b97818
CM
278 if (index == locked_page->index && index == end_index)
279 return 0;
280
ef4e88e6
CH
281 folio_batch_init(&fbatch);
282 while (index <= end_index) {
283 unsigned int found_folios, i;
284
285 found_folios = filemap_get_folios_contig(mapping, &index,
286 end_index, &fbatch);
287 if (found_folios == 0)
288 goto out;
289
290 for (i = 0; i < found_folios; i++) {
291 struct page *page = &fbatch.folios[i]->page;
292 u32 len = end + 1 - start;
293
294 if (page == locked_page)
295 continue;
296
297 if (btrfs_page_start_writer_lock(fs_info, page, start,
298 len))
299 goto out;
300
301 if (!PageDirty(page) || page->mapping != mapping) {
302 btrfs_page_end_writer_lock(fs_info, page, start,
303 len);
304 goto out;
305 }
306
307 processed_end = page_offset(page) + PAGE_SIZE - 1;
308 }
309 folio_batch_release(&fbatch);
310 cond_resched();
311 }
312
313 return 0;
314out:
315 folio_batch_release(&fbatch);
316 if (processed_end > start)
317 __unlock_for_delalloc(inode, locked_page, start, processed_end);
318 return -EAGAIN;
c8b97818
CM
319}
320
321/*
3522e903 322 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 323 * more than @max_bytes.
c8b97818 324 *
2749f7ef
QW
325 * @start: The original start bytenr to search.
326 * Will store the extent range start bytenr.
327 * @end: The original end bytenr of the search range
328 * Will store the extent range end bytenr.
329 *
330 * Return true if we find a delalloc range which starts inside the original
331 * range, and @start/@end will store the delalloc range start/end.
332 *
333 * Return false if we can't find any delalloc range which starts inside the
334 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 335 */
ce9f967f 336EXPORT_FOR_TESTS
3522e903 337noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 338 struct page *locked_page, u64 *start,
917aacec 339 u64 *end)
c8b97818 340{
f7b12a62 341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 342 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
343 const u64 orig_start = *start;
344 const u64 orig_end = *end;
f7b12a62
NA
345 /* The sanity tests may not set a valid fs_info. */
346 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
347 u64 delalloc_start;
348 u64 delalloc_end;
3522e903 349 bool found;
9655d298 350 struct extent_state *cached_state = NULL;
c8b97818
CM
351 int ret;
352 int loops = 0;
353
2749f7ef
QW
354 /* Caller should pass a valid @end to indicate the search range end */
355 ASSERT(orig_end > orig_start);
356
357 /* The range should at least cover part of the page */
358 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
359 orig_end <= page_offset(locked_page)));
c8b97818
CM
360again:
361 /* step one, find a bunch of delalloc bytes starting at start */
362 delalloc_start = *start;
363 delalloc_end = 0;
083e75e7
JB
364 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
365 max_bytes, &cached_state);
2749f7ef 366 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 367 *start = delalloc_start;
2749f7ef
QW
368
369 /* @delalloc_end can be -1, never go beyond @orig_end */
370 *end = min(delalloc_end, orig_end);
c2a128d2 371 free_extent_state(cached_state);
3522e903 372 return false;
c8b97818
CM
373 }
374
70b99e69
CM
375 /*
376 * start comes from the offset of locked_page. We have to lock
377 * pages in order, so we can't process delalloc bytes before
378 * locked_page
379 */
d397712b 380 if (delalloc_start < *start)
70b99e69 381 delalloc_start = *start;
70b99e69 382
c8b97818
CM
383 /*
384 * make sure to limit the number of pages we try to lock down
c8b97818 385 */
7bf811a5
JB
386 if (delalloc_end + 1 - delalloc_start > max_bytes)
387 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 388
c8b97818
CM
389 /* step two, lock all the pages after the page that has start */
390 ret = lock_delalloc_pages(inode, locked_page,
391 delalloc_start, delalloc_end);
9bfd61d9 392 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
393 if (ret == -EAGAIN) {
394 /* some of the pages are gone, lets avoid looping by
395 * shortening the size of the delalloc range we're searching
396 */
9655d298 397 free_extent_state(cached_state);
7d788742 398 cached_state = NULL;
c8b97818 399 if (!loops) {
09cbfeaf 400 max_bytes = PAGE_SIZE;
c8b97818
CM
401 loops = 1;
402 goto again;
403 } else {
3522e903 404 found = false;
c8b97818
CM
405 goto out_failed;
406 }
407 }
c8b97818
CM
408
409 /* step three, lock the state bits for the whole range */
570eb97b 410 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
411
412 /* then test to make sure it is all still delalloc */
413 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 414 EXTENT_DELALLOC, 1, cached_state);
c8b97818 415 if (!ret) {
570eb97b
JB
416 unlock_extent(tree, delalloc_start, delalloc_end,
417 &cached_state);
c8b97818
CM
418 __unlock_for_delalloc(inode, locked_page,
419 delalloc_start, delalloc_end);
420 cond_resched();
421 goto again;
422 }
9655d298 423 free_extent_state(cached_state);
c8b97818
CM
424 *start = delalloc_start;
425 *end = delalloc_end;
426out_failed:
427 return found;
428}
429
ad7ff17b 430void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 431 struct page *locked_page,
f97e27e9 432 u32 clear_bits, unsigned long page_ops)
873695b3 433{
bd015294 434 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
873695b3 435
ad7ff17b 436 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
ef4e88e6 437 start, end, page_ops);
873695b3
LB
438}
439
ed9ee98e
CH
440static bool btrfs_verify_page(struct page *page, u64 start)
441{
442 if (!fsverity_active(page->mapping->host) ||
57201ddd 443 PageUptodate(page) ||
ed9ee98e
CH
444 start >= i_size_read(page->mapping->host))
445 return true;
446 return fsverity_verify_page(page);
447}
448
150e4b05
QW
449static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
450{
451 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
452
453 ASSERT(page_offset(page) <= start &&
454 start + len <= page_offset(page) + PAGE_SIZE);
455
2b2553f1 456 if (uptodate && btrfs_verify_page(page, start))
2c14f0ff 457 btrfs_page_set_uptodate(fs_info, page, start, len);
2b2553f1 458 else
150e4b05 459 btrfs_page_clear_uptodate(fs_info, page, start, len);
150e4b05 460
fbca46eb 461 if (!btrfs_is_subpage(fs_info, page))
150e4b05 462 unlock_page(page);
3d078efa 463 else
150e4b05
QW
464 btrfs_subpage_end_reader(fs_info, page, start, len);
465}
466
d1310b2e
CM
467/*
468 * after a writepage IO is done, we need to:
469 * clear the uptodate bits on error
470 * clear the writeback bits in the extent tree for this IO
471 * end_page_writeback if the page has no more pending IO
472 *
473 * Scheduling is not allowed, so the extent state tree is expected
474 * to have one and only one object corresponding to this IO.
475 */
917f32a2 476static void end_bio_extent_writepage(struct btrfs_bio *bbio)
d1310b2e 477{
917f32a2 478 struct bio *bio = &bbio->bio;
4e4cbee9 479 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 480 struct bio_vec *bvec;
6dc4f100 481 struct bvec_iter_all iter_all;
d1310b2e 482
c09abff8 483 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 484 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 485 struct page *page = bvec->bv_page;
0b246afa
JM
486 struct inode *inode = page->mapping->host;
487 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db 488 const u32 sectorsize = fs_info->sectorsize;
4ba8223d
CH
489 u64 start = page_offset(page) + bvec->bv_offset;
490 u32 len = bvec->bv_len;
321a02db
QW
491
492 /* Our read/write should always be sector aligned. */
493 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
494 btrfs_err(fs_info,
495 "partial page write in btrfs with offset %u and length %u",
496 bvec->bv_offset, bvec->bv_len);
497 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
498 btrfs_info(fs_info,
499 "incomplete page write with offset %u and length %u",
500 bvec->bv_offset, bvec->bv_len);
501
0d394cca 502 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
4ba8223d
CH
503 if (error) {
504 btrfs_page_clear_uptodate(fs_info, page, start, len);
505 mapping_set_error(page->mapping, error);
506 }
507 btrfs_page_clear_writeback(fs_info, page, start, len);
2c30c71b 508 }
2b1f55b0 509
d1310b2e 510 bio_put(bio);
d1310b2e
CM
511}
512
94e8c95c
QW
513/*
514 * Record previously processed extent range
515 *
516 * For endio_readpage_release_extent() to handle a full extent range, reducing
517 * the extent io operations.
518 */
519struct processed_extent {
520 struct btrfs_inode *inode;
521 /* Start of the range in @inode */
522 u64 start;
2e626e56 523 /* End of the range in @inode */
94e8c95c
QW
524 u64 end;
525 bool uptodate;
526};
527
528/*
529 * Try to release processed extent range
530 *
531 * May not release the extent range right now if the current range is
532 * contiguous to processed extent.
533 *
534 * Will release processed extent when any of @inode, @uptodate, the range is
535 * no longer contiguous to the processed range.
536 *
537 * Passing @inode == NULL will force processed extent to be released.
538 */
539static void endio_readpage_release_extent(struct processed_extent *processed,
540 struct btrfs_inode *inode, u64 start, u64 end,
541 bool uptodate)
883d0de4
MX
542{
543 struct extent_state *cached = NULL;
94e8c95c
QW
544 struct extent_io_tree *tree;
545
546 /* The first extent, initialize @processed */
547 if (!processed->inode)
548 goto update;
883d0de4 549
94e8c95c
QW
550 /*
551 * Contiguous to processed extent, just uptodate the end.
552 *
553 * Several things to notice:
554 *
555 * - bio can be merged as long as on-disk bytenr is contiguous
556 * This means we can have page belonging to other inodes, thus need to
557 * check if the inode still matches.
558 * - bvec can contain range beyond current page for multi-page bvec
559 * Thus we need to do processed->end + 1 >= start check
560 */
561 if (processed->inode == inode && processed->uptodate == uptodate &&
562 processed->end + 1 >= start && end >= processed->end) {
563 processed->end = end;
564 return;
565 }
566
567 tree = &processed->inode->io_tree;
568 /*
569 * Now we don't have range contiguous to the processed range, release
570 * the processed range now.
571 */
48acc47d 572 unlock_extent(tree, processed->start, processed->end, &cached);
94e8c95c
QW
573
574update:
575 /* Update processed to current range */
576 processed->inode = inode;
577 processed->start = start;
578 processed->end = end;
579 processed->uptodate = uptodate;
883d0de4
MX
580}
581
92082d40
QW
582static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
583{
584 ASSERT(PageLocked(page));
fbca46eb 585 if (!btrfs_is_subpage(fs_info, page))
92082d40
QW
586 return;
587
588 ASSERT(PagePrivate(page));
589 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
590}
591
d1310b2e
CM
592/*
593 * after a readpage IO is done, we need to:
594 * clear the uptodate bits on error
595 * set the uptodate bits if things worked
596 * set the page up to date if all extents in the tree are uptodate
597 * clear the lock bit in the extent tree
598 * unlock the page if there are no other extents locked for it
599 *
600 * Scheduling is not allowed, so the extent state tree is expected
601 * to have one and only one object corresponding to this IO.
602 */
917f32a2 603static void end_bio_extent_readpage(struct btrfs_bio *bbio)
d1310b2e 604{
917f32a2 605 struct bio *bio = &bbio->bio;
2c30c71b 606 struct bio_vec *bvec;
94e8c95c 607 struct processed_extent processed = { 0 };
7ffd27e3
QW
608 /*
609 * The offset to the beginning of a bio, since one bio can never be
610 * larger than UINT_MAX, u32 here is enough.
611 */
612 u32 bio_offset = 0;
6dc4f100 613 struct bvec_iter_all iter_all;
d1310b2e 614
c09abff8 615 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 616 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 617 bool uptodate = !bio->bi_status;
d1310b2e 618 struct page *page = bvec->bv_page;
a71754fc 619 struct inode *inode = page->mapping->host;
ab8d0fc4 620 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3
QW
621 const u32 sectorsize = fs_info->sectorsize;
622 u64 start;
623 u64 end;
624 u32 len;
507903b8 625
ab8d0fc4
JM
626 btrfs_debug(fs_info,
627 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 628 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 629 bbio->mirror_num);
902b22f3 630
8b8bbd46
QW
631 /*
632 * We always issue full-sector reads, but if some block in a
633 * page fails to read, blk_update_request() will advance
634 * bv_offset and adjust bv_len to compensate. Print a warning
635 * for unaligned offsets, and an error if they don't add up to
636 * a full sector.
637 */
638 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
639 btrfs_err(fs_info,
640 "partial page read in btrfs with offset %u and length %u",
641 bvec->bv_offset, bvec->bv_len);
642 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
643 sectorsize))
644 btrfs_info(fs_info,
645 "incomplete page read with offset %u and length %u",
646 bvec->bv_offset, bvec->bv_len);
647
648 start = page_offset(page) + bvec->bv_offset;
649 end = start + bvec->bv_len - 1;
facc8a22 650 len = bvec->bv_len;
d1310b2e 651
883d0de4 652 if (likely(uptodate)) {
a71754fc 653 loff_t i_size = i_size_read(inode);
09cbfeaf 654 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 655
c28ea613
QW
656 /*
657 * Zero out the remaining part if this range straddles
658 * i_size.
659 *
660 * Here we should only zero the range inside the bvec,
661 * not touch anything else.
662 *
663 * NOTE: i_size is exclusive while end is inclusive.
664 */
665 if (page->index == end_index && i_size <= end) {
666 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 667 offset_in_page(start));
c28ea613
QW
668
669 zero_user_segment(page, zero_start,
670 offset_in_page(end) + 1);
671 }
70dec807 672 }
97861cd1 673
7609afac
CH
674 /* Update page status and unlock. */
675 end_page_read(page, uptodate, start, len);
676 endio_readpage_release_extent(&processed, BTRFS_I(inode),
31dd8c81 677 start, end, uptodate);
97861cd1 678
7ffd27e3
QW
679 ASSERT(bio_offset + len > bio_offset);
680 bio_offset += len;
883d0de4 681
2c30c71b 682 }
94e8c95c
QW
683 /* Release the last extent */
684 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
d1310b2e 685 bio_put(bio);
d1310b2e
CM
686}
687
43dd529a 688/*
dd137dd1
STD
689 * Populate every free slot in a provided array with pages.
690 *
691 * @nr_pages: number of pages to allocate
692 * @page_array: the array to fill with pages; any existing non-null entries in
693 * the array will be skipped
694 *
695 * Return: 0 if all pages were able to be allocated;
696 * -ENOMEM otherwise, and the caller is responsible for freeing all
697 * non-null page pointers in the array.
698 */
699int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
700{
91d6ac1d 701 unsigned int allocated;
dd137dd1 702
91d6ac1d
STD
703 for (allocated = 0; allocated < nr_pages;) {
704 unsigned int last = allocated;
dd137dd1 705
91d6ac1d
STD
706 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
707
395cb57e
STD
708 if (allocated == nr_pages)
709 return 0;
710
91d6ac1d
STD
711 /*
712 * During this iteration, no page could be allocated, even
713 * though alloc_pages_bulk_array() falls back to alloc_page()
714 * if it could not bulk-allocate. So we must be out of memory.
715 */
716 if (allocated == last)
dd137dd1 717 return -ENOMEM;
395cb57e
STD
718
719 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
720 }
721 return 0;
722}
723
78a2ef1b
CH
724static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
725 struct page *page, u64 disk_bytenr,
726 unsigned int pg_offset)
727{
9dfde1b4 728 struct bio *bio = &bio_ctrl->bbio->bio;
78a2ef1b
CH
729 struct bio_vec *bvec = bio_last_bvec_all(bio);
730 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
731
732 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
733 /*
734 * For compression, all IO should have its logical bytenr set
735 * to the starting bytenr of the compressed extent.
736 */
737 return bio->bi_iter.bi_sector == sector;
738 }
739
740 /*
741 * The contig check requires the following conditions to be met:
742 *
743 * 1) The pages are belonging to the same inode
744 * This is implied by the call chain.
745 *
746 * 2) The range has adjacent logical bytenr
747 *
748 * 3) The range has adjacent file offset
749 * This is required for the usage of btrfs_bio->file_offset.
750 */
751 return bio_end_sector(bio) == sector &&
752 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
753 page_offset(page) + pg_offset;
754}
755
198bd49e
JT
756static void alloc_new_bio(struct btrfs_inode *inode,
757 struct btrfs_bio_ctrl *bio_ctrl,
758 u64 disk_bytenr, u64 file_offset)
390ed29b 759{
198bd49e 760 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b41bbd29 761 struct btrfs_bio *bbio;
198bd49e 762
4317ff00 763 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
b41bbd29
CH
764 bio_ctrl->end_io_func, NULL);
765 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 766 bbio->inode = inode;
b41bbd29
CH
767 bbio->file_offset = file_offset;
768 bio_ctrl->bbio = bbio;
198bd49e 769 bio_ctrl->len_to_oe_boundary = U32_MAX;
390ed29b 770
a39da514
CH
771 /* Limit data write bios to the ordered boundary. */
772 if (bio_ctrl->wbc) {
198bd49e
JT
773 struct btrfs_ordered_extent *ordered;
774
2380220e
QW
775 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
776 if (ordered) {
777 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
72fcf1a4
CH
778 ordered->file_offset +
779 ordered->disk_num_bytes - file_offset);
ec63b84d 780 bbio->ordered = ordered;
2380220e 781 }
390ed29b 782
50f1cff3 783 /*
d5e4377d
CH
784 * Pick the last added device to support cgroup writeback. For
785 * multi-device file systems this means blk-cgroup policies have
786 * to always be set on the last added/replaced device.
787 * This is a bit odd but has been like that for a long time.
50f1cff3 788 */
b41bbd29
CH
789 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
790 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
e0eefe07 791 }
e0eefe07
QW
792}
793
4b81ba48 794/*
0c64c33c 795 * @disk_bytenr: logical bytenr where the write will be
209ecde5 796 * @page: page to add to the bio
0c64c33c 797 * @size: portion of page that we want to write to
b8b3d625
DS
798 * @pg_offset: offset of the new bio or to check whether we are adding
799 * a contiguous page to the previous one
814b6f91 800 *
9dfde1b4
CH
801 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
802 * new one in @bio_ctrl->bbio.
814b6f91
QW
803 * The mirror number for this IO should already be initizlied in
804 * @bio_ctrl->mirror_num.
4b81ba48 805 */
55173337
CH
806static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
807 u64 disk_bytenr, struct page *page,
808 size_t size, unsigned long pg_offset)
d1310b2e 809{
e1326f03 810 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
5467abba 811
24e6c808 812 ASSERT(pg_offset + size <= PAGE_SIZE);
5467abba
QW
813 ASSERT(bio_ctrl->end_io_func);
814
9dfde1b4 815 if (bio_ctrl->bbio &&
78a2ef1b
CH
816 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
817 submit_one_bio(bio_ctrl);
818
24e6c808
CH
819 do {
820 u32 len = size;
e0eefe07
QW
821
822 /* Allocate new bio if needed */
9dfde1b4 823 if (!bio_ctrl->bbio) {
72b505dc 824 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
24e6c808 825 page_offset(page) + pg_offset);
e0eefe07 826 }
24e6c808
CH
827
828 /* Cap to the current ordered extent boundary if there is one. */
829 if (len > bio_ctrl->len_to_oe_boundary) {
830 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
831 ASSERT(is_data_inode(&inode->vfs_inode));
832 len = bio_ctrl->len_to_oe_boundary;
833 }
834
9dfde1b4 835 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
24e6c808 836 /* bio full: move on to a new one */
722c82ac 837 submit_one_bio(bio_ctrl);
24e6c808 838 continue;
d1310b2e 839 }
24e6c808
CH
840
841 if (bio_ctrl->wbc)
842 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
843
844 size -= len;
845 pg_offset += len;
846 disk_bytenr += len;
09c3717c
CM
847
848 /*
849 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
850 * sector aligned. alloc_new_bio() then sets it to the end of
851 * our ordered extent for writes into zoned devices.
852 *
853 * When len_to_oe_boundary is tracking an ordered extent, we
854 * trust the ordered extent code to align things properly, and
855 * the check above to cap our write to the ordered extent
856 * boundary is correct.
857 *
858 * When len_to_oe_boundary is U32_MAX, the cap above would
859 * result in a 4095 byte IO for the last page right before
860 * we hit the bio limit of UINT_MAX. bio_add_page() has all
861 * the checks required to make sure we don't overflow the bio,
862 * and we should just ignore len_to_oe_boundary completely
863 * unless we're using it to track an ordered extent.
864 *
865 * It's pretty hard to make a bio sized U32_MAX, but it can
866 * happen when the page cache is able to feed us contiguous
867 * pages for large extents.
868 */
869 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
870 bio_ctrl->len_to_oe_boundary -= len;
24e6c808
CH
871
872 /* Ordered extent boundary: move on to a new bio. */
873 if (bio_ctrl->len_to_oe_boundary == 0)
874 submit_one_bio(bio_ctrl);
875 } while (size);
d1310b2e
CM
876}
877
760f991f
QW
878static int attach_extent_buffer_page(struct extent_buffer *eb,
879 struct page *page,
880 struct btrfs_subpage *prealloc)
d1310b2e 881{
760f991f
QW
882 struct btrfs_fs_info *fs_info = eb->fs_info;
883 int ret = 0;
884
0d01e247
QW
885 /*
886 * If the page is mapped to btree inode, we should hold the private
887 * lock to prevent race.
888 * For cloned or dummy extent buffers, their pages are not mapped and
889 * will not race with any other ebs.
890 */
891 if (page->mapping)
892 lockdep_assert_held(&page->mapping->private_lock);
893
fbca46eb 894 if (fs_info->nodesize >= PAGE_SIZE) {
760f991f
QW
895 if (!PagePrivate(page))
896 attach_page_private(page, eb);
897 else
898 WARN_ON(page->private != (unsigned long)eb);
899 return 0;
900 }
901
902 /* Already mapped, just free prealloc */
903 if (PagePrivate(page)) {
904 btrfs_free_subpage(prealloc);
905 return 0;
906 }
907
908 if (prealloc)
909 /* Has preallocated memory for subpage */
910 attach_page_private(page, prealloc);
d1b89bc0 911 else
760f991f
QW
912 /* Do new allocation to attach subpage */
913 ret = btrfs_attach_subpage(fs_info, page,
914 BTRFS_SUBPAGE_METADATA);
915 return ret;
d1310b2e
CM
916}
917
32443de3 918int set_page_extent_mapped(struct page *page)
d1310b2e 919{
32443de3
QW
920 struct btrfs_fs_info *fs_info;
921
922 ASSERT(page->mapping);
923
924 if (PagePrivate(page))
925 return 0;
926
927 fs_info = btrfs_sb(page->mapping->host->i_sb);
928
fbca46eb 929 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
930 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
931
932 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
933 return 0;
934}
935
936void clear_page_extent_mapped(struct page *page)
937{
938 struct btrfs_fs_info *fs_info;
939
940 ASSERT(page->mapping);
941
d1b89bc0 942 if (!PagePrivate(page))
32443de3
QW
943 return;
944
945 fs_info = btrfs_sb(page->mapping->host->i_sb);
fbca46eb 946 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
947 return btrfs_detach_subpage(fs_info, page);
948
949 detach_page_private(page);
d1310b2e
CM
950}
951
125bac01
MX
952static struct extent_map *
953__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 954 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
955{
956 struct extent_map *em;
957
958 if (em_cached && *em_cached) {
959 em = *em_cached;
cbc0e928 960 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 961 start < extent_map_end(em)) {
490b54d6 962 refcount_inc(&em->refs);
125bac01
MX
963 return em;
964 }
965
966 free_extent_map(em);
967 *em_cached = NULL;
968 }
969
1a5ee1e6 970 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 971 if (em_cached && !IS_ERR(em)) {
125bac01 972 BUG_ON(*em_cached);
490b54d6 973 refcount_inc(&em->refs);
125bac01
MX
974 *em_cached = em;
975 }
976 return em;
977}
d1310b2e
CM
978/*
979 * basic readpage implementation. Locked extent state structs are inserted
980 * into the tree that are removed when the IO is done (by the end_io
981 * handlers)
79787eaa 982 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 983 * return 0 on success, otherwise return error
d1310b2e 984 */
7aab8b32 985static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
c000bc04 986 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
d1310b2e
CM
987{
988 struct inode *inode = page->mapping->host;
92082d40 989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 990 u64 start = page_offset(page);
8eec8296 991 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
992 u64 cur = start;
993 u64 extent_offset;
994 u64 last_byte = i_size_read(inode);
995 u64 block_start;
d1310b2e 996 struct extent_map *em;
baf863b9 997 int ret = 0;
306e16ce 998 size_t pg_offset = 0;
d1310b2e
CM
999 size_t iosize;
1000 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 1001 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 1002
32443de3
QW
1003 ret = set_page_extent_mapped(page);
1004 if (ret < 0) {
570eb97b 1005 unlock_extent(tree, start, end, NULL);
92082d40 1006 unlock_page(page);
55173337 1007 return ret;
32443de3 1008 }
d1310b2e 1009
09cbfeaf 1010 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 1011 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
1012
1013 if (zero_offset) {
09cbfeaf 1014 iosize = PAGE_SIZE - zero_offset;
d048b9c2 1015 memzero_page(page, zero_offset, iosize);
c8b97818
CM
1016 }
1017 }
5467abba 1018 bio_ctrl->end_io_func = end_bio_extent_readpage;
92082d40 1019 begin_page_read(fs_info, page);
d1310b2e 1020 while (cur <= end) {
a140453b 1021 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
005efedf 1022 bool force_bio_submit = false;
0c64c33c 1023 u64 disk_bytenr;
c8f2f24b 1024
6a404910 1025 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 1026 if (cur >= last_byte) {
09cbfeaf 1027 iosize = PAGE_SIZE - pg_offset;
d048b9c2 1028 memzero_page(page, pg_offset, iosize);
2c8f5e8c 1029 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1030 end_page_read(page, true, cur, iosize);
d1310b2e
CM
1031 break;
1032 }
125bac01 1033 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 1034 end - cur + 1, em_cached);
c0347550 1035 if (IS_ERR(em)) {
570eb97b 1036 unlock_extent(tree, cur, end, NULL);
92082d40 1037 end_page_read(page, false, cur, end + 1 - cur);
55173337 1038 return PTR_ERR(em);
d1310b2e 1039 }
d1310b2e
CM
1040 extent_offset = cur - em->start;
1041 BUG_ON(extent_map_end(em) <= cur);
1042 BUG_ON(end < cur);
1043
7f6ca7f2 1044 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
a140453b 1045 compress_type = em->compress_type;
c8b97818 1046
d1310b2e 1047 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 1048 iosize = ALIGN(iosize, blocksize);
a140453b 1049 if (compress_type != BTRFS_COMPRESS_NONE)
0c64c33c 1050 disk_bytenr = em->block_start;
949b3273 1051 else
0c64c33c 1052 disk_bytenr = em->block_start + extent_offset;
d1310b2e 1053 block_start = em->block_start;
d899e052
YZ
1054 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1055 block_start = EXTENT_MAP_HOLE;
005efedf
FM
1056
1057 /*
1058 * If we have a file range that points to a compressed extent
260db43c 1059 * and it's followed by a consecutive file range that points
005efedf
FM
1060 * to the same compressed extent (possibly with a different
1061 * offset and/or length, so it either points to the whole extent
1062 * or only part of it), we must make sure we do not submit a
1063 * single bio to populate the pages for the 2 ranges because
1064 * this makes the compressed extent read zero out the pages
1065 * belonging to the 2nd range. Imagine the following scenario:
1066 *
1067 * File layout
1068 * [0 - 8K] [8K - 24K]
1069 * | |
1070 * | |
1071 * points to extent X, points to extent X,
1072 * offset 4K, length of 8K offset 0, length 16K
1073 *
1074 * [extent X, compressed length = 4K uncompressed length = 16K]
1075 *
1076 * If the bio to read the compressed extent covers both ranges,
1077 * it will decompress extent X into the pages belonging to the
1078 * first range and then it will stop, zeroing out the remaining
1079 * pages that belong to the other range that points to extent X.
1080 * So here we make sure we submit 2 bios, one for the first
1081 * range and another one for the third range. Both will target
1082 * the same physical extent from disk, but we can't currently
1083 * make the compressed bio endio callback populate the pages
1084 * for both ranges because each compressed bio is tightly
1085 * coupled with a single extent map, and each range can have
1086 * an extent map with a different offset value relative to the
1087 * uncompressed data of our extent and different lengths. This
1088 * is a corner case so we prioritize correctness over
1089 * non-optimal behavior (submitting 2 bios for the same extent).
1090 */
1091 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1092 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 1093 *prev_em_start != em->start)
005efedf
FM
1094 force_bio_submit = true;
1095
1096 if (prev_em_start)
8e928218 1097 *prev_em_start = em->start;
005efedf 1098
d1310b2e
CM
1099 free_extent_map(em);
1100 em = NULL;
1101
1102 /* we've found a hole, just zero and go on */
1103 if (block_start == EXTENT_MAP_HOLE) {
d048b9c2 1104 memzero_page(page, pg_offset, iosize);
d1310b2e 1105
2c8f5e8c 1106 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1107 end_page_read(page, true, cur, iosize);
d1310b2e 1108 cur = cur + iosize;
306e16ce 1109 pg_offset += iosize;
d1310b2e
CM
1110 continue;
1111 }
1112 /* the get_extent function already copied into the page */
70dec807 1113 if (block_start == EXTENT_MAP_INLINE) {
570eb97b 1114 unlock_extent(tree, cur, cur + iosize - 1, NULL);
52b029f4 1115 end_page_read(page, true, cur, iosize);
70dec807 1116 cur = cur + iosize;
306e16ce 1117 pg_offset += iosize;
70dec807
CM
1118 continue;
1119 }
d1310b2e 1120
f8ed4852 1121 if (bio_ctrl->compress_type != compress_type) {
c9bc621f 1122 submit_one_bio(bio_ctrl);
f8ed4852
CH
1123 bio_ctrl->compress_type = compress_type;
1124 }
c9bc621f 1125
eb8d0c6d
CH
1126 if (force_bio_submit)
1127 submit_one_bio(bio_ctrl);
55173337
CH
1128 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1129 pg_offset);
d1310b2e 1130 cur = cur + iosize;
306e16ce 1131 pg_offset += iosize;
d1310b2e 1132 }
55173337
CH
1133
1134 return 0;
d1310b2e
CM
1135}
1136
fdaf9a58 1137int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 1138{
fdaf9a58 1139 struct page *page = &folio->page;
7aab8b32
CH
1140 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1141 u64 start = page_offset(page);
1142 u64 end = start + PAGE_SIZE - 1;
c000bc04 1143 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
7aab8b32
CH
1144 int ret;
1145
1146 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1147
c000bc04 1148 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
7aab8b32
CH
1149 /*
1150 * If btrfs_do_readpage() failed we will want to submit the assembled
1151 * bio to do the cleanup.
1152 */
722c82ac 1153 submit_one_bio(&bio_ctrl);
7aab8b32
CH
1154 return ret;
1155}
1156
b6660e80 1157static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
1158 u64 start, u64 end,
1159 struct extent_map **em_cached,
1160 struct btrfs_bio_ctrl *bio_ctrl,
1161 u64 *prev_em_start)
9974090b 1162{
23d31bd4 1163 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
1164 int index;
1165
b272ae22 1166 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
1167
1168 for (index = 0; index < nr_pages; index++) {
390ed29b 1169 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
c000bc04 1170 prev_em_start);
09cbfeaf 1171 put_page(pages[index]);
9974090b
MX
1172 }
1173}
1174
d1310b2e 1175/*
40f76580
CM
1176 * helper for __extent_writepage, doing all of the delayed allocation setup.
1177 *
5eaad97a 1178 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
1179 * to write the page (copy into inline extent). In this case the IO has
1180 * been started and the page is already unlocked.
1181 *
1182 * This returns 0 if all went well (page still locked)
1183 * This returns < 0 if there were errors (page still locked)
d1310b2e 1184 */
cd4c0bf9 1185static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 1186 struct page *page, struct writeback_control *wbc)
40f76580 1187{
2749f7ef 1188 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 1189 u64 delalloc_start = page_offset(page);
40f76580 1190 u64 delalloc_to_write = 0;
83f1b680
QW
1191 /* How many pages are started by btrfs_run_delalloc_range() */
1192 unsigned long nr_written = 0;
40f76580
CM
1193 int ret;
1194 int page_started = 0;
1195
2749f7ef
QW
1196 while (delalloc_start < page_end) {
1197 u64 delalloc_end = page_end;
1198 bool found;
40f76580 1199
cd4c0bf9 1200 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 1201 &delalloc_start,
917aacec 1202 &delalloc_end);
3522e903 1203 if (!found) {
40f76580
CM
1204 delalloc_start = delalloc_end + 1;
1205 continue;
1206 }
cd4c0bf9 1207 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 1208 delalloc_end, &page_started, &nr_written, wbc);
2b2553f1 1209 if (ret)
7361b4ae 1210 return ret;
2b2553f1 1211
40f76580 1212 /*
ea1754a0
KS
1213 * delalloc_end is already one less than the total length, so
1214 * we don't subtract one from PAGE_SIZE
40f76580
CM
1215 */
1216 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 1217 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
1218 delalloc_start = delalloc_end + 1;
1219 }
1220 if (wbc->nr_to_write < delalloc_to_write) {
1221 int thresh = 8192;
1222
1223 if (delalloc_to_write < thresh * 2)
1224 thresh = delalloc_to_write;
1225 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1226 thresh);
1227 }
1228
83f1b680 1229 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
1230 if (page_started) {
1231 /*
83f1b680
QW
1232 * We've unlocked the page, so we can't update the mapping's
1233 * writeback index, just update nr_to_write.
40f76580 1234 */
83f1b680 1235 wbc->nr_to_write -= nr_written;
40f76580
CM
1236 return 1;
1237 }
1238
b69d1ee9 1239 return 0;
40f76580
CM
1240}
1241
c5ef5c6c
QW
1242/*
1243 * Find the first byte we need to write.
1244 *
1245 * For subpage, one page can contain several sectors, and
1246 * __extent_writepage_io() will just grab all extent maps in the page
1247 * range and try to submit all non-inline/non-compressed extents.
1248 *
1249 * This is a big problem for subpage, we shouldn't re-submit already written
1250 * data at all.
1251 * This function will lookup subpage dirty bit to find which range we really
1252 * need to submit.
1253 *
1254 * Return the next dirty range in [@start, @end).
1255 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1256 */
1257static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1258 struct page *page, u64 *start, u64 *end)
1259{
1260 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 1261 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
1262 u64 orig_start = *start;
1263 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 1264 unsigned long flags;
72a69cd0 1265 int range_start_bit;
c5ef5c6c
QW
1266 int range_end_bit;
1267
1268 /*
1269 * For regular sector size == page size case, since one page only
1270 * contains one sector, we return the page offset directly.
1271 */
fbca46eb 1272 if (!btrfs_is_subpage(fs_info, page)) {
c5ef5c6c
QW
1273 *start = page_offset(page);
1274 *end = page_offset(page) + PAGE_SIZE;
1275 return;
1276 }
1277
72a69cd0
QW
1278 range_start_bit = spi->dirty_offset +
1279 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1280
c5ef5c6c
QW
1281 /* We should have the page locked, but just in case */
1282 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1283 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1284 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
1285 spin_unlock_irqrestore(&subpage->lock, flags);
1286
72a69cd0
QW
1287 range_start_bit -= spi->dirty_offset;
1288 range_end_bit -= spi->dirty_offset;
1289
c5ef5c6c
QW
1290 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1291 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1292}
1293
40f76580
CM
1294/*
1295 * helper for __extent_writepage. This calls the writepage start hooks,
1296 * and does the loop to map the page into extents and bios.
1297 *
1298 * We return 1 if the IO is started and the page is unlocked,
1299 * 0 if all went well (page still locked)
1300 * < 0 if there were errors (page still locked)
1301 */
d4580fe2 1302static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580 1303 struct page *page,
ee5f017d 1304 struct btrfs_bio_ctrl *bio_ctrl,
40f76580 1305 loff_t i_size,
57e5ffeb 1306 int *nr_ret)
d1310b2e 1307{
6bc5636a 1308 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
1309 u64 cur = page_offset(page);
1310 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 1311 u64 extent_offset;
d1310b2e 1312 u64 block_start;
d1310b2e 1313 struct extent_map *em;
40f76580
CM
1314 int ret = 0;
1315 int nr = 0;
c8b97818 1316
a129ffb8 1317 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
1318 if (ret) {
1319 /* Fixup worker will requeue */
72b505dc 1320 redirty_page_for_writepage(bio_ctrl->wbc, page);
d75855b4
NB
1321 unlock_page(page);
1322 return 1;
247e743c
CM
1323 }
1324
ee5f017d 1325 bio_ctrl->end_io_func = end_bio_extent_writepage;
d1310b2e 1326 while (cur <= end) {
6648cedd 1327 u32 len = end - cur + 1;
0c64c33c 1328 u64 disk_bytenr;
40f76580 1329 u64 em_end;
c5ef5c6c
QW
1330 u64 dirty_range_start = cur;
1331 u64 dirty_range_end;
6bc5636a 1332 u32 iosize;
58409edd 1333
40f76580 1334 if (cur >= i_size) {
6648cedd
CH
1335 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1336 true);
cc1d0d93
QW
1337 /*
1338 * This range is beyond i_size, thus we don't need to
1339 * bother writing back.
1340 * But we still need to clear the dirty subpage bit, or
1341 * the next time the page gets dirtied, we will try to
1342 * writeback the sectors with subpage dirty bits,
1343 * causing writeback without ordered extent.
1344 */
6648cedd 1345 btrfs_page_clear_dirty(fs_info, page, cur, len);
d1310b2e
CM
1346 break;
1347 }
c5ef5c6c
QW
1348
1349 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1350 &dirty_range_end);
1351 if (cur < dirty_range_start) {
1352 cur = dirty_range_start;
1353 continue;
1354 }
1355
6648cedd 1356 em = btrfs_get_extent(inode, NULL, 0, cur, len);
c0347550 1357 if (IS_ERR(em)) {
61391d56 1358 ret = PTR_ERR_OR_ZERO(em);
5380311f 1359 goto out_error;
d1310b2e
CM
1360 }
1361
1362 extent_offset = cur - em->start;
40f76580 1363 em_end = extent_map_end(em);
6bc5636a
QW
1364 ASSERT(cur <= em_end);
1365 ASSERT(cur < end);
1366 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1367 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
f22b5dcb 1368
d1310b2e 1369 block_start = em->block_start;
6bc5636a
QW
1370 disk_bytenr = em->block_start + extent_offset;
1371
f22b5dcb
CH
1372 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1373 ASSERT(block_start != EXTENT_MAP_HOLE);
1374 ASSERT(block_start != EXTENT_MAP_INLINE);
1375
c5ef5c6c
QW
1376 /*
1377 * Note that em_end from extent_map_end() and dirty_range_end from
1378 * find_next_dirty_byte() are all exclusive
1379 */
1380 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d1310b2e
CM
1381 free_extent_map(em);
1382 em = NULL;
1383
d2a91064 1384 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 1385 if (!PageWriteback(page)) {
d4580fe2 1386 btrfs_err(inode->root->fs_info,
58409edd
DS
1387 "page %lu not writeback, cur %llu end %llu",
1388 page->index, cur, end);
d1310b2e 1389 }
7f3c74fb 1390
c5ef5c6c
QW
1391 /*
1392 * Although the PageDirty bit is cleared before entering this
1393 * function, subpage dirty bit is not cleared.
1394 * So clear subpage dirty bit here so next time we won't submit
1395 * page for range already written to disk.
1396 */
1397 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1398
55173337
CH
1399 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1400 cur - page_offset(page));
6bc5636a 1401 cur += iosize;
d1310b2e
CM
1402 nr++;
1403 }
5380311f
CH
1404
1405 btrfs_page_assert_not_dirty(fs_info, page);
1406 *nr_ret = nr;
1407 return 0;
1408
1409out_error:
cc1d0d93
QW
1410 /*
1411 * If we finish without problem, we should not only clear page dirty,
1412 * but also empty subpage dirty bits
1413 */
40f76580 1414 *nr_ret = nr;
40f76580
CM
1415 return ret;
1416}
1417
1418/*
1419 * the writepage semantics are similar to regular writepage. extent
1420 * records are inserted to lock ranges in the tree, and as dirty areas
1421 * are found, they are marked writeback. Then the lock bits are removed
1422 * and the end_io handler clears the writeback ranges
3065976b
QW
1423 *
1424 * Return 0 if everything goes well.
1425 * Return <0 for error.
40f76580 1426 */
72b505dc 1427static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
40f76580 1428{
8e1dec8e 1429 struct folio *folio = page_folio(page);
40f76580 1430 struct inode *inode = page->mapping->host;
cf3075fb 1431 const u64 page_start = page_offset(page);
40f76580
CM
1432 int ret;
1433 int nr = 0;
eb70d222 1434 size_t pg_offset;
40f76580 1435 loff_t i_size = i_size_read(inode);
09cbfeaf 1436 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 1437
72b505dc 1438 trace___extent_writepage(page, inode, bio_ctrl->wbc);
40f76580
CM
1439
1440 WARN_ON(!PageLocked(page));
1441
7073017a 1442 pg_offset = offset_in_page(i_size);
40f76580
CM
1443 if (page->index > end_index ||
1444 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
1445 folio_invalidate(folio, 0, folio_size(folio));
1446 folio_unlock(folio);
40f76580
CM
1447 return 0;
1448 }
1449
21a8935e 1450 if (page->index == end_index)
d048b9c2 1451 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 1452
32443de3 1453 ret = set_page_extent_mapped(page);
2b2553f1 1454 if (ret < 0)
32443de3 1455 goto done;
40f76580 1456
eb34dcea
CH
1457 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1458 if (ret == 1)
1459 return 0;
1460 if (ret)
1461 goto done;
40f76580 1462
72b505dc 1463 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
40f76580 1464 if (ret == 1)
169d2c87 1465 return 0;
40f76580 1466
9ecdbee8
CH
1467 bio_ctrl->wbc->nr_to_write--;
1468
d1310b2e
CM
1469done:
1470 if (nr == 0) {
1471 /* make sure the mapping tag for page dirty gets cleared */
1472 set_page_writeback(page);
1473 end_page_writeback(page);
1474 }
9783e4de
CH
1475 if (ret) {
1476 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1477 PAGE_SIZE, !ret);
1478 btrfs_page_clear_uptodate(btrfs_sb(inode->i_sb), page,
1479 page_start, PAGE_SIZE);
1480 mapping_set_error(page->mapping, ret);
1481 }
eb34dcea 1482 unlock_page(page);
3065976b 1483 ASSERT(ret <= 0);
40f76580 1484 return ret;
d1310b2e
CM
1485}
1486
fd8b2b61 1487void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 1488{
74316201
N
1489 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1490 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
1491}
1492
2e3c2513 1493/*
a3efb2f0 1494 * Lock extent buffer status and pages for writeback.
2e3c2513 1495 *
9fdd1601
CH
1496 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1497 * extent buffer is not dirty)
1498 * Return %true is the extent buffer is submitted to bio.
2e3c2513 1499 */
9fdd1601 1500static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
50b21d7a 1501 struct writeback_control *wbc)
0b32f4bb 1502{
9df76fb5 1503 struct btrfs_fs_info *fs_info = eb->fs_info;
9fdd1601 1504 bool ret = false;
0b32f4bb 1505
50b21d7a
CH
1506 btrfs_tree_lock(eb);
1507 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
0b32f4bb 1508 btrfs_tree_unlock(eb);
50b21d7a 1509 if (wbc->sync_mode != WB_SYNC_ALL)
9fdd1601 1510 return false;
50b21d7a
CH
1511 wait_on_extent_buffer_writeback(eb);
1512 btrfs_tree_lock(eb);
0b32f4bb
JB
1513 }
1514
51561ffe
JB
1515 /*
1516 * We need to do this to prevent races in people who check if the eb is
1517 * under IO since we can end up having no IO bits set for a short period
1518 * of time.
1519 */
1520 spin_lock(&eb->refs_lock);
0b32f4bb
JB
1521 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1522 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 1523 spin_unlock(&eb->refs_lock);
0b32f4bb 1524 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
1525 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1526 -eb->len,
1527 fs_info->dirty_metadata_batch);
9fdd1601 1528 ret = true;
51561ffe
JB
1529 } else {
1530 spin_unlock(&eb->refs_lock);
0b32f4bb 1531 }
0b32f4bb 1532 btrfs_tree_unlock(eb);
2e3c2513 1533 return ret;
0b32f4bb
JB
1534}
1535
cd88a4fd 1536static void set_btree_ioerr(struct extent_buffer *eb)
656f30db 1537{
5a2c6075 1538 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 1539
cd88a4fd 1540 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
656f30db 1541
c2e39305
JB
1542 /*
1543 * A read may stumble upon this buffer later, make sure that it gets an
1544 * error and knows there was an error.
1545 */
1546 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1547
68b85589
JB
1548 /*
1549 * We need to set the mapping with the io error as well because a write
1550 * error will flip the file system readonly, and then syncfs() will
1551 * return a 0 because we are readonly if we don't modify the err seq for
1552 * the superblock.
1553 */
cd88a4fd 1554 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
68b85589 1555
656f30db
FM
1556 /*
1557 * If writeback for a btree extent that doesn't belong to a log tree
1558 * failed, increment the counter transaction->eb_write_errors.
1559 * We do this because while the transaction is running and before it's
1560 * committing (when we call filemap_fdata[write|wait]_range against
1561 * the btree inode), we might have
1562 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1563 * returns an error or an error happens during writeback, when we're
1564 * committing the transaction we wouldn't know about it, since the pages
1565 * can be no longer dirty nor marked anymore for writeback (if a
1566 * subsequent modification to the extent buffer didn't happen before the
1567 * transaction commit), which makes filemap_fdata[write|wait]_range not
1568 * able to find the pages tagged with SetPageError at transaction
1569 * commit time. So if this happens we must abort the transaction,
1570 * otherwise we commit a super block with btree roots that point to
1571 * btree nodes/leafs whose content on disk is invalid - either garbage
1572 * or the content of some node/leaf from a past generation that got
1573 * cowed or deleted and is no longer valid.
1574 *
1575 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1576 * not be enough - we need to distinguish between log tree extents vs
1577 * non-log tree extents, and the next filemap_fdatawait_range() call
1578 * will catch and clear such errors in the mapping - and that call might
1579 * be from a log sync and not from a transaction commit. Also, checking
1580 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1581 * not done and would not be reliable - the eb might have been released
1582 * from memory and reading it back again means that flag would not be
1583 * set (since it's a runtime flag, not persisted on disk).
1584 *
1585 * Using the flags below in the btree inode also makes us achieve the
1586 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1587 * writeback for all dirty pages and before filemap_fdatawait_range()
1588 * is called, the writeback for all dirty pages had already finished
1589 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1590 * filemap_fdatawait_range() would return success, as it could not know
1591 * that writeback errors happened (the pages were no longer tagged for
1592 * writeback).
1593 */
1594 switch (eb->log_index) {
1595 case -1:
5a2c6075 1596 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
1597 break;
1598 case 0:
5a2c6075 1599 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
1600 break;
1601 case 1:
5a2c6075 1602 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
1603 break;
1604 default:
1605 BUG(); /* unexpected, logic error */
1606 }
1607}
1608
2f3186d8
QW
1609/*
1610 * The endio specific version which won't touch any unsafe spinlock in endio
1611 * context.
1612 */
1613static struct extent_buffer *find_extent_buffer_nolock(
1614 struct btrfs_fs_info *fs_info, u64 start)
1615{
1616 struct extent_buffer *eb;
1617
1618 rcu_read_lock();
01cd3909
DS
1619 eb = radix_tree_lookup(&fs_info->buffer_radix,
1620 start >> fs_info->sectorsize_bits);
2f3186d8
QW
1621 if (eb && atomic_inc_not_zero(&eb->refs)) {
1622 rcu_read_unlock();
1623 return eb;
1624 }
1625 rcu_read_unlock();
1626 return NULL;
1627}
1628
cd88a4fd 1629static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
2f3186d8 1630{
cd88a4fd
CH
1631 struct extent_buffer *eb = bbio->private;
1632 struct btrfs_fs_info *fs_info = eb->fs_info;
1633 bool uptodate = !bbio->bio.bi_status;
2f3186d8 1634 struct bvec_iter_all iter_all;
cd88a4fd
CH
1635 struct bio_vec *bvec;
1636 u32 bio_offset = 0;
2f3186d8 1637
cd88a4fd
CH
1638 if (!uptodate)
1639 set_btree_ioerr(eb);
fa04c165 1640
cd88a4fd
CH
1641 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1642 u64 start = eb->start + bio_offset;
2f3186d8 1643 struct page *page = bvec->bv_page;
cd88a4fd 1644 u32 len = bvec->bv_len;
2f3186d8 1645
011134f4 1646 if (!uptodate)
cd88a4fd 1647 btrfs_page_clear_uptodate(fs_info, page, start, len);
cd88a4fd
CH
1648 btrfs_page_clear_writeback(fs_info, page, start, len);
1649 bio_offset += len;
2f3186d8 1650 }
0b32f4bb 1651
cd88a4fd
CH
1652 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1653 smp_mb__after_atomic();
1654 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
0b32f4bb 1655
cd88a4fd 1656 bio_put(&bbio->bio);
0b32f4bb
JB
1657}
1658
fa04c165
QW
1659static void prepare_eb_write(struct extent_buffer *eb)
1660{
1661 u32 nritems;
1662 unsigned long start;
1663 unsigned long end;
1664
1665 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
fa04c165
QW
1666
1667 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1668 nritems = btrfs_header_nritems(eb);
1669 if (btrfs_header_level(eb) > 0) {
e23efd8e 1670 end = btrfs_node_key_ptr_offset(eb, nritems);
fa04c165
QW
1671 memzero_extent_buffer(eb, end, eb->len - end);
1672 } else {
1673 /*
1674 * Leaf:
1675 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1676 */
42c9419a 1677 start = btrfs_item_nr_offset(eb, nritems);
8009adf3 1678 end = btrfs_item_nr_offset(eb, 0);
3a3178c7
JB
1679 if (nritems == 0)
1680 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1681 else
1682 end += btrfs_item_offset(eb, nritems - 1);
fa04c165
QW
1683 memzero_extent_buffer(eb, start, end - start);
1684 }
1685}
1686
55173337 1687static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
50b21d7a 1688 struct writeback_control *wbc)
0b32f4bb 1689{
46672a44 1690 struct btrfs_fs_info *fs_info = eb->fs_info;
b51e6b4b 1691 struct btrfs_bio *bbio;
0b32f4bb 1692
fa04c165 1693 prepare_eb_write(eb);
35b6ddfa 1694
b51e6b4b
CH
1695 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1696 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
cd88a4fd 1697 eb->fs_info, extent_buffer_write_end_io, eb);
b51e6b4b 1698 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
46672a44 1699 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
b51e6b4b
CH
1700 wbc_init_bio(wbc, &bbio->bio);
1701 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1702 bbio->file_offset = eb->start;
46672a44
CH
1703 if (fs_info->nodesize < PAGE_SIZE) {
1704 struct page *p = eb->pages[0];
0b32f4bb 1705
81a79b6a 1706 lock_page(p);
46672a44
CH
1707 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1708 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1709 eb->len)) {
1710 clear_page_dirty_for_io(p);
1711 wbc->nr_to_write--;
1712 }
1713 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1714 wbc_account_cgroup_owner(wbc, p, eb->len);
0b32f4bb 1715 unlock_page(p);
46672a44
CH
1716 } else {
1717 for (int i = 0; i < num_extent_pages(eb); i++) {
1718 struct page *p = eb->pages[i];
1719
1720 lock_page(p);
1721 clear_page_dirty_for_io(p);
1722 set_page_writeback(p);
1723 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1724 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1725 wbc->nr_to_write--;
1726 unlock_page(p);
1727 }
0b32f4bb 1728 }
b51e6b4b 1729 btrfs_submit_bio(bbio, 0);
0b32f4bb
JB
1730}
1731
c4aec299
QW
1732/*
1733 * Submit one subpage btree page.
1734 *
1735 * The main difference to submit_eb_page() is:
1736 * - Page locking
1737 * For subpage, we don't rely on page locking at all.
1738 *
1739 * - Flush write bio
1740 * We only flush bio if we may be unable to fit current extent buffers into
1741 * current bio.
1742 *
1743 * Return >=0 for the number of submitted extent buffers.
1744 * Return <0 for fatal error.
1745 */
50b21d7a 1746static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
c4aec299
QW
1747{
1748 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1749 int submitted = 0;
1750 u64 page_start = page_offset(page);
1751 int bit_start = 0;
c4aec299 1752 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
c4aec299
QW
1753
1754 /* Lock and write each dirty extent buffers in the range */
72a69cd0 1755 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
1756 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1757 struct extent_buffer *eb;
1758 unsigned long flags;
1759 u64 start;
1760
1761 /*
1762 * Take private lock to ensure the subpage won't be detached
1763 * in the meantime.
1764 */
1765 spin_lock(&page->mapping->private_lock);
1766 if (!PagePrivate(page)) {
1767 spin_unlock(&page->mapping->private_lock);
1768 break;
1769 }
1770 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1771 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1772 subpage->bitmaps)) {
c4aec299
QW
1773 spin_unlock_irqrestore(&subpage->lock, flags);
1774 spin_unlock(&page->mapping->private_lock);
1775 bit_start++;
1776 continue;
1777 }
1778
1779 start = page_start + bit_start * fs_info->sectorsize;
1780 bit_start += sectors_per_node;
1781
1782 /*
1783 * Here we just want to grab the eb without touching extra
1784 * spin locks, so call find_extent_buffer_nolock().
1785 */
1786 eb = find_extent_buffer_nolock(fs_info, start);
1787 spin_unlock_irqrestore(&subpage->lock, flags);
1788 spin_unlock(&page->mapping->private_lock);
1789
1790 /*
1791 * The eb has already reached 0 refs thus find_extent_buffer()
1792 * doesn't return it. We don't need to write back such eb
1793 * anyway.
1794 */
1795 if (!eb)
1796 continue;
1797
50b21d7a 1798 if (lock_extent_buffer_for_io(eb, wbc)) {
46672a44 1799 write_one_eb(eb, wbc);
9fdd1601 1800 submitted++;
c4aec299 1801 }
c4aec299 1802 free_extent_buffer(eb);
c4aec299
QW
1803 }
1804 return submitted;
c4aec299
QW
1805}
1806
f91e0d0c
QW
1807/*
1808 * Submit all page(s) of one extent buffer.
1809 *
1810 * @page: the page of one extent buffer
1811 * @eb_context: to determine if we need to submit this page, if current page
1812 * belongs to this eb, we don't need to submit
1813 *
1814 * The caller should pass each page in their bytenr order, and here we use
1815 * @eb_context to determine if we have submitted pages of one extent buffer.
1816 *
1817 * If we have, we just skip until we hit a new page that doesn't belong to
1818 * current @eb_context.
1819 *
1820 * If not, we submit all the page(s) of the extent buffer.
1821 *
1822 * Return >0 if we have submitted the extent buffer successfully.
1823 * Return 0 if we don't need to submit the page, as it's already submitted by
1824 * previous call.
1825 * Return <0 for fatal error.
1826 */
50b21d7a 1827static int submit_eb_page(struct page *page, struct writeback_control *wbc,
f91e0d0c
QW
1828 struct extent_buffer **eb_context)
1829{
1830 struct address_space *mapping = page->mapping;
0bc09ca1 1831 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
1832 struct extent_buffer *eb;
1833 int ret;
1834
1835 if (!PagePrivate(page))
1836 return 0;
1837
fbca46eb 1838 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
50b21d7a 1839 return submit_eb_subpage(page, wbc);
c4aec299 1840
f91e0d0c
QW
1841 spin_lock(&mapping->private_lock);
1842 if (!PagePrivate(page)) {
1843 spin_unlock(&mapping->private_lock);
1844 return 0;
1845 }
1846
1847 eb = (struct extent_buffer *)page->private;
1848
1849 /*
1850 * Shouldn't happen and normally this would be a BUG_ON but no point
1851 * crashing the machine for something we can survive anyway.
1852 */
1853 if (WARN_ON(!eb)) {
1854 spin_unlock(&mapping->private_lock);
1855 return 0;
1856 }
1857
1858 if (eb == *eb_context) {
1859 spin_unlock(&mapping->private_lock);
1860 return 0;
1861 }
1862 ret = atomic_inc_not_zero(&eb->refs);
1863 spin_unlock(&mapping->private_lock);
1864 if (!ret)
1865 return 0;
1866
0bc09ca1
NA
1867 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
1868 /*
1869 * If for_sync, this hole will be filled with
1870 * trasnsaction commit.
1871 */
50b21d7a 1872 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
0bc09ca1
NA
1873 ret = -EAGAIN;
1874 else
1875 ret = 0;
1876 free_extent_buffer(eb);
1877 return ret;
1878 }
1879
f91e0d0c
QW
1880 *eb_context = eb;
1881
50b21d7a 1882 if (!lock_extent_buffer_for_io(eb, wbc)) {
0bc09ca1
NA
1883 btrfs_revert_meta_write_pointer(cache, eb);
1884 if (cache)
1885 btrfs_put_block_group(cache);
f91e0d0c 1886 free_extent_buffer(eb);
50b21d7a 1887 return 0;
f91e0d0c 1888 }
be1a1d7a 1889 if (cache) {
d3e29967
NB
1890 /*
1891 * Implies write in zoned mode. Mark the last eb in a block group.
1892 */
56fbb0a4 1893 btrfs_schedule_zone_finish_bg(cache, eb);
d3e29967 1894 btrfs_put_block_group(cache);
be1a1d7a 1895 }
50b21d7a 1896 write_one_eb(eb, wbc);
f91e0d0c 1897 free_extent_buffer(eb);
f91e0d0c
QW
1898 return 1;
1899}
1900
0b32f4bb
JB
1901int btree_write_cache_pages(struct address_space *mapping,
1902 struct writeback_control *wbc)
1903{
f91e0d0c 1904 struct extent_buffer *eb_context = NULL;
b3ff8f1d 1905 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
1906 int ret = 0;
1907 int done = 0;
1908 int nr_to_write_done = 0;
51c5cd3b
VMO
1909 struct folio_batch fbatch;
1910 unsigned int nr_folios;
0b32f4bb
JB
1911 pgoff_t index;
1912 pgoff_t end; /* Inclusive */
1913 int scanned = 0;
10bbd235 1914 xa_mark_t tag;
0b32f4bb 1915
51c5cd3b 1916 folio_batch_init(&fbatch);
0b32f4bb
JB
1917 if (wbc->range_cyclic) {
1918 index = mapping->writeback_index; /* Start from prev offset */
1919 end = -1;
556755a8
JB
1920 /*
1921 * Start from the beginning does not need to cycle over the
1922 * range, mark it as scanned.
1923 */
1924 scanned = (index == 0);
0b32f4bb 1925 } else {
09cbfeaf
KS
1926 index = wbc->range_start >> PAGE_SHIFT;
1927 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
1928 scanned = 1;
1929 }
1930 if (wbc->sync_mode == WB_SYNC_ALL)
1931 tag = PAGECACHE_TAG_TOWRITE;
1932 else
1933 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 1934 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
1935retry:
1936 if (wbc->sync_mode == WB_SYNC_ALL)
1937 tag_pages_for_writeback(mapping, index, end);
1938 while (!done && !nr_to_write_done && (index <= end) &&
51c5cd3b
VMO
1939 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1940 tag, &fbatch))) {
0b32f4bb
JB
1941 unsigned i;
1942
51c5cd3b
VMO
1943 for (i = 0; i < nr_folios; i++) {
1944 struct folio *folio = fbatch.folios[i];
0b32f4bb 1945
50b21d7a 1946 ret = submit_eb_page(&folio->page, wbc, &eb_context);
f91e0d0c 1947 if (ret == 0)
0b32f4bb 1948 continue;
f91e0d0c 1949 if (ret < 0) {
0b32f4bb 1950 done = 1;
0b32f4bb
JB
1951 break;
1952 }
0b32f4bb
JB
1953
1954 /*
1955 * the filesystem may choose to bump up nr_to_write.
1956 * We have to make sure to honor the new nr_to_write
1957 * at any time
1958 */
1959 nr_to_write_done = wbc->nr_to_write <= 0;
1960 }
51c5cd3b 1961 folio_batch_release(&fbatch);
0b32f4bb
JB
1962 cond_resched();
1963 }
1964 if (!scanned && !done) {
1965 /*
1966 * We hit the last page and there is more work to be done: wrap
1967 * back to the start of the file
1968 */
1969 scanned = 1;
1970 index = 0;
1971 goto retry;
1972 }
b3ff8f1d
QW
1973 /*
1974 * If something went wrong, don't allow any metadata write bio to be
1975 * submitted.
1976 *
1977 * This would prevent use-after-free if we had dirty pages not
1978 * cleaned up, which can still happen by fuzzed images.
1979 *
1980 * - Bad extent tree
1981 * Allowing existing tree block to be allocated for other trees.
1982 *
1983 * - Log tree operations
1984 * Exiting tree blocks get allocated to log tree, bumps its
1985 * generation, then get cleaned in tree re-balance.
1986 * Such tree block will not be written back, since it's clean,
1987 * thus no WRITTEN flag set.
1988 * And after log writes back, this tree block is not traced by
1989 * any dirty extent_io_tree.
1990 *
1991 * - Offending tree block gets re-dirtied from its original owner
1992 * Since it has bumped generation, no WRITTEN flag, it can be
1993 * reused without COWing. This tree block will not be traced
1994 * by btrfs_transaction::dirty_pages.
1995 *
1996 * Now such dirty tree block will not be cleaned by any dirty
1997 * extent io tree. Thus we don't want to submit such wild eb
1998 * if the fs already has error.
9845e5dd 1999 *
c9583ada
QW
2000 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2001 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2002 */
2003 if (ret > 0)
2004 ret = 0;
9845e5dd
CH
2005 if (!ret && BTRFS_FS_ERROR(fs_info))
2006 ret = -EROFS;
9845e5dd 2007 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
2008 return ret;
2009}
2010
43dd529a 2011/*
3bed2da1
NB
2012 * Walk the list of dirty pages of the given address space and write all of them.
2013 *
ee5f017d
DS
2014 * @mapping: address space structure to write
2015 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2016 * @bio_ctrl: holds context for the write, namely the bio
d1310b2e
CM
2017 *
2018 * If a page is already under I/O, write_cache_pages() skips it, even
2019 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2020 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2021 * and msync() need to guarantee that all the data which was dirty at the time
2022 * the call was made get new I/O started against them. If wbc->sync_mode is
2023 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2024 * existing IO to complete.
2025 */
4242b64a 2026static int extent_write_cache_pages(struct address_space *mapping,
ee5f017d 2027 struct btrfs_bio_ctrl *bio_ctrl)
d1310b2e 2028{
72b505dc 2029 struct writeback_control *wbc = bio_ctrl->wbc;
7fd1a3f7 2030 struct inode *inode = mapping->host;
d1310b2e
CM
2031 int ret = 0;
2032 int done = 0;
f85d7d6c 2033 int nr_to_write_done = 0;
9f50fd2e
VMO
2034 struct folio_batch fbatch;
2035 unsigned int nr_folios;
d1310b2e
CM
2036 pgoff_t index;
2037 pgoff_t end; /* Inclusive */
a9132667
LB
2038 pgoff_t done_index;
2039 int range_whole = 0;
d1310b2e 2040 int scanned = 0;
10bbd235 2041 xa_mark_t tag;
d1310b2e 2042
7fd1a3f7
JB
2043 /*
2044 * We have to hold onto the inode so that ordered extents can do their
2045 * work when the IO finishes. The alternative to this is failing to add
2046 * an ordered extent if the igrab() fails there and that is a huge pain
2047 * to deal with, so instead just hold onto the inode throughout the
2048 * writepages operation. If it fails here we are freeing up the inode
2049 * anyway and we'd rather not waste our time writing out stuff that is
2050 * going to be truncated anyway.
2051 */
2052 if (!igrab(inode))
2053 return 0;
2054
9f50fd2e 2055 folio_batch_init(&fbatch);
d1310b2e
CM
2056 if (wbc->range_cyclic) {
2057 index = mapping->writeback_index; /* Start from prev offset */
2058 end = -1;
556755a8
JB
2059 /*
2060 * Start from the beginning does not need to cycle over the
2061 * range, mark it as scanned.
2062 */
2063 scanned = (index == 0);
d1310b2e 2064 } else {
09cbfeaf
KS
2065 index = wbc->range_start >> PAGE_SHIFT;
2066 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
2067 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2068 range_whole = 1;
d1310b2e
CM
2069 scanned = 1;
2070 }
3cd24c69
EL
2071
2072 /*
2073 * We do the tagged writepage as long as the snapshot flush bit is set
2074 * and we are the first one who do the filemap_flush() on this inode.
2075 *
2076 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2077 * not race in and drop the bit.
2078 */
2079 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2080 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2081 &BTRFS_I(inode)->runtime_flags))
2082 wbc->tagged_writepages = 1;
2083
2084 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
2085 tag = PAGECACHE_TAG_TOWRITE;
2086 else
2087 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 2088retry:
3cd24c69 2089 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 2090 tag_pages_for_writeback(mapping, index, end);
a9132667 2091 done_index = index;
f85d7d6c 2092 while (!done && !nr_to_write_done && (index <= end) &&
9f50fd2e
VMO
2093 (nr_folios = filemap_get_folios_tag(mapping, &index,
2094 end, tag, &fbatch))) {
d1310b2e
CM
2095 unsigned i;
2096
9f50fd2e
VMO
2097 for (i = 0; i < nr_folios; i++) {
2098 struct folio *folio = fbatch.folios[i];
d1310b2e 2099
7b365a2a 2100 done_index = folio_next_index(folio);
d1310b2e 2101 /*
b93b0163
MW
2102 * At this point we hold neither the i_pages lock nor
2103 * the page lock: the page may be truncated or
2104 * invalidated (changing page->mapping to NULL),
2105 * or even swizzled back from swapper_space to
2106 * tmpfs file mapping
d1310b2e 2107 */
9f50fd2e 2108 if (!folio_trylock(folio)) {
ee5f017d 2109 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2110 folio_lock(folio);
01d658f2 2111 }
d1310b2e 2112
9f50fd2e
VMO
2113 if (unlikely(folio->mapping != mapping)) {
2114 folio_unlock(folio);
d1310b2e
CM
2115 continue;
2116 }
2117
5c256998
CH
2118 if (!folio_test_dirty(folio)) {
2119 /* Someone wrote it for us. */
2120 folio_unlock(folio);
2121 continue;
2122 }
2123
d2c3f4f6 2124 if (wbc->sync_mode != WB_SYNC_NONE) {
9f50fd2e 2125 if (folio_test_writeback(folio))
ee5f017d 2126 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2127 folio_wait_writeback(folio);
d2c3f4f6 2128 }
d1310b2e 2129
9f50fd2e
VMO
2130 if (folio_test_writeback(folio) ||
2131 !folio_clear_dirty_for_io(folio)) {
2132 folio_unlock(folio);
d1310b2e
CM
2133 continue;
2134 }
2135
72b505dc 2136 ret = __extent_writepage(&folio->page, bio_ctrl);
a9132667 2137 if (ret < 0) {
a9132667
LB
2138 done = 1;
2139 break;
2140 }
f85d7d6c
CM
2141
2142 /*
effa24f6 2143 * The filesystem may choose to bump up nr_to_write.
f85d7d6c 2144 * We have to make sure to honor the new nr_to_write
effa24f6 2145 * at any time.
f85d7d6c 2146 */
effa24f6
CH
2147 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2148 wbc->nr_to_write <= 0);
d1310b2e 2149 }
9f50fd2e 2150 folio_batch_release(&fbatch);
d1310b2e
CM
2151 cond_resched();
2152 }
894b36e3 2153 if (!scanned && !done) {
d1310b2e
CM
2154 /*
2155 * We hit the last page and there is more work to be done: wrap
2156 * back to the start of the file
2157 */
2158 scanned = 1;
2159 index = 0;
42ffb0bf
JB
2160
2161 /*
2162 * If we're looping we could run into a page that is locked by a
2163 * writer and that writer could be waiting on writeback for a
2164 * page in our current bio, and thus deadlock, so flush the
2165 * write bio here.
2166 */
ee5f017d 2167 submit_write_bio(bio_ctrl, 0);
c9583ada 2168 goto retry;
d1310b2e 2169 }
a9132667
LB
2170
2171 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2172 mapping->writeback_index = done_index;
2173
e55cf7ca 2174 btrfs_add_delayed_iput(BTRFS_I(inode));
894b36e3 2175 return ret;
d1310b2e 2176}
d1310b2e 2177
2bd0fc93
QW
2178/*
2179 * Submit the pages in the range to bio for call sites which delalloc range has
2180 * already been ran (aka, ordered extent inserted) and all pages are still
2181 * locked.
2182 */
7027f871
CH
2183int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
2184 struct writeback_control *wbc)
771ed689 2185{
2bd0fc93
QW
2186 bool found_error = false;
2187 int first_error = 0;
771ed689
CM
2188 int ret = 0;
2189 struct address_space *mapping = inode->i_mapping;
eb34dcea
CH
2190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2191 const u32 sectorsize = fs_info->sectorsize;
2192 loff_t i_size = i_size_read(inode);
2bd0fc93 2193 u64 cur = start;
c000bc04 2194 struct btrfs_bio_ctrl bio_ctrl = {
7027f871
CH
2195 .wbc = wbc,
2196 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
c000bc04 2197 };
771ed689 2198
7027f871
CH
2199 if (wbc->no_cgroup_owner)
2200 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2201
66448b9d 2202 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
66448b9d 2203
2bd0fc93 2204 while (cur <= end) {
66448b9d 2205 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
9783e4de 2206 u32 cur_len = cur_end + 1 - cur;
eb34dcea
CH
2207 struct page *page;
2208 int nr = 0;
66448b9d 2209
2bd0fc93
QW
2210 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2211 /*
2212 * All pages in the range are locked since
2213 * btrfs_run_delalloc_range(), thus there is no way to clear
2214 * the page dirty flag.
2215 */
66448b9d 2216 ASSERT(PageLocked(page));
2bd0fc93
QW
2217 ASSERT(PageDirty(page));
2218 clear_page_dirty_for_io(page);
eb34dcea
CH
2219
2220 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2221 i_size, &nr);
2222 if (ret == 1)
2223 goto next_page;
2224
2225 /* Make sure the mapping tag for page dirty gets cleared. */
2226 if (nr == 0) {
2227 set_page_writeback(page);
2228 end_page_writeback(page);
2229 }
9783e4de
CH
2230 if (ret) {
2231 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2232 cur, cur_len, !ret);
2233 btrfs_page_clear_uptodate(fs_info, page, cur, cur_len);
2234 mapping_set_error(page->mapping, ret);
2235 }
2236 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
2bd0fc93
QW
2237 if (ret < 0) {
2238 found_error = true;
2239 first_error = ret;
771ed689 2240 }
eb34dcea 2241next_page:
09cbfeaf 2242 put_page(page);
66448b9d 2243 cur = cur_end + 1;
771ed689
CM
2244 }
2245
ee5f017d 2246 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
dbb70bec 2247
2bd0fc93
QW
2248 if (found_error)
2249 return first_error;
771ed689
CM
2250 return ret;
2251}
d1310b2e 2252
8ae225a8 2253int extent_writepages(struct address_space *mapping,
d1310b2e
CM
2254 struct writeback_control *wbc)
2255{
35156d85 2256 struct inode *inode = mapping->host;
d1310b2e 2257 int ret = 0;
ee5f017d 2258 struct btrfs_bio_ctrl bio_ctrl = {
72b505dc 2259 .wbc = wbc,
c000bc04 2260 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
d1310b2e
CM
2261 };
2262
35156d85
JT
2263 /*
2264 * Allow only a single thread to do the reloc work in zoned mode to
2265 * protect the write pointer updates.
2266 */
869f4cdc 2267 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
72b505dc 2268 ret = extent_write_cache_pages(mapping, &bio_ctrl);
ee5f017d 2269 submit_write_bio(&bio_ctrl, ret);
19ab78ca 2270 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
2271 return ret;
2272}
d1310b2e 2273
ba206a02 2274void extent_readahead(struct readahead_control *rac)
d1310b2e 2275{
c000bc04 2276 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
67c9684f 2277 struct page *pagepool[16];
125bac01 2278 struct extent_map *em_cached = NULL;
808f80b4 2279 u64 prev_em_start = (u64)-1;
ba206a02 2280 int nr;
d1310b2e 2281
ba206a02 2282 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
2283 u64 contig_start = readahead_pos(rac);
2284 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 2285
ba206a02 2286 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 2287 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 2288 }
67c9684f 2289
125bac01
MX
2290 if (em_cached)
2291 free_extent_map(em_cached);
722c82ac 2292 submit_one_bio(&bio_ctrl);
d1310b2e 2293}
d1310b2e
CM
2294
2295/*
895586eb
MWO
2296 * basic invalidate_folio code, this waits on any locked or writeback
2297 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
2298 * records from the tree
2299 */
895586eb
MWO
2300int extent_invalidate_folio(struct extent_io_tree *tree,
2301 struct folio *folio, size_t offset)
d1310b2e 2302{
2ac55d41 2303 struct extent_state *cached_state = NULL;
895586eb
MWO
2304 u64 start = folio_pos(folio);
2305 u64 end = start + folio_size(folio) - 1;
2306 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
d1310b2e 2307
829ddec9
QW
2308 /* This function is only called for the btree inode */
2309 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2310
fda2832f 2311 start += ALIGN(offset, blocksize);
d1310b2e
CM
2312 if (start > end)
2313 return 0;
2314
570eb97b 2315 lock_extent(tree, start, end, &cached_state);
895586eb 2316 folio_wait_writeback(folio);
829ddec9
QW
2317
2318 /*
2319 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2320 * so here we only need to unlock the extent range to free any
2321 * existing extent state.
2322 */
570eb97b 2323 unlock_extent(tree, start, end, &cached_state);
d1310b2e
CM
2324 return 0;
2325}
d1310b2e 2326
7b13b7b1 2327/*
f913cff3 2328 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
2329 * are locked or under IO and drops the related state bits if it is safe
2330 * to drop the page.
2331 */
29c68b2d 2332static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 2333 struct page *page, gfp_t mask)
7b13b7b1 2334{
4eee4fa4 2335 u64 start = page_offset(page);
09cbfeaf 2336 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
2337 int ret = 1;
2338
8882679e 2339 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 2340 ret = 0;
8882679e 2341 } else {
b71fb16b
JB
2342 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2343 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2344
11ef160f 2345 /*
2766ff61
FM
2346 * At this point we can safely clear everything except the
2347 * locked bit, the nodatasum bit and the delalloc new bit.
2348 * The delalloc new bit will be cleared by ordered extent
2349 * completion.
11ef160f 2350 */
1d126800 2351 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
e3f24cc5
CM
2352
2353 /* if clear_extent_bit failed for enomem reasons,
2354 * we can't allow the release to continue.
2355 */
2356 if (ret < 0)
2357 ret = 0;
2358 else
2359 ret = 1;
7b13b7b1
CM
2360 }
2361 return ret;
2362}
7b13b7b1 2363
d1310b2e 2364/*
f913cff3 2365 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
2366 * in the range corresponding to the page, both state records and extent
2367 * map records are removed
2368 */
477a30ba 2369int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
2370{
2371 struct extent_map *em;
4eee4fa4 2372 u64 start = page_offset(page);
09cbfeaf 2373 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
2374 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2375 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2376 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 2377
d0164adc 2378 if (gfpflags_allow_blocking(mask) &&
ee22184b 2379 page->mapping->host->i_size > SZ_16M) {
39b5637f 2380 u64 len;
70dec807 2381 while (start <= end) {
fbc2bd7e
FM
2382 struct btrfs_fs_info *fs_info;
2383 u64 cur_gen;
2384
39b5637f 2385 len = end - start + 1;
890871be 2386 write_lock(&map->lock);
39b5637f 2387 em = lookup_extent_mapping(map, start, len);
285190d9 2388 if (!em) {
890871be 2389 write_unlock(&map->lock);
70dec807
CM
2390 break;
2391 }
7f3c74fb
CM
2392 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2393 em->start != start) {
890871be 2394 write_unlock(&map->lock);
70dec807
CM
2395 free_extent_map(em);
2396 break;
2397 }
3d6448e6
FM
2398 if (test_range_bit(tree, em->start,
2399 extent_map_end(em) - 1,
2400 EXTENT_LOCKED, 0, NULL))
2401 goto next;
2402 /*
2403 * If it's not in the list of modified extents, used
2404 * by a fast fsync, we can remove it. If it's being
2405 * logged we can safely remove it since fsync took an
2406 * extra reference on the em.
2407 */
2408 if (list_empty(&em->list) ||
fbc2bd7e
FM
2409 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2410 goto remove_em;
2411 /*
2412 * If it's in the list of modified extents, remove it
2413 * only if its generation is older then the current one,
2414 * in which case we don't need it for a fast fsync.
2415 * Otherwise don't remove it, we could be racing with an
2416 * ongoing fast fsync that could miss the new extent.
2417 */
2418 fs_info = btrfs_inode->root->fs_info;
2419 spin_lock(&fs_info->trans_lock);
2420 cur_gen = fs_info->generation;
2421 spin_unlock(&fs_info->trans_lock);
2422 if (em->generation >= cur_gen)
2423 goto next;
2424remove_em:
5e548b32
FM
2425 /*
2426 * We only remove extent maps that are not in the list of
2427 * modified extents or that are in the list but with a
2428 * generation lower then the current generation, so there
2429 * is no need to set the full fsync flag on the inode (it
2430 * hurts the fsync performance for workloads with a data
2431 * size that exceeds or is close to the system's memory).
2432 */
fbc2bd7e
FM
2433 remove_extent_mapping(map, em);
2434 /* once for the rb tree */
2435 free_extent_map(em);
3d6448e6 2436next:
70dec807 2437 start = extent_map_end(em);
890871be 2438 write_unlock(&map->lock);
70dec807
CM
2439
2440 /* once for us */
d1310b2e 2441 free_extent_map(em);
9f47eb54
PM
2442
2443 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 2444 }
d1310b2e 2445 }
29c68b2d 2446 return try_release_extent_state(tree, page, mask);
d1310b2e 2447}
d1310b2e 2448
4751832d
QW
2449/*
2450 * To cache previous fiemap extent
2451 *
2452 * Will be used for merging fiemap extent
2453 */
2454struct fiemap_cache {
2455 u64 offset;
2456 u64 phys;
2457 u64 len;
2458 u32 flags;
2459 bool cached;
2460};
2461
2462/*
2463 * Helper to submit fiemap extent.
2464 *
2465 * Will try to merge current fiemap extent specified by @offset, @phys,
2466 * @len and @flags with cached one.
2467 * And only when we fails to merge, cached one will be submitted as
2468 * fiemap extent.
2469 *
2470 * Return value is the same as fiemap_fill_next_extent().
2471 */
2472static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2473 struct fiemap_cache *cache,
2474 u64 offset, u64 phys, u64 len, u32 flags)
2475{
2476 int ret = 0;
2477
ac3c0d36
FM
2478 /* Set at the end of extent_fiemap(). */
2479 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2480
4751832d
QW
2481 if (!cache->cached)
2482 goto assign;
2483
2484 /*
2485 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 2486 * fiemap extent won't overlap with cached one.
4751832d
QW
2487 * Not recoverable.
2488 *
2489 * NOTE: Physical address can overlap, due to compression
2490 */
2491 if (cache->offset + cache->len > offset) {
2492 WARN_ON(1);
2493 return -EINVAL;
2494 }
2495
2496 /*
2497 * Only merges fiemap extents if
2498 * 1) Their logical addresses are continuous
2499 *
2500 * 2) Their physical addresses are continuous
2501 * So truly compressed (physical size smaller than logical size)
2502 * extents won't get merged with each other
2503 *
ac3c0d36 2504 * 3) Share same flags
4751832d
QW
2505 */
2506 if (cache->offset + cache->len == offset &&
2507 cache->phys + cache->len == phys &&
ac3c0d36 2508 cache->flags == flags) {
4751832d 2509 cache->len += len;
ac3c0d36 2510 return 0;
4751832d
QW
2511 }
2512
2513 /* Not mergeable, need to submit cached one */
2514 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2515 cache->len, cache->flags);
2516 cache->cached = false;
2517 if (ret)
2518 return ret;
2519assign:
2520 cache->cached = true;
2521 cache->offset = offset;
2522 cache->phys = phys;
2523 cache->len = len;
2524 cache->flags = flags;
ac3c0d36
FM
2525
2526 return 0;
4751832d
QW
2527}
2528
2529/*
848c23b7 2530 * Emit last fiemap cache
4751832d 2531 *
848c23b7
QW
2532 * The last fiemap cache may still be cached in the following case:
2533 * 0 4k 8k
2534 * |<- Fiemap range ->|
2535 * |<------------ First extent ----------->|
2536 *
2537 * In this case, the first extent range will be cached but not emitted.
2538 * So we must emit it before ending extent_fiemap().
4751832d 2539 */
5c5aff98 2540static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 2541 struct fiemap_cache *cache)
4751832d
QW
2542{
2543 int ret;
2544
2545 if (!cache->cached)
2546 return 0;
2547
4751832d
QW
2548 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2549 cache->len, cache->flags);
2550 cache->cached = false;
2551 if (ret > 0)
2552 ret = 0;
2553 return ret;
2554}
2555
ac3c0d36 2556static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
1506fcc8 2557{
ac3c0d36
FM
2558 struct extent_buffer *clone;
2559 struct btrfs_key key;
2560 int slot;
2561 int ret;
2562
2563 path->slots[0]++;
2564 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2565 return 0;
2566
2567 ret = btrfs_next_leaf(inode->root, path);
2568 if (ret != 0)
2569 return ret;
2570
2571 /*
2572 * Don't bother with cloning if there are no more file extent items for
2573 * our inode.
2574 */
2575 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2576 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2577 return 1;
2578
2579 /* See the comment at fiemap_search_slot() about why we clone. */
2580 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2581 if (!clone)
2582 return -ENOMEM;
2583
2584 slot = path->slots[0];
2585 btrfs_release_path(path);
2586 path->nodes[0] = clone;
2587 path->slots[0] = slot;
2588
2589 return 0;
2590}
2591
2592/*
2593 * Search for the first file extent item that starts at a given file offset or
2594 * the one that starts immediately before that offset.
2595 * Returns: 0 on success, < 0 on error, 1 if not found.
2596 */
2597static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2598 u64 file_offset)
2599{
2600 const u64 ino = btrfs_ino(inode);
facee0a0 2601 struct btrfs_root *root = inode->root;
ac3c0d36
FM
2602 struct extent_buffer *clone;
2603 struct btrfs_key key;
2604 int slot;
2605 int ret;
1506fcc8 2606
ac3c0d36
FM
2607 key.objectid = ino;
2608 key.type = BTRFS_EXTENT_DATA_KEY;
2609 key.offset = file_offset;
2610
2611 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2612 if (ret < 0)
2613 return ret;
2614
2615 if (ret > 0 && path->slots[0] > 0) {
2616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2617 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2618 path->slots[0]--;
2619 }
2620
2621 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2622 ret = btrfs_next_leaf(root, path);
2623 if (ret != 0)
2624 return ret;
2625
2626 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2627 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2628 return 1;
5911c8fe
DS
2629 }
2630
15c7745c 2631 /*
ac3c0d36
FM
2632 * We clone the leaf and use it during fiemap. This is because while
2633 * using the leaf we do expensive things like checking if an extent is
2634 * shared, which can take a long time. In order to prevent blocking
2635 * other tasks for too long, we use a clone of the leaf. We have locked
2636 * the file range in the inode's io tree, so we know none of our file
2637 * extent items can change. This way we avoid blocking other tasks that
2638 * want to insert items for other inodes in the same leaf or b+tree
2639 * rebalance operations (triggered for example when someone is trying
2640 * to push items into this leaf when trying to insert an item in a
2641 * neighbour leaf).
2642 * We also need the private clone because holding a read lock on an
2643 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2644 * when we call fiemap_fill_next_extent(), because that may cause a page
2645 * fault when filling the user space buffer with fiemap data.
15c7745c 2646 */
ac3c0d36
FM
2647 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2648 if (!clone)
2649 return -ENOMEM;
2650
2651 slot = path->slots[0];
2652 btrfs_release_path(path);
2653 path->nodes[0] = clone;
2654 path->slots[0] = slot;
2655
2656 return 0;
2657}
2658
2659/*
2660 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2661 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2662 * extent. The end offset (@end) is inclusive.
2663 */
2664static int fiemap_process_hole(struct btrfs_inode *inode,
2665 struct fiemap_extent_info *fieinfo,
2666 struct fiemap_cache *cache,
b3e744fe 2667 struct extent_state **delalloc_cached_state,
61dbb952 2668 struct btrfs_backref_share_check_ctx *backref_ctx,
ac3c0d36
FM
2669 u64 disk_bytenr, u64 extent_offset,
2670 u64 extent_gen,
ac3c0d36
FM
2671 u64 start, u64 end)
2672{
2673 const u64 i_size = i_size_read(&inode->vfs_inode);
ac3c0d36
FM
2674 u64 cur_offset = start;
2675 u64 last_delalloc_end = 0;
2676 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2677 bool checked_extent_shared = false;
2678 int ret;
4d479cf0 2679
ec29ed5b 2680 /*
ac3c0d36
FM
2681 * There can be no delalloc past i_size, so don't waste time looking for
2682 * it beyond i_size.
ec29ed5b 2683 */
ac3c0d36
FM
2684 while (cur_offset < end && cur_offset < i_size) {
2685 u64 delalloc_start;
2686 u64 delalloc_end;
2687 u64 prealloc_start;
2688 u64 prealloc_len = 0;
2689 bool delalloc;
2690
2691 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
b3e744fe 2692 delalloc_cached_state,
ac3c0d36
FM
2693 &delalloc_start,
2694 &delalloc_end);
2695 if (!delalloc)
2696 break;
2d324f59 2697
ec29ed5b 2698 /*
ac3c0d36
FM
2699 * If this is a prealloc extent we have to report every section
2700 * of it that has no delalloc.
ec29ed5b 2701 */
ac3c0d36
FM
2702 if (disk_bytenr != 0) {
2703 if (last_delalloc_end == 0) {
2704 prealloc_start = start;
2705 prealloc_len = delalloc_start - start;
2706 } else {
2707 prealloc_start = last_delalloc_end + 1;
2708 prealloc_len = delalloc_start - prealloc_start;
2709 }
2710 }
2711
2712 if (prealloc_len > 0) {
2713 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da 2714 ret = btrfs_is_data_extent_shared(inode,
84a7949d
FM
2715 disk_bytenr,
2716 extent_gen,
2717 backref_ctx);
ac3c0d36
FM
2718 if (ret < 0)
2719 return ret;
2720 else if (ret > 0)
2721 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2722
2723 checked_extent_shared = true;
2724 }
2725 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2726 disk_bytenr + extent_offset,
2727 prealloc_len, prealloc_flags);
2728 if (ret)
2729 return ret;
2730 extent_offset += prealloc_len;
2731 }
2732
2733 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2734 delalloc_end + 1 - delalloc_start,
2735 FIEMAP_EXTENT_DELALLOC |
2736 FIEMAP_EXTENT_UNKNOWN);
2737 if (ret)
2738 return ret;
2739
2740 last_delalloc_end = delalloc_end;
2741 cur_offset = delalloc_end + 1;
2742 extent_offset += cur_offset - delalloc_start;
2743 cond_resched();
2744 }
2745
2746 /*
2747 * Either we found no delalloc for the whole prealloc extent or we have
2748 * a prealloc extent that spans i_size or starts at or after i_size.
2749 */
2750 if (disk_bytenr != 0 && last_delalloc_end < end) {
2751 u64 prealloc_start;
2752 u64 prealloc_len;
2753
2754 if (last_delalloc_end == 0) {
2755 prealloc_start = start;
2756 prealloc_len = end + 1 - start;
2757 } else {
2758 prealloc_start = last_delalloc_end + 1;
2759 prealloc_len = end + 1 - prealloc_start;
2760 }
2761
2762 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da
FM
2763 ret = btrfs_is_data_extent_shared(inode,
2764 disk_bytenr,
84a7949d 2765 extent_gen,
61dbb952 2766 backref_ctx);
ac3c0d36
FM
2767 if (ret < 0)
2768 return ret;
2769 else if (ret > 0)
2770 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2771 }
2772 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2773 disk_bytenr + extent_offset,
2774 prealloc_len, prealloc_flags);
2775 if (ret)
2776 return ret;
2777 }
2778
2779 return 0;
2780}
2781
2782static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2783 struct btrfs_path *path,
2784 u64 *last_extent_end_ret)
2785{
2786 const u64 ino = btrfs_ino(inode);
2787 struct btrfs_root *root = inode->root;
2788 struct extent_buffer *leaf;
2789 struct btrfs_file_extent_item *ei;
2790 struct btrfs_key key;
2791 u64 disk_bytenr;
2792 int ret;
2793
2794 /*
2795 * Lookup the last file extent. We're not using i_size here because
2796 * there might be preallocation past i_size.
2797 */
2798 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2799 /* There can't be a file extent item at offset (u64)-1 */
2800 ASSERT(ret != 0);
2801 if (ret < 0)
2802 return ret;
2803
2804 /*
2805 * For a non-existing key, btrfs_search_slot() always leaves us at a
2806 * slot > 0, except if the btree is empty, which is impossible because
2807 * at least it has the inode item for this inode and all the items for
2808 * the root inode 256.
2809 */
2810 ASSERT(path->slots[0] > 0);
2811 path->slots[0]--;
2812 leaf = path->nodes[0];
2813 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2814 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2815 /* No file extent items in the subvolume tree. */
2816 *last_extent_end_ret = 0;
2817 return 0;
975f84fe 2818 }
975f84fe 2819
ec29ed5b 2820 /*
ac3c0d36
FM
2821 * For an inline extent, the disk_bytenr is where inline data starts at,
2822 * so first check if we have an inline extent item before checking if we
2823 * have an implicit hole (disk_bytenr == 0).
ec29ed5b 2824 */
ac3c0d36
FM
2825 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2826 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2827 *last_extent_end_ret = btrfs_file_extent_end(path);
2828 return 0;
ec29ed5b
CM
2829 }
2830
ac3c0d36
FM
2831 /*
2832 * Find the last file extent item that is not a hole (when NO_HOLES is
2833 * not enabled). This should take at most 2 iterations in the worst
2834 * case: we have one hole file extent item at slot 0 of a leaf and
2835 * another hole file extent item as the last item in the previous leaf.
2836 * This is because we merge file extent items that represent holes.
2837 */
2838 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2839 while (disk_bytenr == 0) {
2840 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2841 if (ret < 0) {
2842 return ret;
2843 } else if (ret > 0) {
2844 /* No file extent items that are not holes. */
2845 *last_extent_end_ret = 0;
2846 return 0;
2847 }
2848 leaf = path->nodes[0];
2849 ei = btrfs_item_ptr(leaf, path->slots[0],
2850 struct btrfs_file_extent_item);
2851 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2852 }
ec29ed5b 2853
ac3c0d36
FM
2854 *last_extent_end_ret = btrfs_file_extent_end(path);
2855 return 0;
2856}
2857
2858int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2859 u64 start, u64 len)
2860{
2861 const u64 ino = btrfs_ino(inode);
2862 struct extent_state *cached_state = NULL;
b3e744fe 2863 struct extent_state *delalloc_cached_state = NULL;
ac3c0d36 2864 struct btrfs_path *path;
ac3c0d36 2865 struct fiemap_cache cache = { 0 };
61dbb952 2866 struct btrfs_backref_share_check_ctx *backref_ctx;
ac3c0d36
FM
2867 u64 last_extent_end;
2868 u64 prev_extent_end;
2869 u64 lockstart;
2870 u64 lockend;
2871 bool stopped = false;
2872 int ret;
2873
84a7949d 2874 backref_ctx = btrfs_alloc_backref_share_check_ctx();
ac3c0d36 2875 path = btrfs_alloc_path();
84a7949d 2876 if (!backref_ctx || !path) {
ac3c0d36 2877 ret = -ENOMEM;
1506fcc8
YS
2878 goto out;
2879 }
975f84fe 2880
ceb707da
FM
2881 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2882 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
ac3c0d36 2883 prev_extent_end = lockstart;
ea8efc74 2884
519b7e13 2885 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
570eb97b 2886 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ea8efc74 2887
ac3c0d36
FM
2888 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2889 if (ret < 0)
2890 goto out_unlock;
2891 btrfs_release_path(path);
1506fcc8 2892
ac3c0d36
FM
2893 path->reada = READA_FORWARD;
2894 ret = fiemap_search_slot(inode, path, lockstart);
2895 if (ret < 0) {
2896 goto out_unlock;
2897 } else if (ret > 0) {
ea8efc74 2898 /*
ac3c0d36
FM
2899 * No file extent item found, but we may have delalloc between
2900 * the current offset and i_size. So check for that.
ea8efc74 2901 */
ac3c0d36
FM
2902 ret = 0;
2903 goto check_eof_delalloc;
2904 }
2905
2906 while (prev_extent_end < lockend) {
2907 struct extent_buffer *leaf = path->nodes[0];
2908 struct btrfs_file_extent_item *ei;
2909 struct btrfs_key key;
2910 u64 extent_end;
2911 u64 extent_len;
2912 u64 extent_offset = 0;
2913 u64 extent_gen;
2914 u64 disk_bytenr = 0;
2915 u64 flags = 0;
2916 int extent_type;
2917 u8 compression;
2918
2919 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2920 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2921 break;
2922
2923 extent_end = btrfs_file_extent_end(path);
1506fcc8 2924
ea8efc74 2925 /*
ac3c0d36
FM
2926 * The first iteration can leave us at an extent item that ends
2927 * before our range's start. Move to the next item.
ea8efc74 2928 */
ac3c0d36
FM
2929 if (extent_end <= lockstart)
2930 goto next_item;
fe09e16c 2931
877c1476
FM
2932 backref_ctx->curr_leaf_bytenr = leaf->start;
2933
ac3c0d36
FM
2934 /* We have in implicit hole (NO_HOLES feature enabled). */
2935 if (prev_extent_end < key.offset) {
2936 const u64 range_end = min(key.offset, lockend) - 1;
b8f164e3 2937
ac3c0d36 2938 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2939 &delalloc_cached_state,
61dbb952 2940 backref_ctx, 0, 0, 0,
ac3c0d36
FM
2941 prev_extent_end, range_end);
2942 if (ret < 0) {
2943 goto out_unlock;
2944 } else if (ret > 0) {
2945 /* fiemap_fill_next_extent() told us to stop. */
2946 stopped = true;
2947 break;
2948 }
1506fcc8 2949
ac3c0d36
FM
2950 /* We've reached the end of the fiemap range, stop. */
2951 if (key.offset >= lockend) {
2952 stopped = true;
2953 break;
2954 }
1506fcc8
YS
2955 }
2956
ac3c0d36
FM
2957 extent_len = extent_end - key.offset;
2958 ei = btrfs_item_ptr(leaf, path->slots[0],
2959 struct btrfs_file_extent_item);
2960 compression = btrfs_file_extent_compression(leaf, ei);
2961 extent_type = btrfs_file_extent_type(leaf, ei);
2962 extent_gen = btrfs_file_extent_generation(leaf, ei);
2963
2964 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2965 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2966 if (compression == BTRFS_COMPRESS_NONE)
2967 extent_offset = btrfs_file_extent_offset(leaf, ei);
ec29ed5b 2968 }
ac3c0d36
FM
2969
2970 if (compression != BTRFS_COMPRESS_NONE)
2971 flags |= FIEMAP_EXTENT_ENCODED;
2972
2973 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2974 flags |= FIEMAP_EXTENT_DATA_INLINE;
2975 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2976 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2977 extent_len, flags);
2978 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2979 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2980 &delalloc_cached_state,
61dbb952 2981 backref_ctx,
ac3c0d36 2982 disk_bytenr, extent_offset,
84a7949d
FM
2983 extent_gen, key.offset,
2984 extent_end - 1);
ac3c0d36
FM
2985 } else if (disk_bytenr == 0) {
2986 /* We have an explicit hole. */
2987 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2988 &delalloc_cached_state,
61dbb952 2989 backref_ctx, 0, 0, 0,
ac3c0d36
FM
2990 key.offset, extent_end - 1);
2991 } else {
2992 /* We have a regular extent. */
2993 if (fieinfo->fi_extents_max) {
ceb707da 2994 ret = btrfs_is_data_extent_shared(inode,
ac3c0d36
FM
2995 disk_bytenr,
2996 extent_gen,
61dbb952 2997 backref_ctx);
ac3c0d36
FM
2998 if (ret < 0)
2999 goto out_unlock;
3000 else if (ret > 0)
3001 flags |= FIEMAP_EXTENT_SHARED;
3002 }
3003
3004 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3005 disk_bytenr + extent_offset,
3006 extent_len, flags);
975f84fe 3007 }
ac3c0d36
FM
3008
3009 if (ret < 0) {
3010 goto out_unlock;
3011 } else if (ret > 0) {
3012 /* fiemap_fill_next_extent() told us to stop. */
3013 stopped = true;
3014 break;
26e726af 3015 }
09fbc1c8 3016
ac3c0d36
FM
3017 prev_extent_end = extent_end;
3018next_item:
09fbc1c8
FM
3019 if (fatal_signal_pending(current)) {
3020 ret = -EINTR;
ac3c0d36 3021 goto out_unlock;
09fbc1c8 3022 }
ac3c0d36
FM
3023
3024 ret = fiemap_next_leaf_item(inode, path);
3025 if (ret < 0) {
3026 goto out_unlock;
3027 } else if (ret > 0) {
3028 /* No more file extent items for this inode. */
3029 break;
3030 }
3031 cond_resched();
1506fcc8 3032 }
5911c8fe 3033
ac3c0d36
FM
3034check_eof_delalloc:
3035 /*
3036 * Release (and free) the path before emitting any final entries to
3037 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3038 * once we find no more file extent items exist, we may have a
3039 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3040 * faults when copying data to the user space buffer.
3041 */
3042 btrfs_free_path(path);
3043 path = NULL;
3044
3045 if (!stopped && prev_extent_end < lockend) {
b3e744fe
FM
3046 ret = fiemap_process_hole(inode, fieinfo, &cache,
3047 &delalloc_cached_state, backref_ctx,
84a7949d 3048 0, 0, 0, prev_extent_end, lockend - 1);
ac3c0d36
FM
3049 if (ret < 0)
3050 goto out_unlock;
3051 prev_extent_end = lockend;
3052 }
3053
3054 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3055 const u64 i_size = i_size_read(&inode->vfs_inode);
3056
3057 if (prev_extent_end < i_size) {
3058 u64 delalloc_start;
3059 u64 delalloc_end;
3060 bool delalloc;
3061
3062 delalloc = btrfs_find_delalloc_in_range(inode,
3063 prev_extent_end,
3064 i_size - 1,
b3e744fe 3065 &delalloc_cached_state,
ac3c0d36
FM
3066 &delalloc_start,
3067 &delalloc_end);
3068 if (!delalloc)
3069 cache.flags |= FIEMAP_EXTENT_LAST;
3070 } else {
3071 cache.flags |= FIEMAP_EXTENT_LAST;
3072 }
3073 }
3074
3075 ret = emit_last_fiemap_cache(fieinfo, &cache);
3076
3077out_unlock:
570eb97b 3078 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
519b7e13 3079 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
ac3c0d36 3080out:
b3e744fe 3081 free_extent_state(delalloc_cached_state);
84a7949d 3082 btrfs_free_backref_share_ctx(backref_ctx);
e02d48ea 3083 btrfs_free_path(path);
1506fcc8
YS
3084 return ret;
3085}
3086
727011e0
CM
3087static void __free_extent_buffer(struct extent_buffer *eb)
3088{
727011e0
CM
3089 kmem_cache_free(extent_buffer_cache, eb);
3090}
3091
7f26fb1c 3092static int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436 3093{
113fa05c 3094 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
db7f3436
JB
3095 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3096}
3097
8ff8466d 3098static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 3099{
8ff8466d 3100 struct btrfs_subpage *subpage;
db7f3436 3101
8ff8466d 3102 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 3103
8ff8466d
QW
3104 if (PagePrivate(page)) {
3105 subpage = (struct btrfs_subpage *)page->private;
3106 if (atomic_read(&subpage->eb_refs))
3107 return true;
3d078efa
QW
3108 /*
3109 * Even there is no eb refs here, we may still have
3110 * end_page_read() call relying on page::private.
3111 */
3112 if (atomic_read(&subpage->readers))
3113 return true;
8ff8466d
QW
3114 }
3115 return false;
3116}
db7f3436 3117
8ff8466d
QW
3118static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3119{
3120 struct btrfs_fs_info *fs_info = eb->fs_info;
3121 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3122
3123 /*
3124 * For mapped eb, we're going to change the page private, which should
3125 * be done under the private_lock.
3126 */
3127 if (mapped)
3128 spin_lock(&page->mapping->private_lock);
3129
3130 if (!PagePrivate(page)) {
5d2361db 3131 if (mapped)
8ff8466d
QW
3132 spin_unlock(&page->mapping->private_lock);
3133 return;
3134 }
3135
fbca46eb 3136 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
3137 /*
3138 * We do this since we'll remove the pages after we've
3139 * removed the eb from the radix tree, so we could race
3140 * and have this page now attached to the new eb. So
3141 * only clear page_private if it's still connected to
3142 * this eb.
3143 */
3144 if (PagePrivate(page) &&
3145 page->private == (unsigned long)eb) {
3146 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3147 BUG_ON(PageDirty(page));
3148 BUG_ON(PageWriteback(page));
db7f3436 3149 /*
5d2361db
FL
3150 * We need to make sure we haven't be attached
3151 * to a new eb.
db7f3436 3152 */
d1b89bc0 3153 detach_page_private(page);
db7f3436 3154 }
5d2361db
FL
3155 if (mapped)
3156 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
3157 return;
3158 }
3159
3160 /*
3161 * For subpage, we can have dummy eb with page private. In this case,
3162 * we can directly detach the private as such page is only attached to
3163 * one dummy eb, no sharing.
3164 */
3165 if (!mapped) {
3166 btrfs_detach_subpage(fs_info, page);
3167 return;
3168 }
3169
3170 btrfs_page_dec_eb_refs(fs_info, page);
3171
3172 /*
3173 * We can only detach the page private if there are no other ebs in the
3d078efa 3174 * page range and no unfinished IO.
8ff8466d
QW
3175 */
3176 if (!page_range_has_eb(fs_info, page))
3177 btrfs_detach_subpage(fs_info, page);
3178
3179 spin_unlock(&page->mapping->private_lock);
3180}
3181
3182/* Release all pages attached to the extent buffer */
3183static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3184{
3185 int i;
3186 int num_pages;
3187
3188 ASSERT(!extent_buffer_under_io(eb));
3189
3190 num_pages = num_extent_pages(eb);
3191 for (i = 0; i < num_pages; i++) {
3192 struct page *page = eb->pages[i];
3193
3194 if (!page)
3195 continue;
3196
3197 detach_extent_buffer_page(eb, page);
5d2361db 3198
01327610 3199 /* One for when we allocated the page */
09cbfeaf 3200 put_page(page);
d64766fd 3201 }
db7f3436
JB
3202}
3203
3204/*
3205 * Helper for releasing the extent buffer.
3206 */
3207static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3208{
55ac0139 3209 btrfs_release_extent_buffer_pages(eb);
a40246e8 3210 btrfs_leak_debug_del_eb(eb);
db7f3436
JB
3211 __free_extent_buffer(eb);
3212}
3213
f28491e0
JB
3214static struct extent_buffer *
3215__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 3216 unsigned long len)
d1310b2e
CM
3217{
3218 struct extent_buffer *eb = NULL;
3219
d1b5c567 3220 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
3221 eb->start = start;
3222 eb->len = len;
f28491e0 3223 eb->fs_info = fs_info;
196d59ab 3224 init_rwsem(&eb->lock);
b4ce94de 3225
a40246e8 3226 btrfs_leak_debug_add_eb(eb);
6d49ba1b 3227
3083ee2e 3228 spin_lock_init(&eb->refs_lock);
d1310b2e 3229 atomic_set(&eb->refs, 1);
727011e0 3230
deb67895 3231 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
3232
3233 return eb;
3234}
3235
2b48966a 3236struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 3237{
cc5e31a4 3238 int i;
815a51c7 3239 struct extent_buffer *new;
cc5e31a4 3240 int num_pages = num_extent_pages(src);
dd137dd1 3241 int ret;
815a51c7 3242
3f556f78 3243 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
3244 if (new == NULL)
3245 return NULL;
3246
62c053fb
QW
3247 /*
3248 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3249 * btrfs_release_extent_buffer() have different behavior for
3250 * UNMAPPED subpage extent buffer.
3251 */
3252 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3253
dd137dd1
STD
3254 ret = btrfs_alloc_page_array(num_pages, new->pages);
3255 if (ret) {
3256 btrfs_release_extent_buffer(new);
3257 return NULL;
3258 }
3259
815a51c7 3260 for (i = 0; i < num_pages; i++) {
760f991f 3261 int ret;
dd137dd1 3262 struct page *p = new->pages[i];
760f991f 3263
760f991f
QW
3264 ret = attach_extent_buffer_page(new, p, NULL);
3265 if (ret < 0) {
760f991f
QW
3266 btrfs_release_extent_buffer(new);
3267 return NULL;
3268 }
815a51c7 3269 WARN_ON(PageDirty(p));
fba1acf9 3270 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 3271 }
92d83e94 3272 set_extent_buffer_uptodate(new);
815a51c7
JS
3273
3274 return new;
3275}
3276
0f331229
OS
3277struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3278 u64 start, unsigned long len)
815a51c7
JS
3279{
3280 struct extent_buffer *eb;
cc5e31a4
DS
3281 int num_pages;
3282 int i;
dd137dd1 3283 int ret;
815a51c7 3284
3f556f78 3285 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
3286 if (!eb)
3287 return NULL;
3288
65ad0104 3289 num_pages = num_extent_pages(eb);
dd137dd1
STD
3290 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3291 if (ret)
3292 goto err;
3293
815a51c7 3294 for (i = 0; i < num_pages; i++) {
dd137dd1 3295 struct page *p = eb->pages[i];
09bc1f0f 3296
dd137dd1 3297 ret = attach_extent_buffer_page(eb, p, NULL);
09bc1f0f
QW
3298 if (ret < 0)
3299 goto err;
815a51c7 3300 }
dd137dd1 3301
815a51c7
JS
3302 set_extent_buffer_uptodate(eb);
3303 btrfs_set_header_nritems(eb, 0);
b0132a3b 3304 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
3305
3306 return eb;
3307err:
dd137dd1
STD
3308 for (i = 0; i < num_pages; i++) {
3309 if (eb->pages[i]) {
3310 detach_extent_buffer_page(eb, eb->pages[i]);
3311 __free_page(eb->pages[i]);
3312 }
09bc1f0f 3313 }
815a51c7
JS
3314 __free_extent_buffer(eb);
3315 return NULL;
3316}
3317
0f331229 3318struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3319 u64 start)
0f331229 3320{
da17066c 3321 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
3322}
3323
0b32f4bb
JB
3324static void check_buffer_tree_ref(struct extent_buffer *eb)
3325{
242e18c7 3326 int refs;
6bf9cd2e
BB
3327 /*
3328 * The TREE_REF bit is first set when the extent_buffer is added
3329 * to the radix tree. It is also reset, if unset, when a new reference
3330 * is created by find_extent_buffer.
0b32f4bb 3331 *
6bf9cd2e
BB
3332 * It is only cleared in two cases: freeing the last non-tree
3333 * reference to the extent_buffer when its STALE bit is set or
f913cff3 3334 * calling release_folio when the tree reference is the only reference.
0b32f4bb 3335 *
6bf9cd2e 3336 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 3337 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
3338 * called with creating new references, which is prone to race
3339 * conditions between the calls to check_buffer_tree_ref in those
3340 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 3341 *
6bf9cd2e
BB
3342 * The actual lifetime of the extent_buffer in the radix tree is
3343 * adequately protected by the refcount, but the TREE_REF bit and
3344 * its corresponding reference are not. To protect against this
3345 * class of races, we call check_buffer_tree_ref from the codepaths
113fa05c
CH
3346 * which trigger io. Note that once io is initiated, TREE_REF can no
3347 * longer be cleared, so that is the moment at which any such race is
3348 * best fixed.
0b32f4bb 3349 */
242e18c7
CM
3350 refs = atomic_read(&eb->refs);
3351 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3352 return;
3353
594831c4
JB
3354 spin_lock(&eb->refs_lock);
3355 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 3356 atomic_inc(&eb->refs);
594831c4 3357 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3358}
3359
2457aec6
MG
3360static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3361 struct page *accessed)
5df4235e 3362{
cc5e31a4 3363 int num_pages, i;
5df4235e 3364
0b32f4bb
JB
3365 check_buffer_tree_ref(eb);
3366
65ad0104 3367 num_pages = num_extent_pages(eb);
5df4235e 3368 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
3369 struct page *p = eb->pages[i];
3370
2457aec6
MG
3371 if (p != accessed)
3372 mark_page_accessed(p);
5df4235e
JB
3373 }
3374}
3375
f28491e0
JB
3376struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3377 u64 start)
452c75c3
CS
3378{
3379 struct extent_buffer *eb;
3380
2f3186d8
QW
3381 eb = find_extent_buffer_nolock(fs_info, start);
3382 if (!eb)
3383 return NULL;
3384 /*
3385 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3386 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3387 * another task running free_extent_buffer() might have seen that flag
3388 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3389 * writeback flags not set) and it's still in the tree (flag
3390 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3391 * decrementing the extent buffer's reference count twice. So here we
3392 * could race and increment the eb's reference count, clear its stale
3393 * flag, mark it as dirty and drop our reference before the other task
3394 * finishes executing free_extent_buffer, which would later result in
3395 * an attempt to free an extent buffer that is dirty.
3396 */
3397 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3398 spin_lock(&eb->refs_lock);
3399 spin_unlock(&eb->refs_lock);
452c75c3 3400 }
2f3186d8
QW
3401 mark_extent_buffer_accessed(eb, NULL);
3402 return eb;
452c75c3
CS
3403}
3404
faa2dbf0
JB
3405#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3406struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3407 u64 start)
faa2dbf0
JB
3408{
3409 struct extent_buffer *eb, *exists = NULL;
3410 int ret;
3411
3412 eb = find_extent_buffer(fs_info, start);
3413 if (eb)
3414 return eb;
da17066c 3415 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 3416 if (!eb)
b6293c82 3417 return ERR_PTR(-ENOMEM);
faa2dbf0 3418 eb->fs_info = fs_info;
01cd3909
DS
3419again:
3420 ret = radix_tree_preload(GFP_NOFS);
3421 if (ret) {
3422 exists = ERR_PTR(ret);
3423 goto free_eb;
3424 }
3425 spin_lock(&fs_info->buffer_lock);
3426 ret = radix_tree_insert(&fs_info->buffer_radix,
3427 start >> fs_info->sectorsize_bits, eb);
3428 spin_unlock(&fs_info->buffer_lock);
3429 radix_tree_preload_end();
3430 if (ret == -EEXIST) {
3431 exists = find_extent_buffer(fs_info, start);
3432 if (exists)
faa2dbf0 3433 goto free_eb;
01cd3909
DS
3434 else
3435 goto again;
3436 }
faa2dbf0
JB
3437 check_buffer_tree_ref(eb);
3438 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3439
faa2dbf0
JB
3440 return eb;
3441free_eb:
3442 btrfs_release_extent_buffer(eb);
3443 return exists;
3444}
3445#endif
3446
81982210
QW
3447static struct extent_buffer *grab_extent_buffer(
3448 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
3449{
3450 struct extent_buffer *exists;
3451
81982210
QW
3452 /*
3453 * For subpage case, we completely rely on radix tree to ensure we
3454 * don't try to insert two ebs for the same bytenr. So here we always
3455 * return NULL and just continue.
3456 */
fbca46eb 3457 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
3458 return NULL;
3459
c0f0a9e7
QW
3460 /* Page not yet attached to an extent buffer */
3461 if (!PagePrivate(page))
3462 return NULL;
3463
3464 /*
3465 * We could have already allocated an eb for this page and attached one
3466 * so lets see if we can get a ref on the existing eb, and if we can we
3467 * know it's good and we can just return that one, else we know we can
3468 * just overwrite page->private.
3469 */
3470 exists = (struct extent_buffer *)page->private;
3471 if (atomic_inc_not_zero(&exists->refs))
3472 return exists;
3473
3474 WARN_ON(PageDirty(page));
3475 detach_page_private(page);
3476 return NULL;
3477}
3478
fbca46eb
QW
3479static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3480{
3481 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3482 btrfs_err(fs_info, "bad tree block start %llu", start);
3483 return -EINVAL;
3484 }
3485
3486 if (fs_info->nodesize < PAGE_SIZE &&
3487 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3488 btrfs_err(fs_info,
3489 "tree block crosses page boundary, start %llu nodesize %u",
3490 start, fs_info->nodesize);
3491 return -EINVAL;
3492 }
3493 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 3494 !PAGE_ALIGNED(start)) {
fbca46eb
QW
3495 btrfs_err(fs_info,
3496 "tree block is not page aligned, start %llu nodesize %u",
3497 start, fs_info->nodesize);
3498 return -EINVAL;
3499 }
3500 return 0;
3501}
3502
f28491e0 3503struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 3504 u64 start, u64 owner_root, int level)
d1310b2e 3505{
da17066c 3506 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
3507 int num_pages;
3508 int i;
09cbfeaf 3509 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 3510 struct extent_buffer *eb;
6af118ce 3511 struct extent_buffer *exists = NULL;
d1310b2e 3512 struct page *p;
f28491e0 3513 struct address_space *mapping = fs_info->btree_inode->i_mapping;
52ea5bfb 3514 struct btrfs_subpage *prealloc = NULL;
b40130b2 3515 u64 lockdep_owner = owner_root;
d1310b2e 3516 int uptodate = 1;
19fe0a8b 3517 int ret;
d1310b2e 3518
fbca46eb 3519 if (check_eb_alignment(fs_info, start))
c871b0f2 3520 return ERR_PTR(-EINVAL);
c871b0f2 3521
e9306ad4
QW
3522#if BITS_PER_LONG == 32
3523 if (start >= MAX_LFS_FILESIZE) {
3524 btrfs_err_rl(fs_info,
3525 "extent buffer %llu is beyond 32bit page cache limit", start);
3526 btrfs_err_32bit_limit(fs_info);
3527 return ERR_PTR(-EOVERFLOW);
3528 }
3529 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3530 btrfs_warn_32bit_limit(fs_info);
3531#endif
3532
f28491e0 3533 eb = find_extent_buffer(fs_info, start);
452c75c3 3534 if (eb)
6af118ce 3535 return eb;
6af118ce 3536
23d79d81 3537 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 3538 if (!eb)
c871b0f2 3539 return ERR_PTR(-ENOMEM);
b40130b2
JB
3540
3541 /*
3542 * The reloc trees are just snapshots, so we need them to appear to be
3543 * just like any other fs tree WRT lockdep.
3544 */
3545 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3546 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3547
3548 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
d1310b2e 3549
65ad0104 3550 num_pages = num_extent_pages(eb);
760f991f 3551
52ea5bfb
QW
3552 /*
3553 * Preallocate page->private for subpage case, so that we won't
3554 * allocate memory with private_lock nor page lock hold.
3555 *
3556 * The memory will be freed by attach_extent_buffer_page() or freed
3557 * manually if we exit earlier.
3558 */
3559 if (fs_info->nodesize < PAGE_SIZE) {
3560 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3561 if (IS_ERR(prealloc)) {
3562 exists = ERR_CAST(prealloc);
3563 goto free_eb;
3564 }
3565 }
3566
3567 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 3568 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
3569 if (!p) {
3570 exists = ERR_PTR(-ENOMEM);
52ea5bfb 3571 btrfs_free_subpage(prealloc);
6af118ce 3572 goto free_eb;
c871b0f2 3573 }
4f2de97a
JB
3574
3575 spin_lock(&mapping->private_lock);
81982210 3576 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
3577 if (exists) {
3578 spin_unlock(&mapping->private_lock);
3579 unlock_page(p);
3580 put_page(p);
3581 mark_extent_buffer_accessed(exists, p);
760f991f 3582 btrfs_free_subpage(prealloc);
c0f0a9e7 3583 goto free_eb;
d1310b2e 3584 }
760f991f
QW
3585 /* Should not fail, as we have preallocated the memory */
3586 ret = attach_extent_buffer_page(eb, p, prealloc);
3587 ASSERT(!ret);
8ff8466d
QW
3588 /*
3589 * To inform we have extra eb under allocation, so that
3590 * detach_extent_buffer_page() won't release the page private
3591 * when the eb hasn't yet been inserted into radix tree.
3592 *
3593 * The ref will be decreased when the eb released the page, in
3594 * detach_extent_buffer_page().
3595 * Thus needs no special handling in error path.
3596 */
3597 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 3598 spin_unlock(&mapping->private_lock);
760f991f 3599
1e5eb3d6 3600 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 3601 eb->pages[i] = p;
5a963419 3602 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
d1310b2e 3603 uptodate = 0;
eb14ab8e
CM
3604
3605 /*
b16d011e
NB
3606 * We can't unlock the pages just yet since the extent buffer
3607 * hasn't been properly inserted in the radix tree, this
f913cff3 3608 * opens a race with btree_release_folio which can free a page
b16d011e
NB
3609 * while we are still filling in all pages for the buffer and
3610 * we could crash.
eb14ab8e 3611 */
d1310b2e
CM
3612 }
3613 if (uptodate)
b4ce94de 3614 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
01cd3909
DS
3615again:
3616 ret = radix_tree_preload(GFP_NOFS);
3617 if (ret) {
3618 exists = ERR_PTR(ret);
3619 goto free_eb;
3620 }
3621
3622 spin_lock(&fs_info->buffer_lock);
3623 ret = radix_tree_insert(&fs_info->buffer_radix,
3624 start >> fs_info->sectorsize_bits, eb);
3625 spin_unlock(&fs_info->buffer_lock);
3626 radix_tree_preload_end();
3627 if (ret == -EEXIST) {
3628 exists = find_extent_buffer(fs_info, start);
3629 if (exists)
452c75c3 3630 goto free_eb;
01cd3909
DS
3631 else
3632 goto again;
3633 }
6af118ce 3634 /* add one reference for the tree */
0b32f4bb 3635 check_buffer_tree_ref(eb);
34b41ace 3636 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
3637
3638 /*
b16d011e 3639 * Now it's safe to unlock the pages because any calls to
f913cff3 3640 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 3641 * live buffer and won't free them prematurely.
eb14ab8e 3642 */
28187ae5
NB
3643 for (i = 0; i < num_pages; i++)
3644 unlock_page(eb->pages[i]);
d1310b2e
CM
3645 return eb;
3646
6af118ce 3647free_eb:
5ca64f45 3648 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
3649 for (i = 0; i < num_pages; i++) {
3650 if (eb->pages[i])
3651 unlock_page(eb->pages[i]);
3652 }
eb14ab8e 3653
897ca6e9 3654 btrfs_release_extent_buffer(eb);
6af118ce 3655 return exists;
d1310b2e 3656}
d1310b2e 3657
3083ee2e
JB
3658static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3659{
3660 struct extent_buffer *eb =
3661 container_of(head, struct extent_buffer, rcu_head);
3662
3663 __free_extent_buffer(eb);
3664}
3665
f7a52a40 3666static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 3667 __releases(&eb->refs_lock)
3083ee2e 3668{
07e21c4d
NB
3669 lockdep_assert_held(&eb->refs_lock);
3670
3083ee2e
JB
3671 WARN_ON(atomic_read(&eb->refs) == 0);
3672 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 3673 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 3674 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 3675
815a51c7 3676 spin_unlock(&eb->refs_lock);
3083ee2e 3677
01cd3909
DS
3678 spin_lock(&fs_info->buffer_lock);
3679 radix_tree_delete(&fs_info->buffer_radix,
3680 eb->start >> fs_info->sectorsize_bits);
3681 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
3682 } else {
3683 spin_unlock(&eb->refs_lock);
815a51c7 3684 }
3083ee2e 3685
a40246e8 3686 btrfs_leak_debug_del_eb(eb);
3083ee2e 3687 /* Should be safe to release our pages at this point */
55ac0139 3688 btrfs_release_extent_buffer_pages(eb);
bcb7e449 3689#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 3690 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
3691 __free_extent_buffer(eb);
3692 return 1;
3693 }
3694#endif
3083ee2e 3695 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 3696 return 1;
3083ee2e
JB
3697 }
3698 spin_unlock(&eb->refs_lock);
e64860aa
JB
3699
3700 return 0;
3083ee2e
JB
3701}
3702
d1310b2e
CM
3703void free_extent_buffer(struct extent_buffer *eb)
3704{
242e18c7 3705 int refs;
d1310b2e
CM
3706 if (!eb)
3707 return;
3708
e5677f05 3709 refs = atomic_read(&eb->refs);
242e18c7 3710 while (1) {
46cc775e
NB
3711 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3712 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3713 refs == 1))
242e18c7 3714 break;
e5677f05 3715 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
242e18c7
CM
3716 return;
3717 }
3718
3083ee2e
JB
3719 spin_lock(&eb->refs_lock);
3720 if (atomic_read(&eb->refs) == 2 &&
3721 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 3722 !extent_buffer_under_io(eb) &&
3083ee2e
JB
3723 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3724 atomic_dec(&eb->refs);
3725
3726 /*
3727 * I know this is terrible, but it's temporary until we stop tracking
3728 * the uptodate bits and such for the extent buffers.
3729 */
f7a52a40 3730 release_extent_buffer(eb);
3083ee2e
JB
3731}
3732
3733void free_extent_buffer_stale(struct extent_buffer *eb)
3734{
3735 if (!eb)
d1310b2e
CM
3736 return;
3737
3083ee2e
JB
3738 spin_lock(&eb->refs_lock);
3739 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3740
0b32f4bb 3741 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
3742 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3743 atomic_dec(&eb->refs);
f7a52a40 3744 release_extent_buffer(eb);
d1310b2e 3745}
d1310b2e 3746
0d27797e
QW
3747static void btree_clear_page_dirty(struct page *page)
3748{
3749 ASSERT(PageDirty(page));
3750 ASSERT(PageLocked(page));
3751 clear_page_dirty_for_io(page);
3752 xa_lock_irq(&page->mapping->i_pages);
3753 if (!PageDirty(page))
3754 __xa_clear_mark(&page->mapping->i_pages,
3755 page_index(page), PAGECACHE_TAG_DIRTY);
3756 xa_unlock_irq(&page->mapping->i_pages);
3757}
3758
3759static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3760{
3761 struct btrfs_fs_info *fs_info = eb->fs_info;
3762 struct page *page = eb->pages[0];
3763 bool last;
3764
3765 /* btree_clear_page_dirty() needs page locked */
3766 lock_page(page);
3767 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3768 eb->len);
3769 if (last)
3770 btree_clear_page_dirty(page);
3771 unlock_page(page);
3772 WARN_ON(atomic_read(&eb->refs) == 0);
3773}
3774
98c8d683
JB
3775void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3776 struct extent_buffer *eb)
d1310b2e 3777{
98c8d683 3778 struct btrfs_fs_info *fs_info = eb->fs_info;
cc5e31a4
DS
3779 int i;
3780 int num_pages;
d1310b2e
CM
3781 struct page *page;
3782
98c8d683
JB
3783 btrfs_assert_tree_write_locked(eb);
3784
3785 if (trans && btrfs_header_generation(eb) != trans->transid)
3786 return;
3787
3788 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3789 return;
3790
3791 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3792 fs_info->dirty_metadata_batch);
3793
fbca46eb 3794 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
3795 return clear_subpage_extent_buffer_dirty(eb);
3796
65ad0104 3797 num_pages = num_extent_pages(eb);
d1310b2e
CM
3798
3799 for (i = 0; i < num_pages; i++) {
fb85fc9a 3800 page = eb->pages[i];
b9473439 3801 if (!PageDirty(page))
d2c3f4f6 3802 continue;
a61e6f29 3803 lock_page(page);
0d27797e 3804 btree_clear_page_dirty(page);
a61e6f29 3805 unlock_page(page);
d1310b2e 3806 }
0b32f4bb 3807 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 3808}
d1310b2e 3809
f18cc978 3810void set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 3811{
cc5e31a4
DS
3812 int i;
3813 int num_pages;
abb57ef3 3814 bool was_dirty;
d1310b2e 3815
0b32f4bb
JB
3816 check_buffer_tree_ref(eb);
3817
b9473439 3818 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 3819
65ad0104 3820 num_pages = num_extent_pages(eb);
3083ee2e 3821 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
3822 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3823
0d27797e 3824 if (!was_dirty) {
fbca46eb 3825 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 3826
0d27797e
QW
3827 /*
3828 * For subpage case, we can have other extent buffers in the
3829 * same page, and in clear_subpage_extent_buffer_dirty() we
3830 * have to clear page dirty without subpage lock held.
3831 * This can cause race where our page gets dirty cleared after
3832 * we just set it.
3833 *
3834 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3835 * its page for other reasons, we can use page lock to prevent
3836 * the above race.
3837 */
3838 if (subpage)
3839 lock_page(eb->pages[0]);
3840 for (i = 0; i < num_pages; i++)
3841 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3842 eb->start, eb->len);
3843 if (subpage)
3844 unlock_page(eb->pages[0]);
f18cc978
CH
3845 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3846 eb->len,
3847 eb->fs_info->dirty_metadata_batch);
0d27797e 3848 }
51995c39
LB
3849#ifdef CONFIG_BTRFS_DEBUG
3850 for (i = 0; i < num_pages; i++)
3851 ASSERT(PageDirty(eb->pages[i]));
3852#endif
d1310b2e 3853}
d1310b2e 3854
69ba3927 3855void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 3856{
251f2acc 3857 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 3858 struct page *page;
cc5e31a4 3859 int num_pages;
251f2acc 3860 int i;
1259ab75 3861
b4ce94de 3862 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 3863 num_pages = num_extent_pages(eb);
1259ab75 3864 for (i = 0; i < num_pages; i++) {
fb85fc9a 3865 page = eb->pages[i];
fbca46eb
QW
3866 if (!page)
3867 continue;
3868
3869 /*
3870 * This is special handling for metadata subpage, as regular
3871 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3872 */
3873 if (fs_info->nodesize >= PAGE_SIZE)
3874 ClearPageUptodate(page);
3875 else
3876 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3877 eb->len);
1259ab75 3878 }
1259ab75
CM
3879}
3880
09c25a8c 3881void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 3882{
251f2acc 3883 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 3884 struct page *page;
cc5e31a4 3885 int num_pages;
251f2acc 3886 int i;
d1310b2e 3887
0b32f4bb 3888 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 3889 num_pages = num_extent_pages(eb);
d1310b2e 3890 for (i = 0; i < num_pages; i++) {
fb85fc9a 3891 page = eb->pages[i];
fbca46eb
QW
3892
3893 /*
3894 * This is special handling for metadata subpage, as regular
3895 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3896 */
3897 if (fs_info->nodesize >= PAGE_SIZE)
3898 SetPageUptodate(page);
3899 else
3900 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3901 eb->len);
d1310b2e 3902 }
d1310b2e 3903}
d1310b2e 3904
046b562b
CH
3905static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3906{
3907 struct extent_buffer *eb = bbio->private;
d7172f52 3908 struct btrfs_fs_info *fs_info = eb->fs_info;
046b562b
CH
3909 bool uptodate = !bbio->bio.bi_status;
3910 struct bvec_iter_all iter_all;
3911 struct bio_vec *bvec;
3912 u32 bio_offset = 0;
3913
046b562b
CH
3914 eb->read_mirror = bbio->mirror_num;
3915
3916 if (uptodate &&
3917 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3918 uptodate = false;
3919
3920 if (uptodate) {
3921 set_extent_buffer_uptodate(eb);
3922 } else {
3923 clear_extent_buffer_uptodate(eb);
3924 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3925 }
3926
3927 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
d7172f52
CH
3928 u64 start = eb->start + bio_offset;
3929 struct page *page = bvec->bv_page;
3930 u32 len = bvec->bv_len;
046b562b 3931
d7172f52
CH
3932 if (uptodate)
3933 btrfs_page_set_uptodate(fs_info, page, start, len);
3934 else
3935 btrfs_page_clear_uptodate(fs_info, page, start, len);
3936
3937 bio_offset += len;
3d66b4b2 3938 }
d7172f52
CH
3939
3940 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3941 smp_mb__after_atomic();
3942 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
046b562b
CH
3943 free_extent_buffer(eb);
3944
3945 bio_put(&bbio->bio);
3946}
3947
d7172f52
CH
3948int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3949 struct btrfs_tree_parent_check *check)
b78b98e0
CH
3950{
3951 int num_pages = num_extent_pages(eb), i;
3952 struct btrfs_bio *bbio;
3953
d7172f52
CH
3954 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3955 return 0;
3956
3957 /*
3958 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3959 * operation, which could potentially still be in flight. In this case
3960 * we simply want to return an error.
3961 */
3962 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3963 return -EIO;
3964
3965 /* Someone else is already reading the buffer, just wait for it. */
3966 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3967 goto done;
3968
b78b98e0
CH
3969 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3970 eb->read_mirror = 0;
b78b98e0 3971 check_buffer_tree_ref(eb);
113fa05c 3972 atomic_inc(&eb->refs);
b78b98e0
CH
3973
3974 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3975 REQ_OP_READ | REQ_META, eb->fs_info,
046b562b 3976 extent_buffer_read_end_io, eb);
b78b98e0
CH
3977 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3978 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3979 bbio->file_offset = eb->start;
3980 memcpy(&bbio->parent_check, check, sizeof(*check));
3981 if (eb->fs_info->nodesize < PAGE_SIZE) {
3982 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3983 eb->start - page_offset(eb->pages[0]));
3984 } else {
011134f4 3985 for (i = 0; i < num_pages; i++)
b78b98e0 3986 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
b78b98e0
CH
3987 }
3988 btrfs_submit_bio(bbio, mirror_num);
b78b98e0 3989
d7172f52
CH
3990done:
3991 if (wait == WAIT_COMPLETE) {
3992 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3993 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
55173337 3994 return -EIO;
d1310b2e 3995 }
d397712b 3996
55173337 3997 return 0;
d1310b2e 3998}
d1310b2e 3999
f98b6215
QW
4000static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4001 unsigned long len)
4002{
4003 btrfs_warn(eb->fs_info,
4004 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
4005 eb->start, eb->len, start, len);
4006 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4007
4008 return true;
4009}
4010
4011/*
4012 * Check if the [start, start + len) range is valid before reading/writing
4013 * the eb.
4014 * NOTE: @start and @len are offset inside the eb, not logical address.
4015 *
4016 * Caller should not touch the dst/src memory if this function returns error.
4017 */
4018static inline int check_eb_range(const struct extent_buffer *eb,
4019 unsigned long start, unsigned long len)
4020{
4021 unsigned long offset;
4022
4023 /* start, start + len should not go beyond eb->len nor overflow */
4024 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4025 return report_eb_range(eb, start, len);
4026
4027 return false;
4028}
4029
1cbb1f45
JM
4030void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4031 unsigned long start, unsigned long len)
d1310b2e
CM
4032{
4033 size_t cur;
4034 size_t offset;
4035 struct page *page;
4036 char *kaddr;
4037 char *dst = (char *)dstv;
884b07d0 4038 unsigned long i = get_eb_page_index(start);
d1310b2e 4039
f98b6215 4040 if (check_eb_range(eb, start, len))
f716abd5 4041 return;
d1310b2e 4042
884b07d0 4043 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4044
d397712b 4045 while (len > 0) {
fb85fc9a 4046 page = eb->pages[i];
d1310b2e 4047
09cbfeaf 4048 cur = min(len, (PAGE_SIZE - offset));
a6591715 4049 kaddr = page_address(page);
d1310b2e 4050 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4051
4052 dst += cur;
4053 len -= cur;
4054 offset = 0;
4055 i++;
4056 }
4057}
d1310b2e 4058
a48b73ec
JB
4059int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4060 void __user *dstv,
4061 unsigned long start, unsigned long len)
550ac1d8
GH
4062{
4063 size_t cur;
4064 size_t offset;
4065 struct page *page;
4066 char *kaddr;
4067 char __user *dst = (char __user *)dstv;
884b07d0 4068 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
4069 int ret = 0;
4070
4071 WARN_ON(start > eb->len);
4072 WARN_ON(start + len > eb->start + eb->len);
4073
884b07d0 4074 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
4075
4076 while (len > 0) {
fb85fc9a 4077 page = eb->pages[i];
550ac1d8 4078
09cbfeaf 4079 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 4080 kaddr = page_address(page);
a48b73ec 4081 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
4082 ret = -EFAULT;
4083 break;
4084 }
4085
4086 dst += cur;
4087 len -= cur;
4088 offset = 0;
4089 i++;
4090 }
4091
4092 return ret;
4093}
4094
1cbb1f45
JM
4095int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4096 unsigned long start, unsigned long len)
d1310b2e
CM
4097{
4098 size_t cur;
4099 size_t offset;
4100 struct page *page;
4101 char *kaddr;
4102 char *ptr = (char *)ptrv;
884b07d0 4103 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
4104 int ret = 0;
4105
f98b6215
QW
4106 if (check_eb_range(eb, start, len))
4107 return -EINVAL;
d1310b2e 4108
884b07d0 4109 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4110
d397712b 4111 while (len > 0) {
fb85fc9a 4112 page = eb->pages[i];
d1310b2e 4113
09cbfeaf 4114 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 4115
a6591715 4116 kaddr = page_address(page);
d1310b2e 4117 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4118 if (ret)
4119 break;
4120
4121 ptr += cur;
4122 len -= cur;
4123 offset = 0;
4124 i++;
4125 }
4126 return ret;
4127}
d1310b2e 4128
b8f95771
QW
4129/*
4130 * Check that the extent buffer is uptodate.
4131 *
4132 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4133 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4134 */
4135static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4136 struct page *page)
4137{
4138 struct btrfs_fs_info *fs_info = eb->fs_info;
4139
a50e1fcb
JB
4140 /*
4141 * If we are using the commit root we could potentially clear a page
4142 * Uptodate while we're using the extent buffer that we've previously
4143 * looked up. We don't want to complain in this case, as the page was
4144 * valid before, we just didn't write it out. Instead we want to catch
4145 * the case where we didn't actually read the block properly, which
011134f4 4146 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
a50e1fcb 4147 */
011134f4
CH
4148 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4149 return;
b8f95771 4150
011134f4 4151 if (fs_info->nodesize < PAGE_SIZE) {
75258f20
QW
4152 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4153 eb->start, eb->len)))
4154 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
b8f95771 4155 } else {
011134f4 4156 WARN_ON(!PageUptodate(page));
b8f95771
QW
4157 }
4158}
4159
2b48966a 4160void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
4161 const void *srcv)
4162{
4163 char *kaddr;
4164
b8f95771 4165 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
4166 kaddr = page_address(eb->pages[0]) +
4167 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
4168 chunk_tree_uuid));
4169 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
4170}
4171
2b48966a 4172void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
4173{
4174 char *kaddr;
4175
b8f95771 4176 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
4177 kaddr = page_address(eb->pages[0]) +
4178 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
4179 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
4180}
4181
2b48966a 4182void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
4183 unsigned long start, unsigned long len)
4184{
4185 size_t cur;
4186 size_t offset;
4187 struct page *page;
4188 char *kaddr;
4189 char *src = (char *)srcv;
884b07d0 4190 unsigned long i = get_eb_page_index(start);
d1310b2e 4191
d3575156
NA
4192 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4193
f98b6215
QW
4194 if (check_eb_range(eb, start, len))
4195 return;
d1310b2e 4196
884b07d0 4197 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4198
d397712b 4199 while (len > 0) {
fb85fc9a 4200 page = eb->pages[i];
b8f95771 4201 assert_eb_page_uptodate(eb, page);
d1310b2e 4202
09cbfeaf 4203 cur = min(len, PAGE_SIZE - offset);
a6591715 4204 kaddr = page_address(page);
d1310b2e 4205 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4206
4207 src += cur;
4208 len -= cur;
4209 offset = 0;
4210 i++;
4211 }
4212}
d1310b2e 4213
2b48966a 4214void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 4215 unsigned long len)
d1310b2e
CM
4216{
4217 size_t cur;
4218 size_t offset;
4219 struct page *page;
4220 char *kaddr;
884b07d0 4221 unsigned long i = get_eb_page_index(start);
d1310b2e 4222
f98b6215
QW
4223 if (check_eb_range(eb, start, len))
4224 return;
d1310b2e 4225
884b07d0 4226 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4227
d397712b 4228 while (len > 0) {
fb85fc9a 4229 page = eb->pages[i];
b8f95771 4230 assert_eb_page_uptodate(eb, page);
d1310b2e 4231
09cbfeaf 4232 cur = min(len, PAGE_SIZE - offset);
a6591715 4233 kaddr = page_address(page);
b159fa28 4234 memset(kaddr + offset, 0, cur);
d1310b2e
CM
4235
4236 len -= cur;
4237 offset = 0;
4238 i++;
4239 }
4240}
d1310b2e 4241
2b48966a
DS
4242void copy_extent_buffer_full(const struct extent_buffer *dst,
4243 const struct extent_buffer *src)
58e8012c
DS
4244{
4245 int i;
cc5e31a4 4246 int num_pages;
58e8012c
DS
4247
4248 ASSERT(dst->len == src->len);
4249
fbca46eb 4250 if (dst->fs_info->nodesize >= PAGE_SIZE) {
884b07d0
QW
4251 num_pages = num_extent_pages(dst);
4252 for (i = 0; i < num_pages; i++)
4253 copy_page(page_address(dst->pages[i]),
4254 page_address(src->pages[i]));
4255 } else {
4256 size_t src_offset = get_eb_offset_in_page(src, 0);
4257 size_t dst_offset = get_eb_offset_in_page(dst, 0);
4258
fbca46eb 4259 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
884b07d0
QW
4260 memcpy(page_address(dst->pages[0]) + dst_offset,
4261 page_address(src->pages[0]) + src_offset,
4262 src->len);
4263 }
58e8012c
DS
4264}
4265
2b48966a
DS
4266void copy_extent_buffer(const struct extent_buffer *dst,
4267 const struct extent_buffer *src,
d1310b2e
CM
4268 unsigned long dst_offset, unsigned long src_offset,
4269 unsigned long len)
4270{
4271 u64 dst_len = dst->len;
4272 size_t cur;
4273 size_t offset;
4274 struct page *page;
4275 char *kaddr;
884b07d0 4276 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 4277
f98b6215
QW
4278 if (check_eb_range(dst, dst_offset, len) ||
4279 check_eb_range(src, src_offset, len))
4280 return;
4281
d1310b2e
CM
4282 WARN_ON(src->len != dst_len);
4283
884b07d0 4284 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 4285
d397712b 4286 while (len > 0) {
fb85fc9a 4287 page = dst->pages[i];
b8f95771 4288 assert_eb_page_uptodate(dst, page);
d1310b2e 4289
09cbfeaf 4290 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 4291
a6591715 4292 kaddr = page_address(page);
d1310b2e 4293 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4294
4295 src_offset += cur;
4296 len -= cur;
4297 offset = 0;
4298 i++;
4299 }
4300}
d1310b2e 4301
3e1e8bb7
OS
4302/*
4303 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4304 * given bit number
4305 * @eb: the extent buffer
4306 * @start: offset of the bitmap item in the extent buffer
4307 * @nr: bit number
4308 * @page_index: return index of the page in the extent buffer that contains the
4309 * given bit number
4310 * @page_offset: return offset into the page given by page_index
4311 *
4312 * This helper hides the ugliness of finding the byte in an extent buffer which
4313 * contains a given bit.
4314 */
2b48966a 4315static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
4316 unsigned long start, unsigned long nr,
4317 unsigned long *page_index,
4318 size_t *page_offset)
4319{
3e1e8bb7
OS
4320 size_t byte_offset = BIT_BYTE(nr);
4321 size_t offset;
4322
4323 /*
4324 * The byte we want is the offset of the extent buffer + the offset of
4325 * the bitmap item in the extent buffer + the offset of the byte in the
4326 * bitmap item.
4327 */
884b07d0 4328 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 4329
09cbfeaf 4330 *page_index = offset >> PAGE_SHIFT;
7073017a 4331 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
4332}
4333
43dd529a
DS
4334/*
4335 * Determine whether a bit in a bitmap item is set.
4336 *
4337 * @eb: the extent buffer
4338 * @start: offset of the bitmap item in the extent buffer
4339 * @nr: bit number to test
3e1e8bb7 4340 */
2b48966a 4341int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4342 unsigned long nr)
4343{
2fe1d551 4344 u8 *kaddr;
3e1e8bb7
OS
4345 struct page *page;
4346 unsigned long i;
4347 size_t offset;
4348
4349 eb_bitmap_offset(eb, start, nr, &i, &offset);
4350 page = eb->pages[i];
b8f95771 4351 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4352 kaddr = page_address(page);
4353 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4354}
4355
43dd529a
DS
4356/*
4357 * Set an area of a bitmap to 1.
4358 *
4359 * @eb: the extent buffer
4360 * @start: offset of the bitmap item in the extent buffer
4361 * @pos: bit number of the first bit
4362 * @len: number of bits to set
3e1e8bb7 4363 */
2b48966a 4364void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4365 unsigned long pos, unsigned long len)
4366{
2fe1d551 4367 u8 *kaddr;
3e1e8bb7
OS
4368 struct page *page;
4369 unsigned long i;
4370 size_t offset;
4371 const unsigned int size = pos + len;
4372 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 4373 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
4374
4375 eb_bitmap_offset(eb, start, pos, &i, &offset);
4376 page = eb->pages[i];
b8f95771 4377 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4378 kaddr = page_address(page);
4379
4380 while (len >= bits_to_set) {
4381 kaddr[offset] |= mask_to_set;
4382 len -= bits_to_set;
4383 bits_to_set = BITS_PER_BYTE;
9c894696 4384 mask_to_set = ~0;
09cbfeaf 4385 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
4386 offset = 0;
4387 page = eb->pages[++i];
b8f95771 4388 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4389 kaddr = page_address(page);
4390 }
4391 }
4392 if (len) {
4393 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
4394 kaddr[offset] |= mask_to_set;
4395 }
4396}
4397
4398
43dd529a
DS
4399/*
4400 * Clear an area of a bitmap.
4401 *
4402 * @eb: the extent buffer
4403 * @start: offset of the bitmap item in the extent buffer
4404 * @pos: bit number of the first bit
4405 * @len: number of bits to clear
3e1e8bb7 4406 */
2b48966a
DS
4407void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4408 unsigned long start, unsigned long pos,
4409 unsigned long len)
3e1e8bb7 4410{
2fe1d551 4411 u8 *kaddr;
3e1e8bb7
OS
4412 struct page *page;
4413 unsigned long i;
4414 size_t offset;
4415 const unsigned int size = pos + len;
4416 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 4417 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
4418
4419 eb_bitmap_offset(eb, start, pos, &i, &offset);
4420 page = eb->pages[i];
b8f95771 4421 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4422 kaddr = page_address(page);
4423
4424 while (len >= bits_to_clear) {
4425 kaddr[offset] &= ~mask_to_clear;
4426 len -= bits_to_clear;
4427 bits_to_clear = BITS_PER_BYTE;
9c894696 4428 mask_to_clear = ~0;
09cbfeaf 4429 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
4430 offset = 0;
4431 page = eb->pages[++i];
b8f95771 4432 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4433 kaddr = page_address(page);
4434 }
4435 }
4436 if (len) {
4437 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
4438 kaddr[offset] &= ~mask_to_clear;
4439 }
4440}
4441
3387206f
ST
4442static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4443{
4444 unsigned long distance = (src > dst) ? src - dst : dst - src;
4445 return distance < len;
4446}
4447
d1310b2e
CM
4448static void copy_pages(struct page *dst_page, struct page *src_page,
4449 unsigned long dst_off, unsigned long src_off,
4450 unsigned long len)
4451{
a6591715 4452 char *dst_kaddr = page_address(dst_page);
d1310b2e 4453 char *src_kaddr;
727011e0 4454 int must_memmove = 0;
d1310b2e 4455
3387206f 4456 if (dst_page != src_page) {
a6591715 4457 src_kaddr = page_address(src_page);
3387206f 4458 } else {
d1310b2e 4459 src_kaddr = dst_kaddr;
727011e0
CM
4460 if (areas_overlap(src_off, dst_off, len))
4461 must_memmove = 1;
3387206f 4462 }
d1310b2e 4463
727011e0
CM
4464 if (must_memmove)
4465 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4466 else
4467 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4468}
4469
2b48966a
DS
4470void memcpy_extent_buffer(const struct extent_buffer *dst,
4471 unsigned long dst_offset, unsigned long src_offset,
4472 unsigned long len)
d1310b2e
CM
4473{
4474 size_t cur;
4475 size_t dst_off_in_page;
4476 size_t src_off_in_page;
d1310b2e
CM
4477 unsigned long dst_i;
4478 unsigned long src_i;
4479
f98b6215
QW
4480 if (check_eb_range(dst, dst_offset, len) ||
4481 check_eb_range(dst, src_offset, len))
4482 return;
d1310b2e 4483
d397712b 4484 while (len > 0) {
884b07d0
QW
4485 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
4486 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 4487
884b07d0
QW
4488 dst_i = get_eb_page_index(dst_offset);
4489 src_i = get_eb_page_index(src_offset);
d1310b2e 4490
09cbfeaf 4491 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
4492 src_off_in_page));
4493 cur = min_t(unsigned long, cur,
09cbfeaf 4494 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 4495
fb85fc9a 4496 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
4497 dst_off_in_page, src_off_in_page, cur);
4498
4499 src_offset += cur;
4500 dst_offset += cur;
4501 len -= cur;
4502 }
4503}
d1310b2e 4504
2b48966a
DS
4505void memmove_extent_buffer(const struct extent_buffer *dst,
4506 unsigned long dst_offset, unsigned long src_offset,
4507 unsigned long len)
d1310b2e
CM
4508{
4509 size_t cur;
4510 size_t dst_off_in_page;
4511 size_t src_off_in_page;
4512 unsigned long dst_end = dst_offset + len - 1;
4513 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
4514 unsigned long dst_i;
4515 unsigned long src_i;
4516
f98b6215
QW
4517 if (check_eb_range(dst, dst_offset, len) ||
4518 check_eb_range(dst, src_offset, len))
4519 return;
727011e0 4520 if (dst_offset < src_offset) {
d1310b2e
CM
4521 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4522 return;
4523 }
d397712b 4524 while (len > 0) {
884b07d0
QW
4525 dst_i = get_eb_page_index(dst_end);
4526 src_i = get_eb_page_index(src_end);
d1310b2e 4527
884b07d0
QW
4528 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4529 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
4530
4531 cur = min_t(unsigned long, len, src_off_in_page + 1);
4532 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 4533 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
4534 dst_off_in_page - cur + 1,
4535 src_off_in_page - cur + 1, cur);
4536
4537 dst_end -= cur;
4538 src_end -= cur;
4539 len -= cur;
4540 }
4541}
6af118ce 4542
01cd3909 4543#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
4544static struct extent_buffer *get_next_extent_buffer(
4545 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4546{
01cd3909
DS
4547 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4548 struct extent_buffer *found = NULL;
d1e86e3f 4549 u64 page_start = page_offset(page);
01cd3909 4550 u64 cur = page_start;
d1e86e3f
QW
4551
4552 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
4553 lockdep_assert_held(&fs_info->buffer_lock);
4554
01cd3909
DS
4555 while (cur < page_start + PAGE_SIZE) {
4556 int ret;
4557 int i;
4558
4559 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4560 (void **)gang, cur >> fs_info->sectorsize_bits,
4561 min_t(unsigned int, GANG_LOOKUP_SIZE,
4562 PAGE_SIZE / fs_info->nodesize));
4563 if (ret == 0)
4564 goto out;
4565 for (i = 0; i < ret; i++) {
4566 /* Already beyond page end */
4567 if (gang[i]->start >= page_start + PAGE_SIZE)
4568 goto out;
4569 /* Found one */
4570 if (gang[i]->start >= bytenr) {
4571 found = gang[i];
4572 goto out;
4573 }
4574 }
4575 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 4576 }
01cd3909
DS
4577out:
4578 return found;
d1e86e3f
QW
4579}
4580
4581static int try_release_subpage_extent_buffer(struct page *page)
4582{
4583 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4584 u64 cur = page_offset(page);
4585 const u64 end = page_offset(page) + PAGE_SIZE;
4586 int ret;
4587
4588 while (cur < end) {
4589 struct extent_buffer *eb = NULL;
4590
4591 /*
4592 * Unlike try_release_extent_buffer() which uses page->private
4593 * to grab buffer, for subpage case we rely on radix tree, thus
4594 * we need to ensure radix tree consistency.
4595 *
4596 * We also want an atomic snapshot of the radix tree, thus go
4597 * with spinlock rather than RCU.
4598 */
4599 spin_lock(&fs_info->buffer_lock);
4600 eb = get_next_extent_buffer(fs_info, page, cur);
4601 if (!eb) {
4602 /* No more eb in the page range after or at cur */
4603 spin_unlock(&fs_info->buffer_lock);
4604 break;
4605 }
4606 cur = eb->start + eb->len;
4607
4608 /*
4609 * The same as try_release_extent_buffer(), to ensure the eb
4610 * won't disappear out from under us.
4611 */
4612 spin_lock(&eb->refs_lock);
4613 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4614 spin_unlock(&eb->refs_lock);
4615 spin_unlock(&fs_info->buffer_lock);
4616 break;
4617 }
4618 spin_unlock(&fs_info->buffer_lock);
4619
4620 /*
4621 * If tree ref isn't set then we know the ref on this eb is a
4622 * real ref, so just return, this eb will likely be freed soon
4623 * anyway.
4624 */
4625 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4626 spin_unlock(&eb->refs_lock);
4627 break;
4628 }
4629
4630 /*
4631 * Here we don't care about the return value, we will always
4632 * check the page private at the end. And
4633 * release_extent_buffer() will release the refs_lock.
4634 */
4635 release_extent_buffer(eb);
4636 }
4637 /*
4638 * Finally to check if we have cleared page private, as if we have
4639 * released all ebs in the page, the page private should be cleared now.
4640 */
4641 spin_lock(&page->mapping->private_lock);
4642 if (!PagePrivate(page))
4643 ret = 1;
4644 else
4645 ret = 0;
4646 spin_unlock(&page->mapping->private_lock);
4647 return ret;
4648
4649}
4650
f7a52a40 4651int try_release_extent_buffer(struct page *page)
19fe0a8b 4652{
6af118ce 4653 struct extent_buffer *eb;
6af118ce 4654
fbca46eb 4655 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
d1e86e3f
QW
4656 return try_release_subpage_extent_buffer(page);
4657
3083ee2e 4658 /*
d1e86e3f
QW
4659 * We need to make sure nobody is changing page->private, as we rely on
4660 * page->private as the pointer to extent buffer.
3083ee2e
JB
4661 */
4662 spin_lock(&page->mapping->private_lock);
4663 if (!PagePrivate(page)) {
4664 spin_unlock(&page->mapping->private_lock);
4f2de97a 4665 return 1;
45f49bce 4666 }
6af118ce 4667
3083ee2e
JB
4668 eb = (struct extent_buffer *)page->private;
4669 BUG_ON(!eb);
19fe0a8b
MX
4670
4671 /*
3083ee2e
JB
4672 * This is a little awful but should be ok, we need to make sure that
4673 * the eb doesn't disappear out from under us while we're looking at
4674 * this page.
19fe0a8b 4675 */
3083ee2e 4676 spin_lock(&eb->refs_lock);
0b32f4bb 4677 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4678 spin_unlock(&eb->refs_lock);
4679 spin_unlock(&page->mapping->private_lock);
4680 return 0;
b9473439 4681 }
3083ee2e 4682 spin_unlock(&page->mapping->private_lock);
897ca6e9 4683
19fe0a8b 4684 /*
3083ee2e
JB
4685 * If tree ref isn't set then we know the ref on this eb is a real ref,
4686 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4687 */
3083ee2e
JB
4688 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4689 spin_unlock(&eb->refs_lock);
4690 return 0;
b9473439 4691 }
19fe0a8b 4692
f7a52a40 4693 return release_extent_buffer(eb);
6af118ce 4694}
bfb484d9
JB
4695
4696/*
4697 * btrfs_readahead_tree_block - attempt to readahead a child block
4698 * @fs_info: the fs_info
4699 * @bytenr: bytenr to read
3fbaf258 4700 * @owner_root: objectid of the root that owns this eb
bfb484d9 4701 * @gen: generation for the uptodate check, can be 0
3fbaf258 4702 * @level: level for the eb
bfb484d9
JB
4703 *
4704 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4705 * normal uptodate check of the eb, without checking the generation. If we have
4706 * to read the block we will not block on anything.
4707 */
4708void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 4709 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9 4710{
947a6299
QW
4711 struct btrfs_tree_parent_check check = {
4712 .has_first_key = 0,
4713 .level = level,
4714 .transid = gen
4715 };
bfb484d9
JB
4716 struct extent_buffer *eb;
4717 int ret;
4718
3fbaf258 4719 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
4720 if (IS_ERR(eb))
4721 return;
4722
4723 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4724 free_extent_buffer(eb);
4725 return;
4726 }
4727
947a6299 4728 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
bfb484d9
JB
4729 if (ret < 0)
4730 free_extent_buffer_stale(eb);
4731 else
4732 free_extent_buffer(eb);
4733}
4734
4735/*
4736 * btrfs_readahead_node_child - readahead a node's child block
4737 * @node: parent node we're reading from
4738 * @slot: slot in the parent node for the child we want to read
4739 *
4740 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4741 * the slot in the node provided.
4742 */
4743void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4744{
4745 btrfs_readahead_tree_block(node->fs_info,
4746 btrfs_node_blockptr(node, slot),
3fbaf258
JB
4747 btrfs_header_owner(node),
4748 btrfs_node_ptr_generation(node, slot),
4749 btrfs_header_level(node) - 1);
bfb484d9 4750}