btrfs: do not double complete bio on errors during compressed reads
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
14605409 15#include <linux/fsverity.h>
cea62800 16#include "misc.h"
d1310b2e 17#include "extent_io.h"
9c7d3a54 18#include "extent-io-tree.h"
d1310b2e 19#include "extent_map.h"
902b22f3
DW
20#include "ctree.h"
21#include "btrfs_inode.h"
4a54c8c1 22#include "volumes.h"
21adbd5c 23#include "check-integrity.h"
0b32f4bb 24#include "locking.h"
606686ee 25#include "rcu-string.h"
fe09e16c 26#include "backref.h"
6af49dbd 27#include "disk-io.h"
760f991f 28#include "subpage.h"
d3575156 29#include "zoned.h"
0bc09ca1 30#include "block-group.h"
d1310b2e 31
d1310b2e
CM
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 34static struct bio_set btrfs_bioset;
d1310b2e 35
27a3507d
FM
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
6d49ba1b 41#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 42static LIST_HEAD(states);
d397712b 43static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 44
3fd63727
JB
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
6d49ba1b
ES
48{
49 unsigned long flags;
50
3fd63727 51 spin_lock_irqsave(lock, flags);
6d49ba1b 52 list_add(new, head);
3fd63727 53 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
54}
55
3fd63727
JB
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
6d49ba1b
ES
58{
59 unsigned long flags;
60
3fd63727 61 spin_lock_irqsave(lock, flags);
6d49ba1b 62 list_del(entry);
3fd63727 63 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
64}
65
3fd63727 66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 67{
6d49ba1b 68 struct extent_buffer *eb;
3fd63727 69 unsigned long flags;
6d49ba1b 70
8c38938c
JB
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
3fd63727
JB
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
8c38938c
JB
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
33ca832f
JB
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
3fd63727 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
6d49ba1b
ES
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
b7ac31b7 101 refcount_read(&state->refs));
6d49ba1b
ES
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
6d49ba1b 105}
8d599ae1 106
a5dee37d
JB
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 110 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 111{
65a680f6
NB
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
8d599ae1 124}
6d49ba1b 125#else
3fd63727
JB
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 128#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 130#endif
d1310b2e 131
d1310b2e
CM
132struct tree_entry {
133 u64 start;
134 u64 end;
d1310b2e
CM
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
390ed29b 139 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
ffbd517d
CM
143 unsigned int extent_locked:1;
144
70fd7614 145 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 146 unsigned int sync_io:1;
d1310b2e
CM
147};
148
f97e27e9 149static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
57599c7e 156 return 0;
d38ed27f 157 if (set && (state->state & bits) == bits)
57599c7e 158 return 0;
fefdc557 159 if (!set && (state->state & bits) == 0)
57599c7e 160 return 0;
d38ed27f 161 changeset->bytes_changed += state->end - state->start + 1;
53d32359 162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 163 GFP_ATOMIC);
57599c7e 164 return ret;
d38ed27f
QW
165}
166
c1be9c1a
NB
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
bb58eb9e
QW
169{
170 blk_status_t ret = 0;
bb58eb9e 171 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
172
173 bio->bi_private = NULL;
174
e0eefe07
QW
175 /* Caller should ensure the bio has at least some range added */
176 ASSERT(bio->bi_iter.bi_size);
908930f3
NB
177 if (is_data_inode(tree->private_data))
178 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
179 bio_flags);
180 else
1b36294a
NB
181 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
182 mirror_num, bio_flags);
bb58eb9e
QW
183
184 return blk_status_to_errno(ret);
185}
186
3065976b
QW
187/* Cleanup unsubmitted bios */
188static void end_write_bio(struct extent_page_data *epd, int ret)
189{
390ed29b
QW
190 struct bio *bio = epd->bio_ctrl.bio;
191
192 if (bio) {
193 bio->bi_status = errno_to_blk_status(ret);
194 bio_endio(bio);
195 epd->bio_ctrl.bio = NULL;
3065976b
QW
196 }
197}
198
f4340622
QW
199/*
200 * Submit bio from extent page data via submit_one_bio
201 *
202 * Return 0 if everything is OK.
203 * Return <0 for error.
204 */
205static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 206{
f4340622 207 int ret = 0;
390ed29b 208 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 209
390ed29b
QW
210 if (bio) {
211 ret = submit_one_bio(bio, 0, 0);
f4340622
QW
212 /*
213 * Clean up of epd->bio is handled by its endio function.
214 * And endio is either triggered by successful bio execution
215 * or the error handler of submit bio hook.
216 * So at this point, no matter what happened, we don't need
217 * to clean up epd->bio.
218 */
390ed29b 219 epd->bio_ctrl.bio = NULL;
bb58eb9e 220 }
f4340622 221 return ret;
bb58eb9e 222}
e2932ee0 223
6f0d04f8 224int __init extent_state_cache_init(void)
d1310b2e 225{
837e1972 226 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 227 sizeof(struct extent_state), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
229 if (!extent_state_cache)
230 return -ENOMEM;
6f0d04f8
JB
231 return 0;
232}
d1310b2e 233
6f0d04f8
JB
234int __init extent_io_init(void)
235{
837e1972 236 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 237 sizeof(struct extent_buffer), 0,
fba4b697 238 SLAB_MEM_SPREAD, NULL);
d1310b2e 239 if (!extent_buffer_cache)
6f0d04f8 240 return -ENOMEM;
9be3395b 241
8ac9f7c1 242 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
c3a3b19b 243 offsetof(struct btrfs_bio, bio),
8ac9f7c1 244 BIOSET_NEED_BVECS))
9be3395b 245 goto free_buffer_cache;
b208c2f7 246
8ac9f7c1 247 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
248 goto free_bioset;
249
d1310b2e
CM
250 return 0;
251
b208c2f7 252free_bioset:
8ac9f7c1 253 bioset_exit(&btrfs_bioset);
b208c2f7 254
9be3395b
CM
255free_buffer_cache:
256 kmem_cache_destroy(extent_buffer_cache);
257 extent_buffer_cache = NULL;
6f0d04f8
JB
258 return -ENOMEM;
259}
9be3395b 260
6f0d04f8
JB
261void __cold extent_state_cache_exit(void)
262{
263 btrfs_extent_state_leak_debug_check();
d1310b2e 264 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
265}
266
e67c718b 267void __cold extent_io_exit(void)
d1310b2e 268{
8c0a8537
KS
269 /*
270 * Make sure all delayed rcu free are flushed before we
271 * destroy caches.
272 */
273 rcu_barrier();
5598e900 274 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 275 bioset_exit(&btrfs_bioset);
d1310b2e
CM
276}
277
41a2ee75
JB
278/*
279 * For the file_extent_tree, we want to hold the inode lock when we lookup and
280 * update the disk_i_size, but lockdep will complain because our io_tree we hold
281 * the tree lock and get the inode lock when setting delalloc. These two things
282 * are unrelated, so make a class for the file_extent_tree so we don't get the
283 * two locking patterns mixed up.
284 */
285static struct lock_class_key file_extent_tree_class;
286
c258d6e3 287void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
288 struct extent_io_tree *tree, unsigned int owner,
289 void *private_data)
d1310b2e 290{
c258d6e3 291 tree->fs_info = fs_info;
6bef4d31 292 tree->state = RB_ROOT;
d1310b2e 293 tree->dirty_bytes = 0;
70dec807 294 spin_lock_init(&tree->lock);
c6100a4b 295 tree->private_data = private_data;
43eb5f29 296 tree->owner = owner;
41a2ee75
JB
297 if (owner == IO_TREE_INODE_FILE_EXTENT)
298 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 299}
d1310b2e 300
41e7acd3
NB
301void extent_io_tree_release(struct extent_io_tree *tree)
302{
303 spin_lock(&tree->lock);
304 /*
305 * Do a single barrier for the waitqueue_active check here, the state
306 * of the waitqueue should not change once extent_io_tree_release is
307 * called.
308 */
309 smp_mb();
310 while (!RB_EMPTY_ROOT(&tree->state)) {
311 struct rb_node *node;
312 struct extent_state *state;
313
314 node = rb_first(&tree->state);
315 state = rb_entry(node, struct extent_state, rb_node);
316 rb_erase(&state->rb_node, &tree->state);
317 RB_CLEAR_NODE(&state->rb_node);
318 /*
319 * btree io trees aren't supposed to have tasks waiting for
320 * changes in the flags of extent states ever.
321 */
322 ASSERT(!waitqueue_active(&state->wq));
323 free_extent_state(state);
324
325 cond_resched_lock(&tree->lock);
326 }
327 spin_unlock(&tree->lock);
328}
329
b2950863 330static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
331{
332 struct extent_state *state;
d1310b2e 333
3ba7ab22
MH
334 /*
335 * The given mask might be not appropriate for the slab allocator,
336 * drop the unsupported bits
337 */
338 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 339 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 340 if (!state)
d1310b2e
CM
341 return state;
342 state->state = 0;
47dc196a 343 state->failrec = NULL;
27a3507d 344 RB_CLEAR_NODE(&state->rb_node);
3fd63727 345 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 346 refcount_set(&state->refs, 1);
d1310b2e 347 init_waitqueue_head(&state->wq);
143bede5 348 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
349 return state;
350}
d1310b2e 351
4845e44f 352void free_extent_state(struct extent_state *state)
d1310b2e 353{
d1310b2e
CM
354 if (!state)
355 return;
b7ac31b7 356 if (refcount_dec_and_test(&state->refs)) {
27a3507d 357 WARN_ON(extent_state_in_tree(state));
3fd63727 358 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 359 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
360 kmem_cache_free(extent_state_cache, state);
361 }
362}
d1310b2e 363
f2071b21
FM
364static struct rb_node *tree_insert(struct rb_root *root,
365 struct rb_node *search_start,
366 u64 offset,
12cfbad9
FDBM
367 struct rb_node *node,
368 struct rb_node ***p_in,
369 struct rb_node **parent_in)
d1310b2e 370{
f2071b21 371 struct rb_node **p;
d397712b 372 struct rb_node *parent = NULL;
d1310b2e
CM
373 struct tree_entry *entry;
374
12cfbad9
FDBM
375 if (p_in && parent_in) {
376 p = *p_in;
377 parent = *parent_in;
378 goto do_insert;
379 }
380
f2071b21 381 p = search_start ? &search_start : &root->rb_node;
d397712b 382 while (*p) {
d1310b2e
CM
383 parent = *p;
384 entry = rb_entry(parent, struct tree_entry, rb_node);
385
386 if (offset < entry->start)
387 p = &(*p)->rb_left;
388 else if (offset > entry->end)
389 p = &(*p)->rb_right;
390 else
391 return parent;
392 }
393
12cfbad9 394do_insert:
d1310b2e
CM
395 rb_link_node(node, parent, p);
396 rb_insert_color(node, root);
397 return NULL;
398}
399
8666e638 400/**
3bed2da1
NB
401 * Search @tree for an entry that contains @offset. Such entry would have
402 * entry->start <= offset && entry->end >= offset.
8666e638 403 *
3bed2da1
NB
404 * @tree: the tree to search
405 * @offset: offset that should fall within an entry in @tree
406 * @next_ret: pointer to the first entry whose range ends after @offset
407 * @prev_ret: pointer to the first entry whose range begins before @offset
408 * @p_ret: pointer where new node should be anchored (used when inserting an
409 * entry in the tree)
410 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
411 * containing @offset
412 *
413 * This function returns a pointer to the entry that contains @offset byte
414 * address. If no such entry exists, then NULL is returned and the other
415 * pointer arguments to the function are filled, otherwise the found entry is
416 * returned and other pointers are left untouched.
417 */
80ea96b1 418static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 419 struct rb_node **next_ret,
352646c7 420 struct rb_node **prev_ret,
12cfbad9
FDBM
421 struct rb_node ***p_ret,
422 struct rb_node **parent_ret)
d1310b2e 423{
80ea96b1 424 struct rb_root *root = &tree->state;
12cfbad9 425 struct rb_node **n = &root->rb_node;
d1310b2e
CM
426 struct rb_node *prev = NULL;
427 struct rb_node *orig_prev = NULL;
428 struct tree_entry *entry;
429 struct tree_entry *prev_entry = NULL;
430
12cfbad9
FDBM
431 while (*n) {
432 prev = *n;
433 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
434 prev_entry = entry;
435
436 if (offset < entry->start)
12cfbad9 437 n = &(*n)->rb_left;
d1310b2e 438 else if (offset > entry->end)
12cfbad9 439 n = &(*n)->rb_right;
d397712b 440 else
12cfbad9 441 return *n;
d1310b2e
CM
442 }
443
12cfbad9
FDBM
444 if (p_ret)
445 *p_ret = n;
446 if (parent_ret)
447 *parent_ret = prev;
448
352646c7 449 if (next_ret) {
d1310b2e 450 orig_prev = prev;
d397712b 451 while (prev && offset > prev_entry->end) {
d1310b2e
CM
452 prev = rb_next(prev);
453 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
454 }
352646c7 455 *next_ret = prev;
d1310b2e
CM
456 prev = orig_prev;
457 }
458
352646c7 459 if (prev_ret) {
d1310b2e 460 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 461 while (prev && offset < prev_entry->start) {
d1310b2e
CM
462 prev = rb_prev(prev);
463 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
464 }
352646c7 465 *prev_ret = prev;
d1310b2e
CM
466 }
467 return NULL;
468}
469
12cfbad9
FDBM
470static inline struct rb_node *
471tree_search_for_insert(struct extent_io_tree *tree,
472 u64 offset,
473 struct rb_node ***p_ret,
474 struct rb_node **parent_ret)
d1310b2e 475{
352646c7 476 struct rb_node *next= NULL;
d1310b2e 477 struct rb_node *ret;
70dec807 478
352646c7 479 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 480 if (!ret)
352646c7 481 return next;
d1310b2e
CM
482 return ret;
483}
484
12cfbad9
FDBM
485static inline struct rb_node *tree_search(struct extent_io_tree *tree,
486 u64 offset)
487{
488 return tree_search_for_insert(tree, offset, NULL, NULL);
489}
490
d1310b2e
CM
491/*
492 * utility function to look for merge candidates inside a given range.
493 * Any extents with matching state are merged together into a single
494 * extent in the tree. Extents with EXTENT_IO in their state field
495 * are not merged because the end_io handlers need to be able to do
496 * operations on them without sleeping (or doing allocations/splits).
497 *
498 * This should be called with the tree lock held.
499 */
1bf85046
JM
500static void merge_state(struct extent_io_tree *tree,
501 struct extent_state *state)
d1310b2e
CM
502{
503 struct extent_state *other;
504 struct rb_node *other_node;
505
8882679e 506 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 507 return;
d1310b2e
CM
508
509 other_node = rb_prev(&state->rb_node);
510 if (other_node) {
511 other = rb_entry(other_node, struct extent_state, rb_node);
512 if (other->end == state->start - 1 &&
513 other->state == state->state) {
5c848198
NB
514 if (tree->private_data &&
515 is_data_inode(tree->private_data))
516 btrfs_merge_delalloc_extent(tree->private_data,
517 state, other);
d1310b2e 518 state->start = other->start;
d1310b2e 519 rb_erase(&other->rb_node, &tree->state);
27a3507d 520 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
521 free_extent_state(other);
522 }
523 }
524 other_node = rb_next(&state->rb_node);
525 if (other_node) {
526 other = rb_entry(other_node, struct extent_state, rb_node);
527 if (other->start == state->end + 1 &&
528 other->state == state->state) {
5c848198
NB
529 if (tree->private_data &&
530 is_data_inode(tree->private_data))
531 btrfs_merge_delalloc_extent(tree->private_data,
532 state, other);
df98b6e2 533 state->end = other->end;
df98b6e2 534 rb_erase(&other->rb_node, &tree->state);
27a3507d 535 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 536 free_extent_state(other);
d1310b2e
CM
537 }
538 }
d1310b2e
CM
539}
540
3150b699 541static void set_state_bits(struct extent_io_tree *tree,
f97e27e9 542 struct extent_state *state, u32 *bits,
d38ed27f 543 struct extent_changeset *changeset);
3150b699 544
d1310b2e
CM
545/*
546 * insert an extent_state struct into the tree. 'bits' are set on the
547 * struct before it is inserted.
548 *
549 * This may return -EEXIST if the extent is already there, in which case the
550 * state struct is freed.
551 *
552 * The tree lock is not taken internally. This is a utility function and
553 * probably isn't what you want to call (see set/clear_extent_bit).
554 */
555static int insert_state(struct extent_io_tree *tree,
556 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
557 struct rb_node ***p,
558 struct rb_node **parent,
f97e27e9 559 u32 *bits, struct extent_changeset *changeset)
d1310b2e
CM
560{
561 struct rb_node *node;
562
2792237d
DS
563 if (end < start) {
564 btrfs_err(tree->fs_info,
565 "insert state: end < start %llu %llu", end, start);
566 WARN_ON(1);
567 }
d1310b2e
CM
568 state->start = start;
569 state->end = end;
9ed74f2d 570
d38ed27f 571 set_state_bits(tree, state, bits, changeset);
3150b699 572
f2071b21 573 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
574 if (node) {
575 struct extent_state *found;
576 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
577 btrfs_err(tree->fs_info,
578 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 579 found->start, found->end, start, end);
d1310b2e
CM
580 return -EEXIST;
581 }
582 merge_state(tree, state);
583 return 0;
584}
585
586/*
587 * split a given extent state struct in two, inserting the preallocated
588 * struct 'prealloc' as the newly created second half. 'split' indicates an
589 * offset inside 'orig' where it should be split.
590 *
591 * Before calling,
592 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
593 * are two extent state structs in the tree:
594 * prealloc: [orig->start, split - 1]
595 * orig: [ split, orig->end ]
596 *
597 * The tree locks are not taken by this function. They need to be held
598 * by the caller.
599 */
600static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
601 struct extent_state *prealloc, u64 split)
602{
603 struct rb_node *node;
9ed74f2d 604
abbb55f4
NB
605 if (tree->private_data && is_data_inode(tree->private_data))
606 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 607
d1310b2e
CM
608 prealloc->start = orig->start;
609 prealloc->end = split - 1;
610 prealloc->state = orig->state;
611 orig->start = split;
612
f2071b21
FM
613 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
614 &prealloc->rb_node, NULL, NULL);
d1310b2e 615 if (node) {
d1310b2e
CM
616 free_extent_state(prealloc);
617 return -EEXIST;
618 }
619 return 0;
620}
621
cdc6a395
LZ
622static struct extent_state *next_state(struct extent_state *state)
623{
624 struct rb_node *next = rb_next(&state->rb_node);
625 if (next)
626 return rb_entry(next, struct extent_state, rb_node);
627 else
628 return NULL;
629}
630
d1310b2e
CM
631/*
632 * utility function to clear some bits in an extent state struct.
52042d8e 633 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
634 *
635 * If no bits are set on the state struct after clearing things, the
636 * struct is freed and removed from the tree
637 */
cdc6a395
LZ
638static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
639 struct extent_state *state,
f97e27e9 640 u32 *bits, int wake,
fefdc557 641 struct extent_changeset *changeset)
d1310b2e 642{
cdc6a395 643 struct extent_state *next;
f97e27e9 644 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 645 int ret;
d1310b2e 646
0ca1f7ce 647 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
648 u64 range = state->end - state->start + 1;
649 WARN_ON(range > tree->dirty_bytes);
650 tree->dirty_bytes -= range;
651 }
a36bb5f9
NB
652
653 if (tree->private_data && is_data_inode(tree->private_data))
654 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
655
57599c7e
DS
656 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
657 BUG_ON(ret < 0);
32c00aff 658 state->state &= ~bits_to_clear;
d1310b2e
CM
659 if (wake)
660 wake_up(&state->wq);
0ca1f7ce 661 if (state->state == 0) {
cdc6a395 662 next = next_state(state);
27a3507d 663 if (extent_state_in_tree(state)) {
d1310b2e 664 rb_erase(&state->rb_node, &tree->state);
27a3507d 665 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
666 free_extent_state(state);
667 } else {
668 WARN_ON(1);
669 }
670 } else {
671 merge_state(tree, state);
cdc6a395 672 next = next_state(state);
d1310b2e 673 }
cdc6a395 674 return next;
d1310b2e
CM
675}
676
8233767a
XG
677static struct extent_state *
678alloc_extent_state_atomic(struct extent_state *prealloc)
679{
680 if (!prealloc)
681 prealloc = alloc_extent_state(GFP_ATOMIC);
682
683 return prealloc;
684}
685
48a3b636 686static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 687{
29b665cc 688 btrfs_panic(tree->fs_info, err,
05912a3c 689 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
690}
691
d1310b2e
CM
692/*
693 * clear some bits on a range in the tree. This may require splitting
694 * or inserting elements in the tree, so the gfp mask is used to
695 * indicate which allocations or sleeping are allowed.
696 *
697 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
698 * the given range from the tree regardless of state (ie for truncate).
699 *
700 * the range [start, end] is inclusive.
701 *
6763af84 702 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 703 */
66b0c887 704int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
705 u32 bits, int wake, int delete,
706 struct extent_state **cached_state,
707 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
708{
709 struct extent_state *state;
2c64c53d 710 struct extent_state *cached;
d1310b2e
CM
711 struct extent_state *prealloc = NULL;
712 struct rb_node *node;
5c939df5 713 u64 last_end;
d1310b2e 714 int err;
2ac55d41 715 int clear = 0;
d1310b2e 716
a5dee37d 717 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 718 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 719
7ee9e440
JB
720 if (bits & EXTENT_DELALLOC)
721 bits |= EXTENT_NORESERVE;
722
0ca1f7ce
YZ
723 if (delete)
724 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 725
8882679e 726 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 727 clear = 1;
d1310b2e 728again:
d0164adc 729 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
730 /*
731 * Don't care for allocation failure here because we might end
732 * up not needing the pre-allocated extent state at all, which
733 * is the case if we only have in the tree extent states that
734 * cover our input range and don't cover too any other range.
735 * If we end up needing a new extent state we allocate it later.
736 */
d1310b2e 737 prealloc = alloc_extent_state(mask);
d1310b2e
CM
738 }
739
cad321ad 740 spin_lock(&tree->lock);
2c64c53d
CM
741 if (cached_state) {
742 cached = *cached_state;
2ac55d41
JB
743
744 if (clear) {
745 *cached_state = NULL;
746 cached_state = NULL;
747 }
748
27a3507d
FM
749 if (cached && extent_state_in_tree(cached) &&
750 cached->start <= start && cached->end > start) {
2ac55d41 751 if (clear)
b7ac31b7 752 refcount_dec(&cached->refs);
2c64c53d 753 state = cached;
42daec29 754 goto hit_next;
2c64c53d 755 }
2ac55d41
JB
756 if (clear)
757 free_extent_state(cached);
2c64c53d 758 }
d1310b2e
CM
759 /*
760 * this search will find the extents that end after
761 * our range starts
762 */
80ea96b1 763 node = tree_search(tree, start);
d1310b2e
CM
764 if (!node)
765 goto out;
766 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 767hit_next:
d1310b2e
CM
768 if (state->start > end)
769 goto out;
770 WARN_ON(state->end < start);
5c939df5 771 last_end = state->end;
d1310b2e 772
0449314a 773 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
774 if (!(state->state & bits)) {
775 state = next_state(state);
0449314a 776 goto next;
cdc6a395 777 }
0449314a 778
d1310b2e
CM
779 /*
780 * | ---- desired range ---- |
781 * | state | or
782 * | ------------- state -------------- |
783 *
784 * We need to split the extent we found, and may flip
785 * bits on second half.
786 *
787 * If the extent we found extends past our range, we
788 * just split and search again. It'll get split again
789 * the next time though.
790 *
791 * If the extent we found is inside our range, we clear
792 * the desired bit on it.
793 */
794
795 if (state->start < start) {
8233767a
XG
796 prealloc = alloc_extent_state_atomic(prealloc);
797 BUG_ON(!prealloc);
d1310b2e 798 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
799 if (err)
800 extent_io_tree_panic(tree, err);
801
d1310b2e
CM
802 prealloc = NULL;
803 if (err)
804 goto out;
805 if (state->end <= end) {
fefdc557
QW
806 state = clear_state_bit(tree, state, &bits, wake,
807 changeset);
d1ac6e41 808 goto next;
d1310b2e
CM
809 }
810 goto search_again;
811 }
812 /*
813 * | ---- desired range ---- |
814 * | state |
815 * We need to split the extent, and clear the bit
816 * on the first half
817 */
818 if (state->start <= end && state->end > end) {
8233767a
XG
819 prealloc = alloc_extent_state_atomic(prealloc);
820 BUG_ON(!prealloc);
d1310b2e 821 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
822 if (err)
823 extent_io_tree_panic(tree, err);
824
d1310b2e
CM
825 if (wake)
826 wake_up(&state->wq);
42daec29 827
fefdc557 828 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 829
d1310b2e
CM
830 prealloc = NULL;
831 goto out;
832 }
42daec29 833
fefdc557 834 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 835next:
5c939df5
YZ
836 if (last_end == (u64)-1)
837 goto out;
838 start = last_end + 1;
cdc6a395 839 if (start <= end && state && !need_resched())
692e5759 840 goto hit_next;
d1310b2e
CM
841
842search_again:
843 if (start > end)
844 goto out;
cad321ad 845 spin_unlock(&tree->lock);
d0164adc 846 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
847 cond_resched();
848 goto again;
7ab5cb2a
DS
849
850out:
851 spin_unlock(&tree->lock);
852 if (prealloc)
853 free_extent_state(prealloc);
854
855 return 0;
856
d1310b2e 857}
d1310b2e 858
143bede5
JM
859static void wait_on_state(struct extent_io_tree *tree,
860 struct extent_state *state)
641f5219
CH
861 __releases(tree->lock)
862 __acquires(tree->lock)
d1310b2e
CM
863{
864 DEFINE_WAIT(wait);
865 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 866 spin_unlock(&tree->lock);
d1310b2e 867 schedule();
cad321ad 868 spin_lock(&tree->lock);
d1310b2e 869 finish_wait(&state->wq, &wait);
d1310b2e
CM
870}
871
872/*
873 * waits for one or more bits to clear on a range in the state tree.
874 * The range [start, end] is inclusive.
875 * The tree lock is taken by this function
876 */
41074888 877static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 878 u32 bits)
d1310b2e
CM
879{
880 struct extent_state *state;
881 struct rb_node *node;
882
a5dee37d 883 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 884
cad321ad 885 spin_lock(&tree->lock);
d1310b2e
CM
886again:
887 while (1) {
888 /*
889 * this search will find all the extents that end after
890 * our range starts
891 */
80ea96b1 892 node = tree_search(tree, start);
c50d3e71 893process_node:
d1310b2e
CM
894 if (!node)
895 break;
896
897 state = rb_entry(node, struct extent_state, rb_node);
898
899 if (state->start > end)
900 goto out;
901
902 if (state->state & bits) {
903 start = state->start;
b7ac31b7 904 refcount_inc(&state->refs);
d1310b2e
CM
905 wait_on_state(tree, state);
906 free_extent_state(state);
907 goto again;
908 }
909 start = state->end + 1;
910
911 if (start > end)
912 break;
913
c50d3e71
FM
914 if (!cond_resched_lock(&tree->lock)) {
915 node = rb_next(node);
916 goto process_node;
917 }
d1310b2e
CM
918 }
919out:
cad321ad 920 spin_unlock(&tree->lock);
d1310b2e 921}
d1310b2e 922
1bf85046 923static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 924 struct extent_state *state,
f97e27e9 925 u32 *bits, struct extent_changeset *changeset)
d1310b2e 926{
f97e27e9 927 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 928 int ret;
9ed74f2d 929
e06a1fc9
NB
930 if (tree->private_data && is_data_inode(tree->private_data))
931 btrfs_set_delalloc_extent(tree->private_data, state, bits);
932
0ca1f7ce 933 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
934 u64 range = state->end - state->start + 1;
935 tree->dirty_bytes += range;
936 }
57599c7e
DS
937 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
938 BUG_ON(ret < 0);
0ca1f7ce 939 state->state |= bits_to_set;
d1310b2e
CM
940}
941
e38e2ed7
FM
942static void cache_state_if_flags(struct extent_state *state,
943 struct extent_state **cached_ptr,
9ee49a04 944 unsigned flags)
2c64c53d
CM
945{
946 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 947 if (!flags || (state->state & flags)) {
2c64c53d 948 *cached_ptr = state;
b7ac31b7 949 refcount_inc(&state->refs);
2c64c53d
CM
950 }
951 }
952}
953
e38e2ed7
FM
954static void cache_state(struct extent_state *state,
955 struct extent_state **cached_ptr)
956{
957 return cache_state_if_flags(state, cached_ptr,
8882679e 958 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
959}
960
d1310b2e 961/*
1edbb734
CM
962 * set some bits on a range in the tree. This may require allocations or
963 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 964 *
1edbb734
CM
965 * If any of the exclusive bits are set, this will fail with -EEXIST if some
966 * part of the range already has the desired bits set. The start of the
967 * existing range is returned in failed_start in this case.
d1310b2e 968 *
1edbb734 969 * [start, end] is inclusive This takes the tree lock.
d1310b2e 970 */
f97e27e9
QW
971int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
972 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
973 struct extent_state **cached_state, gfp_t mask,
974 struct extent_changeset *changeset)
d1310b2e
CM
975{
976 struct extent_state *state;
977 struct extent_state *prealloc = NULL;
978 struct rb_node *node;
12cfbad9
FDBM
979 struct rb_node **p;
980 struct rb_node *parent;
d1310b2e 981 int err = 0;
d1310b2e
CM
982 u64 last_start;
983 u64 last_end;
42daec29 984
a5dee37d 985 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 986 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 987
3f6bb4ae
QW
988 if (exclusive_bits)
989 ASSERT(failed_start);
990 else
991 ASSERT(failed_start == NULL);
d1310b2e 992again:
d0164adc 993 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
994 /*
995 * Don't care for allocation failure here because we might end
996 * up not needing the pre-allocated extent state at all, which
997 * is the case if we only have in the tree extent states that
998 * cover our input range and don't cover too any other range.
999 * If we end up needing a new extent state we allocate it later.
1000 */
d1310b2e 1001 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1002 }
1003
cad321ad 1004 spin_lock(&tree->lock);
9655d298
CM
1005 if (cached_state && *cached_state) {
1006 state = *cached_state;
df98b6e2 1007 if (state->start <= start && state->end > start &&
27a3507d 1008 extent_state_in_tree(state)) {
9655d298
CM
1009 node = &state->rb_node;
1010 goto hit_next;
1011 }
1012 }
d1310b2e
CM
1013 /*
1014 * this search will find all the extents that end after
1015 * our range starts.
1016 */
12cfbad9 1017 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1018 if (!node) {
8233767a
XG
1019 prealloc = alloc_extent_state_atomic(prealloc);
1020 BUG_ON(!prealloc);
12cfbad9 1021 err = insert_state(tree, prealloc, start, end,
d38ed27f 1022 &p, &parent, &bits, changeset);
c2d904e0
JM
1023 if (err)
1024 extent_io_tree_panic(tree, err);
1025
c42ac0bc 1026 cache_state(prealloc, cached_state);
d1310b2e 1027 prealloc = NULL;
d1310b2e
CM
1028 goto out;
1029 }
d1310b2e 1030 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1031hit_next:
d1310b2e
CM
1032 last_start = state->start;
1033 last_end = state->end;
1034
1035 /*
1036 * | ---- desired range ---- |
1037 * | state |
1038 *
1039 * Just lock what we found and keep going
1040 */
1041 if (state->start == start && state->end <= end) {
1edbb734 1042 if (state->state & exclusive_bits) {
d1310b2e
CM
1043 *failed_start = state->start;
1044 err = -EEXIST;
1045 goto out;
1046 }
42daec29 1047
d38ed27f 1048 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1049 cache_state(state, cached_state);
d1310b2e 1050 merge_state(tree, state);
5c939df5
YZ
1051 if (last_end == (u64)-1)
1052 goto out;
1053 start = last_end + 1;
d1ac6e41
LB
1054 state = next_state(state);
1055 if (start < end && state && state->start == start &&
1056 !need_resched())
1057 goto hit_next;
d1310b2e
CM
1058 goto search_again;
1059 }
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 * or
1065 * | ------------- state -------------- |
1066 *
1067 * We need to split the extent we found, and may flip bits on
1068 * second half.
1069 *
1070 * If the extent we found extends past our
1071 * range, we just split and search again. It'll get split
1072 * again the next time though.
1073 *
1074 * If the extent we found is inside our range, we set the
1075 * desired bit on it.
1076 */
1077 if (state->start < start) {
1edbb734 1078 if (state->state & exclusive_bits) {
d1310b2e
CM
1079 *failed_start = start;
1080 err = -EEXIST;
1081 goto out;
1082 }
8233767a 1083
55ffaabe
FM
1084 /*
1085 * If this extent already has all the bits we want set, then
1086 * skip it, not necessary to split it or do anything with it.
1087 */
1088 if ((state->state & bits) == bits) {
1089 start = state->end + 1;
1090 cache_state(state, cached_state);
1091 goto search_again;
1092 }
1093
8233767a
XG
1094 prealloc = alloc_extent_state_atomic(prealloc);
1095 BUG_ON(!prealloc);
d1310b2e 1096 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
1099
d1310b2e
CM
1100 prealloc = NULL;
1101 if (err)
1102 goto out;
1103 if (state->end <= end) {
d38ed27f 1104 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1105 cache_state(state, cached_state);
d1310b2e 1106 merge_state(tree, state);
5c939df5
YZ
1107 if (last_end == (u64)-1)
1108 goto out;
1109 start = last_end + 1;
d1ac6e41
LB
1110 state = next_state(state);
1111 if (start < end && state && state->start == start &&
1112 !need_resched())
1113 goto hit_next;
d1310b2e
CM
1114 }
1115 goto search_again;
1116 }
1117 /*
1118 * | ---- desired range ---- |
1119 * | state | or | state |
1120 *
1121 * There's a hole, we need to insert something in it and
1122 * ignore the extent we found.
1123 */
1124 if (state->start > start) {
1125 u64 this_end;
1126 if (end < last_start)
1127 this_end = end;
1128 else
d397712b 1129 this_end = last_start - 1;
8233767a
XG
1130
1131 prealloc = alloc_extent_state_atomic(prealloc);
1132 BUG_ON(!prealloc);
c7f895a2
XG
1133
1134 /*
1135 * Avoid to free 'prealloc' if it can be merged with
1136 * the later extent.
1137 */
d1310b2e 1138 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1139 NULL, NULL, &bits, changeset);
c2d904e0
JM
1140 if (err)
1141 extent_io_tree_panic(tree, err);
1142
9ed74f2d
JB
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
d1310b2e
CM
1145 start = this_end + 1;
1146 goto search_again;
1147 }
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 * We need to split the extent, and set the bit
1152 * on the first half
1153 */
1154 if (state->start <= end && state->end > end) {
1edbb734 1155 if (state->state & exclusive_bits) {
d1310b2e
CM
1156 *failed_start = start;
1157 err = -EEXIST;
1158 goto out;
1159 }
8233767a
XG
1160
1161 prealloc = alloc_extent_state_atomic(prealloc);
1162 BUG_ON(!prealloc);
d1310b2e 1163 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1164 if (err)
1165 extent_io_tree_panic(tree, err);
d1310b2e 1166
d38ed27f 1167 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1168 cache_state(prealloc, cached_state);
d1310b2e
CM
1169 merge_state(tree, prealloc);
1170 prealloc = NULL;
1171 goto out;
1172 }
1173
b5a4ba14
DS
1174search_again:
1175 if (start > end)
1176 goto out;
1177 spin_unlock(&tree->lock);
1178 if (gfpflags_allow_blocking(mask))
1179 cond_resched();
1180 goto again;
d1310b2e
CM
1181
1182out:
cad321ad 1183 spin_unlock(&tree->lock);
d1310b2e
CM
1184 if (prealloc)
1185 free_extent_state(prealloc);
1186
1187 return err;
1188
d1310b2e 1189}
d1310b2e 1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1210 u32 bits, u32 clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1411 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1cab5e72
NB
1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
d38ed27f
QW
1423}
1424
4ca73656 1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1426 u32 bits)
4ca73656 1427{
1cab5e72
NB
1428 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
4ca73656
NB
1430}
1431
fefdc557 1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1433 u32 bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1441 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
1cab5e72
NB
1464 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
1cab5e72
NB
1482 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636 1528static struct extent_state *
f97e27e9 1529find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1530{
1531 struct rb_node *node;
1532 struct extent_state *state;
1533
1534 /*
1535 * this search will find all the extents that end after
1536 * our range starts.
1537 */
1538 node = tree_search(tree, start);
d397712b 1539 if (!node)
d7fc640e 1540 goto out;
d7fc640e 1541
d397712b 1542 while (1) {
d7fc640e 1543 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1544 if (state->end >= start && (state->state & bits))
d7fc640e 1545 return state;
d397712b 1546
d7fc640e
CM
1547 node = rb_next(node);
1548 if (!node)
1549 break;
1550 }
1551out:
1552 return NULL;
1553}
d7fc640e 1554
69261c4b 1555/*
03509b78 1556 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1557 *
03509b78
QW
1558 * Note: If there are multiple bits set in @bits, any of them will match.
1559 *
1560 * Return 0 if we find something, and update @start_ret and @end_ret.
1561 * Return 1 if we found nothing.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1564 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75 1599/**
3bed2da1
NB
1600 * Find a contiguous area of bits
1601 *
1602 * @tree: io tree to check
1603 * @start: offset to start the search from
1604 * @start_ret: the first offset we found with the bits set
1605 * @end_ret: the final contiguous range of the bits that were set
1606 * @bits: bits to look for
41a2ee75
JB
1607 *
1608 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1609 * to set bits appropriately, and then merge them again. During this time it
1610 * will drop the tree->lock, so use this helper if you want to find the actual
1611 * contiguous area for given bits. We will search to the first bit we find, and
1612 * then walk down the tree until we find a non-contiguous area. The area
1613 * returned will be the full contiguous area with the bits set.
1614 */
1615int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1616 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1617{
1618 struct extent_state *state;
1619 int ret = 1;
1620
1621 spin_lock(&tree->lock);
1622 state = find_first_extent_bit_state(tree, start, bits);
1623 if (state) {
1624 *start_ret = state->start;
1625 *end_ret = state->end;
1626 while ((state = next_state(state)) != NULL) {
1627 if (state->start > (*end_ret + 1))
1628 break;
1629 *end_ret = state->end;
1630 }
1631 ret = 0;
1632 }
1633 spin_unlock(&tree->lock);
1634 return ret;
1635}
1636
45bfcfc1 1637/**
3bed2da1
NB
1638 * Find the first range that has @bits not set. This range could start before
1639 * @start.
45bfcfc1 1640 *
3bed2da1
NB
1641 * @tree: the tree to search
1642 * @start: offset at/after which the found extent should start
1643 * @start_ret: records the beginning of the range
1644 * @end_ret: records the end of the range (inclusive)
1645 * @bits: the set of bits which must be unset
45bfcfc1
NB
1646 *
1647 * Since unallocated range is also considered one which doesn't have the bits
1648 * set it's possible that @end_ret contains -1, this happens in case the range
1649 * spans (last_range_end, end of device]. In this case it's up to the caller to
1650 * trim @end_ret to the appropriate size.
1651 */
1652void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1653 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1654{
1655 struct extent_state *state;
1656 struct rb_node *node, *prev = NULL, *next;
1657
1658 spin_lock(&tree->lock);
1659
1660 /* Find first extent with bits cleared */
1661 while (1) {
1662 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1663 if (!node && !next && !prev) {
1664 /*
1665 * Tree is completely empty, send full range and let
1666 * caller deal with it
1667 */
1668 *start_ret = 0;
1669 *end_ret = -1;
1670 goto out;
1671 } else if (!node && !next) {
1672 /*
1673 * We are past the last allocated chunk, set start at
1674 * the end of the last extent.
1675 */
1676 state = rb_entry(prev, struct extent_state, rb_node);
1677 *start_ret = state->end + 1;
1678 *end_ret = -1;
1679 goto out;
1680 } else if (!node) {
45bfcfc1 1681 node = next;
45bfcfc1 1682 }
1eaebb34
NB
1683 /*
1684 * At this point 'node' either contains 'start' or start is
1685 * before 'node'
1686 */
45bfcfc1 1687 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1688
1689 if (in_range(start, state->start, state->end - state->start + 1)) {
1690 if (state->state & bits) {
1691 /*
1692 * |--range with bits sets--|
1693 * |
1694 * start
1695 */
1696 start = state->end + 1;
1697 } else {
1698 /*
1699 * 'start' falls within a range that doesn't
1700 * have the bits set, so take its start as
1701 * the beginning of the desired range
1702 *
1703 * |--range with bits cleared----|
1704 * |
1705 * start
1706 */
1707 *start_ret = state->start;
1708 break;
1709 }
45bfcfc1 1710 } else {
1eaebb34
NB
1711 /*
1712 * |---prev range---|---hole/unset---|---node range---|
1713 * |
1714 * start
1715 *
1716 * or
1717 *
1718 * |---hole/unset--||--first node--|
1719 * 0 |
1720 * start
1721 */
1722 if (prev) {
1723 state = rb_entry(prev, struct extent_state,
1724 rb_node);
1725 *start_ret = state->end + 1;
1726 } else {
1727 *start_ret = 0;
1728 }
45bfcfc1
NB
1729 break;
1730 }
1731 }
1732
1733 /*
1734 * Find the longest stretch from start until an entry which has the
1735 * bits set
1736 */
1737 while (1) {
1738 state = rb_entry(node, struct extent_state, rb_node);
1739 if (state->end >= start && !(state->state & bits)) {
1740 *end_ret = state->end;
1741 } else {
1742 *end_ret = state->start - 1;
1743 break;
1744 }
1745
1746 node = rb_next(node);
1747 if (!node)
1748 break;
1749 }
1750out:
1751 spin_unlock(&tree->lock);
1752}
1753
d352ac68
CM
1754/*
1755 * find a contiguous range of bytes in the file marked as delalloc, not
1756 * more than 'max_bytes'. start and end are used to return the range,
1757 *
3522e903 1758 * true is returned if we find something, false if nothing was in the tree
d352ac68 1759 */
083e75e7
JB
1760bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1761 u64 *end, u64 max_bytes,
1762 struct extent_state **cached_state)
d1310b2e
CM
1763{
1764 struct rb_node *node;
1765 struct extent_state *state;
1766 u64 cur_start = *start;
3522e903 1767 bool found = false;
d1310b2e
CM
1768 u64 total_bytes = 0;
1769
cad321ad 1770 spin_lock(&tree->lock);
c8b97818 1771
d1310b2e
CM
1772 /*
1773 * this search will find all the extents that end after
1774 * our range starts.
1775 */
80ea96b1 1776 node = tree_search(tree, cur_start);
2b114d1d 1777 if (!node) {
3522e903 1778 *end = (u64)-1;
d1310b2e
CM
1779 goto out;
1780 }
1781
d397712b 1782 while (1) {
d1310b2e 1783 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1784 if (found && (state->start != cur_start ||
1785 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1786 goto out;
1787 }
1788 if (!(state->state & EXTENT_DELALLOC)) {
1789 if (!found)
1790 *end = state->end;
1791 goto out;
1792 }
c2a128d2 1793 if (!found) {
d1310b2e 1794 *start = state->start;
c2a128d2 1795 *cached_state = state;
b7ac31b7 1796 refcount_inc(&state->refs);
c2a128d2 1797 }
3522e903 1798 found = true;
d1310b2e
CM
1799 *end = state->end;
1800 cur_start = state->end + 1;
1801 node = rb_next(node);
d1310b2e 1802 total_bytes += state->end - state->start + 1;
7bf811a5 1803 if (total_bytes >= max_bytes)
573aecaf 1804 break;
573aecaf 1805 if (!node)
d1310b2e
CM
1806 break;
1807 }
1808out:
cad321ad 1809 spin_unlock(&tree->lock);
d1310b2e
CM
1810 return found;
1811}
1812
ed8f13bf
QW
1813/*
1814 * Process one page for __process_pages_contig().
1815 *
1816 * Return >0 if we hit @page == @locked_page.
1817 * Return 0 if we updated the page status.
1818 * Return -EGAIN if the we need to try again.
1819 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1820 */
e38992be
QW
1821static int process_one_page(struct btrfs_fs_info *fs_info,
1822 struct address_space *mapping,
ed8f13bf 1823 struct page *page, struct page *locked_page,
e38992be 1824 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1825{
e38992be
QW
1826 u32 len;
1827
1828 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1829 len = end + 1 - start;
1830
ed8f13bf 1831 if (page_ops & PAGE_SET_ORDERED)
b945a463 1832 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 1833 if (page_ops & PAGE_SET_ERROR)
e38992be 1834 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1835 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1836 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1837 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1838 }
1839 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1840 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
1841
1842 if (page == locked_page)
1843 return 1;
1844
ed8f13bf 1845 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1846 int ret;
1847
1848 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1849 if (ret)
1850 return ret;
ed8f13bf 1851 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1852 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1853 return -EAGAIN;
1854 }
1855 }
1856 if (page_ops & PAGE_UNLOCK)
1e1de387 1857 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1858 return 0;
1859}
1860
da2c7009
LB
1861static int __process_pages_contig(struct address_space *mapping,
1862 struct page *locked_page,
98af9ab1 1863 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1864 u64 *processed_end)
1865{
e38992be 1866 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1867 pgoff_t start_index = start >> PAGE_SHIFT;
1868 pgoff_t end_index = end >> PAGE_SHIFT;
1869 pgoff_t index = start_index;
1870 unsigned long nr_pages = end_index - start_index + 1;
1871 unsigned long pages_processed = 0;
1872 struct page *pages[16];
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(processed_end && *processed_end == start);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 int found_pages;
1886
1887 found_pages = find_get_pages_contig(mapping, index,
1888 min_t(unsigned long,
1889 nr_pages, ARRAY_SIZE(pages)), pages);
1890 if (found_pages == 0) {
1891 /*
1892 * Only if we're going to lock these pages, we can find
1893 * nothing at @index.
1894 */
1895 ASSERT(page_ops & PAGE_LOCK);
1896 err = -EAGAIN;
1897 goto out;
1898 }
1899
1900 for (i = 0; i < found_pages; i++) {
1901 int process_ret;
1902
e38992be
QW
1903 process_ret = process_one_page(fs_info, mapping,
1904 pages[i], locked_page, page_ops,
1905 start, end);
ed8f13bf
QW
1906 if (process_ret < 0) {
1907 for (; i < found_pages; i++)
1908 put_page(pages[i]);
1909 err = -EAGAIN;
1910 goto out;
1911 }
1912 put_page(pages[i]);
1913 pages_processed++;
1914 }
1915 nr_pages -= found_pages;
1916 index += found_pages;
1917 cond_resched();
1918 }
1919out:
1920 if (err && processed_end) {
1921 /*
1922 * Update @processed_end. I know this is awful since it has
1923 * two different return value patterns (inclusive vs exclusive).
1924 *
1925 * But the exclusive pattern is necessary if @start is 0, or we
1926 * underflow and check against processed_end won't work as
1927 * expected.
1928 */
1929 if (pages_processed)
1930 *processed_end = min(end,
1931 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1932 else
1933 *processed_end = start;
1934 }
1935 return err;
1936}
da2c7009 1937
143bede5
JM
1938static noinline void __unlock_for_delalloc(struct inode *inode,
1939 struct page *locked_page,
1940 u64 start, u64 end)
c8b97818 1941{
09cbfeaf
KS
1942 unsigned long index = start >> PAGE_SHIFT;
1943 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1944
76c0021d 1945 ASSERT(locked_page);
c8b97818 1946 if (index == locked_page->index && end_index == index)
143bede5 1947 return;
c8b97818 1948
98af9ab1 1949 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1950 PAGE_UNLOCK, NULL);
c8b97818
CM
1951}
1952
1953static noinline int lock_delalloc_pages(struct inode *inode,
1954 struct page *locked_page,
1955 u64 delalloc_start,
1956 u64 delalloc_end)
1957{
09cbfeaf 1958 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1959 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1960 u64 processed_end = delalloc_start;
c8b97818 1961 int ret;
c8b97818 1962
76c0021d 1963 ASSERT(locked_page);
c8b97818
CM
1964 if (index == locked_page->index && index == end_index)
1965 return 0;
1966
98af9ab1
QW
1967 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1968 delalloc_end, PAGE_LOCK, &processed_end);
1969 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1970 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 1971 processed_end);
c8b97818
CM
1972 return ret;
1973}
1974
1975/*
3522e903 1976 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 1977 * more than @max_bytes.
c8b97818 1978 *
2749f7ef
QW
1979 * @start: The original start bytenr to search.
1980 * Will store the extent range start bytenr.
1981 * @end: The original end bytenr of the search range
1982 * Will store the extent range end bytenr.
1983 *
1984 * Return true if we find a delalloc range which starts inside the original
1985 * range, and @start/@end will store the delalloc range start/end.
1986 *
1987 * Return false if we can't find any delalloc range which starts inside the
1988 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 1989 */
ce9f967f 1990EXPORT_FOR_TESTS
3522e903 1991noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1992 struct page *locked_page, u64 *start,
917aacec 1993 u64 *end)
c8b97818 1994{
9978059b 1995 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
1996 const u64 orig_start = *start;
1997 const u64 orig_end = *end;
917aacec 1998 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1999 u64 delalloc_start;
2000 u64 delalloc_end;
3522e903 2001 bool found;
9655d298 2002 struct extent_state *cached_state = NULL;
c8b97818
CM
2003 int ret;
2004 int loops = 0;
2005
2749f7ef
QW
2006 /* Caller should pass a valid @end to indicate the search range end */
2007 ASSERT(orig_end > orig_start);
2008
2009 /* The range should at least cover part of the page */
2010 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2011 orig_end <= page_offset(locked_page)));
c8b97818
CM
2012again:
2013 /* step one, find a bunch of delalloc bytes starting at start */
2014 delalloc_start = *start;
2015 delalloc_end = 0;
083e75e7
JB
2016 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2017 max_bytes, &cached_state);
2749f7ef 2018 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 2019 *start = delalloc_start;
2749f7ef
QW
2020
2021 /* @delalloc_end can be -1, never go beyond @orig_end */
2022 *end = min(delalloc_end, orig_end);
c2a128d2 2023 free_extent_state(cached_state);
3522e903 2024 return false;
c8b97818
CM
2025 }
2026
70b99e69
CM
2027 /*
2028 * start comes from the offset of locked_page. We have to lock
2029 * pages in order, so we can't process delalloc bytes before
2030 * locked_page
2031 */
d397712b 2032 if (delalloc_start < *start)
70b99e69 2033 delalloc_start = *start;
70b99e69 2034
c8b97818
CM
2035 /*
2036 * make sure to limit the number of pages we try to lock down
c8b97818 2037 */
7bf811a5
JB
2038 if (delalloc_end + 1 - delalloc_start > max_bytes)
2039 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2040
c8b97818
CM
2041 /* step two, lock all the pages after the page that has start */
2042 ret = lock_delalloc_pages(inode, locked_page,
2043 delalloc_start, delalloc_end);
9bfd61d9 2044 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2045 if (ret == -EAGAIN) {
2046 /* some of the pages are gone, lets avoid looping by
2047 * shortening the size of the delalloc range we're searching
2048 */
9655d298 2049 free_extent_state(cached_state);
7d788742 2050 cached_state = NULL;
c8b97818 2051 if (!loops) {
09cbfeaf 2052 max_bytes = PAGE_SIZE;
c8b97818
CM
2053 loops = 1;
2054 goto again;
2055 } else {
3522e903 2056 found = false;
c8b97818
CM
2057 goto out_failed;
2058 }
2059 }
c8b97818
CM
2060
2061 /* step three, lock the state bits for the whole range */
ff13db41 2062 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2063
2064 /* then test to make sure it is all still delalloc */
2065 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2066 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2067 if (!ret) {
9655d298 2068 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2069 &cached_state);
c8b97818
CM
2070 __unlock_for_delalloc(inode, locked_page,
2071 delalloc_start, delalloc_end);
2072 cond_resched();
2073 goto again;
2074 }
9655d298 2075 free_extent_state(cached_state);
c8b97818
CM
2076 *start = delalloc_start;
2077 *end = delalloc_end;
2078out_failed:
2079 return found;
2080}
2081
ad7ff17b 2082void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2083 struct page *locked_page,
f97e27e9 2084 u32 clear_bits, unsigned long page_ops)
873695b3 2085{
ad7ff17b 2086 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2087
ad7ff17b 2088 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2089 start, end, page_ops, NULL);
873695b3
LB
2090}
2091
d352ac68
CM
2092/*
2093 * count the number of bytes in the tree that have a given bit(s)
2094 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2095 * cached. The total number found is returned.
2096 */
d1310b2e
CM
2097u64 count_range_bits(struct extent_io_tree *tree,
2098 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2099 u32 bits, int contig)
d1310b2e
CM
2100{
2101 struct rb_node *node;
2102 struct extent_state *state;
2103 u64 cur_start = *start;
2104 u64 total_bytes = 0;
ec29ed5b 2105 u64 last = 0;
d1310b2e
CM
2106 int found = 0;
2107
fae7f21c 2108 if (WARN_ON(search_end <= cur_start))
d1310b2e 2109 return 0;
d1310b2e 2110
cad321ad 2111 spin_lock(&tree->lock);
d1310b2e
CM
2112 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2113 total_bytes = tree->dirty_bytes;
2114 goto out;
2115 }
2116 /*
2117 * this search will find all the extents that end after
2118 * our range starts.
2119 */
80ea96b1 2120 node = tree_search(tree, cur_start);
d397712b 2121 if (!node)
d1310b2e 2122 goto out;
d1310b2e 2123
d397712b 2124 while (1) {
d1310b2e
CM
2125 state = rb_entry(node, struct extent_state, rb_node);
2126 if (state->start > search_end)
2127 break;
ec29ed5b
CM
2128 if (contig && found && state->start > last + 1)
2129 break;
2130 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2131 total_bytes += min(search_end, state->end) + 1 -
2132 max(cur_start, state->start);
2133 if (total_bytes >= max_bytes)
2134 break;
2135 if (!found) {
af60bed2 2136 *start = max(cur_start, state->start);
d1310b2e
CM
2137 found = 1;
2138 }
ec29ed5b
CM
2139 last = state->end;
2140 } else if (contig && found) {
2141 break;
d1310b2e
CM
2142 }
2143 node = rb_next(node);
2144 if (!node)
2145 break;
2146 }
2147out:
cad321ad 2148 spin_unlock(&tree->lock);
d1310b2e
CM
2149 return total_bytes;
2150}
b2950863 2151
d352ac68
CM
2152/*
2153 * set the private field for a given byte offset in the tree. If there isn't
2154 * an extent_state there already, this does nothing.
2155 */
b3f167aa
JB
2156int set_state_failrec(struct extent_io_tree *tree, u64 start,
2157 struct io_failure_record *failrec)
d1310b2e
CM
2158{
2159 struct rb_node *node;
2160 struct extent_state *state;
2161 int ret = 0;
2162
cad321ad 2163 spin_lock(&tree->lock);
d1310b2e
CM
2164 /*
2165 * this search will find all the extents that end after
2166 * our range starts.
2167 */
80ea96b1 2168 node = tree_search(tree, start);
2b114d1d 2169 if (!node) {
d1310b2e
CM
2170 ret = -ENOENT;
2171 goto out;
2172 }
2173 state = rb_entry(node, struct extent_state, rb_node);
2174 if (state->start != start) {
2175 ret = -ENOENT;
2176 goto out;
2177 }
47dc196a 2178 state->failrec = failrec;
d1310b2e 2179out:
cad321ad 2180 spin_unlock(&tree->lock);
d1310b2e
CM
2181 return ret;
2182}
2183
2279a270 2184struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2185{
2186 struct rb_node *node;
2187 struct extent_state *state;
2279a270 2188 struct io_failure_record *failrec;
d1310b2e 2189
cad321ad 2190 spin_lock(&tree->lock);
d1310b2e
CM
2191 /*
2192 * this search will find all the extents that end after
2193 * our range starts.
2194 */
80ea96b1 2195 node = tree_search(tree, start);
2b114d1d 2196 if (!node) {
2279a270 2197 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2198 goto out;
2199 }
2200 state = rb_entry(node, struct extent_state, rb_node);
2201 if (state->start != start) {
2279a270 2202 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2203 goto out;
2204 }
2279a270
NB
2205
2206 failrec = state->failrec;
d1310b2e 2207out:
cad321ad 2208 spin_unlock(&tree->lock);
2279a270 2209 return failrec;
d1310b2e
CM
2210}
2211
2212/*
2213 * searches a range in the state tree for a given mask.
70dec807 2214 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2215 * has the bits set. Otherwise, 1 is returned if any bit in the
2216 * range is found set.
2217 */
2218int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2219 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2220{
2221 struct extent_state *state = NULL;
2222 struct rb_node *node;
2223 int bitset = 0;
d1310b2e 2224
cad321ad 2225 spin_lock(&tree->lock);
27a3507d 2226 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2227 cached->end > start)
9655d298
CM
2228 node = &cached->rb_node;
2229 else
2230 node = tree_search(tree, start);
d1310b2e
CM
2231 while (node && start <= end) {
2232 state = rb_entry(node, struct extent_state, rb_node);
2233
2234 if (filled && state->start > start) {
2235 bitset = 0;
2236 break;
2237 }
2238
2239 if (state->start > end)
2240 break;
2241
2242 if (state->state & bits) {
2243 bitset = 1;
2244 if (!filled)
2245 break;
2246 } else if (filled) {
2247 bitset = 0;
2248 break;
2249 }
46562cec
CM
2250
2251 if (state->end == (u64)-1)
2252 break;
2253
d1310b2e
CM
2254 start = state->end + 1;
2255 if (start > end)
2256 break;
2257 node = rb_next(node);
2258 if (!node) {
2259 if (filled)
2260 bitset = 0;
2261 break;
2262 }
2263 }
cad321ad 2264 spin_unlock(&tree->lock);
d1310b2e
CM
2265 return bitset;
2266}
d1310b2e 2267
7870d082
JB
2268int free_io_failure(struct extent_io_tree *failure_tree,
2269 struct extent_io_tree *io_tree,
2270 struct io_failure_record *rec)
4a54c8c1
JS
2271{
2272 int ret;
2273 int err = 0;
4a54c8c1 2274
47dc196a 2275 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2276 ret = clear_extent_bits(failure_tree, rec->start,
2277 rec->start + rec->len - 1,
91166212 2278 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2279 if (ret)
2280 err = ret;
2281
7870d082 2282 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2283 rec->start + rec->len - 1,
91166212 2284 EXTENT_DAMAGED);
53b381b3
DW
2285 if (ret && !err)
2286 err = ret;
4a54c8c1
JS
2287
2288 kfree(rec);
2289 return err;
2290}
2291
4a54c8c1
JS
2292/*
2293 * this bypasses the standard btrfs submit functions deliberately, as
2294 * the standard behavior is to write all copies in a raid setup. here we only
2295 * want to write the one bad copy. so we do the mapping for ourselves and issue
2296 * submit_bio directly.
3ec706c8 2297 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2298 * actually prevents the read that triggered the error from finishing.
2299 * currently, there can be no more than two copies of every data bit. thus,
2300 * exactly one rewrite is required.
2301 */
38d5e541
QW
2302static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2303 u64 length, u64 logical, struct page *page,
2304 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2305{
2306 struct bio *bio;
2307 struct btrfs_device *dev;
4a54c8c1
JS
2308 u64 map_length = 0;
2309 u64 sector;
4c664611 2310 struct btrfs_io_context *bioc = NULL;
4a54c8c1
JS
2311 int ret;
2312
1751e8a6 2313 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2314 BUG_ON(!mirror_num);
2315
554aed7d
JT
2316 if (btrfs_repair_one_zone(fs_info, logical))
2317 return 0;
f7ef5287 2318
c3a3b19b 2319 bio = btrfs_bio_alloc(1);
4f024f37 2320 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2321 map_length = length;
2322
b5de8d0d 2323 /*
4c664611 2324 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
2325 * associated to its stripes that don't go away while we are doing the
2326 * read repair operation.
2327 */
2328 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2329 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2330 /*
2331 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2332 * to update all raid stripes, but here we just want to correct
2333 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2334 * stripe's dev and sector.
2335 */
2336 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 2337 &map_length, &bioc, 0);
c725328c
LB
2338 if (ret) {
2339 btrfs_bio_counter_dec(fs_info);
2340 bio_put(bio);
2341 return -EIO;
2342 }
4c664611 2343 ASSERT(bioc->mirror_num == 1);
c725328c
LB
2344 } else {
2345 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 2346 &map_length, &bioc, mirror_num);
c725328c
LB
2347 if (ret) {
2348 btrfs_bio_counter_dec(fs_info);
2349 bio_put(bio);
2350 return -EIO;
2351 }
4c664611 2352 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 2353 }
c725328c 2354
4c664611 2355 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4f024f37 2356 bio->bi_iter.bi_sector = sector;
4c664611
QW
2357 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2358 btrfs_put_bioc(bioc);
ebbede42
AJ
2359 if (!dev || !dev->bdev ||
2360 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2361 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2362 bio_put(bio);
2363 return -EIO;
2364 }
74d46992 2365 bio_set_dev(bio, dev->bdev);
70fd7614 2366 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2367 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2368
4e49ea4a 2369 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2370 /* try to remap that extent elsewhere? */
b5de8d0d 2371 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2372 bio_put(bio);
442a4f63 2373 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2374 return -EIO;
2375 }
2376
b14af3b4
DS
2377 btrfs_info_rl_in_rcu(fs_info,
2378 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2379 ino, start,
1203b681 2380 rcu_str_deref(dev->name), sector);
b5de8d0d 2381 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2382 bio_put(bio);
2383 return 0;
2384}
2385
2b48966a 2386int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2387{
20a1fbf9 2388 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2389 u64 start = eb->start;
cc5e31a4 2390 int i, num_pages = num_extent_pages(eb);
d95603b2 2391 int ret = 0;
ea466794 2392
bc98a42c 2393 if (sb_rdonly(fs_info->sb))
908960c6
ID
2394 return -EROFS;
2395
ea466794 2396 for (i = 0; i < num_pages; i++) {
fb85fc9a 2397 struct page *p = eb->pages[i];
1203b681 2398
6ec656bc 2399 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2400 start - page_offset(p), mirror_num);
ea466794
JB
2401 if (ret)
2402 break;
09cbfeaf 2403 start += PAGE_SIZE;
ea466794
JB
2404 }
2405
2406 return ret;
2407}
2408
4a54c8c1
JS
2409/*
2410 * each time an IO finishes, we do a fast check in the IO failure tree
2411 * to see if we need to process or clean up an io_failure_record
2412 */
7870d082
JB
2413int clean_io_failure(struct btrfs_fs_info *fs_info,
2414 struct extent_io_tree *failure_tree,
2415 struct extent_io_tree *io_tree, u64 start,
2416 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2417{
2418 u64 private;
4a54c8c1 2419 struct io_failure_record *failrec;
4a54c8c1
JS
2420 struct extent_state *state;
2421 int num_copies;
4a54c8c1 2422 int ret;
4a54c8c1
JS
2423
2424 private = 0;
7870d082
JB
2425 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2426 EXTENT_DIRTY, 0);
4a54c8c1
JS
2427 if (!ret)
2428 return 0;
2429
2279a270
NB
2430 failrec = get_state_failrec(failure_tree, start);
2431 if (IS_ERR(failrec))
4a54c8c1
JS
2432 return 0;
2433
4a54c8c1
JS
2434 BUG_ON(!failrec->this_mirror);
2435
bc98a42c 2436 if (sb_rdonly(fs_info->sb))
908960c6 2437 goto out;
4a54c8c1 2438
7870d082
JB
2439 spin_lock(&io_tree->lock);
2440 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2441 failrec->start,
2442 EXTENT_LOCKED);
7870d082 2443 spin_unlock(&io_tree->lock);
4a54c8c1 2444
883d0de4
MX
2445 if (state && state->start <= failrec->start &&
2446 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2447 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2448 failrec->len);
4a54c8c1 2449 if (num_copies > 1) {
7870d082
JB
2450 repair_io_failure(fs_info, ino, start, failrec->len,
2451 failrec->logical, page, pg_offset,
2452 failrec->failed_mirror);
4a54c8c1
JS
2453 }
2454 }
2455
2456out:
7870d082 2457 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2458
454ff3de 2459 return 0;
4a54c8c1
JS
2460}
2461
f612496b
MX
2462/*
2463 * Can be called when
2464 * - hold extent lock
2465 * - under ordered extent
2466 * - the inode is freeing
2467 */
7ab7956e 2468void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2469{
7ab7956e 2470 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2471 struct io_failure_record *failrec;
2472 struct extent_state *state, *next;
2473
2474 if (RB_EMPTY_ROOT(&failure_tree->state))
2475 return;
2476
2477 spin_lock(&failure_tree->lock);
2478 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2479 while (state) {
2480 if (state->start > end)
2481 break;
2482
2483 ASSERT(state->end <= end);
2484
2485 next = next_state(state);
2486
47dc196a 2487 failrec = state->failrec;
f612496b
MX
2488 free_extent_state(state);
2489 kfree(failrec);
2490
2491 state = next;
2492 }
2493 spin_unlock(&failure_tree->lock);
2494}
2495
3526302f 2496static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
150e4b05 2497 u64 start)
4a54c8c1 2498{
ab8d0fc4 2499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2500 struct io_failure_record *failrec;
4a54c8c1 2501 struct extent_map *em;
4a54c8c1
JS
2502 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2503 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2504 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2505 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2506 int ret;
4a54c8c1
JS
2507 u64 logical;
2508
2279a270 2509 failrec = get_state_failrec(failure_tree, start);
3526302f 2510 if (!IS_ERR(failrec)) {
ab8d0fc4 2511 btrfs_debug(fs_info,
1245835d
QW
2512 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2513 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2514 /*
2515 * when data can be on disk more than twice, add to failrec here
2516 * (e.g. with a list for failed_mirror) to make
2517 * clean_io_failure() clean all those errors at once.
2518 */
3526302f
NB
2519
2520 return failrec;
4a54c8c1 2521 }
2fe6303e 2522
3526302f
NB
2523 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2524 if (!failrec)
2525 return ERR_PTR(-ENOMEM);
2fe6303e 2526
3526302f 2527 failrec->start = start;
150e4b05 2528 failrec->len = sectorsize;
3526302f
NB
2529 failrec->this_mirror = 0;
2530 failrec->bio_flags = 0;
3526302f
NB
2531
2532 read_lock(&em_tree->lock);
2533 em = lookup_extent_mapping(em_tree, start, failrec->len);
2534 if (!em) {
2535 read_unlock(&em_tree->lock);
2536 kfree(failrec);
2537 return ERR_PTR(-EIO);
2538 }
2539
2540 if (em->start > start || em->start + em->len <= start) {
2541 free_extent_map(em);
2542 em = NULL;
2543 }
2544 read_unlock(&em_tree->lock);
2545 if (!em) {
2546 kfree(failrec);
2547 return ERR_PTR(-EIO);
2548 }
2549
2550 logical = start - em->start;
2551 logical = em->block_start + logical;
2552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2553 logical = em->block_start;
2554 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2555 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2556 }
2557
2558 btrfs_debug(fs_info,
2559 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2560 logical, start, failrec->len);
2561
2562 failrec->logical = logical;
2563 free_extent_map(em);
2564
2565 /* Set the bits in the private failure tree */
150e4b05 2566 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2567 EXTENT_LOCKED | EXTENT_DIRTY);
2568 if (ret >= 0) {
2569 ret = set_state_failrec(failure_tree, start, failrec);
2570 /* Set the bits in the inode's tree */
150e4b05
QW
2571 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2572 EXTENT_DAMAGED);
3526302f
NB
2573 } else if (ret < 0) {
2574 kfree(failrec);
2575 return ERR_PTR(ret);
2576 }
2577
2578 return failrec;
2fe6303e
MX
2579}
2580
1245835d 2581static bool btrfs_check_repairable(struct inode *inode,
ce06d3ec
OS
2582 struct io_failure_record *failrec,
2583 int failed_mirror)
2fe6303e 2584{
ab8d0fc4 2585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2586 int num_copies;
2587
ab8d0fc4 2588 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2589 if (num_copies == 1) {
2590 /*
2591 * we only have a single copy of the data, so don't bother with
2592 * all the retry and error correction code that follows. no
2593 * matter what the error is, it is very likely to persist.
2594 */
ab8d0fc4
JM
2595 btrfs_debug(fs_info,
2596 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2598 return false;
4a54c8c1
JS
2599 }
2600
1245835d
QW
2601 /* The failure record should only contain one sector */
2602 ASSERT(failrec->len == fs_info->sectorsize);
2603
4a54c8c1 2604 /*
1245835d
QW
2605 * There are two premises:
2606 * a) deliver good data to the caller
2607 * b) correct the bad sectors on disk
2608 *
2609 * Since we're only doing repair for one sector, we only need to get
2610 * a good copy of the failed sector and if we succeed, we have setup
2611 * everything for repair_io_failure to do the rest for us.
4a54c8c1 2612 */
1245835d
QW
2613 failrec->failed_mirror = failed_mirror;
2614 failrec->this_mirror++;
2615 if (failrec->this_mirror == failed_mirror)
4a54c8c1 2616 failrec->this_mirror++;
4a54c8c1 2617
facc8a22 2618 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2619 btrfs_debug(fs_info,
2620 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2621 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2622 return false;
4a54c8c1
JS
2623 }
2624
c3cfb656 2625 return true;
2fe6303e
MX
2626}
2627
150e4b05
QW
2628int btrfs_repair_one_sector(struct inode *inode,
2629 struct bio *failed_bio, u32 bio_offset,
2630 struct page *page, unsigned int pgoff,
2631 u64 start, int failed_mirror,
2632 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2633{
2634 struct io_failure_record *failrec;
77d5d689 2635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2636 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2637 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
c3a3b19b 2638 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
7ffd27e3 2639 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 2640 struct bio *repair_bio;
c3a3b19b 2641 struct btrfs_bio *repair_bbio;
4e4cbee9 2642 blk_status_t status;
2fe6303e 2643
77d5d689
OS
2644 btrfs_debug(fs_info,
2645 "repair read error: read error at %llu", start);
2fe6303e 2646
1f7ad75b 2647 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2648
150e4b05 2649 failrec = btrfs_get_io_failure_record(inode, start);
3526302f 2650 if (IS_ERR(failrec))
150e4b05 2651 return PTR_ERR(failrec);
2fe6303e 2652
1245835d
QW
2653
2654 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
7870d082 2655 free_io_failure(failure_tree, tree, failrec);
150e4b05 2656 return -EIO;
2fe6303e
MX
2657 }
2658
c3a3b19b
QW
2659 repair_bio = btrfs_bio_alloc(1);
2660 repair_bbio = btrfs_bio(repair_bio);
77d5d689 2661 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2662 repair_bio->bi_end_io = failed_bio->bi_end_io;
2663 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2664 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2665
c3a3b19b 2666 if (failed_bbio->csum) {
223486c2 2667 const u32 csum_size = fs_info->csum_size;
77d5d689 2668
c3a3b19b
QW
2669 repair_bbio->csum = repair_bbio->csum_inline;
2670 memcpy(repair_bbio->csum,
2671 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 2672 }
2fe6303e 2673
77d5d689 2674 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 2675 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 2676
ab8d0fc4 2677 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2678 "repair read error: submitting new read to mirror %d",
2679 failrec->this_mirror);
4a54c8c1 2680
77d5d689
OS
2681 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2682 failrec->bio_flags);
4e4cbee9 2683 if (status) {
7870d082 2684 free_io_failure(failure_tree, tree, failrec);
77d5d689 2685 bio_put(repair_bio);
6c387ab2 2686 }
150e4b05
QW
2687 return blk_status_to_errno(status);
2688}
2689
2690static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2691{
2692 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2693
2694 ASSERT(page_offset(page) <= start &&
2695 start + len <= page_offset(page) + PAGE_SIZE);
2696
150e4b05 2697 if (uptodate) {
14605409
BB
2698 if (fsverity_active(page->mapping->host) &&
2699 !PageError(page) &&
2700 !PageUptodate(page) &&
2701 start < i_size_read(page->mapping->host) &&
2702 !fsverity_verify_page(page)) {
2703 btrfs_page_set_error(fs_info, page, start, len);
2704 } else {
2705 btrfs_page_set_uptodate(fs_info, page, start, len);
2706 }
150e4b05
QW
2707 } else {
2708 btrfs_page_clear_uptodate(fs_info, page, start, len);
2709 btrfs_page_set_error(fs_info, page, start, len);
2710 }
2711
2712 if (fs_info->sectorsize == PAGE_SIZE)
2713 unlock_page(page);
3d078efa 2714 else
150e4b05
QW
2715 btrfs_subpage_end_reader(fs_info, page, start, len);
2716}
2717
2718static blk_status_t submit_read_repair(struct inode *inode,
2719 struct bio *failed_bio, u32 bio_offset,
2720 struct page *page, unsigned int pgoff,
2721 u64 start, u64 end, int failed_mirror,
2722 unsigned int error_bitmap,
2723 submit_bio_hook_t *submit_bio_hook)
2724{
2725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2726 const u32 sectorsize = fs_info->sectorsize;
2727 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2728 int error = 0;
2729 int i;
2730
2731 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2732
2733 /* We're here because we had some read errors or csum mismatch */
2734 ASSERT(error_bitmap);
2735
2736 /*
2737 * We only get called on buffered IO, thus page must be mapped and bio
2738 * must not be cloned.
2739 */
2740 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2741
2742 /* Iterate through all the sectors in the range */
2743 for (i = 0; i < nr_bits; i++) {
2744 const unsigned int offset = i * sectorsize;
2745 struct extent_state *cached = NULL;
2746 bool uptodate = false;
2747 int ret;
2748
2749 if (!(error_bitmap & (1U << i))) {
2750 /*
2751 * This sector has no error, just end the page read
2752 * and unlock the range.
2753 */
2754 uptodate = true;
2755 goto next;
2756 }
2757
2758 ret = btrfs_repair_one_sector(inode, failed_bio,
2759 bio_offset + offset,
2760 page, pgoff + offset, start + offset,
2761 failed_mirror, submit_bio_hook);
2762 if (!ret) {
2763 /*
2764 * We have submitted the read repair, the page release
2765 * will be handled by the endio function of the
2766 * submitted repair bio.
2767 * Thus we don't need to do any thing here.
2768 */
2769 continue;
2770 }
2771 /*
2772 * Repair failed, just record the error but still continue.
2773 * Or the remaining sectors will not be properly unlocked.
2774 */
2775 if (!error)
2776 error = ret;
2777next:
2778 end_page_read(page, uptodate, start + offset, sectorsize);
2779 if (uptodate)
2780 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2781 start + offset,
2782 start + offset + sectorsize - 1,
2783 &cached, GFP_ATOMIC);
2784 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2785 start + offset,
2786 start + offset + sectorsize - 1,
2787 &cached);
2788 }
2789 return errno_to_blk_status(error);
4a54c8c1
JS
2790}
2791
d1310b2e
CM
2792/* lots and lots of room for performance fixes in the end_bio funcs */
2793
b5227c07 2794void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2795{
38a39ac7 2796 struct btrfs_inode *inode;
25c1252a 2797 const bool uptodate = (err == 0);
3e2426bd 2798 int ret = 0;
87826df0 2799
38a39ac7
QW
2800 ASSERT(page && page->mapping);
2801 inode = BTRFS_I(page->mapping->host);
2802 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2803
87826df0 2804 if (!uptodate) {
963e4db8
QW
2805 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2806 u32 len;
2807
2808 ASSERT(end + 1 - start <= U32_MAX);
2809 len = end + 1 - start;
2810
2811 btrfs_page_clear_uptodate(fs_info, page, start, len);
2812 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 2813 ret = err < 0 ? err : -EIO;
5dca6eea 2814 mapping_set_error(page->mapping, ret);
87826df0 2815 }
87826df0
JM
2816}
2817
d1310b2e
CM
2818/*
2819 * after a writepage IO is done, we need to:
2820 * clear the uptodate bits on error
2821 * clear the writeback bits in the extent tree for this IO
2822 * end_page_writeback if the page has no more pending IO
2823 *
2824 * Scheduling is not allowed, so the extent state tree is expected
2825 * to have one and only one object corresponding to this IO.
2826 */
4246a0b6 2827static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2828{
4e4cbee9 2829 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2830 struct bio_vec *bvec;
d1310b2e
CM
2831 u64 start;
2832 u64 end;
6dc4f100 2833 struct bvec_iter_all iter_all;
d8e3fb10 2834 bool first_bvec = true;
d1310b2e 2835
c09abff8 2836 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2837 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2838 struct page *page = bvec->bv_page;
0b246afa
JM
2839 struct inode *inode = page->mapping->host;
2840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2841 const u32 sectorsize = fs_info->sectorsize;
2842
2843 /* Our read/write should always be sector aligned. */
2844 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2845 btrfs_err(fs_info,
2846 "partial page write in btrfs with offset %u and length %u",
2847 bvec->bv_offset, bvec->bv_len);
2848 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2849 btrfs_info(fs_info,
2850 "incomplete page write with offset %u and length %u",
2851 bvec->bv_offset, bvec->bv_len);
2852
2853 start = page_offset(page) + bvec->bv_offset;
2854 end = start + bvec->bv_len - 1;
d1310b2e 2855
d8e3fb10
NA
2856 if (first_bvec) {
2857 btrfs_record_physical_zoned(inode, start, bio);
2858 first_bvec = false;
2859 }
2860
4e4cbee9 2861 end_extent_writepage(page, error, start, end);
9047e317
QW
2862
2863 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2864 }
2b1f55b0 2865
d1310b2e 2866 bio_put(bio);
d1310b2e
CM
2867}
2868
94e8c95c
QW
2869/*
2870 * Record previously processed extent range
2871 *
2872 * For endio_readpage_release_extent() to handle a full extent range, reducing
2873 * the extent io operations.
2874 */
2875struct processed_extent {
2876 struct btrfs_inode *inode;
2877 /* Start of the range in @inode */
2878 u64 start;
2e626e56 2879 /* End of the range in @inode */
94e8c95c
QW
2880 u64 end;
2881 bool uptodate;
2882};
2883
2884/*
2885 * Try to release processed extent range
2886 *
2887 * May not release the extent range right now if the current range is
2888 * contiguous to processed extent.
2889 *
2890 * Will release processed extent when any of @inode, @uptodate, the range is
2891 * no longer contiguous to the processed range.
2892 *
2893 * Passing @inode == NULL will force processed extent to be released.
2894 */
2895static void endio_readpage_release_extent(struct processed_extent *processed,
2896 struct btrfs_inode *inode, u64 start, u64 end,
2897 bool uptodate)
883d0de4
MX
2898{
2899 struct extent_state *cached = NULL;
94e8c95c
QW
2900 struct extent_io_tree *tree;
2901
2902 /* The first extent, initialize @processed */
2903 if (!processed->inode)
2904 goto update;
883d0de4 2905
94e8c95c
QW
2906 /*
2907 * Contiguous to processed extent, just uptodate the end.
2908 *
2909 * Several things to notice:
2910 *
2911 * - bio can be merged as long as on-disk bytenr is contiguous
2912 * This means we can have page belonging to other inodes, thus need to
2913 * check if the inode still matches.
2914 * - bvec can contain range beyond current page for multi-page bvec
2915 * Thus we need to do processed->end + 1 >= start check
2916 */
2917 if (processed->inode == inode && processed->uptodate == uptodate &&
2918 processed->end + 1 >= start && end >= processed->end) {
2919 processed->end = end;
2920 return;
2921 }
2922
2923 tree = &processed->inode->io_tree;
2924 /*
2925 * Now we don't have range contiguous to the processed range, release
2926 * the processed range now.
2927 */
2928 if (processed->uptodate && tree->track_uptodate)
2929 set_extent_uptodate(tree, processed->start, processed->end,
2930 &cached, GFP_ATOMIC);
2931 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2932 &cached);
2933
2934update:
2935 /* Update processed to current range */
2936 processed->inode = inode;
2937 processed->start = start;
2938 processed->end = end;
2939 processed->uptodate = uptodate;
883d0de4
MX
2940}
2941
92082d40
QW
2942static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2943{
2944 ASSERT(PageLocked(page));
2945 if (fs_info->sectorsize == PAGE_SIZE)
2946 return;
2947
2948 ASSERT(PagePrivate(page));
2949 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2950}
2951
d9bb77d5
QW
2952/*
2953 * Find extent buffer for a givne bytenr.
2954 *
2955 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2956 * in endio context.
2957 */
2958static struct extent_buffer *find_extent_buffer_readpage(
2959 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2960{
2961 struct extent_buffer *eb;
2962
2963 /*
2964 * For regular sectorsize, we can use page->private to grab extent
2965 * buffer
2966 */
2967 if (fs_info->sectorsize == PAGE_SIZE) {
2968 ASSERT(PagePrivate(page) && page->private);
2969 return (struct extent_buffer *)page->private;
2970 }
2971
2972 /* For subpage case, we need to lookup buffer radix tree */
2973 rcu_read_lock();
2974 eb = radix_tree_lookup(&fs_info->buffer_radix,
2975 bytenr >> fs_info->sectorsize_bits);
2976 rcu_read_unlock();
2977 ASSERT(eb);
2978 return eb;
2979}
2980
d1310b2e
CM
2981/*
2982 * after a readpage IO is done, we need to:
2983 * clear the uptodate bits on error
2984 * set the uptodate bits if things worked
2985 * set the page up to date if all extents in the tree are uptodate
2986 * clear the lock bit in the extent tree
2987 * unlock the page if there are no other extents locked for it
2988 *
2989 * Scheduling is not allowed, so the extent state tree is expected
2990 * to have one and only one object corresponding to this IO.
2991 */
4246a0b6 2992static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2993{
2c30c71b 2994 struct bio_vec *bvec;
c3a3b19b 2995 struct btrfs_bio *bbio = btrfs_bio(bio);
7870d082 2996 struct extent_io_tree *tree, *failure_tree;
94e8c95c 2997 struct processed_extent processed = { 0 };
7ffd27e3
QW
2998 /*
2999 * The offset to the beginning of a bio, since one bio can never be
3000 * larger than UINT_MAX, u32 here is enough.
3001 */
3002 u32 bio_offset = 0;
5cf1ab56 3003 int mirror;
d1310b2e 3004 int ret;
6dc4f100 3005 struct bvec_iter_all iter_all;
d1310b2e 3006
c09abff8 3007 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3008 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 3009 bool uptodate = !bio->bi_status;
d1310b2e 3010 struct page *page = bvec->bv_page;
a71754fc 3011 struct inode *inode = page->mapping->host;
ab8d0fc4 3012 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3013 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3014 unsigned int error_bitmap = (unsigned int)-1;
7ffd27e3
QW
3015 u64 start;
3016 u64 end;
3017 u32 len;
507903b8 3018
ab8d0fc4
JM
3019 btrfs_debug(fs_info,
3020 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3021 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 3022 bbio->mirror_num);
a71754fc 3023 tree = &BTRFS_I(inode)->io_tree;
7870d082 3024 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3025
8b8bbd46
QW
3026 /*
3027 * We always issue full-sector reads, but if some block in a
3028 * page fails to read, blk_update_request() will advance
3029 * bv_offset and adjust bv_len to compensate. Print a warning
3030 * for unaligned offsets, and an error if they don't add up to
3031 * a full sector.
3032 */
3033 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3034 btrfs_err(fs_info,
3035 "partial page read in btrfs with offset %u and length %u",
3036 bvec->bv_offset, bvec->bv_len);
3037 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3038 sectorsize))
3039 btrfs_info(fs_info,
3040 "incomplete page read with offset %u and length %u",
3041 bvec->bv_offset, bvec->bv_len);
3042
3043 start = page_offset(page) + bvec->bv_offset;
3044 end = start + bvec->bv_len - 1;
facc8a22 3045 len = bvec->bv_len;
d1310b2e 3046
c3a3b19b 3047 mirror = bbio->mirror_num;
78e62c02 3048 if (likely(uptodate)) {
150e4b05 3049 if (is_data_inode(inode)) {
c3a3b19b 3050 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 3051 bio_offset, page, start, end);
150e4b05
QW
3052 ret = error_bitmap;
3053 } else {
c3a3b19b 3054 ret = btrfs_validate_metadata_buffer(bbio,
8e1dc982 3055 page, start, end, mirror);
150e4b05 3056 }
5ee0844d 3057 if (ret)
150e4b05 3058 uptodate = false;
5ee0844d 3059 else
7870d082
JB
3060 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3061 failure_tree, tree, start,
3062 page,
3063 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 3064 }
ea466794 3065
f2a09da9
MX
3066 if (likely(uptodate))
3067 goto readpage_ok;
3068
be17b3af 3069 if (is_data_inode(inode)) {
f4a8e656 3070 /*
150e4b05
QW
3071 * btrfs_submit_read_repair() will handle all the good
3072 * and bad sectors, we just continue to the next bvec.
f4a8e656 3073 */
150e4b05
QW
3074 submit_read_repair(inode, bio, bio_offset, page,
3075 start - page_offset(page), start,
3076 end, mirror, error_bitmap,
3077 btrfs_submit_data_bio);
3078
3079 ASSERT(bio_offset + len > bio_offset);
3080 bio_offset += len;
3081 continue;
78e62c02
NB
3082 } else {
3083 struct extent_buffer *eb;
3084
d9bb77d5 3085 eb = find_extent_buffer_readpage(fs_info, page, start);
78e62c02
NB
3086 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3087 eb->read_mirror = mirror;
3088 atomic_dec(&eb->io_pages);
7e38326f 3089 }
f2a09da9 3090readpage_ok:
883d0de4 3091 if (likely(uptodate)) {
a71754fc 3092 loff_t i_size = i_size_read(inode);
09cbfeaf 3093 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3094
c28ea613
QW
3095 /*
3096 * Zero out the remaining part if this range straddles
3097 * i_size.
3098 *
3099 * Here we should only zero the range inside the bvec,
3100 * not touch anything else.
3101 *
3102 * NOTE: i_size is exclusive while end is inclusive.
3103 */
3104 if (page->index == end_index && i_size <= end) {
3105 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3106 offset_in_page(start));
c28ea613
QW
3107
3108 zero_user_segment(page, zero_start,
3109 offset_in_page(end) + 1);
3110 }
70dec807 3111 }
7ffd27e3
QW
3112 ASSERT(bio_offset + len > bio_offset);
3113 bio_offset += len;
883d0de4 3114
e09caaf9 3115 /* Update page status and unlock */
92082d40 3116 end_page_read(page, uptodate, start, len);
94e8c95c 3117 endio_readpage_release_extent(&processed, BTRFS_I(inode),
14605409 3118 start, end, PageUptodate(page));
2c30c71b 3119 }
94e8c95c
QW
3120 /* Release the last extent */
3121 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 3122 btrfs_bio_free_csum(bbio);
d1310b2e 3123 bio_put(bio);
d1310b2e
CM
3124}
3125
9be3395b 3126/*
184f999e
DS
3127 * Initialize the members up to but not including 'bio'. Use after allocating a
3128 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3129 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3130 */
c3a3b19b 3131static inline void btrfs_bio_init(struct btrfs_bio *bbio)
d1310b2e 3132{
c3a3b19b 3133 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
184f999e 3134}
d1310b2e 3135
9be3395b 3136/*
cd8e0cca
QW
3137 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3138 *
3139 * The bio allocation is backed by bioset and does not fail.
9be3395b 3140 */
c3a3b19b 3141struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
d1310b2e
CM
3142{
3143 struct bio *bio;
d1310b2e 3144
cd8e0cca
QW
3145 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3146 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
c3a3b19b 3147 btrfs_bio_init(btrfs_bio(bio));
d1310b2e
CM
3148 return bio;
3149}
3150
8b6c1d56 3151struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 3152{
c3a3b19b 3153 struct btrfs_bio *bbio;
23ea8e5a 3154 struct bio *new;
9be3395b 3155
6e707bcd 3156 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3157 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
c3a3b19b
QW
3158 bbio = btrfs_bio(new);
3159 btrfs_bio_init(bbio);
3160 bbio->iter = bio->bi_iter;
23ea8e5a
MX
3161 return new;
3162}
9be3395b 3163
21dda654 3164struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
2f8e9140
LB
3165{
3166 struct bio *bio;
c3a3b19b 3167 struct btrfs_bio *bbio;
2f8e9140 3168
21dda654
CK
3169 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3170
2f8e9140 3171 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3172 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3173 ASSERT(bio);
3174
c3a3b19b
QW
3175 bbio = btrfs_bio(bio);
3176 btrfs_bio_init(bbio);
2f8e9140
LB
3177
3178 bio_trim(bio, offset >> 9, size >> 9);
c3a3b19b 3179 bbio->iter = bio->bi_iter;
2f8e9140
LB
3180 return bio;
3181}
9be3395b 3182
953651eb
NA
3183/**
3184 * Attempt to add a page to bio
3185 *
be8d1a2a 3186 * @bio_ctrl: record both the bio, and its bio_flags
953651eb
NA
3187 * @page: page to add to the bio
3188 * @disk_bytenr: offset of the new bio or to check whether we are adding
3189 * a contiguous page to the previous one
953651eb 3190 * @size: portion of page that we want to write
be8d1a2a 3191 * @pg_offset: starting offset in the page
953651eb 3192 * @bio_flags: flags of the current bio to see if we can merge them
953651eb
NA
3193 *
3194 * Attempt to add a page to bio considering stripe alignment etc.
3195 *
e0eefe07
QW
3196 * Return >= 0 for the number of bytes added to the bio.
3197 * Can return 0 if the current bio is already at stripe/zone boundary.
3198 * Return <0 for error.
953651eb 3199 */
e0eefe07
QW
3200static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3201 struct page *page,
3202 u64 disk_bytenr, unsigned int size,
3203 unsigned int pg_offset,
3204 unsigned long bio_flags)
953651eb 3205{
390ed29b
QW
3206 struct bio *bio = bio_ctrl->bio;
3207 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 3208 u32 real_size;
953651eb
NA
3209 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3210 bool contig;
e1326f03 3211 int ret;
953651eb 3212
390ed29b
QW
3213 ASSERT(bio);
3214 /* The limit should be calculated when bio_ctrl->bio is allocated */
3215 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3216 if (bio_ctrl->bio_flags != bio_flags)
e0eefe07 3217 return 0;
953651eb 3218
390ed29b 3219 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
953651eb
NA
3220 contig = bio->bi_iter.bi_sector == sector;
3221 else
3222 contig = bio_end_sector(bio) == sector;
3223 if (!contig)
e0eefe07 3224 return 0;
953651eb 3225
e0eefe07
QW
3226 real_size = min(bio_ctrl->len_to_oe_boundary,
3227 bio_ctrl->len_to_stripe_boundary) - bio_size;
3228 real_size = min(real_size, size);
3229
3230 /*
3231 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3232 * bio will still execute its endio function on the page!
3233 */
3234 if (real_size == 0)
3235 return 0;
953651eb 3236
390ed29b 3237 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 3238 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 3239 else
e0eefe07 3240 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 3241
e0eefe07 3242 return ret;
953651eb
NA
3243}
3244
390ed29b 3245static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 3246 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
3247{
3248 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3249 struct btrfs_io_geometry geom;
3250 struct btrfs_ordered_extent *ordered;
3251 struct extent_map *em;
3252 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3253 int ret;
3254
3255 /*
3256 * Pages for compressed extent are never submitted to disk directly,
3257 * thus it has no real boundary, just set them to U32_MAX.
3258 *
3259 * The split happens for real compressed bio, which happens in
3260 * btrfs_submit_compressed_read/write().
3261 */
3262 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3263 bio_ctrl->len_to_oe_boundary = U32_MAX;
3264 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3265 return 0;
3266 }
3267 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3268 if (IS_ERR(em))
3269 return PTR_ERR(em);
3270 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3271 logical, &geom);
3272 free_extent_map(em);
3273 if (ret < 0) {
3274 return ret;
3275 }
3276 if (geom.len > U32_MAX)
3277 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3278 else
3279 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3280
73672710 3281 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
390ed29b
QW
3282 bio_ctrl->len_to_oe_boundary = U32_MAX;
3283 return 0;
3284 }
3285
390ed29b 3286 /* Ordered extent not yet created, so we're good */
939c7feb 3287 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
3288 if (!ordered) {
3289 bio_ctrl->len_to_oe_boundary = U32_MAX;
3290 return 0;
3291 }
3292
3293 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3294 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3295 btrfs_put_ordered_extent(ordered);
3296 return 0;
3297}
3298
e0eefe07
QW
3299static int alloc_new_bio(struct btrfs_inode *inode,
3300 struct btrfs_bio_ctrl *bio_ctrl,
3301 struct writeback_control *wbc,
3302 unsigned int opf,
3303 bio_end_io_t end_io_func,
939c7feb 3304 u64 disk_bytenr, u32 offset, u64 file_offset,
e0eefe07
QW
3305 unsigned long bio_flags)
3306{
3307 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3308 struct bio *bio;
3309 int ret;
3310
c3a3b19b 3311 bio = btrfs_bio_alloc(BIO_MAX_VECS);
e0eefe07
QW
3312 /*
3313 * For compressed page range, its disk_bytenr is always @disk_bytenr
3314 * passed in, no matter if we have added any range into previous bio.
3315 */
3316 if (bio_flags & EXTENT_BIO_COMPRESSED)
cd8e0cca 3317 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 3318 else
cd8e0cca 3319 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07
QW
3320 bio_ctrl->bio = bio;
3321 bio_ctrl->bio_flags = bio_flags;
e0eefe07
QW
3322 bio->bi_end_io = end_io_func;
3323 bio->bi_private = &inode->io_tree;
3324 bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3325 bio->bi_opf = opf;
939c7feb
NA
3326 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3327 if (ret < 0)
3328 goto error;
e0eefe07
QW
3329 if (wbc) {
3330 struct block_device *bdev;
3331
d24fa5c1 3332 bdev = fs_info->fs_devices->latest_dev->bdev;
e0eefe07
QW
3333 bio_set_dev(bio, bdev);
3334 wbc_init_bio(wbc, bio);
3335 }
73672710 3336 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
e0eefe07
QW
3337 struct btrfs_device *device;
3338
3339 device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3340 fs_info->sectorsize);
3341 if (IS_ERR(device)) {
3342 ret = PTR_ERR(device);
3343 goto error;
3344 }
3345
c3a3b19b 3346 btrfs_bio(bio)->device = device;
e0eefe07
QW
3347 }
3348 return 0;
3349error:
3350 bio_ctrl->bio = NULL;
3351 bio->bi_status = errno_to_blk_status(ret);
3352 bio_endio(bio);
3353 return ret;
3354}
3355
4b81ba48
DS
3356/*
3357 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3358 * @wbc: optional writeback control for io accounting
3359 * @page: page to add to the bio
0c64c33c
QW
3360 * @disk_bytenr: logical bytenr where the write will be
3361 * @size: portion of page that we want to write to
b8b3d625
DS
3362 * @pg_offset: offset of the new bio or to check whether we are adding
3363 * a contiguous page to the previous one
5c2b1fd7 3364 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3365 * @end_io_func: end_io callback for new bio
3366 * @mirror_num: desired mirror to read/write
3367 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3368 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3369 */
0ceb34bf 3370static int submit_extent_page(unsigned int opf,
da2f0f74 3371 struct writeback_control *wbc,
390ed29b 3372 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3373 struct page *page, u64 disk_bytenr,
6c5a4e2c 3374 size_t size, unsigned long pg_offset,
f188591e 3375 bio_end_io_t end_io_func,
c8b97818 3376 int mirror_num,
005efedf
FM
3377 unsigned long bio_flags,
3378 bool force_bio_submit)
d1310b2e
CM
3379{
3380 int ret = 0;
e1326f03 3381 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 3382 unsigned int cur = pg_offset;
d1310b2e 3383
390ed29b 3384 ASSERT(bio_ctrl);
5c2b1fd7 3385
390ed29b
QW
3386 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3387 pg_offset + size <= PAGE_SIZE);
e0eefe07
QW
3388 if (force_bio_submit && bio_ctrl->bio) {
3389 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3390 bio_ctrl->bio = NULL;
3391 if (ret < 0)
3392 return ret;
3393 }
3394
3395 while (cur < pg_offset + size) {
3396 u32 offset = cur - pg_offset;
3397 int added;
3398
3399 /* Allocate new bio if needed */
3400 if (!bio_ctrl->bio) {
3401 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3402 end_io_func, disk_bytenr, offset,
939c7feb 3403 page_offset(page) + cur,
e0eefe07
QW
3404 bio_flags);
3405 if (ret < 0)
3406 return ret;
3407 }
3408 /*
3409 * We must go through btrfs_bio_add_page() to ensure each
3410 * page range won't cross various boundaries.
3411 */
3412 if (bio_flags & EXTENT_BIO_COMPRESSED)
3413 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3414 size - offset, pg_offset + offset,
3415 bio_flags);
3416 else
3417 added = btrfs_bio_add_page(bio_ctrl, page,
3418 disk_bytenr + offset, size - offset,
3419 pg_offset + offset, bio_flags);
3420
3421 /* Metadata page range should never be split */
3422 if (!is_data_inode(&inode->vfs_inode))
3423 ASSERT(added == 0 || added == size - offset);
3424
3425 /* At least we added some page, update the account */
3426 if (wbc && added)
3427 wbc_account_cgroup_owner(wbc, page, added);
3428
3429 /* We have reached boundary, submit right now */
3430 if (added < size - offset) {
3431 /* The bio should contain some page(s) */
3432 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3433 ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3434 bio_ctrl->bio_flags);
390ed29b
QW
3435 bio_ctrl->bio = NULL;
3436 if (ret < 0)
79787eaa 3437 return ret;
d1310b2e 3438 }
e0eefe07 3439 cur += added;
d1310b2e 3440 }
e0eefe07 3441 return 0;
d1310b2e
CM
3442}
3443
760f991f
QW
3444static int attach_extent_buffer_page(struct extent_buffer *eb,
3445 struct page *page,
3446 struct btrfs_subpage *prealloc)
d1310b2e 3447{
760f991f
QW
3448 struct btrfs_fs_info *fs_info = eb->fs_info;
3449 int ret = 0;
3450
0d01e247
QW
3451 /*
3452 * If the page is mapped to btree inode, we should hold the private
3453 * lock to prevent race.
3454 * For cloned or dummy extent buffers, their pages are not mapped and
3455 * will not race with any other ebs.
3456 */
3457 if (page->mapping)
3458 lockdep_assert_held(&page->mapping->private_lock);
3459
760f991f
QW
3460 if (fs_info->sectorsize == PAGE_SIZE) {
3461 if (!PagePrivate(page))
3462 attach_page_private(page, eb);
3463 else
3464 WARN_ON(page->private != (unsigned long)eb);
3465 return 0;
3466 }
3467
3468 /* Already mapped, just free prealloc */
3469 if (PagePrivate(page)) {
3470 btrfs_free_subpage(prealloc);
3471 return 0;
3472 }
3473
3474 if (prealloc)
3475 /* Has preallocated memory for subpage */
3476 attach_page_private(page, prealloc);
d1b89bc0 3477 else
760f991f
QW
3478 /* Do new allocation to attach subpage */
3479 ret = btrfs_attach_subpage(fs_info, page,
3480 BTRFS_SUBPAGE_METADATA);
3481 return ret;
d1310b2e
CM
3482}
3483
32443de3 3484int set_page_extent_mapped(struct page *page)
d1310b2e 3485{
32443de3
QW
3486 struct btrfs_fs_info *fs_info;
3487
3488 ASSERT(page->mapping);
3489
3490 if (PagePrivate(page))
3491 return 0;
3492
3493 fs_info = btrfs_sb(page->mapping->host->i_sb);
3494
3495 if (fs_info->sectorsize < PAGE_SIZE)
3496 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3497
3498 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3499 return 0;
3500}
3501
3502void clear_page_extent_mapped(struct page *page)
3503{
3504 struct btrfs_fs_info *fs_info;
3505
3506 ASSERT(page->mapping);
3507
d1b89bc0 3508 if (!PagePrivate(page))
32443de3
QW
3509 return;
3510
3511 fs_info = btrfs_sb(page->mapping->host->i_sb);
3512 if (fs_info->sectorsize < PAGE_SIZE)
3513 return btrfs_detach_subpage(fs_info, page);
3514
3515 detach_page_private(page);
d1310b2e
CM
3516}
3517
125bac01
MX
3518static struct extent_map *
3519__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3520 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3521{
3522 struct extent_map *em;
3523
3524 if (em_cached && *em_cached) {
3525 em = *em_cached;
cbc0e928 3526 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3527 start < extent_map_end(em)) {
490b54d6 3528 refcount_inc(&em->refs);
125bac01
MX
3529 return em;
3530 }
3531
3532 free_extent_map(em);
3533 *em_cached = NULL;
3534 }
3535
1a5ee1e6 3536 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 3537 if (em_cached && !IS_ERR(em)) {
125bac01 3538 BUG_ON(*em_cached);
490b54d6 3539 refcount_inc(&em->refs);
125bac01
MX
3540 *em_cached = em;
3541 }
3542 return em;
3543}
d1310b2e
CM
3544/*
3545 * basic readpage implementation. Locked extent state structs are inserted
3546 * into the tree that are removed when the IO is done (by the end_io
3547 * handlers)
79787eaa 3548 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3549 * return 0 on success, otherwise return error
d1310b2e 3550 */
0f208812 3551int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3552 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3553 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3554{
3555 struct inode *inode = page->mapping->host;
92082d40 3556 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3557 u64 start = page_offset(page);
8eec8296 3558 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3559 u64 cur = start;
3560 u64 extent_offset;
3561 u64 last_byte = i_size_read(inode);
3562 u64 block_start;
3563 u64 cur_end;
d1310b2e 3564 struct extent_map *em;
baf863b9 3565 int ret = 0;
306e16ce 3566 size_t pg_offset = 0;
d1310b2e
CM
3567 size_t iosize;
3568 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 3569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3570
32443de3
QW
3571 ret = set_page_extent_mapped(page);
3572 if (ret < 0) {
3573 unlock_extent(tree, start, end);
92082d40
QW
3574 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3575 unlock_page(page);
32443de3
QW
3576 goto out;
3577 }
d1310b2e 3578
09cbfeaf 3579 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3580 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3581
3582 if (zero_offset) {
09cbfeaf 3583 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3584 memzero_page(page, zero_offset, iosize);
c8b97818 3585 flush_dcache_page(page);
c8b97818
CM
3586 }
3587 }
92082d40 3588 begin_page_read(fs_info, page);
d1310b2e 3589 while (cur <= end) {
4c37a793 3590 unsigned long this_bio_flag = 0;
005efedf 3591 bool force_bio_submit = false;
0c64c33c 3592 u64 disk_bytenr;
c8f2f24b 3593
6a404910 3594 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 3595 if (cur >= last_byte) {
507903b8
AJ
3596 struct extent_state *cached = NULL;
3597
09cbfeaf 3598 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3599 memzero_page(page, pg_offset, iosize);
d1310b2e 3600 flush_dcache_page(page);
d1310b2e 3601 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3602 &cached, GFP_NOFS);
7f042a83 3603 unlock_extent_cached(tree, cur,
e43bbe5e 3604 cur + iosize - 1, &cached);
92082d40 3605 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3606 break;
3607 }
125bac01 3608 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3609 end - cur + 1, em_cached);
c0347550 3610 if (IS_ERR(em)) {
7f042a83 3611 unlock_extent(tree, cur, end);
92082d40 3612 end_page_read(page, false, cur, end + 1 - cur);
bbf0ea7e 3613 ret = PTR_ERR(em);
d1310b2e
CM
3614 break;
3615 }
d1310b2e
CM
3616 extent_offset = cur - em->start;
3617 BUG_ON(extent_map_end(em) <= cur);
3618 BUG_ON(end < cur);
3619
261507a0 3620 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3621 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3622 extent_set_compress_type(&this_bio_flag,
3623 em->compress_type);
3624 }
c8b97818 3625
d1310b2e
CM
3626 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3627 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3628 iosize = ALIGN(iosize, blocksize);
949b3273 3629 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
0c64c33c 3630 disk_bytenr = em->block_start;
949b3273 3631 else
0c64c33c 3632 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3633 block_start = em->block_start;
d899e052
YZ
3634 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3635 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3636
3637 /*
3638 * If we have a file range that points to a compressed extent
260db43c 3639 * and it's followed by a consecutive file range that points
005efedf
FM
3640 * to the same compressed extent (possibly with a different
3641 * offset and/or length, so it either points to the whole extent
3642 * or only part of it), we must make sure we do not submit a
3643 * single bio to populate the pages for the 2 ranges because
3644 * this makes the compressed extent read zero out the pages
3645 * belonging to the 2nd range. Imagine the following scenario:
3646 *
3647 * File layout
3648 * [0 - 8K] [8K - 24K]
3649 * | |
3650 * | |
3651 * points to extent X, points to extent X,
3652 * offset 4K, length of 8K offset 0, length 16K
3653 *
3654 * [extent X, compressed length = 4K uncompressed length = 16K]
3655 *
3656 * If the bio to read the compressed extent covers both ranges,
3657 * it will decompress extent X into the pages belonging to the
3658 * first range and then it will stop, zeroing out the remaining
3659 * pages that belong to the other range that points to extent X.
3660 * So here we make sure we submit 2 bios, one for the first
3661 * range and another one for the third range. Both will target
3662 * the same physical extent from disk, but we can't currently
3663 * make the compressed bio endio callback populate the pages
3664 * for both ranges because each compressed bio is tightly
3665 * coupled with a single extent map, and each range can have
3666 * an extent map with a different offset value relative to the
3667 * uncompressed data of our extent and different lengths. This
3668 * is a corner case so we prioritize correctness over
3669 * non-optimal behavior (submitting 2 bios for the same extent).
3670 */
3671 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3672 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3673 *prev_em_start != em->start)
005efedf
FM
3674 force_bio_submit = true;
3675
3676 if (prev_em_start)
8e928218 3677 *prev_em_start = em->start;
005efedf 3678
d1310b2e
CM
3679 free_extent_map(em);
3680 em = NULL;
3681
3682 /* we've found a hole, just zero and go on */
3683 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3684 struct extent_state *cached = NULL;
3685
d048b9c2 3686 memzero_page(page, pg_offset, iosize);
d1310b2e 3687 flush_dcache_page(page);
d1310b2e
CM
3688
3689 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3690 &cached, GFP_NOFS);
7f042a83 3691 unlock_extent_cached(tree, cur,
e43bbe5e 3692 cur + iosize - 1, &cached);
92082d40 3693 end_page_read(page, true, cur, iosize);
d1310b2e 3694 cur = cur + iosize;
306e16ce 3695 pg_offset += iosize;
d1310b2e
CM
3696 continue;
3697 }
3698 /* the get_extent function already copied into the page */
9655d298
CM
3699 if (test_range_bit(tree, cur, cur_end,
3700 EXTENT_UPTODATE, 1, NULL)) {
7f042a83 3701 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3702 end_page_read(page, true, cur, iosize);
d1310b2e 3703 cur = cur + iosize;
306e16ce 3704 pg_offset += iosize;
d1310b2e
CM
3705 continue;
3706 }
70dec807
CM
3707 /* we have an inline extent but it didn't get marked up
3708 * to date. Error out
3709 */
3710 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3711 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3712 end_page_read(page, false, cur, iosize);
70dec807 3713 cur = cur + iosize;
306e16ce 3714 pg_offset += iosize;
70dec807
CM
3715 continue;
3716 }
d1310b2e 3717
0ceb34bf 3718 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b
QW
3719 bio_ctrl, page, disk_bytenr, iosize,
3720 pg_offset,
fd513000 3721 end_bio_extent_readpage, 0,
005efedf
FM
3722 this_bio_flag,
3723 force_bio_submit);
ad3fc794 3724 if (ret) {
7f042a83 3725 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3726 end_page_read(page, false, cur, iosize);
baf863b9 3727 goto out;
edd33c99 3728 }
d1310b2e 3729 cur = cur + iosize;
306e16ce 3730 pg_offset += iosize;
d1310b2e 3731 }
90a887c9 3732out:
baf863b9 3733 return ret;
d1310b2e
CM
3734}
3735
b6660e80 3736static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3737 u64 start, u64 end,
3738 struct extent_map **em_cached,
3739 struct btrfs_bio_ctrl *bio_ctrl,
3740 u64 *prev_em_start)
9974090b 3741{
23d31bd4 3742 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3743 int index;
3744
b272ae22 3745 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3746
3747 for (index = 0; index < nr_pages; index++) {
390ed29b 3748 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3749 REQ_RAHEAD, prev_em_start);
09cbfeaf 3750 put_page(pages[index]);
9974090b
MX
3751 }
3752}
3753
3d4b9496 3754static void update_nr_written(struct writeback_control *wbc,
a9132667 3755 unsigned long nr_written)
11c8349b
CM
3756{
3757 wbc->nr_to_write -= nr_written;
11c8349b
CM
3758}
3759
d1310b2e 3760/*
40f76580
CM
3761 * helper for __extent_writepage, doing all of the delayed allocation setup.
3762 *
5eaad97a 3763 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3764 * to write the page (copy into inline extent). In this case the IO has
3765 * been started and the page is already unlocked.
3766 *
3767 * This returns 0 if all went well (page still locked)
3768 * This returns < 0 if there were errors (page still locked)
d1310b2e 3769 */
cd4c0bf9 3770static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 3771 struct page *page, struct writeback_control *wbc)
40f76580 3772{
2749f7ef 3773 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 3774 u64 delalloc_start = page_offset(page);
40f76580 3775 u64 delalloc_to_write = 0;
83f1b680
QW
3776 /* How many pages are started by btrfs_run_delalloc_range() */
3777 unsigned long nr_written = 0;
40f76580
CM
3778 int ret;
3779 int page_started = 0;
3780
2749f7ef
QW
3781 while (delalloc_start < page_end) {
3782 u64 delalloc_end = page_end;
3783 bool found;
40f76580 3784
cd4c0bf9 3785 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3786 &delalloc_start,
917aacec 3787 &delalloc_end);
3522e903 3788 if (!found) {
40f76580
CM
3789 delalloc_start = delalloc_end + 1;
3790 continue;
3791 }
cd4c0bf9 3792 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 3793 delalloc_end, &page_started, &nr_written, wbc);
40f76580 3794 if (ret) {
963e4db8
QW
3795 btrfs_page_set_error(inode->root->fs_info, page,
3796 page_offset(page), PAGE_SIZE);
7361b4ae 3797 return ret;
40f76580
CM
3798 }
3799 /*
ea1754a0
KS
3800 * delalloc_end is already one less than the total length, so
3801 * we don't subtract one from PAGE_SIZE
40f76580
CM
3802 */
3803 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3804 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3805 delalloc_start = delalloc_end + 1;
3806 }
3807 if (wbc->nr_to_write < delalloc_to_write) {
3808 int thresh = 8192;
3809
3810 if (delalloc_to_write < thresh * 2)
3811 thresh = delalloc_to_write;
3812 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3813 thresh);
3814 }
3815
83f1b680 3816 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
3817 if (page_started) {
3818 /*
83f1b680
QW
3819 * We've unlocked the page, so we can't update the mapping's
3820 * writeback index, just update nr_to_write.
40f76580 3821 */
83f1b680 3822 wbc->nr_to_write -= nr_written;
40f76580
CM
3823 return 1;
3824 }
3825
b69d1ee9 3826 return 0;
40f76580
CM
3827}
3828
c5ef5c6c
QW
3829/*
3830 * Find the first byte we need to write.
3831 *
3832 * For subpage, one page can contain several sectors, and
3833 * __extent_writepage_io() will just grab all extent maps in the page
3834 * range and try to submit all non-inline/non-compressed extents.
3835 *
3836 * This is a big problem for subpage, we shouldn't re-submit already written
3837 * data at all.
3838 * This function will lookup subpage dirty bit to find which range we really
3839 * need to submit.
3840 *
3841 * Return the next dirty range in [@start, @end).
3842 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3843 */
3844static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3845 struct page *page, u64 *start, u64 *end)
3846{
3847 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 3848 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
3849 u64 orig_start = *start;
3850 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 3851 unsigned long flags;
72a69cd0 3852 int range_start_bit;
c5ef5c6c
QW
3853 int range_end_bit;
3854
3855 /*
3856 * For regular sector size == page size case, since one page only
3857 * contains one sector, we return the page offset directly.
3858 */
3859 if (fs_info->sectorsize == PAGE_SIZE) {
3860 *start = page_offset(page);
3861 *end = page_offset(page) + PAGE_SIZE;
3862 return;
3863 }
3864
72a69cd0
QW
3865 range_start_bit = spi->dirty_offset +
3866 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3867
c5ef5c6c
QW
3868 /* We should have the page locked, but just in case */
3869 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
3870 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3871 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
3872 spin_unlock_irqrestore(&subpage->lock, flags);
3873
72a69cd0
QW
3874 range_start_bit -= spi->dirty_offset;
3875 range_end_bit -= spi->dirty_offset;
3876
c5ef5c6c
QW
3877 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3878 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3879}
3880
40f76580
CM
3881/*
3882 * helper for __extent_writepage. This calls the writepage start hooks,
3883 * and does the loop to map the page into extents and bios.
3884 *
3885 * We return 1 if the IO is started and the page is unlocked,
3886 * 0 if all went well (page still locked)
3887 * < 0 if there were errors (page still locked)
3888 */
d4580fe2 3889static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3890 struct page *page,
3891 struct writeback_control *wbc,
3892 struct extent_page_data *epd,
3893 loff_t i_size,
57e5ffeb 3894 int *nr_ret)
d1310b2e 3895{
6bc5636a 3896 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
3897 u64 cur = page_offset(page);
3898 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 3899 u64 extent_offset;
d1310b2e 3900 u64 block_start;
d1310b2e 3901 struct extent_map *em;
40f76580
CM
3902 int ret = 0;
3903 int nr = 0;
d8e3fb10 3904 u32 opf = REQ_OP_WRITE;
57e5ffeb 3905 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3906 bool compressed;
c8b97818 3907
a129ffb8 3908 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
3909 if (ret) {
3910 /* Fixup worker will requeue */
5ab58055 3911 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3912 unlock_page(page);
3913 return 1;
247e743c
CM
3914 }
3915
11c8349b
CM
3916 /*
3917 * we don't want to touch the inode after unlocking the page,
3918 * so we update the mapping writeback index now
3919 */
83f1b680 3920 update_nr_written(wbc, 1);
771ed689 3921
d1310b2e 3922 while (cur <= end) {
0c64c33c 3923 u64 disk_bytenr;
40f76580 3924 u64 em_end;
c5ef5c6c
QW
3925 u64 dirty_range_start = cur;
3926 u64 dirty_range_end;
6bc5636a 3927 u32 iosize;
58409edd 3928
40f76580 3929 if (cur >= i_size) {
38a39ac7 3930 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 3931 end, true);
cc1d0d93
QW
3932 /*
3933 * This range is beyond i_size, thus we don't need to
3934 * bother writing back.
3935 * But we still need to clear the dirty subpage bit, or
3936 * the next time the page gets dirtied, we will try to
3937 * writeback the sectors with subpage dirty bits,
3938 * causing writeback without ordered extent.
3939 */
3940 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
3941 break;
3942 }
c5ef5c6c
QW
3943
3944 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3945 &dirty_range_end);
3946 if (cur < dirty_range_start) {
3947 cur = dirty_range_start;
3948 continue;
3949 }
3950
d4580fe2 3951 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c0347550 3952 if (IS_ERR(em)) {
c5ef5c6c 3953 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 3954 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3955 break;
3956 }
3957
3958 extent_offset = cur - em->start;
40f76580 3959 em_end = extent_map_end(em);
6bc5636a
QW
3960 ASSERT(cur <= em_end);
3961 ASSERT(cur < end);
3962 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3963 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 3964 block_start = em->block_start;
c8b97818 3965 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
3966 disk_bytenr = em->block_start + extent_offset;
3967
c5ef5c6c
QW
3968 /*
3969 * Note that em_end from extent_map_end() and dirty_range_end from
3970 * find_next_dirty_byte() are all exclusive
3971 */
3972 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 3973
e380adfc 3974 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
3975 opf = REQ_OP_ZONE_APPEND;
3976
d1310b2e
CM
3977 free_extent_map(em);
3978 em = NULL;
3979
c8b97818
CM
3980 /*
3981 * compressed and inline extents are written through other
3982 * paths in the FS
3983 */
3984 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3985 block_start == EXTENT_MAP_INLINE) {
c8b04030 3986 if (compressed)
c8b97818 3987 nr++;
c8b04030 3988 else
38a39ac7 3989 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 3990 page, cur, cur + iosize - 1, true);
cc1d0d93 3991 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 3992 cur += iosize;
d1310b2e
CM
3993 continue;
3994 }
c8b97818 3995
d2a91064 3996 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 3997 if (!PageWriteback(page)) {
d4580fe2 3998 btrfs_err(inode->root->fs_info,
58409edd
DS
3999 "page %lu not writeback, cur %llu end %llu",
4000 page->index, cur, end);
d1310b2e 4001 }
7f3c74fb 4002
c5ef5c6c
QW
4003 /*
4004 * Although the PageDirty bit is cleared before entering this
4005 * function, subpage dirty bit is not cleared.
4006 * So clear subpage dirty bit here so next time we won't submit
4007 * page for range already written to disk.
4008 */
4009 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4010
390ed29b
QW
4011 ret = submit_extent_page(opf | write_flags, wbc,
4012 &epd->bio_ctrl, page,
d8e3fb10 4013 disk_bytenr, iosize,
390ed29b 4014 cur - page_offset(page),
58409edd 4015 end_bio_extent_writepage,
390ed29b 4016 0, 0, false);
fe01aa65 4017 if (ret) {
c5ef5c6c 4018 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 4019 if (PageWriteback(page))
c5ef5c6c
QW
4020 btrfs_page_clear_writeback(fs_info, page, cur,
4021 iosize);
fe01aa65 4022 }
d1310b2e 4023
6bc5636a 4024 cur += iosize;
d1310b2e
CM
4025 nr++;
4026 }
cc1d0d93
QW
4027 /*
4028 * If we finish without problem, we should not only clear page dirty,
4029 * but also empty subpage dirty bits
4030 */
4031 if (!ret)
4032 btrfs_page_assert_not_dirty(fs_info, page);
40f76580 4033 *nr_ret = nr;
40f76580
CM
4034 return ret;
4035}
4036
4037/*
4038 * the writepage semantics are similar to regular writepage. extent
4039 * records are inserted to lock ranges in the tree, and as dirty areas
4040 * are found, they are marked writeback. Then the lock bits are removed
4041 * and the end_io handler clears the writeback ranges
3065976b
QW
4042 *
4043 * Return 0 if everything goes well.
4044 * Return <0 for error.
40f76580
CM
4045 */
4046static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 4047 struct extent_page_data *epd)
40f76580
CM
4048{
4049 struct inode *inode = page->mapping->host;
e55a0de1 4050 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
4051 const u64 page_start = page_offset(page);
4052 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
4053 int ret;
4054 int nr = 0;
eb70d222 4055 size_t pg_offset;
40f76580 4056 loff_t i_size = i_size_read(inode);
09cbfeaf 4057 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 4058
40f76580
CM
4059 trace___extent_writepage(page, inode, wbc);
4060
4061 WARN_ON(!PageLocked(page));
4062
963e4db8
QW
4063 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4064 page_offset(page), PAGE_SIZE);
40f76580 4065
7073017a 4066 pg_offset = offset_in_page(i_size);
40f76580
CM
4067 if (page->index > end_index ||
4068 (page->index == end_index && !pg_offset)) {
09cbfeaf 4069 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
4070 unlock_page(page);
4071 return 0;
4072 }
4073
4074 if (page->index == end_index) {
d048b9c2 4075 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580
CM
4076 flush_dcache_page(page);
4077 }
4078
32443de3
QW
4079 ret = set_page_extent_mapped(page);
4080 if (ret < 0) {
4081 SetPageError(page);
4082 goto done;
4083 }
40f76580 4084
7789a55a 4085 if (!epd->extent_locked) {
83f1b680 4086 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 4087 if (ret == 1)
169d2c87 4088 return 0;
7789a55a
NB
4089 if (ret)
4090 goto done;
4091 }
40f76580 4092
d4580fe2 4093 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 4094 &nr);
40f76580 4095 if (ret == 1)
169d2c87 4096 return 0;
40f76580 4097
d1310b2e
CM
4098done:
4099 if (nr == 0) {
4100 /* make sure the mapping tag for page dirty gets cleared */
4101 set_page_writeback(page);
4102 end_page_writeback(page);
4103 }
963e4db8
QW
4104 /*
4105 * Here we used to have a check for PageError() and then set @ret and
4106 * call end_extent_writepage().
4107 *
4108 * But in fact setting @ret here will cause different error paths
4109 * between subpage and regular sectorsize.
4110 *
4111 * For regular page size, we never submit current page, but only add
4112 * current page to current bio.
4113 * The bio submission can only happen in next page.
4114 * Thus if we hit the PageError() branch, @ret is already set to
4115 * non-zero value and will not get updated for regular sectorsize.
4116 *
4117 * But for subpage case, it's possible we submit part of current page,
4118 * thus can get PageError() set by submitted bio of the same page,
4119 * while our @ret is still 0.
4120 *
4121 * So here we unify the behavior and don't set @ret.
4122 * Error can still be properly passed to higher layer as page will
4123 * be set error, here we just don't handle the IO failure.
4124 *
4125 * NOTE: This is just a hotfix for subpage.
4126 * The root fix will be properly ending ordered extent when we hit
4127 * an error during writeback.
4128 *
4129 * But that needs a bigger refactoring, as we not only need to grab the
4130 * submitted OE, but also need to know exactly at which bytenr we hit
4131 * the error.
4132 * Currently the full page based __extent_writepage_io() is not
4133 * capable of that.
4134 */
4135 if (PageError(page))
cf3075fb 4136 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
4137 if (epd->extent_locked) {
4138 /*
4139 * If epd->extent_locked, it's from extent_write_locked_range(),
4140 * the page can either be locked by lock_page() or
4141 * process_one_page().
4142 * Let btrfs_page_unlock_writer() handle both cases.
4143 */
4144 ASSERT(wbc);
4145 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4146 wbc->range_end + 1 - wbc->range_start);
4147 } else {
4148 unlock_page(page);
4149 }
3065976b 4150 ASSERT(ret <= 0);
40f76580 4151 return ret;
d1310b2e
CM
4152}
4153
fd8b2b61 4154void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 4155{
74316201
N
4156 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4157 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
4158}
4159
18dfa711
FM
4160static void end_extent_buffer_writeback(struct extent_buffer *eb)
4161{
be1a1d7a
NA
4162 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
4163 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);
4164
18dfa711
FM
4165 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4166 smp_mb__after_atomic();
4167 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4168}
4169
2e3c2513 4170/*
a3efb2f0 4171 * Lock extent buffer status and pages for writeback.
2e3c2513 4172 *
a3efb2f0
QW
4173 * May try to flush write bio if we can't get the lock.
4174 *
4175 * Return 0 if the extent buffer doesn't need to be submitted.
4176 * (E.g. the extent buffer is not dirty)
4177 * Return >0 is the extent buffer is submitted to bio.
4178 * Return <0 if something went wrong, no page is locked.
2e3c2513 4179 */
9df76fb5 4180static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4181 struct extent_page_data *epd)
0b32f4bb 4182{
9df76fb5 4183 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 4184 int i, num_pages, failed_page_nr;
0b32f4bb
JB
4185 int flush = 0;
4186 int ret = 0;
4187
4188 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 4189 ret = flush_write_bio(epd);
2e3c2513
QW
4190 if (ret < 0)
4191 return ret;
4192 flush = 1;
0b32f4bb
JB
4193 btrfs_tree_lock(eb);
4194 }
4195
4196 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4197 btrfs_tree_unlock(eb);
4198 if (!epd->sync_io)
4199 return 0;
4200 if (!flush) {
f4340622 4201 ret = flush_write_bio(epd);
2e3c2513
QW
4202 if (ret < 0)
4203 return ret;
0b32f4bb
JB
4204 flush = 1;
4205 }
a098d8e8
CM
4206 while (1) {
4207 wait_on_extent_buffer_writeback(eb);
4208 btrfs_tree_lock(eb);
4209 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4210 break;
0b32f4bb 4211 btrfs_tree_unlock(eb);
0b32f4bb
JB
4212 }
4213 }
4214
51561ffe
JB
4215 /*
4216 * We need to do this to prevent races in people who check if the eb is
4217 * under IO since we can end up having no IO bits set for a short period
4218 * of time.
4219 */
4220 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4221 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4222 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4223 spin_unlock(&eb->refs_lock);
0b32f4bb 4224 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4225 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4226 -eb->len,
4227 fs_info->dirty_metadata_batch);
0b32f4bb 4228 ret = 1;
51561ffe
JB
4229 } else {
4230 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4231 }
4232
4233 btrfs_tree_unlock(eb);
4234
f3156df9
QW
4235 /*
4236 * Either we don't need to submit any tree block, or we're submitting
4237 * subpage eb.
4238 * Subpage metadata doesn't use page locking at all, so we can skip
4239 * the page locking.
4240 */
4241 if (!ret || fs_info->sectorsize < PAGE_SIZE)
0b32f4bb
JB
4242 return ret;
4243
65ad0104 4244 num_pages = num_extent_pages(eb);
0b32f4bb 4245 for (i = 0; i < num_pages; i++) {
fb85fc9a 4246 struct page *p = eb->pages[i];
0b32f4bb
JB
4247
4248 if (!trylock_page(p)) {
4249 if (!flush) {
18dfa711
FM
4250 int err;
4251
4252 err = flush_write_bio(epd);
4253 if (err < 0) {
4254 ret = err;
2e3c2513
QW
4255 failed_page_nr = i;
4256 goto err_unlock;
4257 }
0b32f4bb
JB
4258 flush = 1;
4259 }
4260 lock_page(p);
4261 }
4262 }
4263
4264 return ret;
2e3c2513
QW
4265err_unlock:
4266 /* Unlock already locked pages */
4267 for (i = 0; i < failed_page_nr; i++)
4268 unlock_page(eb->pages[i]);
18dfa711
FM
4269 /*
4270 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4271 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4272 * be made and undo everything done before.
4273 */
4274 btrfs_tree_lock(eb);
4275 spin_lock(&eb->refs_lock);
4276 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4277 end_extent_buffer_writeback(eb);
4278 spin_unlock(&eb->refs_lock);
4279 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4280 fs_info->dirty_metadata_batch);
4281 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4282 btrfs_tree_unlock(eb);
2e3c2513 4283 return ret;
0b32f4bb
JB
4284}
4285
5a2c6075 4286static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4287{
5a2c6075 4288 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4289
5a2c6075 4290 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4291 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4292 return;
4293
c2e39305
JB
4294 /*
4295 * A read may stumble upon this buffer later, make sure that it gets an
4296 * error and knows there was an error.
4297 */
4298 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4299
68b85589
JB
4300 /*
4301 * We need to set the mapping with the io error as well because a write
4302 * error will flip the file system readonly, and then syncfs() will
4303 * return a 0 because we are readonly if we don't modify the err seq for
4304 * the superblock.
4305 */
4306 mapping_set_error(page->mapping, -EIO);
4307
eb5b64f1
DZ
4308 /*
4309 * If we error out, we should add back the dirty_metadata_bytes
4310 * to make it consistent.
4311 */
eb5b64f1
DZ
4312 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4313 eb->len, fs_info->dirty_metadata_batch);
4314
656f30db
FM
4315 /*
4316 * If writeback for a btree extent that doesn't belong to a log tree
4317 * failed, increment the counter transaction->eb_write_errors.
4318 * We do this because while the transaction is running and before it's
4319 * committing (when we call filemap_fdata[write|wait]_range against
4320 * the btree inode), we might have
4321 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4322 * returns an error or an error happens during writeback, when we're
4323 * committing the transaction we wouldn't know about it, since the pages
4324 * can be no longer dirty nor marked anymore for writeback (if a
4325 * subsequent modification to the extent buffer didn't happen before the
4326 * transaction commit), which makes filemap_fdata[write|wait]_range not
4327 * able to find the pages tagged with SetPageError at transaction
4328 * commit time. So if this happens we must abort the transaction,
4329 * otherwise we commit a super block with btree roots that point to
4330 * btree nodes/leafs whose content on disk is invalid - either garbage
4331 * or the content of some node/leaf from a past generation that got
4332 * cowed or deleted and is no longer valid.
4333 *
4334 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4335 * not be enough - we need to distinguish between log tree extents vs
4336 * non-log tree extents, and the next filemap_fdatawait_range() call
4337 * will catch and clear such errors in the mapping - and that call might
4338 * be from a log sync and not from a transaction commit. Also, checking
4339 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4340 * not done and would not be reliable - the eb might have been released
4341 * from memory and reading it back again means that flag would not be
4342 * set (since it's a runtime flag, not persisted on disk).
4343 *
4344 * Using the flags below in the btree inode also makes us achieve the
4345 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4346 * writeback for all dirty pages and before filemap_fdatawait_range()
4347 * is called, the writeback for all dirty pages had already finished
4348 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4349 * filemap_fdatawait_range() would return success, as it could not know
4350 * that writeback errors happened (the pages were no longer tagged for
4351 * writeback).
4352 */
4353 switch (eb->log_index) {
4354 case -1:
5a2c6075 4355 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4356 break;
4357 case 0:
5a2c6075 4358 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4359 break;
4360 case 1:
5a2c6075 4361 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4362 break;
4363 default:
4364 BUG(); /* unexpected, logic error */
4365 }
4366}
4367
2f3186d8
QW
4368/*
4369 * The endio specific version which won't touch any unsafe spinlock in endio
4370 * context.
4371 */
4372static struct extent_buffer *find_extent_buffer_nolock(
4373 struct btrfs_fs_info *fs_info, u64 start)
4374{
4375 struct extent_buffer *eb;
4376
4377 rcu_read_lock();
4378 eb = radix_tree_lookup(&fs_info->buffer_radix,
4379 start >> fs_info->sectorsize_bits);
4380 if (eb && atomic_inc_not_zero(&eb->refs)) {
4381 rcu_read_unlock();
4382 return eb;
4383 }
4384 rcu_read_unlock();
4385 return NULL;
4386}
4387
4388/*
4389 * The endio function for subpage extent buffer write.
4390 *
4391 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4392 * after all extent buffers in the page has finished their writeback.
4393 */
fa04c165 4394static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4395{
fa04c165 4396 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4397 struct bio_vec *bvec;
4398 struct bvec_iter_all iter_all;
4399
fa04c165
QW
4400 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4401 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4402
2f3186d8
QW
4403 ASSERT(!bio_flagged(bio, BIO_CLONED));
4404 bio_for_each_segment_all(bvec, bio, iter_all) {
4405 struct page *page = bvec->bv_page;
4406 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4407 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4408 u64 cur_bytenr = bvec_start;
4409
4410 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4411
4412 /* Iterate through all extent buffers in the range */
4413 while (cur_bytenr <= bvec_end) {
4414 struct extent_buffer *eb;
4415 int done;
4416
4417 /*
4418 * Here we can't use find_extent_buffer(), as it may
4419 * try to lock eb->refs_lock, which is not safe in endio
4420 * context.
4421 */
4422 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4423 ASSERT(eb);
4424
4425 cur_bytenr = eb->start + eb->len;
4426
4427 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4428 done = atomic_dec_and_test(&eb->io_pages);
4429 ASSERT(done);
4430
4431 if (bio->bi_status ||
4432 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4433 ClearPageUptodate(page);
4434 set_btree_ioerr(page, eb);
4435 }
4436
4437 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4438 eb->len);
4439 end_extent_buffer_writeback(eb);
4440 /*
4441 * free_extent_buffer() will grab spinlock which is not
4442 * safe in endio context. Thus here we manually dec
4443 * the ref.
4444 */
4445 atomic_dec(&eb->refs);
4446 }
4447 }
4448 bio_put(bio);
4449}
4450
4246a0b6 4451static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4452{
2c30c71b 4453 struct bio_vec *bvec;
0b32f4bb 4454 struct extent_buffer *eb;
2b070cfe 4455 int done;
6dc4f100 4456 struct bvec_iter_all iter_all;
0b32f4bb 4457
c09abff8 4458 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4459 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4460 struct page *page = bvec->bv_page;
4461
0b32f4bb
JB
4462 eb = (struct extent_buffer *)page->private;
4463 BUG_ON(!eb);
4464 done = atomic_dec_and_test(&eb->io_pages);
4465
4e4cbee9 4466 if (bio->bi_status ||
4246a0b6 4467 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4468 ClearPageUptodate(page);
5a2c6075 4469 set_btree_ioerr(page, eb);
0b32f4bb
JB
4470 }
4471
4472 end_page_writeback(page);
4473
4474 if (!done)
4475 continue;
4476
4477 end_extent_buffer_writeback(eb);
2c30c71b 4478 }
0b32f4bb
JB
4479
4480 bio_put(bio);
0b32f4bb
JB
4481}
4482
fa04c165
QW
4483static void prepare_eb_write(struct extent_buffer *eb)
4484{
4485 u32 nritems;
4486 unsigned long start;
4487 unsigned long end;
4488
4489 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4490 atomic_set(&eb->io_pages, num_extent_pages(eb));
4491
4492 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4493 nritems = btrfs_header_nritems(eb);
4494 if (btrfs_header_level(eb) > 0) {
4495 end = btrfs_node_key_ptr_offset(nritems);
4496 memzero_extent_buffer(eb, end, eb->len - end);
4497 } else {
4498 /*
4499 * Leaf:
4500 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4501 */
4502 start = btrfs_item_nr_offset(nritems);
4503 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4504 memzero_extent_buffer(eb, start, end - start);
4505 }
4506}
4507
35b6ddfa
QW
4508/*
4509 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4510 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4511 */
4512static int write_one_subpage_eb(struct extent_buffer *eb,
4513 struct writeback_control *wbc,
4514 struct extent_page_data *epd)
4515{
4516 struct btrfs_fs_info *fs_info = eb->fs_info;
4517 struct page *page = eb->pages[0];
4518 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4519 bool no_dirty_ebs = false;
4520 int ret;
4521
fa04c165
QW
4522 prepare_eb_write(eb);
4523
35b6ddfa
QW
4524 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4525 lock_page(page);
4526 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4527
4528 /* Check if this is the last dirty bit to update nr_written */
4529 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4530 eb->start, eb->len);
4531 if (no_dirty_ebs)
4532 clear_page_dirty_for_io(page);
4533
390ed29b
QW
4534 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4535 &epd->bio_ctrl, page, eb->start, eb->len,
4536 eb->start - page_offset(page),
fa04c165 4537 end_bio_subpage_eb_writepage, 0, 0, false);
35b6ddfa
QW
4538 if (ret) {
4539 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4540 set_btree_ioerr(page, eb);
4541 unlock_page(page);
4542
4543 if (atomic_dec_and_test(&eb->io_pages))
4544 end_extent_buffer_writeback(eb);
4545 return -EIO;
4546 }
4547 unlock_page(page);
4548 /*
4549 * Submission finished without problem, if no range of the page is
4550 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4551 */
4552 if (no_dirty_ebs)
4553 update_nr_written(wbc, 1);
4554 return ret;
4555}
4556
0e378df1 4557static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4558 struct writeback_control *wbc,
4559 struct extent_page_data *epd)
4560{
0c64c33c 4561 u64 disk_bytenr = eb->start;
cc5e31a4 4562 int i, num_pages;
ff40adf7 4563 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 4564 int ret = 0;
0b32f4bb 4565
fa04c165 4566 prepare_eb_write(eb);
35b6ddfa 4567
fa04c165 4568 num_pages = num_extent_pages(eb);
0b32f4bb 4569 for (i = 0; i < num_pages; i++) {
fb85fc9a 4570 struct page *p = eb->pages[i];
0b32f4bb
JB
4571
4572 clear_page_dirty_for_io(p);
4573 set_page_writeback(p);
0ceb34bf 4574 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4575 &epd->bio_ctrl, p, disk_bytenr,
4576 PAGE_SIZE, 0,
1f7ad75b 4577 end_bio_extent_buffer_writepage,
390ed29b 4578 0, 0, false);
0b32f4bb 4579 if (ret) {
5a2c6075 4580 set_btree_ioerr(p, eb);
fe01aa65
TK
4581 if (PageWriteback(p))
4582 end_page_writeback(p);
0b32f4bb
JB
4583 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4584 end_extent_buffer_writeback(eb);
4585 ret = -EIO;
4586 break;
4587 }
0c64c33c 4588 disk_bytenr += PAGE_SIZE;
3d4b9496 4589 update_nr_written(wbc, 1);
0b32f4bb
JB
4590 unlock_page(p);
4591 }
4592
4593 if (unlikely(ret)) {
4594 for (; i < num_pages; i++) {
bbf65cf0 4595 struct page *p = eb->pages[i];
81465028 4596 clear_page_dirty_for_io(p);
0b32f4bb
JB
4597 unlock_page(p);
4598 }
4599 }
4600
4601 return ret;
4602}
4603
c4aec299
QW
4604/*
4605 * Submit one subpage btree page.
4606 *
4607 * The main difference to submit_eb_page() is:
4608 * - Page locking
4609 * For subpage, we don't rely on page locking at all.
4610 *
4611 * - Flush write bio
4612 * We only flush bio if we may be unable to fit current extent buffers into
4613 * current bio.
4614 *
4615 * Return >=0 for the number of submitted extent buffers.
4616 * Return <0 for fatal error.
4617 */
4618static int submit_eb_subpage(struct page *page,
4619 struct writeback_control *wbc,
4620 struct extent_page_data *epd)
4621{
4622 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4623 int submitted = 0;
4624 u64 page_start = page_offset(page);
4625 int bit_start = 0;
c4aec299
QW
4626 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4627 int ret;
4628
4629 /* Lock and write each dirty extent buffers in the range */
72a69cd0 4630 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
4631 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4632 struct extent_buffer *eb;
4633 unsigned long flags;
4634 u64 start;
4635
4636 /*
4637 * Take private lock to ensure the subpage won't be detached
4638 * in the meantime.
4639 */
4640 spin_lock(&page->mapping->private_lock);
4641 if (!PagePrivate(page)) {
4642 spin_unlock(&page->mapping->private_lock);
4643 break;
4644 }
4645 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
4646 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4647 subpage->bitmaps)) {
c4aec299
QW
4648 spin_unlock_irqrestore(&subpage->lock, flags);
4649 spin_unlock(&page->mapping->private_lock);
4650 bit_start++;
4651 continue;
4652 }
4653
4654 start = page_start + bit_start * fs_info->sectorsize;
4655 bit_start += sectors_per_node;
4656
4657 /*
4658 * Here we just want to grab the eb without touching extra
4659 * spin locks, so call find_extent_buffer_nolock().
4660 */
4661 eb = find_extent_buffer_nolock(fs_info, start);
4662 spin_unlock_irqrestore(&subpage->lock, flags);
4663 spin_unlock(&page->mapping->private_lock);
4664
4665 /*
4666 * The eb has already reached 0 refs thus find_extent_buffer()
4667 * doesn't return it. We don't need to write back such eb
4668 * anyway.
4669 */
4670 if (!eb)
4671 continue;
4672
4673 ret = lock_extent_buffer_for_io(eb, epd);
4674 if (ret == 0) {
4675 free_extent_buffer(eb);
4676 continue;
4677 }
4678 if (ret < 0) {
4679 free_extent_buffer(eb);
4680 goto cleanup;
4681 }
fa04c165 4682 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4683 free_extent_buffer(eb);
4684 if (ret < 0)
4685 goto cleanup;
4686 submitted++;
4687 }
4688 return submitted;
4689
4690cleanup:
4691 /* We hit error, end bio for the submitted extent buffers */
4692 end_write_bio(epd, ret);
4693 return ret;
4694}
4695
f91e0d0c
QW
4696/*
4697 * Submit all page(s) of one extent buffer.
4698 *
4699 * @page: the page of one extent buffer
4700 * @eb_context: to determine if we need to submit this page, if current page
4701 * belongs to this eb, we don't need to submit
4702 *
4703 * The caller should pass each page in their bytenr order, and here we use
4704 * @eb_context to determine if we have submitted pages of one extent buffer.
4705 *
4706 * If we have, we just skip until we hit a new page that doesn't belong to
4707 * current @eb_context.
4708 *
4709 * If not, we submit all the page(s) of the extent buffer.
4710 *
4711 * Return >0 if we have submitted the extent buffer successfully.
4712 * Return 0 if we don't need to submit the page, as it's already submitted by
4713 * previous call.
4714 * Return <0 for fatal error.
4715 */
4716static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4717 struct extent_page_data *epd,
4718 struct extent_buffer **eb_context)
4719{
4720 struct address_space *mapping = page->mapping;
0bc09ca1 4721 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4722 struct extent_buffer *eb;
4723 int ret;
4724
4725 if (!PagePrivate(page))
4726 return 0;
4727
c4aec299
QW
4728 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4729 return submit_eb_subpage(page, wbc, epd);
4730
f91e0d0c
QW
4731 spin_lock(&mapping->private_lock);
4732 if (!PagePrivate(page)) {
4733 spin_unlock(&mapping->private_lock);
4734 return 0;
4735 }
4736
4737 eb = (struct extent_buffer *)page->private;
4738
4739 /*
4740 * Shouldn't happen and normally this would be a BUG_ON but no point
4741 * crashing the machine for something we can survive anyway.
4742 */
4743 if (WARN_ON(!eb)) {
4744 spin_unlock(&mapping->private_lock);
4745 return 0;
4746 }
4747
4748 if (eb == *eb_context) {
4749 spin_unlock(&mapping->private_lock);
4750 return 0;
4751 }
4752 ret = atomic_inc_not_zero(&eb->refs);
4753 spin_unlock(&mapping->private_lock);
4754 if (!ret)
4755 return 0;
4756
0bc09ca1
NA
4757 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4758 /*
4759 * If for_sync, this hole will be filled with
4760 * trasnsaction commit.
4761 */
4762 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4763 ret = -EAGAIN;
4764 else
4765 ret = 0;
4766 free_extent_buffer(eb);
4767 return ret;
4768 }
4769
f91e0d0c
QW
4770 *eb_context = eb;
4771
4772 ret = lock_extent_buffer_for_io(eb, epd);
4773 if (ret <= 0) {
0bc09ca1
NA
4774 btrfs_revert_meta_write_pointer(cache, eb);
4775 if (cache)
4776 btrfs_put_block_group(cache);
f91e0d0c
QW
4777 free_extent_buffer(eb);
4778 return ret;
4779 }
be1a1d7a
NA
4780 if (cache) {
4781 /* Impiles write in zoned mode */
0bc09ca1 4782 btrfs_put_block_group(cache);
be1a1d7a
NA
4783 /* Mark the last eb in a block group */
4784 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
4785 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4786 }
f91e0d0c
QW
4787 ret = write_one_eb(eb, wbc, epd);
4788 free_extent_buffer(eb);
4789 if (ret < 0)
4790 return ret;
4791 return 1;
4792}
4793
0b32f4bb
JB
4794int btree_write_cache_pages(struct address_space *mapping,
4795 struct writeback_control *wbc)
4796{
f91e0d0c 4797 struct extent_buffer *eb_context = NULL;
0b32f4bb 4798 struct extent_page_data epd = {
390ed29b 4799 .bio_ctrl = { 0 },
0b32f4bb
JB
4800 .extent_locked = 0,
4801 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4802 };
b3ff8f1d 4803 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4804 int ret = 0;
4805 int done = 0;
4806 int nr_to_write_done = 0;
4807 struct pagevec pvec;
4808 int nr_pages;
4809 pgoff_t index;
4810 pgoff_t end; /* Inclusive */
4811 int scanned = 0;
10bbd235 4812 xa_mark_t tag;
0b32f4bb 4813
86679820 4814 pagevec_init(&pvec);
0b32f4bb
JB
4815 if (wbc->range_cyclic) {
4816 index = mapping->writeback_index; /* Start from prev offset */
4817 end = -1;
556755a8
JB
4818 /*
4819 * Start from the beginning does not need to cycle over the
4820 * range, mark it as scanned.
4821 */
4822 scanned = (index == 0);
0b32f4bb 4823 } else {
09cbfeaf
KS
4824 index = wbc->range_start >> PAGE_SHIFT;
4825 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4826 scanned = 1;
4827 }
4828 if (wbc->sync_mode == WB_SYNC_ALL)
4829 tag = PAGECACHE_TAG_TOWRITE;
4830 else
4831 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4832 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4833retry:
4834 if (wbc->sync_mode == WB_SYNC_ALL)
4835 tag_pages_for_writeback(mapping, index, end);
4836 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4837 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4838 tag))) {
0b32f4bb
JB
4839 unsigned i;
4840
0b32f4bb
JB
4841 for (i = 0; i < nr_pages; i++) {
4842 struct page *page = pvec.pages[i];
4843
f91e0d0c
QW
4844 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4845 if (ret == 0)
0b32f4bb 4846 continue;
f91e0d0c 4847 if (ret < 0) {
0b32f4bb 4848 done = 1;
0b32f4bb
JB
4849 break;
4850 }
0b32f4bb
JB
4851
4852 /*
4853 * the filesystem may choose to bump up nr_to_write.
4854 * We have to make sure to honor the new nr_to_write
4855 * at any time
4856 */
4857 nr_to_write_done = wbc->nr_to_write <= 0;
4858 }
4859 pagevec_release(&pvec);
4860 cond_resched();
4861 }
4862 if (!scanned && !done) {
4863 /*
4864 * We hit the last page and there is more work to be done: wrap
4865 * back to the start of the file
4866 */
4867 scanned = 1;
4868 index = 0;
4869 goto retry;
4870 }
2b952eea
QW
4871 if (ret < 0) {
4872 end_write_bio(&epd, ret);
0bc09ca1 4873 goto out;
2b952eea 4874 }
b3ff8f1d
QW
4875 /*
4876 * If something went wrong, don't allow any metadata write bio to be
4877 * submitted.
4878 *
4879 * This would prevent use-after-free if we had dirty pages not
4880 * cleaned up, which can still happen by fuzzed images.
4881 *
4882 * - Bad extent tree
4883 * Allowing existing tree block to be allocated for other trees.
4884 *
4885 * - Log tree operations
4886 * Exiting tree blocks get allocated to log tree, bumps its
4887 * generation, then get cleaned in tree re-balance.
4888 * Such tree block will not be written back, since it's clean,
4889 * thus no WRITTEN flag set.
4890 * And after log writes back, this tree block is not traced by
4891 * any dirty extent_io_tree.
4892 *
4893 * - Offending tree block gets re-dirtied from its original owner
4894 * Since it has bumped generation, no WRITTEN flag, it can be
4895 * reused without COWing. This tree block will not be traced
4896 * by btrfs_transaction::dirty_pages.
4897 *
4898 * Now such dirty tree block will not be cleaned by any dirty
4899 * extent io tree. Thus we don't want to submit such wild eb
4900 * if the fs already has error.
4901 */
84961539 4902 if (!BTRFS_FS_ERROR(fs_info)) {
b3ff8f1d
QW
4903 ret = flush_write_bio(&epd);
4904 } else {
fbabd4a3 4905 ret = -EROFS;
b3ff8f1d
QW
4906 end_write_bio(&epd, ret);
4907 }
0bc09ca1
NA
4908out:
4909 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4910 return ret;
4911}
4912
d1310b2e 4913/**
3bed2da1
NB
4914 * Walk the list of dirty pages of the given address space and write all of them.
4915 *
d1310b2e 4916 * @mapping: address space structure to write
3bed2da1
NB
4917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4918 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4919 *
4920 * If a page is already under I/O, write_cache_pages() skips it, even
4921 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4922 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4923 * and msync() need to guarantee that all the data which was dirty at the time
4924 * the call was made get new I/O started against them. If wbc->sync_mode is
4925 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4926 * existing IO to complete.
4927 */
4242b64a 4928static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4929 struct writeback_control *wbc,
aab6e9ed 4930 struct extent_page_data *epd)
d1310b2e 4931{
7fd1a3f7 4932 struct inode *inode = mapping->host;
d1310b2e
CM
4933 int ret = 0;
4934 int done = 0;
f85d7d6c 4935 int nr_to_write_done = 0;
d1310b2e
CM
4936 struct pagevec pvec;
4937 int nr_pages;
4938 pgoff_t index;
4939 pgoff_t end; /* Inclusive */
a9132667
LB
4940 pgoff_t done_index;
4941 int range_whole = 0;
d1310b2e 4942 int scanned = 0;
10bbd235 4943 xa_mark_t tag;
d1310b2e 4944
7fd1a3f7
JB
4945 /*
4946 * We have to hold onto the inode so that ordered extents can do their
4947 * work when the IO finishes. The alternative to this is failing to add
4948 * an ordered extent if the igrab() fails there and that is a huge pain
4949 * to deal with, so instead just hold onto the inode throughout the
4950 * writepages operation. If it fails here we are freeing up the inode
4951 * anyway and we'd rather not waste our time writing out stuff that is
4952 * going to be truncated anyway.
4953 */
4954 if (!igrab(inode))
4955 return 0;
4956
86679820 4957 pagevec_init(&pvec);
d1310b2e
CM
4958 if (wbc->range_cyclic) {
4959 index = mapping->writeback_index; /* Start from prev offset */
4960 end = -1;
556755a8
JB
4961 /*
4962 * Start from the beginning does not need to cycle over the
4963 * range, mark it as scanned.
4964 */
4965 scanned = (index == 0);
d1310b2e 4966 } else {
09cbfeaf
KS
4967 index = wbc->range_start >> PAGE_SHIFT;
4968 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4969 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4970 range_whole = 1;
d1310b2e
CM
4971 scanned = 1;
4972 }
3cd24c69
EL
4973
4974 /*
4975 * We do the tagged writepage as long as the snapshot flush bit is set
4976 * and we are the first one who do the filemap_flush() on this inode.
4977 *
4978 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4979 * not race in and drop the bit.
4980 */
4981 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4982 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4983 &BTRFS_I(inode)->runtime_flags))
4984 wbc->tagged_writepages = 1;
4985
4986 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4987 tag = PAGECACHE_TAG_TOWRITE;
4988 else
4989 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4990retry:
3cd24c69 4991 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4992 tag_pages_for_writeback(mapping, index, end);
a9132667 4993 done_index = index;
f85d7d6c 4994 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4995 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4996 &index, end, tag))) {
d1310b2e
CM
4997 unsigned i;
4998
d1310b2e
CM
4999 for (i = 0; i < nr_pages; i++) {
5000 struct page *page = pvec.pages[i];
5001
f7bddf1e 5002 done_index = page->index + 1;
d1310b2e 5003 /*
b93b0163
MW
5004 * At this point we hold neither the i_pages lock nor
5005 * the page lock: the page may be truncated or
5006 * invalidated (changing page->mapping to NULL),
5007 * or even swizzled back from swapper_space to
5008 * tmpfs file mapping
d1310b2e 5009 */
c8f2f24b 5010 if (!trylock_page(page)) {
f4340622
QW
5011 ret = flush_write_bio(epd);
5012 BUG_ON(ret < 0);
c8f2f24b 5013 lock_page(page);
01d658f2 5014 }
d1310b2e
CM
5015
5016 if (unlikely(page->mapping != mapping)) {
5017 unlock_page(page);
5018 continue;
5019 }
5020
d2c3f4f6 5021 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
5022 if (PageWriteback(page)) {
5023 ret = flush_write_bio(epd);
5024 BUG_ON(ret < 0);
5025 }
d1310b2e 5026 wait_on_page_writeback(page);
d2c3f4f6 5027 }
d1310b2e
CM
5028
5029 if (PageWriteback(page) ||
5030 !clear_page_dirty_for_io(page)) {
5031 unlock_page(page);
5032 continue;
5033 }
5034
aab6e9ed 5035 ret = __extent_writepage(page, wbc, epd);
a9132667 5036 if (ret < 0) {
a9132667
LB
5037 done = 1;
5038 break;
5039 }
f85d7d6c
CM
5040
5041 /*
5042 * the filesystem may choose to bump up nr_to_write.
5043 * We have to make sure to honor the new nr_to_write
5044 * at any time
5045 */
5046 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
5047 }
5048 pagevec_release(&pvec);
5049 cond_resched();
5050 }
894b36e3 5051 if (!scanned && !done) {
d1310b2e
CM
5052 /*
5053 * We hit the last page and there is more work to be done: wrap
5054 * back to the start of the file
5055 */
5056 scanned = 1;
5057 index = 0;
42ffb0bf
JB
5058
5059 /*
5060 * If we're looping we could run into a page that is locked by a
5061 * writer and that writer could be waiting on writeback for a
5062 * page in our current bio, and thus deadlock, so flush the
5063 * write bio here.
5064 */
5065 ret = flush_write_bio(epd);
5066 if (!ret)
5067 goto retry;
d1310b2e 5068 }
a9132667
LB
5069
5070 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5071 mapping->writeback_index = done_index;
5072
7fd1a3f7 5073 btrfs_add_delayed_iput(inode);
894b36e3 5074 return ret;
d1310b2e 5075}
d1310b2e 5076
0a9b0e53 5077int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
5078{
5079 int ret;
d1310b2e 5080 struct extent_page_data epd = {
390ed29b 5081 .bio_ctrl = { 0 },
771ed689 5082 .extent_locked = 0,
ffbd517d 5083 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 5084 };
d1310b2e 5085
d1310b2e 5086 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
5087 ASSERT(ret <= 0);
5088 if (ret < 0) {
5089 end_write_bio(&epd, ret);
5090 return ret;
5091 }
d1310b2e 5092
3065976b
QW
5093 ret = flush_write_bio(&epd);
5094 ASSERT(ret <= 0);
d1310b2e
CM
5095 return ret;
5096}
d1310b2e 5097
2bd0fc93
QW
5098/*
5099 * Submit the pages in the range to bio for call sites which delalloc range has
5100 * already been ran (aka, ordered extent inserted) and all pages are still
5101 * locked.
5102 */
5103int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 5104{
2bd0fc93
QW
5105 bool found_error = false;
5106 int first_error = 0;
771ed689
CM
5107 int ret = 0;
5108 struct address_space *mapping = inode->i_mapping;
5109 struct page *page;
2bd0fc93 5110 u64 cur = start;
66448b9d
QW
5111 unsigned long nr_pages;
5112 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 5113 struct extent_page_data epd = {
390ed29b 5114 .bio_ctrl = { 0 },
771ed689 5115 .extent_locked = 1,
2bd0fc93 5116 .sync_io = 1,
771ed689
CM
5117 };
5118 struct writeback_control wbc_writepages = {
2bd0fc93 5119 .sync_mode = WB_SYNC_ALL,
771ed689
CM
5120 .range_start = start,
5121 .range_end = end + 1,
ec39f769
CM
5122 /* We're called from an async helper function */
5123 .punt_to_cgroup = 1,
5124 .no_cgroup_owner = 1,
771ed689
CM
5125 };
5126
66448b9d
QW
5127 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5128 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5129 PAGE_SHIFT;
5130 wbc_writepages.nr_to_write = nr_pages * 2;
5131
dbb70bec 5132 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 5133 while (cur <= end) {
66448b9d
QW
5134 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5135
2bd0fc93
QW
5136 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5137 /*
5138 * All pages in the range are locked since
5139 * btrfs_run_delalloc_range(), thus there is no way to clear
5140 * the page dirty flag.
5141 */
66448b9d 5142 ASSERT(PageLocked(page));
2bd0fc93
QW
5143 ASSERT(PageDirty(page));
5144 clear_page_dirty_for_io(page);
5145 ret = __extent_writepage(page, &wbc_writepages, &epd);
5146 ASSERT(ret <= 0);
5147 if (ret < 0) {
5148 found_error = true;
5149 first_error = ret;
771ed689 5150 }
09cbfeaf 5151 put_page(page);
66448b9d 5152 cur = cur_end + 1;
771ed689
CM
5153 }
5154
2bd0fc93 5155 if (!found_error)
dbb70bec
CM
5156 ret = flush_write_bio(&epd);
5157 else
02c6db4f 5158 end_write_bio(&epd, ret);
dbb70bec
CM
5159
5160 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
5161 if (found_error)
5162 return first_error;
771ed689
CM
5163 return ret;
5164}
d1310b2e 5165
8ae225a8 5166int extent_writepages(struct address_space *mapping,
d1310b2e
CM
5167 struct writeback_control *wbc)
5168{
35156d85 5169 struct inode *inode = mapping->host;
d1310b2e
CM
5170 int ret = 0;
5171 struct extent_page_data epd = {
390ed29b 5172 .bio_ctrl = { 0 },
771ed689 5173 .extent_locked = 0,
ffbd517d 5174 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
5175 };
5176
35156d85
JT
5177 /*
5178 * Allow only a single thread to do the reloc work in zoned mode to
5179 * protect the write pointer updates.
5180 */
869f4cdc 5181 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 5182 ret = extent_write_cache_pages(mapping, wbc, &epd);
869f4cdc 5183 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
a2a72fbd
QW
5184 ASSERT(ret <= 0);
5185 if (ret < 0) {
5186 end_write_bio(&epd, ret);
5187 return ret;
5188 }
5189 ret = flush_write_bio(&epd);
d1310b2e
CM
5190 return ret;
5191}
d1310b2e 5192
ba206a02 5193void extent_readahead(struct readahead_control *rac)
d1310b2e 5194{
390ed29b 5195 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 5196 struct page *pagepool[16];
125bac01 5197 struct extent_map *em_cached = NULL;
808f80b4 5198 u64 prev_em_start = (u64)-1;
ba206a02 5199 int nr;
d1310b2e 5200
ba206a02 5201 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
5202 u64 contig_start = readahead_pos(rac);
5203 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 5204
ba206a02 5205 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 5206 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 5207 }
67c9684f 5208
125bac01
MX
5209 if (em_cached)
5210 free_extent_map(em_cached);
5211
390ed29b
QW
5212 if (bio_ctrl.bio) {
5213 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
ba206a02
MWO
5214 return;
5215 }
d1310b2e 5216}
d1310b2e
CM
5217
5218/*
5219 * basic invalidatepage code, this waits on any locked or writeback
5220 * ranges corresponding to the page, and then deletes any extent state
5221 * records from the tree
5222 */
5223int extent_invalidatepage(struct extent_io_tree *tree,
5224 struct page *page, unsigned long offset)
5225{
2ac55d41 5226 struct extent_state *cached_state = NULL;
4eee4fa4 5227 u64 start = page_offset(page);
09cbfeaf 5228 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
5229 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5230
829ddec9
QW
5231 /* This function is only called for the btree inode */
5232 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5233
fda2832f 5234 start += ALIGN(offset, blocksize);
d1310b2e
CM
5235 if (start > end)
5236 return 0;
5237
ff13db41 5238 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 5239 wait_on_page_writeback(page);
829ddec9
QW
5240
5241 /*
5242 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5243 * so here we only need to unlock the extent range to free any
5244 * existing extent state.
5245 */
5246 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5247 return 0;
5248}
d1310b2e 5249
7b13b7b1
CM
5250/*
5251 * a helper for releasepage, this tests for areas of the page that
5252 * are locked or under IO and drops the related state bits if it is safe
5253 * to drop the page.
5254 */
29c68b2d 5255static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5256 struct page *page, gfp_t mask)
7b13b7b1 5257{
4eee4fa4 5258 u64 start = page_offset(page);
09cbfeaf 5259 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5260 int ret = 1;
5261
8882679e 5262 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5263 ret = 0;
8882679e 5264 } else {
11ef160f 5265 /*
2766ff61
FM
5266 * At this point we can safely clear everything except the
5267 * locked bit, the nodatasum bit and the delalloc new bit.
5268 * The delalloc new bit will be cleared by ordered extent
5269 * completion.
11ef160f 5270 */
66b0c887 5271 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5272 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5273 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5274
5275 /* if clear_extent_bit failed for enomem reasons,
5276 * we can't allow the release to continue.
5277 */
5278 if (ret < 0)
5279 ret = 0;
5280 else
5281 ret = 1;
7b13b7b1
CM
5282 }
5283 return ret;
5284}
7b13b7b1 5285
d1310b2e
CM
5286/*
5287 * a helper for releasepage. As long as there are no locked extents
5288 * in the range corresponding to the page, both state records and extent
5289 * map records are removed
5290 */
477a30ba 5291int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5292{
5293 struct extent_map *em;
4eee4fa4 5294 u64 start = page_offset(page);
09cbfeaf 5295 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5296 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5297 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5298 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5299
d0164adc 5300 if (gfpflags_allow_blocking(mask) &&
ee22184b 5301 page->mapping->host->i_size > SZ_16M) {
39b5637f 5302 u64 len;
70dec807 5303 while (start <= end) {
fbc2bd7e
FM
5304 struct btrfs_fs_info *fs_info;
5305 u64 cur_gen;
5306
39b5637f 5307 len = end - start + 1;
890871be 5308 write_lock(&map->lock);
39b5637f 5309 em = lookup_extent_mapping(map, start, len);
285190d9 5310 if (!em) {
890871be 5311 write_unlock(&map->lock);
70dec807
CM
5312 break;
5313 }
7f3c74fb
CM
5314 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5315 em->start != start) {
890871be 5316 write_unlock(&map->lock);
70dec807
CM
5317 free_extent_map(em);
5318 break;
5319 }
3d6448e6
FM
5320 if (test_range_bit(tree, em->start,
5321 extent_map_end(em) - 1,
5322 EXTENT_LOCKED, 0, NULL))
5323 goto next;
5324 /*
5325 * If it's not in the list of modified extents, used
5326 * by a fast fsync, we can remove it. If it's being
5327 * logged we can safely remove it since fsync took an
5328 * extra reference on the em.
5329 */
5330 if (list_empty(&em->list) ||
fbc2bd7e
FM
5331 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5332 goto remove_em;
5333 /*
5334 * If it's in the list of modified extents, remove it
5335 * only if its generation is older then the current one,
5336 * in which case we don't need it for a fast fsync.
5337 * Otherwise don't remove it, we could be racing with an
5338 * ongoing fast fsync that could miss the new extent.
5339 */
5340 fs_info = btrfs_inode->root->fs_info;
5341 spin_lock(&fs_info->trans_lock);
5342 cur_gen = fs_info->generation;
5343 spin_unlock(&fs_info->trans_lock);
5344 if (em->generation >= cur_gen)
5345 goto next;
5346remove_em:
5e548b32
FM
5347 /*
5348 * We only remove extent maps that are not in the list of
5349 * modified extents or that are in the list but with a
5350 * generation lower then the current generation, so there
5351 * is no need to set the full fsync flag on the inode (it
5352 * hurts the fsync performance for workloads with a data
5353 * size that exceeds or is close to the system's memory).
5354 */
fbc2bd7e
FM
5355 remove_extent_mapping(map, em);
5356 /* once for the rb tree */
5357 free_extent_map(em);
3d6448e6 5358next:
70dec807 5359 start = extent_map_end(em);
890871be 5360 write_unlock(&map->lock);
70dec807
CM
5361
5362 /* once for us */
d1310b2e 5363 free_extent_map(em);
9f47eb54
PM
5364
5365 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5366 }
d1310b2e 5367 }
29c68b2d 5368 return try_release_extent_state(tree, page, mask);
d1310b2e 5369}
d1310b2e 5370
ec29ed5b
CM
5371/*
5372 * helper function for fiemap, which doesn't want to see any holes.
5373 * This maps until we find something past 'last'
5374 */
f1bbde8d 5375static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5376 u64 offset, u64 last)
ec29ed5b 5377{
f1bbde8d 5378 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5379 struct extent_map *em;
5380 u64 len;
5381
5382 if (offset >= last)
5383 return NULL;
5384
67871254 5385 while (1) {
ec29ed5b
CM
5386 len = last - offset;
5387 if (len == 0)
5388 break;
fda2832f 5389 len = ALIGN(len, sectorsize);
f1bbde8d 5390 em = btrfs_get_extent_fiemap(inode, offset, len);
6b5b7a41 5391 if (IS_ERR(em))
ec29ed5b
CM
5392 return em;
5393
5394 /* if this isn't a hole return it */
4a2d25cd 5395 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5396 return em;
ec29ed5b
CM
5397
5398 /* this is a hole, advance to the next extent */
5399 offset = extent_map_end(em);
5400 free_extent_map(em);
5401 if (offset >= last)
5402 break;
5403 }
5404 return NULL;
5405}
5406
4751832d
QW
5407/*
5408 * To cache previous fiemap extent
5409 *
5410 * Will be used for merging fiemap extent
5411 */
5412struct fiemap_cache {
5413 u64 offset;
5414 u64 phys;
5415 u64 len;
5416 u32 flags;
5417 bool cached;
5418};
5419
5420/*
5421 * Helper to submit fiemap extent.
5422 *
5423 * Will try to merge current fiemap extent specified by @offset, @phys,
5424 * @len and @flags with cached one.
5425 * And only when we fails to merge, cached one will be submitted as
5426 * fiemap extent.
5427 *
5428 * Return value is the same as fiemap_fill_next_extent().
5429 */
5430static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5431 struct fiemap_cache *cache,
5432 u64 offset, u64 phys, u64 len, u32 flags)
5433{
5434 int ret = 0;
5435
5436 if (!cache->cached)
5437 goto assign;
5438
5439 /*
5440 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5441 * fiemap extent won't overlap with cached one.
4751832d
QW
5442 * Not recoverable.
5443 *
5444 * NOTE: Physical address can overlap, due to compression
5445 */
5446 if (cache->offset + cache->len > offset) {
5447 WARN_ON(1);
5448 return -EINVAL;
5449 }
5450
5451 /*
5452 * Only merges fiemap extents if
5453 * 1) Their logical addresses are continuous
5454 *
5455 * 2) Their physical addresses are continuous
5456 * So truly compressed (physical size smaller than logical size)
5457 * extents won't get merged with each other
5458 *
5459 * 3) Share same flags except FIEMAP_EXTENT_LAST
5460 * So regular extent won't get merged with prealloc extent
5461 */
5462 if (cache->offset + cache->len == offset &&
5463 cache->phys + cache->len == phys &&
5464 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5465 (flags & ~FIEMAP_EXTENT_LAST)) {
5466 cache->len += len;
5467 cache->flags |= flags;
5468 goto try_submit_last;
5469 }
5470
5471 /* Not mergeable, need to submit cached one */
5472 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5473 cache->len, cache->flags);
5474 cache->cached = false;
5475 if (ret)
5476 return ret;
5477assign:
5478 cache->cached = true;
5479 cache->offset = offset;
5480 cache->phys = phys;
5481 cache->len = len;
5482 cache->flags = flags;
5483try_submit_last:
5484 if (cache->flags & FIEMAP_EXTENT_LAST) {
5485 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5486 cache->phys, cache->len, cache->flags);
5487 cache->cached = false;
5488 }
5489 return ret;
5490}
5491
5492/*
848c23b7 5493 * Emit last fiemap cache
4751832d 5494 *
848c23b7
QW
5495 * The last fiemap cache may still be cached in the following case:
5496 * 0 4k 8k
5497 * |<- Fiemap range ->|
5498 * |<------------ First extent ----------->|
5499 *
5500 * In this case, the first extent range will be cached but not emitted.
5501 * So we must emit it before ending extent_fiemap().
4751832d 5502 */
5c5aff98 5503static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5504 struct fiemap_cache *cache)
4751832d
QW
5505{
5506 int ret;
5507
5508 if (!cache->cached)
5509 return 0;
5510
4751832d
QW
5511 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5512 cache->len, cache->flags);
5513 cache->cached = false;
5514 if (ret > 0)
5515 ret = 0;
5516 return ret;
5517}
5518
facee0a0 5519int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5520 u64 start, u64 len)
1506fcc8 5521{
975f84fe 5522 int ret = 0;
15c7745c 5523 u64 off;
1506fcc8
YS
5524 u64 max = start + len;
5525 u32 flags = 0;
975f84fe
JB
5526 u32 found_type;
5527 u64 last;
ec29ed5b 5528 u64 last_for_get_extent = 0;
1506fcc8 5529 u64 disko = 0;
facee0a0 5530 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5531 struct btrfs_key found_key;
1506fcc8 5532 struct extent_map *em = NULL;
2ac55d41 5533 struct extent_state *cached_state = NULL;
975f84fe 5534 struct btrfs_path *path;
facee0a0 5535 struct btrfs_root *root = inode->root;
4751832d 5536 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5537 struct ulist *roots;
5538 struct ulist *tmp_ulist;
1506fcc8 5539 int end = 0;
ec29ed5b
CM
5540 u64 em_start = 0;
5541 u64 em_len = 0;
5542 u64 em_end = 0;
1506fcc8
YS
5543
5544 if (len == 0)
5545 return -EINVAL;
5546
975f84fe
JB
5547 path = btrfs_alloc_path();
5548 if (!path)
5549 return -ENOMEM;
975f84fe 5550
5911c8fe
DS
5551 roots = ulist_alloc(GFP_KERNEL);
5552 tmp_ulist = ulist_alloc(GFP_KERNEL);
5553 if (!roots || !tmp_ulist) {
5554 ret = -ENOMEM;
5555 goto out_free_ulist;
5556 }
5557
15c7745c
BB
5558 /*
5559 * We can't initialize that to 'start' as this could miss extents due
5560 * to extent item merging
5561 */
5562 off = 0;
facee0a0
NB
5563 start = round_down(start, btrfs_inode_sectorsize(inode));
5564 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5565
ec29ed5b
CM
5566 /*
5567 * lookup the last file extent. We're not using i_size here
5568 * because there might be preallocation past i_size
5569 */
facee0a0
NB
5570 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5571 0);
975f84fe 5572 if (ret < 0) {
5911c8fe 5573 goto out_free_ulist;
2d324f59
LB
5574 } else {
5575 WARN_ON(!ret);
5576 if (ret == 1)
5577 ret = 0;
975f84fe 5578 }
2d324f59 5579
975f84fe 5580 path->slots[0]--;
975f84fe 5581 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5582 found_type = found_key.type;
975f84fe 5583
ec29ed5b 5584 /* No extents, but there might be delalloc bits */
facee0a0 5585 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5586 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5587 /* have to trust i_size as the end */
5588 last = (u64)-1;
5589 last_for_get_extent = isize;
5590 } else {
5591 /*
5592 * remember the start of the last extent. There are a
5593 * bunch of different factors that go into the length of the
5594 * extent, so its much less complex to remember where it started
5595 */
5596 last = found_key.offset;
5597 last_for_get_extent = last + 1;
975f84fe 5598 }
fe09e16c 5599 btrfs_release_path(path);
975f84fe 5600
ec29ed5b
CM
5601 /*
5602 * we might have some extents allocated but more delalloc past those
5603 * extents. so, we trust isize unless the start of the last extent is
5604 * beyond isize
5605 */
5606 if (last < isize) {
5607 last = (u64)-1;
5608 last_for_get_extent = isize;
5609 }
5610
facee0a0 5611 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5612 &cached_state);
ec29ed5b 5613
facee0a0 5614 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5615 if (!em)
5616 goto out;
5617 if (IS_ERR(em)) {
5618 ret = PTR_ERR(em);
5619 goto out;
5620 }
975f84fe 5621
1506fcc8 5622 while (!end) {
b76bb701 5623 u64 offset_in_extent = 0;
ea8efc74
CM
5624
5625 /* break if the extent we found is outside the range */
5626 if (em->start >= max || extent_map_end(em) < off)
5627 break;
5628
5629 /*
5630 * get_extent may return an extent that starts before our
5631 * requested range. We have to make sure the ranges
5632 * we return to fiemap always move forward and don't
5633 * overlap, so adjust the offsets here
5634 */
5635 em_start = max(em->start, off);
1506fcc8 5636
ea8efc74
CM
5637 /*
5638 * record the offset from the start of the extent
b76bb701
JB
5639 * for adjusting the disk offset below. Only do this if the
5640 * extent isn't compressed since our in ram offset may be past
5641 * what we have actually allocated on disk.
ea8efc74 5642 */
b76bb701
JB
5643 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5644 offset_in_extent = em_start - em->start;
ec29ed5b 5645 em_end = extent_map_end(em);
ea8efc74 5646 em_len = em_end - em_start;
1506fcc8 5647 flags = 0;
f0986318
FM
5648 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5649 disko = em->block_start + offset_in_extent;
5650 else
5651 disko = 0;
1506fcc8 5652
ea8efc74
CM
5653 /*
5654 * bump off for our next call to get_extent
5655 */
5656 off = extent_map_end(em);
5657 if (off >= max)
5658 end = 1;
5659
93dbfad7 5660 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5661 end = 1;
5662 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5663 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5664 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5665 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5666 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5667 flags |= (FIEMAP_EXTENT_DELALLOC |
5668 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5669 } else if (fieinfo->fi_extents_max) {
5670 u64 bytenr = em->block_start -
5671 (em->start - em->orig_start);
fe09e16c 5672
fe09e16c
LB
5673 /*
5674 * As btrfs supports shared space, this information
5675 * can be exported to userspace tools via
dc046b10
JB
5676 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5677 * then we're just getting a count and we can skip the
5678 * lookup stuff.
fe09e16c 5679 */
facee0a0 5680 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5681 bytenr, roots, tmp_ulist);
dc046b10 5682 if (ret < 0)
fe09e16c 5683 goto out_free;
dc046b10 5684 if (ret)
fe09e16c 5685 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5686 ret = 0;
1506fcc8
YS
5687 }
5688 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5689 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5690 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5691 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5692
1506fcc8
YS
5693 free_extent_map(em);
5694 em = NULL;
ec29ed5b
CM
5695 if ((em_start >= last) || em_len == (u64)-1 ||
5696 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5697 flags |= FIEMAP_EXTENT_LAST;
5698 end = 1;
5699 }
5700
ec29ed5b 5701 /* now scan forward to see if this is really the last extent. */
facee0a0 5702 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5703 if (IS_ERR(em)) {
5704 ret = PTR_ERR(em);
5705 goto out;
5706 }
5707 if (!em) {
975f84fe
JB
5708 flags |= FIEMAP_EXTENT_LAST;
5709 end = 1;
5710 }
4751832d
QW
5711 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5712 em_len, flags);
26e726af
CS
5713 if (ret) {
5714 if (ret == 1)
5715 ret = 0;
ec29ed5b 5716 goto out_free;
26e726af 5717 }
1506fcc8
YS
5718 }
5719out_free:
4751832d 5720 if (!ret)
5c5aff98 5721 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5722 free_extent_map(em);
5723out:
facee0a0 5724 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5725 &cached_state);
5911c8fe
DS
5726
5727out_free_ulist:
e02d48ea 5728 btrfs_free_path(path);
5911c8fe
DS
5729 ulist_free(roots);
5730 ulist_free(tmp_ulist);
1506fcc8
YS
5731 return ret;
5732}
5733
727011e0
CM
5734static void __free_extent_buffer(struct extent_buffer *eb)
5735{
727011e0
CM
5736 kmem_cache_free(extent_buffer_cache, eb);
5737}
5738
2b48966a 5739int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5740{
5741 return (atomic_read(&eb->io_pages) ||
5742 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5743 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5744}
5745
8ff8466d 5746static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5747{
8ff8466d 5748 struct btrfs_subpage *subpage;
db7f3436 5749
8ff8466d 5750 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5751
8ff8466d
QW
5752 if (PagePrivate(page)) {
5753 subpage = (struct btrfs_subpage *)page->private;
5754 if (atomic_read(&subpage->eb_refs))
5755 return true;
3d078efa
QW
5756 /*
5757 * Even there is no eb refs here, we may still have
5758 * end_page_read() call relying on page::private.
5759 */
5760 if (atomic_read(&subpage->readers))
5761 return true;
8ff8466d
QW
5762 }
5763 return false;
5764}
db7f3436 5765
8ff8466d
QW
5766static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5767{
5768 struct btrfs_fs_info *fs_info = eb->fs_info;
5769 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5770
5771 /*
5772 * For mapped eb, we're going to change the page private, which should
5773 * be done under the private_lock.
5774 */
5775 if (mapped)
5776 spin_lock(&page->mapping->private_lock);
5777
5778 if (!PagePrivate(page)) {
5d2361db 5779 if (mapped)
8ff8466d
QW
5780 spin_unlock(&page->mapping->private_lock);
5781 return;
5782 }
5783
5784 if (fs_info->sectorsize == PAGE_SIZE) {
5d2361db
FL
5785 /*
5786 * We do this since we'll remove the pages after we've
5787 * removed the eb from the radix tree, so we could race
5788 * and have this page now attached to the new eb. So
5789 * only clear page_private if it's still connected to
5790 * this eb.
5791 */
5792 if (PagePrivate(page) &&
5793 page->private == (unsigned long)eb) {
5794 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5795 BUG_ON(PageDirty(page));
5796 BUG_ON(PageWriteback(page));
db7f3436 5797 /*
5d2361db
FL
5798 * We need to make sure we haven't be attached
5799 * to a new eb.
db7f3436 5800 */
d1b89bc0 5801 detach_page_private(page);
db7f3436 5802 }
5d2361db
FL
5803 if (mapped)
5804 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5805 return;
5806 }
5807
5808 /*
5809 * For subpage, we can have dummy eb with page private. In this case,
5810 * we can directly detach the private as such page is only attached to
5811 * one dummy eb, no sharing.
5812 */
5813 if (!mapped) {
5814 btrfs_detach_subpage(fs_info, page);
5815 return;
5816 }
5817
5818 btrfs_page_dec_eb_refs(fs_info, page);
5819
5820 /*
5821 * We can only detach the page private if there are no other ebs in the
3d078efa 5822 * page range and no unfinished IO.
8ff8466d
QW
5823 */
5824 if (!page_range_has_eb(fs_info, page))
5825 btrfs_detach_subpage(fs_info, page);
5826
5827 spin_unlock(&page->mapping->private_lock);
5828}
5829
5830/* Release all pages attached to the extent buffer */
5831static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5832{
5833 int i;
5834 int num_pages;
5835
5836 ASSERT(!extent_buffer_under_io(eb));
5837
5838 num_pages = num_extent_pages(eb);
5839 for (i = 0; i < num_pages; i++) {
5840 struct page *page = eb->pages[i];
5841
5842 if (!page)
5843 continue;
5844
5845 detach_extent_buffer_page(eb, page);
5d2361db 5846
01327610 5847 /* One for when we allocated the page */
09cbfeaf 5848 put_page(page);
d64766fd 5849 }
db7f3436
JB
5850}
5851
5852/*
5853 * Helper for releasing the extent buffer.
5854 */
5855static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5856{
55ac0139 5857 btrfs_release_extent_buffer_pages(eb);
8c38938c 5858 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5859 __free_extent_buffer(eb);
5860}
5861
f28491e0
JB
5862static struct extent_buffer *
5863__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5864 unsigned long len)
d1310b2e
CM
5865{
5866 struct extent_buffer *eb = NULL;
5867
d1b5c567 5868 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5869 eb->start = start;
5870 eb->len = len;
f28491e0 5871 eb->fs_info = fs_info;
815a51c7 5872 eb->bflags = 0;
196d59ab 5873 init_rwsem(&eb->lock);
b4ce94de 5874
3fd63727
JB
5875 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5876 &fs_info->allocated_ebs);
d3575156 5877 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5878
3083ee2e 5879 spin_lock_init(&eb->refs_lock);
d1310b2e 5880 atomic_set(&eb->refs, 1);
0b32f4bb 5881 atomic_set(&eb->io_pages, 0);
727011e0 5882
deb67895 5883 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5884
5885 return eb;
5886}
5887
2b48966a 5888struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5889{
cc5e31a4 5890 int i;
815a51c7
JS
5891 struct page *p;
5892 struct extent_buffer *new;
cc5e31a4 5893 int num_pages = num_extent_pages(src);
815a51c7 5894
3f556f78 5895 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5896 if (new == NULL)
5897 return NULL;
5898
62c053fb
QW
5899 /*
5900 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5901 * btrfs_release_extent_buffer() have different behavior for
5902 * UNMAPPED subpage extent buffer.
5903 */
5904 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5905
815a51c7 5906 for (i = 0; i < num_pages; i++) {
760f991f
QW
5907 int ret;
5908
9ec72677 5909 p = alloc_page(GFP_NOFS);
db7f3436
JB
5910 if (!p) {
5911 btrfs_release_extent_buffer(new);
5912 return NULL;
5913 }
760f991f
QW
5914 ret = attach_extent_buffer_page(new, p, NULL);
5915 if (ret < 0) {
5916 put_page(p);
5917 btrfs_release_extent_buffer(new);
5918 return NULL;
5919 }
815a51c7 5920 WARN_ON(PageDirty(p));
815a51c7 5921 new->pages[i] = p;
fba1acf9 5922 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5923 }
92d83e94 5924 set_extent_buffer_uptodate(new);
815a51c7
JS
5925
5926 return new;
5927}
5928
0f331229
OS
5929struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5930 u64 start, unsigned long len)
815a51c7
JS
5931{
5932 struct extent_buffer *eb;
cc5e31a4
DS
5933 int num_pages;
5934 int i;
815a51c7 5935
3f556f78 5936 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5937 if (!eb)
5938 return NULL;
5939
65ad0104 5940 num_pages = num_extent_pages(eb);
815a51c7 5941 for (i = 0; i < num_pages; i++) {
09bc1f0f
QW
5942 int ret;
5943
9ec72677 5944 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5945 if (!eb->pages[i])
5946 goto err;
09bc1f0f
QW
5947 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5948 if (ret < 0)
5949 goto err;
815a51c7
JS
5950 }
5951 set_extent_buffer_uptodate(eb);
5952 btrfs_set_header_nritems(eb, 0);
b0132a3b 5953 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5954
5955 return eb;
5956err:
09bc1f0f
QW
5957 for (; i > 0; i--) {
5958 detach_extent_buffer_page(eb, eb->pages[i - 1]);
84167d19 5959 __free_page(eb->pages[i - 1]);
09bc1f0f 5960 }
815a51c7
JS
5961 __free_extent_buffer(eb);
5962 return NULL;
5963}
5964
0f331229 5965struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5966 u64 start)
0f331229 5967{
da17066c 5968 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5969}
5970
0b32f4bb
JB
5971static void check_buffer_tree_ref(struct extent_buffer *eb)
5972{
242e18c7 5973 int refs;
6bf9cd2e
BB
5974 /*
5975 * The TREE_REF bit is first set when the extent_buffer is added
5976 * to the radix tree. It is also reset, if unset, when a new reference
5977 * is created by find_extent_buffer.
0b32f4bb 5978 *
6bf9cd2e
BB
5979 * It is only cleared in two cases: freeing the last non-tree
5980 * reference to the extent_buffer when its STALE bit is set or
5981 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5982 *
6bf9cd2e
BB
5983 * In both cases, care is taken to ensure that the extent_buffer's
5984 * pages are not under io. However, releasepage can be concurrently
5985 * called with creating new references, which is prone to race
5986 * conditions between the calls to check_buffer_tree_ref in those
5987 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5988 *
6bf9cd2e
BB
5989 * The actual lifetime of the extent_buffer in the radix tree is
5990 * adequately protected by the refcount, but the TREE_REF bit and
5991 * its corresponding reference are not. To protect against this
5992 * class of races, we call check_buffer_tree_ref from the codepaths
5993 * which trigger io after they set eb->io_pages. Note that once io is
5994 * initiated, TREE_REF can no longer be cleared, so that is the
5995 * moment at which any such race is best fixed.
0b32f4bb 5996 */
242e18c7
CM
5997 refs = atomic_read(&eb->refs);
5998 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5999 return;
6000
594831c4
JB
6001 spin_lock(&eb->refs_lock);
6002 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 6003 atomic_inc(&eb->refs);
594831c4 6004 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
6005}
6006
2457aec6
MG
6007static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6008 struct page *accessed)
5df4235e 6009{
cc5e31a4 6010 int num_pages, i;
5df4235e 6011
0b32f4bb
JB
6012 check_buffer_tree_ref(eb);
6013
65ad0104 6014 num_pages = num_extent_pages(eb);
5df4235e 6015 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
6016 struct page *p = eb->pages[i];
6017
2457aec6
MG
6018 if (p != accessed)
6019 mark_page_accessed(p);
5df4235e
JB
6020 }
6021}
6022
f28491e0
JB
6023struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6024 u64 start)
452c75c3
CS
6025{
6026 struct extent_buffer *eb;
6027
2f3186d8
QW
6028 eb = find_extent_buffer_nolock(fs_info, start);
6029 if (!eb)
6030 return NULL;
6031 /*
6032 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6033 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6034 * another task running free_extent_buffer() might have seen that flag
6035 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6036 * writeback flags not set) and it's still in the tree (flag
6037 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6038 * decrementing the extent buffer's reference count twice. So here we
6039 * could race and increment the eb's reference count, clear its stale
6040 * flag, mark it as dirty and drop our reference before the other task
6041 * finishes executing free_extent_buffer, which would later result in
6042 * an attempt to free an extent buffer that is dirty.
6043 */
6044 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6045 spin_lock(&eb->refs_lock);
6046 spin_unlock(&eb->refs_lock);
452c75c3 6047 }
2f3186d8
QW
6048 mark_extent_buffer_accessed(eb, NULL);
6049 return eb;
452c75c3
CS
6050}
6051
faa2dbf0
JB
6052#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6053struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 6054 u64 start)
faa2dbf0
JB
6055{
6056 struct extent_buffer *eb, *exists = NULL;
6057 int ret;
6058
6059 eb = find_extent_buffer(fs_info, start);
6060 if (eb)
6061 return eb;
da17066c 6062 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 6063 if (!eb)
b6293c82 6064 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
6065 eb->fs_info = fs_info;
6066again:
e1860a77 6067 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
6068 if (ret) {
6069 exists = ERR_PTR(ret);
faa2dbf0 6070 goto free_eb;
b6293c82 6071 }
faa2dbf0
JB
6072 spin_lock(&fs_info->buffer_lock);
6073 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6074 start >> fs_info->sectorsize_bits, eb);
faa2dbf0
JB
6075 spin_unlock(&fs_info->buffer_lock);
6076 radix_tree_preload_end();
6077 if (ret == -EEXIST) {
6078 exists = find_extent_buffer(fs_info, start);
6079 if (exists)
6080 goto free_eb;
6081 else
6082 goto again;
6083 }
6084 check_buffer_tree_ref(eb);
6085 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6086
faa2dbf0
JB
6087 return eb;
6088free_eb:
6089 btrfs_release_extent_buffer(eb);
6090 return exists;
6091}
6092#endif
6093
81982210
QW
6094static struct extent_buffer *grab_extent_buffer(
6095 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
6096{
6097 struct extent_buffer *exists;
6098
81982210
QW
6099 /*
6100 * For subpage case, we completely rely on radix tree to ensure we
6101 * don't try to insert two ebs for the same bytenr. So here we always
6102 * return NULL and just continue.
6103 */
6104 if (fs_info->sectorsize < PAGE_SIZE)
6105 return NULL;
6106
c0f0a9e7
QW
6107 /* Page not yet attached to an extent buffer */
6108 if (!PagePrivate(page))
6109 return NULL;
6110
6111 /*
6112 * We could have already allocated an eb for this page and attached one
6113 * so lets see if we can get a ref on the existing eb, and if we can we
6114 * know it's good and we can just return that one, else we know we can
6115 * just overwrite page->private.
6116 */
6117 exists = (struct extent_buffer *)page->private;
6118 if (atomic_inc_not_zero(&exists->refs))
6119 return exists;
6120
6121 WARN_ON(PageDirty(page));
6122 detach_page_private(page);
6123 return NULL;
6124}
6125
f28491e0 6126struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 6127 u64 start, u64 owner_root, int level)
d1310b2e 6128{
da17066c 6129 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
6130 int num_pages;
6131 int i;
09cbfeaf 6132 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 6133 struct extent_buffer *eb;
6af118ce 6134 struct extent_buffer *exists = NULL;
d1310b2e 6135 struct page *p;
f28491e0 6136 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 6137 int uptodate = 1;
19fe0a8b 6138 int ret;
d1310b2e 6139
da17066c 6140 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
6141 btrfs_err(fs_info, "bad tree block start %llu", start);
6142 return ERR_PTR(-EINVAL);
6143 }
6144
e9306ad4
QW
6145#if BITS_PER_LONG == 32
6146 if (start >= MAX_LFS_FILESIZE) {
6147 btrfs_err_rl(fs_info,
6148 "extent buffer %llu is beyond 32bit page cache limit", start);
6149 btrfs_err_32bit_limit(fs_info);
6150 return ERR_PTR(-EOVERFLOW);
6151 }
6152 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6153 btrfs_warn_32bit_limit(fs_info);
6154#endif
6155
1aaac38c
QW
6156 if (fs_info->sectorsize < PAGE_SIZE &&
6157 offset_in_page(start) + len > PAGE_SIZE) {
6158 btrfs_err(fs_info,
6159 "tree block crosses page boundary, start %llu nodesize %lu",
6160 start, len);
6161 return ERR_PTR(-EINVAL);
6162 }
6163
f28491e0 6164 eb = find_extent_buffer(fs_info, start);
452c75c3 6165 if (eb)
6af118ce 6166 return eb;
6af118ce 6167
23d79d81 6168 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 6169 if (!eb)
c871b0f2 6170 return ERR_PTR(-ENOMEM);
e114c545 6171 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 6172
65ad0104 6173 num_pages = num_extent_pages(eb);
727011e0 6174 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
6175 struct btrfs_subpage *prealloc = NULL;
6176
d1b5c567 6177 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
6178 if (!p) {
6179 exists = ERR_PTR(-ENOMEM);
6af118ce 6180 goto free_eb;
c871b0f2 6181 }
4f2de97a 6182
760f991f
QW
6183 /*
6184 * Preallocate page->private for subpage case, so that we won't
6185 * allocate memory with private_lock hold. The memory will be
6186 * freed by attach_extent_buffer_page() or freed manually if
6187 * we exit earlier.
6188 *
6189 * Although we have ensured one subpage eb can only have one
6190 * page, but it may change in the future for 16K page size
6191 * support, so we still preallocate the memory in the loop.
6192 */
fdf250db 6193 if (fs_info->sectorsize < PAGE_SIZE) {
651fb419
QW
6194 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6195 if (IS_ERR(prealloc)) {
6196 ret = PTR_ERR(prealloc);
fdf250db
QW
6197 unlock_page(p);
6198 put_page(p);
6199 exists = ERR_PTR(ret);
6200 goto free_eb;
6201 }
760f991f
QW
6202 }
6203
4f2de97a 6204 spin_lock(&mapping->private_lock);
81982210 6205 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
6206 if (exists) {
6207 spin_unlock(&mapping->private_lock);
6208 unlock_page(p);
6209 put_page(p);
6210 mark_extent_buffer_accessed(exists, p);
760f991f 6211 btrfs_free_subpage(prealloc);
c0f0a9e7 6212 goto free_eb;
d1310b2e 6213 }
760f991f
QW
6214 /* Should not fail, as we have preallocated the memory */
6215 ret = attach_extent_buffer_page(eb, p, prealloc);
6216 ASSERT(!ret);
8ff8466d
QW
6217 /*
6218 * To inform we have extra eb under allocation, so that
6219 * detach_extent_buffer_page() won't release the page private
6220 * when the eb hasn't yet been inserted into radix tree.
6221 *
6222 * The ref will be decreased when the eb released the page, in
6223 * detach_extent_buffer_page().
6224 * Thus needs no special handling in error path.
6225 */
6226 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6227 spin_unlock(&mapping->private_lock);
760f991f 6228
1e5eb3d6 6229 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6230 eb->pages[i] = p;
d1310b2e
CM
6231 if (!PageUptodate(p))
6232 uptodate = 0;
eb14ab8e
CM
6233
6234 /*
b16d011e
NB
6235 * We can't unlock the pages just yet since the extent buffer
6236 * hasn't been properly inserted in the radix tree, this
6237 * opens a race with btree_releasepage which can free a page
6238 * while we are still filling in all pages for the buffer and
6239 * we could crash.
eb14ab8e 6240 */
d1310b2e
CM
6241 }
6242 if (uptodate)
b4ce94de 6243 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 6244again:
e1860a77 6245 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
6246 if (ret) {
6247 exists = ERR_PTR(ret);
19fe0a8b 6248 goto free_eb;
c871b0f2 6249 }
19fe0a8b 6250
f28491e0
JB
6251 spin_lock(&fs_info->buffer_lock);
6252 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6253 start >> fs_info->sectorsize_bits, eb);
f28491e0 6254 spin_unlock(&fs_info->buffer_lock);
452c75c3 6255 radix_tree_preload_end();
19fe0a8b 6256 if (ret == -EEXIST) {
f28491e0 6257 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
6258 if (exists)
6259 goto free_eb;
6260 else
115391d2 6261 goto again;
6af118ce 6262 }
6af118ce 6263 /* add one reference for the tree */
0b32f4bb 6264 check_buffer_tree_ref(eb);
34b41ace 6265 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6266
6267 /*
b16d011e
NB
6268 * Now it's safe to unlock the pages because any calls to
6269 * btree_releasepage will correctly detect that a page belongs to a
6270 * live buffer and won't free them prematurely.
eb14ab8e 6271 */
28187ae5
NB
6272 for (i = 0; i < num_pages; i++)
6273 unlock_page(eb->pages[i]);
d1310b2e
CM
6274 return eb;
6275
6af118ce 6276free_eb:
5ca64f45 6277 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6278 for (i = 0; i < num_pages; i++) {
6279 if (eb->pages[i])
6280 unlock_page(eb->pages[i]);
6281 }
eb14ab8e 6282
897ca6e9 6283 btrfs_release_extent_buffer(eb);
6af118ce 6284 return exists;
d1310b2e 6285}
d1310b2e 6286
3083ee2e
JB
6287static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6288{
6289 struct extent_buffer *eb =
6290 container_of(head, struct extent_buffer, rcu_head);
6291
6292 __free_extent_buffer(eb);
6293}
6294
f7a52a40 6295static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6296 __releases(&eb->refs_lock)
3083ee2e 6297{
07e21c4d
NB
6298 lockdep_assert_held(&eb->refs_lock);
6299
3083ee2e
JB
6300 WARN_ON(atomic_read(&eb->refs) == 0);
6301 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6302 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6303 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6304
815a51c7 6305 spin_unlock(&eb->refs_lock);
3083ee2e 6306
f28491e0
JB
6307 spin_lock(&fs_info->buffer_lock);
6308 radix_tree_delete(&fs_info->buffer_radix,
478ef886 6309 eb->start >> fs_info->sectorsize_bits);
f28491e0 6310 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6311 } else {
6312 spin_unlock(&eb->refs_lock);
815a51c7 6313 }
3083ee2e 6314
8c38938c 6315 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6316 /* Should be safe to release our pages at this point */
55ac0139 6317 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6318#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6319 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6320 __free_extent_buffer(eb);
6321 return 1;
6322 }
6323#endif
3083ee2e 6324 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6325 return 1;
3083ee2e
JB
6326 }
6327 spin_unlock(&eb->refs_lock);
e64860aa
JB
6328
6329 return 0;
3083ee2e
JB
6330}
6331
d1310b2e
CM
6332void free_extent_buffer(struct extent_buffer *eb)
6333{
242e18c7
CM
6334 int refs;
6335 int old;
d1310b2e
CM
6336 if (!eb)
6337 return;
6338
242e18c7
CM
6339 while (1) {
6340 refs = atomic_read(&eb->refs);
46cc775e
NB
6341 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6342 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6343 refs == 1))
242e18c7
CM
6344 break;
6345 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6346 if (old == refs)
6347 return;
6348 }
6349
3083ee2e
JB
6350 spin_lock(&eb->refs_lock);
6351 if (atomic_read(&eb->refs) == 2 &&
6352 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6353 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6354 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6355 atomic_dec(&eb->refs);
6356
6357 /*
6358 * I know this is terrible, but it's temporary until we stop tracking
6359 * the uptodate bits and such for the extent buffers.
6360 */
f7a52a40 6361 release_extent_buffer(eb);
3083ee2e
JB
6362}
6363
6364void free_extent_buffer_stale(struct extent_buffer *eb)
6365{
6366 if (!eb)
d1310b2e
CM
6367 return;
6368
3083ee2e
JB
6369 spin_lock(&eb->refs_lock);
6370 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6371
0b32f4bb 6372 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6373 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6374 atomic_dec(&eb->refs);
f7a52a40 6375 release_extent_buffer(eb);
d1310b2e 6376}
d1310b2e 6377
0d27797e
QW
6378static void btree_clear_page_dirty(struct page *page)
6379{
6380 ASSERT(PageDirty(page));
6381 ASSERT(PageLocked(page));
6382 clear_page_dirty_for_io(page);
6383 xa_lock_irq(&page->mapping->i_pages);
6384 if (!PageDirty(page))
6385 __xa_clear_mark(&page->mapping->i_pages,
6386 page_index(page), PAGECACHE_TAG_DIRTY);
6387 xa_unlock_irq(&page->mapping->i_pages);
6388}
6389
6390static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6391{
6392 struct btrfs_fs_info *fs_info = eb->fs_info;
6393 struct page *page = eb->pages[0];
6394 bool last;
6395
6396 /* btree_clear_page_dirty() needs page locked */
6397 lock_page(page);
6398 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6399 eb->len);
6400 if (last)
6401 btree_clear_page_dirty(page);
6402 unlock_page(page);
6403 WARN_ON(atomic_read(&eb->refs) == 0);
6404}
6405
2b48966a 6406void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6407{
cc5e31a4
DS
6408 int i;
6409 int num_pages;
d1310b2e
CM
6410 struct page *page;
6411
0d27797e
QW
6412 if (eb->fs_info->sectorsize < PAGE_SIZE)
6413 return clear_subpage_extent_buffer_dirty(eb);
6414
65ad0104 6415 num_pages = num_extent_pages(eb);
d1310b2e
CM
6416
6417 for (i = 0; i < num_pages; i++) {
fb85fc9a 6418 page = eb->pages[i];
b9473439 6419 if (!PageDirty(page))
d2c3f4f6 6420 continue;
a61e6f29 6421 lock_page(page);
0d27797e 6422 btree_clear_page_dirty(page);
bf0da8c1 6423 ClearPageError(page);
a61e6f29 6424 unlock_page(page);
d1310b2e 6425 }
0b32f4bb 6426 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6427}
d1310b2e 6428
abb57ef3 6429bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6430{
cc5e31a4
DS
6431 int i;
6432 int num_pages;
abb57ef3 6433 bool was_dirty;
d1310b2e 6434
0b32f4bb
JB
6435 check_buffer_tree_ref(eb);
6436
b9473439 6437 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6438
65ad0104 6439 num_pages = num_extent_pages(eb);
3083ee2e 6440 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6441 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6442
0d27797e
QW
6443 if (!was_dirty) {
6444 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
51995c39 6445
0d27797e
QW
6446 /*
6447 * For subpage case, we can have other extent buffers in the
6448 * same page, and in clear_subpage_extent_buffer_dirty() we
6449 * have to clear page dirty without subpage lock held.
6450 * This can cause race where our page gets dirty cleared after
6451 * we just set it.
6452 *
6453 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6454 * its page for other reasons, we can use page lock to prevent
6455 * the above race.
6456 */
6457 if (subpage)
6458 lock_page(eb->pages[0]);
6459 for (i = 0; i < num_pages; i++)
6460 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6461 eb->start, eb->len);
6462 if (subpage)
6463 unlock_page(eb->pages[0]);
6464 }
51995c39
LB
6465#ifdef CONFIG_BTRFS_DEBUG
6466 for (i = 0; i < num_pages; i++)
6467 ASSERT(PageDirty(eb->pages[i]));
6468#endif
6469
b9473439 6470 return was_dirty;
d1310b2e 6471}
d1310b2e 6472
69ba3927 6473void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6474{
251f2acc 6475 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6476 struct page *page;
cc5e31a4 6477 int num_pages;
251f2acc 6478 int i;
1259ab75 6479
b4ce94de 6480 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6481 num_pages = num_extent_pages(eb);
1259ab75 6482 for (i = 0; i < num_pages; i++) {
fb85fc9a 6483 page = eb->pages[i];
33958dc6 6484 if (page)
251f2acc
QW
6485 btrfs_page_clear_uptodate(fs_info, page,
6486 eb->start, eb->len);
1259ab75 6487 }
1259ab75
CM
6488}
6489
09c25a8c 6490void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6491{
251f2acc 6492 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6493 struct page *page;
cc5e31a4 6494 int num_pages;
251f2acc 6495 int i;
d1310b2e 6496
0b32f4bb 6497 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6498 num_pages = num_extent_pages(eb);
d1310b2e 6499 for (i = 0; i < num_pages; i++) {
fb85fc9a 6500 page = eb->pages[i];
251f2acc 6501 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
d1310b2e 6502 }
d1310b2e 6503}
d1310b2e 6504
4012daf7
QW
6505static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6506 int mirror_num)
6507{
6508 struct btrfs_fs_info *fs_info = eb->fs_info;
6509 struct extent_io_tree *io_tree;
6510 struct page *page = eb->pages[0];
390ed29b 6511 struct btrfs_bio_ctrl bio_ctrl = { 0 };
4012daf7
QW
6512 int ret = 0;
6513
6514 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6515 ASSERT(PagePrivate(page));
6516 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6517
6518 if (wait == WAIT_NONE) {
dc56219f
GR
6519 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6520 return -EAGAIN;
4012daf7
QW
6521 } else {
6522 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6523 if (ret < 0)
6524 return ret;
6525 }
6526
6527 ret = 0;
6528 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6529 PageUptodate(page) ||
6530 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6531 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6532 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6533 return ret;
6534 }
6535
6536 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6537 eb->read_mirror = 0;
6538 atomic_set(&eb->io_pages, 1);
6539 check_buffer_tree_ref(eb);
6540 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6541
3d078efa 6542 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
390ed29b
QW
6543 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6544 page, eb->start, eb->len,
6545 eb->start - page_offset(page),
6546 end_bio_extent_readpage, mirror_num, 0,
4012daf7
QW
6547 true);
6548 if (ret) {
6549 /*
6550 * In the endio function, if we hit something wrong we will
6551 * increase the io_pages, so here we need to decrease it for
6552 * error path.
6553 */
6554 atomic_dec(&eb->io_pages);
6555 }
390ed29b 6556 if (bio_ctrl.bio) {
4012daf7
QW
6557 int tmp;
6558
390ed29b
QW
6559 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6560 bio_ctrl.bio = NULL;
4012daf7
QW
6561 if (tmp < 0)
6562 return tmp;
6563 }
6564 if (ret || wait != WAIT_COMPLETE)
6565 return ret;
6566
6567 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6568 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6569 ret = -EIO;
6570 return ret;
6571}
6572
c2ccfbc6 6573int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6574{
cc5e31a4 6575 int i;
d1310b2e
CM
6576 struct page *page;
6577 int err;
6578 int ret = 0;
ce9adaa5
CM
6579 int locked_pages = 0;
6580 int all_uptodate = 1;
cc5e31a4 6581 int num_pages;
727011e0 6582 unsigned long num_reads = 0;
390ed29b 6583 struct btrfs_bio_ctrl bio_ctrl = { 0 };
a86c12c7 6584
b4ce94de 6585 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6586 return 0;
6587
651740a5
JB
6588 /*
6589 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6590 * operation, which could potentially still be in flight. In this case
6591 * we simply want to return an error.
6592 */
6593 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6594 return -EIO;
6595
4012daf7
QW
6596 if (eb->fs_info->sectorsize < PAGE_SIZE)
6597 return read_extent_buffer_subpage(eb, wait, mirror_num);
6598
65ad0104 6599 num_pages = num_extent_pages(eb);
8436ea91 6600 for (i = 0; i < num_pages; i++) {
fb85fc9a 6601 page = eb->pages[i];
bb82ab88 6602 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6603 /*
6604 * WAIT_NONE is only utilized by readahead. If we can't
6605 * acquire the lock atomically it means either the eb
6606 * is being read out or under modification.
6607 * Either way the eb will be or has been cached,
6608 * readahead can exit safely.
6609 */
2db04966 6610 if (!trylock_page(page))
ce9adaa5 6611 goto unlock_exit;
d1310b2e
CM
6612 } else {
6613 lock_page(page);
6614 }
ce9adaa5 6615 locked_pages++;
2571e739
LB
6616 }
6617 /*
6618 * We need to firstly lock all pages to make sure that
6619 * the uptodate bit of our pages won't be affected by
6620 * clear_extent_buffer_uptodate().
6621 */
8436ea91 6622 for (i = 0; i < num_pages; i++) {
2571e739 6623 page = eb->pages[i];
727011e0
CM
6624 if (!PageUptodate(page)) {
6625 num_reads++;
ce9adaa5 6626 all_uptodate = 0;
727011e0 6627 }
ce9adaa5 6628 }
2571e739 6629
ce9adaa5 6630 if (all_uptodate) {
8436ea91 6631 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6632 goto unlock_exit;
6633 }
6634
656f30db 6635 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6636 eb->read_mirror = 0;
0b32f4bb 6637 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
6638 /*
6639 * It is possible for releasepage to clear the TREE_REF bit before we
6640 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6641 */
6642 check_buffer_tree_ref(eb);
8436ea91 6643 for (i = 0; i < num_pages; i++) {
fb85fc9a 6644 page = eb->pages[i];
baf863b9 6645
ce9adaa5 6646 if (!PageUptodate(page)) {
baf863b9
LB
6647 if (ret) {
6648 atomic_dec(&eb->io_pages);
6649 unlock_page(page);
6650 continue;
6651 }
6652
f188591e 6653 ClearPageError(page);
0420177c 6654 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
390ed29b
QW
6655 &bio_ctrl, page, page_offset(page),
6656 PAGE_SIZE, 0, end_bio_extent_readpage,
6657 mirror_num, 0, false);
baf863b9 6658 if (err) {
baf863b9 6659 /*
0420177c
NB
6660 * We failed to submit the bio so it's the
6661 * caller's responsibility to perform cleanup
6662 * i.e unlock page/set error bit.
baf863b9 6663 */
0420177c
NB
6664 ret = err;
6665 SetPageError(page);
6666 unlock_page(page);
baf863b9
LB
6667 atomic_dec(&eb->io_pages);
6668 }
d1310b2e
CM
6669 } else {
6670 unlock_page(page);
6671 }
6672 }
6673
390ed29b
QW
6674 if (bio_ctrl.bio) {
6675 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6676 bio_ctrl.bio = NULL;
79787eaa
JM
6677 if (err)
6678 return err;
355808c2 6679 }
a86c12c7 6680
bb82ab88 6681 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6682 return ret;
d397712b 6683
8436ea91 6684 for (i = 0; i < num_pages; i++) {
fb85fc9a 6685 page = eb->pages[i];
d1310b2e 6686 wait_on_page_locked(page);
d397712b 6687 if (!PageUptodate(page))
d1310b2e 6688 ret = -EIO;
d1310b2e 6689 }
d397712b 6690
d1310b2e 6691 return ret;
ce9adaa5
CM
6692
6693unlock_exit:
d397712b 6694 while (locked_pages > 0) {
ce9adaa5 6695 locked_pages--;
8436ea91
JB
6696 page = eb->pages[locked_pages];
6697 unlock_page(page);
ce9adaa5
CM
6698 }
6699 return ret;
d1310b2e 6700}
d1310b2e 6701
f98b6215
QW
6702static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6703 unsigned long len)
6704{
6705 btrfs_warn(eb->fs_info,
6706 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6707 eb->start, eb->len, start, len);
6708 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6709
6710 return true;
6711}
6712
6713/*
6714 * Check if the [start, start + len) range is valid before reading/writing
6715 * the eb.
6716 * NOTE: @start and @len are offset inside the eb, not logical address.
6717 *
6718 * Caller should not touch the dst/src memory if this function returns error.
6719 */
6720static inline int check_eb_range(const struct extent_buffer *eb,
6721 unsigned long start, unsigned long len)
6722{
6723 unsigned long offset;
6724
6725 /* start, start + len should not go beyond eb->len nor overflow */
6726 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6727 return report_eb_range(eb, start, len);
6728
6729 return false;
6730}
6731
1cbb1f45
JM
6732void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6733 unsigned long start, unsigned long len)
d1310b2e
CM
6734{
6735 size_t cur;
6736 size_t offset;
6737 struct page *page;
6738 char *kaddr;
6739 char *dst = (char *)dstv;
884b07d0 6740 unsigned long i = get_eb_page_index(start);
d1310b2e 6741
f98b6215 6742 if (check_eb_range(eb, start, len))
f716abd5 6743 return;
d1310b2e 6744
884b07d0 6745 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6746
d397712b 6747 while (len > 0) {
fb85fc9a 6748 page = eb->pages[i];
d1310b2e 6749
09cbfeaf 6750 cur = min(len, (PAGE_SIZE - offset));
a6591715 6751 kaddr = page_address(page);
d1310b2e 6752 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6753
6754 dst += cur;
6755 len -= cur;
6756 offset = 0;
6757 i++;
6758 }
6759}
d1310b2e 6760
a48b73ec
JB
6761int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6762 void __user *dstv,
6763 unsigned long start, unsigned long len)
550ac1d8
GH
6764{
6765 size_t cur;
6766 size_t offset;
6767 struct page *page;
6768 char *kaddr;
6769 char __user *dst = (char __user *)dstv;
884b07d0 6770 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6771 int ret = 0;
6772
6773 WARN_ON(start > eb->len);
6774 WARN_ON(start + len > eb->start + eb->len);
6775
884b07d0 6776 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6777
6778 while (len > 0) {
fb85fc9a 6779 page = eb->pages[i];
550ac1d8 6780
09cbfeaf 6781 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6782 kaddr = page_address(page);
a48b73ec 6783 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6784 ret = -EFAULT;
6785 break;
6786 }
6787
6788 dst += cur;
6789 len -= cur;
6790 offset = 0;
6791 i++;
6792 }
6793
6794 return ret;
6795}
6796
1cbb1f45
JM
6797int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6798 unsigned long start, unsigned long len)
d1310b2e
CM
6799{
6800 size_t cur;
6801 size_t offset;
6802 struct page *page;
6803 char *kaddr;
6804 char *ptr = (char *)ptrv;
884b07d0 6805 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6806 int ret = 0;
6807
f98b6215
QW
6808 if (check_eb_range(eb, start, len))
6809 return -EINVAL;
d1310b2e 6810
884b07d0 6811 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6812
d397712b 6813 while (len > 0) {
fb85fc9a 6814 page = eb->pages[i];
d1310b2e 6815
09cbfeaf 6816 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6817
a6591715 6818 kaddr = page_address(page);
d1310b2e 6819 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6820 if (ret)
6821 break;
6822
6823 ptr += cur;
6824 len -= cur;
6825 offset = 0;
6826 i++;
6827 }
6828 return ret;
6829}
d1310b2e 6830
b8f95771
QW
6831/*
6832 * Check that the extent buffer is uptodate.
6833 *
6834 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6835 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6836 */
6837static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6838 struct page *page)
6839{
6840 struct btrfs_fs_info *fs_info = eb->fs_info;
6841
a50e1fcb
JB
6842 /*
6843 * If we are using the commit root we could potentially clear a page
6844 * Uptodate while we're using the extent buffer that we've previously
6845 * looked up. We don't want to complain in this case, as the page was
6846 * valid before, we just didn't write it out. Instead we want to catch
6847 * the case where we didn't actually read the block properly, which
6848 * would have !PageUptodate && !PageError, as we clear PageError before
6849 * reading.
6850 */
b8f95771 6851 if (fs_info->sectorsize < PAGE_SIZE) {
a50e1fcb 6852 bool uptodate, error;
b8f95771
QW
6853
6854 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6855 eb->start, eb->len);
a50e1fcb
JB
6856 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6857 WARN_ON(!uptodate && !error);
b8f95771 6858 } else {
a50e1fcb 6859 WARN_ON(!PageUptodate(page) && !PageError(page));
b8f95771
QW
6860 }
6861}
6862
2b48966a 6863void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6864 const void *srcv)
6865{
6866 char *kaddr;
6867
b8f95771 6868 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6869 kaddr = page_address(eb->pages[0]) +
6870 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6871 chunk_tree_uuid));
6872 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6873}
6874
2b48966a 6875void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6876{
6877 char *kaddr;
6878
b8f95771 6879 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6880 kaddr = page_address(eb->pages[0]) +
6881 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6882 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6883}
6884
2b48966a 6885void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6886 unsigned long start, unsigned long len)
6887{
6888 size_t cur;
6889 size_t offset;
6890 struct page *page;
6891 char *kaddr;
6892 char *src = (char *)srcv;
884b07d0 6893 unsigned long i = get_eb_page_index(start);
d1310b2e 6894
d3575156
NA
6895 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6896
f98b6215
QW
6897 if (check_eb_range(eb, start, len))
6898 return;
d1310b2e 6899
884b07d0 6900 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6901
d397712b 6902 while (len > 0) {
fb85fc9a 6903 page = eb->pages[i];
b8f95771 6904 assert_eb_page_uptodate(eb, page);
d1310b2e 6905
09cbfeaf 6906 cur = min(len, PAGE_SIZE - offset);
a6591715 6907 kaddr = page_address(page);
d1310b2e 6908 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6909
6910 src += cur;
6911 len -= cur;
6912 offset = 0;
6913 i++;
6914 }
6915}
d1310b2e 6916
2b48966a 6917void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6918 unsigned long len)
d1310b2e
CM
6919{
6920 size_t cur;
6921 size_t offset;
6922 struct page *page;
6923 char *kaddr;
884b07d0 6924 unsigned long i = get_eb_page_index(start);
d1310b2e 6925
f98b6215
QW
6926 if (check_eb_range(eb, start, len))
6927 return;
d1310b2e 6928
884b07d0 6929 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6930
d397712b 6931 while (len > 0) {
fb85fc9a 6932 page = eb->pages[i];
b8f95771 6933 assert_eb_page_uptodate(eb, page);
d1310b2e 6934
09cbfeaf 6935 cur = min(len, PAGE_SIZE - offset);
a6591715 6936 kaddr = page_address(page);
b159fa28 6937 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6938
6939 len -= cur;
6940 offset = 0;
6941 i++;
6942 }
6943}
d1310b2e 6944
2b48966a
DS
6945void copy_extent_buffer_full(const struct extent_buffer *dst,
6946 const struct extent_buffer *src)
58e8012c
DS
6947{
6948 int i;
cc5e31a4 6949 int num_pages;
58e8012c
DS
6950
6951 ASSERT(dst->len == src->len);
6952
884b07d0
QW
6953 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6954 num_pages = num_extent_pages(dst);
6955 for (i = 0; i < num_pages; i++)
6956 copy_page(page_address(dst->pages[i]),
6957 page_address(src->pages[i]));
6958 } else {
6959 size_t src_offset = get_eb_offset_in_page(src, 0);
6960 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6961
6962 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6963 memcpy(page_address(dst->pages[0]) + dst_offset,
6964 page_address(src->pages[0]) + src_offset,
6965 src->len);
6966 }
58e8012c
DS
6967}
6968
2b48966a
DS
6969void copy_extent_buffer(const struct extent_buffer *dst,
6970 const struct extent_buffer *src,
d1310b2e
CM
6971 unsigned long dst_offset, unsigned long src_offset,
6972 unsigned long len)
6973{
6974 u64 dst_len = dst->len;
6975 size_t cur;
6976 size_t offset;
6977 struct page *page;
6978 char *kaddr;
884b07d0 6979 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 6980
f98b6215
QW
6981 if (check_eb_range(dst, dst_offset, len) ||
6982 check_eb_range(src, src_offset, len))
6983 return;
6984
d1310b2e
CM
6985 WARN_ON(src->len != dst_len);
6986
884b07d0 6987 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 6988
d397712b 6989 while (len > 0) {
fb85fc9a 6990 page = dst->pages[i];
b8f95771 6991 assert_eb_page_uptodate(dst, page);
d1310b2e 6992
09cbfeaf 6993 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 6994
a6591715 6995 kaddr = page_address(page);
d1310b2e 6996 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
6997
6998 src_offset += cur;
6999 len -= cur;
7000 offset = 0;
7001 i++;
7002 }
7003}
d1310b2e 7004
3e1e8bb7
OS
7005/*
7006 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7007 * given bit number
7008 * @eb: the extent buffer
7009 * @start: offset of the bitmap item in the extent buffer
7010 * @nr: bit number
7011 * @page_index: return index of the page in the extent buffer that contains the
7012 * given bit number
7013 * @page_offset: return offset into the page given by page_index
7014 *
7015 * This helper hides the ugliness of finding the byte in an extent buffer which
7016 * contains a given bit.
7017 */
2b48966a 7018static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
7019 unsigned long start, unsigned long nr,
7020 unsigned long *page_index,
7021 size_t *page_offset)
7022{
3e1e8bb7
OS
7023 size_t byte_offset = BIT_BYTE(nr);
7024 size_t offset;
7025
7026 /*
7027 * The byte we want is the offset of the extent buffer + the offset of
7028 * the bitmap item in the extent buffer + the offset of the byte in the
7029 * bitmap item.
7030 */
884b07d0 7031 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 7032
09cbfeaf 7033 *page_index = offset >> PAGE_SHIFT;
7073017a 7034 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
7035}
7036
7037/**
7038 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7039 * @eb: the extent buffer
7040 * @start: offset of the bitmap item in the extent buffer
7041 * @nr: bit number to test
7042 */
2b48966a 7043int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7044 unsigned long nr)
7045{
2fe1d551 7046 u8 *kaddr;
3e1e8bb7
OS
7047 struct page *page;
7048 unsigned long i;
7049 size_t offset;
7050
7051 eb_bitmap_offset(eb, start, nr, &i, &offset);
7052 page = eb->pages[i];
b8f95771 7053 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7054 kaddr = page_address(page);
7055 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7056}
7057
7058/**
7059 * extent_buffer_bitmap_set - set an area of a bitmap
7060 * @eb: the extent buffer
7061 * @start: offset of the bitmap item in the extent buffer
7062 * @pos: bit number of the first bit
7063 * @len: number of bits to set
7064 */
2b48966a 7065void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7066 unsigned long pos, unsigned long len)
7067{
2fe1d551 7068 u8 *kaddr;
3e1e8bb7
OS
7069 struct page *page;
7070 unsigned long i;
7071 size_t offset;
7072 const unsigned int size = pos + len;
7073 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7074 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7075
7076 eb_bitmap_offset(eb, start, pos, &i, &offset);
7077 page = eb->pages[i];
b8f95771 7078 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7079 kaddr = page_address(page);
7080
7081 while (len >= bits_to_set) {
7082 kaddr[offset] |= mask_to_set;
7083 len -= bits_to_set;
7084 bits_to_set = BITS_PER_BYTE;
9c894696 7085 mask_to_set = ~0;
09cbfeaf 7086 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7087 offset = 0;
7088 page = eb->pages[++i];
b8f95771 7089 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7090 kaddr = page_address(page);
7091 }
7092 }
7093 if (len) {
7094 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7095 kaddr[offset] |= mask_to_set;
7096 }
7097}
7098
7099
7100/**
7101 * extent_buffer_bitmap_clear - clear an area of a bitmap
7102 * @eb: the extent buffer
7103 * @start: offset of the bitmap item in the extent buffer
7104 * @pos: bit number of the first bit
7105 * @len: number of bits to clear
7106 */
2b48966a
DS
7107void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7108 unsigned long start, unsigned long pos,
7109 unsigned long len)
3e1e8bb7 7110{
2fe1d551 7111 u8 *kaddr;
3e1e8bb7
OS
7112 struct page *page;
7113 unsigned long i;
7114 size_t offset;
7115 const unsigned int size = pos + len;
7116 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7117 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7118
7119 eb_bitmap_offset(eb, start, pos, &i, &offset);
7120 page = eb->pages[i];
b8f95771 7121 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7122 kaddr = page_address(page);
7123
7124 while (len >= bits_to_clear) {
7125 kaddr[offset] &= ~mask_to_clear;
7126 len -= bits_to_clear;
7127 bits_to_clear = BITS_PER_BYTE;
9c894696 7128 mask_to_clear = ~0;
09cbfeaf 7129 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7130 offset = 0;
7131 page = eb->pages[++i];
b8f95771 7132 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7133 kaddr = page_address(page);
7134 }
7135 }
7136 if (len) {
7137 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7138 kaddr[offset] &= ~mask_to_clear;
7139 }
7140}
7141
3387206f
ST
7142static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7143{
7144 unsigned long distance = (src > dst) ? src - dst : dst - src;
7145 return distance < len;
7146}
7147
d1310b2e
CM
7148static void copy_pages(struct page *dst_page, struct page *src_page,
7149 unsigned long dst_off, unsigned long src_off,
7150 unsigned long len)
7151{
a6591715 7152 char *dst_kaddr = page_address(dst_page);
d1310b2e 7153 char *src_kaddr;
727011e0 7154 int must_memmove = 0;
d1310b2e 7155
3387206f 7156 if (dst_page != src_page) {
a6591715 7157 src_kaddr = page_address(src_page);
3387206f 7158 } else {
d1310b2e 7159 src_kaddr = dst_kaddr;
727011e0
CM
7160 if (areas_overlap(src_off, dst_off, len))
7161 must_memmove = 1;
3387206f 7162 }
d1310b2e 7163
727011e0
CM
7164 if (must_memmove)
7165 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7166 else
7167 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
7168}
7169
2b48966a
DS
7170void memcpy_extent_buffer(const struct extent_buffer *dst,
7171 unsigned long dst_offset, unsigned long src_offset,
7172 unsigned long len)
d1310b2e
CM
7173{
7174 size_t cur;
7175 size_t dst_off_in_page;
7176 size_t src_off_in_page;
d1310b2e
CM
7177 unsigned long dst_i;
7178 unsigned long src_i;
7179
f98b6215
QW
7180 if (check_eb_range(dst, dst_offset, len) ||
7181 check_eb_range(dst, src_offset, len))
7182 return;
d1310b2e 7183
d397712b 7184 while (len > 0) {
884b07d0
QW
7185 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7186 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 7187
884b07d0
QW
7188 dst_i = get_eb_page_index(dst_offset);
7189 src_i = get_eb_page_index(src_offset);
d1310b2e 7190
09cbfeaf 7191 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
7192 src_off_in_page));
7193 cur = min_t(unsigned long, cur,
09cbfeaf 7194 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 7195
fb85fc9a 7196 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7197 dst_off_in_page, src_off_in_page, cur);
7198
7199 src_offset += cur;
7200 dst_offset += cur;
7201 len -= cur;
7202 }
7203}
d1310b2e 7204
2b48966a
DS
7205void memmove_extent_buffer(const struct extent_buffer *dst,
7206 unsigned long dst_offset, unsigned long src_offset,
7207 unsigned long len)
d1310b2e
CM
7208{
7209 size_t cur;
7210 size_t dst_off_in_page;
7211 size_t src_off_in_page;
7212 unsigned long dst_end = dst_offset + len - 1;
7213 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
7214 unsigned long dst_i;
7215 unsigned long src_i;
7216
f98b6215
QW
7217 if (check_eb_range(dst, dst_offset, len) ||
7218 check_eb_range(dst, src_offset, len))
7219 return;
727011e0 7220 if (dst_offset < src_offset) {
d1310b2e
CM
7221 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7222 return;
7223 }
d397712b 7224 while (len > 0) {
884b07d0
QW
7225 dst_i = get_eb_page_index(dst_end);
7226 src_i = get_eb_page_index(src_end);
d1310b2e 7227
884b07d0
QW
7228 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7229 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
7230
7231 cur = min_t(unsigned long, len, src_off_in_page + 1);
7232 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 7233 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7234 dst_off_in_page - cur + 1,
7235 src_off_in_page - cur + 1, cur);
7236
7237 dst_end -= cur;
7238 src_end -= cur;
7239 len -= cur;
7240 }
7241}
6af118ce 7242
72a69cd0 7243#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
7244static struct extent_buffer *get_next_extent_buffer(
7245 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7246{
72a69cd0 7247 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
d1e86e3f
QW
7248 struct extent_buffer *found = NULL;
7249 u64 page_start = page_offset(page);
72a69cd0 7250 u64 cur = page_start;
d1e86e3f
QW
7251
7252 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
7253 lockdep_assert_held(&fs_info->buffer_lock);
7254
72a69cd0
QW
7255 while (cur < page_start + PAGE_SIZE) {
7256 int ret;
7257 int i;
7258
7259 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7260 (void **)gang, cur >> fs_info->sectorsize_bits,
7261 min_t(unsigned int, GANG_LOOKUP_SIZE,
7262 PAGE_SIZE / fs_info->nodesize));
7263 if (ret == 0)
7264 goto out;
7265 for (i = 0; i < ret; i++) {
7266 /* Already beyond page end */
7267 if (gang[i]->start >= page_start + PAGE_SIZE)
7268 goto out;
7269 /* Found one */
7270 if (gang[i]->start >= bytenr) {
7271 found = gang[i];
7272 goto out;
7273 }
d1e86e3f 7274 }
72a69cd0 7275 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 7276 }
72a69cd0 7277out:
d1e86e3f
QW
7278 return found;
7279}
7280
7281static int try_release_subpage_extent_buffer(struct page *page)
7282{
7283 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7284 u64 cur = page_offset(page);
7285 const u64 end = page_offset(page) + PAGE_SIZE;
7286 int ret;
7287
7288 while (cur < end) {
7289 struct extent_buffer *eb = NULL;
7290
7291 /*
7292 * Unlike try_release_extent_buffer() which uses page->private
7293 * to grab buffer, for subpage case we rely on radix tree, thus
7294 * we need to ensure radix tree consistency.
7295 *
7296 * We also want an atomic snapshot of the radix tree, thus go
7297 * with spinlock rather than RCU.
7298 */
7299 spin_lock(&fs_info->buffer_lock);
7300 eb = get_next_extent_buffer(fs_info, page, cur);
7301 if (!eb) {
7302 /* No more eb in the page range after or at cur */
7303 spin_unlock(&fs_info->buffer_lock);
7304 break;
7305 }
7306 cur = eb->start + eb->len;
7307
7308 /*
7309 * The same as try_release_extent_buffer(), to ensure the eb
7310 * won't disappear out from under us.
7311 */
7312 spin_lock(&eb->refs_lock);
7313 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7314 spin_unlock(&eb->refs_lock);
7315 spin_unlock(&fs_info->buffer_lock);
7316 break;
7317 }
7318 spin_unlock(&fs_info->buffer_lock);
7319
7320 /*
7321 * If tree ref isn't set then we know the ref on this eb is a
7322 * real ref, so just return, this eb will likely be freed soon
7323 * anyway.
7324 */
7325 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7326 spin_unlock(&eb->refs_lock);
7327 break;
7328 }
7329
7330 /*
7331 * Here we don't care about the return value, we will always
7332 * check the page private at the end. And
7333 * release_extent_buffer() will release the refs_lock.
7334 */
7335 release_extent_buffer(eb);
7336 }
7337 /*
7338 * Finally to check if we have cleared page private, as if we have
7339 * released all ebs in the page, the page private should be cleared now.
7340 */
7341 spin_lock(&page->mapping->private_lock);
7342 if (!PagePrivate(page))
7343 ret = 1;
7344 else
7345 ret = 0;
7346 spin_unlock(&page->mapping->private_lock);
7347 return ret;
7348
7349}
7350
f7a52a40 7351int try_release_extent_buffer(struct page *page)
19fe0a8b 7352{
6af118ce 7353 struct extent_buffer *eb;
6af118ce 7354
d1e86e3f
QW
7355 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7356 return try_release_subpage_extent_buffer(page);
7357
3083ee2e 7358 /*
d1e86e3f
QW
7359 * We need to make sure nobody is changing page->private, as we rely on
7360 * page->private as the pointer to extent buffer.
3083ee2e
JB
7361 */
7362 spin_lock(&page->mapping->private_lock);
7363 if (!PagePrivate(page)) {
7364 spin_unlock(&page->mapping->private_lock);
4f2de97a 7365 return 1;
45f49bce 7366 }
6af118ce 7367
3083ee2e
JB
7368 eb = (struct extent_buffer *)page->private;
7369 BUG_ON(!eb);
19fe0a8b
MX
7370
7371 /*
3083ee2e
JB
7372 * This is a little awful but should be ok, we need to make sure that
7373 * the eb doesn't disappear out from under us while we're looking at
7374 * this page.
19fe0a8b 7375 */
3083ee2e 7376 spin_lock(&eb->refs_lock);
0b32f4bb 7377 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7378 spin_unlock(&eb->refs_lock);
7379 spin_unlock(&page->mapping->private_lock);
7380 return 0;
b9473439 7381 }
3083ee2e 7382 spin_unlock(&page->mapping->private_lock);
897ca6e9 7383
19fe0a8b 7384 /*
3083ee2e
JB
7385 * If tree ref isn't set then we know the ref on this eb is a real ref,
7386 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7387 */
3083ee2e
JB
7388 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7389 spin_unlock(&eb->refs_lock);
7390 return 0;
b9473439 7391 }
19fe0a8b 7392
f7a52a40 7393 return release_extent_buffer(eb);
6af118ce 7394}
bfb484d9
JB
7395
7396/*
7397 * btrfs_readahead_tree_block - attempt to readahead a child block
7398 * @fs_info: the fs_info
7399 * @bytenr: bytenr to read
3fbaf258 7400 * @owner_root: objectid of the root that owns this eb
bfb484d9 7401 * @gen: generation for the uptodate check, can be 0
3fbaf258 7402 * @level: level for the eb
bfb484d9
JB
7403 *
7404 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7405 * normal uptodate check of the eb, without checking the generation. If we have
7406 * to read the block we will not block on anything.
7407 */
7408void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7409 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7410{
7411 struct extent_buffer *eb;
7412 int ret;
7413
3fbaf258 7414 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7415 if (IS_ERR(eb))
7416 return;
7417
7418 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7419 free_extent_buffer(eb);
7420 return;
7421 }
7422
7423 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7424 if (ret < 0)
7425 free_extent_buffer_stale(eb);
7426 else
7427 free_extent_buffer(eb);
7428}
7429
7430/*
7431 * btrfs_readahead_node_child - readahead a node's child block
7432 * @node: parent node we're reading from
7433 * @slot: slot in the parent node for the child we want to read
7434 *
7435 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7436 * the slot in the node provided.
7437 */
7438void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7439{
7440 btrfs_readahead_tree_block(node->fs_info,
7441 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7442 btrfs_header_owner(node),
7443 btrfs_node_ptr_generation(node, slot),
7444 btrfs_header_level(node) - 1);
bfb484d9 7445}