btrfs: ulist: make the finalization function public
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
c1c9ff7c 71 atomic_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
f85b7379 101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
70fd7614 130 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 165 sizeof(struct extent_state), 0,
fba4b697 166 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 171 sizeof(struct extent_buffer), 0,
fba4b697 172 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e 228
3ba7ab22
MH
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 234 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 235 if (!state)
d1310b2e
CM
236 return state;
237 state->state = 0;
47dc196a 238 state->failrec = NULL;
27a3507d 239 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 240 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
143bede5 243 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
244 return state;
245}
d1310b2e 246
4845e44f 247void free_extent_state(struct extent_state *state)
d1310b2e 248{
d1310b2e
CM
249 if (!state)
250 return;
251 if (atomic_dec_and_test(&state->refs)) {
27a3507d 252 WARN_ON(extent_state_in_tree(state));
6d49ba1b 253 btrfs_leak_debug_del(&state->leak_list);
143bede5 254 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
255 kmem_cache_free(extent_state_cache, state);
256 }
257}
d1310b2e 258
f2071b21
FM
259static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
12cfbad9
FDBM
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
d1310b2e 265{
f2071b21 266 struct rb_node **p;
d397712b 267 struct rb_node *parent = NULL;
d1310b2e
CM
268 struct tree_entry *entry;
269
12cfbad9
FDBM
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
f2071b21 276 p = search_start ? &search_start : &root->rb_node;
d397712b 277 while (*p) {
d1310b2e
CM
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
12cfbad9 289do_insert:
d1310b2e
CM
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293}
294
80ea96b1 295static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
d1310b2e 300{
80ea96b1 301 struct rb_root *root = &tree->state;
12cfbad9 302 struct rb_node **n = &root->rb_node;
d1310b2e
CM
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
12cfbad9
FDBM
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
311 prev_entry = entry;
312
313 if (offset < entry->start)
12cfbad9 314 n = &(*n)->rb_left;
d1310b2e 315 else if (offset > entry->end)
12cfbad9 316 n = &(*n)->rb_right;
d397712b 317 else
12cfbad9 318 return *n;
d1310b2e
CM
319 }
320
12cfbad9
FDBM
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
d1310b2e
CM
326 if (prev_ret) {
327 orig_prev = prev;
d397712b 328 while (prev && offset > prev_entry->end) {
d1310b2e
CM
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 338 while (prev && offset < prev_entry->start) {
d1310b2e
CM
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345}
346
12cfbad9
FDBM
347static inline struct rb_node *
348tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
d1310b2e 352{
70dec807 353 struct rb_node *prev = NULL;
d1310b2e 354 struct rb_node *ret;
70dec807 355
12cfbad9 356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 357 if (!ret)
d1310b2e
CM
358 return prev;
359 return ret;
360}
361
12cfbad9
FDBM
362static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364{
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366}
367
9ed74f2d
JB
368static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370{
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374}
375
d1310b2e
CM
376/*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
1bf85046
JM
385static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
d1310b2e
CM
387{
388 struct extent_state *other;
389 struct rb_node *other_node;
390
5b21f2ed 391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 392 return;
d1310b2e
CM
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
9ed74f2d 399 merge_cb(tree, state, other);
d1310b2e 400 state->start = other->start;
d1310b2e 401 rb_erase(&other->rb_node, &tree->state);
27a3507d 402 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
9ed74f2d 411 merge_cb(tree, state, other);
df98b6e2 412 state->end = other->end;
df98b6e2 413 rb_erase(&other->rb_node, &tree->state);
27a3507d 414 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 415 free_extent_state(other);
d1310b2e
CM
416 }
417 }
d1310b2e
CM
418}
419
1bf85046 420static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 421 struct extent_state *state, unsigned *bits)
291d673e 422{
1bf85046
JM
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
425}
426
427static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 428 struct extent_state *state, unsigned *bits)
291d673e 429{
9ed74f2d
JB
430 if (tree->ops && tree->ops->clear_bit_hook)
431 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
432}
433
3150b699 434static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
435 struct extent_state *state, unsigned *bits,
436 struct extent_changeset *changeset);
3150b699 437
d1310b2e
CM
438/*
439 * insert an extent_state struct into the tree. 'bits' are set on the
440 * struct before it is inserted.
441 *
442 * This may return -EEXIST if the extent is already there, in which case the
443 * state struct is freed.
444 *
445 * The tree lock is not taken internally. This is a utility function and
446 * probably isn't what you want to call (see set/clear_extent_bit).
447 */
448static int insert_state(struct extent_io_tree *tree,
449 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
450 struct rb_node ***p,
451 struct rb_node **parent,
d38ed27f 452 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
453{
454 struct rb_node *node;
455
31b1a2bd 456 if (end < start)
efe120a0 457 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 458 end, start);
d1310b2e
CM
459 state->start = start;
460 state->end = end;
9ed74f2d 461
d38ed27f 462 set_state_bits(tree, state, bits, changeset);
3150b699 463
f2071b21 464 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
465 if (node) {
466 struct extent_state *found;
467 found = rb_entry(node, struct extent_state, rb_node);
62e85577 468 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 469 found->start, found->end, start, end);
d1310b2e
CM
470 return -EEXIST;
471 }
472 merge_state(tree, state);
473 return 0;
474}
475
1bf85046 476static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
477 u64 split)
478{
479 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 480 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
481}
482
d1310b2e
CM
483/*
484 * split a given extent state struct in two, inserting the preallocated
485 * struct 'prealloc' as the newly created second half. 'split' indicates an
486 * offset inside 'orig' where it should be split.
487 *
488 * Before calling,
489 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
490 * are two extent state structs in the tree:
491 * prealloc: [orig->start, split - 1]
492 * orig: [ split, orig->end ]
493 *
494 * The tree locks are not taken by this function. They need to be held
495 * by the caller.
496 */
497static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
498 struct extent_state *prealloc, u64 split)
499{
500 struct rb_node *node;
9ed74f2d
JB
501
502 split_cb(tree, orig, split);
503
d1310b2e
CM
504 prealloc->start = orig->start;
505 prealloc->end = split - 1;
506 prealloc->state = orig->state;
507 orig->start = split;
508
f2071b21
FM
509 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
510 &prealloc->rb_node, NULL, NULL);
d1310b2e 511 if (node) {
d1310b2e
CM
512 free_extent_state(prealloc);
513 return -EEXIST;
514 }
515 return 0;
516}
517
cdc6a395
LZ
518static struct extent_state *next_state(struct extent_state *state)
519{
520 struct rb_node *next = rb_next(&state->rb_node);
521 if (next)
522 return rb_entry(next, struct extent_state, rb_node);
523 else
524 return NULL;
525}
526
d1310b2e
CM
527/*
528 * utility function to clear some bits in an extent state struct.
1b303fc0 529 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
530 *
531 * If no bits are set on the state struct after clearing things, the
532 * struct is freed and removed from the tree
533 */
cdc6a395
LZ
534static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
535 struct extent_state *state,
fefdc557
QW
536 unsigned *bits, int wake,
537 struct extent_changeset *changeset)
d1310b2e 538{
cdc6a395 539 struct extent_state *next;
9ee49a04 540 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 541
0ca1f7ce 542 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
543 u64 range = state->end - state->start + 1;
544 WARN_ON(range > tree->dirty_bytes);
545 tree->dirty_bytes -= range;
546 }
291d673e 547 clear_state_cb(tree, state, bits);
fefdc557 548 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 549 state->state &= ~bits_to_clear;
d1310b2e
CM
550 if (wake)
551 wake_up(&state->wq);
0ca1f7ce 552 if (state->state == 0) {
cdc6a395 553 next = next_state(state);
27a3507d 554 if (extent_state_in_tree(state)) {
d1310b2e 555 rb_erase(&state->rb_node, &tree->state);
27a3507d 556 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
557 free_extent_state(state);
558 } else {
559 WARN_ON(1);
560 }
561 } else {
562 merge_state(tree, state);
cdc6a395 563 next = next_state(state);
d1310b2e 564 }
cdc6a395 565 return next;
d1310b2e
CM
566}
567
8233767a
XG
568static struct extent_state *
569alloc_extent_state_atomic(struct extent_state *prealloc)
570{
571 if (!prealloc)
572 prealloc = alloc_extent_state(GFP_ATOMIC);
573
574 return prealloc;
575}
576
48a3b636 577static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 578{
5d163e0e
JM
579 btrfs_panic(tree_fs_info(tree), err,
580 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
581}
582
d1310b2e
CM
583/*
584 * clear some bits on a range in the tree. This may require splitting
585 * or inserting elements in the tree, so the gfp mask is used to
586 * indicate which allocations or sleeping are allowed.
587 *
588 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
589 * the given range from the tree regardless of state (ie for truncate).
590 *
591 * the range [start, end] is inclusive.
592 *
6763af84 593 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 594 */
fefdc557
QW
595static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
596 unsigned bits, int wake, int delete,
597 struct extent_state **cached_state,
598 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
599{
600 struct extent_state *state;
2c64c53d 601 struct extent_state *cached;
d1310b2e
CM
602 struct extent_state *prealloc = NULL;
603 struct rb_node *node;
5c939df5 604 u64 last_end;
d1310b2e 605 int err;
2ac55d41 606 int clear = 0;
d1310b2e 607
a5dee37d 608 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 609
7ee9e440
JB
610 if (bits & EXTENT_DELALLOC)
611 bits |= EXTENT_NORESERVE;
612
0ca1f7ce
YZ
613 if (delete)
614 bits |= ~EXTENT_CTLBITS;
615 bits |= EXTENT_FIRST_DELALLOC;
616
2ac55d41
JB
617 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
618 clear = 1;
d1310b2e 619again:
d0164adc 620 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
621 /*
622 * Don't care for allocation failure here because we might end
623 * up not needing the pre-allocated extent state at all, which
624 * is the case if we only have in the tree extent states that
625 * cover our input range and don't cover too any other range.
626 * If we end up needing a new extent state we allocate it later.
627 */
d1310b2e 628 prealloc = alloc_extent_state(mask);
d1310b2e
CM
629 }
630
cad321ad 631 spin_lock(&tree->lock);
2c64c53d
CM
632 if (cached_state) {
633 cached = *cached_state;
2ac55d41
JB
634
635 if (clear) {
636 *cached_state = NULL;
637 cached_state = NULL;
638 }
639
27a3507d
FM
640 if (cached && extent_state_in_tree(cached) &&
641 cached->start <= start && cached->end > start) {
2ac55d41
JB
642 if (clear)
643 atomic_dec(&cached->refs);
2c64c53d 644 state = cached;
42daec29 645 goto hit_next;
2c64c53d 646 }
2ac55d41
JB
647 if (clear)
648 free_extent_state(cached);
2c64c53d 649 }
d1310b2e
CM
650 /*
651 * this search will find the extents that end after
652 * our range starts
653 */
80ea96b1 654 node = tree_search(tree, start);
d1310b2e
CM
655 if (!node)
656 goto out;
657 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 658hit_next:
d1310b2e
CM
659 if (state->start > end)
660 goto out;
661 WARN_ON(state->end < start);
5c939df5 662 last_end = state->end;
d1310b2e 663
0449314a 664 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
665 if (!(state->state & bits)) {
666 state = next_state(state);
0449314a 667 goto next;
cdc6a395 668 }
0449314a 669
d1310b2e
CM
670 /*
671 * | ---- desired range ---- |
672 * | state | or
673 * | ------------- state -------------- |
674 *
675 * We need to split the extent we found, and may flip
676 * bits on second half.
677 *
678 * If the extent we found extends past our range, we
679 * just split and search again. It'll get split again
680 * the next time though.
681 *
682 * If the extent we found is inside our range, we clear
683 * the desired bit on it.
684 */
685
686 if (state->start < start) {
8233767a
XG
687 prealloc = alloc_extent_state_atomic(prealloc);
688 BUG_ON(!prealloc);
d1310b2e 689 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
690 if (err)
691 extent_io_tree_panic(tree, err);
692
d1310b2e
CM
693 prealloc = NULL;
694 if (err)
695 goto out;
696 if (state->end <= end) {
fefdc557
QW
697 state = clear_state_bit(tree, state, &bits, wake,
698 changeset);
d1ac6e41 699 goto next;
d1310b2e
CM
700 }
701 goto search_again;
702 }
703 /*
704 * | ---- desired range ---- |
705 * | state |
706 * We need to split the extent, and clear the bit
707 * on the first half
708 */
709 if (state->start <= end && state->end > end) {
8233767a
XG
710 prealloc = alloc_extent_state_atomic(prealloc);
711 BUG_ON(!prealloc);
d1310b2e 712 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
713 if (err)
714 extent_io_tree_panic(tree, err);
715
d1310b2e
CM
716 if (wake)
717 wake_up(&state->wq);
42daec29 718
fefdc557 719 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 720
d1310b2e
CM
721 prealloc = NULL;
722 goto out;
723 }
42daec29 724
fefdc557 725 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 726next:
5c939df5
YZ
727 if (last_end == (u64)-1)
728 goto out;
729 start = last_end + 1;
cdc6a395 730 if (start <= end && state && !need_resched())
692e5759 731 goto hit_next;
d1310b2e
CM
732
733search_again:
734 if (start > end)
735 goto out;
cad321ad 736 spin_unlock(&tree->lock);
d0164adc 737 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
738 cond_resched();
739 goto again;
7ab5cb2a
DS
740
741out:
742 spin_unlock(&tree->lock);
743 if (prealloc)
744 free_extent_state(prealloc);
745
746 return 0;
747
d1310b2e 748}
d1310b2e 749
143bede5
JM
750static void wait_on_state(struct extent_io_tree *tree,
751 struct extent_state *state)
641f5219
CH
752 __releases(tree->lock)
753 __acquires(tree->lock)
d1310b2e
CM
754{
755 DEFINE_WAIT(wait);
756 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 757 spin_unlock(&tree->lock);
d1310b2e 758 schedule();
cad321ad 759 spin_lock(&tree->lock);
d1310b2e 760 finish_wait(&state->wq, &wait);
d1310b2e
CM
761}
762
763/*
764 * waits for one or more bits to clear on a range in the state tree.
765 * The range [start, end] is inclusive.
766 * The tree lock is taken by this function
767 */
41074888
DS
768static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
769 unsigned long bits)
d1310b2e
CM
770{
771 struct extent_state *state;
772 struct rb_node *node;
773
a5dee37d 774 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 775
cad321ad 776 spin_lock(&tree->lock);
d1310b2e
CM
777again:
778 while (1) {
779 /*
780 * this search will find all the extents that end after
781 * our range starts
782 */
80ea96b1 783 node = tree_search(tree, start);
c50d3e71 784process_node:
d1310b2e
CM
785 if (!node)
786 break;
787
788 state = rb_entry(node, struct extent_state, rb_node);
789
790 if (state->start > end)
791 goto out;
792
793 if (state->state & bits) {
794 start = state->start;
795 atomic_inc(&state->refs);
796 wait_on_state(tree, state);
797 free_extent_state(state);
798 goto again;
799 }
800 start = state->end + 1;
801
802 if (start > end)
803 break;
804
c50d3e71
FM
805 if (!cond_resched_lock(&tree->lock)) {
806 node = rb_next(node);
807 goto process_node;
808 }
d1310b2e
CM
809 }
810out:
cad321ad 811 spin_unlock(&tree->lock);
d1310b2e 812}
d1310b2e 813
1bf85046 814static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 815 struct extent_state *state,
d38ed27f 816 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 817{
9ee49a04 818 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 819
1bf85046 820 set_state_cb(tree, state, bits);
0ca1f7ce 821 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
822 u64 range = state->end - state->start + 1;
823 tree->dirty_bytes += range;
824 }
d38ed27f 825 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 826 state->state |= bits_to_set;
d1310b2e
CM
827}
828
e38e2ed7
FM
829static void cache_state_if_flags(struct extent_state *state,
830 struct extent_state **cached_ptr,
9ee49a04 831 unsigned flags)
2c64c53d
CM
832{
833 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 834 if (!flags || (state->state & flags)) {
2c64c53d
CM
835 *cached_ptr = state;
836 atomic_inc(&state->refs);
837 }
838 }
839}
840
e38e2ed7
FM
841static void cache_state(struct extent_state *state,
842 struct extent_state **cached_ptr)
843{
844 return cache_state_if_flags(state, cached_ptr,
845 EXTENT_IOBITS | EXTENT_BOUNDARY);
846}
847
d1310b2e 848/*
1edbb734
CM
849 * set some bits on a range in the tree. This may require allocations or
850 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 851 *
1edbb734
CM
852 * If any of the exclusive bits are set, this will fail with -EEXIST if some
853 * part of the range already has the desired bits set. The start of the
854 * existing range is returned in failed_start in this case.
d1310b2e 855 *
1edbb734 856 * [start, end] is inclusive This takes the tree lock.
d1310b2e 857 */
1edbb734 858
3fbe5c02
JM
859static int __must_check
860__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 861 unsigned bits, unsigned exclusive_bits,
41074888 862 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 863 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
864{
865 struct extent_state *state;
866 struct extent_state *prealloc = NULL;
867 struct rb_node *node;
12cfbad9
FDBM
868 struct rb_node **p;
869 struct rb_node *parent;
d1310b2e 870 int err = 0;
d1310b2e
CM
871 u64 last_start;
872 u64 last_end;
42daec29 873
a5dee37d 874 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 875
0ca1f7ce 876 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 877again:
d0164adc 878 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
879 /*
880 * Don't care for allocation failure here because we might end
881 * up not needing the pre-allocated extent state at all, which
882 * is the case if we only have in the tree extent states that
883 * cover our input range and don't cover too any other range.
884 * If we end up needing a new extent state we allocate it later.
885 */
d1310b2e 886 prealloc = alloc_extent_state(mask);
d1310b2e
CM
887 }
888
cad321ad 889 spin_lock(&tree->lock);
9655d298
CM
890 if (cached_state && *cached_state) {
891 state = *cached_state;
df98b6e2 892 if (state->start <= start && state->end > start &&
27a3507d 893 extent_state_in_tree(state)) {
9655d298
CM
894 node = &state->rb_node;
895 goto hit_next;
896 }
897 }
d1310b2e
CM
898 /*
899 * this search will find all the extents that end after
900 * our range starts.
901 */
12cfbad9 902 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 903 if (!node) {
8233767a
XG
904 prealloc = alloc_extent_state_atomic(prealloc);
905 BUG_ON(!prealloc);
12cfbad9 906 err = insert_state(tree, prealloc, start, end,
d38ed27f 907 &p, &parent, &bits, changeset);
c2d904e0
JM
908 if (err)
909 extent_io_tree_panic(tree, err);
910
c42ac0bc 911 cache_state(prealloc, cached_state);
d1310b2e 912 prealloc = NULL;
d1310b2e
CM
913 goto out;
914 }
d1310b2e 915 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 916hit_next:
d1310b2e
CM
917 last_start = state->start;
918 last_end = state->end;
919
920 /*
921 * | ---- desired range ---- |
922 * | state |
923 *
924 * Just lock what we found and keep going
925 */
926 if (state->start == start && state->end <= end) {
1edbb734 927 if (state->state & exclusive_bits) {
d1310b2e
CM
928 *failed_start = state->start;
929 err = -EEXIST;
930 goto out;
931 }
42daec29 932
d38ed27f 933 set_state_bits(tree, state, &bits, changeset);
2c64c53d 934 cache_state(state, cached_state);
d1310b2e 935 merge_state(tree, state);
5c939df5
YZ
936 if (last_end == (u64)-1)
937 goto out;
938 start = last_end + 1;
d1ac6e41
LB
939 state = next_state(state);
940 if (start < end && state && state->start == start &&
941 !need_resched())
942 goto hit_next;
d1310b2e
CM
943 goto search_again;
944 }
945
946 /*
947 * | ---- desired range ---- |
948 * | state |
949 * or
950 * | ------------- state -------------- |
951 *
952 * We need to split the extent we found, and may flip bits on
953 * second half.
954 *
955 * If the extent we found extends past our
956 * range, we just split and search again. It'll get split
957 * again the next time though.
958 *
959 * If the extent we found is inside our range, we set the
960 * desired bit on it.
961 */
962 if (state->start < start) {
1edbb734 963 if (state->state & exclusive_bits) {
d1310b2e
CM
964 *failed_start = start;
965 err = -EEXIST;
966 goto out;
967 }
8233767a
XG
968
969 prealloc = alloc_extent_state_atomic(prealloc);
970 BUG_ON(!prealloc);
d1310b2e 971 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
972 if (err)
973 extent_io_tree_panic(tree, err);
974
d1310b2e
CM
975 prealloc = NULL;
976 if (err)
977 goto out;
978 if (state->end <= end) {
d38ed27f 979 set_state_bits(tree, state, &bits, changeset);
2c64c53d 980 cache_state(state, cached_state);
d1310b2e 981 merge_state(tree, state);
5c939df5
YZ
982 if (last_end == (u64)-1)
983 goto out;
984 start = last_end + 1;
d1ac6e41
LB
985 state = next_state(state);
986 if (start < end && state && state->start == start &&
987 !need_resched())
988 goto hit_next;
d1310b2e
CM
989 }
990 goto search_again;
991 }
992 /*
993 * | ---- desired range ---- |
994 * | state | or | state |
995 *
996 * There's a hole, we need to insert something in it and
997 * ignore the extent we found.
998 */
999 if (state->start > start) {
1000 u64 this_end;
1001 if (end < last_start)
1002 this_end = end;
1003 else
d397712b 1004 this_end = last_start - 1;
8233767a
XG
1005
1006 prealloc = alloc_extent_state_atomic(prealloc);
1007 BUG_ON(!prealloc);
c7f895a2
XG
1008
1009 /*
1010 * Avoid to free 'prealloc' if it can be merged with
1011 * the later extent.
1012 */
d1310b2e 1013 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1014 NULL, NULL, &bits, changeset);
c2d904e0
JM
1015 if (err)
1016 extent_io_tree_panic(tree, err);
1017
9ed74f2d
JB
1018 cache_state(prealloc, cached_state);
1019 prealloc = NULL;
d1310b2e
CM
1020 start = this_end + 1;
1021 goto search_again;
1022 }
1023 /*
1024 * | ---- desired range ---- |
1025 * | state |
1026 * We need to split the extent, and set the bit
1027 * on the first half
1028 */
1029 if (state->start <= end && state->end > end) {
1edbb734 1030 if (state->state & exclusive_bits) {
d1310b2e
CM
1031 *failed_start = start;
1032 err = -EEXIST;
1033 goto out;
1034 }
8233767a
XG
1035
1036 prealloc = alloc_extent_state_atomic(prealloc);
1037 BUG_ON(!prealloc);
d1310b2e 1038 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1039 if (err)
1040 extent_io_tree_panic(tree, err);
d1310b2e 1041
d38ed27f 1042 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1043 cache_state(prealloc, cached_state);
d1310b2e
CM
1044 merge_state(tree, prealloc);
1045 prealloc = NULL;
1046 goto out;
1047 }
1048
b5a4ba14
DS
1049search_again:
1050 if (start > end)
1051 goto out;
1052 spin_unlock(&tree->lock);
1053 if (gfpflags_allow_blocking(mask))
1054 cond_resched();
1055 goto again;
d1310b2e
CM
1056
1057out:
cad321ad 1058 spin_unlock(&tree->lock);
d1310b2e
CM
1059 if (prealloc)
1060 free_extent_state(prealloc);
1061
1062 return err;
1063
d1310b2e 1064}
d1310b2e 1065
41074888 1066int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1067 unsigned bits, u64 * failed_start,
41074888 1068 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1069{
1070 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1071 cached_state, mask, NULL);
3fbe5c02
JM
1072}
1073
1074
462d6fac 1075/**
10983f2e
LB
1076 * convert_extent_bit - convert all bits in a given range from one bit to
1077 * another
462d6fac
JB
1078 * @tree: the io tree to search
1079 * @start: the start offset in bytes
1080 * @end: the end offset in bytes (inclusive)
1081 * @bits: the bits to set in this range
1082 * @clear_bits: the bits to clear in this range
e6138876 1083 * @cached_state: state that we're going to cache
462d6fac
JB
1084 *
1085 * This will go through and set bits for the given range. If any states exist
1086 * already in this range they are set with the given bit and cleared of the
1087 * clear_bits. This is only meant to be used by things that are mergeable, ie
1088 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1089 * boundary bits like LOCK.
210aa277
DS
1090 *
1091 * All allocations are done with GFP_NOFS.
462d6fac
JB
1092 */
1093int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1094 unsigned bits, unsigned clear_bits,
210aa277 1095 struct extent_state **cached_state)
462d6fac
JB
1096{
1097 struct extent_state *state;
1098 struct extent_state *prealloc = NULL;
1099 struct rb_node *node;
12cfbad9
FDBM
1100 struct rb_node **p;
1101 struct rb_node *parent;
462d6fac
JB
1102 int err = 0;
1103 u64 last_start;
1104 u64 last_end;
c8fd3de7 1105 bool first_iteration = true;
462d6fac 1106
a5dee37d 1107 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1108
462d6fac 1109again:
210aa277 1110 if (!prealloc) {
c8fd3de7
FM
1111 /*
1112 * Best effort, don't worry if extent state allocation fails
1113 * here for the first iteration. We might have a cached state
1114 * that matches exactly the target range, in which case no
1115 * extent state allocations are needed. We'll only know this
1116 * after locking the tree.
1117 */
210aa277 1118 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1119 if (!prealloc && !first_iteration)
462d6fac
JB
1120 return -ENOMEM;
1121 }
1122
1123 spin_lock(&tree->lock);
e6138876
JB
1124 if (cached_state && *cached_state) {
1125 state = *cached_state;
1126 if (state->start <= start && state->end > start &&
27a3507d 1127 extent_state_in_tree(state)) {
e6138876
JB
1128 node = &state->rb_node;
1129 goto hit_next;
1130 }
1131 }
1132
462d6fac
JB
1133 /*
1134 * this search will find all the extents that end after
1135 * our range starts.
1136 */
12cfbad9 1137 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1138 if (!node) {
1139 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1140 if (!prealloc) {
1141 err = -ENOMEM;
1142 goto out;
1143 }
12cfbad9 1144 err = insert_state(tree, prealloc, start, end,
d38ed27f 1145 &p, &parent, &bits, NULL);
c2d904e0
JM
1146 if (err)
1147 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1148 cache_state(prealloc, cached_state);
1149 prealloc = NULL;
462d6fac
JB
1150 goto out;
1151 }
1152 state = rb_entry(node, struct extent_state, rb_node);
1153hit_next:
1154 last_start = state->start;
1155 last_end = state->end;
1156
1157 /*
1158 * | ---- desired range ---- |
1159 * | state |
1160 *
1161 * Just lock what we found and keep going
1162 */
1163 if (state->start == start && state->end <= end) {
d38ed27f 1164 set_state_bits(tree, state, &bits, NULL);
e6138876 1165 cache_state(state, cached_state);
fefdc557 1166 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1167 if (last_end == (u64)-1)
1168 goto out;
462d6fac 1169 start = last_end + 1;
d1ac6e41
LB
1170 if (start < end && state && state->start == start &&
1171 !need_resched())
1172 goto hit_next;
462d6fac
JB
1173 goto search_again;
1174 }
1175
1176 /*
1177 * | ---- desired range ---- |
1178 * | state |
1179 * or
1180 * | ------------- state -------------- |
1181 *
1182 * We need to split the extent we found, and may flip bits on
1183 * second half.
1184 *
1185 * If the extent we found extends past our
1186 * range, we just split and search again. It'll get split
1187 * again the next time though.
1188 *
1189 * If the extent we found is inside our range, we set the
1190 * desired bit on it.
1191 */
1192 if (state->start < start) {
1193 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1194 if (!prealloc) {
1195 err = -ENOMEM;
1196 goto out;
1197 }
462d6fac 1198 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1199 if (err)
1200 extent_io_tree_panic(tree, err);
462d6fac
JB
1201 prealloc = NULL;
1202 if (err)
1203 goto out;
1204 if (state->end <= end) {
d38ed27f 1205 set_state_bits(tree, state, &bits, NULL);
e6138876 1206 cache_state(state, cached_state);
fefdc557
QW
1207 state = clear_state_bit(tree, state, &clear_bits, 0,
1208 NULL);
462d6fac
JB
1209 if (last_end == (u64)-1)
1210 goto out;
1211 start = last_end + 1;
d1ac6e41
LB
1212 if (start < end && state && state->start == start &&
1213 !need_resched())
1214 goto hit_next;
462d6fac
JB
1215 }
1216 goto search_again;
1217 }
1218 /*
1219 * | ---- desired range ---- |
1220 * | state | or | state |
1221 *
1222 * There's a hole, we need to insert something in it and
1223 * ignore the extent we found.
1224 */
1225 if (state->start > start) {
1226 u64 this_end;
1227 if (end < last_start)
1228 this_end = end;
1229 else
1230 this_end = last_start - 1;
1231
1232 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1233 if (!prealloc) {
1234 err = -ENOMEM;
1235 goto out;
1236 }
462d6fac
JB
1237
1238 /*
1239 * Avoid to free 'prealloc' if it can be merged with
1240 * the later extent.
1241 */
1242 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1243 NULL, NULL, &bits, NULL);
c2d904e0
JM
1244 if (err)
1245 extent_io_tree_panic(tree, err);
e6138876 1246 cache_state(prealloc, cached_state);
462d6fac
JB
1247 prealloc = NULL;
1248 start = this_end + 1;
1249 goto search_again;
1250 }
1251 /*
1252 * | ---- desired range ---- |
1253 * | state |
1254 * We need to split the extent, and set the bit
1255 * on the first half
1256 */
1257 if (state->start <= end && state->end > end) {
1258 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1259 if (!prealloc) {
1260 err = -ENOMEM;
1261 goto out;
1262 }
462d6fac
JB
1263
1264 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1265 if (err)
1266 extent_io_tree_panic(tree, err);
462d6fac 1267
d38ed27f 1268 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1269 cache_state(prealloc, cached_state);
fefdc557 1270 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1271 prealloc = NULL;
1272 goto out;
1273 }
1274
462d6fac
JB
1275search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
210aa277 1279 cond_resched();
c8fd3de7 1280 first_iteration = false;
462d6fac 1281 goto again;
462d6fac
JB
1282
1283out:
1284 spin_unlock(&tree->lock);
1285 if (prealloc)
1286 free_extent_state(prealloc);
1287
1288 return err;
462d6fac
JB
1289}
1290
d1310b2e 1291/* wrappers around set/clear extent bit */
d38ed27f 1292int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1293 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1294{
1295 /*
1296 * We don't support EXTENT_LOCKED yet, as current changeset will
1297 * record any bits changed, so for EXTENT_LOCKED case, it will
1298 * either fail with -EEXIST or changeset will record the whole
1299 * range.
1300 */
1301 BUG_ON(bits & EXTENT_LOCKED);
1302
2c53b912 1303 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1304 changeset);
1305}
1306
fefdc557
QW
1307int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1308 unsigned bits, int wake, int delete,
1309 struct extent_state **cached, gfp_t mask)
1310{
1311 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1312 cached, mask, NULL);
1313}
1314
fefdc557 1315int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1316 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1317{
1318 /*
1319 * Don't support EXTENT_LOCKED case, same reason as
1320 * set_record_extent_bits().
1321 */
1322 BUG_ON(bits & EXTENT_LOCKED);
1323
f734c44a 1324 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1325 changeset);
1326}
1327
d352ac68
CM
1328/*
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1331 */
1edbb734 1332int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1333 struct extent_state **cached_state)
d1310b2e
CM
1334{
1335 int err;
1336 u64 failed_start;
9ee49a04 1337
d1310b2e 1338 while (1) {
ff13db41 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1340 EXTENT_LOCKED, &failed_start,
d38ed27f 1341 cached_state, GFP_NOFS, NULL);
d0082371 1342 if (err == -EEXIST) {
d1310b2e
CM
1343 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1344 start = failed_start;
d0082371 1345 } else
d1310b2e 1346 break;
d1310b2e
CM
1347 WARN_ON(start > end);
1348 }
1349 return err;
1350}
d1310b2e 1351
d0082371 1352int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1353{
1354 int err;
1355 u64 failed_start;
1356
3fbe5c02 1357 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1358 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1359 if (err == -EEXIST) {
1360 if (failed_start > start)
1361 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1362 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1363 return 0;
6643558d 1364 }
25179201
JB
1365 return 1;
1366}
25179201 1367
bd1fa4f0 1368void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1369{
09cbfeaf
KS
1370 unsigned long index = start >> PAGE_SHIFT;
1371 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1372 struct page *page;
1373
1374 while (index <= end_index) {
1375 page = find_get_page(inode->i_mapping, index);
1376 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1377 clear_page_dirty_for_io(page);
09cbfeaf 1378 put_page(page);
4adaa611
CM
1379 index++;
1380 }
4adaa611
CM
1381}
1382
f6311572 1383void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1384{
09cbfeaf
KS
1385 unsigned long index = start >> PAGE_SHIFT;
1386 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1387 struct page *page;
1388
1389 while (index <= end_index) {
1390 page = find_get_page(inode->i_mapping, index);
1391 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1392 __set_page_dirty_nobuffers(page);
8d38633c 1393 account_page_redirty(page);
09cbfeaf 1394 put_page(page);
4adaa611
CM
1395 index++;
1396 }
4adaa611
CM
1397}
1398
d1310b2e
CM
1399/*
1400 * helper function to set both pages and extents in the tree writeback
1401 */
35de6db2 1402static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1403{
09cbfeaf
KS
1404 unsigned long index = start >> PAGE_SHIFT;
1405 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1406 struct page *page;
1407
1408 while (index <= end_index) {
1409 page = find_get_page(tree->mapping, index);
79787eaa 1410 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1411 set_page_writeback(page);
09cbfeaf 1412 put_page(page);
d1310b2e
CM
1413 index++;
1414 }
d1310b2e 1415}
d1310b2e 1416
d352ac68
CM
1417/* find the first state struct with 'bits' set after 'start', and
1418 * return it. tree->lock must be held. NULL will returned if
1419 * nothing was found after 'start'
1420 */
48a3b636
ES
1421static struct extent_state *
1422find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1423 u64 start, unsigned bits)
d7fc640e
CM
1424{
1425 struct rb_node *node;
1426 struct extent_state *state;
1427
1428 /*
1429 * this search will find all the extents that end after
1430 * our range starts.
1431 */
1432 node = tree_search(tree, start);
d397712b 1433 if (!node)
d7fc640e 1434 goto out;
d7fc640e 1435
d397712b 1436 while (1) {
d7fc640e 1437 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1438 if (state->end >= start && (state->state & bits))
d7fc640e 1439 return state;
d397712b 1440
d7fc640e
CM
1441 node = rb_next(node);
1442 if (!node)
1443 break;
1444 }
1445out:
1446 return NULL;
1447}
d7fc640e 1448
69261c4b
XG
1449/*
1450 * find the first offset in the io tree with 'bits' set. zero is
1451 * returned if we find something, and *start_ret and *end_ret are
1452 * set to reflect the state struct that was found.
1453 *
477d7eaf 1454 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1455 */
1456int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1457 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1458 struct extent_state **cached_state)
69261c4b
XG
1459{
1460 struct extent_state *state;
e6138876 1461 struct rb_node *n;
69261c4b
XG
1462 int ret = 1;
1463
1464 spin_lock(&tree->lock);
e6138876
JB
1465 if (cached_state && *cached_state) {
1466 state = *cached_state;
27a3507d 1467 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1468 n = rb_next(&state->rb_node);
1469 while (n) {
1470 state = rb_entry(n, struct extent_state,
1471 rb_node);
1472 if (state->state & bits)
1473 goto got_it;
1474 n = rb_next(n);
1475 }
1476 free_extent_state(*cached_state);
1477 *cached_state = NULL;
1478 goto out;
1479 }
1480 free_extent_state(*cached_state);
1481 *cached_state = NULL;
1482 }
1483
69261c4b 1484 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1485got_it:
69261c4b 1486 if (state) {
e38e2ed7 1487 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1488 *start_ret = state->start;
1489 *end_ret = state->end;
1490 ret = 0;
1491 }
e6138876 1492out:
69261c4b
XG
1493 spin_unlock(&tree->lock);
1494 return ret;
1495}
1496
d352ac68
CM
1497/*
1498 * find a contiguous range of bytes in the file marked as delalloc, not
1499 * more than 'max_bytes'. start and end are used to return the range,
1500 *
1501 * 1 is returned if we find something, 0 if nothing was in the tree
1502 */
c8b97818 1503static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1504 u64 *start, u64 *end, u64 max_bytes,
1505 struct extent_state **cached_state)
d1310b2e
CM
1506{
1507 struct rb_node *node;
1508 struct extent_state *state;
1509 u64 cur_start = *start;
1510 u64 found = 0;
1511 u64 total_bytes = 0;
1512
cad321ad 1513 spin_lock(&tree->lock);
c8b97818 1514
d1310b2e
CM
1515 /*
1516 * this search will find all the extents that end after
1517 * our range starts.
1518 */
80ea96b1 1519 node = tree_search(tree, cur_start);
2b114d1d 1520 if (!node) {
3b951516
CM
1521 if (!found)
1522 *end = (u64)-1;
d1310b2e
CM
1523 goto out;
1524 }
1525
d397712b 1526 while (1) {
d1310b2e 1527 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1528 if (found && (state->start != cur_start ||
1529 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1530 goto out;
1531 }
1532 if (!(state->state & EXTENT_DELALLOC)) {
1533 if (!found)
1534 *end = state->end;
1535 goto out;
1536 }
c2a128d2 1537 if (!found) {
d1310b2e 1538 *start = state->start;
c2a128d2
JB
1539 *cached_state = state;
1540 atomic_inc(&state->refs);
1541 }
d1310b2e
CM
1542 found++;
1543 *end = state->end;
1544 cur_start = state->end + 1;
1545 node = rb_next(node);
d1310b2e 1546 total_bytes += state->end - state->start + 1;
7bf811a5 1547 if (total_bytes >= max_bytes)
573aecaf 1548 break;
573aecaf 1549 if (!node)
d1310b2e
CM
1550 break;
1551 }
1552out:
cad321ad 1553 spin_unlock(&tree->lock);
d1310b2e
CM
1554 return found;
1555}
1556
da2c7009
LB
1557static int __process_pages_contig(struct address_space *mapping,
1558 struct page *locked_page,
1559 pgoff_t start_index, pgoff_t end_index,
1560 unsigned long page_ops, pgoff_t *index_ret);
1561
143bede5
JM
1562static noinline void __unlock_for_delalloc(struct inode *inode,
1563 struct page *locked_page,
1564 u64 start, u64 end)
c8b97818 1565{
09cbfeaf
KS
1566 unsigned long index = start >> PAGE_SHIFT;
1567 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1568
76c0021d 1569 ASSERT(locked_page);
c8b97818 1570 if (index == locked_page->index && end_index == index)
143bede5 1571 return;
c8b97818 1572
76c0021d
LB
1573 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1574 PAGE_UNLOCK, NULL);
c8b97818
CM
1575}
1576
1577static noinline int lock_delalloc_pages(struct inode *inode,
1578 struct page *locked_page,
1579 u64 delalloc_start,
1580 u64 delalloc_end)
1581{
09cbfeaf 1582 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1583 unsigned long index_ret = index;
09cbfeaf 1584 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1585 int ret;
c8b97818 1586
76c0021d 1587 ASSERT(locked_page);
c8b97818
CM
1588 if (index == locked_page->index && index == end_index)
1589 return 0;
1590
76c0021d
LB
1591 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1592 end_index, PAGE_LOCK, &index_ret);
1593 if (ret == -EAGAIN)
1594 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1595 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1596 return ret;
1597}
1598
1599/*
1600 * find a contiguous range of bytes in the file marked as delalloc, not
1601 * more than 'max_bytes'. start and end are used to return the range,
1602 *
1603 * 1 is returned if we find something, 0 if nothing was in the tree
1604 */
294e30fe
JB
1605STATIC u64 find_lock_delalloc_range(struct inode *inode,
1606 struct extent_io_tree *tree,
1607 struct page *locked_page, u64 *start,
1608 u64 *end, u64 max_bytes)
c8b97818
CM
1609{
1610 u64 delalloc_start;
1611 u64 delalloc_end;
1612 u64 found;
9655d298 1613 struct extent_state *cached_state = NULL;
c8b97818
CM
1614 int ret;
1615 int loops = 0;
1616
1617again:
1618 /* step one, find a bunch of delalloc bytes starting at start */
1619 delalloc_start = *start;
1620 delalloc_end = 0;
1621 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1622 max_bytes, &cached_state);
70b99e69 1623 if (!found || delalloc_end <= *start) {
c8b97818
CM
1624 *start = delalloc_start;
1625 *end = delalloc_end;
c2a128d2 1626 free_extent_state(cached_state);
385fe0be 1627 return 0;
c8b97818
CM
1628 }
1629
70b99e69
CM
1630 /*
1631 * start comes from the offset of locked_page. We have to lock
1632 * pages in order, so we can't process delalloc bytes before
1633 * locked_page
1634 */
d397712b 1635 if (delalloc_start < *start)
70b99e69 1636 delalloc_start = *start;
70b99e69 1637
c8b97818
CM
1638 /*
1639 * make sure to limit the number of pages we try to lock down
c8b97818 1640 */
7bf811a5
JB
1641 if (delalloc_end + 1 - delalloc_start > max_bytes)
1642 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1643
c8b97818
CM
1644 /* step two, lock all the pages after the page that has start */
1645 ret = lock_delalloc_pages(inode, locked_page,
1646 delalloc_start, delalloc_end);
1647 if (ret == -EAGAIN) {
1648 /* some of the pages are gone, lets avoid looping by
1649 * shortening the size of the delalloc range we're searching
1650 */
9655d298 1651 free_extent_state(cached_state);
7d788742 1652 cached_state = NULL;
c8b97818 1653 if (!loops) {
09cbfeaf 1654 max_bytes = PAGE_SIZE;
c8b97818
CM
1655 loops = 1;
1656 goto again;
1657 } else {
1658 found = 0;
1659 goto out_failed;
1660 }
1661 }
79787eaa 1662 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1663
1664 /* step three, lock the state bits for the whole range */
ff13db41 1665 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1666
1667 /* then test to make sure it is all still delalloc */
1668 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1669 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1670 if (!ret) {
9655d298
CM
1671 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1672 &cached_state, GFP_NOFS);
c8b97818
CM
1673 __unlock_for_delalloc(inode, locked_page,
1674 delalloc_start, delalloc_end);
1675 cond_resched();
1676 goto again;
1677 }
9655d298 1678 free_extent_state(cached_state);
c8b97818
CM
1679 *start = delalloc_start;
1680 *end = delalloc_end;
1681out_failed:
1682 return found;
1683}
1684
da2c7009
LB
1685static int __process_pages_contig(struct address_space *mapping,
1686 struct page *locked_page,
1687 pgoff_t start_index, pgoff_t end_index,
1688 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1689{
873695b3 1690 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1691 unsigned long pages_locked = 0;
873695b3 1692 pgoff_t index = start_index;
c8b97818 1693 struct page *pages[16];
873695b3 1694 unsigned ret;
da2c7009 1695 int err = 0;
c8b97818 1696 int i;
771ed689 1697
da2c7009
LB
1698 if (page_ops & PAGE_LOCK) {
1699 ASSERT(page_ops == PAGE_LOCK);
1700 ASSERT(index_ret && *index_ret == start_index);
1701 }
1702
704de49d 1703 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1704 mapping_set_error(mapping, -EIO);
704de49d 1705
d397712b 1706 while (nr_pages > 0) {
873695b3 1707 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1708 min_t(unsigned long,
1709 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1710 if (ret == 0) {
1711 /*
1712 * Only if we're going to lock these pages,
1713 * can we find nothing at @index.
1714 */
1715 ASSERT(page_ops & PAGE_LOCK);
1716 return ret;
1717 }
8b62b72b 1718
da2c7009 1719 for (i = 0; i < ret; i++) {
c2790a2e 1720 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1721 SetPagePrivate2(pages[i]);
1722
c8b97818 1723 if (pages[i] == locked_page) {
09cbfeaf 1724 put_page(pages[i]);
da2c7009 1725 pages_locked++;
c8b97818
CM
1726 continue;
1727 }
c2790a2e 1728 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1729 clear_page_dirty_for_io(pages[i]);
c2790a2e 1730 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1731 set_page_writeback(pages[i]);
704de49d
FM
1732 if (page_ops & PAGE_SET_ERROR)
1733 SetPageError(pages[i]);
c2790a2e 1734 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1735 end_page_writeback(pages[i]);
c2790a2e 1736 if (page_ops & PAGE_UNLOCK)
771ed689 1737 unlock_page(pages[i]);
da2c7009
LB
1738 if (page_ops & PAGE_LOCK) {
1739 lock_page(pages[i]);
1740 if (!PageDirty(pages[i]) ||
1741 pages[i]->mapping != mapping) {
1742 unlock_page(pages[i]);
1743 put_page(pages[i]);
1744 err = -EAGAIN;
1745 goto out;
1746 }
1747 }
09cbfeaf 1748 put_page(pages[i]);
da2c7009 1749 pages_locked++;
c8b97818
CM
1750 }
1751 nr_pages -= ret;
1752 index += ret;
1753 cond_resched();
1754 }
da2c7009
LB
1755out:
1756 if (err && index_ret)
1757 *index_ret = start_index + pages_locked - 1;
1758 return err;
c8b97818 1759}
c8b97818 1760
873695b3
LB
1761void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1762 u64 delalloc_end, struct page *locked_page,
1763 unsigned clear_bits,
1764 unsigned long page_ops)
1765{
1766 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1767 NULL, GFP_NOFS);
1768
1769 __process_pages_contig(inode->i_mapping, locked_page,
1770 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1771 page_ops, NULL);
873695b3
LB
1772}
1773
d352ac68
CM
1774/*
1775 * count the number of bytes in the tree that have a given bit(s)
1776 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1777 * cached. The total number found is returned.
1778 */
d1310b2e
CM
1779u64 count_range_bits(struct extent_io_tree *tree,
1780 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1781 unsigned bits, int contig)
d1310b2e
CM
1782{
1783 struct rb_node *node;
1784 struct extent_state *state;
1785 u64 cur_start = *start;
1786 u64 total_bytes = 0;
ec29ed5b 1787 u64 last = 0;
d1310b2e
CM
1788 int found = 0;
1789
fae7f21c 1790 if (WARN_ON(search_end <= cur_start))
d1310b2e 1791 return 0;
d1310b2e 1792
cad321ad 1793 spin_lock(&tree->lock);
d1310b2e
CM
1794 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1795 total_bytes = tree->dirty_bytes;
1796 goto out;
1797 }
1798 /*
1799 * this search will find all the extents that end after
1800 * our range starts.
1801 */
80ea96b1 1802 node = tree_search(tree, cur_start);
d397712b 1803 if (!node)
d1310b2e 1804 goto out;
d1310b2e 1805
d397712b 1806 while (1) {
d1310b2e
CM
1807 state = rb_entry(node, struct extent_state, rb_node);
1808 if (state->start > search_end)
1809 break;
ec29ed5b
CM
1810 if (contig && found && state->start > last + 1)
1811 break;
1812 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1813 total_bytes += min(search_end, state->end) + 1 -
1814 max(cur_start, state->start);
1815 if (total_bytes >= max_bytes)
1816 break;
1817 if (!found) {
af60bed2 1818 *start = max(cur_start, state->start);
d1310b2e
CM
1819 found = 1;
1820 }
ec29ed5b
CM
1821 last = state->end;
1822 } else if (contig && found) {
1823 break;
d1310b2e
CM
1824 }
1825 node = rb_next(node);
1826 if (!node)
1827 break;
1828 }
1829out:
cad321ad 1830 spin_unlock(&tree->lock);
d1310b2e
CM
1831 return total_bytes;
1832}
b2950863 1833
d352ac68
CM
1834/*
1835 * set the private field for a given byte offset in the tree. If there isn't
1836 * an extent_state there already, this does nothing.
1837 */
f827ba9a 1838static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1839 struct io_failure_record *failrec)
d1310b2e
CM
1840{
1841 struct rb_node *node;
1842 struct extent_state *state;
1843 int ret = 0;
1844
cad321ad 1845 spin_lock(&tree->lock);
d1310b2e
CM
1846 /*
1847 * this search will find all the extents that end after
1848 * our range starts.
1849 */
80ea96b1 1850 node = tree_search(tree, start);
2b114d1d 1851 if (!node) {
d1310b2e
CM
1852 ret = -ENOENT;
1853 goto out;
1854 }
1855 state = rb_entry(node, struct extent_state, rb_node);
1856 if (state->start != start) {
1857 ret = -ENOENT;
1858 goto out;
1859 }
47dc196a 1860 state->failrec = failrec;
d1310b2e 1861out:
cad321ad 1862 spin_unlock(&tree->lock);
d1310b2e
CM
1863 return ret;
1864}
1865
f827ba9a 1866static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1867 struct io_failure_record **failrec)
d1310b2e
CM
1868{
1869 struct rb_node *node;
1870 struct extent_state *state;
1871 int ret = 0;
1872
cad321ad 1873 spin_lock(&tree->lock);
d1310b2e
CM
1874 /*
1875 * this search will find all the extents that end after
1876 * our range starts.
1877 */
80ea96b1 1878 node = tree_search(tree, start);
2b114d1d 1879 if (!node) {
d1310b2e
CM
1880 ret = -ENOENT;
1881 goto out;
1882 }
1883 state = rb_entry(node, struct extent_state, rb_node);
1884 if (state->start != start) {
1885 ret = -ENOENT;
1886 goto out;
1887 }
47dc196a 1888 *failrec = state->failrec;
d1310b2e 1889out:
cad321ad 1890 spin_unlock(&tree->lock);
d1310b2e
CM
1891 return ret;
1892}
1893
1894/*
1895 * searches a range in the state tree for a given mask.
70dec807 1896 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1897 * has the bits set. Otherwise, 1 is returned if any bit in the
1898 * range is found set.
1899 */
1900int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1901 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1902{
1903 struct extent_state *state = NULL;
1904 struct rb_node *node;
1905 int bitset = 0;
d1310b2e 1906
cad321ad 1907 spin_lock(&tree->lock);
27a3507d 1908 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1909 cached->end > start)
9655d298
CM
1910 node = &cached->rb_node;
1911 else
1912 node = tree_search(tree, start);
d1310b2e
CM
1913 while (node && start <= end) {
1914 state = rb_entry(node, struct extent_state, rb_node);
1915
1916 if (filled && state->start > start) {
1917 bitset = 0;
1918 break;
1919 }
1920
1921 if (state->start > end)
1922 break;
1923
1924 if (state->state & bits) {
1925 bitset = 1;
1926 if (!filled)
1927 break;
1928 } else if (filled) {
1929 bitset = 0;
1930 break;
1931 }
46562cec
CM
1932
1933 if (state->end == (u64)-1)
1934 break;
1935
d1310b2e
CM
1936 start = state->end + 1;
1937 if (start > end)
1938 break;
1939 node = rb_next(node);
1940 if (!node) {
1941 if (filled)
1942 bitset = 0;
1943 break;
1944 }
1945 }
cad321ad 1946 spin_unlock(&tree->lock);
d1310b2e
CM
1947 return bitset;
1948}
d1310b2e
CM
1949
1950/*
1951 * helper function to set a given page up to date if all the
1952 * extents in the tree for that page are up to date
1953 */
143bede5 1954static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1955{
4eee4fa4 1956 u64 start = page_offset(page);
09cbfeaf 1957 u64 end = start + PAGE_SIZE - 1;
9655d298 1958 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1959 SetPageUptodate(page);
d1310b2e
CM
1960}
1961
8b110e39 1962int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1963{
1964 int ret;
1965 int err = 0;
1966 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1967
47dc196a 1968 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1969 ret = clear_extent_bits(failure_tree, rec->start,
1970 rec->start + rec->len - 1,
91166212 1971 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1972 if (ret)
1973 err = ret;
1974
53b381b3
DW
1975 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1976 rec->start + rec->len - 1,
91166212 1977 EXTENT_DAMAGED);
53b381b3
DW
1978 if (ret && !err)
1979 err = ret;
4a54c8c1
JS
1980
1981 kfree(rec);
1982 return err;
1983}
1984
4a54c8c1
JS
1985/*
1986 * this bypasses the standard btrfs submit functions deliberately, as
1987 * the standard behavior is to write all copies in a raid setup. here we only
1988 * want to write the one bad copy. so we do the mapping for ourselves and issue
1989 * submit_bio directly.
3ec706c8 1990 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1991 * actually prevents the read that triggered the error from finishing.
1992 * currently, there can be no more than two copies of every data bit. thus,
1993 * exactly one rewrite is required.
1994 */
1203b681
MX
1995int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
1996 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 1997{
1203b681 1998 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
1999 struct bio *bio;
2000 struct btrfs_device *dev;
4a54c8c1
JS
2001 u64 map_length = 0;
2002 u64 sector;
2003 struct btrfs_bio *bbio = NULL;
53b381b3 2004 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2005 int ret;
2006
908960c6 2007 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2008 BUG_ON(!mirror_num);
2009
53b381b3
DW
2010 /* we can't repair anything in raid56 yet */
2011 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2012 return 0;
2013
9be3395b 2014 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2015 if (!bio)
2016 return -EIO;
4f024f37 2017 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2018 map_length = length;
2019
b5de8d0d
FM
2020 /*
2021 * Avoid races with device replace and make sure our bbio has devices
2022 * associated to its stripes that don't go away while we are doing the
2023 * read repair operation.
2024 */
2025 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2026 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4a54c8c1
JS
2027 &map_length, &bbio, mirror_num);
2028 if (ret) {
b5de8d0d 2029 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2035 bio->bi_iter.bi_sector = sector;
4a54c8c1 2036 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2037 btrfs_put_bbio(bbio);
4a54c8c1 2038 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2039 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2040 bio_put(bio);
2041 return -EIO;
2042 }
2043 bio->bi_bdev = dev->bdev;
70fd7614 2044 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2045 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2046
4e49ea4a 2047 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2048 /* try to remap that extent elsewhere? */
b5de8d0d 2049 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2050 bio_put(bio);
442a4f63 2051 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2052 return -EIO;
2053 }
2054
b14af3b4
DS
2055 btrfs_info_rl_in_rcu(fs_info,
2056 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
4a0cc7ca 2057 btrfs_ino(BTRFS_I(inode)), start,
1203b681 2058 rcu_str_deref(dev->name), sector);
b5de8d0d 2059 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2060 bio_put(bio);
2061 return 0;
2062}
2063
2ff7e61e
JM
2064int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2065 struct extent_buffer *eb, int mirror_num)
ea466794 2066{
ea466794
JB
2067 u64 start = eb->start;
2068 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2069 int ret = 0;
ea466794 2070
0b246afa 2071 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2072 return -EROFS;
2073
ea466794 2074 for (i = 0; i < num_pages; i++) {
fb85fc9a 2075 struct page *p = eb->pages[i];
1203b681 2076
0b246afa 2077 ret = repair_io_failure(fs_info->btree_inode, start,
09cbfeaf 2078 PAGE_SIZE, start, p,
1203b681 2079 start - page_offset(p), mirror_num);
ea466794
JB
2080 if (ret)
2081 break;
09cbfeaf 2082 start += PAGE_SIZE;
ea466794
JB
2083 }
2084
2085 return ret;
2086}
2087
4a54c8c1
JS
2088/*
2089 * each time an IO finishes, we do a fast check in the IO failure tree
2090 * to see if we need to process or clean up an io_failure_record
2091 */
8b110e39
MX
2092int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2093 unsigned int pg_offset)
4a54c8c1
JS
2094{
2095 u64 private;
4a54c8c1 2096 struct io_failure_record *failrec;
908960c6 2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2098 struct extent_state *state;
2099 int num_copies;
4a54c8c1 2100 int ret;
4a54c8c1
JS
2101
2102 private = 0;
2103 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2104 (u64)-1, 1, EXTENT_DIRTY, 0);
2105 if (!ret)
2106 return 0;
2107
47dc196a
DS
2108 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2109 &failrec);
4a54c8c1
JS
2110 if (ret)
2111 return 0;
2112
4a54c8c1
JS
2113 BUG_ON(!failrec->this_mirror);
2114
2115 if (failrec->in_validation) {
2116 /* there was no real error, just free the record */
ab8d0fc4
JM
2117 btrfs_debug(fs_info,
2118 "clean_io_failure: freeing dummy error at %llu",
2119 failrec->start);
4a54c8c1
JS
2120 goto out;
2121 }
908960c6
ID
2122 if (fs_info->sb->s_flags & MS_RDONLY)
2123 goto out;
4a54c8c1
JS
2124
2125 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2126 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2127 failrec->start,
2128 EXTENT_LOCKED);
2129 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2130
883d0de4
MX
2131 if (state && state->start <= failrec->start &&
2132 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2133 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2134 failrec->len);
4a54c8c1 2135 if (num_copies > 1) {
1203b681 2136 repair_io_failure(inode, start, failrec->len,
454ff3de 2137 failrec->logical, page,
1203b681 2138 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2139 }
2140 }
2141
2142out:
454ff3de 2143 free_io_failure(inode, failrec);
4a54c8c1 2144
454ff3de 2145 return 0;
4a54c8c1
JS
2146}
2147
f612496b
MX
2148/*
2149 * Can be called when
2150 * - hold extent lock
2151 * - under ordered extent
2152 * - the inode is freeing
2153 */
2154void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2155{
2156 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2157 struct io_failure_record *failrec;
2158 struct extent_state *state, *next;
2159
2160 if (RB_EMPTY_ROOT(&failure_tree->state))
2161 return;
2162
2163 spin_lock(&failure_tree->lock);
2164 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2165 while (state) {
2166 if (state->start > end)
2167 break;
2168
2169 ASSERT(state->end <= end);
2170
2171 next = next_state(state);
2172
47dc196a 2173 failrec = state->failrec;
f612496b
MX
2174 free_extent_state(state);
2175 kfree(failrec);
2176
2177 state = next;
2178 }
2179 spin_unlock(&failure_tree->lock);
2180}
2181
2fe6303e 2182int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2183 struct io_failure_record **failrec_ret)
4a54c8c1 2184{
ab8d0fc4 2185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2186 struct io_failure_record *failrec;
4a54c8c1 2187 struct extent_map *em;
4a54c8c1
JS
2188 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2189 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2191 int ret;
4a54c8c1
JS
2192 u64 logical;
2193
47dc196a 2194 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2195 if (ret) {
2196 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2197 if (!failrec)
2198 return -ENOMEM;
2fe6303e 2199
4a54c8c1
JS
2200 failrec->start = start;
2201 failrec->len = end - start + 1;
2202 failrec->this_mirror = 0;
2203 failrec->bio_flags = 0;
2204 failrec->in_validation = 0;
2205
2206 read_lock(&em_tree->lock);
2207 em = lookup_extent_mapping(em_tree, start, failrec->len);
2208 if (!em) {
2209 read_unlock(&em_tree->lock);
2210 kfree(failrec);
2211 return -EIO;
2212 }
2213
68ba990f 2214 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2215 free_extent_map(em);
2216 em = NULL;
2217 }
2218 read_unlock(&em_tree->lock);
7a2d6a64 2219 if (!em) {
4a54c8c1
JS
2220 kfree(failrec);
2221 return -EIO;
2222 }
2fe6303e 2223
4a54c8c1
JS
2224 logical = start - em->start;
2225 logical = em->block_start + logical;
2226 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2227 logical = em->block_start;
2228 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2229 extent_set_compress_type(&failrec->bio_flags,
2230 em->compress_type);
2231 }
2fe6303e 2232
ab8d0fc4
JM
2233 btrfs_debug(fs_info,
2234 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2235 logical, start, failrec->len);
2fe6303e 2236
4a54c8c1
JS
2237 failrec->logical = logical;
2238 free_extent_map(em);
2239
2240 /* set the bits in the private failure tree */
2241 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2242 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2243 if (ret >= 0)
47dc196a 2244 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2245 /* set the bits in the inode's tree */
2246 if (ret >= 0)
ceeb0ae7 2247 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2248 if (ret < 0) {
2249 kfree(failrec);
2250 return ret;
2251 }
2252 } else {
ab8d0fc4
JM
2253 btrfs_debug(fs_info,
2254 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2255 failrec->logical, failrec->start, failrec->len,
2256 failrec->in_validation);
4a54c8c1
JS
2257 /*
2258 * when data can be on disk more than twice, add to failrec here
2259 * (e.g. with a list for failed_mirror) to make
2260 * clean_io_failure() clean all those errors at once.
2261 */
2262 }
2fe6303e
MX
2263
2264 *failrec_ret = failrec;
2265
2266 return 0;
2267}
2268
2269int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2270 struct io_failure_record *failrec, int failed_mirror)
2271{
ab8d0fc4 2272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2273 int num_copies;
2274
ab8d0fc4 2275 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2276 if (num_copies == 1) {
2277 /*
2278 * we only have a single copy of the data, so don't bother with
2279 * all the retry and error correction code that follows. no
2280 * matter what the error is, it is very likely to persist.
2281 */
ab8d0fc4
JM
2282 btrfs_debug(fs_info,
2283 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2284 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2285 return 0;
4a54c8c1
JS
2286 }
2287
4a54c8c1
JS
2288 /*
2289 * there are two premises:
2290 * a) deliver good data to the caller
2291 * b) correct the bad sectors on disk
2292 */
2293 if (failed_bio->bi_vcnt > 1) {
2294 /*
2295 * to fulfill b), we need to know the exact failing sectors, as
2296 * we don't want to rewrite any more than the failed ones. thus,
2297 * we need separate read requests for the failed bio
2298 *
2299 * if the following BUG_ON triggers, our validation request got
2300 * merged. we need separate requests for our algorithm to work.
2301 */
2302 BUG_ON(failrec->in_validation);
2303 failrec->in_validation = 1;
2304 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2305 } else {
2306 /*
2307 * we're ready to fulfill a) and b) alongside. get a good copy
2308 * of the failed sector and if we succeed, we have setup
2309 * everything for repair_io_failure to do the rest for us.
2310 */
2311 if (failrec->in_validation) {
2312 BUG_ON(failrec->this_mirror != failed_mirror);
2313 failrec->in_validation = 0;
2314 failrec->this_mirror = 0;
2315 }
2316 failrec->failed_mirror = failed_mirror;
2317 failrec->this_mirror++;
2318 if (failrec->this_mirror == failed_mirror)
2319 failrec->this_mirror++;
4a54c8c1
JS
2320 }
2321
facc8a22 2322 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2323 btrfs_debug(fs_info,
2324 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2325 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2326 return 0;
4a54c8c1
JS
2327 }
2328
2fe6303e
MX
2329 return 1;
2330}
2331
2332
2333struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2334 struct io_failure_record *failrec,
2335 struct page *page, int pg_offset, int icsum,
8b110e39 2336 bio_end_io_t *endio_func, void *data)
2fe6303e 2337{
0b246afa 2338 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2339 struct bio *bio;
2340 struct btrfs_io_bio *btrfs_failed_bio;
2341 struct btrfs_io_bio *btrfs_bio;
2342
9be3395b 2343 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2344 if (!bio)
2345 return NULL;
2346
2347 bio->bi_end_io = endio_func;
4f024f37 2348 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2349 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2350 bio->bi_iter.bi_size = 0;
8b110e39 2351 bio->bi_private = data;
4a54c8c1 2352
facc8a22
MX
2353 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2354 if (btrfs_failed_bio->csum) {
facc8a22
MX
2355 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2356
2357 btrfs_bio = btrfs_io_bio(bio);
2358 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2359 icsum *= csum_size;
2360 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2361 csum_size);
2362 }
2363
2fe6303e
MX
2364 bio_add_page(bio, page, failrec->len, pg_offset);
2365
2366 return bio;
2367}
2368
2369/*
2370 * this is a generic handler for readpage errors (default
2371 * readpage_io_failed_hook). if other copies exist, read those and write back
2372 * good data to the failed position. does not investigate in remapping the
2373 * failed extent elsewhere, hoping the device will be smart enough to do this as
2374 * needed
2375 */
2376
2377static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2378 struct page *page, u64 start, u64 end,
2379 int failed_mirror)
2380{
2381 struct io_failure_record *failrec;
2382 struct inode *inode = page->mapping->host;
2383 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2384 struct bio *bio;
70fd7614 2385 int read_mode = 0;
2fe6303e
MX
2386 int ret;
2387
1f7ad75b 2388 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2389
2390 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2391 if (ret)
2392 return ret;
2393
2394 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2395 if (!ret) {
2396 free_io_failure(inode, failrec);
2397 return -EIO;
2398 }
2399
2400 if (failed_bio->bi_vcnt > 1)
70fd7614 2401 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2402
2403 phy_offset >>= inode->i_sb->s_blocksize_bits;
2404 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2405 start - page_offset(page),
8b110e39
MX
2406 (int)phy_offset, failed_bio->bi_end_io,
2407 NULL);
2fe6303e
MX
2408 if (!bio) {
2409 free_io_failure(inode, failrec);
2410 return -EIO;
2411 }
1f7ad75b 2412 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2413
ab8d0fc4
JM
2414 btrfs_debug(btrfs_sb(inode->i_sb),
2415 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2416 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2417
81a75f67 2418 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
013bd4c3 2419 failrec->bio_flags, 0);
6c387ab2 2420 if (ret) {
454ff3de 2421 free_io_failure(inode, failrec);
6c387ab2
MX
2422 bio_put(bio);
2423 }
2424
013bd4c3 2425 return ret;
4a54c8c1
JS
2426}
2427
d1310b2e
CM
2428/* lots and lots of room for performance fixes in the end_bio funcs */
2429
b5227c07 2430void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2431{
2432 int uptodate = (err == 0);
2433 struct extent_io_tree *tree;
3e2426bd 2434 int ret = 0;
87826df0
JM
2435
2436 tree = &BTRFS_I(page->mapping->host)->io_tree;
2437
2438 if (tree->ops && tree->ops->writepage_end_io_hook) {
2439 ret = tree->ops->writepage_end_io_hook(page, start,
2440 end, NULL, uptodate);
2441 if (ret)
2442 uptodate = 0;
2443 }
2444
87826df0 2445 if (!uptodate) {
87826df0
JM
2446 ClearPageUptodate(page);
2447 SetPageError(page);
5dca6eea
LB
2448 ret = ret < 0 ? ret : -EIO;
2449 mapping_set_error(page->mapping, ret);
87826df0 2450 }
87826df0
JM
2451}
2452
d1310b2e
CM
2453/*
2454 * after a writepage IO is done, we need to:
2455 * clear the uptodate bits on error
2456 * clear the writeback bits in the extent tree for this IO
2457 * end_page_writeback if the page has no more pending IO
2458 *
2459 * Scheduling is not allowed, so the extent state tree is expected
2460 * to have one and only one object corresponding to this IO.
2461 */
4246a0b6 2462static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2463{
2c30c71b 2464 struct bio_vec *bvec;
d1310b2e
CM
2465 u64 start;
2466 u64 end;
2c30c71b 2467 int i;
d1310b2e 2468
2c30c71b 2469 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2470 struct page *page = bvec->bv_page;
0b246afa
JM
2471 struct inode *inode = page->mapping->host;
2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2473
17a5adcc
AO
2474 /* We always issue full-page reads, but if some block
2475 * in a page fails to read, blk_update_request() will
2476 * advance bv_offset and adjust bv_len to compensate.
2477 * Print a warning for nonzero offsets, and an error
2478 * if they don't add up to a full page. */
09cbfeaf
KS
2479 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2480 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2481 btrfs_err(fs_info,
efe120a0
FH
2482 "partial page write in btrfs with offset %u and length %u",
2483 bvec->bv_offset, bvec->bv_len);
2484 else
0b246afa 2485 btrfs_info(fs_info,
5d163e0e 2486 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2487 bvec->bv_offset, bvec->bv_len);
2488 }
d1310b2e 2489
17a5adcc
AO
2490 start = page_offset(page);
2491 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2492
b5227c07 2493 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2494 end_page_writeback(page);
2c30c71b 2495 }
2b1f55b0 2496
d1310b2e 2497 bio_put(bio);
d1310b2e
CM
2498}
2499
883d0de4
MX
2500static void
2501endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2502 int uptodate)
2503{
2504 struct extent_state *cached = NULL;
2505 u64 end = start + len - 1;
2506
2507 if (uptodate && tree->track_uptodate)
2508 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2509 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2510}
2511
d1310b2e
CM
2512/*
2513 * after a readpage IO is done, we need to:
2514 * clear the uptodate bits on error
2515 * set the uptodate bits if things worked
2516 * set the page up to date if all extents in the tree are uptodate
2517 * clear the lock bit in the extent tree
2518 * unlock the page if there are no other extents locked for it
2519 *
2520 * Scheduling is not allowed, so the extent state tree is expected
2521 * to have one and only one object corresponding to this IO.
2522 */
4246a0b6 2523static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2524{
2c30c71b 2525 struct bio_vec *bvec;
4246a0b6 2526 int uptodate = !bio->bi_error;
facc8a22 2527 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2528 struct extent_io_tree *tree;
facc8a22 2529 u64 offset = 0;
d1310b2e
CM
2530 u64 start;
2531 u64 end;
facc8a22 2532 u64 len;
883d0de4
MX
2533 u64 extent_start = 0;
2534 u64 extent_len = 0;
5cf1ab56 2535 int mirror;
d1310b2e 2536 int ret;
2c30c71b 2537 int i;
d1310b2e 2538
2c30c71b 2539 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2540 struct page *page = bvec->bv_page;
a71754fc 2541 struct inode *inode = page->mapping->host;
ab8d0fc4 2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2543
ab8d0fc4
JM
2544 btrfs_debug(fs_info,
2545 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2546 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2547 io_bio->mirror_num);
a71754fc 2548 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2549
17a5adcc
AO
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
09cbfeaf
KS
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2557 btrfs_err(fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2559 bvec->bv_offset, bvec->bv_len);
2560 else
ab8d0fc4
JM
2561 btrfs_info(fs_info,
2562 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2563 bvec->bv_offset, bvec->bv_len);
2564 }
d1310b2e 2565
17a5adcc
AO
2566 start = page_offset(page);
2567 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2568 len = bvec->bv_len;
d1310b2e 2569
9be3395b 2570 mirror = io_bio->mirror_num;
f2a09da9
MX
2571 if (likely(uptodate && tree->ops &&
2572 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2573 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2574 page, start, end,
2575 mirror);
5ee0844d 2576 if (ret)
d1310b2e 2577 uptodate = 0;
5ee0844d 2578 else
1203b681 2579 clean_io_failure(inode, start, page, 0);
d1310b2e 2580 }
ea466794 2581
f2a09da9
MX
2582 if (likely(uptodate))
2583 goto readpage_ok;
2584
2585 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2586 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2587 if (!ret && !bio->bi_error)
ea466794 2588 uptodate = 1;
f2a09da9 2589 } else {
f4a8e656
JS
2590 /*
2591 * The generic bio_readpage_error handles errors the
2592 * following way: If possible, new read requests are
2593 * created and submitted and will end up in
2594 * end_bio_extent_readpage as well (if we're lucky, not
2595 * in the !uptodate case). In that case it returns 0 and
2596 * we just go on with the next page in our bio. If it
2597 * can't handle the error it will return -EIO and we
2598 * remain responsible for that page.
2599 */
facc8a22
MX
2600 ret = bio_readpage_error(bio, offset, page, start, end,
2601 mirror);
7e38326f 2602 if (ret == 0) {
4246a0b6 2603 uptodate = !bio->bi_error;
38c1c2e4 2604 offset += len;
7e38326f
CM
2605 continue;
2606 }
2607 }
f2a09da9 2608readpage_ok:
883d0de4 2609 if (likely(uptodate)) {
a71754fc 2610 loff_t i_size = i_size_read(inode);
09cbfeaf 2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2612 unsigned off;
a71754fc
JB
2613
2614 /* Zero out the end if this page straddles i_size */
09cbfeaf 2615 off = i_size & (PAGE_SIZE-1);
a583c026 2616 if (page->index == end_index && off)
09cbfeaf 2617 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2618 SetPageUptodate(page);
70dec807 2619 } else {
17a5adcc
AO
2620 ClearPageUptodate(page);
2621 SetPageError(page);
70dec807 2622 }
17a5adcc 2623 unlock_page(page);
facc8a22 2624 offset += len;
883d0de4
MX
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2c30c71b 2647 }
d1310b2e 2648
883d0de4
MX
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
facc8a22 2652 if (io_bio->end_io)
4246a0b6 2653 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2654 bio_put(bio);
d1310b2e
CM
2655}
2656
9be3395b
CM
2657/*
2658 * this allocates from the btrfs_bioset. We're returning a bio right now
2659 * but you can call btrfs_io_bio for the appropriate container_of magic
2660 */
88f794ed
MX
2661struct bio *
2662btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663 gfp_t gfp_flags)
d1310b2e 2664{
facc8a22 2665 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2666 struct bio *bio;
2667
9be3395b 2668 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2669
2670 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2671 while (!bio && (nr_vecs /= 2)) {
2672 bio = bio_alloc_bioset(gfp_flags,
2673 nr_vecs, btrfs_bioset);
2674 }
d1310b2e
CM
2675 }
2676
2677 if (bio) {
2678 bio->bi_bdev = bdev;
4f024f37 2679 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2680 btrfs_bio = btrfs_io_bio(bio);
2681 btrfs_bio->csum = NULL;
2682 btrfs_bio->csum_allocated = NULL;
2683 btrfs_bio->end_io = NULL;
d1310b2e
CM
2684 }
2685 return bio;
2686}
2687
9be3395b
CM
2688struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689{
23ea8e5a
MX
2690 struct btrfs_io_bio *btrfs_bio;
2691 struct bio *new;
9be3395b 2692
23ea8e5a
MX
2693 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694 if (new) {
2695 btrfs_bio = btrfs_io_bio(new);
2696 btrfs_bio->csum = NULL;
2697 btrfs_bio->csum_allocated = NULL;
2698 btrfs_bio->end_io = NULL;
2699 }
2700 return new;
2701}
9be3395b
CM
2702
2703/* this also allocates from the btrfs_bioset */
2704struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2705{
facc8a22
MX
2706 struct btrfs_io_bio *btrfs_bio;
2707 struct bio *bio;
2708
2709 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2710 if (bio) {
2711 btrfs_bio = btrfs_io_bio(bio);
2712 btrfs_bio->csum = NULL;
2713 btrfs_bio->csum_allocated = NULL;
2714 btrfs_bio->end_io = NULL;
2715 }
2716 return bio;
9be3395b
CM
2717}
2718
2719
1f7ad75b
MC
2720static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2721 unsigned long bio_flags)
d1310b2e 2722{
d1310b2e 2723 int ret = 0;
70dec807
CM
2724 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2725 struct page *page = bvec->bv_page;
2726 struct extent_io_tree *tree = bio->bi_private;
70dec807 2727 u64 start;
70dec807 2728
4eee4fa4 2729 start = page_offset(page) + bvec->bv_offset;
70dec807 2730
902b22f3 2731 bio->bi_private = NULL;
d1310b2e
CM
2732 bio_get(bio);
2733
065631f6 2734 if (tree->ops && tree->ops->submit_bio_hook)
81a75f67 2735 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
eaf25d93 2736 mirror_num, bio_flags, start);
0b86a832 2737 else
4e49ea4a 2738 btrfsic_submit_bio(bio);
4a54c8c1 2739
d1310b2e
CM
2740 bio_put(bio);
2741 return ret;
2742}
2743
1f7ad75b 2744static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2745 unsigned long offset, size_t size, struct bio *bio,
2746 unsigned long bio_flags)
2747{
2748 int ret = 0;
2749 if (tree->ops && tree->ops->merge_bio_hook)
81a75f67 2750 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2751 bio_flags);
3444a972
JM
2752 return ret;
2753
2754}
2755
1f7ad75b 2756static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2757 struct writeback_control *wbc,
d1310b2e
CM
2758 struct page *page, sector_t sector,
2759 size_t size, unsigned long offset,
2760 struct block_device *bdev,
2761 struct bio **bio_ret,
2762 unsigned long max_pages,
f188591e 2763 bio_end_io_t end_io_func,
c8b97818
CM
2764 int mirror_num,
2765 unsigned long prev_bio_flags,
005efedf
FM
2766 unsigned long bio_flags,
2767 bool force_bio_submit)
d1310b2e
CM
2768{
2769 int ret = 0;
2770 struct bio *bio;
c8b97818 2771 int contig = 0;
c8b97818 2772 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2773 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2774
2775 if (bio_ret && *bio_ret) {
2776 bio = *bio_ret;
c8b97818 2777 if (old_compressed)
4f024f37 2778 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2779 else
f73a1c7d 2780 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2781
2782 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2783 force_bio_submit ||
1f7ad75b 2784 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2785 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2786 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2787 if (ret < 0) {
2788 *bio_ret = NULL;
79787eaa 2789 return ret;
289454ad 2790 }
d1310b2e
CM
2791 bio = NULL;
2792 } else {
da2f0f74
CM
2793 if (wbc)
2794 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2795 return 0;
2796 }
2797 }
c8b97818 2798
b54ffb73
KO
2799 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2800 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2801 if (!bio)
2802 return -ENOMEM;
70dec807 2803
c8b97818 2804 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2805 bio->bi_end_io = end_io_func;
2806 bio->bi_private = tree;
1f7ad75b 2807 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2808 if (wbc) {
2809 wbc_init_bio(wbc, bio);
2810 wbc_account_io(wbc, page, page_size);
2811 }
70dec807 2812
d397712b 2813 if (bio_ret)
d1310b2e 2814 *bio_ret = bio;
d397712b 2815 else
1f7ad75b 2816 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2817
2818 return ret;
2819}
2820
48a3b636
ES
2821static void attach_extent_buffer_page(struct extent_buffer *eb,
2822 struct page *page)
d1310b2e
CM
2823{
2824 if (!PagePrivate(page)) {
2825 SetPagePrivate(page);
09cbfeaf 2826 get_page(page);
4f2de97a
JB
2827 set_page_private(page, (unsigned long)eb);
2828 } else {
2829 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2830 }
2831}
2832
4f2de97a 2833void set_page_extent_mapped(struct page *page)
d1310b2e 2834{
4f2de97a
JB
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
09cbfeaf 2837 get_page(page);
4f2de97a
JB
2838 set_page_private(page, EXTENT_PAGE_PRIVATE);
2839 }
d1310b2e
CM
2840}
2841
125bac01
MX
2842static struct extent_map *
2843__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2844 u64 start, u64 len, get_extent_t *get_extent,
2845 struct extent_map **em_cached)
2846{
2847 struct extent_map *em;
2848
2849 if (em_cached && *em_cached) {
2850 em = *em_cached;
cbc0e928 2851 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2852 start < extent_map_end(em)) {
2853 atomic_inc(&em->refs);
2854 return em;
2855 }
2856
2857 free_extent_map(em);
2858 *em_cached = NULL;
2859 }
2860
2861 em = get_extent(inode, page, pg_offset, start, len, 0);
2862 if (em_cached && !IS_ERR_OR_NULL(em)) {
2863 BUG_ON(*em_cached);
2864 atomic_inc(&em->refs);
2865 *em_cached = em;
2866 }
2867 return em;
2868}
d1310b2e
CM
2869/*
2870 * basic readpage implementation. Locked extent state structs are inserted
2871 * into the tree that are removed when the IO is done (by the end_io
2872 * handlers)
79787eaa 2873 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2874 * return 0 on success, otherwise return error
d1310b2e 2875 */
9974090b
MX
2876static int __do_readpage(struct extent_io_tree *tree,
2877 struct page *page,
2878 get_extent_t *get_extent,
125bac01 2879 struct extent_map **em_cached,
9974090b 2880 struct bio **bio, int mirror_num,
1f7ad75b 2881 unsigned long *bio_flags, int read_flags,
005efedf 2882 u64 *prev_em_start)
d1310b2e
CM
2883{
2884 struct inode *inode = page->mapping->host;
4eee4fa4 2885 u64 start = page_offset(page);
09cbfeaf 2886 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2887 u64 end;
2888 u64 cur = start;
2889 u64 extent_offset;
2890 u64 last_byte = i_size_read(inode);
2891 u64 block_start;
2892 u64 cur_end;
2893 sector_t sector;
2894 struct extent_map *em;
2895 struct block_device *bdev;
baf863b9 2896 int ret = 0;
d1310b2e 2897 int nr = 0;
306e16ce 2898 size_t pg_offset = 0;
d1310b2e 2899 size_t iosize;
c8b97818 2900 size_t disk_io_size;
d1310b2e 2901 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2902 unsigned long this_bio_flag = 0;
d1310b2e
CM
2903
2904 set_page_extent_mapped(page);
2905
9974090b 2906 end = page_end;
90a887c9
DM
2907 if (!PageUptodate(page)) {
2908 if (cleancache_get_page(page) == 0) {
2909 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2910 unlock_extent(tree, start, end);
90a887c9
DM
2911 goto out;
2912 }
2913 }
2914
09cbfeaf 2915 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2916 char *userpage;
09cbfeaf 2917 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2918
2919 if (zero_offset) {
09cbfeaf 2920 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2921 userpage = kmap_atomic(page);
c8b97818
CM
2922 memset(userpage + zero_offset, 0, iosize);
2923 flush_dcache_page(page);
7ac687d9 2924 kunmap_atomic(userpage);
c8b97818
CM
2925 }
2926 }
d1310b2e 2927 while (cur <= end) {
09cbfeaf 2928 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2929 bool force_bio_submit = false;
c8f2f24b 2930
d1310b2e
CM
2931 if (cur >= last_byte) {
2932 char *userpage;
507903b8
AJ
2933 struct extent_state *cached = NULL;
2934
09cbfeaf 2935 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2936 userpage = kmap_atomic(page);
306e16ce 2937 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2938 flush_dcache_page(page);
7ac687d9 2939 kunmap_atomic(userpage);
d1310b2e 2940 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2941 &cached, GFP_NOFS);
7f042a83
FM
2942 unlock_extent_cached(tree, cur,
2943 cur + iosize - 1,
2944 &cached, GFP_NOFS);
d1310b2e
CM
2945 break;
2946 }
125bac01
MX
2947 em = __get_extent_map(inode, page, pg_offset, cur,
2948 end - cur + 1, get_extent, em_cached);
c704005d 2949 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2950 SetPageError(page);
7f042a83 2951 unlock_extent(tree, cur, end);
d1310b2e
CM
2952 break;
2953 }
d1310b2e
CM
2954 extent_offset = cur - em->start;
2955 BUG_ON(extent_map_end(em) <= cur);
2956 BUG_ON(end < cur);
2957
261507a0 2958 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2959 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2960 extent_set_compress_type(&this_bio_flag,
2961 em->compress_type);
2962 }
c8b97818 2963
d1310b2e
CM
2964 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2965 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2966 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2967 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2968 disk_io_size = em->block_len;
2969 sector = em->block_start >> 9;
2970 } else {
2971 sector = (em->block_start + extent_offset) >> 9;
2972 disk_io_size = iosize;
2973 }
d1310b2e
CM
2974 bdev = em->bdev;
2975 block_start = em->block_start;
d899e052
YZ
2976 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2977 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2978
2979 /*
2980 * If we have a file range that points to a compressed extent
2981 * and it's followed by a consecutive file range that points to
2982 * to the same compressed extent (possibly with a different
2983 * offset and/or length, so it either points to the whole extent
2984 * or only part of it), we must make sure we do not submit a
2985 * single bio to populate the pages for the 2 ranges because
2986 * this makes the compressed extent read zero out the pages
2987 * belonging to the 2nd range. Imagine the following scenario:
2988 *
2989 * File layout
2990 * [0 - 8K] [8K - 24K]
2991 * | |
2992 * | |
2993 * points to extent X, points to extent X,
2994 * offset 4K, length of 8K offset 0, length 16K
2995 *
2996 * [extent X, compressed length = 4K uncompressed length = 16K]
2997 *
2998 * If the bio to read the compressed extent covers both ranges,
2999 * it will decompress extent X into the pages belonging to the
3000 * first range and then it will stop, zeroing out the remaining
3001 * pages that belong to the other range that points to extent X.
3002 * So here we make sure we submit 2 bios, one for the first
3003 * range and another one for the third range. Both will target
3004 * the same physical extent from disk, but we can't currently
3005 * make the compressed bio endio callback populate the pages
3006 * for both ranges because each compressed bio is tightly
3007 * coupled with a single extent map, and each range can have
3008 * an extent map with a different offset value relative to the
3009 * uncompressed data of our extent and different lengths. This
3010 * is a corner case so we prioritize correctness over
3011 * non-optimal behavior (submitting 2 bios for the same extent).
3012 */
3013 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3014 prev_em_start && *prev_em_start != (u64)-1 &&
3015 *prev_em_start != em->orig_start)
3016 force_bio_submit = true;
3017
3018 if (prev_em_start)
3019 *prev_em_start = em->orig_start;
3020
d1310b2e
CM
3021 free_extent_map(em);
3022 em = NULL;
3023
3024 /* we've found a hole, just zero and go on */
3025 if (block_start == EXTENT_MAP_HOLE) {
3026 char *userpage;
507903b8
AJ
3027 struct extent_state *cached = NULL;
3028
7ac687d9 3029 userpage = kmap_atomic(page);
306e16ce 3030 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3031 flush_dcache_page(page);
7ac687d9 3032 kunmap_atomic(userpage);
d1310b2e
CM
3033
3034 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3035 &cached, GFP_NOFS);
7f042a83
FM
3036 unlock_extent_cached(tree, cur,
3037 cur + iosize - 1,
3038 &cached, GFP_NOFS);
d1310b2e 3039 cur = cur + iosize;
306e16ce 3040 pg_offset += iosize;
d1310b2e
CM
3041 continue;
3042 }
3043 /* the get_extent function already copied into the page */
9655d298
CM
3044 if (test_range_bit(tree, cur, cur_end,
3045 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3046 check_page_uptodate(tree, page);
7f042a83 3047 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e
CM
3050 continue;
3051 }
70dec807
CM
3052 /* we have an inline extent but it didn't get marked up
3053 * to date. Error out
3054 */
3055 if (block_start == EXTENT_MAP_INLINE) {
3056 SetPageError(page);
7f042a83 3057 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3058 cur = cur + iosize;
306e16ce 3059 pg_offset += iosize;
70dec807
CM
3060 continue;
3061 }
d1310b2e 3062
c8f2f24b 3063 pnr -= page->index;
1f7ad75b
MC
3064 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3065 page, sector, disk_io_size, pg_offset,
89642229 3066 bdev, bio, pnr,
c8b97818
CM
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
005efedf
FM
3069 this_bio_flag,
3070 force_bio_submit);
c8f2f24b
JB
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
d1310b2e 3075 SetPageError(page);
7f042a83 3076 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3077 goto out;
edd33c99 3078 }
d1310b2e 3079 cur = cur + iosize;
306e16ce 3080 pg_offset += iosize;
d1310b2e 3081 }
90a887c9 3082out:
d1310b2e
CM
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
baf863b9 3088 return ret;
d1310b2e
CM
3089}
3090
9974090b
MX
3091static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
3094 get_extent_t *get_extent,
125bac01 3095 struct extent_map **em_cached,
9974090b 3096 struct bio **bio, int mirror_num,
1f7ad75b 3097 unsigned long *bio_flags,
808f80b4 3098 u64 *prev_em_start)
9974090b
MX
3099{
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
3107 ordered = btrfs_lookup_ordered_range(inode, start,
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
125bac01 3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3118 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3119 put_page(pages[index]);
9974090b
MX
3120 }
3121}
3122
3123static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
3125 int nr_pages, get_extent_t *get_extent,
125bac01 3126 struct extent_map **em_cached,
9974090b 3127 struct bio **bio, int mirror_num,
1f7ad75b 3128 unsigned long *bio_flags,
808f80b4 3129 u64 *prev_em_start)
9974090b 3130{
35a3621b 3131 u64 start = 0;
9974090b
MX
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
35a3621b 3135 int first_index = 0;
9974090b
MX
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
09cbfeaf 3141 end = start + PAGE_SIZE - 1;
9974090b
MX
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
09cbfeaf 3144 end += PAGE_SIZE;
9974090b
MX
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
125bac01
MX
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
1f7ad75b 3150 prev_em_start);
9974090b 3151 start = page_start;
09cbfeaf 3152 end = start + PAGE_SIZE - 1;
9974090b
MX
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
125bac01 3160 end, get_extent, em_cached, bio,
1f7ad75b 3161 mirror_num, bio_flags,
808f80b4 3162 prev_em_start);
9974090b
MX
3163}
3164
3165static int __extent_read_full_page(struct extent_io_tree *tree,
3166 struct page *page,
3167 get_extent_t *get_extent,
3168 struct bio **bio, int mirror_num,
1f7ad75b 3169 unsigned long *bio_flags, int read_flags)
9974090b
MX
3170{
3171 struct inode *inode = page->mapping->host;
3172 struct btrfs_ordered_extent *ordered;
3173 u64 start = page_offset(page);
09cbfeaf 3174 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3175 int ret;
3176
3177 while (1) {
3178 lock_extent(tree, start, end);
dbfdb6d1 3179 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3180 PAGE_SIZE);
9974090b
MX
3181 if (!ordered)
3182 break;
3183 unlock_extent(tree, start, end);
3184 btrfs_start_ordered_extent(inode, ordered, 1);
3185 btrfs_put_ordered_extent(ordered);
3186 }
3187
125bac01 3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3189 bio_flags, read_flags, NULL);
9974090b
MX
3190 return ret;
3191}
3192
d1310b2e 3193int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3194 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3195{
3196 struct bio *bio = NULL;
c8b97818 3197 unsigned long bio_flags = 0;
d1310b2e
CM
3198 int ret;
3199
8ddc7d9c 3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3201 &bio_flags, 0);
d1310b2e 3202 if (bio)
1f7ad75b 3203 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3204 return ret;
3205}
d1310b2e 3206
a9132667
LB
3207static void update_nr_written(struct page *page, struct writeback_control *wbc,
3208 unsigned long nr_written)
11c8349b
CM
3209{
3210 wbc->nr_to_write -= nr_written;
11c8349b
CM
3211}
3212
d1310b2e 3213/*
40f76580
CM
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
d1310b2e 3222 */
40f76580
CM
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228{
3229 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
dcab6a3b 3245 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
ea1754a0
KS
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
40f76580
CM
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3271 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298done:
3299 return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
d1310b2e 3317{
d1310b2e 3318 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3319 u64 start = page_offset(page);
09cbfeaf 3320 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
d1310b2e
CM
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_map *em;
3328 struct block_device *bdev;
7f3c74fb 3329 size_t pg_offset = 0;
d1310b2e 3330 size_t blocksize;
40f76580
CM
3331 int ret = 0;
3332 int nr = 0;
3333 bool compressed;
c8b97818 3334
247e743c 3335 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3336 ret = tree->ops->writepage_start_hook(page, start,
3337 page_end);
87826df0
JM
3338 if (ret) {
3339 /* Fixup worker will requeue */
3340 if (ret == -EBUSY)
3341 wbc->pages_skipped++;
3342 else
3343 redirty_page_for_writepage(wbc, page);
40f76580 3344
11c8349b 3345 update_nr_written(page, wbc, nr_written);
247e743c 3346 unlock_page(page);
bcf93489 3347 return 1;
247e743c
CM
3348 }
3349 }
3350
11c8349b
CM
3351 /*
3352 * we don't want to touch the inode after unlocking the page,
3353 * so we update the mapping writeback index now
3354 */
3355 update_nr_written(page, wbc, nr_written + 1);
771ed689 3356
d1310b2e 3357 end = page_end;
40f76580 3358 if (i_size <= start) {
e6dcd2dc
CM
3359 if (tree->ops && tree->ops->writepage_end_io_hook)
3360 tree->ops->writepage_end_io_hook(page, start,
3361 page_end, NULL, 1);
d1310b2e
CM
3362 goto done;
3363 }
3364
d1310b2e
CM
3365 blocksize = inode->i_sb->s_blocksize;
3366
3367 while (cur <= end) {
40f76580 3368 u64 em_end;
58409edd
DS
3369 unsigned long max_nr;
3370
40f76580 3371 if (cur >= i_size) {
e6dcd2dc
CM
3372 if (tree->ops && tree->ops->writepage_end_io_hook)
3373 tree->ops->writepage_end_io_hook(page, cur,
3374 page_end, NULL, 1);
d1310b2e
CM
3375 break;
3376 }
7f3c74fb 3377 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3378 end - cur + 1, 1);
c704005d 3379 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3380 SetPageError(page);
61391d56 3381 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3382 break;
3383 }
3384
3385 extent_offset = cur - em->start;
40f76580
CM
3386 em_end = extent_map_end(em);
3387 BUG_ON(em_end <= cur);
d1310b2e 3388 BUG_ON(end < cur);
40f76580 3389 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3390 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3391 sector = (em->block_start + extent_offset) >> 9;
3392 bdev = em->bdev;
3393 block_start = em->block_start;
c8b97818 3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3395 free_extent_map(em);
3396 em = NULL;
3397
c8b97818
CM
3398 /*
3399 * compressed and inline extents are written through other
3400 * paths in the FS
3401 */
3402 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3403 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3404 /*
3405 * end_io notification does not happen here for
3406 * compressed extents
3407 */
3408 if (!compressed && tree->ops &&
3409 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3410 tree->ops->writepage_end_io_hook(page, cur,
3411 cur + iosize - 1,
3412 NULL, 1);
c8b97818
CM
3413 else if (compressed) {
3414 /* we don't want to end_page_writeback on
3415 * a compressed extent. this happens
3416 * elsewhere
3417 */
3418 nr++;
3419 }
3420
3421 cur += iosize;
7f3c74fb 3422 pg_offset += iosize;
d1310b2e
CM
3423 continue;
3424 }
c8b97818 3425
58409edd
DS
3426 max_nr = (i_size >> PAGE_SHIFT) + 1;
3427
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
d1310b2e 3433 }
7f3c74fb 3434
1f7ad75b
MC
3435 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3436 page, sector, iosize, pg_offset,
58409edd
DS
3437 bdev, &epd->bio, max_nr,
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
fe01aa65 3440 if (ret) {
58409edd 3441 SetPageError(page);
fe01aa65
TK
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
d1310b2e 3445
d1310b2e 3446 cur = cur + iosize;
7f3c74fb 3447 pg_offset += iosize;
d1310b2e
CM
3448 nr++;
3449 }
40f76580
CM
3450done:
3451 *nr_ret = nr;
40f76580
CM
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 void *data)
3463{
3464 struct inode *inode = page->mapping->host;
3465 struct extent_page_data *epd = data;
3466 u64 start = page_offset(page);
09cbfeaf 3467 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3468 int ret;
3469 int nr = 0;
3470 size_t pg_offset = 0;
3471 loff_t i_size = i_size_read(inode);
09cbfeaf 3472 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3473 int write_flags = 0;
40f76580
CM
3474 unsigned long nr_written = 0;
3475
3476 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3477 write_flags = REQ_SYNC;
40f76580
CM
3478
3479 trace___extent_writepage(page, inode, wbc);
3480
3481 WARN_ON(!PageLocked(page));
3482
3483 ClearPageError(page);
3484
09cbfeaf 3485 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3486 if (page->index > end_index ||
3487 (page->index == end_index && !pg_offset)) {
09cbfeaf 3488 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3489 unlock_page(page);
3490 return 0;
3491 }
3492
3493 if (page->index == end_index) {
3494 char *userpage;
3495
3496 userpage = kmap_atomic(page);
3497 memset(userpage + pg_offset, 0,
09cbfeaf 3498 PAGE_SIZE - pg_offset);
40f76580
CM
3499 kunmap_atomic(userpage);
3500 flush_dcache_page(page);
3501 }
3502
3503 pg_offset = 0;
3504
3505 set_page_extent_mapped(page);
3506
3507 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3508 if (ret == 1)
3509 goto done_unlocked;
3510 if (ret)
3511 goto done;
3512
3513 ret = __extent_writepage_io(inode, page, wbc, epd,
3514 i_size, nr_written, write_flags, &nr);
3515 if (ret == 1)
3516 goto done_unlocked;
3517
d1310b2e
CM
3518done:
3519 if (nr == 0) {
3520 /* make sure the mapping tag for page dirty gets cleared */
3521 set_page_writeback(page);
3522 end_page_writeback(page);
3523 }
61391d56
FM
3524 if (PageError(page)) {
3525 ret = ret < 0 ? ret : -EIO;
3526 end_extent_writepage(page, ret, start, page_end);
3527 }
d1310b2e 3528 unlock_page(page);
40f76580 3529 return ret;
771ed689 3530
11c8349b 3531done_unlocked:
d1310b2e
CM
3532 return 0;
3533}
3534
fd8b2b61 3535void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3536{
74316201
N
3537 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3538 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3539}
3540
0e378df1
CM
3541static noinline_for_stack int
3542lock_extent_buffer_for_io(struct extent_buffer *eb,
3543 struct btrfs_fs_info *fs_info,
3544 struct extent_page_data *epd)
0b32f4bb
JB
3545{
3546 unsigned long i, num_pages;
3547 int flush = 0;
3548 int ret = 0;
3549
3550 if (!btrfs_try_tree_write_lock(eb)) {
3551 flush = 1;
3552 flush_write_bio(epd);
3553 btrfs_tree_lock(eb);
3554 }
3555
3556 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3557 btrfs_tree_unlock(eb);
3558 if (!epd->sync_io)
3559 return 0;
3560 if (!flush) {
3561 flush_write_bio(epd);
3562 flush = 1;
3563 }
a098d8e8
CM
3564 while (1) {
3565 wait_on_extent_buffer_writeback(eb);
3566 btrfs_tree_lock(eb);
3567 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3568 break;
0b32f4bb 3569 btrfs_tree_unlock(eb);
0b32f4bb
JB
3570 }
3571 }
3572
51561ffe
JB
3573 /*
3574 * We need to do this to prevent races in people who check if the eb is
3575 * under IO since we can end up having no IO bits set for a short period
3576 * of time.
3577 */
3578 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3579 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3580 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3581 spin_unlock(&eb->refs_lock);
0b32f4bb 3582 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3583 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3584 -eb->len,
3585 fs_info->dirty_metadata_batch);
0b32f4bb 3586 ret = 1;
51561ffe
JB
3587 } else {
3588 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3589 }
3590
3591 btrfs_tree_unlock(eb);
3592
3593 if (!ret)
3594 return ret;
3595
3596 num_pages = num_extent_pages(eb->start, eb->len);
3597 for (i = 0; i < num_pages; i++) {
fb85fc9a 3598 struct page *p = eb->pages[i];
0b32f4bb
JB
3599
3600 if (!trylock_page(p)) {
3601 if (!flush) {
3602 flush_write_bio(epd);
3603 flush = 1;
3604 }
3605 lock_page(p);
3606 }
3607 }
3608
3609 return ret;
3610}
3611
3612static void end_extent_buffer_writeback(struct extent_buffer *eb)
3613{
3614 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3615 smp_mb__after_atomic();
0b32f4bb
JB
3616 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3617}
3618
656f30db
FM
3619static void set_btree_ioerr(struct page *page)
3620{
3621 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3622
3623 SetPageError(page);
3624 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3625 return;
3626
3627 /*
3628 * If writeback for a btree extent that doesn't belong to a log tree
3629 * failed, increment the counter transaction->eb_write_errors.
3630 * We do this because while the transaction is running and before it's
3631 * committing (when we call filemap_fdata[write|wait]_range against
3632 * the btree inode), we might have
3633 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3634 * returns an error or an error happens during writeback, when we're
3635 * committing the transaction we wouldn't know about it, since the pages
3636 * can be no longer dirty nor marked anymore for writeback (if a
3637 * subsequent modification to the extent buffer didn't happen before the
3638 * transaction commit), which makes filemap_fdata[write|wait]_range not
3639 * able to find the pages tagged with SetPageError at transaction
3640 * commit time. So if this happens we must abort the transaction,
3641 * otherwise we commit a super block with btree roots that point to
3642 * btree nodes/leafs whose content on disk is invalid - either garbage
3643 * or the content of some node/leaf from a past generation that got
3644 * cowed or deleted and is no longer valid.
3645 *
3646 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3647 * not be enough - we need to distinguish between log tree extents vs
3648 * non-log tree extents, and the next filemap_fdatawait_range() call
3649 * will catch and clear such errors in the mapping - and that call might
3650 * be from a log sync and not from a transaction commit. Also, checking
3651 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3652 * not done and would not be reliable - the eb might have been released
3653 * from memory and reading it back again means that flag would not be
3654 * set (since it's a runtime flag, not persisted on disk).
3655 *
3656 * Using the flags below in the btree inode also makes us achieve the
3657 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3658 * writeback for all dirty pages and before filemap_fdatawait_range()
3659 * is called, the writeback for all dirty pages had already finished
3660 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3661 * filemap_fdatawait_range() would return success, as it could not know
3662 * that writeback errors happened (the pages were no longer tagged for
3663 * writeback).
3664 */
3665 switch (eb->log_index) {
3666 case -1:
afcdd129 3667 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 case 0:
afcdd129 3670 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3671 break;
3672 case 1:
afcdd129 3673 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3674 break;
3675 default:
3676 BUG(); /* unexpected, logic error */
3677 }
3678}
3679
4246a0b6 3680static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3681{
2c30c71b 3682 struct bio_vec *bvec;
0b32f4bb 3683 struct extent_buffer *eb;
2c30c71b 3684 int i, done;
0b32f4bb 3685
2c30c71b 3686 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3687 struct page *page = bvec->bv_page;
3688
0b32f4bb
JB
3689 eb = (struct extent_buffer *)page->private;
3690 BUG_ON(!eb);
3691 done = atomic_dec_and_test(&eb->io_pages);
3692
4246a0b6
CH
3693 if (bio->bi_error ||
3694 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3695 ClearPageUptodate(page);
656f30db 3696 set_btree_ioerr(page);
0b32f4bb
JB
3697 }
3698
3699 end_page_writeback(page);
3700
3701 if (!done)
3702 continue;
3703
3704 end_extent_buffer_writeback(eb);
2c30c71b 3705 }
0b32f4bb
JB
3706
3707 bio_put(bio);
0b32f4bb
JB
3708}
3709
0e378df1 3710static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3711 struct btrfs_fs_info *fs_info,
3712 struct writeback_control *wbc,
3713 struct extent_page_data *epd)
3714{
3715 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3716 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3717 u64 offset = eb->start;
851cd173 3718 u32 nritems;
0b32f4bb 3719 unsigned long i, num_pages;
de0022b9 3720 unsigned long bio_flags = 0;
851cd173 3721 unsigned long start, end;
70fd7614 3722 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3723 int ret = 0;
0b32f4bb 3724
656f30db 3725 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3726 num_pages = num_extent_pages(eb->start, eb->len);
3727 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3728 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3729 bio_flags = EXTENT_BIO_TREE_LOG;
3730
851cd173
LB
3731 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3732 nritems = btrfs_header_nritems(eb);
3eb548ee 3733 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3734 end = btrfs_node_key_ptr_offset(nritems);
3735
b159fa28 3736 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3737 } else {
3738 /*
3739 * leaf:
3740 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3741 */
3742 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3743 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3744 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3745 }
3746
0b32f4bb 3747 for (i = 0; i < num_pages; i++) {
fb85fc9a 3748 struct page *p = eb->pages[i];
0b32f4bb
JB
3749
3750 clear_page_dirty_for_io(p);
3751 set_page_writeback(p);
1f7ad75b
MC
3752 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3753 p, offset >> 9, PAGE_SIZE, 0, bdev,
3754 &epd->bio, -1,
3755 end_bio_extent_buffer_writepage,
005efedf 3756 0, epd->bio_flags, bio_flags, false);
de0022b9 3757 epd->bio_flags = bio_flags;
0b32f4bb 3758 if (ret) {
656f30db 3759 set_btree_ioerr(p);
fe01aa65
TK
3760 if (PageWriteback(p))
3761 end_page_writeback(p);
0b32f4bb
JB
3762 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3763 end_extent_buffer_writeback(eb);
3764 ret = -EIO;
3765 break;
3766 }
09cbfeaf 3767 offset += PAGE_SIZE;
0b32f4bb
JB
3768 update_nr_written(p, wbc, 1);
3769 unlock_page(p);
3770 }
3771
3772 if (unlikely(ret)) {
3773 for (; i < num_pages; i++) {
bbf65cf0 3774 struct page *p = eb->pages[i];
81465028 3775 clear_page_dirty_for_io(p);
0b32f4bb
JB
3776 unlock_page(p);
3777 }
3778 }
3779
3780 return ret;
3781}
3782
3783int btree_write_cache_pages(struct address_space *mapping,
3784 struct writeback_control *wbc)
3785{
3786 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3787 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3788 struct extent_buffer *eb, *prev_eb = NULL;
3789 struct extent_page_data epd = {
3790 .bio = NULL,
3791 .tree = tree,
3792 .extent_locked = 0,
3793 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3794 .bio_flags = 0,
0b32f4bb
JB
3795 };
3796 int ret = 0;
3797 int done = 0;
3798 int nr_to_write_done = 0;
3799 struct pagevec pvec;
3800 int nr_pages;
3801 pgoff_t index;
3802 pgoff_t end; /* Inclusive */
3803 int scanned = 0;
3804 int tag;
3805
3806 pagevec_init(&pvec, 0);
3807 if (wbc->range_cyclic) {
3808 index = mapping->writeback_index; /* Start from prev offset */
3809 end = -1;
3810 } else {
09cbfeaf
KS
3811 index = wbc->range_start >> PAGE_SHIFT;
3812 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3813 scanned = 1;
3814 }
3815 if (wbc->sync_mode == WB_SYNC_ALL)
3816 tag = PAGECACHE_TAG_TOWRITE;
3817 else
3818 tag = PAGECACHE_TAG_DIRTY;
3819retry:
3820 if (wbc->sync_mode == WB_SYNC_ALL)
3821 tag_pages_for_writeback(mapping, index, end);
3822 while (!done && !nr_to_write_done && (index <= end) &&
3823 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3824 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3825 unsigned i;
3826
3827 scanned = 1;
3828 for (i = 0; i < nr_pages; i++) {
3829 struct page *page = pvec.pages[i];
3830
3831 if (!PagePrivate(page))
3832 continue;
3833
3834 if (!wbc->range_cyclic && page->index > end) {
3835 done = 1;
3836 break;
3837 }
3838
b5bae261
JB
3839 spin_lock(&mapping->private_lock);
3840 if (!PagePrivate(page)) {
3841 spin_unlock(&mapping->private_lock);
3842 continue;
3843 }
3844
0b32f4bb 3845 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3846
3847 /*
3848 * Shouldn't happen and normally this would be a BUG_ON
3849 * but no sense in crashing the users box for something
3850 * we can survive anyway.
3851 */
fae7f21c 3852 if (WARN_ON(!eb)) {
b5bae261 3853 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3854 continue;
3855 }
3856
b5bae261
JB
3857 if (eb == prev_eb) {
3858 spin_unlock(&mapping->private_lock);
0b32f4bb 3859 continue;
b5bae261 3860 }
0b32f4bb 3861
b5bae261
JB
3862 ret = atomic_inc_not_zero(&eb->refs);
3863 spin_unlock(&mapping->private_lock);
3864 if (!ret)
0b32f4bb 3865 continue;
0b32f4bb
JB
3866
3867 prev_eb = eb;
3868 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3869 if (!ret) {
3870 free_extent_buffer(eb);
3871 continue;
3872 }
3873
3874 ret = write_one_eb(eb, fs_info, wbc, &epd);
3875 if (ret) {
3876 done = 1;
3877 free_extent_buffer(eb);
3878 break;
3879 }
3880 free_extent_buffer(eb);
3881
3882 /*
3883 * the filesystem may choose to bump up nr_to_write.
3884 * We have to make sure to honor the new nr_to_write
3885 * at any time
3886 */
3887 nr_to_write_done = wbc->nr_to_write <= 0;
3888 }
3889 pagevec_release(&pvec);
3890 cond_resched();
3891 }
3892 if (!scanned && !done) {
3893 /*
3894 * We hit the last page and there is more work to be done: wrap
3895 * back to the start of the file
3896 */
3897 scanned = 1;
3898 index = 0;
3899 goto retry;
3900 }
3901 flush_write_bio(&epd);
3902 return ret;
3903}
3904
d1310b2e 3905/**
4bef0848 3906 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3907 * @mapping: address space structure to write
3908 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3909 * @writepage: function called for each page
3910 * @data: data passed to writepage function
3911 *
3912 * If a page is already under I/O, write_cache_pages() skips it, even
3913 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3914 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3915 * and msync() need to guarantee that all the data which was dirty at the time
3916 * the call was made get new I/O started against them. If wbc->sync_mode is
3917 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3918 * existing IO to complete.
3919 */
b2950863 3920static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3921 struct address_space *mapping,
3922 struct writeback_control *wbc,
d2c3f4f6
CM
3923 writepage_t writepage, void *data,
3924 void (*flush_fn)(void *))
d1310b2e 3925{
7fd1a3f7 3926 struct inode *inode = mapping->host;
d1310b2e
CM
3927 int ret = 0;
3928 int done = 0;
f85d7d6c 3929 int nr_to_write_done = 0;
d1310b2e
CM
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
a9132667
LB
3934 pgoff_t done_index;
3935 int range_whole = 0;
d1310b2e 3936 int scanned = 0;
f7aaa06b 3937 int tag;
d1310b2e 3938
7fd1a3f7
JB
3939 /*
3940 * We have to hold onto the inode so that ordered extents can do their
3941 * work when the IO finishes. The alternative to this is failing to add
3942 * an ordered extent if the igrab() fails there and that is a huge pain
3943 * to deal with, so instead just hold onto the inode throughout the
3944 * writepages operation. If it fails here we are freeing up the inode
3945 * anyway and we'd rather not waste our time writing out stuff that is
3946 * going to be truncated anyway.
3947 */
3948 if (!igrab(inode))
3949 return 0;
3950
d1310b2e
CM
3951 pagevec_init(&pvec, 0);
3952 if (wbc->range_cyclic) {
3953 index = mapping->writeback_index; /* Start from prev offset */
3954 end = -1;
3955 } else {
09cbfeaf
KS
3956 index = wbc->range_start >> PAGE_SHIFT;
3957 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3958 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3959 range_whole = 1;
d1310b2e
CM
3960 scanned = 1;
3961 }
f7aaa06b
JB
3962 if (wbc->sync_mode == WB_SYNC_ALL)
3963 tag = PAGECACHE_TAG_TOWRITE;
3964 else
3965 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3966retry:
f7aaa06b
JB
3967 if (wbc->sync_mode == WB_SYNC_ALL)
3968 tag_pages_for_writeback(mapping, index, end);
a9132667 3969 done_index = index;
f85d7d6c 3970 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3971 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3972 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3973 unsigned i;
3974
3975 scanned = 1;
3976 for (i = 0; i < nr_pages; i++) {
3977 struct page *page = pvec.pages[i];
3978
a9132667 3979 done_index = page->index;
d1310b2e
CM
3980 /*
3981 * At this point we hold neither mapping->tree_lock nor
3982 * lock on the page itself: the page may be truncated or
3983 * invalidated (changing page->mapping to NULL), or even
3984 * swizzled back from swapper_space to tmpfs file
3985 * mapping
3986 */
c8f2f24b
JB
3987 if (!trylock_page(page)) {
3988 flush_fn(data);
3989 lock_page(page);
01d658f2 3990 }
d1310b2e
CM
3991
3992 if (unlikely(page->mapping != mapping)) {
3993 unlock_page(page);
3994 continue;
3995 }
3996
3997 if (!wbc->range_cyclic && page->index > end) {
3998 done = 1;
3999 unlock_page(page);
4000 continue;
4001 }
4002
d2c3f4f6 4003 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4004 if (PageWriteback(page))
4005 flush_fn(data);
d1310b2e 4006 wait_on_page_writeback(page);
d2c3f4f6 4007 }
d1310b2e
CM
4008
4009 if (PageWriteback(page) ||
4010 !clear_page_dirty_for_io(page)) {
4011 unlock_page(page);
4012 continue;
4013 }
4014
4015 ret = (*writepage)(page, wbc, data);
4016
4017 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4018 unlock_page(page);
4019 ret = 0;
4020 }
a9132667
LB
4021 if (ret < 0) {
4022 /*
4023 * done_index is set past this page,
4024 * so media errors will not choke
4025 * background writeout for the entire
4026 * file. This has consequences for
4027 * range_cyclic semantics (ie. it may
4028 * not be suitable for data integrity
4029 * writeout).
4030 */
4031 done_index = page->index + 1;
4032 done = 1;
4033 break;
4034 }
f85d7d6c
CM
4035
4036 /*
4037 * the filesystem may choose to bump up nr_to_write.
4038 * We have to make sure to honor the new nr_to_write
4039 * at any time
4040 */
4041 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4042 }
4043 pagevec_release(&pvec);
4044 cond_resched();
4045 }
894b36e3 4046 if (!scanned && !done) {
d1310b2e
CM
4047 /*
4048 * We hit the last page and there is more work to be done: wrap
4049 * back to the start of the file
4050 */
4051 scanned = 1;
4052 index = 0;
4053 goto retry;
4054 }
a9132667
LB
4055
4056 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4057 mapping->writeback_index = done_index;
4058
7fd1a3f7 4059 btrfs_add_delayed_iput(inode);
894b36e3 4060 return ret;
d1310b2e 4061}
d1310b2e 4062
ffbd517d 4063static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4064{
d2c3f4f6 4065 if (epd->bio) {
355808c2
JM
4066 int ret;
4067
1f7ad75b 4068 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4069 epd->sync_io ? REQ_SYNC : 0);
355808c2 4070
1f7ad75b 4071 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4072 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4073 epd->bio = NULL;
4074 }
4075}
4076
ffbd517d
CM
4077static noinline void flush_write_bio(void *data)
4078{
4079 struct extent_page_data *epd = data;
4080 flush_epd_write_bio(epd);
4081}
4082
d1310b2e
CM
4083int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4084 get_extent_t *get_extent,
4085 struct writeback_control *wbc)
4086{
4087 int ret;
d1310b2e
CM
4088 struct extent_page_data epd = {
4089 .bio = NULL,
4090 .tree = tree,
4091 .get_extent = get_extent,
771ed689 4092 .extent_locked = 0,
ffbd517d 4093 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4094 .bio_flags = 0,
d1310b2e 4095 };
d1310b2e 4096
d1310b2e
CM
4097 ret = __extent_writepage(page, wbc, &epd);
4098
ffbd517d 4099 flush_epd_write_bio(&epd);
d1310b2e
CM
4100 return ret;
4101}
d1310b2e 4102
771ed689
CM
4103int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4104 u64 start, u64 end, get_extent_t *get_extent,
4105 int mode)
4106{
4107 int ret = 0;
4108 struct address_space *mapping = inode->i_mapping;
4109 struct page *page;
09cbfeaf
KS
4110 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4111 PAGE_SHIFT;
771ed689
CM
4112
4113 struct extent_page_data epd = {
4114 .bio = NULL,
4115 .tree = tree,
4116 .get_extent = get_extent,
4117 .extent_locked = 1,
ffbd517d 4118 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4119 .bio_flags = 0,
771ed689
CM
4120 };
4121 struct writeback_control wbc_writepages = {
771ed689 4122 .sync_mode = mode,
771ed689
CM
4123 .nr_to_write = nr_pages * 2,
4124 .range_start = start,
4125 .range_end = end + 1,
4126 };
4127
d397712b 4128 while (start <= end) {
09cbfeaf 4129 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4130 if (clear_page_dirty_for_io(page))
4131 ret = __extent_writepage(page, &wbc_writepages, &epd);
4132 else {
4133 if (tree->ops && tree->ops->writepage_end_io_hook)
4134 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4135 start + PAGE_SIZE - 1,
771ed689
CM
4136 NULL, 1);
4137 unlock_page(page);
4138 }
09cbfeaf
KS
4139 put_page(page);
4140 start += PAGE_SIZE;
771ed689
CM
4141 }
4142
ffbd517d 4143 flush_epd_write_bio(&epd);
771ed689
CM
4144 return ret;
4145}
d1310b2e
CM
4146
4147int extent_writepages(struct extent_io_tree *tree,
4148 struct address_space *mapping,
4149 get_extent_t *get_extent,
4150 struct writeback_control *wbc)
4151{
4152 int ret = 0;
4153 struct extent_page_data epd = {
4154 .bio = NULL,
4155 .tree = tree,
4156 .get_extent = get_extent,
771ed689 4157 .extent_locked = 0,
ffbd517d 4158 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4159 .bio_flags = 0,
d1310b2e
CM
4160 };
4161
4bef0848 4162 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4163 __extent_writepage, &epd,
4164 flush_write_bio);
ffbd517d 4165 flush_epd_write_bio(&epd);
d1310b2e
CM
4166 return ret;
4167}
d1310b2e
CM
4168
4169int extent_readpages(struct extent_io_tree *tree,
4170 struct address_space *mapping,
4171 struct list_head *pages, unsigned nr_pages,
4172 get_extent_t get_extent)
4173{
4174 struct bio *bio = NULL;
4175 unsigned page_idx;
c8b97818 4176 unsigned long bio_flags = 0;
67c9684f
LB
4177 struct page *pagepool[16];
4178 struct page *page;
125bac01 4179 struct extent_map *em_cached = NULL;
67c9684f 4180 int nr = 0;
808f80b4 4181 u64 prev_em_start = (u64)-1;
d1310b2e 4182
d1310b2e 4183 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4184 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4185
4186 prefetchw(&page->flags);
4187 list_del(&page->lru);
67c9684f 4188 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4189 page->index,
4190 readahead_gfp_mask(mapping))) {
09cbfeaf 4191 put_page(page);
67c9684f 4192 continue;
d1310b2e 4193 }
67c9684f
LB
4194
4195 pagepool[nr++] = page;
4196 if (nr < ARRAY_SIZE(pagepool))
4197 continue;
125bac01 4198 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4199 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4200 nr = 0;
d1310b2e 4201 }
9974090b 4202 if (nr)
125bac01 4203 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4204 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4205
125bac01
MX
4206 if (em_cached)
4207 free_extent_map(em_cached);
4208
d1310b2e
CM
4209 BUG_ON(!list_empty(pages));
4210 if (bio)
1f7ad75b 4211 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4212 return 0;
4213}
d1310b2e
CM
4214
4215/*
4216 * basic invalidatepage code, this waits on any locked or writeback
4217 * ranges corresponding to the page, and then deletes any extent state
4218 * records from the tree
4219 */
4220int extent_invalidatepage(struct extent_io_tree *tree,
4221 struct page *page, unsigned long offset)
4222{
2ac55d41 4223 struct extent_state *cached_state = NULL;
4eee4fa4 4224 u64 start = page_offset(page);
09cbfeaf 4225 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4226 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4227
fda2832f 4228 start += ALIGN(offset, blocksize);
d1310b2e
CM
4229 if (start > end)
4230 return 0;
4231
ff13db41 4232 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4233 wait_on_page_writeback(page);
d1310b2e 4234 clear_extent_bit(tree, start, end,
32c00aff
JB
4235 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4236 EXTENT_DO_ACCOUNTING,
2ac55d41 4237 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4238 return 0;
4239}
d1310b2e 4240
7b13b7b1
CM
4241/*
4242 * a helper for releasepage, this tests for areas of the page that
4243 * are locked or under IO and drops the related state bits if it is safe
4244 * to drop the page.
4245 */
48a3b636
ES
4246static int try_release_extent_state(struct extent_map_tree *map,
4247 struct extent_io_tree *tree,
4248 struct page *page, gfp_t mask)
7b13b7b1 4249{
4eee4fa4 4250 u64 start = page_offset(page);
09cbfeaf 4251 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4252 int ret = 1;
4253
211f90e6 4254 if (test_range_bit(tree, start, end,
8b62b72b 4255 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4256 ret = 0;
4257 else {
11ef160f
CM
4258 /*
4259 * at this point we can safely clear everything except the
4260 * locked bit and the nodatasum bit
4261 */
e3f24cc5 4262 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4263 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4264 0, 0, NULL, mask);
e3f24cc5
CM
4265
4266 /* if clear_extent_bit failed for enomem reasons,
4267 * we can't allow the release to continue.
4268 */
4269 if (ret < 0)
4270 ret = 0;
4271 else
4272 ret = 1;
7b13b7b1
CM
4273 }
4274 return ret;
4275}
7b13b7b1 4276
d1310b2e
CM
4277/*
4278 * a helper for releasepage. As long as there are no locked extents
4279 * in the range corresponding to the page, both state records and extent
4280 * map records are removed
4281 */
4282int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4283 struct extent_io_tree *tree, struct page *page,
4284 gfp_t mask)
d1310b2e
CM
4285{
4286 struct extent_map *em;
4eee4fa4 4287 u64 start = page_offset(page);
09cbfeaf 4288 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4289
d0164adc 4290 if (gfpflags_allow_blocking(mask) &&
ee22184b 4291 page->mapping->host->i_size > SZ_16M) {
39b5637f 4292 u64 len;
70dec807 4293 while (start <= end) {
39b5637f 4294 len = end - start + 1;
890871be 4295 write_lock(&map->lock);
39b5637f 4296 em = lookup_extent_mapping(map, start, len);
285190d9 4297 if (!em) {
890871be 4298 write_unlock(&map->lock);
70dec807
CM
4299 break;
4300 }
7f3c74fb
CM
4301 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4302 em->start != start) {
890871be 4303 write_unlock(&map->lock);
70dec807
CM
4304 free_extent_map(em);
4305 break;
4306 }
4307 if (!test_range_bit(tree, em->start,
4308 extent_map_end(em) - 1,
8b62b72b 4309 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4310 0, NULL)) {
70dec807
CM
4311 remove_extent_mapping(map, em);
4312 /* once for the rb tree */
4313 free_extent_map(em);
4314 }
4315 start = extent_map_end(em);
890871be 4316 write_unlock(&map->lock);
70dec807
CM
4317
4318 /* once for us */
d1310b2e
CM
4319 free_extent_map(em);
4320 }
d1310b2e 4321 }
7b13b7b1 4322 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4323}
d1310b2e 4324
ec29ed5b
CM
4325/*
4326 * helper function for fiemap, which doesn't want to see any holes.
4327 * This maps until we find something past 'last'
4328 */
4329static struct extent_map *get_extent_skip_holes(struct inode *inode,
4330 u64 offset,
4331 u64 last,
4332 get_extent_t *get_extent)
4333{
da17066c 4334 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4335 struct extent_map *em;
4336 u64 len;
4337
4338 if (offset >= last)
4339 return NULL;
4340
67871254 4341 while (1) {
ec29ed5b
CM
4342 len = last - offset;
4343 if (len == 0)
4344 break;
fda2832f 4345 len = ALIGN(len, sectorsize);
ec29ed5b 4346 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4347 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4348 return em;
4349
4350 /* if this isn't a hole return it */
4351 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4352 em->block_start != EXTENT_MAP_HOLE) {
4353 return em;
4354 }
4355
4356 /* this is a hole, advance to the next extent */
4357 offset = extent_map_end(em);
4358 free_extent_map(em);
4359 if (offset >= last)
4360 break;
4361 }
4362 return NULL;
4363}
4364
1506fcc8
YS
4365int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4366 __u64 start, __u64 len, get_extent_t *get_extent)
4367{
975f84fe 4368 int ret = 0;
1506fcc8
YS
4369 u64 off = start;
4370 u64 max = start + len;
4371 u32 flags = 0;
975f84fe
JB
4372 u32 found_type;
4373 u64 last;
ec29ed5b 4374 u64 last_for_get_extent = 0;
1506fcc8 4375 u64 disko = 0;
ec29ed5b 4376 u64 isize = i_size_read(inode);
975f84fe 4377 struct btrfs_key found_key;
1506fcc8 4378 struct extent_map *em = NULL;
2ac55d41 4379 struct extent_state *cached_state = NULL;
975f84fe 4380 struct btrfs_path *path;
dc046b10 4381 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4382 int end = 0;
ec29ed5b
CM
4383 u64 em_start = 0;
4384 u64 em_len = 0;
4385 u64 em_end = 0;
1506fcc8
YS
4386
4387 if (len == 0)
4388 return -EINVAL;
4389
975f84fe
JB
4390 path = btrfs_alloc_path();
4391 if (!path)
4392 return -ENOMEM;
4393 path->leave_spinning = 1;
4394
da17066c
JM
4395 start = round_down(start, btrfs_inode_sectorsize(inode));
4396 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4397
ec29ed5b
CM
4398 /*
4399 * lookup the last file extent. We're not using i_size here
4400 * because there might be preallocation past i_size
4401 */
f85b7379
DS
4402 ret = btrfs_lookup_file_extent(NULL, root, path,
4403 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4404 if (ret < 0) {
4405 btrfs_free_path(path);
4406 return ret;
2d324f59
LB
4407 } else {
4408 WARN_ON(!ret);
4409 if (ret == 1)
4410 ret = 0;
975f84fe 4411 }
2d324f59 4412
975f84fe 4413 path->slots[0]--;
975f84fe 4414 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4415 found_type = found_key.type;
975f84fe 4416
ec29ed5b 4417 /* No extents, but there might be delalloc bits */
4a0cc7ca 4418 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4419 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4420 /* have to trust i_size as the end */
4421 last = (u64)-1;
4422 last_for_get_extent = isize;
4423 } else {
4424 /*
4425 * remember the start of the last extent. There are a
4426 * bunch of different factors that go into the length of the
4427 * extent, so its much less complex to remember where it started
4428 */
4429 last = found_key.offset;
4430 last_for_get_extent = last + 1;
975f84fe 4431 }
fe09e16c 4432 btrfs_release_path(path);
975f84fe 4433
ec29ed5b
CM
4434 /*
4435 * we might have some extents allocated but more delalloc past those
4436 * extents. so, we trust isize unless the start of the last extent is
4437 * beyond isize
4438 */
4439 if (last < isize) {
4440 last = (u64)-1;
4441 last_for_get_extent = isize;
4442 }
4443
ff13db41 4444 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4445 &cached_state);
ec29ed5b 4446
4d479cf0 4447 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4448 get_extent);
1506fcc8
YS
4449 if (!em)
4450 goto out;
4451 if (IS_ERR(em)) {
4452 ret = PTR_ERR(em);
4453 goto out;
4454 }
975f84fe 4455
1506fcc8 4456 while (!end) {
b76bb701 4457 u64 offset_in_extent = 0;
ea8efc74
CM
4458
4459 /* break if the extent we found is outside the range */
4460 if (em->start >= max || extent_map_end(em) < off)
4461 break;
4462
4463 /*
4464 * get_extent may return an extent that starts before our
4465 * requested range. We have to make sure the ranges
4466 * we return to fiemap always move forward and don't
4467 * overlap, so adjust the offsets here
4468 */
4469 em_start = max(em->start, off);
1506fcc8 4470
ea8efc74
CM
4471 /*
4472 * record the offset from the start of the extent
b76bb701
JB
4473 * for adjusting the disk offset below. Only do this if the
4474 * extent isn't compressed since our in ram offset may be past
4475 * what we have actually allocated on disk.
ea8efc74 4476 */
b76bb701
JB
4477 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4478 offset_in_extent = em_start - em->start;
ec29ed5b 4479 em_end = extent_map_end(em);
ea8efc74 4480 em_len = em_end - em_start;
1506fcc8
YS
4481 disko = 0;
4482 flags = 0;
4483
ea8efc74
CM
4484 /*
4485 * bump off for our next call to get_extent
4486 */
4487 off = extent_map_end(em);
4488 if (off >= max)
4489 end = 1;
4490
93dbfad7 4491 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4492 end = 1;
4493 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4494 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4495 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4496 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4497 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4498 flags |= (FIEMAP_EXTENT_DELALLOC |
4499 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4500 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4501 struct btrfs_trans_handle *trans;
4502
dc046b10
JB
4503 u64 bytenr = em->block_start -
4504 (em->start - em->orig_start);
fe09e16c 4505
ea8efc74 4506 disko = em->block_start + offset_in_extent;
fe09e16c 4507
afce772e
LF
4508 /*
4509 * We need a trans handle to get delayed refs
4510 */
4511 trans = btrfs_join_transaction(root);
4512 /*
4513 * It's OK if we can't start a trans we can still check
4514 * from commit_root
4515 */
4516 if (IS_ERR(trans))
4517 trans = NULL;
4518
fe09e16c
LB
4519 /*
4520 * As btrfs supports shared space, this information
4521 * can be exported to userspace tools via
dc046b10
JB
4522 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4523 * then we're just getting a count and we can skip the
4524 * lookup stuff.
fe09e16c 4525 */
afce772e 4526 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4527 root->objectid,
4528 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4529 if (trans)
3a45bb20 4530 btrfs_end_transaction(trans);
dc046b10 4531 if (ret < 0)
fe09e16c 4532 goto out_free;
dc046b10 4533 if (ret)
fe09e16c 4534 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4535 ret = 0;
1506fcc8
YS
4536 }
4537 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4538 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4539 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4540 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4541
1506fcc8
YS
4542 free_extent_map(em);
4543 em = NULL;
ec29ed5b
CM
4544 if ((em_start >= last) || em_len == (u64)-1 ||
4545 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4546 flags |= FIEMAP_EXTENT_LAST;
4547 end = 1;
4548 }
4549
ec29ed5b
CM
4550 /* now scan forward to see if this is really the last extent. */
4551 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4552 get_extent);
4553 if (IS_ERR(em)) {
4554 ret = PTR_ERR(em);
4555 goto out;
4556 }
4557 if (!em) {
975f84fe
JB
4558 flags |= FIEMAP_EXTENT_LAST;
4559 end = 1;
4560 }
ec29ed5b
CM
4561 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4562 em_len, flags);
26e726af
CS
4563 if (ret) {
4564 if (ret == 1)
4565 ret = 0;
ec29ed5b 4566 goto out_free;
26e726af 4567 }
1506fcc8
YS
4568 }
4569out_free:
4570 free_extent_map(em);
4571out:
fe09e16c 4572 btrfs_free_path(path);
a52f4cd2 4573 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4574 &cached_state, GFP_NOFS);
1506fcc8
YS
4575 return ret;
4576}
4577
727011e0
CM
4578static void __free_extent_buffer(struct extent_buffer *eb)
4579{
6d49ba1b 4580 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4581 kmem_cache_free(extent_buffer_cache, eb);
4582}
4583
a26e8c9f 4584int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4585{
4586 return (atomic_read(&eb->io_pages) ||
4587 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4588 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4589}
4590
4591/*
4592 * Helper for releasing extent buffer page.
4593 */
a50924e3 4594static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4595{
4596 unsigned long index;
db7f3436
JB
4597 struct page *page;
4598 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4599
4600 BUG_ON(extent_buffer_under_io(eb));
4601
a50924e3
DS
4602 index = num_extent_pages(eb->start, eb->len);
4603 if (index == 0)
db7f3436
JB
4604 return;
4605
4606 do {
4607 index--;
fb85fc9a 4608 page = eb->pages[index];
5d2361db
FL
4609 if (!page)
4610 continue;
4611 if (mapped)
db7f3436 4612 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4613 /*
4614 * We do this since we'll remove the pages after we've
4615 * removed the eb from the radix tree, so we could race
4616 * and have this page now attached to the new eb. So
4617 * only clear page_private if it's still connected to
4618 * this eb.
4619 */
4620 if (PagePrivate(page) &&
4621 page->private == (unsigned long)eb) {
4622 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4623 BUG_ON(PageDirty(page));
4624 BUG_ON(PageWriteback(page));
db7f3436 4625 /*
5d2361db
FL
4626 * We need to make sure we haven't be attached
4627 * to a new eb.
db7f3436 4628 */
5d2361db
FL
4629 ClearPagePrivate(page);
4630 set_page_private(page, 0);
4631 /* One for the page private */
09cbfeaf 4632 put_page(page);
db7f3436 4633 }
5d2361db
FL
4634
4635 if (mapped)
4636 spin_unlock(&page->mapping->private_lock);
4637
01327610 4638 /* One for when we allocated the page */
09cbfeaf 4639 put_page(page);
a50924e3 4640 } while (index != 0);
db7f3436
JB
4641}
4642
4643/*
4644 * Helper for releasing the extent buffer.
4645 */
4646static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4647{
a50924e3 4648 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4649 __free_extent_buffer(eb);
4650}
4651
f28491e0
JB
4652static struct extent_buffer *
4653__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4654 unsigned long len)
d1310b2e
CM
4655{
4656 struct extent_buffer *eb = NULL;
4657
d1b5c567 4658 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4659 eb->start = start;
4660 eb->len = len;
f28491e0 4661 eb->fs_info = fs_info;
815a51c7 4662 eb->bflags = 0;
bd681513
CM
4663 rwlock_init(&eb->lock);
4664 atomic_set(&eb->write_locks, 0);
4665 atomic_set(&eb->read_locks, 0);
4666 atomic_set(&eb->blocking_readers, 0);
4667 atomic_set(&eb->blocking_writers, 0);
4668 atomic_set(&eb->spinning_readers, 0);
4669 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4670 eb->lock_nested = 0;
bd681513
CM
4671 init_waitqueue_head(&eb->write_lock_wq);
4672 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4673
6d49ba1b
ES
4674 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4675
3083ee2e 4676 spin_lock_init(&eb->refs_lock);
d1310b2e 4677 atomic_set(&eb->refs, 1);
0b32f4bb 4678 atomic_set(&eb->io_pages, 0);
727011e0 4679
b8dae313
DS
4680 /*
4681 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4682 */
4683 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4684 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4685 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4686
4687 return eb;
4688}
4689
815a51c7
JS
4690struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4691{
4692 unsigned long i;
4693 struct page *p;
4694 struct extent_buffer *new;
4695 unsigned long num_pages = num_extent_pages(src->start, src->len);
4696
3f556f78 4697 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4698 if (new == NULL)
4699 return NULL;
4700
4701 for (i = 0; i < num_pages; i++) {
9ec72677 4702 p = alloc_page(GFP_NOFS);
db7f3436
JB
4703 if (!p) {
4704 btrfs_release_extent_buffer(new);
4705 return NULL;
4706 }
815a51c7
JS
4707 attach_extent_buffer_page(new, p);
4708 WARN_ON(PageDirty(p));
4709 SetPageUptodate(p);
4710 new->pages[i] = p;
fba1acf9 4711 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4712 }
4713
815a51c7
JS
4714 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4715 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4716
4717 return new;
4718}
4719
0f331229
OS
4720struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4721 u64 start, unsigned long len)
815a51c7
JS
4722{
4723 struct extent_buffer *eb;
3f556f78 4724 unsigned long num_pages;
815a51c7
JS
4725 unsigned long i;
4726
0f331229 4727 num_pages = num_extent_pages(start, len);
3f556f78
DS
4728
4729 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4730 if (!eb)
4731 return NULL;
4732
4733 for (i = 0; i < num_pages; i++) {
9ec72677 4734 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4735 if (!eb->pages[i])
4736 goto err;
4737 }
4738 set_extent_buffer_uptodate(eb);
4739 btrfs_set_header_nritems(eb, 0);
4740 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4741
4742 return eb;
4743err:
84167d19
SB
4744 for (; i > 0; i--)
4745 __free_page(eb->pages[i - 1]);
815a51c7
JS
4746 __free_extent_buffer(eb);
4747 return NULL;
4748}
4749
0f331229 4750struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4751 u64 start)
0f331229 4752{
da17066c 4753 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4754}
4755
0b32f4bb
JB
4756static void check_buffer_tree_ref(struct extent_buffer *eb)
4757{
242e18c7 4758 int refs;
0b32f4bb
JB
4759 /* the ref bit is tricky. We have to make sure it is set
4760 * if we have the buffer dirty. Otherwise the
4761 * code to free a buffer can end up dropping a dirty
4762 * page
4763 *
4764 * Once the ref bit is set, it won't go away while the
4765 * buffer is dirty or in writeback, and it also won't
4766 * go away while we have the reference count on the
4767 * eb bumped.
4768 *
4769 * We can't just set the ref bit without bumping the
4770 * ref on the eb because free_extent_buffer might
4771 * see the ref bit and try to clear it. If this happens
4772 * free_extent_buffer might end up dropping our original
4773 * ref by mistake and freeing the page before we are able
4774 * to add one more ref.
4775 *
4776 * So bump the ref count first, then set the bit. If someone
4777 * beat us to it, drop the ref we added.
4778 */
242e18c7
CM
4779 refs = atomic_read(&eb->refs);
4780 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4781 return;
4782
594831c4
JB
4783 spin_lock(&eb->refs_lock);
4784 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4785 atomic_inc(&eb->refs);
594831c4 4786 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4787}
4788
2457aec6
MG
4789static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4790 struct page *accessed)
5df4235e
JB
4791{
4792 unsigned long num_pages, i;
4793
0b32f4bb
JB
4794 check_buffer_tree_ref(eb);
4795
5df4235e
JB
4796 num_pages = num_extent_pages(eb->start, eb->len);
4797 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4798 struct page *p = eb->pages[i];
4799
2457aec6
MG
4800 if (p != accessed)
4801 mark_page_accessed(p);
5df4235e
JB
4802 }
4803}
4804
f28491e0
JB
4805struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4806 u64 start)
452c75c3
CS
4807{
4808 struct extent_buffer *eb;
4809
4810 rcu_read_lock();
f28491e0 4811 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4812 start >> PAGE_SHIFT);
452c75c3
CS
4813 if (eb && atomic_inc_not_zero(&eb->refs)) {
4814 rcu_read_unlock();
062c19e9
FM
4815 /*
4816 * Lock our eb's refs_lock to avoid races with
4817 * free_extent_buffer. When we get our eb it might be flagged
4818 * with EXTENT_BUFFER_STALE and another task running
4819 * free_extent_buffer might have seen that flag set,
4820 * eb->refs == 2, that the buffer isn't under IO (dirty and
4821 * writeback flags not set) and it's still in the tree (flag
4822 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4823 * of decrementing the extent buffer's reference count twice.
4824 * So here we could race and increment the eb's reference count,
4825 * clear its stale flag, mark it as dirty and drop our reference
4826 * before the other task finishes executing free_extent_buffer,
4827 * which would later result in an attempt to free an extent
4828 * buffer that is dirty.
4829 */
4830 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4831 spin_lock(&eb->refs_lock);
4832 spin_unlock(&eb->refs_lock);
4833 }
2457aec6 4834 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4835 return eb;
4836 }
4837 rcu_read_unlock();
4838
4839 return NULL;
4840}
4841
faa2dbf0
JB
4842#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4843struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4844 u64 start)
faa2dbf0
JB
4845{
4846 struct extent_buffer *eb, *exists = NULL;
4847 int ret;
4848
4849 eb = find_extent_buffer(fs_info, start);
4850 if (eb)
4851 return eb;
da17066c 4852 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4853 if (!eb)
4854 return NULL;
4855 eb->fs_info = fs_info;
4856again:
e1860a77 4857 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4858 if (ret)
4859 goto free_eb;
4860 spin_lock(&fs_info->buffer_lock);
4861 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4862 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4863 spin_unlock(&fs_info->buffer_lock);
4864 radix_tree_preload_end();
4865 if (ret == -EEXIST) {
4866 exists = find_extent_buffer(fs_info, start);
4867 if (exists)
4868 goto free_eb;
4869 else
4870 goto again;
4871 }
4872 check_buffer_tree_ref(eb);
4873 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4874
4875 /*
4876 * We will free dummy extent buffer's if they come into
4877 * free_extent_buffer with a ref count of 2, but if we are using this we
4878 * want the buffers to stay in memory until we're done with them, so
4879 * bump the ref count again.
4880 */
4881 atomic_inc(&eb->refs);
4882 return eb;
4883free_eb:
4884 btrfs_release_extent_buffer(eb);
4885 return exists;
4886}
4887#endif
4888
f28491e0 4889struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4890 u64 start)
d1310b2e 4891{
da17066c 4892 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4893 unsigned long num_pages = num_extent_pages(start, len);
4894 unsigned long i;
09cbfeaf 4895 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4896 struct extent_buffer *eb;
6af118ce 4897 struct extent_buffer *exists = NULL;
d1310b2e 4898 struct page *p;
f28491e0 4899 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4900 int uptodate = 1;
19fe0a8b 4901 int ret;
d1310b2e 4902
da17066c 4903 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4904 btrfs_err(fs_info, "bad tree block start %llu", start);
4905 return ERR_PTR(-EINVAL);
4906 }
4907
f28491e0 4908 eb = find_extent_buffer(fs_info, start);
452c75c3 4909 if (eb)
6af118ce 4910 return eb;
6af118ce 4911
23d79d81 4912 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4913 if (!eb)
c871b0f2 4914 return ERR_PTR(-ENOMEM);
d1310b2e 4915
727011e0 4916 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4917 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4918 if (!p) {
4919 exists = ERR_PTR(-ENOMEM);
6af118ce 4920 goto free_eb;
c871b0f2 4921 }
4f2de97a
JB
4922
4923 spin_lock(&mapping->private_lock);
4924 if (PagePrivate(p)) {
4925 /*
4926 * We could have already allocated an eb for this page
4927 * and attached one so lets see if we can get a ref on
4928 * the existing eb, and if we can we know it's good and
4929 * we can just return that one, else we know we can just
4930 * overwrite page->private.
4931 */
4932 exists = (struct extent_buffer *)p->private;
4933 if (atomic_inc_not_zero(&exists->refs)) {
4934 spin_unlock(&mapping->private_lock);
4935 unlock_page(p);
09cbfeaf 4936 put_page(p);
2457aec6 4937 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4938 goto free_eb;
4939 }
5ca64f45 4940 exists = NULL;
4f2de97a 4941
0b32f4bb 4942 /*
4f2de97a
JB
4943 * Do this so attach doesn't complain and we need to
4944 * drop the ref the old guy had.
4945 */
4946 ClearPagePrivate(p);
0b32f4bb 4947 WARN_ON(PageDirty(p));
09cbfeaf 4948 put_page(p);
d1310b2e 4949 }
4f2de97a
JB
4950 attach_extent_buffer_page(eb, p);
4951 spin_unlock(&mapping->private_lock);
0b32f4bb 4952 WARN_ON(PageDirty(p));
727011e0 4953 eb->pages[i] = p;
d1310b2e
CM
4954 if (!PageUptodate(p))
4955 uptodate = 0;
eb14ab8e
CM
4956
4957 /*
4958 * see below about how we avoid a nasty race with release page
4959 * and why we unlock later
4960 */
d1310b2e
CM
4961 }
4962 if (uptodate)
b4ce94de 4963 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4964again:
e1860a77 4965 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4966 if (ret) {
4967 exists = ERR_PTR(ret);
19fe0a8b 4968 goto free_eb;
c871b0f2 4969 }
19fe0a8b 4970
f28491e0
JB
4971 spin_lock(&fs_info->buffer_lock);
4972 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4973 start >> PAGE_SHIFT, eb);
f28491e0 4974 spin_unlock(&fs_info->buffer_lock);
452c75c3 4975 radix_tree_preload_end();
19fe0a8b 4976 if (ret == -EEXIST) {
f28491e0 4977 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4978 if (exists)
4979 goto free_eb;
4980 else
115391d2 4981 goto again;
6af118ce 4982 }
6af118ce 4983 /* add one reference for the tree */
0b32f4bb 4984 check_buffer_tree_ref(eb);
34b41ace 4985 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4986
4987 /*
4988 * there is a race where release page may have
4989 * tried to find this extent buffer in the radix
4990 * but failed. It will tell the VM it is safe to
4991 * reclaim the, and it will clear the page private bit.
4992 * We must make sure to set the page private bit properly
4993 * after the extent buffer is in the radix tree so
4994 * it doesn't get lost
4995 */
727011e0
CM
4996 SetPageChecked(eb->pages[0]);
4997 for (i = 1; i < num_pages; i++) {
fb85fc9a 4998 p = eb->pages[i];
727011e0
CM
4999 ClearPageChecked(p);
5000 unlock_page(p);
5001 }
5002 unlock_page(eb->pages[0]);
d1310b2e
CM
5003 return eb;
5004
6af118ce 5005free_eb:
5ca64f45 5006 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5007 for (i = 0; i < num_pages; i++) {
5008 if (eb->pages[i])
5009 unlock_page(eb->pages[i]);
5010 }
eb14ab8e 5011
897ca6e9 5012 btrfs_release_extent_buffer(eb);
6af118ce 5013 return exists;
d1310b2e 5014}
d1310b2e 5015
3083ee2e
JB
5016static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5017{
5018 struct extent_buffer *eb =
5019 container_of(head, struct extent_buffer, rcu_head);
5020
5021 __free_extent_buffer(eb);
5022}
5023
3083ee2e 5024/* Expects to have eb->eb_lock already held */
f7a52a40 5025static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5026{
5027 WARN_ON(atomic_read(&eb->refs) == 0);
5028 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5029 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5030 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5031
815a51c7 5032 spin_unlock(&eb->refs_lock);
3083ee2e 5033
f28491e0
JB
5034 spin_lock(&fs_info->buffer_lock);
5035 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5036 eb->start >> PAGE_SHIFT);
f28491e0 5037 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5038 } else {
5039 spin_unlock(&eb->refs_lock);
815a51c7 5040 }
3083ee2e
JB
5041
5042 /* Should be safe to release our pages at this point */
a50924e3 5043 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5044#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5045 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5046 __free_extent_buffer(eb);
5047 return 1;
5048 }
5049#endif
3083ee2e 5050 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5051 return 1;
3083ee2e
JB
5052 }
5053 spin_unlock(&eb->refs_lock);
e64860aa
JB
5054
5055 return 0;
3083ee2e
JB
5056}
5057
d1310b2e
CM
5058void free_extent_buffer(struct extent_buffer *eb)
5059{
242e18c7
CM
5060 int refs;
5061 int old;
d1310b2e
CM
5062 if (!eb)
5063 return;
5064
242e18c7
CM
5065 while (1) {
5066 refs = atomic_read(&eb->refs);
5067 if (refs <= 3)
5068 break;
5069 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5070 if (old == refs)
5071 return;
5072 }
5073
3083ee2e 5074 spin_lock(&eb->refs_lock);
815a51c7
JS
5075 if (atomic_read(&eb->refs) == 2 &&
5076 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5077 atomic_dec(&eb->refs);
5078
3083ee2e
JB
5079 if (atomic_read(&eb->refs) == 2 &&
5080 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5081 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5082 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5083 atomic_dec(&eb->refs);
5084
5085 /*
5086 * I know this is terrible, but it's temporary until we stop tracking
5087 * the uptodate bits and such for the extent buffers.
5088 */
f7a52a40 5089 release_extent_buffer(eb);
3083ee2e
JB
5090}
5091
5092void free_extent_buffer_stale(struct extent_buffer *eb)
5093{
5094 if (!eb)
d1310b2e
CM
5095 return;
5096
3083ee2e
JB
5097 spin_lock(&eb->refs_lock);
5098 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5099
0b32f4bb 5100 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5101 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5102 atomic_dec(&eb->refs);
f7a52a40 5103 release_extent_buffer(eb);
d1310b2e 5104}
d1310b2e 5105
1d4284bd 5106void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5107{
d1310b2e
CM
5108 unsigned long i;
5109 unsigned long num_pages;
5110 struct page *page;
5111
d1310b2e
CM
5112 num_pages = num_extent_pages(eb->start, eb->len);
5113
5114 for (i = 0; i < num_pages; i++) {
fb85fc9a 5115 page = eb->pages[i];
b9473439 5116 if (!PageDirty(page))
d2c3f4f6
CM
5117 continue;
5118
a61e6f29 5119 lock_page(page);
eb14ab8e
CM
5120 WARN_ON(!PagePrivate(page));
5121
d1310b2e 5122 clear_page_dirty_for_io(page);
0ee0fda0 5123 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5124 if (!PageDirty(page)) {
5125 radix_tree_tag_clear(&page->mapping->page_tree,
5126 page_index(page),
5127 PAGECACHE_TAG_DIRTY);
5128 }
0ee0fda0 5129 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5130 ClearPageError(page);
a61e6f29 5131 unlock_page(page);
d1310b2e 5132 }
0b32f4bb 5133 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5134}
d1310b2e 5135
0b32f4bb 5136int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5137{
5138 unsigned long i;
5139 unsigned long num_pages;
b9473439 5140 int was_dirty = 0;
d1310b2e 5141
0b32f4bb
JB
5142 check_buffer_tree_ref(eb);
5143
b9473439 5144 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5145
d1310b2e 5146 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5147 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5148 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5149
b9473439 5150 for (i = 0; i < num_pages; i++)
fb85fc9a 5151 set_page_dirty(eb->pages[i]);
b9473439 5152 return was_dirty;
d1310b2e 5153}
d1310b2e 5154
69ba3927 5155void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5156{
5157 unsigned long i;
5158 struct page *page;
5159 unsigned long num_pages;
5160
b4ce94de 5161 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5162 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5163 for (i = 0; i < num_pages; i++) {
fb85fc9a 5164 page = eb->pages[i];
33958dc6
CM
5165 if (page)
5166 ClearPageUptodate(page);
1259ab75 5167 }
1259ab75
CM
5168}
5169
09c25a8c 5170void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5171{
5172 unsigned long i;
5173 struct page *page;
5174 unsigned long num_pages;
5175
0b32f4bb 5176 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5177 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5178 for (i = 0; i < num_pages; i++) {
fb85fc9a 5179 page = eb->pages[i];
d1310b2e
CM
5180 SetPageUptodate(page);
5181 }
d1310b2e 5182}
d1310b2e 5183
0b32f4bb 5184int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5185{
0b32f4bb 5186 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5187}
d1310b2e
CM
5188
5189int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5190 struct extent_buffer *eb, int wait,
f188591e 5191 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5192{
5193 unsigned long i;
d1310b2e
CM
5194 struct page *page;
5195 int err;
5196 int ret = 0;
ce9adaa5
CM
5197 int locked_pages = 0;
5198 int all_uptodate = 1;
d1310b2e 5199 unsigned long num_pages;
727011e0 5200 unsigned long num_reads = 0;
a86c12c7 5201 struct bio *bio = NULL;
c8b97818 5202 unsigned long bio_flags = 0;
a86c12c7 5203
b4ce94de 5204 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5205 return 0;
5206
d1310b2e 5207 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5208 for (i = 0; i < num_pages; i++) {
fb85fc9a 5209 page = eb->pages[i];
bb82ab88 5210 if (wait == WAIT_NONE) {
2db04966 5211 if (!trylock_page(page))
ce9adaa5 5212 goto unlock_exit;
d1310b2e
CM
5213 } else {
5214 lock_page(page);
5215 }
ce9adaa5 5216 locked_pages++;
2571e739
LB
5217 }
5218 /*
5219 * We need to firstly lock all pages to make sure that
5220 * the uptodate bit of our pages won't be affected by
5221 * clear_extent_buffer_uptodate().
5222 */
8436ea91 5223 for (i = 0; i < num_pages; i++) {
2571e739 5224 page = eb->pages[i];
727011e0
CM
5225 if (!PageUptodate(page)) {
5226 num_reads++;
ce9adaa5 5227 all_uptodate = 0;
727011e0 5228 }
ce9adaa5 5229 }
2571e739 5230
ce9adaa5 5231 if (all_uptodate) {
8436ea91 5232 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5233 goto unlock_exit;
5234 }
5235
656f30db 5236 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5237 eb->read_mirror = 0;
0b32f4bb 5238 atomic_set(&eb->io_pages, num_reads);
8436ea91 5239 for (i = 0; i < num_pages; i++) {
fb85fc9a 5240 page = eb->pages[i];
baf863b9 5241
ce9adaa5 5242 if (!PageUptodate(page)) {
baf863b9
LB
5243 if (ret) {
5244 atomic_dec(&eb->io_pages);
5245 unlock_page(page);
5246 continue;
5247 }
5248
f188591e 5249 ClearPageError(page);
a86c12c7 5250 err = __extent_read_full_page(tree, page,
f188591e 5251 get_extent, &bio,
d4c7ca86 5252 mirror_num, &bio_flags,
1f7ad75b 5253 REQ_META);
baf863b9 5254 if (err) {
d1310b2e 5255 ret = err;
baf863b9
LB
5256 /*
5257 * We use &bio in above __extent_read_full_page,
5258 * so we ensure that if it returns error, the
5259 * current page fails to add itself to bio and
5260 * it's been unlocked.
5261 *
5262 * We must dec io_pages by ourselves.
5263 */
5264 atomic_dec(&eb->io_pages);
5265 }
d1310b2e
CM
5266 } else {
5267 unlock_page(page);
5268 }
5269 }
5270
355808c2 5271 if (bio) {
1f7ad75b 5272 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5273 if (err)
5274 return err;
355808c2 5275 }
a86c12c7 5276
bb82ab88 5277 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5278 return ret;
d397712b 5279
8436ea91 5280 for (i = 0; i < num_pages; i++) {
fb85fc9a 5281 page = eb->pages[i];
d1310b2e 5282 wait_on_page_locked(page);
d397712b 5283 if (!PageUptodate(page))
d1310b2e 5284 ret = -EIO;
d1310b2e 5285 }
d397712b 5286
d1310b2e 5287 return ret;
ce9adaa5
CM
5288
5289unlock_exit:
d397712b 5290 while (locked_pages > 0) {
ce9adaa5 5291 locked_pages--;
8436ea91
JB
5292 page = eb->pages[locked_pages];
5293 unlock_page(page);
ce9adaa5
CM
5294 }
5295 return ret;
d1310b2e 5296}
d1310b2e
CM
5297
5298void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5299 unsigned long start,
5300 unsigned long len)
5301{
5302 size_t cur;
5303 size_t offset;
5304 struct page *page;
5305 char *kaddr;
5306 char *dst = (char *)dstv;
09cbfeaf
KS
5307 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5308 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5309
5310 WARN_ON(start > eb->len);
5311 WARN_ON(start + len > eb->start + eb->len);
5312
09cbfeaf 5313 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5314
d397712b 5315 while (len > 0) {
fb85fc9a 5316 page = eb->pages[i];
d1310b2e 5317
09cbfeaf 5318 cur = min(len, (PAGE_SIZE - offset));
a6591715 5319 kaddr = page_address(page);
d1310b2e 5320 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5321
5322 dst += cur;
5323 len -= cur;
5324 offset = 0;
5325 i++;
5326 }
5327}
d1310b2e 5328
550ac1d8
GH
5329int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5330 unsigned long start,
5331 unsigned long len)
5332{
5333 size_t cur;
5334 size_t offset;
5335 struct page *page;
5336 char *kaddr;
5337 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5338 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5339 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5340 int ret = 0;
5341
5342 WARN_ON(start > eb->len);
5343 WARN_ON(start + len > eb->start + eb->len);
5344
09cbfeaf 5345 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5346
5347 while (len > 0) {
fb85fc9a 5348 page = eb->pages[i];
550ac1d8 5349
09cbfeaf 5350 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5351 kaddr = page_address(page);
5352 if (copy_to_user(dst, kaddr + offset, cur)) {
5353 ret = -EFAULT;
5354 break;
5355 }
5356
5357 dst += cur;
5358 len -= cur;
5359 offset = 0;
5360 i++;
5361 }
5362
5363 return ret;
5364}
5365
415b35a5
LB
5366/*
5367 * return 0 if the item is found within a page.
5368 * return 1 if the item spans two pages.
5369 * return -EINVAL otherwise.
5370 */
d1310b2e 5371int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5372 unsigned long min_len, char **map,
d1310b2e 5373 unsigned long *map_start,
a6591715 5374 unsigned long *map_len)
d1310b2e 5375{
09cbfeaf 5376 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5377 char *kaddr;
5378 struct page *p;
09cbfeaf
KS
5379 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5380 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5381 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5382 PAGE_SHIFT;
d1310b2e
CM
5383
5384 if (i != end_i)
415b35a5 5385 return 1;
d1310b2e
CM
5386
5387 if (i == 0) {
5388 offset = start_offset;
5389 *map_start = 0;
5390 } else {
5391 offset = 0;
09cbfeaf 5392 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5393 }
d397712b 5394
d1310b2e 5395 if (start + min_len > eb->len) {
5d163e0e 5396 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5397 eb->start, eb->len, start, min_len);
85026533 5398 return -EINVAL;
d1310b2e
CM
5399 }
5400
fb85fc9a 5401 p = eb->pages[i];
a6591715 5402 kaddr = page_address(p);
d1310b2e 5403 *map = kaddr + offset;
09cbfeaf 5404 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5405 return 0;
5406}
d1310b2e 5407
d1310b2e
CM
5408int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5409 unsigned long start,
5410 unsigned long len)
5411{
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 char *ptr = (char *)ptrv;
09cbfeaf
KS
5417 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5419 int ret = 0;
5420
5421 WARN_ON(start > eb->len);
5422 WARN_ON(start + len > eb->start + eb->len);
5423
09cbfeaf 5424 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5425
d397712b 5426 while (len > 0) {
fb85fc9a 5427 page = eb->pages[i];
d1310b2e 5428
09cbfeaf 5429 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5430
a6591715 5431 kaddr = page_address(page);
d1310b2e 5432 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5433 if (ret)
5434 break;
5435
5436 ptr += cur;
5437 len -= cur;
5438 offset = 0;
5439 i++;
5440 }
5441 return ret;
5442}
d1310b2e 5443
f157bf76
DS
5444void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5445 const void *srcv)
5446{
5447 char *kaddr;
5448
5449 WARN_ON(!PageUptodate(eb->pages[0]));
5450 kaddr = page_address(eb->pages[0]);
5451 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5452 BTRFS_FSID_SIZE);
5453}
5454
5455void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5456{
5457 char *kaddr;
5458
5459 WARN_ON(!PageUptodate(eb->pages[0]));
5460 kaddr = page_address(eb->pages[0]);
5461 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5462 BTRFS_FSID_SIZE);
5463}
5464
d1310b2e
CM
5465void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5466 unsigned long start, unsigned long len)
5467{
5468 size_t cur;
5469 size_t offset;
5470 struct page *page;
5471 char *kaddr;
5472 char *src = (char *)srcv;
09cbfeaf
KS
5473 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5474 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5475
5476 WARN_ON(start > eb->len);
5477 WARN_ON(start + len > eb->start + eb->len);
5478
09cbfeaf 5479 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5480
d397712b 5481 while (len > 0) {
fb85fc9a 5482 page = eb->pages[i];
d1310b2e
CM
5483 WARN_ON(!PageUptodate(page));
5484
09cbfeaf 5485 cur = min(len, PAGE_SIZE - offset);
a6591715 5486 kaddr = page_address(page);
d1310b2e 5487 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5488
5489 src += cur;
5490 len -= cur;
5491 offset = 0;
5492 i++;
5493 }
5494}
d1310b2e 5495
b159fa28
DS
5496void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5497 unsigned long len)
d1310b2e
CM
5498{
5499 size_t cur;
5500 size_t offset;
5501 struct page *page;
5502 char *kaddr;
09cbfeaf
KS
5503 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5504 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5505
5506 WARN_ON(start > eb->len);
5507 WARN_ON(start + len > eb->start + eb->len);
5508
09cbfeaf 5509 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5510
d397712b 5511 while (len > 0) {
fb85fc9a 5512 page = eb->pages[i];
d1310b2e
CM
5513 WARN_ON(!PageUptodate(page));
5514
09cbfeaf 5515 cur = min(len, PAGE_SIZE - offset);
a6591715 5516 kaddr = page_address(page);
b159fa28 5517 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5518
5519 len -= cur;
5520 offset = 0;
5521 i++;
5522 }
5523}
d1310b2e 5524
58e8012c
DS
5525void copy_extent_buffer_full(struct extent_buffer *dst,
5526 struct extent_buffer *src)
5527{
5528 int i;
5529 unsigned num_pages;
5530
5531 ASSERT(dst->len == src->len);
5532
5533 num_pages = num_extent_pages(dst->start, dst->len);
5534 for (i = 0; i < num_pages; i++)
5535 copy_page(page_address(dst->pages[i]),
5536 page_address(src->pages[i]));
5537}
5538
d1310b2e
CM
5539void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5540 unsigned long dst_offset, unsigned long src_offset,
5541 unsigned long len)
5542{
5543 u64 dst_len = dst->len;
5544 size_t cur;
5545 size_t offset;
5546 struct page *page;
5547 char *kaddr;
09cbfeaf
KS
5548 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5549 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5550
5551 WARN_ON(src->len != dst_len);
5552
5553 offset = (start_offset + dst_offset) &
09cbfeaf 5554 (PAGE_SIZE - 1);
d1310b2e 5555
d397712b 5556 while (len > 0) {
fb85fc9a 5557 page = dst->pages[i];
d1310b2e
CM
5558 WARN_ON(!PageUptodate(page));
5559
09cbfeaf 5560 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5561
a6591715 5562 kaddr = page_address(page);
d1310b2e 5563 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5564
5565 src_offset += cur;
5566 len -= cur;
5567 offset = 0;
5568 i++;
5569 }
5570}
d1310b2e 5571
2fe1d551
OS
5572void le_bitmap_set(u8 *map, unsigned int start, int len)
5573{
5574 u8 *p = map + BIT_BYTE(start);
5575 const unsigned int size = start + len;
5576 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5577 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5578
5579 while (len - bits_to_set >= 0) {
5580 *p |= mask_to_set;
5581 len -= bits_to_set;
5582 bits_to_set = BITS_PER_BYTE;
9c894696 5583 mask_to_set = ~0;
2fe1d551
OS
5584 p++;
5585 }
5586 if (len) {
5587 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5588 *p |= mask_to_set;
5589 }
5590}
5591
5592void le_bitmap_clear(u8 *map, unsigned int start, int len)
5593{
5594 u8 *p = map + BIT_BYTE(start);
5595 const unsigned int size = start + len;
5596 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5597 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5598
5599 while (len - bits_to_clear >= 0) {
5600 *p &= ~mask_to_clear;
5601 len -= bits_to_clear;
5602 bits_to_clear = BITS_PER_BYTE;
9c894696 5603 mask_to_clear = ~0;
2fe1d551
OS
5604 p++;
5605 }
5606 if (len) {
5607 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5608 *p &= ~mask_to_clear;
5609 }
5610}
3e1e8bb7
OS
5611
5612/*
5613 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5614 * given bit number
5615 * @eb: the extent buffer
5616 * @start: offset of the bitmap item in the extent buffer
5617 * @nr: bit number
5618 * @page_index: return index of the page in the extent buffer that contains the
5619 * given bit number
5620 * @page_offset: return offset into the page given by page_index
5621 *
5622 * This helper hides the ugliness of finding the byte in an extent buffer which
5623 * contains a given bit.
5624 */
5625static inline void eb_bitmap_offset(struct extent_buffer *eb,
5626 unsigned long start, unsigned long nr,
5627 unsigned long *page_index,
5628 size_t *page_offset)
5629{
09cbfeaf 5630 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5631 size_t byte_offset = BIT_BYTE(nr);
5632 size_t offset;
5633
5634 /*
5635 * The byte we want is the offset of the extent buffer + the offset of
5636 * the bitmap item in the extent buffer + the offset of the byte in the
5637 * bitmap item.
5638 */
5639 offset = start_offset + start + byte_offset;
5640
09cbfeaf
KS
5641 *page_index = offset >> PAGE_SHIFT;
5642 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5643}
5644
5645/**
5646 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5647 * @eb: the extent buffer
5648 * @start: offset of the bitmap item in the extent buffer
5649 * @nr: bit number to test
5650 */
5651int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5652 unsigned long nr)
5653{
2fe1d551 5654 u8 *kaddr;
3e1e8bb7
OS
5655 struct page *page;
5656 unsigned long i;
5657 size_t offset;
5658
5659 eb_bitmap_offset(eb, start, nr, &i, &offset);
5660 page = eb->pages[i];
5661 WARN_ON(!PageUptodate(page));
5662 kaddr = page_address(page);
5663 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5664}
5665
5666/**
5667 * extent_buffer_bitmap_set - set an area of a bitmap
5668 * @eb: the extent buffer
5669 * @start: offset of the bitmap item in the extent buffer
5670 * @pos: bit number of the first bit
5671 * @len: number of bits to set
5672 */
5673void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5674 unsigned long pos, unsigned long len)
5675{
2fe1d551 5676 u8 *kaddr;
3e1e8bb7
OS
5677 struct page *page;
5678 unsigned long i;
5679 size_t offset;
5680 const unsigned int size = pos + len;
5681 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5682 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5683
5684 eb_bitmap_offset(eb, start, pos, &i, &offset);
5685 page = eb->pages[i];
5686 WARN_ON(!PageUptodate(page));
5687 kaddr = page_address(page);
5688
5689 while (len >= bits_to_set) {
5690 kaddr[offset] |= mask_to_set;
5691 len -= bits_to_set;
5692 bits_to_set = BITS_PER_BYTE;
9c894696 5693 mask_to_set = ~0;
09cbfeaf 5694 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5695 offset = 0;
5696 page = eb->pages[++i];
5697 WARN_ON(!PageUptodate(page));
5698 kaddr = page_address(page);
5699 }
5700 }
5701 if (len) {
5702 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5703 kaddr[offset] |= mask_to_set;
5704 }
5705}
5706
5707
5708/**
5709 * extent_buffer_bitmap_clear - clear an area of a bitmap
5710 * @eb: the extent buffer
5711 * @start: offset of the bitmap item in the extent buffer
5712 * @pos: bit number of the first bit
5713 * @len: number of bits to clear
5714 */
5715void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5716 unsigned long pos, unsigned long len)
5717{
2fe1d551 5718 u8 *kaddr;
3e1e8bb7
OS
5719 struct page *page;
5720 unsigned long i;
5721 size_t offset;
5722 const unsigned int size = pos + len;
5723 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5724 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5725
5726 eb_bitmap_offset(eb, start, pos, &i, &offset);
5727 page = eb->pages[i];
5728 WARN_ON(!PageUptodate(page));
5729 kaddr = page_address(page);
5730
5731 while (len >= bits_to_clear) {
5732 kaddr[offset] &= ~mask_to_clear;
5733 len -= bits_to_clear;
5734 bits_to_clear = BITS_PER_BYTE;
9c894696 5735 mask_to_clear = ~0;
09cbfeaf 5736 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5737 offset = 0;
5738 page = eb->pages[++i];
5739 WARN_ON(!PageUptodate(page));
5740 kaddr = page_address(page);
5741 }
5742 }
5743 if (len) {
5744 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5745 kaddr[offset] &= ~mask_to_clear;
5746 }
5747}
5748
3387206f
ST
5749static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5750{
5751 unsigned long distance = (src > dst) ? src - dst : dst - src;
5752 return distance < len;
5753}
5754
d1310b2e
CM
5755static void copy_pages(struct page *dst_page, struct page *src_page,
5756 unsigned long dst_off, unsigned long src_off,
5757 unsigned long len)
5758{
a6591715 5759 char *dst_kaddr = page_address(dst_page);
d1310b2e 5760 char *src_kaddr;
727011e0 5761 int must_memmove = 0;
d1310b2e 5762
3387206f 5763 if (dst_page != src_page) {
a6591715 5764 src_kaddr = page_address(src_page);
3387206f 5765 } else {
d1310b2e 5766 src_kaddr = dst_kaddr;
727011e0
CM
5767 if (areas_overlap(src_off, dst_off, len))
5768 must_memmove = 1;
3387206f 5769 }
d1310b2e 5770
727011e0
CM
5771 if (must_memmove)
5772 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5773 else
5774 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5775}
5776
5777void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5778 unsigned long src_offset, unsigned long len)
5779{
0b246afa 5780 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5781 size_t cur;
5782 size_t dst_off_in_page;
5783 size_t src_off_in_page;
09cbfeaf 5784 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5785 unsigned long dst_i;
5786 unsigned long src_i;
5787
5788 if (src_offset + len > dst->len) {
0b246afa 5789 btrfs_err(fs_info,
5d163e0e
JM
5790 "memmove bogus src_offset %lu move len %lu dst len %lu",
5791 src_offset, len, dst->len);
d1310b2e
CM
5792 BUG_ON(1);
5793 }
5794 if (dst_offset + len > dst->len) {
0b246afa 5795 btrfs_err(fs_info,
5d163e0e
JM
5796 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5797 dst_offset, len, dst->len);
d1310b2e
CM
5798 BUG_ON(1);
5799 }
5800
d397712b 5801 while (len > 0) {
d1310b2e 5802 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5803 (PAGE_SIZE - 1);
d1310b2e 5804 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5805 (PAGE_SIZE - 1);
d1310b2e 5806
09cbfeaf
KS
5807 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5808 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5809
09cbfeaf 5810 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5811 src_off_in_page));
5812 cur = min_t(unsigned long, cur,
09cbfeaf 5813 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5814
fb85fc9a 5815 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5816 dst_off_in_page, src_off_in_page, cur);
5817
5818 src_offset += cur;
5819 dst_offset += cur;
5820 len -= cur;
5821 }
5822}
d1310b2e
CM
5823
5824void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5825 unsigned long src_offset, unsigned long len)
5826{
0b246afa 5827 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5828 size_t cur;
5829 size_t dst_off_in_page;
5830 size_t src_off_in_page;
5831 unsigned long dst_end = dst_offset + len - 1;
5832 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5833 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5834 unsigned long dst_i;
5835 unsigned long src_i;
5836
5837 if (src_offset + len > dst->len) {
0b246afa 5838 btrfs_err(fs_info,
5d163e0e
JM
5839 "memmove bogus src_offset %lu move len %lu len %lu",
5840 src_offset, len, dst->len);
d1310b2e
CM
5841 BUG_ON(1);
5842 }
5843 if (dst_offset + len > dst->len) {
0b246afa 5844 btrfs_err(fs_info,
5d163e0e
JM
5845 "memmove bogus dst_offset %lu move len %lu len %lu",
5846 dst_offset, len, dst->len);
d1310b2e
CM
5847 BUG_ON(1);
5848 }
727011e0 5849 if (dst_offset < src_offset) {
d1310b2e
CM
5850 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5851 return;
5852 }
d397712b 5853 while (len > 0) {
09cbfeaf
KS
5854 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5855 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5856
5857 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5858 (PAGE_SIZE - 1);
d1310b2e 5859 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5860 (PAGE_SIZE - 1);
d1310b2e
CM
5861
5862 cur = min_t(unsigned long, len, src_off_in_page + 1);
5863 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5864 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5865 dst_off_in_page - cur + 1,
5866 src_off_in_page - cur + 1, cur);
5867
5868 dst_end -= cur;
5869 src_end -= cur;
5870 len -= cur;
5871 }
5872}
6af118ce 5873
f7a52a40 5874int try_release_extent_buffer(struct page *page)
19fe0a8b 5875{
6af118ce 5876 struct extent_buffer *eb;
6af118ce 5877
3083ee2e 5878 /*
01327610 5879 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5880 * now.
5881 */
5882 spin_lock(&page->mapping->private_lock);
5883 if (!PagePrivate(page)) {
5884 spin_unlock(&page->mapping->private_lock);
4f2de97a 5885 return 1;
45f49bce 5886 }
6af118ce 5887
3083ee2e
JB
5888 eb = (struct extent_buffer *)page->private;
5889 BUG_ON(!eb);
19fe0a8b
MX
5890
5891 /*
3083ee2e
JB
5892 * This is a little awful but should be ok, we need to make sure that
5893 * the eb doesn't disappear out from under us while we're looking at
5894 * this page.
19fe0a8b 5895 */
3083ee2e 5896 spin_lock(&eb->refs_lock);
0b32f4bb 5897 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5898 spin_unlock(&eb->refs_lock);
5899 spin_unlock(&page->mapping->private_lock);
5900 return 0;
b9473439 5901 }
3083ee2e 5902 spin_unlock(&page->mapping->private_lock);
897ca6e9 5903
19fe0a8b 5904 /*
3083ee2e
JB
5905 * If tree ref isn't set then we know the ref on this eb is a real ref,
5906 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5907 */
3083ee2e
JB
5908 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5909 spin_unlock(&eb->refs_lock);
5910 return 0;
b9473439 5911 }
19fe0a8b 5912
f7a52a40 5913 return release_extent_buffer(eb);
6af118ce 5914}