btrfs: make page Ordered bit to be subpage compatible
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
cea62800 16#include "misc.h"
d1310b2e 17#include "extent_io.h"
9c7d3a54 18#include "extent-io-tree.h"
d1310b2e 19#include "extent_map.h"
902b22f3
DW
20#include "ctree.h"
21#include "btrfs_inode.h"
4a54c8c1 22#include "volumes.h"
21adbd5c 23#include "check-integrity.h"
0b32f4bb 24#include "locking.h"
606686ee 25#include "rcu-string.h"
fe09e16c 26#include "backref.h"
6af49dbd 27#include "disk-io.h"
760f991f 28#include "subpage.h"
d3575156 29#include "zoned.h"
0bc09ca1 30#include "block-group.h"
d1310b2e 31
d1310b2e
CM
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 34static struct bio_set btrfs_bioset;
d1310b2e 35
27a3507d
FM
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
6d49ba1b 41#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 42static LIST_HEAD(states);
d397712b 43static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 44
3fd63727
JB
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
6d49ba1b
ES
48{
49 unsigned long flags;
50
3fd63727 51 spin_lock_irqsave(lock, flags);
6d49ba1b 52 list_add(new, head);
3fd63727 53 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
54}
55
3fd63727
JB
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
6d49ba1b
ES
58{
59 unsigned long flags;
60
3fd63727 61 spin_lock_irqsave(lock, flags);
6d49ba1b 62 list_del(entry);
3fd63727 63 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
64}
65
3fd63727 66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 67{
6d49ba1b 68 struct extent_buffer *eb;
3fd63727 69 unsigned long flags;
6d49ba1b 70
8c38938c
JB
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
3fd63727
JB
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
8c38938c
JB
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
33ca832f
JB
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
3fd63727 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
6d49ba1b
ES
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
b7ac31b7 101 refcount_read(&state->refs));
6d49ba1b
ES
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
6d49ba1b 105}
8d599ae1 106
a5dee37d
JB
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 110 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 111{
65a680f6
NB
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
8d599ae1 124}
6d49ba1b 125#else
3fd63727
JB
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 128#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 130#endif
d1310b2e 131
d1310b2e
CM
132struct tree_entry {
133 u64 start;
134 u64 end;
d1310b2e
CM
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
390ed29b 139 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
ffbd517d
CM
143 unsigned int extent_locked:1;
144
70fd7614 145 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 146 unsigned int sync_io:1;
d1310b2e
CM
147};
148
f97e27e9 149static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
57599c7e 156 return 0;
d38ed27f 157 if (set && (state->state & bits) == bits)
57599c7e 158 return 0;
fefdc557 159 if (!set && (state->state & bits) == 0)
57599c7e 160 return 0;
d38ed27f 161 changeset->bytes_changed += state->end - state->start + 1;
53d32359 162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 163 GFP_ATOMIC);
57599c7e 164 return ret;
d38ed27f
QW
165}
166
c1be9c1a
NB
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
bb58eb9e
QW
169{
170 blk_status_t ret = 0;
bb58eb9e 171 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
172
173 bio->bi_private = NULL;
174
908930f3
NB
175 if (is_data_inode(tree->private_data))
176 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
177 bio_flags);
178 else
1b36294a
NB
179 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
180 mirror_num, bio_flags);
bb58eb9e
QW
181
182 return blk_status_to_errno(ret);
183}
184
3065976b
QW
185/* Cleanup unsubmitted bios */
186static void end_write_bio(struct extent_page_data *epd, int ret)
187{
390ed29b
QW
188 struct bio *bio = epd->bio_ctrl.bio;
189
190 if (bio) {
191 bio->bi_status = errno_to_blk_status(ret);
192 bio_endio(bio);
193 epd->bio_ctrl.bio = NULL;
3065976b
QW
194 }
195}
196
f4340622
QW
197/*
198 * Submit bio from extent page data via submit_one_bio
199 *
200 * Return 0 if everything is OK.
201 * Return <0 for error.
202 */
203static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 204{
f4340622 205 int ret = 0;
390ed29b 206 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 207
390ed29b
QW
208 if (bio) {
209 ret = submit_one_bio(bio, 0, 0);
f4340622
QW
210 /*
211 * Clean up of epd->bio is handled by its endio function.
212 * And endio is either triggered by successful bio execution
213 * or the error handler of submit bio hook.
214 * So at this point, no matter what happened, we don't need
215 * to clean up epd->bio.
216 */
390ed29b 217 epd->bio_ctrl.bio = NULL;
bb58eb9e 218 }
f4340622 219 return ret;
bb58eb9e 220}
e2932ee0 221
6f0d04f8 222int __init extent_state_cache_init(void)
d1310b2e 223{
837e1972 224 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 225 sizeof(struct extent_state), 0,
fba4b697 226 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
227 if (!extent_state_cache)
228 return -ENOMEM;
6f0d04f8
JB
229 return 0;
230}
d1310b2e 231
6f0d04f8
JB
232int __init extent_io_init(void)
233{
837e1972 234 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 235 sizeof(struct extent_buffer), 0,
fba4b697 236 SLAB_MEM_SPREAD, NULL);
d1310b2e 237 if (!extent_buffer_cache)
6f0d04f8 238 return -ENOMEM;
9be3395b 239
8ac9f7c1
KO
240 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
241 offsetof(struct btrfs_io_bio, bio),
242 BIOSET_NEED_BVECS))
9be3395b 243 goto free_buffer_cache;
b208c2f7 244
8ac9f7c1 245 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
246 goto free_bioset;
247
d1310b2e
CM
248 return 0;
249
b208c2f7 250free_bioset:
8ac9f7c1 251 bioset_exit(&btrfs_bioset);
b208c2f7 252
9be3395b
CM
253free_buffer_cache:
254 kmem_cache_destroy(extent_buffer_cache);
255 extent_buffer_cache = NULL;
6f0d04f8
JB
256 return -ENOMEM;
257}
9be3395b 258
6f0d04f8
JB
259void __cold extent_state_cache_exit(void)
260{
261 btrfs_extent_state_leak_debug_check();
d1310b2e 262 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
263}
264
e67c718b 265void __cold extent_io_exit(void)
d1310b2e 266{
8c0a8537
KS
267 /*
268 * Make sure all delayed rcu free are flushed before we
269 * destroy caches.
270 */
271 rcu_barrier();
5598e900 272 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 273 bioset_exit(&btrfs_bioset);
d1310b2e
CM
274}
275
41a2ee75
JB
276/*
277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
279 * the tree lock and get the inode lock when setting delalloc. These two things
280 * are unrelated, so make a class for the file_extent_tree so we don't get the
281 * two locking patterns mixed up.
282 */
283static struct lock_class_key file_extent_tree_class;
284
c258d6e3 285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
286 struct extent_io_tree *tree, unsigned int owner,
287 void *private_data)
d1310b2e 288{
c258d6e3 289 tree->fs_info = fs_info;
6bef4d31 290 tree->state = RB_ROOT;
d1310b2e 291 tree->dirty_bytes = 0;
70dec807 292 spin_lock_init(&tree->lock);
c6100a4b 293 tree->private_data = private_data;
43eb5f29 294 tree->owner = owner;
41a2ee75
JB
295 if (owner == IO_TREE_INODE_FILE_EXTENT)
296 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 297}
d1310b2e 298
41e7acd3
NB
299void extent_io_tree_release(struct extent_io_tree *tree)
300{
301 spin_lock(&tree->lock);
302 /*
303 * Do a single barrier for the waitqueue_active check here, the state
304 * of the waitqueue should not change once extent_io_tree_release is
305 * called.
306 */
307 smp_mb();
308 while (!RB_EMPTY_ROOT(&tree->state)) {
309 struct rb_node *node;
310 struct extent_state *state;
311
312 node = rb_first(&tree->state);
313 state = rb_entry(node, struct extent_state, rb_node);
314 rb_erase(&state->rb_node, &tree->state);
315 RB_CLEAR_NODE(&state->rb_node);
316 /*
317 * btree io trees aren't supposed to have tasks waiting for
318 * changes in the flags of extent states ever.
319 */
320 ASSERT(!waitqueue_active(&state->wq));
321 free_extent_state(state);
322
323 cond_resched_lock(&tree->lock);
324 }
325 spin_unlock(&tree->lock);
326}
327
b2950863 328static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
329{
330 struct extent_state *state;
d1310b2e 331
3ba7ab22
MH
332 /*
333 * The given mask might be not appropriate for the slab allocator,
334 * drop the unsupported bits
335 */
336 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 337 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 338 if (!state)
d1310b2e
CM
339 return state;
340 state->state = 0;
47dc196a 341 state->failrec = NULL;
27a3507d 342 RB_CLEAR_NODE(&state->rb_node);
3fd63727 343 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 344 refcount_set(&state->refs, 1);
d1310b2e 345 init_waitqueue_head(&state->wq);
143bede5 346 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
347 return state;
348}
d1310b2e 349
4845e44f 350void free_extent_state(struct extent_state *state)
d1310b2e 351{
d1310b2e
CM
352 if (!state)
353 return;
b7ac31b7 354 if (refcount_dec_and_test(&state->refs)) {
27a3507d 355 WARN_ON(extent_state_in_tree(state));
3fd63727 356 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 357 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
358 kmem_cache_free(extent_state_cache, state);
359 }
360}
d1310b2e 361
f2071b21
FM
362static struct rb_node *tree_insert(struct rb_root *root,
363 struct rb_node *search_start,
364 u64 offset,
12cfbad9
FDBM
365 struct rb_node *node,
366 struct rb_node ***p_in,
367 struct rb_node **parent_in)
d1310b2e 368{
f2071b21 369 struct rb_node **p;
d397712b 370 struct rb_node *parent = NULL;
d1310b2e
CM
371 struct tree_entry *entry;
372
12cfbad9
FDBM
373 if (p_in && parent_in) {
374 p = *p_in;
375 parent = *parent_in;
376 goto do_insert;
377 }
378
f2071b21 379 p = search_start ? &search_start : &root->rb_node;
d397712b 380 while (*p) {
d1310b2e
CM
381 parent = *p;
382 entry = rb_entry(parent, struct tree_entry, rb_node);
383
384 if (offset < entry->start)
385 p = &(*p)->rb_left;
386 else if (offset > entry->end)
387 p = &(*p)->rb_right;
388 else
389 return parent;
390 }
391
12cfbad9 392do_insert:
d1310b2e
CM
393 rb_link_node(node, parent, p);
394 rb_insert_color(node, root);
395 return NULL;
396}
397
8666e638 398/**
3bed2da1
NB
399 * Search @tree for an entry that contains @offset. Such entry would have
400 * entry->start <= offset && entry->end >= offset.
8666e638 401 *
3bed2da1
NB
402 * @tree: the tree to search
403 * @offset: offset that should fall within an entry in @tree
404 * @next_ret: pointer to the first entry whose range ends after @offset
405 * @prev_ret: pointer to the first entry whose range begins before @offset
406 * @p_ret: pointer where new node should be anchored (used when inserting an
407 * entry in the tree)
408 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
409 * containing @offset
410 *
411 * This function returns a pointer to the entry that contains @offset byte
412 * address. If no such entry exists, then NULL is returned and the other
413 * pointer arguments to the function are filled, otherwise the found entry is
414 * returned and other pointers are left untouched.
415 */
80ea96b1 416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 417 struct rb_node **next_ret,
352646c7 418 struct rb_node **prev_ret,
12cfbad9
FDBM
419 struct rb_node ***p_ret,
420 struct rb_node **parent_ret)
d1310b2e 421{
80ea96b1 422 struct rb_root *root = &tree->state;
12cfbad9 423 struct rb_node **n = &root->rb_node;
d1310b2e
CM
424 struct rb_node *prev = NULL;
425 struct rb_node *orig_prev = NULL;
426 struct tree_entry *entry;
427 struct tree_entry *prev_entry = NULL;
428
12cfbad9
FDBM
429 while (*n) {
430 prev = *n;
431 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
432 prev_entry = entry;
433
434 if (offset < entry->start)
12cfbad9 435 n = &(*n)->rb_left;
d1310b2e 436 else if (offset > entry->end)
12cfbad9 437 n = &(*n)->rb_right;
d397712b 438 else
12cfbad9 439 return *n;
d1310b2e
CM
440 }
441
12cfbad9
FDBM
442 if (p_ret)
443 *p_ret = n;
444 if (parent_ret)
445 *parent_ret = prev;
446
352646c7 447 if (next_ret) {
d1310b2e 448 orig_prev = prev;
d397712b 449 while (prev && offset > prev_entry->end) {
d1310b2e
CM
450 prev = rb_next(prev);
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 }
352646c7 453 *next_ret = prev;
d1310b2e
CM
454 prev = orig_prev;
455 }
456
352646c7 457 if (prev_ret) {
d1310b2e 458 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 459 while (prev && offset < prev_entry->start) {
d1310b2e
CM
460 prev = rb_prev(prev);
461 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 }
352646c7 463 *prev_ret = prev;
d1310b2e
CM
464 }
465 return NULL;
466}
467
12cfbad9
FDBM
468static inline struct rb_node *
469tree_search_for_insert(struct extent_io_tree *tree,
470 u64 offset,
471 struct rb_node ***p_ret,
472 struct rb_node **parent_ret)
d1310b2e 473{
352646c7 474 struct rb_node *next= NULL;
d1310b2e 475 struct rb_node *ret;
70dec807 476
352646c7 477 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 478 if (!ret)
352646c7 479 return next;
d1310b2e
CM
480 return ret;
481}
482
12cfbad9
FDBM
483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
484 u64 offset)
485{
486 return tree_search_for_insert(tree, offset, NULL, NULL);
487}
488
d1310b2e
CM
489/*
490 * utility function to look for merge candidates inside a given range.
491 * Any extents with matching state are merged together into a single
492 * extent in the tree. Extents with EXTENT_IO in their state field
493 * are not merged because the end_io handlers need to be able to do
494 * operations on them without sleeping (or doing allocations/splits).
495 *
496 * This should be called with the tree lock held.
497 */
1bf85046
JM
498static void merge_state(struct extent_io_tree *tree,
499 struct extent_state *state)
d1310b2e
CM
500{
501 struct extent_state *other;
502 struct rb_node *other_node;
503
8882679e 504 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 505 return;
d1310b2e
CM
506
507 other_node = rb_prev(&state->rb_node);
508 if (other_node) {
509 other = rb_entry(other_node, struct extent_state, rb_node);
510 if (other->end == state->start - 1 &&
511 other->state == state->state) {
5c848198
NB
512 if (tree->private_data &&
513 is_data_inode(tree->private_data))
514 btrfs_merge_delalloc_extent(tree->private_data,
515 state, other);
d1310b2e 516 state->start = other->start;
d1310b2e 517 rb_erase(&other->rb_node, &tree->state);
27a3507d 518 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
519 free_extent_state(other);
520 }
521 }
522 other_node = rb_next(&state->rb_node);
523 if (other_node) {
524 other = rb_entry(other_node, struct extent_state, rb_node);
525 if (other->start == state->end + 1 &&
526 other->state == state->state) {
5c848198
NB
527 if (tree->private_data &&
528 is_data_inode(tree->private_data))
529 btrfs_merge_delalloc_extent(tree->private_data,
530 state, other);
df98b6e2 531 state->end = other->end;
df98b6e2 532 rb_erase(&other->rb_node, &tree->state);
27a3507d 533 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 534 free_extent_state(other);
d1310b2e
CM
535 }
536 }
d1310b2e
CM
537}
538
3150b699 539static void set_state_bits(struct extent_io_tree *tree,
f97e27e9 540 struct extent_state *state, u32 *bits,
d38ed27f 541 struct extent_changeset *changeset);
3150b699 542
d1310b2e
CM
543/*
544 * insert an extent_state struct into the tree. 'bits' are set on the
545 * struct before it is inserted.
546 *
547 * This may return -EEXIST if the extent is already there, in which case the
548 * state struct is freed.
549 *
550 * The tree lock is not taken internally. This is a utility function and
551 * probably isn't what you want to call (see set/clear_extent_bit).
552 */
553static int insert_state(struct extent_io_tree *tree,
554 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
555 struct rb_node ***p,
556 struct rb_node **parent,
f97e27e9 557 u32 *bits, struct extent_changeset *changeset)
d1310b2e
CM
558{
559 struct rb_node *node;
560
2792237d
DS
561 if (end < start) {
562 btrfs_err(tree->fs_info,
563 "insert state: end < start %llu %llu", end, start);
564 WARN_ON(1);
565 }
d1310b2e
CM
566 state->start = start;
567 state->end = end;
9ed74f2d 568
d38ed27f 569 set_state_bits(tree, state, bits, changeset);
3150b699 570
f2071b21 571 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
572 if (node) {
573 struct extent_state *found;
574 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
575 btrfs_err(tree->fs_info,
576 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 577 found->start, found->end, start, end);
d1310b2e
CM
578 return -EEXIST;
579 }
580 merge_state(tree, state);
581 return 0;
582}
583
584/*
585 * split a given extent state struct in two, inserting the preallocated
586 * struct 'prealloc' as the newly created second half. 'split' indicates an
587 * offset inside 'orig' where it should be split.
588 *
589 * Before calling,
590 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
591 * are two extent state structs in the tree:
592 * prealloc: [orig->start, split - 1]
593 * orig: [ split, orig->end ]
594 *
595 * The tree locks are not taken by this function. They need to be held
596 * by the caller.
597 */
598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
599 struct extent_state *prealloc, u64 split)
600{
601 struct rb_node *node;
9ed74f2d 602
abbb55f4
NB
603 if (tree->private_data && is_data_inode(tree->private_data))
604 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 605
d1310b2e
CM
606 prealloc->start = orig->start;
607 prealloc->end = split - 1;
608 prealloc->state = orig->state;
609 orig->start = split;
610
f2071b21
FM
611 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
612 &prealloc->rb_node, NULL, NULL);
d1310b2e 613 if (node) {
d1310b2e
CM
614 free_extent_state(prealloc);
615 return -EEXIST;
616 }
617 return 0;
618}
619
cdc6a395
LZ
620static struct extent_state *next_state(struct extent_state *state)
621{
622 struct rb_node *next = rb_next(&state->rb_node);
623 if (next)
624 return rb_entry(next, struct extent_state, rb_node);
625 else
626 return NULL;
627}
628
d1310b2e
CM
629/*
630 * utility function to clear some bits in an extent state struct.
52042d8e 631 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
632 *
633 * If no bits are set on the state struct after clearing things, the
634 * struct is freed and removed from the tree
635 */
cdc6a395
LZ
636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
637 struct extent_state *state,
f97e27e9 638 u32 *bits, int wake,
fefdc557 639 struct extent_changeset *changeset)
d1310b2e 640{
cdc6a395 641 struct extent_state *next;
f97e27e9 642 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 643 int ret;
d1310b2e 644
0ca1f7ce 645 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
646 u64 range = state->end - state->start + 1;
647 WARN_ON(range > tree->dirty_bytes);
648 tree->dirty_bytes -= range;
649 }
a36bb5f9
NB
650
651 if (tree->private_data && is_data_inode(tree->private_data))
652 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
653
57599c7e
DS
654 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
655 BUG_ON(ret < 0);
32c00aff 656 state->state &= ~bits_to_clear;
d1310b2e
CM
657 if (wake)
658 wake_up(&state->wq);
0ca1f7ce 659 if (state->state == 0) {
cdc6a395 660 next = next_state(state);
27a3507d 661 if (extent_state_in_tree(state)) {
d1310b2e 662 rb_erase(&state->rb_node, &tree->state);
27a3507d 663 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
664 free_extent_state(state);
665 } else {
666 WARN_ON(1);
667 }
668 } else {
669 merge_state(tree, state);
cdc6a395 670 next = next_state(state);
d1310b2e 671 }
cdc6a395 672 return next;
d1310b2e
CM
673}
674
8233767a
XG
675static struct extent_state *
676alloc_extent_state_atomic(struct extent_state *prealloc)
677{
678 if (!prealloc)
679 prealloc = alloc_extent_state(GFP_ATOMIC);
680
681 return prealloc;
682}
683
48a3b636 684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 685{
29b665cc 686 btrfs_panic(tree->fs_info, err,
05912a3c 687 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
688}
689
d1310b2e
CM
690/*
691 * clear some bits on a range in the tree. This may require splitting
692 * or inserting elements in the tree, so the gfp mask is used to
693 * indicate which allocations or sleeping are allowed.
694 *
695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
696 * the given range from the tree regardless of state (ie for truncate).
697 *
698 * the range [start, end] is inclusive.
699 *
6763af84 700 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 701 */
66b0c887 702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
703 u32 bits, int wake, int delete,
704 struct extent_state **cached_state,
705 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
706{
707 struct extent_state *state;
2c64c53d 708 struct extent_state *cached;
d1310b2e
CM
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
5c939df5 711 u64 last_end;
d1310b2e 712 int err;
2ac55d41 713 int clear = 0;
d1310b2e 714
a5dee37d 715 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 716 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 717
7ee9e440
JB
718 if (bits & EXTENT_DELALLOC)
719 bits |= EXTENT_NORESERVE;
720
0ca1f7ce
YZ
721 if (delete)
722 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 723
8882679e 724 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 725 clear = 1;
d1310b2e 726again:
d0164adc 727 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
728 /*
729 * Don't care for allocation failure here because we might end
730 * up not needing the pre-allocated extent state at all, which
731 * is the case if we only have in the tree extent states that
732 * cover our input range and don't cover too any other range.
733 * If we end up needing a new extent state we allocate it later.
734 */
d1310b2e 735 prealloc = alloc_extent_state(mask);
d1310b2e
CM
736 }
737
cad321ad 738 spin_lock(&tree->lock);
2c64c53d
CM
739 if (cached_state) {
740 cached = *cached_state;
2ac55d41
JB
741
742 if (clear) {
743 *cached_state = NULL;
744 cached_state = NULL;
745 }
746
27a3507d
FM
747 if (cached && extent_state_in_tree(cached) &&
748 cached->start <= start && cached->end > start) {
2ac55d41 749 if (clear)
b7ac31b7 750 refcount_dec(&cached->refs);
2c64c53d 751 state = cached;
42daec29 752 goto hit_next;
2c64c53d 753 }
2ac55d41
JB
754 if (clear)
755 free_extent_state(cached);
2c64c53d 756 }
d1310b2e
CM
757 /*
758 * this search will find the extents that end after
759 * our range starts
760 */
80ea96b1 761 node = tree_search(tree, start);
d1310b2e
CM
762 if (!node)
763 goto out;
764 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 765hit_next:
d1310b2e
CM
766 if (state->start > end)
767 goto out;
768 WARN_ON(state->end < start);
5c939df5 769 last_end = state->end;
d1310b2e 770
0449314a 771 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
772 if (!(state->state & bits)) {
773 state = next_state(state);
0449314a 774 goto next;
cdc6a395 775 }
0449314a 776
d1310b2e
CM
777 /*
778 * | ---- desired range ---- |
779 * | state | or
780 * | ------------- state -------------- |
781 *
782 * We need to split the extent we found, and may flip
783 * bits on second half.
784 *
785 * If the extent we found extends past our range, we
786 * just split and search again. It'll get split again
787 * the next time though.
788 *
789 * If the extent we found is inside our range, we clear
790 * the desired bit on it.
791 */
792
793 if (state->start < start) {
8233767a
XG
794 prealloc = alloc_extent_state_atomic(prealloc);
795 BUG_ON(!prealloc);
d1310b2e 796 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
797 if (err)
798 extent_io_tree_panic(tree, err);
799
d1310b2e
CM
800 prealloc = NULL;
801 if (err)
802 goto out;
803 if (state->end <= end) {
fefdc557
QW
804 state = clear_state_bit(tree, state, &bits, wake,
805 changeset);
d1ac6e41 806 goto next;
d1310b2e
CM
807 }
808 goto search_again;
809 }
810 /*
811 * | ---- desired range ---- |
812 * | state |
813 * We need to split the extent, and clear the bit
814 * on the first half
815 */
816 if (state->start <= end && state->end > end) {
8233767a
XG
817 prealloc = alloc_extent_state_atomic(prealloc);
818 BUG_ON(!prealloc);
d1310b2e 819 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
820 if (err)
821 extent_io_tree_panic(tree, err);
822
d1310b2e
CM
823 if (wake)
824 wake_up(&state->wq);
42daec29 825
fefdc557 826 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 827
d1310b2e
CM
828 prealloc = NULL;
829 goto out;
830 }
42daec29 831
fefdc557 832 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 833next:
5c939df5
YZ
834 if (last_end == (u64)-1)
835 goto out;
836 start = last_end + 1;
cdc6a395 837 if (start <= end && state && !need_resched())
692e5759 838 goto hit_next;
d1310b2e
CM
839
840search_again:
841 if (start > end)
842 goto out;
cad321ad 843 spin_unlock(&tree->lock);
d0164adc 844 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
845 cond_resched();
846 goto again;
7ab5cb2a
DS
847
848out:
849 spin_unlock(&tree->lock);
850 if (prealloc)
851 free_extent_state(prealloc);
852
853 return 0;
854
d1310b2e 855}
d1310b2e 856
143bede5
JM
857static void wait_on_state(struct extent_io_tree *tree,
858 struct extent_state *state)
641f5219
CH
859 __releases(tree->lock)
860 __acquires(tree->lock)
d1310b2e
CM
861{
862 DEFINE_WAIT(wait);
863 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 864 spin_unlock(&tree->lock);
d1310b2e 865 schedule();
cad321ad 866 spin_lock(&tree->lock);
d1310b2e 867 finish_wait(&state->wq, &wait);
d1310b2e
CM
868}
869
870/*
871 * waits for one or more bits to clear on a range in the state tree.
872 * The range [start, end] is inclusive.
873 * The tree lock is taken by this function
874 */
41074888 875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 876 u32 bits)
d1310b2e
CM
877{
878 struct extent_state *state;
879 struct rb_node *node;
880
a5dee37d 881 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 882
cad321ad 883 spin_lock(&tree->lock);
d1310b2e
CM
884again:
885 while (1) {
886 /*
887 * this search will find all the extents that end after
888 * our range starts
889 */
80ea96b1 890 node = tree_search(tree, start);
c50d3e71 891process_node:
d1310b2e
CM
892 if (!node)
893 break;
894
895 state = rb_entry(node, struct extent_state, rb_node);
896
897 if (state->start > end)
898 goto out;
899
900 if (state->state & bits) {
901 start = state->start;
b7ac31b7 902 refcount_inc(&state->refs);
d1310b2e
CM
903 wait_on_state(tree, state);
904 free_extent_state(state);
905 goto again;
906 }
907 start = state->end + 1;
908
909 if (start > end)
910 break;
911
c50d3e71
FM
912 if (!cond_resched_lock(&tree->lock)) {
913 node = rb_next(node);
914 goto process_node;
915 }
d1310b2e
CM
916 }
917out:
cad321ad 918 spin_unlock(&tree->lock);
d1310b2e 919}
d1310b2e 920
1bf85046 921static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 922 struct extent_state *state,
f97e27e9 923 u32 *bits, struct extent_changeset *changeset)
d1310b2e 924{
f97e27e9 925 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 926 int ret;
9ed74f2d 927
e06a1fc9
NB
928 if (tree->private_data && is_data_inode(tree->private_data))
929 btrfs_set_delalloc_extent(tree->private_data, state, bits);
930
0ca1f7ce 931 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
932 u64 range = state->end - state->start + 1;
933 tree->dirty_bytes += range;
934 }
57599c7e
DS
935 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
936 BUG_ON(ret < 0);
0ca1f7ce 937 state->state |= bits_to_set;
d1310b2e
CM
938}
939
e38e2ed7
FM
940static void cache_state_if_flags(struct extent_state *state,
941 struct extent_state **cached_ptr,
9ee49a04 942 unsigned flags)
2c64c53d
CM
943{
944 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 945 if (!flags || (state->state & flags)) {
2c64c53d 946 *cached_ptr = state;
b7ac31b7 947 refcount_inc(&state->refs);
2c64c53d
CM
948 }
949 }
950}
951
e38e2ed7
FM
952static void cache_state(struct extent_state *state,
953 struct extent_state **cached_ptr)
954{
955 return cache_state_if_flags(state, cached_ptr,
8882679e 956 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
957}
958
d1310b2e 959/*
1edbb734
CM
960 * set some bits on a range in the tree. This may require allocations or
961 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 962 *
1edbb734
CM
963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
964 * part of the range already has the desired bits set. The start of the
965 * existing range is returned in failed_start in this case.
d1310b2e 966 *
1edbb734 967 * [start, end] is inclusive This takes the tree lock.
d1310b2e 968 */
f97e27e9
QW
969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
970 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
971 struct extent_state **cached_state, gfp_t mask,
972 struct extent_changeset *changeset)
d1310b2e
CM
973{
974 struct extent_state *state;
975 struct extent_state *prealloc = NULL;
976 struct rb_node *node;
12cfbad9
FDBM
977 struct rb_node **p;
978 struct rb_node *parent;
d1310b2e 979 int err = 0;
d1310b2e
CM
980 u64 last_start;
981 u64 last_end;
42daec29 982
a5dee37d 983 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 984 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 985
3f6bb4ae
QW
986 if (exclusive_bits)
987 ASSERT(failed_start);
988 else
989 ASSERT(failed_start == NULL);
d1310b2e 990again:
d0164adc 991 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
992 /*
993 * Don't care for allocation failure here because we might end
994 * up not needing the pre-allocated extent state at all, which
995 * is the case if we only have in the tree extent states that
996 * cover our input range and don't cover too any other range.
997 * If we end up needing a new extent state we allocate it later.
998 */
d1310b2e 999 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1000 }
1001
cad321ad 1002 spin_lock(&tree->lock);
9655d298
CM
1003 if (cached_state && *cached_state) {
1004 state = *cached_state;
df98b6e2 1005 if (state->start <= start && state->end > start &&
27a3507d 1006 extent_state_in_tree(state)) {
9655d298
CM
1007 node = &state->rb_node;
1008 goto hit_next;
1009 }
1010 }
d1310b2e
CM
1011 /*
1012 * this search will find all the extents that end after
1013 * our range starts.
1014 */
12cfbad9 1015 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1016 if (!node) {
8233767a
XG
1017 prealloc = alloc_extent_state_atomic(prealloc);
1018 BUG_ON(!prealloc);
12cfbad9 1019 err = insert_state(tree, prealloc, start, end,
d38ed27f 1020 &p, &parent, &bits, changeset);
c2d904e0
JM
1021 if (err)
1022 extent_io_tree_panic(tree, err);
1023
c42ac0bc 1024 cache_state(prealloc, cached_state);
d1310b2e 1025 prealloc = NULL;
d1310b2e
CM
1026 goto out;
1027 }
d1310b2e 1028 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1029hit_next:
d1310b2e
CM
1030 last_start = state->start;
1031 last_end = state->end;
1032
1033 /*
1034 * | ---- desired range ---- |
1035 * | state |
1036 *
1037 * Just lock what we found and keep going
1038 */
1039 if (state->start == start && state->end <= end) {
1edbb734 1040 if (state->state & exclusive_bits) {
d1310b2e
CM
1041 *failed_start = state->start;
1042 err = -EEXIST;
1043 goto out;
1044 }
42daec29 1045
d38ed27f 1046 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1047 cache_state(state, cached_state);
d1310b2e 1048 merge_state(tree, state);
5c939df5
YZ
1049 if (last_end == (u64)-1)
1050 goto out;
1051 start = last_end + 1;
d1ac6e41
LB
1052 state = next_state(state);
1053 if (start < end && state && state->start == start &&
1054 !need_resched())
1055 goto hit_next;
d1310b2e
CM
1056 goto search_again;
1057 }
1058
1059 /*
1060 * | ---- desired range ---- |
1061 * | state |
1062 * or
1063 * | ------------- state -------------- |
1064 *
1065 * We need to split the extent we found, and may flip bits on
1066 * second half.
1067 *
1068 * If the extent we found extends past our
1069 * range, we just split and search again. It'll get split
1070 * again the next time though.
1071 *
1072 * If the extent we found is inside our range, we set the
1073 * desired bit on it.
1074 */
1075 if (state->start < start) {
1edbb734 1076 if (state->state & exclusive_bits) {
d1310b2e
CM
1077 *failed_start = start;
1078 err = -EEXIST;
1079 goto out;
1080 }
8233767a 1081
55ffaabe
FM
1082 /*
1083 * If this extent already has all the bits we want set, then
1084 * skip it, not necessary to split it or do anything with it.
1085 */
1086 if ((state->state & bits) == bits) {
1087 start = state->end + 1;
1088 cache_state(state, cached_state);
1089 goto search_again;
1090 }
1091
8233767a
XG
1092 prealloc = alloc_extent_state_atomic(prealloc);
1093 BUG_ON(!prealloc);
d1310b2e 1094 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1095 if (err)
1096 extent_io_tree_panic(tree, err);
1097
d1310b2e
CM
1098 prealloc = NULL;
1099 if (err)
1100 goto out;
1101 if (state->end <= end) {
d38ed27f 1102 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1103 cache_state(state, cached_state);
d1310b2e 1104 merge_state(tree, state);
5c939df5
YZ
1105 if (last_end == (u64)-1)
1106 goto out;
1107 start = last_end + 1;
d1ac6e41
LB
1108 state = next_state(state);
1109 if (start < end && state && state->start == start &&
1110 !need_resched())
1111 goto hit_next;
d1310b2e
CM
1112 }
1113 goto search_again;
1114 }
1115 /*
1116 * | ---- desired range ---- |
1117 * | state | or | state |
1118 *
1119 * There's a hole, we need to insert something in it and
1120 * ignore the extent we found.
1121 */
1122 if (state->start > start) {
1123 u64 this_end;
1124 if (end < last_start)
1125 this_end = end;
1126 else
d397712b 1127 this_end = last_start - 1;
8233767a
XG
1128
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 BUG_ON(!prealloc);
c7f895a2
XG
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
d1310b2e 1136 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1137 NULL, NULL, &bits, changeset);
c2d904e0
JM
1138 if (err)
1139 extent_io_tree_panic(tree, err);
1140
9ed74f2d
JB
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
d1310b2e
CM
1143 start = this_end + 1;
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1151 */
1152 if (state->start <= end && state->end > end) {
1edbb734 1153 if (state->state & exclusive_bits) {
d1310b2e
CM
1154 *failed_start = start;
1155 err = -EEXIST;
1156 goto out;
1157 }
8233767a
XG
1158
1159 prealloc = alloc_extent_state_atomic(prealloc);
1160 BUG_ON(!prealloc);
d1310b2e 1161 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1162 if (err)
1163 extent_io_tree_panic(tree, err);
d1310b2e 1164
d38ed27f 1165 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1166 cache_state(prealloc, cached_state);
d1310b2e
CM
1167 merge_state(tree, prealloc);
1168 prealloc = NULL;
1169 goto out;
1170 }
1171
b5a4ba14
DS
1172search_again:
1173 if (start > end)
1174 goto out;
1175 spin_unlock(&tree->lock);
1176 if (gfpflags_allow_blocking(mask))
1177 cond_resched();
1178 goto again;
d1310b2e
CM
1179
1180out:
cad321ad 1181 spin_unlock(&tree->lock);
d1310b2e
CM
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
d1310b2e 1187}
d1310b2e 1188
462d6fac 1189/**
10983f2e
LB
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * another
462d6fac
JB
1192 * @tree: the io tree to search
1193 * @start: the start offset in bytes
1194 * @end: the end offset in bytes (inclusive)
1195 * @bits: the bits to set in this range
1196 * @clear_bits: the bits to clear in this range
e6138876 1197 * @cached_state: state that we're going to cache
462d6fac
JB
1198 *
1199 * This will go through and set bits for the given range. If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits. This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1203 * boundary bits like LOCK.
210aa277
DS
1204 *
1205 * All allocations are done with GFP_NOFS.
462d6fac
JB
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1208 u32 bits, u32 clear_bits,
210aa277 1209 struct extent_state **cached_state)
462d6fac
JB
1210{
1211 struct extent_state *state;
1212 struct extent_state *prealloc = NULL;
1213 struct rb_node *node;
12cfbad9
FDBM
1214 struct rb_node **p;
1215 struct rb_node *parent;
462d6fac
JB
1216 int err = 0;
1217 u64 last_start;
1218 u64 last_end;
c8fd3de7 1219 bool first_iteration = true;
462d6fac 1220
a5dee37d 1221 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1222 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223 clear_bits);
8d599ae1 1224
462d6fac 1225again:
210aa277 1226 if (!prealloc) {
c8fd3de7
FM
1227 /*
1228 * Best effort, don't worry if extent state allocation fails
1229 * here for the first iteration. We might have a cached state
1230 * that matches exactly the target range, in which case no
1231 * extent state allocations are needed. We'll only know this
1232 * after locking the tree.
1233 */
210aa277 1234 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1235 if (!prealloc && !first_iteration)
462d6fac
JB
1236 return -ENOMEM;
1237 }
1238
1239 spin_lock(&tree->lock);
e6138876
JB
1240 if (cached_state && *cached_state) {
1241 state = *cached_state;
1242 if (state->start <= start && state->end > start &&
27a3507d 1243 extent_state_in_tree(state)) {
e6138876
JB
1244 node = &state->rb_node;
1245 goto hit_next;
1246 }
1247 }
1248
462d6fac
JB
1249 /*
1250 * this search will find all the extents that end after
1251 * our range starts.
1252 */
12cfbad9 1253 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1254 if (!node) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
12cfbad9 1260 err = insert_state(tree, prealloc, start, end,
d38ed27f 1261 &p, &parent, &bits, NULL);
c2d904e0
JM
1262 if (err)
1263 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1264 cache_state(prealloc, cached_state);
1265 prealloc = NULL;
462d6fac
JB
1266 goto out;
1267 }
1268 state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270 last_start = state->start;
1271 last_end = state->end;
1272
1273 /*
1274 * | ---- desired range ---- |
1275 * | state |
1276 *
1277 * Just lock what we found and keep going
1278 */
1279 if (state->start == start && state->end <= end) {
d38ed27f 1280 set_state_bits(tree, state, &bits, NULL);
e6138876 1281 cache_state(state, cached_state);
fefdc557 1282 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1283 if (last_end == (u64)-1)
1284 goto out;
462d6fac 1285 start = last_end + 1;
d1ac6e41
LB
1286 if (start < end && state && state->start == start &&
1287 !need_resched())
1288 goto hit_next;
462d6fac
JB
1289 goto search_again;
1290 }
1291
1292 /*
1293 * | ---- desired range ---- |
1294 * | state |
1295 * or
1296 * | ------------- state -------------- |
1297 *
1298 * We need to split the extent we found, and may flip bits on
1299 * second half.
1300 *
1301 * If the extent we found extends past our
1302 * range, we just split and search again. It'll get split
1303 * again the next time though.
1304 *
1305 * If the extent we found is inside our range, we set the
1306 * desired bit on it.
1307 */
1308 if (state->start < start) {
1309 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1310 if (!prealloc) {
1311 err = -ENOMEM;
1312 goto out;
1313 }
462d6fac 1314 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1315 if (err)
1316 extent_io_tree_panic(tree, err);
462d6fac
JB
1317 prealloc = NULL;
1318 if (err)
1319 goto out;
1320 if (state->end <= end) {
d38ed27f 1321 set_state_bits(tree, state, &bits, NULL);
e6138876 1322 cache_state(state, cached_state);
fefdc557
QW
1323 state = clear_state_bit(tree, state, &clear_bits, 0,
1324 NULL);
462d6fac
JB
1325 if (last_end == (u64)-1)
1326 goto out;
1327 start = last_end + 1;
d1ac6e41
LB
1328 if (start < end && state && state->start == start &&
1329 !need_resched())
1330 goto hit_next;
462d6fac
JB
1331 }
1332 goto search_again;
1333 }
1334 /*
1335 * | ---- desired range ---- |
1336 * | state | or | state |
1337 *
1338 * There's a hole, we need to insert something in it and
1339 * ignore the extent we found.
1340 */
1341 if (state->start > start) {
1342 u64 this_end;
1343 if (end < last_start)
1344 this_end = end;
1345 else
1346 this_end = last_start - 1;
1347
1348 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1349 if (!prealloc) {
1350 err = -ENOMEM;
1351 goto out;
1352 }
462d6fac
JB
1353
1354 /*
1355 * Avoid to free 'prealloc' if it can be merged with
1356 * the later extent.
1357 */
1358 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1359 NULL, NULL, &bits, NULL);
c2d904e0
JM
1360 if (err)
1361 extent_io_tree_panic(tree, err);
e6138876 1362 cache_state(prealloc, cached_state);
462d6fac
JB
1363 prealloc = NULL;
1364 start = this_end + 1;
1365 goto search_again;
1366 }
1367 /*
1368 * | ---- desired range ---- |
1369 * | state |
1370 * We need to split the extent, and set the bit
1371 * on the first half
1372 */
1373 if (state->start <= end && state->end > end) {
1374 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1375 if (!prealloc) {
1376 err = -ENOMEM;
1377 goto out;
1378 }
462d6fac
JB
1379
1380 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1381 if (err)
1382 extent_io_tree_panic(tree, err);
462d6fac 1383
d38ed27f 1384 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1385 cache_state(prealloc, cached_state);
fefdc557 1386 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1387 prealloc = NULL;
1388 goto out;
1389 }
1390
462d6fac
JB
1391search_again:
1392 if (start > end)
1393 goto out;
1394 spin_unlock(&tree->lock);
210aa277 1395 cond_resched();
c8fd3de7 1396 first_iteration = false;
462d6fac 1397 goto again;
462d6fac
JB
1398
1399out:
1400 spin_unlock(&tree->lock);
1401 if (prealloc)
1402 free_extent_state(prealloc);
1403
1404 return err;
462d6fac
JB
1405}
1406
d1310b2e 1407/* wrappers around set/clear extent bit */
d38ed27f 1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1409 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1410{
1411 /*
1412 * We don't support EXTENT_LOCKED yet, as current changeset will
1413 * record any bits changed, so for EXTENT_LOCKED case, it will
1414 * either fail with -EEXIST or changeset will record the whole
1415 * range.
1416 */
1417 BUG_ON(bits & EXTENT_LOCKED);
1418
1cab5e72
NB
1419 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420 changeset);
d38ed27f
QW
1421}
1422
4ca73656 1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1424 u32 bits)
4ca73656 1425{
1cab5e72
NB
1426 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427 GFP_NOWAIT, NULL);
4ca73656
NB
1428}
1429
fefdc557 1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1431 u32 bits, int wake, int delete,
ae0f1625 1432 struct extent_state **cached)
fefdc557
QW
1433{
1434 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1435 cached, GFP_NOFS, NULL);
fefdc557
QW
1436}
1437
fefdc557 1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1439 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1440{
1441 /*
1442 * Don't support EXTENT_LOCKED case, same reason as
1443 * set_record_extent_bits().
1444 */
1445 BUG_ON(bits & EXTENT_LOCKED);
1446
f734c44a 1447 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1448 changeset);
1449}
1450
d352ac68
CM
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1edbb734 1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1456 struct extent_state **cached_state)
d1310b2e
CM
1457{
1458 int err;
1459 u64 failed_start;
9ee49a04 1460
d1310b2e 1461 while (1) {
1cab5e72
NB
1462 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463 EXTENT_LOCKED, &failed_start,
1464 cached_state, GFP_NOFS, NULL);
d0082371 1465 if (err == -EEXIST) {
d1310b2e
CM
1466 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467 start = failed_start;
d0082371 1468 } else
d1310b2e 1469 break;
d1310b2e
CM
1470 WARN_ON(start > end);
1471 }
1472 return err;
1473}
d1310b2e 1474
d0082371 1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1476{
1477 int err;
1478 u64 failed_start;
1479
1cab5e72
NB
1480 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1482 if (err == -EEXIST) {
1483 if (failed_start > start)
1484 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1485 EXTENT_LOCKED, 1, 0, NULL);
25179201 1486 return 0;
6643558d 1487 }
25179201
JB
1488 return 1;
1489}
25179201 1490
bd1fa4f0 1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1492{
09cbfeaf
KS
1493 unsigned long index = start >> PAGE_SHIFT;
1494 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1495 struct page *page;
1496
1497 while (index <= end_index) {
1498 page = find_get_page(inode->i_mapping, index);
1499 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500 clear_page_dirty_for_io(page);
09cbfeaf 1501 put_page(page);
4adaa611
CM
1502 index++;
1503 }
4adaa611
CM
1504}
1505
f6311572 1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1507{
09cbfeaf
KS
1508 unsigned long index = start >> PAGE_SHIFT;
1509 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1510 struct page *page;
1511
1512 while (index <= end_index) {
1513 page = find_get_page(inode->i_mapping, index);
1514 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1515 __set_page_dirty_nobuffers(page);
8d38633c 1516 account_page_redirty(page);
09cbfeaf 1517 put_page(page);
4adaa611
CM
1518 index++;
1519 }
4adaa611
CM
1520}
1521
d352ac68
CM
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it. tree->lock must be held. NULL will returned if
1524 * nothing was found after 'start'
1525 */
48a3b636 1526static struct extent_state *
f97e27e9 1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1528{
1529 struct rb_node *node;
1530 struct extent_state *state;
1531
1532 /*
1533 * this search will find all the extents that end after
1534 * our range starts.
1535 */
1536 node = tree_search(tree, start);
d397712b 1537 if (!node)
d7fc640e 1538 goto out;
d7fc640e 1539
d397712b 1540 while (1) {
d7fc640e 1541 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1542 if (state->end >= start && (state->state & bits))
d7fc640e 1543 return state;
d397712b 1544
d7fc640e
CM
1545 node = rb_next(node);
1546 if (!node)
1547 break;
1548 }
1549out:
1550 return NULL;
1551}
d7fc640e 1552
69261c4b 1553/*
03509b78 1554 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1555 *
03509b78
QW
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
69261c4b
XG
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1562 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1563 struct extent_state **cached_state)
69261c4b
XG
1564{
1565 struct extent_state *state;
1566 int ret = 1;
1567
1568 spin_lock(&tree->lock);
e6138876
JB
1569 if (cached_state && *cached_state) {
1570 state = *cached_state;
27a3507d 1571 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1572 while ((state = next_state(state)) != NULL) {
e6138876
JB
1573 if (state->state & bits)
1574 goto got_it;
e6138876
JB
1575 }
1576 free_extent_state(*cached_state);
1577 *cached_state = NULL;
1578 goto out;
1579 }
1580 free_extent_state(*cached_state);
1581 *cached_state = NULL;
1582 }
1583
69261c4b 1584 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1585got_it:
69261c4b 1586 if (state) {
e38e2ed7 1587 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1588 *start_ret = state->start;
1589 *end_ret = state->end;
1590 ret = 0;
1591 }
e6138876 1592out:
69261c4b
XG
1593 spin_unlock(&tree->lock);
1594 return ret;
1595}
1596
41a2ee75 1597/**
3bed2da1
NB
1598 * Find a contiguous area of bits
1599 *
1600 * @tree: io tree to check
1601 * @start: offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret: the final contiguous range of the bits that were set
1604 * @bits: bits to look for
41a2ee75
JB
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again. During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits. We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area. The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1614 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1615{
1616 struct extent_state *state;
1617 int ret = 1;
1618
1619 spin_lock(&tree->lock);
1620 state = find_first_extent_bit_state(tree, start, bits);
1621 if (state) {
1622 *start_ret = state->start;
1623 *end_ret = state->end;
1624 while ((state = next_state(state)) != NULL) {
1625 if (state->start > (*end_ret + 1))
1626 break;
1627 *end_ret = state->end;
1628 }
1629 ret = 0;
1630 }
1631 spin_unlock(&tree->lock);
1632 return ret;
1633}
1634
45bfcfc1 1635/**
3bed2da1
NB
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
45bfcfc1 1638 *
3bed2da1
NB
1639 * @tree: the tree to search
1640 * @start: offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret: records the end of the range (inclusive)
1643 * @bits: the set of bits which must be unset
45bfcfc1
NB
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1651 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1652{
1653 struct extent_state *state;
1654 struct rb_node *node, *prev = NULL, *next;
1655
1656 spin_lock(&tree->lock);
1657
1658 /* Find first extent with bits cleared */
1659 while (1) {
1660 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1661 if (!node && !next && !prev) {
1662 /*
1663 * Tree is completely empty, send full range and let
1664 * caller deal with it
1665 */
1666 *start_ret = 0;
1667 *end_ret = -1;
1668 goto out;
1669 } else if (!node && !next) {
1670 /*
1671 * We are past the last allocated chunk, set start at
1672 * the end of the last extent.
1673 */
1674 state = rb_entry(prev, struct extent_state, rb_node);
1675 *start_ret = state->end + 1;
1676 *end_ret = -1;
1677 goto out;
1678 } else if (!node) {
45bfcfc1 1679 node = next;
45bfcfc1 1680 }
1eaebb34
NB
1681 /*
1682 * At this point 'node' either contains 'start' or start is
1683 * before 'node'
1684 */
45bfcfc1 1685 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1686
1687 if (in_range(start, state->start, state->end - state->start + 1)) {
1688 if (state->state & bits) {
1689 /*
1690 * |--range with bits sets--|
1691 * |
1692 * start
1693 */
1694 start = state->end + 1;
1695 } else {
1696 /*
1697 * 'start' falls within a range that doesn't
1698 * have the bits set, so take its start as
1699 * the beginning of the desired range
1700 *
1701 * |--range with bits cleared----|
1702 * |
1703 * start
1704 */
1705 *start_ret = state->start;
1706 break;
1707 }
45bfcfc1 1708 } else {
1eaebb34
NB
1709 /*
1710 * |---prev range---|---hole/unset---|---node range---|
1711 * |
1712 * start
1713 *
1714 * or
1715 *
1716 * |---hole/unset--||--first node--|
1717 * 0 |
1718 * start
1719 */
1720 if (prev) {
1721 state = rb_entry(prev, struct extent_state,
1722 rb_node);
1723 *start_ret = state->end + 1;
1724 } else {
1725 *start_ret = 0;
1726 }
45bfcfc1
NB
1727 break;
1728 }
1729 }
1730
1731 /*
1732 * Find the longest stretch from start until an entry which has the
1733 * bits set
1734 */
1735 while (1) {
1736 state = rb_entry(node, struct extent_state, rb_node);
1737 if (state->end >= start && !(state->state & bits)) {
1738 *end_ret = state->end;
1739 } else {
1740 *end_ret = state->start - 1;
1741 break;
1742 }
1743
1744 node = rb_next(node);
1745 if (!node)
1746 break;
1747 }
1748out:
1749 spin_unlock(&tree->lock);
1750}
1751
d352ac68
CM
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'. start and end are used to return the range,
1755 *
3522e903 1756 * true is returned if we find something, false if nothing was in the tree
d352ac68 1757 */
083e75e7
JB
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759 u64 *end, u64 max_bytes,
1760 struct extent_state **cached_state)
d1310b2e
CM
1761{
1762 struct rb_node *node;
1763 struct extent_state *state;
1764 u64 cur_start = *start;
3522e903 1765 bool found = false;
d1310b2e
CM
1766 u64 total_bytes = 0;
1767
cad321ad 1768 spin_lock(&tree->lock);
c8b97818 1769
d1310b2e
CM
1770 /*
1771 * this search will find all the extents that end after
1772 * our range starts.
1773 */
80ea96b1 1774 node = tree_search(tree, cur_start);
2b114d1d 1775 if (!node) {
3522e903 1776 *end = (u64)-1;
d1310b2e
CM
1777 goto out;
1778 }
1779
d397712b 1780 while (1) {
d1310b2e 1781 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1782 if (found && (state->start != cur_start ||
1783 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1784 goto out;
1785 }
1786 if (!(state->state & EXTENT_DELALLOC)) {
1787 if (!found)
1788 *end = state->end;
1789 goto out;
1790 }
c2a128d2 1791 if (!found) {
d1310b2e 1792 *start = state->start;
c2a128d2 1793 *cached_state = state;
b7ac31b7 1794 refcount_inc(&state->refs);
c2a128d2 1795 }
3522e903 1796 found = true;
d1310b2e
CM
1797 *end = state->end;
1798 cur_start = state->end + 1;
1799 node = rb_next(node);
d1310b2e 1800 total_bytes += state->end - state->start + 1;
7bf811a5 1801 if (total_bytes >= max_bytes)
573aecaf 1802 break;
573aecaf 1803 if (!node)
d1310b2e
CM
1804 break;
1805 }
1806out:
cad321ad 1807 spin_unlock(&tree->lock);
d1310b2e
CM
1808 return found;
1809}
1810
ed8f13bf
QW
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
e38992be
QW
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820 struct address_space *mapping,
ed8f13bf 1821 struct page *page, struct page *locked_page,
e38992be 1822 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1823{
e38992be
QW
1824 u32 len;
1825
1826 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827 len = end + 1 - start;
1828
ed8f13bf 1829 if (page_ops & PAGE_SET_ORDERED)
b945a463 1830 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf
QW
1831
1832 if (page == locked_page)
1833 return 1;
1834
1835 if (page_ops & PAGE_SET_ERROR)
e38992be 1836 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1837 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1838 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1839 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1840 }
1841 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1842 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
ed8f13bf 1843 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1844 int ret;
1845
1846 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847 if (ret)
1848 return ret;
ed8f13bf 1849 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1850 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1851 return -EAGAIN;
1852 }
1853 }
1854 if (page_ops & PAGE_UNLOCK)
1e1de387 1855 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1856 return 0;
1857}
1858
da2c7009
LB
1859static int __process_pages_contig(struct address_space *mapping,
1860 struct page *locked_page,
98af9ab1 1861 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1862 u64 *processed_end)
1863{
e38992be 1864 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1865 pgoff_t start_index = start >> PAGE_SHIFT;
1866 pgoff_t end_index = end >> PAGE_SHIFT;
1867 pgoff_t index = start_index;
1868 unsigned long nr_pages = end_index - start_index + 1;
1869 unsigned long pages_processed = 0;
1870 struct page *pages[16];
1871 int err = 0;
1872 int i;
1873
1874 if (page_ops & PAGE_LOCK) {
1875 ASSERT(page_ops == PAGE_LOCK);
1876 ASSERT(processed_end && *processed_end == start);
1877 }
1878
1879 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880 mapping_set_error(mapping, -EIO);
1881
1882 while (nr_pages > 0) {
1883 int found_pages;
1884
1885 found_pages = find_get_pages_contig(mapping, index,
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
1888 if (found_pages == 0) {
1889 /*
1890 * Only if we're going to lock these pages, we can find
1891 * nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
1894 err = -EAGAIN;
1895 goto out;
1896 }
1897
1898 for (i = 0; i < found_pages; i++) {
1899 int process_ret;
1900
e38992be
QW
1901 process_ret = process_one_page(fs_info, mapping,
1902 pages[i], locked_page, page_ops,
1903 start, end);
ed8f13bf
QW
1904 if (process_ret < 0) {
1905 for (; i < found_pages; i++)
1906 put_page(pages[i]);
1907 err = -EAGAIN;
1908 goto out;
1909 }
1910 put_page(pages[i]);
1911 pages_processed++;
1912 }
1913 nr_pages -= found_pages;
1914 index += found_pages;
1915 cond_resched();
1916 }
1917out:
1918 if (err && processed_end) {
1919 /*
1920 * Update @processed_end. I know this is awful since it has
1921 * two different return value patterns (inclusive vs exclusive).
1922 *
1923 * But the exclusive pattern is necessary if @start is 0, or we
1924 * underflow and check against processed_end won't work as
1925 * expected.
1926 */
1927 if (pages_processed)
1928 *processed_end = min(end,
1929 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930 else
1931 *processed_end = start;
1932 }
1933 return err;
1934}
da2c7009 1935
143bede5
JM
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937 struct page *locked_page,
1938 u64 start, u64 end)
c8b97818 1939{
09cbfeaf
KS
1940 unsigned long index = start >> PAGE_SHIFT;
1941 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1942
76c0021d 1943 ASSERT(locked_page);
c8b97818 1944 if (index == locked_page->index && end_index == index)
143bede5 1945 return;
c8b97818 1946
98af9ab1 1947 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1948 PAGE_UNLOCK, NULL);
c8b97818
CM
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952 struct page *locked_page,
1953 u64 delalloc_start,
1954 u64 delalloc_end)
1955{
09cbfeaf 1956 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1957 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1958 u64 processed_end = delalloc_start;
c8b97818 1959 int ret;
c8b97818 1960
76c0021d 1961 ASSERT(locked_page);
c8b97818
CM
1962 if (index == locked_page->index && index == end_index)
1963 return 0;
1964
98af9ab1
QW
1965 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966 delalloc_end, PAGE_LOCK, &processed_end);
1967 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1968 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 1969 processed_end);
c8b97818
CM
1970 return ret;
1971}
1972
1973/*
3522e903
LF
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1976 *
3522e903
LF
1977 * Return: true if we find something
1978 * false if nothing was in the tree
c8b97818 1979 */
ce9f967f 1980EXPORT_FOR_TESTS
3522e903 1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1982 struct page *locked_page, u64 *start,
917aacec 1983 u64 *end)
c8b97818 1984{
9978059b 1985 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1986 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1987 u64 delalloc_start;
1988 u64 delalloc_end;
3522e903 1989 bool found;
9655d298 1990 struct extent_state *cached_state = NULL;
c8b97818
CM
1991 int ret;
1992 int loops = 0;
1993
1994again:
1995 /* step one, find a bunch of delalloc bytes starting at start */
1996 delalloc_start = *start;
1997 delalloc_end = 0;
083e75e7
JB
1998 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999 max_bytes, &cached_state);
70b99e69 2000 if (!found || delalloc_end <= *start) {
c8b97818
CM
2001 *start = delalloc_start;
2002 *end = delalloc_end;
c2a128d2 2003 free_extent_state(cached_state);
3522e903 2004 return false;
c8b97818
CM
2005 }
2006
70b99e69
CM
2007 /*
2008 * start comes from the offset of locked_page. We have to lock
2009 * pages in order, so we can't process delalloc bytes before
2010 * locked_page
2011 */
d397712b 2012 if (delalloc_start < *start)
70b99e69 2013 delalloc_start = *start;
70b99e69 2014
c8b97818
CM
2015 /*
2016 * make sure to limit the number of pages we try to lock down
c8b97818 2017 */
7bf811a5
JB
2018 if (delalloc_end + 1 - delalloc_start > max_bytes)
2019 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2020
c8b97818
CM
2021 /* step two, lock all the pages after the page that has start */
2022 ret = lock_delalloc_pages(inode, locked_page,
2023 delalloc_start, delalloc_end);
9bfd61d9 2024 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2025 if (ret == -EAGAIN) {
2026 /* some of the pages are gone, lets avoid looping by
2027 * shortening the size of the delalloc range we're searching
2028 */
9655d298 2029 free_extent_state(cached_state);
7d788742 2030 cached_state = NULL;
c8b97818 2031 if (!loops) {
09cbfeaf 2032 max_bytes = PAGE_SIZE;
c8b97818
CM
2033 loops = 1;
2034 goto again;
2035 } else {
3522e903 2036 found = false;
c8b97818
CM
2037 goto out_failed;
2038 }
2039 }
c8b97818
CM
2040
2041 /* step three, lock the state bits for the whole range */
ff13db41 2042 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2043
2044 /* then test to make sure it is all still delalloc */
2045 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2046 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2047 if (!ret) {
9655d298 2048 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2049 &cached_state);
c8b97818
CM
2050 __unlock_for_delalloc(inode, locked_page,
2051 delalloc_start, delalloc_end);
2052 cond_resched();
2053 goto again;
2054 }
9655d298 2055 free_extent_state(cached_state);
c8b97818
CM
2056 *start = delalloc_start;
2057 *end = delalloc_end;
2058out_failed:
2059 return found;
2060}
2061
ad7ff17b 2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2063 struct page *locked_page,
f97e27e9 2064 u32 clear_bits, unsigned long page_ops)
873695b3 2065{
ad7ff17b 2066 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2067
ad7ff17b 2068 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2069 start, end, page_ops, NULL);
873695b3
LB
2070}
2071
d352ac68
CM
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached. The total number found is returned.
2076 */
d1310b2e
CM
2077u64 count_range_bits(struct extent_io_tree *tree,
2078 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2079 u32 bits, int contig)
d1310b2e
CM
2080{
2081 struct rb_node *node;
2082 struct extent_state *state;
2083 u64 cur_start = *start;
2084 u64 total_bytes = 0;
ec29ed5b 2085 u64 last = 0;
d1310b2e
CM
2086 int found = 0;
2087
fae7f21c 2088 if (WARN_ON(search_end <= cur_start))
d1310b2e 2089 return 0;
d1310b2e 2090
cad321ad 2091 spin_lock(&tree->lock);
d1310b2e
CM
2092 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093 total_bytes = tree->dirty_bytes;
2094 goto out;
2095 }
2096 /*
2097 * this search will find all the extents that end after
2098 * our range starts.
2099 */
80ea96b1 2100 node = tree_search(tree, cur_start);
d397712b 2101 if (!node)
d1310b2e 2102 goto out;
d1310b2e 2103
d397712b 2104 while (1) {
d1310b2e
CM
2105 state = rb_entry(node, struct extent_state, rb_node);
2106 if (state->start > search_end)
2107 break;
ec29ed5b
CM
2108 if (contig && found && state->start > last + 1)
2109 break;
2110 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2111 total_bytes += min(search_end, state->end) + 1 -
2112 max(cur_start, state->start);
2113 if (total_bytes >= max_bytes)
2114 break;
2115 if (!found) {
af60bed2 2116 *start = max(cur_start, state->start);
d1310b2e
CM
2117 found = 1;
2118 }
ec29ed5b
CM
2119 last = state->end;
2120 } else if (contig && found) {
2121 break;
d1310b2e
CM
2122 }
2123 node = rb_next(node);
2124 if (!node)
2125 break;
2126 }
2127out:
cad321ad 2128 spin_unlock(&tree->lock);
d1310b2e
CM
2129 return total_bytes;
2130}
b2950863 2131
d352ac68
CM
2132/*
2133 * set the private field for a given byte offset in the tree. If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
b3f167aa
JB
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137 struct io_failure_record *failrec)
d1310b2e
CM
2138{
2139 struct rb_node *node;
2140 struct extent_state *state;
2141 int ret = 0;
2142
cad321ad 2143 spin_lock(&tree->lock);
d1310b2e
CM
2144 /*
2145 * this search will find all the extents that end after
2146 * our range starts.
2147 */
80ea96b1 2148 node = tree_search(tree, start);
2b114d1d 2149 if (!node) {
d1310b2e
CM
2150 ret = -ENOENT;
2151 goto out;
2152 }
2153 state = rb_entry(node, struct extent_state, rb_node);
2154 if (state->start != start) {
2155 ret = -ENOENT;
2156 goto out;
2157 }
47dc196a 2158 state->failrec = failrec;
d1310b2e 2159out:
cad321ad 2160 spin_unlock(&tree->lock);
d1310b2e
CM
2161 return ret;
2162}
2163
2279a270 2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2165{
2166 struct rb_node *node;
2167 struct extent_state *state;
2279a270 2168 struct io_failure_record *failrec;
d1310b2e 2169
cad321ad 2170 spin_lock(&tree->lock);
d1310b2e
CM
2171 /*
2172 * this search will find all the extents that end after
2173 * our range starts.
2174 */
80ea96b1 2175 node = tree_search(tree, start);
2b114d1d 2176 if (!node) {
2279a270 2177 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2178 goto out;
2179 }
2180 state = rb_entry(node, struct extent_state, rb_node);
2181 if (state->start != start) {
2279a270 2182 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2183 goto out;
2184 }
2279a270
NB
2185
2186 failrec = state->failrec;
d1310b2e 2187out:
cad321ad 2188 spin_unlock(&tree->lock);
2279a270 2189 return failrec;
d1310b2e
CM
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
70dec807 2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2195 * has the bits set. Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2199 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2200{
2201 struct extent_state *state = NULL;
2202 struct rb_node *node;
2203 int bitset = 0;
d1310b2e 2204
cad321ad 2205 spin_lock(&tree->lock);
27a3507d 2206 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2207 cached->end > start)
9655d298
CM
2208 node = &cached->rb_node;
2209 else
2210 node = tree_search(tree, start);
d1310b2e
CM
2211 while (node && start <= end) {
2212 state = rb_entry(node, struct extent_state, rb_node);
2213
2214 if (filled && state->start > start) {
2215 bitset = 0;
2216 break;
2217 }
2218
2219 if (state->start > end)
2220 break;
2221
2222 if (state->state & bits) {
2223 bitset = 1;
2224 if (!filled)
2225 break;
2226 } else if (filled) {
2227 bitset = 0;
2228 break;
2229 }
46562cec
CM
2230
2231 if (state->end == (u64)-1)
2232 break;
2233
d1310b2e
CM
2234 start = state->end + 1;
2235 if (start > end)
2236 break;
2237 node = rb_next(node);
2238 if (!node) {
2239 if (filled)
2240 bitset = 0;
2241 break;
2242 }
2243 }
cad321ad 2244 spin_unlock(&tree->lock);
d1310b2e
CM
2245 return bitset;
2246}
d1310b2e
CM
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
143bede5 2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2253{
4eee4fa4 2254 u64 start = page_offset(page);
09cbfeaf 2255 u64 end = start + PAGE_SIZE - 1;
9655d298 2256 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2257 SetPageUptodate(page);
d1310b2e
CM
2258}
2259
7870d082
JB
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261 struct extent_io_tree *io_tree,
2262 struct io_failure_record *rec)
4a54c8c1
JS
2263{
2264 int ret;
2265 int err = 0;
4a54c8c1 2266
47dc196a 2267 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2268 ret = clear_extent_bits(failure_tree, rec->start,
2269 rec->start + rec->len - 1,
91166212 2270 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2271 if (ret)
2272 err = ret;
2273
7870d082 2274 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2275 rec->start + rec->len - 1,
91166212 2276 EXTENT_DAMAGED);
53b381b3
DW
2277 if (ret && !err)
2278 err = ret;
4a54c8c1
JS
2279
2280 kfree(rec);
2281 return err;
2282}
2283
4a54c8c1
JS
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
3ec706c8 2289 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
6ec656bc
JB
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295 u64 length, u64 logical, struct page *page,
2296 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2297{
2298 struct bio *bio;
2299 struct btrfs_device *dev;
4a54c8c1
JS
2300 u64 map_length = 0;
2301 u64 sector;
2302 struct btrfs_bio *bbio = NULL;
2303 int ret;
2304
1751e8a6 2305 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2306 BUG_ON(!mirror_num);
2307
f7ef5287
NA
2308 if (btrfs_is_zoned(fs_info))
2309 return btrfs_repair_one_zone(fs_info, logical);
2310
c5e4c3d7 2311 bio = btrfs_io_bio_alloc(1);
4f024f37 2312 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2313 map_length = length;
2314
b5de8d0d
FM
2315 /*
2316 * Avoid races with device replace and make sure our bbio has devices
2317 * associated to its stripes that don't go away while we are doing the
2318 * read repair operation.
2319 */
2320 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2321 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2322 /*
2323 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324 * to update all raid stripes, but here we just want to correct
2325 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326 * stripe's dev and sector.
2327 */
2328 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329 &map_length, &bbio, 0);
2330 if (ret) {
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return -EIO;
2334 }
2335 ASSERT(bbio->mirror_num == 1);
2336 } else {
2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338 &map_length, &bbio, mirror_num);
2339 if (ret) {
2340 btrfs_bio_counter_dec(fs_info);
2341 bio_put(bio);
2342 return -EIO;
2343 }
2344 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2345 }
c725328c
LB
2346
2347 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2348 bio->bi_iter.bi_sector = sector;
c725328c 2349 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2350 btrfs_put_bbio(bbio);
ebbede42
AJ
2351 if (!dev || !dev->bdev ||
2352 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2353 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2354 bio_put(bio);
2355 return -EIO;
2356 }
74d46992 2357 bio_set_dev(bio, dev->bdev);
70fd7614 2358 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2359 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2360
4e49ea4a 2361 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2362 /* try to remap that extent elsewhere? */
b5de8d0d 2363 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2364 bio_put(bio);
442a4f63 2365 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2366 return -EIO;
2367 }
2368
b14af3b4
DS
2369 btrfs_info_rl_in_rcu(fs_info,
2370 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2371 ino, start,
1203b681 2372 rcu_str_deref(dev->name), sector);
b5de8d0d 2373 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2374 bio_put(bio);
2375 return 0;
2376}
2377
2b48966a 2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2379{
20a1fbf9 2380 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2381 u64 start = eb->start;
cc5e31a4 2382 int i, num_pages = num_extent_pages(eb);
d95603b2 2383 int ret = 0;
ea466794 2384
bc98a42c 2385 if (sb_rdonly(fs_info->sb))
908960c6
ID
2386 return -EROFS;
2387
ea466794 2388 for (i = 0; i < num_pages; i++) {
fb85fc9a 2389 struct page *p = eb->pages[i];
1203b681 2390
6ec656bc 2391 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2392 start - page_offset(p), mirror_num);
ea466794
JB
2393 if (ret)
2394 break;
09cbfeaf 2395 start += PAGE_SIZE;
ea466794
JB
2396 }
2397
2398 return ret;
2399}
2400
4a54c8c1
JS
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
7870d082
JB
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406 struct extent_io_tree *failure_tree,
2407 struct extent_io_tree *io_tree, u64 start,
2408 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2409{
2410 u64 private;
4a54c8c1 2411 struct io_failure_record *failrec;
4a54c8c1
JS
2412 struct extent_state *state;
2413 int num_copies;
4a54c8c1 2414 int ret;
4a54c8c1
JS
2415
2416 private = 0;
7870d082
JB
2417 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418 EXTENT_DIRTY, 0);
4a54c8c1
JS
2419 if (!ret)
2420 return 0;
2421
2279a270
NB
2422 failrec = get_state_failrec(failure_tree, start);
2423 if (IS_ERR(failrec))
4a54c8c1
JS
2424 return 0;
2425
4a54c8c1
JS
2426 BUG_ON(!failrec->this_mirror);
2427
bc98a42c 2428 if (sb_rdonly(fs_info->sb))
908960c6 2429 goto out;
4a54c8c1 2430
7870d082
JB
2431 spin_lock(&io_tree->lock);
2432 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2433 failrec->start,
2434 EXTENT_LOCKED);
7870d082 2435 spin_unlock(&io_tree->lock);
4a54c8c1 2436
883d0de4
MX
2437 if (state && state->start <= failrec->start &&
2438 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2439 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440 failrec->len);
4a54c8c1 2441 if (num_copies > 1) {
7870d082
JB
2442 repair_io_failure(fs_info, ino, start, failrec->len,
2443 failrec->logical, page, pg_offset,
2444 failrec->failed_mirror);
4a54c8c1
JS
2445 }
2446 }
2447
2448out:
7870d082 2449 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2450
454ff3de 2451 return 0;
4a54c8c1
JS
2452}
2453
f612496b
MX
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
7ab7956e 2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2461{
7ab7956e 2462 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2463 struct io_failure_record *failrec;
2464 struct extent_state *state, *next;
2465
2466 if (RB_EMPTY_ROOT(&failure_tree->state))
2467 return;
2468
2469 spin_lock(&failure_tree->lock);
2470 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471 while (state) {
2472 if (state->start > end)
2473 break;
2474
2475 ASSERT(state->end <= end);
2476
2477 next = next_state(state);
2478
47dc196a 2479 failrec = state->failrec;
f612496b
MX
2480 free_extent_state(state);
2481 kfree(failrec);
2482
2483 state = next;
2484 }
2485 spin_unlock(&failure_tree->lock);
2486}
2487
3526302f 2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
150e4b05 2489 u64 start)
4a54c8c1 2490{
ab8d0fc4 2491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2492 struct io_failure_record *failrec;
4a54c8c1 2493 struct extent_map *em;
4a54c8c1
JS
2494 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2497 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2498 int ret;
4a54c8c1
JS
2499 u64 logical;
2500
2279a270 2501 failrec = get_state_failrec(failure_tree, start);
3526302f 2502 if (!IS_ERR(failrec)) {
ab8d0fc4 2503 btrfs_debug(fs_info,
1245835d
QW
2504 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2506 /*
2507 * when data can be on disk more than twice, add to failrec here
2508 * (e.g. with a list for failed_mirror) to make
2509 * clean_io_failure() clean all those errors at once.
2510 */
3526302f
NB
2511
2512 return failrec;
4a54c8c1 2513 }
2fe6303e 2514
3526302f
NB
2515 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516 if (!failrec)
2517 return ERR_PTR(-ENOMEM);
2fe6303e 2518
3526302f 2519 failrec->start = start;
150e4b05 2520 failrec->len = sectorsize;
3526302f
NB
2521 failrec->this_mirror = 0;
2522 failrec->bio_flags = 0;
3526302f
NB
2523
2524 read_lock(&em_tree->lock);
2525 em = lookup_extent_mapping(em_tree, start, failrec->len);
2526 if (!em) {
2527 read_unlock(&em_tree->lock);
2528 kfree(failrec);
2529 return ERR_PTR(-EIO);
2530 }
2531
2532 if (em->start > start || em->start + em->len <= start) {
2533 free_extent_map(em);
2534 em = NULL;
2535 }
2536 read_unlock(&em_tree->lock);
2537 if (!em) {
2538 kfree(failrec);
2539 return ERR_PTR(-EIO);
2540 }
2541
2542 logical = start - em->start;
2543 logical = em->block_start + logical;
2544 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545 logical = em->block_start;
2546 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548 }
2549
2550 btrfs_debug(fs_info,
2551 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552 logical, start, failrec->len);
2553
2554 failrec->logical = logical;
2555 free_extent_map(em);
2556
2557 /* Set the bits in the private failure tree */
150e4b05 2558 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2559 EXTENT_LOCKED | EXTENT_DIRTY);
2560 if (ret >= 0) {
2561 ret = set_state_failrec(failure_tree, start, failrec);
2562 /* Set the bits in the inode's tree */
150e4b05
QW
2563 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564 EXTENT_DAMAGED);
3526302f
NB
2565 } else if (ret < 0) {
2566 kfree(failrec);
2567 return ERR_PTR(ret);
2568 }
2569
2570 return failrec;
2fe6303e
MX
2571}
2572
1245835d 2573static bool btrfs_check_repairable(struct inode *inode,
ce06d3ec
OS
2574 struct io_failure_record *failrec,
2575 int failed_mirror)
2fe6303e 2576{
ab8d0fc4 2577 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2578 int num_copies;
2579
ab8d0fc4 2580 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2581 if (num_copies == 1) {
2582 /*
2583 * we only have a single copy of the data, so don't bother with
2584 * all the retry and error correction code that follows. no
2585 * matter what the error is, it is very likely to persist.
2586 */
ab8d0fc4
JM
2587 btrfs_debug(fs_info,
2588 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2590 return false;
4a54c8c1
JS
2591 }
2592
1245835d
QW
2593 /* The failure record should only contain one sector */
2594 ASSERT(failrec->len == fs_info->sectorsize);
2595
4a54c8c1 2596 /*
1245835d
QW
2597 * There are two premises:
2598 * a) deliver good data to the caller
2599 * b) correct the bad sectors on disk
2600 *
2601 * Since we're only doing repair for one sector, we only need to get
2602 * a good copy of the failed sector and if we succeed, we have setup
2603 * everything for repair_io_failure to do the rest for us.
4a54c8c1 2604 */
1245835d
QW
2605 failrec->failed_mirror = failed_mirror;
2606 failrec->this_mirror++;
2607 if (failrec->this_mirror == failed_mirror)
4a54c8c1 2608 failrec->this_mirror++;
4a54c8c1 2609
facc8a22 2610 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2611 btrfs_debug(fs_info,
2612 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2614 return false;
4a54c8c1
JS
2615 }
2616
c3cfb656 2617 return true;
2fe6303e
MX
2618}
2619
150e4b05
QW
2620int btrfs_repair_one_sector(struct inode *inode,
2621 struct bio *failed_bio, u32 bio_offset,
2622 struct page *page, unsigned int pgoff,
2623 u64 start, int failed_mirror,
2624 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2625{
2626 struct io_failure_record *failrec;
77d5d689 2627 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2628 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2629 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
77d5d689 2630 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
7ffd27e3 2631 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689
OS
2632 struct bio *repair_bio;
2633 struct btrfs_io_bio *repair_io_bio;
4e4cbee9 2634 blk_status_t status;
2fe6303e 2635
77d5d689
OS
2636 btrfs_debug(fs_info,
2637 "repair read error: read error at %llu", start);
2fe6303e 2638
1f7ad75b 2639 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2640
150e4b05 2641 failrec = btrfs_get_io_failure_record(inode, start);
3526302f 2642 if (IS_ERR(failrec))
150e4b05 2643 return PTR_ERR(failrec);
2fe6303e 2644
1245835d
QW
2645
2646 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
7870d082 2647 free_io_failure(failure_tree, tree, failrec);
150e4b05 2648 return -EIO;
2fe6303e
MX
2649 }
2650
77d5d689
OS
2651 repair_bio = btrfs_io_bio_alloc(1);
2652 repair_io_bio = btrfs_io_bio(repair_bio);
2653 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2654 repair_bio->bi_end_io = failed_bio->bi_end_io;
2655 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2657
77d5d689 2658 if (failed_io_bio->csum) {
223486c2 2659 const u32 csum_size = fs_info->csum_size;
77d5d689
OS
2660
2661 repair_io_bio->csum = repair_io_bio->csum_inline;
2662 memcpy(repair_io_bio->csum,
2663 failed_io_bio->csum + csum_size * icsum, csum_size);
2664 }
2fe6303e 2665
77d5d689
OS
2666 bio_add_page(repair_bio, page, failrec->len, pgoff);
2667 repair_io_bio->logical = failrec->start;
2668 repair_io_bio->iter = repair_bio->bi_iter;
4a54c8c1 2669
ab8d0fc4 2670 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2671 "repair read error: submitting new read to mirror %d",
2672 failrec->this_mirror);
4a54c8c1 2673
77d5d689
OS
2674 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675 failrec->bio_flags);
4e4cbee9 2676 if (status) {
7870d082 2677 free_io_failure(failure_tree, tree, failrec);
77d5d689 2678 bio_put(repair_bio);
6c387ab2 2679 }
150e4b05
QW
2680 return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687 ASSERT(page_offset(page) <= start &&
2688 start + len <= page_offset(page) + PAGE_SIZE);
2689
2690 /*
2691 * For subapge metadata case, all btrfs_page_* helpers need page to
2692 * have page::private populated.
2693 * But we can have rare case where the last eb in the page is only
2694 * referred by the IO, and it gets released immedately after it's
2695 * read and verified.
2696 *
2697 * This can detach the page private completely.
2698 * In that case, we can just skip the page status update completely,
2699 * as the page has no eb anymore.
2700 */
2701 if (fs_info->sectorsize < PAGE_SIZE && unlikely(!PagePrivate(page))) {
2702 ASSERT(!is_data_inode(page->mapping->host));
2703 return;
2704 }
2705 if (uptodate) {
2706 btrfs_page_set_uptodate(fs_info, page, start, len);
2707 } else {
2708 btrfs_page_clear_uptodate(fs_info, page, start, len);
2709 btrfs_page_set_error(fs_info, page, start, len);
2710 }
2711
2712 if (fs_info->sectorsize == PAGE_SIZE)
2713 unlock_page(page);
2714 else if (is_data_inode(page->mapping->host))
2715 /*
2716 * For subpage data, unlock the page if we're the last reader.
2717 * For subpage metadata, page lock is not utilized for read.
2718 */
2719 btrfs_subpage_end_reader(fs_info, page, start, len);
2720}
2721
2722static blk_status_t submit_read_repair(struct inode *inode,
2723 struct bio *failed_bio, u32 bio_offset,
2724 struct page *page, unsigned int pgoff,
2725 u64 start, u64 end, int failed_mirror,
2726 unsigned int error_bitmap,
2727 submit_bio_hook_t *submit_bio_hook)
2728{
2729 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2730 const u32 sectorsize = fs_info->sectorsize;
2731 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2732 int error = 0;
2733 int i;
2734
2735 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2736
2737 /* We're here because we had some read errors or csum mismatch */
2738 ASSERT(error_bitmap);
2739
2740 /*
2741 * We only get called on buffered IO, thus page must be mapped and bio
2742 * must not be cloned.
2743 */
2744 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2745
2746 /* Iterate through all the sectors in the range */
2747 for (i = 0; i < nr_bits; i++) {
2748 const unsigned int offset = i * sectorsize;
2749 struct extent_state *cached = NULL;
2750 bool uptodate = false;
2751 int ret;
2752
2753 if (!(error_bitmap & (1U << i))) {
2754 /*
2755 * This sector has no error, just end the page read
2756 * and unlock the range.
2757 */
2758 uptodate = true;
2759 goto next;
2760 }
2761
2762 ret = btrfs_repair_one_sector(inode, failed_bio,
2763 bio_offset + offset,
2764 page, pgoff + offset, start + offset,
2765 failed_mirror, submit_bio_hook);
2766 if (!ret) {
2767 /*
2768 * We have submitted the read repair, the page release
2769 * will be handled by the endio function of the
2770 * submitted repair bio.
2771 * Thus we don't need to do any thing here.
2772 */
2773 continue;
2774 }
2775 /*
2776 * Repair failed, just record the error but still continue.
2777 * Or the remaining sectors will not be properly unlocked.
2778 */
2779 if (!error)
2780 error = ret;
2781next:
2782 end_page_read(page, uptodate, start + offset, sectorsize);
2783 if (uptodate)
2784 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2785 start + offset,
2786 start + offset + sectorsize - 1,
2787 &cached, GFP_ATOMIC);
2788 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2789 start + offset,
2790 start + offset + sectorsize - 1,
2791 &cached);
2792 }
2793 return errno_to_blk_status(error);
4a54c8c1
JS
2794}
2795
d1310b2e
CM
2796/* lots and lots of room for performance fixes in the end_bio funcs */
2797
b5227c07 2798void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2799{
38a39ac7 2800 struct btrfs_inode *inode;
87826df0 2801 int uptodate = (err == 0);
3e2426bd 2802 int ret = 0;
87826df0 2803
38a39ac7
QW
2804 ASSERT(page && page->mapping);
2805 inode = BTRFS_I(page->mapping->host);
2806 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2807
87826df0 2808 if (!uptodate) {
87826df0
JM
2809 ClearPageUptodate(page);
2810 SetPageError(page);
bff5baf8 2811 ret = err < 0 ? err : -EIO;
5dca6eea 2812 mapping_set_error(page->mapping, ret);
87826df0 2813 }
87826df0
JM
2814}
2815
d1310b2e
CM
2816/*
2817 * after a writepage IO is done, we need to:
2818 * clear the uptodate bits on error
2819 * clear the writeback bits in the extent tree for this IO
2820 * end_page_writeback if the page has no more pending IO
2821 *
2822 * Scheduling is not allowed, so the extent state tree is expected
2823 * to have one and only one object corresponding to this IO.
2824 */
4246a0b6 2825static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2826{
4e4cbee9 2827 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2828 struct bio_vec *bvec;
d1310b2e
CM
2829 u64 start;
2830 u64 end;
6dc4f100 2831 struct bvec_iter_all iter_all;
d8e3fb10 2832 bool first_bvec = true;
d1310b2e 2833
c09abff8 2834 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2835 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2836 struct page *page = bvec->bv_page;
0b246afa
JM
2837 struct inode *inode = page->mapping->host;
2838 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2839 const u32 sectorsize = fs_info->sectorsize;
2840
2841 /* Our read/write should always be sector aligned. */
2842 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2843 btrfs_err(fs_info,
2844 "partial page write in btrfs with offset %u and length %u",
2845 bvec->bv_offset, bvec->bv_len);
2846 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2847 btrfs_info(fs_info,
2848 "incomplete page write with offset %u and length %u",
2849 bvec->bv_offset, bvec->bv_len);
2850
2851 start = page_offset(page) + bvec->bv_offset;
2852 end = start + bvec->bv_len - 1;
d1310b2e 2853
d8e3fb10
NA
2854 if (first_bvec) {
2855 btrfs_record_physical_zoned(inode, start, bio);
2856 first_bvec = false;
2857 }
2858
4e4cbee9 2859 end_extent_writepage(page, error, start, end);
9047e317
QW
2860
2861 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2862 }
2b1f55b0 2863
d1310b2e 2864 bio_put(bio);
d1310b2e
CM
2865}
2866
94e8c95c
QW
2867/*
2868 * Record previously processed extent range
2869 *
2870 * For endio_readpage_release_extent() to handle a full extent range, reducing
2871 * the extent io operations.
2872 */
2873struct processed_extent {
2874 struct btrfs_inode *inode;
2875 /* Start of the range in @inode */
2876 u64 start;
2e626e56 2877 /* End of the range in @inode */
94e8c95c
QW
2878 u64 end;
2879 bool uptodate;
2880};
2881
2882/*
2883 * Try to release processed extent range
2884 *
2885 * May not release the extent range right now if the current range is
2886 * contiguous to processed extent.
2887 *
2888 * Will release processed extent when any of @inode, @uptodate, the range is
2889 * no longer contiguous to the processed range.
2890 *
2891 * Passing @inode == NULL will force processed extent to be released.
2892 */
2893static void endio_readpage_release_extent(struct processed_extent *processed,
2894 struct btrfs_inode *inode, u64 start, u64 end,
2895 bool uptodate)
883d0de4
MX
2896{
2897 struct extent_state *cached = NULL;
94e8c95c
QW
2898 struct extent_io_tree *tree;
2899
2900 /* The first extent, initialize @processed */
2901 if (!processed->inode)
2902 goto update;
883d0de4 2903
94e8c95c
QW
2904 /*
2905 * Contiguous to processed extent, just uptodate the end.
2906 *
2907 * Several things to notice:
2908 *
2909 * - bio can be merged as long as on-disk bytenr is contiguous
2910 * This means we can have page belonging to other inodes, thus need to
2911 * check if the inode still matches.
2912 * - bvec can contain range beyond current page for multi-page bvec
2913 * Thus we need to do processed->end + 1 >= start check
2914 */
2915 if (processed->inode == inode && processed->uptodate == uptodate &&
2916 processed->end + 1 >= start && end >= processed->end) {
2917 processed->end = end;
2918 return;
2919 }
2920
2921 tree = &processed->inode->io_tree;
2922 /*
2923 * Now we don't have range contiguous to the processed range, release
2924 * the processed range now.
2925 */
2926 if (processed->uptodate && tree->track_uptodate)
2927 set_extent_uptodate(tree, processed->start, processed->end,
2928 &cached, GFP_ATOMIC);
2929 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2930 &cached);
2931
2932update:
2933 /* Update processed to current range */
2934 processed->inode = inode;
2935 processed->start = start;
2936 processed->end = end;
2937 processed->uptodate = uptodate;
883d0de4
MX
2938}
2939
92082d40
QW
2940static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2941{
2942 ASSERT(PageLocked(page));
2943 if (fs_info->sectorsize == PAGE_SIZE)
2944 return;
2945
2946 ASSERT(PagePrivate(page));
2947 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2948}
2949
d9bb77d5
QW
2950/*
2951 * Find extent buffer for a givne bytenr.
2952 *
2953 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2954 * in endio context.
2955 */
2956static struct extent_buffer *find_extent_buffer_readpage(
2957 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2958{
2959 struct extent_buffer *eb;
2960
2961 /*
2962 * For regular sectorsize, we can use page->private to grab extent
2963 * buffer
2964 */
2965 if (fs_info->sectorsize == PAGE_SIZE) {
2966 ASSERT(PagePrivate(page) && page->private);
2967 return (struct extent_buffer *)page->private;
2968 }
2969
2970 /* For subpage case, we need to lookup buffer radix tree */
2971 rcu_read_lock();
2972 eb = radix_tree_lookup(&fs_info->buffer_radix,
2973 bytenr >> fs_info->sectorsize_bits);
2974 rcu_read_unlock();
2975 ASSERT(eb);
2976 return eb;
2977}
2978
d1310b2e
CM
2979/*
2980 * after a readpage IO is done, we need to:
2981 * clear the uptodate bits on error
2982 * set the uptodate bits if things worked
2983 * set the page up to date if all extents in the tree are uptodate
2984 * clear the lock bit in the extent tree
2985 * unlock the page if there are no other extents locked for it
2986 *
2987 * Scheduling is not allowed, so the extent state tree is expected
2988 * to have one and only one object corresponding to this IO.
2989 */
4246a0b6 2990static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2991{
2c30c71b 2992 struct bio_vec *bvec;
facc8a22 2993 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2994 struct extent_io_tree *tree, *failure_tree;
94e8c95c 2995 struct processed_extent processed = { 0 };
7ffd27e3
QW
2996 /*
2997 * The offset to the beginning of a bio, since one bio can never be
2998 * larger than UINT_MAX, u32 here is enough.
2999 */
3000 u32 bio_offset = 0;
5cf1ab56 3001 int mirror;
d1310b2e 3002 int ret;
6dc4f100 3003 struct bvec_iter_all iter_all;
d1310b2e 3004
c09abff8 3005 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3006 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 3007 bool uptodate = !bio->bi_status;
d1310b2e 3008 struct page *page = bvec->bv_page;
a71754fc 3009 struct inode *inode = page->mapping->host;
ab8d0fc4 3010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3011 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3012 unsigned int error_bitmap = (unsigned int)-1;
7ffd27e3
QW
3013 u64 start;
3014 u64 end;
3015 u32 len;
507903b8 3016
ab8d0fc4
JM
3017 btrfs_debug(fs_info,
3018 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3019 bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 3020 io_bio->mirror_num);
a71754fc 3021 tree = &BTRFS_I(inode)->io_tree;
7870d082 3022 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3023
8b8bbd46
QW
3024 /*
3025 * We always issue full-sector reads, but if some block in a
3026 * page fails to read, blk_update_request() will advance
3027 * bv_offset and adjust bv_len to compensate. Print a warning
3028 * for unaligned offsets, and an error if they don't add up to
3029 * a full sector.
3030 */
3031 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3032 btrfs_err(fs_info,
3033 "partial page read in btrfs with offset %u and length %u",
3034 bvec->bv_offset, bvec->bv_len);
3035 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3036 sectorsize))
3037 btrfs_info(fs_info,
3038 "incomplete page read with offset %u and length %u",
3039 bvec->bv_offset, bvec->bv_len);
3040
3041 start = page_offset(page) + bvec->bv_offset;
3042 end = start + bvec->bv_len - 1;
facc8a22 3043 len = bvec->bv_len;
d1310b2e 3044
9be3395b 3045 mirror = io_bio->mirror_num;
78e62c02 3046 if (likely(uptodate)) {
150e4b05
QW
3047 if (is_data_inode(inode)) {
3048 error_bitmap = btrfs_verify_data_csum(io_bio,
5e295768 3049 bio_offset, page, start, end);
150e4b05
QW
3050 ret = error_bitmap;
3051 } else {
9a446d6a 3052 ret = btrfs_validate_metadata_buffer(io_bio,
8e1dc982 3053 page, start, end, mirror);
150e4b05 3054 }
5ee0844d 3055 if (ret)
150e4b05 3056 uptodate = false;
5ee0844d 3057 else
7870d082
JB
3058 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3059 failure_tree, tree, start,
3060 page,
3061 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 3062 }
ea466794 3063
f2a09da9
MX
3064 if (likely(uptodate))
3065 goto readpage_ok;
3066
be17b3af 3067 if (is_data_inode(inode)) {
f4a8e656 3068 /*
150e4b05
QW
3069 * btrfs_submit_read_repair() will handle all the good
3070 * and bad sectors, we just continue to the next bvec.
f4a8e656 3071 */
150e4b05
QW
3072 submit_read_repair(inode, bio, bio_offset, page,
3073 start - page_offset(page), start,
3074 end, mirror, error_bitmap,
3075 btrfs_submit_data_bio);
3076
3077 ASSERT(bio_offset + len > bio_offset);
3078 bio_offset += len;
3079 continue;
78e62c02
NB
3080 } else {
3081 struct extent_buffer *eb;
3082
d9bb77d5 3083 eb = find_extent_buffer_readpage(fs_info, page, start);
78e62c02
NB
3084 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3085 eb->read_mirror = mirror;
3086 atomic_dec(&eb->io_pages);
3087 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3088 &eb->bflags))
3089 btree_readahead_hook(eb, -EIO);
7e38326f 3090 }
f2a09da9 3091readpage_ok:
883d0de4 3092 if (likely(uptodate)) {
a71754fc 3093 loff_t i_size = i_size_read(inode);
09cbfeaf 3094 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3095
c28ea613
QW
3096 /*
3097 * Zero out the remaining part if this range straddles
3098 * i_size.
3099 *
3100 * Here we should only zero the range inside the bvec,
3101 * not touch anything else.
3102 *
3103 * NOTE: i_size is exclusive while end is inclusive.
3104 */
3105 if (page->index == end_index && i_size <= end) {
3106 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3107 offset_in_page(start));
c28ea613
QW
3108
3109 zero_user_segment(page, zero_start,
3110 offset_in_page(end) + 1);
3111 }
70dec807 3112 }
7ffd27e3
QW
3113 ASSERT(bio_offset + len > bio_offset);
3114 bio_offset += len;
883d0de4 3115
e09caaf9 3116 /* Update page status and unlock */
92082d40 3117 end_page_read(page, uptodate, start, len);
94e8c95c
QW
3118 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3119 start, end, uptodate);
2c30c71b 3120 }
94e8c95c
QW
3121 /* Release the last extent */
3122 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
b3a0dd50 3123 btrfs_io_bio_free_csum(io_bio);
d1310b2e 3124 bio_put(bio);
d1310b2e
CM
3125}
3126
9be3395b 3127/*
184f999e
DS
3128 * Initialize the members up to but not including 'bio'. Use after allocating a
3129 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3130 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3131 */
184f999e 3132static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 3133{
184f999e
DS
3134 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3135}
d1310b2e 3136
9be3395b 3137/*
6e707bcd
DS
3138 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3139 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3140 * for the appropriate container_of magic
9be3395b 3141 */
e749af44 3142struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
3143{
3144 struct bio *bio;
d1310b2e 3145
a8affc03 3146 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
c821e7f3 3147 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 3148 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
3149 return bio;
3150}
3151
8b6c1d56 3152struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 3153{
23ea8e5a
MX
3154 struct btrfs_io_bio *btrfs_bio;
3155 struct bio *new;
9be3395b 3156
6e707bcd 3157 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3158 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 3159 btrfs_bio = btrfs_io_bio(new);
184f999e 3160 btrfs_io_bio_init(btrfs_bio);
6e707bcd 3161 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
3162 return new;
3163}
9be3395b 3164
c5e4c3d7 3165struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 3166{
facc8a22
MX
3167 struct bio *bio;
3168
6e707bcd 3169 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3170 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 3171 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 3172 return bio;
9be3395b
CM
3173}
3174
e477094f 3175struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
3176{
3177 struct bio *bio;
3178 struct btrfs_io_bio *btrfs_bio;
3179
3180 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3181 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3182 ASSERT(bio);
3183
3184 btrfs_bio = btrfs_io_bio(bio);
184f999e 3185 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
3186
3187 bio_trim(bio, offset >> 9, size >> 9);
17347cec 3188 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
3189 return bio;
3190}
9be3395b 3191
953651eb
NA
3192/**
3193 * Attempt to add a page to bio
3194 *
3195 * @bio: destination bio
3196 * @page: page to add to the bio
3197 * @disk_bytenr: offset of the new bio or to check whether we are adding
3198 * a contiguous page to the previous one
3199 * @pg_offset: starting offset in the page
3200 * @size: portion of page that we want to write
3201 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3202 * @bio_flags: flags of the current bio to see if we can merge them
3203 * @return: true if page was added, false otherwise
3204 *
3205 * Attempt to add a page to bio considering stripe alignment etc.
3206 *
3207 * Return true if successfully page added. Otherwise, return false.
3208 */
390ed29b
QW
3209static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3210 struct page *page,
953651eb
NA
3211 u64 disk_bytenr, unsigned int size,
3212 unsigned int pg_offset,
953651eb
NA
3213 unsigned long bio_flags)
3214{
390ed29b
QW
3215 struct bio *bio = bio_ctrl->bio;
3216 u32 bio_size = bio->bi_iter.bi_size;
953651eb
NA
3217 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3218 bool contig;
e1326f03 3219 int ret;
953651eb 3220
390ed29b
QW
3221 ASSERT(bio);
3222 /* The limit should be calculated when bio_ctrl->bio is allocated */
3223 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3224 if (bio_ctrl->bio_flags != bio_flags)
953651eb
NA
3225 return false;
3226
390ed29b 3227 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
953651eb
NA
3228 contig = bio->bi_iter.bi_sector == sector;
3229 else
3230 contig = bio_end_sector(bio) == sector;
3231 if (!contig)
3232 return false;
3233
390ed29b
QW
3234 if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3235 bio_size + size > bio_ctrl->len_to_stripe_boundary)
953651eb
NA
3236 return false;
3237
390ed29b 3238 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e1326f03 3239 ret = bio_add_zone_append_page(bio, page, size, pg_offset);
390ed29b 3240 else
e1326f03
NA
3241 ret = bio_add_page(bio, page, size, pg_offset);
3242
3243 return ret == size;
953651eb
NA
3244}
3245
390ed29b
QW
3246static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3247 struct btrfs_inode *inode)
3248{
3249 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3250 struct btrfs_io_geometry geom;
3251 struct btrfs_ordered_extent *ordered;
3252 struct extent_map *em;
3253 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3254 int ret;
3255
3256 /*
3257 * Pages for compressed extent are never submitted to disk directly,
3258 * thus it has no real boundary, just set them to U32_MAX.
3259 *
3260 * The split happens for real compressed bio, which happens in
3261 * btrfs_submit_compressed_read/write().
3262 */
3263 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3264 bio_ctrl->len_to_oe_boundary = U32_MAX;
3265 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3266 return 0;
3267 }
3268 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3269 if (IS_ERR(em))
3270 return PTR_ERR(em);
3271 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3272 logical, &geom);
3273 free_extent_map(em);
3274 if (ret < 0) {
3275 return ret;
3276 }
3277 if (geom.len > U32_MAX)
3278 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3279 else
3280 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3281
3282 if (!btrfs_is_zoned(fs_info) ||
3283 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3284 bio_ctrl->len_to_oe_boundary = U32_MAX;
3285 return 0;
3286 }
3287
3288 ASSERT(fs_info->max_zone_append_size > 0);
3289 /* Ordered extent not yet created, so we're good */
3290 ordered = btrfs_lookup_ordered_extent(inode, logical);
3291 if (!ordered) {
3292 bio_ctrl->len_to_oe_boundary = U32_MAX;
3293 return 0;
3294 }
3295
3296 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3297 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3298 btrfs_put_ordered_extent(ordered);
3299 return 0;
3300}
3301
4b81ba48
DS
3302/*
3303 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3304 * @wbc: optional writeback control for io accounting
3305 * @page: page to add to the bio
0c64c33c
QW
3306 * @disk_bytenr: logical bytenr where the write will be
3307 * @size: portion of page that we want to write to
b8b3d625
DS
3308 * @pg_offset: offset of the new bio or to check whether we are adding
3309 * a contiguous page to the previous one
5c2b1fd7 3310 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3311 * @end_io_func: end_io callback for new bio
3312 * @mirror_num: desired mirror to read/write
3313 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3314 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3315 */
0ceb34bf 3316static int submit_extent_page(unsigned int opf,
da2f0f74 3317 struct writeback_control *wbc,
390ed29b 3318 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3319 struct page *page, u64 disk_bytenr,
6c5a4e2c 3320 size_t size, unsigned long pg_offset,
f188591e 3321 bio_end_io_t end_io_func,
c8b97818 3322 int mirror_num,
005efedf
FM
3323 unsigned long bio_flags,
3324 bool force_bio_submit)
d1310b2e
CM
3325{
3326 int ret = 0;
3327 struct bio *bio;
e940e9a7 3328 size_t io_size = min_t(size_t, size, PAGE_SIZE);
e1326f03
NA
3329 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3330 struct extent_io_tree *tree = &inode->io_tree;
3331 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d1310b2e 3332
390ed29b 3333 ASSERT(bio_ctrl);
5c2b1fd7 3334
390ed29b
QW
3335 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3336 pg_offset + size <= PAGE_SIZE);
3337 if (bio_ctrl->bio) {
3338 bio = bio_ctrl->bio;
953651eb 3339 if (force_bio_submit ||
390ed29b
QW
3340 !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3341 pg_offset, bio_flags)) {
3342 ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3343 bio_ctrl->bio = NULL;
3344 if (ret < 0)
79787eaa 3345 return ret;
d1310b2e 3346 } else {
da2f0f74 3347 if (wbc)
e940e9a7 3348 wbc_account_cgroup_owner(wbc, page, io_size);
d1310b2e
CM
3349 return 0;
3350 }
3351 }
c8b97818 3352
0c64c33c 3353 bio = btrfs_bio_alloc(disk_bytenr);
e940e9a7 3354 bio_add_page(bio, page, io_size, pg_offset);
d1310b2e
CM
3355 bio->bi_end_io = end_io_func;
3356 bio->bi_private = tree;
e6959b93 3357 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 3358 bio->bi_opf = opf;
da2f0f74 3359 if (wbc) {
429aebc0
DS
3360 struct block_device *bdev;
3361
e1326f03 3362 bdev = fs_info->fs_devices->latest_bdev;
429aebc0 3363 bio_set_dev(bio, bdev);
da2f0f74 3364 wbc_init_bio(wbc, bio);
e940e9a7 3365 wbc_account_cgroup_owner(wbc, page, io_size);
da2f0f74 3366 }
e1326f03 3367 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
e7ff9e6b 3368 struct btrfs_device *device;
e1326f03 3369
e7ff9e6b
JT
3370 device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3371 if (IS_ERR(device))
3372 return PTR_ERR(device);
e1326f03 3373
e7ff9e6b 3374 btrfs_io_bio(bio)->device = device;
e1326f03 3375 }
70dec807 3376
390ed29b
QW
3377 bio_ctrl->bio = bio;
3378 bio_ctrl->bio_flags = bio_flags;
3379 ret = calc_bio_boundaries(bio_ctrl, inode);
d1310b2e
CM
3380
3381 return ret;
3382}
3383
760f991f
QW
3384static int attach_extent_buffer_page(struct extent_buffer *eb,
3385 struct page *page,
3386 struct btrfs_subpage *prealloc)
d1310b2e 3387{
760f991f
QW
3388 struct btrfs_fs_info *fs_info = eb->fs_info;
3389 int ret = 0;
3390
0d01e247
QW
3391 /*
3392 * If the page is mapped to btree inode, we should hold the private
3393 * lock to prevent race.
3394 * For cloned or dummy extent buffers, their pages are not mapped and
3395 * will not race with any other ebs.
3396 */
3397 if (page->mapping)
3398 lockdep_assert_held(&page->mapping->private_lock);
3399
760f991f
QW
3400 if (fs_info->sectorsize == PAGE_SIZE) {
3401 if (!PagePrivate(page))
3402 attach_page_private(page, eb);
3403 else
3404 WARN_ON(page->private != (unsigned long)eb);
3405 return 0;
3406 }
3407
3408 /* Already mapped, just free prealloc */
3409 if (PagePrivate(page)) {
3410 btrfs_free_subpage(prealloc);
3411 return 0;
3412 }
3413
3414 if (prealloc)
3415 /* Has preallocated memory for subpage */
3416 attach_page_private(page, prealloc);
d1b89bc0 3417 else
760f991f
QW
3418 /* Do new allocation to attach subpage */
3419 ret = btrfs_attach_subpage(fs_info, page,
3420 BTRFS_SUBPAGE_METADATA);
3421 return ret;
d1310b2e
CM
3422}
3423
32443de3 3424int set_page_extent_mapped(struct page *page)
d1310b2e 3425{
32443de3
QW
3426 struct btrfs_fs_info *fs_info;
3427
3428 ASSERT(page->mapping);
3429
3430 if (PagePrivate(page))
3431 return 0;
3432
3433 fs_info = btrfs_sb(page->mapping->host->i_sb);
3434
3435 if (fs_info->sectorsize < PAGE_SIZE)
3436 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3437
3438 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3439 return 0;
3440}
3441
3442void clear_page_extent_mapped(struct page *page)
3443{
3444 struct btrfs_fs_info *fs_info;
3445
3446 ASSERT(page->mapping);
3447
d1b89bc0 3448 if (!PagePrivate(page))
32443de3
QW
3449 return;
3450
3451 fs_info = btrfs_sb(page->mapping->host->i_sb);
3452 if (fs_info->sectorsize < PAGE_SIZE)
3453 return btrfs_detach_subpage(fs_info, page);
3454
3455 detach_page_private(page);
d1310b2e
CM
3456}
3457
125bac01
MX
3458static struct extent_map *
3459__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3460 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3461{
3462 struct extent_map *em;
3463
3464 if (em_cached && *em_cached) {
3465 em = *em_cached;
cbc0e928 3466 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3467 start < extent_map_end(em)) {
490b54d6 3468 refcount_inc(&em->refs);
125bac01
MX
3469 return em;
3470 }
3471
3472 free_extent_map(em);
3473 *em_cached = NULL;
3474 }
3475
1a5ee1e6 3476 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3477 if (em_cached && !IS_ERR_OR_NULL(em)) {
3478 BUG_ON(*em_cached);
490b54d6 3479 refcount_inc(&em->refs);
125bac01
MX
3480 *em_cached = em;
3481 }
3482 return em;
3483}
d1310b2e
CM
3484/*
3485 * basic readpage implementation. Locked extent state structs are inserted
3486 * into the tree that are removed when the IO is done (by the end_io
3487 * handlers)
79787eaa 3488 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3489 * return 0 on success, otherwise return error
d1310b2e 3490 */
0f208812 3491int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3492 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3493 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3494{
3495 struct inode *inode = page->mapping->host;
92082d40 3496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3497 u64 start = page_offset(page);
8eec8296 3498 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3499 u64 cur = start;
3500 u64 extent_offset;
3501 u64 last_byte = i_size_read(inode);
3502 u64 block_start;
3503 u64 cur_end;
d1310b2e 3504 struct extent_map *em;
baf863b9 3505 int ret = 0;
d1310b2e 3506 int nr = 0;
306e16ce 3507 size_t pg_offset = 0;
d1310b2e
CM
3508 size_t iosize;
3509 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3510 unsigned long this_bio_flag = 0;
f657a31c 3511 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3512
32443de3
QW
3513 ret = set_page_extent_mapped(page);
3514 if (ret < 0) {
3515 unlock_extent(tree, start, end);
92082d40
QW
3516 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3517 unlock_page(page);
32443de3
QW
3518 goto out;
3519 }
d1310b2e 3520
90a887c9
DM
3521 if (!PageUptodate(page)) {
3522 if (cleancache_get_page(page) == 0) {
3523 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3524 unlock_extent(tree, start, end);
92082d40 3525 unlock_page(page);
90a887c9
DM
3526 goto out;
3527 }
3528 }
3529
09cbfeaf 3530 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3531 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3532
3533 if (zero_offset) {
09cbfeaf 3534 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3535 memzero_page(page, zero_offset, iosize);
c8b97818 3536 flush_dcache_page(page);
c8b97818
CM
3537 }
3538 }
92082d40 3539 begin_page_read(fs_info, page);
d1310b2e 3540 while (cur <= end) {
005efedf 3541 bool force_bio_submit = false;
0c64c33c 3542 u64 disk_bytenr;
c8f2f24b 3543
d1310b2e 3544 if (cur >= last_byte) {
507903b8
AJ
3545 struct extent_state *cached = NULL;
3546
09cbfeaf 3547 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3548 memzero_page(page, pg_offset, iosize);
d1310b2e 3549 flush_dcache_page(page);
d1310b2e 3550 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3551 &cached, GFP_NOFS);
7f042a83 3552 unlock_extent_cached(tree, cur,
e43bbe5e 3553 cur + iosize - 1, &cached);
92082d40 3554 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3555 break;
3556 }
125bac01 3557 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3558 end - cur + 1, em_cached);
c704005d 3559 if (IS_ERR_OR_NULL(em)) {
7f042a83 3560 unlock_extent(tree, cur, end);
92082d40 3561 end_page_read(page, false, cur, end + 1 - cur);
d1310b2e
CM
3562 break;
3563 }
d1310b2e
CM
3564 extent_offset = cur - em->start;
3565 BUG_ON(extent_map_end(em) <= cur);
3566 BUG_ON(end < cur);
3567
261507a0 3568 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3569 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3570 extent_set_compress_type(&this_bio_flag,
3571 em->compress_type);
3572 }
c8b97818 3573
d1310b2e
CM
3574 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3575 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3576 iosize = ALIGN(iosize, blocksize);
949b3273 3577 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
0c64c33c 3578 disk_bytenr = em->block_start;
949b3273 3579 else
0c64c33c 3580 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3581 block_start = em->block_start;
d899e052
YZ
3582 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3583 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3584
3585 /*
3586 * If we have a file range that points to a compressed extent
260db43c 3587 * and it's followed by a consecutive file range that points
005efedf
FM
3588 * to the same compressed extent (possibly with a different
3589 * offset and/or length, so it either points to the whole extent
3590 * or only part of it), we must make sure we do not submit a
3591 * single bio to populate the pages for the 2 ranges because
3592 * this makes the compressed extent read zero out the pages
3593 * belonging to the 2nd range. Imagine the following scenario:
3594 *
3595 * File layout
3596 * [0 - 8K] [8K - 24K]
3597 * | |
3598 * | |
3599 * points to extent X, points to extent X,
3600 * offset 4K, length of 8K offset 0, length 16K
3601 *
3602 * [extent X, compressed length = 4K uncompressed length = 16K]
3603 *
3604 * If the bio to read the compressed extent covers both ranges,
3605 * it will decompress extent X into the pages belonging to the
3606 * first range and then it will stop, zeroing out the remaining
3607 * pages that belong to the other range that points to extent X.
3608 * So here we make sure we submit 2 bios, one for the first
3609 * range and another one for the third range. Both will target
3610 * the same physical extent from disk, but we can't currently
3611 * make the compressed bio endio callback populate the pages
3612 * for both ranges because each compressed bio is tightly
3613 * coupled with a single extent map, and each range can have
3614 * an extent map with a different offset value relative to the
3615 * uncompressed data of our extent and different lengths. This
3616 * is a corner case so we prioritize correctness over
3617 * non-optimal behavior (submitting 2 bios for the same extent).
3618 */
3619 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3620 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3621 *prev_em_start != em->start)
005efedf
FM
3622 force_bio_submit = true;
3623
3624 if (prev_em_start)
8e928218 3625 *prev_em_start = em->start;
005efedf 3626
d1310b2e
CM
3627 free_extent_map(em);
3628 em = NULL;
3629
3630 /* we've found a hole, just zero and go on */
3631 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3632 struct extent_state *cached = NULL;
3633
d048b9c2 3634 memzero_page(page, pg_offset, iosize);
d1310b2e 3635 flush_dcache_page(page);
d1310b2e
CM
3636
3637 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3638 &cached, GFP_NOFS);
7f042a83 3639 unlock_extent_cached(tree, cur,
e43bbe5e 3640 cur + iosize - 1, &cached);
92082d40 3641 end_page_read(page, true, cur, iosize);
d1310b2e 3642 cur = cur + iosize;
306e16ce 3643 pg_offset += iosize;
d1310b2e
CM
3644 continue;
3645 }
3646 /* the get_extent function already copied into the page */
9655d298
CM
3647 if (test_range_bit(tree, cur, cur_end,
3648 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3649 check_page_uptodate(tree, page);
7f042a83 3650 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3651 end_page_read(page, true, cur, iosize);
d1310b2e 3652 cur = cur + iosize;
306e16ce 3653 pg_offset += iosize;
d1310b2e
CM
3654 continue;
3655 }
70dec807
CM
3656 /* we have an inline extent but it didn't get marked up
3657 * to date. Error out
3658 */
3659 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3660 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3661 end_page_read(page, false, cur, iosize);
70dec807 3662 cur = cur + iosize;
306e16ce 3663 pg_offset += iosize;
70dec807
CM
3664 continue;
3665 }
d1310b2e 3666
0ceb34bf 3667 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b
QW
3668 bio_ctrl, page, disk_bytenr, iosize,
3669 pg_offset,
fd513000 3670 end_bio_extent_readpage, 0,
005efedf
FM
3671 this_bio_flag,
3672 force_bio_submit);
c8f2f24b
JB
3673 if (!ret) {
3674 nr++;
c8f2f24b 3675 } else {
7f042a83 3676 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3677 end_page_read(page, false, cur, iosize);
baf863b9 3678 goto out;
edd33c99 3679 }
d1310b2e 3680 cur = cur + iosize;
306e16ce 3681 pg_offset += iosize;
d1310b2e 3682 }
90a887c9 3683out:
baf863b9 3684 return ret;
d1310b2e
CM
3685}
3686
b6660e80 3687static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3688 u64 start, u64 end,
3689 struct extent_map **em_cached,
3690 struct btrfs_bio_ctrl *bio_ctrl,
3691 u64 *prev_em_start)
9974090b 3692{
23d31bd4 3693 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3694 int index;
3695
b272ae22 3696 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3697
3698 for (index = 0; index < nr_pages; index++) {
390ed29b 3699 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3700 REQ_RAHEAD, prev_em_start);
09cbfeaf 3701 put_page(pages[index]);
9974090b
MX
3702 }
3703}
3704
3d4b9496 3705static void update_nr_written(struct writeback_control *wbc,
a9132667 3706 unsigned long nr_written)
11c8349b
CM
3707{
3708 wbc->nr_to_write -= nr_written;
11c8349b
CM
3709}
3710
d1310b2e 3711/*
40f76580
CM
3712 * helper for __extent_writepage, doing all of the delayed allocation setup.
3713 *
5eaad97a 3714 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3715 * to write the page (copy into inline extent). In this case the IO has
3716 * been started and the page is already unlocked.
3717 *
3718 * This returns 0 if all went well (page still locked)
3719 * This returns < 0 if there were errors (page still locked)
d1310b2e 3720 */
cd4c0bf9 3721static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
8cc0237a
NB
3722 struct page *page, struct writeback_control *wbc,
3723 u64 delalloc_start, unsigned long *nr_written)
40f76580 3724{
09cbfeaf 3725 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3726 bool found;
40f76580
CM
3727 u64 delalloc_to_write = 0;
3728 u64 delalloc_end = 0;
3729 int ret;
3730 int page_started = 0;
3731
40f76580
CM
3732
3733 while (delalloc_end < page_end) {
cd4c0bf9 3734 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3735 &delalloc_start,
917aacec 3736 &delalloc_end);
3522e903 3737 if (!found) {
40f76580
CM
3738 delalloc_start = delalloc_end + 1;
3739 continue;
3740 }
cd4c0bf9 3741 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
5eaad97a 3742 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3743 if (ret) {
3744 SetPageError(page);
5eaad97a
NB
3745 /*
3746 * btrfs_run_delalloc_range should return < 0 for error
3747 * but just in case, we use > 0 here meaning the IO is
3748 * started, so we don't want to return > 0 unless
3749 * things are going well.
40f76580 3750 */
b69d1ee9 3751 return ret < 0 ? ret : -EIO;
40f76580
CM
3752 }
3753 /*
ea1754a0
KS
3754 * delalloc_end is already one less than the total length, so
3755 * we don't subtract one from PAGE_SIZE
40f76580
CM
3756 */
3757 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3758 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3759 delalloc_start = delalloc_end + 1;
3760 }
3761 if (wbc->nr_to_write < delalloc_to_write) {
3762 int thresh = 8192;
3763
3764 if (delalloc_to_write < thresh * 2)
3765 thresh = delalloc_to_write;
3766 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3767 thresh);
3768 }
3769
3770 /* did the fill delalloc function already unlock and start
3771 * the IO?
3772 */
3773 if (page_started) {
3774 /*
3775 * we've unlocked the page, so we can't update
3776 * the mapping's writeback index, just update
3777 * nr_to_write.
3778 */
3779 wbc->nr_to_write -= *nr_written;
3780 return 1;
3781 }
3782
b69d1ee9 3783 return 0;
40f76580
CM
3784}
3785
3786/*
3787 * helper for __extent_writepage. This calls the writepage start hooks,
3788 * and does the loop to map the page into extents and bios.
3789 *
3790 * We return 1 if the IO is started and the page is unlocked,
3791 * 0 if all went well (page still locked)
3792 * < 0 if there were errors (page still locked)
3793 */
d4580fe2 3794static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3795 struct page *page,
3796 struct writeback_control *wbc,
3797 struct extent_page_data *epd,
3798 loff_t i_size,
3799 unsigned long nr_written,
57e5ffeb 3800 int *nr_ret)
d1310b2e 3801{
6bc5636a 3802 struct btrfs_fs_info *fs_info = inode->root->fs_info;
d4580fe2 3803 struct extent_io_tree *tree = &inode->io_tree;
4eee4fa4 3804 u64 start = page_offset(page);
6bc5636a 3805 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3806 u64 cur = start;
3807 u64 extent_offset;
d1310b2e 3808 u64 block_start;
d1310b2e 3809 struct extent_map *em;
40f76580
CM
3810 int ret = 0;
3811 int nr = 0;
d8e3fb10 3812 u32 opf = REQ_OP_WRITE;
57e5ffeb 3813 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3814 bool compressed;
c8b97818 3815
6bc5636a 3816 ret = btrfs_writepage_cow_fixup(page, start, end);
d75855b4
NB
3817 if (ret) {
3818 /* Fixup worker will requeue */
5ab58055 3819 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3820 update_nr_written(wbc, nr_written);
3821 unlock_page(page);
3822 return 1;
247e743c
CM
3823 }
3824
11c8349b
CM
3825 /*
3826 * we don't want to touch the inode after unlocking the page,
3827 * so we update the mapping writeback index now
3828 */
3d4b9496 3829 update_nr_written(wbc, nr_written + 1);
771ed689 3830
d1310b2e 3831 while (cur <= end) {
0c64c33c 3832 u64 disk_bytenr;
40f76580 3833 u64 em_end;
6bc5636a 3834 u32 iosize;
58409edd 3835
40f76580 3836 if (cur >= i_size) {
38a39ac7
QW
3837 btrfs_writepage_endio_finish_ordered(inode, page, cur,
3838 end, 1);
d1310b2e
CM
3839 break;
3840 }
d4580fe2 3841 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c704005d 3842 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3843 SetPageError(page);
61391d56 3844 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3845 break;
3846 }
3847
3848 extent_offset = cur - em->start;
40f76580 3849 em_end = extent_map_end(em);
6bc5636a
QW
3850 ASSERT(cur <= em_end);
3851 ASSERT(cur < end);
3852 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3853 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 3854 block_start = em->block_start;
c8b97818 3855 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
3856 disk_bytenr = em->block_start + extent_offset;
3857
3858 /* Note that em_end from extent_map_end() is exclusive */
3859 iosize = min(em_end, end + 1) - cur;
d8e3fb10 3860
e380adfc 3861 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
3862 opf = REQ_OP_ZONE_APPEND;
3863
d1310b2e
CM
3864 free_extent_map(em);
3865 em = NULL;
3866
c8b97818
CM
3867 /*
3868 * compressed and inline extents are written through other
3869 * paths in the FS
3870 */
3871 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3872 block_start == EXTENT_MAP_INLINE) {
c8b04030 3873 if (compressed)
c8b97818 3874 nr++;
c8b04030 3875 else
38a39ac7
QW
3876 btrfs_writepage_endio_finish_ordered(inode,
3877 page, cur, cur + iosize - 1, 1);
c8b97818 3878 cur += iosize;
d1310b2e
CM
3879 continue;
3880 }
c8b97818 3881
5cdc84bf 3882 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd 3883 if (!PageWriteback(page)) {
d4580fe2 3884 btrfs_err(inode->root->fs_info,
58409edd
DS
3885 "page %lu not writeback, cur %llu end %llu",
3886 page->index, cur, end);
d1310b2e 3887 }
7f3c74fb 3888
390ed29b
QW
3889 ret = submit_extent_page(opf | write_flags, wbc,
3890 &epd->bio_ctrl, page,
d8e3fb10 3891 disk_bytenr, iosize,
390ed29b 3892 cur - page_offset(page),
58409edd 3893 end_bio_extent_writepage,
390ed29b 3894 0, 0, false);
fe01aa65 3895 if (ret) {
58409edd 3896 SetPageError(page);
fe01aa65
TK
3897 if (PageWriteback(page))
3898 end_page_writeback(page);
3899 }
d1310b2e 3900
6bc5636a 3901 cur += iosize;
d1310b2e
CM
3902 nr++;
3903 }
40f76580 3904 *nr_ret = nr;
40f76580
CM
3905 return ret;
3906}
3907
3908/*
3909 * the writepage semantics are similar to regular writepage. extent
3910 * records are inserted to lock ranges in the tree, and as dirty areas
3911 * are found, they are marked writeback. Then the lock bits are removed
3912 * and the end_io handler clears the writeback ranges
3065976b
QW
3913 *
3914 * Return 0 if everything goes well.
3915 * Return <0 for error.
40f76580
CM
3916 */
3917static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3918 struct extent_page_data *epd)
40f76580
CM
3919{
3920 struct inode *inode = page->mapping->host;
40f76580 3921 u64 start = page_offset(page);
09cbfeaf 3922 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3923 int ret;
3924 int nr = 0;
eb70d222 3925 size_t pg_offset;
40f76580 3926 loff_t i_size = i_size_read(inode);
09cbfeaf 3927 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3928 unsigned long nr_written = 0;
3929
40f76580
CM
3930 trace___extent_writepage(page, inode, wbc);
3931
3932 WARN_ON(!PageLocked(page));
3933
3934 ClearPageError(page);
3935
7073017a 3936 pg_offset = offset_in_page(i_size);
40f76580
CM
3937 if (page->index > end_index ||
3938 (page->index == end_index && !pg_offset)) {
09cbfeaf 3939 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3940 unlock_page(page);
3941 return 0;
3942 }
3943
3944 if (page->index == end_index) {
d048b9c2 3945 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580
CM
3946 flush_dcache_page(page);
3947 }
3948
32443de3
QW
3949 ret = set_page_extent_mapped(page);
3950 if (ret < 0) {
3951 SetPageError(page);
3952 goto done;
3953 }
40f76580 3954
7789a55a 3955 if (!epd->extent_locked) {
cd4c0bf9
NB
3956 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3957 &nr_written);
7789a55a 3958 if (ret == 1)
169d2c87 3959 return 0;
7789a55a
NB
3960 if (ret)
3961 goto done;
3962 }
40f76580 3963
d4580fe2
NB
3964 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3965 nr_written, &nr);
40f76580 3966 if (ret == 1)
169d2c87 3967 return 0;
40f76580 3968
d1310b2e
CM
3969done:
3970 if (nr == 0) {
3971 /* make sure the mapping tag for page dirty gets cleared */
3972 set_page_writeback(page);
3973 end_page_writeback(page);
3974 }
61391d56
FM
3975 if (PageError(page)) {
3976 ret = ret < 0 ? ret : -EIO;
3977 end_extent_writepage(page, ret, start, page_end);
3978 }
d1310b2e 3979 unlock_page(page);
3065976b 3980 ASSERT(ret <= 0);
40f76580 3981 return ret;
d1310b2e
CM
3982}
3983
fd8b2b61 3984void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3985{
74316201
N
3986 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3987 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3988}
3989
18dfa711
FM
3990static void end_extent_buffer_writeback(struct extent_buffer *eb)
3991{
3992 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3993 smp_mb__after_atomic();
3994 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3995}
3996
2e3c2513 3997/*
a3efb2f0 3998 * Lock extent buffer status and pages for writeback.
2e3c2513 3999 *
a3efb2f0
QW
4000 * May try to flush write bio if we can't get the lock.
4001 *
4002 * Return 0 if the extent buffer doesn't need to be submitted.
4003 * (E.g. the extent buffer is not dirty)
4004 * Return >0 is the extent buffer is submitted to bio.
4005 * Return <0 if something went wrong, no page is locked.
2e3c2513 4006 */
9df76fb5 4007static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4008 struct extent_page_data *epd)
0b32f4bb 4009{
9df76fb5 4010 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 4011 int i, num_pages, failed_page_nr;
0b32f4bb
JB
4012 int flush = 0;
4013 int ret = 0;
4014
4015 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 4016 ret = flush_write_bio(epd);
2e3c2513
QW
4017 if (ret < 0)
4018 return ret;
4019 flush = 1;
0b32f4bb
JB
4020 btrfs_tree_lock(eb);
4021 }
4022
4023 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4024 btrfs_tree_unlock(eb);
4025 if (!epd->sync_io)
4026 return 0;
4027 if (!flush) {
f4340622 4028 ret = flush_write_bio(epd);
2e3c2513
QW
4029 if (ret < 0)
4030 return ret;
0b32f4bb
JB
4031 flush = 1;
4032 }
a098d8e8
CM
4033 while (1) {
4034 wait_on_extent_buffer_writeback(eb);
4035 btrfs_tree_lock(eb);
4036 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4037 break;
0b32f4bb 4038 btrfs_tree_unlock(eb);
0b32f4bb
JB
4039 }
4040 }
4041
51561ffe
JB
4042 /*
4043 * We need to do this to prevent races in people who check if the eb is
4044 * under IO since we can end up having no IO bits set for a short period
4045 * of time.
4046 */
4047 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4048 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4049 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4050 spin_unlock(&eb->refs_lock);
0b32f4bb 4051 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4052 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4053 -eb->len,
4054 fs_info->dirty_metadata_batch);
0b32f4bb 4055 ret = 1;
51561ffe
JB
4056 } else {
4057 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4058 }
4059
4060 btrfs_tree_unlock(eb);
4061
f3156df9
QW
4062 /*
4063 * Either we don't need to submit any tree block, or we're submitting
4064 * subpage eb.
4065 * Subpage metadata doesn't use page locking at all, so we can skip
4066 * the page locking.
4067 */
4068 if (!ret || fs_info->sectorsize < PAGE_SIZE)
0b32f4bb
JB
4069 return ret;
4070
65ad0104 4071 num_pages = num_extent_pages(eb);
0b32f4bb 4072 for (i = 0; i < num_pages; i++) {
fb85fc9a 4073 struct page *p = eb->pages[i];
0b32f4bb
JB
4074
4075 if (!trylock_page(p)) {
4076 if (!flush) {
18dfa711
FM
4077 int err;
4078
4079 err = flush_write_bio(epd);
4080 if (err < 0) {
4081 ret = err;
2e3c2513
QW
4082 failed_page_nr = i;
4083 goto err_unlock;
4084 }
0b32f4bb
JB
4085 flush = 1;
4086 }
4087 lock_page(p);
4088 }
4089 }
4090
4091 return ret;
2e3c2513
QW
4092err_unlock:
4093 /* Unlock already locked pages */
4094 for (i = 0; i < failed_page_nr; i++)
4095 unlock_page(eb->pages[i]);
18dfa711
FM
4096 /*
4097 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4098 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4099 * be made and undo everything done before.
4100 */
4101 btrfs_tree_lock(eb);
4102 spin_lock(&eb->refs_lock);
4103 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4104 end_extent_buffer_writeback(eb);
4105 spin_unlock(&eb->refs_lock);
4106 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4107 fs_info->dirty_metadata_batch);
4108 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4109 btrfs_tree_unlock(eb);
2e3c2513 4110 return ret;
0b32f4bb
JB
4111}
4112
5a2c6075 4113static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4114{
5a2c6075 4115 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4116
5a2c6075 4117 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4118 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4119 return;
4120
eb5b64f1
DZ
4121 /*
4122 * If we error out, we should add back the dirty_metadata_bytes
4123 * to make it consistent.
4124 */
eb5b64f1
DZ
4125 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4126 eb->len, fs_info->dirty_metadata_batch);
4127
656f30db
FM
4128 /*
4129 * If writeback for a btree extent that doesn't belong to a log tree
4130 * failed, increment the counter transaction->eb_write_errors.
4131 * We do this because while the transaction is running and before it's
4132 * committing (when we call filemap_fdata[write|wait]_range against
4133 * the btree inode), we might have
4134 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4135 * returns an error or an error happens during writeback, when we're
4136 * committing the transaction we wouldn't know about it, since the pages
4137 * can be no longer dirty nor marked anymore for writeback (if a
4138 * subsequent modification to the extent buffer didn't happen before the
4139 * transaction commit), which makes filemap_fdata[write|wait]_range not
4140 * able to find the pages tagged with SetPageError at transaction
4141 * commit time. So if this happens we must abort the transaction,
4142 * otherwise we commit a super block with btree roots that point to
4143 * btree nodes/leafs whose content on disk is invalid - either garbage
4144 * or the content of some node/leaf from a past generation that got
4145 * cowed or deleted and is no longer valid.
4146 *
4147 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4148 * not be enough - we need to distinguish between log tree extents vs
4149 * non-log tree extents, and the next filemap_fdatawait_range() call
4150 * will catch and clear such errors in the mapping - and that call might
4151 * be from a log sync and not from a transaction commit. Also, checking
4152 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4153 * not done and would not be reliable - the eb might have been released
4154 * from memory and reading it back again means that flag would not be
4155 * set (since it's a runtime flag, not persisted on disk).
4156 *
4157 * Using the flags below in the btree inode also makes us achieve the
4158 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4159 * writeback for all dirty pages and before filemap_fdatawait_range()
4160 * is called, the writeback for all dirty pages had already finished
4161 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4162 * filemap_fdatawait_range() would return success, as it could not know
4163 * that writeback errors happened (the pages were no longer tagged for
4164 * writeback).
4165 */
4166 switch (eb->log_index) {
4167 case -1:
5a2c6075 4168 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4169 break;
4170 case 0:
5a2c6075 4171 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4172 break;
4173 case 1:
5a2c6075 4174 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4175 break;
4176 default:
4177 BUG(); /* unexpected, logic error */
4178 }
4179}
4180
2f3186d8
QW
4181/*
4182 * The endio specific version which won't touch any unsafe spinlock in endio
4183 * context.
4184 */
4185static struct extent_buffer *find_extent_buffer_nolock(
4186 struct btrfs_fs_info *fs_info, u64 start)
4187{
4188 struct extent_buffer *eb;
4189
4190 rcu_read_lock();
4191 eb = radix_tree_lookup(&fs_info->buffer_radix,
4192 start >> fs_info->sectorsize_bits);
4193 if (eb && atomic_inc_not_zero(&eb->refs)) {
4194 rcu_read_unlock();
4195 return eb;
4196 }
4197 rcu_read_unlock();
4198 return NULL;
4199}
4200
4201/*
4202 * The endio function for subpage extent buffer write.
4203 *
4204 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4205 * after all extent buffers in the page has finished their writeback.
4206 */
fa04c165 4207static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4208{
fa04c165 4209 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4210 struct bio_vec *bvec;
4211 struct bvec_iter_all iter_all;
4212
fa04c165
QW
4213 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4214 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4215
2f3186d8
QW
4216 ASSERT(!bio_flagged(bio, BIO_CLONED));
4217 bio_for_each_segment_all(bvec, bio, iter_all) {
4218 struct page *page = bvec->bv_page;
4219 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4220 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4221 u64 cur_bytenr = bvec_start;
4222
4223 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4224
4225 /* Iterate through all extent buffers in the range */
4226 while (cur_bytenr <= bvec_end) {
4227 struct extent_buffer *eb;
4228 int done;
4229
4230 /*
4231 * Here we can't use find_extent_buffer(), as it may
4232 * try to lock eb->refs_lock, which is not safe in endio
4233 * context.
4234 */
4235 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4236 ASSERT(eb);
4237
4238 cur_bytenr = eb->start + eb->len;
4239
4240 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4241 done = atomic_dec_and_test(&eb->io_pages);
4242 ASSERT(done);
4243
4244 if (bio->bi_status ||
4245 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4246 ClearPageUptodate(page);
4247 set_btree_ioerr(page, eb);
4248 }
4249
4250 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4251 eb->len);
4252 end_extent_buffer_writeback(eb);
4253 /*
4254 * free_extent_buffer() will grab spinlock which is not
4255 * safe in endio context. Thus here we manually dec
4256 * the ref.
4257 */
4258 atomic_dec(&eb->refs);
4259 }
4260 }
4261 bio_put(bio);
4262}
4263
4246a0b6 4264static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4265{
2c30c71b 4266 struct bio_vec *bvec;
0b32f4bb 4267 struct extent_buffer *eb;
2b070cfe 4268 int done;
6dc4f100 4269 struct bvec_iter_all iter_all;
0b32f4bb 4270
c09abff8 4271 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4272 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4273 struct page *page = bvec->bv_page;
4274
0b32f4bb
JB
4275 eb = (struct extent_buffer *)page->private;
4276 BUG_ON(!eb);
4277 done = atomic_dec_and_test(&eb->io_pages);
4278
4e4cbee9 4279 if (bio->bi_status ||
4246a0b6 4280 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4281 ClearPageUptodate(page);
5a2c6075 4282 set_btree_ioerr(page, eb);
0b32f4bb
JB
4283 }
4284
4285 end_page_writeback(page);
4286
4287 if (!done)
4288 continue;
4289
4290 end_extent_buffer_writeback(eb);
2c30c71b 4291 }
0b32f4bb
JB
4292
4293 bio_put(bio);
0b32f4bb
JB
4294}
4295
fa04c165
QW
4296static void prepare_eb_write(struct extent_buffer *eb)
4297{
4298 u32 nritems;
4299 unsigned long start;
4300 unsigned long end;
4301
4302 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4303 atomic_set(&eb->io_pages, num_extent_pages(eb));
4304
4305 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4306 nritems = btrfs_header_nritems(eb);
4307 if (btrfs_header_level(eb) > 0) {
4308 end = btrfs_node_key_ptr_offset(nritems);
4309 memzero_extent_buffer(eb, end, eb->len - end);
4310 } else {
4311 /*
4312 * Leaf:
4313 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4314 */
4315 start = btrfs_item_nr_offset(nritems);
4316 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4317 memzero_extent_buffer(eb, start, end - start);
4318 }
4319}
4320
35b6ddfa
QW
4321/*
4322 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4323 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4324 */
4325static int write_one_subpage_eb(struct extent_buffer *eb,
4326 struct writeback_control *wbc,
4327 struct extent_page_data *epd)
4328{
4329 struct btrfs_fs_info *fs_info = eb->fs_info;
4330 struct page *page = eb->pages[0];
4331 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4332 bool no_dirty_ebs = false;
4333 int ret;
4334
fa04c165
QW
4335 prepare_eb_write(eb);
4336
35b6ddfa
QW
4337 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4338 lock_page(page);
4339 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4340
4341 /* Check if this is the last dirty bit to update nr_written */
4342 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4343 eb->start, eb->len);
4344 if (no_dirty_ebs)
4345 clear_page_dirty_for_io(page);
4346
390ed29b
QW
4347 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4348 &epd->bio_ctrl, page, eb->start, eb->len,
4349 eb->start - page_offset(page),
fa04c165 4350 end_bio_subpage_eb_writepage, 0, 0, false);
35b6ddfa
QW
4351 if (ret) {
4352 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4353 set_btree_ioerr(page, eb);
4354 unlock_page(page);
4355
4356 if (atomic_dec_and_test(&eb->io_pages))
4357 end_extent_buffer_writeback(eb);
4358 return -EIO;
4359 }
4360 unlock_page(page);
4361 /*
4362 * Submission finished without problem, if no range of the page is
4363 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4364 */
4365 if (no_dirty_ebs)
4366 update_nr_written(wbc, 1);
4367 return ret;
4368}
4369
0e378df1 4370static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4371 struct writeback_control *wbc,
4372 struct extent_page_data *epd)
4373{
0c64c33c 4374 u64 disk_bytenr = eb->start;
cc5e31a4 4375 int i, num_pages;
ff40adf7 4376 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 4377 int ret = 0;
0b32f4bb 4378
fa04c165 4379 prepare_eb_write(eb);
35b6ddfa 4380
fa04c165 4381 num_pages = num_extent_pages(eb);
0b32f4bb 4382 for (i = 0; i < num_pages; i++) {
fb85fc9a 4383 struct page *p = eb->pages[i];
0b32f4bb
JB
4384
4385 clear_page_dirty_for_io(p);
4386 set_page_writeback(p);
0ceb34bf 4387 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4388 &epd->bio_ctrl, p, disk_bytenr,
4389 PAGE_SIZE, 0,
1f7ad75b 4390 end_bio_extent_buffer_writepage,
390ed29b 4391 0, 0, false);
0b32f4bb 4392 if (ret) {
5a2c6075 4393 set_btree_ioerr(p, eb);
fe01aa65
TK
4394 if (PageWriteback(p))
4395 end_page_writeback(p);
0b32f4bb
JB
4396 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4397 end_extent_buffer_writeback(eb);
4398 ret = -EIO;
4399 break;
4400 }
0c64c33c 4401 disk_bytenr += PAGE_SIZE;
3d4b9496 4402 update_nr_written(wbc, 1);
0b32f4bb
JB
4403 unlock_page(p);
4404 }
4405
4406 if (unlikely(ret)) {
4407 for (; i < num_pages; i++) {
bbf65cf0 4408 struct page *p = eb->pages[i];
81465028 4409 clear_page_dirty_for_io(p);
0b32f4bb
JB
4410 unlock_page(p);
4411 }
4412 }
4413
4414 return ret;
4415}
4416
c4aec299
QW
4417/*
4418 * Submit one subpage btree page.
4419 *
4420 * The main difference to submit_eb_page() is:
4421 * - Page locking
4422 * For subpage, we don't rely on page locking at all.
4423 *
4424 * - Flush write bio
4425 * We only flush bio if we may be unable to fit current extent buffers into
4426 * current bio.
4427 *
4428 * Return >=0 for the number of submitted extent buffers.
4429 * Return <0 for fatal error.
4430 */
4431static int submit_eb_subpage(struct page *page,
4432 struct writeback_control *wbc,
4433 struct extent_page_data *epd)
4434{
4435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4436 int submitted = 0;
4437 u64 page_start = page_offset(page);
4438 int bit_start = 0;
4439 const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4440 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4441 int ret;
4442
4443 /* Lock and write each dirty extent buffers in the range */
4444 while (bit_start < nbits) {
4445 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4446 struct extent_buffer *eb;
4447 unsigned long flags;
4448 u64 start;
4449
4450 /*
4451 * Take private lock to ensure the subpage won't be detached
4452 * in the meantime.
4453 */
4454 spin_lock(&page->mapping->private_lock);
4455 if (!PagePrivate(page)) {
4456 spin_unlock(&page->mapping->private_lock);
4457 break;
4458 }
4459 spin_lock_irqsave(&subpage->lock, flags);
4460 if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4461 spin_unlock_irqrestore(&subpage->lock, flags);
4462 spin_unlock(&page->mapping->private_lock);
4463 bit_start++;
4464 continue;
4465 }
4466
4467 start = page_start + bit_start * fs_info->sectorsize;
4468 bit_start += sectors_per_node;
4469
4470 /*
4471 * Here we just want to grab the eb without touching extra
4472 * spin locks, so call find_extent_buffer_nolock().
4473 */
4474 eb = find_extent_buffer_nolock(fs_info, start);
4475 spin_unlock_irqrestore(&subpage->lock, flags);
4476 spin_unlock(&page->mapping->private_lock);
4477
4478 /*
4479 * The eb has already reached 0 refs thus find_extent_buffer()
4480 * doesn't return it. We don't need to write back such eb
4481 * anyway.
4482 */
4483 if (!eb)
4484 continue;
4485
4486 ret = lock_extent_buffer_for_io(eb, epd);
4487 if (ret == 0) {
4488 free_extent_buffer(eb);
4489 continue;
4490 }
4491 if (ret < 0) {
4492 free_extent_buffer(eb);
4493 goto cleanup;
4494 }
fa04c165 4495 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4496 free_extent_buffer(eb);
4497 if (ret < 0)
4498 goto cleanup;
4499 submitted++;
4500 }
4501 return submitted;
4502
4503cleanup:
4504 /* We hit error, end bio for the submitted extent buffers */
4505 end_write_bio(epd, ret);
4506 return ret;
4507}
4508
f91e0d0c
QW
4509/*
4510 * Submit all page(s) of one extent buffer.
4511 *
4512 * @page: the page of one extent buffer
4513 * @eb_context: to determine if we need to submit this page, if current page
4514 * belongs to this eb, we don't need to submit
4515 *
4516 * The caller should pass each page in their bytenr order, and here we use
4517 * @eb_context to determine if we have submitted pages of one extent buffer.
4518 *
4519 * If we have, we just skip until we hit a new page that doesn't belong to
4520 * current @eb_context.
4521 *
4522 * If not, we submit all the page(s) of the extent buffer.
4523 *
4524 * Return >0 if we have submitted the extent buffer successfully.
4525 * Return 0 if we don't need to submit the page, as it's already submitted by
4526 * previous call.
4527 * Return <0 for fatal error.
4528 */
4529static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4530 struct extent_page_data *epd,
4531 struct extent_buffer **eb_context)
4532{
4533 struct address_space *mapping = page->mapping;
0bc09ca1 4534 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4535 struct extent_buffer *eb;
4536 int ret;
4537
4538 if (!PagePrivate(page))
4539 return 0;
4540
c4aec299
QW
4541 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4542 return submit_eb_subpage(page, wbc, epd);
4543
f91e0d0c
QW
4544 spin_lock(&mapping->private_lock);
4545 if (!PagePrivate(page)) {
4546 spin_unlock(&mapping->private_lock);
4547 return 0;
4548 }
4549
4550 eb = (struct extent_buffer *)page->private;
4551
4552 /*
4553 * Shouldn't happen and normally this would be a BUG_ON but no point
4554 * crashing the machine for something we can survive anyway.
4555 */
4556 if (WARN_ON(!eb)) {
4557 spin_unlock(&mapping->private_lock);
4558 return 0;
4559 }
4560
4561 if (eb == *eb_context) {
4562 spin_unlock(&mapping->private_lock);
4563 return 0;
4564 }
4565 ret = atomic_inc_not_zero(&eb->refs);
4566 spin_unlock(&mapping->private_lock);
4567 if (!ret)
4568 return 0;
4569
0bc09ca1
NA
4570 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4571 /*
4572 * If for_sync, this hole will be filled with
4573 * trasnsaction commit.
4574 */
4575 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4576 ret = -EAGAIN;
4577 else
4578 ret = 0;
4579 free_extent_buffer(eb);
4580 return ret;
4581 }
4582
f91e0d0c
QW
4583 *eb_context = eb;
4584
4585 ret = lock_extent_buffer_for_io(eb, epd);
4586 if (ret <= 0) {
0bc09ca1
NA
4587 btrfs_revert_meta_write_pointer(cache, eb);
4588 if (cache)
4589 btrfs_put_block_group(cache);
f91e0d0c
QW
4590 free_extent_buffer(eb);
4591 return ret;
4592 }
0bc09ca1
NA
4593 if (cache)
4594 btrfs_put_block_group(cache);
f91e0d0c
QW
4595 ret = write_one_eb(eb, wbc, epd);
4596 free_extent_buffer(eb);
4597 if (ret < 0)
4598 return ret;
4599 return 1;
4600}
4601
0b32f4bb
JB
4602int btree_write_cache_pages(struct address_space *mapping,
4603 struct writeback_control *wbc)
4604{
f91e0d0c 4605 struct extent_buffer *eb_context = NULL;
0b32f4bb 4606 struct extent_page_data epd = {
390ed29b 4607 .bio_ctrl = { 0 },
0b32f4bb
JB
4608 .extent_locked = 0,
4609 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4610 };
b3ff8f1d 4611 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4612 int ret = 0;
4613 int done = 0;
4614 int nr_to_write_done = 0;
4615 struct pagevec pvec;
4616 int nr_pages;
4617 pgoff_t index;
4618 pgoff_t end; /* Inclusive */
4619 int scanned = 0;
10bbd235 4620 xa_mark_t tag;
0b32f4bb 4621
86679820 4622 pagevec_init(&pvec);
0b32f4bb
JB
4623 if (wbc->range_cyclic) {
4624 index = mapping->writeback_index; /* Start from prev offset */
4625 end = -1;
556755a8
JB
4626 /*
4627 * Start from the beginning does not need to cycle over the
4628 * range, mark it as scanned.
4629 */
4630 scanned = (index == 0);
0b32f4bb 4631 } else {
09cbfeaf
KS
4632 index = wbc->range_start >> PAGE_SHIFT;
4633 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4634 scanned = 1;
4635 }
4636 if (wbc->sync_mode == WB_SYNC_ALL)
4637 tag = PAGECACHE_TAG_TOWRITE;
4638 else
4639 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4640 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4641retry:
4642 if (wbc->sync_mode == WB_SYNC_ALL)
4643 tag_pages_for_writeback(mapping, index, end);
4644 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4645 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4646 tag))) {
0b32f4bb
JB
4647 unsigned i;
4648
0b32f4bb
JB
4649 for (i = 0; i < nr_pages; i++) {
4650 struct page *page = pvec.pages[i];
4651
f91e0d0c
QW
4652 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4653 if (ret == 0)
0b32f4bb 4654 continue;
f91e0d0c 4655 if (ret < 0) {
0b32f4bb 4656 done = 1;
0b32f4bb
JB
4657 break;
4658 }
0b32f4bb
JB
4659
4660 /*
4661 * the filesystem may choose to bump up nr_to_write.
4662 * We have to make sure to honor the new nr_to_write
4663 * at any time
4664 */
4665 nr_to_write_done = wbc->nr_to_write <= 0;
4666 }
4667 pagevec_release(&pvec);
4668 cond_resched();
4669 }
4670 if (!scanned && !done) {
4671 /*
4672 * We hit the last page and there is more work to be done: wrap
4673 * back to the start of the file
4674 */
4675 scanned = 1;
4676 index = 0;
4677 goto retry;
4678 }
2b952eea
QW
4679 if (ret < 0) {
4680 end_write_bio(&epd, ret);
0bc09ca1 4681 goto out;
2b952eea 4682 }
b3ff8f1d
QW
4683 /*
4684 * If something went wrong, don't allow any metadata write bio to be
4685 * submitted.
4686 *
4687 * This would prevent use-after-free if we had dirty pages not
4688 * cleaned up, which can still happen by fuzzed images.
4689 *
4690 * - Bad extent tree
4691 * Allowing existing tree block to be allocated for other trees.
4692 *
4693 * - Log tree operations
4694 * Exiting tree blocks get allocated to log tree, bumps its
4695 * generation, then get cleaned in tree re-balance.
4696 * Such tree block will not be written back, since it's clean,
4697 * thus no WRITTEN flag set.
4698 * And after log writes back, this tree block is not traced by
4699 * any dirty extent_io_tree.
4700 *
4701 * - Offending tree block gets re-dirtied from its original owner
4702 * Since it has bumped generation, no WRITTEN flag, it can be
4703 * reused without COWing. This tree block will not be traced
4704 * by btrfs_transaction::dirty_pages.
4705 *
4706 * Now such dirty tree block will not be cleaned by any dirty
4707 * extent io tree. Thus we don't want to submit such wild eb
4708 * if the fs already has error.
4709 */
4710 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4711 ret = flush_write_bio(&epd);
4712 } else {
fbabd4a3 4713 ret = -EROFS;
b3ff8f1d
QW
4714 end_write_bio(&epd, ret);
4715 }
0bc09ca1
NA
4716out:
4717 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4718 return ret;
4719}
4720
d1310b2e 4721/**
3bed2da1
NB
4722 * Walk the list of dirty pages of the given address space and write all of them.
4723 *
d1310b2e 4724 * @mapping: address space structure to write
3bed2da1
NB
4725 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4726 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4727 *
4728 * If a page is already under I/O, write_cache_pages() skips it, even
4729 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4730 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4731 * and msync() need to guarantee that all the data which was dirty at the time
4732 * the call was made get new I/O started against them. If wbc->sync_mode is
4733 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4734 * existing IO to complete.
4735 */
4242b64a 4736static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4737 struct writeback_control *wbc,
aab6e9ed 4738 struct extent_page_data *epd)
d1310b2e 4739{
7fd1a3f7 4740 struct inode *inode = mapping->host;
d1310b2e
CM
4741 int ret = 0;
4742 int done = 0;
f85d7d6c 4743 int nr_to_write_done = 0;
d1310b2e
CM
4744 struct pagevec pvec;
4745 int nr_pages;
4746 pgoff_t index;
4747 pgoff_t end; /* Inclusive */
a9132667
LB
4748 pgoff_t done_index;
4749 int range_whole = 0;
d1310b2e 4750 int scanned = 0;
10bbd235 4751 xa_mark_t tag;
d1310b2e 4752
7fd1a3f7
JB
4753 /*
4754 * We have to hold onto the inode so that ordered extents can do their
4755 * work when the IO finishes. The alternative to this is failing to add
4756 * an ordered extent if the igrab() fails there and that is a huge pain
4757 * to deal with, so instead just hold onto the inode throughout the
4758 * writepages operation. If it fails here we are freeing up the inode
4759 * anyway and we'd rather not waste our time writing out stuff that is
4760 * going to be truncated anyway.
4761 */
4762 if (!igrab(inode))
4763 return 0;
4764
86679820 4765 pagevec_init(&pvec);
d1310b2e
CM
4766 if (wbc->range_cyclic) {
4767 index = mapping->writeback_index; /* Start from prev offset */
4768 end = -1;
556755a8
JB
4769 /*
4770 * Start from the beginning does not need to cycle over the
4771 * range, mark it as scanned.
4772 */
4773 scanned = (index == 0);
d1310b2e 4774 } else {
09cbfeaf
KS
4775 index = wbc->range_start >> PAGE_SHIFT;
4776 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4777 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4778 range_whole = 1;
d1310b2e
CM
4779 scanned = 1;
4780 }
3cd24c69
EL
4781
4782 /*
4783 * We do the tagged writepage as long as the snapshot flush bit is set
4784 * and we are the first one who do the filemap_flush() on this inode.
4785 *
4786 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4787 * not race in and drop the bit.
4788 */
4789 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4790 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4791 &BTRFS_I(inode)->runtime_flags))
4792 wbc->tagged_writepages = 1;
4793
4794 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4795 tag = PAGECACHE_TAG_TOWRITE;
4796 else
4797 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4798retry:
3cd24c69 4799 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4800 tag_pages_for_writeback(mapping, index, end);
a9132667 4801 done_index = index;
f85d7d6c 4802 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4803 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4804 &index, end, tag))) {
d1310b2e
CM
4805 unsigned i;
4806
d1310b2e
CM
4807 for (i = 0; i < nr_pages; i++) {
4808 struct page *page = pvec.pages[i];
4809
f7bddf1e 4810 done_index = page->index + 1;
d1310b2e 4811 /*
b93b0163
MW
4812 * At this point we hold neither the i_pages lock nor
4813 * the page lock: the page may be truncated or
4814 * invalidated (changing page->mapping to NULL),
4815 * or even swizzled back from swapper_space to
4816 * tmpfs file mapping
d1310b2e 4817 */
c8f2f24b 4818 if (!trylock_page(page)) {
f4340622
QW
4819 ret = flush_write_bio(epd);
4820 BUG_ON(ret < 0);
c8f2f24b 4821 lock_page(page);
01d658f2 4822 }
d1310b2e
CM
4823
4824 if (unlikely(page->mapping != mapping)) {
4825 unlock_page(page);
4826 continue;
4827 }
4828
d2c3f4f6 4829 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4830 if (PageWriteback(page)) {
4831 ret = flush_write_bio(epd);
4832 BUG_ON(ret < 0);
4833 }
d1310b2e 4834 wait_on_page_writeback(page);
d2c3f4f6 4835 }
d1310b2e
CM
4836
4837 if (PageWriteback(page) ||
4838 !clear_page_dirty_for_io(page)) {
4839 unlock_page(page);
4840 continue;
4841 }
4842
aab6e9ed 4843 ret = __extent_writepage(page, wbc, epd);
a9132667 4844 if (ret < 0) {
a9132667
LB
4845 done = 1;
4846 break;
4847 }
f85d7d6c
CM
4848
4849 /*
4850 * the filesystem may choose to bump up nr_to_write.
4851 * We have to make sure to honor the new nr_to_write
4852 * at any time
4853 */
4854 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4855 }
4856 pagevec_release(&pvec);
4857 cond_resched();
4858 }
894b36e3 4859 if (!scanned && !done) {
d1310b2e
CM
4860 /*
4861 * We hit the last page and there is more work to be done: wrap
4862 * back to the start of the file
4863 */
4864 scanned = 1;
4865 index = 0;
42ffb0bf
JB
4866
4867 /*
4868 * If we're looping we could run into a page that is locked by a
4869 * writer and that writer could be waiting on writeback for a
4870 * page in our current bio, and thus deadlock, so flush the
4871 * write bio here.
4872 */
4873 ret = flush_write_bio(epd);
4874 if (!ret)
4875 goto retry;
d1310b2e 4876 }
a9132667
LB
4877
4878 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4879 mapping->writeback_index = done_index;
4880
7fd1a3f7 4881 btrfs_add_delayed_iput(inode);
894b36e3 4882 return ret;
d1310b2e 4883}
d1310b2e 4884
0a9b0e53 4885int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4886{
4887 int ret;
d1310b2e 4888 struct extent_page_data epd = {
390ed29b 4889 .bio_ctrl = { 0 },
771ed689 4890 .extent_locked = 0,
ffbd517d 4891 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4892 };
d1310b2e 4893
d1310b2e 4894 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4895 ASSERT(ret <= 0);
4896 if (ret < 0) {
4897 end_write_bio(&epd, ret);
4898 return ret;
4899 }
d1310b2e 4900
3065976b
QW
4901 ret = flush_write_bio(&epd);
4902 ASSERT(ret <= 0);
d1310b2e
CM
4903 return ret;
4904}
d1310b2e 4905
5e3ee236 4906int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4907 int mode)
4908{
4909 int ret = 0;
4910 struct address_space *mapping = inode->i_mapping;
4911 struct page *page;
09cbfeaf
KS
4912 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4913 PAGE_SHIFT;
771ed689
CM
4914
4915 struct extent_page_data epd = {
390ed29b 4916 .bio_ctrl = { 0 },
771ed689 4917 .extent_locked = 1,
ffbd517d 4918 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4919 };
4920 struct writeback_control wbc_writepages = {
771ed689 4921 .sync_mode = mode,
771ed689
CM
4922 .nr_to_write = nr_pages * 2,
4923 .range_start = start,
4924 .range_end = end + 1,
ec39f769
CM
4925 /* We're called from an async helper function */
4926 .punt_to_cgroup = 1,
4927 .no_cgroup_owner = 1,
771ed689
CM
4928 };
4929
dbb70bec 4930 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4931 while (start <= end) {
09cbfeaf 4932 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4933 if (clear_page_dirty_for_io(page))
4934 ret = __extent_writepage(page, &wbc_writepages, &epd);
4935 else {
38a39ac7
QW
4936 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4937 page, start, start + PAGE_SIZE - 1, 1);
771ed689
CM
4938 unlock_page(page);
4939 }
09cbfeaf
KS
4940 put_page(page);
4941 start += PAGE_SIZE;
771ed689
CM
4942 }
4943
02c6db4f 4944 ASSERT(ret <= 0);
dbb70bec
CM
4945 if (ret == 0)
4946 ret = flush_write_bio(&epd);
4947 else
02c6db4f 4948 end_write_bio(&epd, ret);
dbb70bec
CM
4949
4950 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4951 return ret;
4952}
d1310b2e 4953
8ae225a8 4954int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4955 struct writeback_control *wbc)
4956{
4957 int ret = 0;
4958 struct extent_page_data epd = {
390ed29b 4959 .bio_ctrl = { 0 },
771ed689 4960 .extent_locked = 0,
ffbd517d 4961 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4962 };
4963
935db853 4964 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4965 ASSERT(ret <= 0);
4966 if (ret < 0) {
4967 end_write_bio(&epd, ret);
4968 return ret;
4969 }
4970 ret = flush_write_bio(&epd);
d1310b2e
CM
4971 return ret;
4972}
d1310b2e 4973
ba206a02 4974void extent_readahead(struct readahead_control *rac)
d1310b2e 4975{
390ed29b 4976 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 4977 struct page *pagepool[16];
125bac01 4978 struct extent_map *em_cached = NULL;
808f80b4 4979 u64 prev_em_start = (u64)-1;
ba206a02 4980 int nr;
d1310b2e 4981
ba206a02 4982 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
4983 u64 contig_start = readahead_pos(rac);
4984 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 4985
ba206a02 4986 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 4987 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 4988 }
67c9684f 4989
125bac01
MX
4990 if (em_cached)
4991 free_extent_map(em_cached);
4992
390ed29b
QW
4993 if (bio_ctrl.bio) {
4994 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
ba206a02
MWO
4995 return;
4996 }
d1310b2e 4997}
d1310b2e
CM
4998
4999/*
5000 * basic invalidatepage code, this waits on any locked or writeback
5001 * ranges corresponding to the page, and then deletes any extent state
5002 * records from the tree
5003 */
5004int extent_invalidatepage(struct extent_io_tree *tree,
5005 struct page *page, unsigned long offset)
5006{
2ac55d41 5007 struct extent_state *cached_state = NULL;
4eee4fa4 5008 u64 start = page_offset(page);
09cbfeaf 5009 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
5010 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5011
829ddec9
QW
5012 /* This function is only called for the btree inode */
5013 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5014
fda2832f 5015 start += ALIGN(offset, blocksize);
d1310b2e
CM
5016 if (start > end)
5017 return 0;
5018
ff13db41 5019 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 5020 wait_on_page_writeback(page);
829ddec9
QW
5021
5022 /*
5023 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5024 * so here we only need to unlock the extent range to free any
5025 * existing extent state.
5026 */
5027 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5028 return 0;
5029}
d1310b2e 5030
7b13b7b1
CM
5031/*
5032 * a helper for releasepage, this tests for areas of the page that
5033 * are locked or under IO and drops the related state bits if it is safe
5034 * to drop the page.
5035 */
29c68b2d 5036static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5037 struct page *page, gfp_t mask)
7b13b7b1 5038{
4eee4fa4 5039 u64 start = page_offset(page);
09cbfeaf 5040 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5041 int ret = 1;
5042
8882679e 5043 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5044 ret = 0;
8882679e 5045 } else {
11ef160f 5046 /*
2766ff61
FM
5047 * At this point we can safely clear everything except the
5048 * locked bit, the nodatasum bit and the delalloc new bit.
5049 * The delalloc new bit will be cleared by ordered extent
5050 * completion.
11ef160f 5051 */
66b0c887 5052 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5053 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5054 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5055
5056 /* if clear_extent_bit failed for enomem reasons,
5057 * we can't allow the release to continue.
5058 */
5059 if (ret < 0)
5060 ret = 0;
5061 else
5062 ret = 1;
7b13b7b1
CM
5063 }
5064 return ret;
5065}
7b13b7b1 5066
d1310b2e
CM
5067/*
5068 * a helper for releasepage. As long as there are no locked extents
5069 * in the range corresponding to the page, both state records and extent
5070 * map records are removed
5071 */
477a30ba 5072int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5073{
5074 struct extent_map *em;
4eee4fa4 5075 u64 start = page_offset(page);
09cbfeaf 5076 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5077 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5078 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5079 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5080
d0164adc 5081 if (gfpflags_allow_blocking(mask) &&
ee22184b 5082 page->mapping->host->i_size > SZ_16M) {
39b5637f 5083 u64 len;
70dec807 5084 while (start <= end) {
fbc2bd7e
FM
5085 struct btrfs_fs_info *fs_info;
5086 u64 cur_gen;
5087
39b5637f 5088 len = end - start + 1;
890871be 5089 write_lock(&map->lock);
39b5637f 5090 em = lookup_extent_mapping(map, start, len);
285190d9 5091 if (!em) {
890871be 5092 write_unlock(&map->lock);
70dec807
CM
5093 break;
5094 }
7f3c74fb
CM
5095 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5096 em->start != start) {
890871be 5097 write_unlock(&map->lock);
70dec807
CM
5098 free_extent_map(em);
5099 break;
5100 }
3d6448e6
FM
5101 if (test_range_bit(tree, em->start,
5102 extent_map_end(em) - 1,
5103 EXTENT_LOCKED, 0, NULL))
5104 goto next;
5105 /*
5106 * If it's not in the list of modified extents, used
5107 * by a fast fsync, we can remove it. If it's being
5108 * logged we can safely remove it since fsync took an
5109 * extra reference on the em.
5110 */
5111 if (list_empty(&em->list) ||
fbc2bd7e
FM
5112 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5113 goto remove_em;
5114 /*
5115 * If it's in the list of modified extents, remove it
5116 * only if its generation is older then the current one,
5117 * in which case we don't need it for a fast fsync.
5118 * Otherwise don't remove it, we could be racing with an
5119 * ongoing fast fsync that could miss the new extent.
5120 */
5121 fs_info = btrfs_inode->root->fs_info;
5122 spin_lock(&fs_info->trans_lock);
5123 cur_gen = fs_info->generation;
5124 spin_unlock(&fs_info->trans_lock);
5125 if (em->generation >= cur_gen)
5126 goto next;
5127remove_em:
5e548b32
FM
5128 /*
5129 * We only remove extent maps that are not in the list of
5130 * modified extents or that are in the list but with a
5131 * generation lower then the current generation, so there
5132 * is no need to set the full fsync flag on the inode (it
5133 * hurts the fsync performance for workloads with a data
5134 * size that exceeds or is close to the system's memory).
5135 */
fbc2bd7e
FM
5136 remove_extent_mapping(map, em);
5137 /* once for the rb tree */
5138 free_extent_map(em);
3d6448e6 5139next:
70dec807 5140 start = extent_map_end(em);
890871be 5141 write_unlock(&map->lock);
70dec807
CM
5142
5143 /* once for us */
d1310b2e 5144 free_extent_map(em);
9f47eb54
PM
5145
5146 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5147 }
d1310b2e 5148 }
29c68b2d 5149 return try_release_extent_state(tree, page, mask);
d1310b2e 5150}
d1310b2e 5151
ec29ed5b
CM
5152/*
5153 * helper function for fiemap, which doesn't want to see any holes.
5154 * This maps until we find something past 'last'
5155 */
f1bbde8d 5156static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5157 u64 offset, u64 last)
ec29ed5b 5158{
f1bbde8d 5159 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5160 struct extent_map *em;
5161 u64 len;
5162
5163 if (offset >= last)
5164 return NULL;
5165
67871254 5166 while (1) {
ec29ed5b
CM
5167 len = last - offset;
5168 if (len == 0)
5169 break;
fda2832f 5170 len = ALIGN(len, sectorsize);
f1bbde8d 5171 em = btrfs_get_extent_fiemap(inode, offset, len);
c704005d 5172 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
5173 return em;
5174
5175 /* if this isn't a hole return it */
4a2d25cd 5176 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5177 return em;
ec29ed5b
CM
5178
5179 /* this is a hole, advance to the next extent */
5180 offset = extent_map_end(em);
5181 free_extent_map(em);
5182 if (offset >= last)
5183 break;
5184 }
5185 return NULL;
5186}
5187
4751832d
QW
5188/*
5189 * To cache previous fiemap extent
5190 *
5191 * Will be used for merging fiemap extent
5192 */
5193struct fiemap_cache {
5194 u64 offset;
5195 u64 phys;
5196 u64 len;
5197 u32 flags;
5198 bool cached;
5199};
5200
5201/*
5202 * Helper to submit fiemap extent.
5203 *
5204 * Will try to merge current fiemap extent specified by @offset, @phys,
5205 * @len and @flags with cached one.
5206 * And only when we fails to merge, cached one will be submitted as
5207 * fiemap extent.
5208 *
5209 * Return value is the same as fiemap_fill_next_extent().
5210 */
5211static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5212 struct fiemap_cache *cache,
5213 u64 offset, u64 phys, u64 len, u32 flags)
5214{
5215 int ret = 0;
5216
5217 if (!cache->cached)
5218 goto assign;
5219
5220 /*
5221 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5222 * fiemap extent won't overlap with cached one.
4751832d
QW
5223 * Not recoverable.
5224 *
5225 * NOTE: Physical address can overlap, due to compression
5226 */
5227 if (cache->offset + cache->len > offset) {
5228 WARN_ON(1);
5229 return -EINVAL;
5230 }
5231
5232 /*
5233 * Only merges fiemap extents if
5234 * 1) Their logical addresses are continuous
5235 *
5236 * 2) Their physical addresses are continuous
5237 * So truly compressed (physical size smaller than logical size)
5238 * extents won't get merged with each other
5239 *
5240 * 3) Share same flags except FIEMAP_EXTENT_LAST
5241 * So regular extent won't get merged with prealloc extent
5242 */
5243 if (cache->offset + cache->len == offset &&
5244 cache->phys + cache->len == phys &&
5245 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5246 (flags & ~FIEMAP_EXTENT_LAST)) {
5247 cache->len += len;
5248 cache->flags |= flags;
5249 goto try_submit_last;
5250 }
5251
5252 /* Not mergeable, need to submit cached one */
5253 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5254 cache->len, cache->flags);
5255 cache->cached = false;
5256 if (ret)
5257 return ret;
5258assign:
5259 cache->cached = true;
5260 cache->offset = offset;
5261 cache->phys = phys;
5262 cache->len = len;
5263 cache->flags = flags;
5264try_submit_last:
5265 if (cache->flags & FIEMAP_EXTENT_LAST) {
5266 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5267 cache->phys, cache->len, cache->flags);
5268 cache->cached = false;
5269 }
5270 return ret;
5271}
5272
5273/*
848c23b7 5274 * Emit last fiemap cache
4751832d 5275 *
848c23b7
QW
5276 * The last fiemap cache may still be cached in the following case:
5277 * 0 4k 8k
5278 * |<- Fiemap range ->|
5279 * |<------------ First extent ----------->|
5280 *
5281 * In this case, the first extent range will be cached but not emitted.
5282 * So we must emit it before ending extent_fiemap().
4751832d 5283 */
5c5aff98 5284static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5285 struct fiemap_cache *cache)
4751832d
QW
5286{
5287 int ret;
5288
5289 if (!cache->cached)
5290 return 0;
5291
4751832d
QW
5292 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5293 cache->len, cache->flags);
5294 cache->cached = false;
5295 if (ret > 0)
5296 ret = 0;
5297 return ret;
5298}
5299
facee0a0 5300int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5301 u64 start, u64 len)
1506fcc8 5302{
975f84fe 5303 int ret = 0;
15c7745c 5304 u64 off;
1506fcc8
YS
5305 u64 max = start + len;
5306 u32 flags = 0;
975f84fe
JB
5307 u32 found_type;
5308 u64 last;
ec29ed5b 5309 u64 last_for_get_extent = 0;
1506fcc8 5310 u64 disko = 0;
facee0a0 5311 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5312 struct btrfs_key found_key;
1506fcc8 5313 struct extent_map *em = NULL;
2ac55d41 5314 struct extent_state *cached_state = NULL;
975f84fe 5315 struct btrfs_path *path;
facee0a0 5316 struct btrfs_root *root = inode->root;
4751832d 5317 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5318 struct ulist *roots;
5319 struct ulist *tmp_ulist;
1506fcc8 5320 int end = 0;
ec29ed5b
CM
5321 u64 em_start = 0;
5322 u64 em_len = 0;
5323 u64 em_end = 0;
1506fcc8
YS
5324
5325 if (len == 0)
5326 return -EINVAL;
5327
975f84fe
JB
5328 path = btrfs_alloc_path();
5329 if (!path)
5330 return -ENOMEM;
975f84fe 5331
5911c8fe
DS
5332 roots = ulist_alloc(GFP_KERNEL);
5333 tmp_ulist = ulist_alloc(GFP_KERNEL);
5334 if (!roots || !tmp_ulist) {
5335 ret = -ENOMEM;
5336 goto out_free_ulist;
5337 }
5338
15c7745c
BB
5339 /*
5340 * We can't initialize that to 'start' as this could miss extents due
5341 * to extent item merging
5342 */
5343 off = 0;
facee0a0
NB
5344 start = round_down(start, btrfs_inode_sectorsize(inode));
5345 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5346
ec29ed5b
CM
5347 /*
5348 * lookup the last file extent. We're not using i_size here
5349 * because there might be preallocation past i_size
5350 */
facee0a0
NB
5351 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5352 0);
975f84fe 5353 if (ret < 0) {
5911c8fe 5354 goto out_free_ulist;
2d324f59
LB
5355 } else {
5356 WARN_ON(!ret);
5357 if (ret == 1)
5358 ret = 0;
975f84fe 5359 }
2d324f59 5360
975f84fe 5361 path->slots[0]--;
975f84fe 5362 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5363 found_type = found_key.type;
975f84fe 5364
ec29ed5b 5365 /* No extents, but there might be delalloc bits */
facee0a0 5366 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5367 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5368 /* have to trust i_size as the end */
5369 last = (u64)-1;
5370 last_for_get_extent = isize;
5371 } else {
5372 /*
5373 * remember the start of the last extent. There are a
5374 * bunch of different factors that go into the length of the
5375 * extent, so its much less complex to remember where it started
5376 */
5377 last = found_key.offset;
5378 last_for_get_extent = last + 1;
975f84fe 5379 }
fe09e16c 5380 btrfs_release_path(path);
975f84fe 5381
ec29ed5b
CM
5382 /*
5383 * we might have some extents allocated but more delalloc past those
5384 * extents. so, we trust isize unless the start of the last extent is
5385 * beyond isize
5386 */
5387 if (last < isize) {
5388 last = (u64)-1;
5389 last_for_get_extent = isize;
5390 }
5391
facee0a0 5392 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5393 &cached_state);
ec29ed5b 5394
facee0a0 5395 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5396 if (!em)
5397 goto out;
5398 if (IS_ERR(em)) {
5399 ret = PTR_ERR(em);
5400 goto out;
5401 }
975f84fe 5402
1506fcc8 5403 while (!end) {
b76bb701 5404 u64 offset_in_extent = 0;
ea8efc74
CM
5405
5406 /* break if the extent we found is outside the range */
5407 if (em->start >= max || extent_map_end(em) < off)
5408 break;
5409
5410 /*
5411 * get_extent may return an extent that starts before our
5412 * requested range. We have to make sure the ranges
5413 * we return to fiemap always move forward and don't
5414 * overlap, so adjust the offsets here
5415 */
5416 em_start = max(em->start, off);
1506fcc8 5417
ea8efc74
CM
5418 /*
5419 * record the offset from the start of the extent
b76bb701
JB
5420 * for adjusting the disk offset below. Only do this if the
5421 * extent isn't compressed since our in ram offset may be past
5422 * what we have actually allocated on disk.
ea8efc74 5423 */
b76bb701
JB
5424 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5425 offset_in_extent = em_start - em->start;
ec29ed5b 5426 em_end = extent_map_end(em);
ea8efc74 5427 em_len = em_end - em_start;
1506fcc8 5428 flags = 0;
f0986318
FM
5429 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5430 disko = em->block_start + offset_in_extent;
5431 else
5432 disko = 0;
1506fcc8 5433
ea8efc74
CM
5434 /*
5435 * bump off for our next call to get_extent
5436 */
5437 off = extent_map_end(em);
5438 if (off >= max)
5439 end = 1;
5440
93dbfad7 5441 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5442 end = 1;
5443 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5444 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5445 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5446 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5447 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5448 flags |= (FIEMAP_EXTENT_DELALLOC |
5449 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5450 } else if (fieinfo->fi_extents_max) {
5451 u64 bytenr = em->block_start -
5452 (em->start - em->orig_start);
fe09e16c 5453
fe09e16c
LB
5454 /*
5455 * As btrfs supports shared space, this information
5456 * can be exported to userspace tools via
dc046b10
JB
5457 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5458 * then we're just getting a count and we can skip the
5459 * lookup stuff.
fe09e16c 5460 */
facee0a0 5461 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5462 bytenr, roots, tmp_ulist);
dc046b10 5463 if (ret < 0)
fe09e16c 5464 goto out_free;
dc046b10 5465 if (ret)
fe09e16c 5466 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5467 ret = 0;
1506fcc8
YS
5468 }
5469 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5470 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5471 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5472 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5473
1506fcc8
YS
5474 free_extent_map(em);
5475 em = NULL;
ec29ed5b
CM
5476 if ((em_start >= last) || em_len == (u64)-1 ||
5477 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5478 flags |= FIEMAP_EXTENT_LAST;
5479 end = 1;
5480 }
5481
ec29ed5b 5482 /* now scan forward to see if this is really the last extent. */
facee0a0 5483 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5484 if (IS_ERR(em)) {
5485 ret = PTR_ERR(em);
5486 goto out;
5487 }
5488 if (!em) {
975f84fe
JB
5489 flags |= FIEMAP_EXTENT_LAST;
5490 end = 1;
5491 }
4751832d
QW
5492 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5493 em_len, flags);
26e726af
CS
5494 if (ret) {
5495 if (ret == 1)
5496 ret = 0;
ec29ed5b 5497 goto out_free;
26e726af 5498 }
1506fcc8
YS
5499 }
5500out_free:
4751832d 5501 if (!ret)
5c5aff98 5502 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5503 free_extent_map(em);
5504out:
facee0a0 5505 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5506 &cached_state);
5911c8fe
DS
5507
5508out_free_ulist:
e02d48ea 5509 btrfs_free_path(path);
5911c8fe
DS
5510 ulist_free(roots);
5511 ulist_free(tmp_ulist);
1506fcc8
YS
5512 return ret;
5513}
5514
727011e0
CM
5515static void __free_extent_buffer(struct extent_buffer *eb)
5516{
727011e0
CM
5517 kmem_cache_free(extent_buffer_cache, eb);
5518}
5519
2b48966a 5520int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5521{
5522 return (atomic_read(&eb->io_pages) ||
5523 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5524 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5525}
5526
8ff8466d 5527static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5528{
8ff8466d 5529 struct btrfs_subpage *subpage;
db7f3436 5530
8ff8466d 5531 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5532
8ff8466d
QW
5533 if (PagePrivate(page)) {
5534 subpage = (struct btrfs_subpage *)page->private;
5535 if (atomic_read(&subpage->eb_refs))
5536 return true;
5537 }
5538 return false;
5539}
db7f3436 5540
8ff8466d
QW
5541static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5542{
5543 struct btrfs_fs_info *fs_info = eb->fs_info;
5544 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5545
5546 /*
5547 * For mapped eb, we're going to change the page private, which should
5548 * be done under the private_lock.
5549 */
5550 if (mapped)
5551 spin_lock(&page->mapping->private_lock);
5552
5553 if (!PagePrivate(page)) {
5d2361db 5554 if (mapped)
8ff8466d
QW
5555 spin_unlock(&page->mapping->private_lock);
5556 return;
5557 }
5558
5559 if (fs_info->sectorsize == PAGE_SIZE) {
5d2361db
FL
5560 /*
5561 * We do this since we'll remove the pages after we've
5562 * removed the eb from the radix tree, so we could race
5563 * and have this page now attached to the new eb. So
5564 * only clear page_private if it's still connected to
5565 * this eb.
5566 */
5567 if (PagePrivate(page) &&
5568 page->private == (unsigned long)eb) {
5569 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5570 BUG_ON(PageDirty(page));
5571 BUG_ON(PageWriteback(page));
db7f3436 5572 /*
5d2361db
FL
5573 * We need to make sure we haven't be attached
5574 * to a new eb.
db7f3436 5575 */
d1b89bc0 5576 detach_page_private(page);
db7f3436 5577 }
5d2361db
FL
5578 if (mapped)
5579 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5580 return;
5581 }
5582
5583 /*
5584 * For subpage, we can have dummy eb with page private. In this case,
5585 * we can directly detach the private as such page is only attached to
5586 * one dummy eb, no sharing.
5587 */
5588 if (!mapped) {
5589 btrfs_detach_subpage(fs_info, page);
5590 return;
5591 }
5592
5593 btrfs_page_dec_eb_refs(fs_info, page);
5594
5595 /*
5596 * We can only detach the page private if there are no other ebs in the
5597 * page range.
5598 */
5599 if (!page_range_has_eb(fs_info, page))
5600 btrfs_detach_subpage(fs_info, page);
5601
5602 spin_unlock(&page->mapping->private_lock);
5603}
5604
5605/* Release all pages attached to the extent buffer */
5606static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5607{
5608 int i;
5609 int num_pages;
5610
5611 ASSERT(!extent_buffer_under_io(eb));
5612
5613 num_pages = num_extent_pages(eb);
5614 for (i = 0; i < num_pages; i++) {
5615 struct page *page = eb->pages[i];
5616
5617 if (!page)
5618 continue;
5619
5620 detach_extent_buffer_page(eb, page);
5d2361db 5621
01327610 5622 /* One for when we allocated the page */
09cbfeaf 5623 put_page(page);
d64766fd 5624 }
db7f3436
JB
5625}
5626
5627/*
5628 * Helper for releasing the extent buffer.
5629 */
5630static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5631{
55ac0139 5632 btrfs_release_extent_buffer_pages(eb);
8c38938c 5633 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5634 __free_extent_buffer(eb);
5635}
5636
f28491e0
JB
5637static struct extent_buffer *
5638__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5639 unsigned long len)
d1310b2e
CM
5640{
5641 struct extent_buffer *eb = NULL;
5642
d1b5c567 5643 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5644 eb->start = start;
5645 eb->len = len;
f28491e0 5646 eb->fs_info = fs_info;
815a51c7 5647 eb->bflags = 0;
196d59ab 5648 init_rwsem(&eb->lock);
b4ce94de 5649
3fd63727
JB
5650 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5651 &fs_info->allocated_ebs);
d3575156 5652 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5653
3083ee2e 5654 spin_lock_init(&eb->refs_lock);
d1310b2e 5655 atomic_set(&eb->refs, 1);
0b32f4bb 5656 atomic_set(&eb->io_pages, 0);
727011e0 5657
deb67895 5658 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5659
5660 return eb;
5661}
5662
2b48966a 5663struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5664{
cc5e31a4 5665 int i;
815a51c7
JS
5666 struct page *p;
5667 struct extent_buffer *new;
cc5e31a4 5668 int num_pages = num_extent_pages(src);
815a51c7 5669
3f556f78 5670 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5671 if (new == NULL)
5672 return NULL;
5673
62c053fb
QW
5674 /*
5675 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5676 * btrfs_release_extent_buffer() have different behavior for
5677 * UNMAPPED subpage extent buffer.
5678 */
5679 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5680
815a51c7 5681 for (i = 0; i < num_pages; i++) {
760f991f
QW
5682 int ret;
5683
9ec72677 5684 p = alloc_page(GFP_NOFS);
db7f3436
JB
5685 if (!p) {
5686 btrfs_release_extent_buffer(new);
5687 return NULL;
5688 }
760f991f
QW
5689 ret = attach_extent_buffer_page(new, p, NULL);
5690 if (ret < 0) {
5691 put_page(p);
5692 btrfs_release_extent_buffer(new);
5693 return NULL;
5694 }
815a51c7 5695 WARN_ON(PageDirty(p));
815a51c7 5696 new->pages[i] = p;
fba1acf9 5697 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5698 }
92d83e94 5699 set_extent_buffer_uptodate(new);
815a51c7
JS
5700
5701 return new;
5702}
5703
0f331229
OS
5704struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5705 u64 start, unsigned long len)
815a51c7
JS
5706{
5707 struct extent_buffer *eb;
cc5e31a4
DS
5708 int num_pages;
5709 int i;
815a51c7 5710
3f556f78 5711 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5712 if (!eb)
5713 return NULL;
5714
65ad0104 5715 num_pages = num_extent_pages(eb);
815a51c7 5716 for (i = 0; i < num_pages; i++) {
09bc1f0f
QW
5717 int ret;
5718
9ec72677 5719 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5720 if (!eb->pages[i])
5721 goto err;
09bc1f0f
QW
5722 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5723 if (ret < 0)
5724 goto err;
815a51c7
JS
5725 }
5726 set_extent_buffer_uptodate(eb);
5727 btrfs_set_header_nritems(eb, 0);
b0132a3b 5728 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5729
5730 return eb;
5731err:
09bc1f0f
QW
5732 for (; i > 0; i--) {
5733 detach_extent_buffer_page(eb, eb->pages[i - 1]);
84167d19 5734 __free_page(eb->pages[i - 1]);
09bc1f0f 5735 }
815a51c7
JS
5736 __free_extent_buffer(eb);
5737 return NULL;
5738}
5739
0f331229 5740struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5741 u64 start)
0f331229 5742{
da17066c 5743 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5744}
5745
0b32f4bb
JB
5746static void check_buffer_tree_ref(struct extent_buffer *eb)
5747{
242e18c7 5748 int refs;
6bf9cd2e
BB
5749 /*
5750 * The TREE_REF bit is first set when the extent_buffer is added
5751 * to the radix tree. It is also reset, if unset, when a new reference
5752 * is created by find_extent_buffer.
0b32f4bb 5753 *
6bf9cd2e
BB
5754 * It is only cleared in two cases: freeing the last non-tree
5755 * reference to the extent_buffer when its STALE bit is set or
5756 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5757 *
6bf9cd2e
BB
5758 * In both cases, care is taken to ensure that the extent_buffer's
5759 * pages are not under io. However, releasepage can be concurrently
5760 * called with creating new references, which is prone to race
5761 * conditions between the calls to check_buffer_tree_ref in those
5762 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5763 *
6bf9cd2e
BB
5764 * The actual lifetime of the extent_buffer in the radix tree is
5765 * adequately protected by the refcount, but the TREE_REF bit and
5766 * its corresponding reference are not. To protect against this
5767 * class of races, we call check_buffer_tree_ref from the codepaths
5768 * which trigger io after they set eb->io_pages. Note that once io is
5769 * initiated, TREE_REF can no longer be cleared, so that is the
5770 * moment at which any such race is best fixed.
0b32f4bb 5771 */
242e18c7
CM
5772 refs = atomic_read(&eb->refs);
5773 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5774 return;
5775
594831c4
JB
5776 spin_lock(&eb->refs_lock);
5777 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5778 atomic_inc(&eb->refs);
594831c4 5779 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5780}
5781
2457aec6
MG
5782static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5783 struct page *accessed)
5df4235e 5784{
cc5e31a4 5785 int num_pages, i;
5df4235e 5786
0b32f4bb
JB
5787 check_buffer_tree_ref(eb);
5788
65ad0104 5789 num_pages = num_extent_pages(eb);
5df4235e 5790 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5791 struct page *p = eb->pages[i];
5792
2457aec6
MG
5793 if (p != accessed)
5794 mark_page_accessed(p);
5df4235e
JB
5795 }
5796}
5797
f28491e0
JB
5798struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5799 u64 start)
452c75c3
CS
5800{
5801 struct extent_buffer *eb;
5802
2f3186d8
QW
5803 eb = find_extent_buffer_nolock(fs_info, start);
5804 if (!eb)
5805 return NULL;
5806 /*
5807 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5808 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5809 * another task running free_extent_buffer() might have seen that flag
5810 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5811 * writeback flags not set) and it's still in the tree (flag
5812 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5813 * decrementing the extent buffer's reference count twice. So here we
5814 * could race and increment the eb's reference count, clear its stale
5815 * flag, mark it as dirty and drop our reference before the other task
5816 * finishes executing free_extent_buffer, which would later result in
5817 * an attempt to free an extent buffer that is dirty.
5818 */
5819 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5820 spin_lock(&eb->refs_lock);
5821 spin_unlock(&eb->refs_lock);
452c75c3 5822 }
2f3186d8
QW
5823 mark_extent_buffer_accessed(eb, NULL);
5824 return eb;
452c75c3
CS
5825}
5826
faa2dbf0
JB
5827#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5828struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5829 u64 start)
faa2dbf0
JB
5830{
5831 struct extent_buffer *eb, *exists = NULL;
5832 int ret;
5833
5834 eb = find_extent_buffer(fs_info, start);
5835 if (eb)
5836 return eb;
da17066c 5837 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 5838 if (!eb)
b6293c82 5839 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
5840 eb->fs_info = fs_info;
5841again:
e1860a77 5842 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
5843 if (ret) {
5844 exists = ERR_PTR(ret);
faa2dbf0 5845 goto free_eb;
b6293c82 5846 }
faa2dbf0
JB
5847 spin_lock(&fs_info->buffer_lock);
5848 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 5849 start >> fs_info->sectorsize_bits, eb);
faa2dbf0
JB
5850 spin_unlock(&fs_info->buffer_lock);
5851 radix_tree_preload_end();
5852 if (ret == -EEXIST) {
5853 exists = find_extent_buffer(fs_info, start);
5854 if (exists)
5855 goto free_eb;
5856 else
5857 goto again;
5858 }
5859 check_buffer_tree_ref(eb);
5860 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5861
faa2dbf0
JB
5862 return eb;
5863free_eb:
5864 btrfs_release_extent_buffer(eb);
5865 return exists;
5866}
5867#endif
5868
81982210
QW
5869static struct extent_buffer *grab_extent_buffer(
5870 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
5871{
5872 struct extent_buffer *exists;
5873
81982210
QW
5874 /*
5875 * For subpage case, we completely rely on radix tree to ensure we
5876 * don't try to insert two ebs for the same bytenr. So here we always
5877 * return NULL and just continue.
5878 */
5879 if (fs_info->sectorsize < PAGE_SIZE)
5880 return NULL;
5881
c0f0a9e7
QW
5882 /* Page not yet attached to an extent buffer */
5883 if (!PagePrivate(page))
5884 return NULL;
5885
5886 /*
5887 * We could have already allocated an eb for this page and attached one
5888 * so lets see if we can get a ref on the existing eb, and if we can we
5889 * know it's good and we can just return that one, else we know we can
5890 * just overwrite page->private.
5891 */
5892 exists = (struct extent_buffer *)page->private;
5893 if (atomic_inc_not_zero(&exists->refs))
5894 return exists;
5895
5896 WARN_ON(PageDirty(page));
5897 detach_page_private(page);
5898 return NULL;
5899}
5900
f28491e0 5901struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 5902 u64 start, u64 owner_root, int level)
d1310b2e 5903{
da17066c 5904 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5905 int num_pages;
5906 int i;
09cbfeaf 5907 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5908 struct extent_buffer *eb;
6af118ce 5909 struct extent_buffer *exists = NULL;
d1310b2e 5910 struct page *p;
f28491e0 5911 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5912 int uptodate = 1;
19fe0a8b 5913 int ret;
d1310b2e 5914
da17066c 5915 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5916 btrfs_err(fs_info, "bad tree block start %llu", start);
5917 return ERR_PTR(-EINVAL);
5918 }
5919
e9306ad4
QW
5920#if BITS_PER_LONG == 32
5921 if (start >= MAX_LFS_FILESIZE) {
5922 btrfs_err_rl(fs_info,
5923 "extent buffer %llu is beyond 32bit page cache limit", start);
5924 btrfs_err_32bit_limit(fs_info);
5925 return ERR_PTR(-EOVERFLOW);
5926 }
5927 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5928 btrfs_warn_32bit_limit(fs_info);
5929#endif
5930
1aaac38c
QW
5931 if (fs_info->sectorsize < PAGE_SIZE &&
5932 offset_in_page(start) + len > PAGE_SIZE) {
5933 btrfs_err(fs_info,
5934 "tree block crosses page boundary, start %llu nodesize %lu",
5935 start, len);
5936 return ERR_PTR(-EINVAL);
5937 }
5938
f28491e0 5939 eb = find_extent_buffer(fs_info, start);
452c75c3 5940 if (eb)
6af118ce 5941 return eb;
6af118ce 5942
23d79d81 5943 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5944 if (!eb)
c871b0f2 5945 return ERR_PTR(-ENOMEM);
e114c545 5946 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 5947
65ad0104 5948 num_pages = num_extent_pages(eb);
727011e0 5949 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
5950 struct btrfs_subpage *prealloc = NULL;
5951
d1b5c567 5952 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5953 if (!p) {
5954 exists = ERR_PTR(-ENOMEM);
6af118ce 5955 goto free_eb;
c871b0f2 5956 }
4f2de97a 5957
760f991f
QW
5958 /*
5959 * Preallocate page->private for subpage case, so that we won't
5960 * allocate memory with private_lock hold. The memory will be
5961 * freed by attach_extent_buffer_page() or freed manually if
5962 * we exit earlier.
5963 *
5964 * Although we have ensured one subpage eb can only have one
5965 * page, but it may change in the future for 16K page size
5966 * support, so we still preallocate the memory in the loop.
5967 */
5968 ret = btrfs_alloc_subpage(fs_info, &prealloc,
5969 BTRFS_SUBPAGE_METADATA);
5970 if (ret < 0) {
5971 unlock_page(p);
5972 put_page(p);
5973 exists = ERR_PTR(ret);
5974 goto free_eb;
5975 }
5976
4f2de97a 5977 spin_lock(&mapping->private_lock);
81982210 5978 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
5979 if (exists) {
5980 spin_unlock(&mapping->private_lock);
5981 unlock_page(p);
5982 put_page(p);
5983 mark_extent_buffer_accessed(exists, p);
760f991f 5984 btrfs_free_subpage(prealloc);
c0f0a9e7 5985 goto free_eb;
d1310b2e 5986 }
760f991f
QW
5987 /* Should not fail, as we have preallocated the memory */
5988 ret = attach_extent_buffer_page(eb, p, prealloc);
5989 ASSERT(!ret);
8ff8466d
QW
5990 /*
5991 * To inform we have extra eb under allocation, so that
5992 * detach_extent_buffer_page() won't release the page private
5993 * when the eb hasn't yet been inserted into radix tree.
5994 *
5995 * The ref will be decreased when the eb released the page, in
5996 * detach_extent_buffer_page().
5997 * Thus needs no special handling in error path.
5998 */
5999 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6000 spin_unlock(&mapping->private_lock);
760f991f 6001
1e5eb3d6 6002 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6003 eb->pages[i] = p;
d1310b2e
CM
6004 if (!PageUptodate(p))
6005 uptodate = 0;
eb14ab8e
CM
6006
6007 /*
b16d011e
NB
6008 * We can't unlock the pages just yet since the extent buffer
6009 * hasn't been properly inserted in the radix tree, this
6010 * opens a race with btree_releasepage which can free a page
6011 * while we are still filling in all pages for the buffer and
6012 * we could crash.
eb14ab8e 6013 */
d1310b2e
CM
6014 }
6015 if (uptodate)
b4ce94de 6016 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 6017again:
e1860a77 6018 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
6019 if (ret) {
6020 exists = ERR_PTR(ret);
19fe0a8b 6021 goto free_eb;
c871b0f2 6022 }
19fe0a8b 6023
f28491e0
JB
6024 spin_lock(&fs_info->buffer_lock);
6025 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6026 start >> fs_info->sectorsize_bits, eb);
f28491e0 6027 spin_unlock(&fs_info->buffer_lock);
452c75c3 6028 radix_tree_preload_end();
19fe0a8b 6029 if (ret == -EEXIST) {
f28491e0 6030 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
6031 if (exists)
6032 goto free_eb;
6033 else
115391d2 6034 goto again;
6af118ce 6035 }
6af118ce 6036 /* add one reference for the tree */
0b32f4bb 6037 check_buffer_tree_ref(eb);
34b41ace 6038 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6039
6040 /*
b16d011e
NB
6041 * Now it's safe to unlock the pages because any calls to
6042 * btree_releasepage will correctly detect that a page belongs to a
6043 * live buffer and won't free them prematurely.
eb14ab8e 6044 */
28187ae5
NB
6045 for (i = 0; i < num_pages; i++)
6046 unlock_page(eb->pages[i]);
d1310b2e
CM
6047 return eb;
6048
6af118ce 6049free_eb:
5ca64f45 6050 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6051 for (i = 0; i < num_pages; i++) {
6052 if (eb->pages[i])
6053 unlock_page(eb->pages[i]);
6054 }
eb14ab8e 6055
897ca6e9 6056 btrfs_release_extent_buffer(eb);
6af118ce 6057 return exists;
d1310b2e 6058}
d1310b2e 6059
3083ee2e
JB
6060static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6061{
6062 struct extent_buffer *eb =
6063 container_of(head, struct extent_buffer, rcu_head);
6064
6065 __free_extent_buffer(eb);
6066}
6067
f7a52a40 6068static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6069 __releases(&eb->refs_lock)
3083ee2e 6070{
07e21c4d
NB
6071 lockdep_assert_held(&eb->refs_lock);
6072
3083ee2e
JB
6073 WARN_ON(atomic_read(&eb->refs) == 0);
6074 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6075 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6076 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6077
815a51c7 6078 spin_unlock(&eb->refs_lock);
3083ee2e 6079
f28491e0
JB
6080 spin_lock(&fs_info->buffer_lock);
6081 radix_tree_delete(&fs_info->buffer_radix,
478ef886 6082 eb->start >> fs_info->sectorsize_bits);
f28491e0 6083 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6084 } else {
6085 spin_unlock(&eb->refs_lock);
815a51c7 6086 }
3083ee2e 6087
8c38938c 6088 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6089 /* Should be safe to release our pages at this point */
55ac0139 6090 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6091#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6092 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6093 __free_extent_buffer(eb);
6094 return 1;
6095 }
6096#endif
3083ee2e 6097 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6098 return 1;
3083ee2e
JB
6099 }
6100 spin_unlock(&eb->refs_lock);
e64860aa
JB
6101
6102 return 0;
3083ee2e
JB
6103}
6104
d1310b2e
CM
6105void free_extent_buffer(struct extent_buffer *eb)
6106{
242e18c7
CM
6107 int refs;
6108 int old;
d1310b2e
CM
6109 if (!eb)
6110 return;
6111
242e18c7
CM
6112 while (1) {
6113 refs = atomic_read(&eb->refs);
46cc775e
NB
6114 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6115 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6116 refs == 1))
242e18c7
CM
6117 break;
6118 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6119 if (old == refs)
6120 return;
6121 }
6122
3083ee2e
JB
6123 spin_lock(&eb->refs_lock);
6124 if (atomic_read(&eb->refs) == 2 &&
6125 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6126 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6127 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6128 atomic_dec(&eb->refs);
6129
6130 /*
6131 * I know this is terrible, but it's temporary until we stop tracking
6132 * the uptodate bits and such for the extent buffers.
6133 */
f7a52a40 6134 release_extent_buffer(eb);
3083ee2e
JB
6135}
6136
6137void free_extent_buffer_stale(struct extent_buffer *eb)
6138{
6139 if (!eb)
d1310b2e
CM
6140 return;
6141
3083ee2e
JB
6142 spin_lock(&eb->refs_lock);
6143 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6144
0b32f4bb 6145 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6146 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6147 atomic_dec(&eb->refs);
f7a52a40 6148 release_extent_buffer(eb);
d1310b2e 6149}
d1310b2e 6150
0d27797e
QW
6151static void btree_clear_page_dirty(struct page *page)
6152{
6153 ASSERT(PageDirty(page));
6154 ASSERT(PageLocked(page));
6155 clear_page_dirty_for_io(page);
6156 xa_lock_irq(&page->mapping->i_pages);
6157 if (!PageDirty(page))
6158 __xa_clear_mark(&page->mapping->i_pages,
6159 page_index(page), PAGECACHE_TAG_DIRTY);
6160 xa_unlock_irq(&page->mapping->i_pages);
6161}
6162
6163static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6164{
6165 struct btrfs_fs_info *fs_info = eb->fs_info;
6166 struct page *page = eb->pages[0];
6167 bool last;
6168
6169 /* btree_clear_page_dirty() needs page locked */
6170 lock_page(page);
6171 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6172 eb->len);
6173 if (last)
6174 btree_clear_page_dirty(page);
6175 unlock_page(page);
6176 WARN_ON(atomic_read(&eb->refs) == 0);
6177}
6178
2b48966a 6179void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6180{
cc5e31a4
DS
6181 int i;
6182 int num_pages;
d1310b2e
CM
6183 struct page *page;
6184
0d27797e
QW
6185 if (eb->fs_info->sectorsize < PAGE_SIZE)
6186 return clear_subpage_extent_buffer_dirty(eb);
6187
65ad0104 6188 num_pages = num_extent_pages(eb);
d1310b2e
CM
6189
6190 for (i = 0; i < num_pages; i++) {
fb85fc9a 6191 page = eb->pages[i];
b9473439 6192 if (!PageDirty(page))
d2c3f4f6 6193 continue;
a61e6f29 6194 lock_page(page);
0d27797e 6195 btree_clear_page_dirty(page);
bf0da8c1 6196 ClearPageError(page);
a61e6f29 6197 unlock_page(page);
d1310b2e 6198 }
0b32f4bb 6199 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6200}
d1310b2e 6201
abb57ef3 6202bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6203{
cc5e31a4
DS
6204 int i;
6205 int num_pages;
abb57ef3 6206 bool was_dirty;
d1310b2e 6207
0b32f4bb
JB
6208 check_buffer_tree_ref(eb);
6209
b9473439 6210 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6211
65ad0104 6212 num_pages = num_extent_pages(eb);
3083ee2e 6213 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6214 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6215
0d27797e
QW
6216 if (!was_dirty) {
6217 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
51995c39 6218
0d27797e
QW
6219 /*
6220 * For subpage case, we can have other extent buffers in the
6221 * same page, and in clear_subpage_extent_buffer_dirty() we
6222 * have to clear page dirty without subpage lock held.
6223 * This can cause race where our page gets dirty cleared after
6224 * we just set it.
6225 *
6226 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6227 * its page for other reasons, we can use page lock to prevent
6228 * the above race.
6229 */
6230 if (subpage)
6231 lock_page(eb->pages[0]);
6232 for (i = 0; i < num_pages; i++)
6233 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6234 eb->start, eb->len);
6235 if (subpage)
6236 unlock_page(eb->pages[0]);
6237 }
51995c39
LB
6238#ifdef CONFIG_BTRFS_DEBUG
6239 for (i = 0; i < num_pages; i++)
6240 ASSERT(PageDirty(eb->pages[i]));
6241#endif
6242
b9473439 6243 return was_dirty;
d1310b2e 6244}
d1310b2e 6245
69ba3927 6246void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6247{
251f2acc 6248 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6249 struct page *page;
cc5e31a4 6250 int num_pages;
251f2acc 6251 int i;
1259ab75 6252
b4ce94de 6253 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6254 num_pages = num_extent_pages(eb);
1259ab75 6255 for (i = 0; i < num_pages; i++) {
fb85fc9a 6256 page = eb->pages[i];
33958dc6 6257 if (page)
251f2acc
QW
6258 btrfs_page_clear_uptodate(fs_info, page,
6259 eb->start, eb->len);
1259ab75 6260 }
1259ab75
CM
6261}
6262
09c25a8c 6263void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6264{
251f2acc 6265 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6266 struct page *page;
cc5e31a4 6267 int num_pages;
251f2acc 6268 int i;
d1310b2e 6269
0b32f4bb 6270 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6271 num_pages = num_extent_pages(eb);
d1310b2e 6272 for (i = 0; i < num_pages; i++) {
fb85fc9a 6273 page = eb->pages[i];
251f2acc 6274 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
d1310b2e 6275 }
d1310b2e 6276}
d1310b2e 6277
4012daf7
QW
6278static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6279 int mirror_num)
6280{
6281 struct btrfs_fs_info *fs_info = eb->fs_info;
6282 struct extent_io_tree *io_tree;
6283 struct page *page = eb->pages[0];
390ed29b 6284 struct btrfs_bio_ctrl bio_ctrl = { 0 };
4012daf7
QW
6285 int ret = 0;
6286
6287 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6288 ASSERT(PagePrivate(page));
6289 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6290
6291 if (wait == WAIT_NONE) {
dc56219f
GR
6292 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6293 return -EAGAIN;
4012daf7
QW
6294 } else {
6295 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6296 if (ret < 0)
6297 return ret;
6298 }
6299
6300 ret = 0;
6301 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6302 PageUptodate(page) ||
6303 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6304 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6305 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6306 return ret;
6307 }
6308
6309 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6310 eb->read_mirror = 0;
6311 atomic_set(&eb->io_pages, 1);
6312 check_buffer_tree_ref(eb);
6313 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6314
390ed29b
QW
6315 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6316 page, eb->start, eb->len,
6317 eb->start - page_offset(page),
6318 end_bio_extent_readpage, mirror_num, 0,
4012daf7
QW
6319 true);
6320 if (ret) {
6321 /*
6322 * In the endio function, if we hit something wrong we will
6323 * increase the io_pages, so here we need to decrease it for
6324 * error path.
6325 */
6326 atomic_dec(&eb->io_pages);
6327 }
390ed29b 6328 if (bio_ctrl.bio) {
4012daf7
QW
6329 int tmp;
6330
390ed29b
QW
6331 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6332 bio_ctrl.bio = NULL;
4012daf7
QW
6333 if (tmp < 0)
6334 return tmp;
6335 }
6336 if (ret || wait != WAIT_COMPLETE)
6337 return ret;
6338
6339 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6340 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6341 ret = -EIO;
6342 return ret;
6343}
6344
c2ccfbc6 6345int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6346{
cc5e31a4 6347 int i;
d1310b2e
CM
6348 struct page *page;
6349 int err;
6350 int ret = 0;
ce9adaa5
CM
6351 int locked_pages = 0;
6352 int all_uptodate = 1;
cc5e31a4 6353 int num_pages;
727011e0 6354 unsigned long num_reads = 0;
390ed29b 6355 struct btrfs_bio_ctrl bio_ctrl = { 0 };
a86c12c7 6356
b4ce94de 6357 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6358 return 0;
6359
4012daf7
QW
6360 if (eb->fs_info->sectorsize < PAGE_SIZE)
6361 return read_extent_buffer_subpage(eb, wait, mirror_num);
6362
65ad0104 6363 num_pages = num_extent_pages(eb);
8436ea91 6364 for (i = 0; i < num_pages; i++) {
fb85fc9a 6365 page = eb->pages[i];
bb82ab88 6366 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6367 /*
6368 * WAIT_NONE is only utilized by readahead. If we can't
6369 * acquire the lock atomically it means either the eb
6370 * is being read out or under modification.
6371 * Either way the eb will be or has been cached,
6372 * readahead can exit safely.
6373 */
2db04966 6374 if (!trylock_page(page))
ce9adaa5 6375 goto unlock_exit;
d1310b2e
CM
6376 } else {
6377 lock_page(page);
6378 }
ce9adaa5 6379 locked_pages++;
2571e739
LB
6380 }
6381 /*
6382 * We need to firstly lock all pages to make sure that
6383 * the uptodate bit of our pages won't be affected by
6384 * clear_extent_buffer_uptodate().
6385 */
8436ea91 6386 for (i = 0; i < num_pages; i++) {
2571e739 6387 page = eb->pages[i];
727011e0
CM
6388 if (!PageUptodate(page)) {
6389 num_reads++;
ce9adaa5 6390 all_uptodate = 0;
727011e0 6391 }
ce9adaa5 6392 }
2571e739 6393
ce9adaa5 6394 if (all_uptodate) {
8436ea91 6395 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6396 goto unlock_exit;
6397 }
6398
656f30db 6399 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6400 eb->read_mirror = 0;
0b32f4bb 6401 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
6402 /*
6403 * It is possible for releasepage to clear the TREE_REF bit before we
6404 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6405 */
6406 check_buffer_tree_ref(eb);
8436ea91 6407 for (i = 0; i < num_pages; i++) {
fb85fc9a 6408 page = eb->pages[i];
baf863b9 6409
ce9adaa5 6410 if (!PageUptodate(page)) {
baf863b9
LB
6411 if (ret) {
6412 atomic_dec(&eb->io_pages);
6413 unlock_page(page);
6414 continue;
6415 }
6416
f188591e 6417 ClearPageError(page);
0420177c 6418 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
390ed29b
QW
6419 &bio_ctrl, page, page_offset(page),
6420 PAGE_SIZE, 0, end_bio_extent_readpage,
6421 mirror_num, 0, false);
baf863b9 6422 if (err) {
baf863b9 6423 /*
0420177c
NB
6424 * We failed to submit the bio so it's the
6425 * caller's responsibility to perform cleanup
6426 * i.e unlock page/set error bit.
baf863b9 6427 */
0420177c
NB
6428 ret = err;
6429 SetPageError(page);
6430 unlock_page(page);
baf863b9
LB
6431 atomic_dec(&eb->io_pages);
6432 }
d1310b2e
CM
6433 } else {
6434 unlock_page(page);
6435 }
6436 }
6437
390ed29b
QW
6438 if (bio_ctrl.bio) {
6439 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6440 bio_ctrl.bio = NULL;
79787eaa
JM
6441 if (err)
6442 return err;
355808c2 6443 }
a86c12c7 6444
bb82ab88 6445 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6446 return ret;
d397712b 6447
8436ea91 6448 for (i = 0; i < num_pages; i++) {
fb85fc9a 6449 page = eb->pages[i];
d1310b2e 6450 wait_on_page_locked(page);
d397712b 6451 if (!PageUptodate(page))
d1310b2e 6452 ret = -EIO;
d1310b2e 6453 }
d397712b 6454
d1310b2e 6455 return ret;
ce9adaa5
CM
6456
6457unlock_exit:
d397712b 6458 while (locked_pages > 0) {
ce9adaa5 6459 locked_pages--;
8436ea91
JB
6460 page = eb->pages[locked_pages];
6461 unlock_page(page);
ce9adaa5
CM
6462 }
6463 return ret;
d1310b2e 6464}
d1310b2e 6465
f98b6215
QW
6466static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6467 unsigned long len)
6468{
6469 btrfs_warn(eb->fs_info,
6470 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6471 eb->start, eb->len, start, len);
6472 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6473
6474 return true;
6475}
6476
6477/*
6478 * Check if the [start, start + len) range is valid before reading/writing
6479 * the eb.
6480 * NOTE: @start and @len are offset inside the eb, not logical address.
6481 *
6482 * Caller should not touch the dst/src memory if this function returns error.
6483 */
6484static inline int check_eb_range(const struct extent_buffer *eb,
6485 unsigned long start, unsigned long len)
6486{
6487 unsigned long offset;
6488
6489 /* start, start + len should not go beyond eb->len nor overflow */
6490 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6491 return report_eb_range(eb, start, len);
6492
6493 return false;
6494}
6495
1cbb1f45
JM
6496void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6497 unsigned long start, unsigned long len)
d1310b2e
CM
6498{
6499 size_t cur;
6500 size_t offset;
6501 struct page *page;
6502 char *kaddr;
6503 char *dst = (char *)dstv;
884b07d0 6504 unsigned long i = get_eb_page_index(start);
d1310b2e 6505
f98b6215 6506 if (check_eb_range(eb, start, len))
f716abd5 6507 return;
d1310b2e 6508
884b07d0 6509 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6510
d397712b 6511 while (len > 0) {
fb85fc9a 6512 page = eb->pages[i];
d1310b2e 6513
09cbfeaf 6514 cur = min(len, (PAGE_SIZE - offset));
a6591715 6515 kaddr = page_address(page);
d1310b2e 6516 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6517
6518 dst += cur;
6519 len -= cur;
6520 offset = 0;
6521 i++;
6522 }
6523}
d1310b2e 6524
a48b73ec
JB
6525int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6526 void __user *dstv,
6527 unsigned long start, unsigned long len)
550ac1d8
GH
6528{
6529 size_t cur;
6530 size_t offset;
6531 struct page *page;
6532 char *kaddr;
6533 char __user *dst = (char __user *)dstv;
884b07d0 6534 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6535 int ret = 0;
6536
6537 WARN_ON(start > eb->len);
6538 WARN_ON(start + len > eb->start + eb->len);
6539
884b07d0 6540 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6541
6542 while (len > 0) {
fb85fc9a 6543 page = eb->pages[i];
550ac1d8 6544
09cbfeaf 6545 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6546 kaddr = page_address(page);
a48b73ec 6547 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6548 ret = -EFAULT;
6549 break;
6550 }
6551
6552 dst += cur;
6553 len -= cur;
6554 offset = 0;
6555 i++;
6556 }
6557
6558 return ret;
6559}
6560
1cbb1f45
JM
6561int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6562 unsigned long start, unsigned long len)
d1310b2e
CM
6563{
6564 size_t cur;
6565 size_t offset;
6566 struct page *page;
6567 char *kaddr;
6568 char *ptr = (char *)ptrv;
884b07d0 6569 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6570 int ret = 0;
6571
f98b6215
QW
6572 if (check_eb_range(eb, start, len))
6573 return -EINVAL;
d1310b2e 6574
884b07d0 6575 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6576
d397712b 6577 while (len > 0) {
fb85fc9a 6578 page = eb->pages[i];
d1310b2e 6579
09cbfeaf 6580 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6581
a6591715 6582 kaddr = page_address(page);
d1310b2e 6583 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6584 if (ret)
6585 break;
6586
6587 ptr += cur;
6588 len -= cur;
6589 offset = 0;
6590 i++;
6591 }
6592 return ret;
6593}
d1310b2e 6594
b8f95771
QW
6595/*
6596 * Check that the extent buffer is uptodate.
6597 *
6598 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6599 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6600 */
6601static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6602 struct page *page)
6603{
6604 struct btrfs_fs_info *fs_info = eb->fs_info;
6605
6606 if (fs_info->sectorsize < PAGE_SIZE) {
6607 bool uptodate;
6608
6609 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6610 eb->start, eb->len);
6611 WARN_ON(!uptodate);
6612 } else {
6613 WARN_ON(!PageUptodate(page));
6614 }
6615}
6616
2b48966a 6617void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6618 const void *srcv)
6619{
6620 char *kaddr;
6621
b8f95771 6622 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6623 kaddr = page_address(eb->pages[0]) +
6624 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6625 chunk_tree_uuid));
6626 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6627}
6628
2b48966a 6629void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6630{
6631 char *kaddr;
6632
b8f95771 6633 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6634 kaddr = page_address(eb->pages[0]) +
6635 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6636 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6637}
6638
2b48966a 6639void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6640 unsigned long start, unsigned long len)
6641{
6642 size_t cur;
6643 size_t offset;
6644 struct page *page;
6645 char *kaddr;
6646 char *src = (char *)srcv;
884b07d0 6647 unsigned long i = get_eb_page_index(start);
d1310b2e 6648
d3575156
NA
6649 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6650
f98b6215
QW
6651 if (check_eb_range(eb, start, len))
6652 return;
d1310b2e 6653
884b07d0 6654 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6655
d397712b 6656 while (len > 0) {
fb85fc9a 6657 page = eb->pages[i];
b8f95771 6658 assert_eb_page_uptodate(eb, page);
d1310b2e 6659
09cbfeaf 6660 cur = min(len, PAGE_SIZE - offset);
a6591715 6661 kaddr = page_address(page);
d1310b2e 6662 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6663
6664 src += cur;
6665 len -= cur;
6666 offset = 0;
6667 i++;
6668 }
6669}
d1310b2e 6670
2b48966a 6671void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6672 unsigned long len)
d1310b2e
CM
6673{
6674 size_t cur;
6675 size_t offset;
6676 struct page *page;
6677 char *kaddr;
884b07d0 6678 unsigned long i = get_eb_page_index(start);
d1310b2e 6679
f98b6215
QW
6680 if (check_eb_range(eb, start, len))
6681 return;
d1310b2e 6682
884b07d0 6683 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6684
d397712b 6685 while (len > 0) {
fb85fc9a 6686 page = eb->pages[i];
b8f95771 6687 assert_eb_page_uptodate(eb, page);
d1310b2e 6688
09cbfeaf 6689 cur = min(len, PAGE_SIZE - offset);
a6591715 6690 kaddr = page_address(page);
b159fa28 6691 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6692
6693 len -= cur;
6694 offset = 0;
6695 i++;
6696 }
6697}
d1310b2e 6698
2b48966a
DS
6699void copy_extent_buffer_full(const struct extent_buffer *dst,
6700 const struct extent_buffer *src)
58e8012c
DS
6701{
6702 int i;
cc5e31a4 6703 int num_pages;
58e8012c
DS
6704
6705 ASSERT(dst->len == src->len);
6706
884b07d0
QW
6707 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6708 num_pages = num_extent_pages(dst);
6709 for (i = 0; i < num_pages; i++)
6710 copy_page(page_address(dst->pages[i]),
6711 page_address(src->pages[i]));
6712 } else {
6713 size_t src_offset = get_eb_offset_in_page(src, 0);
6714 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6715
6716 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6717 memcpy(page_address(dst->pages[0]) + dst_offset,
6718 page_address(src->pages[0]) + src_offset,
6719 src->len);
6720 }
58e8012c
DS
6721}
6722
2b48966a
DS
6723void copy_extent_buffer(const struct extent_buffer *dst,
6724 const struct extent_buffer *src,
d1310b2e
CM
6725 unsigned long dst_offset, unsigned long src_offset,
6726 unsigned long len)
6727{
6728 u64 dst_len = dst->len;
6729 size_t cur;
6730 size_t offset;
6731 struct page *page;
6732 char *kaddr;
884b07d0 6733 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 6734
f98b6215
QW
6735 if (check_eb_range(dst, dst_offset, len) ||
6736 check_eb_range(src, src_offset, len))
6737 return;
6738
d1310b2e
CM
6739 WARN_ON(src->len != dst_len);
6740
884b07d0 6741 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 6742
d397712b 6743 while (len > 0) {
fb85fc9a 6744 page = dst->pages[i];
b8f95771 6745 assert_eb_page_uptodate(dst, page);
d1310b2e 6746
09cbfeaf 6747 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 6748
a6591715 6749 kaddr = page_address(page);
d1310b2e 6750 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
6751
6752 src_offset += cur;
6753 len -= cur;
6754 offset = 0;
6755 i++;
6756 }
6757}
d1310b2e 6758
3e1e8bb7
OS
6759/*
6760 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6761 * given bit number
6762 * @eb: the extent buffer
6763 * @start: offset of the bitmap item in the extent buffer
6764 * @nr: bit number
6765 * @page_index: return index of the page in the extent buffer that contains the
6766 * given bit number
6767 * @page_offset: return offset into the page given by page_index
6768 *
6769 * This helper hides the ugliness of finding the byte in an extent buffer which
6770 * contains a given bit.
6771 */
2b48966a 6772static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
6773 unsigned long start, unsigned long nr,
6774 unsigned long *page_index,
6775 size_t *page_offset)
6776{
3e1e8bb7
OS
6777 size_t byte_offset = BIT_BYTE(nr);
6778 size_t offset;
6779
6780 /*
6781 * The byte we want is the offset of the extent buffer + the offset of
6782 * the bitmap item in the extent buffer + the offset of the byte in the
6783 * bitmap item.
6784 */
884b07d0 6785 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 6786
09cbfeaf 6787 *page_index = offset >> PAGE_SHIFT;
7073017a 6788 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
6789}
6790
6791/**
6792 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6793 * @eb: the extent buffer
6794 * @start: offset of the bitmap item in the extent buffer
6795 * @nr: bit number to test
6796 */
2b48966a 6797int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
6798 unsigned long nr)
6799{
2fe1d551 6800 u8 *kaddr;
3e1e8bb7
OS
6801 struct page *page;
6802 unsigned long i;
6803 size_t offset;
6804
6805 eb_bitmap_offset(eb, start, nr, &i, &offset);
6806 page = eb->pages[i];
b8f95771 6807 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6808 kaddr = page_address(page);
6809 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6810}
6811
6812/**
6813 * extent_buffer_bitmap_set - set an area of a bitmap
6814 * @eb: the extent buffer
6815 * @start: offset of the bitmap item in the extent buffer
6816 * @pos: bit number of the first bit
6817 * @len: number of bits to set
6818 */
2b48966a 6819void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
6820 unsigned long pos, unsigned long len)
6821{
2fe1d551 6822 u8 *kaddr;
3e1e8bb7
OS
6823 struct page *page;
6824 unsigned long i;
6825 size_t offset;
6826 const unsigned int size = pos + len;
6827 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 6828 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
6829
6830 eb_bitmap_offset(eb, start, pos, &i, &offset);
6831 page = eb->pages[i];
b8f95771 6832 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6833 kaddr = page_address(page);
6834
6835 while (len >= bits_to_set) {
6836 kaddr[offset] |= mask_to_set;
6837 len -= bits_to_set;
6838 bits_to_set = BITS_PER_BYTE;
9c894696 6839 mask_to_set = ~0;
09cbfeaf 6840 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
6841 offset = 0;
6842 page = eb->pages[++i];
b8f95771 6843 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6844 kaddr = page_address(page);
6845 }
6846 }
6847 if (len) {
6848 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6849 kaddr[offset] |= mask_to_set;
6850 }
6851}
6852
6853
6854/**
6855 * extent_buffer_bitmap_clear - clear an area of a bitmap
6856 * @eb: the extent buffer
6857 * @start: offset of the bitmap item in the extent buffer
6858 * @pos: bit number of the first bit
6859 * @len: number of bits to clear
6860 */
2b48966a
DS
6861void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6862 unsigned long start, unsigned long pos,
6863 unsigned long len)
3e1e8bb7 6864{
2fe1d551 6865 u8 *kaddr;
3e1e8bb7
OS
6866 struct page *page;
6867 unsigned long i;
6868 size_t offset;
6869 const unsigned int size = pos + len;
6870 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 6871 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
6872
6873 eb_bitmap_offset(eb, start, pos, &i, &offset);
6874 page = eb->pages[i];
b8f95771 6875 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6876 kaddr = page_address(page);
6877
6878 while (len >= bits_to_clear) {
6879 kaddr[offset] &= ~mask_to_clear;
6880 len -= bits_to_clear;
6881 bits_to_clear = BITS_PER_BYTE;
9c894696 6882 mask_to_clear = ~0;
09cbfeaf 6883 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
6884 offset = 0;
6885 page = eb->pages[++i];
b8f95771 6886 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6887 kaddr = page_address(page);
6888 }
6889 }
6890 if (len) {
6891 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6892 kaddr[offset] &= ~mask_to_clear;
6893 }
6894}
6895
3387206f
ST
6896static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6897{
6898 unsigned long distance = (src > dst) ? src - dst : dst - src;
6899 return distance < len;
6900}
6901
d1310b2e
CM
6902static void copy_pages(struct page *dst_page, struct page *src_page,
6903 unsigned long dst_off, unsigned long src_off,
6904 unsigned long len)
6905{
a6591715 6906 char *dst_kaddr = page_address(dst_page);
d1310b2e 6907 char *src_kaddr;
727011e0 6908 int must_memmove = 0;
d1310b2e 6909
3387206f 6910 if (dst_page != src_page) {
a6591715 6911 src_kaddr = page_address(src_page);
3387206f 6912 } else {
d1310b2e 6913 src_kaddr = dst_kaddr;
727011e0
CM
6914 if (areas_overlap(src_off, dst_off, len))
6915 must_memmove = 1;
3387206f 6916 }
d1310b2e 6917
727011e0
CM
6918 if (must_memmove)
6919 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6920 else
6921 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
6922}
6923
2b48966a
DS
6924void memcpy_extent_buffer(const struct extent_buffer *dst,
6925 unsigned long dst_offset, unsigned long src_offset,
6926 unsigned long len)
d1310b2e
CM
6927{
6928 size_t cur;
6929 size_t dst_off_in_page;
6930 size_t src_off_in_page;
d1310b2e
CM
6931 unsigned long dst_i;
6932 unsigned long src_i;
6933
f98b6215
QW
6934 if (check_eb_range(dst, dst_offset, len) ||
6935 check_eb_range(dst, src_offset, len))
6936 return;
d1310b2e 6937
d397712b 6938 while (len > 0) {
884b07d0
QW
6939 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6940 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 6941
884b07d0
QW
6942 dst_i = get_eb_page_index(dst_offset);
6943 src_i = get_eb_page_index(src_offset);
d1310b2e 6944
09cbfeaf 6945 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
6946 src_off_in_page));
6947 cur = min_t(unsigned long, cur,
09cbfeaf 6948 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 6949
fb85fc9a 6950 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6951 dst_off_in_page, src_off_in_page, cur);
6952
6953 src_offset += cur;
6954 dst_offset += cur;
6955 len -= cur;
6956 }
6957}
d1310b2e 6958
2b48966a
DS
6959void memmove_extent_buffer(const struct extent_buffer *dst,
6960 unsigned long dst_offset, unsigned long src_offset,
6961 unsigned long len)
d1310b2e
CM
6962{
6963 size_t cur;
6964 size_t dst_off_in_page;
6965 size_t src_off_in_page;
6966 unsigned long dst_end = dst_offset + len - 1;
6967 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
6968 unsigned long dst_i;
6969 unsigned long src_i;
6970
f98b6215
QW
6971 if (check_eb_range(dst, dst_offset, len) ||
6972 check_eb_range(dst, src_offset, len))
6973 return;
727011e0 6974 if (dst_offset < src_offset) {
d1310b2e
CM
6975 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6976 return;
6977 }
d397712b 6978 while (len > 0) {
884b07d0
QW
6979 dst_i = get_eb_page_index(dst_end);
6980 src_i = get_eb_page_index(src_end);
d1310b2e 6981
884b07d0
QW
6982 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
6983 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
6984
6985 cur = min_t(unsigned long, len, src_off_in_page + 1);
6986 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6987 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6988 dst_off_in_page - cur + 1,
6989 src_off_in_page - cur + 1, cur);
6990
6991 dst_end -= cur;
6992 src_end -= cur;
6993 len -= cur;
6994 }
6995}
6af118ce 6996
d1e86e3f
QW
6997static struct extent_buffer *get_next_extent_buffer(
6998 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
6999{
7000 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7001 struct extent_buffer *found = NULL;
7002 u64 page_start = page_offset(page);
7003 int ret;
7004 int i;
7005
7006 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7007 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7008 lockdep_assert_held(&fs_info->buffer_lock);
7009
7010 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7011 bytenr >> fs_info->sectorsize_bits,
7012 PAGE_SIZE / fs_info->nodesize);
7013 for (i = 0; i < ret; i++) {
7014 /* Already beyond page end */
7015 if (gang[i]->start >= page_start + PAGE_SIZE)
7016 break;
7017 /* Found one */
7018 if (gang[i]->start >= bytenr) {
7019 found = gang[i];
7020 break;
7021 }
7022 }
7023 return found;
7024}
7025
7026static int try_release_subpage_extent_buffer(struct page *page)
7027{
7028 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7029 u64 cur = page_offset(page);
7030 const u64 end = page_offset(page) + PAGE_SIZE;
7031 int ret;
7032
7033 while (cur < end) {
7034 struct extent_buffer *eb = NULL;
7035
7036 /*
7037 * Unlike try_release_extent_buffer() which uses page->private
7038 * to grab buffer, for subpage case we rely on radix tree, thus
7039 * we need to ensure radix tree consistency.
7040 *
7041 * We also want an atomic snapshot of the radix tree, thus go
7042 * with spinlock rather than RCU.
7043 */
7044 spin_lock(&fs_info->buffer_lock);
7045 eb = get_next_extent_buffer(fs_info, page, cur);
7046 if (!eb) {
7047 /* No more eb in the page range after or at cur */
7048 spin_unlock(&fs_info->buffer_lock);
7049 break;
7050 }
7051 cur = eb->start + eb->len;
7052
7053 /*
7054 * The same as try_release_extent_buffer(), to ensure the eb
7055 * won't disappear out from under us.
7056 */
7057 spin_lock(&eb->refs_lock);
7058 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7059 spin_unlock(&eb->refs_lock);
7060 spin_unlock(&fs_info->buffer_lock);
7061 break;
7062 }
7063 spin_unlock(&fs_info->buffer_lock);
7064
7065 /*
7066 * If tree ref isn't set then we know the ref on this eb is a
7067 * real ref, so just return, this eb will likely be freed soon
7068 * anyway.
7069 */
7070 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7071 spin_unlock(&eb->refs_lock);
7072 break;
7073 }
7074
7075 /*
7076 * Here we don't care about the return value, we will always
7077 * check the page private at the end. And
7078 * release_extent_buffer() will release the refs_lock.
7079 */
7080 release_extent_buffer(eb);
7081 }
7082 /*
7083 * Finally to check if we have cleared page private, as if we have
7084 * released all ebs in the page, the page private should be cleared now.
7085 */
7086 spin_lock(&page->mapping->private_lock);
7087 if (!PagePrivate(page))
7088 ret = 1;
7089 else
7090 ret = 0;
7091 spin_unlock(&page->mapping->private_lock);
7092 return ret;
7093
7094}
7095
f7a52a40 7096int try_release_extent_buffer(struct page *page)
19fe0a8b 7097{
6af118ce 7098 struct extent_buffer *eb;
6af118ce 7099
d1e86e3f
QW
7100 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7101 return try_release_subpage_extent_buffer(page);
7102
3083ee2e 7103 /*
d1e86e3f
QW
7104 * We need to make sure nobody is changing page->private, as we rely on
7105 * page->private as the pointer to extent buffer.
3083ee2e
JB
7106 */
7107 spin_lock(&page->mapping->private_lock);
7108 if (!PagePrivate(page)) {
7109 spin_unlock(&page->mapping->private_lock);
4f2de97a 7110 return 1;
45f49bce 7111 }
6af118ce 7112
3083ee2e
JB
7113 eb = (struct extent_buffer *)page->private;
7114 BUG_ON(!eb);
19fe0a8b
MX
7115
7116 /*
3083ee2e
JB
7117 * This is a little awful but should be ok, we need to make sure that
7118 * the eb doesn't disappear out from under us while we're looking at
7119 * this page.
19fe0a8b 7120 */
3083ee2e 7121 spin_lock(&eb->refs_lock);
0b32f4bb 7122 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7123 spin_unlock(&eb->refs_lock);
7124 spin_unlock(&page->mapping->private_lock);
7125 return 0;
b9473439 7126 }
3083ee2e 7127 spin_unlock(&page->mapping->private_lock);
897ca6e9 7128
19fe0a8b 7129 /*
3083ee2e
JB
7130 * If tree ref isn't set then we know the ref on this eb is a real ref,
7131 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7132 */
3083ee2e
JB
7133 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7134 spin_unlock(&eb->refs_lock);
7135 return 0;
b9473439 7136 }
19fe0a8b 7137
f7a52a40 7138 return release_extent_buffer(eb);
6af118ce 7139}
bfb484d9
JB
7140
7141/*
7142 * btrfs_readahead_tree_block - attempt to readahead a child block
7143 * @fs_info: the fs_info
7144 * @bytenr: bytenr to read
3fbaf258 7145 * @owner_root: objectid of the root that owns this eb
bfb484d9 7146 * @gen: generation for the uptodate check, can be 0
3fbaf258 7147 * @level: level for the eb
bfb484d9
JB
7148 *
7149 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7150 * normal uptodate check of the eb, without checking the generation. If we have
7151 * to read the block we will not block on anything.
7152 */
7153void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7154 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7155{
7156 struct extent_buffer *eb;
7157 int ret;
7158
3fbaf258 7159 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7160 if (IS_ERR(eb))
7161 return;
7162
7163 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7164 free_extent_buffer(eb);
7165 return;
7166 }
7167
7168 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7169 if (ret < 0)
7170 free_extent_buffer_stale(eb);
7171 else
7172 free_extent_buffer(eb);
7173}
7174
7175/*
7176 * btrfs_readahead_node_child - readahead a node's child block
7177 * @node: parent node we're reading from
7178 * @slot: slot in the parent node for the child we want to read
7179 *
7180 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7181 * the slot in the node provided.
7182 */
7183void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7184{
7185 btrfs_readahead_tree_block(node->fs_info,
7186 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7187 btrfs_header_owner(node),
7188 btrfs_node_ptr_generation(node, slot),
7189 btrfs_header_level(node) - 1);
bfb484d9 7190}