btrfs: sink get_extent parameter to get_extent_skip_holes
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d1310b2e
CM
2#include <linux/bitops.h>
3#include <linux/slab.h>
4#include <linux/bio.h>
5#include <linux/mm.h>
d1310b2e
CM
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
d1310b2e
CM
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
fe09e16c 23#include "backref.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
771ed689
CM
112 /* tells writepage not to lock the state bits for this range
113 * it still does the unlocking
114 */
ffbd517d
CM
115 unsigned int extent_locked:1;
116
70fd7614 117 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 118 unsigned int sync_io:1;
d1310b2e
CM
119};
120
d38ed27f
QW
121static void add_extent_changeset(struct extent_state *state, unsigned bits,
122 struct extent_changeset *changeset,
123 int set)
124{
125 int ret;
126
127 if (!changeset)
128 return;
129 if (set && (state->state & bits) == bits)
130 return;
fefdc557
QW
131 if (!set && (state->state & bits) == 0)
132 return;
d38ed27f 133 changeset->bytes_changed += state->end - state->start + 1;
53d32359 134 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
135 GFP_ATOMIC);
136 /* ENOMEM */
137 BUG_ON(ret < 0);
138}
139
0b32f4bb 140static noinline void flush_write_bio(void *data);
c2d904e0
JM
141static inline struct btrfs_fs_info *
142tree_fs_info(struct extent_io_tree *tree)
143{
c6100a4b
JB
144 if (tree->ops)
145 return tree->ops->tree_fs_info(tree->private_data);
146 return NULL;
c2d904e0 147}
0b32f4bb 148
d1310b2e
CM
149int __init extent_io_init(void)
150{
837e1972 151 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 152 sizeof(struct extent_state), 0,
fba4b697 153 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_state_cache)
155 return -ENOMEM;
156
837e1972 157 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 158 sizeof(struct extent_buffer), 0,
fba4b697 159 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
160 if (!extent_buffer_cache)
161 goto free_state_cache;
9be3395b
CM
162
163 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
164 offsetof(struct btrfs_io_bio, bio),
165 BIOSET_NEED_BVECS);
9be3395b
CM
166 if (!btrfs_bioset)
167 goto free_buffer_cache;
b208c2f7
DW
168
169 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
170 goto free_bioset;
171
d1310b2e
CM
172 return 0;
173
b208c2f7
DW
174free_bioset:
175 bioset_free(btrfs_bioset);
176 btrfs_bioset = NULL;
177
9be3395b
CM
178free_buffer_cache:
179 kmem_cache_destroy(extent_buffer_cache);
180 extent_buffer_cache = NULL;
181
d1310b2e
CM
182free_state_cache:
183 kmem_cache_destroy(extent_state_cache);
9be3395b 184 extent_state_cache = NULL;
d1310b2e
CM
185 return -ENOMEM;
186}
187
188void extent_io_exit(void)
189{
6d49ba1b 190 btrfs_leak_debug_check();
8c0a8537
KS
191
192 /*
193 * Make sure all delayed rcu free are flushed before we
194 * destroy caches.
195 */
196 rcu_barrier();
5598e900
KM
197 kmem_cache_destroy(extent_state_cache);
198 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
199 if (btrfs_bioset)
200 bioset_free(btrfs_bioset);
d1310b2e
CM
201}
202
203void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 204 void *private_data)
d1310b2e 205{
6bef4d31 206 tree->state = RB_ROOT;
d1310b2e
CM
207 tree->ops = NULL;
208 tree->dirty_bytes = 0;
70dec807 209 spin_lock_init(&tree->lock);
c6100a4b 210 tree->private_data = private_data;
d1310b2e 211}
d1310b2e 212
b2950863 213static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
214{
215 struct extent_state *state;
d1310b2e 216
3ba7ab22
MH
217 /*
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
220 */
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 222 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 223 if (!state)
d1310b2e
CM
224 return state;
225 state->state = 0;
47dc196a 226 state->failrec = NULL;
27a3507d 227 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 228 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 229 refcount_set(&state->refs, 1);
d1310b2e 230 init_waitqueue_head(&state->wq);
143bede5 231 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
232 return state;
233}
d1310b2e 234
4845e44f 235void free_extent_state(struct extent_state *state)
d1310b2e 236{
d1310b2e
CM
237 if (!state)
238 return;
b7ac31b7 239 if (refcount_dec_and_test(&state->refs)) {
27a3507d 240 WARN_ON(extent_state_in_tree(state));
6d49ba1b 241 btrfs_leak_debug_del(&state->leak_list);
143bede5 242 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
243 kmem_cache_free(extent_state_cache, state);
244 }
245}
d1310b2e 246
f2071b21
FM
247static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
249 u64 offset,
12cfbad9
FDBM
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
d1310b2e 253{
f2071b21 254 struct rb_node **p;
d397712b 255 struct rb_node *parent = NULL;
d1310b2e
CM
256 struct tree_entry *entry;
257
12cfbad9
FDBM
258 if (p_in && parent_in) {
259 p = *p_in;
260 parent = *parent_in;
261 goto do_insert;
262 }
263
f2071b21 264 p = search_start ? &search_start : &root->rb_node;
d397712b 265 while (*p) {
d1310b2e
CM
266 parent = *p;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269 if (offset < entry->start)
270 p = &(*p)->rb_left;
271 else if (offset > entry->end)
272 p = &(*p)->rb_right;
273 else
274 return parent;
275 }
276
12cfbad9 277do_insert:
d1310b2e
CM
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
280 return NULL;
281}
282
80ea96b1 283static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
d1310b2e 288{
80ea96b1 289 struct rb_root *root = &tree->state;
12cfbad9 290 struct rb_node **n = &root->rb_node;
d1310b2e
CM
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
295
12cfbad9
FDBM
296 while (*n) {
297 prev = *n;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
299 prev_entry = entry;
300
301 if (offset < entry->start)
12cfbad9 302 n = &(*n)->rb_left;
d1310b2e 303 else if (offset > entry->end)
12cfbad9 304 n = &(*n)->rb_right;
d397712b 305 else
12cfbad9 306 return *n;
d1310b2e
CM
307 }
308
12cfbad9
FDBM
309 if (p_ret)
310 *p_ret = n;
311 if (parent_ret)
312 *parent_ret = prev;
313
d1310b2e
CM
314 if (prev_ret) {
315 orig_prev = prev;
d397712b 316 while (prev && offset > prev_entry->end) {
d1310b2e
CM
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *prev_ret = prev;
321 prev = orig_prev;
322 }
323
324 if (next_ret) {
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 326 while (prev && offset < prev_entry->start) {
d1310b2e
CM
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 }
330 *next_ret = prev;
331 }
332 return NULL;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *
336tree_search_for_insert(struct extent_io_tree *tree,
337 u64 offset,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
d1310b2e 340{
70dec807 341 struct rb_node *prev = NULL;
d1310b2e 342 struct rb_node *ret;
70dec807 343
12cfbad9 344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 345 if (!ret)
d1310b2e
CM
346 return prev;
347 return ret;
348}
349
12cfbad9
FDBM
350static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 u64 offset)
352{
353 return tree_search_for_insert(tree, offset, NULL, NULL);
354}
355
9ed74f2d
JB
356static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
357 struct extent_state *other)
358{
359 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 360 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
361}
362
d1310b2e
CM
363/*
364 * utility function to look for merge candidates inside a given range.
365 * Any extents with matching state are merged together into a single
366 * extent in the tree. Extents with EXTENT_IO in their state field
367 * are not merged because the end_io handlers need to be able to do
368 * operations on them without sleeping (or doing allocations/splits).
369 *
370 * This should be called with the tree lock held.
371 */
1bf85046
JM
372static void merge_state(struct extent_io_tree *tree,
373 struct extent_state *state)
d1310b2e
CM
374{
375 struct extent_state *other;
376 struct rb_node *other_node;
377
5b21f2ed 378 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 379 return;
d1310b2e
CM
380
381 other_node = rb_prev(&state->rb_node);
382 if (other_node) {
383 other = rb_entry(other_node, struct extent_state, rb_node);
384 if (other->end == state->start - 1 &&
385 other->state == state->state) {
9ed74f2d 386 merge_cb(tree, state, other);
d1310b2e 387 state->start = other->start;
d1310b2e 388 rb_erase(&other->rb_node, &tree->state);
27a3507d 389 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
390 free_extent_state(other);
391 }
392 }
393 other_node = rb_next(&state->rb_node);
394 if (other_node) {
395 other = rb_entry(other_node, struct extent_state, rb_node);
396 if (other->start == state->end + 1 &&
397 other->state == state->state) {
9ed74f2d 398 merge_cb(tree, state, other);
df98b6e2 399 state->end = other->end;
df98b6e2 400 rb_erase(&other->rb_node, &tree->state);
27a3507d 401 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 402 free_extent_state(other);
d1310b2e
CM
403 }
404 }
d1310b2e
CM
405}
406
1bf85046 407static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 408 struct extent_state *state, unsigned *bits)
291d673e 409{
1bf85046 410 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 411 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
412}
413
414static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 415 struct extent_state *state, unsigned *bits)
291d673e 416{
9ed74f2d 417 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 418 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
419}
420
3150b699 421static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
422 struct extent_state *state, unsigned *bits,
423 struct extent_changeset *changeset);
3150b699 424
d1310b2e
CM
425/*
426 * insert an extent_state struct into the tree. 'bits' are set on the
427 * struct before it is inserted.
428 *
429 * This may return -EEXIST if the extent is already there, in which case the
430 * state struct is freed.
431 *
432 * The tree lock is not taken internally. This is a utility function and
433 * probably isn't what you want to call (see set/clear_extent_bit).
434 */
435static int insert_state(struct extent_io_tree *tree,
436 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
437 struct rb_node ***p,
438 struct rb_node **parent,
d38ed27f 439 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
440{
441 struct rb_node *node;
442
31b1a2bd 443 if (end < start)
efe120a0 444 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 445 end, start);
d1310b2e
CM
446 state->start = start;
447 state->end = end;
9ed74f2d 448
d38ed27f 449 set_state_bits(tree, state, bits, changeset);
3150b699 450
f2071b21 451 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
452 if (node) {
453 struct extent_state *found;
454 found = rb_entry(node, struct extent_state, rb_node);
62e85577 455 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 456 found->start, found->end, start, end);
d1310b2e
CM
457 return -EEXIST;
458 }
459 merge_state(tree, state);
460 return 0;
461}
462
1bf85046 463static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
464 u64 split)
465{
466 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 467 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
468}
469
d1310b2e
CM
470/*
471 * split a given extent state struct in two, inserting the preallocated
472 * struct 'prealloc' as the newly created second half. 'split' indicates an
473 * offset inside 'orig' where it should be split.
474 *
475 * Before calling,
476 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
477 * are two extent state structs in the tree:
478 * prealloc: [orig->start, split - 1]
479 * orig: [ split, orig->end ]
480 *
481 * The tree locks are not taken by this function. They need to be held
482 * by the caller.
483 */
484static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
485 struct extent_state *prealloc, u64 split)
486{
487 struct rb_node *node;
9ed74f2d
JB
488
489 split_cb(tree, orig, split);
490
d1310b2e
CM
491 prealloc->start = orig->start;
492 prealloc->end = split - 1;
493 prealloc->state = orig->state;
494 orig->start = split;
495
f2071b21
FM
496 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
497 &prealloc->rb_node, NULL, NULL);
d1310b2e 498 if (node) {
d1310b2e
CM
499 free_extent_state(prealloc);
500 return -EEXIST;
501 }
502 return 0;
503}
504
cdc6a395
LZ
505static struct extent_state *next_state(struct extent_state *state)
506{
507 struct rb_node *next = rb_next(&state->rb_node);
508 if (next)
509 return rb_entry(next, struct extent_state, rb_node);
510 else
511 return NULL;
512}
513
d1310b2e
CM
514/*
515 * utility function to clear some bits in an extent state struct.
1b303fc0 516 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
517 *
518 * If no bits are set on the state struct after clearing things, the
519 * struct is freed and removed from the tree
520 */
cdc6a395
LZ
521static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
522 struct extent_state *state,
fefdc557
QW
523 unsigned *bits, int wake,
524 struct extent_changeset *changeset)
d1310b2e 525{
cdc6a395 526 struct extent_state *next;
9ee49a04 527 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 528
0ca1f7ce 529 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
530 u64 range = state->end - state->start + 1;
531 WARN_ON(range > tree->dirty_bytes);
532 tree->dirty_bytes -= range;
533 }
291d673e 534 clear_state_cb(tree, state, bits);
fefdc557 535 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 536 state->state &= ~bits_to_clear;
d1310b2e
CM
537 if (wake)
538 wake_up(&state->wq);
0ca1f7ce 539 if (state->state == 0) {
cdc6a395 540 next = next_state(state);
27a3507d 541 if (extent_state_in_tree(state)) {
d1310b2e 542 rb_erase(&state->rb_node, &tree->state);
27a3507d 543 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
544 free_extent_state(state);
545 } else {
546 WARN_ON(1);
547 }
548 } else {
549 merge_state(tree, state);
cdc6a395 550 next = next_state(state);
d1310b2e 551 }
cdc6a395 552 return next;
d1310b2e
CM
553}
554
8233767a
XG
555static struct extent_state *
556alloc_extent_state_atomic(struct extent_state *prealloc)
557{
558 if (!prealloc)
559 prealloc = alloc_extent_state(GFP_ATOMIC);
560
561 return prealloc;
562}
563
48a3b636 564static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 565{
5d163e0e
JM
566 btrfs_panic(tree_fs_info(tree), err,
567 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
568}
569
d1310b2e
CM
570/*
571 * clear some bits on a range in the tree. This may require splitting
572 * or inserting elements in the tree, so the gfp mask is used to
573 * indicate which allocations or sleeping are allowed.
574 *
575 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
576 * the given range from the tree regardless of state (ie for truncate).
577 *
578 * the range [start, end] is inclusive.
579 *
6763af84 580 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 581 */
66b0c887 582int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
583 unsigned bits, int wake, int delete,
584 struct extent_state **cached_state,
585 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
586{
587 struct extent_state *state;
2c64c53d 588 struct extent_state *cached;
d1310b2e
CM
589 struct extent_state *prealloc = NULL;
590 struct rb_node *node;
5c939df5 591 u64 last_end;
d1310b2e 592 int err;
2ac55d41 593 int clear = 0;
d1310b2e 594
a5dee37d 595 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 596
7ee9e440
JB
597 if (bits & EXTENT_DELALLOC)
598 bits |= EXTENT_NORESERVE;
599
0ca1f7ce
YZ
600 if (delete)
601 bits |= ~EXTENT_CTLBITS;
602 bits |= EXTENT_FIRST_DELALLOC;
603
2ac55d41
JB
604 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
605 clear = 1;
d1310b2e 606again:
d0164adc 607 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
608 /*
609 * Don't care for allocation failure here because we might end
610 * up not needing the pre-allocated extent state at all, which
611 * is the case if we only have in the tree extent states that
612 * cover our input range and don't cover too any other range.
613 * If we end up needing a new extent state we allocate it later.
614 */
d1310b2e 615 prealloc = alloc_extent_state(mask);
d1310b2e
CM
616 }
617
cad321ad 618 spin_lock(&tree->lock);
2c64c53d
CM
619 if (cached_state) {
620 cached = *cached_state;
2ac55d41
JB
621
622 if (clear) {
623 *cached_state = NULL;
624 cached_state = NULL;
625 }
626
27a3507d
FM
627 if (cached && extent_state_in_tree(cached) &&
628 cached->start <= start && cached->end > start) {
2ac55d41 629 if (clear)
b7ac31b7 630 refcount_dec(&cached->refs);
2c64c53d 631 state = cached;
42daec29 632 goto hit_next;
2c64c53d 633 }
2ac55d41
JB
634 if (clear)
635 free_extent_state(cached);
2c64c53d 636 }
d1310b2e
CM
637 /*
638 * this search will find the extents that end after
639 * our range starts
640 */
80ea96b1 641 node = tree_search(tree, start);
d1310b2e
CM
642 if (!node)
643 goto out;
644 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 645hit_next:
d1310b2e
CM
646 if (state->start > end)
647 goto out;
648 WARN_ON(state->end < start);
5c939df5 649 last_end = state->end;
d1310b2e 650
0449314a 651 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
652 if (!(state->state & bits)) {
653 state = next_state(state);
0449314a 654 goto next;
cdc6a395 655 }
0449314a 656
d1310b2e
CM
657 /*
658 * | ---- desired range ---- |
659 * | state | or
660 * | ------------- state -------------- |
661 *
662 * We need to split the extent we found, and may flip
663 * bits on second half.
664 *
665 * If the extent we found extends past our range, we
666 * just split and search again. It'll get split again
667 * the next time though.
668 *
669 * If the extent we found is inside our range, we clear
670 * the desired bit on it.
671 */
672
673 if (state->start < start) {
8233767a
XG
674 prealloc = alloc_extent_state_atomic(prealloc);
675 BUG_ON(!prealloc);
d1310b2e 676 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
677 if (err)
678 extent_io_tree_panic(tree, err);
679
d1310b2e
CM
680 prealloc = NULL;
681 if (err)
682 goto out;
683 if (state->end <= end) {
fefdc557
QW
684 state = clear_state_bit(tree, state, &bits, wake,
685 changeset);
d1ac6e41 686 goto next;
d1310b2e
CM
687 }
688 goto search_again;
689 }
690 /*
691 * | ---- desired range ---- |
692 * | state |
693 * We need to split the extent, and clear the bit
694 * on the first half
695 */
696 if (state->start <= end && state->end > end) {
8233767a
XG
697 prealloc = alloc_extent_state_atomic(prealloc);
698 BUG_ON(!prealloc);
d1310b2e 699 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
700 if (err)
701 extent_io_tree_panic(tree, err);
702
d1310b2e
CM
703 if (wake)
704 wake_up(&state->wq);
42daec29 705
fefdc557 706 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 707
d1310b2e
CM
708 prealloc = NULL;
709 goto out;
710 }
42daec29 711
fefdc557 712 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 713next:
5c939df5
YZ
714 if (last_end == (u64)-1)
715 goto out;
716 start = last_end + 1;
cdc6a395 717 if (start <= end && state && !need_resched())
692e5759 718 goto hit_next;
d1310b2e
CM
719
720search_again:
721 if (start > end)
722 goto out;
cad321ad 723 spin_unlock(&tree->lock);
d0164adc 724 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
725 cond_resched();
726 goto again;
7ab5cb2a
DS
727
728out:
729 spin_unlock(&tree->lock);
730 if (prealloc)
731 free_extent_state(prealloc);
732
733 return 0;
734
d1310b2e 735}
d1310b2e 736
143bede5
JM
737static void wait_on_state(struct extent_io_tree *tree,
738 struct extent_state *state)
641f5219
CH
739 __releases(tree->lock)
740 __acquires(tree->lock)
d1310b2e
CM
741{
742 DEFINE_WAIT(wait);
743 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 744 spin_unlock(&tree->lock);
d1310b2e 745 schedule();
cad321ad 746 spin_lock(&tree->lock);
d1310b2e 747 finish_wait(&state->wq, &wait);
d1310b2e
CM
748}
749
750/*
751 * waits for one or more bits to clear on a range in the state tree.
752 * The range [start, end] is inclusive.
753 * The tree lock is taken by this function
754 */
41074888
DS
755static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
756 unsigned long bits)
d1310b2e
CM
757{
758 struct extent_state *state;
759 struct rb_node *node;
760
a5dee37d 761 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 762
cad321ad 763 spin_lock(&tree->lock);
d1310b2e
CM
764again:
765 while (1) {
766 /*
767 * this search will find all the extents that end after
768 * our range starts
769 */
80ea96b1 770 node = tree_search(tree, start);
c50d3e71 771process_node:
d1310b2e
CM
772 if (!node)
773 break;
774
775 state = rb_entry(node, struct extent_state, rb_node);
776
777 if (state->start > end)
778 goto out;
779
780 if (state->state & bits) {
781 start = state->start;
b7ac31b7 782 refcount_inc(&state->refs);
d1310b2e
CM
783 wait_on_state(tree, state);
784 free_extent_state(state);
785 goto again;
786 }
787 start = state->end + 1;
788
789 if (start > end)
790 break;
791
c50d3e71
FM
792 if (!cond_resched_lock(&tree->lock)) {
793 node = rb_next(node);
794 goto process_node;
795 }
d1310b2e
CM
796 }
797out:
cad321ad 798 spin_unlock(&tree->lock);
d1310b2e 799}
d1310b2e 800
1bf85046 801static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 802 struct extent_state *state,
d38ed27f 803 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 804{
9ee49a04 805 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 806
1bf85046 807 set_state_cb(tree, state, bits);
0ca1f7ce 808 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
809 u64 range = state->end - state->start + 1;
810 tree->dirty_bytes += range;
811 }
d38ed27f 812 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 813 state->state |= bits_to_set;
d1310b2e
CM
814}
815
e38e2ed7
FM
816static void cache_state_if_flags(struct extent_state *state,
817 struct extent_state **cached_ptr,
9ee49a04 818 unsigned flags)
2c64c53d
CM
819{
820 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 821 if (!flags || (state->state & flags)) {
2c64c53d 822 *cached_ptr = state;
b7ac31b7 823 refcount_inc(&state->refs);
2c64c53d
CM
824 }
825 }
826}
827
e38e2ed7
FM
828static void cache_state(struct extent_state *state,
829 struct extent_state **cached_ptr)
830{
831 return cache_state_if_flags(state, cached_ptr,
832 EXTENT_IOBITS | EXTENT_BOUNDARY);
833}
834
d1310b2e 835/*
1edbb734
CM
836 * set some bits on a range in the tree. This may require allocations or
837 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 838 *
1edbb734
CM
839 * If any of the exclusive bits are set, this will fail with -EEXIST if some
840 * part of the range already has the desired bits set. The start of the
841 * existing range is returned in failed_start in this case.
d1310b2e 842 *
1edbb734 843 * [start, end] is inclusive This takes the tree lock.
d1310b2e 844 */
1edbb734 845
3fbe5c02
JM
846static int __must_check
847__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 848 unsigned bits, unsigned exclusive_bits,
41074888 849 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 850 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
851{
852 struct extent_state *state;
853 struct extent_state *prealloc = NULL;
854 struct rb_node *node;
12cfbad9
FDBM
855 struct rb_node **p;
856 struct rb_node *parent;
d1310b2e 857 int err = 0;
d1310b2e
CM
858 u64 last_start;
859 u64 last_end;
42daec29 860
a5dee37d 861 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 862
0ca1f7ce 863 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 864again:
d0164adc 865 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
866 /*
867 * Don't care for allocation failure here because we might end
868 * up not needing the pre-allocated extent state at all, which
869 * is the case if we only have in the tree extent states that
870 * cover our input range and don't cover too any other range.
871 * If we end up needing a new extent state we allocate it later.
872 */
d1310b2e 873 prealloc = alloc_extent_state(mask);
d1310b2e
CM
874 }
875
cad321ad 876 spin_lock(&tree->lock);
9655d298
CM
877 if (cached_state && *cached_state) {
878 state = *cached_state;
df98b6e2 879 if (state->start <= start && state->end > start &&
27a3507d 880 extent_state_in_tree(state)) {
9655d298
CM
881 node = &state->rb_node;
882 goto hit_next;
883 }
884 }
d1310b2e
CM
885 /*
886 * this search will find all the extents that end after
887 * our range starts.
888 */
12cfbad9 889 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 890 if (!node) {
8233767a
XG
891 prealloc = alloc_extent_state_atomic(prealloc);
892 BUG_ON(!prealloc);
12cfbad9 893 err = insert_state(tree, prealloc, start, end,
d38ed27f 894 &p, &parent, &bits, changeset);
c2d904e0
JM
895 if (err)
896 extent_io_tree_panic(tree, err);
897
c42ac0bc 898 cache_state(prealloc, cached_state);
d1310b2e 899 prealloc = NULL;
d1310b2e
CM
900 goto out;
901 }
d1310b2e 902 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 903hit_next:
d1310b2e
CM
904 last_start = state->start;
905 last_end = state->end;
906
907 /*
908 * | ---- desired range ---- |
909 * | state |
910 *
911 * Just lock what we found and keep going
912 */
913 if (state->start == start && state->end <= end) {
1edbb734 914 if (state->state & exclusive_bits) {
d1310b2e
CM
915 *failed_start = state->start;
916 err = -EEXIST;
917 goto out;
918 }
42daec29 919
d38ed27f 920 set_state_bits(tree, state, &bits, changeset);
2c64c53d 921 cache_state(state, cached_state);
d1310b2e 922 merge_state(tree, state);
5c939df5
YZ
923 if (last_end == (u64)-1)
924 goto out;
925 start = last_end + 1;
d1ac6e41
LB
926 state = next_state(state);
927 if (start < end && state && state->start == start &&
928 !need_resched())
929 goto hit_next;
d1310b2e
CM
930 goto search_again;
931 }
932
933 /*
934 * | ---- desired range ---- |
935 * | state |
936 * or
937 * | ------------- state -------------- |
938 *
939 * We need to split the extent we found, and may flip bits on
940 * second half.
941 *
942 * If the extent we found extends past our
943 * range, we just split and search again. It'll get split
944 * again the next time though.
945 *
946 * If the extent we found is inside our range, we set the
947 * desired bit on it.
948 */
949 if (state->start < start) {
1edbb734 950 if (state->state & exclusive_bits) {
d1310b2e
CM
951 *failed_start = start;
952 err = -EEXIST;
953 goto out;
954 }
8233767a
XG
955
956 prealloc = alloc_extent_state_atomic(prealloc);
957 BUG_ON(!prealloc);
d1310b2e 958 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
959 if (err)
960 extent_io_tree_panic(tree, err);
961
d1310b2e
CM
962 prealloc = NULL;
963 if (err)
964 goto out;
965 if (state->end <= end) {
d38ed27f 966 set_state_bits(tree, state, &bits, changeset);
2c64c53d 967 cache_state(state, cached_state);
d1310b2e 968 merge_state(tree, state);
5c939df5
YZ
969 if (last_end == (u64)-1)
970 goto out;
971 start = last_end + 1;
d1ac6e41
LB
972 state = next_state(state);
973 if (start < end && state && state->start == start &&
974 !need_resched())
975 goto hit_next;
d1310b2e
CM
976 }
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state | or | state |
982 *
983 * There's a hole, we need to insert something in it and
984 * ignore the extent we found.
985 */
986 if (state->start > start) {
987 u64 this_end;
988 if (end < last_start)
989 this_end = end;
990 else
d397712b 991 this_end = last_start - 1;
8233767a
XG
992
993 prealloc = alloc_extent_state_atomic(prealloc);
994 BUG_ON(!prealloc);
c7f895a2
XG
995
996 /*
997 * Avoid to free 'prealloc' if it can be merged with
998 * the later extent.
999 */
d1310b2e 1000 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1001 NULL, NULL, &bits, changeset);
c2d904e0
JM
1002 if (err)
1003 extent_io_tree_panic(tree, err);
1004
9ed74f2d
JB
1005 cache_state(prealloc, cached_state);
1006 prealloc = NULL;
d1310b2e
CM
1007 start = this_end + 1;
1008 goto search_again;
1009 }
1010 /*
1011 * | ---- desired range ---- |
1012 * | state |
1013 * We need to split the extent, and set the bit
1014 * on the first half
1015 */
1016 if (state->start <= end && state->end > end) {
1edbb734 1017 if (state->state & exclusive_bits) {
d1310b2e
CM
1018 *failed_start = start;
1019 err = -EEXIST;
1020 goto out;
1021 }
8233767a
XG
1022
1023 prealloc = alloc_extent_state_atomic(prealloc);
1024 BUG_ON(!prealloc);
d1310b2e 1025 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1026 if (err)
1027 extent_io_tree_panic(tree, err);
d1310b2e 1028
d38ed27f 1029 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1030 cache_state(prealloc, cached_state);
d1310b2e
CM
1031 merge_state(tree, prealloc);
1032 prealloc = NULL;
1033 goto out;
1034 }
1035
b5a4ba14
DS
1036search_again:
1037 if (start > end)
1038 goto out;
1039 spin_unlock(&tree->lock);
1040 if (gfpflags_allow_blocking(mask))
1041 cond_resched();
1042 goto again;
d1310b2e
CM
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
d1310b2e 1051}
d1310b2e 1052
41074888 1053int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1054 unsigned bits, u64 * failed_start,
41074888 1055 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1056{
1057 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1058 cached_state, mask, NULL);
3fbe5c02
JM
1059}
1060
1061
462d6fac 1062/**
10983f2e
LB
1063 * convert_extent_bit - convert all bits in a given range from one bit to
1064 * another
462d6fac
JB
1065 * @tree: the io tree to search
1066 * @start: the start offset in bytes
1067 * @end: the end offset in bytes (inclusive)
1068 * @bits: the bits to set in this range
1069 * @clear_bits: the bits to clear in this range
e6138876 1070 * @cached_state: state that we're going to cache
462d6fac
JB
1071 *
1072 * This will go through and set bits for the given range. If any states exist
1073 * already in this range they are set with the given bit and cleared of the
1074 * clear_bits. This is only meant to be used by things that are mergeable, ie
1075 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1076 * boundary bits like LOCK.
210aa277
DS
1077 *
1078 * All allocations are done with GFP_NOFS.
462d6fac
JB
1079 */
1080int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1081 unsigned bits, unsigned clear_bits,
210aa277 1082 struct extent_state **cached_state)
462d6fac
JB
1083{
1084 struct extent_state *state;
1085 struct extent_state *prealloc = NULL;
1086 struct rb_node *node;
12cfbad9
FDBM
1087 struct rb_node **p;
1088 struct rb_node *parent;
462d6fac
JB
1089 int err = 0;
1090 u64 last_start;
1091 u64 last_end;
c8fd3de7 1092 bool first_iteration = true;
462d6fac 1093
a5dee37d 1094 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1095
462d6fac 1096again:
210aa277 1097 if (!prealloc) {
c8fd3de7
FM
1098 /*
1099 * Best effort, don't worry if extent state allocation fails
1100 * here for the first iteration. We might have a cached state
1101 * that matches exactly the target range, in which case no
1102 * extent state allocations are needed. We'll only know this
1103 * after locking the tree.
1104 */
210aa277 1105 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1106 if (!prealloc && !first_iteration)
462d6fac
JB
1107 return -ENOMEM;
1108 }
1109
1110 spin_lock(&tree->lock);
e6138876
JB
1111 if (cached_state && *cached_state) {
1112 state = *cached_state;
1113 if (state->start <= start && state->end > start &&
27a3507d 1114 extent_state_in_tree(state)) {
e6138876
JB
1115 node = &state->rb_node;
1116 goto hit_next;
1117 }
1118 }
1119
462d6fac
JB
1120 /*
1121 * this search will find all the extents that end after
1122 * our range starts.
1123 */
12cfbad9 1124 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1125 if (!node) {
1126 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1127 if (!prealloc) {
1128 err = -ENOMEM;
1129 goto out;
1130 }
12cfbad9 1131 err = insert_state(tree, prealloc, start, end,
d38ed27f 1132 &p, &parent, &bits, NULL);
c2d904e0
JM
1133 if (err)
1134 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1135 cache_state(prealloc, cached_state);
1136 prealloc = NULL;
462d6fac
JB
1137 goto out;
1138 }
1139 state = rb_entry(node, struct extent_state, rb_node);
1140hit_next:
1141 last_start = state->start;
1142 last_end = state->end;
1143
1144 /*
1145 * | ---- desired range ---- |
1146 * | state |
1147 *
1148 * Just lock what we found and keep going
1149 */
1150 if (state->start == start && state->end <= end) {
d38ed27f 1151 set_state_bits(tree, state, &bits, NULL);
e6138876 1152 cache_state(state, cached_state);
fefdc557 1153 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1154 if (last_end == (u64)-1)
1155 goto out;
462d6fac 1156 start = last_end + 1;
d1ac6e41
LB
1157 if (start < end && state && state->start == start &&
1158 !need_resched())
1159 goto hit_next;
462d6fac
JB
1160 goto search_again;
1161 }
1162
1163 /*
1164 * | ---- desired range ---- |
1165 * | state |
1166 * or
1167 * | ------------- state -------------- |
1168 *
1169 * We need to split the extent we found, and may flip bits on
1170 * second half.
1171 *
1172 * If the extent we found extends past our
1173 * range, we just split and search again. It'll get split
1174 * again the next time though.
1175 *
1176 * If the extent we found is inside our range, we set the
1177 * desired bit on it.
1178 */
1179 if (state->start < start) {
1180 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1181 if (!prealloc) {
1182 err = -ENOMEM;
1183 goto out;
1184 }
462d6fac 1185 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1186 if (err)
1187 extent_io_tree_panic(tree, err);
462d6fac
JB
1188 prealloc = NULL;
1189 if (err)
1190 goto out;
1191 if (state->end <= end) {
d38ed27f 1192 set_state_bits(tree, state, &bits, NULL);
e6138876 1193 cache_state(state, cached_state);
fefdc557
QW
1194 state = clear_state_bit(tree, state, &clear_bits, 0,
1195 NULL);
462d6fac
JB
1196 if (last_end == (u64)-1)
1197 goto out;
1198 start = last_end + 1;
d1ac6e41
LB
1199 if (start < end && state && state->start == start &&
1200 !need_resched())
1201 goto hit_next;
462d6fac
JB
1202 }
1203 goto search_again;
1204 }
1205 /*
1206 * | ---- desired range ---- |
1207 * | state | or | state |
1208 *
1209 * There's a hole, we need to insert something in it and
1210 * ignore the extent we found.
1211 */
1212 if (state->start > start) {
1213 u64 this_end;
1214 if (end < last_start)
1215 this_end = end;
1216 else
1217 this_end = last_start - 1;
1218
1219 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1220 if (!prealloc) {
1221 err = -ENOMEM;
1222 goto out;
1223 }
462d6fac
JB
1224
1225 /*
1226 * Avoid to free 'prealloc' if it can be merged with
1227 * the later extent.
1228 */
1229 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1230 NULL, NULL, &bits, NULL);
c2d904e0
JM
1231 if (err)
1232 extent_io_tree_panic(tree, err);
e6138876 1233 cache_state(prealloc, cached_state);
462d6fac
JB
1234 prealloc = NULL;
1235 start = this_end + 1;
1236 goto search_again;
1237 }
1238 /*
1239 * | ---- desired range ---- |
1240 * | state |
1241 * We need to split the extent, and set the bit
1242 * on the first half
1243 */
1244 if (state->start <= end && state->end > end) {
1245 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1246 if (!prealloc) {
1247 err = -ENOMEM;
1248 goto out;
1249 }
462d6fac
JB
1250
1251 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1252 if (err)
1253 extent_io_tree_panic(tree, err);
462d6fac 1254
d38ed27f 1255 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1256 cache_state(prealloc, cached_state);
fefdc557 1257 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1258 prealloc = NULL;
1259 goto out;
1260 }
1261
462d6fac
JB
1262search_again:
1263 if (start > end)
1264 goto out;
1265 spin_unlock(&tree->lock);
210aa277 1266 cond_resched();
c8fd3de7 1267 first_iteration = false;
462d6fac 1268 goto again;
462d6fac
JB
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
462d6fac
JB
1276}
1277
d1310b2e 1278/* wrappers around set/clear extent bit */
d38ed27f 1279int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1280 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1281{
1282 /*
1283 * We don't support EXTENT_LOCKED yet, as current changeset will
1284 * record any bits changed, so for EXTENT_LOCKED case, it will
1285 * either fail with -EEXIST or changeset will record the whole
1286 * range.
1287 */
1288 BUG_ON(bits & EXTENT_LOCKED);
1289
2c53b912 1290 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1291 changeset);
1292}
1293
fefdc557
QW
1294int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1295 unsigned bits, int wake, int delete,
ae0f1625 1296 struct extent_state **cached)
fefdc557
QW
1297{
1298 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1299 cached, GFP_NOFS, NULL);
fefdc557
QW
1300}
1301
fefdc557 1302int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1303 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1304{
1305 /*
1306 * Don't support EXTENT_LOCKED case, same reason as
1307 * set_record_extent_bits().
1308 */
1309 BUG_ON(bits & EXTENT_LOCKED);
1310
f734c44a 1311 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1312 changeset);
1313}
1314
d352ac68
CM
1315/*
1316 * either insert or lock state struct between start and end use mask to tell
1317 * us if waiting is desired.
1318 */
1edbb734 1319int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1320 struct extent_state **cached_state)
d1310b2e
CM
1321{
1322 int err;
1323 u64 failed_start;
9ee49a04 1324
d1310b2e 1325 while (1) {
ff13db41 1326 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1327 EXTENT_LOCKED, &failed_start,
d38ed27f 1328 cached_state, GFP_NOFS, NULL);
d0082371 1329 if (err == -EEXIST) {
d1310b2e
CM
1330 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1331 start = failed_start;
d0082371 1332 } else
d1310b2e 1333 break;
d1310b2e
CM
1334 WARN_ON(start > end);
1335 }
1336 return err;
1337}
d1310b2e 1338
d0082371 1339int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1340{
1341 int err;
1342 u64 failed_start;
1343
3fbe5c02 1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1345 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1346 if (err == -EEXIST) {
1347 if (failed_start > start)
1348 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1349 EXTENT_LOCKED, 1, 0, NULL);
25179201 1350 return 0;
6643558d 1351 }
25179201
JB
1352 return 1;
1353}
25179201 1354
bd1fa4f0 1355void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1356{
09cbfeaf
KS
1357 unsigned long index = start >> PAGE_SHIFT;
1358 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(inode->i_mapping, index);
1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364 clear_page_dirty_for_io(page);
09cbfeaf 1365 put_page(page);
4adaa611
CM
1366 index++;
1367 }
4adaa611
CM
1368}
1369
f6311572 1370void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1371{
09cbfeaf
KS
1372 unsigned long index = start >> PAGE_SHIFT;
1373 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1374 struct page *page;
1375
1376 while (index <= end_index) {
1377 page = find_get_page(inode->i_mapping, index);
1378 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1379 __set_page_dirty_nobuffers(page);
8d38633c 1380 account_page_redirty(page);
09cbfeaf 1381 put_page(page);
4adaa611
CM
1382 index++;
1383 }
4adaa611
CM
1384}
1385
d1310b2e
CM
1386/*
1387 * helper function to set both pages and extents in the tree writeback
1388 */
35de6db2 1389static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1390{
c6100a4b 1391 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1392}
d1310b2e 1393
d352ac68
CM
1394/* find the first state struct with 'bits' set after 'start', and
1395 * return it. tree->lock must be held. NULL will returned if
1396 * nothing was found after 'start'
1397 */
48a3b636
ES
1398static struct extent_state *
1399find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1400 u64 start, unsigned bits)
d7fc640e
CM
1401{
1402 struct rb_node *node;
1403 struct extent_state *state;
1404
1405 /*
1406 * this search will find all the extents that end after
1407 * our range starts.
1408 */
1409 node = tree_search(tree, start);
d397712b 1410 if (!node)
d7fc640e 1411 goto out;
d7fc640e 1412
d397712b 1413 while (1) {
d7fc640e 1414 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1415 if (state->end >= start && (state->state & bits))
d7fc640e 1416 return state;
d397712b 1417
d7fc640e
CM
1418 node = rb_next(node);
1419 if (!node)
1420 break;
1421 }
1422out:
1423 return NULL;
1424}
d7fc640e 1425
69261c4b
XG
1426/*
1427 * find the first offset in the io tree with 'bits' set. zero is
1428 * returned if we find something, and *start_ret and *end_ret are
1429 * set to reflect the state struct that was found.
1430 *
477d7eaf 1431 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1432 */
1433int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1434 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1435 struct extent_state **cached_state)
69261c4b
XG
1436{
1437 struct extent_state *state;
e6138876 1438 struct rb_node *n;
69261c4b
XG
1439 int ret = 1;
1440
1441 spin_lock(&tree->lock);
e6138876
JB
1442 if (cached_state && *cached_state) {
1443 state = *cached_state;
27a3507d 1444 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1445 n = rb_next(&state->rb_node);
1446 while (n) {
1447 state = rb_entry(n, struct extent_state,
1448 rb_node);
1449 if (state->state & bits)
1450 goto got_it;
1451 n = rb_next(n);
1452 }
1453 free_extent_state(*cached_state);
1454 *cached_state = NULL;
1455 goto out;
1456 }
1457 free_extent_state(*cached_state);
1458 *cached_state = NULL;
1459 }
1460
69261c4b 1461 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1462got_it:
69261c4b 1463 if (state) {
e38e2ed7 1464 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1465 *start_ret = state->start;
1466 *end_ret = state->end;
1467 ret = 0;
1468 }
e6138876 1469out:
69261c4b
XG
1470 spin_unlock(&tree->lock);
1471 return ret;
1472}
1473
d352ac68
CM
1474/*
1475 * find a contiguous range of bytes in the file marked as delalloc, not
1476 * more than 'max_bytes'. start and end are used to return the range,
1477 *
1478 * 1 is returned if we find something, 0 if nothing was in the tree
1479 */
c8b97818 1480static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1481 u64 *start, u64 *end, u64 max_bytes,
1482 struct extent_state **cached_state)
d1310b2e
CM
1483{
1484 struct rb_node *node;
1485 struct extent_state *state;
1486 u64 cur_start = *start;
1487 u64 found = 0;
1488 u64 total_bytes = 0;
1489
cad321ad 1490 spin_lock(&tree->lock);
c8b97818 1491
d1310b2e
CM
1492 /*
1493 * this search will find all the extents that end after
1494 * our range starts.
1495 */
80ea96b1 1496 node = tree_search(tree, cur_start);
2b114d1d 1497 if (!node) {
3b951516
CM
1498 if (!found)
1499 *end = (u64)-1;
d1310b2e
CM
1500 goto out;
1501 }
1502
d397712b 1503 while (1) {
d1310b2e 1504 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1505 if (found && (state->start != cur_start ||
1506 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1507 goto out;
1508 }
1509 if (!(state->state & EXTENT_DELALLOC)) {
1510 if (!found)
1511 *end = state->end;
1512 goto out;
1513 }
c2a128d2 1514 if (!found) {
d1310b2e 1515 *start = state->start;
c2a128d2 1516 *cached_state = state;
b7ac31b7 1517 refcount_inc(&state->refs);
c2a128d2 1518 }
d1310b2e
CM
1519 found++;
1520 *end = state->end;
1521 cur_start = state->end + 1;
1522 node = rb_next(node);
d1310b2e 1523 total_bytes += state->end - state->start + 1;
7bf811a5 1524 if (total_bytes >= max_bytes)
573aecaf 1525 break;
573aecaf 1526 if (!node)
d1310b2e
CM
1527 break;
1528 }
1529out:
cad321ad 1530 spin_unlock(&tree->lock);
d1310b2e
CM
1531 return found;
1532}
1533
da2c7009
LB
1534static int __process_pages_contig(struct address_space *mapping,
1535 struct page *locked_page,
1536 pgoff_t start_index, pgoff_t end_index,
1537 unsigned long page_ops, pgoff_t *index_ret);
1538
143bede5
JM
1539static noinline void __unlock_for_delalloc(struct inode *inode,
1540 struct page *locked_page,
1541 u64 start, u64 end)
c8b97818 1542{
09cbfeaf
KS
1543 unsigned long index = start >> PAGE_SHIFT;
1544 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1545
76c0021d 1546 ASSERT(locked_page);
c8b97818 1547 if (index == locked_page->index && end_index == index)
143bede5 1548 return;
c8b97818 1549
76c0021d
LB
1550 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1551 PAGE_UNLOCK, NULL);
c8b97818
CM
1552}
1553
1554static noinline int lock_delalloc_pages(struct inode *inode,
1555 struct page *locked_page,
1556 u64 delalloc_start,
1557 u64 delalloc_end)
1558{
09cbfeaf 1559 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1560 unsigned long index_ret = index;
09cbfeaf 1561 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1562 int ret;
c8b97818 1563
76c0021d 1564 ASSERT(locked_page);
c8b97818
CM
1565 if (index == locked_page->index && index == end_index)
1566 return 0;
1567
76c0021d
LB
1568 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1569 end_index, PAGE_LOCK, &index_ret);
1570 if (ret == -EAGAIN)
1571 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1572 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1573 return ret;
1574}
1575
1576/*
1577 * find a contiguous range of bytes in the file marked as delalloc, not
1578 * more than 'max_bytes'. start and end are used to return the range,
1579 *
1580 * 1 is returned if we find something, 0 if nothing was in the tree
1581 */
294e30fe
JB
1582STATIC u64 find_lock_delalloc_range(struct inode *inode,
1583 struct extent_io_tree *tree,
1584 struct page *locked_page, u64 *start,
1585 u64 *end, u64 max_bytes)
c8b97818
CM
1586{
1587 u64 delalloc_start;
1588 u64 delalloc_end;
1589 u64 found;
9655d298 1590 struct extent_state *cached_state = NULL;
c8b97818
CM
1591 int ret;
1592 int loops = 0;
1593
1594again:
1595 /* step one, find a bunch of delalloc bytes starting at start */
1596 delalloc_start = *start;
1597 delalloc_end = 0;
1598 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1599 max_bytes, &cached_state);
70b99e69 1600 if (!found || delalloc_end <= *start) {
c8b97818
CM
1601 *start = delalloc_start;
1602 *end = delalloc_end;
c2a128d2 1603 free_extent_state(cached_state);
385fe0be 1604 return 0;
c8b97818
CM
1605 }
1606
70b99e69
CM
1607 /*
1608 * start comes from the offset of locked_page. We have to lock
1609 * pages in order, so we can't process delalloc bytes before
1610 * locked_page
1611 */
d397712b 1612 if (delalloc_start < *start)
70b99e69 1613 delalloc_start = *start;
70b99e69 1614
c8b97818
CM
1615 /*
1616 * make sure to limit the number of pages we try to lock down
c8b97818 1617 */
7bf811a5
JB
1618 if (delalloc_end + 1 - delalloc_start > max_bytes)
1619 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1620
c8b97818
CM
1621 /* step two, lock all the pages after the page that has start */
1622 ret = lock_delalloc_pages(inode, locked_page,
1623 delalloc_start, delalloc_end);
1624 if (ret == -EAGAIN) {
1625 /* some of the pages are gone, lets avoid looping by
1626 * shortening the size of the delalloc range we're searching
1627 */
9655d298 1628 free_extent_state(cached_state);
7d788742 1629 cached_state = NULL;
c8b97818 1630 if (!loops) {
09cbfeaf 1631 max_bytes = PAGE_SIZE;
c8b97818
CM
1632 loops = 1;
1633 goto again;
1634 } else {
1635 found = 0;
1636 goto out_failed;
1637 }
1638 }
79787eaa 1639 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1640
1641 /* step three, lock the state bits for the whole range */
ff13db41 1642 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1643
1644 /* then test to make sure it is all still delalloc */
1645 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1646 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1647 if (!ret) {
9655d298
CM
1648 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1649 &cached_state, GFP_NOFS);
c8b97818
CM
1650 __unlock_for_delalloc(inode, locked_page,
1651 delalloc_start, delalloc_end);
1652 cond_resched();
1653 goto again;
1654 }
9655d298 1655 free_extent_state(cached_state);
c8b97818
CM
1656 *start = delalloc_start;
1657 *end = delalloc_end;
1658out_failed:
1659 return found;
1660}
1661
da2c7009
LB
1662static int __process_pages_contig(struct address_space *mapping,
1663 struct page *locked_page,
1664 pgoff_t start_index, pgoff_t end_index,
1665 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1666{
873695b3 1667 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1668 unsigned long pages_locked = 0;
873695b3 1669 pgoff_t index = start_index;
c8b97818 1670 struct page *pages[16];
873695b3 1671 unsigned ret;
da2c7009 1672 int err = 0;
c8b97818 1673 int i;
771ed689 1674
da2c7009
LB
1675 if (page_ops & PAGE_LOCK) {
1676 ASSERT(page_ops == PAGE_LOCK);
1677 ASSERT(index_ret && *index_ret == start_index);
1678 }
1679
704de49d 1680 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1681 mapping_set_error(mapping, -EIO);
704de49d 1682
d397712b 1683 while (nr_pages > 0) {
873695b3 1684 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1685 min_t(unsigned long,
1686 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1687 if (ret == 0) {
1688 /*
1689 * Only if we're going to lock these pages,
1690 * can we find nothing at @index.
1691 */
1692 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1693 err = -EAGAIN;
1694 goto out;
da2c7009 1695 }
8b62b72b 1696
da2c7009 1697 for (i = 0; i < ret; i++) {
c2790a2e 1698 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1699 SetPagePrivate2(pages[i]);
1700
c8b97818 1701 if (pages[i] == locked_page) {
09cbfeaf 1702 put_page(pages[i]);
da2c7009 1703 pages_locked++;
c8b97818
CM
1704 continue;
1705 }
c2790a2e 1706 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1707 clear_page_dirty_for_io(pages[i]);
c2790a2e 1708 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1709 set_page_writeback(pages[i]);
704de49d
FM
1710 if (page_ops & PAGE_SET_ERROR)
1711 SetPageError(pages[i]);
c2790a2e 1712 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1713 end_page_writeback(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_UNLOCK)
771ed689 1715 unlock_page(pages[i]);
da2c7009
LB
1716 if (page_ops & PAGE_LOCK) {
1717 lock_page(pages[i]);
1718 if (!PageDirty(pages[i]) ||
1719 pages[i]->mapping != mapping) {
1720 unlock_page(pages[i]);
1721 put_page(pages[i]);
1722 err = -EAGAIN;
1723 goto out;
1724 }
1725 }
09cbfeaf 1726 put_page(pages[i]);
da2c7009 1727 pages_locked++;
c8b97818
CM
1728 }
1729 nr_pages -= ret;
1730 index += ret;
1731 cond_resched();
1732 }
da2c7009
LB
1733out:
1734 if (err && index_ret)
1735 *index_ret = start_index + pages_locked - 1;
1736 return err;
c8b97818 1737}
c8b97818 1738
873695b3
LB
1739void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1740 u64 delalloc_end, struct page *locked_page,
1741 unsigned clear_bits,
1742 unsigned long page_ops)
1743{
1744 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1745 NULL);
873695b3
LB
1746
1747 __process_pages_contig(inode->i_mapping, locked_page,
1748 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1749 page_ops, NULL);
873695b3
LB
1750}
1751
d352ac68
CM
1752/*
1753 * count the number of bytes in the tree that have a given bit(s)
1754 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1755 * cached. The total number found is returned.
1756 */
d1310b2e
CM
1757u64 count_range_bits(struct extent_io_tree *tree,
1758 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1759 unsigned bits, int contig)
d1310b2e
CM
1760{
1761 struct rb_node *node;
1762 struct extent_state *state;
1763 u64 cur_start = *start;
1764 u64 total_bytes = 0;
ec29ed5b 1765 u64 last = 0;
d1310b2e
CM
1766 int found = 0;
1767
fae7f21c 1768 if (WARN_ON(search_end <= cur_start))
d1310b2e 1769 return 0;
d1310b2e 1770
cad321ad 1771 spin_lock(&tree->lock);
d1310b2e
CM
1772 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1773 total_bytes = tree->dirty_bytes;
1774 goto out;
1775 }
1776 /*
1777 * this search will find all the extents that end after
1778 * our range starts.
1779 */
80ea96b1 1780 node = tree_search(tree, cur_start);
d397712b 1781 if (!node)
d1310b2e 1782 goto out;
d1310b2e 1783
d397712b 1784 while (1) {
d1310b2e
CM
1785 state = rb_entry(node, struct extent_state, rb_node);
1786 if (state->start > search_end)
1787 break;
ec29ed5b
CM
1788 if (contig && found && state->start > last + 1)
1789 break;
1790 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1791 total_bytes += min(search_end, state->end) + 1 -
1792 max(cur_start, state->start);
1793 if (total_bytes >= max_bytes)
1794 break;
1795 if (!found) {
af60bed2 1796 *start = max(cur_start, state->start);
d1310b2e
CM
1797 found = 1;
1798 }
ec29ed5b
CM
1799 last = state->end;
1800 } else if (contig && found) {
1801 break;
d1310b2e
CM
1802 }
1803 node = rb_next(node);
1804 if (!node)
1805 break;
1806 }
1807out:
cad321ad 1808 spin_unlock(&tree->lock);
d1310b2e
CM
1809 return total_bytes;
1810}
b2950863 1811
d352ac68
CM
1812/*
1813 * set the private field for a given byte offset in the tree. If there isn't
1814 * an extent_state there already, this does nothing.
1815 */
f827ba9a 1816static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1817 struct io_failure_record *failrec)
d1310b2e
CM
1818{
1819 struct rb_node *node;
1820 struct extent_state *state;
1821 int ret = 0;
1822
cad321ad 1823 spin_lock(&tree->lock);
d1310b2e
CM
1824 /*
1825 * this search will find all the extents that end after
1826 * our range starts.
1827 */
80ea96b1 1828 node = tree_search(tree, start);
2b114d1d 1829 if (!node) {
d1310b2e
CM
1830 ret = -ENOENT;
1831 goto out;
1832 }
1833 state = rb_entry(node, struct extent_state, rb_node);
1834 if (state->start != start) {
1835 ret = -ENOENT;
1836 goto out;
1837 }
47dc196a 1838 state->failrec = failrec;
d1310b2e 1839out:
cad321ad 1840 spin_unlock(&tree->lock);
d1310b2e
CM
1841 return ret;
1842}
1843
f827ba9a 1844static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1845 struct io_failure_record **failrec)
d1310b2e
CM
1846{
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
cad321ad 1851 spin_lock(&tree->lock);
d1310b2e
CM
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
80ea96b1 1856 node = tree_search(tree, start);
2b114d1d 1857 if (!node) {
d1310b2e
CM
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
47dc196a 1866 *failrec = state->failrec;
d1310b2e 1867out:
cad321ad 1868 spin_unlock(&tree->lock);
d1310b2e
CM
1869 return ret;
1870}
1871
1872/*
1873 * searches a range in the state tree for a given mask.
70dec807 1874 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1875 * has the bits set. Otherwise, 1 is returned if any bit in the
1876 * range is found set.
1877 */
1878int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1879 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1880{
1881 struct extent_state *state = NULL;
1882 struct rb_node *node;
1883 int bitset = 0;
d1310b2e 1884
cad321ad 1885 spin_lock(&tree->lock);
27a3507d 1886 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1887 cached->end > start)
9655d298
CM
1888 node = &cached->rb_node;
1889 else
1890 node = tree_search(tree, start);
d1310b2e
CM
1891 while (node && start <= end) {
1892 state = rb_entry(node, struct extent_state, rb_node);
1893
1894 if (filled && state->start > start) {
1895 bitset = 0;
1896 break;
1897 }
1898
1899 if (state->start > end)
1900 break;
1901
1902 if (state->state & bits) {
1903 bitset = 1;
1904 if (!filled)
1905 break;
1906 } else if (filled) {
1907 bitset = 0;
1908 break;
1909 }
46562cec
CM
1910
1911 if (state->end == (u64)-1)
1912 break;
1913
d1310b2e
CM
1914 start = state->end + 1;
1915 if (start > end)
1916 break;
1917 node = rb_next(node);
1918 if (!node) {
1919 if (filled)
1920 bitset = 0;
1921 break;
1922 }
1923 }
cad321ad 1924 spin_unlock(&tree->lock);
d1310b2e
CM
1925 return bitset;
1926}
d1310b2e
CM
1927
1928/*
1929 * helper function to set a given page up to date if all the
1930 * extents in the tree for that page are up to date
1931 */
143bede5 1932static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1933{
4eee4fa4 1934 u64 start = page_offset(page);
09cbfeaf 1935 u64 end = start + PAGE_SIZE - 1;
9655d298 1936 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1937 SetPageUptodate(page);
d1310b2e
CM
1938}
1939
7870d082
JB
1940int free_io_failure(struct extent_io_tree *failure_tree,
1941 struct extent_io_tree *io_tree,
1942 struct io_failure_record *rec)
4a54c8c1
JS
1943{
1944 int ret;
1945 int err = 0;
4a54c8c1 1946
47dc196a 1947 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1948 ret = clear_extent_bits(failure_tree, rec->start,
1949 rec->start + rec->len - 1,
91166212 1950 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1951 if (ret)
1952 err = ret;
1953
7870d082 1954 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1955 rec->start + rec->len - 1,
91166212 1956 EXTENT_DAMAGED);
53b381b3
DW
1957 if (ret && !err)
1958 err = ret;
4a54c8c1
JS
1959
1960 kfree(rec);
1961 return err;
1962}
1963
4a54c8c1
JS
1964/*
1965 * this bypasses the standard btrfs submit functions deliberately, as
1966 * the standard behavior is to write all copies in a raid setup. here we only
1967 * want to write the one bad copy. so we do the mapping for ourselves and issue
1968 * submit_bio directly.
3ec706c8 1969 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1970 * actually prevents the read that triggered the error from finishing.
1971 * currently, there can be no more than two copies of every data bit. thus,
1972 * exactly one rewrite is required.
1973 */
6ec656bc
JB
1974int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1975 u64 length, u64 logical, struct page *page,
1976 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1977{
1978 struct bio *bio;
1979 struct btrfs_device *dev;
4a54c8c1
JS
1980 u64 map_length = 0;
1981 u64 sector;
1982 struct btrfs_bio *bbio = NULL;
1983 int ret;
1984
1751e8a6 1985 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1986 BUG_ON(!mirror_num);
1987
c5e4c3d7 1988 bio = btrfs_io_bio_alloc(1);
4f024f37 1989 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1990 map_length = length;
1991
b5de8d0d
FM
1992 /*
1993 * Avoid races with device replace and make sure our bbio has devices
1994 * associated to its stripes that don't go away while we are doing the
1995 * read repair operation.
1996 */
1997 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1998 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1999 /*
2000 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2001 * to update all raid stripes, but here we just want to correct
2002 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2003 * stripe's dev and sector.
2004 */
2005 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2006 &map_length, &bbio, 0);
2007 if (ret) {
2008 btrfs_bio_counter_dec(fs_info);
2009 bio_put(bio);
2010 return -EIO;
2011 }
2012 ASSERT(bbio->mirror_num == 1);
2013 } else {
2014 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2015 &map_length, &bbio, mirror_num);
2016 if (ret) {
2017 btrfs_bio_counter_dec(fs_info);
2018 bio_put(bio);
2019 return -EIO;
2020 }
2021 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2022 }
c725328c
LB
2023
2024 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2025 bio->bi_iter.bi_sector = sector;
c725328c 2026 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2027 btrfs_put_bbio(bbio);
4a54c8c1 2028 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2029 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2030 bio_put(bio);
2031 return -EIO;
2032 }
74d46992 2033 bio_set_dev(bio, dev->bdev);
70fd7614 2034 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2035 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2036
4e49ea4a 2037 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2038 /* try to remap that extent elsewhere? */
b5de8d0d 2039 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2040 bio_put(bio);
442a4f63 2041 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2042 return -EIO;
2043 }
2044
b14af3b4
DS
2045 btrfs_info_rl_in_rcu(fs_info,
2046 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2047 ino, start,
1203b681 2048 rcu_str_deref(dev->name), sector);
b5de8d0d 2049 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2050 bio_put(bio);
2051 return 0;
2052}
2053
2ff7e61e
JM
2054int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2055 struct extent_buffer *eb, int mirror_num)
ea466794 2056{
ea466794
JB
2057 u64 start = eb->start;
2058 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2059 int ret = 0;
ea466794 2060
bc98a42c 2061 if (sb_rdonly(fs_info->sb))
908960c6
ID
2062 return -EROFS;
2063
ea466794 2064 for (i = 0; i < num_pages; i++) {
fb85fc9a 2065 struct page *p = eb->pages[i];
1203b681 2066
6ec656bc 2067 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2068 start - page_offset(p), mirror_num);
ea466794
JB
2069 if (ret)
2070 break;
09cbfeaf 2071 start += PAGE_SIZE;
ea466794
JB
2072 }
2073
2074 return ret;
2075}
2076
4a54c8c1
JS
2077/*
2078 * each time an IO finishes, we do a fast check in the IO failure tree
2079 * to see if we need to process or clean up an io_failure_record
2080 */
7870d082
JB
2081int clean_io_failure(struct btrfs_fs_info *fs_info,
2082 struct extent_io_tree *failure_tree,
2083 struct extent_io_tree *io_tree, u64 start,
2084 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2085{
2086 u64 private;
4a54c8c1 2087 struct io_failure_record *failrec;
4a54c8c1
JS
2088 struct extent_state *state;
2089 int num_copies;
4a54c8c1 2090 int ret;
4a54c8c1
JS
2091
2092 private = 0;
7870d082
JB
2093 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2094 EXTENT_DIRTY, 0);
4a54c8c1
JS
2095 if (!ret)
2096 return 0;
2097
7870d082 2098 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2099 if (ret)
2100 return 0;
2101
4a54c8c1
JS
2102 BUG_ON(!failrec->this_mirror);
2103
2104 if (failrec->in_validation) {
2105 /* there was no real error, just free the record */
ab8d0fc4
JM
2106 btrfs_debug(fs_info,
2107 "clean_io_failure: freeing dummy error at %llu",
2108 failrec->start);
4a54c8c1
JS
2109 goto out;
2110 }
bc98a42c 2111 if (sb_rdonly(fs_info->sb))
908960c6 2112 goto out;
4a54c8c1 2113
7870d082
JB
2114 spin_lock(&io_tree->lock);
2115 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2116 failrec->start,
2117 EXTENT_LOCKED);
7870d082 2118 spin_unlock(&io_tree->lock);
4a54c8c1 2119
883d0de4
MX
2120 if (state && state->start <= failrec->start &&
2121 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2122 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2123 failrec->len);
4a54c8c1 2124 if (num_copies > 1) {
7870d082
JB
2125 repair_io_failure(fs_info, ino, start, failrec->len,
2126 failrec->logical, page, pg_offset,
2127 failrec->failed_mirror);
4a54c8c1
JS
2128 }
2129 }
2130
2131out:
7870d082 2132 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2133
454ff3de 2134 return 0;
4a54c8c1
JS
2135}
2136
f612496b
MX
2137/*
2138 * Can be called when
2139 * - hold extent lock
2140 * - under ordered extent
2141 * - the inode is freeing
2142 */
7ab7956e 2143void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2144{
7ab7956e 2145 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2146 struct io_failure_record *failrec;
2147 struct extent_state *state, *next;
2148
2149 if (RB_EMPTY_ROOT(&failure_tree->state))
2150 return;
2151
2152 spin_lock(&failure_tree->lock);
2153 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2154 while (state) {
2155 if (state->start > end)
2156 break;
2157
2158 ASSERT(state->end <= end);
2159
2160 next = next_state(state);
2161
47dc196a 2162 failrec = state->failrec;
f612496b
MX
2163 free_extent_state(state);
2164 kfree(failrec);
2165
2166 state = next;
2167 }
2168 spin_unlock(&failure_tree->lock);
2169}
2170
2fe6303e 2171int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2172 struct io_failure_record **failrec_ret)
4a54c8c1 2173{
ab8d0fc4 2174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2175 struct io_failure_record *failrec;
4a54c8c1 2176 struct extent_map *em;
4a54c8c1
JS
2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2180 int ret;
4a54c8c1
JS
2181 u64 logical;
2182
47dc196a 2183 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2184 if (ret) {
2185 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2186 if (!failrec)
2187 return -ENOMEM;
2fe6303e 2188
4a54c8c1
JS
2189 failrec->start = start;
2190 failrec->len = end - start + 1;
2191 failrec->this_mirror = 0;
2192 failrec->bio_flags = 0;
2193 failrec->in_validation = 0;
2194
2195 read_lock(&em_tree->lock);
2196 em = lookup_extent_mapping(em_tree, start, failrec->len);
2197 if (!em) {
2198 read_unlock(&em_tree->lock);
2199 kfree(failrec);
2200 return -EIO;
2201 }
2202
68ba990f 2203 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2204 free_extent_map(em);
2205 em = NULL;
2206 }
2207 read_unlock(&em_tree->lock);
7a2d6a64 2208 if (!em) {
4a54c8c1
JS
2209 kfree(failrec);
2210 return -EIO;
2211 }
2fe6303e 2212
4a54c8c1
JS
2213 logical = start - em->start;
2214 logical = em->block_start + logical;
2215 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2216 logical = em->block_start;
2217 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2218 extent_set_compress_type(&failrec->bio_flags,
2219 em->compress_type);
2220 }
2fe6303e 2221
ab8d0fc4
JM
2222 btrfs_debug(fs_info,
2223 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2224 logical, start, failrec->len);
2fe6303e 2225
4a54c8c1
JS
2226 failrec->logical = logical;
2227 free_extent_map(em);
2228
2229 /* set the bits in the private failure tree */
2230 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2231 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2232 if (ret >= 0)
47dc196a 2233 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2234 /* set the bits in the inode's tree */
2235 if (ret >= 0)
ceeb0ae7 2236 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2237 if (ret < 0) {
2238 kfree(failrec);
2239 return ret;
2240 }
2241 } else {
ab8d0fc4
JM
2242 btrfs_debug(fs_info,
2243 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2244 failrec->logical, failrec->start, failrec->len,
2245 failrec->in_validation);
4a54c8c1
JS
2246 /*
2247 * when data can be on disk more than twice, add to failrec here
2248 * (e.g. with a list for failed_mirror) to make
2249 * clean_io_failure() clean all those errors at once.
2250 */
2251 }
2fe6303e
MX
2252
2253 *failrec_ret = failrec;
2254
2255 return 0;
2256}
2257
c3cfb656 2258bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2fe6303e
MX
2259 struct io_failure_record *failrec, int failed_mirror)
2260{
ab8d0fc4 2261 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2262 int num_copies;
2263
ab8d0fc4 2264 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2265 if (num_copies == 1) {
2266 /*
2267 * we only have a single copy of the data, so don't bother with
2268 * all the retry and error correction code that follows. no
2269 * matter what the error is, it is very likely to persist.
2270 */
ab8d0fc4
JM
2271 btrfs_debug(fs_info,
2272 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2273 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2274 return false;
4a54c8c1
JS
2275 }
2276
4a54c8c1
JS
2277 /*
2278 * there are two premises:
2279 * a) deliver good data to the caller
2280 * b) correct the bad sectors on disk
2281 */
2282 if (failed_bio->bi_vcnt > 1) {
2283 /*
2284 * to fulfill b), we need to know the exact failing sectors, as
2285 * we don't want to rewrite any more than the failed ones. thus,
2286 * we need separate read requests for the failed bio
2287 *
2288 * if the following BUG_ON triggers, our validation request got
2289 * merged. we need separate requests for our algorithm to work.
2290 */
2291 BUG_ON(failrec->in_validation);
2292 failrec->in_validation = 1;
2293 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2294 } else {
2295 /*
2296 * we're ready to fulfill a) and b) alongside. get a good copy
2297 * of the failed sector and if we succeed, we have setup
2298 * everything for repair_io_failure to do the rest for us.
2299 */
2300 if (failrec->in_validation) {
2301 BUG_ON(failrec->this_mirror != failed_mirror);
2302 failrec->in_validation = 0;
2303 failrec->this_mirror = 0;
2304 }
2305 failrec->failed_mirror = failed_mirror;
2306 failrec->this_mirror++;
2307 if (failrec->this_mirror == failed_mirror)
2308 failrec->this_mirror++;
4a54c8c1
JS
2309 }
2310
facc8a22 2311 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2312 btrfs_debug(fs_info,
2313 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2314 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2315 return false;
4a54c8c1
JS
2316 }
2317
c3cfb656 2318 return true;
2fe6303e
MX
2319}
2320
2321
2322struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2323 struct io_failure_record *failrec,
2324 struct page *page, int pg_offset, int icsum,
8b110e39 2325 bio_end_io_t *endio_func, void *data)
2fe6303e 2326{
0b246afa 2327 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2328 struct bio *bio;
2329 struct btrfs_io_bio *btrfs_failed_bio;
2330 struct btrfs_io_bio *btrfs_bio;
2331
c5e4c3d7 2332 bio = btrfs_io_bio_alloc(1);
2fe6303e 2333 bio->bi_end_io = endio_func;
4f024f37 2334 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2335 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2336 bio->bi_iter.bi_size = 0;
8b110e39 2337 bio->bi_private = data;
4a54c8c1 2338
facc8a22
MX
2339 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2340 if (btrfs_failed_bio->csum) {
facc8a22
MX
2341 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2342
2343 btrfs_bio = btrfs_io_bio(bio);
2344 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2345 icsum *= csum_size;
2346 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2347 csum_size);
2348 }
2349
2fe6303e
MX
2350 bio_add_page(bio, page, failrec->len, pg_offset);
2351
2352 return bio;
2353}
2354
2355/*
2356 * this is a generic handler for readpage errors (default
2357 * readpage_io_failed_hook). if other copies exist, read those and write back
2358 * good data to the failed position. does not investigate in remapping the
2359 * failed extent elsewhere, hoping the device will be smart enough to do this as
2360 * needed
2361 */
2362
2363static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2364 struct page *page, u64 start, u64 end,
2365 int failed_mirror)
2366{
2367 struct io_failure_record *failrec;
2368 struct inode *inode = page->mapping->host;
2369 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2370 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2371 struct bio *bio;
70fd7614 2372 int read_mode = 0;
4e4cbee9 2373 blk_status_t status;
2fe6303e
MX
2374 int ret;
2375
1f7ad75b 2376 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2377
2378 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2379 if (ret)
2380 return ret;
2381
c3cfb656
LB
2382 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2383 failed_mirror)) {
7870d082 2384 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2385 return -EIO;
2386 }
2387
2388 if (failed_bio->bi_vcnt > 1)
70fd7614 2389 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2390
2391 phy_offset >>= inode->i_sb->s_blocksize_bits;
2392 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2393 start - page_offset(page),
8b110e39
MX
2394 (int)phy_offset, failed_bio->bi_end_io,
2395 NULL);
1f7ad75b 2396 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2397
ab8d0fc4
JM
2398 btrfs_debug(btrfs_sb(inode->i_sb),
2399 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2400 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2401
8c27cb35 2402 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2403 failrec->bio_flags, 0);
4e4cbee9 2404 if (status) {
7870d082 2405 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2406 bio_put(bio);
4e4cbee9 2407 ret = blk_status_to_errno(status);
6c387ab2
MX
2408 }
2409
013bd4c3 2410 return ret;
4a54c8c1
JS
2411}
2412
d1310b2e
CM
2413/* lots and lots of room for performance fixes in the end_bio funcs */
2414
b5227c07 2415void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2416{
2417 int uptodate = (err == 0);
2418 struct extent_io_tree *tree;
3e2426bd 2419 int ret = 0;
87826df0
JM
2420
2421 tree = &BTRFS_I(page->mapping->host)->io_tree;
2422
c3988d63
DS
2423 if (tree->ops && tree->ops->writepage_end_io_hook)
2424 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2425 uptodate);
87826df0 2426
87826df0 2427 if (!uptodate) {
87826df0
JM
2428 ClearPageUptodate(page);
2429 SetPageError(page);
bff5baf8 2430 ret = err < 0 ? err : -EIO;
5dca6eea 2431 mapping_set_error(page->mapping, ret);
87826df0 2432 }
87826df0
JM
2433}
2434
d1310b2e
CM
2435/*
2436 * after a writepage IO is done, we need to:
2437 * clear the uptodate bits on error
2438 * clear the writeback bits in the extent tree for this IO
2439 * end_page_writeback if the page has no more pending IO
2440 *
2441 * Scheduling is not allowed, so the extent state tree is expected
2442 * to have one and only one object corresponding to this IO.
2443 */
4246a0b6 2444static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2445{
4e4cbee9 2446 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2447 struct bio_vec *bvec;
d1310b2e
CM
2448 u64 start;
2449 u64 end;
2c30c71b 2450 int i;
d1310b2e 2451
c09abff8 2452 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2453 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2454 struct page *page = bvec->bv_page;
0b246afa
JM
2455 struct inode *inode = page->mapping->host;
2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2457
17a5adcc
AO
2458 /* We always issue full-page reads, but if some block
2459 * in a page fails to read, blk_update_request() will
2460 * advance bv_offset and adjust bv_len to compensate.
2461 * Print a warning for nonzero offsets, and an error
2462 * if they don't add up to a full page. */
09cbfeaf
KS
2463 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2464 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2465 btrfs_err(fs_info,
efe120a0
FH
2466 "partial page write in btrfs with offset %u and length %u",
2467 bvec->bv_offset, bvec->bv_len);
2468 else
0b246afa 2469 btrfs_info(fs_info,
5d163e0e 2470 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2471 bvec->bv_offset, bvec->bv_len);
2472 }
d1310b2e 2473
17a5adcc
AO
2474 start = page_offset(page);
2475 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2476
4e4cbee9 2477 end_extent_writepage(page, error, start, end);
17a5adcc 2478 end_page_writeback(page);
2c30c71b 2479 }
2b1f55b0 2480
d1310b2e 2481 bio_put(bio);
d1310b2e
CM
2482}
2483
883d0de4
MX
2484static void
2485endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2486 int uptodate)
2487{
2488 struct extent_state *cached = NULL;
2489 u64 end = start + len - 1;
2490
2491 if (uptodate && tree->track_uptodate)
2492 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2493 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2494}
2495
d1310b2e
CM
2496/*
2497 * after a readpage IO is done, we need to:
2498 * clear the uptodate bits on error
2499 * set the uptodate bits if things worked
2500 * set the page up to date if all extents in the tree are uptodate
2501 * clear the lock bit in the extent tree
2502 * unlock the page if there are no other extents locked for it
2503 *
2504 * Scheduling is not allowed, so the extent state tree is expected
2505 * to have one and only one object corresponding to this IO.
2506 */
4246a0b6 2507static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2508{
2c30c71b 2509 struct bio_vec *bvec;
4e4cbee9 2510 int uptodate = !bio->bi_status;
facc8a22 2511 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2512 struct extent_io_tree *tree, *failure_tree;
facc8a22 2513 u64 offset = 0;
d1310b2e
CM
2514 u64 start;
2515 u64 end;
facc8a22 2516 u64 len;
883d0de4
MX
2517 u64 extent_start = 0;
2518 u64 extent_len = 0;
5cf1ab56 2519 int mirror;
d1310b2e 2520 int ret;
2c30c71b 2521 int i;
d1310b2e 2522
c09abff8 2523 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2524 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2525 struct page *page = bvec->bv_page;
a71754fc 2526 struct inode *inode = page->mapping->host;
ab8d0fc4 2527 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2528
ab8d0fc4
JM
2529 btrfs_debug(fs_info,
2530 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2531 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2532 io_bio->mirror_num);
a71754fc 2533 tree = &BTRFS_I(inode)->io_tree;
7870d082 2534 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2535
17a5adcc
AO
2536 /* We always issue full-page reads, but if some block
2537 * in a page fails to read, blk_update_request() will
2538 * advance bv_offset and adjust bv_len to compensate.
2539 * Print a warning for nonzero offsets, and an error
2540 * if they don't add up to a full page. */
09cbfeaf
KS
2541 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2542 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2543 btrfs_err(fs_info,
2544 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2545 bvec->bv_offset, bvec->bv_len);
2546 else
ab8d0fc4
JM
2547 btrfs_info(fs_info,
2548 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2549 bvec->bv_offset, bvec->bv_len);
2550 }
d1310b2e 2551
17a5adcc
AO
2552 start = page_offset(page);
2553 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2554 len = bvec->bv_len;
d1310b2e 2555
9be3395b 2556 mirror = io_bio->mirror_num;
20c9801d 2557 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2558 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2559 page, start, end,
2560 mirror);
5ee0844d 2561 if (ret)
d1310b2e 2562 uptodate = 0;
5ee0844d 2563 else
7870d082
JB
2564 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2565 failure_tree, tree, start,
2566 page,
2567 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2568 }
ea466794 2569
f2a09da9
MX
2570 if (likely(uptodate))
2571 goto readpage_ok;
2572
20a7db8a 2573 if (tree->ops) {
5cf1ab56 2574 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2575 if (ret == -EAGAIN) {
2576 /*
2577 * Data inode's readpage_io_failed_hook() always
2578 * returns -EAGAIN.
2579 *
2580 * The generic bio_readpage_error handles errors
2581 * the following way: If possible, new read
2582 * requests are created and submitted and will
2583 * end up in end_bio_extent_readpage as well (if
2584 * we're lucky, not in the !uptodate case). In
2585 * that case it returns 0 and we just go on with
2586 * the next page in our bio. If it can't handle
2587 * the error it will return -EIO and we remain
2588 * responsible for that page.
2589 */
2590 ret = bio_readpage_error(bio, offset, page,
2591 start, end, mirror);
2592 if (ret == 0) {
4e4cbee9 2593 uptodate = !bio->bi_status;
9d0d1c8b
LB
2594 offset += len;
2595 continue;
2596 }
2597 }
2598
f4a8e656 2599 /*
9d0d1c8b
LB
2600 * metadata's readpage_io_failed_hook() always returns
2601 * -EIO and fixes nothing. -EIO is also returned if
2602 * data inode error could not be fixed.
f4a8e656 2603 */
9d0d1c8b 2604 ASSERT(ret == -EIO);
7e38326f 2605 }
f2a09da9 2606readpage_ok:
883d0de4 2607 if (likely(uptodate)) {
a71754fc 2608 loff_t i_size = i_size_read(inode);
09cbfeaf 2609 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2610 unsigned off;
a71754fc
JB
2611
2612 /* Zero out the end if this page straddles i_size */
09cbfeaf 2613 off = i_size & (PAGE_SIZE-1);
a583c026 2614 if (page->index == end_index && off)
09cbfeaf 2615 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2616 SetPageUptodate(page);
70dec807 2617 } else {
17a5adcc
AO
2618 ClearPageUptodate(page);
2619 SetPageError(page);
70dec807 2620 }
17a5adcc 2621 unlock_page(page);
facc8a22 2622 offset += len;
883d0de4
MX
2623
2624 if (unlikely(!uptodate)) {
2625 if (extent_len) {
2626 endio_readpage_release_extent(tree,
2627 extent_start,
2628 extent_len, 1);
2629 extent_start = 0;
2630 extent_len = 0;
2631 }
2632 endio_readpage_release_extent(tree, start,
2633 end - start + 1, 0);
2634 } else if (!extent_len) {
2635 extent_start = start;
2636 extent_len = end + 1 - start;
2637 } else if (extent_start + extent_len == start) {
2638 extent_len += end + 1 - start;
2639 } else {
2640 endio_readpage_release_extent(tree, extent_start,
2641 extent_len, uptodate);
2642 extent_start = start;
2643 extent_len = end + 1 - start;
2644 }
2c30c71b 2645 }
d1310b2e 2646
883d0de4
MX
2647 if (extent_len)
2648 endio_readpage_release_extent(tree, extent_start, extent_len,
2649 uptodate);
facc8a22 2650 if (io_bio->end_io)
4e4cbee9 2651 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2652 bio_put(bio);
d1310b2e
CM
2653}
2654
9be3395b 2655/*
184f999e
DS
2656 * Initialize the members up to but not including 'bio'. Use after allocating a
2657 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2658 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2659 */
184f999e 2660static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2661{
184f999e
DS
2662 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2663}
d1310b2e 2664
9be3395b 2665/*
6e707bcd
DS
2666 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2667 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2668 * for the appropriate container_of magic
9be3395b 2669 */
c821e7f3 2670struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2671{
2672 struct bio *bio;
d1310b2e 2673
9f2179a5 2674 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2675 bio_set_dev(bio, bdev);
c821e7f3 2676 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2677 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2678 return bio;
2679}
2680
8b6c1d56 2681struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2682{
23ea8e5a
MX
2683 struct btrfs_io_bio *btrfs_bio;
2684 struct bio *new;
9be3395b 2685
6e707bcd 2686 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2687 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2688 btrfs_bio = btrfs_io_bio(new);
184f999e 2689 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2690 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2691 return new;
2692}
9be3395b 2693
c5e4c3d7 2694struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2695{
facc8a22
MX
2696 struct bio *bio;
2697
6e707bcd 2698 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2699 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2700 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2701 return bio;
9be3395b
CM
2702}
2703
e477094f 2704struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2705{
2706 struct bio *bio;
2707 struct btrfs_io_bio *btrfs_bio;
2708
2709 /* this will never fail when it's backed by a bioset */
e477094f 2710 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2711 ASSERT(bio);
2712
2713 btrfs_bio = btrfs_io_bio(bio);
184f999e 2714 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2715
2716 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2717 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2718 return bio;
2719}
9be3395b 2720
1f7ad75b
MC
2721static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2722 unsigned long bio_flags)
d1310b2e 2723{
4e4cbee9 2724 blk_status_t ret = 0;
70dec807
CM
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
70dec807 2728 u64 start;
70dec807 2729
4eee4fa4 2730 start = page_offset(page) + bvec->bv_offset;
70dec807 2731
902b22f3 2732 bio->bi_private = NULL;
d1310b2e
CM
2733 bio_get(bio);
2734
20c9801d 2735 if (tree->ops)
c6100a4b 2736 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2737 mirror_num, bio_flags, start);
0b86a832 2738 else
4e49ea4a 2739 btrfsic_submit_bio(bio);
4a54c8c1 2740
d1310b2e 2741 bio_put(bio);
4e4cbee9 2742 return blk_status_to_errno(ret);
d1310b2e
CM
2743}
2744
1f7ad75b 2745static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2746 unsigned long offset, size_t size, struct bio *bio,
2747 unsigned long bio_flags)
2748{
2749 int ret = 0;
20c9801d 2750 if (tree->ops)
81a75f67 2751 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2752 bio_flags);
3444a972
JM
2753 return ret;
2754
2755}
2756
4b81ba48
DS
2757/*
2758 * @opf: bio REQ_OP_* and REQ_* flags as one value
2759 */
2760static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2761 struct writeback_control *wbc,
6273b7f8 2762 struct page *page, u64 offset,
6c5a4e2c 2763 size_t size, unsigned long pg_offset,
d1310b2e
CM
2764 struct block_device *bdev,
2765 struct bio **bio_ret,
f188591e 2766 bio_end_io_t end_io_func,
c8b97818
CM
2767 int mirror_num,
2768 unsigned long prev_bio_flags,
005efedf
FM
2769 unsigned long bio_flags,
2770 bool force_bio_submit)
d1310b2e
CM
2771{
2772 int ret = 0;
2773 struct bio *bio;
c8b97818 2774 int contig = 0;
c8b97818 2775 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2776 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2777 sector_t sector = offset >> 9;
d1310b2e
CM
2778
2779 if (bio_ret && *bio_ret) {
2780 bio = *bio_ret;
c8b97818 2781 if (old_compressed)
4f024f37 2782 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2783 else
f73a1c7d 2784 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2785
2786 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2787 force_bio_submit ||
6c5a4e2c
DS
2788 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2789 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2790 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2791 if (ret < 0) {
2792 *bio_ret = NULL;
79787eaa 2793 return ret;
289454ad 2794 }
d1310b2e
CM
2795 bio = NULL;
2796 } else {
da2f0f74
CM
2797 if (wbc)
2798 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2799 return 0;
2800 }
2801 }
c8b97818 2802
6273b7f8 2803 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2804 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2805 bio->bi_end_io = end_io_func;
2806 bio->bi_private = tree;
e6959b93 2807 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2808 bio->bi_opf = opf;
da2f0f74
CM
2809 if (wbc) {
2810 wbc_init_bio(wbc, bio);
2811 wbc_account_io(wbc, page, page_size);
2812 }
70dec807 2813
d397712b 2814 if (bio_ret)
d1310b2e 2815 *bio_ret = bio;
d397712b 2816 else
1f7ad75b 2817 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2818
2819 return ret;
2820}
2821
48a3b636
ES
2822static void attach_extent_buffer_page(struct extent_buffer *eb,
2823 struct page *page)
d1310b2e
CM
2824{
2825 if (!PagePrivate(page)) {
2826 SetPagePrivate(page);
09cbfeaf 2827 get_page(page);
4f2de97a
JB
2828 set_page_private(page, (unsigned long)eb);
2829 } else {
2830 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2831 }
2832}
2833
4f2de97a 2834void set_page_extent_mapped(struct page *page)
d1310b2e 2835{
4f2de97a
JB
2836 if (!PagePrivate(page)) {
2837 SetPagePrivate(page);
09cbfeaf 2838 get_page(page);
4f2de97a
JB
2839 set_page_private(page, EXTENT_PAGE_PRIVATE);
2840 }
d1310b2e
CM
2841}
2842
125bac01
MX
2843static struct extent_map *
2844__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2845 u64 start, u64 len, get_extent_t *get_extent,
2846 struct extent_map **em_cached)
2847{
2848 struct extent_map *em;
2849
2850 if (em_cached && *em_cached) {
2851 em = *em_cached;
cbc0e928 2852 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2853 start < extent_map_end(em)) {
490b54d6 2854 refcount_inc(&em->refs);
125bac01
MX
2855 return em;
2856 }
2857
2858 free_extent_map(em);
2859 *em_cached = NULL;
2860 }
2861
fc4f21b1 2862 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2863 if (em_cached && !IS_ERR_OR_NULL(em)) {
2864 BUG_ON(*em_cached);
490b54d6 2865 refcount_inc(&em->refs);
125bac01
MX
2866 *em_cached = em;
2867 }
2868 return em;
2869}
d1310b2e
CM
2870/*
2871 * basic readpage implementation. Locked extent state structs are inserted
2872 * into the tree that are removed when the IO is done (by the end_io
2873 * handlers)
79787eaa 2874 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2875 * return 0 on success, otherwise return error
d1310b2e 2876 */
9974090b
MX
2877static int __do_readpage(struct extent_io_tree *tree,
2878 struct page *page,
2879 get_extent_t *get_extent,
125bac01 2880 struct extent_map **em_cached,
9974090b 2881 struct bio **bio, int mirror_num,
f1c77c55 2882 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2883 u64 *prev_em_start)
d1310b2e
CM
2884{
2885 struct inode *inode = page->mapping->host;
4eee4fa4 2886 u64 start = page_offset(page);
09cbfeaf 2887 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2888 u64 end;
2889 u64 cur = start;
2890 u64 extent_offset;
2891 u64 last_byte = i_size_read(inode);
2892 u64 block_start;
2893 u64 cur_end;
d1310b2e
CM
2894 struct extent_map *em;
2895 struct block_device *bdev;
baf863b9 2896 int ret = 0;
d1310b2e 2897 int nr = 0;
306e16ce 2898 size_t pg_offset = 0;
d1310b2e 2899 size_t iosize;
c8b97818 2900 size_t disk_io_size;
d1310b2e 2901 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2902 unsigned long this_bio_flag = 0;
d1310b2e
CM
2903
2904 set_page_extent_mapped(page);
2905
9974090b 2906 end = page_end;
90a887c9
DM
2907 if (!PageUptodate(page)) {
2908 if (cleancache_get_page(page) == 0) {
2909 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2910 unlock_extent(tree, start, end);
90a887c9
DM
2911 goto out;
2912 }
2913 }
2914
09cbfeaf 2915 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2916 char *userpage;
09cbfeaf 2917 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2918
2919 if (zero_offset) {
09cbfeaf 2920 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2921 userpage = kmap_atomic(page);
c8b97818
CM
2922 memset(userpage + zero_offset, 0, iosize);
2923 flush_dcache_page(page);
7ac687d9 2924 kunmap_atomic(userpage);
c8b97818
CM
2925 }
2926 }
d1310b2e 2927 while (cur <= end) {
005efedf 2928 bool force_bio_submit = false;
6273b7f8 2929 u64 offset;
c8f2f24b 2930
d1310b2e
CM
2931 if (cur >= last_byte) {
2932 char *userpage;
507903b8
AJ
2933 struct extent_state *cached = NULL;
2934
09cbfeaf 2935 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2936 userpage = kmap_atomic(page);
306e16ce 2937 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2938 flush_dcache_page(page);
7ac687d9 2939 kunmap_atomic(userpage);
d1310b2e 2940 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2941 &cached, GFP_NOFS);
7f042a83
FM
2942 unlock_extent_cached(tree, cur,
2943 cur + iosize - 1,
2944 &cached, GFP_NOFS);
d1310b2e
CM
2945 break;
2946 }
125bac01
MX
2947 em = __get_extent_map(inode, page, pg_offset, cur,
2948 end - cur + 1, get_extent, em_cached);
c704005d 2949 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2950 SetPageError(page);
7f042a83 2951 unlock_extent(tree, cur, end);
d1310b2e
CM
2952 break;
2953 }
d1310b2e
CM
2954 extent_offset = cur - em->start;
2955 BUG_ON(extent_map_end(em) <= cur);
2956 BUG_ON(end < cur);
2957
261507a0 2958 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2959 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2960 extent_set_compress_type(&this_bio_flag,
2961 em->compress_type);
2962 }
c8b97818 2963
d1310b2e
CM
2964 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2965 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2966 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2967 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2968 disk_io_size = em->block_len;
6273b7f8 2969 offset = em->block_start;
c8b97818 2970 } else {
6273b7f8 2971 offset = em->block_start + extent_offset;
c8b97818
CM
2972 disk_io_size = iosize;
2973 }
d1310b2e
CM
2974 bdev = em->bdev;
2975 block_start = em->block_start;
d899e052
YZ
2976 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2977 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2978
2979 /*
2980 * If we have a file range that points to a compressed extent
2981 * and it's followed by a consecutive file range that points to
2982 * to the same compressed extent (possibly with a different
2983 * offset and/or length, so it either points to the whole extent
2984 * or only part of it), we must make sure we do not submit a
2985 * single bio to populate the pages for the 2 ranges because
2986 * this makes the compressed extent read zero out the pages
2987 * belonging to the 2nd range. Imagine the following scenario:
2988 *
2989 * File layout
2990 * [0 - 8K] [8K - 24K]
2991 * | |
2992 * | |
2993 * points to extent X, points to extent X,
2994 * offset 4K, length of 8K offset 0, length 16K
2995 *
2996 * [extent X, compressed length = 4K uncompressed length = 16K]
2997 *
2998 * If the bio to read the compressed extent covers both ranges,
2999 * it will decompress extent X into the pages belonging to the
3000 * first range and then it will stop, zeroing out the remaining
3001 * pages that belong to the other range that points to extent X.
3002 * So here we make sure we submit 2 bios, one for the first
3003 * range and another one for the third range. Both will target
3004 * the same physical extent from disk, but we can't currently
3005 * make the compressed bio endio callback populate the pages
3006 * for both ranges because each compressed bio is tightly
3007 * coupled with a single extent map, and each range can have
3008 * an extent map with a different offset value relative to the
3009 * uncompressed data of our extent and different lengths. This
3010 * is a corner case so we prioritize correctness over
3011 * non-optimal behavior (submitting 2 bios for the same extent).
3012 */
3013 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3014 prev_em_start && *prev_em_start != (u64)-1 &&
3015 *prev_em_start != em->orig_start)
3016 force_bio_submit = true;
3017
3018 if (prev_em_start)
3019 *prev_em_start = em->orig_start;
3020
d1310b2e
CM
3021 free_extent_map(em);
3022 em = NULL;
3023
3024 /* we've found a hole, just zero and go on */
3025 if (block_start == EXTENT_MAP_HOLE) {
3026 char *userpage;
507903b8
AJ
3027 struct extent_state *cached = NULL;
3028
7ac687d9 3029 userpage = kmap_atomic(page);
306e16ce 3030 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3031 flush_dcache_page(page);
7ac687d9 3032 kunmap_atomic(userpage);
d1310b2e
CM
3033
3034 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3035 &cached, GFP_NOFS);
7f042a83
FM
3036 unlock_extent_cached(tree, cur,
3037 cur + iosize - 1,
3038 &cached, GFP_NOFS);
d1310b2e 3039 cur = cur + iosize;
306e16ce 3040 pg_offset += iosize;
d1310b2e
CM
3041 continue;
3042 }
3043 /* the get_extent function already copied into the page */
9655d298
CM
3044 if (test_range_bit(tree, cur, cur_end,
3045 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3046 check_page_uptodate(tree, page);
7f042a83 3047 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e
CM
3050 continue;
3051 }
70dec807
CM
3052 /* we have an inline extent but it didn't get marked up
3053 * to date. Error out
3054 */
3055 if (block_start == EXTENT_MAP_INLINE) {
3056 SetPageError(page);
7f042a83 3057 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3058 cur = cur + iosize;
306e16ce 3059 pg_offset += iosize;
70dec807
CM
3060 continue;
3061 }
d1310b2e 3062
4b81ba48 3063 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3064 page, offset, disk_io_size,
3065 pg_offset, bdev, bio,
c8b97818
CM
3066 end_bio_extent_readpage, mirror_num,
3067 *bio_flags,
005efedf
FM
3068 this_bio_flag,
3069 force_bio_submit);
c8f2f24b
JB
3070 if (!ret) {
3071 nr++;
3072 *bio_flags = this_bio_flag;
3073 } else {
d1310b2e 3074 SetPageError(page);
7f042a83 3075 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3076 goto out;
edd33c99 3077 }
d1310b2e 3078 cur = cur + iosize;
306e16ce 3079 pg_offset += iosize;
d1310b2e 3080 }
90a887c9 3081out:
d1310b2e
CM
3082 if (!nr) {
3083 if (!PageError(page))
3084 SetPageUptodate(page);
3085 unlock_page(page);
3086 }
baf863b9 3087 return ret;
d1310b2e
CM
3088}
3089
9974090b
MX
3090static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3091 struct page *pages[], int nr_pages,
3092 u64 start, u64 end,
3093 get_extent_t *get_extent,
125bac01 3094 struct extent_map **em_cached,
d3fac6ba 3095 struct bio **bio,
1f7ad75b 3096 unsigned long *bio_flags,
808f80b4 3097 u64 *prev_em_start)
9974090b
MX
3098{
3099 struct inode *inode;
3100 struct btrfs_ordered_extent *ordered;
3101 int index;
3102
3103 inode = pages[0]->mapping->host;
3104 while (1) {
3105 lock_extent(tree, start, end);
a776c6fa 3106 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3107 end - start + 1);
3108 if (!ordered)
3109 break;
3110 unlock_extent(tree, start, end);
3111 btrfs_start_ordered_extent(inode, ordered, 1);
3112 btrfs_put_ordered_extent(ordered);
3113 }
3114
3115 for (index = 0; index < nr_pages; index++) {
125bac01 3116 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
d3fac6ba 3117 0, bio_flags, 0, prev_em_start);
09cbfeaf 3118 put_page(pages[index]);
9974090b
MX
3119 }
3120}
3121
3122static void __extent_readpages(struct extent_io_tree *tree,
3123 struct page *pages[],
3124 int nr_pages, get_extent_t *get_extent,
125bac01 3125 struct extent_map **em_cached,
d3fac6ba 3126 struct bio **bio, unsigned long *bio_flags,
808f80b4 3127 u64 *prev_em_start)
9974090b 3128{
35a3621b 3129 u64 start = 0;
9974090b
MX
3130 u64 end = 0;
3131 u64 page_start;
3132 int index;
35a3621b 3133 int first_index = 0;
9974090b
MX
3134
3135 for (index = 0; index < nr_pages; index++) {
3136 page_start = page_offset(pages[index]);
3137 if (!end) {
3138 start = page_start;
09cbfeaf 3139 end = start + PAGE_SIZE - 1;
9974090b
MX
3140 first_index = index;
3141 } else if (end + 1 == page_start) {
09cbfeaf 3142 end += PAGE_SIZE;
9974090b
MX
3143 } else {
3144 __do_contiguous_readpages(tree, &pages[first_index],
3145 index - first_index, start,
125bac01 3146 end, get_extent, em_cached,
d3fac6ba 3147 bio, bio_flags,
1f7ad75b 3148 prev_em_start);
9974090b 3149 start = page_start;
09cbfeaf 3150 end = start + PAGE_SIZE - 1;
9974090b
MX
3151 first_index = index;
3152 }
3153 }
3154
3155 if (end)
3156 __do_contiguous_readpages(tree, &pages[first_index],
3157 index - first_index, start,
125bac01 3158 end, get_extent, em_cached, bio,
d3fac6ba 3159 bio_flags, prev_em_start);
9974090b
MX
3160}
3161
3162static int __extent_read_full_page(struct extent_io_tree *tree,
3163 struct page *page,
3164 get_extent_t *get_extent,
3165 struct bio **bio, int mirror_num,
f1c77c55
DS
3166 unsigned long *bio_flags,
3167 unsigned int read_flags)
9974090b
MX
3168{
3169 struct inode *inode = page->mapping->host;
3170 struct btrfs_ordered_extent *ordered;
3171 u64 start = page_offset(page);
09cbfeaf 3172 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3173 int ret;
3174
3175 while (1) {
3176 lock_extent(tree, start, end);
a776c6fa 3177 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3178 PAGE_SIZE);
9974090b
MX
3179 if (!ordered)
3180 break;
3181 unlock_extent(tree, start, end);
3182 btrfs_start_ordered_extent(inode, ordered, 1);
3183 btrfs_put_ordered_extent(ordered);
3184 }
3185
125bac01 3186 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3187 bio_flags, read_flags, NULL);
9974090b
MX
3188 return ret;
3189}
3190
d1310b2e 3191int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3192 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3193{
3194 struct bio *bio = NULL;
c8b97818 3195 unsigned long bio_flags = 0;
d1310b2e
CM
3196 int ret;
3197
8ddc7d9c 3198 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3199 &bio_flags, 0);
d1310b2e 3200 if (bio)
1f7ad75b 3201 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3202 return ret;
3203}
d1310b2e 3204
3d4b9496 3205static void update_nr_written(struct writeback_control *wbc,
a9132667 3206 unsigned long nr_written)
11c8349b
CM
3207{
3208 wbc->nr_to_write -= nr_written;
11c8349b
CM
3209}
3210
d1310b2e 3211/*
40f76580
CM
3212 * helper for __extent_writepage, doing all of the delayed allocation setup.
3213 *
3214 * This returns 1 if our fill_delalloc function did all the work required
3215 * to write the page (copy into inline extent). In this case the IO has
3216 * been started and the page is already unlocked.
3217 *
3218 * This returns 0 if all went well (page still locked)
3219 * This returns < 0 if there were errors (page still locked)
d1310b2e 3220 */
40f76580
CM
3221static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 struct page *page, struct writeback_control *wbc,
3223 struct extent_page_data *epd,
3224 u64 delalloc_start,
3225 unsigned long *nr_written)
3226{
3227 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3228 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3229 u64 nr_delalloc;
3230 u64 delalloc_to_write = 0;
3231 u64 delalloc_end = 0;
3232 int ret;
3233 int page_started = 0;
3234
3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 return 0;
3237
3238 while (delalloc_end < page_end) {
3239 nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 page,
3241 &delalloc_start,
3242 &delalloc_end,
dcab6a3b 3243 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3244 if (nr_delalloc == 0) {
3245 delalloc_start = delalloc_end + 1;
3246 continue;
3247 }
3248 ret = tree->ops->fill_delalloc(inode, page,
3249 delalloc_start,
3250 delalloc_end,
3251 &page_started,
f82b7359 3252 nr_written, wbc);
40f76580
CM
3253 /* File system has been set read-only */
3254 if (ret) {
3255 SetPageError(page);
3256 /* fill_delalloc should be return < 0 for error
3257 * but just in case, we use > 0 here meaning the
3258 * IO is started, so we don't want to return > 0
3259 * unless things are going well.
3260 */
3261 ret = ret < 0 ? ret : -EIO;
3262 goto done;
3263 }
3264 /*
ea1754a0
KS
3265 * delalloc_end is already one less than the total length, so
3266 * we don't subtract one from PAGE_SIZE
40f76580
CM
3267 */
3268 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3269 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3270 delalloc_start = delalloc_end + 1;
3271 }
3272 if (wbc->nr_to_write < delalloc_to_write) {
3273 int thresh = 8192;
3274
3275 if (delalloc_to_write < thresh * 2)
3276 thresh = delalloc_to_write;
3277 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278 thresh);
3279 }
3280
3281 /* did the fill delalloc function already unlock and start
3282 * the IO?
3283 */
3284 if (page_started) {
3285 /*
3286 * we've unlocked the page, so we can't update
3287 * the mapping's writeback index, just update
3288 * nr_to_write.
3289 */
3290 wbc->nr_to_write -= *nr_written;
3291 return 1;
3292 }
3293
3294 ret = 0;
3295
3296done:
3297 return ret;
3298}
3299
3300/*
3301 * helper for __extent_writepage. This calls the writepage start hooks,
3302 * and does the loop to map the page into extents and bios.
3303 *
3304 * We return 1 if the IO is started and the page is unlocked,
3305 * 0 if all went well (page still locked)
3306 * < 0 if there were errors (page still locked)
3307 */
3308static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309 struct page *page,
3310 struct writeback_control *wbc,
3311 struct extent_page_data *epd,
3312 loff_t i_size,
3313 unsigned long nr_written,
f1c77c55 3314 unsigned int write_flags, int *nr_ret)
d1310b2e 3315{
d1310b2e 3316 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3317 u64 start = page_offset(page);
09cbfeaf 3318 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3319 u64 end;
3320 u64 cur = start;
3321 u64 extent_offset;
d1310b2e
CM
3322 u64 block_start;
3323 u64 iosize;
d1310b2e
CM
3324 struct extent_map *em;
3325 struct block_device *bdev;
7f3c74fb 3326 size_t pg_offset = 0;
d1310b2e 3327 size_t blocksize;
40f76580
CM
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
c8b97818 3331
247e743c 3332 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
87826df0
JM
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
40f76580 3341
3d4b9496 3342 update_nr_written(wbc, nr_written);
247e743c 3343 unlock_page(page);
bcf93489 3344 return 1;
247e743c
CM
3345 }
3346 }
3347
11c8349b
CM
3348 /*
3349 * we don't want to touch the inode after unlocking the page,
3350 * so we update the mapping writeback index now
3351 */
3d4b9496 3352 update_nr_written(wbc, nr_written + 1);
771ed689 3353
d1310b2e 3354 end = page_end;
40f76580 3355 if (i_size <= start) {
e6dcd2dc
CM
3356 if (tree->ops && tree->ops->writepage_end_io_hook)
3357 tree->ops->writepage_end_io_hook(page, start,
3358 page_end, NULL, 1);
d1310b2e
CM
3359 goto done;
3360 }
3361
d1310b2e
CM
3362 blocksize = inode->i_sb->s_blocksize;
3363
3364 while (cur <= end) {
40f76580 3365 u64 em_end;
6273b7f8 3366 u64 offset;
58409edd 3367
40f76580 3368 if (cur >= i_size) {
e6dcd2dc
CM
3369 if (tree->ops && tree->ops->writepage_end_io_hook)
3370 tree->ops->writepage_end_io_hook(page, cur,
3371 page_end, NULL, 1);
d1310b2e
CM
3372 break;
3373 }
3c98c62f 3374 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3375 end - cur + 1, 1);
c704005d 3376 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3377 SetPageError(page);
61391d56 3378 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3379 break;
3380 }
3381
3382 extent_offset = cur - em->start;
40f76580
CM
3383 em_end = extent_map_end(em);
3384 BUG_ON(em_end <= cur);
d1310b2e 3385 BUG_ON(end < cur);
40f76580 3386 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3387 iosize = ALIGN(iosize, blocksize);
6273b7f8 3388 offset = em->block_start + extent_offset;
d1310b2e
CM
3389 bdev = em->bdev;
3390 block_start = em->block_start;
c8b97818 3391 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3392 free_extent_map(em);
3393 em = NULL;
3394
c8b97818
CM
3395 /*
3396 * compressed and inline extents are written through other
3397 * paths in the FS
3398 */
3399 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3400 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3401 /*
3402 * end_io notification does not happen here for
3403 * compressed extents
3404 */
3405 if (!compressed && tree->ops &&
3406 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3407 tree->ops->writepage_end_io_hook(page, cur,
3408 cur + iosize - 1,
3409 NULL, 1);
c8b97818
CM
3410 else if (compressed) {
3411 /* we don't want to end_page_writeback on
3412 * a compressed extent. this happens
3413 * elsewhere
3414 */
3415 nr++;
3416 }
3417
3418 cur += iosize;
7f3c74fb 3419 pg_offset += iosize;
d1310b2e
CM
3420 continue;
3421 }
c8b97818 3422
58409edd
DS
3423 set_range_writeback(tree, cur, cur + iosize - 1);
3424 if (!PageWriteback(page)) {
3425 btrfs_err(BTRFS_I(inode)->root->fs_info,
3426 "page %lu not writeback, cur %llu end %llu",
3427 page->index, cur, end);
d1310b2e 3428 }
7f3c74fb 3429
4b81ba48 3430 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3431 page, offset, iosize, pg_offset,
c2df8bb4 3432 bdev, &epd->bio,
58409edd
DS
3433 end_bio_extent_writepage,
3434 0, 0, 0, false);
fe01aa65 3435 if (ret) {
58409edd 3436 SetPageError(page);
fe01aa65
TK
3437 if (PageWriteback(page))
3438 end_page_writeback(page);
3439 }
d1310b2e 3440
d1310b2e 3441 cur = cur + iosize;
7f3c74fb 3442 pg_offset += iosize;
d1310b2e
CM
3443 nr++;
3444 }
40f76580
CM
3445done:
3446 *nr_ret = nr;
40f76580
CM
3447 return ret;
3448}
3449
3450/*
3451 * the writepage semantics are similar to regular writepage. extent
3452 * records are inserted to lock ranges in the tree, and as dirty areas
3453 * are found, they are marked writeback. Then the lock bits are removed
3454 * and the end_io handler clears the writeback ranges
3455 */
3456static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3457 void *data)
3458{
3459 struct inode *inode = page->mapping->host;
3460 struct extent_page_data *epd = data;
3461 u64 start = page_offset(page);
09cbfeaf 3462 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3463 int ret;
3464 int nr = 0;
3465 size_t pg_offset = 0;
3466 loff_t i_size = i_size_read(inode);
09cbfeaf 3467 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3468 unsigned int write_flags = 0;
40f76580
CM
3469 unsigned long nr_written = 0;
3470
ff40adf7 3471 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3472
3473 trace___extent_writepage(page, inode, wbc);
3474
3475 WARN_ON(!PageLocked(page));
3476
3477 ClearPageError(page);
3478
09cbfeaf 3479 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3480 if (page->index > end_index ||
3481 (page->index == end_index && !pg_offset)) {
09cbfeaf 3482 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3483 unlock_page(page);
3484 return 0;
3485 }
3486
3487 if (page->index == end_index) {
3488 char *userpage;
3489
3490 userpage = kmap_atomic(page);
3491 memset(userpage + pg_offset, 0,
09cbfeaf 3492 PAGE_SIZE - pg_offset);
40f76580
CM
3493 kunmap_atomic(userpage);
3494 flush_dcache_page(page);
3495 }
3496
3497 pg_offset = 0;
3498
3499 set_page_extent_mapped(page);
3500
3501 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3502 if (ret == 1)
3503 goto done_unlocked;
3504 if (ret)
3505 goto done;
3506
3507 ret = __extent_writepage_io(inode, page, wbc, epd,
3508 i_size, nr_written, write_flags, &nr);
3509 if (ret == 1)
3510 goto done_unlocked;
3511
d1310b2e
CM
3512done:
3513 if (nr == 0) {
3514 /* make sure the mapping tag for page dirty gets cleared */
3515 set_page_writeback(page);
3516 end_page_writeback(page);
3517 }
61391d56
FM
3518 if (PageError(page)) {
3519 ret = ret < 0 ? ret : -EIO;
3520 end_extent_writepage(page, ret, start, page_end);
3521 }
d1310b2e 3522 unlock_page(page);
40f76580 3523 return ret;
771ed689 3524
11c8349b 3525done_unlocked:
d1310b2e
CM
3526 return 0;
3527}
3528
fd8b2b61 3529void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3530{
74316201
N
3531 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3532 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3533}
3534
0e378df1
CM
3535static noinline_for_stack int
3536lock_extent_buffer_for_io(struct extent_buffer *eb,
3537 struct btrfs_fs_info *fs_info,
3538 struct extent_page_data *epd)
0b32f4bb
JB
3539{
3540 unsigned long i, num_pages;
3541 int flush = 0;
3542 int ret = 0;
3543
3544 if (!btrfs_try_tree_write_lock(eb)) {
3545 flush = 1;
3546 flush_write_bio(epd);
3547 btrfs_tree_lock(eb);
3548 }
3549
3550 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3551 btrfs_tree_unlock(eb);
3552 if (!epd->sync_io)
3553 return 0;
3554 if (!flush) {
3555 flush_write_bio(epd);
3556 flush = 1;
3557 }
a098d8e8
CM
3558 while (1) {
3559 wait_on_extent_buffer_writeback(eb);
3560 btrfs_tree_lock(eb);
3561 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 break;
0b32f4bb 3563 btrfs_tree_unlock(eb);
0b32f4bb
JB
3564 }
3565 }
3566
51561ffe
JB
3567 /*
3568 * We need to do this to prevent races in people who check if the eb is
3569 * under IO since we can end up having no IO bits set for a short period
3570 * of time.
3571 */
3572 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3573 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3574 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3575 spin_unlock(&eb->refs_lock);
0b32f4bb 3576 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3577 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3578 -eb->len,
3579 fs_info->dirty_metadata_batch);
0b32f4bb 3580 ret = 1;
51561ffe
JB
3581 } else {
3582 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3583 }
3584
3585 btrfs_tree_unlock(eb);
3586
3587 if (!ret)
3588 return ret;
3589
3590 num_pages = num_extent_pages(eb->start, eb->len);
3591 for (i = 0; i < num_pages; i++) {
fb85fc9a 3592 struct page *p = eb->pages[i];
0b32f4bb
JB
3593
3594 if (!trylock_page(p)) {
3595 if (!flush) {
3596 flush_write_bio(epd);
3597 flush = 1;
3598 }
3599 lock_page(p);
3600 }
3601 }
3602
3603 return ret;
3604}
3605
3606static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607{
3608 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3609 smp_mb__after_atomic();
0b32f4bb
JB
3610 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3611}
3612
656f30db
FM
3613static void set_btree_ioerr(struct page *page)
3614{
3615 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3616
3617 SetPageError(page);
3618 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3619 return;
3620
3621 /*
3622 * If writeback for a btree extent that doesn't belong to a log tree
3623 * failed, increment the counter transaction->eb_write_errors.
3624 * We do this because while the transaction is running and before it's
3625 * committing (when we call filemap_fdata[write|wait]_range against
3626 * the btree inode), we might have
3627 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3628 * returns an error or an error happens during writeback, when we're
3629 * committing the transaction we wouldn't know about it, since the pages
3630 * can be no longer dirty nor marked anymore for writeback (if a
3631 * subsequent modification to the extent buffer didn't happen before the
3632 * transaction commit), which makes filemap_fdata[write|wait]_range not
3633 * able to find the pages tagged with SetPageError at transaction
3634 * commit time. So if this happens we must abort the transaction,
3635 * otherwise we commit a super block with btree roots that point to
3636 * btree nodes/leafs whose content on disk is invalid - either garbage
3637 * or the content of some node/leaf from a past generation that got
3638 * cowed or deleted and is no longer valid.
3639 *
3640 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3641 * not be enough - we need to distinguish between log tree extents vs
3642 * non-log tree extents, and the next filemap_fdatawait_range() call
3643 * will catch and clear such errors in the mapping - and that call might
3644 * be from a log sync and not from a transaction commit. Also, checking
3645 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3646 * not done and would not be reliable - the eb might have been released
3647 * from memory and reading it back again means that flag would not be
3648 * set (since it's a runtime flag, not persisted on disk).
3649 *
3650 * Using the flags below in the btree inode also makes us achieve the
3651 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3652 * writeback for all dirty pages and before filemap_fdatawait_range()
3653 * is called, the writeback for all dirty pages had already finished
3654 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3655 * filemap_fdatawait_range() would return success, as it could not know
3656 * that writeback errors happened (the pages were no longer tagged for
3657 * writeback).
3658 */
3659 switch (eb->log_index) {
3660 case -1:
afcdd129 3661 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3662 break;
3663 case 0:
afcdd129 3664 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3665 break;
3666 case 1:
afcdd129 3667 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 default:
3670 BUG(); /* unexpected, logic error */
3671 }
3672}
3673
4246a0b6 3674static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3675{
2c30c71b 3676 struct bio_vec *bvec;
0b32f4bb 3677 struct extent_buffer *eb;
2c30c71b 3678 int i, done;
0b32f4bb 3679
c09abff8 3680 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3681 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3682 struct page *page = bvec->bv_page;
3683
0b32f4bb
JB
3684 eb = (struct extent_buffer *)page->private;
3685 BUG_ON(!eb);
3686 done = atomic_dec_and_test(&eb->io_pages);
3687
4e4cbee9 3688 if (bio->bi_status ||
4246a0b6 3689 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3690 ClearPageUptodate(page);
656f30db 3691 set_btree_ioerr(page);
0b32f4bb
JB
3692 }
3693
3694 end_page_writeback(page);
3695
3696 if (!done)
3697 continue;
3698
3699 end_extent_buffer_writeback(eb);
2c30c71b 3700 }
0b32f4bb
JB
3701
3702 bio_put(bio);
0b32f4bb
JB
3703}
3704
0e378df1 3705static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3706 struct btrfs_fs_info *fs_info,
3707 struct writeback_control *wbc,
3708 struct extent_page_data *epd)
3709{
3710 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3711 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3712 u64 offset = eb->start;
851cd173 3713 u32 nritems;
0b32f4bb 3714 unsigned long i, num_pages;
851cd173 3715 unsigned long start, end;
ff40adf7 3716 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3717 int ret = 0;
0b32f4bb 3718
656f30db 3719 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3720 num_pages = num_extent_pages(eb->start, eb->len);
3721 atomic_set(&eb->io_pages, num_pages);
de0022b9 3722
851cd173
LB
3723 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3724 nritems = btrfs_header_nritems(eb);
3eb548ee 3725 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3726 end = btrfs_node_key_ptr_offset(nritems);
3727
b159fa28 3728 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3729 } else {
3730 /*
3731 * leaf:
3732 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3733 */
3734 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3735 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3736 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3737 }
3738
0b32f4bb 3739 for (i = 0; i < num_pages; i++) {
fb85fc9a 3740 struct page *p = eb->pages[i];
0b32f4bb
JB
3741
3742 clear_page_dirty_for_io(p);
3743 set_page_writeback(p);
4b81ba48 3744 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3745 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3746 &epd->bio,
1f7ad75b 3747 end_bio_extent_buffer_writepage,
18fdc679 3748 0, 0, 0, false);
0b32f4bb 3749 if (ret) {
656f30db 3750 set_btree_ioerr(p);
fe01aa65
TK
3751 if (PageWriteback(p))
3752 end_page_writeback(p);
0b32f4bb
JB
3753 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754 end_extent_buffer_writeback(eb);
3755 ret = -EIO;
3756 break;
3757 }
09cbfeaf 3758 offset += PAGE_SIZE;
3d4b9496 3759 update_nr_written(wbc, 1);
0b32f4bb
JB
3760 unlock_page(p);
3761 }
3762
3763 if (unlikely(ret)) {
3764 for (; i < num_pages; i++) {
bbf65cf0 3765 struct page *p = eb->pages[i];
81465028 3766 clear_page_dirty_for_io(p);
0b32f4bb
JB
3767 unlock_page(p);
3768 }
3769 }
3770
3771 return ret;
3772}
3773
3774int btree_write_cache_pages(struct address_space *mapping,
3775 struct writeback_control *wbc)
3776{
3777 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779 struct extent_buffer *eb, *prev_eb = NULL;
3780 struct extent_page_data epd = {
3781 .bio = NULL,
3782 .tree = tree,
3783 .extent_locked = 0,
3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785 };
3786 int ret = 0;
3787 int done = 0;
3788 int nr_to_write_done = 0;
3789 struct pagevec pvec;
3790 int nr_pages;
3791 pgoff_t index;
3792 pgoff_t end; /* Inclusive */
3793 int scanned = 0;
3794 int tag;
3795
86679820 3796 pagevec_init(&pvec);
0b32f4bb
JB
3797 if (wbc->range_cyclic) {
3798 index = mapping->writeback_index; /* Start from prev offset */
3799 end = -1;
3800 } else {
09cbfeaf
KS
3801 index = wbc->range_start >> PAGE_SHIFT;
3802 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3803 scanned = 1;
3804 }
3805 if (wbc->sync_mode == WB_SYNC_ALL)
3806 tag = PAGECACHE_TAG_TOWRITE;
3807 else
3808 tag = PAGECACHE_TAG_DIRTY;
3809retry:
3810 if (wbc->sync_mode == WB_SYNC_ALL)
3811 tag_pages_for_writeback(mapping, index, end);
3812 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3813 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3814 tag))) {
0b32f4bb
JB
3815 unsigned i;
3816
3817 scanned = 1;
3818 for (i = 0; i < nr_pages; i++) {
3819 struct page *page = pvec.pages[i];
3820
3821 if (!PagePrivate(page))
3822 continue;
3823
b5bae261
JB
3824 spin_lock(&mapping->private_lock);
3825 if (!PagePrivate(page)) {
3826 spin_unlock(&mapping->private_lock);
3827 continue;
3828 }
3829
0b32f4bb 3830 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3831
3832 /*
3833 * Shouldn't happen and normally this would be a BUG_ON
3834 * but no sense in crashing the users box for something
3835 * we can survive anyway.
3836 */
fae7f21c 3837 if (WARN_ON(!eb)) {
b5bae261 3838 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3839 continue;
3840 }
3841
b5bae261
JB
3842 if (eb == prev_eb) {
3843 spin_unlock(&mapping->private_lock);
0b32f4bb 3844 continue;
b5bae261 3845 }
0b32f4bb 3846
b5bae261
JB
3847 ret = atomic_inc_not_zero(&eb->refs);
3848 spin_unlock(&mapping->private_lock);
3849 if (!ret)
0b32f4bb 3850 continue;
0b32f4bb
JB
3851
3852 prev_eb = eb;
3853 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3854 if (!ret) {
3855 free_extent_buffer(eb);
3856 continue;
3857 }
3858
3859 ret = write_one_eb(eb, fs_info, wbc, &epd);
3860 if (ret) {
3861 done = 1;
3862 free_extent_buffer(eb);
3863 break;
3864 }
3865 free_extent_buffer(eb);
3866
3867 /*
3868 * the filesystem may choose to bump up nr_to_write.
3869 * We have to make sure to honor the new nr_to_write
3870 * at any time
3871 */
3872 nr_to_write_done = wbc->nr_to_write <= 0;
3873 }
3874 pagevec_release(&pvec);
3875 cond_resched();
3876 }
3877 if (!scanned && !done) {
3878 /*
3879 * We hit the last page and there is more work to be done: wrap
3880 * back to the start of the file
3881 */
3882 scanned = 1;
3883 index = 0;
3884 goto retry;
3885 }
3886 flush_write_bio(&epd);
3887 return ret;
3888}
3889
d1310b2e 3890/**
4bef0848 3891 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3892 * @mapping: address space structure to write
3893 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3894 * @writepage: function called for each page
3895 * @data: data passed to writepage function
3896 *
3897 * If a page is already under I/O, write_cache_pages() skips it, even
3898 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3899 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3900 * and msync() need to guarantee that all the data which was dirty at the time
3901 * the call was made get new I/O started against them. If wbc->sync_mode is
3902 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3903 * existing IO to complete.
3904 */
4242b64a 3905static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3906 struct writeback_control *wbc,
d2c3f4f6
CM
3907 writepage_t writepage, void *data,
3908 void (*flush_fn)(void *))
d1310b2e 3909{
7fd1a3f7 3910 struct inode *inode = mapping->host;
d1310b2e
CM
3911 int ret = 0;
3912 int done = 0;
f85d7d6c 3913 int nr_to_write_done = 0;
d1310b2e
CM
3914 struct pagevec pvec;
3915 int nr_pages;
3916 pgoff_t index;
3917 pgoff_t end; /* Inclusive */
a9132667
LB
3918 pgoff_t done_index;
3919 int range_whole = 0;
d1310b2e 3920 int scanned = 0;
f7aaa06b 3921 int tag;
d1310b2e 3922
7fd1a3f7
JB
3923 /*
3924 * We have to hold onto the inode so that ordered extents can do their
3925 * work when the IO finishes. The alternative to this is failing to add
3926 * an ordered extent if the igrab() fails there and that is a huge pain
3927 * to deal with, so instead just hold onto the inode throughout the
3928 * writepages operation. If it fails here we are freeing up the inode
3929 * anyway and we'd rather not waste our time writing out stuff that is
3930 * going to be truncated anyway.
3931 */
3932 if (!igrab(inode))
3933 return 0;
3934
86679820 3935 pagevec_init(&pvec);
d1310b2e
CM
3936 if (wbc->range_cyclic) {
3937 index = mapping->writeback_index; /* Start from prev offset */
3938 end = -1;
3939 } else {
09cbfeaf
KS
3940 index = wbc->range_start >> PAGE_SHIFT;
3941 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3942 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3943 range_whole = 1;
d1310b2e
CM
3944 scanned = 1;
3945 }
f7aaa06b
JB
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3950retry:
f7aaa06b
JB
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
a9132667 3953 done_index = index;
f85d7d6c 3954 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3955 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3956 &index, end, tag))) {
d1310b2e
CM
3957 unsigned i;
3958
3959 scanned = 1;
3960 for (i = 0; i < nr_pages; i++) {
3961 struct page *page = pvec.pages[i];
3962
a9132667 3963 done_index = page->index;
d1310b2e
CM
3964 /*
3965 * At this point we hold neither mapping->tree_lock nor
3966 * lock on the page itself: the page may be truncated or
3967 * invalidated (changing page->mapping to NULL), or even
3968 * swizzled back from swapper_space to tmpfs file
3969 * mapping
3970 */
c8f2f24b
JB
3971 if (!trylock_page(page)) {
3972 flush_fn(data);
3973 lock_page(page);
01d658f2 3974 }
d1310b2e
CM
3975
3976 if (unlikely(page->mapping != mapping)) {
3977 unlock_page(page);
3978 continue;
3979 }
3980
d2c3f4f6 3981 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3982 if (PageWriteback(page))
3983 flush_fn(data);
d1310b2e 3984 wait_on_page_writeback(page);
d2c3f4f6 3985 }
d1310b2e
CM
3986
3987 if (PageWriteback(page) ||
3988 !clear_page_dirty_for_io(page)) {
3989 unlock_page(page);
3990 continue;
3991 }
3992
3993 ret = (*writepage)(page, wbc, data);
3994
3995 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3996 unlock_page(page);
3997 ret = 0;
3998 }
a9132667
LB
3999 if (ret < 0) {
4000 /*
4001 * done_index is set past this page,
4002 * so media errors will not choke
4003 * background writeout for the entire
4004 * file. This has consequences for
4005 * range_cyclic semantics (ie. it may
4006 * not be suitable for data integrity
4007 * writeout).
4008 */
4009 done_index = page->index + 1;
4010 done = 1;
4011 break;
4012 }
f85d7d6c
CM
4013
4014 /*
4015 * the filesystem may choose to bump up nr_to_write.
4016 * We have to make sure to honor the new nr_to_write
4017 * at any time
4018 */
4019 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4020 }
4021 pagevec_release(&pvec);
4022 cond_resched();
4023 }
894b36e3 4024 if (!scanned && !done) {
d1310b2e
CM
4025 /*
4026 * We hit the last page and there is more work to be done: wrap
4027 * back to the start of the file
4028 */
4029 scanned = 1;
4030 index = 0;
4031 goto retry;
4032 }
a9132667
LB
4033
4034 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4035 mapping->writeback_index = done_index;
4036
7fd1a3f7 4037 btrfs_add_delayed_iput(inode);
894b36e3 4038 return ret;
d1310b2e 4039}
d1310b2e 4040
ffbd517d 4041static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4042{
d2c3f4f6 4043 if (epd->bio) {
355808c2
JM
4044 int ret;
4045
18fdc679 4046 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4047 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4048 epd->bio = NULL;
4049 }
4050}
4051
ffbd517d
CM
4052static noinline void flush_write_bio(void *data)
4053{
4054 struct extent_page_data *epd = data;
4055 flush_epd_write_bio(epd);
4056}
4057
d1310b2e 4058int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
d1310b2e
CM
4059 struct writeback_control *wbc)
4060{
4061 int ret;
d1310b2e
CM
4062 struct extent_page_data epd = {
4063 .bio = NULL,
4064 .tree = tree,
771ed689 4065 .extent_locked = 0,
ffbd517d 4066 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4067 };
d1310b2e 4068
d1310b2e
CM
4069 ret = __extent_writepage(page, wbc, &epd);
4070
ffbd517d 4071 flush_epd_write_bio(&epd);
d1310b2e
CM
4072 return ret;
4073}
d1310b2e 4074
771ed689 4075int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
916b9298 4076 u64 start, u64 end, int mode)
771ed689
CM
4077{
4078 int ret = 0;
4079 struct address_space *mapping = inode->i_mapping;
4080 struct page *page;
09cbfeaf
KS
4081 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4082 PAGE_SHIFT;
771ed689
CM
4083
4084 struct extent_page_data epd = {
4085 .bio = NULL,
4086 .tree = tree,
771ed689 4087 .extent_locked = 1,
ffbd517d 4088 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4089 };
4090 struct writeback_control wbc_writepages = {
771ed689 4091 .sync_mode = mode,
771ed689
CM
4092 .nr_to_write = nr_pages * 2,
4093 .range_start = start,
4094 .range_end = end + 1,
4095 };
4096
d397712b 4097 while (start <= end) {
09cbfeaf 4098 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4099 if (clear_page_dirty_for_io(page))
4100 ret = __extent_writepage(page, &wbc_writepages, &epd);
4101 else {
4102 if (tree->ops && tree->ops->writepage_end_io_hook)
4103 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4104 start + PAGE_SIZE - 1,
771ed689
CM
4105 NULL, 1);
4106 unlock_page(page);
4107 }
09cbfeaf
KS
4108 put_page(page);
4109 start += PAGE_SIZE;
771ed689
CM
4110 }
4111
ffbd517d 4112 flush_epd_write_bio(&epd);
771ed689
CM
4113 return ret;
4114}
d1310b2e
CM
4115
4116int extent_writepages(struct extent_io_tree *tree,
4117 struct address_space *mapping,
d1310b2e
CM
4118 struct writeback_control *wbc)
4119{
4120 int ret = 0;
4121 struct extent_page_data epd = {
4122 .bio = NULL,
4123 .tree = tree,
771ed689 4124 .extent_locked = 0,
ffbd517d 4125 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4126 };
4127
4242b64a 4128 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4129 flush_write_bio);
ffbd517d 4130 flush_epd_write_bio(&epd);
d1310b2e
CM
4131 return ret;
4132}
d1310b2e
CM
4133
4134int extent_readpages(struct extent_io_tree *tree,
4135 struct address_space *mapping,
4136 struct list_head *pages, unsigned nr_pages,
4137 get_extent_t get_extent)
4138{
4139 struct bio *bio = NULL;
4140 unsigned page_idx;
c8b97818 4141 unsigned long bio_flags = 0;
67c9684f
LB
4142 struct page *pagepool[16];
4143 struct page *page;
125bac01 4144 struct extent_map *em_cached = NULL;
67c9684f 4145 int nr = 0;
808f80b4 4146 u64 prev_em_start = (u64)-1;
d1310b2e 4147
d1310b2e 4148 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4149 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4150
4151 prefetchw(&page->flags);
4152 list_del(&page->lru);
67c9684f 4153 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4154 page->index,
4155 readahead_gfp_mask(mapping))) {
09cbfeaf 4156 put_page(page);
67c9684f 4157 continue;
d1310b2e 4158 }
67c9684f
LB
4159
4160 pagepool[nr++] = page;
4161 if (nr < ARRAY_SIZE(pagepool))
4162 continue;
125bac01 4163 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
d3fac6ba 4164 &bio, &bio_flags, &prev_em_start);
67c9684f 4165 nr = 0;
d1310b2e 4166 }
9974090b 4167 if (nr)
125bac01 4168 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
d3fac6ba 4169 &bio, &bio_flags, &prev_em_start);
67c9684f 4170
125bac01
MX
4171 if (em_cached)
4172 free_extent_map(em_cached);
4173
d1310b2e
CM
4174 BUG_ON(!list_empty(pages));
4175 if (bio)
1f7ad75b 4176 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4177 return 0;
4178}
d1310b2e
CM
4179
4180/*
4181 * basic invalidatepage code, this waits on any locked or writeback
4182 * ranges corresponding to the page, and then deletes any extent state
4183 * records from the tree
4184 */
4185int extent_invalidatepage(struct extent_io_tree *tree,
4186 struct page *page, unsigned long offset)
4187{
2ac55d41 4188 struct extent_state *cached_state = NULL;
4eee4fa4 4189 u64 start = page_offset(page);
09cbfeaf 4190 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4191 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4192
fda2832f 4193 start += ALIGN(offset, blocksize);
d1310b2e
CM
4194 if (start > end)
4195 return 0;
4196
ff13db41 4197 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4198 wait_on_page_writeback(page);
d1310b2e 4199 clear_extent_bit(tree, start, end,
32c00aff
JB
4200 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4201 EXTENT_DO_ACCOUNTING,
ae0f1625 4202 1, 1, &cached_state);
d1310b2e
CM
4203 return 0;
4204}
d1310b2e 4205
7b13b7b1
CM
4206/*
4207 * a helper for releasepage, this tests for areas of the page that
4208 * are locked or under IO and drops the related state bits if it is safe
4209 * to drop the page.
4210 */
48a3b636
ES
4211static int try_release_extent_state(struct extent_map_tree *map,
4212 struct extent_io_tree *tree,
4213 struct page *page, gfp_t mask)
7b13b7b1 4214{
4eee4fa4 4215 u64 start = page_offset(page);
09cbfeaf 4216 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4217 int ret = 1;
4218
211f90e6 4219 if (test_range_bit(tree, start, end,
8b62b72b 4220 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4221 ret = 0;
4222 else {
11ef160f
CM
4223 /*
4224 * at this point we can safely clear everything except the
4225 * locked bit and the nodatasum bit
4226 */
66b0c887 4227 ret = __clear_extent_bit(tree, start, end,
11ef160f 4228 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4229 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4230
4231 /* if clear_extent_bit failed for enomem reasons,
4232 * we can't allow the release to continue.
4233 */
4234 if (ret < 0)
4235 ret = 0;
4236 else
4237 ret = 1;
7b13b7b1
CM
4238 }
4239 return ret;
4240}
7b13b7b1 4241
d1310b2e
CM
4242/*
4243 * a helper for releasepage. As long as there are no locked extents
4244 * in the range corresponding to the page, both state records and extent
4245 * map records are removed
4246 */
4247int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4248 struct extent_io_tree *tree, struct page *page,
4249 gfp_t mask)
d1310b2e
CM
4250{
4251 struct extent_map *em;
4eee4fa4 4252 u64 start = page_offset(page);
09cbfeaf 4253 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4254
d0164adc 4255 if (gfpflags_allow_blocking(mask) &&
ee22184b 4256 page->mapping->host->i_size > SZ_16M) {
39b5637f 4257 u64 len;
70dec807 4258 while (start <= end) {
39b5637f 4259 len = end - start + 1;
890871be 4260 write_lock(&map->lock);
39b5637f 4261 em = lookup_extent_mapping(map, start, len);
285190d9 4262 if (!em) {
890871be 4263 write_unlock(&map->lock);
70dec807
CM
4264 break;
4265 }
7f3c74fb
CM
4266 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4267 em->start != start) {
890871be 4268 write_unlock(&map->lock);
70dec807
CM
4269 free_extent_map(em);
4270 break;
4271 }
4272 if (!test_range_bit(tree, em->start,
4273 extent_map_end(em) - 1,
8b62b72b 4274 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4275 0, NULL)) {
70dec807
CM
4276 remove_extent_mapping(map, em);
4277 /* once for the rb tree */
4278 free_extent_map(em);
4279 }
4280 start = extent_map_end(em);
890871be 4281 write_unlock(&map->lock);
70dec807
CM
4282
4283 /* once for us */
d1310b2e
CM
4284 free_extent_map(em);
4285 }
d1310b2e 4286 }
7b13b7b1 4287 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4288}
d1310b2e 4289
ec29ed5b
CM
4290/*
4291 * helper function for fiemap, which doesn't want to see any holes.
4292 * This maps until we find something past 'last'
4293 */
4294static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4295 u64 offset, u64 last)
ec29ed5b 4296{
da17066c 4297 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4298 struct extent_map *em;
4299 u64 len;
4300
4301 if (offset >= last)
4302 return NULL;
4303
67871254 4304 while (1) {
ec29ed5b
CM
4305 len = last - offset;
4306 if (len == 0)
4307 break;
fda2832f 4308 len = ALIGN(len, sectorsize);
e3350e16
DS
4309 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4310 len, 0);
c704005d 4311 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4312 return em;
4313
4314 /* if this isn't a hole return it */
4315 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4316 em->block_start != EXTENT_MAP_HOLE) {
4317 return em;
4318 }
4319
4320 /* this is a hole, advance to the next extent */
4321 offset = extent_map_end(em);
4322 free_extent_map(em);
4323 if (offset >= last)
4324 break;
4325 }
4326 return NULL;
4327}
4328
4751832d
QW
4329/*
4330 * To cache previous fiemap extent
4331 *
4332 * Will be used for merging fiemap extent
4333 */
4334struct fiemap_cache {
4335 u64 offset;
4336 u64 phys;
4337 u64 len;
4338 u32 flags;
4339 bool cached;
4340};
4341
4342/*
4343 * Helper to submit fiemap extent.
4344 *
4345 * Will try to merge current fiemap extent specified by @offset, @phys,
4346 * @len and @flags with cached one.
4347 * And only when we fails to merge, cached one will be submitted as
4348 * fiemap extent.
4349 *
4350 * Return value is the same as fiemap_fill_next_extent().
4351 */
4352static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4353 struct fiemap_cache *cache,
4354 u64 offset, u64 phys, u64 len, u32 flags)
4355{
4356 int ret = 0;
4357
4358 if (!cache->cached)
4359 goto assign;
4360
4361 /*
4362 * Sanity check, extent_fiemap() should have ensured that new
4363 * fiemap extent won't overlap with cahced one.
4364 * Not recoverable.
4365 *
4366 * NOTE: Physical address can overlap, due to compression
4367 */
4368 if (cache->offset + cache->len > offset) {
4369 WARN_ON(1);
4370 return -EINVAL;
4371 }
4372
4373 /*
4374 * Only merges fiemap extents if
4375 * 1) Their logical addresses are continuous
4376 *
4377 * 2) Their physical addresses are continuous
4378 * So truly compressed (physical size smaller than logical size)
4379 * extents won't get merged with each other
4380 *
4381 * 3) Share same flags except FIEMAP_EXTENT_LAST
4382 * So regular extent won't get merged with prealloc extent
4383 */
4384 if (cache->offset + cache->len == offset &&
4385 cache->phys + cache->len == phys &&
4386 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4387 (flags & ~FIEMAP_EXTENT_LAST)) {
4388 cache->len += len;
4389 cache->flags |= flags;
4390 goto try_submit_last;
4391 }
4392
4393 /* Not mergeable, need to submit cached one */
4394 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4395 cache->len, cache->flags);
4396 cache->cached = false;
4397 if (ret)
4398 return ret;
4399assign:
4400 cache->cached = true;
4401 cache->offset = offset;
4402 cache->phys = phys;
4403 cache->len = len;
4404 cache->flags = flags;
4405try_submit_last:
4406 if (cache->flags & FIEMAP_EXTENT_LAST) {
4407 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4408 cache->phys, cache->len, cache->flags);
4409 cache->cached = false;
4410 }
4411 return ret;
4412}
4413
4414/*
848c23b7 4415 * Emit last fiemap cache
4751832d 4416 *
848c23b7
QW
4417 * The last fiemap cache may still be cached in the following case:
4418 * 0 4k 8k
4419 * |<- Fiemap range ->|
4420 * |<------------ First extent ----------->|
4421 *
4422 * In this case, the first extent range will be cached but not emitted.
4423 * So we must emit it before ending extent_fiemap().
4751832d 4424 */
848c23b7
QW
4425static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4426 struct fiemap_extent_info *fieinfo,
4427 struct fiemap_cache *cache)
4751832d
QW
4428{
4429 int ret;
4430
4431 if (!cache->cached)
4432 return 0;
4433
4751832d
QW
4434 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4435 cache->len, cache->flags);
4436 cache->cached = false;
4437 if (ret > 0)
4438 ret = 0;
4439 return ret;
4440}
4441
1506fcc8 4442int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4443 __u64 start, __u64 len)
1506fcc8 4444{
975f84fe 4445 int ret = 0;
1506fcc8
YS
4446 u64 off = start;
4447 u64 max = start + len;
4448 u32 flags = 0;
975f84fe
JB
4449 u32 found_type;
4450 u64 last;
ec29ed5b 4451 u64 last_for_get_extent = 0;
1506fcc8 4452 u64 disko = 0;
ec29ed5b 4453 u64 isize = i_size_read(inode);
975f84fe 4454 struct btrfs_key found_key;
1506fcc8 4455 struct extent_map *em = NULL;
2ac55d41 4456 struct extent_state *cached_state = NULL;
975f84fe 4457 struct btrfs_path *path;
dc046b10 4458 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4459 struct fiemap_cache cache = { 0 };
1506fcc8 4460 int end = 0;
ec29ed5b
CM
4461 u64 em_start = 0;
4462 u64 em_len = 0;
4463 u64 em_end = 0;
1506fcc8
YS
4464
4465 if (len == 0)
4466 return -EINVAL;
4467
975f84fe
JB
4468 path = btrfs_alloc_path();
4469 if (!path)
4470 return -ENOMEM;
4471 path->leave_spinning = 1;
4472
da17066c
JM
4473 start = round_down(start, btrfs_inode_sectorsize(inode));
4474 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4475
ec29ed5b
CM
4476 /*
4477 * lookup the last file extent. We're not using i_size here
4478 * because there might be preallocation past i_size
4479 */
f85b7379
DS
4480 ret = btrfs_lookup_file_extent(NULL, root, path,
4481 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4482 if (ret < 0) {
4483 btrfs_free_path(path);
4484 return ret;
2d324f59
LB
4485 } else {
4486 WARN_ON(!ret);
4487 if (ret == 1)
4488 ret = 0;
975f84fe 4489 }
2d324f59 4490
975f84fe 4491 path->slots[0]--;
975f84fe 4492 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4493 found_type = found_key.type;
975f84fe 4494
ec29ed5b 4495 /* No extents, but there might be delalloc bits */
4a0cc7ca 4496 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4497 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4498 /* have to trust i_size as the end */
4499 last = (u64)-1;
4500 last_for_get_extent = isize;
4501 } else {
4502 /*
4503 * remember the start of the last extent. There are a
4504 * bunch of different factors that go into the length of the
4505 * extent, so its much less complex to remember where it started
4506 */
4507 last = found_key.offset;
4508 last_for_get_extent = last + 1;
975f84fe 4509 }
fe09e16c 4510 btrfs_release_path(path);
975f84fe 4511
ec29ed5b
CM
4512 /*
4513 * we might have some extents allocated but more delalloc past those
4514 * extents. so, we trust isize unless the start of the last extent is
4515 * beyond isize
4516 */
4517 if (last < isize) {
4518 last = (u64)-1;
4519 last_for_get_extent = isize;
4520 }
4521
ff13db41 4522 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4523 &cached_state);
ec29ed5b 4524
e3350e16 4525 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4526 if (!em)
4527 goto out;
4528 if (IS_ERR(em)) {
4529 ret = PTR_ERR(em);
4530 goto out;
4531 }
975f84fe 4532
1506fcc8 4533 while (!end) {
b76bb701 4534 u64 offset_in_extent = 0;
ea8efc74
CM
4535
4536 /* break if the extent we found is outside the range */
4537 if (em->start >= max || extent_map_end(em) < off)
4538 break;
4539
4540 /*
4541 * get_extent may return an extent that starts before our
4542 * requested range. We have to make sure the ranges
4543 * we return to fiemap always move forward and don't
4544 * overlap, so adjust the offsets here
4545 */
4546 em_start = max(em->start, off);
1506fcc8 4547
ea8efc74
CM
4548 /*
4549 * record the offset from the start of the extent
b76bb701
JB
4550 * for adjusting the disk offset below. Only do this if the
4551 * extent isn't compressed since our in ram offset may be past
4552 * what we have actually allocated on disk.
ea8efc74 4553 */
b76bb701
JB
4554 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4555 offset_in_extent = em_start - em->start;
ec29ed5b 4556 em_end = extent_map_end(em);
ea8efc74 4557 em_len = em_end - em_start;
1506fcc8
YS
4558 disko = 0;
4559 flags = 0;
4560
ea8efc74
CM
4561 /*
4562 * bump off for our next call to get_extent
4563 */
4564 off = extent_map_end(em);
4565 if (off >= max)
4566 end = 1;
4567
93dbfad7 4568 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4569 end = 1;
4570 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4571 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4572 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4573 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4574 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4575 flags |= (FIEMAP_EXTENT_DELALLOC |
4576 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4577 } else if (fieinfo->fi_extents_max) {
4578 u64 bytenr = em->block_start -
4579 (em->start - em->orig_start);
fe09e16c 4580
ea8efc74 4581 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4582
4583 /*
4584 * As btrfs supports shared space, this information
4585 * can be exported to userspace tools via
dc046b10
JB
4586 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4587 * then we're just getting a count and we can skip the
4588 * lookup stuff.
fe09e16c 4589 */
bb739cf0
EN
4590 ret = btrfs_check_shared(root,
4591 btrfs_ino(BTRFS_I(inode)),
4592 bytenr);
dc046b10 4593 if (ret < 0)
fe09e16c 4594 goto out_free;
dc046b10 4595 if (ret)
fe09e16c 4596 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4597 ret = 0;
1506fcc8
YS
4598 }
4599 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4600 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4601 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4602 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4603
1506fcc8
YS
4604 free_extent_map(em);
4605 em = NULL;
ec29ed5b
CM
4606 if ((em_start >= last) || em_len == (u64)-1 ||
4607 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4608 flags |= FIEMAP_EXTENT_LAST;
4609 end = 1;
4610 }
4611
ec29ed5b 4612 /* now scan forward to see if this is really the last extent. */
e3350e16 4613 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4614 if (IS_ERR(em)) {
4615 ret = PTR_ERR(em);
4616 goto out;
4617 }
4618 if (!em) {
975f84fe
JB
4619 flags |= FIEMAP_EXTENT_LAST;
4620 end = 1;
4621 }
4751832d
QW
4622 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4623 em_len, flags);
26e726af
CS
4624 if (ret) {
4625 if (ret == 1)
4626 ret = 0;
ec29ed5b 4627 goto out_free;
26e726af 4628 }
1506fcc8
YS
4629 }
4630out_free:
4751832d 4631 if (!ret)
848c23b7 4632 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4633 free_extent_map(em);
4634out:
fe09e16c 4635 btrfs_free_path(path);
a52f4cd2 4636 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4637 &cached_state, GFP_NOFS);
1506fcc8
YS
4638 return ret;
4639}
4640
727011e0
CM
4641static void __free_extent_buffer(struct extent_buffer *eb)
4642{
6d49ba1b 4643 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4644 kmem_cache_free(extent_buffer_cache, eb);
4645}
4646
a26e8c9f 4647int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4648{
4649 return (atomic_read(&eb->io_pages) ||
4650 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4651 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4652}
4653
4654/*
4655 * Helper for releasing extent buffer page.
4656 */
a50924e3 4657static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4658{
4659 unsigned long index;
db7f3436
JB
4660 struct page *page;
4661 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4662
4663 BUG_ON(extent_buffer_under_io(eb));
4664
a50924e3
DS
4665 index = num_extent_pages(eb->start, eb->len);
4666 if (index == 0)
db7f3436
JB
4667 return;
4668
4669 do {
4670 index--;
fb85fc9a 4671 page = eb->pages[index];
5d2361db
FL
4672 if (!page)
4673 continue;
4674 if (mapped)
db7f3436 4675 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4676 /*
4677 * We do this since we'll remove the pages after we've
4678 * removed the eb from the radix tree, so we could race
4679 * and have this page now attached to the new eb. So
4680 * only clear page_private if it's still connected to
4681 * this eb.
4682 */
4683 if (PagePrivate(page) &&
4684 page->private == (unsigned long)eb) {
4685 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4686 BUG_ON(PageDirty(page));
4687 BUG_ON(PageWriteback(page));
db7f3436 4688 /*
5d2361db
FL
4689 * We need to make sure we haven't be attached
4690 * to a new eb.
db7f3436 4691 */
5d2361db
FL
4692 ClearPagePrivate(page);
4693 set_page_private(page, 0);
4694 /* One for the page private */
09cbfeaf 4695 put_page(page);
db7f3436 4696 }
5d2361db
FL
4697
4698 if (mapped)
4699 spin_unlock(&page->mapping->private_lock);
4700
01327610 4701 /* One for when we allocated the page */
09cbfeaf 4702 put_page(page);
a50924e3 4703 } while (index != 0);
db7f3436
JB
4704}
4705
4706/*
4707 * Helper for releasing the extent buffer.
4708 */
4709static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4710{
a50924e3 4711 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4712 __free_extent_buffer(eb);
4713}
4714
f28491e0
JB
4715static struct extent_buffer *
4716__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4717 unsigned long len)
d1310b2e
CM
4718{
4719 struct extent_buffer *eb = NULL;
4720
d1b5c567 4721 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4722 eb->start = start;
4723 eb->len = len;
f28491e0 4724 eb->fs_info = fs_info;
815a51c7 4725 eb->bflags = 0;
bd681513
CM
4726 rwlock_init(&eb->lock);
4727 atomic_set(&eb->write_locks, 0);
4728 atomic_set(&eb->read_locks, 0);
4729 atomic_set(&eb->blocking_readers, 0);
4730 atomic_set(&eb->blocking_writers, 0);
4731 atomic_set(&eb->spinning_readers, 0);
4732 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4733 eb->lock_nested = 0;
bd681513
CM
4734 init_waitqueue_head(&eb->write_lock_wq);
4735 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4736
6d49ba1b
ES
4737 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4738
3083ee2e 4739 spin_lock_init(&eb->refs_lock);
d1310b2e 4740 atomic_set(&eb->refs, 1);
0b32f4bb 4741 atomic_set(&eb->io_pages, 0);
727011e0 4742
b8dae313
DS
4743 /*
4744 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4745 */
4746 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4747 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4748 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4749
4750 return eb;
4751}
4752
815a51c7
JS
4753struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4754{
4755 unsigned long i;
4756 struct page *p;
4757 struct extent_buffer *new;
4758 unsigned long num_pages = num_extent_pages(src->start, src->len);
4759
3f556f78 4760 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4761 if (new == NULL)
4762 return NULL;
4763
4764 for (i = 0; i < num_pages; i++) {
9ec72677 4765 p = alloc_page(GFP_NOFS);
db7f3436
JB
4766 if (!p) {
4767 btrfs_release_extent_buffer(new);
4768 return NULL;
4769 }
815a51c7
JS
4770 attach_extent_buffer_page(new, p);
4771 WARN_ON(PageDirty(p));
4772 SetPageUptodate(p);
4773 new->pages[i] = p;
fba1acf9 4774 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4775 }
4776
815a51c7
JS
4777 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4778 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4779
4780 return new;
4781}
4782
0f331229
OS
4783struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4784 u64 start, unsigned long len)
815a51c7
JS
4785{
4786 struct extent_buffer *eb;
3f556f78 4787 unsigned long num_pages;
815a51c7
JS
4788 unsigned long i;
4789
0f331229 4790 num_pages = num_extent_pages(start, len);
3f556f78
DS
4791
4792 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4793 if (!eb)
4794 return NULL;
4795
4796 for (i = 0; i < num_pages; i++) {
9ec72677 4797 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4798 if (!eb->pages[i])
4799 goto err;
4800 }
4801 set_extent_buffer_uptodate(eb);
4802 btrfs_set_header_nritems(eb, 0);
4803 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4804
4805 return eb;
4806err:
84167d19
SB
4807 for (; i > 0; i--)
4808 __free_page(eb->pages[i - 1]);
815a51c7
JS
4809 __free_extent_buffer(eb);
4810 return NULL;
4811}
4812
0f331229 4813struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4814 u64 start)
0f331229 4815{
da17066c 4816 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4817}
4818
0b32f4bb
JB
4819static void check_buffer_tree_ref(struct extent_buffer *eb)
4820{
242e18c7 4821 int refs;
0b32f4bb
JB
4822 /* the ref bit is tricky. We have to make sure it is set
4823 * if we have the buffer dirty. Otherwise the
4824 * code to free a buffer can end up dropping a dirty
4825 * page
4826 *
4827 * Once the ref bit is set, it won't go away while the
4828 * buffer is dirty or in writeback, and it also won't
4829 * go away while we have the reference count on the
4830 * eb bumped.
4831 *
4832 * We can't just set the ref bit without bumping the
4833 * ref on the eb because free_extent_buffer might
4834 * see the ref bit and try to clear it. If this happens
4835 * free_extent_buffer might end up dropping our original
4836 * ref by mistake and freeing the page before we are able
4837 * to add one more ref.
4838 *
4839 * So bump the ref count first, then set the bit. If someone
4840 * beat us to it, drop the ref we added.
4841 */
242e18c7
CM
4842 refs = atomic_read(&eb->refs);
4843 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4844 return;
4845
594831c4
JB
4846 spin_lock(&eb->refs_lock);
4847 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4848 atomic_inc(&eb->refs);
594831c4 4849 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4850}
4851
2457aec6
MG
4852static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4853 struct page *accessed)
5df4235e
JB
4854{
4855 unsigned long num_pages, i;
4856
0b32f4bb
JB
4857 check_buffer_tree_ref(eb);
4858
5df4235e
JB
4859 num_pages = num_extent_pages(eb->start, eb->len);
4860 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4861 struct page *p = eb->pages[i];
4862
2457aec6
MG
4863 if (p != accessed)
4864 mark_page_accessed(p);
5df4235e
JB
4865 }
4866}
4867
f28491e0
JB
4868struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4869 u64 start)
452c75c3
CS
4870{
4871 struct extent_buffer *eb;
4872
4873 rcu_read_lock();
f28491e0 4874 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4875 start >> PAGE_SHIFT);
452c75c3
CS
4876 if (eb && atomic_inc_not_zero(&eb->refs)) {
4877 rcu_read_unlock();
062c19e9
FM
4878 /*
4879 * Lock our eb's refs_lock to avoid races with
4880 * free_extent_buffer. When we get our eb it might be flagged
4881 * with EXTENT_BUFFER_STALE and another task running
4882 * free_extent_buffer might have seen that flag set,
4883 * eb->refs == 2, that the buffer isn't under IO (dirty and
4884 * writeback flags not set) and it's still in the tree (flag
4885 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4886 * of decrementing the extent buffer's reference count twice.
4887 * So here we could race and increment the eb's reference count,
4888 * clear its stale flag, mark it as dirty and drop our reference
4889 * before the other task finishes executing free_extent_buffer,
4890 * which would later result in an attempt to free an extent
4891 * buffer that is dirty.
4892 */
4893 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4894 spin_lock(&eb->refs_lock);
4895 spin_unlock(&eb->refs_lock);
4896 }
2457aec6 4897 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4898 return eb;
4899 }
4900 rcu_read_unlock();
4901
4902 return NULL;
4903}
4904
faa2dbf0
JB
4905#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4906struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4907 u64 start)
faa2dbf0
JB
4908{
4909 struct extent_buffer *eb, *exists = NULL;
4910 int ret;
4911
4912 eb = find_extent_buffer(fs_info, start);
4913 if (eb)
4914 return eb;
da17066c 4915 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4916 if (!eb)
4917 return NULL;
4918 eb->fs_info = fs_info;
4919again:
e1860a77 4920 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4921 if (ret)
4922 goto free_eb;
4923 spin_lock(&fs_info->buffer_lock);
4924 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4925 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4926 spin_unlock(&fs_info->buffer_lock);
4927 radix_tree_preload_end();
4928 if (ret == -EEXIST) {
4929 exists = find_extent_buffer(fs_info, start);
4930 if (exists)
4931 goto free_eb;
4932 else
4933 goto again;
4934 }
4935 check_buffer_tree_ref(eb);
4936 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4937
4938 /*
4939 * We will free dummy extent buffer's if they come into
4940 * free_extent_buffer with a ref count of 2, but if we are using this we
4941 * want the buffers to stay in memory until we're done with them, so
4942 * bump the ref count again.
4943 */
4944 atomic_inc(&eb->refs);
4945 return eb;
4946free_eb:
4947 btrfs_release_extent_buffer(eb);
4948 return exists;
4949}
4950#endif
4951
f28491e0 4952struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4953 u64 start)
d1310b2e 4954{
da17066c 4955 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4956 unsigned long num_pages = num_extent_pages(start, len);
4957 unsigned long i;
09cbfeaf 4958 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4959 struct extent_buffer *eb;
6af118ce 4960 struct extent_buffer *exists = NULL;
d1310b2e 4961 struct page *p;
f28491e0 4962 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4963 int uptodate = 1;
19fe0a8b 4964 int ret;
d1310b2e 4965
da17066c 4966 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4967 btrfs_err(fs_info, "bad tree block start %llu", start);
4968 return ERR_PTR(-EINVAL);
4969 }
4970
f28491e0 4971 eb = find_extent_buffer(fs_info, start);
452c75c3 4972 if (eb)
6af118ce 4973 return eb;
6af118ce 4974
23d79d81 4975 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4976 if (!eb)
c871b0f2 4977 return ERR_PTR(-ENOMEM);
d1310b2e 4978
727011e0 4979 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4980 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4981 if (!p) {
4982 exists = ERR_PTR(-ENOMEM);
6af118ce 4983 goto free_eb;
c871b0f2 4984 }
4f2de97a
JB
4985
4986 spin_lock(&mapping->private_lock);
4987 if (PagePrivate(p)) {
4988 /*
4989 * We could have already allocated an eb for this page
4990 * and attached one so lets see if we can get a ref on
4991 * the existing eb, and if we can we know it's good and
4992 * we can just return that one, else we know we can just
4993 * overwrite page->private.
4994 */
4995 exists = (struct extent_buffer *)p->private;
4996 if (atomic_inc_not_zero(&exists->refs)) {
4997 spin_unlock(&mapping->private_lock);
4998 unlock_page(p);
09cbfeaf 4999 put_page(p);
2457aec6 5000 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5001 goto free_eb;
5002 }
5ca64f45 5003 exists = NULL;
4f2de97a 5004
0b32f4bb 5005 /*
4f2de97a
JB
5006 * Do this so attach doesn't complain and we need to
5007 * drop the ref the old guy had.
5008 */
5009 ClearPagePrivate(p);
0b32f4bb 5010 WARN_ON(PageDirty(p));
09cbfeaf 5011 put_page(p);
d1310b2e 5012 }
4f2de97a
JB
5013 attach_extent_buffer_page(eb, p);
5014 spin_unlock(&mapping->private_lock);
0b32f4bb 5015 WARN_ON(PageDirty(p));
727011e0 5016 eb->pages[i] = p;
d1310b2e
CM
5017 if (!PageUptodate(p))
5018 uptodate = 0;
eb14ab8e
CM
5019
5020 /*
5021 * see below about how we avoid a nasty race with release page
5022 * and why we unlock later
5023 */
d1310b2e
CM
5024 }
5025 if (uptodate)
b4ce94de 5026 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5027again:
e1860a77 5028 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5029 if (ret) {
5030 exists = ERR_PTR(ret);
19fe0a8b 5031 goto free_eb;
c871b0f2 5032 }
19fe0a8b 5033
f28491e0
JB
5034 spin_lock(&fs_info->buffer_lock);
5035 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5036 start >> PAGE_SHIFT, eb);
f28491e0 5037 spin_unlock(&fs_info->buffer_lock);
452c75c3 5038 radix_tree_preload_end();
19fe0a8b 5039 if (ret == -EEXIST) {
f28491e0 5040 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5041 if (exists)
5042 goto free_eb;
5043 else
115391d2 5044 goto again;
6af118ce 5045 }
6af118ce 5046 /* add one reference for the tree */
0b32f4bb 5047 check_buffer_tree_ref(eb);
34b41ace 5048 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5049
5050 /*
5051 * there is a race where release page may have
5052 * tried to find this extent buffer in the radix
5053 * but failed. It will tell the VM it is safe to
5054 * reclaim the, and it will clear the page private bit.
5055 * We must make sure to set the page private bit properly
5056 * after the extent buffer is in the radix tree so
5057 * it doesn't get lost
5058 */
727011e0
CM
5059 SetPageChecked(eb->pages[0]);
5060 for (i = 1; i < num_pages; i++) {
fb85fc9a 5061 p = eb->pages[i];
727011e0
CM
5062 ClearPageChecked(p);
5063 unlock_page(p);
5064 }
5065 unlock_page(eb->pages[0]);
d1310b2e
CM
5066 return eb;
5067
6af118ce 5068free_eb:
5ca64f45 5069 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5070 for (i = 0; i < num_pages; i++) {
5071 if (eb->pages[i])
5072 unlock_page(eb->pages[i]);
5073 }
eb14ab8e 5074
897ca6e9 5075 btrfs_release_extent_buffer(eb);
6af118ce 5076 return exists;
d1310b2e 5077}
d1310b2e 5078
3083ee2e
JB
5079static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5080{
5081 struct extent_buffer *eb =
5082 container_of(head, struct extent_buffer, rcu_head);
5083
5084 __free_extent_buffer(eb);
5085}
5086
3083ee2e 5087/* Expects to have eb->eb_lock already held */
f7a52a40 5088static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5089{
5090 WARN_ON(atomic_read(&eb->refs) == 0);
5091 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5092 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5093 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5094
815a51c7 5095 spin_unlock(&eb->refs_lock);
3083ee2e 5096
f28491e0
JB
5097 spin_lock(&fs_info->buffer_lock);
5098 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5099 eb->start >> PAGE_SHIFT);
f28491e0 5100 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5101 } else {
5102 spin_unlock(&eb->refs_lock);
815a51c7 5103 }
3083ee2e
JB
5104
5105 /* Should be safe to release our pages at this point */
a50924e3 5106 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5107#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5108 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5109 __free_extent_buffer(eb);
5110 return 1;
5111 }
5112#endif
3083ee2e 5113 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5114 return 1;
3083ee2e
JB
5115 }
5116 spin_unlock(&eb->refs_lock);
e64860aa
JB
5117
5118 return 0;
3083ee2e
JB
5119}
5120
d1310b2e
CM
5121void free_extent_buffer(struct extent_buffer *eb)
5122{
242e18c7
CM
5123 int refs;
5124 int old;
d1310b2e
CM
5125 if (!eb)
5126 return;
5127
242e18c7
CM
5128 while (1) {
5129 refs = atomic_read(&eb->refs);
5130 if (refs <= 3)
5131 break;
5132 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5133 if (old == refs)
5134 return;
5135 }
5136
3083ee2e 5137 spin_lock(&eb->refs_lock);
815a51c7
JS
5138 if (atomic_read(&eb->refs) == 2 &&
5139 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5140 atomic_dec(&eb->refs);
5141
3083ee2e
JB
5142 if (atomic_read(&eb->refs) == 2 &&
5143 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5144 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5145 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5146 atomic_dec(&eb->refs);
5147
5148 /*
5149 * I know this is terrible, but it's temporary until we stop tracking
5150 * the uptodate bits and such for the extent buffers.
5151 */
f7a52a40 5152 release_extent_buffer(eb);
3083ee2e
JB
5153}
5154
5155void free_extent_buffer_stale(struct extent_buffer *eb)
5156{
5157 if (!eb)
d1310b2e
CM
5158 return;
5159
3083ee2e
JB
5160 spin_lock(&eb->refs_lock);
5161 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5162
0b32f4bb 5163 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5164 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5165 atomic_dec(&eb->refs);
f7a52a40 5166 release_extent_buffer(eb);
d1310b2e 5167}
d1310b2e 5168
1d4284bd 5169void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5170{
d1310b2e
CM
5171 unsigned long i;
5172 unsigned long num_pages;
5173 struct page *page;
5174
d1310b2e
CM
5175 num_pages = num_extent_pages(eb->start, eb->len);
5176
5177 for (i = 0; i < num_pages; i++) {
fb85fc9a 5178 page = eb->pages[i];
b9473439 5179 if (!PageDirty(page))
d2c3f4f6
CM
5180 continue;
5181
a61e6f29 5182 lock_page(page);
eb14ab8e
CM
5183 WARN_ON(!PagePrivate(page));
5184
d1310b2e 5185 clear_page_dirty_for_io(page);
0ee0fda0 5186 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5187 if (!PageDirty(page)) {
5188 radix_tree_tag_clear(&page->mapping->page_tree,
5189 page_index(page),
5190 PAGECACHE_TAG_DIRTY);
5191 }
0ee0fda0 5192 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5193 ClearPageError(page);
a61e6f29 5194 unlock_page(page);
d1310b2e 5195 }
0b32f4bb 5196 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5197}
d1310b2e 5198
0b32f4bb 5199int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5200{
5201 unsigned long i;
5202 unsigned long num_pages;
b9473439 5203 int was_dirty = 0;
d1310b2e 5204
0b32f4bb
JB
5205 check_buffer_tree_ref(eb);
5206
b9473439 5207 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5208
d1310b2e 5209 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5210 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5211 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5212
b9473439 5213 for (i = 0; i < num_pages; i++)
fb85fc9a 5214 set_page_dirty(eb->pages[i]);
b9473439 5215 return was_dirty;
d1310b2e 5216}
d1310b2e 5217
69ba3927 5218void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5219{
5220 unsigned long i;
5221 struct page *page;
5222 unsigned long num_pages;
5223
b4ce94de 5224 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5225 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5226 for (i = 0; i < num_pages; i++) {
fb85fc9a 5227 page = eb->pages[i];
33958dc6
CM
5228 if (page)
5229 ClearPageUptodate(page);
1259ab75 5230 }
1259ab75
CM
5231}
5232
09c25a8c 5233void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5234{
5235 unsigned long i;
5236 struct page *page;
5237 unsigned long num_pages;
5238
0b32f4bb 5239 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5240 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5241 for (i = 0; i < num_pages; i++) {
fb85fc9a 5242 page = eb->pages[i];
d1310b2e
CM
5243 SetPageUptodate(page);
5244 }
d1310b2e 5245}
d1310b2e 5246
0b32f4bb 5247int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5248{
0b32f4bb 5249 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5250}
d1310b2e
CM
5251
5252int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5253 struct extent_buffer *eb, int wait,
f188591e 5254 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5255{
5256 unsigned long i;
d1310b2e
CM
5257 struct page *page;
5258 int err;
5259 int ret = 0;
ce9adaa5
CM
5260 int locked_pages = 0;
5261 int all_uptodate = 1;
d1310b2e 5262 unsigned long num_pages;
727011e0 5263 unsigned long num_reads = 0;
a86c12c7 5264 struct bio *bio = NULL;
c8b97818 5265 unsigned long bio_flags = 0;
a86c12c7 5266
b4ce94de 5267 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5268 return 0;
5269
d1310b2e 5270 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5271 for (i = 0; i < num_pages; i++) {
fb85fc9a 5272 page = eb->pages[i];
bb82ab88 5273 if (wait == WAIT_NONE) {
2db04966 5274 if (!trylock_page(page))
ce9adaa5 5275 goto unlock_exit;
d1310b2e
CM
5276 } else {
5277 lock_page(page);
5278 }
ce9adaa5 5279 locked_pages++;
2571e739
LB
5280 }
5281 /*
5282 * We need to firstly lock all pages to make sure that
5283 * the uptodate bit of our pages won't be affected by
5284 * clear_extent_buffer_uptodate().
5285 */
8436ea91 5286 for (i = 0; i < num_pages; i++) {
2571e739 5287 page = eb->pages[i];
727011e0
CM
5288 if (!PageUptodate(page)) {
5289 num_reads++;
ce9adaa5 5290 all_uptodate = 0;
727011e0 5291 }
ce9adaa5 5292 }
2571e739 5293
ce9adaa5 5294 if (all_uptodate) {
8436ea91 5295 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5296 goto unlock_exit;
5297 }
5298
656f30db 5299 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5300 eb->read_mirror = 0;
0b32f4bb 5301 atomic_set(&eb->io_pages, num_reads);
8436ea91 5302 for (i = 0; i < num_pages; i++) {
fb85fc9a 5303 page = eb->pages[i];
baf863b9 5304
ce9adaa5 5305 if (!PageUptodate(page)) {
baf863b9
LB
5306 if (ret) {
5307 atomic_dec(&eb->io_pages);
5308 unlock_page(page);
5309 continue;
5310 }
5311
f188591e 5312 ClearPageError(page);
a86c12c7 5313 err = __extent_read_full_page(tree, page,
f188591e 5314 get_extent, &bio,
d4c7ca86 5315 mirror_num, &bio_flags,
1f7ad75b 5316 REQ_META);
baf863b9 5317 if (err) {
d1310b2e 5318 ret = err;
baf863b9
LB
5319 /*
5320 * We use &bio in above __extent_read_full_page,
5321 * so we ensure that if it returns error, the
5322 * current page fails to add itself to bio and
5323 * it's been unlocked.
5324 *
5325 * We must dec io_pages by ourselves.
5326 */
5327 atomic_dec(&eb->io_pages);
5328 }
d1310b2e
CM
5329 } else {
5330 unlock_page(page);
5331 }
5332 }
5333
355808c2 5334 if (bio) {
1f7ad75b 5335 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5336 if (err)
5337 return err;
355808c2 5338 }
a86c12c7 5339
bb82ab88 5340 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5341 return ret;
d397712b 5342
8436ea91 5343 for (i = 0; i < num_pages; i++) {
fb85fc9a 5344 page = eb->pages[i];
d1310b2e 5345 wait_on_page_locked(page);
d397712b 5346 if (!PageUptodate(page))
d1310b2e 5347 ret = -EIO;
d1310b2e 5348 }
d397712b 5349
d1310b2e 5350 return ret;
ce9adaa5
CM
5351
5352unlock_exit:
d397712b 5353 while (locked_pages > 0) {
ce9adaa5 5354 locked_pages--;
8436ea91
JB
5355 page = eb->pages[locked_pages];
5356 unlock_page(page);
ce9adaa5
CM
5357 }
5358 return ret;
d1310b2e 5359}
d1310b2e 5360
1cbb1f45
JM
5361void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5362 unsigned long start, unsigned long len)
d1310b2e
CM
5363{
5364 size_t cur;
5365 size_t offset;
5366 struct page *page;
5367 char *kaddr;
5368 char *dst = (char *)dstv;
09cbfeaf
KS
5369 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5370 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5371
f716abd5
LB
5372 if (start + len > eb->len) {
5373 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5374 eb->start, eb->len, start, len);
5375 memset(dst, 0, len);
5376 return;
5377 }
d1310b2e 5378
09cbfeaf 5379 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5380
d397712b 5381 while (len > 0) {
fb85fc9a 5382 page = eb->pages[i];
d1310b2e 5383
09cbfeaf 5384 cur = min(len, (PAGE_SIZE - offset));
a6591715 5385 kaddr = page_address(page);
d1310b2e 5386 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5387
5388 dst += cur;
5389 len -= cur;
5390 offset = 0;
5391 i++;
5392 }
5393}
d1310b2e 5394
1cbb1f45
JM
5395int read_extent_buffer_to_user(const struct extent_buffer *eb,
5396 void __user *dstv,
5397 unsigned long start, unsigned long len)
550ac1d8
GH
5398{
5399 size_t cur;
5400 size_t offset;
5401 struct page *page;
5402 char *kaddr;
5403 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5404 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5405 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5406 int ret = 0;
5407
5408 WARN_ON(start > eb->len);
5409 WARN_ON(start + len > eb->start + eb->len);
5410
09cbfeaf 5411 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5412
5413 while (len > 0) {
fb85fc9a 5414 page = eb->pages[i];
550ac1d8 5415
09cbfeaf 5416 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5417 kaddr = page_address(page);
5418 if (copy_to_user(dst, kaddr + offset, cur)) {
5419 ret = -EFAULT;
5420 break;
5421 }
5422
5423 dst += cur;
5424 len -= cur;
5425 offset = 0;
5426 i++;
5427 }
5428
5429 return ret;
5430}
5431
415b35a5
LB
5432/*
5433 * return 0 if the item is found within a page.
5434 * return 1 if the item spans two pages.
5435 * return -EINVAL otherwise.
5436 */
1cbb1f45
JM
5437int map_private_extent_buffer(const struct extent_buffer *eb,
5438 unsigned long start, unsigned long min_len,
5439 char **map, unsigned long *map_start,
5440 unsigned long *map_len)
d1310b2e 5441{
09cbfeaf 5442 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5443 char *kaddr;
5444 struct page *p;
09cbfeaf
KS
5445 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5447 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5448 PAGE_SHIFT;
d1310b2e 5449
f716abd5
LB
5450 if (start + min_len > eb->len) {
5451 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5452 eb->start, eb->len, start, min_len);
5453 return -EINVAL;
5454 }
5455
d1310b2e 5456 if (i != end_i)
415b35a5 5457 return 1;
d1310b2e
CM
5458
5459 if (i == 0) {
5460 offset = start_offset;
5461 *map_start = 0;
5462 } else {
5463 offset = 0;
09cbfeaf 5464 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5465 }
d397712b 5466
fb85fc9a 5467 p = eb->pages[i];
a6591715 5468 kaddr = page_address(p);
d1310b2e 5469 *map = kaddr + offset;
09cbfeaf 5470 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5471 return 0;
5472}
d1310b2e 5473
1cbb1f45
JM
5474int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5475 unsigned long start, unsigned long len)
d1310b2e
CM
5476{
5477 size_t cur;
5478 size_t offset;
5479 struct page *page;
5480 char *kaddr;
5481 char *ptr = (char *)ptrv;
09cbfeaf
KS
5482 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5483 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5484 int ret = 0;
5485
5486 WARN_ON(start > eb->len);
5487 WARN_ON(start + len > eb->start + eb->len);
5488
09cbfeaf 5489 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5490
d397712b 5491 while (len > 0) {
fb85fc9a 5492 page = eb->pages[i];
d1310b2e 5493
09cbfeaf 5494 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5495
a6591715 5496 kaddr = page_address(page);
d1310b2e 5497 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5498 if (ret)
5499 break;
5500
5501 ptr += cur;
5502 len -= cur;
5503 offset = 0;
5504 i++;
5505 }
5506 return ret;
5507}
d1310b2e 5508
f157bf76
DS
5509void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5510 const void *srcv)
5511{
5512 char *kaddr;
5513
5514 WARN_ON(!PageUptodate(eb->pages[0]));
5515 kaddr = page_address(eb->pages[0]);
5516 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5517 BTRFS_FSID_SIZE);
5518}
5519
5520void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5521{
5522 char *kaddr;
5523
5524 WARN_ON(!PageUptodate(eb->pages[0]));
5525 kaddr = page_address(eb->pages[0]);
5526 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5527 BTRFS_FSID_SIZE);
5528}
5529
d1310b2e
CM
5530void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5531 unsigned long start, unsigned long len)
5532{
5533 size_t cur;
5534 size_t offset;
5535 struct page *page;
5536 char *kaddr;
5537 char *src = (char *)srcv;
09cbfeaf
KS
5538 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5539 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5540
5541 WARN_ON(start > eb->len);
5542 WARN_ON(start + len > eb->start + eb->len);
5543
09cbfeaf 5544 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5545
d397712b 5546 while (len > 0) {
fb85fc9a 5547 page = eb->pages[i];
d1310b2e
CM
5548 WARN_ON(!PageUptodate(page));
5549
09cbfeaf 5550 cur = min(len, PAGE_SIZE - offset);
a6591715 5551 kaddr = page_address(page);
d1310b2e 5552 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5553
5554 src += cur;
5555 len -= cur;
5556 offset = 0;
5557 i++;
5558 }
5559}
d1310b2e 5560
b159fa28
DS
5561void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5562 unsigned long len)
d1310b2e
CM
5563{
5564 size_t cur;
5565 size_t offset;
5566 struct page *page;
5567 char *kaddr;
09cbfeaf
KS
5568 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5569 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5570
5571 WARN_ON(start > eb->len);
5572 WARN_ON(start + len > eb->start + eb->len);
5573
09cbfeaf 5574 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5575
d397712b 5576 while (len > 0) {
fb85fc9a 5577 page = eb->pages[i];
d1310b2e
CM
5578 WARN_ON(!PageUptodate(page));
5579
09cbfeaf 5580 cur = min(len, PAGE_SIZE - offset);
a6591715 5581 kaddr = page_address(page);
b159fa28 5582 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5583
5584 len -= cur;
5585 offset = 0;
5586 i++;
5587 }
5588}
d1310b2e 5589
58e8012c
DS
5590void copy_extent_buffer_full(struct extent_buffer *dst,
5591 struct extent_buffer *src)
5592{
5593 int i;
5594 unsigned num_pages;
5595
5596 ASSERT(dst->len == src->len);
5597
5598 num_pages = num_extent_pages(dst->start, dst->len);
5599 for (i = 0; i < num_pages; i++)
5600 copy_page(page_address(dst->pages[i]),
5601 page_address(src->pages[i]));
5602}
5603
d1310b2e
CM
5604void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5605 unsigned long dst_offset, unsigned long src_offset,
5606 unsigned long len)
5607{
5608 u64 dst_len = dst->len;
5609 size_t cur;
5610 size_t offset;
5611 struct page *page;
5612 char *kaddr;
09cbfeaf
KS
5613 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5614 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5615
5616 WARN_ON(src->len != dst_len);
5617
5618 offset = (start_offset + dst_offset) &
09cbfeaf 5619 (PAGE_SIZE - 1);
d1310b2e 5620
d397712b 5621 while (len > 0) {
fb85fc9a 5622 page = dst->pages[i];
d1310b2e
CM
5623 WARN_ON(!PageUptodate(page));
5624
09cbfeaf 5625 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5626
a6591715 5627 kaddr = page_address(page);
d1310b2e 5628 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5629
5630 src_offset += cur;
5631 len -= cur;
5632 offset = 0;
5633 i++;
5634 }
5635}
d1310b2e 5636
2fe1d551
OS
5637void le_bitmap_set(u8 *map, unsigned int start, int len)
5638{
5639 u8 *p = map + BIT_BYTE(start);
5640 const unsigned int size = start + len;
5641 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5642 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5643
5644 while (len - bits_to_set >= 0) {
5645 *p |= mask_to_set;
5646 len -= bits_to_set;
5647 bits_to_set = BITS_PER_BYTE;
9c894696 5648 mask_to_set = ~0;
2fe1d551
OS
5649 p++;
5650 }
5651 if (len) {
5652 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5653 *p |= mask_to_set;
5654 }
5655}
5656
5657void le_bitmap_clear(u8 *map, unsigned int start, int len)
5658{
5659 u8 *p = map + BIT_BYTE(start);
5660 const unsigned int size = start + len;
5661 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5662 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5663
5664 while (len - bits_to_clear >= 0) {
5665 *p &= ~mask_to_clear;
5666 len -= bits_to_clear;
5667 bits_to_clear = BITS_PER_BYTE;
9c894696 5668 mask_to_clear = ~0;
2fe1d551
OS
5669 p++;
5670 }
5671 if (len) {
5672 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5673 *p &= ~mask_to_clear;
5674 }
5675}
3e1e8bb7
OS
5676
5677/*
5678 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5679 * given bit number
5680 * @eb: the extent buffer
5681 * @start: offset of the bitmap item in the extent buffer
5682 * @nr: bit number
5683 * @page_index: return index of the page in the extent buffer that contains the
5684 * given bit number
5685 * @page_offset: return offset into the page given by page_index
5686 *
5687 * This helper hides the ugliness of finding the byte in an extent buffer which
5688 * contains a given bit.
5689 */
5690static inline void eb_bitmap_offset(struct extent_buffer *eb,
5691 unsigned long start, unsigned long nr,
5692 unsigned long *page_index,
5693 size_t *page_offset)
5694{
09cbfeaf 5695 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5696 size_t byte_offset = BIT_BYTE(nr);
5697 size_t offset;
5698
5699 /*
5700 * The byte we want is the offset of the extent buffer + the offset of
5701 * the bitmap item in the extent buffer + the offset of the byte in the
5702 * bitmap item.
5703 */
5704 offset = start_offset + start + byte_offset;
5705
09cbfeaf
KS
5706 *page_index = offset >> PAGE_SHIFT;
5707 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5708}
5709
5710/**
5711 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5712 * @eb: the extent buffer
5713 * @start: offset of the bitmap item in the extent buffer
5714 * @nr: bit number to test
5715 */
5716int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5717 unsigned long nr)
5718{
2fe1d551 5719 u8 *kaddr;
3e1e8bb7
OS
5720 struct page *page;
5721 unsigned long i;
5722 size_t offset;
5723
5724 eb_bitmap_offset(eb, start, nr, &i, &offset);
5725 page = eb->pages[i];
5726 WARN_ON(!PageUptodate(page));
5727 kaddr = page_address(page);
5728 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5729}
5730
5731/**
5732 * extent_buffer_bitmap_set - set an area of a bitmap
5733 * @eb: the extent buffer
5734 * @start: offset of the bitmap item in the extent buffer
5735 * @pos: bit number of the first bit
5736 * @len: number of bits to set
5737 */
5738void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5739 unsigned long pos, unsigned long len)
5740{
2fe1d551 5741 u8 *kaddr;
3e1e8bb7
OS
5742 struct page *page;
5743 unsigned long i;
5744 size_t offset;
5745 const unsigned int size = pos + len;
5746 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5747 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5748
5749 eb_bitmap_offset(eb, start, pos, &i, &offset);
5750 page = eb->pages[i];
5751 WARN_ON(!PageUptodate(page));
5752 kaddr = page_address(page);
5753
5754 while (len >= bits_to_set) {
5755 kaddr[offset] |= mask_to_set;
5756 len -= bits_to_set;
5757 bits_to_set = BITS_PER_BYTE;
9c894696 5758 mask_to_set = ~0;
09cbfeaf 5759 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5760 offset = 0;
5761 page = eb->pages[++i];
5762 WARN_ON(!PageUptodate(page));
5763 kaddr = page_address(page);
5764 }
5765 }
5766 if (len) {
5767 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5768 kaddr[offset] |= mask_to_set;
5769 }
5770}
5771
5772
5773/**
5774 * extent_buffer_bitmap_clear - clear an area of a bitmap
5775 * @eb: the extent buffer
5776 * @start: offset of the bitmap item in the extent buffer
5777 * @pos: bit number of the first bit
5778 * @len: number of bits to clear
5779 */
5780void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5781 unsigned long pos, unsigned long len)
5782{
2fe1d551 5783 u8 *kaddr;
3e1e8bb7
OS
5784 struct page *page;
5785 unsigned long i;
5786 size_t offset;
5787 const unsigned int size = pos + len;
5788 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5789 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5790
5791 eb_bitmap_offset(eb, start, pos, &i, &offset);
5792 page = eb->pages[i];
5793 WARN_ON(!PageUptodate(page));
5794 kaddr = page_address(page);
5795
5796 while (len >= bits_to_clear) {
5797 kaddr[offset] &= ~mask_to_clear;
5798 len -= bits_to_clear;
5799 bits_to_clear = BITS_PER_BYTE;
9c894696 5800 mask_to_clear = ~0;
09cbfeaf 5801 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5802 offset = 0;
5803 page = eb->pages[++i];
5804 WARN_ON(!PageUptodate(page));
5805 kaddr = page_address(page);
5806 }
5807 }
5808 if (len) {
5809 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5810 kaddr[offset] &= ~mask_to_clear;
5811 }
5812}
5813
3387206f
ST
5814static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5815{
5816 unsigned long distance = (src > dst) ? src - dst : dst - src;
5817 return distance < len;
5818}
5819
d1310b2e
CM
5820static void copy_pages(struct page *dst_page, struct page *src_page,
5821 unsigned long dst_off, unsigned long src_off,
5822 unsigned long len)
5823{
a6591715 5824 char *dst_kaddr = page_address(dst_page);
d1310b2e 5825 char *src_kaddr;
727011e0 5826 int must_memmove = 0;
d1310b2e 5827
3387206f 5828 if (dst_page != src_page) {
a6591715 5829 src_kaddr = page_address(src_page);
3387206f 5830 } else {
d1310b2e 5831 src_kaddr = dst_kaddr;
727011e0
CM
5832 if (areas_overlap(src_off, dst_off, len))
5833 must_memmove = 1;
3387206f 5834 }
d1310b2e 5835
727011e0
CM
5836 if (must_memmove)
5837 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5838 else
5839 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5840}
5841
5842void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5843 unsigned long src_offset, unsigned long len)
5844{
0b246afa 5845 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5846 size_t cur;
5847 size_t dst_off_in_page;
5848 size_t src_off_in_page;
09cbfeaf 5849 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5850 unsigned long dst_i;
5851 unsigned long src_i;
5852
5853 if (src_offset + len > dst->len) {
0b246afa 5854 btrfs_err(fs_info,
5d163e0e
JM
5855 "memmove bogus src_offset %lu move len %lu dst len %lu",
5856 src_offset, len, dst->len);
d1310b2e
CM
5857 BUG_ON(1);
5858 }
5859 if (dst_offset + len > dst->len) {
0b246afa 5860 btrfs_err(fs_info,
5d163e0e
JM
5861 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5862 dst_offset, len, dst->len);
d1310b2e
CM
5863 BUG_ON(1);
5864 }
5865
d397712b 5866 while (len > 0) {
d1310b2e 5867 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5868 (PAGE_SIZE - 1);
d1310b2e 5869 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5870 (PAGE_SIZE - 1);
d1310b2e 5871
09cbfeaf
KS
5872 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5873 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5874
09cbfeaf 5875 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5876 src_off_in_page));
5877 cur = min_t(unsigned long, cur,
09cbfeaf 5878 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5879
fb85fc9a 5880 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5881 dst_off_in_page, src_off_in_page, cur);
5882
5883 src_offset += cur;
5884 dst_offset += cur;
5885 len -= cur;
5886 }
5887}
d1310b2e
CM
5888
5889void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5890 unsigned long src_offset, unsigned long len)
5891{
0b246afa 5892 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5893 size_t cur;
5894 size_t dst_off_in_page;
5895 size_t src_off_in_page;
5896 unsigned long dst_end = dst_offset + len - 1;
5897 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5898 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5899 unsigned long dst_i;
5900 unsigned long src_i;
5901
5902 if (src_offset + len > dst->len) {
0b246afa 5903 btrfs_err(fs_info,
5d163e0e
JM
5904 "memmove bogus src_offset %lu move len %lu len %lu",
5905 src_offset, len, dst->len);
d1310b2e
CM
5906 BUG_ON(1);
5907 }
5908 if (dst_offset + len > dst->len) {
0b246afa 5909 btrfs_err(fs_info,
5d163e0e
JM
5910 "memmove bogus dst_offset %lu move len %lu len %lu",
5911 dst_offset, len, dst->len);
d1310b2e
CM
5912 BUG_ON(1);
5913 }
727011e0 5914 if (dst_offset < src_offset) {
d1310b2e
CM
5915 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5916 return;
5917 }
d397712b 5918 while (len > 0) {
09cbfeaf
KS
5919 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5920 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5921
5922 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5923 (PAGE_SIZE - 1);
d1310b2e 5924 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5925 (PAGE_SIZE - 1);
d1310b2e
CM
5926
5927 cur = min_t(unsigned long, len, src_off_in_page + 1);
5928 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5929 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5930 dst_off_in_page - cur + 1,
5931 src_off_in_page - cur + 1, cur);
5932
5933 dst_end -= cur;
5934 src_end -= cur;
5935 len -= cur;
5936 }
5937}
6af118ce 5938
f7a52a40 5939int try_release_extent_buffer(struct page *page)
19fe0a8b 5940{
6af118ce 5941 struct extent_buffer *eb;
6af118ce 5942
3083ee2e 5943 /*
01327610 5944 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5945 * now.
5946 */
5947 spin_lock(&page->mapping->private_lock);
5948 if (!PagePrivate(page)) {
5949 spin_unlock(&page->mapping->private_lock);
4f2de97a 5950 return 1;
45f49bce 5951 }
6af118ce 5952
3083ee2e
JB
5953 eb = (struct extent_buffer *)page->private;
5954 BUG_ON(!eb);
19fe0a8b
MX
5955
5956 /*
3083ee2e
JB
5957 * This is a little awful but should be ok, we need to make sure that
5958 * the eb doesn't disappear out from under us while we're looking at
5959 * this page.
19fe0a8b 5960 */
3083ee2e 5961 spin_lock(&eb->refs_lock);
0b32f4bb 5962 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5963 spin_unlock(&eb->refs_lock);
5964 spin_unlock(&page->mapping->private_lock);
5965 return 0;
b9473439 5966 }
3083ee2e 5967 spin_unlock(&page->mapping->private_lock);
897ca6e9 5968
19fe0a8b 5969 /*
3083ee2e
JB
5970 * If tree ref isn't set then we know the ref on this eb is a real ref,
5971 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5972 */
3083ee2e
JB
5973 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5974 spin_unlock(&eb->refs_lock);
5975 return 0;
b9473439 5976 }
19fe0a8b 5977
f7a52a40 5978 return release_extent_buffer(eb);
6af118ce 5979}