blk: remove bio_set arg from blk_queue_split()
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
f85b7379 101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
70fd7614 130 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f 146 changeset->bytes_changed += state->end - state->start + 1;
53d32359 147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 165 sizeof(struct extent_state), 0,
fba4b697 166 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 171 sizeof(struct extent_buffer), 0,
fba4b697 172 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e 228
3ba7ab22
MH
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 234 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 235 if (!state)
d1310b2e
CM
236 return state;
237 state->state = 0;
47dc196a 238 state->failrec = NULL;
27a3507d 239 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 240 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 241 refcount_set(&state->refs, 1);
d1310b2e 242 init_waitqueue_head(&state->wq);
143bede5 243 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
244 return state;
245}
d1310b2e 246
4845e44f 247void free_extent_state(struct extent_state *state)
d1310b2e 248{
d1310b2e
CM
249 if (!state)
250 return;
b7ac31b7 251 if (refcount_dec_and_test(&state->refs)) {
27a3507d 252 WARN_ON(extent_state_in_tree(state));
6d49ba1b 253 btrfs_leak_debug_del(&state->leak_list);
143bede5 254 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
255 kmem_cache_free(extent_state_cache, state);
256 }
257}
d1310b2e 258
f2071b21
FM
259static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
12cfbad9
FDBM
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
d1310b2e 265{
f2071b21 266 struct rb_node **p;
d397712b 267 struct rb_node *parent = NULL;
d1310b2e
CM
268 struct tree_entry *entry;
269
12cfbad9
FDBM
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
f2071b21 276 p = search_start ? &search_start : &root->rb_node;
d397712b 277 while (*p) {
d1310b2e
CM
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
12cfbad9 289do_insert:
d1310b2e
CM
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293}
294
80ea96b1 295static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
d1310b2e 300{
80ea96b1 301 struct rb_root *root = &tree->state;
12cfbad9 302 struct rb_node **n = &root->rb_node;
d1310b2e
CM
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
12cfbad9
FDBM
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
311 prev_entry = entry;
312
313 if (offset < entry->start)
12cfbad9 314 n = &(*n)->rb_left;
d1310b2e 315 else if (offset > entry->end)
12cfbad9 316 n = &(*n)->rb_right;
d397712b 317 else
12cfbad9 318 return *n;
d1310b2e
CM
319 }
320
12cfbad9
FDBM
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
d1310b2e
CM
326 if (prev_ret) {
327 orig_prev = prev;
d397712b 328 while (prev && offset > prev_entry->end) {
d1310b2e
CM
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 338 while (prev && offset < prev_entry->start) {
d1310b2e
CM
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345}
346
12cfbad9
FDBM
347static inline struct rb_node *
348tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
d1310b2e 352{
70dec807 353 struct rb_node *prev = NULL;
d1310b2e 354 struct rb_node *ret;
70dec807 355
12cfbad9 356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 357 if (!ret)
d1310b2e
CM
358 return prev;
359 return ret;
360}
361
12cfbad9
FDBM
362static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364{
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366}
367
9ed74f2d
JB
368static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370{
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374}
375
d1310b2e
CM
376/*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
1bf85046
JM
385static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
d1310b2e
CM
387{
388 struct extent_state *other;
389 struct rb_node *other_node;
390
5b21f2ed 391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 392 return;
d1310b2e
CM
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
9ed74f2d 399 merge_cb(tree, state, other);
d1310b2e 400 state->start = other->start;
d1310b2e 401 rb_erase(&other->rb_node, &tree->state);
27a3507d 402 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
9ed74f2d 411 merge_cb(tree, state, other);
df98b6e2 412 state->end = other->end;
df98b6e2 413 rb_erase(&other->rb_node, &tree->state);
27a3507d 414 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 415 free_extent_state(other);
d1310b2e
CM
416 }
417 }
d1310b2e
CM
418}
419
1bf85046 420static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 421 struct extent_state *state, unsigned *bits)
291d673e 422{
1bf85046
JM
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
425}
426
427static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 428 struct extent_state *state, unsigned *bits)
291d673e 429{
9ed74f2d 430 if (tree->ops && tree->ops->clear_bit_hook)
6fc0ef68
NB
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
291d673e
CM
433}
434
3150b699 435static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
3150b699 438
d1310b2e
CM
439/*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
451 struct rb_node ***p,
452 struct rb_node **parent,
d38ed27f 453 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
454{
455 struct rb_node *node;
456
31b1a2bd 457 if (end < start)
efe120a0 458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 459 end, start);
d1310b2e
CM
460 state->start = start;
461 state->end = end;
9ed74f2d 462
d38ed27f 463 set_state_bits(tree, state, bits, changeset);
3150b699 464
f2071b21 465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
62e85577 469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 470 found->start, found->end, start, end);
d1310b2e
CM
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475}
476
1bf85046 477static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
478 u64 split)
479{
480 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
482}
483
d1310b2e
CM
484/*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500{
501 struct rb_node *node;
9ed74f2d
JB
502
503 split_cb(tree, orig, split);
504
d1310b2e
CM
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
f2071b21
FM
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
d1310b2e 512 if (node) {
d1310b2e
CM
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517}
518
cdc6a395
LZ
519static struct extent_state *next_state(struct extent_state *state)
520{
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526}
527
d1310b2e
CM
528/*
529 * utility function to clear some bits in an extent state struct.
1b303fc0 530 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
cdc6a395
LZ
535static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
fefdc557
QW
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
d1310b2e 539{
cdc6a395 540 struct extent_state *next;
9ee49a04 541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 542
0ca1f7ce 543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
291d673e 548 clear_state_cb(tree, state, bits);
fefdc557 549 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 550 state->state &= ~bits_to_clear;
d1310b2e
CM
551 if (wake)
552 wake_up(&state->wq);
0ca1f7ce 553 if (state->state == 0) {
cdc6a395 554 next = next_state(state);
27a3507d 555 if (extent_state_in_tree(state)) {
d1310b2e 556 rb_erase(&state->rb_node, &tree->state);
27a3507d 557 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
cdc6a395 564 next = next_state(state);
d1310b2e 565 }
cdc6a395 566 return next;
d1310b2e
CM
567}
568
8233767a
XG
569static struct extent_state *
570alloc_extent_state_atomic(struct extent_state *prealloc)
571{
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576}
577
48a3b636 578static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 579{
5d163e0e
JM
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
582}
583
d1310b2e
CM
584/*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
6763af84 594 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 595 */
fefdc557
QW
596static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
600{
601 struct extent_state *state;
2c64c53d 602 struct extent_state *cached;
d1310b2e
CM
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
5c939df5 605 u64 last_end;
d1310b2e 606 int err;
2ac55d41 607 int clear = 0;
d1310b2e 608
a5dee37d 609 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 610
7ee9e440
JB
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
0ca1f7ce
YZ
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
2ac55d41
JB
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
d1310b2e 620again:
d0164adc 621 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
d1310b2e 629 prealloc = alloc_extent_state(mask);
d1310b2e
CM
630 }
631
cad321ad 632 spin_lock(&tree->lock);
2c64c53d
CM
633 if (cached_state) {
634 cached = *cached_state;
2ac55d41
JB
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
27a3507d
FM
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
2ac55d41 643 if (clear)
b7ac31b7 644 refcount_dec(&cached->refs);
2c64c53d 645 state = cached;
42daec29 646 goto hit_next;
2c64c53d 647 }
2ac55d41
JB
648 if (clear)
649 free_extent_state(cached);
2c64c53d 650 }
d1310b2e
CM
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
80ea96b1 655 node = tree_search(tree, start);
d1310b2e
CM
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 659hit_next:
d1310b2e
CM
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
5c939df5 663 last_end = state->end;
d1310b2e 664
0449314a 665 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
666 if (!(state->state & bits)) {
667 state = next_state(state);
0449314a 668 goto next;
cdc6a395 669 }
0449314a 670
d1310b2e
CM
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
8233767a
XG
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
d1310b2e 690 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
691 if (err)
692 extent_io_tree_panic(tree, err);
693
d1310b2e
CM
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
fefdc557
QW
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
d1ac6e41 700 goto next;
d1310b2e
CM
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
8233767a
XG
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
d1310b2e 713 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
714 if (err)
715 extent_io_tree_panic(tree, err);
716
d1310b2e
CM
717 if (wake)
718 wake_up(&state->wq);
42daec29 719
fefdc557 720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 721
d1310b2e
CM
722 prealloc = NULL;
723 goto out;
724 }
42daec29 725
fefdc557 726 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 727next:
5c939df5
YZ
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
cdc6a395 731 if (start <= end && state && !need_resched())
692e5759 732 goto hit_next;
d1310b2e
CM
733
734search_again:
735 if (start > end)
736 goto out;
cad321ad 737 spin_unlock(&tree->lock);
d0164adc 738 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
739 cond_resched();
740 goto again;
7ab5cb2a
DS
741
742out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
d1310b2e 749}
d1310b2e 750
143bede5
JM
751static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
641f5219
CH
753 __releases(tree->lock)
754 __acquires(tree->lock)
d1310b2e
CM
755{
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 758 spin_unlock(&tree->lock);
d1310b2e 759 schedule();
cad321ad 760 spin_lock(&tree->lock);
d1310b2e 761 finish_wait(&state->wq, &wait);
d1310b2e
CM
762}
763
764/*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
41074888
DS
769static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
d1310b2e
CM
771{
772 struct extent_state *state;
773 struct rb_node *node;
774
a5dee37d 775 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 776
cad321ad 777 spin_lock(&tree->lock);
d1310b2e
CM
778again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
80ea96b1 784 node = tree_search(tree, start);
c50d3e71 785process_node:
d1310b2e
CM
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
b7ac31b7 796 refcount_inc(&state->refs);
d1310b2e
CM
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
c50d3e71
FM
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
d1310b2e
CM
810 }
811out:
cad321ad 812 spin_unlock(&tree->lock);
d1310b2e 813}
d1310b2e 814
1bf85046 815static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 816 struct extent_state *state,
d38ed27f 817 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 818{
9ee49a04 819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 820
1bf85046 821 set_state_cb(tree, state, bits);
0ca1f7ce 822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
d38ed27f 826 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 827 state->state |= bits_to_set;
d1310b2e
CM
828}
829
e38e2ed7
FM
830static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
9ee49a04 832 unsigned flags)
2c64c53d
CM
833{
834 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 835 if (!flags || (state->state & flags)) {
2c64c53d 836 *cached_ptr = state;
b7ac31b7 837 refcount_inc(&state->refs);
2c64c53d
CM
838 }
839 }
840}
841
e38e2ed7
FM
842static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844{
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847}
848
d1310b2e 849/*
1edbb734
CM
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 852 *
1edbb734
CM
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
d1310b2e 856 *
1edbb734 857 * [start, end] is inclusive This takes the tree lock.
d1310b2e 858 */
1edbb734 859
3fbe5c02
JM
860static int __must_check
861__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 862 unsigned bits, unsigned exclusive_bits,
41074888 863 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 864 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
865{
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
12cfbad9
FDBM
869 struct rb_node **p;
870 struct rb_node *parent;
d1310b2e 871 int err = 0;
d1310b2e
CM
872 u64 last_start;
873 u64 last_end;
42daec29 874
a5dee37d 875 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 876
0ca1f7ce 877 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 878again:
d0164adc 879 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
d1310b2e 887 prealloc = alloc_extent_state(mask);
d1310b2e
CM
888 }
889
cad321ad 890 spin_lock(&tree->lock);
9655d298
CM
891 if (cached_state && *cached_state) {
892 state = *cached_state;
df98b6e2 893 if (state->start <= start && state->end > start &&
27a3507d 894 extent_state_in_tree(state)) {
9655d298
CM
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
d1310b2e
CM
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
12cfbad9 903 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 904 if (!node) {
8233767a
XG
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
12cfbad9 907 err = insert_state(tree, prealloc, start, end,
d38ed27f 908 &p, &parent, &bits, changeset);
c2d904e0
JM
909 if (err)
910 extent_io_tree_panic(tree, err);
911
c42ac0bc 912 cache_state(prealloc, cached_state);
d1310b2e 913 prealloc = NULL;
d1310b2e
CM
914 goto out;
915 }
d1310b2e 916 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 917hit_next:
d1310b2e
CM
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
1edbb734 928 if (state->state & exclusive_bits) {
d1310b2e
CM
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
42daec29 933
d38ed27f 934 set_state_bits(tree, state, &bits, changeset);
2c64c53d 935 cache_state(state, cached_state);
d1310b2e 936 merge_state(tree, state);
5c939df5
YZ
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
d1ac6e41
LB
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
d1310b2e
CM
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
1edbb734 964 if (state->state & exclusive_bits) {
d1310b2e
CM
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
8233767a
XG
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
d1310b2e 972 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
973 if (err)
974 extent_io_tree_panic(tree, err);
975
d1310b2e
CM
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
d38ed27f 980 set_state_bits(tree, state, &bits, changeset);
2c64c53d 981 cache_state(state, cached_state);
d1310b2e 982 merge_state(tree, state);
5c939df5
YZ
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
d1ac6e41
LB
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
d1310b2e
CM
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
d397712b 1005 this_end = last_start - 1;
8233767a
XG
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
c7f895a2
XG
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
d1310b2e 1014 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1015 NULL, NULL, &bits, changeset);
c2d904e0
JM
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
9ed74f2d
JB
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
d1310b2e
CM
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1edbb734 1031 if (state->state & exclusive_bits) {
d1310b2e
CM
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
8233767a
XG
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
d1310b2e 1039 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1040 if (err)
1041 extent_io_tree_panic(tree, err);
d1310b2e 1042
d38ed27f 1043 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1044 cache_state(prealloc, cached_state);
d1310b2e
CM
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
b5a4ba14
DS
1050search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
d1310b2e
CM
1057
1058out:
cad321ad 1059 spin_unlock(&tree->lock);
d1310b2e
CM
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
d1310b2e 1065}
d1310b2e 1066
41074888 1067int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1068 unsigned bits, u64 * failed_start,
41074888 1069 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1070{
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1072 cached_state, mask, NULL);
3fbe5c02
JM
1073}
1074
1075
462d6fac 1076/**
10983f2e
LB
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
462d6fac
JB
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
e6138876 1084 * @cached_state: state that we're going to cache
462d6fac
JB
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
210aa277
DS
1091 *
1092 * All allocations are done with GFP_NOFS.
462d6fac
JB
1093 */
1094int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1095 unsigned bits, unsigned clear_bits,
210aa277 1096 struct extent_state **cached_state)
462d6fac
JB
1097{
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
12cfbad9
FDBM
1101 struct rb_node **p;
1102 struct rb_node *parent;
462d6fac
JB
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
c8fd3de7 1106 bool first_iteration = true;
462d6fac 1107
a5dee37d 1108 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1109
462d6fac 1110again:
210aa277 1111 if (!prealloc) {
c8fd3de7
FM
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
210aa277 1119 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1120 if (!prealloc && !first_iteration)
462d6fac
JB
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
e6138876
JB
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
27a3507d 1128 extent_state_in_tree(state)) {
e6138876
JB
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
462d6fac
JB
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
12cfbad9 1138 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
12cfbad9 1145 err = insert_state(tree, prealloc, start, end,
d38ed27f 1146 &p, &parent, &bits, NULL);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
462d6fac
JB
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
d38ed27f 1165 set_state_bits(tree, state, &bits, NULL);
e6138876 1166 cache_state(state, cached_state);
fefdc557 1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1168 if (last_end == (u64)-1)
1169 goto out;
462d6fac 1170 start = last_end + 1;
d1ac6e41
LB
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
462d6fac
JB
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
462d6fac 1199 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1200 if (err)
1201 extent_io_tree_panic(tree, err);
462d6fac
JB
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
d38ed27f 1206 set_state_bits(tree, state, &bits, NULL);
e6138876 1207 cache_state(state, cached_state);
fefdc557
QW
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
462d6fac
JB
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
d1ac6e41
LB
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
462d6fac
JB
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
462d6fac
JB
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1244 NULL, NULL, &bits, NULL);
c2d904e0
JM
1245 if (err)
1246 extent_io_tree_panic(tree, err);
e6138876 1247 cache_state(prealloc, cached_state);
462d6fac
JB
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
462d6fac
JB
1264
1265 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1266 if (err)
1267 extent_io_tree_panic(tree, err);
462d6fac 1268
d38ed27f 1269 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1270 cache_state(prealloc, cached_state);
fefdc557 1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
462d6fac
JB
1276search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
210aa277 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac 1282 goto again;
462d6fac
JB
1283
1284out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
462d6fac
JB
1290}
1291
d1310b2e 1292/* wrappers around set/clear extent bit */
d38ed27f 1293int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1294 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1295{
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
2c53b912 1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1305 changeset);
1306}
1307
fefdc557
QW
1308int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311{
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314}
1315
fefdc557 1316int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1317 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1318{
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
f734c44a 1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1326 changeset);
1327}
1328
d352ac68
CM
1329/*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1edbb734 1333int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1334 struct extent_state **cached_state)
d1310b2e
CM
1335{
1336 int err;
1337 u64 failed_start;
9ee49a04 1338
d1310b2e 1339 while (1) {
ff13db41 1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1341 EXTENT_LOCKED, &failed_start,
d38ed27f 1342 cached_state, GFP_NOFS, NULL);
d0082371 1343 if (err == -EEXIST) {
d1310b2e
CM
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
d0082371 1346 } else
d1310b2e 1347 break;
d1310b2e
CM
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351}
d1310b2e 1352
d0082371 1353int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1354{
1355 int err;
1356 u64 failed_start;
1357
3fbe5c02 1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1359 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1364 return 0;
6643558d 1365 }
25179201
JB
1366 return 1;
1367}
25179201 1368
bd1fa4f0 1369void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1370{
09cbfeaf
KS
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
09cbfeaf 1379 put_page(page);
4adaa611
CM
1380 index++;
1381 }
4adaa611
CM
1382}
1383
f6311572 1384void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1385{
09cbfeaf
KS
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1393 __set_page_dirty_nobuffers(page);
8d38633c 1394 account_page_redirty(page);
09cbfeaf 1395 put_page(page);
4adaa611
CM
1396 index++;
1397 }
4adaa611
CM
1398}
1399
d1310b2e
CM
1400/*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
35de6db2 1403static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1404{
09cbfeaf
KS
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
79787eaa 1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1412 set_page_writeback(page);
09cbfeaf 1413 put_page(page);
d1310b2e
CM
1414 index++;
1415 }
d1310b2e 1416}
d1310b2e 1417
d352ac68
CM
1418/* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
48a3b636
ES
1422static struct extent_state *
1423find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1424 u64 start, unsigned bits)
d7fc640e
CM
1425{
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
d397712b 1434 if (!node)
d7fc640e 1435 goto out;
d7fc640e 1436
d397712b 1437 while (1) {
d7fc640e 1438 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1439 if (state->end >= start && (state->state & bits))
d7fc640e 1440 return state;
d397712b 1441
d7fc640e
CM
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446out:
1447 return NULL;
1448}
d7fc640e 1449
69261c4b
XG
1450/*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
477d7eaf 1455 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1456 */
1457int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1458 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1459 struct extent_state **cached_state)
69261c4b
XG
1460{
1461 struct extent_state *state;
e6138876 1462 struct rb_node *n;
69261c4b
XG
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
e6138876
JB
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
27a3507d 1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
69261c4b 1485 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1486got_it:
69261c4b 1487 if (state) {
e38e2ed7 1488 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
e6138876 1493out:
69261c4b
XG
1494 spin_unlock(&tree->lock);
1495 return ret;
1496}
1497
d352ac68
CM
1498/*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
c8b97818 1504static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
d1310b2e
CM
1507{
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
cad321ad 1514 spin_lock(&tree->lock);
c8b97818 1515
d1310b2e
CM
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
80ea96b1 1520 node = tree_search(tree, cur_start);
2b114d1d 1521 if (!node) {
3b951516
CM
1522 if (!found)
1523 *end = (u64)-1;
d1310b2e
CM
1524 goto out;
1525 }
1526
d397712b 1527 while (1) {
d1310b2e 1528 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
c2a128d2 1538 if (!found) {
d1310b2e 1539 *start = state->start;
c2a128d2 1540 *cached_state = state;
b7ac31b7 1541 refcount_inc(&state->refs);
c2a128d2 1542 }
d1310b2e
CM
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
d1310b2e 1547 total_bytes += state->end - state->start + 1;
7bf811a5 1548 if (total_bytes >= max_bytes)
573aecaf 1549 break;
573aecaf 1550 if (!node)
d1310b2e
CM
1551 break;
1552 }
1553out:
cad321ad 1554 spin_unlock(&tree->lock);
d1310b2e
CM
1555 return found;
1556}
1557
da2c7009
LB
1558static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
143bede5
JM
1563static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
c8b97818 1566{
09cbfeaf
KS
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1569
76c0021d 1570 ASSERT(locked_page);
c8b97818 1571 if (index == locked_page->index && end_index == index)
143bede5 1572 return;
c8b97818 1573
76c0021d
LB
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
c8b97818
CM
1576}
1577
1578static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582{
09cbfeaf 1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1584 unsigned long index_ret = index;
09cbfeaf 1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1586 int ret;
c8b97818 1587
76c0021d 1588 ASSERT(locked_page);
c8b97818
CM
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
76c0021d
LB
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1597 return ret;
1598}
1599
1600/*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
294e30fe
JB
1606STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
c8b97818
CM
1610{
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
9655d298 1614 struct extent_state *cached_state = NULL;
c8b97818
CM
1615 int ret;
1616 int loops = 0;
1617
1618again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1623 max_bytes, &cached_state);
70b99e69 1624 if (!found || delalloc_end <= *start) {
c8b97818
CM
1625 *start = delalloc_start;
1626 *end = delalloc_end;
c2a128d2 1627 free_extent_state(cached_state);
385fe0be 1628 return 0;
c8b97818
CM
1629 }
1630
70b99e69
CM
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
d397712b 1636 if (delalloc_start < *start)
70b99e69 1637 delalloc_start = *start;
70b99e69 1638
c8b97818
CM
1639 /*
1640 * make sure to limit the number of pages we try to lock down
c8b97818 1641 */
7bf811a5
JB
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1644
c8b97818
CM
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
9655d298 1652 free_extent_state(cached_state);
7d788742 1653 cached_state = NULL;
c8b97818 1654 if (!loops) {
09cbfeaf 1655 max_bytes = PAGE_SIZE;
c8b97818
CM
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
79787eaa 1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1664
1665 /* step three, lock the state bits for the whole range */
ff13db41 1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1670 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1671 if (!ret) {
9655d298
CM
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
c8b97818
CM
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
9655d298 1679 free_extent_state(cached_state);
c8b97818
CM
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682out_failed:
1683 return found;
1684}
1685
da2c7009
LB
1686static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1690{
873695b3 1691 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1692 unsigned long pages_locked = 0;
873695b3 1693 pgoff_t index = start_index;
c8b97818 1694 struct page *pages[16];
873695b3 1695 unsigned ret;
da2c7009 1696 int err = 0;
c8b97818 1697 int i;
771ed689 1698
da2c7009
LB
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
704de49d 1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1705 mapping_set_error(mapping, -EIO);
704de49d 1706
d397712b 1707 while (nr_pages > 0) {
873695b3 1708 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1717 err = -EAGAIN;
1718 goto out;
da2c7009 1719 }
8b62b72b 1720
da2c7009 1721 for (i = 0; i < ret; i++) {
c2790a2e 1722 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1723 SetPagePrivate2(pages[i]);
1724
c8b97818 1725 if (pages[i] == locked_page) {
09cbfeaf 1726 put_page(pages[i]);
da2c7009 1727 pages_locked++;
c8b97818
CM
1728 continue;
1729 }
c2790a2e 1730 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1731 clear_page_dirty_for_io(pages[i]);
c2790a2e 1732 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1733 set_page_writeback(pages[i]);
704de49d
FM
1734 if (page_ops & PAGE_SET_ERROR)
1735 SetPageError(pages[i]);
c2790a2e 1736 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1737 end_page_writeback(pages[i]);
c2790a2e 1738 if (page_ops & PAGE_UNLOCK)
771ed689 1739 unlock_page(pages[i]);
da2c7009
LB
1740 if (page_ops & PAGE_LOCK) {
1741 lock_page(pages[i]);
1742 if (!PageDirty(pages[i]) ||
1743 pages[i]->mapping != mapping) {
1744 unlock_page(pages[i]);
1745 put_page(pages[i]);
1746 err = -EAGAIN;
1747 goto out;
1748 }
1749 }
09cbfeaf 1750 put_page(pages[i]);
da2c7009 1751 pages_locked++;
c8b97818
CM
1752 }
1753 nr_pages -= ret;
1754 index += ret;
1755 cond_resched();
1756 }
da2c7009
LB
1757out:
1758 if (err && index_ret)
1759 *index_ret = start_index + pages_locked - 1;
1760 return err;
c8b97818 1761}
c8b97818 1762
873695b3
LB
1763void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1764 u64 delalloc_end, struct page *locked_page,
1765 unsigned clear_bits,
1766 unsigned long page_ops)
1767{
1768 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1769 NULL, GFP_NOFS);
1770
1771 __process_pages_contig(inode->i_mapping, locked_page,
1772 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1773 page_ops, NULL);
873695b3
LB
1774}
1775
d352ac68
CM
1776/*
1777 * count the number of bytes in the tree that have a given bit(s)
1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1779 * cached. The total number found is returned.
1780 */
d1310b2e
CM
1781u64 count_range_bits(struct extent_io_tree *tree,
1782 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1783 unsigned bits, int contig)
d1310b2e
CM
1784{
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 u64 cur_start = *start;
1788 u64 total_bytes = 0;
ec29ed5b 1789 u64 last = 0;
d1310b2e
CM
1790 int found = 0;
1791
fae7f21c 1792 if (WARN_ON(search_end <= cur_start))
d1310b2e 1793 return 0;
d1310b2e 1794
cad321ad 1795 spin_lock(&tree->lock);
d1310b2e
CM
1796 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 total_bytes = tree->dirty_bytes;
1798 goto out;
1799 }
1800 /*
1801 * this search will find all the extents that end after
1802 * our range starts.
1803 */
80ea96b1 1804 node = tree_search(tree, cur_start);
d397712b 1805 if (!node)
d1310b2e 1806 goto out;
d1310b2e 1807
d397712b 1808 while (1) {
d1310b2e
CM
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start > search_end)
1811 break;
ec29ed5b
CM
1812 if (contig && found && state->start > last + 1)
1813 break;
1814 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1815 total_bytes += min(search_end, state->end) + 1 -
1816 max(cur_start, state->start);
1817 if (total_bytes >= max_bytes)
1818 break;
1819 if (!found) {
af60bed2 1820 *start = max(cur_start, state->start);
d1310b2e
CM
1821 found = 1;
1822 }
ec29ed5b
CM
1823 last = state->end;
1824 } else if (contig && found) {
1825 break;
d1310b2e
CM
1826 }
1827 node = rb_next(node);
1828 if (!node)
1829 break;
1830 }
1831out:
cad321ad 1832 spin_unlock(&tree->lock);
d1310b2e
CM
1833 return total_bytes;
1834}
b2950863 1835
d352ac68
CM
1836/*
1837 * set the private field for a given byte offset in the tree. If there isn't
1838 * an extent_state there already, this does nothing.
1839 */
f827ba9a 1840static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1841 struct io_failure_record *failrec)
d1310b2e
CM
1842{
1843 struct rb_node *node;
1844 struct extent_state *state;
1845 int ret = 0;
1846
cad321ad 1847 spin_lock(&tree->lock);
d1310b2e
CM
1848 /*
1849 * this search will find all the extents that end after
1850 * our range starts.
1851 */
80ea96b1 1852 node = tree_search(tree, start);
2b114d1d 1853 if (!node) {
d1310b2e
CM
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857 state = rb_entry(node, struct extent_state, rb_node);
1858 if (state->start != start) {
1859 ret = -ENOENT;
1860 goto out;
1861 }
47dc196a 1862 state->failrec = failrec;
d1310b2e 1863out:
cad321ad 1864 spin_unlock(&tree->lock);
d1310b2e
CM
1865 return ret;
1866}
1867
f827ba9a 1868static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1869 struct io_failure_record **failrec)
d1310b2e
CM
1870{
1871 struct rb_node *node;
1872 struct extent_state *state;
1873 int ret = 0;
1874
cad321ad 1875 spin_lock(&tree->lock);
d1310b2e
CM
1876 /*
1877 * this search will find all the extents that end after
1878 * our range starts.
1879 */
80ea96b1 1880 node = tree_search(tree, start);
2b114d1d 1881 if (!node) {
d1310b2e
CM
1882 ret = -ENOENT;
1883 goto out;
1884 }
1885 state = rb_entry(node, struct extent_state, rb_node);
1886 if (state->start != start) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
47dc196a 1890 *failrec = state->failrec;
d1310b2e 1891out:
cad321ad 1892 spin_unlock(&tree->lock);
d1310b2e
CM
1893 return ret;
1894}
1895
1896/*
1897 * searches a range in the state tree for a given mask.
70dec807 1898 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1899 * has the bits set. Otherwise, 1 is returned if any bit in the
1900 * range is found set.
1901 */
1902int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1903 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1904{
1905 struct extent_state *state = NULL;
1906 struct rb_node *node;
1907 int bitset = 0;
d1310b2e 1908
cad321ad 1909 spin_lock(&tree->lock);
27a3507d 1910 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1911 cached->end > start)
9655d298
CM
1912 node = &cached->rb_node;
1913 else
1914 node = tree_search(tree, start);
d1310b2e
CM
1915 while (node && start <= end) {
1916 state = rb_entry(node, struct extent_state, rb_node);
1917
1918 if (filled && state->start > start) {
1919 bitset = 0;
1920 break;
1921 }
1922
1923 if (state->start > end)
1924 break;
1925
1926 if (state->state & bits) {
1927 bitset = 1;
1928 if (!filled)
1929 break;
1930 } else if (filled) {
1931 bitset = 0;
1932 break;
1933 }
46562cec
CM
1934
1935 if (state->end == (u64)-1)
1936 break;
1937
d1310b2e
CM
1938 start = state->end + 1;
1939 if (start > end)
1940 break;
1941 node = rb_next(node);
1942 if (!node) {
1943 if (filled)
1944 bitset = 0;
1945 break;
1946 }
1947 }
cad321ad 1948 spin_unlock(&tree->lock);
d1310b2e
CM
1949 return bitset;
1950}
d1310b2e
CM
1951
1952/*
1953 * helper function to set a given page up to date if all the
1954 * extents in the tree for that page are up to date
1955 */
143bede5 1956static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1957{
4eee4fa4 1958 u64 start = page_offset(page);
09cbfeaf 1959 u64 end = start + PAGE_SIZE - 1;
9655d298 1960 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1961 SetPageUptodate(page);
d1310b2e
CM
1962}
1963
4ac1f4ac 1964int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1965{
1966 int ret;
1967 int err = 0;
4ac1f4ac 1968 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
4a54c8c1 1969
47dc196a 1970 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1971 ret = clear_extent_bits(failure_tree, rec->start,
1972 rec->start + rec->len - 1,
91166212 1973 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1974 if (ret)
1975 err = ret;
1976
4ac1f4ac 1977 ret = clear_extent_bits(&inode->io_tree, rec->start,
53b381b3 1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_DAMAGED);
53b381b3
DW
1980 if (ret && !err)
1981 err = ret;
4a54c8c1
JS
1982
1983 kfree(rec);
1984 return err;
1985}
1986
4a54c8c1
JS
1987/*
1988 * this bypasses the standard btrfs submit functions deliberately, as
1989 * the standard behavior is to write all copies in a raid setup. here we only
1990 * want to write the one bad copy. so we do the mapping for ourselves and issue
1991 * submit_bio directly.
3ec706c8 1992 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1993 * actually prevents the read that triggered the error from finishing.
1994 * currently, there can be no more than two copies of every data bit. thus,
1995 * exactly one rewrite is required.
1996 */
9d4f7f8a
NB
1997int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1998 u64 logical, struct page *page,
1999 unsigned int pg_offset, int mirror_num)
4a54c8c1 2000{
9d4f7f8a 2001 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2002 struct bio *bio;
2003 struct btrfs_device *dev;
4a54c8c1
JS
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
2007 int ret;
2008
908960c6 2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2010 BUG_ON(!mirror_num);
2011
9be3395b 2012 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2013 if (!bio)
2014 return -EIO;
4f024f37 2015 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2016 map_length = length;
2017
b5de8d0d
FM
2018 /*
2019 * Avoid races with device replace and make sure our bbio has devices
2020 * associated to its stripes that don't go away while we are doing the
2021 * read repair operation.
2022 */
2023 btrfs_bio_counter_inc_blocked(fs_info);
c725328c
LB
2024 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2025 /*
2026 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2027 * to update all raid stripes, but here we just want to correct
2028 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2029 * stripe's dev and sector.
2030 */
2031 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2032 &map_length, &bbio, 0);
2033 if (ret) {
2034 btrfs_bio_counter_dec(fs_info);
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 ASSERT(bbio->mirror_num == 1);
2039 } else {
2040 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2041 &map_length, &bbio, mirror_num);
2042 if (ret) {
2043 btrfs_bio_counter_dec(fs_info);
2044 bio_put(bio);
2045 return -EIO;
2046 }
2047 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2048 }
c725328c
LB
2049
2050 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2051 bio->bi_iter.bi_sector = sector;
c725328c 2052 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2053 btrfs_put_bbio(bbio);
4a54c8c1 2054 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2055 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2056 bio_put(bio);
2057 return -EIO;
2058 }
2059 bio->bi_bdev = dev->bdev;
70fd7614 2060 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2061 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2062
4e49ea4a 2063 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2064 /* try to remap that extent elsewhere? */
b5de8d0d 2065 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2066 bio_put(bio);
442a4f63 2067 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2068 return -EIO;
2069 }
2070
b14af3b4
DS
2071 btrfs_info_rl_in_rcu(fs_info,
2072 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
9d4f7f8a 2073 btrfs_ino(inode), start,
1203b681 2074 rcu_str_deref(dev->name), sector);
b5de8d0d 2075 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2076 bio_put(bio);
2077 return 0;
2078}
2079
2ff7e61e
JM
2080int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2081 struct extent_buffer *eb, int mirror_num)
ea466794 2082{
ea466794
JB
2083 u64 start = eb->start;
2084 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2085 int ret = 0;
ea466794 2086
0b246afa 2087 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2088 return -EROFS;
2089
ea466794 2090 for (i = 0; i < num_pages; i++) {
fb85fc9a 2091 struct page *p = eb->pages[i];
1203b681 2092
9d4f7f8a 2093 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
09cbfeaf 2094 PAGE_SIZE, start, p,
1203b681 2095 start - page_offset(p), mirror_num);
ea466794
JB
2096 if (ret)
2097 break;
09cbfeaf 2098 start += PAGE_SIZE;
ea466794
JB
2099 }
2100
2101 return ret;
2102}
2103
4a54c8c1
JS
2104/*
2105 * each time an IO finishes, we do a fast check in the IO failure tree
2106 * to see if we need to process or clean up an io_failure_record
2107 */
b30cb441 2108int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
8b110e39 2109 unsigned int pg_offset)
4a54c8c1
JS
2110{
2111 u64 private;
4a54c8c1 2112 struct io_failure_record *failrec;
b30cb441 2113 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2114 struct extent_state *state;
2115 int num_copies;
4a54c8c1 2116 int ret;
4a54c8c1
JS
2117
2118 private = 0;
b30cb441 2119 ret = count_range_bits(&inode->io_failure_tree, &private,
4a54c8c1
JS
2120 (u64)-1, 1, EXTENT_DIRTY, 0);
2121 if (!ret)
2122 return 0;
2123
b30cb441 2124 ret = get_state_failrec(&inode->io_failure_tree, start,
47dc196a 2125 &failrec);
4a54c8c1
JS
2126 if (ret)
2127 return 0;
2128
4a54c8c1
JS
2129 BUG_ON(!failrec->this_mirror);
2130
2131 if (failrec->in_validation) {
2132 /* there was no real error, just free the record */
ab8d0fc4
JM
2133 btrfs_debug(fs_info,
2134 "clean_io_failure: freeing dummy error at %llu",
2135 failrec->start);
4a54c8c1
JS
2136 goto out;
2137 }
908960c6
ID
2138 if (fs_info->sb->s_flags & MS_RDONLY)
2139 goto out;
4a54c8c1 2140
b30cb441
NB
2141 spin_lock(&inode->io_tree.lock);
2142 state = find_first_extent_bit_state(&inode->io_tree,
4a54c8c1
JS
2143 failrec->start,
2144 EXTENT_LOCKED);
b30cb441 2145 spin_unlock(&inode->io_tree.lock);
4a54c8c1 2146
883d0de4
MX
2147 if (state && state->start <= failrec->start &&
2148 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2149 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2150 failrec->len);
4a54c8c1 2151 if (num_copies > 1) {
b30cb441 2152 repair_io_failure(inode, start, failrec->len,
454ff3de 2153 failrec->logical, page,
1203b681 2154 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2155 }
2156 }
2157
2158out:
b30cb441 2159 free_io_failure(inode, failrec);
4a54c8c1 2160
454ff3de 2161 return 0;
4a54c8c1
JS
2162}
2163
f612496b
MX
2164/*
2165 * Can be called when
2166 * - hold extent lock
2167 * - under ordered extent
2168 * - the inode is freeing
2169 */
7ab7956e 2170void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2171{
7ab7956e 2172 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2173 struct io_failure_record *failrec;
2174 struct extent_state *state, *next;
2175
2176 if (RB_EMPTY_ROOT(&failure_tree->state))
2177 return;
2178
2179 spin_lock(&failure_tree->lock);
2180 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2181 while (state) {
2182 if (state->start > end)
2183 break;
2184
2185 ASSERT(state->end <= end);
2186
2187 next = next_state(state);
2188
47dc196a 2189 failrec = state->failrec;
f612496b
MX
2190 free_extent_state(state);
2191 kfree(failrec);
2192
2193 state = next;
2194 }
2195 spin_unlock(&failure_tree->lock);
2196}
2197
2fe6303e 2198int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2199 struct io_failure_record **failrec_ret)
4a54c8c1 2200{
ab8d0fc4 2201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2202 struct io_failure_record *failrec;
4a54c8c1 2203 struct extent_map *em;
4a54c8c1
JS
2204 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2205 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2206 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2207 int ret;
4a54c8c1
JS
2208 u64 logical;
2209
47dc196a 2210 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2211 if (ret) {
2212 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2213 if (!failrec)
2214 return -ENOMEM;
2fe6303e 2215
4a54c8c1
JS
2216 failrec->start = start;
2217 failrec->len = end - start + 1;
2218 failrec->this_mirror = 0;
2219 failrec->bio_flags = 0;
2220 failrec->in_validation = 0;
2221
2222 read_lock(&em_tree->lock);
2223 em = lookup_extent_mapping(em_tree, start, failrec->len);
2224 if (!em) {
2225 read_unlock(&em_tree->lock);
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
68ba990f 2230 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2231 free_extent_map(em);
2232 em = NULL;
2233 }
2234 read_unlock(&em_tree->lock);
7a2d6a64 2235 if (!em) {
4a54c8c1
JS
2236 kfree(failrec);
2237 return -EIO;
2238 }
2fe6303e 2239
4a54c8c1
JS
2240 logical = start - em->start;
2241 logical = em->block_start + logical;
2242 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2243 logical = em->block_start;
2244 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2245 extent_set_compress_type(&failrec->bio_flags,
2246 em->compress_type);
2247 }
2fe6303e 2248
ab8d0fc4
JM
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2251 logical, start, failrec->len);
2fe6303e 2252
4a54c8c1
JS
2253 failrec->logical = logical;
2254 free_extent_map(em);
2255
2256 /* set the bits in the private failure tree */
2257 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2258 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2259 if (ret >= 0)
47dc196a 2260 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2261 /* set the bits in the inode's tree */
2262 if (ret >= 0)
ceeb0ae7 2263 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2264 if (ret < 0) {
2265 kfree(failrec);
2266 return ret;
2267 }
2268 } else {
ab8d0fc4
JM
2269 btrfs_debug(fs_info,
2270 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2271 failrec->logical, failrec->start, failrec->len,
2272 failrec->in_validation);
4a54c8c1
JS
2273 /*
2274 * when data can be on disk more than twice, add to failrec here
2275 * (e.g. with a list for failed_mirror) to make
2276 * clean_io_failure() clean all those errors at once.
2277 */
2278 }
2fe6303e
MX
2279
2280 *failrec_ret = failrec;
2281
2282 return 0;
2283}
2284
2285int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2286 struct io_failure_record *failrec, int failed_mirror)
2287{
ab8d0fc4 2288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2289 int num_copies;
2290
ab8d0fc4 2291 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2292 if (num_copies == 1) {
2293 /*
2294 * we only have a single copy of the data, so don't bother with
2295 * all the retry and error correction code that follows. no
2296 * matter what the error is, it is very likely to persist.
2297 */
ab8d0fc4
JM
2298 btrfs_debug(fs_info,
2299 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2300 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2301 return 0;
4a54c8c1
JS
2302 }
2303
4a54c8c1
JS
2304 /*
2305 * there are two premises:
2306 * a) deliver good data to the caller
2307 * b) correct the bad sectors on disk
2308 */
2309 if (failed_bio->bi_vcnt > 1) {
2310 /*
2311 * to fulfill b), we need to know the exact failing sectors, as
2312 * we don't want to rewrite any more than the failed ones. thus,
2313 * we need separate read requests for the failed bio
2314 *
2315 * if the following BUG_ON triggers, our validation request got
2316 * merged. we need separate requests for our algorithm to work.
2317 */
2318 BUG_ON(failrec->in_validation);
2319 failrec->in_validation = 1;
2320 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2321 } else {
2322 /*
2323 * we're ready to fulfill a) and b) alongside. get a good copy
2324 * of the failed sector and if we succeed, we have setup
2325 * everything for repair_io_failure to do the rest for us.
2326 */
2327 if (failrec->in_validation) {
2328 BUG_ON(failrec->this_mirror != failed_mirror);
2329 failrec->in_validation = 0;
2330 failrec->this_mirror = 0;
2331 }
2332 failrec->failed_mirror = failed_mirror;
2333 failrec->this_mirror++;
2334 if (failrec->this_mirror == failed_mirror)
2335 failrec->this_mirror++;
4a54c8c1
JS
2336 }
2337
facc8a22 2338 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2339 btrfs_debug(fs_info,
2340 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2341 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2342 return 0;
4a54c8c1
JS
2343 }
2344
2fe6303e
MX
2345 return 1;
2346}
2347
2348
2349struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2350 struct io_failure_record *failrec,
2351 struct page *page, int pg_offset, int icsum,
8b110e39 2352 bio_end_io_t *endio_func, void *data)
2fe6303e 2353{
0b246afa 2354 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2355 struct bio *bio;
2356 struct btrfs_io_bio *btrfs_failed_bio;
2357 struct btrfs_io_bio *btrfs_bio;
2358
9be3395b 2359 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2360 if (!bio)
2361 return NULL;
2362
2363 bio->bi_end_io = endio_func;
4f024f37 2364 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2365 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2366 bio->bi_iter.bi_size = 0;
8b110e39 2367 bio->bi_private = data;
4a54c8c1 2368
facc8a22
MX
2369 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2370 if (btrfs_failed_bio->csum) {
facc8a22
MX
2371 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2372
2373 btrfs_bio = btrfs_io_bio(bio);
2374 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2375 icsum *= csum_size;
2376 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2377 csum_size);
2378 }
2379
2fe6303e
MX
2380 bio_add_page(bio, page, failrec->len, pg_offset);
2381
2382 return bio;
2383}
2384
2385/*
2386 * this is a generic handler for readpage errors (default
2387 * readpage_io_failed_hook). if other copies exist, read those and write back
2388 * good data to the failed position. does not investigate in remapping the
2389 * failed extent elsewhere, hoping the device will be smart enough to do this as
2390 * needed
2391 */
2392
2393static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2394 struct page *page, u64 start, u64 end,
2395 int failed_mirror)
2396{
2397 struct io_failure_record *failrec;
2398 struct inode *inode = page->mapping->host;
2399 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2400 struct bio *bio;
70fd7614 2401 int read_mode = 0;
4e4cbee9 2402 blk_status_t status;
2fe6303e
MX
2403 int ret;
2404
1f7ad75b 2405 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2406
2407 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2408 if (ret)
2409 return ret;
2410
2411 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2412 if (!ret) {
4ac1f4ac 2413 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2414 return -EIO;
2415 }
2416
2417 if (failed_bio->bi_vcnt > 1)
70fd7614 2418 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2419
2420 phy_offset >>= inode->i_sb->s_blocksize_bits;
2421 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2422 start - page_offset(page),
8b110e39
MX
2423 (int)phy_offset, failed_bio->bi_end_io,
2424 NULL);
2fe6303e 2425 if (!bio) {
4ac1f4ac 2426 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2427 return -EIO;
2428 }
1f7ad75b 2429 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2430
ab8d0fc4
JM
2431 btrfs_debug(btrfs_sb(inode->i_sb),
2432 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2433 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2434
4e4cbee9 2435 status = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
013bd4c3 2436 failrec->bio_flags, 0);
4e4cbee9 2437 if (status) {
4ac1f4ac 2438 free_io_failure(BTRFS_I(inode), failrec);
6c387ab2 2439 bio_put(bio);
4e4cbee9 2440 ret = blk_status_to_errno(status);
6c387ab2
MX
2441 }
2442
013bd4c3 2443 return ret;
4a54c8c1
JS
2444}
2445
d1310b2e
CM
2446/* lots and lots of room for performance fixes in the end_bio funcs */
2447
b5227c07 2448void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2449{
2450 int uptodate = (err == 0);
2451 struct extent_io_tree *tree;
3e2426bd 2452 int ret = 0;
87826df0
JM
2453
2454 tree = &BTRFS_I(page->mapping->host)->io_tree;
2455
c3988d63
DS
2456 if (tree->ops && tree->ops->writepage_end_io_hook)
2457 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2458 uptodate);
87826df0 2459
87826df0 2460 if (!uptodate) {
87826df0
JM
2461 ClearPageUptodate(page);
2462 SetPageError(page);
bff5baf8 2463 ret = err < 0 ? err : -EIO;
5dca6eea 2464 mapping_set_error(page->mapping, ret);
87826df0 2465 }
87826df0
JM
2466}
2467
d1310b2e
CM
2468/*
2469 * after a writepage IO is done, we need to:
2470 * clear the uptodate bits on error
2471 * clear the writeback bits in the extent tree for this IO
2472 * end_page_writeback if the page has no more pending IO
2473 *
2474 * Scheduling is not allowed, so the extent state tree is expected
2475 * to have one and only one object corresponding to this IO.
2476 */
4246a0b6 2477static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2478{
4e4cbee9 2479 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2480 struct bio_vec *bvec;
d1310b2e
CM
2481 u64 start;
2482 u64 end;
2c30c71b 2483 int i;
d1310b2e 2484
2c30c71b 2485 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2486 struct page *page = bvec->bv_page;
0b246afa
JM
2487 struct inode *inode = page->mapping->host;
2488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2489
17a5adcc
AO
2490 /* We always issue full-page reads, but if some block
2491 * in a page fails to read, blk_update_request() will
2492 * advance bv_offset and adjust bv_len to compensate.
2493 * Print a warning for nonzero offsets, and an error
2494 * if they don't add up to a full page. */
09cbfeaf
KS
2495 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2496 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2497 btrfs_err(fs_info,
efe120a0
FH
2498 "partial page write in btrfs with offset %u and length %u",
2499 bvec->bv_offset, bvec->bv_len);
2500 else
0b246afa 2501 btrfs_info(fs_info,
5d163e0e 2502 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2503 bvec->bv_offset, bvec->bv_len);
2504 }
d1310b2e 2505
17a5adcc
AO
2506 start = page_offset(page);
2507 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2508
4e4cbee9 2509 end_extent_writepage(page, error, start, end);
17a5adcc 2510 end_page_writeback(page);
2c30c71b 2511 }
2b1f55b0 2512
d1310b2e 2513 bio_put(bio);
d1310b2e
CM
2514}
2515
883d0de4
MX
2516static void
2517endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2518 int uptodate)
2519{
2520 struct extent_state *cached = NULL;
2521 u64 end = start + len - 1;
2522
2523 if (uptodate && tree->track_uptodate)
2524 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2525 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2526}
2527
d1310b2e
CM
2528/*
2529 * after a readpage IO is done, we need to:
2530 * clear the uptodate bits on error
2531 * set the uptodate bits if things worked
2532 * set the page up to date if all extents in the tree are uptodate
2533 * clear the lock bit in the extent tree
2534 * unlock the page if there are no other extents locked for it
2535 *
2536 * Scheduling is not allowed, so the extent state tree is expected
2537 * to have one and only one object corresponding to this IO.
2538 */
4246a0b6 2539static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2540{
2c30c71b 2541 struct bio_vec *bvec;
4e4cbee9 2542 int uptodate = !bio->bi_status;
facc8a22 2543 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2544 struct extent_io_tree *tree;
facc8a22 2545 u64 offset = 0;
d1310b2e
CM
2546 u64 start;
2547 u64 end;
facc8a22 2548 u64 len;
883d0de4
MX
2549 u64 extent_start = 0;
2550 u64 extent_len = 0;
5cf1ab56 2551 int mirror;
d1310b2e 2552 int ret;
2c30c71b 2553 int i;
d1310b2e 2554
2c30c71b 2555 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2556 struct page *page = bvec->bv_page;
a71754fc 2557 struct inode *inode = page->mapping->host;
ab8d0fc4 2558 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2559
ab8d0fc4
JM
2560 btrfs_debug(fs_info,
2561 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2562 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2563 io_bio->mirror_num);
a71754fc 2564 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2565
17a5adcc
AO
2566 /* We always issue full-page reads, but if some block
2567 * in a page fails to read, blk_update_request() will
2568 * advance bv_offset and adjust bv_len to compensate.
2569 * Print a warning for nonzero offsets, and an error
2570 * if they don't add up to a full page. */
09cbfeaf
KS
2571 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2572 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2573 btrfs_err(fs_info,
2574 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2575 bvec->bv_offset, bvec->bv_len);
2576 else
ab8d0fc4
JM
2577 btrfs_info(fs_info,
2578 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2579 bvec->bv_offset, bvec->bv_len);
2580 }
d1310b2e 2581
17a5adcc
AO
2582 start = page_offset(page);
2583 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2584 len = bvec->bv_len;
d1310b2e 2585
9be3395b 2586 mirror = io_bio->mirror_num;
20c9801d 2587 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2588 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2589 page, start, end,
2590 mirror);
5ee0844d 2591 if (ret)
d1310b2e 2592 uptodate = 0;
5ee0844d 2593 else
b30cb441
NB
2594 clean_io_failure(BTRFS_I(inode), start,
2595 page, 0);
d1310b2e 2596 }
ea466794 2597
f2a09da9
MX
2598 if (likely(uptodate))
2599 goto readpage_ok;
2600
20a7db8a 2601 if (tree->ops) {
5cf1ab56 2602 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2603 if (ret == -EAGAIN) {
2604 /*
2605 * Data inode's readpage_io_failed_hook() always
2606 * returns -EAGAIN.
2607 *
2608 * The generic bio_readpage_error handles errors
2609 * the following way: If possible, new read
2610 * requests are created and submitted and will
2611 * end up in end_bio_extent_readpage as well (if
2612 * we're lucky, not in the !uptodate case). In
2613 * that case it returns 0 and we just go on with
2614 * the next page in our bio. If it can't handle
2615 * the error it will return -EIO and we remain
2616 * responsible for that page.
2617 */
2618 ret = bio_readpage_error(bio, offset, page,
2619 start, end, mirror);
2620 if (ret == 0) {
4e4cbee9 2621 uptodate = !bio->bi_status;
9d0d1c8b
LB
2622 offset += len;
2623 continue;
2624 }
2625 }
2626
f4a8e656 2627 /*
9d0d1c8b
LB
2628 * metadata's readpage_io_failed_hook() always returns
2629 * -EIO and fixes nothing. -EIO is also returned if
2630 * data inode error could not be fixed.
f4a8e656 2631 */
9d0d1c8b 2632 ASSERT(ret == -EIO);
7e38326f 2633 }
f2a09da9 2634readpage_ok:
883d0de4 2635 if (likely(uptodate)) {
a71754fc 2636 loff_t i_size = i_size_read(inode);
09cbfeaf 2637 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2638 unsigned off;
a71754fc
JB
2639
2640 /* Zero out the end if this page straddles i_size */
09cbfeaf 2641 off = i_size & (PAGE_SIZE-1);
a583c026 2642 if (page->index == end_index && off)
09cbfeaf 2643 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2644 SetPageUptodate(page);
70dec807 2645 } else {
17a5adcc
AO
2646 ClearPageUptodate(page);
2647 SetPageError(page);
70dec807 2648 }
17a5adcc 2649 unlock_page(page);
facc8a22 2650 offset += len;
883d0de4
MX
2651
2652 if (unlikely(!uptodate)) {
2653 if (extent_len) {
2654 endio_readpage_release_extent(tree,
2655 extent_start,
2656 extent_len, 1);
2657 extent_start = 0;
2658 extent_len = 0;
2659 }
2660 endio_readpage_release_extent(tree, start,
2661 end - start + 1, 0);
2662 } else if (!extent_len) {
2663 extent_start = start;
2664 extent_len = end + 1 - start;
2665 } else if (extent_start + extent_len == start) {
2666 extent_len += end + 1 - start;
2667 } else {
2668 endio_readpage_release_extent(tree, extent_start,
2669 extent_len, uptodate);
2670 extent_start = start;
2671 extent_len = end + 1 - start;
2672 }
2c30c71b 2673 }
d1310b2e 2674
883d0de4
MX
2675 if (extent_len)
2676 endio_readpage_release_extent(tree, extent_start, extent_len,
2677 uptodate);
facc8a22 2678 if (io_bio->end_io)
4e4cbee9 2679 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2680 bio_put(bio);
d1310b2e
CM
2681}
2682
9be3395b
CM
2683/*
2684 * this allocates from the btrfs_bioset. We're returning a bio right now
2685 * but you can call btrfs_io_bio for the appropriate container_of magic
2686 */
88f794ed
MX
2687struct bio *
2688btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2689 gfp_t gfp_flags)
d1310b2e 2690{
facc8a22 2691 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2692 struct bio *bio;
2693
9be3395b 2694 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2695
2696 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2697 while (!bio && (nr_vecs /= 2)) {
2698 bio = bio_alloc_bioset(gfp_flags,
2699 nr_vecs, btrfs_bioset);
2700 }
d1310b2e
CM
2701 }
2702
2703 if (bio) {
2704 bio->bi_bdev = bdev;
4f024f37 2705 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2706 btrfs_bio = btrfs_io_bio(bio);
2707 btrfs_bio->csum = NULL;
2708 btrfs_bio->csum_allocated = NULL;
2709 btrfs_bio->end_io = NULL;
d1310b2e
CM
2710 }
2711 return bio;
2712}
2713
9be3395b
CM
2714struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2715{
23ea8e5a
MX
2716 struct btrfs_io_bio *btrfs_bio;
2717 struct bio *new;
9be3395b 2718
23ea8e5a
MX
2719 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2720 if (new) {
2721 btrfs_bio = btrfs_io_bio(new);
2722 btrfs_bio->csum = NULL;
2723 btrfs_bio->csum_allocated = NULL;
2724 btrfs_bio->end_io = NULL;
2725 }
2726 return new;
2727}
9be3395b
CM
2728
2729/* this also allocates from the btrfs_bioset */
2730struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2731{
facc8a22
MX
2732 struct btrfs_io_bio *btrfs_bio;
2733 struct bio *bio;
2734
2735 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2736 if (bio) {
2737 btrfs_bio = btrfs_io_bio(bio);
2738 btrfs_bio->csum = NULL;
2739 btrfs_bio->csum_allocated = NULL;
2740 btrfs_bio->end_io = NULL;
2741 }
2742 return bio;
9be3395b
CM
2743}
2744
2745
1f7ad75b
MC
2746static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2747 unsigned long bio_flags)
d1310b2e 2748{
4e4cbee9 2749 blk_status_t ret = 0;
70dec807
CM
2750 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2751 struct page *page = bvec->bv_page;
2752 struct extent_io_tree *tree = bio->bi_private;
70dec807 2753 u64 start;
70dec807 2754
4eee4fa4 2755 start = page_offset(page) + bvec->bv_offset;
70dec807 2756
902b22f3 2757 bio->bi_private = NULL;
d1310b2e
CM
2758 bio_get(bio);
2759
20c9801d 2760 if (tree->ops)
81a75f67 2761 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
eaf25d93 2762 mirror_num, bio_flags, start);
0b86a832 2763 else
4e49ea4a 2764 btrfsic_submit_bio(bio);
4a54c8c1 2765
d1310b2e 2766 bio_put(bio);
4e4cbee9 2767 return blk_status_to_errno(ret);
d1310b2e
CM
2768}
2769
1f7ad75b 2770static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2771 unsigned long offset, size_t size, struct bio *bio,
2772 unsigned long bio_flags)
2773{
2774 int ret = 0;
20c9801d 2775 if (tree->ops)
81a75f67 2776 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2777 bio_flags);
3444a972
JM
2778 return ret;
2779
2780}
2781
1f7ad75b 2782static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2783 struct writeback_control *wbc,
d1310b2e
CM
2784 struct page *page, sector_t sector,
2785 size_t size, unsigned long offset,
2786 struct block_device *bdev,
2787 struct bio **bio_ret,
f188591e 2788 bio_end_io_t end_io_func,
c8b97818
CM
2789 int mirror_num,
2790 unsigned long prev_bio_flags,
005efedf
FM
2791 unsigned long bio_flags,
2792 bool force_bio_submit)
d1310b2e
CM
2793{
2794 int ret = 0;
2795 struct bio *bio;
c8b97818 2796 int contig = 0;
c8b97818 2797 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2798 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2799
2800 if (bio_ret && *bio_ret) {
2801 bio = *bio_ret;
c8b97818 2802 if (old_compressed)
4f024f37 2803 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2804 else
f73a1c7d 2805 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2806
2807 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2808 force_bio_submit ||
1f7ad75b 2809 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2810 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2811 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2812 if (ret < 0) {
2813 *bio_ret = NULL;
79787eaa 2814 return ret;
289454ad 2815 }
d1310b2e
CM
2816 bio = NULL;
2817 } else {
da2f0f74
CM
2818 if (wbc)
2819 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2820 return 0;
2821 }
2822 }
c8b97818 2823
b54ffb73
KO
2824 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2825 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2826 if (!bio)
2827 return -ENOMEM;
70dec807 2828
c8b97818 2829 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2830 bio->bi_end_io = end_io_func;
2831 bio->bi_private = tree;
1f7ad75b 2832 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2833 if (wbc) {
2834 wbc_init_bio(wbc, bio);
2835 wbc_account_io(wbc, page, page_size);
2836 }
70dec807 2837
d397712b 2838 if (bio_ret)
d1310b2e 2839 *bio_ret = bio;
d397712b 2840 else
1f7ad75b 2841 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2842
2843 return ret;
2844}
2845
48a3b636
ES
2846static void attach_extent_buffer_page(struct extent_buffer *eb,
2847 struct page *page)
d1310b2e
CM
2848{
2849 if (!PagePrivate(page)) {
2850 SetPagePrivate(page);
09cbfeaf 2851 get_page(page);
4f2de97a
JB
2852 set_page_private(page, (unsigned long)eb);
2853 } else {
2854 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2855 }
2856}
2857
4f2de97a 2858void set_page_extent_mapped(struct page *page)
d1310b2e 2859{
4f2de97a
JB
2860 if (!PagePrivate(page)) {
2861 SetPagePrivate(page);
09cbfeaf 2862 get_page(page);
4f2de97a
JB
2863 set_page_private(page, EXTENT_PAGE_PRIVATE);
2864 }
d1310b2e
CM
2865}
2866
125bac01
MX
2867static struct extent_map *
2868__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2869 u64 start, u64 len, get_extent_t *get_extent,
2870 struct extent_map **em_cached)
2871{
2872 struct extent_map *em;
2873
2874 if (em_cached && *em_cached) {
2875 em = *em_cached;
cbc0e928 2876 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2877 start < extent_map_end(em)) {
490b54d6 2878 refcount_inc(&em->refs);
125bac01
MX
2879 return em;
2880 }
2881
2882 free_extent_map(em);
2883 *em_cached = NULL;
2884 }
2885
fc4f21b1 2886 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2887 if (em_cached && !IS_ERR_OR_NULL(em)) {
2888 BUG_ON(*em_cached);
490b54d6 2889 refcount_inc(&em->refs);
125bac01
MX
2890 *em_cached = em;
2891 }
2892 return em;
2893}
d1310b2e
CM
2894/*
2895 * basic readpage implementation. Locked extent state structs are inserted
2896 * into the tree that are removed when the IO is done (by the end_io
2897 * handlers)
79787eaa 2898 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2899 * return 0 on success, otherwise return error
d1310b2e 2900 */
9974090b
MX
2901static int __do_readpage(struct extent_io_tree *tree,
2902 struct page *page,
2903 get_extent_t *get_extent,
125bac01 2904 struct extent_map **em_cached,
9974090b 2905 struct bio **bio, int mirror_num,
1f7ad75b 2906 unsigned long *bio_flags, int read_flags,
005efedf 2907 u64 *prev_em_start)
d1310b2e
CM
2908{
2909 struct inode *inode = page->mapping->host;
4eee4fa4 2910 u64 start = page_offset(page);
09cbfeaf 2911 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2912 u64 end;
2913 u64 cur = start;
2914 u64 extent_offset;
2915 u64 last_byte = i_size_read(inode);
2916 u64 block_start;
2917 u64 cur_end;
2918 sector_t sector;
2919 struct extent_map *em;
2920 struct block_device *bdev;
baf863b9 2921 int ret = 0;
d1310b2e 2922 int nr = 0;
306e16ce 2923 size_t pg_offset = 0;
d1310b2e 2924 size_t iosize;
c8b97818 2925 size_t disk_io_size;
d1310b2e 2926 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2927 unsigned long this_bio_flag = 0;
d1310b2e
CM
2928
2929 set_page_extent_mapped(page);
2930
9974090b 2931 end = page_end;
90a887c9
DM
2932 if (!PageUptodate(page)) {
2933 if (cleancache_get_page(page) == 0) {
2934 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2935 unlock_extent(tree, start, end);
90a887c9
DM
2936 goto out;
2937 }
2938 }
2939
09cbfeaf 2940 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2941 char *userpage;
09cbfeaf 2942 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2943
2944 if (zero_offset) {
09cbfeaf 2945 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2946 userpage = kmap_atomic(page);
c8b97818
CM
2947 memset(userpage + zero_offset, 0, iosize);
2948 flush_dcache_page(page);
7ac687d9 2949 kunmap_atomic(userpage);
c8b97818
CM
2950 }
2951 }
d1310b2e 2952 while (cur <= end) {
005efedf 2953 bool force_bio_submit = false;
c8f2f24b 2954
d1310b2e
CM
2955 if (cur >= last_byte) {
2956 char *userpage;
507903b8
AJ
2957 struct extent_state *cached = NULL;
2958
09cbfeaf 2959 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2960 userpage = kmap_atomic(page);
306e16ce 2961 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2962 flush_dcache_page(page);
7ac687d9 2963 kunmap_atomic(userpage);
d1310b2e 2964 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2965 &cached, GFP_NOFS);
7f042a83
FM
2966 unlock_extent_cached(tree, cur,
2967 cur + iosize - 1,
2968 &cached, GFP_NOFS);
d1310b2e
CM
2969 break;
2970 }
125bac01
MX
2971 em = __get_extent_map(inode, page, pg_offset, cur,
2972 end - cur + 1, get_extent, em_cached);
c704005d 2973 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2974 SetPageError(page);
7f042a83 2975 unlock_extent(tree, cur, end);
d1310b2e
CM
2976 break;
2977 }
d1310b2e
CM
2978 extent_offset = cur - em->start;
2979 BUG_ON(extent_map_end(em) <= cur);
2980 BUG_ON(end < cur);
2981
261507a0 2982 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2983 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2984 extent_set_compress_type(&this_bio_flag,
2985 em->compress_type);
2986 }
c8b97818 2987
d1310b2e
CM
2988 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2989 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2990 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2991 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2992 disk_io_size = em->block_len;
2993 sector = em->block_start >> 9;
2994 } else {
2995 sector = (em->block_start + extent_offset) >> 9;
2996 disk_io_size = iosize;
2997 }
d1310b2e
CM
2998 bdev = em->bdev;
2999 block_start = em->block_start;
d899e052
YZ
3000 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3001 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3002
3003 /*
3004 * If we have a file range that points to a compressed extent
3005 * and it's followed by a consecutive file range that points to
3006 * to the same compressed extent (possibly with a different
3007 * offset and/or length, so it either points to the whole extent
3008 * or only part of it), we must make sure we do not submit a
3009 * single bio to populate the pages for the 2 ranges because
3010 * this makes the compressed extent read zero out the pages
3011 * belonging to the 2nd range. Imagine the following scenario:
3012 *
3013 * File layout
3014 * [0 - 8K] [8K - 24K]
3015 * | |
3016 * | |
3017 * points to extent X, points to extent X,
3018 * offset 4K, length of 8K offset 0, length 16K
3019 *
3020 * [extent X, compressed length = 4K uncompressed length = 16K]
3021 *
3022 * If the bio to read the compressed extent covers both ranges,
3023 * it will decompress extent X into the pages belonging to the
3024 * first range and then it will stop, zeroing out the remaining
3025 * pages that belong to the other range that points to extent X.
3026 * So here we make sure we submit 2 bios, one for the first
3027 * range and another one for the third range. Both will target
3028 * the same physical extent from disk, but we can't currently
3029 * make the compressed bio endio callback populate the pages
3030 * for both ranges because each compressed bio is tightly
3031 * coupled with a single extent map, and each range can have
3032 * an extent map with a different offset value relative to the
3033 * uncompressed data of our extent and different lengths. This
3034 * is a corner case so we prioritize correctness over
3035 * non-optimal behavior (submitting 2 bios for the same extent).
3036 */
3037 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3038 prev_em_start && *prev_em_start != (u64)-1 &&
3039 *prev_em_start != em->orig_start)
3040 force_bio_submit = true;
3041
3042 if (prev_em_start)
3043 *prev_em_start = em->orig_start;
3044
d1310b2e
CM
3045 free_extent_map(em);
3046 em = NULL;
3047
3048 /* we've found a hole, just zero and go on */
3049 if (block_start == EXTENT_MAP_HOLE) {
3050 char *userpage;
507903b8
AJ
3051 struct extent_state *cached = NULL;
3052
7ac687d9 3053 userpage = kmap_atomic(page);
306e16ce 3054 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3055 flush_dcache_page(page);
7ac687d9 3056 kunmap_atomic(userpage);
d1310b2e
CM
3057
3058 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3059 &cached, GFP_NOFS);
7f042a83
FM
3060 unlock_extent_cached(tree, cur,
3061 cur + iosize - 1,
3062 &cached, GFP_NOFS);
d1310b2e 3063 cur = cur + iosize;
306e16ce 3064 pg_offset += iosize;
d1310b2e
CM
3065 continue;
3066 }
3067 /* the get_extent function already copied into the page */
9655d298
CM
3068 if (test_range_bit(tree, cur, cur_end,
3069 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3070 check_page_uptodate(tree, page);
7f042a83 3071 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3072 cur = cur + iosize;
306e16ce 3073 pg_offset += iosize;
d1310b2e
CM
3074 continue;
3075 }
70dec807
CM
3076 /* we have an inline extent but it didn't get marked up
3077 * to date. Error out
3078 */
3079 if (block_start == EXTENT_MAP_INLINE) {
3080 SetPageError(page);
7f042a83 3081 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3082 cur = cur + iosize;
306e16ce 3083 pg_offset += iosize;
70dec807
CM
3084 continue;
3085 }
d1310b2e 3086
1f7ad75b
MC
3087 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3088 page, sector, disk_io_size, pg_offset,
c2df8bb4 3089 bdev, bio,
c8b97818
CM
3090 end_bio_extent_readpage, mirror_num,
3091 *bio_flags,
005efedf
FM
3092 this_bio_flag,
3093 force_bio_submit);
c8f2f24b
JB
3094 if (!ret) {
3095 nr++;
3096 *bio_flags = this_bio_flag;
3097 } else {
d1310b2e 3098 SetPageError(page);
7f042a83 3099 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3100 goto out;
edd33c99 3101 }
d1310b2e 3102 cur = cur + iosize;
306e16ce 3103 pg_offset += iosize;
d1310b2e 3104 }
90a887c9 3105out:
d1310b2e
CM
3106 if (!nr) {
3107 if (!PageError(page))
3108 SetPageUptodate(page);
3109 unlock_page(page);
3110 }
baf863b9 3111 return ret;
d1310b2e
CM
3112}
3113
9974090b
MX
3114static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3115 struct page *pages[], int nr_pages,
3116 u64 start, u64 end,
3117 get_extent_t *get_extent,
125bac01 3118 struct extent_map **em_cached,
9974090b 3119 struct bio **bio, int mirror_num,
1f7ad75b 3120 unsigned long *bio_flags,
808f80b4 3121 u64 *prev_em_start)
9974090b
MX
3122{
3123 struct inode *inode;
3124 struct btrfs_ordered_extent *ordered;
3125 int index;
3126
3127 inode = pages[0]->mapping->host;
3128 while (1) {
3129 lock_extent(tree, start, end);
a776c6fa 3130 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3131 end - start + 1);
3132 if (!ordered)
3133 break;
3134 unlock_extent(tree, start, end);
3135 btrfs_start_ordered_extent(inode, ordered, 1);
3136 btrfs_put_ordered_extent(ordered);
3137 }
3138
3139 for (index = 0; index < nr_pages; index++) {
125bac01 3140 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3141 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3142 put_page(pages[index]);
9974090b
MX
3143 }
3144}
3145
3146static void __extent_readpages(struct extent_io_tree *tree,
3147 struct page *pages[],
3148 int nr_pages, get_extent_t *get_extent,
125bac01 3149 struct extent_map **em_cached,
9974090b 3150 struct bio **bio, int mirror_num,
1f7ad75b 3151 unsigned long *bio_flags,
808f80b4 3152 u64 *prev_em_start)
9974090b 3153{
35a3621b 3154 u64 start = 0;
9974090b
MX
3155 u64 end = 0;
3156 u64 page_start;
3157 int index;
35a3621b 3158 int first_index = 0;
9974090b
MX
3159
3160 for (index = 0; index < nr_pages; index++) {
3161 page_start = page_offset(pages[index]);
3162 if (!end) {
3163 start = page_start;
09cbfeaf 3164 end = start + PAGE_SIZE - 1;
9974090b
MX
3165 first_index = index;
3166 } else if (end + 1 == page_start) {
09cbfeaf 3167 end += PAGE_SIZE;
9974090b
MX
3168 } else {
3169 __do_contiguous_readpages(tree, &pages[first_index],
3170 index - first_index, start,
125bac01
MX
3171 end, get_extent, em_cached,
3172 bio, mirror_num, bio_flags,
1f7ad75b 3173 prev_em_start);
9974090b 3174 start = page_start;
09cbfeaf 3175 end = start + PAGE_SIZE - 1;
9974090b
MX
3176 first_index = index;
3177 }
3178 }
3179
3180 if (end)
3181 __do_contiguous_readpages(tree, &pages[first_index],
3182 index - first_index, start,
125bac01 3183 end, get_extent, em_cached, bio,
1f7ad75b 3184 mirror_num, bio_flags,
808f80b4 3185 prev_em_start);
9974090b
MX
3186}
3187
3188static int __extent_read_full_page(struct extent_io_tree *tree,
3189 struct page *page,
3190 get_extent_t *get_extent,
3191 struct bio **bio, int mirror_num,
1f7ad75b 3192 unsigned long *bio_flags, int read_flags)
9974090b
MX
3193{
3194 struct inode *inode = page->mapping->host;
3195 struct btrfs_ordered_extent *ordered;
3196 u64 start = page_offset(page);
09cbfeaf 3197 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3198 int ret;
3199
3200 while (1) {
3201 lock_extent(tree, start, end);
a776c6fa 3202 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3203 PAGE_SIZE);
9974090b
MX
3204 if (!ordered)
3205 break;
3206 unlock_extent(tree, start, end);
3207 btrfs_start_ordered_extent(inode, ordered, 1);
3208 btrfs_put_ordered_extent(ordered);
3209 }
3210
125bac01 3211 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3212 bio_flags, read_flags, NULL);
9974090b
MX
3213 return ret;
3214}
3215
d1310b2e 3216int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3217 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3218{
3219 struct bio *bio = NULL;
c8b97818 3220 unsigned long bio_flags = 0;
d1310b2e
CM
3221 int ret;
3222
8ddc7d9c 3223 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3224 &bio_flags, 0);
d1310b2e 3225 if (bio)
1f7ad75b 3226 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3227 return ret;
3228}
d1310b2e 3229
3d4b9496 3230static void update_nr_written(struct writeback_control *wbc,
a9132667 3231 unsigned long nr_written)
11c8349b
CM
3232{
3233 wbc->nr_to_write -= nr_written;
11c8349b
CM
3234}
3235
d1310b2e 3236/*
40f76580
CM
3237 * helper for __extent_writepage, doing all of the delayed allocation setup.
3238 *
3239 * This returns 1 if our fill_delalloc function did all the work required
3240 * to write the page (copy into inline extent). In this case the IO has
3241 * been started and the page is already unlocked.
3242 *
3243 * This returns 0 if all went well (page still locked)
3244 * This returns < 0 if there were errors (page still locked)
d1310b2e 3245 */
40f76580
CM
3246static noinline_for_stack int writepage_delalloc(struct inode *inode,
3247 struct page *page, struct writeback_control *wbc,
3248 struct extent_page_data *epd,
3249 u64 delalloc_start,
3250 unsigned long *nr_written)
3251{
3252 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3253 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3254 u64 nr_delalloc;
3255 u64 delalloc_to_write = 0;
3256 u64 delalloc_end = 0;
3257 int ret;
3258 int page_started = 0;
3259
3260 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3261 return 0;
3262
3263 while (delalloc_end < page_end) {
3264 nr_delalloc = find_lock_delalloc_range(inode, tree,
3265 page,
3266 &delalloc_start,
3267 &delalloc_end,
dcab6a3b 3268 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3269 if (nr_delalloc == 0) {
3270 delalloc_start = delalloc_end + 1;
3271 continue;
3272 }
3273 ret = tree->ops->fill_delalloc(inode, page,
3274 delalloc_start,
3275 delalloc_end,
3276 &page_started,
3277 nr_written);
3278 /* File system has been set read-only */
3279 if (ret) {
3280 SetPageError(page);
3281 /* fill_delalloc should be return < 0 for error
3282 * but just in case, we use > 0 here meaning the
3283 * IO is started, so we don't want to return > 0
3284 * unless things are going well.
3285 */
3286 ret = ret < 0 ? ret : -EIO;
3287 goto done;
3288 }
3289 /*
ea1754a0
KS
3290 * delalloc_end is already one less than the total length, so
3291 * we don't subtract one from PAGE_SIZE
40f76580
CM
3292 */
3293 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3294 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3295 delalloc_start = delalloc_end + 1;
3296 }
3297 if (wbc->nr_to_write < delalloc_to_write) {
3298 int thresh = 8192;
3299
3300 if (delalloc_to_write < thresh * 2)
3301 thresh = delalloc_to_write;
3302 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3303 thresh);
3304 }
3305
3306 /* did the fill delalloc function already unlock and start
3307 * the IO?
3308 */
3309 if (page_started) {
3310 /*
3311 * we've unlocked the page, so we can't update
3312 * the mapping's writeback index, just update
3313 * nr_to_write.
3314 */
3315 wbc->nr_to_write -= *nr_written;
3316 return 1;
3317 }
3318
3319 ret = 0;
3320
3321done:
3322 return ret;
3323}
3324
3325/*
3326 * helper for __extent_writepage. This calls the writepage start hooks,
3327 * and does the loop to map the page into extents and bios.
3328 *
3329 * We return 1 if the IO is started and the page is unlocked,
3330 * 0 if all went well (page still locked)
3331 * < 0 if there were errors (page still locked)
3332 */
3333static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3334 struct page *page,
3335 struct writeback_control *wbc,
3336 struct extent_page_data *epd,
3337 loff_t i_size,
3338 unsigned long nr_written,
3339 int write_flags, int *nr_ret)
d1310b2e 3340{
d1310b2e 3341 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3342 u64 start = page_offset(page);
09cbfeaf 3343 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3344 u64 end;
3345 u64 cur = start;
3346 u64 extent_offset;
d1310b2e
CM
3347 u64 block_start;
3348 u64 iosize;
3349 sector_t sector;
3350 struct extent_map *em;
3351 struct block_device *bdev;
7f3c74fb 3352 size_t pg_offset = 0;
d1310b2e 3353 size_t blocksize;
40f76580
CM
3354 int ret = 0;
3355 int nr = 0;
3356 bool compressed;
c8b97818 3357
247e743c 3358 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3359 ret = tree->ops->writepage_start_hook(page, start,
3360 page_end);
87826df0
JM
3361 if (ret) {
3362 /* Fixup worker will requeue */
3363 if (ret == -EBUSY)
3364 wbc->pages_skipped++;
3365 else
3366 redirty_page_for_writepage(wbc, page);
40f76580 3367
3d4b9496 3368 update_nr_written(wbc, nr_written);
247e743c 3369 unlock_page(page);
bcf93489 3370 return 1;
247e743c
CM
3371 }
3372 }
3373
11c8349b
CM
3374 /*
3375 * we don't want to touch the inode after unlocking the page,
3376 * so we update the mapping writeback index now
3377 */
3d4b9496 3378 update_nr_written(wbc, nr_written + 1);
771ed689 3379
d1310b2e 3380 end = page_end;
40f76580 3381 if (i_size <= start) {
e6dcd2dc
CM
3382 if (tree->ops && tree->ops->writepage_end_io_hook)
3383 tree->ops->writepage_end_io_hook(page, start,
3384 page_end, NULL, 1);
d1310b2e
CM
3385 goto done;
3386 }
3387
d1310b2e
CM
3388 blocksize = inode->i_sb->s_blocksize;
3389
3390 while (cur <= end) {
40f76580 3391 u64 em_end;
58409edd 3392
40f76580 3393 if (cur >= i_size) {
e6dcd2dc
CM
3394 if (tree->ops && tree->ops->writepage_end_io_hook)
3395 tree->ops->writepage_end_io_hook(page, cur,
3396 page_end, NULL, 1);
d1310b2e
CM
3397 break;
3398 }
fc4f21b1 3399 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3400 end - cur + 1, 1);
c704005d 3401 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3402 SetPageError(page);
61391d56 3403 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3404 break;
3405 }
3406
3407 extent_offset = cur - em->start;
40f76580
CM
3408 em_end = extent_map_end(em);
3409 BUG_ON(em_end <= cur);
d1310b2e 3410 BUG_ON(end < cur);
40f76580 3411 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3412 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3413 sector = (em->block_start + extent_offset) >> 9;
3414 bdev = em->bdev;
3415 block_start = em->block_start;
c8b97818 3416 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3417 free_extent_map(em);
3418 em = NULL;
3419
c8b97818
CM
3420 /*
3421 * compressed and inline extents are written through other
3422 * paths in the FS
3423 */
3424 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3425 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3426 /*
3427 * end_io notification does not happen here for
3428 * compressed extents
3429 */
3430 if (!compressed && tree->ops &&
3431 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3432 tree->ops->writepage_end_io_hook(page, cur,
3433 cur + iosize - 1,
3434 NULL, 1);
c8b97818
CM
3435 else if (compressed) {
3436 /* we don't want to end_page_writeback on
3437 * a compressed extent. this happens
3438 * elsewhere
3439 */
3440 nr++;
3441 }
3442
3443 cur += iosize;
7f3c74fb 3444 pg_offset += iosize;
d1310b2e
CM
3445 continue;
3446 }
c8b97818 3447
58409edd
DS
3448 set_range_writeback(tree, cur, cur + iosize - 1);
3449 if (!PageWriteback(page)) {
3450 btrfs_err(BTRFS_I(inode)->root->fs_info,
3451 "page %lu not writeback, cur %llu end %llu",
3452 page->index, cur, end);
d1310b2e 3453 }
7f3c74fb 3454
1f7ad75b
MC
3455 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3456 page, sector, iosize, pg_offset,
c2df8bb4 3457 bdev, &epd->bio,
58409edd
DS
3458 end_bio_extent_writepage,
3459 0, 0, 0, false);
fe01aa65 3460 if (ret) {
58409edd 3461 SetPageError(page);
fe01aa65
TK
3462 if (PageWriteback(page))
3463 end_page_writeback(page);
3464 }
d1310b2e 3465
d1310b2e 3466 cur = cur + iosize;
7f3c74fb 3467 pg_offset += iosize;
d1310b2e
CM
3468 nr++;
3469 }
40f76580
CM
3470done:
3471 *nr_ret = nr;
40f76580
CM
3472 return ret;
3473}
3474
3475/*
3476 * the writepage semantics are similar to regular writepage. extent
3477 * records are inserted to lock ranges in the tree, and as dirty areas
3478 * are found, they are marked writeback. Then the lock bits are removed
3479 * and the end_io handler clears the writeback ranges
3480 */
3481static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3482 void *data)
3483{
3484 struct inode *inode = page->mapping->host;
3485 struct extent_page_data *epd = data;
3486 u64 start = page_offset(page);
09cbfeaf 3487 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3488 int ret;
3489 int nr = 0;
3490 size_t pg_offset = 0;
3491 loff_t i_size = i_size_read(inode);
09cbfeaf 3492 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3493 int write_flags = 0;
40f76580
CM
3494 unsigned long nr_written = 0;
3495
3496 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3497 write_flags = REQ_SYNC;
40f76580
CM
3498
3499 trace___extent_writepage(page, inode, wbc);
3500
3501 WARN_ON(!PageLocked(page));
3502
3503 ClearPageError(page);
3504
09cbfeaf 3505 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3506 if (page->index > end_index ||
3507 (page->index == end_index && !pg_offset)) {
09cbfeaf 3508 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3509 unlock_page(page);
3510 return 0;
3511 }
3512
3513 if (page->index == end_index) {
3514 char *userpage;
3515
3516 userpage = kmap_atomic(page);
3517 memset(userpage + pg_offset, 0,
09cbfeaf 3518 PAGE_SIZE - pg_offset);
40f76580
CM
3519 kunmap_atomic(userpage);
3520 flush_dcache_page(page);
3521 }
3522
3523 pg_offset = 0;
3524
3525 set_page_extent_mapped(page);
3526
3527 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3528 if (ret == 1)
3529 goto done_unlocked;
3530 if (ret)
3531 goto done;
3532
3533 ret = __extent_writepage_io(inode, page, wbc, epd,
3534 i_size, nr_written, write_flags, &nr);
3535 if (ret == 1)
3536 goto done_unlocked;
3537
d1310b2e
CM
3538done:
3539 if (nr == 0) {
3540 /* make sure the mapping tag for page dirty gets cleared */
3541 set_page_writeback(page);
3542 end_page_writeback(page);
3543 }
61391d56
FM
3544 if (PageError(page)) {
3545 ret = ret < 0 ? ret : -EIO;
3546 end_extent_writepage(page, ret, start, page_end);
3547 }
d1310b2e 3548 unlock_page(page);
40f76580 3549 return ret;
771ed689 3550
11c8349b 3551done_unlocked:
d1310b2e
CM
3552 return 0;
3553}
3554
fd8b2b61 3555void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3556{
74316201
N
3557 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3558 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3559}
3560
0e378df1
CM
3561static noinline_for_stack int
3562lock_extent_buffer_for_io(struct extent_buffer *eb,
3563 struct btrfs_fs_info *fs_info,
3564 struct extent_page_data *epd)
0b32f4bb
JB
3565{
3566 unsigned long i, num_pages;
3567 int flush = 0;
3568 int ret = 0;
3569
3570 if (!btrfs_try_tree_write_lock(eb)) {
3571 flush = 1;
3572 flush_write_bio(epd);
3573 btrfs_tree_lock(eb);
3574 }
3575
3576 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3577 btrfs_tree_unlock(eb);
3578 if (!epd->sync_io)
3579 return 0;
3580 if (!flush) {
3581 flush_write_bio(epd);
3582 flush = 1;
3583 }
a098d8e8
CM
3584 while (1) {
3585 wait_on_extent_buffer_writeback(eb);
3586 btrfs_tree_lock(eb);
3587 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3588 break;
0b32f4bb 3589 btrfs_tree_unlock(eb);
0b32f4bb
JB
3590 }
3591 }
3592
51561ffe
JB
3593 /*
3594 * We need to do this to prevent races in people who check if the eb is
3595 * under IO since we can end up having no IO bits set for a short period
3596 * of time.
3597 */
3598 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3599 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3600 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3601 spin_unlock(&eb->refs_lock);
0b32f4bb 3602 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3603 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3604 -eb->len,
3605 fs_info->dirty_metadata_batch);
0b32f4bb 3606 ret = 1;
51561ffe
JB
3607 } else {
3608 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3609 }
3610
3611 btrfs_tree_unlock(eb);
3612
3613 if (!ret)
3614 return ret;
3615
3616 num_pages = num_extent_pages(eb->start, eb->len);
3617 for (i = 0; i < num_pages; i++) {
fb85fc9a 3618 struct page *p = eb->pages[i];
0b32f4bb
JB
3619
3620 if (!trylock_page(p)) {
3621 if (!flush) {
3622 flush_write_bio(epd);
3623 flush = 1;
3624 }
3625 lock_page(p);
3626 }
3627 }
3628
3629 return ret;
3630}
3631
3632static void end_extent_buffer_writeback(struct extent_buffer *eb)
3633{
3634 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3635 smp_mb__after_atomic();
0b32f4bb
JB
3636 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3637}
3638
656f30db
FM
3639static void set_btree_ioerr(struct page *page)
3640{
3641 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3642
3643 SetPageError(page);
3644 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3645 return;
3646
3647 /*
3648 * If writeback for a btree extent that doesn't belong to a log tree
3649 * failed, increment the counter transaction->eb_write_errors.
3650 * We do this because while the transaction is running and before it's
3651 * committing (when we call filemap_fdata[write|wait]_range against
3652 * the btree inode), we might have
3653 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3654 * returns an error or an error happens during writeback, when we're
3655 * committing the transaction we wouldn't know about it, since the pages
3656 * can be no longer dirty nor marked anymore for writeback (if a
3657 * subsequent modification to the extent buffer didn't happen before the
3658 * transaction commit), which makes filemap_fdata[write|wait]_range not
3659 * able to find the pages tagged with SetPageError at transaction
3660 * commit time. So if this happens we must abort the transaction,
3661 * otherwise we commit a super block with btree roots that point to
3662 * btree nodes/leafs whose content on disk is invalid - either garbage
3663 * or the content of some node/leaf from a past generation that got
3664 * cowed or deleted and is no longer valid.
3665 *
3666 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3667 * not be enough - we need to distinguish between log tree extents vs
3668 * non-log tree extents, and the next filemap_fdatawait_range() call
3669 * will catch and clear such errors in the mapping - and that call might
3670 * be from a log sync and not from a transaction commit. Also, checking
3671 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3672 * not done and would not be reliable - the eb might have been released
3673 * from memory and reading it back again means that flag would not be
3674 * set (since it's a runtime flag, not persisted on disk).
3675 *
3676 * Using the flags below in the btree inode also makes us achieve the
3677 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3678 * writeback for all dirty pages and before filemap_fdatawait_range()
3679 * is called, the writeback for all dirty pages had already finished
3680 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3681 * filemap_fdatawait_range() would return success, as it could not know
3682 * that writeback errors happened (the pages were no longer tagged for
3683 * writeback).
3684 */
3685 switch (eb->log_index) {
3686 case -1:
afcdd129 3687 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3688 break;
3689 case 0:
afcdd129 3690 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3691 break;
3692 case 1:
afcdd129 3693 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3694 break;
3695 default:
3696 BUG(); /* unexpected, logic error */
3697 }
3698}
3699
4246a0b6 3700static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3701{
2c30c71b 3702 struct bio_vec *bvec;
0b32f4bb 3703 struct extent_buffer *eb;
2c30c71b 3704 int i, done;
0b32f4bb 3705
2c30c71b 3706 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3707 struct page *page = bvec->bv_page;
3708
0b32f4bb
JB
3709 eb = (struct extent_buffer *)page->private;
3710 BUG_ON(!eb);
3711 done = atomic_dec_and_test(&eb->io_pages);
3712
4e4cbee9 3713 if (bio->bi_status ||
4246a0b6 3714 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3715 ClearPageUptodate(page);
656f30db 3716 set_btree_ioerr(page);
0b32f4bb
JB
3717 }
3718
3719 end_page_writeback(page);
3720
3721 if (!done)
3722 continue;
3723
3724 end_extent_buffer_writeback(eb);
2c30c71b 3725 }
0b32f4bb
JB
3726
3727 bio_put(bio);
0b32f4bb
JB
3728}
3729
0e378df1 3730static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3731 struct btrfs_fs_info *fs_info,
3732 struct writeback_control *wbc,
3733 struct extent_page_data *epd)
3734{
3735 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3736 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3737 u64 offset = eb->start;
851cd173 3738 u32 nritems;
0b32f4bb 3739 unsigned long i, num_pages;
de0022b9 3740 unsigned long bio_flags = 0;
851cd173 3741 unsigned long start, end;
70fd7614 3742 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3743 int ret = 0;
0b32f4bb 3744
656f30db 3745 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3746 num_pages = num_extent_pages(eb->start, eb->len);
3747 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3748 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3749 bio_flags = EXTENT_BIO_TREE_LOG;
3750
851cd173
LB
3751 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3752 nritems = btrfs_header_nritems(eb);
3eb548ee 3753 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3754 end = btrfs_node_key_ptr_offset(nritems);
3755
b159fa28 3756 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3757 } else {
3758 /*
3759 * leaf:
3760 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3761 */
3762 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3763 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3764 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3765 }
3766
0b32f4bb 3767 for (i = 0; i < num_pages; i++) {
fb85fc9a 3768 struct page *p = eb->pages[i];
0b32f4bb
JB
3769
3770 clear_page_dirty_for_io(p);
3771 set_page_writeback(p);
1f7ad75b
MC
3772 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3773 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3774 &epd->bio,
1f7ad75b 3775 end_bio_extent_buffer_writepage,
005efedf 3776 0, epd->bio_flags, bio_flags, false);
de0022b9 3777 epd->bio_flags = bio_flags;
0b32f4bb 3778 if (ret) {
656f30db 3779 set_btree_ioerr(p);
fe01aa65
TK
3780 if (PageWriteback(p))
3781 end_page_writeback(p);
0b32f4bb
JB
3782 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3783 end_extent_buffer_writeback(eb);
3784 ret = -EIO;
3785 break;
3786 }
09cbfeaf 3787 offset += PAGE_SIZE;
3d4b9496 3788 update_nr_written(wbc, 1);
0b32f4bb
JB
3789 unlock_page(p);
3790 }
3791
3792 if (unlikely(ret)) {
3793 for (; i < num_pages; i++) {
bbf65cf0 3794 struct page *p = eb->pages[i];
81465028 3795 clear_page_dirty_for_io(p);
0b32f4bb
JB
3796 unlock_page(p);
3797 }
3798 }
3799
3800 return ret;
3801}
3802
3803int btree_write_cache_pages(struct address_space *mapping,
3804 struct writeback_control *wbc)
3805{
3806 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3807 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3808 struct extent_buffer *eb, *prev_eb = NULL;
3809 struct extent_page_data epd = {
3810 .bio = NULL,
3811 .tree = tree,
3812 .extent_locked = 0,
3813 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3814 .bio_flags = 0,
0b32f4bb
JB
3815 };
3816 int ret = 0;
3817 int done = 0;
3818 int nr_to_write_done = 0;
3819 struct pagevec pvec;
3820 int nr_pages;
3821 pgoff_t index;
3822 pgoff_t end; /* Inclusive */
3823 int scanned = 0;
3824 int tag;
3825
3826 pagevec_init(&pvec, 0);
3827 if (wbc->range_cyclic) {
3828 index = mapping->writeback_index; /* Start from prev offset */
3829 end = -1;
3830 } else {
09cbfeaf
KS
3831 index = wbc->range_start >> PAGE_SHIFT;
3832 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3833 scanned = 1;
3834 }
3835 if (wbc->sync_mode == WB_SYNC_ALL)
3836 tag = PAGECACHE_TAG_TOWRITE;
3837 else
3838 tag = PAGECACHE_TAG_DIRTY;
3839retry:
3840 if (wbc->sync_mode == WB_SYNC_ALL)
3841 tag_pages_for_writeback(mapping, index, end);
3842 while (!done && !nr_to_write_done && (index <= end) &&
3843 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3844 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3845 unsigned i;
3846
3847 scanned = 1;
3848 for (i = 0; i < nr_pages; i++) {
3849 struct page *page = pvec.pages[i];
3850
3851 if (!PagePrivate(page))
3852 continue;
3853
3854 if (!wbc->range_cyclic && page->index > end) {
3855 done = 1;
3856 break;
3857 }
3858
b5bae261
JB
3859 spin_lock(&mapping->private_lock);
3860 if (!PagePrivate(page)) {
3861 spin_unlock(&mapping->private_lock);
3862 continue;
3863 }
3864
0b32f4bb 3865 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3866
3867 /*
3868 * Shouldn't happen and normally this would be a BUG_ON
3869 * but no sense in crashing the users box for something
3870 * we can survive anyway.
3871 */
fae7f21c 3872 if (WARN_ON(!eb)) {
b5bae261 3873 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3874 continue;
3875 }
3876
b5bae261
JB
3877 if (eb == prev_eb) {
3878 spin_unlock(&mapping->private_lock);
0b32f4bb 3879 continue;
b5bae261 3880 }
0b32f4bb 3881
b5bae261
JB
3882 ret = atomic_inc_not_zero(&eb->refs);
3883 spin_unlock(&mapping->private_lock);
3884 if (!ret)
0b32f4bb 3885 continue;
0b32f4bb
JB
3886
3887 prev_eb = eb;
3888 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3889 if (!ret) {
3890 free_extent_buffer(eb);
3891 continue;
3892 }
3893
3894 ret = write_one_eb(eb, fs_info, wbc, &epd);
3895 if (ret) {
3896 done = 1;
3897 free_extent_buffer(eb);
3898 break;
3899 }
3900 free_extent_buffer(eb);
3901
3902 /*
3903 * the filesystem may choose to bump up nr_to_write.
3904 * We have to make sure to honor the new nr_to_write
3905 * at any time
3906 */
3907 nr_to_write_done = wbc->nr_to_write <= 0;
3908 }
3909 pagevec_release(&pvec);
3910 cond_resched();
3911 }
3912 if (!scanned && !done) {
3913 /*
3914 * We hit the last page and there is more work to be done: wrap
3915 * back to the start of the file
3916 */
3917 scanned = 1;
3918 index = 0;
3919 goto retry;
3920 }
3921 flush_write_bio(&epd);
3922 return ret;
3923}
3924
d1310b2e 3925/**
4bef0848 3926 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3927 * @mapping: address space structure to write
3928 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3929 * @writepage: function called for each page
3930 * @data: data passed to writepage function
3931 *
3932 * If a page is already under I/O, write_cache_pages() skips it, even
3933 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3934 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3935 * and msync() need to guarantee that all the data which was dirty at the time
3936 * the call was made get new I/O started against them. If wbc->sync_mode is
3937 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3938 * existing IO to complete.
3939 */
4242b64a 3940static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3941 struct writeback_control *wbc,
d2c3f4f6
CM
3942 writepage_t writepage, void *data,
3943 void (*flush_fn)(void *))
d1310b2e 3944{
7fd1a3f7 3945 struct inode *inode = mapping->host;
d1310b2e
CM
3946 int ret = 0;
3947 int done = 0;
f85d7d6c 3948 int nr_to_write_done = 0;
d1310b2e
CM
3949 struct pagevec pvec;
3950 int nr_pages;
3951 pgoff_t index;
3952 pgoff_t end; /* Inclusive */
a9132667
LB
3953 pgoff_t done_index;
3954 int range_whole = 0;
d1310b2e 3955 int scanned = 0;
f7aaa06b 3956 int tag;
d1310b2e 3957
7fd1a3f7
JB
3958 /*
3959 * We have to hold onto the inode so that ordered extents can do their
3960 * work when the IO finishes. The alternative to this is failing to add
3961 * an ordered extent if the igrab() fails there and that is a huge pain
3962 * to deal with, so instead just hold onto the inode throughout the
3963 * writepages operation. If it fails here we are freeing up the inode
3964 * anyway and we'd rather not waste our time writing out stuff that is
3965 * going to be truncated anyway.
3966 */
3967 if (!igrab(inode))
3968 return 0;
3969
d1310b2e
CM
3970 pagevec_init(&pvec, 0);
3971 if (wbc->range_cyclic) {
3972 index = mapping->writeback_index; /* Start from prev offset */
3973 end = -1;
3974 } else {
09cbfeaf
KS
3975 index = wbc->range_start >> PAGE_SHIFT;
3976 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3977 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3978 range_whole = 1;
d1310b2e
CM
3979 scanned = 1;
3980 }
f7aaa06b
JB
3981 if (wbc->sync_mode == WB_SYNC_ALL)
3982 tag = PAGECACHE_TAG_TOWRITE;
3983 else
3984 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3985retry:
f7aaa06b
JB
3986 if (wbc->sync_mode == WB_SYNC_ALL)
3987 tag_pages_for_writeback(mapping, index, end);
a9132667 3988 done_index = index;
f85d7d6c 3989 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3990 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3991 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3992 unsigned i;
3993
3994 scanned = 1;
3995 for (i = 0; i < nr_pages; i++) {
3996 struct page *page = pvec.pages[i];
3997
a9132667 3998 done_index = page->index;
d1310b2e
CM
3999 /*
4000 * At this point we hold neither mapping->tree_lock nor
4001 * lock on the page itself: the page may be truncated or
4002 * invalidated (changing page->mapping to NULL), or even
4003 * swizzled back from swapper_space to tmpfs file
4004 * mapping
4005 */
c8f2f24b
JB
4006 if (!trylock_page(page)) {
4007 flush_fn(data);
4008 lock_page(page);
01d658f2 4009 }
d1310b2e
CM
4010
4011 if (unlikely(page->mapping != mapping)) {
4012 unlock_page(page);
4013 continue;
4014 }
4015
4016 if (!wbc->range_cyclic && page->index > end) {
4017 done = 1;
4018 unlock_page(page);
4019 continue;
4020 }
4021
d2c3f4f6 4022 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4023 if (PageWriteback(page))
4024 flush_fn(data);
d1310b2e 4025 wait_on_page_writeback(page);
d2c3f4f6 4026 }
d1310b2e
CM
4027
4028 if (PageWriteback(page) ||
4029 !clear_page_dirty_for_io(page)) {
4030 unlock_page(page);
4031 continue;
4032 }
4033
4034 ret = (*writepage)(page, wbc, data);
4035
4036 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4037 unlock_page(page);
4038 ret = 0;
4039 }
a9132667
LB
4040 if (ret < 0) {
4041 /*
4042 * done_index is set past this page,
4043 * so media errors will not choke
4044 * background writeout for the entire
4045 * file. This has consequences for
4046 * range_cyclic semantics (ie. it may
4047 * not be suitable for data integrity
4048 * writeout).
4049 */
4050 done_index = page->index + 1;
4051 done = 1;
4052 break;
4053 }
f85d7d6c
CM
4054
4055 /*
4056 * the filesystem may choose to bump up nr_to_write.
4057 * We have to make sure to honor the new nr_to_write
4058 * at any time
4059 */
4060 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4061 }
4062 pagevec_release(&pvec);
4063 cond_resched();
4064 }
894b36e3 4065 if (!scanned && !done) {
d1310b2e
CM
4066 /*
4067 * We hit the last page and there is more work to be done: wrap
4068 * back to the start of the file
4069 */
4070 scanned = 1;
4071 index = 0;
4072 goto retry;
4073 }
a9132667
LB
4074
4075 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4076 mapping->writeback_index = done_index;
4077
7fd1a3f7 4078 btrfs_add_delayed_iput(inode);
894b36e3 4079 return ret;
d1310b2e 4080}
d1310b2e 4081
ffbd517d 4082static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4083{
d2c3f4f6 4084 if (epd->bio) {
355808c2
JM
4085 int ret;
4086
1f7ad75b 4087 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4088 epd->sync_io ? REQ_SYNC : 0);
355808c2 4089
1f7ad75b 4090 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4091 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4092 epd->bio = NULL;
4093 }
4094}
4095
ffbd517d
CM
4096static noinline void flush_write_bio(void *data)
4097{
4098 struct extent_page_data *epd = data;
4099 flush_epd_write_bio(epd);
4100}
4101
d1310b2e
CM
4102int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4103 get_extent_t *get_extent,
4104 struct writeback_control *wbc)
4105{
4106 int ret;
d1310b2e
CM
4107 struct extent_page_data epd = {
4108 .bio = NULL,
4109 .tree = tree,
4110 .get_extent = get_extent,
771ed689 4111 .extent_locked = 0,
ffbd517d 4112 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4113 .bio_flags = 0,
d1310b2e 4114 };
d1310b2e 4115
d1310b2e
CM
4116 ret = __extent_writepage(page, wbc, &epd);
4117
ffbd517d 4118 flush_epd_write_bio(&epd);
d1310b2e
CM
4119 return ret;
4120}
d1310b2e 4121
771ed689
CM
4122int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4123 u64 start, u64 end, get_extent_t *get_extent,
4124 int mode)
4125{
4126 int ret = 0;
4127 struct address_space *mapping = inode->i_mapping;
4128 struct page *page;
09cbfeaf
KS
4129 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4130 PAGE_SHIFT;
771ed689
CM
4131
4132 struct extent_page_data epd = {
4133 .bio = NULL,
4134 .tree = tree,
4135 .get_extent = get_extent,
4136 .extent_locked = 1,
ffbd517d 4137 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4138 .bio_flags = 0,
771ed689
CM
4139 };
4140 struct writeback_control wbc_writepages = {
771ed689 4141 .sync_mode = mode,
771ed689
CM
4142 .nr_to_write = nr_pages * 2,
4143 .range_start = start,
4144 .range_end = end + 1,
4145 };
4146
d397712b 4147 while (start <= end) {
09cbfeaf 4148 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4149 if (clear_page_dirty_for_io(page))
4150 ret = __extent_writepage(page, &wbc_writepages, &epd);
4151 else {
4152 if (tree->ops && tree->ops->writepage_end_io_hook)
4153 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4154 start + PAGE_SIZE - 1,
771ed689
CM
4155 NULL, 1);
4156 unlock_page(page);
4157 }
09cbfeaf
KS
4158 put_page(page);
4159 start += PAGE_SIZE;
771ed689
CM
4160 }
4161
ffbd517d 4162 flush_epd_write_bio(&epd);
771ed689
CM
4163 return ret;
4164}
d1310b2e
CM
4165
4166int extent_writepages(struct extent_io_tree *tree,
4167 struct address_space *mapping,
4168 get_extent_t *get_extent,
4169 struct writeback_control *wbc)
4170{
4171 int ret = 0;
4172 struct extent_page_data epd = {
4173 .bio = NULL,
4174 .tree = tree,
4175 .get_extent = get_extent,
771ed689 4176 .extent_locked = 0,
ffbd517d 4177 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4178 .bio_flags = 0,
d1310b2e
CM
4179 };
4180
4242b64a 4181 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4182 flush_write_bio);
ffbd517d 4183 flush_epd_write_bio(&epd);
d1310b2e
CM
4184 return ret;
4185}
d1310b2e
CM
4186
4187int extent_readpages(struct extent_io_tree *tree,
4188 struct address_space *mapping,
4189 struct list_head *pages, unsigned nr_pages,
4190 get_extent_t get_extent)
4191{
4192 struct bio *bio = NULL;
4193 unsigned page_idx;
c8b97818 4194 unsigned long bio_flags = 0;
67c9684f
LB
4195 struct page *pagepool[16];
4196 struct page *page;
125bac01 4197 struct extent_map *em_cached = NULL;
67c9684f 4198 int nr = 0;
808f80b4 4199 u64 prev_em_start = (u64)-1;
d1310b2e 4200
d1310b2e 4201 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4202 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4203
4204 prefetchw(&page->flags);
4205 list_del(&page->lru);
67c9684f 4206 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4207 page->index,
4208 readahead_gfp_mask(mapping))) {
09cbfeaf 4209 put_page(page);
67c9684f 4210 continue;
d1310b2e 4211 }
67c9684f
LB
4212
4213 pagepool[nr++] = page;
4214 if (nr < ARRAY_SIZE(pagepool))
4215 continue;
125bac01 4216 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4217 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4218 nr = 0;
d1310b2e 4219 }
9974090b 4220 if (nr)
125bac01 4221 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4222 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4223
125bac01
MX
4224 if (em_cached)
4225 free_extent_map(em_cached);
4226
d1310b2e
CM
4227 BUG_ON(!list_empty(pages));
4228 if (bio)
1f7ad75b 4229 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4230 return 0;
4231}
d1310b2e
CM
4232
4233/*
4234 * basic invalidatepage code, this waits on any locked or writeback
4235 * ranges corresponding to the page, and then deletes any extent state
4236 * records from the tree
4237 */
4238int extent_invalidatepage(struct extent_io_tree *tree,
4239 struct page *page, unsigned long offset)
4240{
2ac55d41 4241 struct extent_state *cached_state = NULL;
4eee4fa4 4242 u64 start = page_offset(page);
09cbfeaf 4243 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4244 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4245
fda2832f 4246 start += ALIGN(offset, blocksize);
d1310b2e
CM
4247 if (start > end)
4248 return 0;
4249
ff13db41 4250 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4251 wait_on_page_writeback(page);
d1310b2e 4252 clear_extent_bit(tree, start, end,
32c00aff
JB
4253 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4254 EXTENT_DO_ACCOUNTING,
2ac55d41 4255 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4256 return 0;
4257}
d1310b2e 4258
7b13b7b1
CM
4259/*
4260 * a helper for releasepage, this tests for areas of the page that
4261 * are locked or under IO and drops the related state bits if it is safe
4262 * to drop the page.
4263 */
48a3b636
ES
4264static int try_release_extent_state(struct extent_map_tree *map,
4265 struct extent_io_tree *tree,
4266 struct page *page, gfp_t mask)
7b13b7b1 4267{
4eee4fa4 4268 u64 start = page_offset(page);
09cbfeaf 4269 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4270 int ret = 1;
4271
211f90e6 4272 if (test_range_bit(tree, start, end,
8b62b72b 4273 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4274 ret = 0;
4275 else {
11ef160f
CM
4276 /*
4277 * at this point we can safely clear everything except the
4278 * locked bit and the nodatasum bit
4279 */
e3f24cc5 4280 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4281 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4282 0, 0, NULL, mask);
e3f24cc5
CM
4283
4284 /* if clear_extent_bit failed for enomem reasons,
4285 * we can't allow the release to continue.
4286 */
4287 if (ret < 0)
4288 ret = 0;
4289 else
4290 ret = 1;
7b13b7b1
CM
4291 }
4292 return ret;
4293}
7b13b7b1 4294
d1310b2e
CM
4295/*
4296 * a helper for releasepage. As long as there are no locked extents
4297 * in the range corresponding to the page, both state records and extent
4298 * map records are removed
4299 */
4300int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4301 struct extent_io_tree *tree, struct page *page,
4302 gfp_t mask)
d1310b2e
CM
4303{
4304 struct extent_map *em;
4eee4fa4 4305 u64 start = page_offset(page);
09cbfeaf 4306 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4307
d0164adc 4308 if (gfpflags_allow_blocking(mask) &&
ee22184b 4309 page->mapping->host->i_size > SZ_16M) {
39b5637f 4310 u64 len;
70dec807 4311 while (start <= end) {
39b5637f 4312 len = end - start + 1;
890871be 4313 write_lock(&map->lock);
39b5637f 4314 em = lookup_extent_mapping(map, start, len);
285190d9 4315 if (!em) {
890871be 4316 write_unlock(&map->lock);
70dec807
CM
4317 break;
4318 }
7f3c74fb
CM
4319 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4320 em->start != start) {
890871be 4321 write_unlock(&map->lock);
70dec807
CM
4322 free_extent_map(em);
4323 break;
4324 }
4325 if (!test_range_bit(tree, em->start,
4326 extent_map_end(em) - 1,
8b62b72b 4327 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4328 0, NULL)) {
70dec807
CM
4329 remove_extent_mapping(map, em);
4330 /* once for the rb tree */
4331 free_extent_map(em);
4332 }
4333 start = extent_map_end(em);
890871be 4334 write_unlock(&map->lock);
70dec807
CM
4335
4336 /* once for us */
d1310b2e
CM
4337 free_extent_map(em);
4338 }
d1310b2e 4339 }
7b13b7b1 4340 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4341}
d1310b2e 4342
ec29ed5b
CM
4343/*
4344 * helper function for fiemap, which doesn't want to see any holes.
4345 * This maps until we find something past 'last'
4346 */
4347static struct extent_map *get_extent_skip_holes(struct inode *inode,
4348 u64 offset,
4349 u64 last,
4350 get_extent_t *get_extent)
4351{
da17066c 4352 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4353 struct extent_map *em;
4354 u64 len;
4355
4356 if (offset >= last)
4357 return NULL;
4358
67871254 4359 while (1) {
ec29ed5b
CM
4360 len = last - offset;
4361 if (len == 0)
4362 break;
fda2832f 4363 len = ALIGN(len, sectorsize);
fc4f21b1 4364 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4365 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4366 return em;
4367
4368 /* if this isn't a hole return it */
4369 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4370 em->block_start != EXTENT_MAP_HOLE) {
4371 return em;
4372 }
4373
4374 /* this is a hole, advance to the next extent */
4375 offset = extent_map_end(em);
4376 free_extent_map(em);
4377 if (offset >= last)
4378 break;
4379 }
4380 return NULL;
4381}
4382
4751832d
QW
4383/*
4384 * To cache previous fiemap extent
4385 *
4386 * Will be used for merging fiemap extent
4387 */
4388struct fiemap_cache {
4389 u64 offset;
4390 u64 phys;
4391 u64 len;
4392 u32 flags;
4393 bool cached;
4394};
4395
4396/*
4397 * Helper to submit fiemap extent.
4398 *
4399 * Will try to merge current fiemap extent specified by @offset, @phys,
4400 * @len and @flags with cached one.
4401 * And only when we fails to merge, cached one will be submitted as
4402 * fiemap extent.
4403 *
4404 * Return value is the same as fiemap_fill_next_extent().
4405 */
4406static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4407 struct fiemap_cache *cache,
4408 u64 offset, u64 phys, u64 len, u32 flags)
4409{
4410 int ret = 0;
4411
4412 if (!cache->cached)
4413 goto assign;
4414
4415 /*
4416 * Sanity check, extent_fiemap() should have ensured that new
4417 * fiemap extent won't overlap with cahced one.
4418 * Not recoverable.
4419 *
4420 * NOTE: Physical address can overlap, due to compression
4421 */
4422 if (cache->offset + cache->len > offset) {
4423 WARN_ON(1);
4424 return -EINVAL;
4425 }
4426
4427 /*
4428 * Only merges fiemap extents if
4429 * 1) Their logical addresses are continuous
4430 *
4431 * 2) Their physical addresses are continuous
4432 * So truly compressed (physical size smaller than logical size)
4433 * extents won't get merged with each other
4434 *
4435 * 3) Share same flags except FIEMAP_EXTENT_LAST
4436 * So regular extent won't get merged with prealloc extent
4437 */
4438 if (cache->offset + cache->len == offset &&
4439 cache->phys + cache->len == phys &&
4440 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4441 (flags & ~FIEMAP_EXTENT_LAST)) {
4442 cache->len += len;
4443 cache->flags |= flags;
4444 goto try_submit_last;
4445 }
4446
4447 /* Not mergeable, need to submit cached one */
4448 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4449 cache->len, cache->flags);
4450 cache->cached = false;
4451 if (ret)
4452 return ret;
4453assign:
4454 cache->cached = true;
4455 cache->offset = offset;
4456 cache->phys = phys;
4457 cache->len = len;
4458 cache->flags = flags;
4459try_submit_last:
4460 if (cache->flags & FIEMAP_EXTENT_LAST) {
4461 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4462 cache->phys, cache->len, cache->flags);
4463 cache->cached = false;
4464 }
4465 return ret;
4466}
4467
4468/*
4469 * Sanity check for fiemap cache
4470 *
4471 * All fiemap cache should be submitted by emit_fiemap_extent()
4472 * Iteration should be terminated either by last fiemap extent or
4473 * fieinfo->fi_extents_max.
4474 * So no cached fiemap should exist.
4475 */
4476static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4477 struct fiemap_extent_info *fieinfo,
4478 struct fiemap_cache *cache)
4479{
4480 int ret;
4481
4482 if (!cache->cached)
4483 return 0;
4484
4485 /* Small and recoverbale problem, only to info developer */
4486#ifdef CONFIG_BTRFS_DEBUG
4487 WARN_ON(1);
4488#endif
4489 btrfs_warn(fs_info,
4490 "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4491 cache->offset, cache->phys, cache->len, cache->flags);
4492 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4493 cache->len, cache->flags);
4494 cache->cached = false;
4495 if (ret > 0)
4496 ret = 0;
4497 return ret;
4498}
4499
1506fcc8
YS
4500int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4501 __u64 start, __u64 len, get_extent_t *get_extent)
4502{
975f84fe 4503 int ret = 0;
1506fcc8
YS
4504 u64 off = start;
4505 u64 max = start + len;
4506 u32 flags = 0;
975f84fe
JB
4507 u32 found_type;
4508 u64 last;
ec29ed5b 4509 u64 last_for_get_extent = 0;
1506fcc8 4510 u64 disko = 0;
ec29ed5b 4511 u64 isize = i_size_read(inode);
975f84fe 4512 struct btrfs_key found_key;
1506fcc8 4513 struct extent_map *em = NULL;
2ac55d41 4514 struct extent_state *cached_state = NULL;
975f84fe 4515 struct btrfs_path *path;
dc046b10 4516 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4517 struct fiemap_cache cache = { 0 };
1506fcc8 4518 int end = 0;
ec29ed5b
CM
4519 u64 em_start = 0;
4520 u64 em_len = 0;
4521 u64 em_end = 0;
1506fcc8
YS
4522
4523 if (len == 0)
4524 return -EINVAL;
4525
975f84fe
JB
4526 path = btrfs_alloc_path();
4527 if (!path)
4528 return -ENOMEM;
4529 path->leave_spinning = 1;
4530
da17066c
JM
4531 start = round_down(start, btrfs_inode_sectorsize(inode));
4532 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4533
ec29ed5b
CM
4534 /*
4535 * lookup the last file extent. We're not using i_size here
4536 * because there might be preallocation past i_size
4537 */
f85b7379
DS
4538 ret = btrfs_lookup_file_extent(NULL, root, path,
4539 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4540 if (ret < 0) {
4541 btrfs_free_path(path);
4542 return ret;
2d324f59
LB
4543 } else {
4544 WARN_ON(!ret);
4545 if (ret == 1)
4546 ret = 0;
975f84fe 4547 }
2d324f59 4548
975f84fe 4549 path->slots[0]--;
975f84fe 4550 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4551 found_type = found_key.type;
975f84fe 4552
ec29ed5b 4553 /* No extents, but there might be delalloc bits */
4a0cc7ca 4554 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4555 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4556 /* have to trust i_size as the end */
4557 last = (u64)-1;
4558 last_for_get_extent = isize;
4559 } else {
4560 /*
4561 * remember the start of the last extent. There are a
4562 * bunch of different factors that go into the length of the
4563 * extent, so its much less complex to remember where it started
4564 */
4565 last = found_key.offset;
4566 last_for_get_extent = last + 1;
975f84fe 4567 }
fe09e16c 4568 btrfs_release_path(path);
975f84fe 4569
ec29ed5b
CM
4570 /*
4571 * we might have some extents allocated but more delalloc past those
4572 * extents. so, we trust isize unless the start of the last extent is
4573 * beyond isize
4574 */
4575 if (last < isize) {
4576 last = (u64)-1;
4577 last_for_get_extent = isize;
4578 }
4579
ff13db41 4580 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4581 &cached_state);
ec29ed5b 4582
4d479cf0 4583 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4584 get_extent);
1506fcc8
YS
4585 if (!em)
4586 goto out;
4587 if (IS_ERR(em)) {
4588 ret = PTR_ERR(em);
4589 goto out;
4590 }
975f84fe 4591
1506fcc8 4592 while (!end) {
b76bb701 4593 u64 offset_in_extent = 0;
ea8efc74
CM
4594
4595 /* break if the extent we found is outside the range */
4596 if (em->start >= max || extent_map_end(em) < off)
4597 break;
4598
4599 /*
4600 * get_extent may return an extent that starts before our
4601 * requested range. We have to make sure the ranges
4602 * we return to fiemap always move forward and don't
4603 * overlap, so adjust the offsets here
4604 */
4605 em_start = max(em->start, off);
1506fcc8 4606
ea8efc74
CM
4607 /*
4608 * record the offset from the start of the extent
b76bb701
JB
4609 * for adjusting the disk offset below. Only do this if the
4610 * extent isn't compressed since our in ram offset may be past
4611 * what we have actually allocated on disk.
ea8efc74 4612 */
b76bb701
JB
4613 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4614 offset_in_extent = em_start - em->start;
ec29ed5b 4615 em_end = extent_map_end(em);
ea8efc74 4616 em_len = em_end - em_start;
1506fcc8
YS
4617 disko = 0;
4618 flags = 0;
4619
ea8efc74
CM
4620 /*
4621 * bump off for our next call to get_extent
4622 */
4623 off = extent_map_end(em);
4624 if (off >= max)
4625 end = 1;
4626
93dbfad7 4627 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4628 end = 1;
4629 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4630 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4631 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4632 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4633 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4634 flags |= (FIEMAP_EXTENT_DELALLOC |
4635 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4636 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4637 struct btrfs_trans_handle *trans;
4638
dc046b10
JB
4639 u64 bytenr = em->block_start -
4640 (em->start - em->orig_start);
fe09e16c 4641
ea8efc74 4642 disko = em->block_start + offset_in_extent;
fe09e16c 4643
afce772e
LF
4644 /*
4645 * We need a trans handle to get delayed refs
4646 */
4647 trans = btrfs_join_transaction(root);
4648 /*
4649 * It's OK if we can't start a trans we can still check
4650 * from commit_root
4651 */
4652 if (IS_ERR(trans))
4653 trans = NULL;
4654
fe09e16c
LB
4655 /*
4656 * As btrfs supports shared space, this information
4657 * can be exported to userspace tools via
dc046b10
JB
4658 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4659 * then we're just getting a count and we can skip the
4660 * lookup stuff.
fe09e16c 4661 */
afce772e 4662 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4663 root->objectid,
4664 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4665 if (trans)
3a45bb20 4666 btrfs_end_transaction(trans);
dc046b10 4667 if (ret < 0)
fe09e16c 4668 goto out_free;
dc046b10 4669 if (ret)
fe09e16c 4670 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4671 ret = 0;
1506fcc8
YS
4672 }
4673 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4674 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4675 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4676 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4677
1506fcc8
YS
4678 free_extent_map(em);
4679 em = NULL;
ec29ed5b
CM
4680 if ((em_start >= last) || em_len == (u64)-1 ||
4681 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4682 flags |= FIEMAP_EXTENT_LAST;
4683 end = 1;
4684 }
4685
ec29ed5b
CM
4686 /* now scan forward to see if this is really the last extent. */
4687 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4688 get_extent);
4689 if (IS_ERR(em)) {
4690 ret = PTR_ERR(em);
4691 goto out;
4692 }
4693 if (!em) {
975f84fe
JB
4694 flags |= FIEMAP_EXTENT_LAST;
4695 end = 1;
4696 }
4751832d
QW
4697 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4698 em_len, flags);
26e726af
CS
4699 if (ret) {
4700 if (ret == 1)
4701 ret = 0;
ec29ed5b 4702 goto out_free;
26e726af 4703 }
1506fcc8
YS
4704 }
4705out_free:
4751832d
QW
4706 if (!ret)
4707 ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4708 free_extent_map(em);
4709out:
fe09e16c 4710 btrfs_free_path(path);
a52f4cd2 4711 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4712 &cached_state, GFP_NOFS);
1506fcc8
YS
4713 return ret;
4714}
4715
727011e0
CM
4716static void __free_extent_buffer(struct extent_buffer *eb)
4717{
6d49ba1b 4718 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4719 kmem_cache_free(extent_buffer_cache, eb);
4720}
4721
a26e8c9f 4722int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4723{
4724 return (atomic_read(&eb->io_pages) ||
4725 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4726 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4727}
4728
4729/*
4730 * Helper for releasing extent buffer page.
4731 */
a50924e3 4732static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4733{
4734 unsigned long index;
db7f3436
JB
4735 struct page *page;
4736 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4737
4738 BUG_ON(extent_buffer_under_io(eb));
4739
a50924e3
DS
4740 index = num_extent_pages(eb->start, eb->len);
4741 if (index == 0)
db7f3436
JB
4742 return;
4743
4744 do {
4745 index--;
fb85fc9a 4746 page = eb->pages[index];
5d2361db
FL
4747 if (!page)
4748 continue;
4749 if (mapped)
db7f3436 4750 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4751 /*
4752 * We do this since we'll remove the pages after we've
4753 * removed the eb from the radix tree, so we could race
4754 * and have this page now attached to the new eb. So
4755 * only clear page_private if it's still connected to
4756 * this eb.
4757 */
4758 if (PagePrivate(page) &&
4759 page->private == (unsigned long)eb) {
4760 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4761 BUG_ON(PageDirty(page));
4762 BUG_ON(PageWriteback(page));
db7f3436 4763 /*
5d2361db
FL
4764 * We need to make sure we haven't be attached
4765 * to a new eb.
db7f3436 4766 */
5d2361db
FL
4767 ClearPagePrivate(page);
4768 set_page_private(page, 0);
4769 /* One for the page private */
09cbfeaf 4770 put_page(page);
db7f3436 4771 }
5d2361db
FL
4772
4773 if (mapped)
4774 spin_unlock(&page->mapping->private_lock);
4775
01327610 4776 /* One for when we allocated the page */
09cbfeaf 4777 put_page(page);
a50924e3 4778 } while (index != 0);
db7f3436
JB
4779}
4780
4781/*
4782 * Helper for releasing the extent buffer.
4783 */
4784static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4785{
a50924e3 4786 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4787 __free_extent_buffer(eb);
4788}
4789
f28491e0
JB
4790static struct extent_buffer *
4791__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4792 unsigned long len)
d1310b2e
CM
4793{
4794 struct extent_buffer *eb = NULL;
4795
d1b5c567 4796 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4797 eb->start = start;
4798 eb->len = len;
f28491e0 4799 eb->fs_info = fs_info;
815a51c7 4800 eb->bflags = 0;
bd681513
CM
4801 rwlock_init(&eb->lock);
4802 atomic_set(&eb->write_locks, 0);
4803 atomic_set(&eb->read_locks, 0);
4804 atomic_set(&eb->blocking_readers, 0);
4805 atomic_set(&eb->blocking_writers, 0);
4806 atomic_set(&eb->spinning_readers, 0);
4807 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4808 eb->lock_nested = 0;
bd681513
CM
4809 init_waitqueue_head(&eb->write_lock_wq);
4810 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4811
6d49ba1b
ES
4812 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4813
3083ee2e 4814 spin_lock_init(&eb->refs_lock);
d1310b2e 4815 atomic_set(&eb->refs, 1);
0b32f4bb 4816 atomic_set(&eb->io_pages, 0);
727011e0 4817
b8dae313
DS
4818 /*
4819 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4820 */
4821 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4822 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4823 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4824
4825 return eb;
4826}
4827
815a51c7
JS
4828struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4829{
4830 unsigned long i;
4831 struct page *p;
4832 struct extent_buffer *new;
4833 unsigned long num_pages = num_extent_pages(src->start, src->len);
4834
3f556f78 4835 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4836 if (new == NULL)
4837 return NULL;
4838
4839 for (i = 0; i < num_pages; i++) {
9ec72677 4840 p = alloc_page(GFP_NOFS);
db7f3436
JB
4841 if (!p) {
4842 btrfs_release_extent_buffer(new);
4843 return NULL;
4844 }
815a51c7
JS
4845 attach_extent_buffer_page(new, p);
4846 WARN_ON(PageDirty(p));
4847 SetPageUptodate(p);
4848 new->pages[i] = p;
fba1acf9 4849 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4850 }
4851
815a51c7
JS
4852 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4853 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4854
4855 return new;
4856}
4857
0f331229
OS
4858struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4859 u64 start, unsigned long len)
815a51c7
JS
4860{
4861 struct extent_buffer *eb;
3f556f78 4862 unsigned long num_pages;
815a51c7
JS
4863 unsigned long i;
4864
0f331229 4865 num_pages = num_extent_pages(start, len);
3f556f78
DS
4866
4867 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4868 if (!eb)
4869 return NULL;
4870
4871 for (i = 0; i < num_pages; i++) {
9ec72677 4872 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4873 if (!eb->pages[i])
4874 goto err;
4875 }
4876 set_extent_buffer_uptodate(eb);
4877 btrfs_set_header_nritems(eb, 0);
4878 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4879
4880 return eb;
4881err:
84167d19
SB
4882 for (; i > 0; i--)
4883 __free_page(eb->pages[i - 1]);
815a51c7
JS
4884 __free_extent_buffer(eb);
4885 return NULL;
4886}
4887
0f331229 4888struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4889 u64 start)
0f331229 4890{
da17066c 4891 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4892}
4893
0b32f4bb
JB
4894static void check_buffer_tree_ref(struct extent_buffer *eb)
4895{
242e18c7 4896 int refs;
0b32f4bb
JB
4897 /* the ref bit is tricky. We have to make sure it is set
4898 * if we have the buffer dirty. Otherwise the
4899 * code to free a buffer can end up dropping a dirty
4900 * page
4901 *
4902 * Once the ref bit is set, it won't go away while the
4903 * buffer is dirty or in writeback, and it also won't
4904 * go away while we have the reference count on the
4905 * eb bumped.
4906 *
4907 * We can't just set the ref bit without bumping the
4908 * ref on the eb because free_extent_buffer might
4909 * see the ref bit and try to clear it. If this happens
4910 * free_extent_buffer might end up dropping our original
4911 * ref by mistake and freeing the page before we are able
4912 * to add one more ref.
4913 *
4914 * So bump the ref count first, then set the bit. If someone
4915 * beat us to it, drop the ref we added.
4916 */
242e18c7
CM
4917 refs = atomic_read(&eb->refs);
4918 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4919 return;
4920
594831c4
JB
4921 spin_lock(&eb->refs_lock);
4922 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4923 atomic_inc(&eb->refs);
594831c4 4924 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4925}
4926
2457aec6
MG
4927static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4928 struct page *accessed)
5df4235e
JB
4929{
4930 unsigned long num_pages, i;
4931
0b32f4bb
JB
4932 check_buffer_tree_ref(eb);
4933
5df4235e
JB
4934 num_pages = num_extent_pages(eb->start, eb->len);
4935 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4936 struct page *p = eb->pages[i];
4937
2457aec6
MG
4938 if (p != accessed)
4939 mark_page_accessed(p);
5df4235e
JB
4940 }
4941}
4942
f28491e0
JB
4943struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4944 u64 start)
452c75c3
CS
4945{
4946 struct extent_buffer *eb;
4947
4948 rcu_read_lock();
f28491e0 4949 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4950 start >> PAGE_SHIFT);
452c75c3
CS
4951 if (eb && atomic_inc_not_zero(&eb->refs)) {
4952 rcu_read_unlock();
062c19e9
FM
4953 /*
4954 * Lock our eb's refs_lock to avoid races with
4955 * free_extent_buffer. When we get our eb it might be flagged
4956 * with EXTENT_BUFFER_STALE and another task running
4957 * free_extent_buffer might have seen that flag set,
4958 * eb->refs == 2, that the buffer isn't under IO (dirty and
4959 * writeback flags not set) and it's still in the tree (flag
4960 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4961 * of decrementing the extent buffer's reference count twice.
4962 * So here we could race and increment the eb's reference count,
4963 * clear its stale flag, mark it as dirty and drop our reference
4964 * before the other task finishes executing free_extent_buffer,
4965 * which would later result in an attempt to free an extent
4966 * buffer that is dirty.
4967 */
4968 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4969 spin_lock(&eb->refs_lock);
4970 spin_unlock(&eb->refs_lock);
4971 }
2457aec6 4972 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4973 return eb;
4974 }
4975 rcu_read_unlock();
4976
4977 return NULL;
4978}
4979
faa2dbf0
JB
4980#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4981struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4982 u64 start)
faa2dbf0
JB
4983{
4984 struct extent_buffer *eb, *exists = NULL;
4985 int ret;
4986
4987 eb = find_extent_buffer(fs_info, start);
4988 if (eb)
4989 return eb;
da17066c 4990 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4991 if (!eb)
4992 return NULL;
4993 eb->fs_info = fs_info;
4994again:
e1860a77 4995 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4996 if (ret)
4997 goto free_eb;
4998 spin_lock(&fs_info->buffer_lock);
4999 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5000 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5001 spin_unlock(&fs_info->buffer_lock);
5002 radix_tree_preload_end();
5003 if (ret == -EEXIST) {
5004 exists = find_extent_buffer(fs_info, start);
5005 if (exists)
5006 goto free_eb;
5007 else
5008 goto again;
5009 }
5010 check_buffer_tree_ref(eb);
5011 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5012
5013 /*
5014 * We will free dummy extent buffer's if they come into
5015 * free_extent_buffer with a ref count of 2, but if we are using this we
5016 * want the buffers to stay in memory until we're done with them, so
5017 * bump the ref count again.
5018 */
5019 atomic_inc(&eb->refs);
5020 return eb;
5021free_eb:
5022 btrfs_release_extent_buffer(eb);
5023 return exists;
5024}
5025#endif
5026
f28491e0 5027struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5028 u64 start)
d1310b2e 5029{
da17066c 5030 unsigned long len = fs_info->nodesize;
d1310b2e
CM
5031 unsigned long num_pages = num_extent_pages(start, len);
5032 unsigned long i;
09cbfeaf 5033 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5034 struct extent_buffer *eb;
6af118ce 5035 struct extent_buffer *exists = NULL;
d1310b2e 5036 struct page *p;
f28491e0 5037 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5038 int uptodate = 1;
19fe0a8b 5039 int ret;
d1310b2e 5040
da17066c 5041 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5042 btrfs_err(fs_info, "bad tree block start %llu", start);
5043 return ERR_PTR(-EINVAL);
5044 }
5045
f28491e0 5046 eb = find_extent_buffer(fs_info, start);
452c75c3 5047 if (eb)
6af118ce 5048 return eb;
6af118ce 5049
23d79d81 5050 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5051 if (!eb)
c871b0f2 5052 return ERR_PTR(-ENOMEM);
d1310b2e 5053
727011e0 5054 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5055 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5056 if (!p) {
5057 exists = ERR_PTR(-ENOMEM);
6af118ce 5058 goto free_eb;
c871b0f2 5059 }
4f2de97a
JB
5060
5061 spin_lock(&mapping->private_lock);
5062 if (PagePrivate(p)) {
5063 /*
5064 * We could have already allocated an eb for this page
5065 * and attached one so lets see if we can get a ref on
5066 * the existing eb, and if we can we know it's good and
5067 * we can just return that one, else we know we can just
5068 * overwrite page->private.
5069 */
5070 exists = (struct extent_buffer *)p->private;
5071 if (atomic_inc_not_zero(&exists->refs)) {
5072 spin_unlock(&mapping->private_lock);
5073 unlock_page(p);
09cbfeaf 5074 put_page(p);
2457aec6 5075 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5076 goto free_eb;
5077 }
5ca64f45 5078 exists = NULL;
4f2de97a 5079
0b32f4bb 5080 /*
4f2de97a
JB
5081 * Do this so attach doesn't complain and we need to
5082 * drop the ref the old guy had.
5083 */
5084 ClearPagePrivate(p);
0b32f4bb 5085 WARN_ON(PageDirty(p));
09cbfeaf 5086 put_page(p);
d1310b2e 5087 }
4f2de97a
JB
5088 attach_extent_buffer_page(eb, p);
5089 spin_unlock(&mapping->private_lock);
0b32f4bb 5090 WARN_ON(PageDirty(p));
727011e0 5091 eb->pages[i] = p;
d1310b2e
CM
5092 if (!PageUptodate(p))
5093 uptodate = 0;
eb14ab8e
CM
5094
5095 /*
5096 * see below about how we avoid a nasty race with release page
5097 * and why we unlock later
5098 */
d1310b2e
CM
5099 }
5100 if (uptodate)
b4ce94de 5101 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5102again:
e1860a77 5103 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5104 if (ret) {
5105 exists = ERR_PTR(ret);
19fe0a8b 5106 goto free_eb;
c871b0f2 5107 }
19fe0a8b 5108
f28491e0
JB
5109 spin_lock(&fs_info->buffer_lock);
5110 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5111 start >> PAGE_SHIFT, eb);
f28491e0 5112 spin_unlock(&fs_info->buffer_lock);
452c75c3 5113 radix_tree_preload_end();
19fe0a8b 5114 if (ret == -EEXIST) {
f28491e0 5115 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5116 if (exists)
5117 goto free_eb;
5118 else
115391d2 5119 goto again;
6af118ce 5120 }
6af118ce 5121 /* add one reference for the tree */
0b32f4bb 5122 check_buffer_tree_ref(eb);
34b41ace 5123 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5124
5125 /*
5126 * there is a race where release page may have
5127 * tried to find this extent buffer in the radix
5128 * but failed. It will tell the VM it is safe to
5129 * reclaim the, and it will clear the page private bit.
5130 * We must make sure to set the page private bit properly
5131 * after the extent buffer is in the radix tree so
5132 * it doesn't get lost
5133 */
727011e0
CM
5134 SetPageChecked(eb->pages[0]);
5135 for (i = 1; i < num_pages; i++) {
fb85fc9a 5136 p = eb->pages[i];
727011e0
CM
5137 ClearPageChecked(p);
5138 unlock_page(p);
5139 }
5140 unlock_page(eb->pages[0]);
d1310b2e
CM
5141 return eb;
5142
6af118ce 5143free_eb:
5ca64f45 5144 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5145 for (i = 0; i < num_pages; i++) {
5146 if (eb->pages[i])
5147 unlock_page(eb->pages[i]);
5148 }
eb14ab8e 5149
897ca6e9 5150 btrfs_release_extent_buffer(eb);
6af118ce 5151 return exists;
d1310b2e 5152}
d1310b2e 5153
3083ee2e
JB
5154static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5155{
5156 struct extent_buffer *eb =
5157 container_of(head, struct extent_buffer, rcu_head);
5158
5159 __free_extent_buffer(eb);
5160}
5161
3083ee2e 5162/* Expects to have eb->eb_lock already held */
f7a52a40 5163static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5164{
5165 WARN_ON(atomic_read(&eb->refs) == 0);
5166 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5167 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5168 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5169
815a51c7 5170 spin_unlock(&eb->refs_lock);
3083ee2e 5171
f28491e0
JB
5172 spin_lock(&fs_info->buffer_lock);
5173 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5174 eb->start >> PAGE_SHIFT);
f28491e0 5175 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5176 } else {
5177 spin_unlock(&eb->refs_lock);
815a51c7 5178 }
3083ee2e
JB
5179
5180 /* Should be safe to release our pages at this point */
a50924e3 5181 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5182#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5183 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5184 __free_extent_buffer(eb);
5185 return 1;
5186 }
5187#endif
3083ee2e 5188 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5189 return 1;
3083ee2e
JB
5190 }
5191 spin_unlock(&eb->refs_lock);
e64860aa
JB
5192
5193 return 0;
3083ee2e
JB
5194}
5195
d1310b2e
CM
5196void free_extent_buffer(struct extent_buffer *eb)
5197{
242e18c7
CM
5198 int refs;
5199 int old;
d1310b2e
CM
5200 if (!eb)
5201 return;
5202
242e18c7
CM
5203 while (1) {
5204 refs = atomic_read(&eb->refs);
5205 if (refs <= 3)
5206 break;
5207 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5208 if (old == refs)
5209 return;
5210 }
5211
3083ee2e 5212 spin_lock(&eb->refs_lock);
815a51c7
JS
5213 if (atomic_read(&eb->refs) == 2 &&
5214 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5215 atomic_dec(&eb->refs);
5216
3083ee2e
JB
5217 if (atomic_read(&eb->refs) == 2 &&
5218 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5219 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5220 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5221 atomic_dec(&eb->refs);
5222
5223 /*
5224 * I know this is terrible, but it's temporary until we stop tracking
5225 * the uptodate bits and such for the extent buffers.
5226 */
f7a52a40 5227 release_extent_buffer(eb);
3083ee2e
JB
5228}
5229
5230void free_extent_buffer_stale(struct extent_buffer *eb)
5231{
5232 if (!eb)
d1310b2e
CM
5233 return;
5234
3083ee2e
JB
5235 spin_lock(&eb->refs_lock);
5236 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5237
0b32f4bb 5238 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5239 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5240 atomic_dec(&eb->refs);
f7a52a40 5241 release_extent_buffer(eb);
d1310b2e 5242}
d1310b2e 5243
1d4284bd 5244void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5245{
d1310b2e
CM
5246 unsigned long i;
5247 unsigned long num_pages;
5248 struct page *page;
5249
d1310b2e
CM
5250 num_pages = num_extent_pages(eb->start, eb->len);
5251
5252 for (i = 0; i < num_pages; i++) {
fb85fc9a 5253 page = eb->pages[i];
b9473439 5254 if (!PageDirty(page))
d2c3f4f6
CM
5255 continue;
5256
a61e6f29 5257 lock_page(page);
eb14ab8e
CM
5258 WARN_ON(!PagePrivate(page));
5259
d1310b2e 5260 clear_page_dirty_for_io(page);
0ee0fda0 5261 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5262 if (!PageDirty(page)) {
5263 radix_tree_tag_clear(&page->mapping->page_tree,
5264 page_index(page),
5265 PAGECACHE_TAG_DIRTY);
5266 }
0ee0fda0 5267 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5268 ClearPageError(page);
a61e6f29 5269 unlock_page(page);
d1310b2e 5270 }
0b32f4bb 5271 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5272}
d1310b2e 5273
0b32f4bb 5274int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5275{
5276 unsigned long i;
5277 unsigned long num_pages;
b9473439 5278 int was_dirty = 0;
d1310b2e 5279
0b32f4bb
JB
5280 check_buffer_tree_ref(eb);
5281
b9473439 5282 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5283
d1310b2e 5284 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5285 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5286 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5287
b9473439 5288 for (i = 0; i < num_pages; i++)
fb85fc9a 5289 set_page_dirty(eb->pages[i]);
b9473439 5290 return was_dirty;
d1310b2e 5291}
d1310b2e 5292
69ba3927 5293void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5294{
5295 unsigned long i;
5296 struct page *page;
5297 unsigned long num_pages;
5298
b4ce94de 5299 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5300 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5301 for (i = 0; i < num_pages; i++) {
fb85fc9a 5302 page = eb->pages[i];
33958dc6
CM
5303 if (page)
5304 ClearPageUptodate(page);
1259ab75 5305 }
1259ab75
CM
5306}
5307
09c25a8c 5308void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5309{
5310 unsigned long i;
5311 struct page *page;
5312 unsigned long num_pages;
5313
0b32f4bb 5314 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5315 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5316 for (i = 0; i < num_pages; i++) {
fb85fc9a 5317 page = eb->pages[i];
d1310b2e
CM
5318 SetPageUptodate(page);
5319 }
d1310b2e 5320}
d1310b2e 5321
0b32f4bb 5322int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5323{
0b32f4bb 5324 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5325}
d1310b2e
CM
5326
5327int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5328 struct extent_buffer *eb, int wait,
f188591e 5329 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5330{
5331 unsigned long i;
d1310b2e
CM
5332 struct page *page;
5333 int err;
5334 int ret = 0;
ce9adaa5
CM
5335 int locked_pages = 0;
5336 int all_uptodate = 1;
d1310b2e 5337 unsigned long num_pages;
727011e0 5338 unsigned long num_reads = 0;
a86c12c7 5339 struct bio *bio = NULL;
c8b97818 5340 unsigned long bio_flags = 0;
a86c12c7 5341
b4ce94de 5342 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5343 return 0;
5344
d1310b2e 5345 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5346 for (i = 0; i < num_pages; i++) {
fb85fc9a 5347 page = eb->pages[i];
bb82ab88 5348 if (wait == WAIT_NONE) {
2db04966 5349 if (!trylock_page(page))
ce9adaa5 5350 goto unlock_exit;
d1310b2e
CM
5351 } else {
5352 lock_page(page);
5353 }
ce9adaa5 5354 locked_pages++;
2571e739
LB
5355 }
5356 /*
5357 * We need to firstly lock all pages to make sure that
5358 * the uptodate bit of our pages won't be affected by
5359 * clear_extent_buffer_uptodate().
5360 */
8436ea91 5361 for (i = 0; i < num_pages; i++) {
2571e739 5362 page = eb->pages[i];
727011e0
CM
5363 if (!PageUptodate(page)) {
5364 num_reads++;
ce9adaa5 5365 all_uptodate = 0;
727011e0 5366 }
ce9adaa5 5367 }
2571e739 5368
ce9adaa5 5369 if (all_uptodate) {
8436ea91 5370 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5371 goto unlock_exit;
5372 }
5373
656f30db 5374 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5375 eb->read_mirror = 0;
0b32f4bb 5376 atomic_set(&eb->io_pages, num_reads);
8436ea91 5377 for (i = 0; i < num_pages; i++) {
fb85fc9a 5378 page = eb->pages[i];
baf863b9 5379
ce9adaa5 5380 if (!PageUptodate(page)) {
baf863b9
LB
5381 if (ret) {
5382 atomic_dec(&eb->io_pages);
5383 unlock_page(page);
5384 continue;
5385 }
5386
f188591e 5387 ClearPageError(page);
a86c12c7 5388 err = __extent_read_full_page(tree, page,
f188591e 5389 get_extent, &bio,
d4c7ca86 5390 mirror_num, &bio_flags,
1f7ad75b 5391 REQ_META);
baf863b9 5392 if (err) {
d1310b2e 5393 ret = err;
baf863b9
LB
5394 /*
5395 * We use &bio in above __extent_read_full_page,
5396 * so we ensure that if it returns error, the
5397 * current page fails to add itself to bio and
5398 * it's been unlocked.
5399 *
5400 * We must dec io_pages by ourselves.
5401 */
5402 atomic_dec(&eb->io_pages);
5403 }
d1310b2e
CM
5404 } else {
5405 unlock_page(page);
5406 }
5407 }
5408
355808c2 5409 if (bio) {
1f7ad75b 5410 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5411 if (err)
5412 return err;
355808c2 5413 }
a86c12c7 5414
bb82ab88 5415 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5416 return ret;
d397712b 5417
8436ea91 5418 for (i = 0; i < num_pages; i++) {
fb85fc9a 5419 page = eb->pages[i];
d1310b2e 5420 wait_on_page_locked(page);
d397712b 5421 if (!PageUptodate(page))
d1310b2e 5422 ret = -EIO;
d1310b2e 5423 }
d397712b 5424
d1310b2e 5425 return ret;
ce9adaa5
CM
5426
5427unlock_exit:
d397712b 5428 while (locked_pages > 0) {
ce9adaa5 5429 locked_pages--;
8436ea91
JB
5430 page = eb->pages[locked_pages];
5431 unlock_page(page);
ce9adaa5
CM
5432 }
5433 return ret;
d1310b2e 5434}
d1310b2e
CM
5435
5436void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5437 unsigned long start,
5438 unsigned long len)
5439{
5440 size_t cur;
5441 size_t offset;
5442 struct page *page;
5443 char *kaddr;
5444 char *dst = (char *)dstv;
09cbfeaf
KS
5445 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5447
5448 WARN_ON(start > eb->len);
5449 WARN_ON(start + len > eb->start + eb->len);
5450
09cbfeaf 5451 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5452
d397712b 5453 while (len > 0) {
fb85fc9a 5454 page = eb->pages[i];
d1310b2e 5455
09cbfeaf 5456 cur = min(len, (PAGE_SIZE - offset));
a6591715 5457 kaddr = page_address(page);
d1310b2e 5458 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5459
5460 dst += cur;
5461 len -= cur;
5462 offset = 0;
5463 i++;
5464 }
5465}
d1310b2e 5466
550ac1d8
GH
5467int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5468 unsigned long start,
5469 unsigned long len)
5470{
5471 size_t cur;
5472 size_t offset;
5473 struct page *page;
5474 char *kaddr;
5475 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5476 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5477 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5478 int ret = 0;
5479
5480 WARN_ON(start > eb->len);
5481 WARN_ON(start + len > eb->start + eb->len);
5482
09cbfeaf 5483 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5484
5485 while (len > 0) {
fb85fc9a 5486 page = eb->pages[i];
550ac1d8 5487
09cbfeaf 5488 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5489 kaddr = page_address(page);
5490 if (copy_to_user(dst, kaddr + offset, cur)) {
5491 ret = -EFAULT;
5492 break;
5493 }
5494
5495 dst += cur;
5496 len -= cur;
5497 offset = 0;
5498 i++;
5499 }
5500
5501 return ret;
5502}
5503
415b35a5
LB
5504/*
5505 * return 0 if the item is found within a page.
5506 * return 1 if the item spans two pages.
5507 * return -EINVAL otherwise.
5508 */
d1310b2e 5509int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5510 unsigned long min_len, char **map,
d1310b2e 5511 unsigned long *map_start,
a6591715 5512 unsigned long *map_len)
d1310b2e 5513{
09cbfeaf 5514 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5515 char *kaddr;
5516 struct page *p;
09cbfeaf
KS
5517 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5518 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5519 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5520 PAGE_SHIFT;
d1310b2e
CM
5521
5522 if (i != end_i)
415b35a5 5523 return 1;
d1310b2e
CM
5524
5525 if (i == 0) {
5526 offset = start_offset;
5527 *map_start = 0;
5528 } else {
5529 offset = 0;
09cbfeaf 5530 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5531 }
d397712b 5532
d1310b2e 5533 if (start + min_len > eb->len) {
5d163e0e 5534 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5535 eb->start, eb->len, start, min_len);
85026533 5536 return -EINVAL;
d1310b2e
CM
5537 }
5538
fb85fc9a 5539 p = eb->pages[i];
a6591715 5540 kaddr = page_address(p);
d1310b2e 5541 *map = kaddr + offset;
09cbfeaf 5542 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5543 return 0;
5544}
d1310b2e 5545
d1310b2e
CM
5546int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5547 unsigned long start,
5548 unsigned long len)
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
5554 char *ptr = (char *)ptrv;
09cbfeaf
KS
5555 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5556 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5557 int ret = 0;
5558
5559 WARN_ON(start > eb->len);
5560 WARN_ON(start + len > eb->start + eb->len);
5561
09cbfeaf 5562 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5563
d397712b 5564 while (len > 0) {
fb85fc9a 5565 page = eb->pages[i];
d1310b2e 5566
09cbfeaf 5567 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5568
a6591715 5569 kaddr = page_address(page);
d1310b2e 5570 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5571 if (ret)
5572 break;
5573
5574 ptr += cur;
5575 len -= cur;
5576 offset = 0;
5577 i++;
5578 }
5579 return ret;
5580}
d1310b2e 5581
f157bf76
DS
5582void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5583 const void *srcv)
5584{
5585 char *kaddr;
5586
5587 WARN_ON(!PageUptodate(eb->pages[0]));
5588 kaddr = page_address(eb->pages[0]);
5589 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5590 BTRFS_FSID_SIZE);
5591}
5592
5593void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5594{
5595 char *kaddr;
5596
5597 WARN_ON(!PageUptodate(eb->pages[0]));
5598 kaddr = page_address(eb->pages[0]);
5599 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5600 BTRFS_FSID_SIZE);
5601}
5602
d1310b2e
CM
5603void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5604 unsigned long start, unsigned long len)
5605{
5606 size_t cur;
5607 size_t offset;
5608 struct page *page;
5609 char *kaddr;
5610 char *src = (char *)srcv;
09cbfeaf
KS
5611 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5612 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5613
5614 WARN_ON(start > eb->len);
5615 WARN_ON(start + len > eb->start + eb->len);
5616
09cbfeaf 5617 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5618
d397712b 5619 while (len > 0) {
fb85fc9a 5620 page = eb->pages[i];
d1310b2e
CM
5621 WARN_ON(!PageUptodate(page));
5622
09cbfeaf 5623 cur = min(len, PAGE_SIZE - offset);
a6591715 5624 kaddr = page_address(page);
d1310b2e 5625 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5626
5627 src += cur;
5628 len -= cur;
5629 offset = 0;
5630 i++;
5631 }
5632}
d1310b2e 5633
b159fa28
DS
5634void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5635 unsigned long len)
d1310b2e
CM
5636{
5637 size_t cur;
5638 size_t offset;
5639 struct page *page;
5640 char *kaddr;
09cbfeaf
KS
5641 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5643
5644 WARN_ON(start > eb->len);
5645 WARN_ON(start + len > eb->start + eb->len);
5646
09cbfeaf 5647 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5648
d397712b 5649 while (len > 0) {
fb85fc9a 5650 page = eb->pages[i];
d1310b2e
CM
5651 WARN_ON(!PageUptodate(page));
5652
09cbfeaf 5653 cur = min(len, PAGE_SIZE - offset);
a6591715 5654 kaddr = page_address(page);
b159fa28 5655 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5656
5657 len -= cur;
5658 offset = 0;
5659 i++;
5660 }
5661}
d1310b2e 5662
58e8012c
DS
5663void copy_extent_buffer_full(struct extent_buffer *dst,
5664 struct extent_buffer *src)
5665{
5666 int i;
5667 unsigned num_pages;
5668
5669 ASSERT(dst->len == src->len);
5670
5671 num_pages = num_extent_pages(dst->start, dst->len);
5672 for (i = 0; i < num_pages; i++)
5673 copy_page(page_address(dst->pages[i]),
5674 page_address(src->pages[i]));
5675}
5676
d1310b2e
CM
5677void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5678 unsigned long dst_offset, unsigned long src_offset,
5679 unsigned long len)
5680{
5681 u64 dst_len = dst->len;
5682 size_t cur;
5683 size_t offset;
5684 struct page *page;
5685 char *kaddr;
09cbfeaf
KS
5686 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5687 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5688
5689 WARN_ON(src->len != dst_len);
5690
5691 offset = (start_offset + dst_offset) &
09cbfeaf 5692 (PAGE_SIZE - 1);
d1310b2e 5693
d397712b 5694 while (len > 0) {
fb85fc9a 5695 page = dst->pages[i];
d1310b2e
CM
5696 WARN_ON(!PageUptodate(page));
5697
09cbfeaf 5698 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5699
a6591715 5700 kaddr = page_address(page);
d1310b2e 5701 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5702
5703 src_offset += cur;
5704 len -= cur;
5705 offset = 0;
5706 i++;
5707 }
5708}
d1310b2e 5709
2fe1d551
OS
5710void le_bitmap_set(u8 *map, unsigned int start, int len)
5711{
5712 u8 *p = map + BIT_BYTE(start);
5713 const unsigned int size = start + len;
5714 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5715 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5716
5717 while (len - bits_to_set >= 0) {
5718 *p |= mask_to_set;
5719 len -= bits_to_set;
5720 bits_to_set = BITS_PER_BYTE;
9c894696 5721 mask_to_set = ~0;
2fe1d551
OS
5722 p++;
5723 }
5724 if (len) {
5725 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5726 *p |= mask_to_set;
5727 }
5728}
5729
5730void le_bitmap_clear(u8 *map, unsigned int start, int len)
5731{
5732 u8 *p = map + BIT_BYTE(start);
5733 const unsigned int size = start + len;
5734 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5735 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5736
5737 while (len - bits_to_clear >= 0) {
5738 *p &= ~mask_to_clear;
5739 len -= bits_to_clear;
5740 bits_to_clear = BITS_PER_BYTE;
9c894696 5741 mask_to_clear = ~0;
2fe1d551
OS
5742 p++;
5743 }
5744 if (len) {
5745 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5746 *p &= ~mask_to_clear;
5747 }
5748}
3e1e8bb7
OS
5749
5750/*
5751 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5752 * given bit number
5753 * @eb: the extent buffer
5754 * @start: offset of the bitmap item in the extent buffer
5755 * @nr: bit number
5756 * @page_index: return index of the page in the extent buffer that contains the
5757 * given bit number
5758 * @page_offset: return offset into the page given by page_index
5759 *
5760 * This helper hides the ugliness of finding the byte in an extent buffer which
5761 * contains a given bit.
5762 */
5763static inline void eb_bitmap_offset(struct extent_buffer *eb,
5764 unsigned long start, unsigned long nr,
5765 unsigned long *page_index,
5766 size_t *page_offset)
5767{
09cbfeaf 5768 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5769 size_t byte_offset = BIT_BYTE(nr);
5770 size_t offset;
5771
5772 /*
5773 * The byte we want is the offset of the extent buffer + the offset of
5774 * the bitmap item in the extent buffer + the offset of the byte in the
5775 * bitmap item.
5776 */
5777 offset = start_offset + start + byte_offset;
5778
09cbfeaf
KS
5779 *page_index = offset >> PAGE_SHIFT;
5780 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5781}
5782
5783/**
5784 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5785 * @eb: the extent buffer
5786 * @start: offset of the bitmap item in the extent buffer
5787 * @nr: bit number to test
5788 */
5789int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5790 unsigned long nr)
5791{
2fe1d551 5792 u8 *kaddr;
3e1e8bb7
OS
5793 struct page *page;
5794 unsigned long i;
5795 size_t offset;
5796
5797 eb_bitmap_offset(eb, start, nr, &i, &offset);
5798 page = eb->pages[i];
5799 WARN_ON(!PageUptodate(page));
5800 kaddr = page_address(page);
5801 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5802}
5803
5804/**
5805 * extent_buffer_bitmap_set - set an area of a bitmap
5806 * @eb: the extent buffer
5807 * @start: offset of the bitmap item in the extent buffer
5808 * @pos: bit number of the first bit
5809 * @len: number of bits to set
5810 */
5811void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5812 unsigned long pos, unsigned long len)
5813{
2fe1d551 5814 u8 *kaddr;
3e1e8bb7
OS
5815 struct page *page;
5816 unsigned long i;
5817 size_t offset;
5818 const unsigned int size = pos + len;
5819 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5820 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5821
5822 eb_bitmap_offset(eb, start, pos, &i, &offset);
5823 page = eb->pages[i];
5824 WARN_ON(!PageUptodate(page));
5825 kaddr = page_address(page);
5826
5827 while (len >= bits_to_set) {
5828 kaddr[offset] |= mask_to_set;
5829 len -= bits_to_set;
5830 bits_to_set = BITS_PER_BYTE;
9c894696 5831 mask_to_set = ~0;
09cbfeaf 5832 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5833 offset = 0;
5834 page = eb->pages[++i];
5835 WARN_ON(!PageUptodate(page));
5836 kaddr = page_address(page);
5837 }
5838 }
5839 if (len) {
5840 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5841 kaddr[offset] |= mask_to_set;
5842 }
5843}
5844
5845
5846/**
5847 * extent_buffer_bitmap_clear - clear an area of a bitmap
5848 * @eb: the extent buffer
5849 * @start: offset of the bitmap item in the extent buffer
5850 * @pos: bit number of the first bit
5851 * @len: number of bits to clear
5852 */
5853void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5854 unsigned long pos, unsigned long len)
5855{
2fe1d551 5856 u8 *kaddr;
3e1e8bb7
OS
5857 struct page *page;
5858 unsigned long i;
5859 size_t offset;
5860 const unsigned int size = pos + len;
5861 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5862 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5863
5864 eb_bitmap_offset(eb, start, pos, &i, &offset);
5865 page = eb->pages[i];
5866 WARN_ON(!PageUptodate(page));
5867 kaddr = page_address(page);
5868
5869 while (len >= bits_to_clear) {
5870 kaddr[offset] &= ~mask_to_clear;
5871 len -= bits_to_clear;
5872 bits_to_clear = BITS_PER_BYTE;
9c894696 5873 mask_to_clear = ~0;
09cbfeaf 5874 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5875 offset = 0;
5876 page = eb->pages[++i];
5877 WARN_ON(!PageUptodate(page));
5878 kaddr = page_address(page);
5879 }
5880 }
5881 if (len) {
5882 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5883 kaddr[offset] &= ~mask_to_clear;
5884 }
5885}
5886
3387206f
ST
5887static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5888{
5889 unsigned long distance = (src > dst) ? src - dst : dst - src;
5890 return distance < len;
5891}
5892
d1310b2e
CM
5893static void copy_pages(struct page *dst_page, struct page *src_page,
5894 unsigned long dst_off, unsigned long src_off,
5895 unsigned long len)
5896{
a6591715 5897 char *dst_kaddr = page_address(dst_page);
d1310b2e 5898 char *src_kaddr;
727011e0 5899 int must_memmove = 0;
d1310b2e 5900
3387206f 5901 if (dst_page != src_page) {
a6591715 5902 src_kaddr = page_address(src_page);
3387206f 5903 } else {
d1310b2e 5904 src_kaddr = dst_kaddr;
727011e0
CM
5905 if (areas_overlap(src_off, dst_off, len))
5906 must_memmove = 1;
3387206f 5907 }
d1310b2e 5908
727011e0
CM
5909 if (must_memmove)
5910 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5911 else
5912 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5913}
5914
5915void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5916 unsigned long src_offset, unsigned long len)
5917{
0b246afa 5918 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5919 size_t cur;
5920 size_t dst_off_in_page;
5921 size_t src_off_in_page;
09cbfeaf 5922 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5923 unsigned long dst_i;
5924 unsigned long src_i;
5925
5926 if (src_offset + len > dst->len) {
0b246afa 5927 btrfs_err(fs_info,
5d163e0e
JM
5928 "memmove bogus src_offset %lu move len %lu dst len %lu",
5929 src_offset, len, dst->len);
d1310b2e
CM
5930 BUG_ON(1);
5931 }
5932 if (dst_offset + len > dst->len) {
0b246afa 5933 btrfs_err(fs_info,
5d163e0e
JM
5934 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5935 dst_offset, len, dst->len);
d1310b2e
CM
5936 BUG_ON(1);
5937 }
5938
d397712b 5939 while (len > 0) {
d1310b2e 5940 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5941 (PAGE_SIZE - 1);
d1310b2e 5942 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5943 (PAGE_SIZE - 1);
d1310b2e 5944
09cbfeaf
KS
5945 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5946 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5947
09cbfeaf 5948 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5949 src_off_in_page));
5950 cur = min_t(unsigned long, cur,
09cbfeaf 5951 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5952
fb85fc9a 5953 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5954 dst_off_in_page, src_off_in_page, cur);
5955
5956 src_offset += cur;
5957 dst_offset += cur;
5958 len -= cur;
5959 }
5960}
d1310b2e
CM
5961
5962void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5963 unsigned long src_offset, unsigned long len)
5964{
0b246afa 5965 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5966 size_t cur;
5967 size_t dst_off_in_page;
5968 size_t src_off_in_page;
5969 unsigned long dst_end = dst_offset + len - 1;
5970 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5971 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5972 unsigned long dst_i;
5973 unsigned long src_i;
5974
5975 if (src_offset + len > dst->len) {
0b246afa 5976 btrfs_err(fs_info,
5d163e0e
JM
5977 "memmove bogus src_offset %lu move len %lu len %lu",
5978 src_offset, len, dst->len);
d1310b2e
CM
5979 BUG_ON(1);
5980 }
5981 if (dst_offset + len > dst->len) {
0b246afa 5982 btrfs_err(fs_info,
5d163e0e
JM
5983 "memmove bogus dst_offset %lu move len %lu len %lu",
5984 dst_offset, len, dst->len);
d1310b2e
CM
5985 BUG_ON(1);
5986 }
727011e0 5987 if (dst_offset < src_offset) {
d1310b2e
CM
5988 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5989 return;
5990 }
d397712b 5991 while (len > 0) {
09cbfeaf
KS
5992 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5993 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5994
5995 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5996 (PAGE_SIZE - 1);
d1310b2e 5997 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5998 (PAGE_SIZE - 1);
d1310b2e
CM
5999
6000 cur = min_t(unsigned long, len, src_off_in_page + 1);
6001 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6002 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6003 dst_off_in_page - cur + 1,
6004 src_off_in_page - cur + 1, cur);
6005
6006 dst_end -= cur;
6007 src_end -= cur;
6008 len -= cur;
6009 }
6010}
6af118ce 6011
f7a52a40 6012int try_release_extent_buffer(struct page *page)
19fe0a8b 6013{
6af118ce 6014 struct extent_buffer *eb;
6af118ce 6015
3083ee2e 6016 /*
01327610 6017 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6018 * now.
6019 */
6020 spin_lock(&page->mapping->private_lock);
6021 if (!PagePrivate(page)) {
6022 spin_unlock(&page->mapping->private_lock);
4f2de97a 6023 return 1;
45f49bce 6024 }
6af118ce 6025
3083ee2e
JB
6026 eb = (struct extent_buffer *)page->private;
6027 BUG_ON(!eb);
19fe0a8b
MX
6028
6029 /*
3083ee2e
JB
6030 * This is a little awful but should be ok, we need to make sure that
6031 * the eb doesn't disappear out from under us while we're looking at
6032 * this page.
19fe0a8b 6033 */
3083ee2e 6034 spin_lock(&eb->refs_lock);
0b32f4bb 6035 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6036 spin_unlock(&eb->refs_lock);
6037 spin_unlock(&page->mapping->private_lock);
6038 return 0;
b9473439 6039 }
3083ee2e 6040 spin_unlock(&page->mapping->private_lock);
897ca6e9 6041
19fe0a8b 6042 /*
3083ee2e
JB
6043 * If tree ref isn't set then we know the ref on this eb is a real ref,
6044 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6045 */
3083ee2e
JB
6046 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6047 spin_unlock(&eb->refs_lock);
6048 return 0;
b9473439 6049 }
19fe0a8b 6050
f7a52a40 6051 return release_extent_buffer(eb);
6af118ce 6052}