btrfs: unify regular and subpage error paths in __extent_writepage()
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
cea62800 16#include "misc.h"
d1310b2e 17#include "extent_io.h"
9c7d3a54 18#include "extent-io-tree.h"
d1310b2e 19#include "extent_map.h"
902b22f3
DW
20#include "ctree.h"
21#include "btrfs_inode.h"
4a54c8c1 22#include "volumes.h"
21adbd5c 23#include "check-integrity.h"
0b32f4bb 24#include "locking.h"
606686ee 25#include "rcu-string.h"
fe09e16c 26#include "backref.h"
6af49dbd 27#include "disk-io.h"
760f991f 28#include "subpage.h"
d3575156 29#include "zoned.h"
0bc09ca1 30#include "block-group.h"
d1310b2e 31
d1310b2e
CM
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 34static struct bio_set btrfs_bioset;
d1310b2e 35
27a3507d
FM
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
6d49ba1b 41#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 42static LIST_HEAD(states);
d397712b 43static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 44
3fd63727
JB
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
6d49ba1b
ES
48{
49 unsigned long flags;
50
3fd63727 51 spin_lock_irqsave(lock, flags);
6d49ba1b 52 list_add(new, head);
3fd63727 53 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
54}
55
3fd63727
JB
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
6d49ba1b
ES
58{
59 unsigned long flags;
60
3fd63727 61 spin_lock_irqsave(lock, flags);
6d49ba1b 62 list_del(entry);
3fd63727 63 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
64}
65
3fd63727 66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 67{
6d49ba1b 68 struct extent_buffer *eb;
3fd63727 69 unsigned long flags;
6d49ba1b 70
8c38938c
JB
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
3fd63727
JB
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
8c38938c
JB
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
33ca832f
JB
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
3fd63727 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
6d49ba1b
ES
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
b7ac31b7 101 refcount_read(&state->refs));
6d49ba1b
ES
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
6d49ba1b 105}
8d599ae1 106
a5dee37d
JB
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 110 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 111{
65a680f6
NB
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
8d599ae1 124}
6d49ba1b 125#else
3fd63727
JB
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 128#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 130#endif
d1310b2e 131
d1310b2e
CM
132struct tree_entry {
133 u64 start;
134 u64 end;
d1310b2e
CM
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
390ed29b 139 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
ffbd517d
CM
143 unsigned int extent_locked:1;
144
70fd7614 145 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 146 unsigned int sync_io:1;
d1310b2e
CM
147};
148
f97e27e9 149static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
57599c7e 156 return 0;
d38ed27f 157 if (set && (state->state & bits) == bits)
57599c7e 158 return 0;
fefdc557 159 if (!set && (state->state & bits) == 0)
57599c7e 160 return 0;
d38ed27f 161 changeset->bytes_changed += state->end - state->start + 1;
53d32359 162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 163 GFP_ATOMIC);
57599c7e 164 return ret;
d38ed27f
QW
165}
166
c1be9c1a
NB
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
bb58eb9e
QW
169{
170 blk_status_t ret = 0;
bb58eb9e 171 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
172
173 bio->bi_private = NULL;
174
e0eefe07
QW
175 /* Caller should ensure the bio has at least some range added */
176 ASSERT(bio->bi_iter.bi_size);
908930f3
NB
177 if (is_data_inode(tree->private_data))
178 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
179 bio_flags);
180 else
1b36294a
NB
181 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
182 mirror_num, bio_flags);
bb58eb9e
QW
183
184 return blk_status_to_errno(ret);
185}
186
3065976b
QW
187/* Cleanup unsubmitted bios */
188static void end_write_bio(struct extent_page_data *epd, int ret)
189{
390ed29b
QW
190 struct bio *bio = epd->bio_ctrl.bio;
191
192 if (bio) {
193 bio->bi_status = errno_to_blk_status(ret);
194 bio_endio(bio);
195 epd->bio_ctrl.bio = NULL;
3065976b
QW
196 }
197}
198
f4340622
QW
199/*
200 * Submit bio from extent page data via submit_one_bio
201 *
202 * Return 0 if everything is OK.
203 * Return <0 for error.
204 */
205static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 206{
f4340622 207 int ret = 0;
390ed29b 208 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 209
390ed29b
QW
210 if (bio) {
211 ret = submit_one_bio(bio, 0, 0);
f4340622
QW
212 /*
213 * Clean up of epd->bio is handled by its endio function.
214 * And endio is either triggered by successful bio execution
215 * or the error handler of submit bio hook.
216 * So at this point, no matter what happened, we don't need
217 * to clean up epd->bio.
218 */
390ed29b 219 epd->bio_ctrl.bio = NULL;
bb58eb9e 220 }
f4340622 221 return ret;
bb58eb9e 222}
e2932ee0 223
6f0d04f8 224int __init extent_state_cache_init(void)
d1310b2e 225{
837e1972 226 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 227 sizeof(struct extent_state), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
229 if (!extent_state_cache)
230 return -ENOMEM;
6f0d04f8
JB
231 return 0;
232}
d1310b2e 233
6f0d04f8
JB
234int __init extent_io_init(void)
235{
837e1972 236 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 237 sizeof(struct extent_buffer), 0,
fba4b697 238 SLAB_MEM_SPREAD, NULL);
d1310b2e 239 if (!extent_buffer_cache)
6f0d04f8 240 return -ENOMEM;
9be3395b 241
8ac9f7c1
KO
242 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
243 offsetof(struct btrfs_io_bio, bio),
244 BIOSET_NEED_BVECS))
9be3395b 245 goto free_buffer_cache;
b208c2f7 246
8ac9f7c1 247 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
248 goto free_bioset;
249
d1310b2e
CM
250 return 0;
251
b208c2f7 252free_bioset:
8ac9f7c1 253 bioset_exit(&btrfs_bioset);
b208c2f7 254
9be3395b
CM
255free_buffer_cache:
256 kmem_cache_destroy(extent_buffer_cache);
257 extent_buffer_cache = NULL;
6f0d04f8
JB
258 return -ENOMEM;
259}
9be3395b 260
6f0d04f8
JB
261void __cold extent_state_cache_exit(void)
262{
263 btrfs_extent_state_leak_debug_check();
d1310b2e 264 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
265}
266
e67c718b 267void __cold extent_io_exit(void)
d1310b2e 268{
8c0a8537
KS
269 /*
270 * Make sure all delayed rcu free are flushed before we
271 * destroy caches.
272 */
273 rcu_barrier();
5598e900 274 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 275 bioset_exit(&btrfs_bioset);
d1310b2e
CM
276}
277
41a2ee75
JB
278/*
279 * For the file_extent_tree, we want to hold the inode lock when we lookup and
280 * update the disk_i_size, but lockdep will complain because our io_tree we hold
281 * the tree lock and get the inode lock when setting delalloc. These two things
282 * are unrelated, so make a class for the file_extent_tree so we don't get the
283 * two locking patterns mixed up.
284 */
285static struct lock_class_key file_extent_tree_class;
286
c258d6e3 287void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
288 struct extent_io_tree *tree, unsigned int owner,
289 void *private_data)
d1310b2e 290{
c258d6e3 291 tree->fs_info = fs_info;
6bef4d31 292 tree->state = RB_ROOT;
d1310b2e 293 tree->dirty_bytes = 0;
70dec807 294 spin_lock_init(&tree->lock);
c6100a4b 295 tree->private_data = private_data;
43eb5f29 296 tree->owner = owner;
41a2ee75
JB
297 if (owner == IO_TREE_INODE_FILE_EXTENT)
298 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 299}
d1310b2e 300
41e7acd3
NB
301void extent_io_tree_release(struct extent_io_tree *tree)
302{
303 spin_lock(&tree->lock);
304 /*
305 * Do a single barrier for the waitqueue_active check here, the state
306 * of the waitqueue should not change once extent_io_tree_release is
307 * called.
308 */
309 smp_mb();
310 while (!RB_EMPTY_ROOT(&tree->state)) {
311 struct rb_node *node;
312 struct extent_state *state;
313
314 node = rb_first(&tree->state);
315 state = rb_entry(node, struct extent_state, rb_node);
316 rb_erase(&state->rb_node, &tree->state);
317 RB_CLEAR_NODE(&state->rb_node);
318 /*
319 * btree io trees aren't supposed to have tasks waiting for
320 * changes in the flags of extent states ever.
321 */
322 ASSERT(!waitqueue_active(&state->wq));
323 free_extent_state(state);
324
325 cond_resched_lock(&tree->lock);
326 }
327 spin_unlock(&tree->lock);
328}
329
b2950863 330static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
331{
332 struct extent_state *state;
d1310b2e 333
3ba7ab22
MH
334 /*
335 * The given mask might be not appropriate for the slab allocator,
336 * drop the unsupported bits
337 */
338 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 339 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 340 if (!state)
d1310b2e
CM
341 return state;
342 state->state = 0;
47dc196a 343 state->failrec = NULL;
27a3507d 344 RB_CLEAR_NODE(&state->rb_node);
3fd63727 345 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 346 refcount_set(&state->refs, 1);
d1310b2e 347 init_waitqueue_head(&state->wq);
143bede5 348 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
349 return state;
350}
d1310b2e 351
4845e44f 352void free_extent_state(struct extent_state *state)
d1310b2e 353{
d1310b2e
CM
354 if (!state)
355 return;
b7ac31b7 356 if (refcount_dec_and_test(&state->refs)) {
27a3507d 357 WARN_ON(extent_state_in_tree(state));
3fd63727 358 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 359 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
360 kmem_cache_free(extent_state_cache, state);
361 }
362}
d1310b2e 363
f2071b21
FM
364static struct rb_node *tree_insert(struct rb_root *root,
365 struct rb_node *search_start,
366 u64 offset,
12cfbad9
FDBM
367 struct rb_node *node,
368 struct rb_node ***p_in,
369 struct rb_node **parent_in)
d1310b2e 370{
f2071b21 371 struct rb_node **p;
d397712b 372 struct rb_node *parent = NULL;
d1310b2e
CM
373 struct tree_entry *entry;
374
12cfbad9
FDBM
375 if (p_in && parent_in) {
376 p = *p_in;
377 parent = *parent_in;
378 goto do_insert;
379 }
380
f2071b21 381 p = search_start ? &search_start : &root->rb_node;
d397712b 382 while (*p) {
d1310b2e
CM
383 parent = *p;
384 entry = rb_entry(parent, struct tree_entry, rb_node);
385
386 if (offset < entry->start)
387 p = &(*p)->rb_left;
388 else if (offset > entry->end)
389 p = &(*p)->rb_right;
390 else
391 return parent;
392 }
393
12cfbad9 394do_insert:
d1310b2e
CM
395 rb_link_node(node, parent, p);
396 rb_insert_color(node, root);
397 return NULL;
398}
399
8666e638 400/**
3bed2da1
NB
401 * Search @tree for an entry that contains @offset. Such entry would have
402 * entry->start <= offset && entry->end >= offset.
8666e638 403 *
3bed2da1
NB
404 * @tree: the tree to search
405 * @offset: offset that should fall within an entry in @tree
406 * @next_ret: pointer to the first entry whose range ends after @offset
407 * @prev_ret: pointer to the first entry whose range begins before @offset
408 * @p_ret: pointer where new node should be anchored (used when inserting an
409 * entry in the tree)
410 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
411 * containing @offset
412 *
413 * This function returns a pointer to the entry that contains @offset byte
414 * address. If no such entry exists, then NULL is returned and the other
415 * pointer arguments to the function are filled, otherwise the found entry is
416 * returned and other pointers are left untouched.
417 */
80ea96b1 418static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 419 struct rb_node **next_ret,
352646c7 420 struct rb_node **prev_ret,
12cfbad9
FDBM
421 struct rb_node ***p_ret,
422 struct rb_node **parent_ret)
d1310b2e 423{
80ea96b1 424 struct rb_root *root = &tree->state;
12cfbad9 425 struct rb_node **n = &root->rb_node;
d1310b2e
CM
426 struct rb_node *prev = NULL;
427 struct rb_node *orig_prev = NULL;
428 struct tree_entry *entry;
429 struct tree_entry *prev_entry = NULL;
430
12cfbad9
FDBM
431 while (*n) {
432 prev = *n;
433 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
434 prev_entry = entry;
435
436 if (offset < entry->start)
12cfbad9 437 n = &(*n)->rb_left;
d1310b2e 438 else if (offset > entry->end)
12cfbad9 439 n = &(*n)->rb_right;
d397712b 440 else
12cfbad9 441 return *n;
d1310b2e
CM
442 }
443
12cfbad9
FDBM
444 if (p_ret)
445 *p_ret = n;
446 if (parent_ret)
447 *parent_ret = prev;
448
352646c7 449 if (next_ret) {
d1310b2e 450 orig_prev = prev;
d397712b 451 while (prev && offset > prev_entry->end) {
d1310b2e
CM
452 prev = rb_next(prev);
453 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
454 }
352646c7 455 *next_ret = prev;
d1310b2e
CM
456 prev = orig_prev;
457 }
458
352646c7 459 if (prev_ret) {
d1310b2e 460 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 461 while (prev && offset < prev_entry->start) {
d1310b2e
CM
462 prev = rb_prev(prev);
463 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
464 }
352646c7 465 *prev_ret = prev;
d1310b2e
CM
466 }
467 return NULL;
468}
469
12cfbad9
FDBM
470static inline struct rb_node *
471tree_search_for_insert(struct extent_io_tree *tree,
472 u64 offset,
473 struct rb_node ***p_ret,
474 struct rb_node **parent_ret)
d1310b2e 475{
352646c7 476 struct rb_node *next= NULL;
d1310b2e 477 struct rb_node *ret;
70dec807 478
352646c7 479 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 480 if (!ret)
352646c7 481 return next;
d1310b2e
CM
482 return ret;
483}
484
12cfbad9
FDBM
485static inline struct rb_node *tree_search(struct extent_io_tree *tree,
486 u64 offset)
487{
488 return tree_search_for_insert(tree, offset, NULL, NULL);
489}
490
d1310b2e
CM
491/*
492 * utility function to look for merge candidates inside a given range.
493 * Any extents with matching state are merged together into a single
494 * extent in the tree. Extents with EXTENT_IO in their state field
495 * are not merged because the end_io handlers need to be able to do
496 * operations on them without sleeping (or doing allocations/splits).
497 *
498 * This should be called with the tree lock held.
499 */
1bf85046
JM
500static void merge_state(struct extent_io_tree *tree,
501 struct extent_state *state)
d1310b2e
CM
502{
503 struct extent_state *other;
504 struct rb_node *other_node;
505
8882679e 506 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 507 return;
d1310b2e
CM
508
509 other_node = rb_prev(&state->rb_node);
510 if (other_node) {
511 other = rb_entry(other_node, struct extent_state, rb_node);
512 if (other->end == state->start - 1 &&
513 other->state == state->state) {
5c848198
NB
514 if (tree->private_data &&
515 is_data_inode(tree->private_data))
516 btrfs_merge_delalloc_extent(tree->private_data,
517 state, other);
d1310b2e 518 state->start = other->start;
d1310b2e 519 rb_erase(&other->rb_node, &tree->state);
27a3507d 520 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
521 free_extent_state(other);
522 }
523 }
524 other_node = rb_next(&state->rb_node);
525 if (other_node) {
526 other = rb_entry(other_node, struct extent_state, rb_node);
527 if (other->start == state->end + 1 &&
528 other->state == state->state) {
5c848198
NB
529 if (tree->private_data &&
530 is_data_inode(tree->private_data))
531 btrfs_merge_delalloc_extent(tree->private_data,
532 state, other);
df98b6e2 533 state->end = other->end;
df98b6e2 534 rb_erase(&other->rb_node, &tree->state);
27a3507d 535 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 536 free_extent_state(other);
d1310b2e
CM
537 }
538 }
d1310b2e
CM
539}
540
3150b699 541static void set_state_bits(struct extent_io_tree *tree,
f97e27e9 542 struct extent_state *state, u32 *bits,
d38ed27f 543 struct extent_changeset *changeset);
3150b699 544
d1310b2e
CM
545/*
546 * insert an extent_state struct into the tree. 'bits' are set on the
547 * struct before it is inserted.
548 *
549 * This may return -EEXIST if the extent is already there, in which case the
550 * state struct is freed.
551 *
552 * The tree lock is not taken internally. This is a utility function and
553 * probably isn't what you want to call (see set/clear_extent_bit).
554 */
555static int insert_state(struct extent_io_tree *tree,
556 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
557 struct rb_node ***p,
558 struct rb_node **parent,
f97e27e9 559 u32 *bits, struct extent_changeset *changeset)
d1310b2e
CM
560{
561 struct rb_node *node;
562
2792237d
DS
563 if (end < start) {
564 btrfs_err(tree->fs_info,
565 "insert state: end < start %llu %llu", end, start);
566 WARN_ON(1);
567 }
d1310b2e
CM
568 state->start = start;
569 state->end = end;
9ed74f2d 570
d38ed27f 571 set_state_bits(tree, state, bits, changeset);
3150b699 572
f2071b21 573 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
574 if (node) {
575 struct extent_state *found;
576 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
577 btrfs_err(tree->fs_info,
578 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 579 found->start, found->end, start, end);
d1310b2e
CM
580 return -EEXIST;
581 }
582 merge_state(tree, state);
583 return 0;
584}
585
586/*
587 * split a given extent state struct in two, inserting the preallocated
588 * struct 'prealloc' as the newly created second half. 'split' indicates an
589 * offset inside 'orig' where it should be split.
590 *
591 * Before calling,
592 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
593 * are two extent state structs in the tree:
594 * prealloc: [orig->start, split - 1]
595 * orig: [ split, orig->end ]
596 *
597 * The tree locks are not taken by this function. They need to be held
598 * by the caller.
599 */
600static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
601 struct extent_state *prealloc, u64 split)
602{
603 struct rb_node *node;
9ed74f2d 604
abbb55f4
NB
605 if (tree->private_data && is_data_inode(tree->private_data))
606 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 607
d1310b2e
CM
608 prealloc->start = orig->start;
609 prealloc->end = split - 1;
610 prealloc->state = orig->state;
611 orig->start = split;
612
f2071b21
FM
613 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
614 &prealloc->rb_node, NULL, NULL);
d1310b2e 615 if (node) {
d1310b2e
CM
616 free_extent_state(prealloc);
617 return -EEXIST;
618 }
619 return 0;
620}
621
cdc6a395
LZ
622static struct extent_state *next_state(struct extent_state *state)
623{
624 struct rb_node *next = rb_next(&state->rb_node);
625 if (next)
626 return rb_entry(next, struct extent_state, rb_node);
627 else
628 return NULL;
629}
630
d1310b2e
CM
631/*
632 * utility function to clear some bits in an extent state struct.
52042d8e 633 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
634 *
635 * If no bits are set on the state struct after clearing things, the
636 * struct is freed and removed from the tree
637 */
cdc6a395
LZ
638static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
639 struct extent_state *state,
f97e27e9 640 u32 *bits, int wake,
fefdc557 641 struct extent_changeset *changeset)
d1310b2e 642{
cdc6a395 643 struct extent_state *next;
f97e27e9 644 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 645 int ret;
d1310b2e 646
0ca1f7ce 647 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
648 u64 range = state->end - state->start + 1;
649 WARN_ON(range > tree->dirty_bytes);
650 tree->dirty_bytes -= range;
651 }
a36bb5f9
NB
652
653 if (tree->private_data && is_data_inode(tree->private_data))
654 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
655
57599c7e
DS
656 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
657 BUG_ON(ret < 0);
32c00aff 658 state->state &= ~bits_to_clear;
d1310b2e
CM
659 if (wake)
660 wake_up(&state->wq);
0ca1f7ce 661 if (state->state == 0) {
cdc6a395 662 next = next_state(state);
27a3507d 663 if (extent_state_in_tree(state)) {
d1310b2e 664 rb_erase(&state->rb_node, &tree->state);
27a3507d 665 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
666 free_extent_state(state);
667 } else {
668 WARN_ON(1);
669 }
670 } else {
671 merge_state(tree, state);
cdc6a395 672 next = next_state(state);
d1310b2e 673 }
cdc6a395 674 return next;
d1310b2e
CM
675}
676
8233767a
XG
677static struct extent_state *
678alloc_extent_state_atomic(struct extent_state *prealloc)
679{
680 if (!prealloc)
681 prealloc = alloc_extent_state(GFP_ATOMIC);
682
683 return prealloc;
684}
685
48a3b636 686static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 687{
29b665cc 688 btrfs_panic(tree->fs_info, err,
05912a3c 689 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
690}
691
d1310b2e
CM
692/*
693 * clear some bits on a range in the tree. This may require splitting
694 * or inserting elements in the tree, so the gfp mask is used to
695 * indicate which allocations or sleeping are allowed.
696 *
697 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
698 * the given range from the tree regardless of state (ie for truncate).
699 *
700 * the range [start, end] is inclusive.
701 *
6763af84 702 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 703 */
66b0c887 704int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
705 u32 bits, int wake, int delete,
706 struct extent_state **cached_state,
707 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
708{
709 struct extent_state *state;
2c64c53d 710 struct extent_state *cached;
d1310b2e
CM
711 struct extent_state *prealloc = NULL;
712 struct rb_node *node;
5c939df5 713 u64 last_end;
d1310b2e 714 int err;
2ac55d41 715 int clear = 0;
d1310b2e 716
a5dee37d 717 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 718 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 719
7ee9e440
JB
720 if (bits & EXTENT_DELALLOC)
721 bits |= EXTENT_NORESERVE;
722
0ca1f7ce
YZ
723 if (delete)
724 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 725
8882679e 726 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 727 clear = 1;
d1310b2e 728again:
d0164adc 729 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
730 /*
731 * Don't care for allocation failure here because we might end
732 * up not needing the pre-allocated extent state at all, which
733 * is the case if we only have in the tree extent states that
734 * cover our input range and don't cover too any other range.
735 * If we end up needing a new extent state we allocate it later.
736 */
d1310b2e 737 prealloc = alloc_extent_state(mask);
d1310b2e
CM
738 }
739
cad321ad 740 spin_lock(&tree->lock);
2c64c53d
CM
741 if (cached_state) {
742 cached = *cached_state;
2ac55d41
JB
743
744 if (clear) {
745 *cached_state = NULL;
746 cached_state = NULL;
747 }
748
27a3507d
FM
749 if (cached && extent_state_in_tree(cached) &&
750 cached->start <= start && cached->end > start) {
2ac55d41 751 if (clear)
b7ac31b7 752 refcount_dec(&cached->refs);
2c64c53d 753 state = cached;
42daec29 754 goto hit_next;
2c64c53d 755 }
2ac55d41
JB
756 if (clear)
757 free_extent_state(cached);
2c64c53d 758 }
d1310b2e
CM
759 /*
760 * this search will find the extents that end after
761 * our range starts
762 */
80ea96b1 763 node = tree_search(tree, start);
d1310b2e
CM
764 if (!node)
765 goto out;
766 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 767hit_next:
d1310b2e
CM
768 if (state->start > end)
769 goto out;
770 WARN_ON(state->end < start);
5c939df5 771 last_end = state->end;
d1310b2e 772
0449314a 773 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
774 if (!(state->state & bits)) {
775 state = next_state(state);
0449314a 776 goto next;
cdc6a395 777 }
0449314a 778
d1310b2e
CM
779 /*
780 * | ---- desired range ---- |
781 * | state | or
782 * | ------------- state -------------- |
783 *
784 * We need to split the extent we found, and may flip
785 * bits on second half.
786 *
787 * If the extent we found extends past our range, we
788 * just split and search again. It'll get split again
789 * the next time though.
790 *
791 * If the extent we found is inside our range, we clear
792 * the desired bit on it.
793 */
794
795 if (state->start < start) {
8233767a
XG
796 prealloc = alloc_extent_state_atomic(prealloc);
797 BUG_ON(!prealloc);
d1310b2e 798 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
799 if (err)
800 extent_io_tree_panic(tree, err);
801
d1310b2e
CM
802 prealloc = NULL;
803 if (err)
804 goto out;
805 if (state->end <= end) {
fefdc557
QW
806 state = clear_state_bit(tree, state, &bits, wake,
807 changeset);
d1ac6e41 808 goto next;
d1310b2e
CM
809 }
810 goto search_again;
811 }
812 /*
813 * | ---- desired range ---- |
814 * | state |
815 * We need to split the extent, and clear the bit
816 * on the first half
817 */
818 if (state->start <= end && state->end > end) {
8233767a
XG
819 prealloc = alloc_extent_state_atomic(prealloc);
820 BUG_ON(!prealloc);
d1310b2e 821 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
822 if (err)
823 extent_io_tree_panic(tree, err);
824
d1310b2e
CM
825 if (wake)
826 wake_up(&state->wq);
42daec29 827
fefdc557 828 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 829
d1310b2e
CM
830 prealloc = NULL;
831 goto out;
832 }
42daec29 833
fefdc557 834 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 835next:
5c939df5
YZ
836 if (last_end == (u64)-1)
837 goto out;
838 start = last_end + 1;
cdc6a395 839 if (start <= end && state && !need_resched())
692e5759 840 goto hit_next;
d1310b2e
CM
841
842search_again:
843 if (start > end)
844 goto out;
cad321ad 845 spin_unlock(&tree->lock);
d0164adc 846 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
847 cond_resched();
848 goto again;
7ab5cb2a
DS
849
850out:
851 spin_unlock(&tree->lock);
852 if (prealloc)
853 free_extent_state(prealloc);
854
855 return 0;
856
d1310b2e 857}
d1310b2e 858
143bede5
JM
859static void wait_on_state(struct extent_io_tree *tree,
860 struct extent_state *state)
641f5219
CH
861 __releases(tree->lock)
862 __acquires(tree->lock)
d1310b2e
CM
863{
864 DEFINE_WAIT(wait);
865 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 866 spin_unlock(&tree->lock);
d1310b2e 867 schedule();
cad321ad 868 spin_lock(&tree->lock);
d1310b2e 869 finish_wait(&state->wq, &wait);
d1310b2e
CM
870}
871
872/*
873 * waits for one or more bits to clear on a range in the state tree.
874 * The range [start, end] is inclusive.
875 * The tree lock is taken by this function
876 */
41074888 877static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 878 u32 bits)
d1310b2e
CM
879{
880 struct extent_state *state;
881 struct rb_node *node;
882
a5dee37d 883 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 884
cad321ad 885 spin_lock(&tree->lock);
d1310b2e
CM
886again:
887 while (1) {
888 /*
889 * this search will find all the extents that end after
890 * our range starts
891 */
80ea96b1 892 node = tree_search(tree, start);
c50d3e71 893process_node:
d1310b2e
CM
894 if (!node)
895 break;
896
897 state = rb_entry(node, struct extent_state, rb_node);
898
899 if (state->start > end)
900 goto out;
901
902 if (state->state & bits) {
903 start = state->start;
b7ac31b7 904 refcount_inc(&state->refs);
d1310b2e
CM
905 wait_on_state(tree, state);
906 free_extent_state(state);
907 goto again;
908 }
909 start = state->end + 1;
910
911 if (start > end)
912 break;
913
c50d3e71
FM
914 if (!cond_resched_lock(&tree->lock)) {
915 node = rb_next(node);
916 goto process_node;
917 }
d1310b2e
CM
918 }
919out:
cad321ad 920 spin_unlock(&tree->lock);
d1310b2e 921}
d1310b2e 922
1bf85046 923static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 924 struct extent_state *state,
f97e27e9 925 u32 *bits, struct extent_changeset *changeset)
d1310b2e 926{
f97e27e9 927 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 928 int ret;
9ed74f2d 929
e06a1fc9
NB
930 if (tree->private_data && is_data_inode(tree->private_data))
931 btrfs_set_delalloc_extent(tree->private_data, state, bits);
932
0ca1f7ce 933 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
934 u64 range = state->end - state->start + 1;
935 tree->dirty_bytes += range;
936 }
57599c7e
DS
937 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
938 BUG_ON(ret < 0);
0ca1f7ce 939 state->state |= bits_to_set;
d1310b2e
CM
940}
941
e38e2ed7
FM
942static void cache_state_if_flags(struct extent_state *state,
943 struct extent_state **cached_ptr,
9ee49a04 944 unsigned flags)
2c64c53d
CM
945{
946 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 947 if (!flags || (state->state & flags)) {
2c64c53d 948 *cached_ptr = state;
b7ac31b7 949 refcount_inc(&state->refs);
2c64c53d
CM
950 }
951 }
952}
953
e38e2ed7
FM
954static void cache_state(struct extent_state *state,
955 struct extent_state **cached_ptr)
956{
957 return cache_state_if_flags(state, cached_ptr,
8882679e 958 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
959}
960
d1310b2e 961/*
1edbb734
CM
962 * set some bits on a range in the tree. This may require allocations or
963 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 964 *
1edbb734
CM
965 * If any of the exclusive bits are set, this will fail with -EEXIST if some
966 * part of the range already has the desired bits set. The start of the
967 * existing range is returned in failed_start in this case.
d1310b2e 968 *
1edbb734 969 * [start, end] is inclusive This takes the tree lock.
d1310b2e 970 */
f97e27e9
QW
971int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
972 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
973 struct extent_state **cached_state, gfp_t mask,
974 struct extent_changeset *changeset)
d1310b2e
CM
975{
976 struct extent_state *state;
977 struct extent_state *prealloc = NULL;
978 struct rb_node *node;
12cfbad9
FDBM
979 struct rb_node **p;
980 struct rb_node *parent;
d1310b2e 981 int err = 0;
d1310b2e
CM
982 u64 last_start;
983 u64 last_end;
42daec29 984
a5dee37d 985 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 986 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 987
3f6bb4ae
QW
988 if (exclusive_bits)
989 ASSERT(failed_start);
990 else
991 ASSERT(failed_start == NULL);
d1310b2e 992again:
d0164adc 993 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
994 /*
995 * Don't care for allocation failure here because we might end
996 * up not needing the pre-allocated extent state at all, which
997 * is the case if we only have in the tree extent states that
998 * cover our input range and don't cover too any other range.
999 * If we end up needing a new extent state we allocate it later.
1000 */
d1310b2e 1001 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1002 }
1003
cad321ad 1004 spin_lock(&tree->lock);
9655d298
CM
1005 if (cached_state && *cached_state) {
1006 state = *cached_state;
df98b6e2 1007 if (state->start <= start && state->end > start &&
27a3507d 1008 extent_state_in_tree(state)) {
9655d298
CM
1009 node = &state->rb_node;
1010 goto hit_next;
1011 }
1012 }
d1310b2e
CM
1013 /*
1014 * this search will find all the extents that end after
1015 * our range starts.
1016 */
12cfbad9 1017 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1018 if (!node) {
8233767a
XG
1019 prealloc = alloc_extent_state_atomic(prealloc);
1020 BUG_ON(!prealloc);
12cfbad9 1021 err = insert_state(tree, prealloc, start, end,
d38ed27f 1022 &p, &parent, &bits, changeset);
c2d904e0
JM
1023 if (err)
1024 extent_io_tree_panic(tree, err);
1025
c42ac0bc 1026 cache_state(prealloc, cached_state);
d1310b2e 1027 prealloc = NULL;
d1310b2e
CM
1028 goto out;
1029 }
d1310b2e 1030 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1031hit_next:
d1310b2e
CM
1032 last_start = state->start;
1033 last_end = state->end;
1034
1035 /*
1036 * | ---- desired range ---- |
1037 * | state |
1038 *
1039 * Just lock what we found and keep going
1040 */
1041 if (state->start == start && state->end <= end) {
1edbb734 1042 if (state->state & exclusive_bits) {
d1310b2e
CM
1043 *failed_start = state->start;
1044 err = -EEXIST;
1045 goto out;
1046 }
42daec29 1047
d38ed27f 1048 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1049 cache_state(state, cached_state);
d1310b2e 1050 merge_state(tree, state);
5c939df5
YZ
1051 if (last_end == (u64)-1)
1052 goto out;
1053 start = last_end + 1;
d1ac6e41
LB
1054 state = next_state(state);
1055 if (start < end && state && state->start == start &&
1056 !need_resched())
1057 goto hit_next;
d1310b2e
CM
1058 goto search_again;
1059 }
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 * or
1065 * | ------------- state -------------- |
1066 *
1067 * We need to split the extent we found, and may flip bits on
1068 * second half.
1069 *
1070 * If the extent we found extends past our
1071 * range, we just split and search again. It'll get split
1072 * again the next time though.
1073 *
1074 * If the extent we found is inside our range, we set the
1075 * desired bit on it.
1076 */
1077 if (state->start < start) {
1edbb734 1078 if (state->state & exclusive_bits) {
d1310b2e
CM
1079 *failed_start = start;
1080 err = -EEXIST;
1081 goto out;
1082 }
8233767a 1083
55ffaabe
FM
1084 /*
1085 * If this extent already has all the bits we want set, then
1086 * skip it, not necessary to split it or do anything with it.
1087 */
1088 if ((state->state & bits) == bits) {
1089 start = state->end + 1;
1090 cache_state(state, cached_state);
1091 goto search_again;
1092 }
1093
8233767a
XG
1094 prealloc = alloc_extent_state_atomic(prealloc);
1095 BUG_ON(!prealloc);
d1310b2e 1096 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
1099
d1310b2e
CM
1100 prealloc = NULL;
1101 if (err)
1102 goto out;
1103 if (state->end <= end) {
d38ed27f 1104 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1105 cache_state(state, cached_state);
d1310b2e 1106 merge_state(tree, state);
5c939df5
YZ
1107 if (last_end == (u64)-1)
1108 goto out;
1109 start = last_end + 1;
d1ac6e41
LB
1110 state = next_state(state);
1111 if (start < end && state && state->start == start &&
1112 !need_resched())
1113 goto hit_next;
d1310b2e
CM
1114 }
1115 goto search_again;
1116 }
1117 /*
1118 * | ---- desired range ---- |
1119 * | state | or | state |
1120 *
1121 * There's a hole, we need to insert something in it and
1122 * ignore the extent we found.
1123 */
1124 if (state->start > start) {
1125 u64 this_end;
1126 if (end < last_start)
1127 this_end = end;
1128 else
d397712b 1129 this_end = last_start - 1;
8233767a
XG
1130
1131 prealloc = alloc_extent_state_atomic(prealloc);
1132 BUG_ON(!prealloc);
c7f895a2
XG
1133
1134 /*
1135 * Avoid to free 'prealloc' if it can be merged with
1136 * the later extent.
1137 */
d1310b2e 1138 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1139 NULL, NULL, &bits, changeset);
c2d904e0
JM
1140 if (err)
1141 extent_io_tree_panic(tree, err);
1142
9ed74f2d
JB
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
d1310b2e
CM
1145 start = this_end + 1;
1146 goto search_again;
1147 }
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 * We need to split the extent, and set the bit
1152 * on the first half
1153 */
1154 if (state->start <= end && state->end > end) {
1edbb734 1155 if (state->state & exclusive_bits) {
d1310b2e
CM
1156 *failed_start = start;
1157 err = -EEXIST;
1158 goto out;
1159 }
8233767a
XG
1160
1161 prealloc = alloc_extent_state_atomic(prealloc);
1162 BUG_ON(!prealloc);
d1310b2e 1163 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1164 if (err)
1165 extent_io_tree_panic(tree, err);
d1310b2e 1166
d38ed27f 1167 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1168 cache_state(prealloc, cached_state);
d1310b2e
CM
1169 merge_state(tree, prealloc);
1170 prealloc = NULL;
1171 goto out;
1172 }
1173
b5a4ba14
DS
1174search_again:
1175 if (start > end)
1176 goto out;
1177 spin_unlock(&tree->lock);
1178 if (gfpflags_allow_blocking(mask))
1179 cond_resched();
1180 goto again;
d1310b2e
CM
1181
1182out:
cad321ad 1183 spin_unlock(&tree->lock);
d1310b2e
CM
1184 if (prealloc)
1185 free_extent_state(prealloc);
1186
1187 return err;
1188
d1310b2e 1189}
d1310b2e 1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1210 u32 bits, u32 clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1411 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1cab5e72
NB
1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
d38ed27f
QW
1423}
1424
4ca73656 1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1426 u32 bits)
4ca73656 1427{
1cab5e72
NB
1428 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
4ca73656
NB
1430}
1431
fefdc557 1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1433 u32 bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1441 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
1cab5e72
NB
1464 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
1cab5e72
NB
1482 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636 1528static struct extent_state *
f97e27e9 1529find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1530{
1531 struct rb_node *node;
1532 struct extent_state *state;
1533
1534 /*
1535 * this search will find all the extents that end after
1536 * our range starts.
1537 */
1538 node = tree_search(tree, start);
d397712b 1539 if (!node)
d7fc640e 1540 goto out;
d7fc640e 1541
d397712b 1542 while (1) {
d7fc640e 1543 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1544 if (state->end >= start && (state->state & bits))
d7fc640e 1545 return state;
d397712b 1546
d7fc640e
CM
1547 node = rb_next(node);
1548 if (!node)
1549 break;
1550 }
1551out:
1552 return NULL;
1553}
d7fc640e 1554
69261c4b 1555/*
03509b78 1556 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1557 *
03509b78
QW
1558 * Note: If there are multiple bits set in @bits, any of them will match.
1559 *
1560 * Return 0 if we find something, and update @start_ret and @end_ret.
1561 * Return 1 if we found nothing.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1564 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75 1599/**
3bed2da1
NB
1600 * Find a contiguous area of bits
1601 *
1602 * @tree: io tree to check
1603 * @start: offset to start the search from
1604 * @start_ret: the first offset we found with the bits set
1605 * @end_ret: the final contiguous range of the bits that were set
1606 * @bits: bits to look for
41a2ee75
JB
1607 *
1608 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1609 * to set bits appropriately, and then merge them again. During this time it
1610 * will drop the tree->lock, so use this helper if you want to find the actual
1611 * contiguous area for given bits. We will search to the first bit we find, and
1612 * then walk down the tree until we find a non-contiguous area. The area
1613 * returned will be the full contiguous area with the bits set.
1614 */
1615int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1616 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1617{
1618 struct extent_state *state;
1619 int ret = 1;
1620
1621 spin_lock(&tree->lock);
1622 state = find_first_extent_bit_state(tree, start, bits);
1623 if (state) {
1624 *start_ret = state->start;
1625 *end_ret = state->end;
1626 while ((state = next_state(state)) != NULL) {
1627 if (state->start > (*end_ret + 1))
1628 break;
1629 *end_ret = state->end;
1630 }
1631 ret = 0;
1632 }
1633 spin_unlock(&tree->lock);
1634 return ret;
1635}
1636
45bfcfc1 1637/**
3bed2da1
NB
1638 * Find the first range that has @bits not set. This range could start before
1639 * @start.
45bfcfc1 1640 *
3bed2da1
NB
1641 * @tree: the tree to search
1642 * @start: offset at/after which the found extent should start
1643 * @start_ret: records the beginning of the range
1644 * @end_ret: records the end of the range (inclusive)
1645 * @bits: the set of bits which must be unset
45bfcfc1
NB
1646 *
1647 * Since unallocated range is also considered one which doesn't have the bits
1648 * set it's possible that @end_ret contains -1, this happens in case the range
1649 * spans (last_range_end, end of device]. In this case it's up to the caller to
1650 * trim @end_ret to the appropriate size.
1651 */
1652void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1653 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1654{
1655 struct extent_state *state;
1656 struct rb_node *node, *prev = NULL, *next;
1657
1658 spin_lock(&tree->lock);
1659
1660 /* Find first extent with bits cleared */
1661 while (1) {
1662 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1663 if (!node && !next && !prev) {
1664 /*
1665 * Tree is completely empty, send full range and let
1666 * caller deal with it
1667 */
1668 *start_ret = 0;
1669 *end_ret = -1;
1670 goto out;
1671 } else if (!node && !next) {
1672 /*
1673 * We are past the last allocated chunk, set start at
1674 * the end of the last extent.
1675 */
1676 state = rb_entry(prev, struct extent_state, rb_node);
1677 *start_ret = state->end + 1;
1678 *end_ret = -1;
1679 goto out;
1680 } else if (!node) {
45bfcfc1 1681 node = next;
45bfcfc1 1682 }
1eaebb34
NB
1683 /*
1684 * At this point 'node' either contains 'start' or start is
1685 * before 'node'
1686 */
45bfcfc1 1687 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1688
1689 if (in_range(start, state->start, state->end - state->start + 1)) {
1690 if (state->state & bits) {
1691 /*
1692 * |--range with bits sets--|
1693 * |
1694 * start
1695 */
1696 start = state->end + 1;
1697 } else {
1698 /*
1699 * 'start' falls within a range that doesn't
1700 * have the bits set, so take its start as
1701 * the beginning of the desired range
1702 *
1703 * |--range with bits cleared----|
1704 * |
1705 * start
1706 */
1707 *start_ret = state->start;
1708 break;
1709 }
45bfcfc1 1710 } else {
1eaebb34
NB
1711 /*
1712 * |---prev range---|---hole/unset---|---node range---|
1713 * |
1714 * start
1715 *
1716 * or
1717 *
1718 * |---hole/unset--||--first node--|
1719 * 0 |
1720 * start
1721 */
1722 if (prev) {
1723 state = rb_entry(prev, struct extent_state,
1724 rb_node);
1725 *start_ret = state->end + 1;
1726 } else {
1727 *start_ret = 0;
1728 }
45bfcfc1
NB
1729 break;
1730 }
1731 }
1732
1733 /*
1734 * Find the longest stretch from start until an entry which has the
1735 * bits set
1736 */
1737 while (1) {
1738 state = rb_entry(node, struct extent_state, rb_node);
1739 if (state->end >= start && !(state->state & bits)) {
1740 *end_ret = state->end;
1741 } else {
1742 *end_ret = state->start - 1;
1743 break;
1744 }
1745
1746 node = rb_next(node);
1747 if (!node)
1748 break;
1749 }
1750out:
1751 spin_unlock(&tree->lock);
1752}
1753
d352ac68
CM
1754/*
1755 * find a contiguous range of bytes in the file marked as delalloc, not
1756 * more than 'max_bytes'. start and end are used to return the range,
1757 *
3522e903 1758 * true is returned if we find something, false if nothing was in the tree
d352ac68 1759 */
083e75e7
JB
1760bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1761 u64 *end, u64 max_bytes,
1762 struct extent_state **cached_state)
d1310b2e
CM
1763{
1764 struct rb_node *node;
1765 struct extent_state *state;
1766 u64 cur_start = *start;
3522e903 1767 bool found = false;
d1310b2e
CM
1768 u64 total_bytes = 0;
1769
cad321ad 1770 spin_lock(&tree->lock);
c8b97818 1771
d1310b2e
CM
1772 /*
1773 * this search will find all the extents that end after
1774 * our range starts.
1775 */
80ea96b1 1776 node = tree_search(tree, cur_start);
2b114d1d 1777 if (!node) {
3522e903 1778 *end = (u64)-1;
d1310b2e
CM
1779 goto out;
1780 }
1781
d397712b 1782 while (1) {
d1310b2e 1783 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1784 if (found && (state->start != cur_start ||
1785 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1786 goto out;
1787 }
1788 if (!(state->state & EXTENT_DELALLOC)) {
1789 if (!found)
1790 *end = state->end;
1791 goto out;
1792 }
c2a128d2 1793 if (!found) {
d1310b2e 1794 *start = state->start;
c2a128d2 1795 *cached_state = state;
b7ac31b7 1796 refcount_inc(&state->refs);
c2a128d2 1797 }
3522e903 1798 found = true;
d1310b2e
CM
1799 *end = state->end;
1800 cur_start = state->end + 1;
1801 node = rb_next(node);
d1310b2e 1802 total_bytes += state->end - state->start + 1;
7bf811a5 1803 if (total_bytes >= max_bytes)
573aecaf 1804 break;
573aecaf 1805 if (!node)
d1310b2e
CM
1806 break;
1807 }
1808out:
cad321ad 1809 spin_unlock(&tree->lock);
d1310b2e
CM
1810 return found;
1811}
1812
ed8f13bf
QW
1813/*
1814 * Process one page for __process_pages_contig().
1815 *
1816 * Return >0 if we hit @page == @locked_page.
1817 * Return 0 if we updated the page status.
1818 * Return -EGAIN if the we need to try again.
1819 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1820 */
e38992be
QW
1821static int process_one_page(struct btrfs_fs_info *fs_info,
1822 struct address_space *mapping,
ed8f13bf 1823 struct page *page, struct page *locked_page,
e38992be 1824 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1825{
e38992be
QW
1826 u32 len;
1827
1828 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1829 len = end + 1 - start;
1830
ed8f13bf 1831 if (page_ops & PAGE_SET_ORDERED)
b945a463 1832 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 1833 if (page_ops & PAGE_SET_ERROR)
e38992be 1834 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1835 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1836 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1837 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1838 }
1839 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1840 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
1841
1842 if (page == locked_page)
1843 return 1;
1844
ed8f13bf 1845 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1846 int ret;
1847
1848 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1849 if (ret)
1850 return ret;
ed8f13bf 1851 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1852 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1853 return -EAGAIN;
1854 }
1855 }
1856 if (page_ops & PAGE_UNLOCK)
1e1de387 1857 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1858 return 0;
1859}
1860
da2c7009
LB
1861static int __process_pages_contig(struct address_space *mapping,
1862 struct page *locked_page,
98af9ab1 1863 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1864 u64 *processed_end)
1865{
e38992be 1866 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1867 pgoff_t start_index = start >> PAGE_SHIFT;
1868 pgoff_t end_index = end >> PAGE_SHIFT;
1869 pgoff_t index = start_index;
1870 unsigned long nr_pages = end_index - start_index + 1;
1871 unsigned long pages_processed = 0;
1872 struct page *pages[16];
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(processed_end && *processed_end == start);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 int found_pages;
1886
1887 found_pages = find_get_pages_contig(mapping, index,
1888 min_t(unsigned long,
1889 nr_pages, ARRAY_SIZE(pages)), pages);
1890 if (found_pages == 0) {
1891 /*
1892 * Only if we're going to lock these pages, we can find
1893 * nothing at @index.
1894 */
1895 ASSERT(page_ops & PAGE_LOCK);
1896 err = -EAGAIN;
1897 goto out;
1898 }
1899
1900 for (i = 0; i < found_pages; i++) {
1901 int process_ret;
1902
e38992be
QW
1903 process_ret = process_one_page(fs_info, mapping,
1904 pages[i], locked_page, page_ops,
1905 start, end);
ed8f13bf
QW
1906 if (process_ret < 0) {
1907 for (; i < found_pages; i++)
1908 put_page(pages[i]);
1909 err = -EAGAIN;
1910 goto out;
1911 }
1912 put_page(pages[i]);
1913 pages_processed++;
1914 }
1915 nr_pages -= found_pages;
1916 index += found_pages;
1917 cond_resched();
1918 }
1919out:
1920 if (err && processed_end) {
1921 /*
1922 * Update @processed_end. I know this is awful since it has
1923 * two different return value patterns (inclusive vs exclusive).
1924 *
1925 * But the exclusive pattern is necessary if @start is 0, or we
1926 * underflow and check against processed_end won't work as
1927 * expected.
1928 */
1929 if (pages_processed)
1930 *processed_end = min(end,
1931 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1932 else
1933 *processed_end = start;
1934 }
1935 return err;
1936}
da2c7009 1937
143bede5
JM
1938static noinline void __unlock_for_delalloc(struct inode *inode,
1939 struct page *locked_page,
1940 u64 start, u64 end)
c8b97818 1941{
09cbfeaf
KS
1942 unsigned long index = start >> PAGE_SHIFT;
1943 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1944
76c0021d 1945 ASSERT(locked_page);
c8b97818 1946 if (index == locked_page->index && end_index == index)
143bede5 1947 return;
c8b97818 1948
98af9ab1 1949 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1950 PAGE_UNLOCK, NULL);
c8b97818
CM
1951}
1952
1953static noinline int lock_delalloc_pages(struct inode *inode,
1954 struct page *locked_page,
1955 u64 delalloc_start,
1956 u64 delalloc_end)
1957{
09cbfeaf 1958 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1959 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1960 u64 processed_end = delalloc_start;
c8b97818 1961 int ret;
c8b97818 1962
76c0021d 1963 ASSERT(locked_page);
c8b97818
CM
1964 if (index == locked_page->index && index == end_index)
1965 return 0;
1966
98af9ab1
QW
1967 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1968 delalloc_end, PAGE_LOCK, &processed_end);
1969 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1970 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 1971 processed_end);
c8b97818
CM
1972 return ret;
1973}
1974
1975/*
3522e903
LF
1976 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1977 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1978 *
3522e903
LF
1979 * Return: true if we find something
1980 * false if nothing was in the tree
c8b97818 1981 */
ce9f967f 1982EXPORT_FOR_TESTS
3522e903 1983noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1984 struct page *locked_page, u64 *start,
917aacec 1985 u64 *end)
c8b97818 1986{
9978059b 1987 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1988 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1989 u64 delalloc_start;
1990 u64 delalloc_end;
3522e903 1991 bool found;
9655d298 1992 struct extent_state *cached_state = NULL;
c8b97818
CM
1993 int ret;
1994 int loops = 0;
1995
1996again:
1997 /* step one, find a bunch of delalloc bytes starting at start */
1998 delalloc_start = *start;
1999 delalloc_end = 0;
083e75e7
JB
2000 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2001 max_bytes, &cached_state);
70b99e69 2002 if (!found || delalloc_end <= *start) {
c8b97818
CM
2003 *start = delalloc_start;
2004 *end = delalloc_end;
c2a128d2 2005 free_extent_state(cached_state);
3522e903 2006 return false;
c8b97818
CM
2007 }
2008
70b99e69
CM
2009 /*
2010 * start comes from the offset of locked_page. We have to lock
2011 * pages in order, so we can't process delalloc bytes before
2012 * locked_page
2013 */
d397712b 2014 if (delalloc_start < *start)
70b99e69 2015 delalloc_start = *start;
70b99e69 2016
c8b97818
CM
2017 /*
2018 * make sure to limit the number of pages we try to lock down
c8b97818 2019 */
7bf811a5
JB
2020 if (delalloc_end + 1 - delalloc_start > max_bytes)
2021 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2022
c8b97818
CM
2023 /* step two, lock all the pages after the page that has start */
2024 ret = lock_delalloc_pages(inode, locked_page,
2025 delalloc_start, delalloc_end);
9bfd61d9 2026 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2027 if (ret == -EAGAIN) {
2028 /* some of the pages are gone, lets avoid looping by
2029 * shortening the size of the delalloc range we're searching
2030 */
9655d298 2031 free_extent_state(cached_state);
7d788742 2032 cached_state = NULL;
c8b97818 2033 if (!loops) {
09cbfeaf 2034 max_bytes = PAGE_SIZE;
c8b97818
CM
2035 loops = 1;
2036 goto again;
2037 } else {
3522e903 2038 found = false;
c8b97818
CM
2039 goto out_failed;
2040 }
2041 }
c8b97818
CM
2042
2043 /* step three, lock the state bits for the whole range */
ff13db41 2044 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2045
2046 /* then test to make sure it is all still delalloc */
2047 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2048 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2049 if (!ret) {
9655d298 2050 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2051 &cached_state);
c8b97818
CM
2052 __unlock_for_delalloc(inode, locked_page,
2053 delalloc_start, delalloc_end);
2054 cond_resched();
2055 goto again;
2056 }
9655d298 2057 free_extent_state(cached_state);
c8b97818
CM
2058 *start = delalloc_start;
2059 *end = delalloc_end;
2060out_failed:
2061 return found;
2062}
2063
ad7ff17b 2064void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2065 struct page *locked_page,
f97e27e9 2066 u32 clear_bits, unsigned long page_ops)
873695b3 2067{
ad7ff17b 2068 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2069
ad7ff17b 2070 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2071 start, end, page_ops, NULL);
873695b3
LB
2072}
2073
d352ac68
CM
2074/*
2075 * count the number of bytes in the tree that have a given bit(s)
2076 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2077 * cached. The total number found is returned.
2078 */
d1310b2e
CM
2079u64 count_range_bits(struct extent_io_tree *tree,
2080 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2081 u32 bits, int contig)
d1310b2e
CM
2082{
2083 struct rb_node *node;
2084 struct extent_state *state;
2085 u64 cur_start = *start;
2086 u64 total_bytes = 0;
ec29ed5b 2087 u64 last = 0;
d1310b2e
CM
2088 int found = 0;
2089
fae7f21c 2090 if (WARN_ON(search_end <= cur_start))
d1310b2e 2091 return 0;
d1310b2e 2092
cad321ad 2093 spin_lock(&tree->lock);
d1310b2e
CM
2094 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2095 total_bytes = tree->dirty_bytes;
2096 goto out;
2097 }
2098 /*
2099 * this search will find all the extents that end after
2100 * our range starts.
2101 */
80ea96b1 2102 node = tree_search(tree, cur_start);
d397712b 2103 if (!node)
d1310b2e 2104 goto out;
d1310b2e 2105
d397712b 2106 while (1) {
d1310b2e
CM
2107 state = rb_entry(node, struct extent_state, rb_node);
2108 if (state->start > search_end)
2109 break;
ec29ed5b
CM
2110 if (contig && found && state->start > last + 1)
2111 break;
2112 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2113 total_bytes += min(search_end, state->end) + 1 -
2114 max(cur_start, state->start);
2115 if (total_bytes >= max_bytes)
2116 break;
2117 if (!found) {
af60bed2 2118 *start = max(cur_start, state->start);
d1310b2e
CM
2119 found = 1;
2120 }
ec29ed5b
CM
2121 last = state->end;
2122 } else if (contig && found) {
2123 break;
d1310b2e
CM
2124 }
2125 node = rb_next(node);
2126 if (!node)
2127 break;
2128 }
2129out:
cad321ad 2130 spin_unlock(&tree->lock);
d1310b2e
CM
2131 return total_bytes;
2132}
b2950863 2133
d352ac68
CM
2134/*
2135 * set the private field for a given byte offset in the tree. If there isn't
2136 * an extent_state there already, this does nothing.
2137 */
b3f167aa
JB
2138int set_state_failrec(struct extent_io_tree *tree, u64 start,
2139 struct io_failure_record *failrec)
d1310b2e
CM
2140{
2141 struct rb_node *node;
2142 struct extent_state *state;
2143 int ret = 0;
2144
cad321ad 2145 spin_lock(&tree->lock);
d1310b2e
CM
2146 /*
2147 * this search will find all the extents that end after
2148 * our range starts.
2149 */
80ea96b1 2150 node = tree_search(tree, start);
2b114d1d 2151 if (!node) {
d1310b2e
CM
2152 ret = -ENOENT;
2153 goto out;
2154 }
2155 state = rb_entry(node, struct extent_state, rb_node);
2156 if (state->start != start) {
2157 ret = -ENOENT;
2158 goto out;
2159 }
47dc196a 2160 state->failrec = failrec;
d1310b2e 2161out:
cad321ad 2162 spin_unlock(&tree->lock);
d1310b2e
CM
2163 return ret;
2164}
2165
2279a270 2166struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2167{
2168 struct rb_node *node;
2169 struct extent_state *state;
2279a270 2170 struct io_failure_record *failrec;
d1310b2e 2171
cad321ad 2172 spin_lock(&tree->lock);
d1310b2e
CM
2173 /*
2174 * this search will find all the extents that end after
2175 * our range starts.
2176 */
80ea96b1 2177 node = tree_search(tree, start);
2b114d1d 2178 if (!node) {
2279a270 2179 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2180 goto out;
2181 }
2182 state = rb_entry(node, struct extent_state, rb_node);
2183 if (state->start != start) {
2279a270 2184 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2185 goto out;
2186 }
2279a270
NB
2187
2188 failrec = state->failrec;
d1310b2e 2189out:
cad321ad 2190 spin_unlock(&tree->lock);
2279a270 2191 return failrec;
d1310b2e
CM
2192}
2193
2194/*
2195 * searches a range in the state tree for a given mask.
70dec807 2196 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2197 * has the bits set. Otherwise, 1 is returned if any bit in the
2198 * range is found set.
2199 */
2200int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2201 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2202{
2203 struct extent_state *state = NULL;
2204 struct rb_node *node;
2205 int bitset = 0;
d1310b2e 2206
cad321ad 2207 spin_lock(&tree->lock);
27a3507d 2208 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2209 cached->end > start)
9655d298
CM
2210 node = &cached->rb_node;
2211 else
2212 node = tree_search(tree, start);
d1310b2e
CM
2213 while (node && start <= end) {
2214 state = rb_entry(node, struct extent_state, rb_node);
2215
2216 if (filled && state->start > start) {
2217 bitset = 0;
2218 break;
2219 }
2220
2221 if (state->start > end)
2222 break;
2223
2224 if (state->state & bits) {
2225 bitset = 1;
2226 if (!filled)
2227 break;
2228 } else if (filled) {
2229 bitset = 0;
2230 break;
2231 }
46562cec
CM
2232
2233 if (state->end == (u64)-1)
2234 break;
2235
d1310b2e
CM
2236 start = state->end + 1;
2237 if (start > end)
2238 break;
2239 node = rb_next(node);
2240 if (!node) {
2241 if (filled)
2242 bitset = 0;
2243 break;
2244 }
2245 }
cad321ad 2246 spin_unlock(&tree->lock);
d1310b2e
CM
2247 return bitset;
2248}
d1310b2e
CM
2249
2250/*
2251 * helper function to set a given page up to date if all the
2252 * extents in the tree for that page are up to date
2253 */
143bede5 2254static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2255{
4eee4fa4 2256 u64 start = page_offset(page);
09cbfeaf 2257 u64 end = start + PAGE_SIZE - 1;
9655d298 2258 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2259 SetPageUptodate(page);
d1310b2e
CM
2260}
2261
7870d082
JB
2262int free_io_failure(struct extent_io_tree *failure_tree,
2263 struct extent_io_tree *io_tree,
2264 struct io_failure_record *rec)
4a54c8c1
JS
2265{
2266 int ret;
2267 int err = 0;
4a54c8c1 2268
47dc196a 2269 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2270 ret = clear_extent_bits(failure_tree, rec->start,
2271 rec->start + rec->len - 1,
91166212 2272 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2273 if (ret)
2274 err = ret;
2275
7870d082 2276 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2277 rec->start + rec->len - 1,
91166212 2278 EXTENT_DAMAGED);
53b381b3
DW
2279 if (ret && !err)
2280 err = ret;
4a54c8c1
JS
2281
2282 kfree(rec);
2283 return err;
2284}
2285
4a54c8c1
JS
2286/*
2287 * this bypasses the standard btrfs submit functions deliberately, as
2288 * the standard behavior is to write all copies in a raid setup. here we only
2289 * want to write the one bad copy. so we do the mapping for ourselves and issue
2290 * submit_bio directly.
3ec706c8 2291 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2292 * actually prevents the read that triggered the error from finishing.
2293 * currently, there can be no more than two copies of every data bit. thus,
2294 * exactly one rewrite is required.
2295 */
6ec656bc
JB
2296int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2297 u64 length, u64 logical, struct page *page,
2298 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2299{
2300 struct bio *bio;
2301 struct btrfs_device *dev;
4a54c8c1
JS
2302 u64 map_length = 0;
2303 u64 sector;
2304 struct btrfs_bio *bbio = NULL;
2305 int ret;
2306
1751e8a6 2307 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2308 BUG_ON(!mirror_num);
2309
f7ef5287
NA
2310 if (btrfs_is_zoned(fs_info))
2311 return btrfs_repair_one_zone(fs_info, logical);
2312
c5e4c3d7 2313 bio = btrfs_io_bio_alloc(1);
4f024f37 2314 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2315 map_length = length;
2316
b5de8d0d
FM
2317 /*
2318 * Avoid races with device replace and make sure our bbio has devices
2319 * associated to its stripes that don't go away while we are doing the
2320 * read repair operation.
2321 */
2322 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2323 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2324 /*
2325 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2326 * to update all raid stripes, but here we just want to correct
2327 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2328 * stripe's dev and sector.
2329 */
2330 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2331 &map_length, &bbio, 0);
2332 if (ret) {
2333 btrfs_bio_counter_dec(fs_info);
2334 bio_put(bio);
2335 return -EIO;
2336 }
2337 ASSERT(bbio->mirror_num == 1);
2338 } else {
2339 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2340 &map_length, &bbio, mirror_num);
2341 if (ret) {
2342 btrfs_bio_counter_dec(fs_info);
2343 bio_put(bio);
2344 return -EIO;
2345 }
2346 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2347 }
c725328c
LB
2348
2349 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2350 bio->bi_iter.bi_sector = sector;
c725328c 2351 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2352 btrfs_put_bbio(bbio);
ebbede42
AJ
2353 if (!dev || !dev->bdev ||
2354 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2355 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2356 bio_put(bio);
2357 return -EIO;
2358 }
74d46992 2359 bio_set_dev(bio, dev->bdev);
70fd7614 2360 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2361 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2362
4e49ea4a 2363 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2364 /* try to remap that extent elsewhere? */
b5de8d0d 2365 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2366 bio_put(bio);
442a4f63 2367 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2368 return -EIO;
2369 }
2370
b14af3b4
DS
2371 btrfs_info_rl_in_rcu(fs_info,
2372 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2373 ino, start,
1203b681 2374 rcu_str_deref(dev->name), sector);
b5de8d0d 2375 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2376 bio_put(bio);
2377 return 0;
2378}
2379
2b48966a 2380int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2381{
20a1fbf9 2382 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2383 u64 start = eb->start;
cc5e31a4 2384 int i, num_pages = num_extent_pages(eb);
d95603b2 2385 int ret = 0;
ea466794 2386
bc98a42c 2387 if (sb_rdonly(fs_info->sb))
908960c6
ID
2388 return -EROFS;
2389
ea466794 2390 for (i = 0; i < num_pages; i++) {
fb85fc9a 2391 struct page *p = eb->pages[i];
1203b681 2392
6ec656bc 2393 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2394 start - page_offset(p), mirror_num);
ea466794
JB
2395 if (ret)
2396 break;
09cbfeaf 2397 start += PAGE_SIZE;
ea466794
JB
2398 }
2399
2400 return ret;
2401}
2402
4a54c8c1
JS
2403/*
2404 * each time an IO finishes, we do a fast check in the IO failure tree
2405 * to see if we need to process or clean up an io_failure_record
2406 */
7870d082
JB
2407int clean_io_failure(struct btrfs_fs_info *fs_info,
2408 struct extent_io_tree *failure_tree,
2409 struct extent_io_tree *io_tree, u64 start,
2410 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2411{
2412 u64 private;
4a54c8c1 2413 struct io_failure_record *failrec;
4a54c8c1
JS
2414 struct extent_state *state;
2415 int num_copies;
4a54c8c1 2416 int ret;
4a54c8c1
JS
2417
2418 private = 0;
7870d082
JB
2419 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2420 EXTENT_DIRTY, 0);
4a54c8c1
JS
2421 if (!ret)
2422 return 0;
2423
2279a270
NB
2424 failrec = get_state_failrec(failure_tree, start);
2425 if (IS_ERR(failrec))
4a54c8c1
JS
2426 return 0;
2427
4a54c8c1
JS
2428 BUG_ON(!failrec->this_mirror);
2429
bc98a42c 2430 if (sb_rdonly(fs_info->sb))
908960c6 2431 goto out;
4a54c8c1 2432
7870d082
JB
2433 spin_lock(&io_tree->lock);
2434 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2435 failrec->start,
2436 EXTENT_LOCKED);
7870d082 2437 spin_unlock(&io_tree->lock);
4a54c8c1 2438
883d0de4
MX
2439 if (state && state->start <= failrec->start &&
2440 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2441 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2442 failrec->len);
4a54c8c1 2443 if (num_copies > 1) {
7870d082
JB
2444 repair_io_failure(fs_info, ino, start, failrec->len,
2445 failrec->logical, page, pg_offset,
2446 failrec->failed_mirror);
4a54c8c1
JS
2447 }
2448 }
2449
2450out:
7870d082 2451 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2452
454ff3de 2453 return 0;
4a54c8c1
JS
2454}
2455
f612496b
MX
2456/*
2457 * Can be called when
2458 * - hold extent lock
2459 * - under ordered extent
2460 * - the inode is freeing
2461 */
7ab7956e 2462void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2463{
7ab7956e 2464 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2465 struct io_failure_record *failrec;
2466 struct extent_state *state, *next;
2467
2468 if (RB_EMPTY_ROOT(&failure_tree->state))
2469 return;
2470
2471 spin_lock(&failure_tree->lock);
2472 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2473 while (state) {
2474 if (state->start > end)
2475 break;
2476
2477 ASSERT(state->end <= end);
2478
2479 next = next_state(state);
2480
47dc196a 2481 failrec = state->failrec;
f612496b
MX
2482 free_extent_state(state);
2483 kfree(failrec);
2484
2485 state = next;
2486 }
2487 spin_unlock(&failure_tree->lock);
2488}
2489
3526302f 2490static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
150e4b05 2491 u64 start)
4a54c8c1 2492{
ab8d0fc4 2493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2494 struct io_failure_record *failrec;
4a54c8c1 2495 struct extent_map *em;
4a54c8c1
JS
2496 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2497 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2498 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2499 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2500 int ret;
4a54c8c1
JS
2501 u64 logical;
2502
2279a270 2503 failrec = get_state_failrec(failure_tree, start);
3526302f 2504 if (!IS_ERR(failrec)) {
ab8d0fc4 2505 btrfs_debug(fs_info,
1245835d
QW
2506 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2507 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2508 /*
2509 * when data can be on disk more than twice, add to failrec here
2510 * (e.g. with a list for failed_mirror) to make
2511 * clean_io_failure() clean all those errors at once.
2512 */
3526302f
NB
2513
2514 return failrec;
4a54c8c1 2515 }
2fe6303e 2516
3526302f
NB
2517 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2518 if (!failrec)
2519 return ERR_PTR(-ENOMEM);
2fe6303e 2520
3526302f 2521 failrec->start = start;
150e4b05 2522 failrec->len = sectorsize;
3526302f
NB
2523 failrec->this_mirror = 0;
2524 failrec->bio_flags = 0;
3526302f
NB
2525
2526 read_lock(&em_tree->lock);
2527 em = lookup_extent_mapping(em_tree, start, failrec->len);
2528 if (!em) {
2529 read_unlock(&em_tree->lock);
2530 kfree(failrec);
2531 return ERR_PTR(-EIO);
2532 }
2533
2534 if (em->start > start || em->start + em->len <= start) {
2535 free_extent_map(em);
2536 em = NULL;
2537 }
2538 read_unlock(&em_tree->lock);
2539 if (!em) {
2540 kfree(failrec);
2541 return ERR_PTR(-EIO);
2542 }
2543
2544 logical = start - em->start;
2545 logical = em->block_start + logical;
2546 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2547 logical = em->block_start;
2548 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2549 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2550 }
2551
2552 btrfs_debug(fs_info,
2553 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2554 logical, start, failrec->len);
2555
2556 failrec->logical = logical;
2557 free_extent_map(em);
2558
2559 /* Set the bits in the private failure tree */
150e4b05 2560 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2561 EXTENT_LOCKED | EXTENT_DIRTY);
2562 if (ret >= 0) {
2563 ret = set_state_failrec(failure_tree, start, failrec);
2564 /* Set the bits in the inode's tree */
150e4b05
QW
2565 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2566 EXTENT_DAMAGED);
3526302f
NB
2567 } else if (ret < 0) {
2568 kfree(failrec);
2569 return ERR_PTR(ret);
2570 }
2571
2572 return failrec;
2fe6303e
MX
2573}
2574
1245835d 2575static bool btrfs_check_repairable(struct inode *inode,
ce06d3ec
OS
2576 struct io_failure_record *failrec,
2577 int failed_mirror)
2fe6303e 2578{
ab8d0fc4 2579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2580 int num_copies;
2581
ab8d0fc4 2582 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2583 if (num_copies == 1) {
2584 /*
2585 * we only have a single copy of the data, so don't bother with
2586 * all the retry and error correction code that follows. no
2587 * matter what the error is, it is very likely to persist.
2588 */
ab8d0fc4
JM
2589 btrfs_debug(fs_info,
2590 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2591 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2592 return false;
4a54c8c1
JS
2593 }
2594
1245835d
QW
2595 /* The failure record should only contain one sector */
2596 ASSERT(failrec->len == fs_info->sectorsize);
2597
4a54c8c1 2598 /*
1245835d
QW
2599 * There are two premises:
2600 * a) deliver good data to the caller
2601 * b) correct the bad sectors on disk
2602 *
2603 * Since we're only doing repair for one sector, we only need to get
2604 * a good copy of the failed sector and if we succeed, we have setup
2605 * everything for repair_io_failure to do the rest for us.
4a54c8c1 2606 */
1245835d
QW
2607 failrec->failed_mirror = failed_mirror;
2608 failrec->this_mirror++;
2609 if (failrec->this_mirror == failed_mirror)
4a54c8c1 2610 failrec->this_mirror++;
4a54c8c1 2611
facc8a22 2612 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2613 btrfs_debug(fs_info,
2614 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2615 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2616 return false;
4a54c8c1
JS
2617 }
2618
c3cfb656 2619 return true;
2fe6303e
MX
2620}
2621
150e4b05
QW
2622int btrfs_repair_one_sector(struct inode *inode,
2623 struct bio *failed_bio, u32 bio_offset,
2624 struct page *page, unsigned int pgoff,
2625 u64 start, int failed_mirror,
2626 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2627{
2628 struct io_failure_record *failrec;
77d5d689 2629 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2630 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2631 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
77d5d689 2632 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
7ffd27e3 2633 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689
OS
2634 struct bio *repair_bio;
2635 struct btrfs_io_bio *repair_io_bio;
4e4cbee9 2636 blk_status_t status;
2fe6303e 2637
77d5d689
OS
2638 btrfs_debug(fs_info,
2639 "repair read error: read error at %llu", start);
2fe6303e 2640
1f7ad75b 2641 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2642
150e4b05 2643 failrec = btrfs_get_io_failure_record(inode, start);
3526302f 2644 if (IS_ERR(failrec))
150e4b05 2645 return PTR_ERR(failrec);
2fe6303e 2646
1245835d
QW
2647
2648 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
7870d082 2649 free_io_failure(failure_tree, tree, failrec);
150e4b05 2650 return -EIO;
2fe6303e
MX
2651 }
2652
77d5d689
OS
2653 repair_bio = btrfs_io_bio_alloc(1);
2654 repair_io_bio = btrfs_io_bio(repair_bio);
2655 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2656 repair_bio->bi_end_io = failed_bio->bi_end_io;
2657 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2658 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2659
77d5d689 2660 if (failed_io_bio->csum) {
223486c2 2661 const u32 csum_size = fs_info->csum_size;
77d5d689
OS
2662
2663 repair_io_bio->csum = repair_io_bio->csum_inline;
2664 memcpy(repair_io_bio->csum,
2665 failed_io_bio->csum + csum_size * icsum, csum_size);
2666 }
2fe6303e 2667
77d5d689
OS
2668 bio_add_page(repair_bio, page, failrec->len, pgoff);
2669 repair_io_bio->logical = failrec->start;
2670 repair_io_bio->iter = repair_bio->bi_iter;
4a54c8c1 2671
ab8d0fc4 2672 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2673 "repair read error: submitting new read to mirror %d",
2674 failrec->this_mirror);
4a54c8c1 2675
77d5d689
OS
2676 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2677 failrec->bio_flags);
4e4cbee9 2678 if (status) {
7870d082 2679 free_io_failure(failure_tree, tree, failrec);
77d5d689 2680 bio_put(repair_bio);
6c387ab2 2681 }
150e4b05
QW
2682 return blk_status_to_errno(status);
2683}
2684
2685static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2686{
2687 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2688
2689 ASSERT(page_offset(page) <= start &&
2690 start + len <= page_offset(page) + PAGE_SIZE);
2691
150e4b05
QW
2692 if (uptodate) {
2693 btrfs_page_set_uptodate(fs_info, page, start, len);
2694 } else {
2695 btrfs_page_clear_uptodate(fs_info, page, start, len);
2696 btrfs_page_set_error(fs_info, page, start, len);
2697 }
2698
2699 if (fs_info->sectorsize == PAGE_SIZE)
2700 unlock_page(page);
3d078efa 2701 else
150e4b05
QW
2702 btrfs_subpage_end_reader(fs_info, page, start, len);
2703}
2704
2705static blk_status_t submit_read_repair(struct inode *inode,
2706 struct bio *failed_bio, u32 bio_offset,
2707 struct page *page, unsigned int pgoff,
2708 u64 start, u64 end, int failed_mirror,
2709 unsigned int error_bitmap,
2710 submit_bio_hook_t *submit_bio_hook)
2711{
2712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2713 const u32 sectorsize = fs_info->sectorsize;
2714 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2715 int error = 0;
2716 int i;
2717
2718 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2719
2720 /* We're here because we had some read errors or csum mismatch */
2721 ASSERT(error_bitmap);
2722
2723 /*
2724 * We only get called on buffered IO, thus page must be mapped and bio
2725 * must not be cloned.
2726 */
2727 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2728
2729 /* Iterate through all the sectors in the range */
2730 for (i = 0; i < nr_bits; i++) {
2731 const unsigned int offset = i * sectorsize;
2732 struct extent_state *cached = NULL;
2733 bool uptodate = false;
2734 int ret;
2735
2736 if (!(error_bitmap & (1U << i))) {
2737 /*
2738 * This sector has no error, just end the page read
2739 * and unlock the range.
2740 */
2741 uptodate = true;
2742 goto next;
2743 }
2744
2745 ret = btrfs_repair_one_sector(inode, failed_bio,
2746 bio_offset + offset,
2747 page, pgoff + offset, start + offset,
2748 failed_mirror, submit_bio_hook);
2749 if (!ret) {
2750 /*
2751 * We have submitted the read repair, the page release
2752 * will be handled by the endio function of the
2753 * submitted repair bio.
2754 * Thus we don't need to do any thing here.
2755 */
2756 continue;
2757 }
2758 /*
2759 * Repair failed, just record the error but still continue.
2760 * Or the remaining sectors will not be properly unlocked.
2761 */
2762 if (!error)
2763 error = ret;
2764next:
2765 end_page_read(page, uptodate, start + offset, sectorsize);
2766 if (uptodate)
2767 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2768 start + offset,
2769 start + offset + sectorsize - 1,
2770 &cached, GFP_ATOMIC);
2771 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2772 start + offset,
2773 start + offset + sectorsize - 1,
2774 &cached);
2775 }
2776 return errno_to_blk_status(error);
4a54c8c1
JS
2777}
2778
d1310b2e
CM
2779/* lots and lots of room for performance fixes in the end_bio funcs */
2780
b5227c07 2781void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2782{
38a39ac7 2783 struct btrfs_inode *inode;
25c1252a 2784 const bool uptodate = (err == 0);
3e2426bd 2785 int ret = 0;
87826df0 2786
38a39ac7
QW
2787 ASSERT(page && page->mapping);
2788 inode = BTRFS_I(page->mapping->host);
2789 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2790
87826df0 2791 if (!uptodate) {
963e4db8
QW
2792 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2793 u32 len;
2794
2795 ASSERT(end + 1 - start <= U32_MAX);
2796 len = end + 1 - start;
2797
2798 btrfs_page_clear_uptodate(fs_info, page, start, len);
2799 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 2800 ret = err < 0 ? err : -EIO;
5dca6eea 2801 mapping_set_error(page->mapping, ret);
87826df0 2802 }
87826df0
JM
2803}
2804
d1310b2e
CM
2805/*
2806 * after a writepage IO is done, we need to:
2807 * clear the uptodate bits on error
2808 * clear the writeback bits in the extent tree for this IO
2809 * end_page_writeback if the page has no more pending IO
2810 *
2811 * Scheduling is not allowed, so the extent state tree is expected
2812 * to have one and only one object corresponding to this IO.
2813 */
4246a0b6 2814static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2815{
4e4cbee9 2816 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2817 struct bio_vec *bvec;
d1310b2e
CM
2818 u64 start;
2819 u64 end;
6dc4f100 2820 struct bvec_iter_all iter_all;
d8e3fb10 2821 bool first_bvec = true;
d1310b2e 2822
c09abff8 2823 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2824 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2825 struct page *page = bvec->bv_page;
0b246afa
JM
2826 struct inode *inode = page->mapping->host;
2827 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2828 const u32 sectorsize = fs_info->sectorsize;
2829
2830 /* Our read/write should always be sector aligned. */
2831 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2832 btrfs_err(fs_info,
2833 "partial page write in btrfs with offset %u and length %u",
2834 bvec->bv_offset, bvec->bv_len);
2835 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2836 btrfs_info(fs_info,
2837 "incomplete page write with offset %u and length %u",
2838 bvec->bv_offset, bvec->bv_len);
2839
2840 start = page_offset(page) + bvec->bv_offset;
2841 end = start + bvec->bv_len - 1;
d1310b2e 2842
d8e3fb10
NA
2843 if (first_bvec) {
2844 btrfs_record_physical_zoned(inode, start, bio);
2845 first_bvec = false;
2846 }
2847
4e4cbee9 2848 end_extent_writepage(page, error, start, end);
9047e317
QW
2849
2850 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2851 }
2b1f55b0 2852
d1310b2e 2853 bio_put(bio);
d1310b2e
CM
2854}
2855
94e8c95c
QW
2856/*
2857 * Record previously processed extent range
2858 *
2859 * For endio_readpage_release_extent() to handle a full extent range, reducing
2860 * the extent io operations.
2861 */
2862struct processed_extent {
2863 struct btrfs_inode *inode;
2864 /* Start of the range in @inode */
2865 u64 start;
2e626e56 2866 /* End of the range in @inode */
94e8c95c
QW
2867 u64 end;
2868 bool uptodate;
2869};
2870
2871/*
2872 * Try to release processed extent range
2873 *
2874 * May not release the extent range right now if the current range is
2875 * contiguous to processed extent.
2876 *
2877 * Will release processed extent when any of @inode, @uptodate, the range is
2878 * no longer contiguous to the processed range.
2879 *
2880 * Passing @inode == NULL will force processed extent to be released.
2881 */
2882static void endio_readpage_release_extent(struct processed_extent *processed,
2883 struct btrfs_inode *inode, u64 start, u64 end,
2884 bool uptodate)
883d0de4
MX
2885{
2886 struct extent_state *cached = NULL;
94e8c95c
QW
2887 struct extent_io_tree *tree;
2888
2889 /* The first extent, initialize @processed */
2890 if (!processed->inode)
2891 goto update;
883d0de4 2892
94e8c95c
QW
2893 /*
2894 * Contiguous to processed extent, just uptodate the end.
2895 *
2896 * Several things to notice:
2897 *
2898 * - bio can be merged as long as on-disk bytenr is contiguous
2899 * This means we can have page belonging to other inodes, thus need to
2900 * check if the inode still matches.
2901 * - bvec can contain range beyond current page for multi-page bvec
2902 * Thus we need to do processed->end + 1 >= start check
2903 */
2904 if (processed->inode == inode && processed->uptodate == uptodate &&
2905 processed->end + 1 >= start && end >= processed->end) {
2906 processed->end = end;
2907 return;
2908 }
2909
2910 tree = &processed->inode->io_tree;
2911 /*
2912 * Now we don't have range contiguous to the processed range, release
2913 * the processed range now.
2914 */
2915 if (processed->uptodate && tree->track_uptodate)
2916 set_extent_uptodate(tree, processed->start, processed->end,
2917 &cached, GFP_ATOMIC);
2918 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2919 &cached);
2920
2921update:
2922 /* Update processed to current range */
2923 processed->inode = inode;
2924 processed->start = start;
2925 processed->end = end;
2926 processed->uptodate = uptodate;
883d0de4
MX
2927}
2928
92082d40
QW
2929static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2930{
2931 ASSERT(PageLocked(page));
2932 if (fs_info->sectorsize == PAGE_SIZE)
2933 return;
2934
2935 ASSERT(PagePrivate(page));
2936 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2937}
2938
d9bb77d5
QW
2939/*
2940 * Find extent buffer for a givne bytenr.
2941 *
2942 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2943 * in endio context.
2944 */
2945static struct extent_buffer *find_extent_buffer_readpage(
2946 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2947{
2948 struct extent_buffer *eb;
2949
2950 /*
2951 * For regular sectorsize, we can use page->private to grab extent
2952 * buffer
2953 */
2954 if (fs_info->sectorsize == PAGE_SIZE) {
2955 ASSERT(PagePrivate(page) && page->private);
2956 return (struct extent_buffer *)page->private;
2957 }
2958
2959 /* For subpage case, we need to lookup buffer radix tree */
2960 rcu_read_lock();
2961 eb = radix_tree_lookup(&fs_info->buffer_radix,
2962 bytenr >> fs_info->sectorsize_bits);
2963 rcu_read_unlock();
2964 ASSERT(eb);
2965 return eb;
2966}
2967
d1310b2e
CM
2968/*
2969 * after a readpage IO is done, we need to:
2970 * clear the uptodate bits on error
2971 * set the uptodate bits if things worked
2972 * set the page up to date if all extents in the tree are uptodate
2973 * clear the lock bit in the extent tree
2974 * unlock the page if there are no other extents locked for it
2975 *
2976 * Scheduling is not allowed, so the extent state tree is expected
2977 * to have one and only one object corresponding to this IO.
2978 */
4246a0b6 2979static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2980{
2c30c71b 2981 struct bio_vec *bvec;
facc8a22 2982 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2983 struct extent_io_tree *tree, *failure_tree;
94e8c95c 2984 struct processed_extent processed = { 0 };
7ffd27e3
QW
2985 /*
2986 * The offset to the beginning of a bio, since one bio can never be
2987 * larger than UINT_MAX, u32 here is enough.
2988 */
2989 u32 bio_offset = 0;
5cf1ab56 2990 int mirror;
d1310b2e 2991 int ret;
6dc4f100 2992 struct bvec_iter_all iter_all;
d1310b2e 2993
c09abff8 2994 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2995 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 2996 bool uptodate = !bio->bi_status;
d1310b2e 2997 struct page *page = bvec->bv_page;
a71754fc 2998 struct inode *inode = page->mapping->host;
ab8d0fc4 2999 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3000 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3001 unsigned int error_bitmap = (unsigned int)-1;
7ffd27e3
QW
3002 u64 start;
3003 u64 end;
3004 u32 len;
507903b8 3005
ab8d0fc4
JM
3006 btrfs_debug(fs_info,
3007 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3008 bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 3009 io_bio->mirror_num);
a71754fc 3010 tree = &BTRFS_I(inode)->io_tree;
7870d082 3011 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3012
8b8bbd46
QW
3013 /*
3014 * We always issue full-sector reads, but if some block in a
3015 * page fails to read, blk_update_request() will advance
3016 * bv_offset and adjust bv_len to compensate. Print a warning
3017 * for unaligned offsets, and an error if they don't add up to
3018 * a full sector.
3019 */
3020 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3021 btrfs_err(fs_info,
3022 "partial page read in btrfs with offset %u and length %u",
3023 bvec->bv_offset, bvec->bv_len);
3024 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3025 sectorsize))
3026 btrfs_info(fs_info,
3027 "incomplete page read with offset %u and length %u",
3028 bvec->bv_offset, bvec->bv_len);
3029
3030 start = page_offset(page) + bvec->bv_offset;
3031 end = start + bvec->bv_len - 1;
facc8a22 3032 len = bvec->bv_len;
d1310b2e 3033
9be3395b 3034 mirror = io_bio->mirror_num;
78e62c02 3035 if (likely(uptodate)) {
150e4b05
QW
3036 if (is_data_inode(inode)) {
3037 error_bitmap = btrfs_verify_data_csum(io_bio,
5e295768 3038 bio_offset, page, start, end);
150e4b05
QW
3039 ret = error_bitmap;
3040 } else {
9a446d6a 3041 ret = btrfs_validate_metadata_buffer(io_bio,
8e1dc982 3042 page, start, end, mirror);
150e4b05 3043 }
5ee0844d 3044 if (ret)
150e4b05 3045 uptodate = false;
5ee0844d 3046 else
7870d082
JB
3047 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3048 failure_tree, tree, start,
3049 page,
3050 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 3051 }
ea466794 3052
f2a09da9
MX
3053 if (likely(uptodate))
3054 goto readpage_ok;
3055
be17b3af 3056 if (is_data_inode(inode)) {
f4a8e656 3057 /*
150e4b05
QW
3058 * btrfs_submit_read_repair() will handle all the good
3059 * and bad sectors, we just continue to the next bvec.
f4a8e656 3060 */
150e4b05
QW
3061 submit_read_repair(inode, bio, bio_offset, page,
3062 start - page_offset(page), start,
3063 end, mirror, error_bitmap,
3064 btrfs_submit_data_bio);
3065
3066 ASSERT(bio_offset + len > bio_offset);
3067 bio_offset += len;
3068 continue;
78e62c02
NB
3069 } else {
3070 struct extent_buffer *eb;
3071
d9bb77d5 3072 eb = find_extent_buffer_readpage(fs_info, page, start);
78e62c02
NB
3073 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3074 eb->read_mirror = mirror;
3075 atomic_dec(&eb->io_pages);
3076 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3077 &eb->bflags))
3078 btree_readahead_hook(eb, -EIO);
7e38326f 3079 }
f2a09da9 3080readpage_ok:
883d0de4 3081 if (likely(uptodate)) {
a71754fc 3082 loff_t i_size = i_size_read(inode);
09cbfeaf 3083 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3084
c28ea613
QW
3085 /*
3086 * Zero out the remaining part if this range straddles
3087 * i_size.
3088 *
3089 * Here we should only zero the range inside the bvec,
3090 * not touch anything else.
3091 *
3092 * NOTE: i_size is exclusive while end is inclusive.
3093 */
3094 if (page->index == end_index && i_size <= end) {
3095 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3096 offset_in_page(start));
c28ea613
QW
3097
3098 zero_user_segment(page, zero_start,
3099 offset_in_page(end) + 1);
3100 }
70dec807 3101 }
7ffd27e3
QW
3102 ASSERT(bio_offset + len > bio_offset);
3103 bio_offset += len;
883d0de4 3104
e09caaf9 3105 /* Update page status and unlock */
92082d40 3106 end_page_read(page, uptodate, start, len);
94e8c95c
QW
3107 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3108 start, end, uptodate);
2c30c71b 3109 }
94e8c95c
QW
3110 /* Release the last extent */
3111 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
b3a0dd50 3112 btrfs_io_bio_free_csum(io_bio);
d1310b2e 3113 bio_put(bio);
d1310b2e
CM
3114}
3115
9be3395b 3116/*
184f999e
DS
3117 * Initialize the members up to but not including 'bio'. Use after allocating a
3118 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3119 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3120 */
184f999e 3121static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 3122{
184f999e
DS
3123 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3124}
d1310b2e 3125
9be3395b 3126/*
6e707bcd
DS
3127 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3128 * never fail. We're returning a bio right now but you can call btrfs_io_bio
3129 * for the appropriate container_of magic
9be3395b 3130 */
e749af44 3131struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
3132{
3133 struct bio *bio;
d1310b2e 3134
a8affc03 3135 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
c821e7f3 3136 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 3137 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
3138 return bio;
3139}
3140
8b6c1d56 3141struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 3142{
23ea8e5a
MX
3143 struct btrfs_io_bio *btrfs_bio;
3144 struct bio *new;
9be3395b 3145
6e707bcd 3146 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3147 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 3148 btrfs_bio = btrfs_io_bio(new);
184f999e 3149 btrfs_io_bio_init(btrfs_bio);
6e707bcd 3150 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
3151 return new;
3152}
9be3395b 3153
c5e4c3d7 3154struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 3155{
facc8a22
MX
3156 struct bio *bio;
3157
6e707bcd 3158 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3159 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 3160 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 3161 return bio;
9be3395b
CM
3162}
3163
e477094f 3164struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
3165{
3166 struct bio *bio;
3167 struct btrfs_io_bio *btrfs_bio;
3168
3169 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3170 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3171 ASSERT(bio);
3172
3173 btrfs_bio = btrfs_io_bio(bio);
184f999e 3174 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
3175
3176 bio_trim(bio, offset >> 9, size >> 9);
17347cec 3177 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
3178 return bio;
3179}
9be3395b 3180
953651eb
NA
3181/**
3182 * Attempt to add a page to bio
3183 *
3184 * @bio: destination bio
3185 * @page: page to add to the bio
3186 * @disk_bytenr: offset of the new bio or to check whether we are adding
3187 * a contiguous page to the previous one
3188 * @pg_offset: starting offset in the page
3189 * @size: portion of page that we want to write
3190 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3191 * @bio_flags: flags of the current bio to see if we can merge them
953651eb
NA
3192 *
3193 * Attempt to add a page to bio considering stripe alignment etc.
3194 *
e0eefe07
QW
3195 * Return >= 0 for the number of bytes added to the bio.
3196 * Can return 0 if the current bio is already at stripe/zone boundary.
3197 * Return <0 for error.
953651eb 3198 */
e0eefe07
QW
3199static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3200 struct page *page,
3201 u64 disk_bytenr, unsigned int size,
3202 unsigned int pg_offset,
3203 unsigned long bio_flags)
953651eb 3204{
390ed29b
QW
3205 struct bio *bio = bio_ctrl->bio;
3206 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 3207 u32 real_size;
953651eb
NA
3208 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3209 bool contig;
e1326f03 3210 int ret;
953651eb 3211
390ed29b
QW
3212 ASSERT(bio);
3213 /* The limit should be calculated when bio_ctrl->bio is allocated */
3214 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3215 if (bio_ctrl->bio_flags != bio_flags)
e0eefe07 3216 return 0;
953651eb 3217
390ed29b 3218 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
953651eb
NA
3219 contig = bio->bi_iter.bi_sector == sector;
3220 else
3221 contig = bio_end_sector(bio) == sector;
3222 if (!contig)
e0eefe07 3223 return 0;
953651eb 3224
e0eefe07
QW
3225 real_size = min(bio_ctrl->len_to_oe_boundary,
3226 bio_ctrl->len_to_stripe_boundary) - bio_size;
3227 real_size = min(real_size, size);
3228
3229 /*
3230 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3231 * bio will still execute its endio function on the page!
3232 */
3233 if (real_size == 0)
3234 return 0;
953651eb 3235
390ed29b 3236 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 3237 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 3238 else
e0eefe07 3239 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 3240
e0eefe07 3241 return ret;
953651eb
NA
3242}
3243
390ed29b
QW
3244static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3245 struct btrfs_inode *inode)
3246{
3247 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3248 struct btrfs_io_geometry geom;
3249 struct btrfs_ordered_extent *ordered;
3250 struct extent_map *em;
3251 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3252 int ret;
3253
3254 /*
3255 * Pages for compressed extent are never submitted to disk directly,
3256 * thus it has no real boundary, just set them to U32_MAX.
3257 *
3258 * The split happens for real compressed bio, which happens in
3259 * btrfs_submit_compressed_read/write().
3260 */
3261 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3262 bio_ctrl->len_to_oe_boundary = U32_MAX;
3263 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3264 return 0;
3265 }
3266 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3267 if (IS_ERR(em))
3268 return PTR_ERR(em);
3269 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3270 logical, &geom);
3271 free_extent_map(em);
3272 if (ret < 0) {
3273 return ret;
3274 }
3275 if (geom.len > U32_MAX)
3276 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3277 else
3278 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3279
3280 if (!btrfs_is_zoned(fs_info) ||
3281 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3282 bio_ctrl->len_to_oe_boundary = U32_MAX;
3283 return 0;
3284 }
3285
390ed29b
QW
3286 /* Ordered extent not yet created, so we're good */
3287 ordered = btrfs_lookup_ordered_extent(inode, logical);
3288 if (!ordered) {
3289 bio_ctrl->len_to_oe_boundary = U32_MAX;
3290 return 0;
3291 }
3292
3293 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3294 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3295 btrfs_put_ordered_extent(ordered);
3296 return 0;
3297}
3298
e0eefe07
QW
3299static int alloc_new_bio(struct btrfs_inode *inode,
3300 struct btrfs_bio_ctrl *bio_ctrl,
3301 struct writeback_control *wbc,
3302 unsigned int opf,
3303 bio_end_io_t end_io_func,
3304 u64 disk_bytenr, u32 offset,
3305 unsigned long bio_flags)
3306{
3307 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3308 struct bio *bio;
3309 int ret;
3310
3311 /*
3312 * For compressed page range, its disk_bytenr is always @disk_bytenr
3313 * passed in, no matter if we have added any range into previous bio.
3314 */
3315 if (bio_flags & EXTENT_BIO_COMPRESSED)
3316 bio = btrfs_bio_alloc(disk_bytenr);
3317 else
3318 bio = btrfs_bio_alloc(disk_bytenr + offset);
3319 bio_ctrl->bio = bio;
3320 bio_ctrl->bio_flags = bio_flags;
3321 ret = calc_bio_boundaries(bio_ctrl, inode);
3322 if (ret < 0)
3323 goto error;
3324 bio->bi_end_io = end_io_func;
3325 bio->bi_private = &inode->io_tree;
3326 bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3327 bio->bi_opf = opf;
3328 if (wbc) {
3329 struct block_device *bdev;
3330
3331 bdev = fs_info->fs_devices->latest_bdev;
3332 bio_set_dev(bio, bdev);
3333 wbc_init_bio(wbc, bio);
3334 }
3335 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3336 struct btrfs_device *device;
3337
3338 device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3339 fs_info->sectorsize);
3340 if (IS_ERR(device)) {
3341 ret = PTR_ERR(device);
3342 goto error;
3343 }
3344
3345 btrfs_io_bio(bio)->device = device;
3346 }
3347 return 0;
3348error:
3349 bio_ctrl->bio = NULL;
3350 bio->bi_status = errno_to_blk_status(ret);
3351 bio_endio(bio);
3352 return ret;
3353}
3354
4b81ba48
DS
3355/*
3356 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3357 * @wbc: optional writeback control for io accounting
3358 * @page: page to add to the bio
0c64c33c
QW
3359 * @disk_bytenr: logical bytenr where the write will be
3360 * @size: portion of page that we want to write to
b8b3d625
DS
3361 * @pg_offset: offset of the new bio or to check whether we are adding
3362 * a contiguous page to the previous one
5c2b1fd7 3363 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3364 * @end_io_func: end_io callback for new bio
3365 * @mirror_num: desired mirror to read/write
3366 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3367 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3368 */
0ceb34bf 3369static int submit_extent_page(unsigned int opf,
da2f0f74 3370 struct writeback_control *wbc,
390ed29b 3371 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3372 struct page *page, u64 disk_bytenr,
6c5a4e2c 3373 size_t size, unsigned long pg_offset,
f188591e 3374 bio_end_io_t end_io_func,
c8b97818 3375 int mirror_num,
005efedf
FM
3376 unsigned long bio_flags,
3377 bool force_bio_submit)
d1310b2e
CM
3378{
3379 int ret = 0;
e1326f03 3380 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 3381 unsigned int cur = pg_offset;
d1310b2e 3382
390ed29b 3383 ASSERT(bio_ctrl);
5c2b1fd7 3384
390ed29b
QW
3385 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3386 pg_offset + size <= PAGE_SIZE);
e0eefe07
QW
3387 if (force_bio_submit && bio_ctrl->bio) {
3388 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3389 bio_ctrl->bio = NULL;
3390 if (ret < 0)
3391 return ret;
3392 }
3393
3394 while (cur < pg_offset + size) {
3395 u32 offset = cur - pg_offset;
3396 int added;
3397
3398 /* Allocate new bio if needed */
3399 if (!bio_ctrl->bio) {
3400 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3401 end_io_func, disk_bytenr, offset,
3402 bio_flags);
3403 if (ret < 0)
3404 return ret;
3405 }
3406 /*
3407 * We must go through btrfs_bio_add_page() to ensure each
3408 * page range won't cross various boundaries.
3409 */
3410 if (bio_flags & EXTENT_BIO_COMPRESSED)
3411 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3412 size - offset, pg_offset + offset,
3413 bio_flags);
3414 else
3415 added = btrfs_bio_add_page(bio_ctrl, page,
3416 disk_bytenr + offset, size - offset,
3417 pg_offset + offset, bio_flags);
3418
3419 /* Metadata page range should never be split */
3420 if (!is_data_inode(&inode->vfs_inode))
3421 ASSERT(added == 0 || added == size - offset);
3422
3423 /* At least we added some page, update the account */
3424 if (wbc && added)
3425 wbc_account_cgroup_owner(wbc, page, added);
3426
3427 /* We have reached boundary, submit right now */
3428 if (added < size - offset) {
3429 /* The bio should contain some page(s) */
3430 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3431 ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3432 bio_ctrl->bio_flags);
390ed29b
QW
3433 bio_ctrl->bio = NULL;
3434 if (ret < 0)
79787eaa 3435 return ret;
d1310b2e 3436 }
e0eefe07 3437 cur += added;
d1310b2e 3438 }
e0eefe07 3439 return 0;
d1310b2e
CM
3440}
3441
760f991f
QW
3442static int attach_extent_buffer_page(struct extent_buffer *eb,
3443 struct page *page,
3444 struct btrfs_subpage *prealloc)
d1310b2e 3445{
760f991f
QW
3446 struct btrfs_fs_info *fs_info = eb->fs_info;
3447 int ret = 0;
3448
0d01e247
QW
3449 /*
3450 * If the page is mapped to btree inode, we should hold the private
3451 * lock to prevent race.
3452 * For cloned or dummy extent buffers, their pages are not mapped and
3453 * will not race with any other ebs.
3454 */
3455 if (page->mapping)
3456 lockdep_assert_held(&page->mapping->private_lock);
3457
760f991f
QW
3458 if (fs_info->sectorsize == PAGE_SIZE) {
3459 if (!PagePrivate(page))
3460 attach_page_private(page, eb);
3461 else
3462 WARN_ON(page->private != (unsigned long)eb);
3463 return 0;
3464 }
3465
3466 /* Already mapped, just free prealloc */
3467 if (PagePrivate(page)) {
3468 btrfs_free_subpage(prealloc);
3469 return 0;
3470 }
3471
3472 if (prealloc)
3473 /* Has preallocated memory for subpage */
3474 attach_page_private(page, prealloc);
d1b89bc0 3475 else
760f991f
QW
3476 /* Do new allocation to attach subpage */
3477 ret = btrfs_attach_subpage(fs_info, page,
3478 BTRFS_SUBPAGE_METADATA);
3479 return ret;
d1310b2e
CM
3480}
3481
32443de3 3482int set_page_extent_mapped(struct page *page)
d1310b2e 3483{
32443de3
QW
3484 struct btrfs_fs_info *fs_info;
3485
3486 ASSERT(page->mapping);
3487
3488 if (PagePrivate(page))
3489 return 0;
3490
3491 fs_info = btrfs_sb(page->mapping->host->i_sb);
3492
3493 if (fs_info->sectorsize < PAGE_SIZE)
3494 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3495
3496 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3497 return 0;
3498}
3499
3500void clear_page_extent_mapped(struct page *page)
3501{
3502 struct btrfs_fs_info *fs_info;
3503
3504 ASSERT(page->mapping);
3505
d1b89bc0 3506 if (!PagePrivate(page))
32443de3
QW
3507 return;
3508
3509 fs_info = btrfs_sb(page->mapping->host->i_sb);
3510 if (fs_info->sectorsize < PAGE_SIZE)
3511 return btrfs_detach_subpage(fs_info, page);
3512
3513 detach_page_private(page);
d1310b2e
CM
3514}
3515
125bac01
MX
3516static struct extent_map *
3517__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3518 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3519{
3520 struct extent_map *em;
3521
3522 if (em_cached && *em_cached) {
3523 em = *em_cached;
cbc0e928 3524 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3525 start < extent_map_end(em)) {
490b54d6 3526 refcount_inc(&em->refs);
125bac01
MX
3527 return em;
3528 }
3529
3530 free_extent_map(em);
3531 *em_cached = NULL;
3532 }
3533
1a5ee1e6 3534 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3535 if (em_cached && !IS_ERR_OR_NULL(em)) {
3536 BUG_ON(*em_cached);
490b54d6 3537 refcount_inc(&em->refs);
125bac01
MX
3538 *em_cached = em;
3539 }
3540 return em;
3541}
d1310b2e
CM
3542/*
3543 * basic readpage implementation. Locked extent state structs are inserted
3544 * into the tree that are removed when the IO is done (by the end_io
3545 * handlers)
79787eaa 3546 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3547 * return 0 on success, otherwise return error
d1310b2e 3548 */
0f208812 3549int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3550 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3551 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3552{
3553 struct inode *inode = page->mapping->host;
92082d40 3554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3555 u64 start = page_offset(page);
8eec8296 3556 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3557 u64 cur = start;
3558 u64 extent_offset;
3559 u64 last_byte = i_size_read(inode);
3560 u64 block_start;
3561 u64 cur_end;
d1310b2e 3562 struct extent_map *em;
baf863b9 3563 int ret = 0;
d1310b2e 3564 int nr = 0;
306e16ce 3565 size_t pg_offset = 0;
d1310b2e
CM
3566 size_t iosize;
3567 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 3568 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3569
32443de3
QW
3570 ret = set_page_extent_mapped(page);
3571 if (ret < 0) {
3572 unlock_extent(tree, start, end);
92082d40
QW
3573 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3574 unlock_page(page);
32443de3
QW
3575 goto out;
3576 }
d1310b2e 3577
90a887c9
DM
3578 if (!PageUptodate(page)) {
3579 if (cleancache_get_page(page) == 0) {
3580 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3581 unlock_extent(tree, start, end);
92082d40 3582 unlock_page(page);
90a887c9
DM
3583 goto out;
3584 }
3585 }
3586
09cbfeaf 3587 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3588 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3589
3590 if (zero_offset) {
09cbfeaf 3591 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3592 memzero_page(page, zero_offset, iosize);
c8b97818 3593 flush_dcache_page(page);
c8b97818
CM
3594 }
3595 }
92082d40 3596 begin_page_read(fs_info, page);
d1310b2e 3597 while (cur <= end) {
4c37a793 3598 unsigned long this_bio_flag = 0;
005efedf 3599 bool force_bio_submit = false;
0c64c33c 3600 u64 disk_bytenr;
c8f2f24b 3601
d1310b2e 3602 if (cur >= last_byte) {
507903b8
AJ
3603 struct extent_state *cached = NULL;
3604
09cbfeaf 3605 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3606 memzero_page(page, pg_offset, iosize);
d1310b2e 3607 flush_dcache_page(page);
d1310b2e 3608 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3609 &cached, GFP_NOFS);
7f042a83 3610 unlock_extent_cached(tree, cur,
e43bbe5e 3611 cur + iosize - 1, &cached);
92082d40 3612 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3613 break;
3614 }
125bac01 3615 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3616 end - cur + 1, em_cached);
c704005d 3617 if (IS_ERR_OR_NULL(em)) {
7f042a83 3618 unlock_extent(tree, cur, end);
92082d40 3619 end_page_read(page, false, cur, end + 1 - cur);
d1310b2e
CM
3620 break;
3621 }
d1310b2e
CM
3622 extent_offset = cur - em->start;
3623 BUG_ON(extent_map_end(em) <= cur);
3624 BUG_ON(end < cur);
3625
261507a0 3626 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3627 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3628 extent_set_compress_type(&this_bio_flag,
3629 em->compress_type);
3630 }
c8b97818 3631
d1310b2e
CM
3632 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3633 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3634 iosize = ALIGN(iosize, blocksize);
949b3273 3635 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
0c64c33c 3636 disk_bytenr = em->block_start;
949b3273 3637 else
0c64c33c 3638 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3639 block_start = em->block_start;
d899e052
YZ
3640 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3641 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3642
3643 /*
3644 * If we have a file range that points to a compressed extent
260db43c 3645 * and it's followed by a consecutive file range that points
005efedf
FM
3646 * to the same compressed extent (possibly with a different
3647 * offset and/or length, so it either points to the whole extent
3648 * or only part of it), we must make sure we do not submit a
3649 * single bio to populate the pages for the 2 ranges because
3650 * this makes the compressed extent read zero out the pages
3651 * belonging to the 2nd range. Imagine the following scenario:
3652 *
3653 * File layout
3654 * [0 - 8K] [8K - 24K]
3655 * | |
3656 * | |
3657 * points to extent X, points to extent X,
3658 * offset 4K, length of 8K offset 0, length 16K
3659 *
3660 * [extent X, compressed length = 4K uncompressed length = 16K]
3661 *
3662 * If the bio to read the compressed extent covers both ranges,
3663 * it will decompress extent X into the pages belonging to the
3664 * first range and then it will stop, zeroing out the remaining
3665 * pages that belong to the other range that points to extent X.
3666 * So here we make sure we submit 2 bios, one for the first
3667 * range and another one for the third range. Both will target
3668 * the same physical extent from disk, but we can't currently
3669 * make the compressed bio endio callback populate the pages
3670 * for both ranges because each compressed bio is tightly
3671 * coupled with a single extent map, and each range can have
3672 * an extent map with a different offset value relative to the
3673 * uncompressed data of our extent and different lengths. This
3674 * is a corner case so we prioritize correctness over
3675 * non-optimal behavior (submitting 2 bios for the same extent).
3676 */
3677 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3678 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3679 *prev_em_start != em->start)
005efedf
FM
3680 force_bio_submit = true;
3681
3682 if (prev_em_start)
8e928218 3683 *prev_em_start = em->start;
005efedf 3684
d1310b2e
CM
3685 free_extent_map(em);
3686 em = NULL;
3687
3688 /* we've found a hole, just zero and go on */
3689 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3690 struct extent_state *cached = NULL;
3691
d048b9c2 3692 memzero_page(page, pg_offset, iosize);
d1310b2e 3693 flush_dcache_page(page);
d1310b2e
CM
3694
3695 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3696 &cached, GFP_NOFS);
7f042a83 3697 unlock_extent_cached(tree, cur,
e43bbe5e 3698 cur + iosize - 1, &cached);
92082d40 3699 end_page_read(page, true, cur, iosize);
d1310b2e 3700 cur = cur + iosize;
306e16ce 3701 pg_offset += iosize;
d1310b2e
CM
3702 continue;
3703 }
3704 /* the get_extent function already copied into the page */
9655d298
CM
3705 if (test_range_bit(tree, cur, cur_end,
3706 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3707 check_page_uptodate(tree, page);
7f042a83 3708 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3709 end_page_read(page, true, cur, iosize);
d1310b2e 3710 cur = cur + iosize;
306e16ce 3711 pg_offset += iosize;
d1310b2e
CM
3712 continue;
3713 }
70dec807
CM
3714 /* we have an inline extent but it didn't get marked up
3715 * to date. Error out
3716 */
3717 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3718 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3719 end_page_read(page, false, cur, iosize);
70dec807 3720 cur = cur + iosize;
306e16ce 3721 pg_offset += iosize;
70dec807
CM
3722 continue;
3723 }
d1310b2e 3724
0ceb34bf 3725 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b
QW
3726 bio_ctrl, page, disk_bytenr, iosize,
3727 pg_offset,
fd513000 3728 end_bio_extent_readpage, 0,
005efedf
FM
3729 this_bio_flag,
3730 force_bio_submit);
c8f2f24b
JB
3731 if (!ret) {
3732 nr++;
c8f2f24b 3733 } else {
7f042a83 3734 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3735 end_page_read(page, false, cur, iosize);
baf863b9 3736 goto out;
edd33c99 3737 }
d1310b2e 3738 cur = cur + iosize;
306e16ce 3739 pg_offset += iosize;
d1310b2e 3740 }
90a887c9 3741out:
baf863b9 3742 return ret;
d1310b2e
CM
3743}
3744
b6660e80 3745static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3746 u64 start, u64 end,
3747 struct extent_map **em_cached,
3748 struct btrfs_bio_ctrl *bio_ctrl,
3749 u64 *prev_em_start)
9974090b 3750{
23d31bd4 3751 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3752 int index;
3753
b272ae22 3754 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3755
3756 for (index = 0; index < nr_pages; index++) {
390ed29b 3757 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3758 REQ_RAHEAD, prev_em_start);
09cbfeaf 3759 put_page(pages[index]);
9974090b
MX
3760 }
3761}
3762
3d4b9496 3763static void update_nr_written(struct writeback_control *wbc,
a9132667 3764 unsigned long nr_written)
11c8349b
CM
3765{
3766 wbc->nr_to_write -= nr_written;
11c8349b
CM
3767}
3768
d1310b2e 3769/*
40f76580
CM
3770 * helper for __extent_writepage, doing all of the delayed allocation setup.
3771 *
5eaad97a 3772 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3773 * to write the page (copy into inline extent). In this case the IO has
3774 * been started and the page is already unlocked.
3775 *
3776 * This returns 0 if all went well (page still locked)
3777 * This returns < 0 if there were errors (page still locked)
d1310b2e 3778 */
cd4c0bf9 3779static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
8cc0237a
NB
3780 struct page *page, struct writeback_control *wbc,
3781 u64 delalloc_start, unsigned long *nr_written)
40f76580 3782{
09cbfeaf 3783 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3784 bool found;
40f76580
CM
3785 u64 delalloc_to_write = 0;
3786 u64 delalloc_end = 0;
3787 int ret;
3788 int page_started = 0;
3789
40f76580
CM
3790
3791 while (delalloc_end < page_end) {
cd4c0bf9 3792 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3793 &delalloc_start,
917aacec 3794 &delalloc_end);
3522e903 3795 if (!found) {
40f76580
CM
3796 delalloc_start = delalloc_end + 1;
3797 continue;
3798 }
cd4c0bf9 3799 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
5eaad97a 3800 delalloc_end, &page_started, nr_written, wbc);
40f76580 3801 if (ret) {
963e4db8
QW
3802 btrfs_page_set_error(inode->root->fs_info, page,
3803 page_offset(page), PAGE_SIZE);
5eaad97a
NB
3804 /*
3805 * btrfs_run_delalloc_range should return < 0 for error
3806 * but just in case, we use > 0 here meaning the IO is
3807 * started, so we don't want to return > 0 unless
3808 * things are going well.
40f76580 3809 */
b69d1ee9 3810 return ret < 0 ? ret : -EIO;
40f76580
CM
3811 }
3812 /*
ea1754a0
KS
3813 * delalloc_end is already one less than the total length, so
3814 * we don't subtract one from PAGE_SIZE
40f76580
CM
3815 */
3816 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3817 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3818 delalloc_start = delalloc_end + 1;
3819 }
3820 if (wbc->nr_to_write < delalloc_to_write) {
3821 int thresh = 8192;
3822
3823 if (delalloc_to_write < thresh * 2)
3824 thresh = delalloc_to_write;
3825 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3826 thresh);
3827 }
3828
3829 /* did the fill delalloc function already unlock and start
3830 * the IO?
3831 */
3832 if (page_started) {
3833 /*
3834 * we've unlocked the page, so we can't update
3835 * the mapping's writeback index, just update
3836 * nr_to_write.
3837 */
3838 wbc->nr_to_write -= *nr_written;
3839 return 1;
3840 }
3841
b69d1ee9 3842 return 0;
40f76580
CM
3843}
3844
c5ef5c6c
QW
3845/*
3846 * Find the first byte we need to write.
3847 *
3848 * For subpage, one page can contain several sectors, and
3849 * __extent_writepage_io() will just grab all extent maps in the page
3850 * range and try to submit all non-inline/non-compressed extents.
3851 *
3852 * This is a big problem for subpage, we shouldn't re-submit already written
3853 * data at all.
3854 * This function will lookup subpage dirty bit to find which range we really
3855 * need to submit.
3856 *
3857 * Return the next dirty range in [@start, @end).
3858 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3859 */
3860static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3861 struct page *page, u64 *start, u64 *end)
3862{
3863 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3864 u64 orig_start = *start;
3865 /* Declare as unsigned long so we can use bitmap ops */
3866 unsigned long dirty_bitmap;
3867 unsigned long flags;
3868 int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3869 int range_start_bit = nbits;
3870 int range_end_bit;
3871
3872 /*
3873 * For regular sector size == page size case, since one page only
3874 * contains one sector, we return the page offset directly.
3875 */
3876 if (fs_info->sectorsize == PAGE_SIZE) {
3877 *start = page_offset(page);
3878 *end = page_offset(page) + PAGE_SIZE;
3879 return;
3880 }
3881
3882 /* We should have the page locked, but just in case */
3883 spin_lock_irqsave(&subpage->lock, flags);
3884 dirty_bitmap = subpage->dirty_bitmap;
3885 spin_unlock_irqrestore(&subpage->lock, flags);
3886
3887 bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3888 BTRFS_SUBPAGE_BITMAP_SIZE);
3889 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3890 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3891}
3892
40f76580
CM
3893/*
3894 * helper for __extent_writepage. This calls the writepage start hooks,
3895 * and does the loop to map the page into extents and bios.
3896 *
3897 * We return 1 if the IO is started and the page is unlocked,
3898 * 0 if all went well (page still locked)
3899 * < 0 if there were errors (page still locked)
3900 */
d4580fe2 3901static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3902 struct page *page,
3903 struct writeback_control *wbc,
3904 struct extent_page_data *epd,
3905 loff_t i_size,
3906 unsigned long nr_written,
57e5ffeb 3907 int *nr_ret)
d1310b2e 3908{
6bc5636a 3909 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
3910 u64 cur = page_offset(page);
3911 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 3912 u64 extent_offset;
d1310b2e 3913 u64 block_start;
d1310b2e 3914 struct extent_map *em;
40f76580
CM
3915 int ret = 0;
3916 int nr = 0;
d8e3fb10 3917 u32 opf = REQ_OP_WRITE;
57e5ffeb 3918 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3919 bool compressed;
c8b97818 3920
a129ffb8 3921 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
3922 if (ret) {
3923 /* Fixup worker will requeue */
5ab58055 3924 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3925 update_nr_written(wbc, nr_written);
3926 unlock_page(page);
3927 return 1;
247e743c
CM
3928 }
3929
11c8349b
CM
3930 /*
3931 * we don't want to touch the inode after unlocking the page,
3932 * so we update the mapping writeback index now
3933 */
3d4b9496 3934 update_nr_written(wbc, nr_written + 1);
771ed689 3935
d1310b2e 3936 while (cur <= end) {
0c64c33c 3937 u64 disk_bytenr;
40f76580 3938 u64 em_end;
c5ef5c6c
QW
3939 u64 dirty_range_start = cur;
3940 u64 dirty_range_end;
6bc5636a 3941 u32 iosize;
58409edd 3942
40f76580 3943 if (cur >= i_size) {
38a39ac7 3944 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 3945 end, true);
cc1d0d93
QW
3946 /*
3947 * This range is beyond i_size, thus we don't need to
3948 * bother writing back.
3949 * But we still need to clear the dirty subpage bit, or
3950 * the next time the page gets dirtied, we will try to
3951 * writeback the sectors with subpage dirty bits,
3952 * causing writeback without ordered extent.
3953 */
3954 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
3955 break;
3956 }
c5ef5c6c
QW
3957
3958 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3959 &dirty_range_end);
3960 if (cur < dirty_range_start) {
3961 cur = dirty_range_start;
3962 continue;
3963 }
3964
d4580fe2 3965 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c704005d 3966 if (IS_ERR_OR_NULL(em)) {
c5ef5c6c 3967 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 3968 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3969 break;
3970 }
3971
3972 extent_offset = cur - em->start;
40f76580 3973 em_end = extent_map_end(em);
6bc5636a
QW
3974 ASSERT(cur <= em_end);
3975 ASSERT(cur < end);
3976 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3977 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 3978 block_start = em->block_start;
c8b97818 3979 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
3980 disk_bytenr = em->block_start + extent_offset;
3981
c5ef5c6c
QW
3982 /*
3983 * Note that em_end from extent_map_end() and dirty_range_end from
3984 * find_next_dirty_byte() are all exclusive
3985 */
3986 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 3987
e380adfc 3988 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
3989 opf = REQ_OP_ZONE_APPEND;
3990
d1310b2e
CM
3991 free_extent_map(em);
3992 em = NULL;
3993
c8b97818
CM
3994 /*
3995 * compressed and inline extents are written through other
3996 * paths in the FS
3997 */
3998 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3999 block_start == EXTENT_MAP_INLINE) {
c8b04030 4000 if (compressed)
c8b97818 4001 nr++;
c8b04030 4002 else
38a39ac7 4003 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 4004 page, cur, cur + iosize - 1, true);
cc1d0d93 4005 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 4006 cur += iosize;
d1310b2e
CM
4007 continue;
4008 }
c8b97818 4009
d2a91064 4010 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 4011 if (!PageWriteback(page)) {
d4580fe2 4012 btrfs_err(inode->root->fs_info,
58409edd
DS
4013 "page %lu not writeback, cur %llu end %llu",
4014 page->index, cur, end);
d1310b2e 4015 }
7f3c74fb 4016
c5ef5c6c
QW
4017 /*
4018 * Although the PageDirty bit is cleared before entering this
4019 * function, subpage dirty bit is not cleared.
4020 * So clear subpage dirty bit here so next time we won't submit
4021 * page for range already written to disk.
4022 */
4023 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4024
390ed29b
QW
4025 ret = submit_extent_page(opf | write_flags, wbc,
4026 &epd->bio_ctrl, page,
d8e3fb10 4027 disk_bytenr, iosize,
390ed29b 4028 cur - page_offset(page),
58409edd 4029 end_bio_extent_writepage,
390ed29b 4030 0, 0, false);
fe01aa65 4031 if (ret) {
c5ef5c6c 4032 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 4033 if (PageWriteback(page))
c5ef5c6c
QW
4034 btrfs_page_clear_writeback(fs_info, page, cur,
4035 iosize);
fe01aa65 4036 }
d1310b2e 4037
6bc5636a 4038 cur += iosize;
d1310b2e
CM
4039 nr++;
4040 }
cc1d0d93
QW
4041 /*
4042 * If we finish without problem, we should not only clear page dirty,
4043 * but also empty subpage dirty bits
4044 */
4045 if (!ret)
4046 btrfs_page_assert_not_dirty(fs_info, page);
40f76580 4047 *nr_ret = nr;
40f76580
CM
4048 return ret;
4049}
4050
4051/*
4052 * the writepage semantics are similar to regular writepage. extent
4053 * records are inserted to lock ranges in the tree, and as dirty areas
4054 * are found, they are marked writeback. Then the lock bits are removed
4055 * and the end_io handler clears the writeback ranges
3065976b
QW
4056 *
4057 * Return 0 if everything goes well.
4058 * Return <0 for error.
40f76580
CM
4059 */
4060static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 4061 struct extent_page_data *epd)
40f76580
CM
4062{
4063 struct inode *inode = page->mapping->host;
40f76580 4064 u64 start = page_offset(page);
09cbfeaf 4065 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
4066 int ret;
4067 int nr = 0;
eb70d222 4068 size_t pg_offset;
40f76580 4069 loff_t i_size = i_size_read(inode);
09cbfeaf 4070 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
4071 unsigned long nr_written = 0;
4072
40f76580
CM
4073 trace___extent_writepage(page, inode, wbc);
4074
4075 WARN_ON(!PageLocked(page));
4076
963e4db8
QW
4077 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4078 page_offset(page), PAGE_SIZE);
40f76580 4079
7073017a 4080 pg_offset = offset_in_page(i_size);
40f76580
CM
4081 if (page->index > end_index ||
4082 (page->index == end_index && !pg_offset)) {
09cbfeaf 4083 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
4084 unlock_page(page);
4085 return 0;
4086 }
4087
4088 if (page->index == end_index) {
d048b9c2 4089 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580
CM
4090 flush_dcache_page(page);
4091 }
4092
32443de3
QW
4093 ret = set_page_extent_mapped(page);
4094 if (ret < 0) {
4095 SetPageError(page);
4096 goto done;
4097 }
40f76580 4098
7789a55a 4099 if (!epd->extent_locked) {
cd4c0bf9
NB
4100 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4101 &nr_written);
7789a55a 4102 if (ret == 1)
169d2c87 4103 return 0;
7789a55a
NB
4104 if (ret)
4105 goto done;
4106 }
40f76580 4107
d4580fe2
NB
4108 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4109 nr_written, &nr);
40f76580 4110 if (ret == 1)
169d2c87 4111 return 0;
40f76580 4112
d1310b2e
CM
4113done:
4114 if (nr == 0) {
4115 /* make sure the mapping tag for page dirty gets cleared */
4116 set_page_writeback(page);
4117 end_page_writeback(page);
4118 }
963e4db8
QW
4119 /*
4120 * Here we used to have a check for PageError() and then set @ret and
4121 * call end_extent_writepage().
4122 *
4123 * But in fact setting @ret here will cause different error paths
4124 * between subpage and regular sectorsize.
4125 *
4126 * For regular page size, we never submit current page, but only add
4127 * current page to current bio.
4128 * The bio submission can only happen in next page.
4129 * Thus if we hit the PageError() branch, @ret is already set to
4130 * non-zero value and will not get updated for regular sectorsize.
4131 *
4132 * But for subpage case, it's possible we submit part of current page,
4133 * thus can get PageError() set by submitted bio of the same page,
4134 * while our @ret is still 0.
4135 *
4136 * So here we unify the behavior and don't set @ret.
4137 * Error can still be properly passed to higher layer as page will
4138 * be set error, here we just don't handle the IO failure.
4139 *
4140 * NOTE: This is just a hotfix for subpage.
4141 * The root fix will be properly ending ordered extent when we hit
4142 * an error during writeback.
4143 *
4144 * But that needs a bigger refactoring, as we not only need to grab the
4145 * submitted OE, but also need to know exactly at which bytenr we hit
4146 * the error.
4147 * Currently the full page based __extent_writepage_io() is not
4148 * capable of that.
4149 */
4150 if (PageError(page))
61391d56 4151 end_extent_writepage(page, ret, start, page_end);
d1310b2e 4152 unlock_page(page);
3065976b 4153 ASSERT(ret <= 0);
40f76580 4154 return ret;
d1310b2e
CM
4155}
4156
fd8b2b61 4157void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 4158{
74316201
N
4159 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4160 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
4161}
4162
18dfa711
FM
4163static void end_extent_buffer_writeback(struct extent_buffer *eb)
4164{
4165 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4166 smp_mb__after_atomic();
4167 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4168}
4169
2e3c2513 4170/*
a3efb2f0 4171 * Lock extent buffer status and pages for writeback.
2e3c2513 4172 *
a3efb2f0
QW
4173 * May try to flush write bio if we can't get the lock.
4174 *
4175 * Return 0 if the extent buffer doesn't need to be submitted.
4176 * (E.g. the extent buffer is not dirty)
4177 * Return >0 is the extent buffer is submitted to bio.
4178 * Return <0 if something went wrong, no page is locked.
2e3c2513 4179 */
9df76fb5 4180static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4181 struct extent_page_data *epd)
0b32f4bb 4182{
9df76fb5 4183 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 4184 int i, num_pages, failed_page_nr;
0b32f4bb
JB
4185 int flush = 0;
4186 int ret = 0;
4187
4188 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 4189 ret = flush_write_bio(epd);
2e3c2513
QW
4190 if (ret < 0)
4191 return ret;
4192 flush = 1;
0b32f4bb
JB
4193 btrfs_tree_lock(eb);
4194 }
4195
4196 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4197 btrfs_tree_unlock(eb);
4198 if (!epd->sync_io)
4199 return 0;
4200 if (!flush) {
f4340622 4201 ret = flush_write_bio(epd);
2e3c2513
QW
4202 if (ret < 0)
4203 return ret;
0b32f4bb
JB
4204 flush = 1;
4205 }
a098d8e8
CM
4206 while (1) {
4207 wait_on_extent_buffer_writeback(eb);
4208 btrfs_tree_lock(eb);
4209 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4210 break;
0b32f4bb 4211 btrfs_tree_unlock(eb);
0b32f4bb
JB
4212 }
4213 }
4214
51561ffe
JB
4215 /*
4216 * We need to do this to prevent races in people who check if the eb is
4217 * under IO since we can end up having no IO bits set for a short period
4218 * of time.
4219 */
4220 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4221 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4222 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4223 spin_unlock(&eb->refs_lock);
0b32f4bb 4224 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4225 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4226 -eb->len,
4227 fs_info->dirty_metadata_batch);
0b32f4bb 4228 ret = 1;
51561ffe
JB
4229 } else {
4230 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4231 }
4232
4233 btrfs_tree_unlock(eb);
4234
f3156df9
QW
4235 /*
4236 * Either we don't need to submit any tree block, or we're submitting
4237 * subpage eb.
4238 * Subpage metadata doesn't use page locking at all, so we can skip
4239 * the page locking.
4240 */
4241 if (!ret || fs_info->sectorsize < PAGE_SIZE)
0b32f4bb
JB
4242 return ret;
4243
65ad0104 4244 num_pages = num_extent_pages(eb);
0b32f4bb 4245 for (i = 0; i < num_pages; i++) {
fb85fc9a 4246 struct page *p = eb->pages[i];
0b32f4bb
JB
4247
4248 if (!trylock_page(p)) {
4249 if (!flush) {
18dfa711
FM
4250 int err;
4251
4252 err = flush_write_bio(epd);
4253 if (err < 0) {
4254 ret = err;
2e3c2513
QW
4255 failed_page_nr = i;
4256 goto err_unlock;
4257 }
0b32f4bb
JB
4258 flush = 1;
4259 }
4260 lock_page(p);
4261 }
4262 }
4263
4264 return ret;
2e3c2513
QW
4265err_unlock:
4266 /* Unlock already locked pages */
4267 for (i = 0; i < failed_page_nr; i++)
4268 unlock_page(eb->pages[i]);
18dfa711
FM
4269 /*
4270 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4271 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4272 * be made and undo everything done before.
4273 */
4274 btrfs_tree_lock(eb);
4275 spin_lock(&eb->refs_lock);
4276 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4277 end_extent_buffer_writeback(eb);
4278 spin_unlock(&eb->refs_lock);
4279 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4280 fs_info->dirty_metadata_batch);
4281 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4282 btrfs_tree_unlock(eb);
2e3c2513 4283 return ret;
0b32f4bb
JB
4284}
4285
5a2c6075 4286static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4287{
5a2c6075 4288 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4289
5a2c6075 4290 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4291 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4292 return;
4293
eb5b64f1
DZ
4294 /*
4295 * If we error out, we should add back the dirty_metadata_bytes
4296 * to make it consistent.
4297 */
eb5b64f1
DZ
4298 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4299 eb->len, fs_info->dirty_metadata_batch);
4300
656f30db
FM
4301 /*
4302 * If writeback for a btree extent that doesn't belong to a log tree
4303 * failed, increment the counter transaction->eb_write_errors.
4304 * We do this because while the transaction is running and before it's
4305 * committing (when we call filemap_fdata[write|wait]_range against
4306 * the btree inode), we might have
4307 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4308 * returns an error or an error happens during writeback, when we're
4309 * committing the transaction we wouldn't know about it, since the pages
4310 * can be no longer dirty nor marked anymore for writeback (if a
4311 * subsequent modification to the extent buffer didn't happen before the
4312 * transaction commit), which makes filemap_fdata[write|wait]_range not
4313 * able to find the pages tagged with SetPageError at transaction
4314 * commit time. So if this happens we must abort the transaction,
4315 * otherwise we commit a super block with btree roots that point to
4316 * btree nodes/leafs whose content on disk is invalid - either garbage
4317 * or the content of some node/leaf from a past generation that got
4318 * cowed or deleted and is no longer valid.
4319 *
4320 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4321 * not be enough - we need to distinguish between log tree extents vs
4322 * non-log tree extents, and the next filemap_fdatawait_range() call
4323 * will catch and clear such errors in the mapping - and that call might
4324 * be from a log sync and not from a transaction commit. Also, checking
4325 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4326 * not done and would not be reliable - the eb might have been released
4327 * from memory and reading it back again means that flag would not be
4328 * set (since it's a runtime flag, not persisted on disk).
4329 *
4330 * Using the flags below in the btree inode also makes us achieve the
4331 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4332 * writeback for all dirty pages and before filemap_fdatawait_range()
4333 * is called, the writeback for all dirty pages had already finished
4334 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4335 * filemap_fdatawait_range() would return success, as it could not know
4336 * that writeback errors happened (the pages were no longer tagged for
4337 * writeback).
4338 */
4339 switch (eb->log_index) {
4340 case -1:
5a2c6075 4341 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4342 break;
4343 case 0:
5a2c6075 4344 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4345 break;
4346 case 1:
5a2c6075 4347 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4348 break;
4349 default:
4350 BUG(); /* unexpected, logic error */
4351 }
4352}
4353
2f3186d8
QW
4354/*
4355 * The endio specific version which won't touch any unsafe spinlock in endio
4356 * context.
4357 */
4358static struct extent_buffer *find_extent_buffer_nolock(
4359 struct btrfs_fs_info *fs_info, u64 start)
4360{
4361 struct extent_buffer *eb;
4362
4363 rcu_read_lock();
4364 eb = radix_tree_lookup(&fs_info->buffer_radix,
4365 start >> fs_info->sectorsize_bits);
4366 if (eb && atomic_inc_not_zero(&eb->refs)) {
4367 rcu_read_unlock();
4368 return eb;
4369 }
4370 rcu_read_unlock();
4371 return NULL;
4372}
4373
4374/*
4375 * The endio function for subpage extent buffer write.
4376 *
4377 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4378 * after all extent buffers in the page has finished their writeback.
4379 */
fa04c165 4380static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4381{
fa04c165 4382 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4383 struct bio_vec *bvec;
4384 struct bvec_iter_all iter_all;
4385
fa04c165
QW
4386 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4387 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4388
2f3186d8
QW
4389 ASSERT(!bio_flagged(bio, BIO_CLONED));
4390 bio_for_each_segment_all(bvec, bio, iter_all) {
4391 struct page *page = bvec->bv_page;
4392 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4393 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4394 u64 cur_bytenr = bvec_start;
4395
4396 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4397
4398 /* Iterate through all extent buffers in the range */
4399 while (cur_bytenr <= bvec_end) {
4400 struct extent_buffer *eb;
4401 int done;
4402
4403 /*
4404 * Here we can't use find_extent_buffer(), as it may
4405 * try to lock eb->refs_lock, which is not safe in endio
4406 * context.
4407 */
4408 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4409 ASSERT(eb);
4410
4411 cur_bytenr = eb->start + eb->len;
4412
4413 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4414 done = atomic_dec_and_test(&eb->io_pages);
4415 ASSERT(done);
4416
4417 if (bio->bi_status ||
4418 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4419 ClearPageUptodate(page);
4420 set_btree_ioerr(page, eb);
4421 }
4422
4423 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4424 eb->len);
4425 end_extent_buffer_writeback(eb);
4426 /*
4427 * free_extent_buffer() will grab spinlock which is not
4428 * safe in endio context. Thus here we manually dec
4429 * the ref.
4430 */
4431 atomic_dec(&eb->refs);
4432 }
4433 }
4434 bio_put(bio);
4435}
4436
4246a0b6 4437static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4438{
2c30c71b 4439 struct bio_vec *bvec;
0b32f4bb 4440 struct extent_buffer *eb;
2b070cfe 4441 int done;
6dc4f100 4442 struct bvec_iter_all iter_all;
0b32f4bb 4443
c09abff8 4444 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4445 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4446 struct page *page = bvec->bv_page;
4447
0b32f4bb
JB
4448 eb = (struct extent_buffer *)page->private;
4449 BUG_ON(!eb);
4450 done = atomic_dec_and_test(&eb->io_pages);
4451
4e4cbee9 4452 if (bio->bi_status ||
4246a0b6 4453 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4454 ClearPageUptodate(page);
5a2c6075 4455 set_btree_ioerr(page, eb);
0b32f4bb
JB
4456 }
4457
4458 end_page_writeback(page);
4459
4460 if (!done)
4461 continue;
4462
4463 end_extent_buffer_writeback(eb);
2c30c71b 4464 }
0b32f4bb
JB
4465
4466 bio_put(bio);
0b32f4bb
JB
4467}
4468
fa04c165
QW
4469static void prepare_eb_write(struct extent_buffer *eb)
4470{
4471 u32 nritems;
4472 unsigned long start;
4473 unsigned long end;
4474
4475 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4476 atomic_set(&eb->io_pages, num_extent_pages(eb));
4477
4478 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4479 nritems = btrfs_header_nritems(eb);
4480 if (btrfs_header_level(eb) > 0) {
4481 end = btrfs_node_key_ptr_offset(nritems);
4482 memzero_extent_buffer(eb, end, eb->len - end);
4483 } else {
4484 /*
4485 * Leaf:
4486 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4487 */
4488 start = btrfs_item_nr_offset(nritems);
4489 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4490 memzero_extent_buffer(eb, start, end - start);
4491 }
4492}
4493
35b6ddfa
QW
4494/*
4495 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4496 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4497 */
4498static int write_one_subpage_eb(struct extent_buffer *eb,
4499 struct writeback_control *wbc,
4500 struct extent_page_data *epd)
4501{
4502 struct btrfs_fs_info *fs_info = eb->fs_info;
4503 struct page *page = eb->pages[0];
4504 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4505 bool no_dirty_ebs = false;
4506 int ret;
4507
fa04c165
QW
4508 prepare_eb_write(eb);
4509
35b6ddfa
QW
4510 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4511 lock_page(page);
4512 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4513
4514 /* Check if this is the last dirty bit to update nr_written */
4515 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4516 eb->start, eb->len);
4517 if (no_dirty_ebs)
4518 clear_page_dirty_for_io(page);
4519
390ed29b
QW
4520 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4521 &epd->bio_ctrl, page, eb->start, eb->len,
4522 eb->start - page_offset(page),
fa04c165 4523 end_bio_subpage_eb_writepage, 0, 0, false);
35b6ddfa
QW
4524 if (ret) {
4525 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4526 set_btree_ioerr(page, eb);
4527 unlock_page(page);
4528
4529 if (atomic_dec_and_test(&eb->io_pages))
4530 end_extent_buffer_writeback(eb);
4531 return -EIO;
4532 }
4533 unlock_page(page);
4534 /*
4535 * Submission finished without problem, if no range of the page is
4536 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4537 */
4538 if (no_dirty_ebs)
4539 update_nr_written(wbc, 1);
4540 return ret;
4541}
4542
0e378df1 4543static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4544 struct writeback_control *wbc,
4545 struct extent_page_data *epd)
4546{
0c64c33c 4547 u64 disk_bytenr = eb->start;
cc5e31a4 4548 int i, num_pages;
ff40adf7 4549 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 4550 int ret = 0;
0b32f4bb 4551
fa04c165 4552 prepare_eb_write(eb);
35b6ddfa 4553
fa04c165 4554 num_pages = num_extent_pages(eb);
0b32f4bb 4555 for (i = 0; i < num_pages; i++) {
fb85fc9a 4556 struct page *p = eb->pages[i];
0b32f4bb
JB
4557
4558 clear_page_dirty_for_io(p);
4559 set_page_writeback(p);
0ceb34bf 4560 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4561 &epd->bio_ctrl, p, disk_bytenr,
4562 PAGE_SIZE, 0,
1f7ad75b 4563 end_bio_extent_buffer_writepage,
390ed29b 4564 0, 0, false);
0b32f4bb 4565 if (ret) {
5a2c6075 4566 set_btree_ioerr(p, eb);
fe01aa65
TK
4567 if (PageWriteback(p))
4568 end_page_writeback(p);
0b32f4bb
JB
4569 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4570 end_extent_buffer_writeback(eb);
4571 ret = -EIO;
4572 break;
4573 }
0c64c33c 4574 disk_bytenr += PAGE_SIZE;
3d4b9496 4575 update_nr_written(wbc, 1);
0b32f4bb
JB
4576 unlock_page(p);
4577 }
4578
4579 if (unlikely(ret)) {
4580 for (; i < num_pages; i++) {
bbf65cf0 4581 struct page *p = eb->pages[i];
81465028 4582 clear_page_dirty_for_io(p);
0b32f4bb
JB
4583 unlock_page(p);
4584 }
4585 }
4586
4587 return ret;
4588}
4589
c4aec299
QW
4590/*
4591 * Submit one subpage btree page.
4592 *
4593 * The main difference to submit_eb_page() is:
4594 * - Page locking
4595 * For subpage, we don't rely on page locking at all.
4596 *
4597 * - Flush write bio
4598 * We only flush bio if we may be unable to fit current extent buffers into
4599 * current bio.
4600 *
4601 * Return >=0 for the number of submitted extent buffers.
4602 * Return <0 for fatal error.
4603 */
4604static int submit_eb_subpage(struct page *page,
4605 struct writeback_control *wbc,
4606 struct extent_page_data *epd)
4607{
4608 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4609 int submitted = 0;
4610 u64 page_start = page_offset(page);
4611 int bit_start = 0;
4612 const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4613 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4614 int ret;
4615
4616 /* Lock and write each dirty extent buffers in the range */
4617 while (bit_start < nbits) {
4618 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4619 struct extent_buffer *eb;
4620 unsigned long flags;
4621 u64 start;
4622
4623 /*
4624 * Take private lock to ensure the subpage won't be detached
4625 * in the meantime.
4626 */
4627 spin_lock(&page->mapping->private_lock);
4628 if (!PagePrivate(page)) {
4629 spin_unlock(&page->mapping->private_lock);
4630 break;
4631 }
4632 spin_lock_irqsave(&subpage->lock, flags);
4633 if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4634 spin_unlock_irqrestore(&subpage->lock, flags);
4635 spin_unlock(&page->mapping->private_lock);
4636 bit_start++;
4637 continue;
4638 }
4639
4640 start = page_start + bit_start * fs_info->sectorsize;
4641 bit_start += sectors_per_node;
4642
4643 /*
4644 * Here we just want to grab the eb without touching extra
4645 * spin locks, so call find_extent_buffer_nolock().
4646 */
4647 eb = find_extent_buffer_nolock(fs_info, start);
4648 spin_unlock_irqrestore(&subpage->lock, flags);
4649 spin_unlock(&page->mapping->private_lock);
4650
4651 /*
4652 * The eb has already reached 0 refs thus find_extent_buffer()
4653 * doesn't return it. We don't need to write back such eb
4654 * anyway.
4655 */
4656 if (!eb)
4657 continue;
4658
4659 ret = lock_extent_buffer_for_io(eb, epd);
4660 if (ret == 0) {
4661 free_extent_buffer(eb);
4662 continue;
4663 }
4664 if (ret < 0) {
4665 free_extent_buffer(eb);
4666 goto cleanup;
4667 }
fa04c165 4668 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4669 free_extent_buffer(eb);
4670 if (ret < 0)
4671 goto cleanup;
4672 submitted++;
4673 }
4674 return submitted;
4675
4676cleanup:
4677 /* We hit error, end bio for the submitted extent buffers */
4678 end_write_bio(epd, ret);
4679 return ret;
4680}
4681
f91e0d0c
QW
4682/*
4683 * Submit all page(s) of one extent buffer.
4684 *
4685 * @page: the page of one extent buffer
4686 * @eb_context: to determine if we need to submit this page, if current page
4687 * belongs to this eb, we don't need to submit
4688 *
4689 * The caller should pass each page in their bytenr order, and here we use
4690 * @eb_context to determine if we have submitted pages of one extent buffer.
4691 *
4692 * If we have, we just skip until we hit a new page that doesn't belong to
4693 * current @eb_context.
4694 *
4695 * If not, we submit all the page(s) of the extent buffer.
4696 *
4697 * Return >0 if we have submitted the extent buffer successfully.
4698 * Return 0 if we don't need to submit the page, as it's already submitted by
4699 * previous call.
4700 * Return <0 for fatal error.
4701 */
4702static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4703 struct extent_page_data *epd,
4704 struct extent_buffer **eb_context)
4705{
4706 struct address_space *mapping = page->mapping;
0bc09ca1 4707 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4708 struct extent_buffer *eb;
4709 int ret;
4710
4711 if (!PagePrivate(page))
4712 return 0;
4713
c4aec299
QW
4714 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4715 return submit_eb_subpage(page, wbc, epd);
4716
f91e0d0c
QW
4717 spin_lock(&mapping->private_lock);
4718 if (!PagePrivate(page)) {
4719 spin_unlock(&mapping->private_lock);
4720 return 0;
4721 }
4722
4723 eb = (struct extent_buffer *)page->private;
4724
4725 /*
4726 * Shouldn't happen and normally this would be a BUG_ON but no point
4727 * crashing the machine for something we can survive anyway.
4728 */
4729 if (WARN_ON(!eb)) {
4730 spin_unlock(&mapping->private_lock);
4731 return 0;
4732 }
4733
4734 if (eb == *eb_context) {
4735 spin_unlock(&mapping->private_lock);
4736 return 0;
4737 }
4738 ret = atomic_inc_not_zero(&eb->refs);
4739 spin_unlock(&mapping->private_lock);
4740 if (!ret)
4741 return 0;
4742
0bc09ca1
NA
4743 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4744 /*
4745 * If for_sync, this hole will be filled with
4746 * trasnsaction commit.
4747 */
4748 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4749 ret = -EAGAIN;
4750 else
4751 ret = 0;
4752 free_extent_buffer(eb);
4753 return ret;
4754 }
4755
f91e0d0c
QW
4756 *eb_context = eb;
4757
4758 ret = lock_extent_buffer_for_io(eb, epd);
4759 if (ret <= 0) {
0bc09ca1
NA
4760 btrfs_revert_meta_write_pointer(cache, eb);
4761 if (cache)
4762 btrfs_put_block_group(cache);
f91e0d0c
QW
4763 free_extent_buffer(eb);
4764 return ret;
4765 }
0bc09ca1
NA
4766 if (cache)
4767 btrfs_put_block_group(cache);
f91e0d0c
QW
4768 ret = write_one_eb(eb, wbc, epd);
4769 free_extent_buffer(eb);
4770 if (ret < 0)
4771 return ret;
4772 return 1;
4773}
4774
0b32f4bb
JB
4775int btree_write_cache_pages(struct address_space *mapping,
4776 struct writeback_control *wbc)
4777{
f91e0d0c 4778 struct extent_buffer *eb_context = NULL;
0b32f4bb 4779 struct extent_page_data epd = {
390ed29b 4780 .bio_ctrl = { 0 },
0b32f4bb
JB
4781 .extent_locked = 0,
4782 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4783 };
b3ff8f1d 4784 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4785 int ret = 0;
4786 int done = 0;
4787 int nr_to_write_done = 0;
4788 struct pagevec pvec;
4789 int nr_pages;
4790 pgoff_t index;
4791 pgoff_t end; /* Inclusive */
4792 int scanned = 0;
10bbd235 4793 xa_mark_t tag;
0b32f4bb 4794
86679820 4795 pagevec_init(&pvec);
0b32f4bb
JB
4796 if (wbc->range_cyclic) {
4797 index = mapping->writeback_index; /* Start from prev offset */
4798 end = -1;
556755a8
JB
4799 /*
4800 * Start from the beginning does not need to cycle over the
4801 * range, mark it as scanned.
4802 */
4803 scanned = (index == 0);
0b32f4bb 4804 } else {
09cbfeaf
KS
4805 index = wbc->range_start >> PAGE_SHIFT;
4806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4807 scanned = 1;
4808 }
4809 if (wbc->sync_mode == WB_SYNC_ALL)
4810 tag = PAGECACHE_TAG_TOWRITE;
4811 else
4812 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4813 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4814retry:
4815 if (wbc->sync_mode == WB_SYNC_ALL)
4816 tag_pages_for_writeback(mapping, index, end);
4817 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4818 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4819 tag))) {
0b32f4bb
JB
4820 unsigned i;
4821
0b32f4bb
JB
4822 for (i = 0; i < nr_pages; i++) {
4823 struct page *page = pvec.pages[i];
4824
f91e0d0c
QW
4825 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4826 if (ret == 0)
0b32f4bb 4827 continue;
f91e0d0c 4828 if (ret < 0) {
0b32f4bb 4829 done = 1;
0b32f4bb
JB
4830 break;
4831 }
0b32f4bb
JB
4832
4833 /*
4834 * the filesystem may choose to bump up nr_to_write.
4835 * We have to make sure to honor the new nr_to_write
4836 * at any time
4837 */
4838 nr_to_write_done = wbc->nr_to_write <= 0;
4839 }
4840 pagevec_release(&pvec);
4841 cond_resched();
4842 }
4843 if (!scanned && !done) {
4844 /*
4845 * We hit the last page and there is more work to be done: wrap
4846 * back to the start of the file
4847 */
4848 scanned = 1;
4849 index = 0;
4850 goto retry;
4851 }
2b952eea
QW
4852 if (ret < 0) {
4853 end_write_bio(&epd, ret);
0bc09ca1 4854 goto out;
2b952eea 4855 }
b3ff8f1d
QW
4856 /*
4857 * If something went wrong, don't allow any metadata write bio to be
4858 * submitted.
4859 *
4860 * This would prevent use-after-free if we had dirty pages not
4861 * cleaned up, which can still happen by fuzzed images.
4862 *
4863 * - Bad extent tree
4864 * Allowing existing tree block to be allocated for other trees.
4865 *
4866 * - Log tree operations
4867 * Exiting tree blocks get allocated to log tree, bumps its
4868 * generation, then get cleaned in tree re-balance.
4869 * Such tree block will not be written back, since it's clean,
4870 * thus no WRITTEN flag set.
4871 * And after log writes back, this tree block is not traced by
4872 * any dirty extent_io_tree.
4873 *
4874 * - Offending tree block gets re-dirtied from its original owner
4875 * Since it has bumped generation, no WRITTEN flag, it can be
4876 * reused without COWing. This tree block will not be traced
4877 * by btrfs_transaction::dirty_pages.
4878 *
4879 * Now such dirty tree block will not be cleaned by any dirty
4880 * extent io tree. Thus we don't want to submit such wild eb
4881 * if the fs already has error.
4882 */
4883 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4884 ret = flush_write_bio(&epd);
4885 } else {
fbabd4a3 4886 ret = -EROFS;
b3ff8f1d
QW
4887 end_write_bio(&epd, ret);
4888 }
0bc09ca1
NA
4889out:
4890 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4891 return ret;
4892}
4893
d1310b2e 4894/**
3bed2da1
NB
4895 * Walk the list of dirty pages of the given address space and write all of them.
4896 *
d1310b2e 4897 * @mapping: address space structure to write
3bed2da1
NB
4898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4899 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4900 *
4901 * If a page is already under I/O, write_cache_pages() skips it, even
4902 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4903 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4904 * and msync() need to guarantee that all the data which was dirty at the time
4905 * the call was made get new I/O started against them. If wbc->sync_mode is
4906 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4907 * existing IO to complete.
4908 */
4242b64a 4909static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4910 struct writeback_control *wbc,
aab6e9ed 4911 struct extent_page_data *epd)
d1310b2e 4912{
7fd1a3f7 4913 struct inode *inode = mapping->host;
d1310b2e
CM
4914 int ret = 0;
4915 int done = 0;
f85d7d6c 4916 int nr_to_write_done = 0;
d1310b2e
CM
4917 struct pagevec pvec;
4918 int nr_pages;
4919 pgoff_t index;
4920 pgoff_t end; /* Inclusive */
a9132667
LB
4921 pgoff_t done_index;
4922 int range_whole = 0;
d1310b2e 4923 int scanned = 0;
10bbd235 4924 xa_mark_t tag;
d1310b2e 4925
7fd1a3f7
JB
4926 /*
4927 * We have to hold onto the inode so that ordered extents can do their
4928 * work when the IO finishes. The alternative to this is failing to add
4929 * an ordered extent if the igrab() fails there and that is a huge pain
4930 * to deal with, so instead just hold onto the inode throughout the
4931 * writepages operation. If it fails here we are freeing up the inode
4932 * anyway and we'd rather not waste our time writing out stuff that is
4933 * going to be truncated anyway.
4934 */
4935 if (!igrab(inode))
4936 return 0;
4937
86679820 4938 pagevec_init(&pvec);
d1310b2e
CM
4939 if (wbc->range_cyclic) {
4940 index = mapping->writeback_index; /* Start from prev offset */
4941 end = -1;
556755a8
JB
4942 /*
4943 * Start from the beginning does not need to cycle over the
4944 * range, mark it as scanned.
4945 */
4946 scanned = (index == 0);
d1310b2e 4947 } else {
09cbfeaf
KS
4948 index = wbc->range_start >> PAGE_SHIFT;
4949 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4951 range_whole = 1;
d1310b2e
CM
4952 scanned = 1;
4953 }
3cd24c69
EL
4954
4955 /*
4956 * We do the tagged writepage as long as the snapshot flush bit is set
4957 * and we are the first one who do the filemap_flush() on this inode.
4958 *
4959 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4960 * not race in and drop the bit.
4961 */
4962 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4963 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4964 &BTRFS_I(inode)->runtime_flags))
4965 wbc->tagged_writepages = 1;
4966
4967 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4968 tag = PAGECACHE_TAG_TOWRITE;
4969 else
4970 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4971retry:
3cd24c69 4972 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4973 tag_pages_for_writeback(mapping, index, end);
a9132667 4974 done_index = index;
f85d7d6c 4975 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4976 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4977 &index, end, tag))) {
d1310b2e
CM
4978 unsigned i;
4979
d1310b2e
CM
4980 for (i = 0; i < nr_pages; i++) {
4981 struct page *page = pvec.pages[i];
4982
f7bddf1e 4983 done_index = page->index + 1;
d1310b2e 4984 /*
b93b0163
MW
4985 * At this point we hold neither the i_pages lock nor
4986 * the page lock: the page may be truncated or
4987 * invalidated (changing page->mapping to NULL),
4988 * or even swizzled back from swapper_space to
4989 * tmpfs file mapping
d1310b2e 4990 */
c8f2f24b 4991 if (!trylock_page(page)) {
f4340622
QW
4992 ret = flush_write_bio(epd);
4993 BUG_ON(ret < 0);
c8f2f24b 4994 lock_page(page);
01d658f2 4995 }
d1310b2e
CM
4996
4997 if (unlikely(page->mapping != mapping)) {
4998 unlock_page(page);
4999 continue;
5000 }
5001
d2c3f4f6 5002 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
5003 if (PageWriteback(page)) {
5004 ret = flush_write_bio(epd);
5005 BUG_ON(ret < 0);
5006 }
d1310b2e 5007 wait_on_page_writeback(page);
d2c3f4f6 5008 }
d1310b2e
CM
5009
5010 if (PageWriteback(page) ||
5011 !clear_page_dirty_for_io(page)) {
5012 unlock_page(page);
5013 continue;
5014 }
5015
aab6e9ed 5016 ret = __extent_writepage(page, wbc, epd);
a9132667 5017 if (ret < 0) {
a9132667
LB
5018 done = 1;
5019 break;
5020 }
f85d7d6c
CM
5021
5022 /*
5023 * the filesystem may choose to bump up nr_to_write.
5024 * We have to make sure to honor the new nr_to_write
5025 * at any time
5026 */
5027 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
5028 }
5029 pagevec_release(&pvec);
5030 cond_resched();
5031 }
894b36e3 5032 if (!scanned && !done) {
d1310b2e
CM
5033 /*
5034 * We hit the last page and there is more work to be done: wrap
5035 * back to the start of the file
5036 */
5037 scanned = 1;
5038 index = 0;
42ffb0bf
JB
5039
5040 /*
5041 * If we're looping we could run into a page that is locked by a
5042 * writer and that writer could be waiting on writeback for a
5043 * page in our current bio, and thus deadlock, so flush the
5044 * write bio here.
5045 */
5046 ret = flush_write_bio(epd);
5047 if (!ret)
5048 goto retry;
d1310b2e 5049 }
a9132667
LB
5050
5051 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5052 mapping->writeback_index = done_index;
5053
7fd1a3f7 5054 btrfs_add_delayed_iput(inode);
894b36e3 5055 return ret;
d1310b2e 5056}
d1310b2e 5057
0a9b0e53 5058int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
5059{
5060 int ret;
d1310b2e 5061 struct extent_page_data epd = {
390ed29b 5062 .bio_ctrl = { 0 },
771ed689 5063 .extent_locked = 0,
ffbd517d 5064 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 5065 };
d1310b2e 5066
d1310b2e 5067 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
5068 ASSERT(ret <= 0);
5069 if (ret < 0) {
5070 end_write_bio(&epd, ret);
5071 return ret;
5072 }
d1310b2e 5073
3065976b
QW
5074 ret = flush_write_bio(&epd);
5075 ASSERT(ret <= 0);
d1310b2e
CM
5076 return ret;
5077}
d1310b2e 5078
5e3ee236 5079int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
5080 int mode)
5081{
5082 int ret = 0;
5083 struct address_space *mapping = inode->i_mapping;
5084 struct page *page;
09cbfeaf
KS
5085 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
5086 PAGE_SHIFT;
771ed689
CM
5087
5088 struct extent_page_data epd = {
390ed29b 5089 .bio_ctrl = { 0 },
771ed689 5090 .extent_locked = 1,
ffbd517d 5091 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
5092 };
5093 struct writeback_control wbc_writepages = {
771ed689 5094 .sync_mode = mode,
771ed689
CM
5095 .nr_to_write = nr_pages * 2,
5096 .range_start = start,
5097 .range_end = end + 1,
ec39f769
CM
5098 /* We're called from an async helper function */
5099 .punt_to_cgroup = 1,
5100 .no_cgroup_owner = 1,
771ed689
CM
5101 };
5102
dbb70bec 5103 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 5104 while (start <= end) {
09cbfeaf 5105 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
5106 if (clear_page_dirty_for_io(page))
5107 ret = __extent_writepage(page, &wbc_writepages, &epd);
5108 else {
38a39ac7 5109 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
25c1252a 5110 page, start, start + PAGE_SIZE - 1, true);
771ed689
CM
5111 unlock_page(page);
5112 }
09cbfeaf
KS
5113 put_page(page);
5114 start += PAGE_SIZE;
771ed689
CM
5115 }
5116
02c6db4f 5117 ASSERT(ret <= 0);
dbb70bec
CM
5118 if (ret == 0)
5119 ret = flush_write_bio(&epd);
5120 else
02c6db4f 5121 end_write_bio(&epd, ret);
dbb70bec
CM
5122
5123 wbc_detach_inode(&wbc_writepages);
771ed689
CM
5124 return ret;
5125}
d1310b2e 5126
8ae225a8 5127int extent_writepages(struct address_space *mapping,
d1310b2e
CM
5128 struct writeback_control *wbc)
5129{
5130 int ret = 0;
5131 struct extent_page_data epd = {
390ed29b 5132 .bio_ctrl = { 0 },
771ed689 5133 .extent_locked = 0,
ffbd517d 5134 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
5135 };
5136
935db853 5137 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
5138 ASSERT(ret <= 0);
5139 if (ret < 0) {
5140 end_write_bio(&epd, ret);
5141 return ret;
5142 }
5143 ret = flush_write_bio(&epd);
d1310b2e
CM
5144 return ret;
5145}
d1310b2e 5146
ba206a02 5147void extent_readahead(struct readahead_control *rac)
d1310b2e 5148{
390ed29b 5149 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 5150 struct page *pagepool[16];
125bac01 5151 struct extent_map *em_cached = NULL;
808f80b4 5152 u64 prev_em_start = (u64)-1;
ba206a02 5153 int nr;
d1310b2e 5154
ba206a02 5155 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
5156 u64 contig_start = readahead_pos(rac);
5157 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 5158
ba206a02 5159 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 5160 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 5161 }
67c9684f 5162
125bac01
MX
5163 if (em_cached)
5164 free_extent_map(em_cached);
5165
390ed29b
QW
5166 if (bio_ctrl.bio) {
5167 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
ba206a02
MWO
5168 return;
5169 }
d1310b2e 5170}
d1310b2e
CM
5171
5172/*
5173 * basic invalidatepage code, this waits on any locked or writeback
5174 * ranges corresponding to the page, and then deletes any extent state
5175 * records from the tree
5176 */
5177int extent_invalidatepage(struct extent_io_tree *tree,
5178 struct page *page, unsigned long offset)
5179{
2ac55d41 5180 struct extent_state *cached_state = NULL;
4eee4fa4 5181 u64 start = page_offset(page);
09cbfeaf 5182 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
5183 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5184
829ddec9
QW
5185 /* This function is only called for the btree inode */
5186 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5187
fda2832f 5188 start += ALIGN(offset, blocksize);
d1310b2e
CM
5189 if (start > end)
5190 return 0;
5191
ff13db41 5192 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 5193 wait_on_page_writeback(page);
829ddec9
QW
5194
5195 /*
5196 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5197 * so here we only need to unlock the extent range to free any
5198 * existing extent state.
5199 */
5200 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5201 return 0;
5202}
d1310b2e 5203
7b13b7b1
CM
5204/*
5205 * a helper for releasepage, this tests for areas of the page that
5206 * are locked or under IO and drops the related state bits if it is safe
5207 * to drop the page.
5208 */
29c68b2d 5209static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5210 struct page *page, gfp_t mask)
7b13b7b1 5211{
4eee4fa4 5212 u64 start = page_offset(page);
09cbfeaf 5213 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5214 int ret = 1;
5215
8882679e 5216 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5217 ret = 0;
8882679e 5218 } else {
11ef160f 5219 /*
2766ff61
FM
5220 * At this point we can safely clear everything except the
5221 * locked bit, the nodatasum bit and the delalloc new bit.
5222 * The delalloc new bit will be cleared by ordered extent
5223 * completion.
11ef160f 5224 */
66b0c887 5225 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5226 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5227 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5228
5229 /* if clear_extent_bit failed for enomem reasons,
5230 * we can't allow the release to continue.
5231 */
5232 if (ret < 0)
5233 ret = 0;
5234 else
5235 ret = 1;
7b13b7b1
CM
5236 }
5237 return ret;
5238}
7b13b7b1 5239
d1310b2e
CM
5240/*
5241 * a helper for releasepage. As long as there are no locked extents
5242 * in the range corresponding to the page, both state records and extent
5243 * map records are removed
5244 */
477a30ba 5245int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5246{
5247 struct extent_map *em;
4eee4fa4 5248 u64 start = page_offset(page);
09cbfeaf 5249 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5250 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5251 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5252 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5253
d0164adc 5254 if (gfpflags_allow_blocking(mask) &&
ee22184b 5255 page->mapping->host->i_size > SZ_16M) {
39b5637f 5256 u64 len;
70dec807 5257 while (start <= end) {
fbc2bd7e
FM
5258 struct btrfs_fs_info *fs_info;
5259 u64 cur_gen;
5260
39b5637f 5261 len = end - start + 1;
890871be 5262 write_lock(&map->lock);
39b5637f 5263 em = lookup_extent_mapping(map, start, len);
285190d9 5264 if (!em) {
890871be 5265 write_unlock(&map->lock);
70dec807
CM
5266 break;
5267 }
7f3c74fb
CM
5268 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5269 em->start != start) {
890871be 5270 write_unlock(&map->lock);
70dec807
CM
5271 free_extent_map(em);
5272 break;
5273 }
3d6448e6
FM
5274 if (test_range_bit(tree, em->start,
5275 extent_map_end(em) - 1,
5276 EXTENT_LOCKED, 0, NULL))
5277 goto next;
5278 /*
5279 * If it's not in the list of modified extents, used
5280 * by a fast fsync, we can remove it. If it's being
5281 * logged we can safely remove it since fsync took an
5282 * extra reference on the em.
5283 */
5284 if (list_empty(&em->list) ||
fbc2bd7e
FM
5285 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5286 goto remove_em;
5287 /*
5288 * If it's in the list of modified extents, remove it
5289 * only if its generation is older then the current one,
5290 * in which case we don't need it for a fast fsync.
5291 * Otherwise don't remove it, we could be racing with an
5292 * ongoing fast fsync that could miss the new extent.
5293 */
5294 fs_info = btrfs_inode->root->fs_info;
5295 spin_lock(&fs_info->trans_lock);
5296 cur_gen = fs_info->generation;
5297 spin_unlock(&fs_info->trans_lock);
5298 if (em->generation >= cur_gen)
5299 goto next;
5300remove_em:
5e548b32
FM
5301 /*
5302 * We only remove extent maps that are not in the list of
5303 * modified extents or that are in the list but with a
5304 * generation lower then the current generation, so there
5305 * is no need to set the full fsync flag on the inode (it
5306 * hurts the fsync performance for workloads with a data
5307 * size that exceeds or is close to the system's memory).
5308 */
fbc2bd7e
FM
5309 remove_extent_mapping(map, em);
5310 /* once for the rb tree */
5311 free_extent_map(em);
3d6448e6 5312next:
70dec807 5313 start = extent_map_end(em);
890871be 5314 write_unlock(&map->lock);
70dec807
CM
5315
5316 /* once for us */
d1310b2e 5317 free_extent_map(em);
9f47eb54
PM
5318
5319 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5320 }
d1310b2e 5321 }
29c68b2d 5322 return try_release_extent_state(tree, page, mask);
d1310b2e 5323}
d1310b2e 5324
ec29ed5b
CM
5325/*
5326 * helper function for fiemap, which doesn't want to see any holes.
5327 * This maps until we find something past 'last'
5328 */
f1bbde8d 5329static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5330 u64 offset, u64 last)
ec29ed5b 5331{
f1bbde8d 5332 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5333 struct extent_map *em;
5334 u64 len;
5335
5336 if (offset >= last)
5337 return NULL;
5338
67871254 5339 while (1) {
ec29ed5b
CM
5340 len = last - offset;
5341 if (len == 0)
5342 break;
fda2832f 5343 len = ALIGN(len, sectorsize);
f1bbde8d 5344 em = btrfs_get_extent_fiemap(inode, offset, len);
c704005d 5345 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
5346 return em;
5347
5348 /* if this isn't a hole return it */
4a2d25cd 5349 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5350 return em;
ec29ed5b
CM
5351
5352 /* this is a hole, advance to the next extent */
5353 offset = extent_map_end(em);
5354 free_extent_map(em);
5355 if (offset >= last)
5356 break;
5357 }
5358 return NULL;
5359}
5360
4751832d
QW
5361/*
5362 * To cache previous fiemap extent
5363 *
5364 * Will be used for merging fiemap extent
5365 */
5366struct fiemap_cache {
5367 u64 offset;
5368 u64 phys;
5369 u64 len;
5370 u32 flags;
5371 bool cached;
5372};
5373
5374/*
5375 * Helper to submit fiemap extent.
5376 *
5377 * Will try to merge current fiemap extent specified by @offset, @phys,
5378 * @len and @flags with cached one.
5379 * And only when we fails to merge, cached one will be submitted as
5380 * fiemap extent.
5381 *
5382 * Return value is the same as fiemap_fill_next_extent().
5383 */
5384static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5385 struct fiemap_cache *cache,
5386 u64 offset, u64 phys, u64 len, u32 flags)
5387{
5388 int ret = 0;
5389
5390 if (!cache->cached)
5391 goto assign;
5392
5393 /*
5394 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5395 * fiemap extent won't overlap with cached one.
4751832d
QW
5396 * Not recoverable.
5397 *
5398 * NOTE: Physical address can overlap, due to compression
5399 */
5400 if (cache->offset + cache->len > offset) {
5401 WARN_ON(1);
5402 return -EINVAL;
5403 }
5404
5405 /*
5406 * Only merges fiemap extents if
5407 * 1) Their logical addresses are continuous
5408 *
5409 * 2) Their physical addresses are continuous
5410 * So truly compressed (physical size smaller than logical size)
5411 * extents won't get merged with each other
5412 *
5413 * 3) Share same flags except FIEMAP_EXTENT_LAST
5414 * So regular extent won't get merged with prealloc extent
5415 */
5416 if (cache->offset + cache->len == offset &&
5417 cache->phys + cache->len == phys &&
5418 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5419 (flags & ~FIEMAP_EXTENT_LAST)) {
5420 cache->len += len;
5421 cache->flags |= flags;
5422 goto try_submit_last;
5423 }
5424
5425 /* Not mergeable, need to submit cached one */
5426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5427 cache->len, cache->flags);
5428 cache->cached = false;
5429 if (ret)
5430 return ret;
5431assign:
5432 cache->cached = true;
5433 cache->offset = offset;
5434 cache->phys = phys;
5435 cache->len = len;
5436 cache->flags = flags;
5437try_submit_last:
5438 if (cache->flags & FIEMAP_EXTENT_LAST) {
5439 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5440 cache->phys, cache->len, cache->flags);
5441 cache->cached = false;
5442 }
5443 return ret;
5444}
5445
5446/*
848c23b7 5447 * Emit last fiemap cache
4751832d 5448 *
848c23b7
QW
5449 * The last fiemap cache may still be cached in the following case:
5450 * 0 4k 8k
5451 * |<- Fiemap range ->|
5452 * |<------------ First extent ----------->|
5453 *
5454 * In this case, the first extent range will be cached but not emitted.
5455 * So we must emit it before ending extent_fiemap().
4751832d 5456 */
5c5aff98 5457static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5458 struct fiemap_cache *cache)
4751832d
QW
5459{
5460 int ret;
5461
5462 if (!cache->cached)
5463 return 0;
5464
4751832d
QW
5465 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5466 cache->len, cache->flags);
5467 cache->cached = false;
5468 if (ret > 0)
5469 ret = 0;
5470 return ret;
5471}
5472
facee0a0 5473int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5474 u64 start, u64 len)
1506fcc8 5475{
975f84fe 5476 int ret = 0;
15c7745c 5477 u64 off;
1506fcc8
YS
5478 u64 max = start + len;
5479 u32 flags = 0;
975f84fe
JB
5480 u32 found_type;
5481 u64 last;
ec29ed5b 5482 u64 last_for_get_extent = 0;
1506fcc8 5483 u64 disko = 0;
facee0a0 5484 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5485 struct btrfs_key found_key;
1506fcc8 5486 struct extent_map *em = NULL;
2ac55d41 5487 struct extent_state *cached_state = NULL;
975f84fe 5488 struct btrfs_path *path;
facee0a0 5489 struct btrfs_root *root = inode->root;
4751832d 5490 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5491 struct ulist *roots;
5492 struct ulist *tmp_ulist;
1506fcc8 5493 int end = 0;
ec29ed5b
CM
5494 u64 em_start = 0;
5495 u64 em_len = 0;
5496 u64 em_end = 0;
1506fcc8
YS
5497
5498 if (len == 0)
5499 return -EINVAL;
5500
975f84fe
JB
5501 path = btrfs_alloc_path();
5502 if (!path)
5503 return -ENOMEM;
975f84fe 5504
5911c8fe
DS
5505 roots = ulist_alloc(GFP_KERNEL);
5506 tmp_ulist = ulist_alloc(GFP_KERNEL);
5507 if (!roots || !tmp_ulist) {
5508 ret = -ENOMEM;
5509 goto out_free_ulist;
5510 }
5511
15c7745c
BB
5512 /*
5513 * We can't initialize that to 'start' as this could miss extents due
5514 * to extent item merging
5515 */
5516 off = 0;
facee0a0
NB
5517 start = round_down(start, btrfs_inode_sectorsize(inode));
5518 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5519
ec29ed5b
CM
5520 /*
5521 * lookup the last file extent. We're not using i_size here
5522 * because there might be preallocation past i_size
5523 */
facee0a0
NB
5524 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5525 0);
975f84fe 5526 if (ret < 0) {
5911c8fe 5527 goto out_free_ulist;
2d324f59
LB
5528 } else {
5529 WARN_ON(!ret);
5530 if (ret == 1)
5531 ret = 0;
975f84fe 5532 }
2d324f59 5533
975f84fe 5534 path->slots[0]--;
975f84fe 5535 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5536 found_type = found_key.type;
975f84fe 5537
ec29ed5b 5538 /* No extents, but there might be delalloc bits */
facee0a0 5539 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5540 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5541 /* have to trust i_size as the end */
5542 last = (u64)-1;
5543 last_for_get_extent = isize;
5544 } else {
5545 /*
5546 * remember the start of the last extent. There are a
5547 * bunch of different factors that go into the length of the
5548 * extent, so its much less complex to remember where it started
5549 */
5550 last = found_key.offset;
5551 last_for_get_extent = last + 1;
975f84fe 5552 }
fe09e16c 5553 btrfs_release_path(path);
975f84fe 5554
ec29ed5b
CM
5555 /*
5556 * we might have some extents allocated but more delalloc past those
5557 * extents. so, we trust isize unless the start of the last extent is
5558 * beyond isize
5559 */
5560 if (last < isize) {
5561 last = (u64)-1;
5562 last_for_get_extent = isize;
5563 }
5564
facee0a0 5565 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5566 &cached_state);
ec29ed5b 5567
facee0a0 5568 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5569 if (!em)
5570 goto out;
5571 if (IS_ERR(em)) {
5572 ret = PTR_ERR(em);
5573 goto out;
5574 }
975f84fe 5575
1506fcc8 5576 while (!end) {
b76bb701 5577 u64 offset_in_extent = 0;
ea8efc74
CM
5578
5579 /* break if the extent we found is outside the range */
5580 if (em->start >= max || extent_map_end(em) < off)
5581 break;
5582
5583 /*
5584 * get_extent may return an extent that starts before our
5585 * requested range. We have to make sure the ranges
5586 * we return to fiemap always move forward and don't
5587 * overlap, so adjust the offsets here
5588 */
5589 em_start = max(em->start, off);
1506fcc8 5590
ea8efc74
CM
5591 /*
5592 * record the offset from the start of the extent
b76bb701
JB
5593 * for adjusting the disk offset below. Only do this if the
5594 * extent isn't compressed since our in ram offset may be past
5595 * what we have actually allocated on disk.
ea8efc74 5596 */
b76bb701
JB
5597 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5598 offset_in_extent = em_start - em->start;
ec29ed5b 5599 em_end = extent_map_end(em);
ea8efc74 5600 em_len = em_end - em_start;
1506fcc8 5601 flags = 0;
f0986318
FM
5602 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5603 disko = em->block_start + offset_in_extent;
5604 else
5605 disko = 0;
1506fcc8 5606
ea8efc74
CM
5607 /*
5608 * bump off for our next call to get_extent
5609 */
5610 off = extent_map_end(em);
5611 if (off >= max)
5612 end = 1;
5613
93dbfad7 5614 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5615 end = 1;
5616 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5617 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5618 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5619 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5620 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5621 flags |= (FIEMAP_EXTENT_DELALLOC |
5622 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5623 } else if (fieinfo->fi_extents_max) {
5624 u64 bytenr = em->block_start -
5625 (em->start - em->orig_start);
fe09e16c 5626
fe09e16c
LB
5627 /*
5628 * As btrfs supports shared space, this information
5629 * can be exported to userspace tools via
dc046b10
JB
5630 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5631 * then we're just getting a count and we can skip the
5632 * lookup stuff.
fe09e16c 5633 */
facee0a0 5634 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5635 bytenr, roots, tmp_ulist);
dc046b10 5636 if (ret < 0)
fe09e16c 5637 goto out_free;
dc046b10 5638 if (ret)
fe09e16c 5639 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5640 ret = 0;
1506fcc8
YS
5641 }
5642 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5643 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5644 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5645 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5646
1506fcc8
YS
5647 free_extent_map(em);
5648 em = NULL;
ec29ed5b
CM
5649 if ((em_start >= last) || em_len == (u64)-1 ||
5650 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5651 flags |= FIEMAP_EXTENT_LAST;
5652 end = 1;
5653 }
5654
ec29ed5b 5655 /* now scan forward to see if this is really the last extent. */
facee0a0 5656 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5657 if (IS_ERR(em)) {
5658 ret = PTR_ERR(em);
5659 goto out;
5660 }
5661 if (!em) {
975f84fe
JB
5662 flags |= FIEMAP_EXTENT_LAST;
5663 end = 1;
5664 }
4751832d
QW
5665 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5666 em_len, flags);
26e726af
CS
5667 if (ret) {
5668 if (ret == 1)
5669 ret = 0;
ec29ed5b 5670 goto out_free;
26e726af 5671 }
1506fcc8
YS
5672 }
5673out_free:
4751832d 5674 if (!ret)
5c5aff98 5675 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5676 free_extent_map(em);
5677out:
facee0a0 5678 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5679 &cached_state);
5911c8fe
DS
5680
5681out_free_ulist:
e02d48ea 5682 btrfs_free_path(path);
5911c8fe
DS
5683 ulist_free(roots);
5684 ulist_free(tmp_ulist);
1506fcc8
YS
5685 return ret;
5686}
5687
727011e0
CM
5688static void __free_extent_buffer(struct extent_buffer *eb)
5689{
727011e0
CM
5690 kmem_cache_free(extent_buffer_cache, eb);
5691}
5692
2b48966a 5693int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5694{
5695 return (atomic_read(&eb->io_pages) ||
5696 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5697 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5698}
5699
8ff8466d 5700static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5701{
8ff8466d 5702 struct btrfs_subpage *subpage;
db7f3436 5703
8ff8466d 5704 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5705
8ff8466d
QW
5706 if (PagePrivate(page)) {
5707 subpage = (struct btrfs_subpage *)page->private;
5708 if (atomic_read(&subpage->eb_refs))
5709 return true;
3d078efa
QW
5710 /*
5711 * Even there is no eb refs here, we may still have
5712 * end_page_read() call relying on page::private.
5713 */
5714 if (atomic_read(&subpage->readers))
5715 return true;
8ff8466d
QW
5716 }
5717 return false;
5718}
db7f3436 5719
8ff8466d
QW
5720static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5721{
5722 struct btrfs_fs_info *fs_info = eb->fs_info;
5723 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5724
5725 /*
5726 * For mapped eb, we're going to change the page private, which should
5727 * be done under the private_lock.
5728 */
5729 if (mapped)
5730 spin_lock(&page->mapping->private_lock);
5731
5732 if (!PagePrivate(page)) {
5d2361db 5733 if (mapped)
8ff8466d
QW
5734 spin_unlock(&page->mapping->private_lock);
5735 return;
5736 }
5737
5738 if (fs_info->sectorsize == PAGE_SIZE) {
5d2361db
FL
5739 /*
5740 * We do this since we'll remove the pages after we've
5741 * removed the eb from the radix tree, so we could race
5742 * and have this page now attached to the new eb. So
5743 * only clear page_private if it's still connected to
5744 * this eb.
5745 */
5746 if (PagePrivate(page) &&
5747 page->private == (unsigned long)eb) {
5748 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5749 BUG_ON(PageDirty(page));
5750 BUG_ON(PageWriteback(page));
db7f3436 5751 /*
5d2361db
FL
5752 * We need to make sure we haven't be attached
5753 * to a new eb.
db7f3436 5754 */
d1b89bc0 5755 detach_page_private(page);
db7f3436 5756 }
5d2361db
FL
5757 if (mapped)
5758 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5759 return;
5760 }
5761
5762 /*
5763 * For subpage, we can have dummy eb with page private. In this case,
5764 * we can directly detach the private as such page is only attached to
5765 * one dummy eb, no sharing.
5766 */
5767 if (!mapped) {
5768 btrfs_detach_subpage(fs_info, page);
5769 return;
5770 }
5771
5772 btrfs_page_dec_eb_refs(fs_info, page);
5773
5774 /*
5775 * We can only detach the page private if there are no other ebs in the
3d078efa 5776 * page range and no unfinished IO.
8ff8466d
QW
5777 */
5778 if (!page_range_has_eb(fs_info, page))
5779 btrfs_detach_subpage(fs_info, page);
5780
5781 spin_unlock(&page->mapping->private_lock);
5782}
5783
5784/* Release all pages attached to the extent buffer */
5785static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5786{
5787 int i;
5788 int num_pages;
5789
5790 ASSERT(!extent_buffer_under_io(eb));
5791
5792 num_pages = num_extent_pages(eb);
5793 for (i = 0; i < num_pages; i++) {
5794 struct page *page = eb->pages[i];
5795
5796 if (!page)
5797 continue;
5798
5799 detach_extent_buffer_page(eb, page);
5d2361db 5800
01327610 5801 /* One for when we allocated the page */
09cbfeaf 5802 put_page(page);
d64766fd 5803 }
db7f3436
JB
5804}
5805
5806/*
5807 * Helper for releasing the extent buffer.
5808 */
5809static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5810{
55ac0139 5811 btrfs_release_extent_buffer_pages(eb);
8c38938c 5812 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5813 __free_extent_buffer(eb);
5814}
5815
f28491e0
JB
5816static struct extent_buffer *
5817__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5818 unsigned long len)
d1310b2e
CM
5819{
5820 struct extent_buffer *eb = NULL;
5821
d1b5c567 5822 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5823 eb->start = start;
5824 eb->len = len;
f28491e0 5825 eb->fs_info = fs_info;
815a51c7 5826 eb->bflags = 0;
196d59ab 5827 init_rwsem(&eb->lock);
b4ce94de 5828
3fd63727
JB
5829 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5830 &fs_info->allocated_ebs);
d3575156 5831 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5832
3083ee2e 5833 spin_lock_init(&eb->refs_lock);
d1310b2e 5834 atomic_set(&eb->refs, 1);
0b32f4bb 5835 atomic_set(&eb->io_pages, 0);
727011e0 5836
deb67895 5837 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5838
5839 return eb;
5840}
5841
2b48966a 5842struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5843{
cc5e31a4 5844 int i;
815a51c7
JS
5845 struct page *p;
5846 struct extent_buffer *new;
cc5e31a4 5847 int num_pages = num_extent_pages(src);
815a51c7 5848
3f556f78 5849 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5850 if (new == NULL)
5851 return NULL;
5852
62c053fb
QW
5853 /*
5854 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5855 * btrfs_release_extent_buffer() have different behavior for
5856 * UNMAPPED subpage extent buffer.
5857 */
5858 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5859
815a51c7 5860 for (i = 0; i < num_pages; i++) {
760f991f
QW
5861 int ret;
5862
9ec72677 5863 p = alloc_page(GFP_NOFS);
db7f3436
JB
5864 if (!p) {
5865 btrfs_release_extent_buffer(new);
5866 return NULL;
5867 }
760f991f
QW
5868 ret = attach_extent_buffer_page(new, p, NULL);
5869 if (ret < 0) {
5870 put_page(p);
5871 btrfs_release_extent_buffer(new);
5872 return NULL;
5873 }
815a51c7 5874 WARN_ON(PageDirty(p));
815a51c7 5875 new->pages[i] = p;
fba1acf9 5876 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5877 }
92d83e94 5878 set_extent_buffer_uptodate(new);
815a51c7
JS
5879
5880 return new;
5881}
5882
0f331229
OS
5883struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5884 u64 start, unsigned long len)
815a51c7
JS
5885{
5886 struct extent_buffer *eb;
cc5e31a4
DS
5887 int num_pages;
5888 int i;
815a51c7 5889
3f556f78 5890 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5891 if (!eb)
5892 return NULL;
5893
65ad0104 5894 num_pages = num_extent_pages(eb);
815a51c7 5895 for (i = 0; i < num_pages; i++) {
09bc1f0f
QW
5896 int ret;
5897
9ec72677 5898 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5899 if (!eb->pages[i])
5900 goto err;
09bc1f0f
QW
5901 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5902 if (ret < 0)
5903 goto err;
815a51c7
JS
5904 }
5905 set_extent_buffer_uptodate(eb);
5906 btrfs_set_header_nritems(eb, 0);
b0132a3b 5907 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5908
5909 return eb;
5910err:
09bc1f0f
QW
5911 for (; i > 0; i--) {
5912 detach_extent_buffer_page(eb, eb->pages[i - 1]);
84167d19 5913 __free_page(eb->pages[i - 1]);
09bc1f0f 5914 }
815a51c7
JS
5915 __free_extent_buffer(eb);
5916 return NULL;
5917}
5918
0f331229 5919struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5920 u64 start)
0f331229 5921{
da17066c 5922 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5923}
5924
0b32f4bb
JB
5925static void check_buffer_tree_ref(struct extent_buffer *eb)
5926{
242e18c7 5927 int refs;
6bf9cd2e
BB
5928 /*
5929 * The TREE_REF bit is first set when the extent_buffer is added
5930 * to the radix tree. It is also reset, if unset, when a new reference
5931 * is created by find_extent_buffer.
0b32f4bb 5932 *
6bf9cd2e
BB
5933 * It is only cleared in two cases: freeing the last non-tree
5934 * reference to the extent_buffer when its STALE bit is set or
5935 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5936 *
6bf9cd2e
BB
5937 * In both cases, care is taken to ensure that the extent_buffer's
5938 * pages are not under io. However, releasepage can be concurrently
5939 * called with creating new references, which is prone to race
5940 * conditions between the calls to check_buffer_tree_ref in those
5941 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5942 *
6bf9cd2e
BB
5943 * The actual lifetime of the extent_buffer in the radix tree is
5944 * adequately protected by the refcount, but the TREE_REF bit and
5945 * its corresponding reference are not. To protect against this
5946 * class of races, we call check_buffer_tree_ref from the codepaths
5947 * which trigger io after they set eb->io_pages. Note that once io is
5948 * initiated, TREE_REF can no longer be cleared, so that is the
5949 * moment at which any such race is best fixed.
0b32f4bb 5950 */
242e18c7
CM
5951 refs = atomic_read(&eb->refs);
5952 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5953 return;
5954
594831c4
JB
5955 spin_lock(&eb->refs_lock);
5956 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5957 atomic_inc(&eb->refs);
594831c4 5958 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5959}
5960
2457aec6
MG
5961static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5962 struct page *accessed)
5df4235e 5963{
cc5e31a4 5964 int num_pages, i;
5df4235e 5965
0b32f4bb
JB
5966 check_buffer_tree_ref(eb);
5967
65ad0104 5968 num_pages = num_extent_pages(eb);
5df4235e 5969 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5970 struct page *p = eb->pages[i];
5971
2457aec6
MG
5972 if (p != accessed)
5973 mark_page_accessed(p);
5df4235e
JB
5974 }
5975}
5976
f28491e0
JB
5977struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5978 u64 start)
452c75c3
CS
5979{
5980 struct extent_buffer *eb;
5981
2f3186d8
QW
5982 eb = find_extent_buffer_nolock(fs_info, start);
5983 if (!eb)
5984 return NULL;
5985 /*
5986 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5987 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5988 * another task running free_extent_buffer() might have seen that flag
5989 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5990 * writeback flags not set) and it's still in the tree (flag
5991 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5992 * decrementing the extent buffer's reference count twice. So here we
5993 * could race and increment the eb's reference count, clear its stale
5994 * flag, mark it as dirty and drop our reference before the other task
5995 * finishes executing free_extent_buffer, which would later result in
5996 * an attempt to free an extent buffer that is dirty.
5997 */
5998 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5999 spin_lock(&eb->refs_lock);
6000 spin_unlock(&eb->refs_lock);
452c75c3 6001 }
2f3186d8
QW
6002 mark_extent_buffer_accessed(eb, NULL);
6003 return eb;
452c75c3
CS
6004}
6005
faa2dbf0
JB
6006#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6007struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 6008 u64 start)
faa2dbf0
JB
6009{
6010 struct extent_buffer *eb, *exists = NULL;
6011 int ret;
6012
6013 eb = find_extent_buffer(fs_info, start);
6014 if (eb)
6015 return eb;
da17066c 6016 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 6017 if (!eb)
b6293c82 6018 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
6019 eb->fs_info = fs_info;
6020again:
e1860a77 6021 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
6022 if (ret) {
6023 exists = ERR_PTR(ret);
faa2dbf0 6024 goto free_eb;
b6293c82 6025 }
faa2dbf0
JB
6026 spin_lock(&fs_info->buffer_lock);
6027 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6028 start >> fs_info->sectorsize_bits, eb);
faa2dbf0
JB
6029 spin_unlock(&fs_info->buffer_lock);
6030 radix_tree_preload_end();
6031 if (ret == -EEXIST) {
6032 exists = find_extent_buffer(fs_info, start);
6033 if (exists)
6034 goto free_eb;
6035 else
6036 goto again;
6037 }
6038 check_buffer_tree_ref(eb);
6039 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6040
faa2dbf0
JB
6041 return eb;
6042free_eb:
6043 btrfs_release_extent_buffer(eb);
6044 return exists;
6045}
6046#endif
6047
81982210
QW
6048static struct extent_buffer *grab_extent_buffer(
6049 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
6050{
6051 struct extent_buffer *exists;
6052
81982210
QW
6053 /*
6054 * For subpage case, we completely rely on radix tree to ensure we
6055 * don't try to insert two ebs for the same bytenr. So here we always
6056 * return NULL and just continue.
6057 */
6058 if (fs_info->sectorsize < PAGE_SIZE)
6059 return NULL;
6060
c0f0a9e7
QW
6061 /* Page not yet attached to an extent buffer */
6062 if (!PagePrivate(page))
6063 return NULL;
6064
6065 /*
6066 * We could have already allocated an eb for this page and attached one
6067 * so lets see if we can get a ref on the existing eb, and if we can we
6068 * know it's good and we can just return that one, else we know we can
6069 * just overwrite page->private.
6070 */
6071 exists = (struct extent_buffer *)page->private;
6072 if (atomic_inc_not_zero(&exists->refs))
6073 return exists;
6074
6075 WARN_ON(PageDirty(page));
6076 detach_page_private(page);
6077 return NULL;
6078}
6079
f28491e0 6080struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 6081 u64 start, u64 owner_root, int level)
d1310b2e 6082{
da17066c 6083 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
6084 int num_pages;
6085 int i;
09cbfeaf 6086 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 6087 struct extent_buffer *eb;
6af118ce 6088 struct extent_buffer *exists = NULL;
d1310b2e 6089 struct page *p;
f28491e0 6090 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 6091 int uptodate = 1;
19fe0a8b 6092 int ret;
d1310b2e 6093
da17066c 6094 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
6095 btrfs_err(fs_info, "bad tree block start %llu", start);
6096 return ERR_PTR(-EINVAL);
6097 }
6098
e9306ad4
QW
6099#if BITS_PER_LONG == 32
6100 if (start >= MAX_LFS_FILESIZE) {
6101 btrfs_err_rl(fs_info,
6102 "extent buffer %llu is beyond 32bit page cache limit", start);
6103 btrfs_err_32bit_limit(fs_info);
6104 return ERR_PTR(-EOVERFLOW);
6105 }
6106 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6107 btrfs_warn_32bit_limit(fs_info);
6108#endif
6109
1aaac38c
QW
6110 if (fs_info->sectorsize < PAGE_SIZE &&
6111 offset_in_page(start) + len > PAGE_SIZE) {
6112 btrfs_err(fs_info,
6113 "tree block crosses page boundary, start %llu nodesize %lu",
6114 start, len);
6115 return ERR_PTR(-EINVAL);
6116 }
6117
f28491e0 6118 eb = find_extent_buffer(fs_info, start);
452c75c3 6119 if (eb)
6af118ce 6120 return eb;
6af118ce 6121
23d79d81 6122 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 6123 if (!eb)
c871b0f2 6124 return ERR_PTR(-ENOMEM);
e114c545 6125 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 6126
65ad0104 6127 num_pages = num_extent_pages(eb);
727011e0 6128 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
6129 struct btrfs_subpage *prealloc = NULL;
6130
d1b5c567 6131 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
6132 if (!p) {
6133 exists = ERR_PTR(-ENOMEM);
6af118ce 6134 goto free_eb;
c871b0f2 6135 }
4f2de97a 6136
760f991f
QW
6137 /*
6138 * Preallocate page->private for subpage case, so that we won't
6139 * allocate memory with private_lock hold. The memory will be
6140 * freed by attach_extent_buffer_page() or freed manually if
6141 * we exit earlier.
6142 *
6143 * Although we have ensured one subpage eb can only have one
6144 * page, but it may change in the future for 16K page size
6145 * support, so we still preallocate the memory in the loop.
6146 */
6147 ret = btrfs_alloc_subpage(fs_info, &prealloc,
6148 BTRFS_SUBPAGE_METADATA);
6149 if (ret < 0) {
6150 unlock_page(p);
6151 put_page(p);
6152 exists = ERR_PTR(ret);
6153 goto free_eb;
6154 }
6155
4f2de97a 6156 spin_lock(&mapping->private_lock);
81982210 6157 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
6158 if (exists) {
6159 spin_unlock(&mapping->private_lock);
6160 unlock_page(p);
6161 put_page(p);
6162 mark_extent_buffer_accessed(exists, p);
760f991f 6163 btrfs_free_subpage(prealloc);
c0f0a9e7 6164 goto free_eb;
d1310b2e 6165 }
760f991f
QW
6166 /* Should not fail, as we have preallocated the memory */
6167 ret = attach_extent_buffer_page(eb, p, prealloc);
6168 ASSERT(!ret);
8ff8466d
QW
6169 /*
6170 * To inform we have extra eb under allocation, so that
6171 * detach_extent_buffer_page() won't release the page private
6172 * when the eb hasn't yet been inserted into radix tree.
6173 *
6174 * The ref will be decreased when the eb released the page, in
6175 * detach_extent_buffer_page().
6176 * Thus needs no special handling in error path.
6177 */
6178 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6179 spin_unlock(&mapping->private_lock);
760f991f 6180
1e5eb3d6 6181 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6182 eb->pages[i] = p;
d1310b2e
CM
6183 if (!PageUptodate(p))
6184 uptodate = 0;
eb14ab8e
CM
6185
6186 /*
b16d011e
NB
6187 * We can't unlock the pages just yet since the extent buffer
6188 * hasn't been properly inserted in the radix tree, this
6189 * opens a race with btree_releasepage which can free a page
6190 * while we are still filling in all pages for the buffer and
6191 * we could crash.
eb14ab8e 6192 */
d1310b2e
CM
6193 }
6194 if (uptodate)
b4ce94de 6195 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 6196again:
e1860a77 6197 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
6198 if (ret) {
6199 exists = ERR_PTR(ret);
19fe0a8b 6200 goto free_eb;
c871b0f2 6201 }
19fe0a8b 6202
f28491e0
JB
6203 spin_lock(&fs_info->buffer_lock);
6204 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6205 start >> fs_info->sectorsize_bits, eb);
f28491e0 6206 spin_unlock(&fs_info->buffer_lock);
452c75c3 6207 radix_tree_preload_end();
19fe0a8b 6208 if (ret == -EEXIST) {
f28491e0 6209 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
6210 if (exists)
6211 goto free_eb;
6212 else
115391d2 6213 goto again;
6af118ce 6214 }
6af118ce 6215 /* add one reference for the tree */
0b32f4bb 6216 check_buffer_tree_ref(eb);
34b41ace 6217 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6218
6219 /*
b16d011e
NB
6220 * Now it's safe to unlock the pages because any calls to
6221 * btree_releasepage will correctly detect that a page belongs to a
6222 * live buffer and won't free them prematurely.
eb14ab8e 6223 */
28187ae5
NB
6224 for (i = 0; i < num_pages; i++)
6225 unlock_page(eb->pages[i]);
d1310b2e
CM
6226 return eb;
6227
6af118ce 6228free_eb:
5ca64f45 6229 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6230 for (i = 0; i < num_pages; i++) {
6231 if (eb->pages[i])
6232 unlock_page(eb->pages[i]);
6233 }
eb14ab8e 6234
897ca6e9 6235 btrfs_release_extent_buffer(eb);
6af118ce 6236 return exists;
d1310b2e 6237}
d1310b2e 6238
3083ee2e
JB
6239static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6240{
6241 struct extent_buffer *eb =
6242 container_of(head, struct extent_buffer, rcu_head);
6243
6244 __free_extent_buffer(eb);
6245}
6246
f7a52a40 6247static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6248 __releases(&eb->refs_lock)
3083ee2e 6249{
07e21c4d
NB
6250 lockdep_assert_held(&eb->refs_lock);
6251
3083ee2e
JB
6252 WARN_ON(atomic_read(&eb->refs) == 0);
6253 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6254 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6255 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6256
815a51c7 6257 spin_unlock(&eb->refs_lock);
3083ee2e 6258
f28491e0
JB
6259 spin_lock(&fs_info->buffer_lock);
6260 radix_tree_delete(&fs_info->buffer_radix,
478ef886 6261 eb->start >> fs_info->sectorsize_bits);
f28491e0 6262 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6263 } else {
6264 spin_unlock(&eb->refs_lock);
815a51c7 6265 }
3083ee2e 6266
8c38938c 6267 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6268 /* Should be safe to release our pages at this point */
55ac0139 6269 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6270#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6271 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6272 __free_extent_buffer(eb);
6273 return 1;
6274 }
6275#endif
3083ee2e 6276 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6277 return 1;
3083ee2e
JB
6278 }
6279 spin_unlock(&eb->refs_lock);
e64860aa
JB
6280
6281 return 0;
3083ee2e
JB
6282}
6283
d1310b2e
CM
6284void free_extent_buffer(struct extent_buffer *eb)
6285{
242e18c7
CM
6286 int refs;
6287 int old;
d1310b2e
CM
6288 if (!eb)
6289 return;
6290
242e18c7
CM
6291 while (1) {
6292 refs = atomic_read(&eb->refs);
46cc775e
NB
6293 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6294 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6295 refs == 1))
242e18c7
CM
6296 break;
6297 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6298 if (old == refs)
6299 return;
6300 }
6301
3083ee2e
JB
6302 spin_lock(&eb->refs_lock);
6303 if (atomic_read(&eb->refs) == 2 &&
6304 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6305 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6306 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6307 atomic_dec(&eb->refs);
6308
6309 /*
6310 * I know this is terrible, but it's temporary until we stop tracking
6311 * the uptodate bits and such for the extent buffers.
6312 */
f7a52a40 6313 release_extent_buffer(eb);
3083ee2e
JB
6314}
6315
6316void free_extent_buffer_stale(struct extent_buffer *eb)
6317{
6318 if (!eb)
d1310b2e
CM
6319 return;
6320
3083ee2e
JB
6321 spin_lock(&eb->refs_lock);
6322 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6323
0b32f4bb 6324 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6325 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6326 atomic_dec(&eb->refs);
f7a52a40 6327 release_extent_buffer(eb);
d1310b2e 6328}
d1310b2e 6329
0d27797e
QW
6330static void btree_clear_page_dirty(struct page *page)
6331{
6332 ASSERT(PageDirty(page));
6333 ASSERT(PageLocked(page));
6334 clear_page_dirty_for_io(page);
6335 xa_lock_irq(&page->mapping->i_pages);
6336 if (!PageDirty(page))
6337 __xa_clear_mark(&page->mapping->i_pages,
6338 page_index(page), PAGECACHE_TAG_DIRTY);
6339 xa_unlock_irq(&page->mapping->i_pages);
6340}
6341
6342static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6343{
6344 struct btrfs_fs_info *fs_info = eb->fs_info;
6345 struct page *page = eb->pages[0];
6346 bool last;
6347
6348 /* btree_clear_page_dirty() needs page locked */
6349 lock_page(page);
6350 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6351 eb->len);
6352 if (last)
6353 btree_clear_page_dirty(page);
6354 unlock_page(page);
6355 WARN_ON(atomic_read(&eb->refs) == 0);
6356}
6357
2b48966a 6358void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6359{
cc5e31a4
DS
6360 int i;
6361 int num_pages;
d1310b2e
CM
6362 struct page *page;
6363
0d27797e
QW
6364 if (eb->fs_info->sectorsize < PAGE_SIZE)
6365 return clear_subpage_extent_buffer_dirty(eb);
6366
65ad0104 6367 num_pages = num_extent_pages(eb);
d1310b2e
CM
6368
6369 for (i = 0; i < num_pages; i++) {
fb85fc9a 6370 page = eb->pages[i];
b9473439 6371 if (!PageDirty(page))
d2c3f4f6 6372 continue;
a61e6f29 6373 lock_page(page);
0d27797e 6374 btree_clear_page_dirty(page);
bf0da8c1 6375 ClearPageError(page);
a61e6f29 6376 unlock_page(page);
d1310b2e 6377 }
0b32f4bb 6378 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6379}
d1310b2e 6380
abb57ef3 6381bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6382{
cc5e31a4
DS
6383 int i;
6384 int num_pages;
abb57ef3 6385 bool was_dirty;
d1310b2e 6386
0b32f4bb
JB
6387 check_buffer_tree_ref(eb);
6388
b9473439 6389 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6390
65ad0104 6391 num_pages = num_extent_pages(eb);
3083ee2e 6392 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6393 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6394
0d27797e
QW
6395 if (!was_dirty) {
6396 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
51995c39 6397
0d27797e
QW
6398 /*
6399 * For subpage case, we can have other extent buffers in the
6400 * same page, and in clear_subpage_extent_buffer_dirty() we
6401 * have to clear page dirty without subpage lock held.
6402 * This can cause race where our page gets dirty cleared after
6403 * we just set it.
6404 *
6405 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6406 * its page for other reasons, we can use page lock to prevent
6407 * the above race.
6408 */
6409 if (subpage)
6410 lock_page(eb->pages[0]);
6411 for (i = 0; i < num_pages; i++)
6412 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6413 eb->start, eb->len);
6414 if (subpage)
6415 unlock_page(eb->pages[0]);
6416 }
51995c39
LB
6417#ifdef CONFIG_BTRFS_DEBUG
6418 for (i = 0; i < num_pages; i++)
6419 ASSERT(PageDirty(eb->pages[i]));
6420#endif
6421
b9473439 6422 return was_dirty;
d1310b2e 6423}
d1310b2e 6424
69ba3927 6425void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6426{
251f2acc 6427 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6428 struct page *page;
cc5e31a4 6429 int num_pages;
251f2acc 6430 int i;
1259ab75 6431
b4ce94de 6432 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6433 num_pages = num_extent_pages(eb);
1259ab75 6434 for (i = 0; i < num_pages; i++) {
fb85fc9a 6435 page = eb->pages[i];
33958dc6 6436 if (page)
251f2acc
QW
6437 btrfs_page_clear_uptodate(fs_info, page,
6438 eb->start, eb->len);
1259ab75 6439 }
1259ab75
CM
6440}
6441
09c25a8c 6442void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6443{
251f2acc 6444 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6445 struct page *page;
cc5e31a4 6446 int num_pages;
251f2acc 6447 int i;
d1310b2e 6448
0b32f4bb 6449 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6450 num_pages = num_extent_pages(eb);
d1310b2e 6451 for (i = 0; i < num_pages; i++) {
fb85fc9a 6452 page = eb->pages[i];
251f2acc 6453 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
d1310b2e 6454 }
d1310b2e 6455}
d1310b2e 6456
4012daf7
QW
6457static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6458 int mirror_num)
6459{
6460 struct btrfs_fs_info *fs_info = eb->fs_info;
6461 struct extent_io_tree *io_tree;
6462 struct page *page = eb->pages[0];
390ed29b 6463 struct btrfs_bio_ctrl bio_ctrl = { 0 };
4012daf7
QW
6464 int ret = 0;
6465
6466 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6467 ASSERT(PagePrivate(page));
6468 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6469
6470 if (wait == WAIT_NONE) {
dc56219f
GR
6471 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6472 return -EAGAIN;
4012daf7
QW
6473 } else {
6474 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6475 if (ret < 0)
6476 return ret;
6477 }
6478
6479 ret = 0;
6480 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6481 PageUptodate(page) ||
6482 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6483 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6484 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6485 return ret;
6486 }
6487
6488 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6489 eb->read_mirror = 0;
6490 atomic_set(&eb->io_pages, 1);
6491 check_buffer_tree_ref(eb);
6492 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6493
3d078efa 6494 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
390ed29b
QW
6495 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6496 page, eb->start, eb->len,
6497 eb->start - page_offset(page),
6498 end_bio_extent_readpage, mirror_num, 0,
4012daf7
QW
6499 true);
6500 if (ret) {
6501 /*
6502 * In the endio function, if we hit something wrong we will
6503 * increase the io_pages, so here we need to decrease it for
6504 * error path.
6505 */
6506 atomic_dec(&eb->io_pages);
6507 }
390ed29b 6508 if (bio_ctrl.bio) {
4012daf7
QW
6509 int tmp;
6510
390ed29b
QW
6511 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6512 bio_ctrl.bio = NULL;
4012daf7
QW
6513 if (tmp < 0)
6514 return tmp;
6515 }
6516 if (ret || wait != WAIT_COMPLETE)
6517 return ret;
6518
6519 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6520 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6521 ret = -EIO;
6522 return ret;
6523}
6524
c2ccfbc6 6525int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6526{
cc5e31a4 6527 int i;
d1310b2e
CM
6528 struct page *page;
6529 int err;
6530 int ret = 0;
ce9adaa5
CM
6531 int locked_pages = 0;
6532 int all_uptodate = 1;
cc5e31a4 6533 int num_pages;
727011e0 6534 unsigned long num_reads = 0;
390ed29b 6535 struct btrfs_bio_ctrl bio_ctrl = { 0 };
a86c12c7 6536
b4ce94de 6537 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6538 return 0;
6539
4012daf7
QW
6540 if (eb->fs_info->sectorsize < PAGE_SIZE)
6541 return read_extent_buffer_subpage(eb, wait, mirror_num);
6542
65ad0104 6543 num_pages = num_extent_pages(eb);
8436ea91 6544 for (i = 0; i < num_pages; i++) {
fb85fc9a 6545 page = eb->pages[i];
bb82ab88 6546 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6547 /*
6548 * WAIT_NONE is only utilized by readahead. If we can't
6549 * acquire the lock atomically it means either the eb
6550 * is being read out or under modification.
6551 * Either way the eb will be or has been cached,
6552 * readahead can exit safely.
6553 */
2db04966 6554 if (!trylock_page(page))
ce9adaa5 6555 goto unlock_exit;
d1310b2e
CM
6556 } else {
6557 lock_page(page);
6558 }
ce9adaa5 6559 locked_pages++;
2571e739
LB
6560 }
6561 /*
6562 * We need to firstly lock all pages to make sure that
6563 * the uptodate bit of our pages won't be affected by
6564 * clear_extent_buffer_uptodate().
6565 */
8436ea91 6566 for (i = 0; i < num_pages; i++) {
2571e739 6567 page = eb->pages[i];
727011e0
CM
6568 if (!PageUptodate(page)) {
6569 num_reads++;
ce9adaa5 6570 all_uptodate = 0;
727011e0 6571 }
ce9adaa5 6572 }
2571e739 6573
ce9adaa5 6574 if (all_uptodate) {
8436ea91 6575 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6576 goto unlock_exit;
6577 }
6578
656f30db 6579 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6580 eb->read_mirror = 0;
0b32f4bb 6581 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
6582 /*
6583 * It is possible for releasepage to clear the TREE_REF bit before we
6584 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6585 */
6586 check_buffer_tree_ref(eb);
8436ea91 6587 for (i = 0; i < num_pages; i++) {
fb85fc9a 6588 page = eb->pages[i];
baf863b9 6589
ce9adaa5 6590 if (!PageUptodate(page)) {
baf863b9
LB
6591 if (ret) {
6592 atomic_dec(&eb->io_pages);
6593 unlock_page(page);
6594 continue;
6595 }
6596
f188591e 6597 ClearPageError(page);
0420177c 6598 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
390ed29b
QW
6599 &bio_ctrl, page, page_offset(page),
6600 PAGE_SIZE, 0, end_bio_extent_readpage,
6601 mirror_num, 0, false);
baf863b9 6602 if (err) {
baf863b9 6603 /*
0420177c
NB
6604 * We failed to submit the bio so it's the
6605 * caller's responsibility to perform cleanup
6606 * i.e unlock page/set error bit.
baf863b9 6607 */
0420177c
NB
6608 ret = err;
6609 SetPageError(page);
6610 unlock_page(page);
baf863b9
LB
6611 atomic_dec(&eb->io_pages);
6612 }
d1310b2e
CM
6613 } else {
6614 unlock_page(page);
6615 }
6616 }
6617
390ed29b
QW
6618 if (bio_ctrl.bio) {
6619 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6620 bio_ctrl.bio = NULL;
79787eaa
JM
6621 if (err)
6622 return err;
355808c2 6623 }
a86c12c7 6624
bb82ab88 6625 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6626 return ret;
d397712b 6627
8436ea91 6628 for (i = 0; i < num_pages; i++) {
fb85fc9a 6629 page = eb->pages[i];
d1310b2e 6630 wait_on_page_locked(page);
d397712b 6631 if (!PageUptodate(page))
d1310b2e 6632 ret = -EIO;
d1310b2e 6633 }
d397712b 6634
d1310b2e 6635 return ret;
ce9adaa5
CM
6636
6637unlock_exit:
d397712b 6638 while (locked_pages > 0) {
ce9adaa5 6639 locked_pages--;
8436ea91
JB
6640 page = eb->pages[locked_pages];
6641 unlock_page(page);
ce9adaa5
CM
6642 }
6643 return ret;
d1310b2e 6644}
d1310b2e 6645
f98b6215
QW
6646static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6647 unsigned long len)
6648{
6649 btrfs_warn(eb->fs_info,
6650 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6651 eb->start, eb->len, start, len);
6652 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6653
6654 return true;
6655}
6656
6657/*
6658 * Check if the [start, start + len) range is valid before reading/writing
6659 * the eb.
6660 * NOTE: @start and @len are offset inside the eb, not logical address.
6661 *
6662 * Caller should not touch the dst/src memory if this function returns error.
6663 */
6664static inline int check_eb_range(const struct extent_buffer *eb,
6665 unsigned long start, unsigned long len)
6666{
6667 unsigned long offset;
6668
6669 /* start, start + len should not go beyond eb->len nor overflow */
6670 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6671 return report_eb_range(eb, start, len);
6672
6673 return false;
6674}
6675
1cbb1f45
JM
6676void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6677 unsigned long start, unsigned long len)
d1310b2e
CM
6678{
6679 size_t cur;
6680 size_t offset;
6681 struct page *page;
6682 char *kaddr;
6683 char *dst = (char *)dstv;
884b07d0 6684 unsigned long i = get_eb_page_index(start);
d1310b2e 6685
f98b6215 6686 if (check_eb_range(eb, start, len))
f716abd5 6687 return;
d1310b2e 6688
884b07d0 6689 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6690
d397712b 6691 while (len > 0) {
fb85fc9a 6692 page = eb->pages[i];
d1310b2e 6693
09cbfeaf 6694 cur = min(len, (PAGE_SIZE - offset));
a6591715 6695 kaddr = page_address(page);
d1310b2e 6696 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6697
6698 dst += cur;
6699 len -= cur;
6700 offset = 0;
6701 i++;
6702 }
6703}
d1310b2e 6704
a48b73ec
JB
6705int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6706 void __user *dstv,
6707 unsigned long start, unsigned long len)
550ac1d8
GH
6708{
6709 size_t cur;
6710 size_t offset;
6711 struct page *page;
6712 char *kaddr;
6713 char __user *dst = (char __user *)dstv;
884b07d0 6714 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6715 int ret = 0;
6716
6717 WARN_ON(start > eb->len);
6718 WARN_ON(start + len > eb->start + eb->len);
6719
884b07d0 6720 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6721
6722 while (len > 0) {
fb85fc9a 6723 page = eb->pages[i];
550ac1d8 6724
09cbfeaf 6725 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6726 kaddr = page_address(page);
a48b73ec 6727 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6728 ret = -EFAULT;
6729 break;
6730 }
6731
6732 dst += cur;
6733 len -= cur;
6734 offset = 0;
6735 i++;
6736 }
6737
6738 return ret;
6739}
6740
1cbb1f45
JM
6741int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6742 unsigned long start, unsigned long len)
d1310b2e
CM
6743{
6744 size_t cur;
6745 size_t offset;
6746 struct page *page;
6747 char *kaddr;
6748 char *ptr = (char *)ptrv;
884b07d0 6749 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6750 int ret = 0;
6751
f98b6215
QW
6752 if (check_eb_range(eb, start, len))
6753 return -EINVAL;
d1310b2e 6754
884b07d0 6755 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6756
d397712b 6757 while (len > 0) {
fb85fc9a 6758 page = eb->pages[i];
d1310b2e 6759
09cbfeaf 6760 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6761
a6591715 6762 kaddr = page_address(page);
d1310b2e 6763 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6764 if (ret)
6765 break;
6766
6767 ptr += cur;
6768 len -= cur;
6769 offset = 0;
6770 i++;
6771 }
6772 return ret;
6773}
d1310b2e 6774
b8f95771
QW
6775/*
6776 * Check that the extent buffer is uptodate.
6777 *
6778 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6779 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6780 */
6781static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6782 struct page *page)
6783{
6784 struct btrfs_fs_info *fs_info = eb->fs_info;
6785
6786 if (fs_info->sectorsize < PAGE_SIZE) {
6787 bool uptodate;
6788
6789 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6790 eb->start, eb->len);
6791 WARN_ON(!uptodate);
6792 } else {
6793 WARN_ON(!PageUptodate(page));
6794 }
6795}
6796
2b48966a 6797void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6798 const void *srcv)
6799{
6800 char *kaddr;
6801
b8f95771 6802 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6803 kaddr = page_address(eb->pages[0]) +
6804 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6805 chunk_tree_uuid));
6806 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6807}
6808
2b48966a 6809void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6810{
6811 char *kaddr;
6812
b8f95771 6813 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6814 kaddr = page_address(eb->pages[0]) +
6815 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6816 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6817}
6818
2b48966a 6819void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6820 unsigned long start, unsigned long len)
6821{
6822 size_t cur;
6823 size_t offset;
6824 struct page *page;
6825 char *kaddr;
6826 char *src = (char *)srcv;
884b07d0 6827 unsigned long i = get_eb_page_index(start);
d1310b2e 6828
d3575156
NA
6829 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6830
f98b6215
QW
6831 if (check_eb_range(eb, start, len))
6832 return;
d1310b2e 6833
884b07d0 6834 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6835
d397712b 6836 while (len > 0) {
fb85fc9a 6837 page = eb->pages[i];
b8f95771 6838 assert_eb_page_uptodate(eb, page);
d1310b2e 6839
09cbfeaf 6840 cur = min(len, PAGE_SIZE - offset);
a6591715 6841 kaddr = page_address(page);
d1310b2e 6842 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6843
6844 src += cur;
6845 len -= cur;
6846 offset = 0;
6847 i++;
6848 }
6849}
d1310b2e 6850
2b48966a 6851void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6852 unsigned long len)
d1310b2e
CM
6853{
6854 size_t cur;
6855 size_t offset;
6856 struct page *page;
6857 char *kaddr;
884b07d0 6858 unsigned long i = get_eb_page_index(start);
d1310b2e 6859
f98b6215
QW
6860 if (check_eb_range(eb, start, len))
6861 return;
d1310b2e 6862
884b07d0 6863 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6864
d397712b 6865 while (len > 0) {
fb85fc9a 6866 page = eb->pages[i];
b8f95771 6867 assert_eb_page_uptodate(eb, page);
d1310b2e 6868
09cbfeaf 6869 cur = min(len, PAGE_SIZE - offset);
a6591715 6870 kaddr = page_address(page);
b159fa28 6871 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6872
6873 len -= cur;
6874 offset = 0;
6875 i++;
6876 }
6877}
d1310b2e 6878
2b48966a
DS
6879void copy_extent_buffer_full(const struct extent_buffer *dst,
6880 const struct extent_buffer *src)
58e8012c
DS
6881{
6882 int i;
cc5e31a4 6883 int num_pages;
58e8012c
DS
6884
6885 ASSERT(dst->len == src->len);
6886
884b07d0
QW
6887 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6888 num_pages = num_extent_pages(dst);
6889 for (i = 0; i < num_pages; i++)
6890 copy_page(page_address(dst->pages[i]),
6891 page_address(src->pages[i]));
6892 } else {
6893 size_t src_offset = get_eb_offset_in_page(src, 0);
6894 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6895
6896 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6897 memcpy(page_address(dst->pages[0]) + dst_offset,
6898 page_address(src->pages[0]) + src_offset,
6899 src->len);
6900 }
58e8012c
DS
6901}
6902
2b48966a
DS
6903void copy_extent_buffer(const struct extent_buffer *dst,
6904 const struct extent_buffer *src,
d1310b2e
CM
6905 unsigned long dst_offset, unsigned long src_offset,
6906 unsigned long len)
6907{
6908 u64 dst_len = dst->len;
6909 size_t cur;
6910 size_t offset;
6911 struct page *page;
6912 char *kaddr;
884b07d0 6913 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 6914
f98b6215
QW
6915 if (check_eb_range(dst, dst_offset, len) ||
6916 check_eb_range(src, src_offset, len))
6917 return;
6918
d1310b2e
CM
6919 WARN_ON(src->len != dst_len);
6920
884b07d0 6921 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 6922
d397712b 6923 while (len > 0) {
fb85fc9a 6924 page = dst->pages[i];
b8f95771 6925 assert_eb_page_uptodate(dst, page);
d1310b2e 6926
09cbfeaf 6927 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 6928
a6591715 6929 kaddr = page_address(page);
d1310b2e 6930 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
6931
6932 src_offset += cur;
6933 len -= cur;
6934 offset = 0;
6935 i++;
6936 }
6937}
d1310b2e 6938
3e1e8bb7
OS
6939/*
6940 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6941 * given bit number
6942 * @eb: the extent buffer
6943 * @start: offset of the bitmap item in the extent buffer
6944 * @nr: bit number
6945 * @page_index: return index of the page in the extent buffer that contains the
6946 * given bit number
6947 * @page_offset: return offset into the page given by page_index
6948 *
6949 * This helper hides the ugliness of finding the byte in an extent buffer which
6950 * contains a given bit.
6951 */
2b48966a 6952static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
6953 unsigned long start, unsigned long nr,
6954 unsigned long *page_index,
6955 size_t *page_offset)
6956{
3e1e8bb7
OS
6957 size_t byte_offset = BIT_BYTE(nr);
6958 size_t offset;
6959
6960 /*
6961 * The byte we want is the offset of the extent buffer + the offset of
6962 * the bitmap item in the extent buffer + the offset of the byte in the
6963 * bitmap item.
6964 */
884b07d0 6965 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 6966
09cbfeaf 6967 *page_index = offset >> PAGE_SHIFT;
7073017a 6968 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
6969}
6970
6971/**
6972 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6973 * @eb: the extent buffer
6974 * @start: offset of the bitmap item in the extent buffer
6975 * @nr: bit number to test
6976 */
2b48966a 6977int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
6978 unsigned long nr)
6979{
2fe1d551 6980 u8 *kaddr;
3e1e8bb7
OS
6981 struct page *page;
6982 unsigned long i;
6983 size_t offset;
6984
6985 eb_bitmap_offset(eb, start, nr, &i, &offset);
6986 page = eb->pages[i];
b8f95771 6987 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
6988 kaddr = page_address(page);
6989 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6990}
6991
6992/**
6993 * extent_buffer_bitmap_set - set an area of a bitmap
6994 * @eb: the extent buffer
6995 * @start: offset of the bitmap item in the extent buffer
6996 * @pos: bit number of the first bit
6997 * @len: number of bits to set
6998 */
2b48966a 6999void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7000 unsigned long pos, unsigned long len)
7001{
2fe1d551 7002 u8 *kaddr;
3e1e8bb7
OS
7003 struct page *page;
7004 unsigned long i;
7005 size_t offset;
7006 const unsigned int size = pos + len;
7007 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7008 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7009
7010 eb_bitmap_offset(eb, start, pos, &i, &offset);
7011 page = eb->pages[i];
b8f95771 7012 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7013 kaddr = page_address(page);
7014
7015 while (len >= bits_to_set) {
7016 kaddr[offset] |= mask_to_set;
7017 len -= bits_to_set;
7018 bits_to_set = BITS_PER_BYTE;
9c894696 7019 mask_to_set = ~0;
09cbfeaf 7020 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7021 offset = 0;
7022 page = eb->pages[++i];
b8f95771 7023 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7024 kaddr = page_address(page);
7025 }
7026 }
7027 if (len) {
7028 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7029 kaddr[offset] |= mask_to_set;
7030 }
7031}
7032
7033
7034/**
7035 * extent_buffer_bitmap_clear - clear an area of a bitmap
7036 * @eb: the extent buffer
7037 * @start: offset of the bitmap item in the extent buffer
7038 * @pos: bit number of the first bit
7039 * @len: number of bits to clear
7040 */
2b48966a
DS
7041void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7042 unsigned long start, unsigned long pos,
7043 unsigned long len)
3e1e8bb7 7044{
2fe1d551 7045 u8 *kaddr;
3e1e8bb7
OS
7046 struct page *page;
7047 unsigned long i;
7048 size_t offset;
7049 const unsigned int size = pos + len;
7050 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7051 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7052
7053 eb_bitmap_offset(eb, start, pos, &i, &offset);
7054 page = eb->pages[i];
b8f95771 7055 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7056 kaddr = page_address(page);
7057
7058 while (len >= bits_to_clear) {
7059 kaddr[offset] &= ~mask_to_clear;
7060 len -= bits_to_clear;
7061 bits_to_clear = BITS_PER_BYTE;
9c894696 7062 mask_to_clear = ~0;
09cbfeaf 7063 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7064 offset = 0;
7065 page = eb->pages[++i];
b8f95771 7066 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7067 kaddr = page_address(page);
7068 }
7069 }
7070 if (len) {
7071 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7072 kaddr[offset] &= ~mask_to_clear;
7073 }
7074}
7075
3387206f
ST
7076static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7077{
7078 unsigned long distance = (src > dst) ? src - dst : dst - src;
7079 return distance < len;
7080}
7081
d1310b2e
CM
7082static void copy_pages(struct page *dst_page, struct page *src_page,
7083 unsigned long dst_off, unsigned long src_off,
7084 unsigned long len)
7085{
a6591715 7086 char *dst_kaddr = page_address(dst_page);
d1310b2e 7087 char *src_kaddr;
727011e0 7088 int must_memmove = 0;
d1310b2e 7089
3387206f 7090 if (dst_page != src_page) {
a6591715 7091 src_kaddr = page_address(src_page);
3387206f 7092 } else {
d1310b2e 7093 src_kaddr = dst_kaddr;
727011e0
CM
7094 if (areas_overlap(src_off, dst_off, len))
7095 must_memmove = 1;
3387206f 7096 }
d1310b2e 7097
727011e0
CM
7098 if (must_memmove)
7099 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7100 else
7101 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
7102}
7103
2b48966a
DS
7104void memcpy_extent_buffer(const struct extent_buffer *dst,
7105 unsigned long dst_offset, unsigned long src_offset,
7106 unsigned long len)
d1310b2e
CM
7107{
7108 size_t cur;
7109 size_t dst_off_in_page;
7110 size_t src_off_in_page;
d1310b2e
CM
7111 unsigned long dst_i;
7112 unsigned long src_i;
7113
f98b6215
QW
7114 if (check_eb_range(dst, dst_offset, len) ||
7115 check_eb_range(dst, src_offset, len))
7116 return;
d1310b2e 7117
d397712b 7118 while (len > 0) {
884b07d0
QW
7119 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7120 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 7121
884b07d0
QW
7122 dst_i = get_eb_page_index(dst_offset);
7123 src_i = get_eb_page_index(src_offset);
d1310b2e 7124
09cbfeaf 7125 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
7126 src_off_in_page));
7127 cur = min_t(unsigned long, cur,
09cbfeaf 7128 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 7129
fb85fc9a 7130 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7131 dst_off_in_page, src_off_in_page, cur);
7132
7133 src_offset += cur;
7134 dst_offset += cur;
7135 len -= cur;
7136 }
7137}
d1310b2e 7138
2b48966a
DS
7139void memmove_extent_buffer(const struct extent_buffer *dst,
7140 unsigned long dst_offset, unsigned long src_offset,
7141 unsigned long len)
d1310b2e
CM
7142{
7143 size_t cur;
7144 size_t dst_off_in_page;
7145 size_t src_off_in_page;
7146 unsigned long dst_end = dst_offset + len - 1;
7147 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
7148 unsigned long dst_i;
7149 unsigned long src_i;
7150
f98b6215
QW
7151 if (check_eb_range(dst, dst_offset, len) ||
7152 check_eb_range(dst, src_offset, len))
7153 return;
727011e0 7154 if (dst_offset < src_offset) {
d1310b2e
CM
7155 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7156 return;
7157 }
d397712b 7158 while (len > 0) {
884b07d0
QW
7159 dst_i = get_eb_page_index(dst_end);
7160 src_i = get_eb_page_index(src_end);
d1310b2e 7161
884b07d0
QW
7162 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7163 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
7164
7165 cur = min_t(unsigned long, len, src_off_in_page + 1);
7166 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 7167 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7168 dst_off_in_page - cur + 1,
7169 src_off_in_page - cur + 1, cur);
7170
7171 dst_end -= cur;
7172 src_end -= cur;
7173 len -= cur;
7174 }
7175}
6af118ce 7176
d1e86e3f
QW
7177static struct extent_buffer *get_next_extent_buffer(
7178 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7179{
7180 struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7181 struct extent_buffer *found = NULL;
7182 u64 page_start = page_offset(page);
7183 int ret;
7184 int i;
7185
7186 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7187 ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7188 lockdep_assert_held(&fs_info->buffer_lock);
7189
7190 ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7191 bytenr >> fs_info->sectorsize_bits,
7192 PAGE_SIZE / fs_info->nodesize);
7193 for (i = 0; i < ret; i++) {
7194 /* Already beyond page end */
7195 if (gang[i]->start >= page_start + PAGE_SIZE)
7196 break;
7197 /* Found one */
7198 if (gang[i]->start >= bytenr) {
7199 found = gang[i];
7200 break;
7201 }
7202 }
7203 return found;
7204}
7205
7206static int try_release_subpage_extent_buffer(struct page *page)
7207{
7208 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7209 u64 cur = page_offset(page);
7210 const u64 end = page_offset(page) + PAGE_SIZE;
7211 int ret;
7212
7213 while (cur < end) {
7214 struct extent_buffer *eb = NULL;
7215
7216 /*
7217 * Unlike try_release_extent_buffer() which uses page->private
7218 * to grab buffer, for subpage case we rely on radix tree, thus
7219 * we need to ensure radix tree consistency.
7220 *
7221 * We also want an atomic snapshot of the radix tree, thus go
7222 * with spinlock rather than RCU.
7223 */
7224 spin_lock(&fs_info->buffer_lock);
7225 eb = get_next_extent_buffer(fs_info, page, cur);
7226 if (!eb) {
7227 /* No more eb in the page range after or at cur */
7228 spin_unlock(&fs_info->buffer_lock);
7229 break;
7230 }
7231 cur = eb->start + eb->len;
7232
7233 /*
7234 * The same as try_release_extent_buffer(), to ensure the eb
7235 * won't disappear out from under us.
7236 */
7237 spin_lock(&eb->refs_lock);
7238 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7239 spin_unlock(&eb->refs_lock);
7240 spin_unlock(&fs_info->buffer_lock);
7241 break;
7242 }
7243 spin_unlock(&fs_info->buffer_lock);
7244
7245 /*
7246 * If tree ref isn't set then we know the ref on this eb is a
7247 * real ref, so just return, this eb will likely be freed soon
7248 * anyway.
7249 */
7250 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7251 spin_unlock(&eb->refs_lock);
7252 break;
7253 }
7254
7255 /*
7256 * Here we don't care about the return value, we will always
7257 * check the page private at the end. And
7258 * release_extent_buffer() will release the refs_lock.
7259 */
7260 release_extent_buffer(eb);
7261 }
7262 /*
7263 * Finally to check if we have cleared page private, as if we have
7264 * released all ebs in the page, the page private should be cleared now.
7265 */
7266 spin_lock(&page->mapping->private_lock);
7267 if (!PagePrivate(page))
7268 ret = 1;
7269 else
7270 ret = 0;
7271 spin_unlock(&page->mapping->private_lock);
7272 return ret;
7273
7274}
7275
f7a52a40 7276int try_release_extent_buffer(struct page *page)
19fe0a8b 7277{
6af118ce 7278 struct extent_buffer *eb;
6af118ce 7279
d1e86e3f
QW
7280 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7281 return try_release_subpage_extent_buffer(page);
7282
3083ee2e 7283 /*
d1e86e3f
QW
7284 * We need to make sure nobody is changing page->private, as we rely on
7285 * page->private as the pointer to extent buffer.
3083ee2e
JB
7286 */
7287 spin_lock(&page->mapping->private_lock);
7288 if (!PagePrivate(page)) {
7289 spin_unlock(&page->mapping->private_lock);
4f2de97a 7290 return 1;
45f49bce 7291 }
6af118ce 7292
3083ee2e
JB
7293 eb = (struct extent_buffer *)page->private;
7294 BUG_ON(!eb);
19fe0a8b
MX
7295
7296 /*
3083ee2e
JB
7297 * This is a little awful but should be ok, we need to make sure that
7298 * the eb doesn't disappear out from under us while we're looking at
7299 * this page.
19fe0a8b 7300 */
3083ee2e 7301 spin_lock(&eb->refs_lock);
0b32f4bb 7302 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7303 spin_unlock(&eb->refs_lock);
7304 spin_unlock(&page->mapping->private_lock);
7305 return 0;
b9473439 7306 }
3083ee2e 7307 spin_unlock(&page->mapping->private_lock);
897ca6e9 7308
19fe0a8b 7309 /*
3083ee2e
JB
7310 * If tree ref isn't set then we know the ref on this eb is a real ref,
7311 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7312 */
3083ee2e
JB
7313 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7314 spin_unlock(&eb->refs_lock);
7315 return 0;
b9473439 7316 }
19fe0a8b 7317
f7a52a40 7318 return release_extent_buffer(eb);
6af118ce 7319}
bfb484d9
JB
7320
7321/*
7322 * btrfs_readahead_tree_block - attempt to readahead a child block
7323 * @fs_info: the fs_info
7324 * @bytenr: bytenr to read
3fbaf258 7325 * @owner_root: objectid of the root that owns this eb
bfb484d9 7326 * @gen: generation for the uptodate check, can be 0
3fbaf258 7327 * @level: level for the eb
bfb484d9
JB
7328 *
7329 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7330 * normal uptodate check of the eb, without checking the generation. If we have
7331 * to read the block we will not block on anything.
7332 */
7333void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7334 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7335{
7336 struct extent_buffer *eb;
7337 int ret;
7338
3fbaf258 7339 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7340 if (IS_ERR(eb))
7341 return;
7342
7343 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7344 free_extent_buffer(eb);
7345 return;
7346 }
7347
7348 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7349 if (ret < 0)
7350 free_extent_buffer_stale(eb);
7351 else
7352 free_extent_buffer(eb);
7353}
7354
7355/*
7356 * btrfs_readahead_node_child - readahead a node's child block
7357 * @node: parent node we're reading from
7358 * @slot: slot in the parent node for the child we want to read
7359 *
7360 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7361 * the slot in the node provided.
7362 */
7363void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7364{
7365 btrfs_readahead_tree_block(node->fs_info,
7366 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7367 btrfs_header_owner(node),
7368 btrfs_node_ptr_generation(node, slot),
7369 btrfs_header_level(node) - 1);
bfb484d9 7370}