btrfs: remove checks for a 0 inode number during backref walking
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
4a54c8c1 23#include "volumes.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
2a5232a8 32#include "compression.h"
d1310b2e 33
d1310b2e
CM
34static struct kmem_cache *extent_buffer_cache;
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
a40246e8
JB
37static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
38{
39 struct btrfs_fs_info *fs_info = eb->fs_info;
40 unsigned long flags;
41
42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
43 list_add(&eb->leak_list, &fs_info->allocated_ebs);
44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
45}
46
a40246e8
JB
47static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
48{
49 struct btrfs_fs_info *fs_info = eb->fs_info;
50 unsigned long flags;
51
52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
53 list_del(&eb->leak_list);
54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
6d49ba1b
ES
55}
56
3fd63727 57void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 58{
6d49ba1b 59 struct extent_buffer *eb;
3fd63727 60 unsigned long flags;
6d49ba1b 61
8c38938c
JB
62 /*
63 * If we didn't get into open_ctree our allocated_ebs will not be
64 * initialized, so just skip this.
65 */
66 if (!fs_info->allocated_ebs.next)
67 return;
68
b95b78e6 69 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
71 while (!list_empty(&fs_info->allocated_ebs)) {
72 eb = list_first_entry(&fs_info->allocated_ebs,
73 struct extent_buffer, leak_list);
8c38938c
JB
74 pr_err(
75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
77 btrfs_header_owner(eb));
33ca832f
JB
78 list_del(&eb->leak_list);
79 kmem_cache_free(extent_buffer_cache, eb);
80 }
3fd63727 81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f 82}
6d49ba1b 83#else
a40246e8 84#define btrfs_leak_debug_add_eb(eb) do {} while (0)
a40246e8 85#define btrfs_leak_debug_del_eb(eb) do {} while (0)
4bef0848 86#endif
d1310b2e 87
7aab8b32
CH
88/*
89 * Structure to record info about the bio being assembled, and other info like
90 * how many bytes are there before stripe/ordered extent boundary.
91 */
92struct btrfs_bio_ctrl {
93 struct bio *bio;
722c82ac 94 int mirror_num;
0f07003b 95 enum btrfs_compression_type compress_type;
7aab8b32
CH
96 u32 len_to_stripe_boundary;
97 u32 len_to_oe_boundary;
5467abba 98 btrfs_bio_end_io_t end_io_func;
7aab8b32
CH
99};
100
d1310b2e 101struct extent_page_data {
390ed29b 102 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
103 /* tells writepage not to lock the state bits for this range
104 * it still does the unlocking
105 */
ffbd517d
CM
106 unsigned int extent_locked:1;
107
70fd7614 108 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 109 unsigned int sync_io:1;
d1310b2e
CM
110};
111
722c82ac 112static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 113{
722c82ac 114 struct bio *bio;
7aa51232 115 struct bio_vec *bv;
722c82ac
CH
116 struct inode *inode;
117 int mirror_num;
118
119 if (!bio_ctrl->bio)
120 return;
bb58eb9e 121
722c82ac 122 bio = bio_ctrl->bio;
7aa51232
CH
123 bv = bio_first_bvec_all(bio);
124 inode = bv->bv_page->mapping->host;
722c82ac 125 mirror_num = bio_ctrl->mirror_num;
bb58eb9e 126
e0eefe07
QW
127 /* Caller should ensure the bio has at least some range added */
128 ASSERT(bio->bi_iter.bi_size);
c9583ada 129
7aa51232 130 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
bb58eb9e 131
c93104e7
CH
132 if (!is_data_inode(inode))
133 btrfs_submit_metadata_bio(inode, bio, mirror_num);
134 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
135 btrfs_submit_data_write_bio(inode, bio, mirror_num);
908930f3 136 else
722c82ac
CH
137 btrfs_submit_data_read_bio(inode, bio, mirror_num,
138 bio_ctrl->compress_type);
390ed29b 139
917f32a2 140 /* The bio is owned by the end_io handler now */
722c82ac 141 bio_ctrl->bio = NULL;
3065976b
QW
142}
143
f4340622 144/*
9845e5dd 145 * Submit or fail the current bio in an extent_page_data structure.
f4340622 146 */
9845e5dd 147static void submit_write_bio(struct extent_page_data *epd, int ret)
bb58eb9e 148{
390ed29b 149 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 150
9845e5dd
CH
151 if (!bio)
152 return;
153
154 if (ret) {
155 ASSERT(ret < 0);
917f32a2
CH
156 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
157 /* The bio is owned by the end_io handler now */
390ed29b 158 epd->bio_ctrl.bio = NULL;
9845e5dd 159 } else {
722c82ac 160 submit_one_bio(&epd->bio_ctrl);
bb58eb9e
QW
161 }
162}
e2932ee0 163
a62a3bd9
JB
164int __init extent_buffer_init_cachep(void)
165{
837e1972 166 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 167 sizeof(struct extent_buffer), 0,
fba4b697 168 SLAB_MEM_SPREAD, NULL);
a62a3bd9 169 if (!extent_buffer_cache)
6f0d04f8 170 return -ENOMEM;
b208c2f7 171
d1310b2e 172 return 0;
d1310b2e
CM
173}
174
a62a3bd9 175void __cold extent_buffer_free_cachep(void)
d1310b2e 176{
8c0a8537
KS
177 /*
178 * Make sure all delayed rcu free are flushed before we
179 * destroy caches.
180 */
181 rcu_barrier();
5598e900 182 kmem_cache_destroy(extent_buffer_cache);
d1310b2e
CM
183}
184
bd1fa4f0 185void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 186{
09cbfeaf
KS
187 unsigned long index = start >> PAGE_SHIFT;
188 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
189 struct page *page;
190
191 while (index <= end_index) {
192 page = find_get_page(inode->i_mapping, index);
193 BUG_ON(!page); /* Pages should be in the extent_io_tree */
194 clear_page_dirty_for_io(page);
09cbfeaf 195 put_page(page);
4adaa611
CM
196 index++;
197 }
4adaa611
CM
198}
199
f6311572 200void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 201{
ebf55c88 202 struct address_space *mapping = inode->i_mapping;
09cbfeaf
KS
203 unsigned long index = start >> PAGE_SHIFT;
204 unsigned long end_index = end >> PAGE_SHIFT;
ebf55c88 205 struct folio *folio;
4adaa611
CM
206
207 while (index <= end_index) {
ebf55c88
MWO
208 folio = filemap_get_folio(mapping, index);
209 filemap_dirty_folio(mapping, folio);
210 folio_account_redirty(folio);
211 index += folio_nr_pages(folio);
212 folio_put(folio);
4adaa611 213 }
4adaa611
CM
214}
215
ed8f13bf
QW
216/*
217 * Process one page for __process_pages_contig().
218 *
219 * Return >0 if we hit @page == @locked_page.
220 * Return 0 if we updated the page status.
221 * Return -EGAIN if the we need to try again.
222 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
223 */
e38992be
QW
224static int process_one_page(struct btrfs_fs_info *fs_info,
225 struct address_space *mapping,
ed8f13bf 226 struct page *page, struct page *locked_page,
e38992be 227 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 228{
e38992be
QW
229 u32 len;
230
231 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
232 len = end + 1 - start;
233
ed8f13bf 234 if (page_ops & PAGE_SET_ORDERED)
b945a463 235 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 236 if (page_ops & PAGE_SET_ERROR)
e38992be 237 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 238 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
239 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
240 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
241 }
242 if (page_ops & PAGE_END_WRITEBACK)
e38992be 243 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
244
245 if (page == locked_page)
246 return 1;
247
ed8f13bf 248 if (page_ops & PAGE_LOCK) {
1e1de387
QW
249 int ret;
250
251 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
252 if (ret)
253 return ret;
ed8f13bf 254 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 255 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
256 return -EAGAIN;
257 }
258 }
259 if (page_ops & PAGE_UNLOCK)
1e1de387 260 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
261 return 0;
262}
263
da2c7009
LB
264static int __process_pages_contig(struct address_space *mapping,
265 struct page *locked_page,
98af9ab1 266 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
267 u64 *processed_end)
268{
e38992be 269 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
270 pgoff_t start_index = start >> PAGE_SHIFT;
271 pgoff_t end_index = end >> PAGE_SHIFT;
272 pgoff_t index = start_index;
ed8f13bf 273 unsigned long pages_processed = 0;
04c6b79a 274 struct folio_batch fbatch;
ed8f13bf
QW
275 int err = 0;
276 int i;
277
278 if (page_ops & PAGE_LOCK) {
279 ASSERT(page_ops == PAGE_LOCK);
280 ASSERT(processed_end && *processed_end == start);
281 }
282
04c6b79a 283 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
ed8f13bf
QW
284 mapping_set_error(mapping, -EIO);
285
04c6b79a
VMO
286 folio_batch_init(&fbatch);
287 while (index <= end_index) {
288 int found_folios;
289
290 found_folios = filemap_get_folios_contig(mapping, &index,
291 end_index, &fbatch);
ed8f13bf 292
04c6b79a 293 if (found_folios == 0) {
ed8f13bf
QW
294 /*
295 * Only if we're going to lock these pages, we can find
296 * nothing at @index.
297 */
298 ASSERT(page_ops & PAGE_LOCK);
299 err = -EAGAIN;
300 goto out;
301 }
302
04c6b79a 303 for (i = 0; i < found_folios; i++) {
ed8f13bf 304 int process_ret;
04c6b79a 305 struct folio *folio = fbatch.folios[i];
e38992be 306 process_ret = process_one_page(fs_info, mapping,
04c6b79a 307 &folio->page, locked_page, page_ops,
e38992be 308 start, end);
ed8f13bf 309 if (process_ret < 0) {
ed8f13bf 310 err = -EAGAIN;
04c6b79a 311 folio_batch_release(&fbatch);
ed8f13bf
QW
312 goto out;
313 }
04c6b79a 314 pages_processed += folio_nr_pages(folio);
ed8f13bf 315 }
04c6b79a 316 folio_batch_release(&fbatch);
ed8f13bf
QW
317 cond_resched();
318 }
319out:
320 if (err && processed_end) {
321 /*
322 * Update @processed_end. I know this is awful since it has
323 * two different return value patterns (inclusive vs exclusive).
324 *
325 * But the exclusive pattern is necessary if @start is 0, or we
326 * underflow and check against processed_end won't work as
327 * expected.
328 */
329 if (pages_processed)
330 *processed_end = min(end,
331 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
332 else
333 *processed_end = start;
334 }
335 return err;
336}
da2c7009 337
143bede5
JM
338static noinline void __unlock_for_delalloc(struct inode *inode,
339 struct page *locked_page,
340 u64 start, u64 end)
c8b97818 341{
09cbfeaf
KS
342 unsigned long index = start >> PAGE_SHIFT;
343 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 344
76c0021d 345 ASSERT(locked_page);
c8b97818 346 if (index == locked_page->index && end_index == index)
143bede5 347 return;
c8b97818 348
98af9ab1 349 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 350 PAGE_UNLOCK, NULL);
c8b97818
CM
351}
352
353static noinline int lock_delalloc_pages(struct inode *inode,
354 struct page *locked_page,
355 u64 delalloc_start,
356 u64 delalloc_end)
357{
09cbfeaf 358 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 359 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 360 u64 processed_end = delalloc_start;
c8b97818 361 int ret;
c8b97818 362
76c0021d 363 ASSERT(locked_page);
c8b97818
CM
364 if (index == locked_page->index && index == end_index)
365 return 0;
366
98af9ab1
QW
367 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
368 delalloc_end, PAGE_LOCK, &processed_end);
369 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 370 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 371 processed_end);
c8b97818
CM
372 return ret;
373}
374
375/*
3522e903 376 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 377 * more than @max_bytes.
c8b97818 378 *
2749f7ef
QW
379 * @start: The original start bytenr to search.
380 * Will store the extent range start bytenr.
381 * @end: The original end bytenr of the search range
382 * Will store the extent range end bytenr.
383 *
384 * Return true if we find a delalloc range which starts inside the original
385 * range, and @start/@end will store the delalloc range start/end.
386 *
387 * Return false if we can't find any delalloc range which starts inside the
388 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 389 */
ce9f967f 390EXPORT_FOR_TESTS
3522e903 391noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 392 struct page *locked_page, u64 *start,
917aacec 393 u64 *end)
c8b97818 394{
f7b12a62 395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 396 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
397 const u64 orig_start = *start;
398 const u64 orig_end = *end;
f7b12a62
NA
399 /* The sanity tests may not set a valid fs_info. */
400 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
401 u64 delalloc_start;
402 u64 delalloc_end;
3522e903 403 bool found;
9655d298 404 struct extent_state *cached_state = NULL;
c8b97818
CM
405 int ret;
406 int loops = 0;
407
2749f7ef
QW
408 /* Caller should pass a valid @end to indicate the search range end */
409 ASSERT(orig_end > orig_start);
410
411 /* The range should at least cover part of the page */
412 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
413 orig_end <= page_offset(locked_page)));
c8b97818
CM
414again:
415 /* step one, find a bunch of delalloc bytes starting at start */
416 delalloc_start = *start;
417 delalloc_end = 0;
083e75e7
JB
418 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
419 max_bytes, &cached_state);
2749f7ef 420 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 421 *start = delalloc_start;
2749f7ef
QW
422
423 /* @delalloc_end can be -1, never go beyond @orig_end */
424 *end = min(delalloc_end, orig_end);
c2a128d2 425 free_extent_state(cached_state);
3522e903 426 return false;
c8b97818
CM
427 }
428
70b99e69
CM
429 /*
430 * start comes from the offset of locked_page. We have to lock
431 * pages in order, so we can't process delalloc bytes before
432 * locked_page
433 */
d397712b 434 if (delalloc_start < *start)
70b99e69 435 delalloc_start = *start;
70b99e69 436
c8b97818
CM
437 /*
438 * make sure to limit the number of pages we try to lock down
c8b97818 439 */
7bf811a5
JB
440 if (delalloc_end + 1 - delalloc_start > max_bytes)
441 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 442
c8b97818
CM
443 /* step two, lock all the pages after the page that has start */
444 ret = lock_delalloc_pages(inode, locked_page,
445 delalloc_start, delalloc_end);
9bfd61d9 446 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
447 if (ret == -EAGAIN) {
448 /* some of the pages are gone, lets avoid looping by
449 * shortening the size of the delalloc range we're searching
450 */
9655d298 451 free_extent_state(cached_state);
7d788742 452 cached_state = NULL;
c8b97818 453 if (!loops) {
09cbfeaf 454 max_bytes = PAGE_SIZE;
c8b97818
CM
455 loops = 1;
456 goto again;
457 } else {
3522e903 458 found = false;
c8b97818
CM
459 goto out_failed;
460 }
461 }
c8b97818
CM
462
463 /* step three, lock the state bits for the whole range */
570eb97b 464 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
465
466 /* then test to make sure it is all still delalloc */
467 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 468 EXTENT_DELALLOC, 1, cached_state);
c8b97818 469 if (!ret) {
570eb97b
JB
470 unlock_extent(tree, delalloc_start, delalloc_end,
471 &cached_state);
c8b97818
CM
472 __unlock_for_delalloc(inode, locked_page,
473 delalloc_start, delalloc_end);
474 cond_resched();
475 goto again;
476 }
9655d298 477 free_extent_state(cached_state);
c8b97818
CM
478 *start = delalloc_start;
479 *end = delalloc_end;
480out_failed:
481 return found;
482}
483
ad7ff17b 484void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 485 struct page *locked_page,
f97e27e9 486 u32 clear_bits, unsigned long page_ops)
873695b3 487{
bd015294 488 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
873695b3 489
ad7ff17b 490 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 491 start, end, page_ops, NULL);
873695b3
LB
492}
493
87c11705
JB
494static int insert_failrec(struct btrfs_inode *inode,
495 struct io_failure_record *failrec)
d1310b2e 496{
87c11705 497 struct rb_node *exist;
d1310b2e 498
87c11705
JB
499 spin_lock(&inode->io_failure_lock);
500 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
501 &failrec->rb_node);
502 spin_unlock(&inode->io_failure_lock);
503
504 return (exist == NULL) ? 0 : -EEXIST;
d1310b2e
CM
505}
506
87c11705 507static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
d1310b2e
CM
508{
509 struct rb_node *node;
87c11705 510 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
d1310b2e 511
87c11705
JB
512 spin_lock(&inode->io_failure_lock);
513 node = rb_simple_search(&inode->io_failure_tree, start);
514 if (node)
515 failrec = rb_entry(node, struct io_failure_record, rb_node);
516 spin_unlock(&inode->io_failure_lock);
2279a270 517 return failrec;
d1310b2e
CM
518}
519
bd86a532
CH
520static void free_io_failure(struct btrfs_inode *inode,
521 struct io_failure_record *rec)
4a54c8c1 522{
87c11705
JB
523 spin_lock(&inode->io_failure_lock);
524 rb_erase(&rec->rb_node, &inode->io_failure_tree);
525 spin_unlock(&inode->io_failure_lock);
4a54c8c1 526
4a54c8c1 527 kfree(rec);
4a54c8c1
JS
528}
529
4a54c8c1
JS
530/*
531 * this bypasses the standard btrfs submit functions deliberately, as
532 * the standard behavior is to write all copies in a raid setup. here we only
533 * want to write the one bad copy. so we do the mapping for ourselves and issue
534 * submit_bio directly.
3ec706c8 535 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
536 * actually prevents the read that triggered the error from finishing.
537 * currently, there can be no more than two copies of every data bit. thus,
538 * exactly one rewrite is required.
539 */
38d5e541
QW
540static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
541 u64 length, u64 logical, struct page *page,
542 unsigned int pg_offset, int mirror_num)
4a54c8c1 543{
4a54c8c1 544 struct btrfs_device *dev;
e9458bfe
CH
545 struct bio_vec bvec;
546 struct bio bio;
4a54c8c1
JS
547 u64 map_length = 0;
548 u64 sector;
4c664611 549 struct btrfs_io_context *bioc = NULL;
e9458bfe 550 int ret = 0;
4a54c8c1 551
1751e8a6 552 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
553 BUG_ON(!mirror_num);
554
554aed7d
JT
555 if (btrfs_repair_one_zone(fs_info, logical))
556 return 0;
f7ef5287 557
4a54c8c1
JS
558 map_length = length;
559
b5de8d0d 560 /*
4c664611 561 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
562 * associated to its stripes that don't go away while we are doing the
563 * read repair operation.
564 */
565 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 566 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
567 /*
568 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
569 * to update all raid stripes, but here we just want to correct
570 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
571 * stripe's dev and sector.
572 */
573 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 574 &map_length, &bioc, 0);
e9458bfe
CH
575 if (ret)
576 goto out_counter_dec;
4c664611 577 ASSERT(bioc->mirror_num == 1);
c725328c
LB
578 } else {
579 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 580 &map_length, &bioc, mirror_num);
e9458bfe
CH
581 if (ret)
582 goto out_counter_dec;
4c664611 583 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 584 }
c725328c 585
4c664611 586 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4c664611
QW
587 dev = bioc->stripes[bioc->mirror_num - 1].dev;
588 btrfs_put_bioc(bioc);
e9458bfe 589
ebbede42
AJ
590 if (!dev || !dev->bdev ||
591 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
e9458bfe
CH
592 ret = -EIO;
593 goto out_counter_dec;
4a54c8c1 594 }
4a54c8c1 595
e9458bfe
CH
596 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
597 bio.bi_iter.bi_sector = sector;
598 __bio_add_page(&bio, page, length, pg_offset);
599
600 btrfsic_check_bio(&bio);
601 ret = submit_bio_wait(&bio);
602 if (ret) {
4a54c8c1 603 /* try to remap that extent elsewhere? */
442a4f63 604 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
e9458bfe 605 goto out_bio_uninit;
4a54c8c1
JS
606 }
607
b14af3b4
DS
608 btrfs_info_rl_in_rcu(fs_info,
609 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 610 ino, start,
1203b681 611 rcu_str_deref(dev->name), sector);
e9458bfe
CH
612 ret = 0;
613
614out_bio_uninit:
615 bio_uninit(&bio);
616out_counter_dec:
b5de8d0d 617 btrfs_bio_counter_dec(fs_info);
e9458bfe 618 return ret;
4a54c8c1
JS
619}
620
2b48966a 621int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 622{
20a1fbf9 623 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 624 u64 start = eb->start;
cc5e31a4 625 int i, num_pages = num_extent_pages(eb);
d95603b2 626 int ret = 0;
ea466794 627
bc98a42c 628 if (sb_rdonly(fs_info->sb))
908960c6
ID
629 return -EROFS;
630
ea466794 631 for (i = 0; i < num_pages; i++) {
fb85fc9a 632 struct page *p = eb->pages[i];
1203b681 633
6ec656bc 634 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 635 start - page_offset(p), mirror_num);
ea466794
JB
636 if (ret)
637 break;
09cbfeaf 638 start += PAGE_SIZE;
ea466794
JB
639 }
640
641 return ret;
642}
643
c144c63f
CH
644static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
645{
646 if (cur_mirror == failrec->num_copies)
647 return cur_mirror + 1 - failrec->num_copies;
648 return cur_mirror + 1;
649}
650
651static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
652{
653 if (cur_mirror == 1)
654 return failrec->num_copies;
655 return cur_mirror - 1;
656}
657
4a54c8c1
JS
658/*
659 * each time an IO finishes, we do a fast check in the IO failure tree
660 * to see if we need to process or clean up an io_failure_record
661 */
0d0a762c
JB
662int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
663 struct page *page, unsigned int pg_offset)
4a54c8c1 664{
0d0a762c 665 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0d0a762c
JB
666 struct extent_io_tree *io_tree = &inode->io_tree;
667 u64 ino = btrfs_ino(inode);
cdca85b0 668 u64 locked_start, locked_end;
4a54c8c1 669 struct io_failure_record *failrec;
c144c63f 670 int mirror;
cdca85b0 671 int ret;
4a54c8c1 672
87c11705 673 failrec = get_failrec(inode, start);
2279a270 674 if (IS_ERR(failrec))
4a54c8c1
JS
675 return 0;
676
4a54c8c1
JS
677 BUG_ON(!failrec->this_mirror);
678
bc98a42c 679 if (sb_rdonly(fs_info->sb))
908960c6 680 goto out;
4a54c8c1 681
cdca85b0
JB
682 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
683 &locked_end, EXTENT_LOCKED, NULL);
684 if (ret || locked_start > failrec->bytenr ||
685 locked_end < failrec->bytenr + failrec->len - 1)
c144c63f
CH
686 goto out;
687
688 mirror = failrec->this_mirror;
689 do {
690 mirror = prev_mirror(failrec, mirror);
691 repair_io_failure(fs_info, ino, start, failrec->len,
692 failrec->logical, page, pg_offset, mirror);
693 } while (mirror != failrec->failed_mirror);
4a54c8c1
JS
694
695out:
87c11705 696 free_io_failure(inode, failrec);
454ff3de 697 return 0;
4a54c8c1
JS
698}
699
f612496b
MX
700/*
701 * Can be called when
702 * - hold extent lock
703 * - under ordered extent
704 * - the inode is freeing
705 */
7ab7956e 706void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 707{
f612496b 708 struct io_failure_record *failrec;
87c11705 709 struct rb_node *node, *next;
f612496b 710
87c11705 711 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
f612496b
MX
712 return;
713
87c11705
JB
714 spin_lock(&inode->io_failure_lock);
715 node = rb_simple_search_first(&inode->io_failure_tree, start);
716 while (node) {
717 failrec = rb_entry(node, struct io_failure_record, rb_node);
718 if (failrec->bytenr > end)
f612496b
MX
719 break;
720
87c11705
JB
721 next = rb_next(node);
722 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
f612496b
MX
723 kfree(failrec);
724
87c11705 725 node = next;
f612496b 726 }
87c11705 727 spin_unlock(&inode->io_failure_lock);
f612496b
MX
728}
729
3526302f 730static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
7aa51232
CH
731 struct btrfs_bio *bbio,
732 unsigned int bio_offset)
4a54c8c1 733{
ab8d0fc4 734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7aa51232 735 u64 start = bbio->file_offset + bio_offset;
2fe6303e 736 struct io_failure_record *failrec;
150e4b05 737 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 738 int ret;
4a54c8c1 739
87c11705 740 failrec = get_failrec(BTRFS_I(inode), start);
3526302f 741 if (!IS_ERR(failrec)) {
ab8d0fc4 742 btrfs_debug(fs_info,
1245835d 743 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
87c11705 744 failrec->logical, failrec->bytenr, failrec->len);
4a54c8c1
JS
745 /*
746 * when data can be on disk more than twice, add to failrec here
747 * (e.g. with a list for failed_mirror) to make
748 * clean_io_failure() clean all those errors at once.
749 */
7aa51232 750 ASSERT(failrec->this_mirror == bbio->mirror_num);
c144c63f 751 ASSERT(failrec->len == fs_info->sectorsize);
3526302f 752 return failrec;
4a54c8c1 753 }
2fe6303e 754
3526302f
NB
755 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
756 if (!failrec)
757 return ERR_PTR(-ENOMEM);
2fe6303e 758
87c11705
JB
759 RB_CLEAR_NODE(&failrec->rb_node);
760 failrec->bytenr = start;
150e4b05 761 failrec->len = sectorsize;
7aa51232
CH
762 failrec->failed_mirror = bbio->mirror_num;
763 failrec->this_mirror = bbio->mirror_num;
81bd9328 764 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
3526302f 765
3526302f 766 btrfs_debug(fs_info,
81bd9328
CH
767 "new io failure record logical %llu start %llu",
768 failrec->logical, start);
3526302f 769
81bd9328 770 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
c144c63f
CH
771 if (failrec->num_copies == 1) {
772 /*
773 * We only have a single copy of the data, so don't bother with
774 * all the retry and error correction code that follows. No
775 * matter what the error is, it is very likely to persist.
776 */
777 btrfs_debug(fs_info,
778 "cannot repair logical %llu num_copies %d",
779 failrec->logical, failrec->num_copies);
3526302f
NB
780 kfree(failrec);
781 return ERR_PTR(-EIO);
782 }
783
3526302f 784 /* Set the bits in the private failure tree */
87c11705
JB
785 ret = insert_failrec(BTRFS_I(inode), failrec);
786 if (ret) {
3526302f
NB
787 kfree(failrec);
788 return ERR_PTR(ret);
789 }
790
791 return failrec;
2fe6303e
MX
792}
793
7aa51232
CH
794int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
795 u32 bio_offset, struct page *page, unsigned int pgoff,
150e4b05 796 submit_bio_hook_t *submit_bio_hook)
2fe6303e 797{
7aa51232 798 u64 start = failed_bbio->file_offset + bio_offset;
2fe6303e 799 struct io_failure_record *failrec;
77d5d689 800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7aa51232 801 struct bio *failed_bio = &failed_bbio->bio;
7ffd27e3 802 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 803 struct bio *repair_bio;
c3a3b19b 804 struct btrfs_bio *repair_bbio;
2fe6303e 805
77d5d689
OS
806 btrfs_debug(fs_info,
807 "repair read error: read error at %llu", start);
2fe6303e 808
1f7ad75b 809 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 810
7aa51232 811 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
3526302f 812 if (IS_ERR(failrec))
150e4b05 813 return PTR_ERR(failrec);
2fe6303e 814
c144c63f
CH
815 /*
816 * There are two premises:
817 * a) deliver good data to the caller
818 * b) correct the bad sectors on disk
819 *
820 * Since we're only doing repair for one sector, we only need to get
821 * a good copy of the failed sector and if we succeed, we have setup
822 * everything for repair_io_failure to do the rest for us.
823 */
824 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
825 if (failrec->this_mirror == failrec->failed_mirror) {
826 btrfs_debug(fs_info,
827 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
828 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
87c11705 829 free_io_failure(BTRFS_I(inode), failrec);
150e4b05 830 return -EIO;
2fe6303e
MX
831 }
832
917f32a2
CH
833 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
834 failed_bbio->private);
c3a3b19b 835 repair_bbio = btrfs_bio(repair_bio);
00d82525 836 repair_bbio->file_offset = start;
77d5d689 837 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2fe6303e 838
c3a3b19b 839 if (failed_bbio->csum) {
223486c2 840 const u32 csum_size = fs_info->csum_size;
77d5d689 841
c3a3b19b
QW
842 repair_bbio->csum = repair_bbio->csum_inline;
843 memcpy(repair_bbio->csum,
844 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 845 }
2fe6303e 846
77d5d689 847 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 848 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 849
ab8d0fc4 850 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
851 "repair read error: submitting new read to mirror %d",
852 failrec->this_mirror);
4a54c8c1 853
8cbc3001
JB
854 /*
855 * At this point we have a bio, so any errors from submit_bio_hook()
856 * will be handled by the endio on the repair_bio, so we can't return an
857 * error here.
858 */
81bd9328 859 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
8cbc3001 860 return BLK_STS_OK;
150e4b05
QW
861}
862
863static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
864{
865 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
866
867 ASSERT(page_offset(page) <= start &&
868 start + len <= page_offset(page) + PAGE_SIZE);
869
150e4b05 870 if (uptodate) {
14605409
BB
871 if (fsverity_active(page->mapping->host) &&
872 !PageError(page) &&
873 !PageUptodate(page) &&
874 start < i_size_read(page->mapping->host) &&
875 !fsverity_verify_page(page)) {
876 btrfs_page_set_error(fs_info, page, start, len);
877 } else {
878 btrfs_page_set_uptodate(fs_info, page, start, len);
879 }
150e4b05
QW
880 } else {
881 btrfs_page_clear_uptodate(fs_info, page, start, len);
882 btrfs_page_set_error(fs_info, page, start, len);
883 }
884
fbca46eb 885 if (!btrfs_is_subpage(fs_info, page))
150e4b05 886 unlock_page(page);
3d078efa 887 else
150e4b05
QW
888 btrfs_subpage_end_reader(fs_info, page, start, len);
889}
890
a5aa7ab6
CH
891static void end_sector_io(struct page *page, u64 offset, bool uptodate)
892{
893 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
894 const u32 sectorsize = inode->root->fs_info->sectorsize;
895 struct extent_state *cached = NULL;
896
897 end_page_read(page, uptodate, offset, sectorsize);
898 if (uptodate)
899 set_extent_uptodate(&inode->io_tree, offset,
900 offset + sectorsize - 1, &cached, GFP_ATOMIC);
570eb97b
JB
901 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1,
902 &cached);
a5aa7ab6
CH
903}
904
7aa51232
CH
905static void submit_data_read_repair(struct inode *inode,
906 struct btrfs_bio *failed_bbio,
fd5a6f63 907 u32 bio_offset, const struct bio_vec *bvec,
7aa51232 908 unsigned int error_bitmap)
150e4b05 909{
fd5a6f63 910 const unsigned int pgoff = bvec->bv_offset;
150e4b05 911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
fd5a6f63
QW
912 struct page *page = bvec->bv_page;
913 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
914 const u64 end = start + bvec->bv_len - 1;
150e4b05
QW
915 const u32 sectorsize = fs_info->sectorsize;
916 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
150e4b05
QW
917 int i;
918
7aa51232 919 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
150e4b05 920
c0111c44
QW
921 /* This repair is only for data */
922 ASSERT(is_data_inode(inode));
923
150e4b05
QW
924 /* We're here because we had some read errors or csum mismatch */
925 ASSERT(error_bitmap);
926
927 /*
928 * We only get called on buffered IO, thus page must be mapped and bio
929 * must not be cloned.
930 */
7aa51232 931 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
150e4b05
QW
932
933 /* Iterate through all the sectors in the range */
934 for (i = 0; i < nr_bits; i++) {
935 const unsigned int offset = i * sectorsize;
150e4b05
QW
936 bool uptodate = false;
937 int ret;
938
939 if (!(error_bitmap & (1U << i))) {
940 /*
941 * This sector has no error, just end the page read
942 * and unlock the range.
943 */
944 uptodate = true;
945 goto next;
946 }
947
7aa51232
CH
948 ret = btrfs_repair_one_sector(inode, failed_bbio,
949 bio_offset + offset, page, pgoff + offset,
950 btrfs_submit_data_read_bio);
150e4b05
QW
951 if (!ret) {
952 /*
953 * We have submitted the read repair, the page release
954 * will be handled by the endio function of the
955 * submitted repair bio.
956 * Thus we don't need to do any thing here.
957 */
958 continue;
959 }
960 /*
fd5a6f63
QW
961 * Continue on failed repair, otherwise the remaining sectors
962 * will not be properly unlocked.
150e4b05 963 */
150e4b05 964next:
a5aa7ab6 965 end_sector_io(page, start + offset, uptodate);
150e4b05 966 }
4a54c8c1
JS
967}
968
d1310b2e
CM
969/* lots and lots of room for performance fixes in the end_bio funcs */
970
b5227c07 971void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 972{
38a39ac7 973 struct btrfs_inode *inode;
25c1252a 974 const bool uptodate = (err == 0);
3e2426bd 975 int ret = 0;
87826df0 976
38a39ac7
QW
977 ASSERT(page && page->mapping);
978 inode = BTRFS_I(page->mapping->host);
979 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 980
87826df0 981 if (!uptodate) {
963e4db8
QW
982 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 u32 len;
984
985 ASSERT(end + 1 - start <= U32_MAX);
986 len = end + 1 - start;
987
988 btrfs_page_clear_uptodate(fs_info, page, start, len);
989 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 990 ret = err < 0 ? err : -EIO;
5dca6eea 991 mapping_set_error(page->mapping, ret);
87826df0 992 }
87826df0
JM
993}
994
d1310b2e
CM
995/*
996 * after a writepage IO is done, we need to:
997 * clear the uptodate bits on error
998 * clear the writeback bits in the extent tree for this IO
999 * end_page_writeback if the page has no more pending IO
1000 *
1001 * Scheduling is not allowed, so the extent state tree is expected
1002 * to have one and only one object corresponding to this IO.
1003 */
917f32a2 1004static void end_bio_extent_writepage(struct btrfs_bio *bbio)
d1310b2e 1005{
917f32a2 1006 struct bio *bio = &bbio->bio;
4e4cbee9 1007 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 1008 struct bio_vec *bvec;
d1310b2e
CM
1009 u64 start;
1010 u64 end;
6dc4f100 1011 struct bvec_iter_all iter_all;
d8e3fb10 1012 bool first_bvec = true;
d1310b2e 1013
c09abff8 1014 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 1015 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 1016 struct page *page = bvec->bv_page;
0b246afa
JM
1017 struct inode *inode = page->mapping->host;
1018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
1019 const u32 sectorsize = fs_info->sectorsize;
1020
1021 /* Our read/write should always be sector aligned. */
1022 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1023 btrfs_err(fs_info,
1024 "partial page write in btrfs with offset %u and length %u",
1025 bvec->bv_offset, bvec->bv_len);
1026 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
1027 btrfs_info(fs_info,
1028 "incomplete page write with offset %u and length %u",
1029 bvec->bv_offset, bvec->bv_len);
1030
1031 start = page_offset(page) + bvec->bv_offset;
1032 end = start + bvec->bv_len - 1;
d1310b2e 1033
d8e3fb10
NA
1034 if (first_bvec) {
1035 btrfs_record_physical_zoned(inode, start, bio);
1036 first_bvec = false;
1037 }
1038
4e4cbee9 1039 end_extent_writepage(page, error, start, end);
9047e317
QW
1040
1041 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 1042 }
2b1f55b0 1043
d1310b2e 1044 bio_put(bio);
d1310b2e
CM
1045}
1046
94e8c95c
QW
1047/*
1048 * Record previously processed extent range
1049 *
1050 * For endio_readpage_release_extent() to handle a full extent range, reducing
1051 * the extent io operations.
1052 */
1053struct processed_extent {
1054 struct btrfs_inode *inode;
1055 /* Start of the range in @inode */
1056 u64 start;
2e626e56 1057 /* End of the range in @inode */
94e8c95c
QW
1058 u64 end;
1059 bool uptodate;
1060};
1061
1062/*
1063 * Try to release processed extent range
1064 *
1065 * May not release the extent range right now if the current range is
1066 * contiguous to processed extent.
1067 *
1068 * Will release processed extent when any of @inode, @uptodate, the range is
1069 * no longer contiguous to the processed range.
1070 *
1071 * Passing @inode == NULL will force processed extent to be released.
1072 */
1073static void endio_readpage_release_extent(struct processed_extent *processed,
1074 struct btrfs_inode *inode, u64 start, u64 end,
1075 bool uptodate)
883d0de4
MX
1076{
1077 struct extent_state *cached = NULL;
94e8c95c
QW
1078 struct extent_io_tree *tree;
1079
1080 /* The first extent, initialize @processed */
1081 if (!processed->inode)
1082 goto update;
883d0de4 1083
94e8c95c
QW
1084 /*
1085 * Contiguous to processed extent, just uptodate the end.
1086 *
1087 * Several things to notice:
1088 *
1089 * - bio can be merged as long as on-disk bytenr is contiguous
1090 * This means we can have page belonging to other inodes, thus need to
1091 * check if the inode still matches.
1092 * - bvec can contain range beyond current page for multi-page bvec
1093 * Thus we need to do processed->end + 1 >= start check
1094 */
1095 if (processed->inode == inode && processed->uptodate == uptodate &&
1096 processed->end + 1 >= start && end >= processed->end) {
1097 processed->end = end;
1098 return;
1099 }
1100
1101 tree = &processed->inode->io_tree;
1102 /*
1103 * Now we don't have range contiguous to the processed range, release
1104 * the processed range now.
1105 */
570eb97b 1106 unlock_extent_atomic(tree, processed->start, processed->end, &cached);
94e8c95c
QW
1107
1108update:
1109 /* Update processed to current range */
1110 processed->inode = inode;
1111 processed->start = start;
1112 processed->end = end;
1113 processed->uptodate = uptodate;
883d0de4
MX
1114}
1115
92082d40
QW
1116static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1117{
1118 ASSERT(PageLocked(page));
fbca46eb 1119 if (!btrfs_is_subpage(fs_info, page))
92082d40
QW
1120 return;
1121
1122 ASSERT(PagePrivate(page));
1123 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1124}
1125
d9bb77d5 1126/*
01cd3909 1127 * Find extent buffer for a givne bytenr.
d9bb77d5
QW
1128 *
1129 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1130 * in endio context.
1131 */
1132static struct extent_buffer *find_extent_buffer_readpage(
1133 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1134{
1135 struct extent_buffer *eb;
1136
1137 /*
1138 * For regular sectorsize, we can use page->private to grab extent
1139 * buffer
1140 */
fbca46eb 1141 if (fs_info->nodesize >= PAGE_SIZE) {
d9bb77d5
QW
1142 ASSERT(PagePrivate(page) && page->private);
1143 return (struct extent_buffer *)page->private;
1144 }
1145
01cd3909
DS
1146 /* For subpage case, we need to lookup buffer radix tree */
1147 rcu_read_lock();
1148 eb = radix_tree_lookup(&fs_info->buffer_radix,
1149 bytenr >> fs_info->sectorsize_bits);
1150 rcu_read_unlock();
d9bb77d5
QW
1151 ASSERT(eb);
1152 return eb;
1153}
1154
d1310b2e
CM
1155/*
1156 * after a readpage IO is done, we need to:
1157 * clear the uptodate bits on error
1158 * set the uptodate bits if things worked
1159 * set the page up to date if all extents in the tree are uptodate
1160 * clear the lock bit in the extent tree
1161 * unlock the page if there are no other extents locked for it
1162 *
1163 * Scheduling is not allowed, so the extent state tree is expected
1164 * to have one and only one object corresponding to this IO.
1165 */
917f32a2 1166static void end_bio_extent_readpage(struct btrfs_bio *bbio)
d1310b2e 1167{
917f32a2 1168 struct bio *bio = &bbio->bio;
2c30c71b 1169 struct bio_vec *bvec;
94e8c95c 1170 struct processed_extent processed = { 0 };
7ffd27e3
QW
1171 /*
1172 * The offset to the beginning of a bio, since one bio can never be
1173 * larger than UINT_MAX, u32 here is enough.
1174 */
1175 u32 bio_offset = 0;
5cf1ab56 1176 int mirror;
6dc4f100 1177 struct bvec_iter_all iter_all;
d1310b2e 1178
c09abff8 1179 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 1180 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 1181 bool uptodate = !bio->bi_status;
d1310b2e 1182 struct page *page = bvec->bv_page;
a71754fc 1183 struct inode *inode = page->mapping->host;
ab8d0fc4 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 1185 const u32 sectorsize = fs_info->sectorsize;
150e4b05 1186 unsigned int error_bitmap = (unsigned int)-1;
97861cd1 1187 bool repair = false;
7ffd27e3
QW
1188 u64 start;
1189 u64 end;
1190 u32 len;
507903b8 1191
ab8d0fc4
JM
1192 btrfs_debug(fs_info,
1193 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 1194 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 1195 bbio->mirror_num);
902b22f3 1196
8b8bbd46
QW
1197 /*
1198 * We always issue full-sector reads, but if some block in a
1199 * page fails to read, blk_update_request() will advance
1200 * bv_offset and adjust bv_len to compensate. Print a warning
1201 * for unaligned offsets, and an error if they don't add up to
1202 * a full sector.
1203 */
1204 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1205 btrfs_err(fs_info,
1206 "partial page read in btrfs with offset %u and length %u",
1207 bvec->bv_offset, bvec->bv_len);
1208 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1209 sectorsize))
1210 btrfs_info(fs_info,
1211 "incomplete page read with offset %u and length %u",
1212 bvec->bv_offset, bvec->bv_len);
1213
1214 start = page_offset(page) + bvec->bv_offset;
1215 end = start + bvec->bv_len - 1;
facc8a22 1216 len = bvec->bv_len;
d1310b2e 1217
c3a3b19b 1218 mirror = bbio->mirror_num;
78e62c02 1219 if (likely(uptodate)) {
150e4b05 1220 if (is_data_inode(inode)) {
c3a3b19b 1221 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 1222 bio_offset, page, start, end);
97861cd1
CH
1223 if (error_bitmap)
1224 uptodate = false;
150e4b05 1225 } else {
97861cd1
CH
1226 if (btrfs_validate_metadata_buffer(bbio,
1227 page, start, end, mirror))
1228 uptodate = false;
150e4b05 1229 }
d1310b2e 1230 }
ea466794 1231
883d0de4 1232 if (likely(uptodate)) {
a71754fc 1233 loff_t i_size = i_size_read(inode);
09cbfeaf 1234 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 1235
0d0a762c 1236 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
97861cd1 1237
c28ea613
QW
1238 /*
1239 * Zero out the remaining part if this range straddles
1240 * i_size.
1241 *
1242 * Here we should only zero the range inside the bvec,
1243 * not touch anything else.
1244 *
1245 * NOTE: i_size is exclusive while end is inclusive.
1246 */
1247 if (page->index == end_index && i_size <= end) {
1248 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 1249 offset_in_page(start));
c28ea613
QW
1250
1251 zero_user_segment(page, zero_start,
1252 offset_in_page(end) + 1);
1253 }
97861cd1
CH
1254 } else if (is_data_inode(inode)) {
1255 /*
1256 * Only try to repair bios that actually made it to a
1257 * device. If the bio failed to be submitted mirror
1258 * is 0 and we need to fail it without retrying.
81bd9328
CH
1259 *
1260 * This also includes the high level bios for compressed
1261 * extents - these never make it to a device and repair
1262 * is already handled on the lower compressed bio.
97861cd1
CH
1263 */
1264 if (mirror > 0)
1265 repair = true;
1266 } else {
1267 struct extent_buffer *eb;
1268
1269 eb = find_extent_buffer_readpage(fs_info, page, start);
1270 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1271 eb->read_mirror = mirror;
1272 atomic_dec(&eb->io_pages);
70dec807 1273 }
97861cd1
CH
1274
1275 if (repair) {
1276 /*
1277 * submit_data_read_repair() will handle all the good
1278 * and bad sectors, we just continue to the next bvec.
1279 */
7aa51232
CH
1280 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1281 error_bitmap);
97861cd1
CH
1282 } else {
1283 /* Update page status and unlock */
1284 end_page_read(page, uptodate, start, len);
1285 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1286 start, end, PageUptodate(page));
70dec807 1287 }
97861cd1 1288
7ffd27e3
QW
1289 ASSERT(bio_offset + len > bio_offset);
1290 bio_offset += len;
883d0de4 1291
2c30c71b 1292 }
94e8c95c
QW
1293 /* Release the last extent */
1294 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 1295 btrfs_bio_free_csum(bbio);
d1310b2e 1296 bio_put(bio);
d1310b2e
CM
1297}
1298
dd137dd1
STD
1299/**
1300 * Populate every free slot in a provided array with pages.
1301 *
1302 * @nr_pages: number of pages to allocate
1303 * @page_array: the array to fill with pages; any existing non-null entries in
1304 * the array will be skipped
1305 *
1306 * Return: 0 if all pages were able to be allocated;
1307 * -ENOMEM otherwise, and the caller is responsible for freeing all
1308 * non-null page pointers in the array.
1309 */
1310int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1311{
91d6ac1d 1312 unsigned int allocated;
dd137dd1 1313
91d6ac1d
STD
1314 for (allocated = 0; allocated < nr_pages;) {
1315 unsigned int last = allocated;
dd137dd1 1316
91d6ac1d
STD
1317 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1318
395cb57e
STD
1319 if (allocated == nr_pages)
1320 return 0;
1321
91d6ac1d
STD
1322 /*
1323 * During this iteration, no page could be allocated, even
1324 * though alloc_pages_bulk_array() falls back to alloc_page()
1325 * if it could not bulk-allocate. So we must be out of memory.
1326 */
1327 if (allocated == last)
dd137dd1 1328 return -ENOMEM;
395cb57e
STD
1329
1330 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
1331 }
1332 return 0;
1333}
1334
953651eb
NA
1335/**
1336 * Attempt to add a page to bio
1337 *
be8d1a2a 1338 * @bio_ctrl: record both the bio, and its bio_flags
953651eb
NA
1339 * @page: page to add to the bio
1340 * @disk_bytenr: offset of the new bio or to check whether we are adding
1341 * a contiguous page to the previous one
953651eb 1342 * @size: portion of page that we want to write
be8d1a2a 1343 * @pg_offset: starting offset in the page
cb3a12d9 1344 * @compress_type: compression type of the current bio to see if we can merge them
953651eb
NA
1345 *
1346 * Attempt to add a page to bio considering stripe alignment etc.
1347 *
e0eefe07
QW
1348 * Return >= 0 for the number of bytes added to the bio.
1349 * Can return 0 if the current bio is already at stripe/zone boundary.
1350 * Return <0 for error.
953651eb 1351 */
e0eefe07
QW
1352static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1353 struct page *page,
1354 u64 disk_bytenr, unsigned int size,
1355 unsigned int pg_offset,
cb3a12d9 1356 enum btrfs_compression_type compress_type)
953651eb 1357{
390ed29b
QW
1358 struct bio *bio = bio_ctrl->bio;
1359 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 1360 u32 real_size;
953651eb 1361 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
4a445b7b 1362 bool contig = false;
e1326f03 1363 int ret;
953651eb 1364
390ed29b
QW
1365 ASSERT(bio);
1366 /* The limit should be calculated when bio_ctrl->bio is allocated */
1367 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
0f07003b 1368 if (bio_ctrl->compress_type != compress_type)
e0eefe07 1369 return 0;
953651eb 1370
4a445b7b
QW
1371
1372 if (bio->bi_iter.bi_size == 0) {
1373 /* We can always add a page into an empty bio. */
1374 contig = true;
1375 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1376 struct bio_vec *bvec = bio_last_bvec_all(bio);
1377
1378 /*
1379 * The contig check requires the following conditions to be met:
1380 * 1) The pages are belonging to the same inode
1381 * This is implied by the call chain.
1382 *
1383 * 2) The range has adjacent logical bytenr
1384 *
1385 * 3) The range has adjacent file offset
1386 * This is required for the usage of btrfs_bio->file_offset.
1387 */
1388 if (bio_end_sector(bio) == sector &&
1389 page_offset(bvec->bv_page) + bvec->bv_offset +
1390 bvec->bv_len == page_offset(page) + pg_offset)
1391 contig = true;
1392 } else {
1393 /*
1394 * For compression, all IO should have its logical bytenr
1395 * set to the starting bytenr of the compressed extent.
1396 */
953651eb 1397 contig = bio->bi_iter.bi_sector == sector;
4a445b7b
QW
1398 }
1399
953651eb 1400 if (!contig)
e0eefe07 1401 return 0;
953651eb 1402
e0eefe07
QW
1403 real_size = min(bio_ctrl->len_to_oe_boundary,
1404 bio_ctrl->len_to_stripe_boundary) - bio_size;
1405 real_size = min(real_size, size);
1406
1407 /*
1408 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1409 * bio will still execute its endio function on the page!
1410 */
1411 if (real_size == 0)
1412 return 0;
953651eb 1413
390ed29b 1414 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 1415 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 1416 else
e0eefe07 1417 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 1418
e0eefe07 1419 return ret;
953651eb
NA
1420}
1421
390ed29b 1422static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 1423 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
1424{
1425 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1426 struct btrfs_io_geometry geom;
1427 struct btrfs_ordered_extent *ordered;
1428 struct extent_map *em;
1429 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1430 int ret;
1431
1432 /*
1433 * Pages for compressed extent are never submitted to disk directly,
1434 * thus it has no real boundary, just set them to U32_MAX.
1435 *
1436 * The split happens for real compressed bio, which happens in
1437 * btrfs_submit_compressed_read/write().
1438 */
0f07003b 1439 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
390ed29b
QW
1440 bio_ctrl->len_to_oe_boundary = U32_MAX;
1441 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1442 return 0;
1443 }
1444 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1445 if (IS_ERR(em))
1446 return PTR_ERR(em);
1447 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1448 logical, &geom);
1449 free_extent_map(em);
1450 if (ret < 0) {
1451 return ret;
1452 }
1453 if (geom.len > U32_MAX)
1454 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1455 else
1456 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1457
73672710 1458 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
390ed29b
QW
1459 bio_ctrl->len_to_oe_boundary = U32_MAX;
1460 return 0;
1461 }
1462
390ed29b 1463 /* Ordered extent not yet created, so we're good */
939c7feb 1464 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
1465 if (!ordered) {
1466 bio_ctrl->len_to_oe_boundary = U32_MAX;
1467 return 0;
1468 }
1469
1470 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1471 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1472 btrfs_put_ordered_extent(ordered);
1473 return 0;
1474}
1475
e0eefe07
QW
1476static int alloc_new_bio(struct btrfs_inode *inode,
1477 struct btrfs_bio_ctrl *bio_ctrl,
1478 struct writeback_control *wbc,
bf9486d6 1479 blk_opf_t opf,
939c7feb 1480 u64 disk_bytenr, u32 offset, u64 file_offset,
cb3a12d9 1481 enum btrfs_compression_type compress_type)
e0eefe07
QW
1482{
1483 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1484 struct bio *bio;
1485 int ret;
1486
5467abba
QW
1487 ASSERT(bio_ctrl->end_io_func);
1488
1489 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
e0eefe07
QW
1490 /*
1491 * For compressed page range, its disk_bytenr is always @disk_bytenr
1492 * passed in, no matter if we have added any range into previous bio.
1493 */
cb3a12d9 1494 if (compress_type != BTRFS_COMPRESS_NONE)
cd8e0cca 1495 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 1496 else
cd8e0cca 1497 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07 1498 bio_ctrl->bio = bio;
0f07003b 1499 bio_ctrl->compress_type = compress_type;
939c7feb
NA
1500 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1501 if (ret < 0)
1502 goto error;
e0eefe07 1503
50f1cff3
CH
1504 if (wbc) {
1505 /*
1506 * For Zone append we need the correct block_device that we are
1507 * going to write to set in the bio to be able to respect the
1508 * hardware limitation. Look it up here:
1509 */
1510 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1511 struct btrfs_device *dev;
1512
1513 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1514 fs_info->sectorsize);
1515 if (IS_ERR(dev)) {
1516 ret = PTR_ERR(dev);
1517 goto error;
1518 }
e0eefe07 1519
50f1cff3
CH
1520 bio_set_dev(bio, dev->bdev);
1521 } else {
1522 /*
1523 * Otherwise pick the last added device to support
1524 * cgroup writeback. For multi-device file systems this
1525 * means blk-cgroup policies have to always be set on the
1526 * last added/replaced device. This is a bit odd but has
1527 * been like that for a long time.
1528 */
1529 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
e0eefe07 1530 }
50f1cff3
CH
1531 wbc_init_bio(wbc, bio);
1532 } else {
1533 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
e0eefe07
QW
1534 }
1535 return 0;
1536error:
1537 bio_ctrl->bio = NULL;
917f32a2 1538 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
e0eefe07
QW
1539 return ret;
1540}
1541
4b81ba48
DS
1542/*
1543 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625 1544 * @wbc: optional writeback control for io accounting
0c64c33c 1545 * @disk_bytenr: logical bytenr where the write will be
209ecde5 1546 * @page: page to add to the bio
0c64c33c 1547 * @size: portion of page that we want to write to
b8b3d625
DS
1548 * @pg_offset: offset of the new bio or to check whether we are adding
1549 * a contiguous page to the previous one
cb3a12d9 1550 * @compress_type: compress type for current bio
814b6f91
QW
1551 *
1552 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1553 * new one in @bio_ctrl->bio.
1554 * The mirror number for this IO should already be initizlied in
1555 * @bio_ctrl->mirror_num.
4b81ba48 1556 */
bf9486d6 1557static int submit_extent_page(blk_opf_t opf,
da2f0f74 1558 struct writeback_control *wbc,
390ed29b 1559 struct btrfs_bio_ctrl *bio_ctrl,
209ecde5 1560 u64 disk_bytenr, struct page *page,
6c5a4e2c 1561 size_t size, unsigned long pg_offset,
cb3a12d9 1562 enum btrfs_compression_type compress_type,
005efedf 1563 bool force_bio_submit)
d1310b2e
CM
1564{
1565 int ret = 0;
e1326f03 1566 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 1567 unsigned int cur = pg_offset;
d1310b2e 1568
390ed29b 1569 ASSERT(bio_ctrl);
5c2b1fd7 1570
390ed29b
QW
1571 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1572 pg_offset + size <= PAGE_SIZE);
5467abba
QW
1573
1574 ASSERT(bio_ctrl->end_io_func);
1575
722c82ac
CH
1576 if (force_bio_submit)
1577 submit_one_bio(bio_ctrl);
e0eefe07
QW
1578
1579 while (cur < pg_offset + size) {
1580 u32 offset = cur - pg_offset;
1581 int added;
1582
1583 /* Allocate new bio if needed */
1584 if (!bio_ctrl->bio) {
1585 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
5467abba 1586 disk_bytenr, offset,
939c7feb 1587 page_offset(page) + cur,
cb3a12d9 1588 compress_type);
e0eefe07
QW
1589 if (ret < 0)
1590 return ret;
1591 }
1592 /*
1593 * We must go through btrfs_bio_add_page() to ensure each
1594 * page range won't cross various boundaries.
1595 */
cb3a12d9 1596 if (compress_type != BTRFS_COMPRESS_NONE)
e0eefe07
QW
1597 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1598 size - offset, pg_offset + offset,
cb3a12d9 1599 compress_type);
e0eefe07
QW
1600 else
1601 added = btrfs_bio_add_page(bio_ctrl, page,
1602 disk_bytenr + offset, size - offset,
cb3a12d9 1603 pg_offset + offset, compress_type);
e0eefe07
QW
1604
1605 /* Metadata page range should never be split */
1606 if (!is_data_inode(&inode->vfs_inode))
1607 ASSERT(added == 0 || added == size - offset);
1608
1609 /* At least we added some page, update the account */
1610 if (wbc && added)
1611 wbc_account_cgroup_owner(wbc, page, added);
1612
1613 /* We have reached boundary, submit right now */
1614 if (added < size - offset) {
1615 /* The bio should contain some page(s) */
1616 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
722c82ac 1617 submit_one_bio(bio_ctrl);
d1310b2e 1618 }
e0eefe07 1619 cur += added;
d1310b2e 1620 }
e0eefe07 1621 return 0;
d1310b2e
CM
1622}
1623
760f991f
QW
1624static int attach_extent_buffer_page(struct extent_buffer *eb,
1625 struct page *page,
1626 struct btrfs_subpage *prealloc)
d1310b2e 1627{
760f991f
QW
1628 struct btrfs_fs_info *fs_info = eb->fs_info;
1629 int ret = 0;
1630
0d01e247
QW
1631 /*
1632 * If the page is mapped to btree inode, we should hold the private
1633 * lock to prevent race.
1634 * For cloned or dummy extent buffers, their pages are not mapped and
1635 * will not race with any other ebs.
1636 */
1637 if (page->mapping)
1638 lockdep_assert_held(&page->mapping->private_lock);
1639
fbca46eb 1640 if (fs_info->nodesize >= PAGE_SIZE) {
760f991f
QW
1641 if (!PagePrivate(page))
1642 attach_page_private(page, eb);
1643 else
1644 WARN_ON(page->private != (unsigned long)eb);
1645 return 0;
1646 }
1647
1648 /* Already mapped, just free prealloc */
1649 if (PagePrivate(page)) {
1650 btrfs_free_subpage(prealloc);
1651 return 0;
1652 }
1653
1654 if (prealloc)
1655 /* Has preallocated memory for subpage */
1656 attach_page_private(page, prealloc);
d1b89bc0 1657 else
760f991f
QW
1658 /* Do new allocation to attach subpage */
1659 ret = btrfs_attach_subpage(fs_info, page,
1660 BTRFS_SUBPAGE_METADATA);
1661 return ret;
d1310b2e
CM
1662}
1663
32443de3 1664int set_page_extent_mapped(struct page *page)
d1310b2e 1665{
32443de3
QW
1666 struct btrfs_fs_info *fs_info;
1667
1668 ASSERT(page->mapping);
1669
1670 if (PagePrivate(page))
1671 return 0;
1672
1673 fs_info = btrfs_sb(page->mapping->host->i_sb);
1674
fbca46eb 1675 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
1676 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1677
1678 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1679 return 0;
1680}
1681
1682void clear_page_extent_mapped(struct page *page)
1683{
1684 struct btrfs_fs_info *fs_info;
1685
1686 ASSERT(page->mapping);
1687
d1b89bc0 1688 if (!PagePrivate(page))
32443de3
QW
1689 return;
1690
1691 fs_info = btrfs_sb(page->mapping->host->i_sb);
fbca46eb 1692 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
1693 return btrfs_detach_subpage(fs_info, page);
1694
1695 detach_page_private(page);
d1310b2e
CM
1696}
1697
125bac01
MX
1698static struct extent_map *
1699__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 1700 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
1701{
1702 struct extent_map *em;
1703
1704 if (em_cached && *em_cached) {
1705 em = *em_cached;
cbc0e928 1706 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 1707 start < extent_map_end(em)) {
490b54d6 1708 refcount_inc(&em->refs);
125bac01
MX
1709 return em;
1710 }
1711
1712 free_extent_map(em);
1713 *em_cached = NULL;
1714 }
1715
1a5ee1e6 1716 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 1717 if (em_cached && !IS_ERR(em)) {
125bac01 1718 BUG_ON(*em_cached);
490b54d6 1719 refcount_inc(&em->refs);
125bac01
MX
1720 *em_cached = em;
1721 }
1722 return em;
1723}
d1310b2e
CM
1724/*
1725 * basic readpage implementation. Locked extent state structs are inserted
1726 * into the tree that are removed when the IO is done (by the end_io
1727 * handlers)
79787eaa 1728 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 1729 * return 0 on success, otherwise return error
d1310b2e 1730 */
7aab8b32 1731static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 1732 struct btrfs_bio_ctrl *bio_ctrl,
bf9486d6 1733 blk_opf_t read_flags, u64 *prev_em_start)
d1310b2e
CM
1734{
1735 struct inode *inode = page->mapping->host;
92082d40 1736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 1737 u64 start = page_offset(page);
8eec8296 1738 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
1739 u64 cur = start;
1740 u64 extent_offset;
1741 u64 last_byte = i_size_read(inode);
1742 u64 block_start;
d1310b2e 1743 struct extent_map *em;
baf863b9 1744 int ret = 0;
306e16ce 1745 size_t pg_offset = 0;
d1310b2e
CM
1746 size_t iosize;
1747 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 1748 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 1749
32443de3
QW
1750 ret = set_page_extent_mapped(page);
1751 if (ret < 0) {
570eb97b 1752 unlock_extent(tree, start, end, NULL);
92082d40
QW
1753 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1754 unlock_page(page);
32443de3
QW
1755 goto out;
1756 }
d1310b2e 1757
09cbfeaf 1758 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 1759 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
1760
1761 if (zero_offset) {
09cbfeaf 1762 iosize = PAGE_SIZE - zero_offset;
d048b9c2 1763 memzero_page(page, zero_offset, iosize);
c8b97818
CM
1764 }
1765 }
5467abba 1766 bio_ctrl->end_io_func = end_bio_extent_readpage;
92082d40 1767 begin_page_read(fs_info, page);
d1310b2e 1768 while (cur <= end) {
4c37a793 1769 unsigned long this_bio_flag = 0;
005efedf 1770 bool force_bio_submit = false;
0c64c33c 1771 u64 disk_bytenr;
c8f2f24b 1772
6a404910 1773 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 1774 if (cur >= last_byte) {
507903b8
AJ
1775 struct extent_state *cached = NULL;
1776
09cbfeaf 1777 iosize = PAGE_SIZE - pg_offset;
d048b9c2 1778 memzero_page(page, pg_offset, iosize);
d1310b2e 1779 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 1780 &cached, GFP_NOFS);
570eb97b 1781 unlock_extent(tree, cur, cur + iosize - 1, &cached);
92082d40 1782 end_page_read(page, true, cur, iosize);
d1310b2e
CM
1783 break;
1784 }
125bac01 1785 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 1786 end - cur + 1, em_cached);
c0347550 1787 if (IS_ERR(em)) {
570eb97b 1788 unlock_extent(tree, cur, end, NULL);
92082d40 1789 end_page_read(page, false, cur, end + 1 - cur);
bbf0ea7e 1790 ret = PTR_ERR(em);
d1310b2e
CM
1791 break;
1792 }
d1310b2e
CM
1793 extent_offset = cur - em->start;
1794 BUG_ON(extent_map_end(em) <= cur);
1795 BUG_ON(end < cur);
1796
7f6ca7f2
DS
1797 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1798 this_bio_flag = em->compress_type;
c8b97818 1799
d1310b2e 1800 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 1801 iosize = ALIGN(iosize, blocksize);
2a5232a8 1802 if (this_bio_flag != BTRFS_COMPRESS_NONE)
0c64c33c 1803 disk_bytenr = em->block_start;
949b3273 1804 else
0c64c33c 1805 disk_bytenr = em->block_start + extent_offset;
d1310b2e 1806 block_start = em->block_start;
d899e052
YZ
1807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1808 block_start = EXTENT_MAP_HOLE;
005efedf
FM
1809
1810 /*
1811 * If we have a file range that points to a compressed extent
260db43c 1812 * and it's followed by a consecutive file range that points
005efedf
FM
1813 * to the same compressed extent (possibly with a different
1814 * offset and/or length, so it either points to the whole extent
1815 * or only part of it), we must make sure we do not submit a
1816 * single bio to populate the pages for the 2 ranges because
1817 * this makes the compressed extent read zero out the pages
1818 * belonging to the 2nd range. Imagine the following scenario:
1819 *
1820 * File layout
1821 * [0 - 8K] [8K - 24K]
1822 * | |
1823 * | |
1824 * points to extent X, points to extent X,
1825 * offset 4K, length of 8K offset 0, length 16K
1826 *
1827 * [extent X, compressed length = 4K uncompressed length = 16K]
1828 *
1829 * If the bio to read the compressed extent covers both ranges,
1830 * it will decompress extent X into the pages belonging to the
1831 * first range and then it will stop, zeroing out the remaining
1832 * pages that belong to the other range that points to extent X.
1833 * So here we make sure we submit 2 bios, one for the first
1834 * range and another one for the third range. Both will target
1835 * the same physical extent from disk, but we can't currently
1836 * make the compressed bio endio callback populate the pages
1837 * for both ranges because each compressed bio is tightly
1838 * coupled with a single extent map, and each range can have
1839 * an extent map with a different offset value relative to the
1840 * uncompressed data of our extent and different lengths. This
1841 * is a corner case so we prioritize correctness over
1842 * non-optimal behavior (submitting 2 bios for the same extent).
1843 */
1844 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1845 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 1846 *prev_em_start != em->start)
005efedf
FM
1847 force_bio_submit = true;
1848
1849 if (prev_em_start)
8e928218 1850 *prev_em_start = em->start;
005efedf 1851
d1310b2e
CM
1852 free_extent_map(em);
1853 em = NULL;
1854
1855 /* we've found a hole, just zero and go on */
1856 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
1857 struct extent_state *cached = NULL;
1858
d048b9c2 1859 memzero_page(page, pg_offset, iosize);
d1310b2e
CM
1860
1861 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 1862 &cached, GFP_NOFS);
570eb97b 1863 unlock_extent(tree, cur, cur + iosize - 1, &cached);
92082d40 1864 end_page_read(page, true, cur, iosize);
d1310b2e 1865 cur = cur + iosize;
306e16ce 1866 pg_offset += iosize;
d1310b2e
CM
1867 continue;
1868 }
1869 /* the get_extent function already copied into the page */
70dec807 1870 if (block_start == EXTENT_MAP_INLINE) {
570eb97b 1871 unlock_extent(tree, cur, cur + iosize - 1, NULL);
52b029f4 1872 end_page_read(page, true, cur, iosize);
70dec807 1873 cur = cur + iosize;
306e16ce 1874 pg_offset += iosize;
70dec807
CM
1875 continue;
1876 }
d1310b2e 1877
0ceb34bf 1878 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
209ecde5 1879 bio_ctrl, disk_bytenr, page, iosize,
5467abba
QW
1880 pg_offset, this_bio_flag,
1881 force_bio_submit);
ad3fc794 1882 if (ret) {
10f7f6f8
QW
1883 /*
1884 * We have to unlock the remaining range, or the page
1885 * will never be unlocked.
1886 */
570eb97b 1887 unlock_extent(tree, cur, end, NULL);
10f7f6f8 1888 end_page_read(page, false, cur, end + 1 - cur);
baf863b9 1889 goto out;
edd33c99 1890 }
d1310b2e 1891 cur = cur + iosize;
306e16ce 1892 pg_offset += iosize;
d1310b2e 1893 }
90a887c9 1894out:
baf863b9 1895 return ret;
d1310b2e
CM
1896}
1897
fdaf9a58 1898int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 1899{
fdaf9a58 1900 struct page *page = &folio->page;
7aab8b32
CH
1901 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1902 u64 start = page_offset(page);
1903 u64 end = start + PAGE_SIZE - 1;
1904 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1905 int ret;
1906
1907 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1908
1909 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1910 /*
1911 * If btrfs_do_readpage() failed we will want to submit the assembled
1912 * bio to do the cleanup.
1913 */
722c82ac 1914 submit_one_bio(&bio_ctrl);
7aab8b32
CH
1915 return ret;
1916}
1917
b6660e80 1918static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
1919 u64 start, u64 end,
1920 struct extent_map **em_cached,
1921 struct btrfs_bio_ctrl *bio_ctrl,
1922 u64 *prev_em_start)
9974090b 1923{
23d31bd4 1924 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
1925 int index;
1926
b272ae22 1927 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
1928
1929 for (index = 0; index < nr_pages; index++) {
390ed29b 1930 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 1931 REQ_RAHEAD, prev_em_start);
09cbfeaf 1932 put_page(pages[index]);
9974090b
MX
1933 }
1934}
1935
d1310b2e 1936/*
40f76580
CM
1937 * helper for __extent_writepage, doing all of the delayed allocation setup.
1938 *
5eaad97a 1939 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
1940 * to write the page (copy into inline extent). In this case the IO has
1941 * been started and the page is already unlocked.
1942 *
1943 * This returns 0 if all went well (page still locked)
1944 * This returns < 0 if there were errors (page still locked)
d1310b2e 1945 */
cd4c0bf9 1946static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 1947 struct page *page, struct writeback_control *wbc)
40f76580 1948{
2749f7ef 1949 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 1950 u64 delalloc_start = page_offset(page);
40f76580 1951 u64 delalloc_to_write = 0;
83f1b680
QW
1952 /* How many pages are started by btrfs_run_delalloc_range() */
1953 unsigned long nr_written = 0;
40f76580
CM
1954 int ret;
1955 int page_started = 0;
1956
2749f7ef
QW
1957 while (delalloc_start < page_end) {
1958 u64 delalloc_end = page_end;
1959 bool found;
40f76580 1960
cd4c0bf9 1961 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 1962 &delalloc_start,
917aacec 1963 &delalloc_end);
3522e903 1964 if (!found) {
40f76580
CM
1965 delalloc_start = delalloc_end + 1;
1966 continue;
1967 }
cd4c0bf9 1968 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 1969 delalloc_end, &page_started, &nr_written, wbc);
40f76580 1970 if (ret) {
963e4db8
QW
1971 btrfs_page_set_error(inode->root->fs_info, page,
1972 page_offset(page), PAGE_SIZE);
7361b4ae 1973 return ret;
40f76580
CM
1974 }
1975 /*
ea1754a0
KS
1976 * delalloc_end is already one less than the total length, so
1977 * we don't subtract one from PAGE_SIZE
40f76580
CM
1978 */
1979 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 1980 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
1981 delalloc_start = delalloc_end + 1;
1982 }
1983 if (wbc->nr_to_write < delalloc_to_write) {
1984 int thresh = 8192;
1985
1986 if (delalloc_to_write < thresh * 2)
1987 thresh = delalloc_to_write;
1988 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1989 thresh);
1990 }
1991
83f1b680 1992 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
1993 if (page_started) {
1994 /*
83f1b680
QW
1995 * We've unlocked the page, so we can't update the mapping's
1996 * writeback index, just update nr_to_write.
40f76580 1997 */
83f1b680 1998 wbc->nr_to_write -= nr_written;
40f76580
CM
1999 return 1;
2000 }
2001
b69d1ee9 2002 return 0;
40f76580
CM
2003}
2004
c5ef5c6c
QW
2005/*
2006 * Find the first byte we need to write.
2007 *
2008 * For subpage, one page can contain several sectors, and
2009 * __extent_writepage_io() will just grab all extent maps in the page
2010 * range and try to submit all non-inline/non-compressed extents.
2011 *
2012 * This is a big problem for subpage, we shouldn't re-submit already written
2013 * data at all.
2014 * This function will lookup subpage dirty bit to find which range we really
2015 * need to submit.
2016 *
2017 * Return the next dirty range in [@start, @end).
2018 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
2019 */
2020static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
2021 struct page *page, u64 *start, u64 *end)
2022{
2023 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 2024 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
2025 u64 orig_start = *start;
2026 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 2027 unsigned long flags;
72a69cd0 2028 int range_start_bit;
c5ef5c6c
QW
2029 int range_end_bit;
2030
2031 /*
2032 * For regular sector size == page size case, since one page only
2033 * contains one sector, we return the page offset directly.
2034 */
fbca46eb 2035 if (!btrfs_is_subpage(fs_info, page)) {
c5ef5c6c
QW
2036 *start = page_offset(page);
2037 *end = page_offset(page) + PAGE_SIZE;
2038 return;
2039 }
2040
72a69cd0
QW
2041 range_start_bit = spi->dirty_offset +
2042 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
2043
c5ef5c6c
QW
2044 /* We should have the page locked, but just in case */
2045 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
2046 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
2047 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
2048 spin_unlock_irqrestore(&subpage->lock, flags);
2049
72a69cd0
QW
2050 range_start_bit -= spi->dirty_offset;
2051 range_end_bit -= spi->dirty_offset;
2052
c5ef5c6c
QW
2053 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
2054 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
2055}
2056
40f76580
CM
2057/*
2058 * helper for __extent_writepage. This calls the writepage start hooks,
2059 * and does the loop to map the page into extents and bios.
2060 *
2061 * We return 1 if the IO is started and the page is unlocked,
2062 * 0 if all went well (page still locked)
2063 * < 0 if there were errors (page still locked)
2064 */
d4580fe2 2065static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
2066 struct page *page,
2067 struct writeback_control *wbc,
2068 struct extent_page_data *epd,
2069 loff_t i_size,
57e5ffeb 2070 int *nr_ret)
d1310b2e 2071{
6bc5636a 2072 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
2073 u64 cur = page_offset(page);
2074 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 2075 u64 extent_offset;
d1310b2e 2076 u64 block_start;
d1310b2e 2077 struct extent_map *em;
44e5801f 2078 int saved_ret = 0;
40f76580
CM
2079 int ret = 0;
2080 int nr = 0;
bf9486d6
BVA
2081 enum req_op op = REQ_OP_WRITE;
2082 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
44e5801f 2083 bool has_error = false;
40f76580 2084 bool compressed;
c8b97818 2085
a129ffb8 2086 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
2087 if (ret) {
2088 /* Fixup worker will requeue */
5ab58055 2089 redirty_page_for_writepage(wbc, page);
d75855b4
NB
2090 unlock_page(page);
2091 return 1;
247e743c
CM
2092 }
2093
11c8349b
CM
2094 /*
2095 * we don't want to touch the inode after unlocking the page,
2096 * so we update the mapping writeback index now
2097 */
572f3dad 2098 wbc->nr_to_write--;
771ed689 2099
5467abba 2100 epd->bio_ctrl.end_io_func = end_bio_extent_writepage;
d1310b2e 2101 while (cur <= end) {
0c64c33c 2102 u64 disk_bytenr;
40f76580 2103 u64 em_end;
c5ef5c6c
QW
2104 u64 dirty_range_start = cur;
2105 u64 dirty_range_end;
6bc5636a 2106 u32 iosize;
58409edd 2107
40f76580 2108 if (cur >= i_size) {
38a39ac7 2109 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 2110 end, true);
cc1d0d93
QW
2111 /*
2112 * This range is beyond i_size, thus we don't need to
2113 * bother writing back.
2114 * But we still need to clear the dirty subpage bit, or
2115 * the next time the page gets dirtied, we will try to
2116 * writeback the sectors with subpage dirty bits,
2117 * causing writeback without ordered extent.
2118 */
2119 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
2120 break;
2121 }
c5ef5c6c
QW
2122
2123 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2124 &dirty_range_end);
2125 if (cur < dirty_range_start) {
2126 cur = dirty_range_start;
2127 continue;
2128 }
2129
d4580fe2 2130 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c0347550 2131 if (IS_ERR(em)) {
c5ef5c6c 2132 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 2133 ret = PTR_ERR_OR_ZERO(em);
44e5801f
QW
2134 has_error = true;
2135 if (!saved_ret)
2136 saved_ret = ret;
d1310b2e
CM
2137 break;
2138 }
2139
2140 extent_offset = cur - em->start;
40f76580 2141 em_end = extent_map_end(em);
6bc5636a
QW
2142 ASSERT(cur <= em_end);
2143 ASSERT(cur < end);
2144 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2145 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 2146 block_start = em->block_start;
c8b97818 2147 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
2148 disk_bytenr = em->block_start + extent_offset;
2149
c5ef5c6c
QW
2150 /*
2151 * Note that em_end from extent_map_end() and dirty_range_end from
2152 * find_next_dirty_byte() are all exclusive
2153 */
2154 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 2155
e380adfc 2156 if (btrfs_use_zone_append(inode, em->block_start))
bf9486d6 2157 op = REQ_OP_ZONE_APPEND;
d8e3fb10 2158
d1310b2e
CM
2159 free_extent_map(em);
2160 em = NULL;
2161
c8b97818
CM
2162 /*
2163 * compressed and inline extents are written through other
2164 * paths in the FS
2165 */
2166 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2167 block_start == EXTENT_MAP_INLINE) {
c8b04030 2168 if (compressed)
c8b97818 2169 nr++;
c8b04030 2170 else
38a39ac7 2171 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 2172 page, cur, cur + iosize - 1, true);
cc1d0d93 2173 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 2174 cur += iosize;
d1310b2e
CM
2175 continue;
2176 }
c8b97818 2177
d2a91064 2178 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 2179 if (!PageWriteback(page)) {
d4580fe2 2180 btrfs_err(inode->root->fs_info,
58409edd
DS
2181 "page %lu not writeback, cur %llu end %llu",
2182 page->index, cur, end);
d1310b2e 2183 }
7f3c74fb 2184
c5ef5c6c
QW
2185 /*
2186 * Although the PageDirty bit is cleared before entering this
2187 * function, subpage dirty bit is not cleared.
2188 * So clear subpage dirty bit here so next time we won't submit
2189 * page for range already written to disk.
2190 */
2191 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2192
bf9486d6 2193 ret = submit_extent_page(op | write_flags, wbc,
209ecde5
QW
2194 &epd->bio_ctrl, disk_bytenr,
2195 page, iosize,
390ed29b 2196 cur - page_offset(page),
722c82ac 2197 0, false);
fe01aa65 2198 if (ret) {
44e5801f
QW
2199 has_error = true;
2200 if (!saved_ret)
2201 saved_ret = ret;
2202
c5ef5c6c 2203 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 2204 if (PageWriteback(page))
c5ef5c6c
QW
2205 btrfs_page_clear_writeback(fs_info, page, cur,
2206 iosize);
fe01aa65 2207 }
d1310b2e 2208
6bc5636a 2209 cur += iosize;
d1310b2e
CM
2210 nr++;
2211 }
cc1d0d93
QW
2212 /*
2213 * If we finish without problem, we should not only clear page dirty,
2214 * but also empty subpage dirty bits
2215 */
44e5801f 2216 if (!has_error)
cc1d0d93 2217 btrfs_page_assert_not_dirty(fs_info, page);
44e5801f
QW
2218 else
2219 ret = saved_ret;
40f76580 2220 *nr_ret = nr;
40f76580
CM
2221 return ret;
2222}
2223
2224/*
2225 * the writepage semantics are similar to regular writepage. extent
2226 * records are inserted to lock ranges in the tree, and as dirty areas
2227 * are found, they are marked writeback. Then the lock bits are removed
2228 * and the end_io handler clears the writeback ranges
3065976b
QW
2229 *
2230 * Return 0 if everything goes well.
2231 * Return <0 for error.
40f76580
CM
2232 */
2233static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 2234 struct extent_page_data *epd)
40f76580 2235{
8e1dec8e 2236 struct folio *folio = page_folio(page);
40f76580 2237 struct inode *inode = page->mapping->host;
e55a0de1 2238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
2239 const u64 page_start = page_offset(page);
2240 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
2241 int ret;
2242 int nr = 0;
eb70d222 2243 size_t pg_offset;
40f76580 2244 loff_t i_size = i_size_read(inode);
09cbfeaf 2245 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 2246
40f76580
CM
2247 trace___extent_writepage(page, inode, wbc);
2248
2249 WARN_ON(!PageLocked(page));
2250
963e4db8
QW
2251 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2252 page_offset(page), PAGE_SIZE);
40f76580 2253
7073017a 2254 pg_offset = offset_in_page(i_size);
40f76580
CM
2255 if (page->index > end_index ||
2256 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
2257 folio_invalidate(folio, 0, folio_size(folio));
2258 folio_unlock(folio);
40f76580
CM
2259 return 0;
2260 }
2261
21a8935e 2262 if (page->index == end_index)
d048b9c2 2263 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 2264
32443de3
QW
2265 ret = set_page_extent_mapped(page);
2266 if (ret < 0) {
2267 SetPageError(page);
2268 goto done;
2269 }
40f76580 2270
7789a55a 2271 if (!epd->extent_locked) {
83f1b680 2272 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 2273 if (ret == 1)
169d2c87 2274 return 0;
7789a55a
NB
2275 if (ret)
2276 goto done;
2277 }
40f76580 2278
d4580fe2 2279 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 2280 &nr);
40f76580 2281 if (ret == 1)
169d2c87 2282 return 0;
40f76580 2283
d1310b2e
CM
2284done:
2285 if (nr == 0) {
2286 /* make sure the mapping tag for page dirty gets cleared */
2287 set_page_writeback(page);
2288 end_page_writeback(page);
2289 }
963e4db8
QW
2290 /*
2291 * Here we used to have a check for PageError() and then set @ret and
2292 * call end_extent_writepage().
2293 *
2294 * But in fact setting @ret here will cause different error paths
2295 * between subpage and regular sectorsize.
2296 *
2297 * For regular page size, we never submit current page, but only add
2298 * current page to current bio.
2299 * The bio submission can only happen in next page.
2300 * Thus if we hit the PageError() branch, @ret is already set to
2301 * non-zero value and will not get updated for regular sectorsize.
2302 *
2303 * But for subpage case, it's possible we submit part of current page,
2304 * thus can get PageError() set by submitted bio of the same page,
2305 * while our @ret is still 0.
2306 *
2307 * So here we unify the behavior and don't set @ret.
2308 * Error can still be properly passed to higher layer as page will
2309 * be set error, here we just don't handle the IO failure.
2310 *
2311 * NOTE: This is just a hotfix for subpage.
2312 * The root fix will be properly ending ordered extent when we hit
2313 * an error during writeback.
2314 *
2315 * But that needs a bigger refactoring, as we not only need to grab the
2316 * submitted OE, but also need to know exactly at which bytenr we hit
2317 * the error.
2318 * Currently the full page based __extent_writepage_io() is not
2319 * capable of that.
2320 */
2321 if (PageError(page))
cf3075fb 2322 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
2323 if (epd->extent_locked) {
2324 /*
2325 * If epd->extent_locked, it's from extent_write_locked_range(),
2326 * the page can either be locked by lock_page() or
2327 * process_one_page().
2328 * Let btrfs_page_unlock_writer() handle both cases.
2329 */
2330 ASSERT(wbc);
2331 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2332 wbc->range_end + 1 - wbc->range_start);
2333 } else {
2334 unlock_page(page);
2335 }
3065976b 2336 ASSERT(ret <= 0);
40f76580 2337 return ret;
d1310b2e
CM
2338}
2339
fd8b2b61 2340void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 2341{
74316201
N
2342 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2343 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
2344}
2345
18dfa711
FM
2346static void end_extent_buffer_writeback(struct extent_buffer *eb)
2347{
2348 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2349 smp_mb__after_atomic();
2350 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2351}
2352
2e3c2513 2353/*
a3efb2f0 2354 * Lock extent buffer status and pages for writeback.
2e3c2513 2355 *
a3efb2f0
QW
2356 * May try to flush write bio if we can't get the lock.
2357 *
2358 * Return 0 if the extent buffer doesn't need to be submitted.
2359 * (E.g. the extent buffer is not dirty)
2360 * Return >0 is the extent buffer is submitted to bio.
2361 * Return <0 if something went wrong, no page is locked.
2e3c2513 2362 */
9df76fb5 2363static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 2364 struct extent_page_data *epd)
0b32f4bb 2365{
9df76fb5 2366 struct btrfs_fs_info *fs_info = eb->fs_info;
c9583ada 2367 int i, num_pages;
0b32f4bb
JB
2368 int flush = 0;
2369 int ret = 0;
2370
2371 if (!btrfs_try_tree_write_lock(eb)) {
9845e5dd 2372 submit_write_bio(epd, 0);
2e3c2513 2373 flush = 1;
0b32f4bb
JB
2374 btrfs_tree_lock(eb);
2375 }
2376
2377 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2378 btrfs_tree_unlock(eb);
2379 if (!epd->sync_io)
2380 return 0;
2381 if (!flush) {
9845e5dd 2382 submit_write_bio(epd, 0);
0b32f4bb
JB
2383 flush = 1;
2384 }
a098d8e8
CM
2385 while (1) {
2386 wait_on_extent_buffer_writeback(eb);
2387 btrfs_tree_lock(eb);
2388 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2389 break;
0b32f4bb 2390 btrfs_tree_unlock(eb);
0b32f4bb
JB
2391 }
2392 }
2393
51561ffe
JB
2394 /*
2395 * We need to do this to prevent races in people who check if the eb is
2396 * under IO since we can end up having no IO bits set for a short period
2397 * of time.
2398 */
2399 spin_lock(&eb->refs_lock);
0b32f4bb
JB
2400 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2401 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 2402 spin_unlock(&eb->refs_lock);
0b32f4bb 2403 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
2404 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2405 -eb->len,
2406 fs_info->dirty_metadata_batch);
0b32f4bb 2407 ret = 1;
51561ffe
JB
2408 } else {
2409 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
2410 }
2411
2412 btrfs_tree_unlock(eb);
2413
f3156df9
QW
2414 /*
2415 * Either we don't need to submit any tree block, or we're submitting
2416 * subpage eb.
2417 * Subpage metadata doesn't use page locking at all, so we can skip
2418 * the page locking.
2419 */
fbca46eb 2420 if (!ret || fs_info->nodesize < PAGE_SIZE)
0b32f4bb
JB
2421 return ret;
2422
65ad0104 2423 num_pages = num_extent_pages(eb);
0b32f4bb 2424 for (i = 0; i < num_pages; i++) {
fb85fc9a 2425 struct page *p = eb->pages[i];
0b32f4bb
JB
2426
2427 if (!trylock_page(p)) {
2428 if (!flush) {
9845e5dd 2429 submit_write_bio(epd, 0);
0b32f4bb
JB
2430 flush = 1;
2431 }
2432 lock_page(p);
2433 }
2434 }
2435
2e3c2513 2436 return ret;
0b32f4bb
JB
2437}
2438
5a2c6075 2439static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 2440{
5a2c6075 2441 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 2442
5a2c6075 2443 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
2444 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2445 return;
2446
c2e39305
JB
2447 /*
2448 * A read may stumble upon this buffer later, make sure that it gets an
2449 * error and knows there was an error.
2450 */
2451 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2452
68b85589
JB
2453 /*
2454 * We need to set the mapping with the io error as well because a write
2455 * error will flip the file system readonly, and then syncfs() will
2456 * return a 0 because we are readonly if we don't modify the err seq for
2457 * the superblock.
2458 */
2459 mapping_set_error(page->mapping, -EIO);
2460
eb5b64f1
DZ
2461 /*
2462 * If we error out, we should add back the dirty_metadata_bytes
2463 * to make it consistent.
2464 */
eb5b64f1
DZ
2465 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2466 eb->len, fs_info->dirty_metadata_batch);
2467
656f30db
FM
2468 /*
2469 * If writeback for a btree extent that doesn't belong to a log tree
2470 * failed, increment the counter transaction->eb_write_errors.
2471 * We do this because while the transaction is running and before it's
2472 * committing (when we call filemap_fdata[write|wait]_range against
2473 * the btree inode), we might have
2474 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2475 * returns an error or an error happens during writeback, when we're
2476 * committing the transaction we wouldn't know about it, since the pages
2477 * can be no longer dirty nor marked anymore for writeback (if a
2478 * subsequent modification to the extent buffer didn't happen before the
2479 * transaction commit), which makes filemap_fdata[write|wait]_range not
2480 * able to find the pages tagged with SetPageError at transaction
2481 * commit time. So if this happens we must abort the transaction,
2482 * otherwise we commit a super block with btree roots that point to
2483 * btree nodes/leafs whose content on disk is invalid - either garbage
2484 * or the content of some node/leaf from a past generation that got
2485 * cowed or deleted and is no longer valid.
2486 *
2487 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2488 * not be enough - we need to distinguish between log tree extents vs
2489 * non-log tree extents, and the next filemap_fdatawait_range() call
2490 * will catch and clear such errors in the mapping - and that call might
2491 * be from a log sync and not from a transaction commit. Also, checking
2492 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2493 * not done and would not be reliable - the eb might have been released
2494 * from memory and reading it back again means that flag would not be
2495 * set (since it's a runtime flag, not persisted on disk).
2496 *
2497 * Using the flags below in the btree inode also makes us achieve the
2498 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2499 * writeback for all dirty pages and before filemap_fdatawait_range()
2500 * is called, the writeback for all dirty pages had already finished
2501 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2502 * filemap_fdatawait_range() would return success, as it could not know
2503 * that writeback errors happened (the pages were no longer tagged for
2504 * writeback).
2505 */
2506 switch (eb->log_index) {
2507 case -1:
5a2c6075 2508 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
2509 break;
2510 case 0:
5a2c6075 2511 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
2512 break;
2513 case 1:
5a2c6075 2514 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
2515 break;
2516 default:
2517 BUG(); /* unexpected, logic error */
2518 }
2519}
2520
2f3186d8
QW
2521/*
2522 * The endio specific version which won't touch any unsafe spinlock in endio
2523 * context.
2524 */
2525static struct extent_buffer *find_extent_buffer_nolock(
2526 struct btrfs_fs_info *fs_info, u64 start)
2527{
2528 struct extent_buffer *eb;
2529
2530 rcu_read_lock();
01cd3909
DS
2531 eb = radix_tree_lookup(&fs_info->buffer_radix,
2532 start >> fs_info->sectorsize_bits);
2f3186d8
QW
2533 if (eb && atomic_inc_not_zero(&eb->refs)) {
2534 rcu_read_unlock();
2535 return eb;
2536 }
2537 rcu_read_unlock();
2538 return NULL;
2539}
2540
2541/*
2542 * The endio function for subpage extent buffer write.
2543 *
2544 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2545 * after all extent buffers in the page has finished their writeback.
2546 */
917f32a2 2547static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2f3186d8 2548{
917f32a2 2549 struct bio *bio = &bbio->bio;
fa04c165 2550 struct btrfs_fs_info *fs_info;
2f3186d8
QW
2551 struct bio_vec *bvec;
2552 struct bvec_iter_all iter_all;
2553
fa04c165 2554 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
fbca46eb 2555 ASSERT(fs_info->nodesize < PAGE_SIZE);
fa04c165 2556
2f3186d8
QW
2557 ASSERT(!bio_flagged(bio, BIO_CLONED));
2558 bio_for_each_segment_all(bvec, bio, iter_all) {
2559 struct page *page = bvec->bv_page;
2560 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2561 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2562 u64 cur_bytenr = bvec_start;
2563
2564 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2565
2566 /* Iterate through all extent buffers in the range */
2567 while (cur_bytenr <= bvec_end) {
2568 struct extent_buffer *eb;
2569 int done;
2570
2571 /*
2572 * Here we can't use find_extent_buffer(), as it may
2573 * try to lock eb->refs_lock, which is not safe in endio
2574 * context.
2575 */
2576 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2577 ASSERT(eb);
2578
2579 cur_bytenr = eb->start + eb->len;
2580
2581 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2582 done = atomic_dec_and_test(&eb->io_pages);
2583 ASSERT(done);
2584
2585 if (bio->bi_status ||
2586 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2587 ClearPageUptodate(page);
2588 set_btree_ioerr(page, eb);
2589 }
2590
2591 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2592 eb->len);
2593 end_extent_buffer_writeback(eb);
2594 /*
2595 * free_extent_buffer() will grab spinlock which is not
2596 * safe in endio context. Thus here we manually dec
2597 * the ref.
2598 */
2599 atomic_dec(&eb->refs);
2600 }
2601 }
2602 bio_put(bio);
2603}
2604
917f32a2 2605static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
0b32f4bb 2606{
917f32a2 2607 struct bio *bio = &bbio->bio;
2c30c71b 2608 struct bio_vec *bvec;
0b32f4bb 2609 struct extent_buffer *eb;
2b070cfe 2610 int done;
6dc4f100 2611 struct bvec_iter_all iter_all;
0b32f4bb 2612
c09abff8 2613 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2614 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
2615 struct page *page = bvec->bv_page;
2616
0b32f4bb
JB
2617 eb = (struct extent_buffer *)page->private;
2618 BUG_ON(!eb);
2619 done = atomic_dec_and_test(&eb->io_pages);
2620
4e4cbee9 2621 if (bio->bi_status ||
4246a0b6 2622 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 2623 ClearPageUptodate(page);
5a2c6075 2624 set_btree_ioerr(page, eb);
0b32f4bb
JB
2625 }
2626
2627 end_page_writeback(page);
2628
2629 if (!done)
2630 continue;
2631
2632 end_extent_buffer_writeback(eb);
2c30c71b 2633 }
0b32f4bb
JB
2634
2635 bio_put(bio);
0b32f4bb
JB
2636}
2637
fa04c165
QW
2638static void prepare_eb_write(struct extent_buffer *eb)
2639{
2640 u32 nritems;
2641 unsigned long start;
2642 unsigned long end;
2643
2644 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2645 atomic_set(&eb->io_pages, num_extent_pages(eb));
2646
2647 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2648 nritems = btrfs_header_nritems(eb);
2649 if (btrfs_header_level(eb) > 0) {
2650 end = btrfs_node_key_ptr_offset(nritems);
2651 memzero_extent_buffer(eb, end, eb->len - end);
2652 } else {
2653 /*
2654 * Leaf:
2655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2656 */
2657 start = btrfs_item_nr_offset(nritems);
2658 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
2659 memzero_extent_buffer(eb, start, end - start);
2660 }
2661}
2662
35b6ddfa
QW
2663/*
2664 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2665 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
2666 */
2667static int write_one_subpage_eb(struct extent_buffer *eb,
2668 struct writeback_control *wbc,
2669 struct extent_page_data *epd)
2670{
2671 struct btrfs_fs_info *fs_info = eb->fs_info;
2672 struct page *page = eb->pages[0];
353767e4 2673 blk_opf_t write_flags = wbc_to_write_flags(wbc);
35b6ddfa
QW
2674 bool no_dirty_ebs = false;
2675 int ret;
2676
fa04c165
QW
2677 prepare_eb_write(eb);
2678
35b6ddfa
QW
2679 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2680 lock_page(page);
2681 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2682
2683 /* Check if this is the last dirty bit to update nr_written */
2684 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2685 eb->start, eb->len);
2686 if (no_dirty_ebs)
2687 clear_page_dirty_for_io(page);
2688
5467abba
QW
2689 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage;
2690
390ed29b 2691 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
209ecde5 2692 &epd->bio_ctrl, eb->start, page, eb->len,
5467abba 2693 eb->start - page_offset(page), 0, false);
35b6ddfa
QW
2694 if (ret) {
2695 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2696 set_btree_ioerr(page, eb);
2697 unlock_page(page);
2698
2699 if (atomic_dec_and_test(&eb->io_pages))
2700 end_extent_buffer_writeback(eb);
2701 return -EIO;
2702 }
2703 unlock_page(page);
2704 /*
2705 * Submission finished without problem, if no range of the page is
2706 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2707 */
2708 if (no_dirty_ebs)
572f3dad 2709 wbc->nr_to_write--;
35b6ddfa
QW
2710 return ret;
2711}
2712
0e378df1 2713static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
2714 struct writeback_control *wbc,
2715 struct extent_page_data *epd)
2716{
0c64c33c 2717 u64 disk_bytenr = eb->start;
cc5e31a4 2718 int i, num_pages;
353767e4 2719 blk_opf_t write_flags = wbc_to_write_flags(wbc);
d7dbe9e7 2720 int ret = 0;
0b32f4bb 2721
fa04c165 2722 prepare_eb_write(eb);
35b6ddfa 2723
5467abba
QW
2724 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage;
2725
fa04c165 2726 num_pages = num_extent_pages(eb);
0b32f4bb 2727 for (i = 0; i < num_pages; i++) {
fb85fc9a 2728 struct page *p = eb->pages[i];
0b32f4bb
JB
2729
2730 clear_page_dirty_for_io(p);
2731 set_page_writeback(p);
0ceb34bf 2732 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
209ecde5 2733 &epd->bio_ctrl, disk_bytenr, p,
5467abba 2734 PAGE_SIZE, 0, 0, false);
0b32f4bb 2735 if (ret) {
5a2c6075 2736 set_btree_ioerr(p, eb);
fe01aa65
TK
2737 if (PageWriteback(p))
2738 end_page_writeback(p);
0b32f4bb
JB
2739 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2740 end_extent_buffer_writeback(eb);
2741 ret = -EIO;
2742 break;
2743 }
0c64c33c 2744 disk_bytenr += PAGE_SIZE;
572f3dad 2745 wbc->nr_to_write--;
0b32f4bb
JB
2746 unlock_page(p);
2747 }
2748
2749 if (unlikely(ret)) {
2750 for (; i < num_pages; i++) {
bbf65cf0 2751 struct page *p = eb->pages[i];
81465028 2752 clear_page_dirty_for_io(p);
0b32f4bb
JB
2753 unlock_page(p);
2754 }
2755 }
2756
2757 return ret;
2758}
2759
c4aec299
QW
2760/*
2761 * Submit one subpage btree page.
2762 *
2763 * The main difference to submit_eb_page() is:
2764 * - Page locking
2765 * For subpage, we don't rely on page locking at all.
2766 *
2767 * - Flush write bio
2768 * We only flush bio if we may be unable to fit current extent buffers into
2769 * current bio.
2770 *
2771 * Return >=0 for the number of submitted extent buffers.
2772 * Return <0 for fatal error.
2773 */
2774static int submit_eb_subpage(struct page *page,
2775 struct writeback_control *wbc,
2776 struct extent_page_data *epd)
2777{
2778 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2779 int submitted = 0;
2780 u64 page_start = page_offset(page);
2781 int bit_start = 0;
c4aec299
QW
2782 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2783 int ret;
2784
2785 /* Lock and write each dirty extent buffers in the range */
72a69cd0 2786 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
2787 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2788 struct extent_buffer *eb;
2789 unsigned long flags;
2790 u64 start;
2791
2792 /*
2793 * Take private lock to ensure the subpage won't be detached
2794 * in the meantime.
2795 */
2796 spin_lock(&page->mapping->private_lock);
2797 if (!PagePrivate(page)) {
2798 spin_unlock(&page->mapping->private_lock);
2799 break;
2800 }
2801 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
2802 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2803 subpage->bitmaps)) {
c4aec299
QW
2804 spin_unlock_irqrestore(&subpage->lock, flags);
2805 spin_unlock(&page->mapping->private_lock);
2806 bit_start++;
2807 continue;
2808 }
2809
2810 start = page_start + bit_start * fs_info->sectorsize;
2811 bit_start += sectors_per_node;
2812
2813 /*
2814 * Here we just want to grab the eb without touching extra
2815 * spin locks, so call find_extent_buffer_nolock().
2816 */
2817 eb = find_extent_buffer_nolock(fs_info, start);
2818 spin_unlock_irqrestore(&subpage->lock, flags);
2819 spin_unlock(&page->mapping->private_lock);
2820
2821 /*
2822 * The eb has already reached 0 refs thus find_extent_buffer()
2823 * doesn't return it. We don't need to write back such eb
2824 * anyway.
2825 */
2826 if (!eb)
2827 continue;
2828
2829 ret = lock_extent_buffer_for_io(eb, epd);
2830 if (ret == 0) {
2831 free_extent_buffer(eb);
2832 continue;
2833 }
2834 if (ret < 0) {
2835 free_extent_buffer(eb);
2836 goto cleanup;
2837 }
fa04c165 2838 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
2839 free_extent_buffer(eb);
2840 if (ret < 0)
2841 goto cleanup;
2842 submitted++;
2843 }
2844 return submitted;
2845
2846cleanup:
2847 /* We hit error, end bio for the submitted extent buffers */
9845e5dd 2848 submit_write_bio(epd, ret);
c4aec299
QW
2849 return ret;
2850}
2851
f91e0d0c
QW
2852/*
2853 * Submit all page(s) of one extent buffer.
2854 *
2855 * @page: the page of one extent buffer
2856 * @eb_context: to determine if we need to submit this page, if current page
2857 * belongs to this eb, we don't need to submit
2858 *
2859 * The caller should pass each page in their bytenr order, and here we use
2860 * @eb_context to determine if we have submitted pages of one extent buffer.
2861 *
2862 * If we have, we just skip until we hit a new page that doesn't belong to
2863 * current @eb_context.
2864 *
2865 * If not, we submit all the page(s) of the extent buffer.
2866 *
2867 * Return >0 if we have submitted the extent buffer successfully.
2868 * Return 0 if we don't need to submit the page, as it's already submitted by
2869 * previous call.
2870 * Return <0 for fatal error.
2871 */
2872static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2873 struct extent_page_data *epd,
2874 struct extent_buffer **eb_context)
2875{
2876 struct address_space *mapping = page->mapping;
0bc09ca1 2877 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
2878 struct extent_buffer *eb;
2879 int ret;
2880
2881 if (!PagePrivate(page))
2882 return 0;
2883
fbca46eb 2884 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
c4aec299
QW
2885 return submit_eb_subpage(page, wbc, epd);
2886
f91e0d0c
QW
2887 spin_lock(&mapping->private_lock);
2888 if (!PagePrivate(page)) {
2889 spin_unlock(&mapping->private_lock);
2890 return 0;
2891 }
2892
2893 eb = (struct extent_buffer *)page->private;
2894
2895 /*
2896 * Shouldn't happen and normally this would be a BUG_ON but no point
2897 * crashing the machine for something we can survive anyway.
2898 */
2899 if (WARN_ON(!eb)) {
2900 spin_unlock(&mapping->private_lock);
2901 return 0;
2902 }
2903
2904 if (eb == *eb_context) {
2905 spin_unlock(&mapping->private_lock);
2906 return 0;
2907 }
2908 ret = atomic_inc_not_zero(&eb->refs);
2909 spin_unlock(&mapping->private_lock);
2910 if (!ret)
2911 return 0;
2912
0bc09ca1
NA
2913 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2914 /*
2915 * If for_sync, this hole will be filled with
2916 * trasnsaction commit.
2917 */
2918 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2919 ret = -EAGAIN;
2920 else
2921 ret = 0;
2922 free_extent_buffer(eb);
2923 return ret;
2924 }
2925
f91e0d0c
QW
2926 *eb_context = eb;
2927
2928 ret = lock_extent_buffer_for_io(eb, epd);
2929 if (ret <= 0) {
0bc09ca1
NA
2930 btrfs_revert_meta_write_pointer(cache, eb);
2931 if (cache)
2932 btrfs_put_block_group(cache);
f91e0d0c
QW
2933 free_extent_buffer(eb);
2934 return ret;
2935 }
be1a1d7a 2936 if (cache) {
d3e29967
NB
2937 /*
2938 * Implies write in zoned mode. Mark the last eb in a block group.
2939 */
56fbb0a4 2940 btrfs_schedule_zone_finish_bg(cache, eb);
d3e29967 2941 btrfs_put_block_group(cache);
be1a1d7a 2942 }
f91e0d0c
QW
2943 ret = write_one_eb(eb, wbc, epd);
2944 free_extent_buffer(eb);
2945 if (ret < 0)
2946 return ret;
2947 return 1;
2948}
2949
0b32f4bb
JB
2950int btree_write_cache_pages(struct address_space *mapping,
2951 struct writeback_control *wbc)
2952{
f91e0d0c 2953 struct extent_buffer *eb_context = NULL;
0b32f4bb 2954 struct extent_page_data epd = {
390ed29b 2955 .bio_ctrl = { 0 },
0b32f4bb
JB
2956 .extent_locked = 0,
2957 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2958 };
b3ff8f1d 2959 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
2960 int ret = 0;
2961 int done = 0;
2962 int nr_to_write_done = 0;
2963 struct pagevec pvec;
2964 int nr_pages;
2965 pgoff_t index;
2966 pgoff_t end; /* Inclusive */
2967 int scanned = 0;
10bbd235 2968 xa_mark_t tag;
0b32f4bb 2969
86679820 2970 pagevec_init(&pvec);
0b32f4bb
JB
2971 if (wbc->range_cyclic) {
2972 index = mapping->writeback_index; /* Start from prev offset */
2973 end = -1;
556755a8
JB
2974 /*
2975 * Start from the beginning does not need to cycle over the
2976 * range, mark it as scanned.
2977 */
2978 scanned = (index == 0);
0b32f4bb 2979 } else {
09cbfeaf
KS
2980 index = wbc->range_start >> PAGE_SHIFT;
2981 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
2982 scanned = 1;
2983 }
2984 if (wbc->sync_mode == WB_SYNC_ALL)
2985 tag = PAGECACHE_TAG_TOWRITE;
2986 else
2987 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 2988 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
2989retry:
2990 if (wbc->sync_mode == WB_SYNC_ALL)
2991 tag_pages_for_writeback(mapping, index, end);
2992 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 2993 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2994 tag))) {
0b32f4bb
JB
2995 unsigned i;
2996
0b32f4bb
JB
2997 for (i = 0; i < nr_pages; i++) {
2998 struct page *page = pvec.pages[i];
2999
f91e0d0c
QW
3000 ret = submit_eb_page(page, wbc, &epd, &eb_context);
3001 if (ret == 0)
0b32f4bb 3002 continue;
f91e0d0c 3003 if (ret < 0) {
0b32f4bb 3004 done = 1;
0b32f4bb
JB
3005 break;
3006 }
0b32f4bb
JB
3007
3008 /*
3009 * the filesystem may choose to bump up nr_to_write.
3010 * We have to make sure to honor the new nr_to_write
3011 * at any time
3012 */
3013 nr_to_write_done = wbc->nr_to_write <= 0;
3014 }
3015 pagevec_release(&pvec);
3016 cond_resched();
3017 }
3018 if (!scanned && !done) {
3019 /*
3020 * We hit the last page and there is more work to be done: wrap
3021 * back to the start of the file
3022 */
3023 scanned = 1;
3024 index = 0;
3025 goto retry;
3026 }
b3ff8f1d
QW
3027 /*
3028 * If something went wrong, don't allow any metadata write bio to be
3029 * submitted.
3030 *
3031 * This would prevent use-after-free if we had dirty pages not
3032 * cleaned up, which can still happen by fuzzed images.
3033 *
3034 * - Bad extent tree
3035 * Allowing existing tree block to be allocated for other trees.
3036 *
3037 * - Log tree operations
3038 * Exiting tree blocks get allocated to log tree, bumps its
3039 * generation, then get cleaned in tree re-balance.
3040 * Such tree block will not be written back, since it's clean,
3041 * thus no WRITTEN flag set.
3042 * And after log writes back, this tree block is not traced by
3043 * any dirty extent_io_tree.
3044 *
3045 * - Offending tree block gets re-dirtied from its original owner
3046 * Since it has bumped generation, no WRITTEN flag, it can be
3047 * reused without COWing. This tree block will not be traced
3048 * by btrfs_transaction::dirty_pages.
3049 *
3050 * Now such dirty tree block will not be cleaned by any dirty
3051 * extent io tree. Thus we don't want to submit such wild eb
3052 * if the fs already has error.
9845e5dd 3053 *
c9583ada
QW
3054 * We can get ret > 0 from submit_extent_page() indicating how many ebs
3055 * were submitted. Reset it to 0 to avoid false alerts for the caller.
3056 */
3057 if (ret > 0)
3058 ret = 0;
9845e5dd
CH
3059 if (!ret && BTRFS_FS_ERROR(fs_info))
3060 ret = -EROFS;
3061 submit_write_bio(&epd, ret);
3062
3063 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
3064 return ret;
3065}
3066
d1310b2e 3067/**
3bed2da1
NB
3068 * Walk the list of dirty pages of the given address space and write all of them.
3069 *
d1310b2e 3070 * @mapping: address space structure to write
3bed2da1
NB
3071 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3072 * @epd: holds context for the write, namely the bio
d1310b2e
CM
3073 *
3074 * If a page is already under I/O, write_cache_pages() skips it, even
3075 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3076 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3077 * and msync() need to guarantee that all the data which was dirty at the time
3078 * the call was made get new I/O started against them. If wbc->sync_mode is
3079 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3080 * existing IO to complete.
3081 */
4242b64a 3082static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3083 struct writeback_control *wbc,
aab6e9ed 3084 struct extent_page_data *epd)
d1310b2e 3085{
7fd1a3f7 3086 struct inode *inode = mapping->host;
d1310b2e
CM
3087 int ret = 0;
3088 int done = 0;
f85d7d6c 3089 int nr_to_write_done = 0;
d1310b2e
CM
3090 struct pagevec pvec;
3091 int nr_pages;
3092 pgoff_t index;
3093 pgoff_t end; /* Inclusive */
a9132667
LB
3094 pgoff_t done_index;
3095 int range_whole = 0;
d1310b2e 3096 int scanned = 0;
10bbd235 3097 xa_mark_t tag;
d1310b2e 3098
7fd1a3f7
JB
3099 /*
3100 * We have to hold onto the inode so that ordered extents can do their
3101 * work when the IO finishes. The alternative to this is failing to add
3102 * an ordered extent if the igrab() fails there and that is a huge pain
3103 * to deal with, so instead just hold onto the inode throughout the
3104 * writepages operation. If it fails here we are freeing up the inode
3105 * anyway and we'd rather not waste our time writing out stuff that is
3106 * going to be truncated anyway.
3107 */
3108 if (!igrab(inode))
3109 return 0;
3110
86679820 3111 pagevec_init(&pvec);
d1310b2e
CM
3112 if (wbc->range_cyclic) {
3113 index = mapping->writeback_index; /* Start from prev offset */
3114 end = -1;
556755a8
JB
3115 /*
3116 * Start from the beginning does not need to cycle over the
3117 * range, mark it as scanned.
3118 */
3119 scanned = (index == 0);
d1310b2e 3120 } else {
09cbfeaf
KS
3121 index = wbc->range_start >> PAGE_SHIFT;
3122 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3123 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3124 range_whole = 1;
d1310b2e
CM
3125 scanned = 1;
3126 }
3cd24c69
EL
3127
3128 /*
3129 * We do the tagged writepage as long as the snapshot flush bit is set
3130 * and we are the first one who do the filemap_flush() on this inode.
3131 *
3132 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3133 * not race in and drop the bit.
3134 */
3135 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3136 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3137 &BTRFS_I(inode)->runtime_flags))
3138 wbc->tagged_writepages = 1;
3139
3140 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3141 tag = PAGECACHE_TAG_TOWRITE;
3142 else
3143 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3144retry:
3cd24c69 3145 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3146 tag_pages_for_writeback(mapping, index, end);
a9132667 3147 done_index = index;
f85d7d6c 3148 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3149 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3150 &index, end, tag))) {
d1310b2e
CM
3151 unsigned i;
3152
d1310b2e
CM
3153 for (i = 0; i < nr_pages; i++) {
3154 struct page *page = pvec.pages[i];
3155
f7bddf1e 3156 done_index = page->index + 1;
d1310b2e 3157 /*
b93b0163
MW
3158 * At this point we hold neither the i_pages lock nor
3159 * the page lock: the page may be truncated or
3160 * invalidated (changing page->mapping to NULL),
3161 * or even swizzled back from swapper_space to
3162 * tmpfs file mapping
d1310b2e 3163 */
c8f2f24b 3164 if (!trylock_page(page)) {
9845e5dd 3165 submit_write_bio(epd, 0);
c8f2f24b 3166 lock_page(page);
01d658f2 3167 }
d1310b2e
CM
3168
3169 if (unlikely(page->mapping != mapping)) {
3170 unlock_page(page);
3171 continue;
3172 }
3173
d2c3f4f6 3174 if (wbc->sync_mode != WB_SYNC_NONE) {
c9583ada 3175 if (PageWriteback(page))
9845e5dd 3176 submit_write_bio(epd, 0);
d1310b2e 3177 wait_on_page_writeback(page);
d2c3f4f6 3178 }
d1310b2e
CM
3179
3180 if (PageWriteback(page) ||
3181 !clear_page_dirty_for_io(page)) {
3182 unlock_page(page);
3183 continue;
3184 }
3185
aab6e9ed 3186 ret = __extent_writepage(page, wbc, epd);
a9132667 3187 if (ret < 0) {
a9132667
LB
3188 done = 1;
3189 break;
3190 }
f85d7d6c
CM
3191
3192 /*
3193 * the filesystem may choose to bump up nr_to_write.
3194 * We have to make sure to honor the new nr_to_write
3195 * at any time
3196 */
3197 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3198 }
3199 pagevec_release(&pvec);
3200 cond_resched();
3201 }
894b36e3 3202 if (!scanned && !done) {
d1310b2e
CM
3203 /*
3204 * We hit the last page and there is more work to be done: wrap
3205 * back to the start of the file
3206 */
3207 scanned = 1;
3208 index = 0;
42ffb0bf
JB
3209
3210 /*
3211 * If we're looping we could run into a page that is locked by a
3212 * writer and that writer could be waiting on writeback for a
3213 * page in our current bio, and thus deadlock, so flush the
3214 * write bio here.
3215 */
9845e5dd 3216 submit_write_bio(epd, 0);
c9583ada 3217 goto retry;
d1310b2e 3218 }
a9132667
LB
3219
3220 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3221 mapping->writeback_index = done_index;
3222
7fd1a3f7 3223 btrfs_add_delayed_iput(inode);
894b36e3 3224 return ret;
d1310b2e 3225}
d1310b2e 3226
2bd0fc93
QW
3227/*
3228 * Submit the pages in the range to bio for call sites which delalloc range has
3229 * already been ran (aka, ordered extent inserted) and all pages are still
3230 * locked.
3231 */
3232int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 3233{
2bd0fc93
QW
3234 bool found_error = false;
3235 int first_error = 0;
771ed689
CM
3236 int ret = 0;
3237 struct address_space *mapping = inode->i_mapping;
3238 struct page *page;
2bd0fc93 3239 u64 cur = start;
66448b9d
QW
3240 unsigned long nr_pages;
3241 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 3242 struct extent_page_data epd = {
390ed29b 3243 .bio_ctrl = { 0 },
771ed689 3244 .extent_locked = 1,
2bd0fc93 3245 .sync_io = 1,
771ed689
CM
3246 };
3247 struct writeback_control wbc_writepages = {
2bd0fc93 3248 .sync_mode = WB_SYNC_ALL,
771ed689
CM
3249 .range_start = start,
3250 .range_end = end + 1,
ec39f769
CM
3251 /* We're called from an async helper function */
3252 .punt_to_cgroup = 1,
3253 .no_cgroup_owner = 1,
771ed689
CM
3254 };
3255
66448b9d
QW
3256 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3257 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3258 PAGE_SHIFT;
3259 wbc_writepages.nr_to_write = nr_pages * 2;
3260
dbb70bec 3261 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 3262 while (cur <= end) {
66448b9d
QW
3263 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3264
2bd0fc93
QW
3265 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3266 /*
3267 * All pages in the range are locked since
3268 * btrfs_run_delalloc_range(), thus there is no way to clear
3269 * the page dirty flag.
3270 */
66448b9d 3271 ASSERT(PageLocked(page));
2bd0fc93
QW
3272 ASSERT(PageDirty(page));
3273 clear_page_dirty_for_io(page);
3274 ret = __extent_writepage(page, &wbc_writepages, &epd);
3275 ASSERT(ret <= 0);
3276 if (ret < 0) {
3277 found_error = true;
3278 first_error = ret;
771ed689 3279 }
09cbfeaf 3280 put_page(page);
66448b9d 3281 cur = cur_end + 1;
771ed689
CM
3282 }
3283
9845e5dd 3284 submit_write_bio(&epd, found_error ? ret : 0);
dbb70bec
CM
3285
3286 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
3287 if (found_error)
3288 return first_error;
771ed689
CM
3289 return ret;
3290}
d1310b2e 3291
8ae225a8 3292int extent_writepages(struct address_space *mapping,
d1310b2e
CM
3293 struct writeback_control *wbc)
3294{
35156d85 3295 struct inode *inode = mapping->host;
d1310b2e
CM
3296 int ret = 0;
3297 struct extent_page_data epd = {
390ed29b 3298 .bio_ctrl = { 0 },
771ed689 3299 .extent_locked = 0,
ffbd517d 3300 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3301 };
3302
35156d85
JT
3303 /*
3304 * Allow only a single thread to do the reloc work in zoned mode to
3305 * protect the write pointer updates.
3306 */
869f4cdc 3307 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 3308 ret = extent_write_cache_pages(mapping, wbc, &epd);
9845e5dd 3309 submit_write_bio(&epd, ret);
19ab78ca 3310 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
3311 return ret;
3312}
d1310b2e 3313
ba206a02 3314void extent_readahead(struct readahead_control *rac)
d1310b2e 3315{
390ed29b 3316 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 3317 struct page *pagepool[16];
125bac01 3318 struct extent_map *em_cached = NULL;
808f80b4 3319 u64 prev_em_start = (u64)-1;
ba206a02 3320 int nr;
d1310b2e 3321
ba206a02 3322 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
3323 u64 contig_start = readahead_pos(rac);
3324 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 3325
ba206a02 3326 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 3327 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 3328 }
67c9684f 3329
125bac01
MX
3330 if (em_cached)
3331 free_extent_map(em_cached);
722c82ac 3332 submit_one_bio(&bio_ctrl);
d1310b2e 3333}
d1310b2e
CM
3334
3335/*
895586eb
MWO
3336 * basic invalidate_folio code, this waits on any locked or writeback
3337 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
3338 * records from the tree
3339 */
895586eb
MWO
3340int extent_invalidate_folio(struct extent_io_tree *tree,
3341 struct folio *folio, size_t offset)
d1310b2e 3342{
2ac55d41 3343 struct extent_state *cached_state = NULL;
895586eb
MWO
3344 u64 start = folio_pos(folio);
3345 u64 end = start + folio_size(folio) - 1;
3346 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
d1310b2e 3347
829ddec9
QW
3348 /* This function is only called for the btree inode */
3349 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3350
fda2832f 3351 start += ALIGN(offset, blocksize);
d1310b2e
CM
3352 if (start > end)
3353 return 0;
3354
570eb97b 3355 lock_extent(tree, start, end, &cached_state);
895586eb 3356 folio_wait_writeback(folio);
829ddec9
QW
3357
3358 /*
3359 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3360 * so here we only need to unlock the extent range to free any
3361 * existing extent state.
3362 */
570eb97b 3363 unlock_extent(tree, start, end, &cached_state);
d1310b2e
CM
3364 return 0;
3365}
d1310b2e 3366
7b13b7b1 3367/*
f913cff3 3368 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
3369 * are locked or under IO and drops the related state bits if it is safe
3370 * to drop the page.
3371 */
29c68b2d 3372static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 3373 struct page *page, gfp_t mask)
7b13b7b1 3374{
4eee4fa4 3375 u64 start = page_offset(page);
09cbfeaf 3376 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
3377 int ret = 1;
3378
8882679e 3379 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 3380 ret = 0;
8882679e 3381 } else {
b71fb16b
JB
3382 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3383 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3384
11ef160f 3385 /*
2766ff61
FM
3386 * At this point we can safely clear everything except the
3387 * locked bit, the nodatasum bit and the delalloc new bit.
3388 * The delalloc new bit will be cleared by ordered extent
3389 * completion.
11ef160f 3390 */
bd015294 3391 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
b71fb16b 3392 mask, NULL);
e3f24cc5
CM
3393
3394 /* if clear_extent_bit failed for enomem reasons,
3395 * we can't allow the release to continue.
3396 */
3397 if (ret < 0)
3398 ret = 0;
3399 else
3400 ret = 1;
7b13b7b1
CM
3401 }
3402 return ret;
3403}
7b13b7b1 3404
d1310b2e 3405/*
f913cff3 3406 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
3407 * in the range corresponding to the page, both state records and extent
3408 * map records are removed
3409 */
477a30ba 3410int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
3411{
3412 struct extent_map *em;
4eee4fa4 3413 u64 start = page_offset(page);
09cbfeaf 3414 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
3415 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3416 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3417 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 3418
d0164adc 3419 if (gfpflags_allow_blocking(mask) &&
ee22184b 3420 page->mapping->host->i_size > SZ_16M) {
39b5637f 3421 u64 len;
70dec807 3422 while (start <= end) {
fbc2bd7e
FM
3423 struct btrfs_fs_info *fs_info;
3424 u64 cur_gen;
3425
39b5637f 3426 len = end - start + 1;
890871be 3427 write_lock(&map->lock);
39b5637f 3428 em = lookup_extent_mapping(map, start, len);
285190d9 3429 if (!em) {
890871be 3430 write_unlock(&map->lock);
70dec807
CM
3431 break;
3432 }
7f3c74fb
CM
3433 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3434 em->start != start) {
890871be 3435 write_unlock(&map->lock);
70dec807
CM
3436 free_extent_map(em);
3437 break;
3438 }
3d6448e6
FM
3439 if (test_range_bit(tree, em->start,
3440 extent_map_end(em) - 1,
3441 EXTENT_LOCKED, 0, NULL))
3442 goto next;
3443 /*
3444 * If it's not in the list of modified extents, used
3445 * by a fast fsync, we can remove it. If it's being
3446 * logged we can safely remove it since fsync took an
3447 * extra reference on the em.
3448 */
3449 if (list_empty(&em->list) ||
fbc2bd7e
FM
3450 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3451 goto remove_em;
3452 /*
3453 * If it's in the list of modified extents, remove it
3454 * only if its generation is older then the current one,
3455 * in which case we don't need it for a fast fsync.
3456 * Otherwise don't remove it, we could be racing with an
3457 * ongoing fast fsync that could miss the new extent.
3458 */
3459 fs_info = btrfs_inode->root->fs_info;
3460 spin_lock(&fs_info->trans_lock);
3461 cur_gen = fs_info->generation;
3462 spin_unlock(&fs_info->trans_lock);
3463 if (em->generation >= cur_gen)
3464 goto next;
3465remove_em:
5e548b32
FM
3466 /*
3467 * We only remove extent maps that are not in the list of
3468 * modified extents or that are in the list but with a
3469 * generation lower then the current generation, so there
3470 * is no need to set the full fsync flag on the inode (it
3471 * hurts the fsync performance for workloads with a data
3472 * size that exceeds or is close to the system's memory).
3473 */
fbc2bd7e
FM
3474 remove_extent_mapping(map, em);
3475 /* once for the rb tree */
3476 free_extent_map(em);
3d6448e6 3477next:
70dec807 3478 start = extent_map_end(em);
890871be 3479 write_unlock(&map->lock);
70dec807
CM
3480
3481 /* once for us */
d1310b2e 3482 free_extent_map(em);
9f47eb54
PM
3483
3484 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 3485 }
d1310b2e 3486 }
29c68b2d 3487 return try_release_extent_state(tree, page, mask);
d1310b2e 3488}
d1310b2e 3489
4751832d
QW
3490/*
3491 * To cache previous fiemap extent
3492 *
3493 * Will be used for merging fiemap extent
3494 */
3495struct fiemap_cache {
3496 u64 offset;
3497 u64 phys;
3498 u64 len;
3499 u32 flags;
3500 bool cached;
3501};
3502
3503/*
3504 * Helper to submit fiemap extent.
3505 *
3506 * Will try to merge current fiemap extent specified by @offset, @phys,
3507 * @len and @flags with cached one.
3508 * And only when we fails to merge, cached one will be submitted as
3509 * fiemap extent.
3510 *
3511 * Return value is the same as fiemap_fill_next_extent().
3512 */
3513static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3514 struct fiemap_cache *cache,
3515 u64 offset, u64 phys, u64 len, u32 flags)
3516{
3517 int ret = 0;
3518
ac3c0d36
FM
3519 /* Set at the end of extent_fiemap(). */
3520 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3521
4751832d
QW
3522 if (!cache->cached)
3523 goto assign;
3524
3525 /*
3526 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 3527 * fiemap extent won't overlap with cached one.
4751832d
QW
3528 * Not recoverable.
3529 *
3530 * NOTE: Physical address can overlap, due to compression
3531 */
3532 if (cache->offset + cache->len > offset) {
3533 WARN_ON(1);
3534 return -EINVAL;
3535 }
3536
3537 /*
3538 * Only merges fiemap extents if
3539 * 1) Their logical addresses are continuous
3540 *
3541 * 2) Their physical addresses are continuous
3542 * So truly compressed (physical size smaller than logical size)
3543 * extents won't get merged with each other
3544 *
ac3c0d36 3545 * 3) Share same flags
4751832d
QW
3546 */
3547 if (cache->offset + cache->len == offset &&
3548 cache->phys + cache->len == phys &&
ac3c0d36 3549 cache->flags == flags) {
4751832d 3550 cache->len += len;
ac3c0d36 3551 return 0;
4751832d
QW
3552 }
3553
3554 /* Not mergeable, need to submit cached one */
3555 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3556 cache->len, cache->flags);
3557 cache->cached = false;
3558 if (ret)
3559 return ret;
3560assign:
3561 cache->cached = true;
3562 cache->offset = offset;
3563 cache->phys = phys;
3564 cache->len = len;
3565 cache->flags = flags;
ac3c0d36
FM
3566
3567 return 0;
4751832d
QW
3568}
3569
3570/*
848c23b7 3571 * Emit last fiemap cache
4751832d 3572 *
848c23b7
QW
3573 * The last fiemap cache may still be cached in the following case:
3574 * 0 4k 8k
3575 * |<- Fiemap range ->|
3576 * |<------------ First extent ----------->|
3577 *
3578 * In this case, the first extent range will be cached but not emitted.
3579 * So we must emit it before ending extent_fiemap().
4751832d 3580 */
5c5aff98 3581static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 3582 struct fiemap_cache *cache)
4751832d
QW
3583{
3584 int ret;
3585
3586 if (!cache->cached)
3587 return 0;
3588
4751832d
QW
3589 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3590 cache->len, cache->flags);
3591 cache->cached = false;
3592 if (ret > 0)
3593 ret = 0;
3594 return ret;
3595}
3596
ac3c0d36 3597static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
1506fcc8 3598{
ac3c0d36
FM
3599 struct extent_buffer *clone;
3600 struct btrfs_key key;
3601 int slot;
3602 int ret;
3603
3604 path->slots[0]++;
3605 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3606 return 0;
3607
3608 ret = btrfs_next_leaf(inode->root, path);
3609 if (ret != 0)
3610 return ret;
3611
3612 /*
3613 * Don't bother with cloning if there are no more file extent items for
3614 * our inode.
3615 */
3616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3617 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3618 return 1;
3619
3620 /* See the comment at fiemap_search_slot() about why we clone. */
3621 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3622 if (!clone)
3623 return -ENOMEM;
3624
3625 slot = path->slots[0];
3626 btrfs_release_path(path);
3627 path->nodes[0] = clone;
3628 path->slots[0] = slot;
3629
3630 return 0;
3631}
3632
3633/*
3634 * Search for the first file extent item that starts at a given file offset or
3635 * the one that starts immediately before that offset.
3636 * Returns: 0 on success, < 0 on error, 1 if not found.
3637 */
3638static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3639 u64 file_offset)
3640{
3641 const u64 ino = btrfs_ino(inode);
facee0a0 3642 struct btrfs_root *root = inode->root;
ac3c0d36
FM
3643 struct extent_buffer *clone;
3644 struct btrfs_key key;
3645 int slot;
3646 int ret;
1506fcc8 3647
ac3c0d36
FM
3648 key.objectid = ino;
3649 key.type = BTRFS_EXTENT_DATA_KEY;
3650 key.offset = file_offset;
3651
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0)
3654 return ret;
3655
3656 if (ret > 0 && path->slots[0] > 0) {
3657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3658 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3659 path->slots[0]--;
3660 }
3661
3662 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3663 ret = btrfs_next_leaf(root, path);
3664 if (ret != 0)
3665 return ret;
3666
3667 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3668 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3669 return 1;
5911c8fe
DS
3670 }
3671
15c7745c 3672 /*
ac3c0d36
FM
3673 * We clone the leaf and use it during fiemap. This is because while
3674 * using the leaf we do expensive things like checking if an extent is
3675 * shared, which can take a long time. In order to prevent blocking
3676 * other tasks for too long, we use a clone of the leaf. We have locked
3677 * the file range in the inode's io tree, so we know none of our file
3678 * extent items can change. This way we avoid blocking other tasks that
3679 * want to insert items for other inodes in the same leaf or b+tree
3680 * rebalance operations (triggered for example when someone is trying
3681 * to push items into this leaf when trying to insert an item in a
3682 * neighbour leaf).
3683 * We also need the private clone because holding a read lock on an
3684 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3685 * when we call fiemap_fill_next_extent(), because that may cause a page
3686 * fault when filling the user space buffer with fiemap data.
15c7745c 3687 */
ac3c0d36
FM
3688 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3689 if (!clone)
3690 return -ENOMEM;
3691
3692 slot = path->slots[0];
3693 btrfs_release_path(path);
3694 path->nodes[0] = clone;
3695 path->slots[0] = slot;
3696
3697 return 0;
3698}
3699
3700/*
3701 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3702 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3703 * extent. The end offset (@end) is inclusive.
3704 */
3705static int fiemap_process_hole(struct btrfs_inode *inode,
3706 struct fiemap_extent_info *fieinfo,
3707 struct fiemap_cache *cache,
3708 struct btrfs_backref_shared_cache *backref_cache,
3709 u64 disk_bytenr, u64 extent_offset,
3710 u64 extent_gen,
3711 struct ulist *roots, struct ulist *tmp_ulist,
3712 u64 start, u64 end)
3713{
3714 const u64 i_size = i_size_read(&inode->vfs_inode);
3715 const u64 ino = btrfs_ino(inode);
3716 u64 cur_offset = start;
3717 u64 last_delalloc_end = 0;
3718 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3719 bool checked_extent_shared = false;
3720 int ret;
4d479cf0 3721
ec29ed5b 3722 /*
ac3c0d36
FM
3723 * There can be no delalloc past i_size, so don't waste time looking for
3724 * it beyond i_size.
ec29ed5b 3725 */
ac3c0d36
FM
3726 while (cur_offset < end && cur_offset < i_size) {
3727 u64 delalloc_start;
3728 u64 delalloc_end;
3729 u64 prealloc_start;
3730 u64 prealloc_len = 0;
3731 bool delalloc;
3732
3733 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3734 &delalloc_start,
3735 &delalloc_end);
3736 if (!delalloc)
3737 break;
2d324f59 3738
ec29ed5b 3739 /*
ac3c0d36
FM
3740 * If this is a prealloc extent we have to report every section
3741 * of it that has no delalloc.
ec29ed5b 3742 */
ac3c0d36
FM
3743 if (disk_bytenr != 0) {
3744 if (last_delalloc_end == 0) {
3745 prealloc_start = start;
3746 prealloc_len = delalloc_start - start;
3747 } else {
3748 prealloc_start = last_delalloc_end + 1;
3749 prealloc_len = delalloc_start - prealloc_start;
3750 }
3751 }
3752
3753 if (prealloc_len > 0) {
3754 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3755 ret = btrfs_is_data_extent_shared(inode->root,
3756 ino, disk_bytenr,
3757 extent_gen, roots,
3758 tmp_ulist,
3759 backref_cache);
3760 if (ret < 0)
3761 return ret;
3762 else if (ret > 0)
3763 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3764
3765 checked_extent_shared = true;
3766 }
3767 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3768 disk_bytenr + extent_offset,
3769 prealloc_len, prealloc_flags);
3770 if (ret)
3771 return ret;
3772 extent_offset += prealloc_len;
3773 }
3774
3775 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3776 delalloc_end + 1 - delalloc_start,
3777 FIEMAP_EXTENT_DELALLOC |
3778 FIEMAP_EXTENT_UNKNOWN);
3779 if (ret)
3780 return ret;
3781
3782 last_delalloc_end = delalloc_end;
3783 cur_offset = delalloc_end + 1;
3784 extent_offset += cur_offset - delalloc_start;
3785 cond_resched();
3786 }
3787
3788 /*
3789 * Either we found no delalloc for the whole prealloc extent or we have
3790 * a prealloc extent that spans i_size or starts at or after i_size.
3791 */
3792 if (disk_bytenr != 0 && last_delalloc_end < end) {
3793 u64 prealloc_start;
3794 u64 prealloc_len;
3795
3796 if (last_delalloc_end == 0) {
3797 prealloc_start = start;
3798 prealloc_len = end + 1 - start;
3799 } else {
3800 prealloc_start = last_delalloc_end + 1;
3801 prealloc_len = end + 1 - prealloc_start;
3802 }
3803
3804 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3805 ret = btrfs_is_data_extent_shared(inode->root,
3806 ino, disk_bytenr,
3807 extent_gen, roots,
3808 tmp_ulist,
3809 backref_cache);
3810 if (ret < 0)
3811 return ret;
3812 else if (ret > 0)
3813 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3814 }
3815 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3816 disk_bytenr + extent_offset,
3817 prealloc_len, prealloc_flags);
3818 if (ret)
3819 return ret;
3820 }
3821
3822 return 0;
3823}
3824
3825static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3826 struct btrfs_path *path,
3827 u64 *last_extent_end_ret)
3828{
3829 const u64 ino = btrfs_ino(inode);
3830 struct btrfs_root *root = inode->root;
3831 struct extent_buffer *leaf;
3832 struct btrfs_file_extent_item *ei;
3833 struct btrfs_key key;
3834 u64 disk_bytenr;
3835 int ret;
3836
3837 /*
3838 * Lookup the last file extent. We're not using i_size here because
3839 * there might be preallocation past i_size.
3840 */
3841 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3842 /* There can't be a file extent item at offset (u64)-1 */
3843 ASSERT(ret != 0);
3844 if (ret < 0)
3845 return ret;
3846
3847 /*
3848 * For a non-existing key, btrfs_search_slot() always leaves us at a
3849 * slot > 0, except if the btree is empty, which is impossible because
3850 * at least it has the inode item for this inode and all the items for
3851 * the root inode 256.
3852 */
3853 ASSERT(path->slots[0] > 0);
3854 path->slots[0]--;
3855 leaf = path->nodes[0];
3856 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3857 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3858 /* No file extent items in the subvolume tree. */
3859 *last_extent_end_ret = 0;
3860 return 0;
975f84fe 3861 }
975f84fe 3862
ec29ed5b 3863 /*
ac3c0d36
FM
3864 * For an inline extent, the disk_bytenr is where inline data starts at,
3865 * so first check if we have an inline extent item before checking if we
3866 * have an implicit hole (disk_bytenr == 0).
ec29ed5b 3867 */
ac3c0d36
FM
3868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3869 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3870 *last_extent_end_ret = btrfs_file_extent_end(path);
3871 return 0;
ec29ed5b
CM
3872 }
3873
ac3c0d36
FM
3874 /*
3875 * Find the last file extent item that is not a hole (when NO_HOLES is
3876 * not enabled). This should take at most 2 iterations in the worst
3877 * case: we have one hole file extent item at slot 0 of a leaf and
3878 * another hole file extent item as the last item in the previous leaf.
3879 * This is because we merge file extent items that represent holes.
3880 */
3881 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3882 while (disk_bytenr == 0) {
3883 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3884 if (ret < 0) {
3885 return ret;
3886 } else if (ret > 0) {
3887 /* No file extent items that are not holes. */
3888 *last_extent_end_ret = 0;
3889 return 0;
3890 }
3891 leaf = path->nodes[0];
3892 ei = btrfs_item_ptr(leaf, path->slots[0],
3893 struct btrfs_file_extent_item);
3894 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3895 }
ec29ed5b 3896
ac3c0d36
FM
3897 *last_extent_end_ret = btrfs_file_extent_end(path);
3898 return 0;
3899}
3900
3901int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3902 u64 start, u64 len)
3903{
3904 const u64 ino = btrfs_ino(inode);
3905 struct extent_state *cached_state = NULL;
3906 struct btrfs_path *path;
3907 struct btrfs_root *root = inode->root;
3908 struct fiemap_cache cache = { 0 };
3909 struct btrfs_backref_shared_cache *backref_cache;
3910 struct ulist *roots;
3911 struct ulist *tmp_ulist;
3912 u64 last_extent_end;
3913 u64 prev_extent_end;
3914 u64 lockstart;
3915 u64 lockend;
3916 bool stopped = false;
3917 int ret;
3918
3919 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
3920 path = btrfs_alloc_path();
3921 roots = ulist_alloc(GFP_KERNEL);
3922 tmp_ulist = ulist_alloc(GFP_KERNEL);
3923 if (!backref_cache || !path || !roots || !tmp_ulist) {
3924 ret = -ENOMEM;
1506fcc8
YS
3925 goto out;
3926 }
975f84fe 3927
ee8ba05c
JB
3928 lockstart = round_down(start, root->fs_info->sectorsize);
3929 lockend = round_up(start + len, root->fs_info->sectorsize);
ac3c0d36 3930 prev_extent_end = lockstart;
ea8efc74 3931
570eb97b 3932 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ea8efc74 3933
ac3c0d36
FM
3934 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3935 if (ret < 0)
3936 goto out_unlock;
3937 btrfs_release_path(path);
1506fcc8 3938
ac3c0d36
FM
3939 path->reada = READA_FORWARD;
3940 ret = fiemap_search_slot(inode, path, lockstart);
3941 if (ret < 0) {
3942 goto out_unlock;
3943 } else if (ret > 0) {
ea8efc74 3944 /*
ac3c0d36
FM
3945 * No file extent item found, but we may have delalloc between
3946 * the current offset and i_size. So check for that.
ea8efc74 3947 */
ac3c0d36
FM
3948 ret = 0;
3949 goto check_eof_delalloc;
3950 }
3951
3952 while (prev_extent_end < lockend) {
3953 struct extent_buffer *leaf = path->nodes[0];
3954 struct btrfs_file_extent_item *ei;
3955 struct btrfs_key key;
3956 u64 extent_end;
3957 u64 extent_len;
3958 u64 extent_offset = 0;
3959 u64 extent_gen;
3960 u64 disk_bytenr = 0;
3961 u64 flags = 0;
3962 int extent_type;
3963 u8 compression;
3964
3965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3966 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3967 break;
3968
3969 extent_end = btrfs_file_extent_end(path);
1506fcc8 3970
ea8efc74 3971 /*
ac3c0d36
FM
3972 * The first iteration can leave us at an extent item that ends
3973 * before our range's start. Move to the next item.
ea8efc74 3974 */
ac3c0d36
FM
3975 if (extent_end <= lockstart)
3976 goto next_item;
fe09e16c 3977
ac3c0d36
FM
3978 /* We have in implicit hole (NO_HOLES feature enabled). */
3979 if (prev_extent_end < key.offset) {
3980 const u64 range_end = min(key.offset, lockend) - 1;
b8f164e3 3981
ac3c0d36
FM
3982 ret = fiemap_process_hole(inode, fieinfo, &cache,
3983 backref_cache, 0, 0, 0,
3984 roots, tmp_ulist,
3985 prev_extent_end, range_end);
3986 if (ret < 0) {
3987 goto out_unlock;
3988 } else if (ret > 0) {
3989 /* fiemap_fill_next_extent() told us to stop. */
3990 stopped = true;
3991 break;
3992 }
1506fcc8 3993
ac3c0d36
FM
3994 /* We've reached the end of the fiemap range, stop. */
3995 if (key.offset >= lockend) {
3996 stopped = true;
3997 break;
3998 }
1506fcc8
YS
3999 }
4000
ac3c0d36
FM
4001 extent_len = extent_end - key.offset;
4002 ei = btrfs_item_ptr(leaf, path->slots[0],
4003 struct btrfs_file_extent_item);
4004 compression = btrfs_file_extent_compression(leaf, ei);
4005 extent_type = btrfs_file_extent_type(leaf, ei);
4006 extent_gen = btrfs_file_extent_generation(leaf, ei);
4007
4008 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4009 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
4010 if (compression == BTRFS_COMPRESS_NONE)
4011 extent_offset = btrfs_file_extent_offset(leaf, ei);
ec29ed5b 4012 }
ac3c0d36
FM
4013
4014 if (compression != BTRFS_COMPRESS_NONE)
4015 flags |= FIEMAP_EXTENT_ENCODED;
4016
4017 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4018 flags |= FIEMAP_EXTENT_DATA_INLINE;
4019 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
4020 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
4021 extent_len, flags);
4022 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
4023 ret = fiemap_process_hole(inode, fieinfo, &cache,
4024 backref_cache,
4025 disk_bytenr, extent_offset,
4026 extent_gen, roots, tmp_ulist,
4027 key.offset, extent_end - 1);
4028 } else if (disk_bytenr == 0) {
4029 /* We have an explicit hole. */
4030 ret = fiemap_process_hole(inode, fieinfo, &cache,
4031 backref_cache, 0, 0, 0,
4032 roots, tmp_ulist,
4033 key.offset, extent_end - 1);
4034 } else {
4035 /* We have a regular extent. */
4036 if (fieinfo->fi_extents_max) {
4037 ret = btrfs_is_data_extent_shared(root, ino,
4038 disk_bytenr,
4039 extent_gen,
4040 roots,
4041 tmp_ulist,
4042 backref_cache);
4043 if (ret < 0)
4044 goto out_unlock;
4045 else if (ret > 0)
4046 flags |= FIEMAP_EXTENT_SHARED;
4047 }
4048
4049 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
4050 disk_bytenr + extent_offset,
4051 extent_len, flags);
975f84fe 4052 }
ac3c0d36
FM
4053
4054 if (ret < 0) {
4055 goto out_unlock;
4056 } else if (ret > 0) {
4057 /* fiemap_fill_next_extent() told us to stop. */
4058 stopped = true;
4059 break;
26e726af 4060 }
09fbc1c8 4061
ac3c0d36
FM
4062 prev_extent_end = extent_end;
4063next_item:
09fbc1c8
FM
4064 if (fatal_signal_pending(current)) {
4065 ret = -EINTR;
ac3c0d36 4066 goto out_unlock;
09fbc1c8 4067 }
ac3c0d36
FM
4068
4069 ret = fiemap_next_leaf_item(inode, path);
4070 if (ret < 0) {
4071 goto out_unlock;
4072 } else if (ret > 0) {
4073 /* No more file extent items for this inode. */
4074 break;
4075 }
4076 cond_resched();
1506fcc8 4077 }
5911c8fe 4078
ac3c0d36
FM
4079check_eof_delalloc:
4080 /*
4081 * Release (and free) the path before emitting any final entries to
4082 * fiemap_fill_next_extent() to keep lockdep happy. This is because
4083 * once we find no more file extent items exist, we may have a
4084 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
4085 * faults when copying data to the user space buffer.
4086 */
4087 btrfs_free_path(path);
4088 path = NULL;
4089
4090 if (!stopped && prev_extent_end < lockend) {
4091 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
4092 0, 0, 0, roots, tmp_ulist,
4093 prev_extent_end, lockend - 1);
4094 if (ret < 0)
4095 goto out_unlock;
4096 prev_extent_end = lockend;
4097 }
4098
4099 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
4100 const u64 i_size = i_size_read(&inode->vfs_inode);
4101
4102 if (prev_extent_end < i_size) {
4103 u64 delalloc_start;
4104 u64 delalloc_end;
4105 bool delalloc;
4106
4107 delalloc = btrfs_find_delalloc_in_range(inode,
4108 prev_extent_end,
4109 i_size - 1,
4110 &delalloc_start,
4111 &delalloc_end);
4112 if (!delalloc)
4113 cache.flags |= FIEMAP_EXTENT_LAST;
4114 } else {
4115 cache.flags |= FIEMAP_EXTENT_LAST;
4116 }
4117 }
4118
4119 ret = emit_last_fiemap_cache(fieinfo, &cache);
4120
4121out_unlock:
570eb97b 4122 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ac3c0d36 4123out:
12a824dc 4124 kfree(backref_cache);
e02d48ea 4125 btrfs_free_path(path);
5911c8fe
DS
4126 ulist_free(roots);
4127 ulist_free(tmp_ulist);
1506fcc8
YS
4128 return ret;
4129}
4130
727011e0
CM
4131static void __free_extent_buffer(struct extent_buffer *eb)
4132{
727011e0
CM
4133 kmem_cache_free(extent_buffer_cache, eb);
4134}
4135
2b48966a 4136int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
4137{
4138 return (atomic_read(&eb->io_pages) ||
4139 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4140 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4141}
4142
8ff8466d 4143static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 4144{
8ff8466d 4145 struct btrfs_subpage *subpage;
db7f3436 4146
8ff8466d 4147 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 4148
8ff8466d
QW
4149 if (PagePrivate(page)) {
4150 subpage = (struct btrfs_subpage *)page->private;
4151 if (atomic_read(&subpage->eb_refs))
4152 return true;
3d078efa
QW
4153 /*
4154 * Even there is no eb refs here, we may still have
4155 * end_page_read() call relying on page::private.
4156 */
4157 if (atomic_read(&subpage->readers))
4158 return true;
8ff8466d
QW
4159 }
4160 return false;
4161}
db7f3436 4162
8ff8466d
QW
4163static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4164{
4165 struct btrfs_fs_info *fs_info = eb->fs_info;
4166 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4167
4168 /*
4169 * For mapped eb, we're going to change the page private, which should
4170 * be done under the private_lock.
4171 */
4172 if (mapped)
4173 spin_lock(&page->mapping->private_lock);
4174
4175 if (!PagePrivate(page)) {
5d2361db 4176 if (mapped)
8ff8466d
QW
4177 spin_unlock(&page->mapping->private_lock);
4178 return;
4179 }
4180
fbca46eb 4181 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
4182 /*
4183 * We do this since we'll remove the pages after we've
4184 * removed the eb from the radix tree, so we could race
4185 * and have this page now attached to the new eb. So
4186 * only clear page_private if it's still connected to
4187 * this eb.
4188 */
4189 if (PagePrivate(page) &&
4190 page->private == (unsigned long)eb) {
4191 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4192 BUG_ON(PageDirty(page));
4193 BUG_ON(PageWriteback(page));
db7f3436 4194 /*
5d2361db
FL
4195 * We need to make sure we haven't be attached
4196 * to a new eb.
db7f3436 4197 */
d1b89bc0 4198 detach_page_private(page);
db7f3436 4199 }
5d2361db
FL
4200 if (mapped)
4201 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
4202 return;
4203 }
4204
4205 /*
4206 * For subpage, we can have dummy eb with page private. In this case,
4207 * we can directly detach the private as such page is only attached to
4208 * one dummy eb, no sharing.
4209 */
4210 if (!mapped) {
4211 btrfs_detach_subpage(fs_info, page);
4212 return;
4213 }
4214
4215 btrfs_page_dec_eb_refs(fs_info, page);
4216
4217 /*
4218 * We can only detach the page private if there are no other ebs in the
3d078efa 4219 * page range and no unfinished IO.
8ff8466d
QW
4220 */
4221 if (!page_range_has_eb(fs_info, page))
4222 btrfs_detach_subpage(fs_info, page);
4223
4224 spin_unlock(&page->mapping->private_lock);
4225}
4226
4227/* Release all pages attached to the extent buffer */
4228static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4229{
4230 int i;
4231 int num_pages;
4232
4233 ASSERT(!extent_buffer_under_io(eb));
4234
4235 num_pages = num_extent_pages(eb);
4236 for (i = 0; i < num_pages; i++) {
4237 struct page *page = eb->pages[i];
4238
4239 if (!page)
4240 continue;
4241
4242 detach_extent_buffer_page(eb, page);
5d2361db 4243
01327610 4244 /* One for when we allocated the page */
09cbfeaf 4245 put_page(page);
d64766fd 4246 }
db7f3436
JB
4247}
4248
4249/*
4250 * Helper for releasing the extent buffer.
4251 */
4252static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4253{
55ac0139 4254 btrfs_release_extent_buffer_pages(eb);
a40246e8 4255 btrfs_leak_debug_del_eb(eb);
db7f3436
JB
4256 __free_extent_buffer(eb);
4257}
4258
f28491e0
JB
4259static struct extent_buffer *
4260__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4261 unsigned long len)
d1310b2e
CM
4262{
4263 struct extent_buffer *eb = NULL;
4264
d1b5c567 4265 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4266 eb->start = start;
4267 eb->len = len;
f28491e0 4268 eb->fs_info = fs_info;
196d59ab 4269 init_rwsem(&eb->lock);
b4ce94de 4270
a40246e8 4271 btrfs_leak_debug_add_eb(eb);
d3575156 4272 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 4273
3083ee2e 4274 spin_lock_init(&eb->refs_lock);
d1310b2e 4275 atomic_set(&eb->refs, 1);
0b32f4bb 4276 atomic_set(&eb->io_pages, 0);
727011e0 4277
deb67895 4278 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
4279
4280 return eb;
4281}
4282
2b48966a 4283struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 4284{
cc5e31a4 4285 int i;
815a51c7 4286 struct extent_buffer *new;
cc5e31a4 4287 int num_pages = num_extent_pages(src);
dd137dd1 4288 int ret;
815a51c7 4289
3f556f78 4290 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4291 if (new == NULL)
4292 return NULL;
4293
62c053fb
QW
4294 /*
4295 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4296 * btrfs_release_extent_buffer() have different behavior for
4297 * UNMAPPED subpage extent buffer.
4298 */
4299 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4300
dd137dd1
STD
4301 ret = btrfs_alloc_page_array(num_pages, new->pages);
4302 if (ret) {
4303 btrfs_release_extent_buffer(new);
4304 return NULL;
4305 }
4306
815a51c7 4307 for (i = 0; i < num_pages; i++) {
760f991f 4308 int ret;
dd137dd1 4309 struct page *p = new->pages[i];
760f991f 4310
760f991f
QW
4311 ret = attach_extent_buffer_page(new, p, NULL);
4312 if (ret < 0) {
760f991f
QW
4313 btrfs_release_extent_buffer(new);
4314 return NULL;
4315 }
815a51c7 4316 WARN_ON(PageDirty(p));
fba1acf9 4317 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 4318 }
92d83e94 4319 set_extent_buffer_uptodate(new);
815a51c7
JS
4320
4321 return new;
4322}
4323
0f331229
OS
4324struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4325 u64 start, unsigned long len)
815a51c7
JS
4326{
4327 struct extent_buffer *eb;
cc5e31a4
DS
4328 int num_pages;
4329 int i;
dd137dd1 4330 int ret;
815a51c7 4331
3f556f78 4332 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4333 if (!eb)
4334 return NULL;
4335
65ad0104 4336 num_pages = num_extent_pages(eb);
dd137dd1
STD
4337 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4338 if (ret)
4339 goto err;
4340
815a51c7 4341 for (i = 0; i < num_pages; i++) {
dd137dd1 4342 struct page *p = eb->pages[i];
09bc1f0f 4343
dd137dd1 4344 ret = attach_extent_buffer_page(eb, p, NULL);
09bc1f0f
QW
4345 if (ret < 0)
4346 goto err;
815a51c7 4347 }
dd137dd1 4348
815a51c7
JS
4349 set_extent_buffer_uptodate(eb);
4350 btrfs_set_header_nritems(eb, 0);
b0132a3b 4351 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4352
4353 return eb;
4354err:
dd137dd1
STD
4355 for (i = 0; i < num_pages; i++) {
4356 if (eb->pages[i]) {
4357 detach_extent_buffer_page(eb, eb->pages[i]);
4358 __free_page(eb->pages[i]);
4359 }
09bc1f0f 4360 }
815a51c7
JS
4361 __free_extent_buffer(eb);
4362 return NULL;
4363}
4364
0f331229 4365struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4366 u64 start)
0f331229 4367{
da17066c 4368 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4369}
4370
0b32f4bb
JB
4371static void check_buffer_tree_ref(struct extent_buffer *eb)
4372{
242e18c7 4373 int refs;
6bf9cd2e
BB
4374 /*
4375 * The TREE_REF bit is first set when the extent_buffer is added
4376 * to the radix tree. It is also reset, if unset, when a new reference
4377 * is created by find_extent_buffer.
0b32f4bb 4378 *
6bf9cd2e
BB
4379 * It is only cleared in two cases: freeing the last non-tree
4380 * reference to the extent_buffer when its STALE bit is set or
f913cff3 4381 * calling release_folio when the tree reference is the only reference.
0b32f4bb 4382 *
6bf9cd2e 4383 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 4384 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
4385 * called with creating new references, which is prone to race
4386 * conditions between the calls to check_buffer_tree_ref in those
4387 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 4388 *
6bf9cd2e
BB
4389 * The actual lifetime of the extent_buffer in the radix tree is
4390 * adequately protected by the refcount, but the TREE_REF bit and
4391 * its corresponding reference are not. To protect against this
4392 * class of races, we call check_buffer_tree_ref from the codepaths
4393 * which trigger io after they set eb->io_pages. Note that once io is
4394 * initiated, TREE_REF can no longer be cleared, so that is the
4395 * moment at which any such race is best fixed.
0b32f4bb 4396 */
242e18c7
CM
4397 refs = atomic_read(&eb->refs);
4398 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4399 return;
4400
594831c4
JB
4401 spin_lock(&eb->refs_lock);
4402 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4403 atomic_inc(&eb->refs);
594831c4 4404 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4405}
4406
2457aec6
MG
4407static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4408 struct page *accessed)
5df4235e 4409{
cc5e31a4 4410 int num_pages, i;
5df4235e 4411
0b32f4bb
JB
4412 check_buffer_tree_ref(eb);
4413
65ad0104 4414 num_pages = num_extent_pages(eb);
5df4235e 4415 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4416 struct page *p = eb->pages[i];
4417
2457aec6
MG
4418 if (p != accessed)
4419 mark_page_accessed(p);
5df4235e
JB
4420 }
4421}
4422
f28491e0
JB
4423struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4424 u64 start)
452c75c3
CS
4425{
4426 struct extent_buffer *eb;
4427
2f3186d8
QW
4428 eb = find_extent_buffer_nolock(fs_info, start);
4429 if (!eb)
4430 return NULL;
4431 /*
4432 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4433 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4434 * another task running free_extent_buffer() might have seen that flag
4435 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4436 * writeback flags not set) and it's still in the tree (flag
4437 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4438 * decrementing the extent buffer's reference count twice. So here we
4439 * could race and increment the eb's reference count, clear its stale
4440 * flag, mark it as dirty and drop our reference before the other task
4441 * finishes executing free_extent_buffer, which would later result in
4442 * an attempt to free an extent buffer that is dirty.
4443 */
4444 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4445 spin_lock(&eb->refs_lock);
4446 spin_unlock(&eb->refs_lock);
452c75c3 4447 }
2f3186d8
QW
4448 mark_extent_buffer_accessed(eb, NULL);
4449 return eb;
452c75c3
CS
4450}
4451
faa2dbf0
JB
4452#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4453struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4454 u64 start)
faa2dbf0
JB
4455{
4456 struct extent_buffer *eb, *exists = NULL;
4457 int ret;
4458
4459 eb = find_extent_buffer(fs_info, start);
4460 if (eb)
4461 return eb;
da17066c 4462 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 4463 if (!eb)
b6293c82 4464 return ERR_PTR(-ENOMEM);
faa2dbf0 4465 eb->fs_info = fs_info;
01cd3909
DS
4466again:
4467 ret = radix_tree_preload(GFP_NOFS);
4468 if (ret) {
4469 exists = ERR_PTR(ret);
4470 goto free_eb;
4471 }
4472 spin_lock(&fs_info->buffer_lock);
4473 ret = radix_tree_insert(&fs_info->buffer_radix,
4474 start >> fs_info->sectorsize_bits, eb);
4475 spin_unlock(&fs_info->buffer_lock);
4476 radix_tree_preload_end();
4477 if (ret == -EEXIST) {
4478 exists = find_extent_buffer(fs_info, start);
4479 if (exists)
faa2dbf0 4480 goto free_eb;
01cd3909
DS
4481 else
4482 goto again;
4483 }
faa2dbf0
JB
4484 check_buffer_tree_ref(eb);
4485 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4486
faa2dbf0
JB
4487 return eb;
4488free_eb:
4489 btrfs_release_extent_buffer(eb);
4490 return exists;
4491}
4492#endif
4493
81982210
QW
4494static struct extent_buffer *grab_extent_buffer(
4495 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
4496{
4497 struct extent_buffer *exists;
4498
81982210
QW
4499 /*
4500 * For subpage case, we completely rely on radix tree to ensure we
4501 * don't try to insert two ebs for the same bytenr. So here we always
4502 * return NULL and just continue.
4503 */
fbca46eb 4504 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
4505 return NULL;
4506
c0f0a9e7
QW
4507 /* Page not yet attached to an extent buffer */
4508 if (!PagePrivate(page))
4509 return NULL;
4510
4511 /*
4512 * We could have already allocated an eb for this page and attached one
4513 * so lets see if we can get a ref on the existing eb, and if we can we
4514 * know it's good and we can just return that one, else we know we can
4515 * just overwrite page->private.
4516 */
4517 exists = (struct extent_buffer *)page->private;
4518 if (atomic_inc_not_zero(&exists->refs))
4519 return exists;
4520
4521 WARN_ON(PageDirty(page));
4522 detach_page_private(page);
4523 return NULL;
4524}
4525
fbca46eb
QW
4526static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4527{
4528 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4529 btrfs_err(fs_info, "bad tree block start %llu", start);
4530 return -EINVAL;
4531 }
4532
4533 if (fs_info->nodesize < PAGE_SIZE &&
4534 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4535 btrfs_err(fs_info,
4536 "tree block crosses page boundary, start %llu nodesize %u",
4537 start, fs_info->nodesize);
4538 return -EINVAL;
4539 }
4540 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 4541 !PAGE_ALIGNED(start)) {
fbca46eb
QW
4542 btrfs_err(fs_info,
4543 "tree block is not page aligned, start %llu nodesize %u",
4544 start, fs_info->nodesize);
4545 return -EINVAL;
4546 }
4547 return 0;
4548}
4549
f28491e0 4550struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 4551 u64 start, u64 owner_root, int level)
d1310b2e 4552{
da17066c 4553 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4554 int num_pages;
4555 int i;
09cbfeaf 4556 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4557 struct extent_buffer *eb;
6af118ce 4558 struct extent_buffer *exists = NULL;
d1310b2e 4559 struct page *p;
f28491e0 4560 struct address_space *mapping = fs_info->btree_inode->i_mapping;
b40130b2 4561 u64 lockdep_owner = owner_root;
d1310b2e 4562 int uptodate = 1;
19fe0a8b 4563 int ret;
d1310b2e 4564
fbca46eb 4565 if (check_eb_alignment(fs_info, start))
c871b0f2 4566 return ERR_PTR(-EINVAL);
c871b0f2 4567
e9306ad4
QW
4568#if BITS_PER_LONG == 32
4569 if (start >= MAX_LFS_FILESIZE) {
4570 btrfs_err_rl(fs_info,
4571 "extent buffer %llu is beyond 32bit page cache limit", start);
4572 btrfs_err_32bit_limit(fs_info);
4573 return ERR_PTR(-EOVERFLOW);
4574 }
4575 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4576 btrfs_warn_32bit_limit(fs_info);
4577#endif
4578
f28491e0 4579 eb = find_extent_buffer(fs_info, start);
452c75c3 4580 if (eb)
6af118ce 4581 return eb;
6af118ce 4582
23d79d81 4583 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4584 if (!eb)
c871b0f2 4585 return ERR_PTR(-ENOMEM);
b40130b2
JB
4586
4587 /*
4588 * The reloc trees are just snapshots, so we need them to appear to be
4589 * just like any other fs tree WRT lockdep.
4590 */
4591 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4592 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4593
4594 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
d1310b2e 4595
65ad0104 4596 num_pages = num_extent_pages(eb);
727011e0 4597 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
4598 struct btrfs_subpage *prealloc = NULL;
4599
d1b5c567 4600 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4601 if (!p) {
4602 exists = ERR_PTR(-ENOMEM);
6af118ce 4603 goto free_eb;
c871b0f2 4604 }
4f2de97a 4605
760f991f
QW
4606 /*
4607 * Preallocate page->private for subpage case, so that we won't
4608 * allocate memory with private_lock hold. The memory will be
4609 * freed by attach_extent_buffer_page() or freed manually if
4610 * we exit earlier.
4611 *
4612 * Although we have ensured one subpage eb can only have one
4613 * page, but it may change in the future for 16K page size
4614 * support, so we still preallocate the memory in the loop.
4615 */
fbca46eb 4616 if (fs_info->nodesize < PAGE_SIZE) {
651fb419
QW
4617 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4618 if (IS_ERR(prealloc)) {
4619 ret = PTR_ERR(prealloc);
fdf250db
QW
4620 unlock_page(p);
4621 put_page(p);
4622 exists = ERR_PTR(ret);
4623 goto free_eb;
4624 }
760f991f
QW
4625 }
4626
4f2de97a 4627 spin_lock(&mapping->private_lock);
81982210 4628 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
4629 if (exists) {
4630 spin_unlock(&mapping->private_lock);
4631 unlock_page(p);
4632 put_page(p);
4633 mark_extent_buffer_accessed(exists, p);
760f991f 4634 btrfs_free_subpage(prealloc);
c0f0a9e7 4635 goto free_eb;
d1310b2e 4636 }
760f991f
QW
4637 /* Should not fail, as we have preallocated the memory */
4638 ret = attach_extent_buffer_page(eb, p, prealloc);
4639 ASSERT(!ret);
8ff8466d
QW
4640 /*
4641 * To inform we have extra eb under allocation, so that
4642 * detach_extent_buffer_page() won't release the page private
4643 * when the eb hasn't yet been inserted into radix tree.
4644 *
4645 * The ref will be decreased when the eb released the page, in
4646 * detach_extent_buffer_page().
4647 * Thus needs no special handling in error path.
4648 */
4649 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 4650 spin_unlock(&mapping->private_lock);
760f991f 4651
1e5eb3d6 4652 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 4653 eb->pages[i] = p;
d1310b2e
CM
4654 if (!PageUptodate(p))
4655 uptodate = 0;
eb14ab8e
CM
4656
4657 /*
b16d011e
NB
4658 * We can't unlock the pages just yet since the extent buffer
4659 * hasn't been properly inserted in the radix tree, this
f913cff3 4660 * opens a race with btree_release_folio which can free a page
b16d011e
NB
4661 * while we are still filling in all pages for the buffer and
4662 * we could crash.
eb14ab8e 4663 */
d1310b2e
CM
4664 }
4665 if (uptodate)
b4ce94de 4666 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
01cd3909
DS
4667again:
4668 ret = radix_tree_preload(GFP_NOFS);
4669 if (ret) {
4670 exists = ERR_PTR(ret);
4671 goto free_eb;
4672 }
4673
4674 spin_lock(&fs_info->buffer_lock);
4675 ret = radix_tree_insert(&fs_info->buffer_radix,
4676 start >> fs_info->sectorsize_bits, eb);
4677 spin_unlock(&fs_info->buffer_lock);
4678 radix_tree_preload_end();
4679 if (ret == -EEXIST) {
4680 exists = find_extent_buffer(fs_info, start);
4681 if (exists)
452c75c3 4682 goto free_eb;
01cd3909
DS
4683 else
4684 goto again;
4685 }
6af118ce 4686 /* add one reference for the tree */
0b32f4bb 4687 check_buffer_tree_ref(eb);
34b41ace 4688 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4689
4690 /*
b16d011e 4691 * Now it's safe to unlock the pages because any calls to
f913cff3 4692 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 4693 * live buffer and won't free them prematurely.
eb14ab8e 4694 */
28187ae5
NB
4695 for (i = 0; i < num_pages; i++)
4696 unlock_page(eb->pages[i]);
d1310b2e
CM
4697 return eb;
4698
6af118ce 4699free_eb:
5ca64f45 4700 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4701 for (i = 0; i < num_pages; i++) {
4702 if (eb->pages[i])
4703 unlock_page(eb->pages[i]);
4704 }
eb14ab8e 4705
897ca6e9 4706 btrfs_release_extent_buffer(eb);
6af118ce 4707 return exists;
d1310b2e 4708}
d1310b2e 4709
3083ee2e
JB
4710static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4711{
4712 struct extent_buffer *eb =
4713 container_of(head, struct extent_buffer, rcu_head);
4714
4715 __free_extent_buffer(eb);
4716}
4717
f7a52a40 4718static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 4719 __releases(&eb->refs_lock)
3083ee2e 4720{
07e21c4d
NB
4721 lockdep_assert_held(&eb->refs_lock);
4722
3083ee2e
JB
4723 WARN_ON(atomic_read(&eb->refs) == 0);
4724 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4725 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4726 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4727
815a51c7 4728 spin_unlock(&eb->refs_lock);
3083ee2e 4729
01cd3909
DS
4730 spin_lock(&fs_info->buffer_lock);
4731 radix_tree_delete(&fs_info->buffer_radix,
4732 eb->start >> fs_info->sectorsize_bits);
4733 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4734 } else {
4735 spin_unlock(&eb->refs_lock);
815a51c7 4736 }
3083ee2e 4737
a40246e8 4738 btrfs_leak_debug_del_eb(eb);
3083ee2e 4739 /* Should be safe to release our pages at this point */
55ac0139 4740 btrfs_release_extent_buffer_pages(eb);
bcb7e449 4741#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 4742 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
4743 __free_extent_buffer(eb);
4744 return 1;
4745 }
4746#endif
3083ee2e 4747 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4748 return 1;
3083ee2e
JB
4749 }
4750 spin_unlock(&eb->refs_lock);
e64860aa
JB
4751
4752 return 0;
3083ee2e
JB
4753}
4754
d1310b2e
CM
4755void free_extent_buffer(struct extent_buffer *eb)
4756{
242e18c7 4757 int refs;
d1310b2e
CM
4758 if (!eb)
4759 return;
4760
e5677f05 4761 refs = atomic_read(&eb->refs);
242e18c7 4762 while (1) {
46cc775e
NB
4763 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4764 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4765 refs == 1))
242e18c7 4766 break;
e5677f05 4767 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
242e18c7
CM
4768 return;
4769 }
4770
3083ee2e
JB
4771 spin_lock(&eb->refs_lock);
4772 if (atomic_read(&eb->refs) == 2 &&
4773 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4774 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4775 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4776 atomic_dec(&eb->refs);
4777
4778 /*
4779 * I know this is terrible, but it's temporary until we stop tracking
4780 * the uptodate bits and such for the extent buffers.
4781 */
f7a52a40 4782 release_extent_buffer(eb);
3083ee2e
JB
4783}
4784
4785void free_extent_buffer_stale(struct extent_buffer *eb)
4786{
4787 if (!eb)
d1310b2e
CM
4788 return;
4789
3083ee2e
JB
4790 spin_lock(&eb->refs_lock);
4791 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4792
0b32f4bb 4793 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4794 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4795 atomic_dec(&eb->refs);
f7a52a40 4796 release_extent_buffer(eb);
d1310b2e 4797}
d1310b2e 4798
0d27797e
QW
4799static void btree_clear_page_dirty(struct page *page)
4800{
4801 ASSERT(PageDirty(page));
4802 ASSERT(PageLocked(page));
4803 clear_page_dirty_for_io(page);
4804 xa_lock_irq(&page->mapping->i_pages);
4805 if (!PageDirty(page))
4806 __xa_clear_mark(&page->mapping->i_pages,
4807 page_index(page), PAGECACHE_TAG_DIRTY);
4808 xa_unlock_irq(&page->mapping->i_pages);
4809}
4810
4811static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4812{
4813 struct btrfs_fs_info *fs_info = eb->fs_info;
4814 struct page *page = eb->pages[0];
4815 bool last;
4816
4817 /* btree_clear_page_dirty() needs page locked */
4818 lock_page(page);
4819 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4820 eb->len);
4821 if (last)
4822 btree_clear_page_dirty(page);
4823 unlock_page(page);
4824 WARN_ON(atomic_read(&eb->refs) == 0);
4825}
4826
2b48966a 4827void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 4828{
cc5e31a4
DS
4829 int i;
4830 int num_pages;
d1310b2e
CM
4831 struct page *page;
4832
fbca46eb 4833 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
4834 return clear_subpage_extent_buffer_dirty(eb);
4835
65ad0104 4836 num_pages = num_extent_pages(eb);
d1310b2e
CM
4837
4838 for (i = 0; i < num_pages; i++) {
fb85fc9a 4839 page = eb->pages[i];
b9473439 4840 if (!PageDirty(page))
d2c3f4f6 4841 continue;
a61e6f29 4842 lock_page(page);
0d27797e 4843 btree_clear_page_dirty(page);
bf0da8c1 4844 ClearPageError(page);
a61e6f29 4845 unlock_page(page);
d1310b2e 4846 }
0b32f4bb 4847 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4848}
d1310b2e 4849
abb57ef3 4850bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4851{
cc5e31a4
DS
4852 int i;
4853 int num_pages;
abb57ef3 4854 bool was_dirty;
d1310b2e 4855
0b32f4bb
JB
4856 check_buffer_tree_ref(eb);
4857
b9473439 4858 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4859
65ad0104 4860 num_pages = num_extent_pages(eb);
3083ee2e 4861 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4862 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4863
0d27797e 4864 if (!was_dirty) {
fbca46eb 4865 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 4866
0d27797e
QW
4867 /*
4868 * For subpage case, we can have other extent buffers in the
4869 * same page, and in clear_subpage_extent_buffer_dirty() we
4870 * have to clear page dirty without subpage lock held.
4871 * This can cause race where our page gets dirty cleared after
4872 * we just set it.
4873 *
4874 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4875 * its page for other reasons, we can use page lock to prevent
4876 * the above race.
4877 */
4878 if (subpage)
4879 lock_page(eb->pages[0]);
4880 for (i = 0; i < num_pages; i++)
4881 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4882 eb->start, eb->len);
4883 if (subpage)
4884 unlock_page(eb->pages[0]);
4885 }
51995c39
LB
4886#ifdef CONFIG_BTRFS_DEBUG
4887 for (i = 0; i < num_pages; i++)
4888 ASSERT(PageDirty(eb->pages[i]));
4889#endif
4890
b9473439 4891 return was_dirty;
d1310b2e 4892}
d1310b2e 4893
69ba3927 4894void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 4895{
251f2acc 4896 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 4897 struct page *page;
cc5e31a4 4898 int num_pages;
251f2acc 4899 int i;
1259ab75 4900
b4ce94de 4901 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 4902 num_pages = num_extent_pages(eb);
1259ab75 4903 for (i = 0; i < num_pages; i++) {
fb85fc9a 4904 page = eb->pages[i];
fbca46eb
QW
4905 if (!page)
4906 continue;
4907
4908 /*
4909 * This is special handling for metadata subpage, as regular
4910 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4911 */
4912 if (fs_info->nodesize >= PAGE_SIZE)
4913 ClearPageUptodate(page);
4914 else
4915 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4916 eb->len);
1259ab75 4917 }
1259ab75
CM
4918}
4919
09c25a8c 4920void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4921{
251f2acc 4922 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 4923 struct page *page;
cc5e31a4 4924 int num_pages;
251f2acc 4925 int i;
d1310b2e 4926
0b32f4bb 4927 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 4928 num_pages = num_extent_pages(eb);
d1310b2e 4929 for (i = 0; i < num_pages; i++) {
fb85fc9a 4930 page = eb->pages[i];
fbca46eb
QW
4931
4932 /*
4933 * This is special handling for metadata subpage, as regular
4934 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4935 */
4936 if (fs_info->nodesize >= PAGE_SIZE)
4937 SetPageUptodate(page);
4938 else
4939 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4940 eb->len);
d1310b2e 4941 }
d1310b2e 4942}
d1310b2e 4943
4012daf7
QW
4944static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4945 int mirror_num)
4946{
4947 struct btrfs_fs_info *fs_info = eb->fs_info;
4948 struct extent_io_tree *io_tree;
4949 struct page *page = eb->pages[0];
e5e886ba 4950 struct extent_state *cached_state = NULL;
722c82ac
CH
4951 struct btrfs_bio_ctrl bio_ctrl = {
4952 .mirror_num = mirror_num,
4953 };
4012daf7
QW
4954 int ret = 0;
4955
4956 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4957 ASSERT(PagePrivate(page));
4958 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4959
4960 if (wait == WAIT_NONE) {
83ae4133 4961 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
e5e886ba 4962 &cached_state))
dc56219f 4963 return -EAGAIN;
4012daf7 4964 } else {
e5e886ba
JB
4965 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4966 &cached_state);
4012daf7
QW
4967 if (ret < 0)
4968 return ret;
4969 }
4970
4971 ret = 0;
4972 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4973 PageUptodate(page) ||
4974 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4975 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
e5e886ba
JB
4976 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
4977 &cached_state);
4012daf7
QW
4978 return ret;
4979 }
4980
4981 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4982 eb->read_mirror = 0;
4983 atomic_set(&eb->io_pages, 1);
4984 check_buffer_tree_ref(eb);
5467abba
QW
4985 bio_ctrl.end_io_func = end_bio_extent_readpage;
4986
4012daf7
QW
4987 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4988
3d078efa 4989 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
08a6f464 4990 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
209ecde5 4991 eb->start, page, eb->len,
5467abba 4992 eb->start - page_offset(page), 0, true);
4012daf7
QW
4993 if (ret) {
4994 /*
4995 * In the endio function, if we hit something wrong we will
4996 * increase the io_pages, so here we need to decrease it for
4997 * error path.
4998 */
4999 atomic_dec(&eb->io_pages);
5000 }
722c82ac 5001 submit_one_bio(&bio_ctrl);
e5e886ba
JB
5002 if (ret || wait != WAIT_COMPLETE) {
5003 free_extent_state(cached_state);
4012daf7 5004 return ret;
e5e886ba 5005 }
4012daf7 5006
123a7f00 5007 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1,
e5e886ba 5008 EXTENT_LOCKED, &cached_state);
4012daf7
QW
5009 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5010 ret = -EIO;
5011 return ret;
5012}
5013
c2ccfbc6 5014int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5015{
cc5e31a4 5016 int i;
d1310b2e
CM
5017 struct page *page;
5018 int err;
5019 int ret = 0;
ce9adaa5
CM
5020 int locked_pages = 0;
5021 int all_uptodate = 1;
cc5e31a4 5022 int num_pages;
727011e0 5023 unsigned long num_reads = 0;
722c82ac
CH
5024 struct btrfs_bio_ctrl bio_ctrl = {
5025 .mirror_num = mirror_num,
5026 };
a86c12c7 5027
b4ce94de 5028 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5029 return 0;
5030
651740a5
JB
5031 /*
5032 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
5033 * operation, which could potentially still be in flight. In this case
5034 * we simply want to return an error.
5035 */
5036 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
5037 return -EIO;
5038
fbca46eb 5039 if (eb->fs_info->nodesize < PAGE_SIZE)
4012daf7
QW
5040 return read_extent_buffer_subpage(eb, wait, mirror_num);
5041
65ad0104 5042 num_pages = num_extent_pages(eb);
8436ea91 5043 for (i = 0; i < num_pages; i++) {
fb85fc9a 5044 page = eb->pages[i];
bb82ab88 5045 if (wait == WAIT_NONE) {
2c4d8cb7
QW
5046 /*
5047 * WAIT_NONE is only utilized by readahead. If we can't
5048 * acquire the lock atomically it means either the eb
5049 * is being read out or under modification.
5050 * Either way the eb will be or has been cached,
5051 * readahead can exit safely.
5052 */
2db04966 5053 if (!trylock_page(page))
ce9adaa5 5054 goto unlock_exit;
d1310b2e
CM
5055 } else {
5056 lock_page(page);
5057 }
ce9adaa5 5058 locked_pages++;
2571e739
LB
5059 }
5060 /*
5061 * We need to firstly lock all pages to make sure that
5062 * the uptodate bit of our pages won't be affected by
5063 * clear_extent_buffer_uptodate().
5064 */
8436ea91 5065 for (i = 0; i < num_pages; i++) {
2571e739 5066 page = eb->pages[i];
727011e0
CM
5067 if (!PageUptodate(page)) {
5068 num_reads++;
ce9adaa5 5069 all_uptodate = 0;
727011e0 5070 }
ce9adaa5 5071 }
2571e739 5072
ce9adaa5 5073 if (all_uptodate) {
8436ea91 5074 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5075 goto unlock_exit;
5076 }
5077
656f30db 5078 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5079 eb->read_mirror = 0;
0b32f4bb 5080 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e 5081 /*
f913cff3 5082 * It is possible for release_folio to clear the TREE_REF bit before we
6bf9cd2e
BB
5083 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5084 */
5085 check_buffer_tree_ref(eb);
5467abba 5086 bio_ctrl.end_io_func = end_bio_extent_readpage;
8436ea91 5087 for (i = 0; i < num_pages; i++) {
fb85fc9a 5088 page = eb->pages[i];
baf863b9 5089
ce9adaa5 5090 if (!PageUptodate(page)) {
baf863b9
LB
5091 if (ret) {
5092 atomic_dec(&eb->io_pages);
5093 unlock_page(page);
5094 continue;
5095 }
5096
f188591e 5097 ClearPageError(page);
08a6f464 5098 err = submit_extent_page(REQ_OP_READ, NULL,
209ecde5 5099 &bio_ctrl, page_offset(page), page,
5467abba 5100 PAGE_SIZE, 0, 0, false);
baf863b9 5101 if (err) {
baf863b9 5102 /*
0420177c
NB
5103 * We failed to submit the bio so it's the
5104 * caller's responsibility to perform cleanup
5105 * i.e unlock page/set error bit.
baf863b9 5106 */
0420177c
NB
5107 ret = err;
5108 SetPageError(page);
5109 unlock_page(page);
baf863b9
LB
5110 atomic_dec(&eb->io_pages);
5111 }
d1310b2e
CM
5112 } else {
5113 unlock_page(page);
5114 }
5115 }
5116
722c82ac 5117 submit_one_bio(&bio_ctrl);
a86c12c7 5118
bb82ab88 5119 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5120 return ret;
d397712b 5121
8436ea91 5122 for (i = 0; i < num_pages; i++) {
fb85fc9a 5123 page = eb->pages[i];
d1310b2e 5124 wait_on_page_locked(page);
d397712b 5125 if (!PageUptodate(page))
d1310b2e 5126 ret = -EIO;
d1310b2e 5127 }
d397712b 5128
d1310b2e 5129 return ret;
ce9adaa5
CM
5130
5131unlock_exit:
d397712b 5132 while (locked_pages > 0) {
ce9adaa5 5133 locked_pages--;
8436ea91
JB
5134 page = eb->pages[locked_pages];
5135 unlock_page(page);
ce9adaa5
CM
5136 }
5137 return ret;
d1310b2e 5138}
d1310b2e 5139
f98b6215
QW
5140static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5141 unsigned long len)
5142{
5143 btrfs_warn(eb->fs_info,
5144 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5145 eb->start, eb->len, start, len);
5146 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5147
5148 return true;
5149}
5150
5151/*
5152 * Check if the [start, start + len) range is valid before reading/writing
5153 * the eb.
5154 * NOTE: @start and @len are offset inside the eb, not logical address.
5155 *
5156 * Caller should not touch the dst/src memory if this function returns error.
5157 */
5158static inline int check_eb_range(const struct extent_buffer *eb,
5159 unsigned long start, unsigned long len)
5160{
5161 unsigned long offset;
5162
5163 /* start, start + len should not go beyond eb->len nor overflow */
5164 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5165 return report_eb_range(eb, start, len);
5166
5167 return false;
5168}
5169
1cbb1f45
JM
5170void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5171 unsigned long start, unsigned long len)
d1310b2e
CM
5172{
5173 size_t cur;
5174 size_t offset;
5175 struct page *page;
5176 char *kaddr;
5177 char *dst = (char *)dstv;
884b07d0 5178 unsigned long i = get_eb_page_index(start);
d1310b2e 5179
f98b6215 5180 if (check_eb_range(eb, start, len))
f716abd5 5181 return;
d1310b2e 5182
884b07d0 5183 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5184
d397712b 5185 while (len > 0) {
fb85fc9a 5186 page = eb->pages[i];
d1310b2e 5187
09cbfeaf 5188 cur = min(len, (PAGE_SIZE - offset));
a6591715 5189 kaddr = page_address(page);
d1310b2e 5190 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5191
5192 dst += cur;
5193 len -= cur;
5194 offset = 0;
5195 i++;
5196 }
5197}
d1310b2e 5198
a48b73ec
JB
5199int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5200 void __user *dstv,
5201 unsigned long start, unsigned long len)
550ac1d8
GH
5202{
5203 size_t cur;
5204 size_t offset;
5205 struct page *page;
5206 char *kaddr;
5207 char __user *dst = (char __user *)dstv;
884b07d0 5208 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
5209 int ret = 0;
5210
5211 WARN_ON(start > eb->len);
5212 WARN_ON(start + len > eb->start + eb->len);
5213
884b07d0 5214 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
5215
5216 while (len > 0) {
fb85fc9a 5217 page = eb->pages[i];
550ac1d8 5218
09cbfeaf 5219 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 5220 kaddr = page_address(page);
a48b73ec 5221 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
5222 ret = -EFAULT;
5223 break;
5224 }
5225
5226 dst += cur;
5227 len -= cur;
5228 offset = 0;
5229 i++;
5230 }
5231
5232 return ret;
5233}
5234
1cbb1f45
JM
5235int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5236 unsigned long start, unsigned long len)
d1310b2e
CM
5237{
5238 size_t cur;
5239 size_t offset;
5240 struct page *page;
5241 char *kaddr;
5242 char *ptr = (char *)ptrv;
884b07d0 5243 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
5244 int ret = 0;
5245
f98b6215
QW
5246 if (check_eb_range(eb, start, len))
5247 return -EINVAL;
d1310b2e 5248
884b07d0 5249 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5250
d397712b 5251 while (len > 0) {
fb85fc9a 5252 page = eb->pages[i];
d1310b2e 5253
09cbfeaf 5254 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5255
a6591715 5256 kaddr = page_address(page);
d1310b2e 5257 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5258 if (ret)
5259 break;
5260
5261 ptr += cur;
5262 len -= cur;
5263 offset = 0;
5264 i++;
5265 }
5266 return ret;
5267}
d1310b2e 5268
b8f95771
QW
5269/*
5270 * Check that the extent buffer is uptodate.
5271 *
5272 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5273 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5274 */
5275static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5276 struct page *page)
5277{
5278 struct btrfs_fs_info *fs_info = eb->fs_info;
5279
a50e1fcb
JB
5280 /*
5281 * If we are using the commit root we could potentially clear a page
5282 * Uptodate while we're using the extent buffer that we've previously
5283 * looked up. We don't want to complain in this case, as the page was
5284 * valid before, we just didn't write it out. Instead we want to catch
5285 * the case where we didn't actually read the block properly, which
5286 * would have !PageUptodate && !PageError, as we clear PageError before
5287 * reading.
5288 */
fbca46eb 5289 if (fs_info->nodesize < PAGE_SIZE) {
a50e1fcb 5290 bool uptodate, error;
b8f95771
QW
5291
5292 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5293 eb->start, eb->len);
a50e1fcb
JB
5294 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5295 WARN_ON(!uptodate && !error);
b8f95771 5296 } else {
a50e1fcb 5297 WARN_ON(!PageUptodate(page) && !PageError(page));
b8f95771
QW
5298 }
5299}
5300
2b48966a 5301void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
5302 const void *srcv)
5303{
5304 char *kaddr;
5305
b8f95771 5306 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
5307 kaddr = page_address(eb->pages[0]) +
5308 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5309 chunk_tree_uuid));
5310 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
5311}
5312
2b48966a 5313void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
5314{
5315 char *kaddr;
5316
b8f95771 5317 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
5318 kaddr = page_address(eb->pages[0]) +
5319 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5320 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
5321}
5322
2b48966a 5323void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
5324 unsigned long start, unsigned long len)
5325{
5326 size_t cur;
5327 size_t offset;
5328 struct page *page;
5329 char *kaddr;
5330 char *src = (char *)srcv;
884b07d0 5331 unsigned long i = get_eb_page_index(start);
d1310b2e 5332
d3575156
NA
5333 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5334
f98b6215
QW
5335 if (check_eb_range(eb, start, len))
5336 return;
d1310b2e 5337
884b07d0 5338 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5339
d397712b 5340 while (len > 0) {
fb85fc9a 5341 page = eb->pages[i];
b8f95771 5342 assert_eb_page_uptodate(eb, page);
d1310b2e 5343
09cbfeaf 5344 cur = min(len, PAGE_SIZE - offset);
a6591715 5345 kaddr = page_address(page);
d1310b2e 5346 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5347
5348 src += cur;
5349 len -= cur;
5350 offset = 0;
5351 i++;
5352 }
5353}
d1310b2e 5354
2b48966a 5355void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 5356 unsigned long len)
d1310b2e
CM
5357{
5358 size_t cur;
5359 size_t offset;
5360 struct page *page;
5361 char *kaddr;
884b07d0 5362 unsigned long i = get_eb_page_index(start);
d1310b2e 5363
f98b6215
QW
5364 if (check_eb_range(eb, start, len))
5365 return;
d1310b2e 5366
884b07d0 5367 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5368
d397712b 5369 while (len > 0) {
fb85fc9a 5370 page = eb->pages[i];
b8f95771 5371 assert_eb_page_uptodate(eb, page);
d1310b2e 5372
09cbfeaf 5373 cur = min(len, PAGE_SIZE - offset);
a6591715 5374 kaddr = page_address(page);
b159fa28 5375 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5376
5377 len -= cur;
5378 offset = 0;
5379 i++;
5380 }
5381}
d1310b2e 5382
2b48966a
DS
5383void copy_extent_buffer_full(const struct extent_buffer *dst,
5384 const struct extent_buffer *src)
58e8012c
DS
5385{
5386 int i;
cc5e31a4 5387 int num_pages;
58e8012c
DS
5388
5389 ASSERT(dst->len == src->len);
5390
fbca46eb 5391 if (dst->fs_info->nodesize >= PAGE_SIZE) {
884b07d0
QW
5392 num_pages = num_extent_pages(dst);
5393 for (i = 0; i < num_pages; i++)
5394 copy_page(page_address(dst->pages[i]),
5395 page_address(src->pages[i]));
5396 } else {
5397 size_t src_offset = get_eb_offset_in_page(src, 0);
5398 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5399
fbca46eb 5400 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
884b07d0
QW
5401 memcpy(page_address(dst->pages[0]) + dst_offset,
5402 page_address(src->pages[0]) + src_offset,
5403 src->len);
5404 }
58e8012c
DS
5405}
5406
2b48966a
DS
5407void copy_extent_buffer(const struct extent_buffer *dst,
5408 const struct extent_buffer *src,
d1310b2e
CM
5409 unsigned long dst_offset, unsigned long src_offset,
5410 unsigned long len)
5411{
5412 u64 dst_len = dst->len;
5413 size_t cur;
5414 size_t offset;
5415 struct page *page;
5416 char *kaddr;
884b07d0 5417 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 5418
f98b6215
QW
5419 if (check_eb_range(dst, dst_offset, len) ||
5420 check_eb_range(src, src_offset, len))
5421 return;
5422
d1310b2e
CM
5423 WARN_ON(src->len != dst_len);
5424
884b07d0 5425 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 5426
d397712b 5427 while (len > 0) {
fb85fc9a 5428 page = dst->pages[i];
b8f95771 5429 assert_eb_page_uptodate(dst, page);
d1310b2e 5430
09cbfeaf 5431 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5432
a6591715 5433 kaddr = page_address(page);
d1310b2e 5434 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5435
5436 src_offset += cur;
5437 len -= cur;
5438 offset = 0;
5439 i++;
5440 }
5441}
d1310b2e 5442
3e1e8bb7
OS
5443/*
5444 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5445 * given bit number
5446 * @eb: the extent buffer
5447 * @start: offset of the bitmap item in the extent buffer
5448 * @nr: bit number
5449 * @page_index: return index of the page in the extent buffer that contains the
5450 * given bit number
5451 * @page_offset: return offset into the page given by page_index
5452 *
5453 * This helper hides the ugliness of finding the byte in an extent buffer which
5454 * contains a given bit.
5455 */
2b48966a 5456static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
5457 unsigned long start, unsigned long nr,
5458 unsigned long *page_index,
5459 size_t *page_offset)
5460{
3e1e8bb7
OS
5461 size_t byte_offset = BIT_BYTE(nr);
5462 size_t offset;
5463
5464 /*
5465 * The byte we want is the offset of the extent buffer + the offset of
5466 * the bitmap item in the extent buffer + the offset of the byte in the
5467 * bitmap item.
5468 */
884b07d0 5469 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 5470
09cbfeaf 5471 *page_index = offset >> PAGE_SHIFT;
7073017a 5472 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5473}
5474
5475/**
5476 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5477 * @eb: the extent buffer
5478 * @start: offset of the bitmap item in the extent buffer
5479 * @nr: bit number to test
5480 */
2b48966a 5481int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5482 unsigned long nr)
5483{
2fe1d551 5484 u8 *kaddr;
3e1e8bb7
OS
5485 struct page *page;
5486 unsigned long i;
5487 size_t offset;
5488
5489 eb_bitmap_offset(eb, start, nr, &i, &offset);
5490 page = eb->pages[i];
b8f95771 5491 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5492 kaddr = page_address(page);
5493 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5494}
5495
5496/**
5497 * extent_buffer_bitmap_set - set an area of a bitmap
5498 * @eb: the extent buffer
5499 * @start: offset of the bitmap item in the extent buffer
5500 * @pos: bit number of the first bit
5501 * @len: number of bits to set
5502 */
2b48966a 5503void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5504 unsigned long pos, unsigned long len)
5505{
2fe1d551 5506 u8 *kaddr;
3e1e8bb7
OS
5507 struct page *page;
5508 unsigned long i;
5509 size_t offset;
5510 const unsigned int size = pos + len;
5511 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5512 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5513
5514 eb_bitmap_offset(eb, start, pos, &i, &offset);
5515 page = eb->pages[i];
b8f95771 5516 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5517 kaddr = page_address(page);
5518
5519 while (len >= bits_to_set) {
5520 kaddr[offset] |= mask_to_set;
5521 len -= bits_to_set;
5522 bits_to_set = BITS_PER_BYTE;
9c894696 5523 mask_to_set = ~0;
09cbfeaf 5524 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5525 offset = 0;
5526 page = eb->pages[++i];
b8f95771 5527 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5528 kaddr = page_address(page);
5529 }
5530 }
5531 if (len) {
5532 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5533 kaddr[offset] |= mask_to_set;
5534 }
5535}
5536
5537
5538/**
5539 * extent_buffer_bitmap_clear - clear an area of a bitmap
5540 * @eb: the extent buffer
5541 * @start: offset of the bitmap item in the extent buffer
5542 * @pos: bit number of the first bit
5543 * @len: number of bits to clear
5544 */
2b48966a
DS
5545void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5546 unsigned long start, unsigned long pos,
5547 unsigned long len)
3e1e8bb7 5548{
2fe1d551 5549 u8 *kaddr;
3e1e8bb7
OS
5550 struct page *page;
5551 unsigned long i;
5552 size_t offset;
5553 const unsigned int size = pos + len;
5554 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5555 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5556
5557 eb_bitmap_offset(eb, start, pos, &i, &offset);
5558 page = eb->pages[i];
b8f95771 5559 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5560 kaddr = page_address(page);
5561
5562 while (len >= bits_to_clear) {
5563 kaddr[offset] &= ~mask_to_clear;
5564 len -= bits_to_clear;
5565 bits_to_clear = BITS_PER_BYTE;
9c894696 5566 mask_to_clear = ~0;
09cbfeaf 5567 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5568 offset = 0;
5569 page = eb->pages[++i];
b8f95771 5570 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5571 kaddr = page_address(page);
5572 }
5573 }
5574 if (len) {
5575 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5576 kaddr[offset] &= ~mask_to_clear;
5577 }
5578}
5579
3387206f
ST
5580static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5581{
5582 unsigned long distance = (src > dst) ? src - dst : dst - src;
5583 return distance < len;
5584}
5585
d1310b2e
CM
5586static void copy_pages(struct page *dst_page, struct page *src_page,
5587 unsigned long dst_off, unsigned long src_off,
5588 unsigned long len)
5589{
a6591715 5590 char *dst_kaddr = page_address(dst_page);
d1310b2e 5591 char *src_kaddr;
727011e0 5592 int must_memmove = 0;
d1310b2e 5593
3387206f 5594 if (dst_page != src_page) {
a6591715 5595 src_kaddr = page_address(src_page);
3387206f 5596 } else {
d1310b2e 5597 src_kaddr = dst_kaddr;
727011e0
CM
5598 if (areas_overlap(src_off, dst_off, len))
5599 must_memmove = 1;
3387206f 5600 }
d1310b2e 5601
727011e0
CM
5602 if (must_memmove)
5603 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5604 else
5605 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5606}
5607
2b48966a
DS
5608void memcpy_extent_buffer(const struct extent_buffer *dst,
5609 unsigned long dst_offset, unsigned long src_offset,
5610 unsigned long len)
d1310b2e
CM
5611{
5612 size_t cur;
5613 size_t dst_off_in_page;
5614 size_t src_off_in_page;
d1310b2e
CM
5615 unsigned long dst_i;
5616 unsigned long src_i;
5617
f98b6215
QW
5618 if (check_eb_range(dst, dst_offset, len) ||
5619 check_eb_range(dst, src_offset, len))
5620 return;
d1310b2e 5621
d397712b 5622 while (len > 0) {
884b07d0
QW
5623 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5624 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 5625
884b07d0
QW
5626 dst_i = get_eb_page_index(dst_offset);
5627 src_i = get_eb_page_index(src_offset);
d1310b2e 5628
09cbfeaf 5629 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5630 src_off_in_page));
5631 cur = min_t(unsigned long, cur,
09cbfeaf 5632 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5633
fb85fc9a 5634 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5635 dst_off_in_page, src_off_in_page, cur);
5636
5637 src_offset += cur;
5638 dst_offset += cur;
5639 len -= cur;
5640 }
5641}
d1310b2e 5642
2b48966a
DS
5643void memmove_extent_buffer(const struct extent_buffer *dst,
5644 unsigned long dst_offset, unsigned long src_offset,
5645 unsigned long len)
d1310b2e
CM
5646{
5647 size_t cur;
5648 size_t dst_off_in_page;
5649 size_t src_off_in_page;
5650 unsigned long dst_end = dst_offset + len - 1;
5651 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
5652 unsigned long dst_i;
5653 unsigned long src_i;
5654
f98b6215
QW
5655 if (check_eb_range(dst, dst_offset, len) ||
5656 check_eb_range(dst, src_offset, len))
5657 return;
727011e0 5658 if (dst_offset < src_offset) {
d1310b2e
CM
5659 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5660 return;
5661 }
d397712b 5662 while (len > 0) {
884b07d0
QW
5663 dst_i = get_eb_page_index(dst_end);
5664 src_i = get_eb_page_index(src_end);
d1310b2e 5665
884b07d0
QW
5666 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5667 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
5668
5669 cur = min_t(unsigned long, len, src_off_in_page + 1);
5670 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5671 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5672 dst_off_in_page - cur + 1,
5673 src_off_in_page - cur + 1, cur);
5674
5675 dst_end -= cur;
5676 src_end -= cur;
5677 len -= cur;
5678 }
5679}
6af118ce 5680
01cd3909 5681#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
5682static struct extent_buffer *get_next_extent_buffer(
5683 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5684{
01cd3909
DS
5685 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5686 struct extent_buffer *found = NULL;
d1e86e3f 5687 u64 page_start = page_offset(page);
01cd3909 5688 u64 cur = page_start;
d1e86e3f
QW
5689
5690 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
5691 lockdep_assert_held(&fs_info->buffer_lock);
5692
01cd3909
DS
5693 while (cur < page_start + PAGE_SIZE) {
5694 int ret;
5695 int i;
5696
5697 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5698 (void **)gang, cur >> fs_info->sectorsize_bits,
5699 min_t(unsigned int, GANG_LOOKUP_SIZE,
5700 PAGE_SIZE / fs_info->nodesize));
5701 if (ret == 0)
5702 goto out;
5703 for (i = 0; i < ret; i++) {
5704 /* Already beyond page end */
5705 if (gang[i]->start >= page_start + PAGE_SIZE)
5706 goto out;
5707 /* Found one */
5708 if (gang[i]->start >= bytenr) {
5709 found = gang[i];
5710 goto out;
5711 }
5712 }
5713 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 5714 }
01cd3909
DS
5715out:
5716 return found;
d1e86e3f
QW
5717}
5718
5719static int try_release_subpage_extent_buffer(struct page *page)
5720{
5721 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5722 u64 cur = page_offset(page);
5723 const u64 end = page_offset(page) + PAGE_SIZE;
5724 int ret;
5725
5726 while (cur < end) {
5727 struct extent_buffer *eb = NULL;
5728
5729 /*
5730 * Unlike try_release_extent_buffer() which uses page->private
5731 * to grab buffer, for subpage case we rely on radix tree, thus
5732 * we need to ensure radix tree consistency.
5733 *
5734 * We also want an atomic snapshot of the radix tree, thus go
5735 * with spinlock rather than RCU.
5736 */
5737 spin_lock(&fs_info->buffer_lock);
5738 eb = get_next_extent_buffer(fs_info, page, cur);
5739 if (!eb) {
5740 /* No more eb in the page range after or at cur */
5741 spin_unlock(&fs_info->buffer_lock);
5742 break;
5743 }
5744 cur = eb->start + eb->len;
5745
5746 /*
5747 * The same as try_release_extent_buffer(), to ensure the eb
5748 * won't disappear out from under us.
5749 */
5750 spin_lock(&eb->refs_lock);
5751 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5752 spin_unlock(&eb->refs_lock);
5753 spin_unlock(&fs_info->buffer_lock);
5754 break;
5755 }
5756 spin_unlock(&fs_info->buffer_lock);
5757
5758 /*
5759 * If tree ref isn't set then we know the ref on this eb is a
5760 * real ref, so just return, this eb will likely be freed soon
5761 * anyway.
5762 */
5763 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5764 spin_unlock(&eb->refs_lock);
5765 break;
5766 }
5767
5768 /*
5769 * Here we don't care about the return value, we will always
5770 * check the page private at the end. And
5771 * release_extent_buffer() will release the refs_lock.
5772 */
5773 release_extent_buffer(eb);
5774 }
5775 /*
5776 * Finally to check if we have cleared page private, as if we have
5777 * released all ebs in the page, the page private should be cleared now.
5778 */
5779 spin_lock(&page->mapping->private_lock);
5780 if (!PagePrivate(page))
5781 ret = 1;
5782 else
5783 ret = 0;
5784 spin_unlock(&page->mapping->private_lock);
5785 return ret;
5786
5787}
5788
f7a52a40 5789int try_release_extent_buffer(struct page *page)
19fe0a8b 5790{
6af118ce 5791 struct extent_buffer *eb;
6af118ce 5792
fbca46eb 5793 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
d1e86e3f
QW
5794 return try_release_subpage_extent_buffer(page);
5795
3083ee2e 5796 /*
d1e86e3f
QW
5797 * We need to make sure nobody is changing page->private, as we rely on
5798 * page->private as the pointer to extent buffer.
3083ee2e
JB
5799 */
5800 spin_lock(&page->mapping->private_lock);
5801 if (!PagePrivate(page)) {
5802 spin_unlock(&page->mapping->private_lock);
4f2de97a 5803 return 1;
45f49bce 5804 }
6af118ce 5805
3083ee2e
JB
5806 eb = (struct extent_buffer *)page->private;
5807 BUG_ON(!eb);
19fe0a8b
MX
5808
5809 /*
3083ee2e
JB
5810 * This is a little awful but should be ok, we need to make sure that
5811 * the eb doesn't disappear out from under us while we're looking at
5812 * this page.
19fe0a8b 5813 */
3083ee2e 5814 spin_lock(&eb->refs_lock);
0b32f4bb 5815 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5816 spin_unlock(&eb->refs_lock);
5817 spin_unlock(&page->mapping->private_lock);
5818 return 0;
b9473439 5819 }
3083ee2e 5820 spin_unlock(&page->mapping->private_lock);
897ca6e9 5821
19fe0a8b 5822 /*
3083ee2e
JB
5823 * If tree ref isn't set then we know the ref on this eb is a real ref,
5824 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5825 */
3083ee2e
JB
5826 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5827 spin_unlock(&eb->refs_lock);
5828 return 0;
b9473439 5829 }
19fe0a8b 5830
f7a52a40 5831 return release_extent_buffer(eb);
6af118ce 5832}
bfb484d9
JB
5833
5834/*
5835 * btrfs_readahead_tree_block - attempt to readahead a child block
5836 * @fs_info: the fs_info
5837 * @bytenr: bytenr to read
3fbaf258 5838 * @owner_root: objectid of the root that owns this eb
bfb484d9 5839 * @gen: generation for the uptodate check, can be 0
3fbaf258 5840 * @level: level for the eb
bfb484d9
JB
5841 *
5842 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5843 * normal uptodate check of the eb, without checking the generation. If we have
5844 * to read the block we will not block on anything.
5845 */
5846void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 5847 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
5848{
5849 struct extent_buffer *eb;
5850 int ret;
5851
3fbaf258 5852 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
5853 if (IS_ERR(eb))
5854 return;
5855
5856 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5857 free_extent_buffer(eb);
5858 return;
5859 }
5860
5861 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
5862 if (ret < 0)
5863 free_extent_buffer_stale(eb);
5864 else
5865 free_extent_buffer(eb);
5866}
5867
5868/*
5869 * btrfs_readahead_node_child - readahead a node's child block
5870 * @node: parent node we're reading from
5871 * @slot: slot in the parent node for the child we want to read
5872 *
5873 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5874 * the slot in the node provided.
5875 */
5876void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5877{
5878 btrfs_readahead_tree_block(node->fs_info,
5879 btrfs_node_blockptr(node, slot),
3fbaf258
JB
5880 btrfs_header_owner(node),
5881 btrfs_node_ptr_generation(node, slot),
5882 btrfs_header_level(node) - 1);
bfb484d9 5883}