btrfs: document more parameters of submit_extent_page
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d1310b2e
CM
2#include <linux/bitops.h>
3#include <linux/slab.h>
4#include <linux/bio.h>
5#include <linux/mm.h>
d1310b2e
CM
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
d1310b2e
CM
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
fe09e16c 23#include "backref.h"
6af49dbd 24#include "disk-io.h"
d1310b2e 25
d1310b2e
CM
26static struct kmem_cache *extent_state_cache;
27static struct kmem_cache *extent_buffer_cache;
9be3395b 28static struct bio_set *btrfs_bioset;
d1310b2e 29
27a3507d
FM
30static inline bool extent_state_in_tree(const struct extent_state *state)
31{
32 return !RB_EMPTY_NODE(&state->rb_node);
33}
34
6d49ba1b 35#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
36static LIST_HEAD(buffers);
37static LIST_HEAD(states);
4bef0848 38
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
40
41static inline
42void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
43{
44 unsigned long flags;
45
46 spin_lock_irqsave(&leak_lock, flags);
47 list_add(new, head);
48 spin_unlock_irqrestore(&leak_lock, flags);
49}
50
51static inline
52void btrfs_leak_debug_del(struct list_head *entry)
53{
54 unsigned long flags;
55
56 spin_lock_irqsave(&leak_lock, flags);
57 list_del(entry);
58 spin_unlock_irqrestore(&leak_lock, flags);
59}
60
61static inline
62void btrfs_leak_debug_check(void)
63{
64 struct extent_state *state;
65 struct extent_buffer *eb;
66
67 while (!list_empty(&states)) {
68 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 69 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
70 state->start, state->end, state->state,
71 extent_state_in_tree(state),
b7ac31b7 72 refcount_read(&state->refs));
6d49ba1b
ES
73 list_del(&state->leak_list);
74 kmem_cache_free(extent_state_cache, state);
75 }
76
77 while (!list_empty(&buffers)) {
78 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
79 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
81 list_del(&eb->leak_list);
82 kmem_cache_free(extent_buffer_cache, eb);
83 }
84}
8d599ae1 85
a5dee37d
JB
86#define btrfs_debug_check_extent_io_range(tree, start, end) \
87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 88static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 89 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 90{
c6100a4b
JB
91 if (tree->ops && tree->ops->check_extent_io_range)
92 tree->ops->check_extent_io_range(tree->private_data, caller,
93 start, end);
8d599ae1 94}
6d49ba1b
ES
95#else
96#define btrfs_leak_debug_add(new, head) do {} while (0)
97#define btrfs_leak_debug_del(entry) do {} while (0)
98#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 99#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 100#endif
d1310b2e 101
d1310b2e
CM
102#define BUFFER_LRU_MAX 64
103
104struct tree_entry {
105 u64 start;
106 u64 end;
d1310b2e
CM
107 struct rb_node rb_node;
108};
109
110struct extent_page_data {
111 struct bio *bio;
112 struct extent_io_tree *tree;
771ed689
CM
113 /* tells writepage not to lock the state bits for this range
114 * it still does the unlocking
115 */
ffbd517d
CM
116 unsigned int extent_locked:1;
117
70fd7614 118 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 119 unsigned int sync_io:1;
d1310b2e
CM
120};
121
d38ed27f
QW
122static void add_extent_changeset(struct extent_state *state, unsigned bits,
123 struct extent_changeset *changeset,
124 int set)
125{
126 int ret;
127
128 if (!changeset)
129 return;
130 if (set && (state->state & bits) == bits)
131 return;
fefdc557
QW
132 if (!set && (state->state & bits) == 0)
133 return;
d38ed27f 134 changeset->bytes_changed += state->end - state->start + 1;
53d32359 135 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
136 GFP_ATOMIC);
137 /* ENOMEM */
138 BUG_ON(ret < 0);
139}
140
aab6e9ed 141static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 142
c2d904e0
JM
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
c6100a4b
JB
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
c2d904e0 149}
0b32f4bb 150
d1310b2e
CM
151int __init extent_io_init(void)
152{
837e1972 153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 154 sizeof(struct extent_state), 0,
fba4b697 155 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
156 if (!extent_state_cache)
157 return -ENOMEM;
158
837e1972 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 160 sizeof(struct extent_buffer), 0,
fba4b697 161 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
162 if (!extent_buffer_cache)
163 goto free_state_cache;
9be3395b
CM
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
9be3395b
CM
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
e67c718b 190void __cold extent_io_exit(void)
d1310b2e 191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
66b0c887 584int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
ae0f1625 1298 struct extent_state **cached)
fefdc557
QW
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1301 cached, GFP_NOFS, NULL);
fefdc557
QW
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1351 EXTENT_LOCKED, 1, 0, NULL);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298 1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1651 &cached_state);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1747 NULL);
873695b3
LB
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1751e8a6 1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
c5e4c3d7 1990 bio = btrfs_io_bio_alloc(1);
4f024f37 1991 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1992 map_length = length;
1993
b5de8d0d
FM
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2024 }
c725328c
LB
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2027 bio->bi_iter.bi_sector = sector;
c725328c 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2029 btrfs_put_bbio(bbio);
ebbede42
AJ
2030 if (!dev || !dev->bdev ||
2031 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2032 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2033 bio_put(bio);
2034 return -EIO;
2035 }
74d46992 2036 bio_set_dev(bio, dev->bdev);
70fd7614 2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2038 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2039
4e49ea4a 2040 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2041 /* try to remap that extent elsewhere? */
b5de8d0d 2042 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
b14af3b4
DS
2048 btrfs_info_rl_in_rcu(fs_info,
2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2050 ino, start,
1203b681 2051 rcu_str_deref(dev->name), sector);
b5de8d0d 2052 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2053 bio_put(bio);
2054 return 0;
2055}
2056
2ff7e61e
JM
2057int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 struct extent_buffer *eb, int mirror_num)
ea466794 2059{
ea466794
JB
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2062 int ret = 0;
ea466794 2063
bc98a42c 2064 if (sb_rdonly(fs_info->sb))
908960c6
ID
2065 return -EROFS;
2066
ea466794 2067 for (i = 0; i < num_pages; i++) {
fb85fc9a 2068 struct page *p = eb->pages[i];
1203b681 2069
6ec656bc 2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2071 start - page_offset(p), mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
09cbfeaf 2074 start += PAGE_SIZE;
ea466794
JB
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
7870d082
JB
2084int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 struct extent_io_tree *failure_tree,
2086 struct extent_io_tree *io_tree, u64 start,
2087 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2088{
2089 u64 private;
4a54c8c1 2090 struct io_failure_record *failrec;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
7870d082
JB
2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 EXTENT_DIRTY, 0);
4a54c8c1
JS
2098 if (!ret)
2099 return 0;
2100
7870d082 2101 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2102 if (ret)
2103 return 0;
2104
4a54c8c1
JS
2105 BUG_ON(!failrec->this_mirror);
2106
2107 if (failrec->in_validation) {
2108 /* there was no real error, just free the record */
ab8d0fc4
JM
2109 btrfs_debug(fs_info,
2110 "clean_io_failure: freeing dummy error at %llu",
2111 failrec->start);
4a54c8c1
JS
2112 goto out;
2113 }
bc98a42c 2114 if (sb_rdonly(fs_info->sb))
908960c6 2115 goto out;
4a54c8c1 2116
7870d082
JB
2117 spin_lock(&io_tree->lock);
2118 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2119 failrec->start,
2120 EXTENT_LOCKED);
7870d082 2121 spin_unlock(&io_tree->lock);
4a54c8c1 2122
883d0de4
MX
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
4a54c8c1 2127 if (num_copies > 1) {
7870d082
JB
2128 repair_io_failure(fs_info, ino, start, failrec->len,
2129 failrec->logical, page, pg_offset,
2130 failrec->failed_mirror);
4a54c8c1
JS
2131 }
2132 }
2133
2134out:
7870d082 2135 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2136
454ff3de 2137 return 0;
4a54c8c1
JS
2138}
2139
f612496b
MX
2140/*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
7ab7956e 2146void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2147{
7ab7956e 2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
47dc196a 2165 failrec = state->failrec;
f612496b
MX
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172}
2173
2fe6303e 2174int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2175 struct io_failure_record **failrec_ret)
4a54c8c1 2176{
ab8d0fc4 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2178 struct io_failure_record *failrec;
4a54c8c1 2179 struct extent_map *em;
4a54c8c1
JS
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2183 int ret;
4a54c8c1
JS
2184 u64 logical;
2185
47dc196a 2186 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2fe6303e 2191
4a54c8c1
JS
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
68ba990f 2206 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
7a2d6a64 2211 if (!em) {
4a54c8c1
JS
2212 kfree(failrec);
2213 return -EIO;
2214 }
2fe6303e 2215
4a54c8c1
JS
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2fe6303e 2224
ab8d0fc4
JM
2225 btrfs_debug(fs_info,
2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 logical, start, failrec->len);
2fe6303e 2228
4a54c8c1
JS
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2234 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2235 if (ret >= 0)
47dc196a 2236 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
ceeb0ae7 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
ab8d0fc4
JM
2245 btrfs_debug(fs_info,
2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 failrec->logical, failrec->start, failrec->len,
2248 failrec->in_validation);
4a54c8c1
JS
2249 /*
2250 * when data can be on disk more than twice, add to failrec here
2251 * (e.g. with a list for failed_mirror) to make
2252 * clean_io_failure() clean all those errors at once.
2253 */
2254 }
2fe6303e
MX
2255
2256 *failrec_ret = failrec;
2257
2258 return 0;
2259}
2260
a0b60d72 2261bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2262 struct io_failure_record *failrec, int failed_mirror)
2263{
ab8d0fc4 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2265 int num_copies;
2266
ab8d0fc4 2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2268 if (num_copies == 1) {
2269 /*
2270 * we only have a single copy of the data, so don't bother with
2271 * all the retry and error correction code that follows. no
2272 * matter what the error is, it is very likely to persist.
2273 */
ab8d0fc4
JM
2274 btrfs_debug(fs_info,
2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2277 return false;
4a54c8c1
JS
2278 }
2279
4a54c8c1
JS
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
a0b60d72 2285 if (failed_bio_pages > 1) {
4a54c8c1
JS
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
4a54c8c1
JS
2312 }
2313
facc8a22 2314 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2315 btrfs_debug(fs_info,
2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2318 return false;
4a54c8c1
JS
2319 }
2320
c3cfb656 2321 return true;
2fe6303e
MX
2322}
2323
2324
2325struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
8b110e39 2328 bio_end_io_t *endio_func, void *data)
2fe6303e 2329{
0b246afa 2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2331 struct bio *bio;
2332 struct btrfs_io_bio *btrfs_failed_bio;
2333 struct btrfs_io_bio *btrfs_bio;
2334
c5e4c3d7 2335 bio = btrfs_io_bio_alloc(1);
2fe6303e 2336 bio->bi_end_io = endio_func;
4f024f37 2337 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2339 bio->bi_iter.bi_size = 0;
8b110e39 2340 bio->bi_private = data;
4a54c8c1 2341
facc8a22
MX
2342 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 if (btrfs_failed_bio->csum) {
facc8a22
MX
2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345
2346 btrfs_bio = btrfs_io_bio(bio);
2347 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2348 icsum *= csum_size;
2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2350 csum_size);
2351 }
2352
2fe6303e
MX
2353 bio_add_page(bio, page, failrec->len, pg_offset);
2354
2355 return bio;
2356}
2357
2358/*
2359 * this is a generic handler for readpage errors (default
2360 * readpage_io_failed_hook). if other copies exist, read those and write back
2361 * good data to the failed position. does not investigate in remapping the
2362 * failed extent elsewhere, hoping the device will be smart enough to do this as
2363 * needed
2364 */
2365
2366static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 struct page *page, u64 start, u64 end,
2368 int failed_mirror)
2369{
2370 struct io_failure_record *failrec;
2371 struct inode *inode = page->mapping->host;
2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2374 struct bio *bio;
70fd7614 2375 int read_mode = 0;
4e4cbee9 2376 blk_status_t status;
2fe6303e 2377 int ret;
a0b60d72 2378 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2379
1f7ad75b 2380 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
a0b60d72 2386 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2387 failed_mirror)) {
7870d082 2388 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2389 return -EIO;
2390 }
2391
a0b60d72 2392 if (failed_bio_pages > 1)
70fd7614 2393 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2394
2395 phy_offset >>= inode->i_sb->s_blocksize_bits;
2396 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2397 start - page_offset(page),
8b110e39
MX
2398 (int)phy_offset, failed_bio->bi_end_io,
2399 NULL);
1f7ad75b 2400 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2401
ab8d0fc4
JM
2402 btrfs_debug(btrfs_sb(inode->i_sb),
2403 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2404 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2405
8c27cb35 2406 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2407 failrec->bio_flags, 0);
4e4cbee9 2408 if (status) {
7870d082 2409 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2410 bio_put(bio);
4e4cbee9 2411 ret = blk_status_to_errno(status);
6c387ab2
MX
2412 }
2413
013bd4c3 2414 return ret;
4a54c8c1
JS
2415}
2416
d1310b2e
CM
2417/* lots and lots of room for performance fixes in the end_bio funcs */
2418
b5227c07 2419void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2420{
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
3e2426bd 2423 int ret = 0;
87826df0
JM
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
c3988d63
DS
2427 if (tree->ops && tree->ops->writepage_end_io_hook)
2428 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 uptodate);
87826df0 2430
87826df0 2431 if (!uptodate) {
87826df0
JM
2432 ClearPageUptodate(page);
2433 SetPageError(page);
bff5baf8 2434 ret = err < 0 ? err : -EIO;
5dca6eea 2435 mapping_set_error(page->mapping, ret);
87826df0 2436 }
87826df0
JM
2437}
2438
d1310b2e
CM
2439/*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
4246a0b6 2448static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2449{
4e4cbee9 2450 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2451 struct bio_vec *bvec;
d1310b2e
CM
2452 u64 start;
2453 u64 end;
2c30c71b 2454 int i;
d1310b2e 2455
c09abff8 2456 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2457 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2458 struct page *page = bvec->bv_page;
0b246afa
JM
2459 struct inode *inode = page->mapping->host;
2460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2461
17a5adcc
AO
2462 /* We always issue full-page reads, but if some block
2463 * in a page fails to read, blk_update_request() will
2464 * advance bv_offset and adjust bv_len to compensate.
2465 * Print a warning for nonzero offsets, and an error
2466 * if they don't add up to a full page. */
09cbfeaf
KS
2467 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2468 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2469 btrfs_err(fs_info,
efe120a0
FH
2470 "partial page write in btrfs with offset %u and length %u",
2471 bvec->bv_offset, bvec->bv_len);
2472 else
0b246afa 2473 btrfs_info(fs_info,
5d163e0e 2474 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2475 bvec->bv_offset, bvec->bv_len);
2476 }
d1310b2e 2477
17a5adcc
AO
2478 start = page_offset(page);
2479 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2480
4e4cbee9 2481 end_extent_writepage(page, error, start, end);
17a5adcc 2482 end_page_writeback(page);
2c30c71b 2483 }
2b1f55b0 2484
d1310b2e 2485 bio_put(bio);
d1310b2e
CM
2486}
2487
883d0de4
MX
2488static void
2489endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 int uptodate)
2491{
2492 struct extent_state *cached = NULL;
2493 u64 end = start + len - 1;
2494
2495 if (uptodate && tree->track_uptodate)
2496 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2497 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2498}
2499
d1310b2e
CM
2500/*
2501 * after a readpage IO is done, we need to:
2502 * clear the uptodate bits on error
2503 * set the uptodate bits if things worked
2504 * set the page up to date if all extents in the tree are uptodate
2505 * clear the lock bit in the extent tree
2506 * unlock the page if there are no other extents locked for it
2507 *
2508 * Scheduling is not allowed, so the extent state tree is expected
2509 * to have one and only one object corresponding to this IO.
2510 */
4246a0b6 2511static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2512{
2c30c71b 2513 struct bio_vec *bvec;
4e4cbee9 2514 int uptodate = !bio->bi_status;
facc8a22 2515 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2516 struct extent_io_tree *tree, *failure_tree;
facc8a22 2517 u64 offset = 0;
d1310b2e
CM
2518 u64 start;
2519 u64 end;
facc8a22 2520 u64 len;
883d0de4
MX
2521 u64 extent_start = 0;
2522 u64 extent_len = 0;
5cf1ab56 2523 int mirror;
d1310b2e 2524 int ret;
2c30c71b 2525 int i;
d1310b2e 2526
c09abff8 2527 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2528 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2529 struct page *page = bvec->bv_page;
a71754fc 2530 struct inode *inode = page->mapping->host;
ab8d0fc4 2531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2532
ab8d0fc4
JM
2533 btrfs_debug(fs_info,
2534 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2535 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2536 io_bio->mirror_num);
a71754fc 2537 tree = &BTRFS_I(inode)->io_tree;
7870d082 2538 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2539
17a5adcc
AO
2540 /* We always issue full-page reads, but if some block
2541 * in a page fails to read, blk_update_request() will
2542 * advance bv_offset and adjust bv_len to compensate.
2543 * Print a warning for nonzero offsets, and an error
2544 * if they don't add up to a full page. */
09cbfeaf
KS
2545 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2546 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2547 btrfs_err(fs_info,
2548 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2549 bvec->bv_offset, bvec->bv_len);
2550 else
ab8d0fc4
JM
2551 btrfs_info(fs_info,
2552 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2553 bvec->bv_offset, bvec->bv_len);
2554 }
d1310b2e 2555
17a5adcc
AO
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2558 len = bvec->bv_len;
d1310b2e 2559
9be3395b 2560 mirror = io_bio->mirror_num;
20c9801d 2561 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2562 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2563 page, start, end,
2564 mirror);
5ee0844d 2565 if (ret)
d1310b2e 2566 uptodate = 0;
5ee0844d 2567 else
7870d082
JB
2568 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2569 failure_tree, tree, start,
2570 page,
2571 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2572 }
ea466794 2573
f2a09da9
MX
2574 if (likely(uptodate))
2575 goto readpage_ok;
2576
20a7db8a 2577 if (tree->ops) {
5cf1ab56 2578 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2579 if (ret == -EAGAIN) {
2580 /*
2581 * Data inode's readpage_io_failed_hook() always
2582 * returns -EAGAIN.
2583 *
2584 * The generic bio_readpage_error handles errors
2585 * the following way: If possible, new read
2586 * requests are created and submitted and will
2587 * end up in end_bio_extent_readpage as well (if
2588 * we're lucky, not in the !uptodate case). In
2589 * that case it returns 0 and we just go on with
2590 * the next page in our bio. If it can't handle
2591 * the error it will return -EIO and we remain
2592 * responsible for that page.
2593 */
2594 ret = bio_readpage_error(bio, offset, page,
2595 start, end, mirror);
2596 if (ret == 0) {
4e4cbee9 2597 uptodate = !bio->bi_status;
9d0d1c8b
LB
2598 offset += len;
2599 continue;
2600 }
2601 }
2602
f4a8e656 2603 /*
9d0d1c8b
LB
2604 * metadata's readpage_io_failed_hook() always returns
2605 * -EIO and fixes nothing. -EIO is also returned if
2606 * data inode error could not be fixed.
f4a8e656 2607 */
9d0d1c8b 2608 ASSERT(ret == -EIO);
7e38326f 2609 }
f2a09da9 2610readpage_ok:
883d0de4 2611 if (likely(uptodate)) {
a71754fc 2612 loff_t i_size = i_size_read(inode);
09cbfeaf 2613 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2614 unsigned off;
a71754fc
JB
2615
2616 /* Zero out the end if this page straddles i_size */
09cbfeaf 2617 off = i_size & (PAGE_SIZE-1);
a583c026 2618 if (page->index == end_index && off)
09cbfeaf 2619 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2620 SetPageUptodate(page);
70dec807 2621 } else {
17a5adcc
AO
2622 ClearPageUptodate(page);
2623 SetPageError(page);
70dec807 2624 }
17a5adcc 2625 unlock_page(page);
facc8a22 2626 offset += len;
883d0de4
MX
2627
2628 if (unlikely(!uptodate)) {
2629 if (extent_len) {
2630 endio_readpage_release_extent(tree,
2631 extent_start,
2632 extent_len, 1);
2633 extent_start = 0;
2634 extent_len = 0;
2635 }
2636 endio_readpage_release_extent(tree, start,
2637 end - start + 1, 0);
2638 } else if (!extent_len) {
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 } else if (extent_start + extent_len == start) {
2642 extent_len += end + 1 - start;
2643 } else {
2644 endio_readpage_release_extent(tree, extent_start,
2645 extent_len, uptodate);
2646 extent_start = start;
2647 extent_len = end + 1 - start;
2648 }
2c30c71b 2649 }
d1310b2e 2650
883d0de4
MX
2651 if (extent_len)
2652 endio_readpage_release_extent(tree, extent_start, extent_len,
2653 uptodate);
facc8a22 2654 if (io_bio->end_io)
4e4cbee9 2655 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2656 bio_put(bio);
d1310b2e
CM
2657}
2658
9be3395b 2659/*
184f999e
DS
2660 * Initialize the members up to but not including 'bio'. Use after allocating a
2661 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2662 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2663 */
184f999e 2664static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2665{
184f999e
DS
2666 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2667}
d1310b2e 2668
9be3395b 2669/*
6e707bcd
DS
2670 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2671 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2672 * for the appropriate container_of magic
9be3395b 2673 */
c821e7f3 2674struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2675{
2676 struct bio *bio;
d1310b2e 2677
9f2179a5 2678 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2679 bio_set_dev(bio, bdev);
c821e7f3 2680 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2681 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2682 return bio;
2683}
2684
8b6c1d56 2685struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2686{
23ea8e5a
MX
2687 struct btrfs_io_bio *btrfs_bio;
2688 struct bio *new;
9be3395b 2689
6e707bcd 2690 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2691 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2692 btrfs_bio = btrfs_io_bio(new);
184f999e 2693 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2694 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2695 return new;
2696}
9be3395b 2697
c5e4c3d7 2698struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2699{
facc8a22
MX
2700 struct bio *bio;
2701
6e707bcd 2702 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2703 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2704 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2705 return bio;
9be3395b
CM
2706}
2707
e477094f 2708struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2709{
2710 struct bio *bio;
2711 struct btrfs_io_bio *btrfs_bio;
2712
2713 /* this will never fail when it's backed by a bioset */
e477094f 2714 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2715 ASSERT(bio);
2716
2717 btrfs_bio = btrfs_io_bio(bio);
184f999e 2718 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2719
2720 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2721 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2722 return bio;
2723}
9be3395b 2724
1f7ad75b
MC
2725static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2726 unsigned long bio_flags)
d1310b2e 2727{
4e4cbee9 2728 blk_status_t ret = 0;
c45a8f2d 2729 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2730 struct page *page = bvec->bv_page;
2731 struct extent_io_tree *tree = bio->bi_private;
70dec807 2732 u64 start;
70dec807 2733
4eee4fa4 2734 start = page_offset(page) + bvec->bv_offset;
70dec807 2735
902b22f3 2736 bio->bi_private = NULL;
d1310b2e 2737
20c9801d 2738 if (tree->ops)
c6100a4b 2739 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2740 mirror_num, bio_flags, start);
0b86a832 2741 else
4e49ea4a 2742 btrfsic_submit_bio(bio);
4a54c8c1 2743
4e4cbee9 2744 return blk_status_to_errno(ret);
d1310b2e
CM
2745}
2746
4b81ba48
DS
2747/*
2748 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2749 * @tree: tree so we can call our merge_bio hook
2750 * @wbc: optional writeback control for io accounting
2751 * @page: page to add to the bio
2752 * @pg_offset: offset of the new bio or to check whether we are adding
2753 * a contiguous page to the previous one
2754 * @size: portion of page that we want to write
2755 * @offset: starting offset in the page
2756 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2757 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2758 * @end_io_func: end_io callback for new bio
2759 * @mirror_num: desired mirror to read/write
2760 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2761 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2762 */
2763static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2764 struct writeback_control *wbc,
6273b7f8 2765 struct page *page, u64 offset,
6c5a4e2c 2766 size_t size, unsigned long pg_offset,
d1310b2e
CM
2767 struct block_device *bdev,
2768 struct bio **bio_ret,
f188591e 2769 bio_end_io_t end_io_func,
c8b97818
CM
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
005efedf
FM
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
d1310b2e
CM
2774{
2775 int ret = 0;
2776 struct bio *bio;
09cbfeaf 2777 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2778 sector_t sector = offset >> 9;
d1310b2e 2779
5c2b1fd7
DS
2780 ASSERT(bio_ret);
2781
2782 if (*bio_ret) {
0c8508a6
DS
2783 bool contig;
2784 bool can_merge = true;
2785
d1310b2e 2786 bio = *bio_ret;
0c8508a6 2787 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2788 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2789 else
f73a1c7d 2790 contig = bio_end_sector(bio) == sector;
c8b97818 2791
0c8508a6
DS
2792 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2793 page_size, bio, bio_flags))
2794 can_merge = false;
2795
2796 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2797 force_bio_submit ||
6c5a4e2c 2798 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2799 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2800 if (ret < 0) {
2801 *bio_ret = NULL;
79787eaa 2802 return ret;
289454ad 2803 }
d1310b2e
CM
2804 bio = NULL;
2805 } else {
da2f0f74
CM
2806 if (wbc)
2807 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2808 return 0;
2809 }
2810 }
c8b97818 2811
6273b7f8 2812 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2813 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2814 bio->bi_end_io = end_io_func;
2815 bio->bi_private = tree;
e6959b93 2816 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2817 bio->bi_opf = opf;
da2f0f74
CM
2818 if (wbc) {
2819 wbc_init_bio(wbc, bio);
2820 wbc_account_io(wbc, page, page_size);
2821 }
70dec807 2822
5c2b1fd7 2823 *bio_ret = bio;
d1310b2e
CM
2824
2825 return ret;
2826}
2827
48a3b636
ES
2828static void attach_extent_buffer_page(struct extent_buffer *eb,
2829 struct page *page)
d1310b2e
CM
2830{
2831 if (!PagePrivate(page)) {
2832 SetPagePrivate(page);
09cbfeaf 2833 get_page(page);
4f2de97a
JB
2834 set_page_private(page, (unsigned long)eb);
2835 } else {
2836 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2837 }
2838}
2839
4f2de97a 2840void set_page_extent_mapped(struct page *page)
d1310b2e 2841{
4f2de97a
JB
2842 if (!PagePrivate(page)) {
2843 SetPagePrivate(page);
09cbfeaf 2844 get_page(page);
4f2de97a
JB
2845 set_page_private(page, EXTENT_PAGE_PRIVATE);
2846 }
d1310b2e
CM
2847}
2848
125bac01
MX
2849static struct extent_map *
2850__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2851 u64 start, u64 len, get_extent_t *get_extent,
2852 struct extent_map **em_cached)
2853{
2854 struct extent_map *em;
2855
2856 if (em_cached && *em_cached) {
2857 em = *em_cached;
cbc0e928 2858 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2859 start < extent_map_end(em)) {
490b54d6 2860 refcount_inc(&em->refs);
125bac01
MX
2861 return em;
2862 }
2863
2864 free_extent_map(em);
2865 *em_cached = NULL;
2866 }
2867
fc4f21b1 2868 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2869 if (em_cached && !IS_ERR_OR_NULL(em)) {
2870 BUG_ON(*em_cached);
490b54d6 2871 refcount_inc(&em->refs);
125bac01
MX
2872 *em_cached = em;
2873 }
2874 return em;
2875}
d1310b2e
CM
2876/*
2877 * basic readpage implementation. Locked extent state structs are inserted
2878 * into the tree that are removed when the IO is done (by the end_io
2879 * handlers)
79787eaa 2880 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2881 * return 0 on success, otherwise return error
d1310b2e 2882 */
9974090b
MX
2883static int __do_readpage(struct extent_io_tree *tree,
2884 struct page *page,
2885 get_extent_t *get_extent,
125bac01 2886 struct extent_map **em_cached,
9974090b 2887 struct bio **bio, int mirror_num,
f1c77c55 2888 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2889 u64 *prev_em_start)
d1310b2e
CM
2890{
2891 struct inode *inode = page->mapping->host;
4eee4fa4 2892 u64 start = page_offset(page);
8eec8296 2893 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2894 u64 cur = start;
2895 u64 extent_offset;
2896 u64 last_byte = i_size_read(inode);
2897 u64 block_start;
2898 u64 cur_end;
d1310b2e
CM
2899 struct extent_map *em;
2900 struct block_device *bdev;
baf863b9 2901 int ret = 0;
d1310b2e 2902 int nr = 0;
306e16ce 2903 size_t pg_offset = 0;
d1310b2e 2904 size_t iosize;
c8b97818 2905 size_t disk_io_size;
d1310b2e 2906 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2907 unsigned long this_bio_flag = 0;
d1310b2e
CM
2908
2909 set_page_extent_mapped(page);
2910
90a887c9
DM
2911 if (!PageUptodate(page)) {
2912 if (cleancache_get_page(page) == 0) {
2913 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2914 unlock_extent(tree, start, end);
90a887c9
DM
2915 goto out;
2916 }
2917 }
2918
09cbfeaf 2919 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2920 char *userpage;
09cbfeaf 2921 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2922
2923 if (zero_offset) {
09cbfeaf 2924 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2925 userpage = kmap_atomic(page);
c8b97818
CM
2926 memset(userpage + zero_offset, 0, iosize);
2927 flush_dcache_page(page);
7ac687d9 2928 kunmap_atomic(userpage);
c8b97818
CM
2929 }
2930 }
d1310b2e 2931 while (cur <= end) {
005efedf 2932 bool force_bio_submit = false;
6273b7f8 2933 u64 offset;
c8f2f24b 2934
d1310b2e
CM
2935 if (cur >= last_byte) {
2936 char *userpage;
507903b8
AJ
2937 struct extent_state *cached = NULL;
2938
09cbfeaf 2939 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2940 userpage = kmap_atomic(page);
306e16ce 2941 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2942 flush_dcache_page(page);
7ac687d9 2943 kunmap_atomic(userpage);
d1310b2e 2944 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2945 &cached, GFP_NOFS);
7f042a83 2946 unlock_extent_cached(tree, cur,
e43bbe5e 2947 cur + iosize - 1, &cached);
d1310b2e
CM
2948 break;
2949 }
125bac01
MX
2950 em = __get_extent_map(inode, page, pg_offset, cur,
2951 end - cur + 1, get_extent, em_cached);
c704005d 2952 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2953 SetPageError(page);
7f042a83 2954 unlock_extent(tree, cur, end);
d1310b2e
CM
2955 break;
2956 }
d1310b2e
CM
2957 extent_offset = cur - em->start;
2958 BUG_ON(extent_map_end(em) <= cur);
2959 BUG_ON(end < cur);
2960
261507a0 2961 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2962 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2963 extent_set_compress_type(&this_bio_flag,
2964 em->compress_type);
2965 }
c8b97818 2966
d1310b2e
CM
2967 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2968 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2969 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2970 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2971 disk_io_size = em->block_len;
6273b7f8 2972 offset = em->block_start;
c8b97818 2973 } else {
6273b7f8 2974 offset = em->block_start + extent_offset;
c8b97818
CM
2975 disk_io_size = iosize;
2976 }
d1310b2e
CM
2977 bdev = em->bdev;
2978 block_start = em->block_start;
d899e052
YZ
2979 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2980 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2981
2982 /*
2983 * If we have a file range that points to a compressed extent
2984 * and it's followed by a consecutive file range that points to
2985 * to the same compressed extent (possibly with a different
2986 * offset and/or length, so it either points to the whole extent
2987 * or only part of it), we must make sure we do not submit a
2988 * single bio to populate the pages for the 2 ranges because
2989 * this makes the compressed extent read zero out the pages
2990 * belonging to the 2nd range. Imagine the following scenario:
2991 *
2992 * File layout
2993 * [0 - 8K] [8K - 24K]
2994 * | |
2995 * | |
2996 * points to extent X, points to extent X,
2997 * offset 4K, length of 8K offset 0, length 16K
2998 *
2999 * [extent X, compressed length = 4K uncompressed length = 16K]
3000 *
3001 * If the bio to read the compressed extent covers both ranges,
3002 * it will decompress extent X into the pages belonging to the
3003 * first range and then it will stop, zeroing out the remaining
3004 * pages that belong to the other range that points to extent X.
3005 * So here we make sure we submit 2 bios, one for the first
3006 * range and another one for the third range. Both will target
3007 * the same physical extent from disk, but we can't currently
3008 * make the compressed bio endio callback populate the pages
3009 * for both ranges because each compressed bio is tightly
3010 * coupled with a single extent map, and each range can have
3011 * an extent map with a different offset value relative to the
3012 * uncompressed data of our extent and different lengths. This
3013 * is a corner case so we prioritize correctness over
3014 * non-optimal behavior (submitting 2 bios for the same extent).
3015 */
3016 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3017 prev_em_start && *prev_em_start != (u64)-1 &&
3018 *prev_em_start != em->orig_start)
3019 force_bio_submit = true;
3020
3021 if (prev_em_start)
3022 *prev_em_start = em->orig_start;
3023
d1310b2e
CM
3024 free_extent_map(em);
3025 em = NULL;
3026
3027 /* we've found a hole, just zero and go on */
3028 if (block_start == EXTENT_MAP_HOLE) {
3029 char *userpage;
507903b8
AJ
3030 struct extent_state *cached = NULL;
3031
7ac687d9 3032 userpage = kmap_atomic(page);
306e16ce 3033 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3034 flush_dcache_page(page);
7ac687d9 3035 kunmap_atomic(userpage);
d1310b2e
CM
3036
3037 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3038 &cached, GFP_NOFS);
7f042a83 3039 unlock_extent_cached(tree, cur,
e43bbe5e 3040 cur + iosize - 1, &cached);
d1310b2e 3041 cur = cur + iosize;
306e16ce 3042 pg_offset += iosize;
d1310b2e
CM
3043 continue;
3044 }
3045 /* the get_extent function already copied into the page */
9655d298
CM
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3048 check_page_uptodate(tree, page);
7f042a83 3049 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3050 cur = cur + iosize;
306e16ce 3051 pg_offset += iosize;
d1310b2e
CM
3052 continue;
3053 }
70dec807
CM
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
7f042a83 3059 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3060 cur = cur + iosize;
306e16ce 3061 pg_offset += iosize;
70dec807
CM
3062 continue;
3063 }
d1310b2e 3064
4b81ba48 3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3066 page, offset, disk_io_size,
3067 pg_offset, bdev, bio,
c8b97818
CM
3068 end_bio_extent_readpage, mirror_num,
3069 *bio_flags,
005efedf
FM
3070 this_bio_flag,
3071 force_bio_submit);
c8f2f24b
JB
3072 if (!ret) {
3073 nr++;
3074 *bio_flags = this_bio_flag;
3075 } else {
d1310b2e 3076 SetPageError(page);
7f042a83 3077 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3078 goto out;
edd33c99 3079 }
d1310b2e 3080 cur = cur + iosize;
306e16ce 3081 pg_offset += iosize;
d1310b2e 3082 }
90a887c9 3083out:
d1310b2e
CM
3084 if (!nr) {
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3087 unlock_page(page);
3088 }
baf863b9 3089 return ret;
d1310b2e
CM
3090}
3091
9974090b
MX
3092static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3094 u64 start, u64 end,
125bac01 3095 struct extent_map **em_cached,
d3fac6ba 3096 struct bio **bio,
1f7ad75b 3097 unsigned long *bio_flags,
808f80b4 3098 u64 *prev_em_start)
9974090b
MX
3099{
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
a776c6fa 3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
4ef77695
DS
3117 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3118 bio, 0, bio_flags, 0, prev_em_start);
09cbfeaf 3119 put_page(pages[index]);
9974090b
MX
3120 }
3121}
3122
3123static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
e4d17ef5 3125 int nr_pages,
125bac01 3126 struct extent_map **em_cached,
d3fac6ba 3127 struct bio **bio, unsigned long *bio_flags,
808f80b4 3128 u64 *prev_em_start)
9974090b 3129{
35a3621b 3130 u64 start = 0;
9974090b
MX
3131 u64 end = 0;
3132 u64 page_start;
3133 int index;
35a3621b 3134 int first_index = 0;
9974090b
MX
3135
3136 for (index = 0; index < nr_pages; index++) {
3137 page_start = page_offset(pages[index]);
3138 if (!end) {
3139 start = page_start;
09cbfeaf 3140 end = start + PAGE_SIZE - 1;
9974090b
MX
3141 first_index = index;
3142 } else if (end + 1 == page_start) {
09cbfeaf 3143 end += PAGE_SIZE;
9974090b
MX
3144 } else {
3145 __do_contiguous_readpages(tree, &pages[first_index],
3146 index - first_index, start,
4ef77695 3147 end, em_cached,
d3fac6ba 3148 bio, bio_flags,
1f7ad75b 3149 prev_em_start);
9974090b 3150 start = page_start;
09cbfeaf 3151 end = start + PAGE_SIZE - 1;
9974090b
MX
3152 first_index = index;
3153 }
3154 }
3155
3156 if (end)
3157 __do_contiguous_readpages(tree, &pages[first_index],
3158 index - first_index, start,
4ef77695 3159 end, em_cached, bio,
d3fac6ba 3160 bio_flags, prev_em_start);
9974090b
MX
3161}
3162
3163static int __extent_read_full_page(struct extent_io_tree *tree,
3164 struct page *page,
3165 get_extent_t *get_extent,
3166 struct bio **bio, int mirror_num,
f1c77c55
DS
3167 unsigned long *bio_flags,
3168 unsigned int read_flags)
9974090b
MX
3169{
3170 struct inode *inode = page->mapping->host;
3171 struct btrfs_ordered_extent *ordered;
3172 u64 start = page_offset(page);
09cbfeaf 3173 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3174 int ret;
3175
3176 while (1) {
3177 lock_extent(tree, start, end);
a776c6fa 3178 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3179 PAGE_SIZE);
9974090b
MX
3180 if (!ordered)
3181 break;
3182 unlock_extent(tree, start, end);
3183 btrfs_start_ordered_extent(inode, ordered, 1);
3184 btrfs_put_ordered_extent(ordered);
3185 }
3186
125bac01 3187 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3188 bio_flags, read_flags, NULL);
9974090b
MX
3189 return ret;
3190}
3191
d1310b2e 3192int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3193 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3194{
3195 struct bio *bio = NULL;
c8b97818 3196 unsigned long bio_flags = 0;
d1310b2e
CM
3197 int ret;
3198
8ddc7d9c 3199 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3200 &bio_flags, 0);
d1310b2e 3201 if (bio)
1f7ad75b 3202 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3203 return ret;
3204}
d1310b2e 3205
3d4b9496 3206static void update_nr_written(struct writeback_control *wbc,
a9132667 3207 unsigned long nr_written)
11c8349b
CM
3208{
3209 wbc->nr_to_write -= nr_written;
11c8349b
CM
3210}
3211
d1310b2e 3212/*
40f76580
CM
3213 * helper for __extent_writepage, doing all of the delayed allocation setup.
3214 *
3215 * This returns 1 if our fill_delalloc function did all the work required
3216 * to write the page (copy into inline extent). In this case the IO has
3217 * been started and the page is already unlocked.
3218 *
3219 * This returns 0 if all went well (page still locked)
3220 * This returns < 0 if there were errors (page still locked)
d1310b2e 3221 */
40f76580
CM
3222static noinline_for_stack int writepage_delalloc(struct inode *inode,
3223 struct page *page, struct writeback_control *wbc,
3224 struct extent_page_data *epd,
3225 u64 delalloc_start,
3226 unsigned long *nr_written)
3227{
3228 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3229 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3230 u64 nr_delalloc;
3231 u64 delalloc_to_write = 0;
3232 u64 delalloc_end = 0;
3233 int ret;
3234 int page_started = 0;
3235
3236 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3237 return 0;
3238
3239 while (delalloc_end < page_end) {
3240 nr_delalloc = find_lock_delalloc_range(inode, tree,
3241 page,
3242 &delalloc_start,
3243 &delalloc_end,
dcab6a3b 3244 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3245 if (nr_delalloc == 0) {
3246 delalloc_start = delalloc_end + 1;
3247 continue;
3248 }
3249 ret = tree->ops->fill_delalloc(inode, page,
3250 delalloc_start,
3251 delalloc_end,
3252 &page_started,
f82b7359 3253 nr_written, wbc);
40f76580
CM
3254 /* File system has been set read-only */
3255 if (ret) {
3256 SetPageError(page);
3257 /* fill_delalloc should be return < 0 for error
3258 * but just in case, we use > 0 here meaning the
3259 * IO is started, so we don't want to return > 0
3260 * unless things are going well.
3261 */
3262 ret = ret < 0 ? ret : -EIO;
3263 goto done;
3264 }
3265 /*
ea1754a0
KS
3266 * delalloc_end is already one less than the total length, so
3267 * we don't subtract one from PAGE_SIZE
40f76580
CM
3268 */
3269 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3270 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3271 delalloc_start = delalloc_end + 1;
3272 }
3273 if (wbc->nr_to_write < delalloc_to_write) {
3274 int thresh = 8192;
3275
3276 if (delalloc_to_write < thresh * 2)
3277 thresh = delalloc_to_write;
3278 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3279 thresh);
3280 }
3281
3282 /* did the fill delalloc function already unlock and start
3283 * the IO?
3284 */
3285 if (page_started) {
3286 /*
3287 * we've unlocked the page, so we can't update
3288 * the mapping's writeback index, just update
3289 * nr_to_write.
3290 */
3291 wbc->nr_to_write -= *nr_written;
3292 return 1;
3293 }
3294
3295 ret = 0;
3296
3297done:
3298 return ret;
3299}
3300
3301/*
3302 * helper for __extent_writepage. This calls the writepage start hooks,
3303 * and does the loop to map the page into extents and bios.
3304 *
3305 * We return 1 if the IO is started and the page is unlocked,
3306 * 0 if all went well (page still locked)
3307 * < 0 if there were errors (page still locked)
3308 */
3309static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3310 struct page *page,
3311 struct writeback_control *wbc,
3312 struct extent_page_data *epd,
3313 loff_t i_size,
3314 unsigned long nr_written,
f1c77c55 3315 unsigned int write_flags, int *nr_ret)
d1310b2e 3316{
d1310b2e 3317 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3318 u64 start = page_offset(page);
09cbfeaf 3319 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3320 u64 end;
3321 u64 cur = start;
3322 u64 extent_offset;
d1310b2e
CM
3323 u64 block_start;
3324 u64 iosize;
d1310b2e
CM
3325 struct extent_map *em;
3326 struct block_device *bdev;
7f3c74fb 3327 size_t pg_offset = 0;
d1310b2e 3328 size_t blocksize;
40f76580
CM
3329 int ret = 0;
3330 int nr = 0;
3331 bool compressed;
c8b97818 3332
247e743c 3333 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3334 ret = tree->ops->writepage_start_hook(page, start,
3335 page_end);
87826df0
JM
3336 if (ret) {
3337 /* Fixup worker will requeue */
3338 if (ret == -EBUSY)
3339 wbc->pages_skipped++;
3340 else
3341 redirty_page_for_writepage(wbc, page);
40f76580 3342
3d4b9496 3343 update_nr_written(wbc, nr_written);
247e743c 3344 unlock_page(page);
bcf93489 3345 return 1;
247e743c
CM
3346 }
3347 }
3348
11c8349b
CM
3349 /*
3350 * we don't want to touch the inode after unlocking the page,
3351 * so we update the mapping writeback index now
3352 */
3d4b9496 3353 update_nr_written(wbc, nr_written + 1);
771ed689 3354
d1310b2e 3355 end = page_end;
40f76580 3356 if (i_size <= start) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, start,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 goto done;
3361 }
3362
d1310b2e
CM
3363 blocksize = inode->i_sb->s_blocksize;
3364
3365 while (cur <= end) {
40f76580 3366 u64 em_end;
6273b7f8 3367 u64 offset;
58409edd 3368
40f76580 3369 if (cur >= i_size) {
e6dcd2dc
CM
3370 if (tree->ops && tree->ops->writepage_end_io_hook)
3371 tree->ops->writepage_end_io_hook(page, cur,
3372 page_end, NULL, 1);
d1310b2e
CM
3373 break;
3374 }
3c98c62f 3375 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3376 end - cur + 1, 1);
c704005d 3377 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3378 SetPageError(page);
61391d56 3379 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3380 break;
3381 }
3382
3383 extent_offset = cur - em->start;
40f76580
CM
3384 em_end = extent_map_end(em);
3385 BUG_ON(em_end <= cur);
d1310b2e 3386 BUG_ON(end < cur);
40f76580 3387 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3388 iosize = ALIGN(iosize, blocksize);
6273b7f8 3389 offset = em->block_start + extent_offset;
d1310b2e
CM
3390 bdev = em->bdev;
3391 block_start = em->block_start;
c8b97818 3392 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3393 free_extent_map(em);
3394 em = NULL;
3395
c8b97818
CM
3396 /*
3397 * compressed and inline extents are written through other
3398 * paths in the FS
3399 */
3400 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3401 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3402 /*
3403 * end_io notification does not happen here for
3404 * compressed extents
3405 */
3406 if (!compressed && tree->ops &&
3407 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3408 tree->ops->writepage_end_io_hook(page, cur,
3409 cur + iosize - 1,
3410 NULL, 1);
c8b97818
CM
3411 else if (compressed) {
3412 /* we don't want to end_page_writeback on
3413 * a compressed extent. this happens
3414 * elsewhere
3415 */
3416 nr++;
3417 }
3418
3419 cur += iosize;
7f3c74fb 3420 pg_offset += iosize;
d1310b2e
CM
3421 continue;
3422 }
c8b97818 3423
58409edd
DS
3424 set_range_writeback(tree, cur, cur + iosize - 1);
3425 if (!PageWriteback(page)) {
3426 btrfs_err(BTRFS_I(inode)->root->fs_info,
3427 "page %lu not writeback, cur %llu end %llu",
3428 page->index, cur, end);
d1310b2e 3429 }
7f3c74fb 3430
4b81ba48 3431 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3432 page, offset, iosize, pg_offset,
c2df8bb4 3433 bdev, &epd->bio,
58409edd
DS
3434 end_bio_extent_writepage,
3435 0, 0, 0, false);
fe01aa65 3436 if (ret) {
58409edd 3437 SetPageError(page);
fe01aa65
TK
3438 if (PageWriteback(page))
3439 end_page_writeback(page);
3440 }
d1310b2e 3441
d1310b2e 3442 cur = cur + iosize;
7f3c74fb 3443 pg_offset += iosize;
d1310b2e
CM
3444 nr++;
3445 }
40f76580
CM
3446done:
3447 *nr_ret = nr;
40f76580
CM
3448 return ret;
3449}
3450
3451/*
3452 * the writepage semantics are similar to regular writepage. extent
3453 * records are inserted to lock ranges in the tree, and as dirty areas
3454 * are found, they are marked writeback. Then the lock bits are removed
3455 * and the end_io handler clears the writeback ranges
3456 */
3457static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3458 struct extent_page_data *epd)
40f76580
CM
3459{
3460 struct inode *inode = page->mapping->host;
40f76580 3461 u64 start = page_offset(page);
09cbfeaf 3462 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3463 int ret;
3464 int nr = 0;
3465 size_t pg_offset = 0;
3466 loff_t i_size = i_size_read(inode);
09cbfeaf 3467 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3468 unsigned int write_flags = 0;
40f76580
CM
3469 unsigned long nr_written = 0;
3470
ff40adf7 3471 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3472
3473 trace___extent_writepage(page, inode, wbc);
3474
3475 WARN_ON(!PageLocked(page));
3476
3477 ClearPageError(page);
3478
09cbfeaf 3479 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3480 if (page->index > end_index ||
3481 (page->index == end_index && !pg_offset)) {
09cbfeaf 3482 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3483 unlock_page(page);
3484 return 0;
3485 }
3486
3487 if (page->index == end_index) {
3488 char *userpage;
3489
3490 userpage = kmap_atomic(page);
3491 memset(userpage + pg_offset, 0,
09cbfeaf 3492 PAGE_SIZE - pg_offset);
40f76580
CM
3493 kunmap_atomic(userpage);
3494 flush_dcache_page(page);
3495 }
3496
3497 pg_offset = 0;
3498
3499 set_page_extent_mapped(page);
3500
3501 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3502 if (ret == 1)
3503 goto done_unlocked;
3504 if (ret)
3505 goto done;
3506
3507 ret = __extent_writepage_io(inode, page, wbc, epd,
3508 i_size, nr_written, write_flags, &nr);
3509 if (ret == 1)
3510 goto done_unlocked;
3511
d1310b2e
CM
3512done:
3513 if (nr == 0) {
3514 /* make sure the mapping tag for page dirty gets cleared */
3515 set_page_writeback(page);
3516 end_page_writeback(page);
3517 }
61391d56
FM
3518 if (PageError(page)) {
3519 ret = ret < 0 ? ret : -EIO;
3520 end_extent_writepage(page, ret, start, page_end);
3521 }
d1310b2e 3522 unlock_page(page);
40f76580 3523 return ret;
771ed689 3524
11c8349b 3525done_unlocked:
d1310b2e
CM
3526 return 0;
3527}
3528
fd8b2b61 3529void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3530{
74316201
N
3531 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3532 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3533}
3534
0e378df1
CM
3535static noinline_for_stack int
3536lock_extent_buffer_for_io(struct extent_buffer *eb,
3537 struct btrfs_fs_info *fs_info,
3538 struct extent_page_data *epd)
0b32f4bb
JB
3539{
3540 unsigned long i, num_pages;
3541 int flush = 0;
3542 int ret = 0;
3543
3544 if (!btrfs_try_tree_write_lock(eb)) {
3545 flush = 1;
3546 flush_write_bio(epd);
3547 btrfs_tree_lock(eb);
3548 }
3549
3550 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3551 btrfs_tree_unlock(eb);
3552 if (!epd->sync_io)
3553 return 0;
3554 if (!flush) {
3555 flush_write_bio(epd);
3556 flush = 1;
3557 }
a098d8e8
CM
3558 while (1) {
3559 wait_on_extent_buffer_writeback(eb);
3560 btrfs_tree_lock(eb);
3561 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 break;
0b32f4bb 3563 btrfs_tree_unlock(eb);
0b32f4bb
JB
3564 }
3565 }
3566
51561ffe
JB
3567 /*
3568 * We need to do this to prevent races in people who check if the eb is
3569 * under IO since we can end up having no IO bits set for a short period
3570 * of time.
3571 */
3572 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3573 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3574 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3575 spin_unlock(&eb->refs_lock);
0b32f4bb 3576 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3577 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3578 -eb->len,
3579 fs_info->dirty_metadata_batch);
0b32f4bb 3580 ret = 1;
51561ffe
JB
3581 } else {
3582 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3583 }
3584
3585 btrfs_tree_unlock(eb);
3586
3587 if (!ret)
3588 return ret;
3589
3590 num_pages = num_extent_pages(eb->start, eb->len);
3591 for (i = 0; i < num_pages; i++) {
fb85fc9a 3592 struct page *p = eb->pages[i];
0b32f4bb
JB
3593
3594 if (!trylock_page(p)) {
3595 if (!flush) {
3596 flush_write_bio(epd);
3597 flush = 1;
3598 }
3599 lock_page(p);
3600 }
3601 }
3602
3603 return ret;
3604}
3605
3606static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607{
3608 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3609 smp_mb__after_atomic();
0b32f4bb
JB
3610 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3611}
3612
656f30db
FM
3613static void set_btree_ioerr(struct page *page)
3614{
3615 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3616
3617 SetPageError(page);
3618 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3619 return;
3620
3621 /*
3622 * If writeback for a btree extent that doesn't belong to a log tree
3623 * failed, increment the counter transaction->eb_write_errors.
3624 * We do this because while the transaction is running and before it's
3625 * committing (when we call filemap_fdata[write|wait]_range against
3626 * the btree inode), we might have
3627 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3628 * returns an error or an error happens during writeback, when we're
3629 * committing the transaction we wouldn't know about it, since the pages
3630 * can be no longer dirty nor marked anymore for writeback (if a
3631 * subsequent modification to the extent buffer didn't happen before the
3632 * transaction commit), which makes filemap_fdata[write|wait]_range not
3633 * able to find the pages tagged with SetPageError at transaction
3634 * commit time. So if this happens we must abort the transaction,
3635 * otherwise we commit a super block with btree roots that point to
3636 * btree nodes/leafs whose content on disk is invalid - either garbage
3637 * or the content of some node/leaf from a past generation that got
3638 * cowed or deleted and is no longer valid.
3639 *
3640 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3641 * not be enough - we need to distinguish between log tree extents vs
3642 * non-log tree extents, and the next filemap_fdatawait_range() call
3643 * will catch and clear such errors in the mapping - and that call might
3644 * be from a log sync and not from a transaction commit. Also, checking
3645 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3646 * not done and would not be reliable - the eb might have been released
3647 * from memory and reading it back again means that flag would not be
3648 * set (since it's a runtime flag, not persisted on disk).
3649 *
3650 * Using the flags below in the btree inode also makes us achieve the
3651 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3652 * writeback for all dirty pages and before filemap_fdatawait_range()
3653 * is called, the writeback for all dirty pages had already finished
3654 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3655 * filemap_fdatawait_range() would return success, as it could not know
3656 * that writeback errors happened (the pages were no longer tagged for
3657 * writeback).
3658 */
3659 switch (eb->log_index) {
3660 case -1:
afcdd129 3661 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3662 break;
3663 case 0:
afcdd129 3664 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3665 break;
3666 case 1:
afcdd129 3667 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 default:
3670 BUG(); /* unexpected, logic error */
3671 }
3672}
3673
4246a0b6 3674static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3675{
2c30c71b 3676 struct bio_vec *bvec;
0b32f4bb 3677 struct extent_buffer *eb;
2c30c71b 3678 int i, done;
0b32f4bb 3679
c09abff8 3680 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3681 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3682 struct page *page = bvec->bv_page;
3683
0b32f4bb
JB
3684 eb = (struct extent_buffer *)page->private;
3685 BUG_ON(!eb);
3686 done = atomic_dec_and_test(&eb->io_pages);
3687
4e4cbee9 3688 if (bio->bi_status ||
4246a0b6 3689 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3690 ClearPageUptodate(page);
656f30db 3691 set_btree_ioerr(page);
0b32f4bb
JB
3692 }
3693
3694 end_page_writeback(page);
3695
3696 if (!done)
3697 continue;
3698
3699 end_extent_buffer_writeback(eb);
2c30c71b 3700 }
0b32f4bb
JB
3701
3702 bio_put(bio);
0b32f4bb
JB
3703}
3704
0e378df1 3705static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3706 struct btrfs_fs_info *fs_info,
3707 struct writeback_control *wbc,
3708 struct extent_page_data *epd)
3709{
3710 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3711 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3712 u64 offset = eb->start;
851cd173 3713 u32 nritems;
0b32f4bb 3714 unsigned long i, num_pages;
851cd173 3715 unsigned long start, end;
ff40adf7 3716 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3717 int ret = 0;
0b32f4bb 3718
656f30db 3719 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3720 num_pages = num_extent_pages(eb->start, eb->len);
3721 atomic_set(&eb->io_pages, num_pages);
de0022b9 3722
851cd173
LB
3723 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3724 nritems = btrfs_header_nritems(eb);
3eb548ee 3725 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3726 end = btrfs_node_key_ptr_offset(nritems);
3727
b159fa28 3728 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3729 } else {
3730 /*
3731 * leaf:
3732 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3733 */
3734 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3735 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3736 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3737 }
3738
0b32f4bb 3739 for (i = 0; i < num_pages; i++) {
fb85fc9a 3740 struct page *p = eb->pages[i];
0b32f4bb
JB
3741
3742 clear_page_dirty_for_io(p);
3743 set_page_writeback(p);
4b81ba48 3744 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3745 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3746 &epd->bio,
1f7ad75b 3747 end_bio_extent_buffer_writepage,
18fdc679 3748 0, 0, 0, false);
0b32f4bb 3749 if (ret) {
656f30db 3750 set_btree_ioerr(p);
fe01aa65
TK
3751 if (PageWriteback(p))
3752 end_page_writeback(p);
0b32f4bb
JB
3753 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754 end_extent_buffer_writeback(eb);
3755 ret = -EIO;
3756 break;
3757 }
09cbfeaf 3758 offset += PAGE_SIZE;
3d4b9496 3759 update_nr_written(wbc, 1);
0b32f4bb
JB
3760 unlock_page(p);
3761 }
3762
3763 if (unlikely(ret)) {
3764 for (; i < num_pages; i++) {
bbf65cf0 3765 struct page *p = eb->pages[i];
81465028 3766 clear_page_dirty_for_io(p);
0b32f4bb
JB
3767 unlock_page(p);
3768 }
3769 }
3770
3771 return ret;
3772}
3773
3774int btree_write_cache_pages(struct address_space *mapping,
3775 struct writeback_control *wbc)
3776{
3777 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779 struct extent_buffer *eb, *prev_eb = NULL;
3780 struct extent_page_data epd = {
3781 .bio = NULL,
3782 .tree = tree,
3783 .extent_locked = 0,
3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3785 };
3786 int ret = 0;
3787 int done = 0;
3788 int nr_to_write_done = 0;
3789 struct pagevec pvec;
3790 int nr_pages;
3791 pgoff_t index;
3792 pgoff_t end; /* Inclusive */
3793 int scanned = 0;
3794 int tag;
3795
86679820 3796 pagevec_init(&pvec);
0b32f4bb
JB
3797 if (wbc->range_cyclic) {
3798 index = mapping->writeback_index; /* Start from prev offset */
3799 end = -1;
3800 } else {
09cbfeaf
KS
3801 index = wbc->range_start >> PAGE_SHIFT;
3802 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3803 scanned = 1;
3804 }
3805 if (wbc->sync_mode == WB_SYNC_ALL)
3806 tag = PAGECACHE_TAG_TOWRITE;
3807 else
3808 tag = PAGECACHE_TAG_DIRTY;
3809retry:
3810 if (wbc->sync_mode == WB_SYNC_ALL)
3811 tag_pages_for_writeback(mapping, index, end);
3812 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3813 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3814 tag))) {
0b32f4bb
JB
3815 unsigned i;
3816
3817 scanned = 1;
3818 for (i = 0; i < nr_pages; i++) {
3819 struct page *page = pvec.pages[i];
3820
3821 if (!PagePrivate(page))
3822 continue;
3823
b5bae261
JB
3824 spin_lock(&mapping->private_lock);
3825 if (!PagePrivate(page)) {
3826 spin_unlock(&mapping->private_lock);
3827 continue;
3828 }
3829
0b32f4bb 3830 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3831
3832 /*
3833 * Shouldn't happen and normally this would be a BUG_ON
3834 * but no sense in crashing the users box for something
3835 * we can survive anyway.
3836 */
fae7f21c 3837 if (WARN_ON(!eb)) {
b5bae261 3838 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3839 continue;
3840 }
3841
b5bae261
JB
3842 if (eb == prev_eb) {
3843 spin_unlock(&mapping->private_lock);
0b32f4bb 3844 continue;
b5bae261 3845 }
0b32f4bb 3846
b5bae261
JB
3847 ret = atomic_inc_not_zero(&eb->refs);
3848 spin_unlock(&mapping->private_lock);
3849 if (!ret)
0b32f4bb 3850 continue;
0b32f4bb
JB
3851
3852 prev_eb = eb;
3853 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3854 if (!ret) {
3855 free_extent_buffer(eb);
3856 continue;
3857 }
3858
3859 ret = write_one_eb(eb, fs_info, wbc, &epd);
3860 if (ret) {
3861 done = 1;
3862 free_extent_buffer(eb);
3863 break;
3864 }
3865 free_extent_buffer(eb);
3866
3867 /*
3868 * the filesystem may choose to bump up nr_to_write.
3869 * We have to make sure to honor the new nr_to_write
3870 * at any time
3871 */
3872 nr_to_write_done = wbc->nr_to_write <= 0;
3873 }
3874 pagevec_release(&pvec);
3875 cond_resched();
3876 }
3877 if (!scanned && !done) {
3878 /*
3879 * We hit the last page and there is more work to be done: wrap
3880 * back to the start of the file
3881 */
3882 scanned = 1;
3883 index = 0;
3884 goto retry;
3885 }
3886 flush_write_bio(&epd);
3887 return ret;
3888}
3889
d1310b2e 3890/**
4bef0848 3891 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3892 * @mapping: address space structure to write
3893 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3894 * @data: data passed to __extent_writepage function
d1310b2e
CM
3895 *
3896 * If a page is already under I/O, write_cache_pages() skips it, even
3897 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3898 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3899 * and msync() need to guarantee that all the data which was dirty at the time
3900 * the call was made get new I/O started against them. If wbc->sync_mode is
3901 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3902 * existing IO to complete.
3903 */
4242b64a 3904static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3905 struct writeback_control *wbc,
aab6e9ed 3906 struct extent_page_data *epd)
d1310b2e 3907{
7fd1a3f7 3908 struct inode *inode = mapping->host;
d1310b2e
CM
3909 int ret = 0;
3910 int done = 0;
f85d7d6c 3911 int nr_to_write_done = 0;
d1310b2e
CM
3912 struct pagevec pvec;
3913 int nr_pages;
3914 pgoff_t index;
3915 pgoff_t end; /* Inclusive */
a9132667
LB
3916 pgoff_t done_index;
3917 int range_whole = 0;
d1310b2e 3918 int scanned = 0;
f7aaa06b 3919 int tag;
d1310b2e 3920
7fd1a3f7
JB
3921 /*
3922 * We have to hold onto the inode so that ordered extents can do their
3923 * work when the IO finishes. The alternative to this is failing to add
3924 * an ordered extent if the igrab() fails there and that is a huge pain
3925 * to deal with, so instead just hold onto the inode throughout the
3926 * writepages operation. If it fails here we are freeing up the inode
3927 * anyway and we'd rather not waste our time writing out stuff that is
3928 * going to be truncated anyway.
3929 */
3930 if (!igrab(inode))
3931 return 0;
3932
86679820 3933 pagevec_init(&pvec);
d1310b2e
CM
3934 if (wbc->range_cyclic) {
3935 index = mapping->writeback_index; /* Start from prev offset */
3936 end = -1;
3937 } else {
09cbfeaf
KS
3938 index = wbc->range_start >> PAGE_SHIFT;
3939 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3940 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3941 range_whole = 1;
d1310b2e
CM
3942 scanned = 1;
3943 }
f7aaa06b
JB
3944 if (wbc->sync_mode == WB_SYNC_ALL)
3945 tag = PAGECACHE_TAG_TOWRITE;
3946 else
3947 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3948retry:
f7aaa06b
JB
3949 if (wbc->sync_mode == WB_SYNC_ALL)
3950 tag_pages_for_writeback(mapping, index, end);
a9132667 3951 done_index = index;
f85d7d6c 3952 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3953 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3954 &index, end, tag))) {
d1310b2e
CM
3955 unsigned i;
3956
3957 scanned = 1;
3958 for (i = 0; i < nr_pages; i++) {
3959 struct page *page = pvec.pages[i];
3960
a9132667 3961 done_index = page->index;
d1310b2e
CM
3962 /*
3963 * At this point we hold neither mapping->tree_lock nor
3964 * lock on the page itself: the page may be truncated or
3965 * invalidated (changing page->mapping to NULL), or even
3966 * swizzled back from swapper_space to tmpfs file
3967 * mapping
3968 */
c8f2f24b 3969 if (!trylock_page(page)) {
aab6e9ed 3970 flush_write_bio(epd);
c8f2f24b 3971 lock_page(page);
01d658f2 3972 }
d1310b2e
CM
3973
3974 if (unlikely(page->mapping != mapping)) {
3975 unlock_page(page);
3976 continue;
3977 }
3978
d2c3f4f6 3979 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3980 if (PageWriteback(page))
aab6e9ed 3981 flush_write_bio(epd);
d1310b2e 3982 wait_on_page_writeback(page);
d2c3f4f6 3983 }
d1310b2e
CM
3984
3985 if (PageWriteback(page) ||
3986 !clear_page_dirty_for_io(page)) {
3987 unlock_page(page);
3988 continue;
3989 }
3990
aab6e9ed 3991 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3992
3993 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3994 unlock_page(page);
3995 ret = 0;
3996 }
a9132667
LB
3997 if (ret < 0) {
3998 /*
3999 * done_index is set past this page,
4000 * so media errors will not choke
4001 * background writeout for the entire
4002 * file. This has consequences for
4003 * range_cyclic semantics (ie. it may
4004 * not be suitable for data integrity
4005 * writeout).
4006 */
4007 done_index = page->index + 1;
4008 done = 1;
4009 break;
4010 }
f85d7d6c
CM
4011
4012 /*
4013 * the filesystem may choose to bump up nr_to_write.
4014 * We have to make sure to honor the new nr_to_write
4015 * at any time
4016 */
4017 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4018 }
4019 pagevec_release(&pvec);
4020 cond_resched();
4021 }
894b36e3 4022 if (!scanned && !done) {
d1310b2e
CM
4023 /*
4024 * We hit the last page and there is more work to be done: wrap
4025 * back to the start of the file
4026 */
4027 scanned = 1;
4028 index = 0;
4029 goto retry;
4030 }
a9132667
LB
4031
4032 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4033 mapping->writeback_index = done_index;
4034
7fd1a3f7 4035 btrfs_add_delayed_iput(inode);
894b36e3 4036 return ret;
d1310b2e 4037}
d1310b2e 4038
aab6e9ed 4039static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4040{
d2c3f4f6 4041 if (epd->bio) {
355808c2
JM
4042 int ret;
4043
18fdc679 4044 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4045 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4046 epd->bio = NULL;
4047 }
4048}
4049
0a9b0e53 4050int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4051{
4052 int ret;
d1310b2e
CM
4053 struct extent_page_data epd = {
4054 .bio = NULL,
0a9b0e53 4055 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4056 .extent_locked = 0,
ffbd517d 4057 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4058 };
d1310b2e 4059
d1310b2e
CM
4060 ret = __extent_writepage(page, wbc, &epd);
4061
e2932ee0 4062 flush_write_bio(&epd);
d1310b2e
CM
4063 return ret;
4064}
d1310b2e 4065
5e3ee236 4066int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4067 int mode)
4068{
4069 int ret = 0;
4070 struct address_space *mapping = inode->i_mapping;
5e3ee236 4071 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4072 struct page *page;
09cbfeaf
KS
4073 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4074 PAGE_SHIFT;
771ed689
CM
4075
4076 struct extent_page_data epd = {
4077 .bio = NULL,
4078 .tree = tree,
771ed689 4079 .extent_locked = 1,
ffbd517d 4080 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4081 };
4082 struct writeback_control wbc_writepages = {
771ed689 4083 .sync_mode = mode,
771ed689
CM
4084 .nr_to_write = nr_pages * 2,
4085 .range_start = start,
4086 .range_end = end + 1,
4087 };
4088
d397712b 4089 while (start <= end) {
09cbfeaf 4090 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4091 if (clear_page_dirty_for_io(page))
4092 ret = __extent_writepage(page, &wbc_writepages, &epd);
4093 else {
4094 if (tree->ops && tree->ops->writepage_end_io_hook)
4095 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4096 start + PAGE_SIZE - 1,
771ed689
CM
4097 NULL, 1);
4098 unlock_page(page);
4099 }
09cbfeaf
KS
4100 put_page(page);
4101 start += PAGE_SIZE;
771ed689
CM
4102 }
4103
e2932ee0 4104 flush_write_bio(&epd);
771ed689
CM
4105 return ret;
4106}
d1310b2e
CM
4107
4108int extent_writepages(struct extent_io_tree *tree,
4109 struct address_space *mapping,
d1310b2e
CM
4110 struct writeback_control *wbc)
4111{
4112 int ret = 0;
4113 struct extent_page_data epd = {
4114 .bio = NULL,
4115 .tree = tree,
771ed689 4116 .extent_locked = 0,
ffbd517d 4117 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4118 };
4119
935db853 4120 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4121 flush_write_bio(&epd);
d1310b2e
CM
4122 return ret;
4123}
d1310b2e
CM
4124
4125int extent_readpages(struct extent_io_tree *tree,
4126 struct address_space *mapping,
0932584b 4127 struct list_head *pages, unsigned nr_pages)
d1310b2e
CM
4128{
4129 struct bio *bio = NULL;
4130 unsigned page_idx;
c8b97818 4131 unsigned long bio_flags = 0;
67c9684f
LB
4132 struct page *pagepool[16];
4133 struct page *page;
125bac01 4134 struct extent_map *em_cached = NULL;
67c9684f 4135 int nr = 0;
808f80b4 4136 u64 prev_em_start = (u64)-1;
d1310b2e 4137
d1310b2e 4138 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4139 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4140
4141 prefetchw(&page->flags);
4142 list_del(&page->lru);
67c9684f 4143 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4144 page->index,
4145 readahead_gfp_mask(mapping))) {
09cbfeaf 4146 put_page(page);
67c9684f 4147 continue;
d1310b2e 4148 }
67c9684f
LB
4149
4150 pagepool[nr++] = page;
4151 if (nr < ARRAY_SIZE(pagepool))
4152 continue;
e4d17ef5
DS
4153 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4154 &bio_flags, &prev_em_start);
67c9684f 4155 nr = 0;
d1310b2e 4156 }
9974090b 4157 if (nr)
e4d17ef5
DS
4158 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4159 &bio_flags, &prev_em_start);
67c9684f 4160
125bac01
MX
4161 if (em_cached)
4162 free_extent_map(em_cached);
4163
d1310b2e
CM
4164 BUG_ON(!list_empty(pages));
4165 if (bio)
1f7ad75b 4166 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4167 return 0;
4168}
d1310b2e
CM
4169
4170/*
4171 * basic invalidatepage code, this waits on any locked or writeback
4172 * ranges corresponding to the page, and then deletes any extent state
4173 * records from the tree
4174 */
4175int extent_invalidatepage(struct extent_io_tree *tree,
4176 struct page *page, unsigned long offset)
4177{
2ac55d41 4178 struct extent_state *cached_state = NULL;
4eee4fa4 4179 u64 start = page_offset(page);
09cbfeaf 4180 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4181 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4182
fda2832f 4183 start += ALIGN(offset, blocksize);
d1310b2e
CM
4184 if (start > end)
4185 return 0;
4186
ff13db41 4187 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4188 wait_on_page_writeback(page);
d1310b2e 4189 clear_extent_bit(tree, start, end,
32c00aff
JB
4190 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4191 EXTENT_DO_ACCOUNTING,
ae0f1625 4192 1, 1, &cached_state);
d1310b2e
CM
4193 return 0;
4194}
d1310b2e 4195
7b13b7b1
CM
4196/*
4197 * a helper for releasepage, this tests for areas of the page that
4198 * are locked or under IO and drops the related state bits if it is safe
4199 * to drop the page.
4200 */
48a3b636
ES
4201static int try_release_extent_state(struct extent_map_tree *map,
4202 struct extent_io_tree *tree,
4203 struct page *page, gfp_t mask)
7b13b7b1 4204{
4eee4fa4 4205 u64 start = page_offset(page);
09cbfeaf 4206 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4207 int ret = 1;
4208
211f90e6 4209 if (test_range_bit(tree, start, end,
8b62b72b 4210 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4211 ret = 0;
4212 else {
11ef160f
CM
4213 /*
4214 * at this point we can safely clear everything except the
4215 * locked bit and the nodatasum bit
4216 */
66b0c887 4217 ret = __clear_extent_bit(tree, start, end,
11ef160f 4218 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4219 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4220
4221 /* if clear_extent_bit failed for enomem reasons,
4222 * we can't allow the release to continue.
4223 */
4224 if (ret < 0)
4225 ret = 0;
4226 else
4227 ret = 1;
7b13b7b1
CM
4228 }
4229 return ret;
4230}
7b13b7b1 4231
d1310b2e
CM
4232/*
4233 * a helper for releasepage. As long as there are no locked extents
4234 * in the range corresponding to the page, both state records and extent
4235 * map records are removed
4236 */
4237int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4238 struct extent_io_tree *tree, struct page *page,
4239 gfp_t mask)
d1310b2e
CM
4240{
4241 struct extent_map *em;
4eee4fa4 4242 u64 start = page_offset(page);
09cbfeaf 4243 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4244
d0164adc 4245 if (gfpflags_allow_blocking(mask) &&
ee22184b 4246 page->mapping->host->i_size > SZ_16M) {
39b5637f 4247 u64 len;
70dec807 4248 while (start <= end) {
39b5637f 4249 len = end - start + 1;
890871be 4250 write_lock(&map->lock);
39b5637f 4251 em = lookup_extent_mapping(map, start, len);
285190d9 4252 if (!em) {
890871be 4253 write_unlock(&map->lock);
70dec807
CM
4254 break;
4255 }
7f3c74fb
CM
4256 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4257 em->start != start) {
890871be 4258 write_unlock(&map->lock);
70dec807
CM
4259 free_extent_map(em);
4260 break;
4261 }
4262 if (!test_range_bit(tree, em->start,
4263 extent_map_end(em) - 1,
8b62b72b 4264 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4265 0, NULL)) {
70dec807
CM
4266 remove_extent_mapping(map, em);
4267 /* once for the rb tree */
4268 free_extent_map(em);
4269 }
4270 start = extent_map_end(em);
890871be 4271 write_unlock(&map->lock);
70dec807
CM
4272
4273 /* once for us */
d1310b2e
CM
4274 free_extent_map(em);
4275 }
d1310b2e 4276 }
7b13b7b1 4277 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4278}
d1310b2e 4279
ec29ed5b
CM
4280/*
4281 * helper function for fiemap, which doesn't want to see any holes.
4282 * This maps until we find something past 'last'
4283 */
4284static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4285 u64 offset, u64 last)
ec29ed5b 4286{
da17066c 4287 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4288 struct extent_map *em;
4289 u64 len;
4290
4291 if (offset >= last)
4292 return NULL;
4293
67871254 4294 while (1) {
ec29ed5b
CM
4295 len = last - offset;
4296 if (len == 0)
4297 break;
fda2832f 4298 len = ALIGN(len, sectorsize);
e3350e16
DS
4299 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4300 len, 0);
c704005d 4301 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4302 return em;
4303
4304 /* if this isn't a hole return it */
4a2d25cd 4305 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4306 return em;
ec29ed5b
CM
4307
4308 /* this is a hole, advance to the next extent */
4309 offset = extent_map_end(em);
4310 free_extent_map(em);
4311 if (offset >= last)
4312 break;
4313 }
4314 return NULL;
4315}
4316
4751832d
QW
4317/*
4318 * To cache previous fiemap extent
4319 *
4320 * Will be used for merging fiemap extent
4321 */
4322struct fiemap_cache {
4323 u64 offset;
4324 u64 phys;
4325 u64 len;
4326 u32 flags;
4327 bool cached;
4328};
4329
4330/*
4331 * Helper to submit fiemap extent.
4332 *
4333 * Will try to merge current fiemap extent specified by @offset, @phys,
4334 * @len and @flags with cached one.
4335 * And only when we fails to merge, cached one will be submitted as
4336 * fiemap extent.
4337 *
4338 * Return value is the same as fiemap_fill_next_extent().
4339 */
4340static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4341 struct fiemap_cache *cache,
4342 u64 offset, u64 phys, u64 len, u32 flags)
4343{
4344 int ret = 0;
4345
4346 if (!cache->cached)
4347 goto assign;
4348
4349 /*
4350 * Sanity check, extent_fiemap() should have ensured that new
4351 * fiemap extent won't overlap with cahced one.
4352 * Not recoverable.
4353 *
4354 * NOTE: Physical address can overlap, due to compression
4355 */
4356 if (cache->offset + cache->len > offset) {
4357 WARN_ON(1);
4358 return -EINVAL;
4359 }
4360
4361 /*
4362 * Only merges fiemap extents if
4363 * 1) Their logical addresses are continuous
4364 *
4365 * 2) Their physical addresses are continuous
4366 * So truly compressed (physical size smaller than logical size)
4367 * extents won't get merged with each other
4368 *
4369 * 3) Share same flags except FIEMAP_EXTENT_LAST
4370 * So regular extent won't get merged with prealloc extent
4371 */
4372 if (cache->offset + cache->len == offset &&
4373 cache->phys + cache->len == phys &&
4374 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4375 (flags & ~FIEMAP_EXTENT_LAST)) {
4376 cache->len += len;
4377 cache->flags |= flags;
4378 goto try_submit_last;
4379 }
4380
4381 /* Not mergeable, need to submit cached one */
4382 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4383 cache->len, cache->flags);
4384 cache->cached = false;
4385 if (ret)
4386 return ret;
4387assign:
4388 cache->cached = true;
4389 cache->offset = offset;
4390 cache->phys = phys;
4391 cache->len = len;
4392 cache->flags = flags;
4393try_submit_last:
4394 if (cache->flags & FIEMAP_EXTENT_LAST) {
4395 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4396 cache->phys, cache->len, cache->flags);
4397 cache->cached = false;
4398 }
4399 return ret;
4400}
4401
4402/*
848c23b7 4403 * Emit last fiemap cache
4751832d 4404 *
848c23b7
QW
4405 * The last fiemap cache may still be cached in the following case:
4406 * 0 4k 8k
4407 * |<- Fiemap range ->|
4408 * |<------------ First extent ----------->|
4409 *
4410 * In this case, the first extent range will be cached but not emitted.
4411 * So we must emit it before ending extent_fiemap().
4751832d 4412 */
848c23b7
QW
4413static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4414 struct fiemap_extent_info *fieinfo,
4415 struct fiemap_cache *cache)
4751832d
QW
4416{
4417 int ret;
4418
4419 if (!cache->cached)
4420 return 0;
4421
4751832d
QW
4422 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4423 cache->len, cache->flags);
4424 cache->cached = false;
4425 if (ret > 0)
4426 ret = 0;
4427 return ret;
4428}
4429
1506fcc8 4430int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4431 __u64 start, __u64 len)
1506fcc8 4432{
975f84fe 4433 int ret = 0;
1506fcc8
YS
4434 u64 off = start;
4435 u64 max = start + len;
4436 u32 flags = 0;
975f84fe
JB
4437 u32 found_type;
4438 u64 last;
ec29ed5b 4439 u64 last_for_get_extent = 0;
1506fcc8 4440 u64 disko = 0;
ec29ed5b 4441 u64 isize = i_size_read(inode);
975f84fe 4442 struct btrfs_key found_key;
1506fcc8 4443 struct extent_map *em = NULL;
2ac55d41 4444 struct extent_state *cached_state = NULL;
975f84fe 4445 struct btrfs_path *path;
dc046b10 4446 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4447 struct fiemap_cache cache = { 0 };
1506fcc8 4448 int end = 0;
ec29ed5b
CM
4449 u64 em_start = 0;
4450 u64 em_len = 0;
4451 u64 em_end = 0;
1506fcc8
YS
4452
4453 if (len == 0)
4454 return -EINVAL;
4455
975f84fe
JB
4456 path = btrfs_alloc_path();
4457 if (!path)
4458 return -ENOMEM;
4459 path->leave_spinning = 1;
4460
da17066c
JM
4461 start = round_down(start, btrfs_inode_sectorsize(inode));
4462 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4463
ec29ed5b
CM
4464 /*
4465 * lookup the last file extent. We're not using i_size here
4466 * because there might be preallocation past i_size
4467 */
f85b7379
DS
4468 ret = btrfs_lookup_file_extent(NULL, root, path,
4469 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4470 if (ret < 0) {
4471 btrfs_free_path(path);
4472 return ret;
2d324f59
LB
4473 } else {
4474 WARN_ON(!ret);
4475 if (ret == 1)
4476 ret = 0;
975f84fe 4477 }
2d324f59 4478
975f84fe 4479 path->slots[0]--;
975f84fe 4480 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4481 found_type = found_key.type;
975f84fe 4482
ec29ed5b 4483 /* No extents, but there might be delalloc bits */
4a0cc7ca 4484 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4485 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4486 /* have to trust i_size as the end */
4487 last = (u64)-1;
4488 last_for_get_extent = isize;
4489 } else {
4490 /*
4491 * remember the start of the last extent. There are a
4492 * bunch of different factors that go into the length of the
4493 * extent, so its much less complex to remember where it started
4494 */
4495 last = found_key.offset;
4496 last_for_get_extent = last + 1;
975f84fe 4497 }
fe09e16c 4498 btrfs_release_path(path);
975f84fe 4499
ec29ed5b
CM
4500 /*
4501 * we might have some extents allocated but more delalloc past those
4502 * extents. so, we trust isize unless the start of the last extent is
4503 * beyond isize
4504 */
4505 if (last < isize) {
4506 last = (u64)-1;
4507 last_for_get_extent = isize;
4508 }
4509
ff13db41 4510 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4511 &cached_state);
ec29ed5b 4512
e3350e16 4513 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4514 if (!em)
4515 goto out;
4516 if (IS_ERR(em)) {
4517 ret = PTR_ERR(em);
4518 goto out;
4519 }
975f84fe 4520
1506fcc8 4521 while (!end) {
b76bb701 4522 u64 offset_in_extent = 0;
ea8efc74
CM
4523
4524 /* break if the extent we found is outside the range */
4525 if (em->start >= max || extent_map_end(em) < off)
4526 break;
4527
4528 /*
4529 * get_extent may return an extent that starts before our
4530 * requested range. We have to make sure the ranges
4531 * we return to fiemap always move forward and don't
4532 * overlap, so adjust the offsets here
4533 */
4534 em_start = max(em->start, off);
1506fcc8 4535
ea8efc74
CM
4536 /*
4537 * record the offset from the start of the extent
b76bb701
JB
4538 * for adjusting the disk offset below. Only do this if the
4539 * extent isn't compressed since our in ram offset may be past
4540 * what we have actually allocated on disk.
ea8efc74 4541 */
b76bb701
JB
4542 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4543 offset_in_extent = em_start - em->start;
ec29ed5b 4544 em_end = extent_map_end(em);
ea8efc74 4545 em_len = em_end - em_start;
1506fcc8
YS
4546 disko = 0;
4547 flags = 0;
4548
ea8efc74
CM
4549 /*
4550 * bump off for our next call to get_extent
4551 */
4552 off = extent_map_end(em);
4553 if (off >= max)
4554 end = 1;
4555
93dbfad7 4556 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4557 end = 1;
4558 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4559 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4560 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4561 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4562 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4563 flags |= (FIEMAP_EXTENT_DELALLOC |
4564 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4565 } else if (fieinfo->fi_extents_max) {
4566 u64 bytenr = em->block_start -
4567 (em->start - em->orig_start);
fe09e16c 4568
ea8efc74 4569 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4570
4571 /*
4572 * As btrfs supports shared space, this information
4573 * can be exported to userspace tools via
dc046b10
JB
4574 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4575 * then we're just getting a count and we can skip the
4576 * lookup stuff.
fe09e16c 4577 */
bb739cf0
EN
4578 ret = btrfs_check_shared(root,
4579 btrfs_ino(BTRFS_I(inode)),
4580 bytenr);
dc046b10 4581 if (ret < 0)
fe09e16c 4582 goto out_free;
dc046b10 4583 if (ret)
fe09e16c 4584 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4585 ret = 0;
1506fcc8
YS
4586 }
4587 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4588 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4590 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4591
1506fcc8
YS
4592 free_extent_map(em);
4593 em = NULL;
ec29ed5b
CM
4594 if ((em_start >= last) || em_len == (u64)-1 ||
4595 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4596 flags |= FIEMAP_EXTENT_LAST;
4597 end = 1;
4598 }
4599
ec29ed5b 4600 /* now scan forward to see if this is really the last extent. */
e3350e16 4601 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4602 if (IS_ERR(em)) {
4603 ret = PTR_ERR(em);
4604 goto out;
4605 }
4606 if (!em) {
975f84fe
JB
4607 flags |= FIEMAP_EXTENT_LAST;
4608 end = 1;
4609 }
4751832d
QW
4610 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4611 em_len, flags);
26e726af
CS
4612 if (ret) {
4613 if (ret == 1)
4614 ret = 0;
ec29ed5b 4615 goto out_free;
26e726af 4616 }
1506fcc8
YS
4617 }
4618out_free:
4751832d 4619 if (!ret)
848c23b7 4620 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4621 free_extent_map(em);
4622out:
fe09e16c 4623 btrfs_free_path(path);
a52f4cd2 4624 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4625 &cached_state);
1506fcc8
YS
4626 return ret;
4627}
4628
727011e0
CM
4629static void __free_extent_buffer(struct extent_buffer *eb)
4630{
6d49ba1b 4631 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4632 kmem_cache_free(extent_buffer_cache, eb);
4633}
4634
a26e8c9f 4635int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4636{
4637 return (atomic_read(&eb->io_pages) ||
4638 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4639 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4640}
4641
4642/*
4643 * Helper for releasing extent buffer page.
4644 */
a50924e3 4645static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4646{
4647 unsigned long index;
db7f3436
JB
4648 struct page *page;
4649 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4650
4651 BUG_ON(extent_buffer_under_io(eb));
4652
a50924e3
DS
4653 index = num_extent_pages(eb->start, eb->len);
4654 if (index == 0)
db7f3436
JB
4655 return;
4656
4657 do {
4658 index--;
fb85fc9a 4659 page = eb->pages[index];
5d2361db
FL
4660 if (!page)
4661 continue;
4662 if (mapped)
db7f3436 4663 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4664 /*
4665 * We do this since we'll remove the pages after we've
4666 * removed the eb from the radix tree, so we could race
4667 * and have this page now attached to the new eb. So
4668 * only clear page_private if it's still connected to
4669 * this eb.
4670 */
4671 if (PagePrivate(page) &&
4672 page->private == (unsigned long)eb) {
4673 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4674 BUG_ON(PageDirty(page));
4675 BUG_ON(PageWriteback(page));
db7f3436 4676 /*
5d2361db
FL
4677 * We need to make sure we haven't be attached
4678 * to a new eb.
db7f3436 4679 */
5d2361db
FL
4680 ClearPagePrivate(page);
4681 set_page_private(page, 0);
4682 /* One for the page private */
09cbfeaf 4683 put_page(page);
db7f3436 4684 }
5d2361db
FL
4685
4686 if (mapped)
4687 spin_unlock(&page->mapping->private_lock);
4688
01327610 4689 /* One for when we allocated the page */
09cbfeaf 4690 put_page(page);
a50924e3 4691 } while (index != 0);
db7f3436
JB
4692}
4693
4694/*
4695 * Helper for releasing the extent buffer.
4696 */
4697static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4698{
a50924e3 4699 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4700 __free_extent_buffer(eb);
4701}
4702
f28491e0
JB
4703static struct extent_buffer *
4704__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4705 unsigned long len)
d1310b2e
CM
4706{
4707 struct extent_buffer *eb = NULL;
4708
d1b5c567 4709 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4710 eb->start = start;
4711 eb->len = len;
f28491e0 4712 eb->fs_info = fs_info;
815a51c7 4713 eb->bflags = 0;
bd681513
CM
4714 rwlock_init(&eb->lock);
4715 atomic_set(&eb->write_locks, 0);
4716 atomic_set(&eb->read_locks, 0);
4717 atomic_set(&eb->blocking_readers, 0);
4718 atomic_set(&eb->blocking_writers, 0);
4719 atomic_set(&eb->spinning_readers, 0);
4720 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4721 eb->lock_nested = 0;
bd681513
CM
4722 init_waitqueue_head(&eb->write_lock_wq);
4723 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4724
6d49ba1b
ES
4725 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4726
3083ee2e 4727 spin_lock_init(&eb->refs_lock);
d1310b2e 4728 atomic_set(&eb->refs, 1);
0b32f4bb 4729 atomic_set(&eb->io_pages, 0);
727011e0 4730
b8dae313
DS
4731 /*
4732 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4733 */
4734 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4735 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4736 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4737
4738 return eb;
4739}
4740
815a51c7
JS
4741struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4742{
4743 unsigned long i;
4744 struct page *p;
4745 struct extent_buffer *new;
4746 unsigned long num_pages = num_extent_pages(src->start, src->len);
4747
3f556f78 4748 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4749 if (new == NULL)
4750 return NULL;
4751
4752 for (i = 0; i < num_pages; i++) {
9ec72677 4753 p = alloc_page(GFP_NOFS);
db7f3436
JB
4754 if (!p) {
4755 btrfs_release_extent_buffer(new);
4756 return NULL;
4757 }
815a51c7
JS
4758 attach_extent_buffer_page(new, p);
4759 WARN_ON(PageDirty(p));
4760 SetPageUptodate(p);
4761 new->pages[i] = p;
fba1acf9 4762 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4763 }
4764
815a51c7
JS
4765 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4766 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4767
4768 return new;
4769}
4770
0f331229
OS
4771struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4772 u64 start, unsigned long len)
815a51c7
JS
4773{
4774 struct extent_buffer *eb;
3f556f78 4775 unsigned long num_pages;
815a51c7
JS
4776 unsigned long i;
4777
0f331229 4778 num_pages = num_extent_pages(start, len);
3f556f78
DS
4779
4780 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4781 if (!eb)
4782 return NULL;
4783
4784 for (i = 0; i < num_pages; i++) {
9ec72677 4785 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4786 if (!eb->pages[i])
4787 goto err;
4788 }
4789 set_extent_buffer_uptodate(eb);
4790 btrfs_set_header_nritems(eb, 0);
4791 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4792
4793 return eb;
4794err:
84167d19
SB
4795 for (; i > 0; i--)
4796 __free_page(eb->pages[i - 1]);
815a51c7
JS
4797 __free_extent_buffer(eb);
4798 return NULL;
4799}
4800
0f331229 4801struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4802 u64 start)
0f331229 4803{
da17066c 4804 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4805}
4806
0b32f4bb
JB
4807static void check_buffer_tree_ref(struct extent_buffer *eb)
4808{
242e18c7 4809 int refs;
0b32f4bb
JB
4810 /* the ref bit is tricky. We have to make sure it is set
4811 * if we have the buffer dirty. Otherwise the
4812 * code to free a buffer can end up dropping a dirty
4813 * page
4814 *
4815 * Once the ref bit is set, it won't go away while the
4816 * buffer is dirty or in writeback, and it also won't
4817 * go away while we have the reference count on the
4818 * eb bumped.
4819 *
4820 * We can't just set the ref bit without bumping the
4821 * ref on the eb because free_extent_buffer might
4822 * see the ref bit and try to clear it. If this happens
4823 * free_extent_buffer might end up dropping our original
4824 * ref by mistake and freeing the page before we are able
4825 * to add one more ref.
4826 *
4827 * So bump the ref count first, then set the bit. If someone
4828 * beat us to it, drop the ref we added.
4829 */
242e18c7
CM
4830 refs = atomic_read(&eb->refs);
4831 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4832 return;
4833
594831c4
JB
4834 spin_lock(&eb->refs_lock);
4835 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4836 atomic_inc(&eb->refs);
594831c4 4837 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4838}
4839
2457aec6
MG
4840static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4841 struct page *accessed)
5df4235e
JB
4842{
4843 unsigned long num_pages, i;
4844
0b32f4bb
JB
4845 check_buffer_tree_ref(eb);
4846
5df4235e
JB
4847 num_pages = num_extent_pages(eb->start, eb->len);
4848 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4849 struct page *p = eb->pages[i];
4850
2457aec6
MG
4851 if (p != accessed)
4852 mark_page_accessed(p);
5df4235e
JB
4853 }
4854}
4855
f28491e0
JB
4856struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4857 u64 start)
452c75c3
CS
4858{
4859 struct extent_buffer *eb;
4860
4861 rcu_read_lock();
f28491e0 4862 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4863 start >> PAGE_SHIFT);
452c75c3
CS
4864 if (eb && atomic_inc_not_zero(&eb->refs)) {
4865 rcu_read_unlock();
062c19e9
FM
4866 /*
4867 * Lock our eb's refs_lock to avoid races with
4868 * free_extent_buffer. When we get our eb it might be flagged
4869 * with EXTENT_BUFFER_STALE and another task running
4870 * free_extent_buffer might have seen that flag set,
4871 * eb->refs == 2, that the buffer isn't under IO (dirty and
4872 * writeback flags not set) and it's still in the tree (flag
4873 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4874 * of decrementing the extent buffer's reference count twice.
4875 * So here we could race and increment the eb's reference count,
4876 * clear its stale flag, mark it as dirty and drop our reference
4877 * before the other task finishes executing free_extent_buffer,
4878 * which would later result in an attempt to free an extent
4879 * buffer that is dirty.
4880 */
4881 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4882 spin_lock(&eb->refs_lock);
4883 spin_unlock(&eb->refs_lock);
4884 }
2457aec6 4885 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4886 return eb;
4887 }
4888 rcu_read_unlock();
4889
4890 return NULL;
4891}
4892
faa2dbf0
JB
4893#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4894struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4895 u64 start)
faa2dbf0
JB
4896{
4897 struct extent_buffer *eb, *exists = NULL;
4898 int ret;
4899
4900 eb = find_extent_buffer(fs_info, start);
4901 if (eb)
4902 return eb;
da17066c 4903 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4904 if (!eb)
4905 return NULL;
4906 eb->fs_info = fs_info;
4907again:
e1860a77 4908 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4909 if (ret)
4910 goto free_eb;
4911 spin_lock(&fs_info->buffer_lock);
4912 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4913 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4914 spin_unlock(&fs_info->buffer_lock);
4915 radix_tree_preload_end();
4916 if (ret == -EEXIST) {
4917 exists = find_extent_buffer(fs_info, start);
4918 if (exists)
4919 goto free_eb;
4920 else
4921 goto again;
4922 }
4923 check_buffer_tree_ref(eb);
4924 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4925
4926 /*
4927 * We will free dummy extent buffer's if they come into
4928 * free_extent_buffer with a ref count of 2, but if we are using this we
4929 * want the buffers to stay in memory until we're done with them, so
4930 * bump the ref count again.
4931 */
4932 atomic_inc(&eb->refs);
4933 return eb;
4934free_eb:
4935 btrfs_release_extent_buffer(eb);
4936 return exists;
4937}
4938#endif
4939
f28491e0 4940struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4941 u64 start)
d1310b2e 4942{
da17066c 4943 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4944 unsigned long num_pages = num_extent_pages(start, len);
4945 unsigned long i;
09cbfeaf 4946 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4947 struct extent_buffer *eb;
6af118ce 4948 struct extent_buffer *exists = NULL;
d1310b2e 4949 struct page *p;
f28491e0 4950 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4951 int uptodate = 1;
19fe0a8b 4952 int ret;
d1310b2e 4953
da17066c 4954 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4955 btrfs_err(fs_info, "bad tree block start %llu", start);
4956 return ERR_PTR(-EINVAL);
4957 }
4958
f28491e0 4959 eb = find_extent_buffer(fs_info, start);
452c75c3 4960 if (eb)
6af118ce 4961 return eb;
6af118ce 4962
23d79d81 4963 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4964 if (!eb)
c871b0f2 4965 return ERR_PTR(-ENOMEM);
d1310b2e 4966
727011e0 4967 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4968 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4969 if (!p) {
4970 exists = ERR_PTR(-ENOMEM);
6af118ce 4971 goto free_eb;
c871b0f2 4972 }
4f2de97a
JB
4973
4974 spin_lock(&mapping->private_lock);
4975 if (PagePrivate(p)) {
4976 /*
4977 * We could have already allocated an eb for this page
4978 * and attached one so lets see if we can get a ref on
4979 * the existing eb, and if we can we know it's good and
4980 * we can just return that one, else we know we can just
4981 * overwrite page->private.
4982 */
4983 exists = (struct extent_buffer *)p->private;
4984 if (atomic_inc_not_zero(&exists->refs)) {
4985 spin_unlock(&mapping->private_lock);
4986 unlock_page(p);
09cbfeaf 4987 put_page(p);
2457aec6 4988 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4989 goto free_eb;
4990 }
5ca64f45 4991 exists = NULL;
4f2de97a 4992
0b32f4bb 4993 /*
4f2de97a
JB
4994 * Do this so attach doesn't complain and we need to
4995 * drop the ref the old guy had.
4996 */
4997 ClearPagePrivate(p);
0b32f4bb 4998 WARN_ON(PageDirty(p));
09cbfeaf 4999 put_page(p);
d1310b2e 5000 }
4f2de97a
JB
5001 attach_extent_buffer_page(eb, p);
5002 spin_unlock(&mapping->private_lock);
0b32f4bb 5003 WARN_ON(PageDirty(p));
727011e0 5004 eb->pages[i] = p;
d1310b2e
CM
5005 if (!PageUptodate(p))
5006 uptodate = 0;
eb14ab8e
CM
5007
5008 /*
5009 * see below about how we avoid a nasty race with release page
5010 * and why we unlock later
5011 */
d1310b2e
CM
5012 }
5013 if (uptodate)
b4ce94de 5014 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5015again:
e1860a77 5016 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5017 if (ret) {
5018 exists = ERR_PTR(ret);
19fe0a8b 5019 goto free_eb;
c871b0f2 5020 }
19fe0a8b 5021
f28491e0
JB
5022 spin_lock(&fs_info->buffer_lock);
5023 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5024 start >> PAGE_SHIFT, eb);
f28491e0 5025 spin_unlock(&fs_info->buffer_lock);
452c75c3 5026 radix_tree_preload_end();
19fe0a8b 5027 if (ret == -EEXIST) {
f28491e0 5028 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5029 if (exists)
5030 goto free_eb;
5031 else
115391d2 5032 goto again;
6af118ce 5033 }
6af118ce 5034 /* add one reference for the tree */
0b32f4bb 5035 check_buffer_tree_ref(eb);
34b41ace 5036 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5037
5038 /*
5039 * there is a race where release page may have
5040 * tried to find this extent buffer in the radix
5041 * but failed. It will tell the VM it is safe to
5042 * reclaim the, and it will clear the page private bit.
5043 * We must make sure to set the page private bit properly
5044 * after the extent buffer is in the radix tree so
5045 * it doesn't get lost
5046 */
727011e0
CM
5047 SetPageChecked(eb->pages[0]);
5048 for (i = 1; i < num_pages; i++) {
fb85fc9a 5049 p = eb->pages[i];
727011e0
CM
5050 ClearPageChecked(p);
5051 unlock_page(p);
5052 }
5053 unlock_page(eb->pages[0]);
d1310b2e
CM
5054 return eb;
5055
6af118ce 5056free_eb:
5ca64f45 5057 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5058 for (i = 0; i < num_pages; i++) {
5059 if (eb->pages[i])
5060 unlock_page(eb->pages[i]);
5061 }
eb14ab8e 5062
897ca6e9 5063 btrfs_release_extent_buffer(eb);
6af118ce 5064 return exists;
d1310b2e 5065}
d1310b2e 5066
3083ee2e
JB
5067static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5068{
5069 struct extent_buffer *eb =
5070 container_of(head, struct extent_buffer, rcu_head);
5071
5072 __free_extent_buffer(eb);
5073}
5074
3083ee2e 5075/* Expects to have eb->eb_lock already held */
f7a52a40 5076static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5077{
5078 WARN_ON(atomic_read(&eb->refs) == 0);
5079 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5080 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5081 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5082
815a51c7 5083 spin_unlock(&eb->refs_lock);
3083ee2e 5084
f28491e0
JB
5085 spin_lock(&fs_info->buffer_lock);
5086 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5087 eb->start >> PAGE_SHIFT);
f28491e0 5088 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5089 } else {
5090 spin_unlock(&eb->refs_lock);
815a51c7 5091 }
3083ee2e
JB
5092
5093 /* Should be safe to release our pages at this point */
a50924e3 5094 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5095#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5096 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5097 __free_extent_buffer(eb);
5098 return 1;
5099 }
5100#endif
3083ee2e 5101 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5102 return 1;
3083ee2e
JB
5103 }
5104 spin_unlock(&eb->refs_lock);
e64860aa
JB
5105
5106 return 0;
3083ee2e
JB
5107}
5108
d1310b2e
CM
5109void free_extent_buffer(struct extent_buffer *eb)
5110{
242e18c7
CM
5111 int refs;
5112 int old;
d1310b2e
CM
5113 if (!eb)
5114 return;
5115
242e18c7
CM
5116 while (1) {
5117 refs = atomic_read(&eb->refs);
5118 if (refs <= 3)
5119 break;
5120 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5121 if (old == refs)
5122 return;
5123 }
5124
3083ee2e 5125 spin_lock(&eb->refs_lock);
815a51c7
JS
5126 if (atomic_read(&eb->refs) == 2 &&
5127 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5128 atomic_dec(&eb->refs);
5129
3083ee2e
JB
5130 if (atomic_read(&eb->refs) == 2 &&
5131 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5132 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5133 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5134 atomic_dec(&eb->refs);
5135
5136 /*
5137 * I know this is terrible, but it's temporary until we stop tracking
5138 * the uptodate bits and such for the extent buffers.
5139 */
f7a52a40 5140 release_extent_buffer(eb);
3083ee2e
JB
5141}
5142
5143void free_extent_buffer_stale(struct extent_buffer *eb)
5144{
5145 if (!eb)
d1310b2e
CM
5146 return;
5147
3083ee2e
JB
5148 spin_lock(&eb->refs_lock);
5149 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5150
0b32f4bb 5151 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5152 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5153 atomic_dec(&eb->refs);
f7a52a40 5154 release_extent_buffer(eb);
d1310b2e 5155}
d1310b2e 5156
1d4284bd 5157void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5158{
d1310b2e
CM
5159 unsigned long i;
5160 unsigned long num_pages;
5161 struct page *page;
5162
d1310b2e
CM
5163 num_pages = num_extent_pages(eb->start, eb->len);
5164
5165 for (i = 0; i < num_pages; i++) {
fb85fc9a 5166 page = eb->pages[i];
b9473439 5167 if (!PageDirty(page))
d2c3f4f6
CM
5168 continue;
5169
a61e6f29 5170 lock_page(page);
eb14ab8e
CM
5171 WARN_ON(!PagePrivate(page));
5172
d1310b2e 5173 clear_page_dirty_for_io(page);
0ee0fda0 5174 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5175 if (!PageDirty(page)) {
5176 radix_tree_tag_clear(&page->mapping->page_tree,
5177 page_index(page),
5178 PAGECACHE_TAG_DIRTY);
5179 }
0ee0fda0 5180 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5181 ClearPageError(page);
a61e6f29 5182 unlock_page(page);
d1310b2e 5183 }
0b32f4bb 5184 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5185}
d1310b2e 5186
0b32f4bb 5187int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5188{
5189 unsigned long i;
5190 unsigned long num_pages;
b9473439 5191 int was_dirty = 0;
d1310b2e 5192
0b32f4bb
JB
5193 check_buffer_tree_ref(eb);
5194
b9473439 5195 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5196
d1310b2e 5197 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5198 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5199 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5200
b9473439 5201 for (i = 0; i < num_pages; i++)
fb85fc9a 5202 set_page_dirty(eb->pages[i]);
b9473439 5203 return was_dirty;
d1310b2e 5204}
d1310b2e 5205
69ba3927 5206void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5207{
5208 unsigned long i;
5209 struct page *page;
5210 unsigned long num_pages;
5211
b4ce94de 5212 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5213 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5214 for (i = 0; i < num_pages; i++) {
fb85fc9a 5215 page = eb->pages[i];
33958dc6
CM
5216 if (page)
5217 ClearPageUptodate(page);
1259ab75 5218 }
1259ab75
CM
5219}
5220
09c25a8c 5221void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5222{
5223 unsigned long i;
5224 struct page *page;
5225 unsigned long num_pages;
5226
0b32f4bb 5227 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5228 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5229 for (i = 0; i < num_pages; i++) {
fb85fc9a 5230 page = eb->pages[i];
d1310b2e
CM
5231 SetPageUptodate(page);
5232 }
d1310b2e 5233}
d1310b2e 5234
d1310b2e 5235int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5236 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e
CM
5237{
5238 unsigned long i;
d1310b2e
CM
5239 struct page *page;
5240 int err;
5241 int ret = 0;
ce9adaa5
CM
5242 int locked_pages = 0;
5243 int all_uptodate = 1;
d1310b2e 5244 unsigned long num_pages;
727011e0 5245 unsigned long num_reads = 0;
a86c12c7 5246 struct bio *bio = NULL;
c8b97818 5247 unsigned long bio_flags = 0;
a86c12c7 5248
b4ce94de 5249 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5250 return 0;
5251
d1310b2e 5252 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5253 for (i = 0; i < num_pages; i++) {
fb85fc9a 5254 page = eb->pages[i];
bb82ab88 5255 if (wait == WAIT_NONE) {
2db04966 5256 if (!trylock_page(page))
ce9adaa5 5257 goto unlock_exit;
d1310b2e
CM
5258 } else {
5259 lock_page(page);
5260 }
ce9adaa5 5261 locked_pages++;
2571e739
LB
5262 }
5263 /*
5264 * We need to firstly lock all pages to make sure that
5265 * the uptodate bit of our pages won't be affected by
5266 * clear_extent_buffer_uptodate().
5267 */
8436ea91 5268 for (i = 0; i < num_pages; i++) {
2571e739 5269 page = eb->pages[i];
727011e0
CM
5270 if (!PageUptodate(page)) {
5271 num_reads++;
ce9adaa5 5272 all_uptodate = 0;
727011e0 5273 }
ce9adaa5 5274 }
2571e739 5275
ce9adaa5 5276 if (all_uptodate) {
8436ea91 5277 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5278 goto unlock_exit;
5279 }
5280
656f30db 5281 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5282 eb->read_mirror = 0;
0b32f4bb 5283 atomic_set(&eb->io_pages, num_reads);
8436ea91 5284 for (i = 0; i < num_pages; i++) {
fb85fc9a 5285 page = eb->pages[i];
baf863b9 5286
ce9adaa5 5287 if (!PageUptodate(page)) {
baf863b9
LB
5288 if (ret) {
5289 atomic_dec(&eb->io_pages);
5290 unlock_page(page);
5291 continue;
5292 }
5293
f188591e 5294 ClearPageError(page);
a86c12c7 5295 err = __extent_read_full_page(tree, page,
6af49dbd 5296 btree_get_extent, &bio,
d4c7ca86 5297 mirror_num, &bio_flags,
1f7ad75b 5298 REQ_META);
baf863b9 5299 if (err) {
d1310b2e 5300 ret = err;
baf863b9
LB
5301 /*
5302 * We use &bio in above __extent_read_full_page,
5303 * so we ensure that if it returns error, the
5304 * current page fails to add itself to bio and
5305 * it's been unlocked.
5306 *
5307 * We must dec io_pages by ourselves.
5308 */
5309 atomic_dec(&eb->io_pages);
5310 }
d1310b2e
CM
5311 } else {
5312 unlock_page(page);
5313 }
5314 }
5315
355808c2 5316 if (bio) {
1f7ad75b 5317 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5318 if (err)
5319 return err;
355808c2 5320 }
a86c12c7 5321
bb82ab88 5322 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5323 return ret;
d397712b 5324
8436ea91 5325 for (i = 0; i < num_pages; i++) {
fb85fc9a 5326 page = eb->pages[i];
d1310b2e 5327 wait_on_page_locked(page);
d397712b 5328 if (!PageUptodate(page))
d1310b2e 5329 ret = -EIO;
d1310b2e 5330 }
d397712b 5331
d1310b2e 5332 return ret;
ce9adaa5
CM
5333
5334unlock_exit:
d397712b 5335 while (locked_pages > 0) {
ce9adaa5 5336 locked_pages--;
8436ea91
JB
5337 page = eb->pages[locked_pages];
5338 unlock_page(page);
ce9adaa5
CM
5339 }
5340 return ret;
d1310b2e 5341}
d1310b2e 5342
1cbb1f45
JM
5343void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5344 unsigned long start, unsigned long len)
d1310b2e
CM
5345{
5346 size_t cur;
5347 size_t offset;
5348 struct page *page;
5349 char *kaddr;
5350 char *dst = (char *)dstv;
09cbfeaf
KS
5351 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5352 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5353
f716abd5
LB
5354 if (start + len > eb->len) {
5355 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5356 eb->start, eb->len, start, len);
5357 memset(dst, 0, len);
5358 return;
5359 }
d1310b2e 5360
09cbfeaf 5361 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5362
d397712b 5363 while (len > 0) {
fb85fc9a 5364 page = eb->pages[i];
d1310b2e 5365
09cbfeaf 5366 cur = min(len, (PAGE_SIZE - offset));
a6591715 5367 kaddr = page_address(page);
d1310b2e 5368 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5369
5370 dst += cur;
5371 len -= cur;
5372 offset = 0;
5373 i++;
5374 }
5375}
d1310b2e 5376
1cbb1f45
JM
5377int read_extent_buffer_to_user(const struct extent_buffer *eb,
5378 void __user *dstv,
5379 unsigned long start, unsigned long len)
550ac1d8
GH
5380{
5381 size_t cur;
5382 size_t offset;
5383 struct page *page;
5384 char *kaddr;
5385 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5386 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5387 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5388 int ret = 0;
5389
5390 WARN_ON(start > eb->len);
5391 WARN_ON(start + len > eb->start + eb->len);
5392
09cbfeaf 5393 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5394
5395 while (len > 0) {
fb85fc9a 5396 page = eb->pages[i];
550ac1d8 5397
09cbfeaf 5398 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5399 kaddr = page_address(page);
5400 if (copy_to_user(dst, kaddr + offset, cur)) {
5401 ret = -EFAULT;
5402 break;
5403 }
5404
5405 dst += cur;
5406 len -= cur;
5407 offset = 0;
5408 i++;
5409 }
5410
5411 return ret;
5412}
5413
415b35a5
LB
5414/*
5415 * return 0 if the item is found within a page.
5416 * return 1 if the item spans two pages.
5417 * return -EINVAL otherwise.
5418 */
1cbb1f45
JM
5419int map_private_extent_buffer(const struct extent_buffer *eb,
5420 unsigned long start, unsigned long min_len,
5421 char **map, unsigned long *map_start,
5422 unsigned long *map_len)
d1310b2e 5423{
09cbfeaf 5424 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5425 char *kaddr;
5426 struct page *p;
09cbfeaf
KS
5427 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5428 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5429 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5430 PAGE_SHIFT;
d1310b2e 5431
f716abd5
LB
5432 if (start + min_len > eb->len) {
5433 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5434 eb->start, eb->len, start, min_len);
5435 return -EINVAL;
5436 }
5437
d1310b2e 5438 if (i != end_i)
415b35a5 5439 return 1;
d1310b2e
CM
5440
5441 if (i == 0) {
5442 offset = start_offset;
5443 *map_start = 0;
5444 } else {
5445 offset = 0;
09cbfeaf 5446 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5447 }
d397712b 5448
fb85fc9a 5449 p = eb->pages[i];
a6591715 5450 kaddr = page_address(p);
d1310b2e 5451 *map = kaddr + offset;
09cbfeaf 5452 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5453 return 0;
5454}
d1310b2e 5455
1cbb1f45
JM
5456int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5457 unsigned long start, unsigned long len)
d1310b2e
CM
5458{
5459 size_t cur;
5460 size_t offset;
5461 struct page *page;
5462 char *kaddr;
5463 char *ptr = (char *)ptrv;
09cbfeaf
KS
5464 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5465 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5466 int ret = 0;
5467
5468 WARN_ON(start > eb->len);
5469 WARN_ON(start + len > eb->start + eb->len);
5470
09cbfeaf 5471 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5472
d397712b 5473 while (len > 0) {
fb85fc9a 5474 page = eb->pages[i];
d1310b2e 5475
09cbfeaf 5476 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5477
a6591715 5478 kaddr = page_address(page);
d1310b2e 5479 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5480 if (ret)
5481 break;
5482
5483 ptr += cur;
5484 len -= cur;
5485 offset = 0;
5486 i++;
5487 }
5488 return ret;
5489}
d1310b2e 5490
f157bf76
DS
5491void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5492 const void *srcv)
5493{
5494 char *kaddr;
5495
5496 WARN_ON(!PageUptodate(eb->pages[0]));
5497 kaddr = page_address(eb->pages[0]);
5498 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5499 BTRFS_FSID_SIZE);
5500}
5501
5502void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5503{
5504 char *kaddr;
5505
5506 WARN_ON(!PageUptodate(eb->pages[0]));
5507 kaddr = page_address(eb->pages[0]);
5508 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5509 BTRFS_FSID_SIZE);
5510}
5511
d1310b2e
CM
5512void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5513 unsigned long start, unsigned long len)
5514{
5515 size_t cur;
5516 size_t offset;
5517 struct page *page;
5518 char *kaddr;
5519 char *src = (char *)srcv;
09cbfeaf
KS
5520 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5521 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5522
5523 WARN_ON(start > eb->len);
5524 WARN_ON(start + len > eb->start + eb->len);
5525
09cbfeaf 5526 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5527
d397712b 5528 while (len > 0) {
fb85fc9a 5529 page = eb->pages[i];
d1310b2e
CM
5530 WARN_ON(!PageUptodate(page));
5531
09cbfeaf 5532 cur = min(len, PAGE_SIZE - offset);
a6591715 5533 kaddr = page_address(page);
d1310b2e 5534 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5535
5536 src += cur;
5537 len -= cur;
5538 offset = 0;
5539 i++;
5540 }
5541}
d1310b2e 5542
b159fa28
DS
5543void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5544 unsigned long len)
d1310b2e
CM
5545{
5546 size_t cur;
5547 size_t offset;
5548 struct page *page;
5549 char *kaddr;
09cbfeaf
KS
5550 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5551 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5552
5553 WARN_ON(start > eb->len);
5554 WARN_ON(start + len > eb->start + eb->len);
5555
09cbfeaf 5556 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5557
d397712b 5558 while (len > 0) {
fb85fc9a 5559 page = eb->pages[i];
d1310b2e
CM
5560 WARN_ON(!PageUptodate(page));
5561
09cbfeaf 5562 cur = min(len, PAGE_SIZE - offset);
a6591715 5563 kaddr = page_address(page);
b159fa28 5564 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5565
5566 len -= cur;
5567 offset = 0;
5568 i++;
5569 }
5570}
d1310b2e 5571
58e8012c
DS
5572void copy_extent_buffer_full(struct extent_buffer *dst,
5573 struct extent_buffer *src)
5574{
5575 int i;
5576 unsigned num_pages;
5577
5578 ASSERT(dst->len == src->len);
5579
5580 num_pages = num_extent_pages(dst->start, dst->len);
5581 for (i = 0; i < num_pages; i++)
5582 copy_page(page_address(dst->pages[i]),
5583 page_address(src->pages[i]));
5584}
5585
d1310b2e
CM
5586void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5587 unsigned long dst_offset, unsigned long src_offset,
5588 unsigned long len)
5589{
5590 u64 dst_len = dst->len;
5591 size_t cur;
5592 size_t offset;
5593 struct page *page;
5594 char *kaddr;
09cbfeaf
KS
5595 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5596 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5597
5598 WARN_ON(src->len != dst_len);
5599
5600 offset = (start_offset + dst_offset) &
09cbfeaf 5601 (PAGE_SIZE - 1);
d1310b2e 5602
d397712b 5603 while (len > 0) {
fb85fc9a 5604 page = dst->pages[i];
d1310b2e
CM
5605 WARN_ON(!PageUptodate(page));
5606
09cbfeaf 5607 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5608
a6591715 5609 kaddr = page_address(page);
d1310b2e 5610 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5611
5612 src_offset += cur;
5613 len -= cur;
5614 offset = 0;
5615 i++;
5616 }
5617}
d1310b2e 5618
2fe1d551
OS
5619void le_bitmap_set(u8 *map, unsigned int start, int len)
5620{
5621 u8 *p = map + BIT_BYTE(start);
5622 const unsigned int size = start + len;
5623 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5624 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5625
5626 while (len - bits_to_set >= 0) {
5627 *p |= mask_to_set;
5628 len -= bits_to_set;
5629 bits_to_set = BITS_PER_BYTE;
9c894696 5630 mask_to_set = ~0;
2fe1d551
OS
5631 p++;
5632 }
5633 if (len) {
5634 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5635 *p |= mask_to_set;
5636 }
5637}
5638
5639void le_bitmap_clear(u8 *map, unsigned int start, int len)
5640{
5641 u8 *p = map + BIT_BYTE(start);
5642 const unsigned int size = start + len;
5643 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5644 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5645
5646 while (len - bits_to_clear >= 0) {
5647 *p &= ~mask_to_clear;
5648 len -= bits_to_clear;
5649 bits_to_clear = BITS_PER_BYTE;
9c894696 5650 mask_to_clear = ~0;
2fe1d551
OS
5651 p++;
5652 }
5653 if (len) {
5654 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5655 *p &= ~mask_to_clear;
5656 }
5657}
3e1e8bb7
OS
5658
5659/*
5660 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5661 * given bit number
5662 * @eb: the extent buffer
5663 * @start: offset of the bitmap item in the extent buffer
5664 * @nr: bit number
5665 * @page_index: return index of the page in the extent buffer that contains the
5666 * given bit number
5667 * @page_offset: return offset into the page given by page_index
5668 *
5669 * This helper hides the ugliness of finding the byte in an extent buffer which
5670 * contains a given bit.
5671 */
5672static inline void eb_bitmap_offset(struct extent_buffer *eb,
5673 unsigned long start, unsigned long nr,
5674 unsigned long *page_index,
5675 size_t *page_offset)
5676{
09cbfeaf 5677 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5678 size_t byte_offset = BIT_BYTE(nr);
5679 size_t offset;
5680
5681 /*
5682 * The byte we want is the offset of the extent buffer + the offset of
5683 * the bitmap item in the extent buffer + the offset of the byte in the
5684 * bitmap item.
5685 */
5686 offset = start_offset + start + byte_offset;
5687
09cbfeaf
KS
5688 *page_index = offset >> PAGE_SHIFT;
5689 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5690}
5691
5692/**
5693 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5694 * @eb: the extent buffer
5695 * @start: offset of the bitmap item in the extent buffer
5696 * @nr: bit number to test
5697 */
5698int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5699 unsigned long nr)
5700{
2fe1d551 5701 u8 *kaddr;
3e1e8bb7
OS
5702 struct page *page;
5703 unsigned long i;
5704 size_t offset;
5705
5706 eb_bitmap_offset(eb, start, nr, &i, &offset);
5707 page = eb->pages[i];
5708 WARN_ON(!PageUptodate(page));
5709 kaddr = page_address(page);
5710 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5711}
5712
5713/**
5714 * extent_buffer_bitmap_set - set an area of a bitmap
5715 * @eb: the extent buffer
5716 * @start: offset of the bitmap item in the extent buffer
5717 * @pos: bit number of the first bit
5718 * @len: number of bits to set
5719 */
5720void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5721 unsigned long pos, unsigned long len)
5722{
2fe1d551 5723 u8 *kaddr;
3e1e8bb7
OS
5724 struct page *page;
5725 unsigned long i;
5726 size_t offset;
5727 const unsigned int size = pos + len;
5728 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5729 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5730
5731 eb_bitmap_offset(eb, start, pos, &i, &offset);
5732 page = eb->pages[i];
5733 WARN_ON(!PageUptodate(page));
5734 kaddr = page_address(page);
5735
5736 while (len >= bits_to_set) {
5737 kaddr[offset] |= mask_to_set;
5738 len -= bits_to_set;
5739 bits_to_set = BITS_PER_BYTE;
9c894696 5740 mask_to_set = ~0;
09cbfeaf 5741 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5742 offset = 0;
5743 page = eb->pages[++i];
5744 WARN_ON(!PageUptodate(page));
5745 kaddr = page_address(page);
5746 }
5747 }
5748 if (len) {
5749 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5750 kaddr[offset] |= mask_to_set;
5751 }
5752}
5753
5754
5755/**
5756 * extent_buffer_bitmap_clear - clear an area of a bitmap
5757 * @eb: the extent buffer
5758 * @start: offset of the bitmap item in the extent buffer
5759 * @pos: bit number of the first bit
5760 * @len: number of bits to clear
5761 */
5762void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5763 unsigned long pos, unsigned long len)
5764{
2fe1d551 5765 u8 *kaddr;
3e1e8bb7
OS
5766 struct page *page;
5767 unsigned long i;
5768 size_t offset;
5769 const unsigned int size = pos + len;
5770 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5771 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5772
5773 eb_bitmap_offset(eb, start, pos, &i, &offset);
5774 page = eb->pages[i];
5775 WARN_ON(!PageUptodate(page));
5776 kaddr = page_address(page);
5777
5778 while (len >= bits_to_clear) {
5779 kaddr[offset] &= ~mask_to_clear;
5780 len -= bits_to_clear;
5781 bits_to_clear = BITS_PER_BYTE;
9c894696 5782 mask_to_clear = ~0;
09cbfeaf 5783 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5784 offset = 0;
5785 page = eb->pages[++i];
5786 WARN_ON(!PageUptodate(page));
5787 kaddr = page_address(page);
5788 }
5789 }
5790 if (len) {
5791 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5792 kaddr[offset] &= ~mask_to_clear;
5793 }
5794}
5795
3387206f
ST
5796static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5797{
5798 unsigned long distance = (src > dst) ? src - dst : dst - src;
5799 return distance < len;
5800}
5801
d1310b2e
CM
5802static void copy_pages(struct page *dst_page, struct page *src_page,
5803 unsigned long dst_off, unsigned long src_off,
5804 unsigned long len)
5805{
a6591715 5806 char *dst_kaddr = page_address(dst_page);
d1310b2e 5807 char *src_kaddr;
727011e0 5808 int must_memmove = 0;
d1310b2e 5809
3387206f 5810 if (dst_page != src_page) {
a6591715 5811 src_kaddr = page_address(src_page);
3387206f 5812 } else {
d1310b2e 5813 src_kaddr = dst_kaddr;
727011e0
CM
5814 if (areas_overlap(src_off, dst_off, len))
5815 must_memmove = 1;
3387206f 5816 }
d1310b2e 5817
727011e0
CM
5818 if (must_memmove)
5819 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5820 else
5821 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5822}
5823
5824void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5825 unsigned long src_offset, unsigned long len)
5826{
0b246afa 5827 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5828 size_t cur;
5829 size_t dst_off_in_page;
5830 size_t src_off_in_page;
09cbfeaf 5831 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5832 unsigned long dst_i;
5833 unsigned long src_i;
5834
5835 if (src_offset + len > dst->len) {
0b246afa 5836 btrfs_err(fs_info,
5d163e0e
JM
5837 "memmove bogus src_offset %lu move len %lu dst len %lu",
5838 src_offset, len, dst->len);
d1310b2e
CM
5839 BUG_ON(1);
5840 }
5841 if (dst_offset + len > dst->len) {
0b246afa 5842 btrfs_err(fs_info,
5d163e0e
JM
5843 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5844 dst_offset, len, dst->len);
d1310b2e
CM
5845 BUG_ON(1);
5846 }
5847
d397712b 5848 while (len > 0) {
d1310b2e 5849 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5850 (PAGE_SIZE - 1);
d1310b2e 5851 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5852 (PAGE_SIZE - 1);
d1310b2e 5853
09cbfeaf
KS
5854 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5855 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5856
09cbfeaf 5857 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5858 src_off_in_page));
5859 cur = min_t(unsigned long, cur,
09cbfeaf 5860 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5861
fb85fc9a 5862 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5863 dst_off_in_page, src_off_in_page, cur);
5864
5865 src_offset += cur;
5866 dst_offset += cur;
5867 len -= cur;
5868 }
5869}
d1310b2e
CM
5870
5871void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5872 unsigned long src_offset, unsigned long len)
5873{
0b246afa 5874 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5875 size_t cur;
5876 size_t dst_off_in_page;
5877 size_t src_off_in_page;
5878 unsigned long dst_end = dst_offset + len - 1;
5879 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5880 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5881 unsigned long dst_i;
5882 unsigned long src_i;
5883
5884 if (src_offset + len > dst->len) {
0b246afa 5885 btrfs_err(fs_info,
5d163e0e
JM
5886 "memmove bogus src_offset %lu move len %lu len %lu",
5887 src_offset, len, dst->len);
d1310b2e
CM
5888 BUG_ON(1);
5889 }
5890 if (dst_offset + len > dst->len) {
0b246afa 5891 btrfs_err(fs_info,
5d163e0e
JM
5892 "memmove bogus dst_offset %lu move len %lu len %lu",
5893 dst_offset, len, dst->len);
d1310b2e
CM
5894 BUG_ON(1);
5895 }
727011e0 5896 if (dst_offset < src_offset) {
d1310b2e
CM
5897 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5898 return;
5899 }
d397712b 5900 while (len > 0) {
09cbfeaf
KS
5901 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5902 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5903
5904 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5905 (PAGE_SIZE - 1);
d1310b2e 5906 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5907 (PAGE_SIZE - 1);
d1310b2e
CM
5908
5909 cur = min_t(unsigned long, len, src_off_in_page + 1);
5910 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5911 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5912 dst_off_in_page - cur + 1,
5913 src_off_in_page - cur + 1, cur);
5914
5915 dst_end -= cur;
5916 src_end -= cur;
5917 len -= cur;
5918 }
5919}
6af118ce 5920
f7a52a40 5921int try_release_extent_buffer(struct page *page)
19fe0a8b 5922{
6af118ce 5923 struct extent_buffer *eb;
6af118ce 5924
3083ee2e 5925 /*
01327610 5926 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5927 * now.
5928 */
5929 spin_lock(&page->mapping->private_lock);
5930 if (!PagePrivate(page)) {
5931 spin_unlock(&page->mapping->private_lock);
4f2de97a 5932 return 1;
45f49bce 5933 }
6af118ce 5934
3083ee2e
JB
5935 eb = (struct extent_buffer *)page->private;
5936 BUG_ON(!eb);
19fe0a8b
MX
5937
5938 /*
3083ee2e
JB
5939 * This is a little awful but should be ok, we need to make sure that
5940 * the eb doesn't disappear out from under us while we're looking at
5941 * this page.
19fe0a8b 5942 */
3083ee2e 5943 spin_lock(&eb->refs_lock);
0b32f4bb 5944 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5945 spin_unlock(&eb->refs_lock);
5946 spin_unlock(&page->mapping->private_lock);
5947 return 0;
b9473439 5948 }
3083ee2e 5949 spin_unlock(&page->mapping->private_lock);
897ca6e9 5950
19fe0a8b 5951 /*
3083ee2e
JB
5952 * If tree ref isn't set then we know the ref on this eb is a real ref,
5953 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5954 */
3083ee2e
JB
5955 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5956 spin_unlock(&eb->refs_lock);
5957 return 0;
b9473439 5958 }
19fe0a8b 5959
f7a52a40 5960 return release_extent_buffer(eb);
6af118ce 5961}