btrfs: zoned: simplify btrfs_check_meta_write_pointer
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
4a54c8c1 23#include "volumes.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
d1310b2e 32
d1310b2e
CM
33static struct kmem_cache *extent_state_cache;
34static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 35static struct bio_set btrfs_bioset;
d1310b2e 36
27a3507d
FM
37static inline bool extent_state_in_tree(const struct extent_state *state)
38{
39 return !RB_EMPTY_NODE(&state->rb_node);
40}
41
6d49ba1b 42#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 43static LIST_HEAD(states);
d397712b 44static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 45
3fd63727
JB
46static inline void btrfs_leak_debug_add(spinlock_t *lock,
47 struct list_head *new,
48 struct list_head *head)
6d49ba1b
ES
49{
50 unsigned long flags;
51
3fd63727 52 spin_lock_irqsave(lock, flags);
6d49ba1b 53 list_add(new, head);
3fd63727 54 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
55}
56
3fd63727
JB
57static inline void btrfs_leak_debug_del(spinlock_t *lock,
58 struct list_head *entry)
6d49ba1b
ES
59{
60 unsigned long flags;
61
3fd63727 62 spin_lock_irqsave(lock, flags);
6d49ba1b 63 list_del(entry);
3fd63727 64 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
65}
66
3fd63727 67void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 68{
6d49ba1b 69 struct extent_buffer *eb;
3fd63727 70 unsigned long flags;
6d49ba1b 71
8c38938c
JB
72 /*
73 * If we didn't get into open_ctree our allocated_ebs will not be
74 * initialized, so just skip this.
75 */
76 if (!fs_info->allocated_ebs.next)
77 return;
78
3fd63727
JB
79 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
80 while (!list_empty(&fs_info->allocated_ebs)) {
81 eb = list_first_entry(&fs_info->allocated_ebs,
82 struct extent_buffer, leak_list);
8c38938c
JB
83 pr_err(
84 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
85 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
86 btrfs_header_owner(eb));
33ca832f
JB
87 list_del(&eb->leak_list);
88 kmem_cache_free(extent_buffer_cache, eb);
89 }
3fd63727 90 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
91}
92
93static inline void btrfs_extent_state_leak_debug_check(void)
94{
95 struct extent_state *state;
96
6d49ba1b
ES
97 while (!list_empty(&states)) {
98 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 99 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
100 state->start, state->end, state->state,
101 extent_state_in_tree(state),
b7ac31b7 102 refcount_read(&state->refs));
6d49ba1b
ES
103 list_del(&state->leak_list);
104 kmem_cache_free(extent_state_cache, state);
105 }
6d49ba1b 106}
8d599ae1 107
a5dee37d
JB
108#define btrfs_debug_check_extent_io_range(tree, start, end) \
109 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 110static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 111 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 112{
65a680f6
NB
113 struct inode *inode = tree->private_data;
114 u64 isize;
115
116 if (!inode || !is_data_inode(inode))
117 return;
118
119 isize = i_size_read(inode);
120 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
121 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
122 "%s: ino %llu isize %llu odd range [%llu,%llu]",
123 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
124 }
8d599ae1 125}
6d49ba1b 126#else
3fd63727
JB
127#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
128#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 129#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 130#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 131#endif
d1310b2e 132
d1310b2e
CM
133struct tree_entry {
134 u64 start;
135 u64 end;
d1310b2e
CM
136 struct rb_node rb_node;
137};
138
139struct extent_page_data {
390ed29b 140 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
141 /* tells writepage not to lock the state bits for this range
142 * it still does the unlocking
143 */
ffbd517d
CM
144 unsigned int extent_locked:1;
145
70fd7614 146 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 147 unsigned int sync_io:1;
d1310b2e
CM
148};
149
f97e27e9 150static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
151 struct extent_changeset *changeset,
152 int set)
153{
154 int ret;
155
156 if (!changeset)
57599c7e 157 return 0;
d38ed27f 158 if (set && (state->state & bits) == bits)
57599c7e 159 return 0;
fefdc557 160 if (!set && (state->state & bits) == 0)
57599c7e 161 return 0;
d38ed27f 162 changeset->bytes_changed += state->end - state->start + 1;
53d32359 163 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 164 GFP_ATOMIC);
57599c7e 165 return ret;
d38ed27f
QW
166}
167
c1be9c1a
NB
168int __must_check submit_one_bio(struct bio *bio, int mirror_num,
169 unsigned long bio_flags)
bb58eb9e
QW
170{
171 blk_status_t ret = 0;
bb58eb9e 172 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
173
174 bio->bi_private = NULL;
175
e0eefe07
QW
176 /* Caller should ensure the bio has at least some range added */
177 ASSERT(bio->bi_iter.bi_size);
908930f3
NB
178 if (is_data_inode(tree->private_data))
179 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
180 bio_flags);
181 else
1b36294a
NB
182 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
183 mirror_num, bio_flags);
bb58eb9e
QW
184
185 return blk_status_to_errno(ret);
186}
187
3065976b
QW
188/* Cleanup unsubmitted bios */
189static void end_write_bio(struct extent_page_data *epd, int ret)
190{
390ed29b
QW
191 struct bio *bio = epd->bio_ctrl.bio;
192
193 if (bio) {
194 bio->bi_status = errno_to_blk_status(ret);
195 bio_endio(bio);
196 epd->bio_ctrl.bio = NULL;
3065976b
QW
197 }
198}
199
f4340622
QW
200/*
201 * Submit bio from extent page data via submit_one_bio
202 *
203 * Return 0 if everything is OK.
204 * Return <0 for error.
205 */
206static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 207{
f4340622 208 int ret = 0;
390ed29b 209 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 210
390ed29b
QW
211 if (bio) {
212 ret = submit_one_bio(bio, 0, 0);
f4340622
QW
213 /*
214 * Clean up of epd->bio is handled by its endio function.
215 * And endio is either triggered by successful bio execution
216 * or the error handler of submit bio hook.
217 * So at this point, no matter what happened, we don't need
218 * to clean up epd->bio.
219 */
390ed29b 220 epd->bio_ctrl.bio = NULL;
bb58eb9e 221 }
f4340622 222 return ret;
bb58eb9e 223}
e2932ee0 224
6f0d04f8 225int __init extent_state_cache_init(void)
d1310b2e 226{
837e1972 227 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 228 sizeof(struct extent_state), 0,
fba4b697 229 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
230 if (!extent_state_cache)
231 return -ENOMEM;
6f0d04f8
JB
232 return 0;
233}
d1310b2e 234
6f0d04f8
JB
235int __init extent_io_init(void)
236{
837e1972 237 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 238 sizeof(struct extent_buffer), 0,
fba4b697 239 SLAB_MEM_SPREAD, NULL);
d1310b2e 240 if (!extent_buffer_cache)
6f0d04f8 241 return -ENOMEM;
9be3395b 242
8ac9f7c1 243 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
c3a3b19b 244 offsetof(struct btrfs_bio, bio),
8ac9f7c1 245 BIOSET_NEED_BVECS))
9be3395b 246 goto free_buffer_cache;
b208c2f7 247
8ac9f7c1 248 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
249 goto free_bioset;
250
d1310b2e
CM
251 return 0;
252
b208c2f7 253free_bioset:
8ac9f7c1 254 bioset_exit(&btrfs_bioset);
b208c2f7 255
9be3395b
CM
256free_buffer_cache:
257 kmem_cache_destroy(extent_buffer_cache);
258 extent_buffer_cache = NULL;
6f0d04f8
JB
259 return -ENOMEM;
260}
9be3395b 261
6f0d04f8
JB
262void __cold extent_state_cache_exit(void)
263{
264 btrfs_extent_state_leak_debug_check();
d1310b2e 265 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
266}
267
e67c718b 268void __cold extent_io_exit(void)
d1310b2e 269{
8c0a8537
KS
270 /*
271 * Make sure all delayed rcu free are flushed before we
272 * destroy caches.
273 */
274 rcu_barrier();
5598e900 275 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 276 bioset_exit(&btrfs_bioset);
d1310b2e
CM
277}
278
41a2ee75
JB
279/*
280 * For the file_extent_tree, we want to hold the inode lock when we lookup and
281 * update the disk_i_size, but lockdep will complain because our io_tree we hold
282 * the tree lock and get the inode lock when setting delalloc. These two things
283 * are unrelated, so make a class for the file_extent_tree so we don't get the
284 * two locking patterns mixed up.
285 */
286static struct lock_class_key file_extent_tree_class;
287
c258d6e3 288void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
289 struct extent_io_tree *tree, unsigned int owner,
290 void *private_data)
d1310b2e 291{
c258d6e3 292 tree->fs_info = fs_info;
6bef4d31 293 tree->state = RB_ROOT;
d1310b2e 294 tree->dirty_bytes = 0;
70dec807 295 spin_lock_init(&tree->lock);
c6100a4b 296 tree->private_data = private_data;
43eb5f29 297 tree->owner = owner;
41a2ee75
JB
298 if (owner == IO_TREE_INODE_FILE_EXTENT)
299 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 300}
d1310b2e 301
41e7acd3
NB
302void extent_io_tree_release(struct extent_io_tree *tree)
303{
304 spin_lock(&tree->lock);
305 /*
306 * Do a single barrier for the waitqueue_active check here, the state
307 * of the waitqueue should not change once extent_io_tree_release is
308 * called.
309 */
310 smp_mb();
311 while (!RB_EMPTY_ROOT(&tree->state)) {
312 struct rb_node *node;
313 struct extent_state *state;
314
315 node = rb_first(&tree->state);
316 state = rb_entry(node, struct extent_state, rb_node);
317 rb_erase(&state->rb_node, &tree->state);
318 RB_CLEAR_NODE(&state->rb_node);
319 /*
320 * btree io trees aren't supposed to have tasks waiting for
321 * changes in the flags of extent states ever.
322 */
323 ASSERT(!waitqueue_active(&state->wq));
324 free_extent_state(state);
325
326 cond_resched_lock(&tree->lock);
327 }
328 spin_unlock(&tree->lock);
329}
330
b2950863 331static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
332{
333 struct extent_state *state;
d1310b2e 334
3ba7ab22
MH
335 /*
336 * The given mask might be not appropriate for the slab allocator,
337 * drop the unsupported bits
338 */
339 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 340 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 341 if (!state)
d1310b2e
CM
342 return state;
343 state->state = 0;
47dc196a 344 state->failrec = NULL;
27a3507d 345 RB_CLEAR_NODE(&state->rb_node);
3fd63727 346 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 347 refcount_set(&state->refs, 1);
d1310b2e 348 init_waitqueue_head(&state->wq);
143bede5 349 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
350 return state;
351}
d1310b2e 352
4845e44f 353void free_extent_state(struct extent_state *state)
d1310b2e 354{
d1310b2e
CM
355 if (!state)
356 return;
b7ac31b7 357 if (refcount_dec_and_test(&state->refs)) {
27a3507d 358 WARN_ON(extent_state_in_tree(state));
3fd63727 359 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 360 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
361 kmem_cache_free(extent_state_cache, state);
362 }
363}
d1310b2e 364
f2071b21
FM
365static struct rb_node *tree_insert(struct rb_root *root,
366 struct rb_node *search_start,
367 u64 offset,
12cfbad9
FDBM
368 struct rb_node *node,
369 struct rb_node ***p_in,
370 struct rb_node **parent_in)
d1310b2e 371{
f2071b21 372 struct rb_node **p;
d397712b 373 struct rb_node *parent = NULL;
d1310b2e
CM
374 struct tree_entry *entry;
375
12cfbad9
FDBM
376 if (p_in && parent_in) {
377 p = *p_in;
378 parent = *parent_in;
379 goto do_insert;
380 }
381
f2071b21 382 p = search_start ? &search_start : &root->rb_node;
d397712b 383 while (*p) {
d1310b2e
CM
384 parent = *p;
385 entry = rb_entry(parent, struct tree_entry, rb_node);
386
387 if (offset < entry->start)
388 p = &(*p)->rb_left;
389 else if (offset > entry->end)
390 p = &(*p)->rb_right;
391 else
392 return parent;
393 }
394
12cfbad9 395do_insert:
d1310b2e
CM
396 rb_link_node(node, parent, p);
397 rb_insert_color(node, root);
398 return NULL;
399}
400
8666e638 401/**
3bed2da1
NB
402 * Search @tree for an entry that contains @offset. Such entry would have
403 * entry->start <= offset && entry->end >= offset.
8666e638 404 *
3bed2da1
NB
405 * @tree: the tree to search
406 * @offset: offset that should fall within an entry in @tree
407 * @next_ret: pointer to the first entry whose range ends after @offset
408 * @prev_ret: pointer to the first entry whose range begins before @offset
409 * @p_ret: pointer where new node should be anchored (used when inserting an
410 * entry in the tree)
411 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
412 * containing @offset
413 *
414 * This function returns a pointer to the entry that contains @offset byte
415 * address. If no such entry exists, then NULL is returned and the other
416 * pointer arguments to the function are filled, otherwise the found entry is
417 * returned and other pointers are left untouched.
418 */
80ea96b1 419static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 420 struct rb_node **next_ret,
352646c7 421 struct rb_node **prev_ret,
12cfbad9
FDBM
422 struct rb_node ***p_ret,
423 struct rb_node **parent_ret)
d1310b2e 424{
80ea96b1 425 struct rb_root *root = &tree->state;
12cfbad9 426 struct rb_node **n = &root->rb_node;
d1310b2e
CM
427 struct rb_node *prev = NULL;
428 struct rb_node *orig_prev = NULL;
429 struct tree_entry *entry;
430 struct tree_entry *prev_entry = NULL;
431
12cfbad9
FDBM
432 while (*n) {
433 prev = *n;
434 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
435 prev_entry = entry;
436
437 if (offset < entry->start)
12cfbad9 438 n = &(*n)->rb_left;
d1310b2e 439 else if (offset > entry->end)
12cfbad9 440 n = &(*n)->rb_right;
d397712b 441 else
12cfbad9 442 return *n;
d1310b2e
CM
443 }
444
12cfbad9
FDBM
445 if (p_ret)
446 *p_ret = n;
447 if (parent_ret)
448 *parent_ret = prev;
449
352646c7 450 if (next_ret) {
d1310b2e 451 orig_prev = prev;
d397712b 452 while (prev && offset > prev_entry->end) {
d1310b2e
CM
453 prev = rb_next(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
352646c7 456 *next_ret = prev;
d1310b2e
CM
457 prev = orig_prev;
458 }
459
352646c7 460 if (prev_ret) {
d1310b2e 461 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 462 while (prev && offset < prev_entry->start) {
d1310b2e
CM
463 prev = rb_prev(prev);
464 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
465 }
352646c7 466 *prev_ret = prev;
d1310b2e
CM
467 }
468 return NULL;
469}
470
12cfbad9
FDBM
471static inline struct rb_node *
472tree_search_for_insert(struct extent_io_tree *tree,
473 u64 offset,
474 struct rb_node ***p_ret,
475 struct rb_node **parent_ret)
d1310b2e 476{
352646c7 477 struct rb_node *next= NULL;
d1310b2e 478 struct rb_node *ret;
70dec807 479
352646c7 480 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 481 if (!ret)
352646c7 482 return next;
d1310b2e
CM
483 return ret;
484}
485
12cfbad9
FDBM
486static inline struct rb_node *tree_search(struct extent_io_tree *tree,
487 u64 offset)
488{
489 return tree_search_for_insert(tree, offset, NULL, NULL);
490}
491
d1310b2e
CM
492/*
493 * utility function to look for merge candidates inside a given range.
494 * Any extents with matching state are merged together into a single
495 * extent in the tree. Extents with EXTENT_IO in their state field
496 * are not merged because the end_io handlers need to be able to do
497 * operations on them without sleeping (or doing allocations/splits).
498 *
499 * This should be called with the tree lock held.
500 */
1bf85046
JM
501static void merge_state(struct extent_io_tree *tree,
502 struct extent_state *state)
d1310b2e
CM
503{
504 struct extent_state *other;
505 struct rb_node *other_node;
506
8882679e 507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 508 return;
d1310b2e
CM
509
510 other_node = rb_prev(&state->rb_node);
511 if (other_node) {
512 other = rb_entry(other_node, struct extent_state, rb_node);
513 if (other->end == state->start - 1 &&
514 other->state == state->state) {
5c848198
NB
515 if (tree->private_data &&
516 is_data_inode(tree->private_data))
517 btrfs_merge_delalloc_extent(tree->private_data,
518 state, other);
d1310b2e 519 state->start = other->start;
d1310b2e 520 rb_erase(&other->rb_node, &tree->state);
27a3507d 521 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
522 free_extent_state(other);
523 }
524 }
525 other_node = rb_next(&state->rb_node);
526 if (other_node) {
527 other = rb_entry(other_node, struct extent_state, rb_node);
528 if (other->start == state->end + 1 &&
529 other->state == state->state) {
5c848198
NB
530 if (tree->private_data &&
531 is_data_inode(tree->private_data))
532 btrfs_merge_delalloc_extent(tree->private_data,
533 state, other);
df98b6e2 534 state->end = other->end;
df98b6e2 535 rb_erase(&other->rb_node, &tree->state);
27a3507d 536 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 537 free_extent_state(other);
d1310b2e
CM
538 }
539 }
d1310b2e
CM
540}
541
3150b699 542static void set_state_bits(struct extent_io_tree *tree,
f97e27e9 543 struct extent_state *state, u32 *bits,
d38ed27f 544 struct extent_changeset *changeset);
3150b699 545
d1310b2e
CM
546/*
547 * insert an extent_state struct into the tree. 'bits' are set on the
548 * struct before it is inserted.
549 *
550 * This may return -EEXIST if the extent is already there, in which case the
551 * state struct is freed.
552 *
553 * The tree lock is not taken internally. This is a utility function and
554 * probably isn't what you want to call (see set/clear_extent_bit).
555 */
556static int insert_state(struct extent_io_tree *tree,
557 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
558 struct rb_node ***p,
559 struct rb_node **parent,
f97e27e9 560 u32 *bits, struct extent_changeset *changeset)
d1310b2e
CM
561{
562 struct rb_node *node;
563
2792237d
DS
564 if (end < start) {
565 btrfs_err(tree->fs_info,
566 "insert state: end < start %llu %llu", end, start);
567 WARN_ON(1);
568 }
d1310b2e
CM
569 state->start = start;
570 state->end = end;
9ed74f2d 571
d38ed27f 572 set_state_bits(tree, state, bits, changeset);
3150b699 573
f2071b21 574 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
575 if (node) {
576 struct extent_state *found;
577 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
578 btrfs_err(tree->fs_info,
579 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 580 found->start, found->end, start, end);
d1310b2e
CM
581 return -EEXIST;
582 }
583 merge_state(tree, state);
584 return 0;
585}
586
587/*
588 * split a given extent state struct in two, inserting the preallocated
589 * struct 'prealloc' as the newly created second half. 'split' indicates an
590 * offset inside 'orig' where it should be split.
591 *
592 * Before calling,
593 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
594 * are two extent state structs in the tree:
595 * prealloc: [orig->start, split - 1]
596 * orig: [ split, orig->end ]
597 *
598 * The tree locks are not taken by this function. They need to be held
599 * by the caller.
600 */
601static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
602 struct extent_state *prealloc, u64 split)
603{
604 struct rb_node *node;
9ed74f2d 605
abbb55f4
NB
606 if (tree->private_data && is_data_inode(tree->private_data))
607 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 608
d1310b2e
CM
609 prealloc->start = orig->start;
610 prealloc->end = split - 1;
611 prealloc->state = orig->state;
612 orig->start = split;
613
f2071b21
FM
614 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
615 &prealloc->rb_node, NULL, NULL);
d1310b2e 616 if (node) {
d1310b2e
CM
617 free_extent_state(prealloc);
618 return -EEXIST;
619 }
620 return 0;
621}
622
cdc6a395
LZ
623static struct extent_state *next_state(struct extent_state *state)
624{
625 struct rb_node *next = rb_next(&state->rb_node);
626 if (next)
627 return rb_entry(next, struct extent_state, rb_node);
628 else
629 return NULL;
630}
631
d1310b2e
CM
632/*
633 * utility function to clear some bits in an extent state struct.
52042d8e 634 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
635 *
636 * If no bits are set on the state struct after clearing things, the
637 * struct is freed and removed from the tree
638 */
cdc6a395
LZ
639static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
640 struct extent_state *state,
f97e27e9 641 u32 *bits, int wake,
fefdc557 642 struct extent_changeset *changeset)
d1310b2e 643{
cdc6a395 644 struct extent_state *next;
f97e27e9 645 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 646 int ret;
d1310b2e 647
0ca1f7ce 648 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
649 u64 range = state->end - state->start + 1;
650 WARN_ON(range > tree->dirty_bytes);
651 tree->dirty_bytes -= range;
652 }
a36bb5f9
NB
653
654 if (tree->private_data && is_data_inode(tree->private_data))
655 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
656
57599c7e
DS
657 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
658 BUG_ON(ret < 0);
32c00aff 659 state->state &= ~bits_to_clear;
d1310b2e
CM
660 if (wake)
661 wake_up(&state->wq);
0ca1f7ce 662 if (state->state == 0) {
cdc6a395 663 next = next_state(state);
27a3507d 664 if (extent_state_in_tree(state)) {
d1310b2e 665 rb_erase(&state->rb_node, &tree->state);
27a3507d 666 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
667 free_extent_state(state);
668 } else {
669 WARN_ON(1);
670 }
671 } else {
672 merge_state(tree, state);
cdc6a395 673 next = next_state(state);
d1310b2e 674 }
cdc6a395 675 return next;
d1310b2e
CM
676}
677
8233767a
XG
678static struct extent_state *
679alloc_extent_state_atomic(struct extent_state *prealloc)
680{
681 if (!prealloc)
682 prealloc = alloc_extent_state(GFP_ATOMIC);
683
684 return prealloc;
685}
686
48a3b636 687static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 688{
29b665cc 689 btrfs_panic(tree->fs_info, err,
05912a3c 690 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
691}
692
d1310b2e
CM
693/*
694 * clear some bits on a range in the tree. This may require splitting
695 * or inserting elements in the tree, so the gfp mask is used to
696 * indicate which allocations or sleeping are allowed.
697 *
698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
699 * the given range from the tree regardless of state (ie for truncate).
700 *
701 * the range [start, end] is inclusive.
702 *
6763af84 703 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 704 */
66b0c887 705int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
706 u32 bits, int wake, int delete,
707 struct extent_state **cached_state,
708 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
709{
710 struct extent_state *state;
2c64c53d 711 struct extent_state *cached;
d1310b2e
CM
712 struct extent_state *prealloc = NULL;
713 struct rb_node *node;
5c939df5 714 u64 last_end;
d1310b2e 715 int err;
2ac55d41 716 int clear = 0;
d1310b2e 717
a5dee37d 718 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 719 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 720
7ee9e440
JB
721 if (bits & EXTENT_DELALLOC)
722 bits |= EXTENT_NORESERVE;
723
0ca1f7ce
YZ
724 if (delete)
725 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 726
8882679e 727 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 728 clear = 1;
d1310b2e 729again:
d0164adc 730 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
731 /*
732 * Don't care for allocation failure here because we might end
733 * up not needing the pre-allocated extent state at all, which
734 * is the case if we only have in the tree extent states that
735 * cover our input range and don't cover too any other range.
736 * If we end up needing a new extent state we allocate it later.
737 */
d1310b2e 738 prealloc = alloc_extent_state(mask);
d1310b2e
CM
739 }
740
cad321ad 741 spin_lock(&tree->lock);
2c64c53d
CM
742 if (cached_state) {
743 cached = *cached_state;
2ac55d41
JB
744
745 if (clear) {
746 *cached_state = NULL;
747 cached_state = NULL;
748 }
749
27a3507d
FM
750 if (cached && extent_state_in_tree(cached) &&
751 cached->start <= start && cached->end > start) {
2ac55d41 752 if (clear)
b7ac31b7 753 refcount_dec(&cached->refs);
2c64c53d 754 state = cached;
42daec29 755 goto hit_next;
2c64c53d 756 }
2ac55d41
JB
757 if (clear)
758 free_extent_state(cached);
2c64c53d 759 }
d1310b2e
CM
760 /*
761 * this search will find the extents that end after
762 * our range starts
763 */
80ea96b1 764 node = tree_search(tree, start);
d1310b2e
CM
765 if (!node)
766 goto out;
767 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 768hit_next:
d1310b2e
CM
769 if (state->start > end)
770 goto out;
771 WARN_ON(state->end < start);
5c939df5 772 last_end = state->end;
d1310b2e 773
0449314a 774 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
775 if (!(state->state & bits)) {
776 state = next_state(state);
0449314a 777 goto next;
cdc6a395 778 }
0449314a 779
d1310b2e
CM
780 /*
781 * | ---- desired range ---- |
782 * | state | or
783 * | ------------- state -------------- |
784 *
785 * We need to split the extent we found, and may flip
786 * bits on second half.
787 *
788 * If the extent we found extends past our range, we
789 * just split and search again. It'll get split again
790 * the next time though.
791 *
792 * If the extent we found is inside our range, we clear
793 * the desired bit on it.
794 */
795
796 if (state->start < start) {
8233767a
XG
797 prealloc = alloc_extent_state_atomic(prealloc);
798 BUG_ON(!prealloc);
d1310b2e 799 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
800 if (err)
801 extent_io_tree_panic(tree, err);
802
d1310b2e
CM
803 prealloc = NULL;
804 if (err)
805 goto out;
806 if (state->end <= end) {
fefdc557
QW
807 state = clear_state_bit(tree, state, &bits, wake,
808 changeset);
d1ac6e41 809 goto next;
d1310b2e
CM
810 }
811 goto search_again;
812 }
813 /*
814 * | ---- desired range ---- |
815 * | state |
816 * We need to split the extent, and clear the bit
817 * on the first half
818 */
819 if (state->start <= end && state->end > end) {
8233767a
XG
820 prealloc = alloc_extent_state_atomic(prealloc);
821 BUG_ON(!prealloc);
d1310b2e 822 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
823 if (err)
824 extent_io_tree_panic(tree, err);
825
d1310b2e
CM
826 if (wake)
827 wake_up(&state->wq);
42daec29 828
fefdc557 829 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 830
d1310b2e
CM
831 prealloc = NULL;
832 goto out;
833 }
42daec29 834
fefdc557 835 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 836next:
5c939df5
YZ
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
cdc6a395 840 if (start <= end && state && !need_resched())
692e5759 841 goto hit_next;
d1310b2e
CM
842
843search_again:
844 if (start > end)
845 goto out;
cad321ad 846 spin_unlock(&tree->lock);
d0164adc 847 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
848 cond_resched();
849 goto again;
7ab5cb2a
DS
850
851out:
852 spin_unlock(&tree->lock);
853 if (prealloc)
854 free_extent_state(prealloc);
855
856 return 0;
857
d1310b2e 858}
d1310b2e 859
143bede5
JM
860static void wait_on_state(struct extent_io_tree *tree,
861 struct extent_state *state)
641f5219
CH
862 __releases(tree->lock)
863 __acquires(tree->lock)
d1310b2e
CM
864{
865 DEFINE_WAIT(wait);
866 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 867 spin_unlock(&tree->lock);
d1310b2e 868 schedule();
cad321ad 869 spin_lock(&tree->lock);
d1310b2e 870 finish_wait(&state->wq, &wait);
d1310b2e
CM
871}
872
873/*
874 * waits for one or more bits to clear on a range in the state tree.
875 * The range [start, end] is inclusive.
876 * The tree lock is taken by this function
877 */
41074888 878static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 879 u32 bits)
d1310b2e
CM
880{
881 struct extent_state *state;
882 struct rb_node *node;
883
a5dee37d 884 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 885
cad321ad 886 spin_lock(&tree->lock);
d1310b2e
CM
887again:
888 while (1) {
889 /*
890 * this search will find all the extents that end after
891 * our range starts
892 */
80ea96b1 893 node = tree_search(tree, start);
c50d3e71 894process_node:
d1310b2e
CM
895 if (!node)
896 break;
897
898 state = rb_entry(node, struct extent_state, rb_node);
899
900 if (state->start > end)
901 goto out;
902
903 if (state->state & bits) {
904 start = state->start;
b7ac31b7 905 refcount_inc(&state->refs);
d1310b2e
CM
906 wait_on_state(tree, state);
907 free_extent_state(state);
908 goto again;
909 }
910 start = state->end + 1;
911
912 if (start > end)
913 break;
914
c50d3e71
FM
915 if (!cond_resched_lock(&tree->lock)) {
916 node = rb_next(node);
917 goto process_node;
918 }
d1310b2e
CM
919 }
920out:
cad321ad 921 spin_unlock(&tree->lock);
d1310b2e 922}
d1310b2e 923
1bf85046 924static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 925 struct extent_state *state,
f97e27e9 926 u32 *bits, struct extent_changeset *changeset)
d1310b2e 927{
f97e27e9 928 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 929 int ret;
9ed74f2d 930
e06a1fc9
NB
931 if (tree->private_data && is_data_inode(tree->private_data))
932 btrfs_set_delalloc_extent(tree->private_data, state, bits);
933
0ca1f7ce 934 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
935 u64 range = state->end - state->start + 1;
936 tree->dirty_bytes += range;
937 }
57599c7e
DS
938 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
939 BUG_ON(ret < 0);
0ca1f7ce 940 state->state |= bits_to_set;
d1310b2e
CM
941}
942
e38e2ed7
FM
943static void cache_state_if_flags(struct extent_state *state,
944 struct extent_state **cached_ptr,
9ee49a04 945 unsigned flags)
2c64c53d
CM
946{
947 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 948 if (!flags || (state->state & flags)) {
2c64c53d 949 *cached_ptr = state;
b7ac31b7 950 refcount_inc(&state->refs);
2c64c53d
CM
951 }
952 }
953}
954
e38e2ed7
FM
955static void cache_state(struct extent_state *state,
956 struct extent_state **cached_ptr)
957{
958 return cache_state_if_flags(state, cached_ptr,
8882679e 959 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
960}
961
d1310b2e 962/*
1edbb734
CM
963 * set some bits on a range in the tree. This may require allocations or
964 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 965 *
1edbb734
CM
966 * If any of the exclusive bits are set, this will fail with -EEXIST if some
967 * part of the range already has the desired bits set. The start of the
968 * existing range is returned in failed_start in this case.
d1310b2e 969 *
1edbb734 970 * [start, end] is inclusive This takes the tree lock.
d1310b2e 971 */
f97e27e9
QW
972int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
973 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
974 struct extent_state **cached_state, gfp_t mask,
975 struct extent_changeset *changeset)
d1310b2e
CM
976{
977 struct extent_state *state;
978 struct extent_state *prealloc = NULL;
979 struct rb_node *node;
12cfbad9
FDBM
980 struct rb_node **p;
981 struct rb_node *parent;
d1310b2e 982 int err = 0;
d1310b2e
CM
983 u64 last_start;
984 u64 last_end;
42daec29 985
a5dee37d 986 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 987 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 988
3f6bb4ae
QW
989 if (exclusive_bits)
990 ASSERT(failed_start);
991 else
992 ASSERT(failed_start == NULL);
d1310b2e 993again:
d0164adc 994 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
995 /*
996 * Don't care for allocation failure here because we might end
997 * up not needing the pre-allocated extent state at all, which
998 * is the case if we only have in the tree extent states that
999 * cover our input range and don't cover too any other range.
1000 * If we end up needing a new extent state we allocate it later.
1001 */
d1310b2e 1002 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1003 }
1004
cad321ad 1005 spin_lock(&tree->lock);
9655d298
CM
1006 if (cached_state && *cached_state) {
1007 state = *cached_state;
df98b6e2 1008 if (state->start <= start && state->end > start &&
27a3507d 1009 extent_state_in_tree(state)) {
9655d298
CM
1010 node = &state->rb_node;
1011 goto hit_next;
1012 }
1013 }
d1310b2e
CM
1014 /*
1015 * this search will find all the extents that end after
1016 * our range starts.
1017 */
12cfbad9 1018 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1019 if (!node) {
8233767a
XG
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
12cfbad9 1022 err = insert_state(tree, prealloc, start, end,
d38ed27f 1023 &p, &parent, &bits, changeset);
c2d904e0
JM
1024 if (err)
1025 extent_io_tree_panic(tree, err);
1026
c42ac0bc 1027 cache_state(prealloc, cached_state);
d1310b2e 1028 prealloc = NULL;
d1310b2e
CM
1029 goto out;
1030 }
d1310b2e 1031 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1032hit_next:
d1310b2e
CM
1033 last_start = state->start;
1034 last_end = state->end;
1035
1036 /*
1037 * | ---- desired range ---- |
1038 * | state |
1039 *
1040 * Just lock what we found and keep going
1041 */
1042 if (state->start == start && state->end <= end) {
1edbb734 1043 if (state->state & exclusive_bits) {
d1310b2e
CM
1044 *failed_start = state->start;
1045 err = -EEXIST;
1046 goto out;
1047 }
42daec29 1048
d38ed27f 1049 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1050 cache_state(state, cached_state);
d1310b2e 1051 merge_state(tree, state);
5c939df5
YZ
1052 if (last_end == (u64)-1)
1053 goto out;
1054 start = last_end + 1;
d1ac6e41
LB
1055 state = next_state(state);
1056 if (start < end && state && state->start == start &&
1057 !need_resched())
1058 goto hit_next;
d1310b2e
CM
1059 goto search_again;
1060 }
1061
1062 /*
1063 * | ---- desired range ---- |
1064 * | state |
1065 * or
1066 * | ------------- state -------------- |
1067 *
1068 * We need to split the extent we found, and may flip bits on
1069 * second half.
1070 *
1071 * If the extent we found extends past our
1072 * range, we just split and search again. It'll get split
1073 * again the next time though.
1074 *
1075 * If the extent we found is inside our range, we set the
1076 * desired bit on it.
1077 */
1078 if (state->start < start) {
1edbb734 1079 if (state->state & exclusive_bits) {
d1310b2e
CM
1080 *failed_start = start;
1081 err = -EEXIST;
1082 goto out;
1083 }
8233767a 1084
55ffaabe
FM
1085 /*
1086 * If this extent already has all the bits we want set, then
1087 * skip it, not necessary to split it or do anything with it.
1088 */
1089 if ((state->state & bits) == bits) {
1090 start = state->end + 1;
1091 cache_state(state, cached_state);
1092 goto search_again;
1093 }
1094
8233767a
XG
1095 prealloc = alloc_extent_state_atomic(prealloc);
1096 BUG_ON(!prealloc);
d1310b2e 1097 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1098 if (err)
1099 extent_io_tree_panic(tree, err);
1100
d1310b2e
CM
1101 prealloc = NULL;
1102 if (err)
1103 goto out;
1104 if (state->end <= end) {
d38ed27f 1105 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1106 cache_state(state, cached_state);
d1310b2e 1107 merge_state(tree, state);
5c939df5
YZ
1108 if (last_end == (u64)-1)
1109 goto out;
1110 start = last_end + 1;
d1ac6e41
LB
1111 state = next_state(state);
1112 if (start < end && state && state->start == start &&
1113 !need_resched())
1114 goto hit_next;
d1310b2e
CM
1115 }
1116 goto search_again;
1117 }
1118 /*
1119 * | ---- desired range ---- |
1120 * | state | or | state |
1121 *
1122 * There's a hole, we need to insert something in it and
1123 * ignore the extent we found.
1124 */
1125 if (state->start > start) {
1126 u64 this_end;
1127 if (end < last_start)
1128 this_end = end;
1129 else
d397712b 1130 this_end = last_start - 1;
8233767a
XG
1131
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 BUG_ON(!prealloc);
c7f895a2
XG
1134
1135 /*
1136 * Avoid to free 'prealloc' if it can be merged with
1137 * the later extent.
1138 */
d1310b2e 1139 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1140 NULL, NULL, &bits, changeset);
c2d904e0
JM
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143
9ed74f2d
JB
1144 cache_state(prealloc, cached_state);
1145 prealloc = NULL;
d1310b2e
CM
1146 start = this_end + 1;
1147 goto search_again;
1148 }
1149 /*
1150 * | ---- desired range ---- |
1151 * | state |
1152 * We need to split the extent, and set the bit
1153 * on the first half
1154 */
1155 if (state->start <= end && state->end > end) {
1edbb734 1156 if (state->state & exclusive_bits) {
d1310b2e
CM
1157 *failed_start = start;
1158 err = -EEXIST;
1159 goto out;
1160 }
8233767a
XG
1161
1162 prealloc = alloc_extent_state_atomic(prealloc);
1163 BUG_ON(!prealloc);
d1310b2e 1164 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1165 if (err)
1166 extent_io_tree_panic(tree, err);
d1310b2e 1167
d38ed27f 1168 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1169 cache_state(prealloc, cached_state);
d1310b2e
CM
1170 merge_state(tree, prealloc);
1171 prealloc = NULL;
1172 goto out;
1173 }
1174
b5a4ba14
DS
1175search_again:
1176 if (start > end)
1177 goto out;
1178 spin_unlock(&tree->lock);
1179 if (gfpflags_allow_blocking(mask))
1180 cond_resched();
1181 goto again;
d1310b2e
CM
1182
1183out:
cad321ad 1184 spin_unlock(&tree->lock);
d1310b2e
CM
1185 if (prealloc)
1186 free_extent_state(prealloc);
1187
1188 return err;
1189
d1310b2e 1190}
d1310b2e 1191
462d6fac 1192/**
10983f2e
LB
1193 * convert_extent_bit - convert all bits in a given range from one bit to
1194 * another
462d6fac
JB
1195 * @tree: the io tree to search
1196 * @start: the start offset in bytes
1197 * @end: the end offset in bytes (inclusive)
1198 * @bits: the bits to set in this range
1199 * @clear_bits: the bits to clear in this range
e6138876 1200 * @cached_state: state that we're going to cache
462d6fac
JB
1201 *
1202 * This will go through and set bits for the given range. If any states exist
1203 * already in this range they are set with the given bit and cleared of the
1204 * clear_bits. This is only meant to be used by things that are mergeable, ie
1205 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1206 * boundary bits like LOCK.
210aa277
DS
1207 *
1208 * All allocations are done with GFP_NOFS.
462d6fac
JB
1209 */
1210int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1211 u32 bits, u32 clear_bits,
210aa277 1212 struct extent_state **cached_state)
462d6fac
JB
1213{
1214 struct extent_state *state;
1215 struct extent_state *prealloc = NULL;
1216 struct rb_node *node;
12cfbad9
FDBM
1217 struct rb_node **p;
1218 struct rb_node *parent;
462d6fac
JB
1219 int err = 0;
1220 u64 last_start;
1221 u64 last_end;
c8fd3de7 1222 bool first_iteration = true;
462d6fac 1223
a5dee37d 1224 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1225 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1226 clear_bits);
8d599ae1 1227
462d6fac 1228again:
210aa277 1229 if (!prealloc) {
c8fd3de7
FM
1230 /*
1231 * Best effort, don't worry if extent state allocation fails
1232 * here for the first iteration. We might have a cached state
1233 * that matches exactly the target range, in which case no
1234 * extent state allocations are needed. We'll only know this
1235 * after locking the tree.
1236 */
210aa277 1237 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1238 if (!prealloc && !first_iteration)
462d6fac
JB
1239 return -ENOMEM;
1240 }
1241
1242 spin_lock(&tree->lock);
e6138876
JB
1243 if (cached_state && *cached_state) {
1244 state = *cached_state;
1245 if (state->start <= start && state->end > start &&
27a3507d 1246 extent_state_in_tree(state)) {
e6138876
JB
1247 node = &state->rb_node;
1248 goto hit_next;
1249 }
1250 }
1251
462d6fac
JB
1252 /*
1253 * this search will find all the extents that end after
1254 * our range starts.
1255 */
12cfbad9 1256 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1257 if (!node) {
1258 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1259 if (!prealloc) {
1260 err = -ENOMEM;
1261 goto out;
1262 }
12cfbad9 1263 err = insert_state(tree, prealloc, start, end,
d38ed27f 1264 &p, &parent, &bits, NULL);
c2d904e0
JM
1265 if (err)
1266 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1267 cache_state(prealloc, cached_state);
1268 prealloc = NULL;
462d6fac
JB
1269 goto out;
1270 }
1271 state = rb_entry(node, struct extent_state, rb_node);
1272hit_next:
1273 last_start = state->start;
1274 last_end = state->end;
1275
1276 /*
1277 * | ---- desired range ---- |
1278 * | state |
1279 *
1280 * Just lock what we found and keep going
1281 */
1282 if (state->start == start && state->end <= end) {
d38ed27f 1283 set_state_bits(tree, state, &bits, NULL);
e6138876 1284 cache_state(state, cached_state);
fefdc557 1285 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1286 if (last_end == (u64)-1)
1287 goto out;
462d6fac 1288 start = last_end + 1;
d1ac6e41
LB
1289 if (start < end && state && state->start == start &&
1290 !need_resched())
1291 goto hit_next;
462d6fac
JB
1292 goto search_again;
1293 }
1294
1295 /*
1296 * | ---- desired range ---- |
1297 * | state |
1298 * or
1299 * | ------------- state -------------- |
1300 *
1301 * We need to split the extent we found, and may flip bits on
1302 * second half.
1303 *
1304 * If the extent we found extends past our
1305 * range, we just split and search again. It'll get split
1306 * again the next time though.
1307 *
1308 * If the extent we found is inside our range, we set the
1309 * desired bit on it.
1310 */
1311 if (state->start < start) {
1312 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1313 if (!prealloc) {
1314 err = -ENOMEM;
1315 goto out;
1316 }
462d6fac 1317 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1318 if (err)
1319 extent_io_tree_panic(tree, err);
462d6fac
JB
1320 prealloc = NULL;
1321 if (err)
1322 goto out;
1323 if (state->end <= end) {
d38ed27f 1324 set_state_bits(tree, state, &bits, NULL);
e6138876 1325 cache_state(state, cached_state);
fefdc557
QW
1326 state = clear_state_bit(tree, state, &clear_bits, 0,
1327 NULL);
462d6fac
JB
1328 if (last_end == (u64)-1)
1329 goto out;
1330 start = last_end + 1;
d1ac6e41
LB
1331 if (start < end && state && state->start == start &&
1332 !need_resched())
1333 goto hit_next;
462d6fac
JB
1334 }
1335 goto search_again;
1336 }
1337 /*
1338 * | ---- desired range ---- |
1339 * | state | or | state |
1340 *
1341 * There's a hole, we need to insert something in it and
1342 * ignore the extent we found.
1343 */
1344 if (state->start > start) {
1345 u64 this_end;
1346 if (end < last_start)
1347 this_end = end;
1348 else
1349 this_end = last_start - 1;
1350
1351 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1352 if (!prealloc) {
1353 err = -ENOMEM;
1354 goto out;
1355 }
462d6fac
JB
1356
1357 /*
1358 * Avoid to free 'prealloc' if it can be merged with
1359 * the later extent.
1360 */
1361 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1362 NULL, NULL, &bits, NULL);
c2d904e0
JM
1363 if (err)
1364 extent_io_tree_panic(tree, err);
e6138876 1365 cache_state(prealloc, cached_state);
462d6fac
JB
1366 prealloc = NULL;
1367 start = this_end + 1;
1368 goto search_again;
1369 }
1370 /*
1371 * | ---- desired range ---- |
1372 * | state |
1373 * We need to split the extent, and set the bit
1374 * on the first half
1375 */
1376 if (state->start <= end && state->end > end) {
1377 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1378 if (!prealloc) {
1379 err = -ENOMEM;
1380 goto out;
1381 }
462d6fac
JB
1382
1383 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1384 if (err)
1385 extent_io_tree_panic(tree, err);
462d6fac 1386
d38ed27f 1387 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1388 cache_state(prealloc, cached_state);
fefdc557 1389 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1390 prealloc = NULL;
1391 goto out;
1392 }
1393
462d6fac
JB
1394search_again:
1395 if (start > end)
1396 goto out;
1397 spin_unlock(&tree->lock);
210aa277 1398 cond_resched();
c8fd3de7 1399 first_iteration = false;
462d6fac 1400 goto again;
462d6fac
JB
1401
1402out:
1403 spin_unlock(&tree->lock);
1404 if (prealloc)
1405 free_extent_state(prealloc);
1406
1407 return err;
462d6fac
JB
1408}
1409
d1310b2e 1410/* wrappers around set/clear extent bit */
d38ed27f 1411int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1412 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1413{
1414 /*
1415 * We don't support EXTENT_LOCKED yet, as current changeset will
1416 * record any bits changed, so for EXTENT_LOCKED case, it will
1417 * either fail with -EEXIST or changeset will record the whole
1418 * range.
1419 */
1420 BUG_ON(bits & EXTENT_LOCKED);
1421
1cab5e72
NB
1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1423 changeset);
d38ed27f
QW
1424}
1425
4ca73656 1426int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1427 u32 bits)
4ca73656 1428{
1cab5e72
NB
1429 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1430 GFP_NOWAIT, NULL);
4ca73656
NB
1431}
1432
fefdc557 1433int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1434 u32 bits, int wake, int delete,
ae0f1625 1435 struct extent_state **cached)
fefdc557
QW
1436{
1437 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1438 cached, GFP_NOFS, NULL);
fefdc557
QW
1439}
1440
fefdc557 1441int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1442 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1443{
1444 /*
1445 * Don't support EXTENT_LOCKED case, same reason as
1446 * set_record_extent_bits().
1447 */
1448 BUG_ON(bits & EXTENT_LOCKED);
1449
f734c44a 1450 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1451 changeset);
1452}
1453
d352ac68
CM
1454/*
1455 * either insert or lock state struct between start and end use mask to tell
1456 * us if waiting is desired.
1457 */
1edbb734 1458int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1459 struct extent_state **cached_state)
d1310b2e
CM
1460{
1461 int err;
1462 u64 failed_start;
9ee49a04 1463
d1310b2e 1464 while (1) {
1cab5e72
NB
1465 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1466 EXTENT_LOCKED, &failed_start,
1467 cached_state, GFP_NOFS, NULL);
d0082371 1468 if (err == -EEXIST) {
d1310b2e
CM
1469 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1470 start = failed_start;
d0082371 1471 } else
d1310b2e 1472 break;
d1310b2e
CM
1473 WARN_ON(start > end);
1474 }
1475 return err;
1476}
d1310b2e 1477
d0082371 1478int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1479{
1480 int err;
1481 u64 failed_start;
1482
1cab5e72
NB
1483 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1484 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1485 if (err == -EEXIST) {
1486 if (failed_start > start)
1487 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1488 EXTENT_LOCKED, 1, 0, NULL);
25179201 1489 return 0;
6643558d 1490 }
25179201
JB
1491 return 1;
1492}
25179201 1493
bd1fa4f0 1494void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1495{
09cbfeaf
KS
1496 unsigned long index = start >> PAGE_SHIFT;
1497 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1498 struct page *page;
1499
1500 while (index <= end_index) {
1501 page = find_get_page(inode->i_mapping, index);
1502 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1503 clear_page_dirty_for_io(page);
09cbfeaf 1504 put_page(page);
4adaa611
CM
1505 index++;
1506 }
4adaa611
CM
1507}
1508
f6311572 1509void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1510{
09cbfeaf
KS
1511 unsigned long index = start >> PAGE_SHIFT;
1512 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1513 struct page *page;
1514
1515 while (index <= end_index) {
1516 page = find_get_page(inode->i_mapping, index);
1517 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1518 __set_page_dirty_nobuffers(page);
8d38633c 1519 account_page_redirty(page);
09cbfeaf 1520 put_page(page);
4adaa611
CM
1521 index++;
1522 }
4adaa611
CM
1523}
1524
d352ac68
CM
1525/* find the first state struct with 'bits' set after 'start', and
1526 * return it. tree->lock must be held. NULL will returned if
1527 * nothing was found after 'start'
1528 */
48a3b636 1529static struct extent_state *
f97e27e9 1530find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
d397712b 1540 if (!node)
d7fc640e 1541 goto out;
d7fc640e 1542
d397712b 1543 while (1) {
d7fc640e 1544 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1545 if (state->end >= start && (state->state & bits))
d7fc640e 1546 return state;
d397712b 1547
d7fc640e
CM
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
d7fc640e 1555
69261c4b 1556/*
03509b78 1557 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1558 *
03509b78
QW
1559 * Note: If there are multiple bits set in @bits, any of them will match.
1560 *
1561 * Return 0 if we find something, and update @start_ret and @end_ret.
1562 * Return 1 if we found nothing.
69261c4b
XG
1563 */
1564int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1565 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1566 struct extent_state **cached_state)
69261c4b
XG
1567{
1568 struct extent_state *state;
1569 int ret = 1;
1570
1571 spin_lock(&tree->lock);
e6138876
JB
1572 if (cached_state && *cached_state) {
1573 state = *cached_state;
27a3507d 1574 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1575 while ((state = next_state(state)) != NULL) {
e6138876
JB
1576 if (state->state & bits)
1577 goto got_it;
e6138876
JB
1578 }
1579 free_extent_state(*cached_state);
1580 *cached_state = NULL;
1581 goto out;
1582 }
1583 free_extent_state(*cached_state);
1584 *cached_state = NULL;
1585 }
1586
69261c4b 1587 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1588got_it:
69261c4b 1589 if (state) {
e38e2ed7 1590 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1591 *start_ret = state->start;
1592 *end_ret = state->end;
1593 ret = 0;
1594 }
e6138876 1595out:
69261c4b
XG
1596 spin_unlock(&tree->lock);
1597 return ret;
1598}
1599
41a2ee75 1600/**
3bed2da1
NB
1601 * Find a contiguous area of bits
1602 *
1603 * @tree: io tree to check
1604 * @start: offset to start the search from
1605 * @start_ret: the first offset we found with the bits set
1606 * @end_ret: the final contiguous range of the bits that were set
1607 * @bits: bits to look for
41a2ee75
JB
1608 *
1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1610 * to set bits appropriately, and then merge them again. During this time it
1611 * will drop the tree->lock, so use this helper if you want to find the actual
1612 * contiguous area for given bits. We will search to the first bit we find, and
1613 * then walk down the tree until we find a non-contiguous area. The area
1614 * returned will be the full contiguous area with the bits set.
1615 */
1616int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1617 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1618{
1619 struct extent_state *state;
1620 int ret = 1;
1621
1622 spin_lock(&tree->lock);
1623 state = find_first_extent_bit_state(tree, start, bits);
1624 if (state) {
1625 *start_ret = state->start;
1626 *end_ret = state->end;
1627 while ((state = next_state(state)) != NULL) {
1628 if (state->start > (*end_ret + 1))
1629 break;
1630 *end_ret = state->end;
1631 }
1632 ret = 0;
1633 }
1634 spin_unlock(&tree->lock);
1635 return ret;
1636}
1637
45bfcfc1 1638/**
3bed2da1
NB
1639 * Find the first range that has @bits not set. This range could start before
1640 * @start.
45bfcfc1 1641 *
3bed2da1
NB
1642 * @tree: the tree to search
1643 * @start: offset at/after which the found extent should start
1644 * @start_ret: records the beginning of the range
1645 * @end_ret: records the end of the range (inclusive)
1646 * @bits: the set of bits which must be unset
45bfcfc1
NB
1647 *
1648 * Since unallocated range is also considered one which doesn't have the bits
1649 * set it's possible that @end_ret contains -1, this happens in case the range
1650 * spans (last_range_end, end of device]. In this case it's up to the caller to
1651 * trim @end_ret to the appropriate size.
1652 */
1653void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1654 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1655{
1656 struct extent_state *state;
1657 struct rb_node *node, *prev = NULL, *next;
1658
1659 spin_lock(&tree->lock);
1660
1661 /* Find first extent with bits cleared */
1662 while (1) {
1663 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1664 if (!node && !next && !prev) {
1665 /*
1666 * Tree is completely empty, send full range and let
1667 * caller deal with it
1668 */
1669 *start_ret = 0;
1670 *end_ret = -1;
1671 goto out;
1672 } else if (!node && !next) {
1673 /*
1674 * We are past the last allocated chunk, set start at
1675 * the end of the last extent.
1676 */
1677 state = rb_entry(prev, struct extent_state, rb_node);
1678 *start_ret = state->end + 1;
1679 *end_ret = -1;
1680 goto out;
1681 } else if (!node) {
45bfcfc1 1682 node = next;
45bfcfc1 1683 }
1eaebb34
NB
1684 /*
1685 * At this point 'node' either contains 'start' or start is
1686 * before 'node'
1687 */
45bfcfc1 1688 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1689
1690 if (in_range(start, state->start, state->end - state->start + 1)) {
1691 if (state->state & bits) {
1692 /*
1693 * |--range with bits sets--|
1694 * |
1695 * start
1696 */
1697 start = state->end + 1;
1698 } else {
1699 /*
1700 * 'start' falls within a range that doesn't
1701 * have the bits set, so take its start as
1702 * the beginning of the desired range
1703 *
1704 * |--range with bits cleared----|
1705 * |
1706 * start
1707 */
1708 *start_ret = state->start;
1709 break;
1710 }
45bfcfc1 1711 } else {
1eaebb34
NB
1712 /*
1713 * |---prev range---|---hole/unset---|---node range---|
1714 * |
1715 * start
1716 *
1717 * or
1718 *
1719 * |---hole/unset--||--first node--|
1720 * 0 |
1721 * start
1722 */
1723 if (prev) {
1724 state = rb_entry(prev, struct extent_state,
1725 rb_node);
1726 *start_ret = state->end + 1;
1727 } else {
1728 *start_ret = 0;
1729 }
45bfcfc1
NB
1730 break;
1731 }
1732 }
1733
1734 /*
1735 * Find the longest stretch from start until an entry which has the
1736 * bits set
1737 */
1738 while (1) {
1739 state = rb_entry(node, struct extent_state, rb_node);
1740 if (state->end >= start && !(state->state & bits)) {
1741 *end_ret = state->end;
1742 } else {
1743 *end_ret = state->start - 1;
1744 break;
1745 }
1746
1747 node = rb_next(node);
1748 if (!node)
1749 break;
1750 }
1751out:
1752 spin_unlock(&tree->lock);
1753}
1754
d352ac68
CM
1755/*
1756 * find a contiguous range of bytes in the file marked as delalloc, not
1757 * more than 'max_bytes'. start and end are used to return the range,
1758 *
3522e903 1759 * true is returned if we find something, false if nothing was in the tree
d352ac68 1760 */
083e75e7
JB
1761bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1762 u64 *end, u64 max_bytes,
1763 struct extent_state **cached_state)
d1310b2e
CM
1764{
1765 struct rb_node *node;
1766 struct extent_state *state;
1767 u64 cur_start = *start;
3522e903 1768 bool found = false;
d1310b2e
CM
1769 u64 total_bytes = 0;
1770
cad321ad 1771 spin_lock(&tree->lock);
c8b97818 1772
d1310b2e
CM
1773 /*
1774 * this search will find all the extents that end after
1775 * our range starts.
1776 */
80ea96b1 1777 node = tree_search(tree, cur_start);
2b114d1d 1778 if (!node) {
3522e903 1779 *end = (u64)-1;
d1310b2e
CM
1780 goto out;
1781 }
1782
d397712b 1783 while (1) {
d1310b2e 1784 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1785 if (found && (state->start != cur_start ||
1786 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1787 goto out;
1788 }
1789 if (!(state->state & EXTENT_DELALLOC)) {
1790 if (!found)
1791 *end = state->end;
1792 goto out;
1793 }
c2a128d2 1794 if (!found) {
d1310b2e 1795 *start = state->start;
c2a128d2 1796 *cached_state = state;
b7ac31b7 1797 refcount_inc(&state->refs);
c2a128d2 1798 }
3522e903 1799 found = true;
d1310b2e
CM
1800 *end = state->end;
1801 cur_start = state->end + 1;
1802 node = rb_next(node);
d1310b2e 1803 total_bytes += state->end - state->start + 1;
7bf811a5 1804 if (total_bytes >= max_bytes)
573aecaf 1805 break;
573aecaf 1806 if (!node)
d1310b2e
CM
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return found;
1812}
1813
ed8f13bf
QW
1814/*
1815 * Process one page for __process_pages_contig().
1816 *
1817 * Return >0 if we hit @page == @locked_page.
1818 * Return 0 if we updated the page status.
1819 * Return -EGAIN if the we need to try again.
1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1821 */
e38992be
QW
1822static int process_one_page(struct btrfs_fs_info *fs_info,
1823 struct address_space *mapping,
ed8f13bf 1824 struct page *page, struct page *locked_page,
e38992be 1825 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1826{
e38992be
QW
1827 u32 len;
1828
1829 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1830 len = end + 1 - start;
1831
ed8f13bf 1832 if (page_ops & PAGE_SET_ORDERED)
b945a463 1833 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 1834 if (page_ops & PAGE_SET_ERROR)
e38992be 1835 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1836 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1837 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1838 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1839 }
1840 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1841 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
1842
1843 if (page == locked_page)
1844 return 1;
1845
ed8f13bf 1846 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1847 int ret;
1848
1849 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1850 if (ret)
1851 return ret;
ed8f13bf 1852 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1853 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1854 return -EAGAIN;
1855 }
1856 }
1857 if (page_ops & PAGE_UNLOCK)
1e1de387 1858 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1859 return 0;
1860}
1861
da2c7009
LB
1862static int __process_pages_contig(struct address_space *mapping,
1863 struct page *locked_page,
98af9ab1 1864 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1865 u64 *processed_end)
1866{
e38992be 1867 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1868 pgoff_t start_index = start >> PAGE_SHIFT;
1869 pgoff_t end_index = end >> PAGE_SHIFT;
1870 pgoff_t index = start_index;
1871 unsigned long nr_pages = end_index - start_index + 1;
1872 unsigned long pages_processed = 0;
1873 struct page *pages[16];
1874 int err = 0;
1875 int i;
1876
1877 if (page_ops & PAGE_LOCK) {
1878 ASSERT(page_ops == PAGE_LOCK);
1879 ASSERT(processed_end && *processed_end == start);
1880 }
1881
1882 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1883 mapping_set_error(mapping, -EIO);
1884
1885 while (nr_pages > 0) {
1886 int found_pages;
1887
1888 found_pages = find_get_pages_contig(mapping, index,
1889 min_t(unsigned long,
1890 nr_pages, ARRAY_SIZE(pages)), pages);
1891 if (found_pages == 0) {
1892 /*
1893 * Only if we're going to lock these pages, we can find
1894 * nothing at @index.
1895 */
1896 ASSERT(page_ops & PAGE_LOCK);
1897 err = -EAGAIN;
1898 goto out;
1899 }
1900
1901 for (i = 0; i < found_pages; i++) {
1902 int process_ret;
1903
e38992be
QW
1904 process_ret = process_one_page(fs_info, mapping,
1905 pages[i], locked_page, page_ops,
1906 start, end);
ed8f13bf
QW
1907 if (process_ret < 0) {
1908 for (; i < found_pages; i++)
1909 put_page(pages[i]);
1910 err = -EAGAIN;
1911 goto out;
1912 }
1913 put_page(pages[i]);
1914 pages_processed++;
1915 }
1916 nr_pages -= found_pages;
1917 index += found_pages;
1918 cond_resched();
1919 }
1920out:
1921 if (err && processed_end) {
1922 /*
1923 * Update @processed_end. I know this is awful since it has
1924 * two different return value patterns (inclusive vs exclusive).
1925 *
1926 * But the exclusive pattern is necessary if @start is 0, or we
1927 * underflow and check against processed_end won't work as
1928 * expected.
1929 */
1930 if (pages_processed)
1931 *processed_end = min(end,
1932 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1933 else
1934 *processed_end = start;
1935 }
1936 return err;
1937}
da2c7009 1938
143bede5
JM
1939static noinline void __unlock_for_delalloc(struct inode *inode,
1940 struct page *locked_page,
1941 u64 start, u64 end)
c8b97818 1942{
09cbfeaf
KS
1943 unsigned long index = start >> PAGE_SHIFT;
1944 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1945
76c0021d 1946 ASSERT(locked_page);
c8b97818 1947 if (index == locked_page->index && end_index == index)
143bede5 1948 return;
c8b97818 1949
98af9ab1 1950 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1951 PAGE_UNLOCK, NULL);
c8b97818
CM
1952}
1953
1954static noinline int lock_delalloc_pages(struct inode *inode,
1955 struct page *locked_page,
1956 u64 delalloc_start,
1957 u64 delalloc_end)
1958{
09cbfeaf 1959 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1960 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1961 u64 processed_end = delalloc_start;
c8b97818 1962 int ret;
c8b97818 1963
76c0021d 1964 ASSERT(locked_page);
c8b97818
CM
1965 if (index == locked_page->index && index == end_index)
1966 return 0;
1967
98af9ab1
QW
1968 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1969 delalloc_end, PAGE_LOCK, &processed_end);
1970 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1971 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 1972 processed_end);
c8b97818
CM
1973 return ret;
1974}
1975
1976/*
3522e903 1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 1978 * more than @max_bytes.
c8b97818 1979 *
2749f7ef
QW
1980 * @start: The original start bytenr to search.
1981 * Will store the extent range start bytenr.
1982 * @end: The original end bytenr of the search range
1983 * Will store the extent range end bytenr.
1984 *
1985 * Return true if we find a delalloc range which starts inside the original
1986 * range, and @start/@end will store the delalloc range start/end.
1987 *
1988 * Return false if we can't find any delalloc range which starts inside the
1989 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 1990 */
ce9f967f 1991EXPORT_FOR_TESTS
3522e903 1992noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1993 struct page *locked_page, u64 *start,
917aacec 1994 u64 *end)
c8b97818 1995{
9978059b 1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
1997 const u64 orig_start = *start;
1998 const u64 orig_end = *end;
917aacec 1999 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
2000 u64 delalloc_start;
2001 u64 delalloc_end;
3522e903 2002 bool found;
9655d298 2003 struct extent_state *cached_state = NULL;
c8b97818
CM
2004 int ret;
2005 int loops = 0;
2006
2749f7ef
QW
2007 /* Caller should pass a valid @end to indicate the search range end */
2008 ASSERT(orig_end > orig_start);
2009
2010 /* The range should at least cover part of the page */
2011 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2012 orig_end <= page_offset(locked_page)));
c8b97818
CM
2013again:
2014 /* step one, find a bunch of delalloc bytes starting at start */
2015 delalloc_start = *start;
2016 delalloc_end = 0;
083e75e7
JB
2017 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2018 max_bytes, &cached_state);
2749f7ef 2019 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 2020 *start = delalloc_start;
2749f7ef
QW
2021
2022 /* @delalloc_end can be -1, never go beyond @orig_end */
2023 *end = min(delalloc_end, orig_end);
c2a128d2 2024 free_extent_state(cached_state);
3522e903 2025 return false;
c8b97818
CM
2026 }
2027
70b99e69
CM
2028 /*
2029 * start comes from the offset of locked_page. We have to lock
2030 * pages in order, so we can't process delalloc bytes before
2031 * locked_page
2032 */
d397712b 2033 if (delalloc_start < *start)
70b99e69 2034 delalloc_start = *start;
70b99e69 2035
c8b97818
CM
2036 /*
2037 * make sure to limit the number of pages we try to lock down
c8b97818 2038 */
7bf811a5
JB
2039 if (delalloc_end + 1 - delalloc_start > max_bytes)
2040 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2041
c8b97818
CM
2042 /* step two, lock all the pages after the page that has start */
2043 ret = lock_delalloc_pages(inode, locked_page,
2044 delalloc_start, delalloc_end);
9bfd61d9 2045 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2046 if (ret == -EAGAIN) {
2047 /* some of the pages are gone, lets avoid looping by
2048 * shortening the size of the delalloc range we're searching
2049 */
9655d298 2050 free_extent_state(cached_state);
7d788742 2051 cached_state = NULL;
c8b97818 2052 if (!loops) {
09cbfeaf 2053 max_bytes = PAGE_SIZE;
c8b97818
CM
2054 loops = 1;
2055 goto again;
2056 } else {
3522e903 2057 found = false;
c8b97818
CM
2058 goto out_failed;
2059 }
2060 }
c8b97818
CM
2061
2062 /* step three, lock the state bits for the whole range */
ff13db41 2063 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2064
2065 /* then test to make sure it is all still delalloc */
2066 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2067 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2068 if (!ret) {
9655d298 2069 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2070 &cached_state);
c8b97818
CM
2071 __unlock_for_delalloc(inode, locked_page,
2072 delalloc_start, delalloc_end);
2073 cond_resched();
2074 goto again;
2075 }
9655d298 2076 free_extent_state(cached_state);
c8b97818
CM
2077 *start = delalloc_start;
2078 *end = delalloc_end;
2079out_failed:
2080 return found;
2081}
2082
ad7ff17b 2083void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2084 struct page *locked_page,
f97e27e9 2085 u32 clear_bits, unsigned long page_ops)
873695b3 2086{
ad7ff17b 2087 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2088
ad7ff17b 2089 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2090 start, end, page_ops, NULL);
873695b3
LB
2091}
2092
d352ac68
CM
2093/*
2094 * count the number of bytes in the tree that have a given bit(s)
2095 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2096 * cached. The total number found is returned.
2097 */
d1310b2e
CM
2098u64 count_range_bits(struct extent_io_tree *tree,
2099 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2100 u32 bits, int contig)
d1310b2e
CM
2101{
2102 struct rb_node *node;
2103 struct extent_state *state;
2104 u64 cur_start = *start;
2105 u64 total_bytes = 0;
ec29ed5b 2106 u64 last = 0;
d1310b2e
CM
2107 int found = 0;
2108
fae7f21c 2109 if (WARN_ON(search_end <= cur_start))
d1310b2e 2110 return 0;
d1310b2e 2111
cad321ad 2112 spin_lock(&tree->lock);
d1310b2e
CM
2113 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2114 total_bytes = tree->dirty_bytes;
2115 goto out;
2116 }
2117 /*
2118 * this search will find all the extents that end after
2119 * our range starts.
2120 */
80ea96b1 2121 node = tree_search(tree, cur_start);
d397712b 2122 if (!node)
d1310b2e 2123 goto out;
d1310b2e 2124
d397712b 2125 while (1) {
d1310b2e
CM
2126 state = rb_entry(node, struct extent_state, rb_node);
2127 if (state->start > search_end)
2128 break;
ec29ed5b
CM
2129 if (contig && found && state->start > last + 1)
2130 break;
2131 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2132 total_bytes += min(search_end, state->end) + 1 -
2133 max(cur_start, state->start);
2134 if (total_bytes >= max_bytes)
2135 break;
2136 if (!found) {
af60bed2 2137 *start = max(cur_start, state->start);
d1310b2e
CM
2138 found = 1;
2139 }
ec29ed5b
CM
2140 last = state->end;
2141 } else if (contig && found) {
2142 break;
d1310b2e
CM
2143 }
2144 node = rb_next(node);
2145 if (!node)
2146 break;
2147 }
2148out:
cad321ad 2149 spin_unlock(&tree->lock);
d1310b2e
CM
2150 return total_bytes;
2151}
b2950863 2152
d352ac68
CM
2153/*
2154 * set the private field for a given byte offset in the tree. If there isn't
2155 * an extent_state there already, this does nothing.
2156 */
b3f167aa
JB
2157int set_state_failrec(struct extent_io_tree *tree, u64 start,
2158 struct io_failure_record *failrec)
d1310b2e
CM
2159{
2160 struct rb_node *node;
2161 struct extent_state *state;
2162 int ret = 0;
2163
cad321ad 2164 spin_lock(&tree->lock);
d1310b2e
CM
2165 /*
2166 * this search will find all the extents that end after
2167 * our range starts.
2168 */
80ea96b1 2169 node = tree_search(tree, start);
2b114d1d 2170 if (!node) {
d1310b2e
CM
2171 ret = -ENOENT;
2172 goto out;
2173 }
2174 state = rb_entry(node, struct extent_state, rb_node);
2175 if (state->start != start) {
2176 ret = -ENOENT;
2177 goto out;
2178 }
47dc196a 2179 state->failrec = failrec;
d1310b2e 2180out:
cad321ad 2181 spin_unlock(&tree->lock);
d1310b2e
CM
2182 return ret;
2183}
2184
2279a270 2185struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2186{
2187 struct rb_node *node;
2188 struct extent_state *state;
2279a270 2189 struct io_failure_record *failrec;
d1310b2e 2190
cad321ad 2191 spin_lock(&tree->lock);
d1310b2e
CM
2192 /*
2193 * this search will find all the extents that end after
2194 * our range starts.
2195 */
80ea96b1 2196 node = tree_search(tree, start);
2b114d1d 2197 if (!node) {
2279a270 2198 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2199 goto out;
2200 }
2201 state = rb_entry(node, struct extent_state, rb_node);
2202 if (state->start != start) {
2279a270 2203 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2204 goto out;
2205 }
2279a270
NB
2206
2207 failrec = state->failrec;
d1310b2e 2208out:
cad321ad 2209 spin_unlock(&tree->lock);
2279a270 2210 return failrec;
d1310b2e
CM
2211}
2212
2213/*
2214 * searches a range in the state tree for a given mask.
70dec807 2215 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2216 * has the bits set. Otherwise, 1 is returned if any bit in the
2217 * range is found set.
2218 */
2219int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2220 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2221{
2222 struct extent_state *state = NULL;
2223 struct rb_node *node;
2224 int bitset = 0;
d1310b2e 2225
cad321ad 2226 spin_lock(&tree->lock);
27a3507d 2227 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2228 cached->end > start)
9655d298
CM
2229 node = &cached->rb_node;
2230 else
2231 node = tree_search(tree, start);
d1310b2e
CM
2232 while (node && start <= end) {
2233 state = rb_entry(node, struct extent_state, rb_node);
2234
2235 if (filled && state->start > start) {
2236 bitset = 0;
2237 break;
2238 }
2239
2240 if (state->start > end)
2241 break;
2242
2243 if (state->state & bits) {
2244 bitset = 1;
2245 if (!filled)
2246 break;
2247 } else if (filled) {
2248 bitset = 0;
2249 break;
2250 }
46562cec
CM
2251
2252 if (state->end == (u64)-1)
2253 break;
2254
d1310b2e
CM
2255 start = state->end + 1;
2256 if (start > end)
2257 break;
2258 node = rb_next(node);
2259 if (!node) {
2260 if (filled)
2261 bitset = 0;
2262 break;
2263 }
2264 }
cad321ad 2265 spin_unlock(&tree->lock);
d1310b2e
CM
2266 return bitset;
2267}
d1310b2e 2268
7870d082
JB
2269int free_io_failure(struct extent_io_tree *failure_tree,
2270 struct extent_io_tree *io_tree,
2271 struct io_failure_record *rec)
4a54c8c1
JS
2272{
2273 int ret;
2274 int err = 0;
4a54c8c1 2275
47dc196a 2276 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2277 ret = clear_extent_bits(failure_tree, rec->start,
2278 rec->start + rec->len - 1,
91166212 2279 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2280 if (ret)
2281 err = ret;
2282
7870d082 2283 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2284 rec->start + rec->len - 1,
91166212 2285 EXTENT_DAMAGED);
53b381b3
DW
2286 if (ret && !err)
2287 err = ret;
4a54c8c1
JS
2288
2289 kfree(rec);
2290 return err;
2291}
2292
4a54c8c1
JS
2293/*
2294 * this bypasses the standard btrfs submit functions deliberately, as
2295 * the standard behavior is to write all copies in a raid setup. here we only
2296 * want to write the one bad copy. so we do the mapping for ourselves and issue
2297 * submit_bio directly.
3ec706c8 2298 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2299 * actually prevents the read that triggered the error from finishing.
2300 * currently, there can be no more than two copies of every data bit. thus,
2301 * exactly one rewrite is required.
2302 */
38d5e541
QW
2303static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2304 u64 length, u64 logical, struct page *page,
2305 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2306{
2307 struct bio *bio;
2308 struct btrfs_device *dev;
4a54c8c1
JS
2309 u64 map_length = 0;
2310 u64 sector;
4c664611 2311 struct btrfs_io_context *bioc = NULL;
4a54c8c1
JS
2312 int ret;
2313
1751e8a6 2314 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2315 BUG_ON(!mirror_num);
2316
f7ef5287
NA
2317 if (btrfs_is_zoned(fs_info))
2318 return btrfs_repair_one_zone(fs_info, logical);
2319
c3a3b19b 2320 bio = btrfs_bio_alloc(1);
4f024f37 2321 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2322 map_length = length;
2323
b5de8d0d 2324 /*
4c664611 2325 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
2326 * associated to its stripes that don't go away while we are doing the
2327 * read repair operation.
2328 */
2329 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2330 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2331 /*
2332 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2333 * to update all raid stripes, but here we just want to correct
2334 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2335 * stripe's dev and sector.
2336 */
2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 2338 &map_length, &bioc, 0);
c725328c
LB
2339 if (ret) {
2340 btrfs_bio_counter_dec(fs_info);
2341 bio_put(bio);
2342 return -EIO;
2343 }
4c664611 2344 ASSERT(bioc->mirror_num == 1);
c725328c
LB
2345 } else {
2346 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 2347 &map_length, &bioc, mirror_num);
c725328c
LB
2348 if (ret) {
2349 btrfs_bio_counter_dec(fs_info);
2350 bio_put(bio);
2351 return -EIO;
2352 }
4c664611 2353 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 2354 }
c725328c 2355
4c664611 2356 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4f024f37 2357 bio->bi_iter.bi_sector = sector;
4c664611
QW
2358 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2359 btrfs_put_bioc(bioc);
ebbede42
AJ
2360 if (!dev || !dev->bdev ||
2361 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2362 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2363 bio_put(bio);
2364 return -EIO;
2365 }
74d46992 2366 bio_set_dev(bio, dev->bdev);
70fd7614 2367 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2368 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2369
4e49ea4a 2370 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2371 /* try to remap that extent elsewhere? */
b5de8d0d 2372 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2373 bio_put(bio);
442a4f63 2374 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2375 return -EIO;
2376 }
2377
b14af3b4
DS
2378 btrfs_info_rl_in_rcu(fs_info,
2379 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2380 ino, start,
1203b681 2381 rcu_str_deref(dev->name), sector);
b5de8d0d 2382 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2383 bio_put(bio);
2384 return 0;
2385}
2386
2b48966a 2387int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2388{
20a1fbf9 2389 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2390 u64 start = eb->start;
cc5e31a4 2391 int i, num_pages = num_extent_pages(eb);
d95603b2 2392 int ret = 0;
ea466794 2393
bc98a42c 2394 if (sb_rdonly(fs_info->sb))
908960c6
ID
2395 return -EROFS;
2396
ea466794 2397 for (i = 0; i < num_pages; i++) {
fb85fc9a 2398 struct page *p = eb->pages[i];
1203b681 2399
6ec656bc 2400 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2401 start - page_offset(p), mirror_num);
ea466794
JB
2402 if (ret)
2403 break;
09cbfeaf 2404 start += PAGE_SIZE;
ea466794
JB
2405 }
2406
2407 return ret;
2408}
2409
4a54c8c1
JS
2410/*
2411 * each time an IO finishes, we do a fast check in the IO failure tree
2412 * to see if we need to process or clean up an io_failure_record
2413 */
7870d082
JB
2414int clean_io_failure(struct btrfs_fs_info *fs_info,
2415 struct extent_io_tree *failure_tree,
2416 struct extent_io_tree *io_tree, u64 start,
2417 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2418{
2419 u64 private;
4a54c8c1 2420 struct io_failure_record *failrec;
4a54c8c1
JS
2421 struct extent_state *state;
2422 int num_copies;
4a54c8c1 2423 int ret;
4a54c8c1
JS
2424
2425 private = 0;
7870d082
JB
2426 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2427 EXTENT_DIRTY, 0);
4a54c8c1
JS
2428 if (!ret)
2429 return 0;
2430
2279a270
NB
2431 failrec = get_state_failrec(failure_tree, start);
2432 if (IS_ERR(failrec))
4a54c8c1
JS
2433 return 0;
2434
4a54c8c1
JS
2435 BUG_ON(!failrec->this_mirror);
2436
bc98a42c 2437 if (sb_rdonly(fs_info->sb))
908960c6 2438 goto out;
4a54c8c1 2439
7870d082
JB
2440 spin_lock(&io_tree->lock);
2441 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2442 failrec->start,
2443 EXTENT_LOCKED);
7870d082 2444 spin_unlock(&io_tree->lock);
4a54c8c1 2445
883d0de4
MX
2446 if (state && state->start <= failrec->start &&
2447 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2448 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2449 failrec->len);
4a54c8c1 2450 if (num_copies > 1) {
7870d082
JB
2451 repair_io_failure(fs_info, ino, start, failrec->len,
2452 failrec->logical, page, pg_offset,
2453 failrec->failed_mirror);
4a54c8c1
JS
2454 }
2455 }
2456
2457out:
7870d082 2458 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2459
454ff3de 2460 return 0;
4a54c8c1
JS
2461}
2462
f612496b
MX
2463/*
2464 * Can be called when
2465 * - hold extent lock
2466 * - under ordered extent
2467 * - the inode is freeing
2468 */
7ab7956e 2469void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2470{
7ab7956e 2471 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2472 struct io_failure_record *failrec;
2473 struct extent_state *state, *next;
2474
2475 if (RB_EMPTY_ROOT(&failure_tree->state))
2476 return;
2477
2478 spin_lock(&failure_tree->lock);
2479 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2480 while (state) {
2481 if (state->start > end)
2482 break;
2483
2484 ASSERT(state->end <= end);
2485
2486 next = next_state(state);
2487
47dc196a 2488 failrec = state->failrec;
f612496b
MX
2489 free_extent_state(state);
2490 kfree(failrec);
2491
2492 state = next;
2493 }
2494 spin_unlock(&failure_tree->lock);
2495}
2496
3526302f 2497static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
150e4b05 2498 u64 start)
4a54c8c1 2499{
ab8d0fc4 2500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2501 struct io_failure_record *failrec;
4a54c8c1 2502 struct extent_map *em;
4a54c8c1
JS
2503 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2504 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2505 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2506 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2507 int ret;
4a54c8c1
JS
2508 u64 logical;
2509
2279a270 2510 failrec = get_state_failrec(failure_tree, start);
3526302f 2511 if (!IS_ERR(failrec)) {
ab8d0fc4 2512 btrfs_debug(fs_info,
1245835d
QW
2513 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2514 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2515 /*
2516 * when data can be on disk more than twice, add to failrec here
2517 * (e.g. with a list for failed_mirror) to make
2518 * clean_io_failure() clean all those errors at once.
2519 */
3526302f
NB
2520
2521 return failrec;
4a54c8c1 2522 }
2fe6303e 2523
3526302f
NB
2524 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2525 if (!failrec)
2526 return ERR_PTR(-ENOMEM);
2fe6303e 2527
3526302f 2528 failrec->start = start;
150e4b05 2529 failrec->len = sectorsize;
3526302f
NB
2530 failrec->this_mirror = 0;
2531 failrec->bio_flags = 0;
3526302f
NB
2532
2533 read_lock(&em_tree->lock);
2534 em = lookup_extent_mapping(em_tree, start, failrec->len);
2535 if (!em) {
2536 read_unlock(&em_tree->lock);
2537 kfree(failrec);
2538 return ERR_PTR(-EIO);
2539 }
2540
2541 if (em->start > start || em->start + em->len <= start) {
2542 free_extent_map(em);
2543 em = NULL;
2544 }
2545 read_unlock(&em_tree->lock);
2546 if (!em) {
2547 kfree(failrec);
2548 return ERR_PTR(-EIO);
2549 }
2550
2551 logical = start - em->start;
2552 logical = em->block_start + logical;
2553 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2554 logical = em->block_start;
2555 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2556 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2557 }
2558
2559 btrfs_debug(fs_info,
2560 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2561 logical, start, failrec->len);
2562
2563 failrec->logical = logical;
2564 free_extent_map(em);
2565
2566 /* Set the bits in the private failure tree */
150e4b05 2567 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2568 EXTENT_LOCKED | EXTENT_DIRTY);
2569 if (ret >= 0) {
2570 ret = set_state_failrec(failure_tree, start, failrec);
2571 /* Set the bits in the inode's tree */
150e4b05
QW
2572 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2573 EXTENT_DAMAGED);
3526302f
NB
2574 } else if (ret < 0) {
2575 kfree(failrec);
2576 return ERR_PTR(ret);
2577 }
2578
2579 return failrec;
2fe6303e
MX
2580}
2581
1245835d 2582static bool btrfs_check_repairable(struct inode *inode,
ce06d3ec
OS
2583 struct io_failure_record *failrec,
2584 int failed_mirror)
2fe6303e 2585{
ab8d0fc4 2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2587 int num_copies;
2588
ab8d0fc4 2589 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2590 if (num_copies == 1) {
2591 /*
2592 * we only have a single copy of the data, so don't bother with
2593 * all the retry and error correction code that follows. no
2594 * matter what the error is, it is very likely to persist.
2595 */
ab8d0fc4
JM
2596 btrfs_debug(fs_info,
2597 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2598 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2599 return false;
4a54c8c1
JS
2600 }
2601
1245835d
QW
2602 /* The failure record should only contain one sector */
2603 ASSERT(failrec->len == fs_info->sectorsize);
2604
4a54c8c1 2605 /*
1245835d
QW
2606 * There are two premises:
2607 * a) deliver good data to the caller
2608 * b) correct the bad sectors on disk
2609 *
2610 * Since we're only doing repair for one sector, we only need to get
2611 * a good copy of the failed sector and if we succeed, we have setup
2612 * everything for repair_io_failure to do the rest for us.
4a54c8c1 2613 */
1245835d
QW
2614 failrec->failed_mirror = failed_mirror;
2615 failrec->this_mirror++;
2616 if (failrec->this_mirror == failed_mirror)
4a54c8c1 2617 failrec->this_mirror++;
4a54c8c1 2618
facc8a22 2619 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2620 btrfs_debug(fs_info,
2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2622 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2623 return false;
4a54c8c1
JS
2624 }
2625
c3cfb656 2626 return true;
2fe6303e
MX
2627}
2628
150e4b05
QW
2629int btrfs_repair_one_sector(struct inode *inode,
2630 struct bio *failed_bio, u32 bio_offset,
2631 struct page *page, unsigned int pgoff,
2632 u64 start, int failed_mirror,
2633 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2634{
2635 struct io_failure_record *failrec;
77d5d689 2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
c3a3b19b 2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
7ffd27e3 2640 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 2641 struct bio *repair_bio;
c3a3b19b 2642 struct btrfs_bio *repair_bbio;
4e4cbee9 2643 blk_status_t status;
2fe6303e 2644
77d5d689
OS
2645 btrfs_debug(fs_info,
2646 "repair read error: read error at %llu", start);
2fe6303e 2647
1f7ad75b 2648 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2649
150e4b05 2650 failrec = btrfs_get_io_failure_record(inode, start);
3526302f 2651 if (IS_ERR(failrec))
150e4b05 2652 return PTR_ERR(failrec);
2fe6303e 2653
1245835d
QW
2654
2655 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
7870d082 2656 free_io_failure(failure_tree, tree, failrec);
150e4b05 2657 return -EIO;
2fe6303e
MX
2658 }
2659
c3a3b19b
QW
2660 repair_bio = btrfs_bio_alloc(1);
2661 repair_bbio = btrfs_bio(repair_bio);
77d5d689 2662 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2663 repair_bio->bi_end_io = failed_bio->bi_end_io;
2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2665 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2666
c3a3b19b 2667 if (failed_bbio->csum) {
223486c2 2668 const u32 csum_size = fs_info->csum_size;
77d5d689 2669
c3a3b19b
QW
2670 repair_bbio->csum = repair_bbio->csum_inline;
2671 memcpy(repair_bbio->csum,
2672 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 2673 }
2fe6303e 2674
77d5d689 2675 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 2676 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 2677
ab8d0fc4 2678 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2679 "repair read error: submitting new read to mirror %d",
2680 failrec->this_mirror);
4a54c8c1 2681
77d5d689
OS
2682 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2683 failrec->bio_flags);
4e4cbee9 2684 if (status) {
7870d082 2685 free_io_failure(failure_tree, tree, failrec);
77d5d689 2686 bio_put(repair_bio);
6c387ab2 2687 }
150e4b05
QW
2688 return blk_status_to_errno(status);
2689}
2690
2691static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2692{
2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2694
2695 ASSERT(page_offset(page) <= start &&
2696 start + len <= page_offset(page) + PAGE_SIZE);
2697
150e4b05 2698 if (uptodate) {
14605409
BB
2699 if (fsverity_active(page->mapping->host) &&
2700 !PageError(page) &&
2701 !PageUptodate(page) &&
2702 start < i_size_read(page->mapping->host) &&
2703 !fsverity_verify_page(page)) {
2704 btrfs_page_set_error(fs_info, page, start, len);
2705 } else {
2706 btrfs_page_set_uptodate(fs_info, page, start, len);
2707 }
150e4b05
QW
2708 } else {
2709 btrfs_page_clear_uptodate(fs_info, page, start, len);
2710 btrfs_page_set_error(fs_info, page, start, len);
2711 }
2712
2713 if (fs_info->sectorsize == PAGE_SIZE)
2714 unlock_page(page);
3d078efa 2715 else
150e4b05
QW
2716 btrfs_subpage_end_reader(fs_info, page, start, len);
2717}
2718
2719static blk_status_t submit_read_repair(struct inode *inode,
2720 struct bio *failed_bio, u32 bio_offset,
2721 struct page *page, unsigned int pgoff,
2722 u64 start, u64 end, int failed_mirror,
2723 unsigned int error_bitmap,
2724 submit_bio_hook_t *submit_bio_hook)
2725{
2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2727 const u32 sectorsize = fs_info->sectorsize;
2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2729 int error = 0;
2730 int i;
2731
2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2733
2734 /* We're here because we had some read errors or csum mismatch */
2735 ASSERT(error_bitmap);
2736
2737 /*
2738 * We only get called on buffered IO, thus page must be mapped and bio
2739 * must not be cloned.
2740 */
2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2742
2743 /* Iterate through all the sectors in the range */
2744 for (i = 0; i < nr_bits; i++) {
2745 const unsigned int offset = i * sectorsize;
2746 struct extent_state *cached = NULL;
2747 bool uptodate = false;
2748 int ret;
2749
2750 if (!(error_bitmap & (1U << i))) {
2751 /*
2752 * This sector has no error, just end the page read
2753 * and unlock the range.
2754 */
2755 uptodate = true;
2756 goto next;
2757 }
2758
2759 ret = btrfs_repair_one_sector(inode, failed_bio,
2760 bio_offset + offset,
2761 page, pgoff + offset, start + offset,
2762 failed_mirror, submit_bio_hook);
2763 if (!ret) {
2764 /*
2765 * We have submitted the read repair, the page release
2766 * will be handled by the endio function of the
2767 * submitted repair bio.
2768 * Thus we don't need to do any thing here.
2769 */
2770 continue;
2771 }
2772 /*
2773 * Repair failed, just record the error but still continue.
2774 * Or the remaining sectors will not be properly unlocked.
2775 */
2776 if (!error)
2777 error = ret;
2778next:
2779 end_page_read(page, uptodate, start + offset, sectorsize);
2780 if (uptodate)
2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2782 start + offset,
2783 start + offset + sectorsize - 1,
2784 &cached, GFP_ATOMIC);
2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2786 start + offset,
2787 start + offset + sectorsize - 1,
2788 &cached);
2789 }
2790 return errno_to_blk_status(error);
4a54c8c1
JS
2791}
2792
d1310b2e
CM
2793/* lots and lots of room for performance fixes in the end_bio funcs */
2794
b5227c07 2795void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2796{
38a39ac7 2797 struct btrfs_inode *inode;
25c1252a 2798 const bool uptodate = (err == 0);
3e2426bd 2799 int ret = 0;
87826df0 2800
38a39ac7
QW
2801 ASSERT(page && page->mapping);
2802 inode = BTRFS_I(page->mapping->host);
2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2804
87826df0 2805 if (!uptodate) {
963e4db8
QW
2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2807 u32 len;
2808
2809 ASSERT(end + 1 - start <= U32_MAX);
2810 len = end + 1 - start;
2811
2812 btrfs_page_clear_uptodate(fs_info, page, start, len);
2813 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 2814 ret = err < 0 ? err : -EIO;
5dca6eea 2815 mapping_set_error(page->mapping, ret);
87826df0 2816 }
87826df0
JM
2817}
2818
d1310b2e
CM
2819/*
2820 * after a writepage IO is done, we need to:
2821 * clear the uptodate bits on error
2822 * clear the writeback bits in the extent tree for this IO
2823 * end_page_writeback if the page has no more pending IO
2824 *
2825 * Scheduling is not allowed, so the extent state tree is expected
2826 * to have one and only one object corresponding to this IO.
2827 */
4246a0b6 2828static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2829{
4e4cbee9 2830 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2831 struct bio_vec *bvec;
d1310b2e
CM
2832 u64 start;
2833 u64 end;
6dc4f100 2834 struct bvec_iter_all iter_all;
d8e3fb10 2835 bool first_bvec = true;
d1310b2e 2836
c09abff8 2837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2838 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2839 struct page *page = bvec->bv_page;
0b246afa
JM
2840 struct inode *inode = page->mapping->host;
2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2842 const u32 sectorsize = fs_info->sectorsize;
2843
2844 /* Our read/write should always be sector aligned. */
2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2846 btrfs_err(fs_info,
2847 "partial page write in btrfs with offset %u and length %u",
2848 bvec->bv_offset, bvec->bv_len);
2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2850 btrfs_info(fs_info,
2851 "incomplete page write with offset %u and length %u",
2852 bvec->bv_offset, bvec->bv_len);
2853
2854 start = page_offset(page) + bvec->bv_offset;
2855 end = start + bvec->bv_len - 1;
d1310b2e 2856
d8e3fb10
NA
2857 if (first_bvec) {
2858 btrfs_record_physical_zoned(inode, start, bio);
2859 first_bvec = false;
2860 }
2861
4e4cbee9 2862 end_extent_writepage(page, error, start, end);
9047e317
QW
2863
2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2865 }
2b1f55b0 2866
d1310b2e 2867 bio_put(bio);
d1310b2e
CM
2868}
2869
94e8c95c
QW
2870/*
2871 * Record previously processed extent range
2872 *
2873 * For endio_readpage_release_extent() to handle a full extent range, reducing
2874 * the extent io operations.
2875 */
2876struct processed_extent {
2877 struct btrfs_inode *inode;
2878 /* Start of the range in @inode */
2879 u64 start;
2e626e56 2880 /* End of the range in @inode */
94e8c95c
QW
2881 u64 end;
2882 bool uptodate;
2883};
2884
2885/*
2886 * Try to release processed extent range
2887 *
2888 * May not release the extent range right now if the current range is
2889 * contiguous to processed extent.
2890 *
2891 * Will release processed extent when any of @inode, @uptodate, the range is
2892 * no longer contiguous to the processed range.
2893 *
2894 * Passing @inode == NULL will force processed extent to be released.
2895 */
2896static void endio_readpage_release_extent(struct processed_extent *processed,
2897 struct btrfs_inode *inode, u64 start, u64 end,
2898 bool uptodate)
883d0de4
MX
2899{
2900 struct extent_state *cached = NULL;
94e8c95c
QW
2901 struct extent_io_tree *tree;
2902
2903 /* The first extent, initialize @processed */
2904 if (!processed->inode)
2905 goto update;
883d0de4 2906
94e8c95c
QW
2907 /*
2908 * Contiguous to processed extent, just uptodate the end.
2909 *
2910 * Several things to notice:
2911 *
2912 * - bio can be merged as long as on-disk bytenr is contiguous
2913 * This means we can have page belonging to other inodes, thus need to
2914 * check if the inode still matches.
2915 * - bvec can contain range beyond current page for multi-page bvec
2916 * Thus we need to do processed->end + 1 >= start check
2917 */
2918 if (processed->inode == inode && processed->uptodate == uptodate &&
2919 processed->end + 1 >= start && end >= processed->end) {
2920 processed->end = end;
2921 return;
2922 }
2923
2924 tree = &processed->inode->io_tree;
2925 /*
2926 * Now we don't have range contiguous to the processed range, release
2927 * the processed range now.
2928 */
2929 if (processed->uptodate && tree->track_uptodate)
2930 set_extent_uptodate(tree, processed->start, processed->end,
2931 &cached, GFP_ATOMIC);
2932 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2933 &cached);
2934
2935update:
2936 /* Update processed to current range */
2937 processed->inode = inode;
2938 processed->start = start;
2939 processed->end = end;
2940 processed->uptodate = uptodate;
883d0de4
MX
2941}
2942
92082d40
QW
2943static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2944{
2945 ASSERT(PageLocked(page));
2946 if (fs_info->sectorsize == PAGE_SIZE)
2947 return;
2948
2949 ASSERT(PagePrivate(page));
2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2951}
2952
d9bb77d5
QW
2953/*
2954 * Find extent buffer for a givne bytenr.
2955 *
2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2957 * in endio context.
2958 */
2959static struct extent_buffer *find_extent_buffer_readpage(
2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2961{
2962 struct extent_buffer *eb;
2963
2964 /*
2965 * For regular sectorsize, we can use page->private to grab extent
2966 * buffer
2967 */
2968 if (fs_info->sectorsize == PAGE_SIZE) {
2969 ASSERT(PagePrivate(page) && page->private);
2970 return (struct extent_buffer *)page->private;
2971 }
2972
2973 /* For subpage case, we need to lookup buffer radix tree */
2974 rcu_read_lock();
2975 eb = radix_tree_lookup(&fs_info->buffer_radix,
2976 bytenr >> fs_info->sectorsize_bits);
2977 rcu_read_unlock();
2978 ASSERT(eb);
2979 return eb;
2980}
2981
d1310b2e
CM
2982/*
2983 * after a readpage IO is done, we need to:
2984 * clear the uptodate bits on error
2985 * set the uptodate bits if things worked
2986 * set the page up to date if all extents in the tree are uptodate
2987 * clear the lock bit in the extent tree
2988 * unlock the page if there are no other extents locked for it
2989 *
2990 * Scheduling is not allowed, so the extent state tree is expected
2991 * to have one and only one object corresponding to this IO.
2992 */
4246a0b6 2993static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2994{
2c30c71b 2995 struct bio_vec *bvec;
c3a3b19b 2996 struct btrfs_bio *bbio = btrfs_bio(bio);
7870d082 2997 struct extent_io_tree *tree, *failure_tree;
94e8c95c 2998 struct processed_extent processed = { 0 };
7ffd27e3
QW
2999 /*
3000 * The offset to the beginning of a bio, since one bio can never be
3001 * larger than UINT_MAX, u32 here is enough.
3002 */
3003 u32 bio_offset = 0;
5cf1ab56 3004 int mirror;
d1310b2e 3005 int ret;
6dc4f100 3006 struct bvec_iter_all iter_all;
d1310b2e 3007
c09abff8 3008 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3009 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 3010 bool uptodate = !bio->bi_status;
d1310b2e 3011 struct page *page = bvec->bv_page;
a71754fc 3012 struct inode *inode = page->mapping->host;
ab8d0fc4 3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3014 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3015 unsigned int error_bitmap = (unsigned int)-1;
7ffd27e3
QW
3016 u64 start;
3017 u64 end;
3018 u32 len;
507903b8 3019
ab8d0fc4
JM
3020 btrfs_debug(fs_info,
3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3022 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 3023 bbio->mirror_num);
a71754fc 3024 tree = &BTRFS_I(inode)->io_tree;
7870d082 3025 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3026
8b8bbd46
QW
3027 /*
3028 * We always issue full-sector reads, but if some block in a
3029 * page fails to read, blk_update_request() will advance
3030 * bv_offset and adjust bv_len to compensate. Print a warning
3031 * for unaligned offsets, and an error if they don't add up to
3032 * a full sector.
3033 */
3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3035 btrfs_err(fs_info,
3036 "partial page read in btrfs with offset %u and length %u",
3037 bvec->bv_offset, bvec->bv_len);
3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3039 sectorsize))
3040 btrfs_info(fs_info,
3041 "incomplete page read with offset %u and length %u",
3042 bvec->bv_offset, bvec->bv_len);
3043
3044 start = page_offset(page) + bvec->bv_offset;
3045 end = start + bvec->bv_len - 1;
facc8a22 3046 len = bvec->bv_len;
d1310b2e 3047
c3a3b19b 3048 mirror = bbio->mirror_num;
78e62c02 3049 if (likely(uptodate)) {
150e4b05 3050 if (is_data_inode(inode)) {
c3a3b19b 3051 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 3052 bio_offset, page, start, end);
150e4b05
QW
3053 ret = error_bitmap;
3054 } else {
c3a3b19b 3055 ret = btrfs_validate_metadata_buffer(bbio,
8e1dc982 3056 page, start, end, mirror);
150e4b05 3057 }
5ee0844d 3058 if (ret)
150e4b05 3059 uptodate = false;
5ee0844d 3060 else
7870d082
JB
3061 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3062 failure_tree, tree, start,
3063 page,
3064 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 3065 }
ea466794 3066
f2a09da9
MX
3067 if (likely(uptodate))
3068 goto readpage_ok;
3069
be17b3af 3070 if (is_data_inode(inode)) {
f4a8e656 3071 /*
150e4b05
QW
3072 * btrfs_submit_read_repair() will handle all the good
3073 * and bad sectors, we just continue to the next bvec.
f4a8e656 3074 */
150e4b05
QW
3075 submit_read_repair(inode, bio, bio_offset, page,
3076 start - page_offset(page), start,
3077 end, mirror, error_bitmap,
3078 btrfs_submit_data_bio);
3079
3080 ASSERT(bio_offset + len > bio_offset);
3081 bio_offset += len;
3082 continue;
78e62c02
NB
3083 } else {
3084 struct extent_buffer *eb;
3085
d9bb77d5 3086 eb = find_extent_buffer_readpage(fs_info, page, start);
78e62c02
NB
3087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3088 eb->read_mirror = mirror;
3089 atomic_dec(&eb->io_pages);
3090 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3091 &eb->bflags))
3092 btree_readahead_hook(eb, -EIO);
7e38326f 3093 }
f2a09da9 3094readpage_ok:
883d0de4 3095 if (likely(uptodate)) {
a71754fc 3096 loff_t i_size = i_size_read(inode);
09cbfeaf 3097 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3098
c28ea613
QW
3099 /*
3100 * Zero out the remaining part if this range straddles
3101 * i_size.
3102 *
3103 * Here we should only zero the range inside the bvec,
3104 * not touch anything else.
3105 *
3106 * NOTE: i_size is exclusive while end is inclusive.
3107 */
3108 if (page->index == end_index && i_size <= end) {
3109 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3110 offset_in_page(start));
c28ea613
QW
3111
3112 zero_user_segment(page, zero_start,
3113 offset_in_page(end) + 1);
3114 }
70dec807 3115 }
7ffd27e3
QW
3116 ASSERT(bio_offset + len > bio_offset);
3117 bio_offset += len;
883d0de4 3118
e09caaf9 3119 /* Update page status and unlock */
92082d40 3120 end_page_read(page, uptodate, start, len);
94e8c95c 3121 endio_readpage_release_extent(&processed, BTRFS_I(inode),
14605409 3122 start, end, PageUptodate(page));
2c30c71b 3123 }
94e8c95c
QW
3124 /* Release the last extent */
3125 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 3126 btrfs_bio_free_csum(bbio);
d1310b2e 3127 bio_put(bio);
d1310b2e
CM
3128}
3129
9be3395b 3130/*
184f999e
DS
3131 * Initialize the members up to but not including 'bio'. Use after allocating a
3132 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3133 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3134 */
c3a3b19b 3135static inline void btrfs_bio_init(struct btrfs_bio *bbio)
d1310b2e 3136{
c3a3b19b 3137 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
184f999e 3138}
d1310b2e 3139
9be3395b 3140/*
cd8e0cca
QW
3141 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3142 *
3143 * The bio allocation is backed by bioset and does not fail.
9be3395b 3144 */
c3a3b19b 3145struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
d1310b2e
CM
3146{
3147 struct bio *bio;
d1310b2e 3148
cd8e0cca
QW
3149 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3150 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
c3a3b19b 3151 btrfs_bio_init(btrfs_bio(bio));
d1310b2e
CM
3152 return bio;
3153}
3154
8b6c1d56 3155struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 3156{
c3a3b19b 3157 struct btrfs_bio *bbio;
23ea8e5a 3158 struct bio *new;
9be3395b 3159
6e707bcd 3160 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3161 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
c3a3b19b
QW
3162 bbio = btrfs_bio(new);
3163 btrfs_bio_init(bbio);
3164 bbio->iter = bio->bi_iter;
23ea8e5a
MX
3165 return new;
3166}
9be3395b 3167
21dda654 3168struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
2f8e9140
LB
3169{
3170 struct bio *bio;
c3a3b19b 3171 struct btrfs_bio *bbio;
2f8e9140 3172
21dda654
CK
3173 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3174
2f8e9140 3175 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3176 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3177 ASSERT(bio);
3178
c3a3b19b
QW
3179 bbio = btrfs_bio(bio);
3180 btrfs_bio_init(bbio);
2f8e9140
LB
3181
3182 bio_trim(bio, offset >> 9, size >> 9);
c3a3b19b 3183 bbio->iter = bio->bi_iter;
2f8e9140
LB
3184 return bio;
3185}
9be3395b 3186
953651eb
NA
3187/**
3188 * Attempt to add a page to bio
3189 *
3190 * @bio: destination bio
3191 * @page: page to add to the bio
3192 * @disk_bytenr: offset of the new bio or to check whether we are adding
3193 * a contiguous page to the previous one
3194 * @pg_offset: starting offset in the page
3195 * @size: portion of page that we want to write
3196 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3197 * @bio_flags: flags of the current bio to see if we can merge them
953651eb
NA
3198 *
3199 * Attempt to add a page to bio considering stripe alignment etc.
3200 *
e0eefe07
QW
3201 * Return >= 0 for the number of bytes added to the bio.
3202 * Can return 0 if the current bio is already at stripe/zone boundary.
3203 * Return <0 for error.
953651eb 3204 */
e0eefe07
QW
3205static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3206 struct page *page,
3207 u64 disk_bytenr, unsigned int size,
3208 unsigned int pg_offset,
3209 unsigned long bio_flags)
953651eb 3210{
390ed29b
QW
3211 struct bio *bio = bio_ctrl->bio;
3212 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 3213 u32 real_size;
953651eb
NA
3214 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3215 bool contig;
e1326f03 3216 int ret;
953651eb 3217
390ed29b
QW
3218 ASSERT(bio);
3219 /* The limit should be calculated when bio_ctrl->bio is allocated */
3220 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3221 if (bio_ctrl->bio_flags != bio_flags)
e0eefe07 3222 return 0;
953651eb 3223
390ed29b 3224 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
953651eb
NA
3225 contig = bio->bi_iter.bi_sector == sector;
3226 else
3227 contig = bio_end_sector(bio) == sector;
3228 if (!contig)
e0eefe07 3229 return 0;
953651eb 3230
e0eefe07
QW
3231 real_size = min(bio_ctrl->len_to_oe_boundary,
3232 bio_ctrl->len_to_stripe_boundary) - bio_size;
3233 real_size = min(real_size, size);
3234
3235 /*
3236 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3237 * bio will still execute its endio function on the page!
3238 */
3239 if (real_size == 0)
3240 return 0;
953651eb 3241
390ed29b 3242 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 3243 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 3244 else
e0eefe07 3245 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 3246
e0eefe07 3247 return ret;
953651eb
NA
3248}
3249
390ed29b 3250static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 3251 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
3252{
3253 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3254 struct btrfs_io_geometry geom;
3255 struct btrfs_ordered_extent *ordered;
3256 struct extent_map *em;
3257 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3258 int ret;
3259
3260 /*
3261 * Pages for compressed extent are never submitted to disk directly,
3262 * thus it has no real boundary, just set them to U32_MAX.
3263 *
3264 * The split happens for real compressed bio, which happens in
3265 * btrfs_submit_compressed_read/write().
3266 */
3267 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3268 bio_ctrl->len_to_oe_boundary = U32_MAX;
3269 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3270 return 0;
3271 }
3272 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3273 if (IS_ERR(em))
3274 return PTR_ERR(em);
3275 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3276 logical, &geom);
3277 free_extent_map(em);
3278 if (ret < 0) {
3279 return ret;
3280 }
3281 if (geom.len > U32_MAX)
3282 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3283 else
3284 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3285
3286 if (!btrfs_is_zoned(fs_info) ||
3287 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3288 bio_ctrl->len_to_oe_boundary = U32_MAX;
3289 return 0;
3290 }
3291
390ed29b 3292 /* Ordered extent not yet created, so we're good */
939c7feb 3293 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
3294 if (!ordered) {
3295 bio_ctrl->len_to_oe_boundary = U32_MAX;
3296 return 0;
3297 }
3298
3299 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3300 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3301 btrfs_put_ordered_extent(ordered);
3302 return 0;
3303}
3304
e0eefe07
QW
3305static int alloc_new_bio(struct btrfs_inode *inode,
3306 struct btrfs_bio_ctrl *bio_ctrl,
3307 struct writeback_control *wbc,
3308 unsigned int opf,
3309 bio_end_io_t end_io_func,
939c7feb 3310 u64 disk_bytenr, u32 offset, u64 file_offset,
e0eefe07
QW
3311 unsigned long bio_flags)
3312{
3313 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3314 struct bio *bio;
3315 int ret;
3316
c3a3b19b 3317 bio = btrfs_bio_alloc(BIO_MAX_VECS);
e0eefe07
QW
3318 /*
3319 * For compressed page range, its disk_bytenr is always @disk_bytenr
3320 * passed in, no matter if we have added any range into previous bio.
3321 */
3322 if (bio_flags & EXTENT_BIO_COMPRESSED)
cd8e0cca 3323 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 3324 else
cd8e0cca 3325 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07
QW
3326 bio_ctrl->bio = bio;
3327 bio_ctrl->bio_flags = bio_flags;
e0eefe07
QW
3328 bio->bi_end_io = end_io_func;
3329 bio->bi_private = &inode->io_tree;
3330 bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3331 bio->bi_opf = opf;
939c7feb
NA
3332 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3333 if (ret < 0)
3334 goto error;
e0eefe07
QW
3335 if (wbc) {
3336 struct block_device *bdev;
3337
d24fa5c1 3338 bdev = fs_info->fs_devices->latest_dev->bdev;
e0eefe07
QW
3339 bio_set_dev(bio, bdev);
3340 wbc_init_bio(wbc, bio);
3341 }
3342 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3343 struct btrfs_device *device;
3344
3345 device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3346 fs_info->sectorsize);
3347 if (IS_ERR(device)) {
3348 ret = PTR_ERR(device);
3349 goto error;
3350 }
3351
c3a3b19b 3352 btrfs_bio(bio)->device = device;
e0eefe07
QW
3353 }
3354 return 0;
3355error:
3356 bio_ctrl->bio = NULL;
3357 bio->bi_status = errno_to_blk_status(ret);
3358 bio_endio(bio);
3359 return ret;
3360}
3361
4b81ba48
DS
3362/*
3363 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3364 * @wbc: optional writeback control for io accounting
3365 * @page: page to add to the bio
0c64c33c
QW
3366 * @disk_bytenr: logical bytenr where the write will be
3367 * @size: portion of page that we want to write to
b8b3d625
DS
3368 * @pg_offset: offset of the new bio or to check whether we are adding
3369 * a contiguous page to the previous one
5c2b1fd7 3370 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3371 * @end_io_func: end_io callback for new bio
3372 * @mirror_num: desired mirror to read/write
3373 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3374 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3375 */
0ceb34bf 3376static int submit_extent_page(unsigned int opf,
da2f0f74 3377 struct writeback_control *wbc,
390ed29b 3378 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3379 struct page *page, u64 disk_bytenr,
6c5a4e2c 3380 size_t size, unsigned long pg_offset,
f188591e 3381 bio_end_io_t end_io_func,
c8b97818 3382 int mirror_num,
005efedf
FM
3383 unsigned long bio_flags,
3384 bool force_bio_submit)
d1310b2e
CM
3385{
3386 int ret = 0;
e1326f03 3387 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 3388 unsigned int cur = pg_offset;
d1310b2e 3389
390ed29b 3390 ASSERT(bio_ctrl);
5c2b1fd7 3391
390ed29b
QW
3392 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3393 pg_offset + size <= PAGE_SIZE);
e0eefe07
QW
3394 if (force_bio_submit && bio_ctrl->bio) {
3395 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3396 bio_ctrl->bio = NULL;
3397 if (ret < 0)
3398 return ret;
3399 }
3400
3401 while (cur < pg_offset + size) {
3402 u32 offset = cur - pg_offset;
3403 int added;
3404
3405 /* Allocate new bio if needed */
3406 if (!bio_ctrl->bio) {
3407 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3408 end_io_func, disk_bytenr, offset,
939c7feb 3409 page_offset(page) + cur,
e0eefe07
QW
3410 bio_flags);
3411 if (ret < 0)
3412 return ret;
3413 }
3414 /*
3415 * We must go through btrfs_bio_add_page() to ensure each
3416 * page range won't cross various boundaries.
3417 */
3418 if (bio_flags & EXTENT_BIO_COMPRESSED)
3419 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3420 size - offset, pg_offset + offset,
3421 bio_flags);
3422 else
3423 added = btrfs_bio_add_page(bio_ctrl, page,
3424 disk_bytenr + offset, size - offset,
3425 pg_offset + offset, bio_flags);
3426
3427 /* Metadata page range should never be split */
3428 if (!is_data_inode(&inode->vfs_inode))
3429 ASSERT(added == 0 || added == size - offset);
3430
3431 /* At least we added some page, update the account */
3432 if (wbc && added)
3433 wbc_account_cgroup_owner(wbc, page, added);
3434
3435 /* We have reached boundary, submit right now */
3436 if (added < size - offset) {
3437 /* The bio should contain some page(s) */
3438 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3439 ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3440 bio_ctrl->bio_flags);
390ed29b
QW
3441 bio_ctrl->bio = NULL;
3442 if (ret < 0)
79787eaa 3443 return ret;
d1310b2e 3444 }
e0eefe07 3445 cur += added;
d1310b2e 3446 }
e0eefe07 3447 return 0;
d1310b2e
CM
3448}
3449
760f991f
QW
3450static int attach_extent_buffer_page(struct extent_buffer *eb,
3451 struct page *page,
3452 struct btrfs_subpage *prealloc)
d1310b2e 3453{
760f991f
QW
3454 struct btrfs_fs_info *fs_info = eb->fs_info;
3455 int ret = 0;
3456
0d01e247
QW
3457 /*
3458 * If the page is mapped to btree inode, we should hold the private
3459 * lock to prevent race.
3460 * For cloned or dummy extent buffers, their pages are not mapped and
3461 * will not race with any other ebs.
3462 */
3463 if (page->mapping)
3464 lockdep_assert_held(&page->mapping->private_lock);
3465
760f991f
QW
3466 if (fs_info->sectorsize == PAGE_SIZE) {
3467 if (!PagePrivate(page))
3468 attach_page_private(page, eb);
3469 else
3470 WARN_ON(page->private != (unsigned long)eb);
3471 return 0;
3472 }
3473
3474 /* Already mapped, just free prealloc */
3475 if (PagePrivate(page)) {
3476 btrfs_free_subpage(prealloc);
3477 return 0;
3478 }
3479
3480 if (prealloc)
3481 /* Has preallocated memory for subpage */
3482 attach_page_private(page, prealloc);
d1b89bc0 3483 else
760f991f
QW
3484 /* Do new allocation to attach subpage */
3485 ret = btrfs_attach_subpage(fs_info, page,
3486 BTRFS_SUBPAGE_METADATA);
3487 return ret;
d1310b2e
CM
3488}
3489
32443de3 3490int set_page_extent_mapped(struct page *page)
d1310b2e 3491{
32443de3
QW
3492 struct btrfs_fs_info *fs_info;
3493
3494 ASSERT(page->mapping);
3495
3496 if (PagePrivate(page))
3497 return 0;
3498
3499 fs_info = btrfs_sb(page->mapping->host->i_sb);
3500
3501 if (fs_info->sectorsize < PAGE_SIZE)
3502 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3503
3504 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3505 return 0;
3506}
3507
3508void clear_page_extent_mapped(struct page *page)
3509{
3510 struct btrfs_fs_info *fs_info;
3511
3512 ASSERT(page->mapping);
3513
d1b89bc0 3514 if (!PagePrivate(page))
32443de3
QW
3515 return;
3516
3517 fs_info = btrfs_sb(page->mapping->host->i_sb);
3518 if (fs_info->sectorsize < PAGE_SIZE)
3519 return btrfs_detach_subpage(fs_info, page);
3520
3521 detach_page_private(page);
d1310b2e
CM
3522}
3523
125bac01
MX
3524static struct extent_map *
3525__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3526 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3527{
3528 struct extent_map *em;
3529
3530 if (em_cached && *em_cached) {
3531 em = *em_cached;
cbc0e928 3532 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3533 start < extent_map_end(em)) {
490b54d6 3534 refcount_inc(&em->refs);
125bac01
MX
3535 return em;
3536 }
3537
3538 free_extent_map(em);
3539 *em_cached = NULL;
3540 }
3541
1a5ee1e6 3542 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3543 if (em_cached && !IS_ERR_OR_NULL(em)) {
3544 BUG_ON(*em_cached);
490b54d6 3545 refcount_inc(&em->refs);
125bac01
MX
3546 *em_cached = em;
3547 }
3548 return em;
3549}
d1310b2e
CM
3550/*
3551 * basic readpage implementation. Locked extent state structs are inserted
3552 * into the tree that are removed when the IO is done (by the end_io
3553 * handlers)
79787eaa 3554 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3555 * return 0 on success, otherwise return error
d1310b2e 3556 */
0f208812 3557int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3558 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3559 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3560{
3561 struct inode *inode = page->mapping->host;
92082d40 3562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3563 u64 start = page_offset(page);
8eec8296 3564 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3565 u64 cur = start;
3566 u64 extent_offset;
3567 u64 last_byte = i_size_read(inode);
3568 u64 block_start;
3569 u64 cur_end;
d1310b2e 3570 struct extent_map *em;
baf863b9 3571 int ret = 0;
d1310b2e 3572 int nr = 0;
306e16ce 3573 size_t pg_offset = 0;
d1310b2e
CM
3574 size_t iosize;
3575 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 3576 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3577
32443de3
QW
3578 ret = set_page_extent_mapped(page);
3579 if (ret < 0) {
3580 unlock_extent(tree, start, end);
92082d40
QW
3581 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3582 unlock_page(page);
32443de3
QW
3583 goto out;
3584 }
d1310b2e 3585
90a887c9
DM
3586 if (!PageUptodate(page)) {
3587 if (cleancache_get_page(page) == 0) {
3588 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3589 unlock_extent(tree, start, end);
92082d40 3590 unlock_page(page);
90a887c9
DM
3591 goto out;
3592 }
3593 }
3594
09cbfeaf 3595 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3596 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3597
3598 if (zero_offset) {
09cbfeaf 3599 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3600 memzero_page(page, zero_offset, iosize);
c8b97818 3601 flush_dcache_page(page);
c8b97818
CM
3602 }
3603 }
92082d40 3604 begin_page_read(fs_info, page);
d1310b2e 3605 while (cur <= end) {
4c37a793 3606 unsigned long this_bio_flag = 0;
005efedf 3607 bool force_bio_submit = false;
0c64c33c 3608 u64 disk_bytenr;
c8f2f24b 3609
6a404910 3610 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 3611 if (cur >= last_byte) {
507903b8
AJ
3612 struct extent_state *cached = NULL;
3613
09cbfeaf 3614 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3615 memzero_page(page, pg_offset, iosize);
d1310b2e 3616 flush_dcache_page(page);
d1310b2e 3617 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3618 &cached, GFP_NOFS);
7f042a83 3619 unlock_extent_cached(tree, cur,
e43bbe5e 3620 cur + iosize - 1, &cached);
92082d40 3621 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3622 break;
3623 }
125bac01 3624 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3625 end - cur + 1, em_cached);
c704005d 3626 if (IS_ERR_OR_NULL(em)) {
7f042a83 3627 unlock_extent(tree, cur, end);
92082d40 3628 end_page_read(page, false, cur, end + 1 - cur);
d1310b2e
CM
3629 break;
3630 }
d1310b2e
CM
3631 extent_offset = cur - em->start;
3632 BUG_ON(extent_map_end(em) <= cur);
3633 BUG_ON(end < cur);
3634
261507a0 3635 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3636 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3637 extent_set_compress_type(&this_bio_flag,
3638 em->compress_type);
3639 }
c8b97818 3640
d1310b2e
CM
3641 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3642 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3643 iosize = ALIGN(iosize, blocksize);
949b3273 3644 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
0c64c33c 3645 disk_bytenr = em->block_start;
949b3273 3646 else
0c64c33c 3647 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3648 block_start = em->block_start;
d899e052
YZ
3649 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3650 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3651
3652 /*
3653 * If we have a file range that points to a compressed extent
260db43c 3654 * and it's followed by a consecutive file range that points
005efedf
FM
3655 * to the same compressed extent (possibly with a different
3656 * offset and/or length, so it either points to the whole extent
3657 * or only part of it), we must make sure we do not submit a
3658 * single bio to populate the pages for the 2 ranges because
3659 * this makes the compressed extent read zero out the pages
3660 * belonging to the 2nd range. Imagine the following scenario:
3661 *
3662 * File layout
3663 * [0 - 8K] [8K - 24K]
3664 * | |
3665 * | |
3666 * points to extent X, points to extent X,
3667 * offset 4K, length of 8K offset 0, length 16K
3668 *
3669 * [extent X, compressed length = 4K uncompressed length = 16K]
3670 *
3671 * If the bio to read the compressed extent covers both ranges,
3672 * it will decompress extent X into the pages belonging to the
3673 * first range and then it will stop, zeroing out the remaining
3674 * pages that belong to the other range that points to extent X.
3675 * So here we make sure we submit 2 bios, one for the first
3676 * range and another one for the third range. Both will target
3677 * the same physical extent from disk, but we can't currently
3678 * make the compressed bio endio callback populate the pages
3679 * for both ranges because each compressed bio is tightly
3680 * coupled with a single extent map, and each range can have
3681 * an extent map with a different offset value relative to the
3682 * uncompressed data of our extent and different lengths. This
3683 * is a corner case so we prioritize correctness over
3684 * non-optimal behavior (submitting 2 bios for the same extent).
3685 */
3686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3687 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3688 *prev_em_start != em->start)
005efedf
FM
3689 force_bio_submit = true;
3690
3691 if (prev_em_start)
8e928218 3692 *prev_em_start = em->start;
005efedf 3693
d1310b2e
CM
3694 free_extent_map(em);
3695 em = NULL;
3696
3697 /* we've found a hole, just zero and go on */
3698 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3699 struct extent_state *cached = NULL;
3700
d048b9c2 3701 memzero_page(page, pg_offset, iosize);
d1310b2e 3702 flush_dcache_page(page);
d1310b2e
CM
3703
3704 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3705 &cached, GFP_NOFS);
7f042a83 3706 unlock_extent_cached(tree, cur,
e43bbe5e 3707 cur + iosize - 1, &cached);
92082d40 3708 end_page_read(page, true, cur, iosize);
d1310b2e 3709 cur = cur + iosize;
306e16ce 3710 pg_offset += iosize;
d1310b2e
CM
3711 continue;
3712 }
3713 /* the get_extent function already copied into the page */
9655d298
CM
3714 if (test_range_bit(tree, cur, cur_end,
3715 EXTENT_UPTODATE, 1, NULL)) {
7f042a83 3716 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3717 end_page_read(page, true, cur, iosize);
d1310b2e 3718 cur = cur + iosize;
306e16ce 3719 pg_offset += iosize;
d1310b2e
CM
3720 continue;
3721 }
70dec807
CM
3722 /* we have an inline extent but it didn't get marked up
3723 * to date. Error out
3724 */
3725 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3726 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3727 end_page_read(page, false, cur, iosize);
70dec807 3728 cur = cur + iosize;
306e16ce 3729 pg_offset += iosize;
70dec807
CM
3730 continue;
3731 }
d1310b2e 3732
0ceb34bf 3733 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b
QW
3734 bio_ctrl, page, disk_bytenr, iosize,
3735 pg_offset,
fd513000 3736 end_bio_extent_readpage, 0,
005efedf
FM
3737 this_bio_flag,
3738 force_bio_submit);
c8f2f24b
JB
3739 if (!ret) {
3740 nr++;
c8f2f24b 3741 } else {
7f042a83 3742 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3743 end_page_read(page, false, cur, iosize);
baf863b9 3744 goto out;
edd33c99 3745 }
d1310b2e 3746 cur = cur + iosize;
306e16ce 3747 pg_offset += iosize;
d1310b2e 3748 }
90a887c9 3749out:
baf863b9 3750 return ret;
d1310b2e
CM
3751}
3752
b6660e80 3753static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3754 u64 start, u64 end,
3755 struct extent_map **em_cached,
3756 struct btrfs_bio_ctrl *bio_ctrl,
3757 u64 *prev_em_start)
9974090b 3758{
23d31bd4 3759 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3760 int index;
3761
b272ae22 3762 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3763
3764 for (index = 0; index < nr_pages; index++) {
390ed29b 3765 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3766 REQ_RAHEAD, prev_em_start);
09cbfeaf 3767 put_page(pages[index]);
9974090b
MX
3768 }
3769}
3770
3d4b9496 3771static void update_nr_written(struct writeback_control *wbc,
a9132667 3772 unsigned long nr_written)
11c8349b
CM
3773{
3774 wbc->nr_to_write -= nr_written;
11c8349b
CM
3775}
3776
d1310b2e 3777/*
40f76580
CM
3778 * helper for __extent_writepage, doing all of the delayed allocation setup.
3779 *
5eaad97a 3780 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3781 * to write the page (copy into inline extent). In this case the IO has
3782 * been started and the page is already unlocked.
3783 *
3784 * This returns 0 if all went well (page still locked)
3785 * This returns < 0 if there were errors (page still locked)
d1310b2e 3786 */
cd4c0bf9 3787static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 3788 struct page *page, struct writeback_control *wbc)
40f76580 3789{
2749f7ef 3790 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 3791 u64 delalloc_start = page_offset(page);
40f76580 3792 u64 delalloc_to_write = 0;
83f1b680
QW
3793 /* How many pages are started by btrfs_run_delalloc_range() */
3794 unsigned long nr_written = 0;
40f76580
CM
3795 int ret;
3796 int page_started = 0;
3797
2749f7ef
QW
3798 while (delalloc_start < page_end) {
3799 u64 delalloc_end = page_end;
3800 bool found;
40f76580 3801
cd4c0bf9 3802 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3803 &delalloc_start,
917aacec 3804 &delalloc_end);
3522e903 3805 if (!found) {
40f76580
CM
3806 delalloc_start = delalloc_end + 1;
3807 continue;
3808 }
cd4c0bf9 3809 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 3810 delalloc_end, &page_started, &nr_written, wbc);
40f76580 3811 if (ret) {
963e4db8
QW
3812 btrfs_page_set_error(inode->root->fs_info, page,
3813 page_offset(page), PAGE_SIZE);
7361b4ae 3814 return ret;
40f76580
CM
3815 }
3816 /*
ea1754a0
KS
3817 * delalloc_end is already one less than the total length, so
3818 * we don't subtract one from PAGE_SIZE
40f76580
CM
3819 */
3820 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3821 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3822 delalloc_start = delalloc_end + 1;
3823 }
3824 if (wbc->nr_to_write < delalloc_to_write) {
3825 int thresh = 8192;
3826
3827 if (delalloc_to_write < thresh * 2)
3828 thresh = delalloc_to_write;
3829 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3830 thresh);
3831 }
3832
83f1b680 3833 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
3834 if (page_started) {
3835 /*
83f1b680
QW
3836 * We've unlocked the page, so we can't update the mapping's
3837 * writeback index, just update nr_to_write.
40f76580 3838 */
83f1b680 3839 wbc->nr_to_write -= nr_written;
40f76580
CM
3840 return 1;
3841 }
3842
b69d1ee9 3843 return 0;
40f76580
CM
3844}
3845
c5ef5c6c
QW
3846/*
3847 * Find the first byte we need to write.
3848 *
3849 * For subpage, one page can contain several sectors, and
3850 * __extent_writepage_io() will just grab all extent maps in the page
3851 * range and try to submit all non-inline/non-compressed extents.
3852 *
3853 * This is a big problem for subpage, we shouldn't re-submit already written
3854 * data at all.
3855 * This function will lookup subpage dirty bit to find which range we really
3856 * need to submit.
3857 *
3858 * Return the next dirty range in [@start, @end).
3859 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3860 */
3861static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3862 struct page *page, u64 *start, u64 *end)
3863{
3864 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 3865 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
3866 u64 orig_start = *start;
3867 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 3868 unsigned long flags;
72a69cd0 3869 int range_start_bit;
c5ef5c6c
QW
3870 int range_end_bit;
3871
3872 /*
3873 * For regular sector size == page size case, since one page only
3874 * contains one sector, we return the page offset directly.
3875 */
3876 if (fs_info->sectorsize == PAGE_SIZE) {
3877 *start = page_offset(page);
3878 *end = page_offset(page) + PAGE_SIZE;
3879 return;
3880 }
3881
72a69cd0
QW
3882 range_start_bit = spi->dirty_offset +
3883 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3884
c5ef5c6c
QW
3885 /* We should have the page locked, but just in case */
3886 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
3887 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3888 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
3889 spin_unlock_irqrestore(&subpage->lock, flags);
3890
72a69cd0
QW
3891 range_start_bit -= spi->dirty_offset;
3892 range_end_bit -= spi->dirty_offset;
3893
c5ef5c6c
QW
3894 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3895 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3896}
3897
40f76580
CM
3898/*
3899 * helper for __extent_writepage. This calls the writepage start hooks,
3900 * and does the loop to map the page into extents and bios.
3901 *
3902 * We return 1 if the IO is started and the page is unlocked,
3903 * 0 if all went well (page still locked)
3904 * < 0 if there were errors (page still locked)
3905 */
d4580fe2 3906static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3907 struct page *page,
3908 struct writeback_control *wbc,
3909 struct extent_page_data *epd,
3910 loff_t i_size,
57e5ffeb 3911 int *nr_ret)
d1310b2e 3912{
6bc5636a 3913 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
3914 u64 cur = page_offset(page);
3915 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 3916 u64 extent_offset;
d1310b2e 3917 u64 block_start;
d1310b2e 3918 struct extent_map *em;
40f76580
CM
3919 int ret = 0;
3920 int nr = 0;
d8e3fb10 3921 u32 opf = REQ_OP_WRITE;
57e5ffeb 3922 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3923 bool compressed;
c8b97818 3924
a129ffb8 3925 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
3926 if (ret) {
3927 /* Fixup worker will requeue */
5ab58055 3928 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3929 unlock_page(page);
3930 return 1;
247e743c
CM
3931 }
3932
11c8349b
CM
3933 /*
3934 * we don't want to touch the inode after unlocking the page,
3935 * so we update the mapping writeback index now
3936 */
83f1b680 3937 update_nr_written(wbc, 1);
771ed689 3938
d1310b2e 3939 while (cur <= end) {
0c64c33c 3940 u64 disk_bytenr;
40f76580 3941 u64 em_end;
c5ef5c6c
QW
3942 u64 dirty_range_start = cur;
3943 u64 dirty_range_end;
6bc5636a 3944 u32 iosize;
58409edd 3945
40f76580 3946 if (cur >= i_size) {
38a39ac7 3947 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 3948 end, true);
cc1d0d93
QW
3949 /*
3950 * This range is beyond i_size, thus we don't need to
3951 * bother writing back.
3952 * But we still need to clear the dirty subpage bit, or
3953 * the next time the page gets dirtied, we will try to
3954 * writeback the sectors with subpage dirty bits,
3955 * causing writeback without ordered extent.
3956 */
3957 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
3958 break;
3959 }
c5ef5c6c
QW
3960
3961 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3962 &dirty_range_end);
3963 if (cur < dirty_range_start) {
3964 cur = dirty_range_start;
3965 continue;
3966 }
3967
d4580fe2 3968 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c704005d 3969 if (IS_ERR_OR_NULL(em)) {
c5ef5c6c 3970 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 3971 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3972 break;
3973 }
3974
3975 extent_offset = cur - em->start;
40f76580 3976 em_end = extent_map_end(em);
6bc5636a
QW
3977 ASSERT(cur <= em_end);
3978 ASSERT(cur < end);
3979 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3980 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 3981 block_start = em->block_start;
c8b97818 3982 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
3983 disk_bytenr = em->block_start + extent_offset;
3984
c5ef5c6c
QW
3985 /*
3986 * Note that em_end from extent_map_end() and dirty_range_end from
3987 * find_next_dirty_byte() are all exclusive
3988 */
3989 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 3990
e380adfc 3991 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
3992 opf = REQ_OP_ZONE_APPEND;
3993
d1310b2e
CM
3994 free_extent_map(em);
3995 em = NULL;
3996
c8b97818
CM
3997 /*
3998 * compressed and inline extents are written through other
3999 * paths in the FS
4000 */
4001 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 4002 block_start == EXTENT_MAP_INLINE) {
c8b04030 4003 if (compressed)
c8b97818 4004 nr++;
c8b04030 4005 else
38a39ac7 4006 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 4007 page, cur, cur + iosize - 1, true);
cc1d0d93 4008 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 4009 cur += iosize;
d1310b2e
CM
4010 continue;
4011 }
c8b97818 4012
d2a91064 4013 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 4014 if (!PageWriteback(page)) {
d4580fe2 4015 btrfs_err(inode->root->fs_info,
58409edd
DS
4016 "page %lu not writeback, cur %llu end %llu",
4017 page->index, cur, end);
d1310b2e 4018 }
7f3c74fb 4019
c5ef5c6c
QW
4020 /*
4021 * Although the PageDirty bit is cleared before entering this
4022 * function, subpage dirty bit is not cleared.
4023 * So clear subpage dirty bit here so next time we won't submit
4024 * page for range already written to disk.
4025 */
4026 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4027
390ed29b
QW
4028 ret = submit_extent_page(opf | write_flags, wbc,
4029 &epd->bio_ctrl, page,
d8e3fb10 4030 disk_bytenr, iosize,
390ed29b 4031 cur - page_offset(page),
58409edd 4032 end_bio_extent_writepage,
390ed29b 4033 0, 0, false);
fe01aa65 4034 if (ret) {
c5ef5c6c 4035 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 4036 if (PageWriteback(page))
c5ef5c6c
QW
4037 btrfs_page_clear_writeback(fs_info, page, cur,
4038 iosize);
fe01aa65 4039 }
d1310b2e 4040
6bc5636a 4041 cur += iosize;
d1310b2e
CM
4042 nr++;
4043 }
cc1d0d93
QW
4044 /*
4045 * If we finish without problem, we should not only clear page dirty,
4046 * but also empty subpage dirty bits
4047 */
4048 if (!ret)
4049 btrfs_page_assert_not_dirty(fs_info, page);
40f76580 4050 *nr_ret = nr;
40f76580
CM
4051 return ret;
4052}
4053
4054/*
4055 * the writepage semantics are similar to regular writepage. extent
4056 * records are inserted to lock ranges in the tree, and as dirty areas
4057 * are found, they are marked writeback. Then the lock bits are removed
4058 * and the end_io handler clears the writeback ranges
3065976b
QW
4059 *
4060 * Return 0 if everything goes well.
4061 * Return <0 for error.
40f76580
CM
4062 */
4063static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 4064 struct extent_page_data *epd)
40f76580
CM
4065{
4066 struct inode *inode = page->mapping->host;
e55a0de1 4067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
4068 const u64 page_start = page_offset(page);
4069 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
4070 int ret;
4071 int nr = 0;
eb70d222 4072 size_t pg_offset;
40f76580 4073 loff_t i_size = i_size_read(inode);
09cbfeaf 4074 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 4075
40f76580
CM
4076 trace___extent_writepage(page, inode, wbc);
4077
4078 WARN_ON(!PageLocked(page));
4079
963e4db8
QW
4080 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4081 page_offset(page), PAGE_SIZE);
40f76580 4082
7073017a 4083 pg_offset = offset_in_page(i_size);
40f76580
CM
4084 if (page->index > end_index ||
4085 (page->index == end_index && !pg_offset)) {
09cbfeaf 4086 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
4087 unlock_page(page);
4088 return 0;
4089 }
4090
4091 if (page->index == end_index) {
d048b9c2 4092 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580
CM
4093 flush_dcache_page(page);
4094 }
4095
32443de3
QW
4096 ret = set_page_extent_mapped(page);
4097 if (ret < 0) {
4098 SetPageError(page);
4099 goto done;
4100 }
40f76580 4101
7789a55a 4102 if (!epd->extent_locked) {
83f1b680 4103 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 4104 if (ret == 1)
169d2c87 4105 return 0;
7789a55a
NB
4106 if (ret)
4107 goto done;
4108 }
40f76580 4109
d4580fe2 4110 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 4111 &nr);
40f76580 4112 if (ret == 1)
169d2c87 4113 return 0;
40f76580 4114
d1310b2e
CM
4115done:
4116 if (nr == 0) {
4117 /* make sure the mapping tag for page dirty gets cleared */
4118 set_page_writeback(page);
4119 end_page_writeback(page);
4120 }
963e4db8
QW
4121 /*
4122 * Here we used to have a check for PageError() and then set @ret and
4123 * call end_extent_writepage().
4124 *
4125 * But in fact setting @ret here will cause different error paths
4126 * between subpage and regular sectorsize.
4127 *
4128 * For regular page size, we never submit current page, but only add
4129 * current page to current bio.
4130 * The bio submission can only happen in next page.
4131 * Thus if we hit the PageError() branch, @ret is already set to
4132 * non-zero value and will not get updated for regular sectorsize.
4133 *
4134 * But for subpage case, it's possible we submit part of current page,
4135 * thus can get PageError() set by submitted bio of the same page,
4136 * while our @ret is still 0.
4137 *
4138 * So here we unify the behavior and don't set @ret.
4139 * Error can still be properly passed to higher layer as page will
4140 * be set error, here we just don't handle the IO failure.
4141 *
4142 * NOTE: This is just a hotfix for subpage.
4143 * The root fix will be properly ending ordered extent when we hit
4144 * an error during writeback.
4145 *
4146 * But that needs a bigger refactoring, as we not only need to grab the
4147 * submitted OE, but also need to know exactly at which bytenr we hit
4148 * the error.
4149 * Currently the full page based __extent_writepage_io() is not
4150 * capable of that.
4151 */
4152 if (PageError(page))
cf3075fb 4153 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
4154 if (epd->extent_locked) {
4155 /*
4156 * If epd->extent_locked, it's from extent_write_locked_range(),
4157 * the page can either be locked by lock_page() or
4158 * process_one_page().
4159 * Let btrfs_page_unlock_writer() handle both cases.
4160 */
4161 ASSERT(wbc);
4162 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4163 wbc->range_end + 1 - wbc->range_start);
4164 } else {
4165 unlock_page(page);
4166 }
3065976b 4167 ASSERT(ret <= 0);
40f76580 4168 return ret;
d1310b2e
CM
4169}
4170
fd8b2b61 4171void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 4172{
74316201
N
4173 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4174 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
4175}
4176
18dfa711
FM
4177static void end_extent_buffer_writeback(struct extent_buffer *eb)
4178{
be1a1d7a
NA
4179 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
4180 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);
4181
18dfa711
FM
4182 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4183 smp_mb__after_atomic();
4184 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4185}
4186
2e3c2513 4187/*
a3efb2f0 4188 * Lock extent buffer status and pages for writeback.
2e3c2513 4189 *
a3efb2f0
QW
4190 * May try to flush write bio if we can't get the lock.
4191 *
4192 * Return 0 if the extent buffer doesn't need to be submitted.
4193 * (E.g. the extent buffer is not dirty)
4194 * Return >0 is the extent buffer is submitted to bio.
4195 * Return <0 if something went wrong, no page is locked.
2e3c2513 4196 */
9df76fb5 4197static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4198 struct extent_page_data *epd)
0b32f4bb 4199{
9df76fb5 4200 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 4201 int i, num_pages, failed_page_nr;
0b32f4bb
JB
4202 int flush = 0;
4203 int ret = 0;
4204
4205 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 4206 ret = flush_write_bio(epd);
2e3c2513
QW
4207 if (ret < 0)
4208 return ret;
4209 flush = 1;
0b32f4bb
JB
4210 btrfs_tree_lock(eb);
4211 }
4212
4213 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4214 btrfs_tree_unlock(eb);
4215 if (!epd->sync_io)
4216 return 0;
4217 if (!flush) {
f4340622 4218 ret = flush_write_bio(epd);
2e3c2513
QW
4219 if (ret < 0)
4220 return ret;
0b32f4bb
JB
4221 flush = 1;
4222 }
a098d8e8
CM
4223 while (1) {
4224 wait_on_extent_buffer_writeback(eb);
4225 btrfs_tree_lock(eb);
4226 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4227 break;
0b32f4bb 4228 btrfs_tree_unlock(eb);
0b32f4bb
JB
4229 }
4230 }
4231
51561ffe
JB
4232 /*
4233 * We need to do this to prevent races in people who check if the eb is
4234 * under IO since we can end up having no IO bits set for a short period
4235 * of time.
4236 */
4237 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4238 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4239 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4240 spin_unlock(&eb->refs_lock);
0b32f4bb 4241 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4242 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4243 -eb->len,
4244 fs_info->dirty_metadata_batch);
0b32f4bb 4245 ret = 1;
51561ffe
JB
4246 } else {
4247 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4248 }
4249
4250 btrfs_tree_unlock(eb);
4251
f3156df9
QW
4252 /*
4253 * Either we don't need to submit any tree block, or we're submitting
4254 * subpage eb.
4255 * Subpage metadata doesn't use page locking at all, so we can skip
4256 * the page locking.
4257 */
4258 if (!ret || fs_info->sectorsize < PAGE_SIZE)
0b32f4bb
JB
4259 return ret;
4260
65ad0104 4261 num_pages = num_extent_pages(eb);
0b32f4bb 4262 for (i = 0; i < num_pages; i++) {
fb85fc9a 4263 struct page *p = eb->pages[i];
0b32f4bb
JB
4264
4265 if (!trylock_page(p)) {
4266 if (!flush) {
18dfa711
FM
4267 int err;
4268
4269 err = flush_write_bio(epd);
4270 if (err < 0) {
4271 ret = err;
2e3c2513
QW
4272 failed_page_nr = i;
4273 goto err_unlock;
4274 }
0b32f4bb
JB
4275 flush = 1;
4276 }
4277 lock_page(p);
4278 }
4279 }
4280
4281 return ret;
2e3c2513
QW
4282err_unlock:
4283 /* Unlock already locked pages */
4284 for (i = 0; i < failed_page_nr; i++)
4285 unlock_page(eb->pages[i]);
18dfa711
FM
4286 /*
4287 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4288 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4289 * be made and undo everything done before.
4290 */
4291 btrfs_tree_lock(eb);
4292 spin_lock(&eb->refs_lock);
4293 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4294 end_extent_buffer_writeback(eb);
4295 spin_unlock(&eb->refs_lock);
4296 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4297 fs_info->dirty_metadata_batch);
4298 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4299 btrfs_tree_unlock(eb);
2e3c2513 4300 return ret;
0b32f4bb
JB
4301}
4302
5a2c6075 4303static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4304{
5a2c6075 4305 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4306
5a2c6075 4307 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4308 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4309 return;
4310
c2e39305
JB
4311 /*
4312 * A read may stumble upon this buffer later, make sure that it gets an
4313 * error and knows there was an error.
4314 */
4315 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4316
68b85589
JB
4317 /*
4318 * We need to set the mapping with the io error as well because a write
4319 * error will flip the file system readonly, and then syncfs() will
4320 * return a 0 because we are readonly if we don't modify the err seq for
4321 * the superblock.
4322 */
4323 mapping_set_error(page->mapping, -EIO);
4324
eb5b64f1
DZ
4325 /*
4326 * If we error out, we should add back the dirty_metadata_bytes
4327 * to make it consistent.
4328 */
eb5b64f1
DZ
4329 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4330 eb->len, fs_info->dirty_metadata_batch);
4331
656f30db
FM
4332 /*
4333 * If writeback for a btree extent that doesn't belong to a log tree
4334 * failed, increment the counter transaction->eb_write_errors.
4335 * We do this because while the transaction is running and before it's
4336 * committing (when we call filemap_fdata[write|wait]_range against
4337 * the btree inode), we might have
4338 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4339 * returns an error or an error happens during writeback, when we're
4340 * committing the transaction we wouldn't know about it, since the pages
4341 * can be no longer dirty nor marked anymore for writeback (if a
4342 * subsequent modification to the extent buffer didn't happen before the
4343 * transaction commit), which makes filemap_fdata[write|wait]_range not
4344 * able to find the pages tagged with SetPageError at transaction
4345 * commit time. So if this happens we must abort the transaction,
4346 * otherwise we commit a super block with btree roots that point to
4347 * btree nodes/leafs whose content on disk is invalid - either garbage
4348 * or the content of some node/leaf from a past generation that got
4349 * cowed or deleted and is no longer valid.
4350 *
4351 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4352 * not be enough - we need to distinguish between log tree extents vs
4353 * non-log tree extents, and the next filemap_fdatawait_range() call
4354 * will catch and clear such errors in the mapping - and that call might
4355 * be from a log sync and not from a transaction commit. Also, checking
4356 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4357 * not done and would not be reliable - the eb might have been released
4358 * from memory and reading it back again means that flag would not be
4359 * set (since it's a runtime flag, not persisted on disk).
4360 *
4361 * Using the flags below in the btree inode also makes us achieve the
4362 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4363 * writeback for all dirty pages and before filemap_fdatawait_range()
4364 * is called, the writeback for all dirty pages had already finished
4365 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4366 * filemap_fdatawait_range() would return success, as it could not know
4367 * that writeback errors happened (the pages were no longer tagged for
4368 * writeback).
4369 */
4370 switch (eb->log_index) {
4371 case -1:
5a2c6075 4372 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4373 break;
4374 case 0:
5a2c6075 4375 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4376 break;
4377 case 1:
5a2c6075 4378 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4379 break;
4380 default:
4381 BUG(); /* unexpected, logic error */
4382 }
4383}
4384
2f3186d8
QW
4385/*
4386 * The endio specific version which won't touch any unsafe spinlock in endio
4387 * context.
4388 */
4389static struct extent_buffer *find_extent_buffer_nolock(
4390 struct btrfs_fs_info *fs_info, u64 start)
4391{
4392 struct extent_buffer *eb;
4393
4394 rcu_read_lock();
4395 eb = radix_tree_lookup(&fs_info->buffer_radix,
4396 start >> fs_info->sectorsize_bits);
4397 if (eb && atomic_inc_not_zero(&eb->refs)) {
4398 rcu_read_unlock();
4399 return eb;
4400 }
4401 rcu_read_unlock();
4402 return NULL;
4403}
4404
4405/*
4406 * The endio function for subpage extent buffer write.
4407 *
4408 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4409 * after all extent buffers in the page has finished their writeback.
4410 */
fa04c165 4411static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4412{
fa04c165 4413 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4414 struct bio_vec *bvec;
4415 struct bvec_iter_all iter_all;
4416
fa04c165
QW
4417 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4418 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4419
2f3186d8
QW
4420 ASSERT(!bio_flagged(bio, BIO_CLONED));
4421 bio_for_each_segment_all(bvec, bio, iter_all) {
4422 struct page *page = bvec->bv_page;
4423 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4424 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4425 u64 cur_bytenr = bvec_start;
4426
4427 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4428
4429 /* Iterate through all extent buffers in the range */
4430 while (cur_bytenr <= bvec_end) {
4431 struct extent_buffer *eb;
4432 int done;
4433
4434 /*
4435 * Here we can't use find_extent_buffer(), as it may
4436 * try to lock eb->refs_lock, which is not safe in endio
4437 * context.
4438 */
4439 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4440 ASSERT(eb);
4441
4442 cur_bytenr = eb->start + eb->len;
4443
4444 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4445 done = atomic_dec_and_test(&eb->io_pages);
4446 ASSERT(done);
4447
4448 if (bio->bi_status ||
4449 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4450 ClearPageUptodate(page);
4451 set_btree_ioerr(page, eb);
4452 }
4453
4454 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4455 eb->len);
4456 end_extent_buffer_writeback(eb);
4457 /*
4458 * free_extent_buffer() will grab spinlock which is not
4459 * safe in endio context. Thus here we manually dec
4460 * the ref.
4461 */
4462 atomic_dec(&eb->refs);
4463 }
4464 }
4465 bio_put(bio);
4466}
4467
4246a0b6 4468static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4469{
2c30c71b 4470 struct bio_vec *bvec;
0b32f4bb 4471 struct extent_buffer *eb;
2b070cfe 4472 int done;
6dc4f100 4473 struct bvec_iter_all iter_all;
0b32f4bb 4474
c09abff8 4475 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4476 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4477 struct page *page = bvec->bv_page;
4478
0b32f4bb
JB
4479 eb = (struct extent_buffer *)page->private;
4480 BUG_ON(!eb);
4481 done = atomic_dec_and_test(&eb->io_pages);
4482
4e4cbee9 4483 if (bio->bi_status ||
4246a0b6 4484 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4485 ClearPageUptodate(page);
5a2c6075 4486 set_btree_ioerr(page, eb);
0b32f4bb
JB
4487 }
4488
4489 end_page_writeback(page);
4490
4491 if (!done)
4492 continue;
4493
4494 end_extent_buffer_writeback(eb);
2c30c71b 4495 }
0b32f4bb
JB
4496
4497 bio_put(bio);
0b32f4bb
JB
4498}
4499
fa04c165
QW
4500static void prepare_eb_write(struct extent_buffer *eb)
4501{
4502 u32 nritems;
4503 unsigned long start;
4504 unsigned long end;
4505
4506 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4507 atomic_set(&eb->io_pages, num_extent_pages(eb));
4508
4509 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4510 nritems = btrfs_header_nritems(eb);
4511 if (btrfs_header_level(eb) > 0) {
4512 end = btrfs_node_key_ptr_offset(nritems);
4513 memzero_extent_buffer(eb, end, eb->len - end);
4514 } else {
4515 /*
4516 * Leaf:
4517 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4518 */
4519 start = btrfs_item_nr_offset(nritems);
4520 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4521 memzero_extent_buffer(eb, start, end - start);
4522 }
4523}
4524
35b6ddfa
QW
4525/*
4526 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4527 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4528 */
4529static int write_one_subpage_eb(struct extent_buffer *eb,
4530 struct writeback_control *wbc,
4531 struct extent_page_data *epd)
4532{
4533 struct btrfs_fs_info *fs_info = eb->fs_info;
4534 struct page *page = eb->pages[0];
4535 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4536 bool no_dirty_ebs = false;
4537 int ret;
4538
fa04c165
QW
4539 prepare_eb_write(eb);
4540
35b6ddfa
QW
4541 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4542 lock_page(page);
4543 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4544
4545 /* Check if this is the last dirty bit to update nr_written */
4546 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4547 eb->start, eb->len);
4548 if (no_dirty_ebs)
4549 clear_page_dirty_for_io(page);
4550
390ed29b
QW
4551 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4552 &epd->bio_ctrl, page, eb->start, eb->len,
4553 eb->start - page_offset(page),
fa04c165 4554 end_bio_subpage_eb_writepage, 0, 0, false);
35b6ddfa
QW
4555 if (ret) {
4556 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4557 set_btree_ioerr(page, eb);
4558 unlock_page(page);
4559
4560 if (atomic_dec_and_test(&eb->io_pages))
4561 end_extent_buffer_writeback(eb);
4562 return -EIO;
4563 }
4564 unlock_page(page);
4565 /*
4566 * Submission finished without problem, if no range of the page is
4567 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4568 */
4569 if (no_dirty_ebs)
4570 update_nr_written(wbc, 1);
4571 return ret;
4572}
4573
0e378df1 4574static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4575 struct writeback_control *wbc,
4576 struct extent_page_data *epd)
4577{
0c64c33c 4578 u64 disk_bytenr = eb->start;
cc5e31a4 4579 int i, num_pages;
ff40adf7 4580 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 4581 int ret = 0;
0b32f4bb 4582
fa04c165 4583 prepare_eb_write(eb);
35b6ddfa 4584
fa04c165 4585 num_pages = num_extent_pages(eb);
0b32f4bb 4586 for (i = 0; i < num_pages; i++) {
fb85fc9a 4587 struct page *p = eb->pages[i];
0b32f4bb
JB
4588
4589 clear_page_dirty_for_io(p);
4590 set_page_writeback(p);
0ceb34bf 4591 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4592 &epd->bio_ctrl, p, disk_bytenr,
4593 PAGE_SIZE, 0,
1f7ad75b 4594 end_bio_extent_buffer_writepage,
390ed29b 4595 0, 0, false);
0b32f4bb 4596 if (ret) {
5a2c6075 4597 set_btree_ioerr(p, eb);
fe01aa65
TK
4598 if (PageWriteback(p))
4599 end_page_writeback(p);
0b32f4bb
JB
4600 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4601 end_extent_buffer_writeback(eb);
4602 ret = -EIO;
4603 break;
4604 }
0c64c33c 4605 disk_bytenr += PAGE_SIZE;
3d4b9496 4606 update_nr_written(wbc, 1);
0b32f4bb
JB
4607 unlock_page(p);
4608 }
4609
4610 if (unlikely(ret)) {
4611 for (; i < num_pages; i++) {
bbf65cf0 4612 struct page *p = eb->pages[i];
81465028 4613 clear_page_dirty_for_io(p);
0b32f4bb
JB
4614 unlock_page(p);
4615 }
4616 }
4617
4618 return ret;
4619}
4620
c4aec299
QW
4621/*
4622 * Submit one subpage btree page.
4623 *
4624 * The main difference to submit_eb_page() is:
4625 * - Page locking
4626 * For subpage, we don't rely on page locking at all.
4627 *
4628 * - Flush write bio
4629 * We only flush bio if we may be unable to fit current extent buffers into
4630 * current bio.
4631 *
4632 * Return >=0 for the number of submitted extent buffers.
4633 * Return <0 for fatal error.
4634 */
4635static int submit_eb_subpage(struct page *page,
4636 struct writeback_control *wbc,
4637 struct extent_page_data *epd)
4638{
4639 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4640 int submitted = 0;
4641 u64 page_start = page_offset(page);
4642 int bit_start = 0;
c4aec299
QW
4643 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4644 int ret;
4645
4646 /* Lock and write each dirty extent buffers in the range */
72a69cd0 4647 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
4648 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4649 struct extent_buffer *eb;
4650 unsigned long flags;
4651 u64 start;
4652
4653 /*
4654 * Take private lock to ensure the subpage won't be detached
4655 * in the meantime.
4656 */
4657 spin_lock(&page->mapping->private_lock);
4658 if (!PagePrivate(page)) {
4659 spin_unlock(&page->mapping->private_lock);
4660 break;
4661 }
4662 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
4663 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4664 subpage->bitmaps)) {
c4aec299
QW
4665 spin_unlock_irqrestore(&subpage->lock, flags);
4666 spin_unlock(&page->mapping->private_lock);
4667 bit_start++;
4668 continue;
4669 }
4670
4671 start = page_start + bit_start * fs_info->sectorsize;
4672 bit_start += sectors_per_node;
4673
4674 /*
4675 * Here we just want to grab the eb without touching extra
4676 * spin locks, so call find_extent_buffer_nolock().
4677 */
4678 eb = find_extent_buffer_nolock(fs_info, start);
4679 spin_unlock_irqrestore(&subpage->lock, flags);
4680 spin_unlock(&page->mapping->private_lock);
4681
4682 /*
4683 * The eb has already reached 0 refs thus find_extent_buffer()
4684 * doesn't return it. We don't need to write back such eb
4685 * anyway.
4686 */
4687 if (!eb)
4688 continue;
4689
4690 ret = lock_extent_buffer_for_io(eb, epd);
4691 if (ret == 0) {
4692 free_extent_buffer(eb);
4693 continue;
4694 }
4695 if (ret < 0) {
4696 free_extent_buffer(eb);
4697 goto cleanup;
4698 }
fa04c165 4699 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4700 free_extent_buffer(eb);
4701 if (ret < 0)
4702 goto cleanup;
4703 submitted++;
4704 }
4705 return submitted;
4706
4707cleanup:
4708 /* We hit error, end bio for the submitted extent buffers */
4709 end_write_bio(epd, ret);
4710 return ret;
4711}
4712
f91e0d0c
QW
4713/*
4714 * Submit all page(s) of one extent buffer.
4715 *
4716 * @page: the page of one extent buffer
4717 * @eb_context: to determine if we need to submit this page, if current page
4718 * belongs to this eb, we don't need to submit
4719 *
4720 * The caller should pass each page in their bytenr order, and here we use
4721 * @eb_context to determine if we have submitted pages of one extent buffer.
4722 *
4723 * If we have, we just skip until we hit a new page that doesn't belong to
4724 * current @eb_context.
4725 *
4726 * If not, we submit all the page(s) of the extent buffer.
4727 *
4728 * Return >0 if we have submitted the extent buffer successfully.
4729 * Return 0 if we don't need to submit the page, as it's already submitted by
4730 * previous call.
4731 * Return <0 for fatal error.
4732 */
4733static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4734 struct extent_page_data *epd,
4735 struct extent_buffer **eb_context)
4736{
4737 struct address_space *mapping = page->mapping;
0bc09ca1 4738 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4739 struct extent_buffer *eb;
4740 int ret;
4741
4742 if (!PagePrivate(page))
4743 return 0;
4744
c4aec299
QW
4745 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4746 return submit_eb_subpage(page, wbc, epd);
4747
f91e0d0c
QW
4748 spin_lock(&mapping->private_lock);
4749 if (!PagePrivate(page)) {
4750 spin_unlock(&mapping->private_lock);
4751 return 0;
4752 }
4753
4754 eb = (struct extent_buffer *)page->private;
4755
4756 /*
4757 * Shouldn't happen and normally this would be a BUG_ON but no point
4758 * crashing the machine for something we can survive anyway.
4759 */
4760 if (WARN_ON(!eb)) {
4761 spin_unlock(&mapping->private_lock);
4762 return 0;
4763 }
4764
4765 if (eb == *eb_context) {
4766 spin_unlock(&mapping->private_lock);
4767 return 0;
4768 }
4769 ret = atomic_inc_not_zero(&eb->refs);
4770 spin_unlock(&mapping->private_lock);
4771 if (!ret)
4772 return 0;
4773
0bc09ca1
NA
4774 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4775 /*
4776 * If for_sync, this hole will be filled with
4777 * trasnsaction commit.
4778 */
4779 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4780 ret = -EAGAIN;
4781 else
4782 ret = 0;
4783 free_extent_buffer(eb);
4784 return ret;
4785 }
4786
f91e0d0c
QW
4787 *eb_context = eb;
4788
4789 ret = lock_extent_buffer_for_io(eb, epd);
4790 if (ret <= 0) {
0bc09ca1
NA
4791 btrfs_revert_meta_write_pointer(cache, eb);
4792 if (cache)
4793 btrfs_put_block_group(cache);
f91e0d0c
QW
4794 free_extent_buffer(eb);
4795 return ret;
4796 }
be1a1d7a
NA
4797 if (cache) {
4798 /* Impiles write in zoned mode */
0bc09ca1 4799 btrfs_put_block_group(cache);
be1a1d7a
NA
4800 /* Mark the last eb in a block group */
4801 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
4802 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4803 }
f91e0d0c
QW
4804 ret = write_one_eb(eb, wbc, epd);
4805 free_extent_buffer(eb);
4806 if (ret < 0)
4807 return ret;
4808 return 1;
4809}
4810
0b32f4bb
JB
4811int btree_write_cache_pages(struct address_space *mapping,
4812 struct writeback_control *wbc)
4813{
f91e0d0c 4814 struct extent_buffer *eb_context = NULL;
0b32f4bb 4815 struct extent_page_data epd = {
390ed29b 4816 .bio_ctrl = { 0 },
0b32f4bb
JB
4817 .extent_locked = 0,
4818 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4819 };
b3ff8f1d 4820 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4821 int ret = 0;
4822 int done = 0;
4823 int nr_to_write_done = 0;
4824 struct pagevec pvec;
4825 int nr_pages;
4826 pgoff_t index;
4827 pgoff_t end; /* Inclusive */
4828 int scanned = 0;
10bbd235 4829 xa_mark_t tag;
0b32f4bb 4830
86679820 4831 pagevec_init(&pvec);
0b32f4bb
JB
4832 if (wbc->range_cyclic) {
4833 index = mapping->writeback_index; /* Start from prev offset */
4834 end = -1;
556755a8
JB
4835 /*
4836 * Start from the beginning does not need to cycle over the
4837 * range, mark it as scanned.
4838 */
4839 scanned = (index == 0);
0b32f4bb 4840 } else {
09cbfeaf
KS
4841 index = wbc->range_start >> PAGE_SHIFT;
4842 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4843 scanned = 1;
4844 }
4845 if (wbc->sync_mode == WB_SYNC_ALL)
4846 tag = PAGECACHE_TAG_TOWRITE;
4847 else
4848 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4849 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4850retry:
4851 if (wbc->sync_mode == WB_SYNC_ALL)
4852 tag_pages_for_writeback(mapping, index, end);
4853 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4854 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4855 tag))) {
0b32f4bb
JB
4856 unsigned i;
4857
0b32f4bb
JB
4858 for (i = 0; i < nr_pages; i++) {
4859 struct page *page = pvec.pages[i];
4860
f91e0d0c
QW
4861 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4862 if (ret == 0)
0b32f4bb 4863 continue;
f91e0d0c 4864 if (ret < 0) {
0b32f4bb 4865 done = 1;
0b32f4bb
JB
4866 break;
4867 }
0b32f4bb
JB
4868
4869 /*
4870 * the filesystem may choose to bump up nr_to_write.
4871 * We have to make sure to honor the new nr_to_write
4872 * at any time
4873 */
4874 nr_to_write_done = wbc->nr_to_write <= 0;
4875 }
4876 pagevec_release(&pvec);
4877 cond_resched();
4878 }
4879 if (!scanned && !done) {
4880 /*
4881 * We hit the last page and there is more work to be done: wrap
4882 * back to the start of the file
4883 */
4884 scanned = 1;
4885 index = 0;
4886 goto retry;
4887 }
2b952eea
QW
4888 if (ret < 0) {
4889 end_write_bio(&epd, ret);
0bc09ca1 4890 goto out;
2b952eea 4891 }
b3ff8f1d
QW
4892 /*
4893 * If something went wrong, don't allow any metadata write bio to be
4894 * submitted.
4895 *
4896 * This would prevent use-after-free if we had dirty pages not
4897 * cleaned up, which can still happen by fuzzed images.
4898 *
4899 * - Bad extent tree
4900 * Allowing existing tree block to be allocated for other trees.
4901 *
4902 * - Log tree operations
4903 * Exiting tree blocks get allocated to log tree, bumps its
4904 * generation, then get cleaned in tree re-balance.
4905 * Such tree block will not be written back, since it's clean,
4906 * thus no WRITTEN flag set.
4907 * And after log writes back, this tree block is not traced by
4908 * any dirty extent_io_tree.
4909 *
4910 * - Offending tree block gets re-dirtied from its original owner
4911 * Since it has bumped generation, no WRITTEN flag, it can be
4912 * reused without COWing. This tree block will not be traced
4913 * by btrfs_transaction::dirty_pages.
4914 *
4915 * Now such dirty tree block will not be cleaned by any dirty
4916 * extent io tree. Thus we don't want to submit such wild eb
4917 * if the fs already has error.
4918 */
84961539 4919 if (!BTRFS_FS_ERROR(fs_info)) {
b3ff8f1d
QW
4920 ret = flush_write_bio(&epd);
4921 } else {
fbabd4a3 4922 ret = -EROFS;
b3ff8f1d
QW
4923 end_write_bio(&epd, ret);
4924 }
0bc09ca1
NA
4925out:
4926 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4927 return ret;
4928}
4929
d1310b2e 4930/**
3bed2da1
NB
4931 * Walk the list of dirty pages of the given address space and write all of them.
4932 *
d1310b2e 4933 * @mapping: address space structure to write
3bed2da1
NB
4934 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4935 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4936 *
4937 * If a page is already under I/O, write_cache_pages() skips it, even
4938 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4939 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4940 * and msync() need to guarantee that all the data which was dirty at the time
4941 * the call was made get new I/O started against them. If wbc->sync_mode is
4942 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4943 * existing IO to complete.
4944 */
4242b64a 4945static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4946 struct writeback_control *wbc,
aab6e9ed 4947 struct extent_page_data *epd)
d1310b2e 4948{
7fd1a3f7 4949 struct inode *inode = mapping->host;
d1310b2e
CM
4950 int ret = 0;
4951 int done = 0;
f85d7d6c 4952 int nr_to_write_done = 0;
d1310b2e
CM
4953 struct pagevec pvec;
4954 int nr_pages;
4955 pgoff_t index;
4956 pgoff_t end; /* Inclusive */
a9132667
LB
4957 pgoff_t done_index;
4958 int range_whole = 0;
d1310b2e 4959 int scanned = 0;
10bbd235 4960 xa_mark_t tag;
d1310b2e 4961
7fd1a3f7
JB
4962 /*
4963 * We have to hold onto the inode so that ordered extents can do their
4964 * work when the IO finishes. The alternative to this is failing to add
4965 * an ordered extent if the igrab() fails there and that is a huge pain
4966 * to deal with, so instead just hold onto the inode throughout the
4967 * writepages operation. If it fails here we are freeing up the inode
4968 * anyway and we'd rather not waste our time writing out stuff that is
4969 * going to be truncated anyway.
4970 */
4971 if (!igrab(inode))
4972 return 0;
4973
86679820 4974 pagevec_init(&pvec);
d1310b2e
CM
4975 if (wbc->range_cyclic) {
4976 index = mapping->writeback_index; /* Start from prev offset */
4977 end = -1;
556755a8
JB
4978 /*
4979 * Start from the beginning does not need to cycle over the
4980 * range, mark it as scanned.
4981 */
4982 scanned = (index == 0);
d1310b2e 4983 } else {
09cbfeaf
KS
4984 index = wbc->range_start >> PAGE_SHIFT;
4985 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4986 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4987 range_whole = 1;
d1310b2e
CM
4988 scanned = 1;
4989 }
3cd24c69
EL
4990
4991 /*
4992 * We do the tagged writepage as long as the snapshot flush bit is set
4993 * and we are the first one who do the filemap_flush() on this inode.
4994 *
4995 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4996 * not race in and drop the bit.
4997 */
4998 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4999 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
5000 &BTRFS_I(inode)->runtime_flags))
5001 wbc->tagged_writepages = 1;
5002
5003 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
5004 tag = PAGECACHE_TAG_TOWRITE;
5005 else
5006 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 5007retry:
3cd24c69 5008 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 5009 tag_pages_for_writeback(mapping, index, end);
a9132667 5010 done_index = index;
f85d7d6c 5011 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
5012 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5013 &index, end, tag))) {
d1310b2e
CM
5014 unsigned i;
5015
d1310b2e
CM
5016 for (i = 0; i < nr_pages; i++) {
5017 struct page *page = pvec.pages[i];
5018
f7bddf1e 5019 done_index = page->index + 1;
d1310b2e 5020 /*
b93b0163
MW
5021 * At this point we hold neither the i_pages lock nor
5022 * the page lock: the page may be truncated or
5023 * invalidated (changing page->mapping to NULL),
5024 * or even swizzled back from swapper_space to
5025 * tmpfs file mapping
d1310b2e 5026 */
c8f2f24b 5027 if (!trylock_page(page)) {
f4340622
QW
5028 ret = flush_write_bio(epd);
5029 BUG_ON(ret < 0);
c8f2f24b 5030 lock_page(page);
01d658f2 5031 }
d1310b2e
CM
5032
5033 if (unlikely(page->mapping != mapping)) {
5034 unlock_page(page);
5035 continue;
5036 }
5037
d2c3f4f6 5038 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
5039 if (PageWriteback(page)) {
5040 ret = flush_write_bio(epd);
5041 BUG_ON(ret < 0);
5042 }
d1310b2e 5043 wait_on_page_writeback(page);
d2c3f4f6 5044 }
d1310b2e
CM
5045
5046 if (PageWriteback(page) ||
5047 !clear_page_dirty_for_io(page)) {
5048 unlock_page(page);
5049 continue;
5050 }
5051
aab6e9ed 5052 ret = __extent_writepage(page, wbc, epd);
a9132667 5053 if (ret < 0) {
a9132667
LB
5054 done = 1;
5055 break;
5056 }
f85d7d6c
CM
5057
5058 /*
5059 * the filesystem may choose to bump up nr_to_write.
5060 * We have to make sure to honor the new nr_to_write
5061 * at any time
5062 */
5063 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
5064 }
5065 pagevec_release(&pvec);
5066 cond_resched();
5067 }
894b36e3 5068 if (!scanned && !done) {
d1310b2e
CM
5069 /*
5070 * We hit the last page and there is more work to be done: wrap
5071 * back to the start of the file
5072 */
5073 scanned = 1;
5074 index = 0;
42ffb0bf
JB
5075
5076 /*
5077 * If we're looping we could run into a page that is locked by a
5078 * writer and that writer could be waiting on writeback for a
5079 * page in our current bio, and thus deadlock, so flush the
5080 * write bio here.
5081 */
5082 ret = flush_write_bio(epd);
5083 if (!ret)
5084 goto retry;
d1310b2e 5085 }
a9132667
LB
5086
5087 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5088 mapping->writeback_index = done_index;
5089
7fd1a3f7 5090 btrfs_add_delayed_iput(inode);
894b36e3 5091 return ret;
d1310b2e 5092}
d1310b2e 5093
0a9b0e53 5094int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
5095{
5096 int ret;
d1310b2e 5097 struct extent_page_data epd = {
390ed29b 5098 .bio_ctrl = { 0 },
771ed689 5099 .extent_locked = 0,
ffbd517d 5100 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 5101 };
d1310b2e 5102
d1310b2e 5103 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
5104 ASSERT(ret <= 0);
5105 if (ret < 0) {
5106 end_write_bio(&epd, ret);
5107 return ret;
5108 }
d1310b2e 5109
3065976b
QW
5110 ret = flush_write_bio(&epd);
5111 ASSERT(ret <= 0);
d1310b2e
CM
5112 return ret;
5113}
d1310b2e 5114
2bd0fc93
QW
5115/*
5116 * Submit the pages in the range to bio for call sites which delalloc range has
5117 * already been ran (aka, ordered extent inserted) and all pages are still
5118 * locked.
5119 */
5120int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 5121{
2bd0fc93
QW
5122 bool found_error = false;
5123 int first_error = 0;
771ed689
CM
5124 int ret = 0;
5125 struct address_space *mapping = inode->i_mapping;
5126 struct page *page;
2bd0fc93 5127 u64 cur = start;
66448b9d
QW
5128 unsigned long nr_pages;
5129 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 5130 struct extent_page_data epd = {
390ed29b 5131 .bio_ctrl = { 0 },
771ed689 5132 .extent_locked = 1,
2bd0fc93 5133 .sync_io = 1,
771ed689
CM
5134 };
5135 struct writeback_control wbc_writepages = {
2bd0fc93 5136 .sync_mode = WB_SYNC_ALL,
771ed689
CM
5137 .range_start = start,
5138 .range_end = end + 1,
ec39f769
CM
5139 /* We're called from an async helper function */
5140 .punt_to_cgroup = 1,
5141 .no_cgroup_owner = 1,
771ed689
CM
5142 };
5143
66448b9d
QW
5144 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5145 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5146 PAGE_SHIFT;
5147 wbc_writepages.nr_to_write = nr_pages * 2;
5148
dbb70bec 5149 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 5150 while (cur <= end) {
66448b9d
QW
5151 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5152
2bd0fc93
QW
5153 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5154 /*
5155 * All pages in the range are locked since
5156 * btrfs_run_delalloc_range(), thus there is no way to clear
5157 * the page dirty flag.
5158 */
66448b9d 5159 ASSERT(PageLocked(page));
2bd0fc93
QW
5160 ASSERT(PageDirty(page));
5161 clear_page_dirty_for_io(page);
5162 ret = __extent_writepage(page, &wbc_writepages, &epd);
5163 ASSERT(ret <= 0);
5164 if (ret < 0) {
5165 found_error = true;
5166 first_error = ret;
771ed689 5167 }
09cbfeaf 5168 put_page(page);
66448b9d 5169 cur = cur_end + 1;
771ed689
CM
5170 }
5171
2bd0fc93 5172 if (!found_error)
dbb70bec
CM
5173 ret = flush_write_bio(&epd);
5174 else
02c6db4f 5175 end_write_bio(&epd, ret);
dbb70bec
CM
5176
5177 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
5178 if (found_error)
5179 return first_error;
771ed689
CM
5180 return ret;
5181}
d1310b2e 5182
8ae225a8 5183int extent_writepages(struct address_space *mapping,
d1310b2e
CM
5184 struct writeback_control *wbc)
5185{
35156d85 5186 struct inode *inode = mapping->host;
d1310b2e
CM
5187 int ret = 0;
5188 struct extent_page_data epd = {
390ed29b 5189 .bio_ctrl = { 0 },
771ed689 5190 .extent_locked = 0,
ffbd517d 5191 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
5192 };
5193
35156d85
JT
5194 /*
5195 * Allow only a single thread to do the reloc work in zoned mode to
5196 * protect the write pointer updates.
5197 */
869f4cdc 5198 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 5199 ret = extent_write_cache_pages(mapping, wbc, &epd);
869f4cdc 5200 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
a2a72fbd
QW
5201 ASSERT(ret <= 0);
5202 if (ret < 0) {
5203 end_write_bio(&epd, ret);
5204 return ret;
5205 }
5206 ret = flush_write_bio(&epd);
d1310b2e
CM
5207 return ret;
5208}
d1310b2e 5209
ba206a02 5210void extent_readahead(struct readahead_control *rac)
d1310b2e 5211{
390ed29b 5212 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 5213 struct page *pagepool[16];
125bac01 5214 struct extent_map *em_cached = NULL;
808f80b4 5215 u64 prev_em_start = (u64)-1;
ba206a02 5216 int nr;
d1310b2e 5217
ba206a02 5218 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
5219 u64 contig_start = readahead_pos(rac);
5220 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 5221
ba206a02 5222 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 5223 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 5224 }
67c9684f 5225
125bac01
MX
5226 if (em_cached)
5227 free_extent_map(em_cached);
5228
390ed29b
QW
5229 if (bio_ctrl.bio) {
5230 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
ba206a02
MWO
5231 return;
5232 }
d1310b2e 5233}
d1310b2e
CM
5234
5235/*
5236 * basic invalidatepage code, this waits on any locked or writeback
5237 * ranges corresponding to the page, and then deletes any extent state
5238 * records from the tree
5239 */
5240int extent_invalidatepage(struct extent_io_tree *tree,
5241 struct page *page, unsigned long offset)
5242{
2ac55d41 5243 struct extent_state *cached_state = NULL;
4eee4fa4 5244 u64 start = page_offset(page);
09cbfeaf 5245 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
5246 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5247
829ddec9
QW
5248 /* This function is only called for the btree inode */
5249 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5250
fda2832f 5251 start += ALIGN(offset, blocksize);
d1310b2e
CM
5252 if (start > end)
5253 return 0;
5254
ff13db41 5255 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 5256 wait_on_page_writeback(page);
829ddec9
QW
5257
5258 /*
5259 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5260 * so here we only need to unlock the extent range to free any
5261 * existing extent state.
5262 */
5263 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5264 return 0;
5265}
d1310b2e 5266
7b13b7b1
CM
5267/*
5268 * a helper for releasepage, this tests for areas of the page that
5269 * are locked or under IO and drops the related state bits if it is safe
5270 * to drop the page.
5271 */
29c68b2d 5272static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5273 struct page *page, gfp_t mask)
7b13b7b1 5274{
4eee4fa4 5275 u64 start = page_offset(page);
09cbfeaf 5276 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5277 int ret = 1;
5278
8882679e 5279 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5280 ret = 0;
8882679e 5281 } else {
11ef160f 5282 /*
2766ff61
FM
5283 * At this point we can safely clear everything except the
5284 * locked bit, the nodatasum bit and the delalloc new bit.
5285 * The delalloc new bit will be cleared by ordered extent
5286 * completion.
11ef160f 5287 */
66b0c887 5288 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5289 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5290 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5291
5292 /* if clear_extent_bit failed for enomem reasons,
5293 * we can't allow the release to continue.
5294 */
5295 if (ret < 0)
5296 ret = 0;
5297 else
5298 ret = 1;
7b13b7b1
CM
5299 }
5300 return ret;
5301}
7b13b7b1 5302
d1310b2e
CM
5303/*
5304 * a helper for releasepage. As long as there are no locked extents
5305 * in the range corresponding to the page, both state records and extent
5306 * map records are removed
5307 */
477a30ba 5308int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5309{
5310 struct extent_map *em;
4eee4fa4 5311 u64 start = page_offset(page);
09cbfeaf 5312 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5313 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5314 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5315 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5316
d0164adc 5317 if (gfpflags_allow_blocking(mask) &&
ee22184b 5318 page->mapping->host->i_size > SZ_16M) {
39b5637f 5319 u64 len;
70dec807 5320 while (start <= end) {
fbc2bd7e
FM
5321 struct btrfs_fs_info *fs_info;
5322 u64 cur_gen;
5323
39b5637f 5324 len = end - start + 1;
890871be 5325 write_lock(&map->lock);
39b5637f 5326 em = lookup_extent_mapping(map, start, len);
285190d9 5327 if (!em) {
890871be 5328 write_unlock(&map->lock);
70dec807
CM
5329 break;
5330 }
7f3c74fb
CM
5331 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5332 em->start != start) {
890871be 5333 write_unlock(&map->lock);
70dec807
CM
5334 free_extent_map(em);
5335 break;
5336 }
3d6448e6
FM
5337 if (test_range_bit(tree, em->start,
5338 extent_map_end(em) - 1,
5339 EXTENT_LOCKED, 0, NULL))
5340 goto next;
5341 /*
5342 * If it's not in the list of modified extents, used
5343 * by a fast fsync, we can remove it. If it's being
5344 * logged we can safely remove it since fsync took an
5345 * extra reference on the em.
5346 */
5347 if (list_empty(&em->list) ||
fbc2bd7e
FM
5348 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5349 goto remove_em;
5350 /*
5351 * If it's in the list of modified extents, remove it
5352 * only if its generation is older then the current one,
5353 * in which case we don't need it for a fast fsync.
5354 * Otherwise don't remove it, we could be racing with an
5355 * ongoing fast fsync that could miss the new extent.
5356 */
5357 fs_info = btrfs_inode->root->fs_info;
5358 spin_lock(&fs_info->trans_lock);
5359 cur_gen = fs_info->generation;
5360 spin_unlock(&fs_info->trans_lock);
5361 if (em->generation >= cur_gen)
5362 goto next;
5363remove_em:
5e548b32
FM
5364 /*
5365 * We only remove extent maps that are not in the list of
5366 * modified extents or that are in the list but with a
5367 * generation lower then the current generation, so there
5368 * is no need to set the full fsync flag on the inode (it
5369 * hurts the fsync performance for workloads with a data
5370 * size that exceeds or is close to the system's memory).
5371 */
fbc2bd7e
FM
5372 remove_extent_mapping(map, em);
5373 /* once for the rb tree */
5374 free_extent_map(em);
3d6448e6 5375next:
70dec807 5376 start = extent_map_end(em);
890871be 5377 write_unlock(&map->lock);
70dec807
CM
5378
5379 /* once for us */
d1310b2e 5380 free_extent_map(em);
9f47eb54
PM
5381
5382 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5383 }
d1310b2e 5384 }
29c68b2d 5385 return try_release_extent_state(tree, page, mask);
d1310b2e 5386}
d1310b2e 5387
ec29ed5b
CM
5388/*
5389 * helper function for fiemap, which doesn't want to see any holes.
5390 * This maps until we find something past 'last'
5391 */
f1bbde8d 5392static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5393 u64 offset, u64 last)
ec29ed5b 5394{
f1bbde8d 5395 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5396 struct extent_map *em;
5397 u64 len;
5398
5399 if (offset >= last)
5400 return NULL;
5401
67871254 5402 while (1) {
ec29ed5b
CM
5403 len = last - offset;
5404 if (len == 0)
5405 break;
fda2832f 5406 len = ALIGN(len, sectorsize);
f1bbde8d 5407 em = btrfs_get_extent_fiemap(inode, offset, len);
c704005d 5408 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
5409 return em;
5410
5411 /* if this isn't a hole return it */
4a2d25cd 5412 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5413 return em;
ec29ed5b
CM
5414
5415 /* this is a hole, advance to the next extent */
5416 offset = extent_map_end(em);
5417 free_extent_map(em);
5418 if (offset >= last)
5419 break;
5420 }
5421 return NULL;
5422}
5423
4751832d
QW
5424/*
5425 * To cache previous fiemap extent
5426 *
5427 * Will be used for merging fiemap extent
5428 */
5429struct fiemap_cache {
5430 u64 offset;
5431 u64 phys;
5432 u64 len;
5433 u32 flags;
5434 bool cached;
5435};
5436
5437/*
5438 * Helper to submit fiemap extent.
5439 *
5440 * Will try to merge current fiemap extent specified by @offset, @phys,
5441 * @len and @flags with cached one.
5442 * And only when we fails to merge, cached one will be submitted as
5443 * fiemap extent.
5444 *
5445 * Return value is the same as fiemap_fill_next_extent().
5446 */
5447static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5448 struct fiemap_cache *cache,
5449 u64 offset, u64 phys, u64 len, u32 flags)
5450{
5451 int ret = 0;
5452
5453 if (!cache->cached)
5454 goto assign;
5455
5456 /*
5457 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5458 * fiemap extent won't overlap with cached one.
4751832d
QW
5459 * Not recoverable.
5460 *
5461 * NOTE: Physical address can overlap, due to compression
5462 */
5463 if (cache->offset + cache->len > offset) {
5464 WARN_ON(1);
5465 return -EINVAL;
5466 }
5467
5468 /*
5469 * Only merges fiemap extents if
5470 * 1) Their logical addresses are continuous
5471 *
5472 * 2) Their physical addresses are continuous
5473 * So truly compressed (physical size smaller than logical size)
5474 * extents won't get merged with each other
5475 *
5476 * 3) Share same flags except FIEMAP_EXTENT_LAST
5477 * So regular extent won't get merged with prealloc extent
5478 */
5479 if (cache->offset + cache->len == offset &&
5480 cache->phys + cache->len == phys &&
5481 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5482 (flags & ~FIEMAP_EXTENT_LAST)) {
5483 cache->len += len;
5484 cache->flags |= flags;
5485 goto try_submit_last;
5486 }
5487
5488 /* Not mergeable, need to submit cached one */
5489 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5490 cache->len, cache->flags);
5491 cache->cached = false;
5492 if (ret)
5493 return ret;
5494assign:
5495 cache->cached = true;
5496 cache->offset = offset;
5497 cache->phys = phys;
5498 cache->len = len;
5499 cache->flags = flags;
5500try_submit_last:
5501 if (cache->flags & FIEMAP_EXTENT_LAST) {
5502 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5503 cache->phys, cache->len, cache->flags);
5504 cache->cached = false;
5505 }
5506 return ret;
5507}
5508
5509/*
848c23b7 5510 * Emit last fiemap cache
4751832d 5511 *
848c23b7
QW
5512 * The last fiemap cache may still be cached in the following case:
5513 * 0 4k 8k
5514 * |<- Fiemap range ->|
5515 * |<------------ First extent ----------->|
5516 *
5517 * In this case, the first extent range will be cached but not emitted.
5518 * So we must emit it before ending extent_fiemap().
4751832d 5519 */
5c5aff98 5520static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5521 struct fiemap_cache *cache)
4751832d
QW
5522{
5523 int ret;
5524
5525 if (!cache->cached)
5526 return 0;
5527
4751832d
QW
5528 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5529 cache->len, cache->flags);
5530 cache->cached = false;
5531 if (ret > 0)
5532 ret = 0;
5533 return ret;
5534}
5535
facee0a0 5536int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5537 u64 start, u64 len)
1506fcc8 5538{
975f84fe 5539 int ret = 0;
15c7745c 5540 u64 off;
1506fcc8
YS
5541 u64 max = start + len;
5542 u32 flags = 0;
975f84fe
JB
5543 u32 found_type;
5544 u64 last;
ec29ed5b 5545 u64 last_for_get_extent = 0;
1506fcc8 5546 u64 disko = 0;
facee0a0 5547 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5548 struct btrfs_key found_key;
1506fcc8 5549 struct extent_map *em = NULL;
2ac55d41 5550 struct extent_state *cached_state = NULL;
975f84fe 5551 struct btrfs_path *path;
facee0a0 5552 struct btrfs_root *root = inode->root;
4751832d 5553 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5554 struct ulist *roots;
5555 struct ulist *tmp_ulist;
1506fcc8 5556 int end = 0;
ec29ed5b
CM
5557 u64 em_start = 0;
5558 u64 em_len = 0;
5559 u64 em_end = 0;
1506fcc8
YS
5560
5561 if (len == 0)
5562 return -EINVAL;
5563
975f84fe
JB
5564 path = btrfs_alloc_path();
5565 if (!path)
5566 return -ENOMEM;
975f84fe 5567
5911c8fe
DS
5568 roots = ulist_alloc(GFP_KERNEL);
5569 tmp_ulist = ulist_alloc(GFP_KERNEL);
5570 if (!roots || !tmp_ulist) {
5571 ret = -ENOMEM;
5572 goto out_free_ulist;
5573 }
5574
15c7745c
BB
5575 /*
5576 * We can't initialize that to 'start' as this could miss extents due
5577 * to extent item merging
5578 */
5579 off = 0;
facee0a0
NB
5580 start = round_down(start, btrfs_inode_sectorsize(inode));
5581 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5582
ec29ed5b
CM
5583 /*
5584 * lookup the last file extent. We're not using i_size here
5585 * because there might be preallocation past i_size
5586 */
facee0a0
NB
5587 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5588 0);
975f84fe 5589 if (ret < 0) {
5911c8fe 5590 goto out_free_ulist;
2d324f59
LB
5591 } else {
5592 WARN_ON(!ret);
5593 if (ret == 1)
5594 ret = 0;
975f84fe 5595 }
2d324f59 5596
975f84fe 5597 path->slots[0]--;
975f84fe 5598 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5599 found_type = found_key.type;
975f84fe 5600
ec29ed5b 5601 /* No extents, but there might be delalloc bits */
facee0a0 5602 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5603 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5604 /* have to trust i_size as the end */
5605 last = (u64)-1;
5606 last_for_get_extent = isize;
5607 } else {
5608 /*
5609 * remember the start of the last extent. There are a
5610 * bunch of different factors that go into the length of the
5611 * extent, so its much less complex to remember where it started
5612 */
5613 last = found_key.offset;
5614 last_for_get_extent = last + 1;
975f84fe 5615 }
fe09e16c 5616 btrfs_release_path(path);
975f84fe 5617
ec29ed5b
CM
5618 /*
5619 * we might have some extents allocated but more delalloc past those
5620 * extents. so, we trust isize unless the start of the last extent is
5621 * beyond isize
5622 */
5623 if (last < isize) {
5624 last = (u64)-1;
5625 last_for_get_extent = isize;
5626 }
5627
facee0a0 5628 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5629 &cached_state);
ec29ed5b 5630
facee0a0 5631 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5632 if (!em)
5633 goto out;
5634 if (IS_ERR(em)) {
5635 ret = PTR_ERR(em);
5636 goto out;
5637 }
975f84fe 5638
1506fcc8 5639 while (!end) {
b76bb701 5640 u64 offset_in_extent = 0;
ea8efc74
CM
5641
5642 /* break if the extent we found is outside the range */
5643 if (em->start >= max || extent_map_end(em) < off)
5644 break;
5645
5646 /*
5647 * get_extent may return an extent that starts before our
5648 * requested range. We have to make sure the ranges
5649 * we return to fiemap always move forward and don't
5650 * overlap, so adjust the offsets here
5651 */
5652 em_start = max(em->start, off);
1506fcc8 5653
ea8efc74
CM
5654 /*
5655 * record the offset from the start of the extent
b76bb701
JB
5656 * for adjusting the disk offset below. Only do this if the
5657 * extent isn't compressed since our in ram offset may be past
5658 * what we have actually allocated on disk.
ea8efc74 5659 */
b76bb701
JB
5660 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5661 offset_in_extent = em_start - em->start;
ec29ed5b 5662 em_end = extent_map_end(em);
ea8efc74 5663 em_len = em_end - em_start;
1506fcc8 5664 flags = 0;
f0986318
FM
5665 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5666 disko = em->block_start + offset_in_extent;
5667 else
5668 disko = 0;
1506fcc8 5669
ea8efc74
CM
5670 /*
5671 * bump off for our next call to get_extent
5672 */
5673 off = extent_map_end(em);
5674 if (off >= max)
5675 end = 1;
5676
93dbfad7 5677 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5678 end = 1;
5679 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5680 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5681 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5682 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5683 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5684 flags |= (FIEMAP_EXTENT_DELALLOC |
5685 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5686 } else if (fieinfo->fi_extents_max) {
5687 u64 bytenr = em->block_start -
5688 (em->start - em->orig_start);
fe09e16c 5689
fe09e16c
LB
5690 /*
5691 * As btrfs supports shared space, this information
5692 * can be exported to userspace tools via
dc046b10
JB
5693 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5694 * then we're just getting a count and we can skip the
5695 * lookup stuff.
fe09e16c 5696 */
facee0a0 5697 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5698 bytenr, roots, tmp_ulist);
dc046b10 5699 if (ret < 0)
fe09e16c 5700 goto out_free;
dc046b10 5701 if (ret)
fe09e16c 5702 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5703 ret = 0;
1506fcc8
YS
5704 }
5705 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5706 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5707 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5708 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5709
1506fcc8
YS
5710 free_extent_map(em);
5711 em = NULL;
ec29ed5b
CM
5712 if ((em_start >= last) || em_len == (u64)-1 ||
5713 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5714 flags |= FIEMAP_EXTENT_LAST;
5715 end = 1;
5716 }
5717
ec29ed5b 5718 /* now scan forward to see if this is really the last extent. */
facee0a0 5719 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5720 if (IS_ERR(em)) {
5721 ret = PTR_ERR(em);
5722 goto out;
5723 }
5724 if (!em) {
975f84fe
JB
5725 flags |= FIEMAP_EXTENT_LAST;
5726 end = 1;
5727 }
4751832d
QW
5728 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5729 em_len, flags);
26e726af
CS
5730 if (ret) {
5731 if (ret == 1)
5732 ret = 0;
ec29ed5b 5733 goto out_free;
26e726af 5734 }
1506fcc8
YS
5735 }
5736out_free:
4751832d 5737 if (!ret)
5c5aff98 5738 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5739 free_extent_map(em);
5740out:
facee0a0 5741 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5742 &cached_state);
5911c8fe
DS
5743
5744out_free_ulist:
e02d48ea 5745 btrfs_free_path(path);
5911c8fe
DS
5746 ulist_free(roots);
5747 ulist_free(tmp_ulist);
1506fcc8
YS
5748 return ret;
5749}
5750
727011e0
CM
5751static void __free_extent_buffer(struct extent_buffer *eb)
5752{
727011e0
CM
5753 kmem_cache_free(extent_buffer_cache, eb);
5754}
5755
2b48966a 5756int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5757{
5758 return (atomic_read(&eb->io_pages) ||
5759 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5760 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5761}
5762
8ff8466d 5763static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5764{
8ff8466d 5765 struct btrfs_subpage *subpage;
db7f3436 5766
8ff8466d 5767 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5768
8ff8466d
QW
5769 if (PagePrivate(page)) {
5770 subpage = (struct btrfs_subpage *)page->private;
5771 if (atomic_read(&subpage->eb_refs))
5772 return true;
3d078efa
QW
5773 /*
5774 * Even there is no eb refs here, we may still have
5775 * end_page_read() call relying on page::private.
5776 */
5777 if (atomic_read(&subpage->readers))
5778 return true;
8ff8466d
QW
5779 }
5780 return false;
5781}
db7f3436 5782
8ff8466d
QW
5783static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5784{
5785 struct btrfs_fs_info *fs_info = eb->fs_info;
5786 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5787
5788 /*
5789 * For mapped eb, we're going to change the page private, which should
5790 * be done under the private_lock.
5791 */
5792 if (mapped)
5793 spin_lock(&page->mapping->private_lock);
5794
5795 if (!PagePrivate(page)) {
5d2361db 5796 if (mapped)
8ff8466d
QW
5797 spin_unlock(&page->mapping->private_lock);
5798 return;
5799 }
5800
5801 if (fs_info->sectorsize == PAGE_SIZE) {
5d2361db
FL
5802 /*
5803 * We do this since we'll remove the pages after we've
5804 * removed the eb from the radix tree, so we could race
5805 * and have this page now attached to the new eb. So
5806 * only clear page_private if it's still connected to
5807 * this eb.
5808 */
5809 if (PagePrivate(page) &&
5810 page->private == (unsigned long)eb) {
5811 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5812 BUG_ON(PageDirty(page));
5813 BUG_ON(PageWriteback(page));
db7f3436 5814 /*
5d2361db
FL
5815 * We need to make sure we haven't be attached
5816 * to a new eb.
db7f3436 5817 */
d1b89bc0 5818 detach_page_private(page);
db7f3436 5819 }
5d2361db
FL
5820 if (mapped)
5821 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5822 return;
5823 }
5824
5825 /*
5826 * For subpage, we can have dummy eb with page private. In this case,
5827 * we can directly detach the private as such page is only attached to
5828 * one dummy eb, no sharing.
5829 */
5830 if (!mapped) {
5831 btrfs_detach_subpage(fs_info, page);
5832 return;
5833 }
5834
5835 btrfs_page_dec_eb_refs(fs_info, page);
5836
5837 /*
5838 * We can only detach the page private if there are no other ebs in the
3d078efa 5839 * page range and no unfinished IO.
8ff8466d
QW
5840 */
5841 if (!page_range_has_eb(fs_info, page))
5842 btrfs_detach_subpage(fs_info, page);
5843
5844 spin_unlock(&page->mapping->private_lock);
5845}
5846
5847/* Release all pages attached to the extent buffer */
5848static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5849{
5850 int i;
5851 int num_pages;
5852
5853 ASSERT(!extent_buffer_under_io(eb));
5854
5855 num_pages = num_extent_pages(eb);
5856 for (i = 0; i < num_pages; i++) {
5857 struct page *page = eb->pages[i];
5858
5859 if (!page)
5860 continue;
5861
5862 detach_extent_buffer_page(eb, page);
5d2361db 5863
01327610 5864 /* One for when we allocated the page */
09cbfeaf 5865 put_page(page);
d64766fd 5866 }
db7f3436
JB
5867}
5868
5869/*
5870 * Helper for releasing the extent buffer.
5871 */
5872static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5873{
55ac0139 5874 btrfs_release_extent_buffer_pages(eb);
8c38938c 5875 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5876 __free_extent_buffer(eb);
5877}
5878
f28491e0
JB
5879static struct extent_buffer *
5880__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5881 unsigned long len)
d1310b2e
CM
5882{
5883 struct extent_buffer *eb = NULL;
5884
d1b5c567 5885 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5886 eb->start = start;
5887 eb->len = len;
f28491e0 5888 eb->fs_info = fs_info;
815a51c7 5889 eb->bflags = 0;
196d59ab 5890 init_rwsem(&eb->lock);
b4ce94de 5891
3fd63727
JB
5892 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5893 &fs_info->allocated_ebs);
d3575156 5894 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5895
3083ee2e 5896 spin_lock_init(&eb->refs_lock);
d1310b2e 5897 atomic_set(&eb->refs, 1);
0b32f4bb 5898 atomic_set(&eb->io_pages, 0);
727011e0 5899
deb67895 5900 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5901
5902 return eb;
5903}
5904
2b48966a 5905struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5906{
cc5e31a4 5907 int i;
815a51c7
JS
5908 struct page *p;
5909 struct extent_buffer *new;
cc5e31a4 5910 int num_pages = num_extent_pages(src);
815a51c7 5911
3f556f78 5912 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5913 if (new == NULL)
5914 return NULL;
5915
62c053fb
QW
5916 /*
5917 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5918 * btrfs_release_extent_buffer() have different behavior for
5919 * UNMAPPED subpage extent buffer.
5920 */
5921 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5922
815a51c7 5923 for (i = 0; i < num_pages; i++) {
760f991f
QW
5924 int ret;
5925
9ec72677 5926 p = alloc_page(GFP_NOFS);
db7f3436
JB
5927 if (!p) {
5928 btrfs_release_extent_buffer(new);
5929 return NULL;
5930 }
760f991f
QW
5931 ret = attach_extent_buffer_page(new, p, NULL);
5932 if (ret < 0) {
5933 put_page(p);
5934 btrfs_release_extent_buffer(new);
5935 return NULL;
5936 }
815a51c7 5937 WARN_ON(PageDirty(p));
815a51c7 5938 new->pages[i] = p;
fba1acf9 5939 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5940 }
92d83e94 5941 set_extent_buffer_uptodate(new);
815a51c7
JS
5942
5943 return new;
5944}
5945
0f331229
OS
5946struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5947 u64 start, unsigned long len)
815a51c7
JS
5948{
5949 struct extent_buffer *eb;
cc5e31a4
DS
5950 int num_pages;
5951 int i;
815a51c7 5952
3f556f78 5953 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5954 if (!eb)
5955 return NULL;
5956
65ad0104 5957 num_pages = num_extent_pages(eb);
815a51c7 5958 for (i = 0; i < num_pages; i++) {
09bc1f0f
QW
5959 int ret;
5960
9ec72677 5961 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5962 if (!eb->pages[i])
5963 goto err;
09bc1f0f
QW
5964 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5965 if (ret < 0)
5966 goto err;
815a51c7
JS
5967 }
5968 set_extent_buffer_uptodate(eb);
5969 btrfs_set_header_nritems(eb, 0);
b0132a3b 5970 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5971
5972 return eb;
5973err:
09bc1f0f
QW
5974 for (; i > 0; i--) {
5975 detach_extent_buffer_page(eb, eb->pages[i - 1]);
84167d19 5976 __free_page(eb->pages[i - 1]);
09bc1f0f 5977 }
815a51c7
JS
5978 __free_extent_buffer(eb);
5979 return NULL;
5980}
5981
0f331229 5982struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5983 u64 start)
0f331229 5984{
da17066c 5985 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5986}
5987
0b32f4bb
JB
5988static void check_buffer_tree_ref(struct extent_buffer *eb)
5989{
242e18c7 5990 int refs;
6bf9cd2e
BB
5991 /*
5992 * The TREE_REF bit is first set when the extent_buffer is added
5993 * to the radix tree. It is also reset, if unset, when a new reference
5994 * is created by find_extent_buffer.
0b32f4bb 5995 *
6bf9cd2e
BB
5996 * It is only cleared in two cases: freeing the last non-tree
5997 * reference to the extent_buffer when its STALE bit is set or
5998 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5999 *
6bf9cd2e
BB
6000 * In both cases, care is taken to ensure that the extent_buffer's
6001 * pages are not under io. However, releasepage can be concurrently
6002 * called with creating new references, which is prone to race
6003 * conditions between the calls to check_buffer_tree_ref in those
6004 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 6005 *
6bf9cd2e
BB
6006 * The actual lifetime of the extent_buffer in the radix tree is
6007 * adequately protected by the refcount, but the TREE_REF bit and
6008 * its corresponding reference are not. To protect against this
6009 * class of races, we call check_buffer_tree_ref from the codepaths
6010 * which trigger io after they set eb->io_pages. Note that once io is
6011 * initiated, TREE_REF can no longer be cleared, so that is the
6012 * moment at which any such race is best fixed.
0b32f4bb 6013 */
242e18c7
CM
6014 refs = atomic_read(&eb->refs);
6015 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6016 return;
6017
594831c4
JB
6018 spin_lock(&eb->refs_lock);
6019 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 6020 atomic_inc(&eb->refs);
594831c4 6021 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
6022}
6023
2457aec6
MG
6024static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6025 struct page *accessed)
5df4235e 6026{
cc5e31a4 6027 int num_pages, i;
5df4235e 6028
0b32f4bb
JB
6029 check_buffer_tree_ref(eb);
6030
65ad0104 6031 num_pages = num_extent_pages(eb);
5df4235e 6032 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
6033 struct page *p = eb->pages[i];
6034
2457aec6
MG
6035 if (p != accessed)
6036 mark_page_accessed(p);
5df4235e
JB
6037 }
6038}
6039
f28491e0
JB
6040struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6041 u64 start)
452c75c3
CS
6042{
6043 struct extent_buffer *eb;
6044
2f3186d8
QW
6045 eb = find_extent_buffer_nolock(fs_info, start);
6046 if (!eb)
6047 return NULL;
6048 /*
6049 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6050 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6051 * another task running free_extent_buffer() might have seen that flag
6052 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6053 * writeback flags not set) and it's still in the tree (flag
6054 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6055 * decrementing the extent buffer's reference count twice. So here we
6056 * could race and increment the eb's reference count, clear its stale
6057 * flag, mark it as dirty and drop our reference before the other task
6058 * finishes executing free_extent_buffer, which would later result in
6059 * an attempt to free an extent buffer that is dirty.
6060 */
6061 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6062 spin_lock(&eb->refs_lock);
6063 spin_unlock(&eb->refs_lock);
452c75c3 6064 }
2f3186d8
QW
6065 mark_extent_buffer_accessed(eb, NULL);
6066 return eb;
452c75c3
CS
6067}
6068
faa2dbf0
JB
6069#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6070struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 6071 u64 start)
faa2dbf0
JB
6072{
6073 struct extent_buffer *eb, *exists = NULL;
6074 int ret;
6075
6076 eb = find_extent_buffer(fs_info, start);
6077 if (eb)
6078 return eb;
da17066c 6079 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 6080 if (!eb)
b6293c82 6081 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
6082 eb->fs_info = fs_info;
6083again:
e1860a77 6084 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
6085 if (ret) {
6086 exists = ERR_PTR(ret);
faa2dbf0 6087 goto free_eb;
b6293c82 6088 }
faa2dbf0
JB
6089 spin_lock(&fs_info->buffer_lock);
6090 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6091 start >> fs_info->sectorsize_bits, eb);
faa2dbf0
JB
6092 spin_unlock(&fs_info->buffer_lock);
6093 radix_tree_preload_end();
6094 if (ret == -EEXIST) {
6095 exists = find_extent_buffer(fs_info, start);
6096 if (exists)
6097 goto free_eb;
6098 else
6099 goto again;
6100 }
6101 check_buffer_tree_ref(eb);
6102 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6103
faa2dbf0
JB
6104 return eb;
6105free_eb:
6106 btrfs_release_extent_buffer(eb);
6107 return exists;
6108}
6109#endif
6110
81982210
QW
6111static struct extent_buffer *grab_extent_buffer(
6112 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
6113{
6114 struct extent_buffer *exists;
6115
81982210
QW
6116 /*
6117 * For subpage case, we completely rely on radix tree to ensure we
6118 * don't try to insert two ebs for the same bytenr. So here we always
6119 * return NULL and just continue.
6120 */
6121 if (fs_info->sectorsize < PAGE_SIZE)
6122 return NULL;
6123
c0f0a9e7
QW
6124 /* Page not yet attached to an extent buffer */
6125 if (!PagePrivate(page))
6126 return NULL;
6127
6128 /*
6129 * We could have already allocated an eb for this page and attached one
6130 * so lets see if we can get a ref on the existing eb, and if we can we
6131 * know it's good and we can just return that one, else we know we can
6132 * just overwrite page->private.
6133 */
6134 exists = (struct extent_buffer *)page->private;
6135 if (atomic_inc_not_zero(&exists->refs))
6136 return exists;
6137
6138 WARN_ON(PageDirty(page));
6139 detach_page_private(page);
6140 return NULL;
6141}
6142
f28491e0 6143struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 6144 u64 start, u64 owner_root, int level)
d1310b2e 6145{
da17066c 6146 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
6147 int num_pages;
6148 int i;
09cbfeaf 6149 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 6150 struct extent_buffer *eb;
6af118ce 6151 struct extent_buffer *exists = NULL;
d1310b2e 6152 struct page *p;
f28491e0 6153 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 6154 int uptodate = 1;
19fe0a8b 6155 int ret;
d1310b2e 6156
da17066c 6157 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
6158 btrfs_err(fs_info, "bad tree block start %llu", start);
6159 return ERR_PTR(-EINVAL);
6160 }
6161
e9306ad4
QW
6162#if BITS_PER_LONG == 32
6163 if (start >= MAX_LFS_FILESIZE) {
6164 btrfs_err_rl(fs_info,
6165 "extent buffer %llu is beyond 32bit page cache limit", start);
6166 btrfs_err_32bit_limit(fs_info);
6167 return ERR_PTR(-EOVERFLOW);
6168 }
6169 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6170 btrfs_warn_32bit_limit(fs_info);
6171#endif
6172
1aaac38c
QW
6173 if (fs_info->sectorsize < PAGE_SIZE &&
6174 offset_in_page(start) + len > PAGE_SIZE) {
6175 btrfs_err(fs_info,
6176 "tree block crosses page boundary, start %llu nodesize %lu",
6177 start, len);
6178 return ERR_PTR(-EINVAL);
6179 }
6180
f28491e0 6181 eb = find_extent_buffer(fs_info, start);
452c75c3 6182 if (eb)
6af118ce 6183 return eb;
6af118ce 6184
23d79d81 6185 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 6186 if (!eb)
c871b0f2 6187 return ERR_PTR(-ENOMEM);
e114c545 6188 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 6189
65ad0104 6190 num_pages = num_extent_pages(eb);
727011e0 6191 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
6192 struct btrfs_subpage *prealloc = NULL;
6193
d1b5c567 6194 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
6195 if (!p) {
6196 exists = ERR_PTR(-ENOMEM);
6af118ce 6197 goto free_eb;
c871b0f2 6198 }
4f2de97a 6199
760f991f
QW
6200 /*
6201 * Preallocate page->private for subpage case, so that we won't
6202 * allocate memory with private_lock hold. The memory will be
6203 * freed by attach_extent_buffer_page() or freed manually if
6204 * we exit earlier.
6205 *
6206 * Although we have ensured one subpage eb can only have one
6207 * page, but it may change in the future for 16K page size
6208 * support, so we still preallocate the memory in the loop.
6209 */
fdf250db 6210 if (fs_info->sectorsize < PAGE_SIZE) {
651fb419
QW
6211 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6212 if (IS_ERR(prealloc)) {
6213 ret = PTR_ERR(prealloc);
fdf250db
QW
6214 unlock_page(p);
6215 put_page(p);
6216 exists = ERR_PTR(ret);
6217 goto free_eb;
6218 }
760f991f
QW
6219 }
6220
4f2de97a 6221 spin_lock(&mapping->private_lock);
81982210 6222 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
6223 if (exists) {
6224 spin_unlock(&mapping->private_lock);
6225 unlock_page(p);
6226 put_page(p);
6227 mark_extent_buffer_accessed(exists, p);
760f991f 6228 btrfs_free_subpage(prealloc);
c0f0a9e7 6229 goto free_eb;
d1310b2e 6230 }
760f991f
QW
6231 /* Should not fail, as we have preallocated the memory */
6232 ret = attach_extent_buffer_page(eb, p, prealloc);
6233 ASSERT(!ret);
8ff8466d
QW
6234 /*
6235 * To inform we have extra eb under allocation, so that
6236 * detach_extent_buffer_page() won't release the page private
6237 * when the eb hasn't yet been inserted into radix tree.
6238 *
6239 * The ref will be decreased when the eb released the page, in
6240 * detach_extent_buffer_page().
6241 * Thus needs no special handling in error path.
6242 */
6243 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6244 spin_unlock(&mapping->private_lock);
760f991f 6245
1e5eb3d6 6246 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6247 eb->pages[i] = p;
d1310b2e
CM
6248 if (!PageUptodate(p))
6249 uptodate = 0;
eb14ab8e
CM
6250
6251 /*
b16d011e
NB
6252 * We can't unlock the pages just yet since the extent buffer
6253 * hasn't been properly inserted in the radix tree, this
6254 * opens a race with btree_releasepage which can free a page
6255 * while we are still filling in all pages for the buffer and
6256 * we could crash.
eb14ab8e 6257 */
d1310b2e
CM
6258 }
6259 if (uptodate)
b4ce94de 6260 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 6261again:
e1860a77 6262 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
6263 if (ret) {
6264 exists = ERR_PTR(ret);
19fe0a8b 6265 goto free_eb;
c871b0f2 6266 }
19fe0a8b 6267
f28491e0
JB
6268 spin_lock(&fs_info->buffer_lock);
6269 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6270 start >> fs_info->sectorsize_bits, eb);
f28491e0 6271 spin_unlock(&fs_info->buffer_lock);
452c75c3 6272 radix_tree_preload_end();
19fe0a8b 6273 if (ret == -EEXIST) {
f28491e0 6274 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
6275 if (exists)
6276 goto free_eb;
6277 else
115391d2 6278 goto again;
6af118ce 6279 }
6af118ce 6280 /* add one reference for the tree */
0b32f4bb 6281 check_buffer_tree_ref(eb);
34b41ace 6282 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6283
6284 /*
b16d011e
NB
6285 * Now it's safe to unlock the pages because any calls to
6286 * btree_releasepage will correctly detect that a page belongs to a
6287 * live buffer and won't free them prematurely.
eb14ab8e 6288 */
28187ae5
NB
6289 for (i = 0; i < num_pages; i++)
6290 unlock_page(eb->pages[i]);
d1310b2e
CM
6291 return eb;
6292
6af118ce 6293free_eb:
5ca64f45 6294 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6295 for (i = 0; i < num_pages; i++) {
6296 if (eb->pages[i])
6297 unlock_page(eb->pages[i]);
6298 }
eb14ab8e 6299
897ca6e9 6300 btrfs_release_extent_buffer(eb);
6af118ce 6301 return exists;
d1310b2e 6302}
d1310b2e 6303
3083ee2e
JB
6304static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6305{
6306 struct extent_buffer *eb =
6307 container_of(head, struct extent_buffer, rcu_head);
6308
6309 __free_extent_buffer(eb);
6310}
6311
f7a52a40 6312static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6313 __releases(&eb->refs_lock)
3083ee2e 6314{
07e21c4d
NB
6315 lockdep_assert_held(&eb->refs_lock);
6316
3083ee2e
JB
6317 WARN_ON(atomic_read(&eb->refs) == 0);
6318 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6319 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6320 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6321
815a51c7 6322 spin_unlock(&eb->refs_lock);
3083ee2e 6323
f28491e0
JB
6324 spin_lock(&fs_info->buffer_lock);
6325 radix_tree_delete(&fs_info->buffer_radix,
478ef886 6326 eb->start >> fs_info->sectorsize_bits);
f28491e0 6327 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6328 } else {
6329 spin_unlock(&eb->refs_lock);
815a51c7 6330 }
3083ee2e 6331
8c38938c 6332 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6333 /* Should be safe to release our pages at this point */
55ac0139 6334 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6335#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6336 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6337 __free_extent_buffer(eb);
6338 return 1;
6339 }
6340#endif
3083ee2e 6341 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6342 return 1;
3083ee2e
JB
6343 }
6344 spin_unlock(&eb->refs_lock);
e64860aa
JB
6345
6346 return 0;
3083ee2e
JB
6347}
6348
d1310b2e
CM
6349void free_extent_buffer(struct extent_buffer *eb)
6350{
242e18c7
CM
6351 int refs;
6352 int old;
d1310b2e
CM
6353 if (!eb)
6354 return;
6355
242e18c7
CM
6356 while (1) {
6357 refs = atomic_read(&eb->refs);
46cc775e
NB
6358 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6359 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6360 refs == 1))
242e18c7
CM
6361 break;
6362 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6363 if (old == refs)
6364 return;
6365 }
6366
3083ee2e
JB
6367 spin_lock(&eb->refs_lock);
6368 if (atomic_read(&eb->refs) == 2 &&
6369 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6370 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6371 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6372 atomic_dec(&eb->refs);
6373
6374 /*
6375 * I know this is terrible, but it's temporary until we stop tracking
6376 * the uptodate bits and such for the extent buffers.
6377 */
f7a52a40 6378 release_extent_buffer(eb);
3083ee2e
JB
6379}
6380
6381void free_extent_buffer_stale(struct extent_buffer *eb)
6382{
6383 if (!eb)
d1310b2e
CM
6384 return;
6385
3083ee2e
JB
6386 spin_lock(&eb->refs_lock);
6387 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6388
0b32f4bb 6389 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6390 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6391 atomic_dec(&eb->refs);
f7a52a40 6392 release_extent_buffer(eb);
d1310b2e 6393}
d1310b2e 6394
0d27797e
QW
6395static void btree_clear_page_dirty(struct page *page)
6396{
6397 ASSERT(PageDirty(page));
6398 ASSERT(PageLocked(page));
6399 clear_page_dirty_for_io(page);
6400 xa_lock_irq(&page->mapping->i_pages);
6401 if (!PageDirty(page))
6402 __xa_clear_mark(&page->mapping->i_pages,
6403 page_index(page), PAGECACHE_TAG_DIRTY);
6404 xa_unlock_irq(&page->mapping->i_pages);
6405}
6406
6407static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6408{
6409 struct btrfs_fs_info *fs_info = eb->fs_info;
6410 struct page *page = eb->pages[0];
6411 bool last;
6412
6413 /* btree_clear_page_dirty() needs page locked */
6414 lock_page(page);
6415 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6416 eb->len);
6417 if (last)
6418 btree_clear_page_dirty(page);
6419 unlock_page(page);
6420 WARN_ON(atomic_read(&eb->refs) == 0);
6421}
6422
2b48966a 6423void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6424{
cc5e31a4
DS
6425 int i;
6426 int num_pages;
d1310b2e
CM
6427 struct page *page;
6428
0d27797e
QW
6429 if (eb->fs_info->sectorsize < PAGE_SIZE)
6430 return clear_subpage_extent_buffer_dirty(eb);
6431
65ad0104 6432 num_pages = num_extent_pages(eb);
d1310b2e
CM
6433
6434 for (i = 0; i < num_pages; i++) {
fb85fc9a 6435 page = eb->pages[i];
b9473439 6436 if (!PageDirty(page))
d2c3f4f6 6437 continue;
a61e6f29 6438 lock_page(page);
0d27797e 6439 btree_clear_page_dirty(page);
bf0da8c1 6440 ClearPageError(page);
a61e6f29 6441 unlock_page(page);
d1310b2e 6442 }
0b32f4bb 6443 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6444}
d1310b2e 6445
abb57ef3 6446bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6447{
cc5e31a4
DS
6448 int i;
6449 int num_pages;
abb57ef3 6450 bool was_dirty;
d1310b2e 6451
0b32f4bb
JB
6452 check_buffer_tree_ref(eb);
6453
b9473439 6454 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6455
65ad0104 6456 num_pages = num_extent_pages(eb);
3083ee2e 6457 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6458 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6459
0d27797e
QW
6460 if (!was_dirty) {
6461 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
51995c39 6462
0d27797e
QW
6463 /*
6464 * For subpage case, we can have other extent buffers in the
6465 * same page, and in clear_subpage_extent_buffer_dirty() we
6466 * have to clear page dirty without subpage lock held.
6467 * This can cause race where our page gets dirty cleared after
6468 * we just set it.
6469 *
6470 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6471 * its page for other reasons, we can use page lock to prevent
6472 * the above race.
6473 */
6474 if (subpage)
6475 lock_page(eb->pages[0]);
6476 for (i = 0; i < num_pages; i++)
6477 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6478 eb->start, eb->len);
6479 if (subpage)
6480 unlock_page(eb->pages[0]);
6481 }
51995c39
LB
6482#ifdef CONFIG_BTRFS_DEBUG
6483 for (i = 0; i < num_pages; i++)
6484 ASSERT(PageDirty(eb->pages[i]));
6485#endif
6486
b9473439 6487 return was_dirty;
d1310b2e 6488}
d1310b2e 6489
69ba3927 6490void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6491{
251f2acc 6492 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6493 struct page *page;
cc5e31a4 6494 int num_pages;
251f2acc 6495 int i;
1259ab75 6496
b4ce94de 6497 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6498 num_pages = num_extent_pages(eb);
1259ab75 6499 for (i = 0; i < num_pages; i++) {
fb85fc9a 6500 page = eb->pages[i];
33958dc6 6501 if (page)
251f2acc
QW
6502 btrfs_page_clear_uptodate(fs_info, page,
6503 eb->start, eb->len);
1259ab75 6504 }
1259ab75
CM
6505}
6506
09c25a8c 6507void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6508{
251f2acc 6509 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6510 struct page *page;
cc5e31a4 6511 int num_pages;
251f2acc 6512 int i;
d1310b2e 6513
0b32f4bb 6514 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6515 num_pages = num_extent_pages(eb);
d1310b2e 6516 for (i = 0; i < num_pages; i++) {
fb85fc9a 6517 page = eb->pages[i];
251f2acc 6518 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
d1310b2e 6519 }
d1310b2e 6520}
d1310b2e 6521
4012daf7
QW
6522static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6523 int mirror_num)
6524{
6525 struct btrfs_fs_info *fs_info = eb->fs_info;
6526 struct extent_io_tree *io_tree;
6527 struct page *page = eb->pages[0];
390ed29b 6528 struct btrfs_bio_ctrl bio_ctrl = { 0 };
4012daf7
QW
6529 int ret = 0;
6530
6531 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6532 ASSERT(PagePrivate(page));
6533 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6534
6535 if (wait == WAIT_NONE) {
dc56219f
GR
6536 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6537 return -EAGAIN;
4012daf7
QW
6538 } else {
6539 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6540 if (ret < 0)
6541 return ret;
6542 }
6543
6544 ret = 0;
6545 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6546 PageUptodate(page) ||
6547 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6548 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6549 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6550 return ret;
6551 }
6552
6553 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6554 eb->read_mirror = 0;
6555 atomic_set(&eb->io_pages, 1);
6556 check_buffer_tree_ref(eb);
6557 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6558
3d078efa 6559 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
390ed29b
QW
6560 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6561 page, eb->start, eb->len,
6562 eb->start - page_offset(page),
6563 end_bio_extent_readpage, mirror_num, 0,
4012daf7
QW
6564 true);
6565 if (ret) {
6566 /*
6567 * In the endio function, if we hit something wrong we will
6568 * increase the io_pages, so here we need to decrease it for
6569 * error path.
6570 */
6571 atomic_dec(&eb->io_pages);
6572 }
390ed29b 6573 if (bio_ctrl.bio) {
4012daf7
QW
6574 int tmp;
6575
390ed29b
QW
6576 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6577 bio_ctrl.bio = NULL;
4012daf7
QW
6578 if (tmp < 0)
6579 return tmp;
6580 }
6581 if (ret || wait != WAIT_COMPLETE)
6582 return ret;
6583
6584 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6585 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6586 ret = -EIO;
6587 return ret;
6588}
6589
c2ccfbc6 6590int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6591{
cc5e31a4 6592 int i;
d1310b2e
CM
6593 struct page *page;
6594 int err;
6595 int ret = 0;
ce9adaa5
CM
6596 int locked_pages = 0;
6597 int all_uptodate = 1;
cc5e31a4 6598 int num_pages;
727011e0 6599 unsigned long num_reads = 0;
390ed29b 6600 struct btrfs_bio_ctrl bio_ctrl = { 0 };
a86c12c7 6601
b4ce94de 6602 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6603 return 0;
6604
651740a5
JB
6605 /*
6606 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6607 * operation, which could potentially still be in flight. In this case
6608 * we simply want to return an error.
6609 */
6610 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6611 return -EIO;
6612
4012daf7
QW
6613 if (eb->fs_info->sectorsize < PAGE_SIZE)
6614 return read_extent_buffer_subpage(eb, wait, mirror_num);
6615
65ad0104 6616 num_pages = num_extent_pages(eb);
8436ea91 6617 for (i = 0; i < num_pages; i++) {
fb85fc9a 6618 page = eb->pages[i];
bb82ab88 6619 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6620 /*
6621 * WAIT_NONE is only utilized by readahead. If we can't
6622 * acquire the lock atomically it means either the eb
6623 * is being read out or under modification.
6624 * Either way the eb will be or has been cached,
6625 * readahead can exit safely.
6626 */
2db04966 6627 if (!trylock_page(page))
ce9adaa5 6628 goto unlock_exit;
d1310b2e
CM
6629 } else {
6630 lock_page(page);
6631 }
ce9adaa5 6632 locked_pages++;
2571e739
LB
6633 }
6634 /*
6635 * We need to firstly lock all pages to make sure that
6636 * the uptodate bit of our pages won't be affected by
6637 * clear_extent_buffer_uptodate().
6638 */
8436ea91 6639 for (i = 0; i < num_pages; i++) {
2571e739 6640 page = eb->pages[i];
727011e0
CM
6641 if (!PageUptodate(page)) {
6642 num_reads++;
ce9adaa5 6643 all_uptodate = 0;
727011e0 6644 }
ce9adaa5 6645 }
2571e739 6646
ce9adaa5 6647 if (all_uptodate) {
8436ea91 6648 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6649 goto unlock_exit;
6650 }
6651
656f30db 6652 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6653 eb->read_mirror = 0;
0b32f4bb 6654 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
6655 /*
6656 * It is possible for releasepage to clear the TREE_REF bit before we
6657 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6658 */
6659 check_buffer_tree_ref(eb);
8436ea91 6660 for (i = 0; i < num_pages; i++) {
fb85fc9a 6661 page = eb->pages[i];
baf863b9 6662
ce9adaa5 6663 if (!PageUptodate(page)) {
baf863b9
LB
6664 if (ret) {
6665 atomic_dec(&eb->io_pages);
6666 unlock_page(page);
6667 continue;
6668 }
6669
f188591e 6670 ClearPageError(page);
0420177c 6671 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
390ed29b
QW
6672 &bio_ctrl, page, page_offset(page),
6673 PAGE_SIZE, 0, end_bio_extent_readpage,
6674 mirror_num, 0, false);
baf863b9 6675 if (err) {
baf863b9 6676 /*
0420177c
NB
6677 * We failed to submit the bio so it's the
6678 * caller's responsibility to perform cleanup
6679 * i.e unlock page/set error bit.
baf863b9 6680 */
0420177c
NB
6681 ret = err;
6682 SetPageError(page);
6683 unlock_page(page);
baf863b9
LB
6684 atomic_dec(&eb->io_pages);
6685 }
d1310b2e
CM
6686 } else {
6687 unlock_page(page);
6688 }
6689 }
6690
390ed29b
QW
6691 if (bio_ctrl.bio) {
6692 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6693 bio_ctrl.bio = NULL;
79787eaa
JM
6694 if (err)
6695 return err;
355808c2 6696 }
a86c12c7 6697
bb82ab88 6698 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6699 return ret;
d397712b 6700
8436ea91 6701 for (i = 0; i < num_pages; i++) {
fb85fc9a 6702 page = eb->pages[i];
d1310b2e 6703 wait_on_page_locked(page);
d397712b 6704 if (!PageUptodate(page))
d1310b2e 6705 ret = -EIO;
d1310b2e 6706 }
d397712b 6707
d1310b2e 6708 return ret;
ce9adaa5
CM
6709
6710unlock_exit:
d397712b 6711 while (locked_pages > 0) {
ce9adaa5 6712 locked_pages--;
8436ea91
JB
6713 page = eb->pages[locked_pages];
6714 unlock_page(page);
ce9adaa5
CM
6715 }
6716 return ret;
d1310b2e 6717}
d1310b2e 6718
f98b6215
QW
6719static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6720 unsigned long len)
6721{
6722 btrfs_warn(eb->fs_info,
6723 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6724 eb->start, eb->len, start, len);
6725 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6726
6727 return true;
6728}
6729
6730/*
6731 * Check if the [start, start + len) range is valid before reading/writing
6732 * the eb.
6733 * NOTE: @start and @len are offset inside the eb, not logical address.
6734 *
6735 * Caller should not touch the dst/src memory if this function returns error.
6736 */
6737static inline int check_eb_range(const struct extent_buffer *eb,
6738 unsigned long start, unsigned long len)
6739{
6740 unsigned long offset;
6741
6742 /* start, start + len should not go beyond eb->len nor overflow */
6743 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6744 return report_eb_range(eb, start, len);
6745
6746 return false;
6747}
6748
1cbb1f45
JM
6749void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6750 unsigned long start, unsigned long len)
d1310b2e
CM
6751{
6752 size_t cur;
6753 size_t offset;
6754 struct page *page;
6755 char *kaddr;
6756 char *dst = (char *)dstv;
884b07d0 6757 unsigned long i = get_eb_page_index(start);
d1310b2e 6758
f98b6215 6759 if (check_eb_range(eb, start, len))
f716abd5 6760 return;
d1310b2e 6761
884b07d0 6762 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6763
d397712b 6764 while (len > 0) {
fb85fc9a 6765 page = eb->pages[i];
d1310b2e 6766
09cbfeaf 6767 cur = min(len, (PAGE_SIZE - offset));
a6591715 6768 kaddr = page_address(page);
d1310b2e 6769 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6770
6771 dst += cur;
6772 len -= cur;
6773 offset = 0;
6774 i++;
6775 }
6776}
d1310b2e 6777
a48b73ec
JB
6778int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6779 void __user *dstv,
6780 unsigned long start, unsigned long len)
550ac1d8
GH
6781{
6782 size_t cur;
6783 size_t offset;
6784 struct page *page;
6785 char *kaddr;
6786 char __user *dst = (char __user *)dstv;
884b07d0 6787 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6788 int ret = 0;
6789
6790 WARN_ON(start > eb->len);
6791 WARN_ON(start + len > eb->start + eb->len);
6792
884b07d0 6793 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6794
6795 while (len > 0) {
fb85fc9a 6796 page = eb->pages[i];
550ac1d8 6797
09cbfeaf 6798 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6799 kaddr = page_address(page);
a48b73ec 6800 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6801 ret = -EFAULT;
6802 break;
6803 }
6804
6805 dst += cur;
6806 len -= cur;
6807 offset = 0;
6808 i++;
6809 }
6810
6811 return ret;
6812}
6813
1cbb1f45
JM
6814int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6815 unsigned long start, unsigned long len)
d1310b2e
CM
6816{
6817 size_t cur;
6818 size_t offset;
6819 struct page *page;
6820 char *kaddr;
6821 char *ptr = (char *)ptrv;
884b07d0 6822 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6823 int ret = 0;
6824
f98b6215
QW
6825 if (check_eb_range(eb, start, len))
6826 return -EINVAL;
d1310b2e 6827
884b07d0 6828 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6829
d397712b 6830 while (len > 0) {
fb85fc9a 6831 page = eb->pages[i];
d1310b2e 6832
09cbfeaf 6833 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6834
a6591715 6835 kaddr = page_address(page);
d1310b2e 6836 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6837 if (ret)
6838 break;
6839
6840 ptr += cur;
6841 len -= cur;
6842 offset = 0;
6843 i++;
6844 }
6845 return ret;
6846}
d1310b2e 6847
b8f95771
QW
6848/*
6849 * Check that the extent buffer is uptodate.
6850 *
6851 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6852 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6853 */
6854static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6855 struct page *page)
6856{
6857 struct btrfs_fs_info *fs_info = eb->fs_info;
6858
6859 if (fs_info->sectorsize < PAGE_SIZE) {
6860 bool uptodate;
6861
6862 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6863 eb->start, eb->len);
6864 WARN_ON(!uptodate);
6865 } else {
6866 WARN_ON(!PageUptodate(page));
6867 }
6868}
6869
2b48966a 6870void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6871 const void *srcv)
6872{
6873 char *kaddr;
6874
b8f95771 6875 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6876 kaddr = page_address(eb->pages[0]) +
6877 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6878 chunk_tree_uuid));
6879 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6880}
6881
2b48966a 6882void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6883{
6884 char *kaddr;
6885
b8f95771 6886 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6887 kaddr = page_address(eb->pages[0]) +
6888 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6889 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6890}
6891
2b48966a 6892void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6893 unsigned long start, unsigned long len)
6894{
6895 size_t cur;
6896 size_t offset;
6897 struct page *page;
6898 char *kaddr;
6899 char *src = (char *)srcv;
884b07d0 6900 unsigned long i = get_eb_page_index(start);
d1310b2e 6901
d3575156
NA
6902 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6903
f98b6215
QW
6904 if (check_eb_range(eb, start, len))
6905 return;
d1310b2e 6906
884b07d0 6907 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6908
d397712b 6909 while (len > 0) {
fb85fc9a 6910 page = eb->pages[i];
b8f95771 6911 assert_eb_page_uptodate(eb, page);
d1310b2e 6912
09cbfeaf 6913 cur = min(len, PAGE_SIZE - offset);
a6591715 6914 kaddr = page_address(page);
d1310b2e 6915 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6916
6917 src += cur;
6918 len -= cur;
6919 offset = 0;
6920 i++;
6921 }
6922}
d1310b2e 6923
2b48966a 6924void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6925 unsigned long len)
d1310b2e
CM
6926{
6927 size_t cur;
6928 size_t offset;
6929 struct page *page;
6930 char *kaddr;
884b07d0 6931 unsigned long i = get_eb_page_index(start);
d1310b2e 6932
f98b6215
QW
6933 if (check_eb_range(eb, start, len))
6934 return;
d1310b2e 6935
884b07d0 6936 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6937
d397712b 6938 while (len > 0) {
fb85fc9a 6939 page = eb->pages[i];
b8f95771 6940 assert_eb_page_uptodate(eb, page);
d1310b2e 6941
09cbfeaf 6942 cur = min(len, PAGE_SIZE - offset);
a6591715 6943 kaddr = page_address(page);
b159fa28 6944 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6945
6946 len -= cur;
6947 offset = 0;
6948 i++;
6949 }
6950}
d1310b2e 6951
2b48966a
DS
6952void copy_extent_buffer_full(const struct extent_buffer *dst,
6953 const struct extent_buffer *src)
58e8012c
DS
6954{
6955 int i;
cc5e31a4 6956 int num_pages;
58e8012c
DS
6957
6958 ASSERT(dst->len == src->len);
6959
884b07d0
QW
6960 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6961 num_pages = num_extent_pages(dst);
6962 for (i = 0; i < num_pages; i++)
6963 copy_page(page_address(dst->pages[i]),
6964 page_address(src->pages[i]));
6965 } else {
6966 size_t src_offset = get_eb_offset_in_page(src, 0);
6967 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6968
6969 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6970 memcpy(page_address(dst->pages[0]) + dst_offset,
6971 page_address(src->pages[0]) + src_offset,
6972 src->len);
6973 }
58e8012c
DS
6974}
6975
2b48966a
DS
6976void copy_extent_buffer(const struct extent_buffer *dst,
6977 const struct extent_buffer *src,
d1310b2e
CM
6978 unsigned long dst_offset, unsigned long src_offset,
6979 unsigned long len)
6980{
6981 u64 dst_len = dst->len;
6982 size_t cur;
6983 size_t offset;
6984 struct page *page;
6985 char *kaddr;
884b07d0 6986 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 6987
f98b6215
QW
6988 if (check_eb_range(dst, dst_offset, len) ||
6989 check_eb_range(src, src_offset, len))
6990 return;
6991
d1310b2e
CM
6992 WARN_ON(src->len != dst_len);
6993
884b07d0 6994 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 6995
d397712b 6996 while (len > 0) {
fb85fc9a 6997 page = dst->pages[i];
b8f95771 6998 assert_eb_page_uptodate(dst, page);
d1310b2e 6999
09cbfeaf 7000 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 7001
a6591715 7002 kaddr = page_address(page);
d1310b2e 7003 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
7004
7005 src_offset += cur;
7006 len -= cur;
7007 offset = 0;
7008 i++;
7009 }
7010}
d1310b2e 7011
3e1e8bb7
OS
7012/*
7013 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7014 * given bit number
7015 * @eb: the extent buffer
7016 * @start: offset of the bitmap item in the extent buffer
7017 * @nr: bit number
7018 * @page_index: return index of the page in the extent buffer that contains the
7019 * given bit number
7020 * @page_offset: return offset into the page given by page_index
7021 *
7022 * This helper hides the ugliness of finding the byte in an extent buffer which
7023 * contains a given bit.
7024 */
2b48966a 7025static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
7026 unsigned long start, unsigned long nr,
7027 unsigned long *page_index,
7028 size_t *page_offset)
7029{
3e1e8bb7
OS
7030 size_t byte_offset = BIT_BYTE(nr);
7031 size_t offset;
7032
7033 /*
7034 * The byte we want is the offset of the extent buffer + the offset of
7035 * the bitmap item in the extent buffer + the offset of the byte in the
7036 * bitmap item.
7037 */
884b07d0 7038 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 7039
09cbfeaf 7040 *page_index = offset >> PAGE_SHIFT;
7073017a 7041 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
7042}
7043
7044/**
7045 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7046 * @eb: the extent buffer
7047 * @start: offset of the bitmap item in the extent buffer
7048 * @nr: bit number to test
7049 */
2b48966a 7050int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7051 unsigned long nr)
7052{
2fe1d551 7053 u8 *kaddr;
3e1e8bb7
OS
7054 struct page *page;
7055 unsigned long i;
7056 size_t offset;
7057
7058 eb_bitmap_offset(eb, start, nr, &i, &offset);
7059 page = eb->pages[i];
b8f95771 7060 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7061 kaddr = page_address(page);
7062 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7063}
7064
7065/**
7066 * extent_buffer_bitmap_set - set an area of a bitmap
7067 * @eb: the extent buffer
7068 * @start: offset of the bitmap item in the extent buffer
7069 * @pos: bit number of the first bit
7070 * @len: number of bits to set
7071 */
2b48966a 7072void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7073 unsigned long pos, unsigned long len)
7074{
2fe1d551 7075 u8 *kaddr;
3e1e8bb7
OS
7076 struct page *page;
7077 unsigned long i;
7078 size_t offset;
7079 const unsigned int size = pos + len;
7080 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7081 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7082
7083 eb_bitmap_offset(eb, start, pos, &i, &offset);
7084 page = eb->pages[i];
b8f95771 7085 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7086 kaddr = page_address(page);
7087
7088 while (len >= bits_to_set) {
7089 kaddr[offset] |= mask_to_set;
7090 len -= bits_to_set;
7091 bits_to_set = BITS_PER_BYTE;
9c894696 7092 mask_to_set = ~0;
09cbfeaf 7093 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7094 offset = 0;
7095 page = eb->pages[++i];
b8f95771 7096 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7097 kaddr = page_address(page);
7098 }
7099 }
7100 if (len) {
7101 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7102 kaddr[offset] |= mask_to_set;
7103 }
7104}
7105
7106
7107/**
7108 * extent_buffer_bitmap_clear - clear an area of a bitmap
7109 * @eb: the extent buffer
7110 * @start: offset of the bitmap item in the extent buffer
7111 * @pos: bit number of the first bit
7112 * @len: number of bits to clear
7113 */
2b48966a
DS
7114void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7115 unsigned long start, unsigned long pos,
7116 unsigned long len)
3e1e8bb7 7117{
2fe1d551 7118 u8 *kaddr;
3e1e8bb7
OS
7119 struct page *page;
7120 unsigned long i;
7121 size_t offset;
7122 const unsigned int size = pos + len;
7123 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7124 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7125
7126 eb_bitmap_offset(eb, start, pos, &i, &offset);
7127 page = eb->pages[i];
b8f95771 7128 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7129 kaddr = page_address(page);
7130
7131 while (len >= bits_to_clear) {
7132 kaddr[offset] &= ~mask_to_clear;
7133 len -= bits_to_clear;
7134 bits_to_clear = BITS_PER_BYTE;
9c894696 7135 mask_to_clear = ~0;
09cbfeaf 7136 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7137 offset = 0;
7138 page = eb->pages[++i];
b8f95771 7139 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7140 kaddr = page_address(page);
7141 }
7142 }
7143 if (len) {
7144 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7145 kaddr[offset] &= ~mask_to_clear;
7146 }
7147}
7148
3387206f
ST
7149static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7150{
7151 unsigned long distance = (src > dst) ? src - dst : dst - src;
7152 return distance < len;
7153}
7154
d1310b2e
CM
7155static void copy_pages(struct page *dst_page, struct page *src_page,
7156 unsigned long dst_off, unsigned long src_off,
7157 unsigned long len)
7158{
a6591715 7159 char *dst_kaddr = page_address(dst_page);
d1310b2e 7160 char *src_kaddr;
727011e0 7161 int must_memmove = 0;
d1310b2e 7162
3387206f 7163 if (dst_page != src_page) {
a6591715 7164 src_kaddr = page_address(src_page);
3387206f 7165 } else {
d1310b2e 7166 src_kaddr = dst_kaddr;
727011e0
CM
7167 if (areas_overlap(src_off, dst_off, len))
7168 must_memmove = 1;
3387206f 7169 }
d1310b2e 7170
727011e0
CM
7171 if (must_memmove)
7172 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7173 else
7174 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
7175}
7176
2b48966a
DS
7177void memcpy_extent_buffer(const struct extent_buffer *dst,
7178 unsigned long dst_offset, unsigned long src_offset,
7179 unsigned long len)
d1310b2e
CM
7180{
7181 size_t cur;
7182 size_t dst_off_in_page;
7183 size_t src_off_in_page;
d1310b2e
CM
7184 unsigned long dst_i;
7185 unsigned long src_i;
7186
f98b6215
QW
7187 if (check_eb_range(dst, dst_offset, len) ||
7188 check_eb_range(dst, src_offset, len))
7189 return;
d1310b2e 7190
d397712b 7191 while (len > 0) {
884b07d0
QW
7192 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7193 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 7194
884b07d0
QW
7195 dst_i = get_eb_page_index(dst_offset);
7196 src_i = get_eb_page_index(src_offset);
d1310b2e 7197
09cbfeaf 7198 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
7199 src_off_in_page));
7200 cur = min_t(unsigned long, cur,
09cbfeaf 7201 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 7202
fb85fc9a 7203 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7204 dst_off_in_page, src_off_in_page, cur);
7205
7206 src_offset += cur;
7207 dst_offset += cur;
7208 len -= cur;
7209 }
7210}
d1310b2e 7211
2b48966a
DS
7212void memmove_extent_buffer(const struct extent_buffer *dst,
7213 unsigned long dst_offset, unsigned long src_offset,
7214 unsigned long len)
d1310b2e
CM
7215{
7216 size_t cur;
7217 size_t dst_off_in_page;
7218 size_t src_off_in_page;
7219 unsigned long dst_end = dst_offset + len - 1;
7220 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
7221 unsigned long dst_i;
7222 unsigned long src_i;
7223
f98b6215
QW
7224 if (check_eb_range(dst, dst_offset, len) ||
7225 check_eb_range(dst, src_offset, len))
7226 return;
727011e0 7227 if (dst_offset < src_offset) {
d1310b2e
CM
7228 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7229 return;
7230 }
d397712b 7231 while (len > 0) {
884b07d0
QW
7232 dst_i = get_eb_page_index(dst_end);
7233 src_i = get_eb_page_index(src_end);
d1310b2e 7234
884b07d0
QW
7235 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7236 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
7237
7238 cur = min_t(unsigned long, len, src_off_in_page + 1);
7239 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 7240 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7241 dst_off_in_page - cur + 1,
7242 src_off_in_page - cur + 1, cur);
7243
7244 dst_end -= cur;
7245 src_end -= cur;
7246 len -= cur;
7247 }
7248}
6af118ce 7249
72a69cd0 7250#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
7251static struct extent_buffer *get_next_extent_buffer(
7252 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7253{
72a69cd0 7254 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
d1e86e3f
QW
7255 struct extent_buffer *found = NULL;
7256 u64 page_start = page_offset(page);
72a69cd0 7257 u64 cur = page_start;
d1e86e3f
QW
7258
7259 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
7260 lockdep_assert_held(&fs_info->buffer_lock);
7261
72a69cd0
QW
7262 while (cur < page_start + PAGE_SIZE) {
7263 int ret;
7264 int i;
7265
7266 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7267 (void **)gang, cur >> fs_info->sectorsize_bits,
7268 min_t(unsigned int, GANG_LOOKUP_SIZE,
7269 PAGE_SIZE / fs_info->nodesize));
7270 if (ret == 0)
7271 goto out;
7272 for (i = 0; i < ret; i++) {
7273 /* Already beyond page end */
7274 if (gang[i]->start >= page_start + PAGE_SIZE)
7275 goto out;
7276 /* Found one */
7277 if (gang[i]->start >= bytenr) {
7278 found = gang[i];
7279 goto out;
7280 }
d1e86e3f 7281 }
72a69cd0 7282 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 7283 }
72a69cd0 7284out:
d1e86e3f
QW
7285 return found;
7286}
7287
7288static int try_release_subpage_extent_buffer(struct page *page)
7289{
7290 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7291 u64 cur = page_offset(page);
7292 const u64 end = page_offset(page) + PAGE_SIZE;
7293 int ret;
7294
7295 while (cur < end) {
7296 struct extent_buffer *eb = NULL;
7297
7298 /*
7299 * Unlike try_release_extent_buffer() which uses page->private
7300 * to grab buffer, for subpage case we rely on radix tree, thus
7301 * we need to ensure radix tree consistency.
7302 *
7303 * We also want an atomic snapshot of the radix tree, thus go
7304 * with spinlock rather than RCU.
7305 */
7306 spin_lock(&fs_info->buffer_lock);
7307 eb = get_next_extent_buffer(fs_info, page, cur);
7308 if (!eb) {
7309 /* No more eb in the page range after or at cur */
7310 spin_unlock(&fs_info->buffer_lock);
7311 break;
7312 }
7313 cur = eb->start + eb->len;
7314
7315 /*
7316 * The same as try_release_extent_buffer(), to ensure the eb
7317 * won't disappear out from under us.
7318 */
7319 spin_lock(&eb->refs_lock);
7320 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7321 spin_unlock(&eb->refs_lock);
7322 spin_unlock(&fs_info->buffer_lock);
7323 break;
7324 }
7325 spin_unlock(&fs_info->buffer_lock);
7326
7327 /*
7328 * If tree ref isn't set then we know the ref on this eb is a
7329 * real ref, so just return, this eb will likely be freed soon
7330 * anyway.
7331 */
7332 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7333 spin_unlock(&eb->refs_lock);
7334 break;
7335 }
7336
7337 /*
7338 * Here we don't care about the return value, we will always
7339 * check the page private at the end. And
7340 * release_extent_buffer() will release the refs_lock.
7341 */
7342 release_extent_buffer(eb);
7343 }
7344 /*
7345 * Finally to check if we have cleared page private, as if we have
7346 * released all ebs in the page, the page private should be cleared now.
7347 */
7348 spin_lock(&page->mapping->private_lock);
7349 if (!PagePrivate(page))
7350 ret = 1;
7351 else
7352 ret = 0;
7353 spin_unlock(&page->mapping->private_lock);
7354 return ret;
7355
7356}
7357
f7a52a40 7358int try_release_extent_buffer(struct page *page)
19fe0a8b 7359{
6af118ce 7360 struct extent_buffer *eb;
6af118ce 7361
d1e86e3f
QW
7362 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7363 return try_release_subpage_extent_buffer(page);
7364
3083ee2e 7365 /*
d1e86e3f
QW
7366 * We need to make sure nobody is changing page->private, as we rely on
7367 * page->private as the pointer to extent buffer.
3083ee2e
JB
7368 */
7369 spin_lock(&page->mapping->private_lock);
7370 if (!PagePrivate(page)) {
7371 spin_unlock(&page->mapping->private_lock);
4f2de97a 7372 return 1;
45f49bce 7373 }
6af118ce 7374
3083ee2e
JB
7375 eb = (struct extent_buffer *)page->private;
7376 BUG_ON(!eb);
19fe0a8b
MX
7377
7378 /*
3083ee2e
JB
7379 * This is a little awful but should be ok, we need to make sure that
7380 * the eb doesn't disappear out from under us while we're looking at
7381 * this page.
19fe0a8b 7382 */
3083ee2e 7383 spin_lock(&eb->refs_lock);
0b32f4bb 7384 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7385 spin_unlock(&eb->refs_lock);
7386 spin_unlock(&page->mapping->private_lock);
7387 return 0;
b9473439 7388 }
3083ee2e 7389 spin_unlock(&page->mapping->private_lock);
897ca6e9 7390
19fe0a8b 7391 /*
3083ee2e
JB
7392 * If tree ref isn't set then we know the ref on this eb is a real ref,
7393 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7394 */
3083ee2e
JB
7395 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7396 spin_unlock(&eb->refs_lock);
7397 return 0;
b9473439 7398 }
19fe0a8b 7399
f7a52a40 7400 return release_extent_buffer(eb);
6af118ce 7401}
bfb484d9
JB
7402
7403/*
7404 * btrfs_readahead_tree_block - attempt to readahead a child block
7405 * @fs_info: the fs_info
7406 * @bytenr: bytenr to read
3fbaf258 7407 * @owner_root: objectid of the root that owns this eb
bfb484d9 7408 * @gen: generation for the uptodate check, can be 0
3fbaf258 7409 * @level: level for the eb
bfb484d9
JB
7410 *
7411 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7412 * normal uptodate check of the eb, without checking the generation. If we have
7413 * to read the block we will not block on anything.
7414 */
7415void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7416 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7417{
7418 struct extent_buffer *eb;
7419 int ret;
7420
3fbaf258 7421 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7422 if (IS_ERR(eb))
7423 return;
7424
7425 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7426 free_extent_buffer(eb);
7427 return;
7428 }
7429
7430 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7431 if (ret < 0)
7432 free_extent_buffer_stale(eb);
7433 else
7434 free_extent_buffer(eb);
7435}
7436
7437/*
7438 * btrfs_readahead_node_child - readahead a node's child block
7439 * @node: parent node we're reading from
7440 * @slot: slot in the parent node for the child we want to read
7441 *
7442 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7443 * the slot in the node provided.
7444 */
7445void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7446{
7447 btrfs_readahead_tree_block(node->fs_info,
7448 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7449 btrfs_header_owner(node),
7450 btrfs_node_ptr_generation(node, slot),
7451 btrfs_header_level(node) - 1);
bfb484d9 7452}