Btrfs: Use a higher default ra pages
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/gfp.h>
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
8#include <linux/module.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/version.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include "extent_io.h"
16#include "extent_map.h"
17
18/* temporary define until extent_map moves out of btrfs */
19struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
20 unsigned long extra_flags,
21 void (*ctor)(void *, struct kmem_cache *,
22 unsigned long));
23
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
29
d1310b2e
CM
30#define BUFFER_LRU_MAX 64
31
32struct tree_entry {
33 u64 start;
34 u64 end;
d1310b2e
CM
35 struct rb_node rb_node;
36};
37
38struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42};
43
44int __init extent_io_init(void)
45{
46 extent_state_cache = btrfs_cache_create("extent_state",
47 sizeof(struct extent_state), 0,
48 NULL);
49 if (!extent_state_cache)
50 return -ENOMEM;
51
52 extent_buffer_cache = btrfs_cache_create("extent_buffers",
53 sizeof(struct extent_buffer), 0,
54 NULL);
55 if (!extent_buffer_cache)
56 goto free_state_cache;
57 return 0;
58
59free_state_cache:
60 kmem_cache_destroy(extent_state_cache);
61 return -ENOMEM;
62}
63
64void extent_io_exit(void)
65{
66 struct extent_state *state;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, list);
70dec807 70 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
d1310b2e
CM
71 list_del(&state->list);
72 kmem_cache_free(extent_state_cache, state);
73
74 }
75
76 if (extent_state_cache)
77 kmem_cache_destroy(extent_state_cache);
78 if (extent_buffer_cache)
79 kmem_cache_destroy(extent_buffer_cache);
80}
81
82void extent_io_tree_init(struct extent_io_tree *tree,
83 struct address_space *mapping, gfp_t mask)
84{
85 tree->state.rb_node = NULL;
86 tree->ops = NULL;
87 tree->dirty_bytes = 0;
70dec807 88 spin_lock_init(&tree->lock);
d1310b2e
CM
89 spin_lock_init(&tree->lru_lock);
90 tree->mapping = mapping;
91 INIT_LIST_HEAD(&tree->buffer_lru);
92 tree->lru_size = 0;
80ea96b1 93 tree->last = NULL;
d1310b2e
CM
94}
95EXPORT_SYMBOL(extent_io_tree_init);
96
97void extent_io_tree_empty_lru(struct extent_io_tree *tree)
98{
99 struct extent_buffer *eb;
100 while(!list_empty(&tree->buffer_lru)) {
101 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
102 lru);
103 list_del_init(&eb->lru);
104 free_extent_buffer(eb);
105 }
106}
107EXPORT_SYMBOL(extent_io_tree_empty_lru);
108
109struct extent_state *alloc_extent_state(gfp_t mask)
110{
111 struct extent_state *state;
d1310b2e
CM
112
113 state = kmem_cache_alloc(extent_state_cache, mask);
114 if (!state || IS_ERR(state))
115 return state;
116 state->state = 0;
d1310b2e 117 state->private = 0;
70dec807 118 state->tree = NULL;
d1310b2e
CM
119
120 atomic_set(&state->refs, 1);
121 init_waitqueue_head(&state->wq);
122 return state;
123}
124EXPORT_SYMBOL(alloc_extent_state);
125
126void free_extent_state(struct extent_state *state)
127{
d1310b2e
CM
128 if (!state)
129 return;
130 if (atomic_dec_and_test(&state->refs)) {
70dec807 131 WARN_ON(state->tree);
d1310b2e
CM
132 kmem_cache_free(extent_state_cache, state);
133 }
134}
135EXPORT_SYMBOL(free_extent_state);
136
137static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
138 struct rb_node *node)
139{
140 struct rb_node ** p = &root->rb_node;
141 struct rb_node * parent = NULL;
142 struct tree_entry *entry;
143
144 while(*p) {
145 parent = *p;
146 entry = rb_entry(parent, struct tree_entry, rb_node);
147
148 if (offset < entry->start)
149 p = &(*p)->rb_left;
150 else if (offset > entry->end)
151 p = &(*p)->rb_right;
152 else
153 return parent;
154 }
155
156 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
157 rb_link_node(node, parent, p);
158 rb_insert_color(node, root);
159 return NULL;
160}
161
80ea96b1 162static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
163 struct rb_node **prev_ret,
164 struct rb_node **next_ret)
165{
80ea96b1 166 struct rb_root *root = &tree->state;
d1310b2e
CM
167 struct rb_node * n = root->rb_node;
168 struct rb_node *prev = NULL;
169 struct rb_node *orig_prev = NULL;
170 struct tree_entry *entry;
171 struct tree_entry *prev_entry = NULL;
172
80ea96b1
CM
173 if (tree->last) {
174 struct extent_state *state;
175 state = tree->last;
176 if (state->start <= offset && offset <= state->end)
177 return &tree->last->rb_node;
178 }
d1310b2e
CM
179 while(n) {
180 entry = rb_entry(n, struct tree_entry, rb_node);
181 prev = n;
182 prev_entry = entry;
183
184 if (offset < entry->start)
185 n = n->rb_left;
186 else if (offset > entry->end)
187 n = n->rb_right;
80ea96b1
CM
188 else {
189 tree->last = rb_entry(n, struct extent_state, rb_node);
d1310b2e 190 return n;
80ea96b1 191 }
d1310b2e
CM
192 }
193
194 if (prev_ret) {
195 orig_prev = prev;
196 while(prev && offset > prev_entry->end) {
197 prev = rb_next(prev);
198 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
199 }
200 *prev_ret = prev;
201 prev = orig_prev;
202 }
203
204 if (next_ret) {
205 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
206 while(prev && offset < prev_entry->start) {
207 prev = rb_prev(prev);
208 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209 }
210 *next_ret = prev;
211 }
212 return NULL;
213}
214
80ea96b1
CM
215static inline struct rb_node *tree_search(struct extent_io_tree *tree,
216 u64 offset)
d1310b2e 217{
70dec807 218 struct rb_node *prev = NULL;
d1310b2e 219 struct rb_node *ret;
70dec807 220
80ea96b1
CM
221 ret = __etree_search(tree, offset, &prev, NULL);
222 if (!ret) {
223 if (prev) {
224 tree->last = rb_entry(prev, struct extent_state,
225 rb_node);
226 }
d1310b2e 227 return prev;
80ea96b1 228 }
d1310b2e
CM
229 return ret;
230}
231
232/*
233 * utility function to look for merge candidates inside a given range.
234 * Any extents with matching state are merged together into a single
235 * extent in the tree. Extents with EXTENT_IO in their state field
236 * are not merged because the end_io handlers need to be able to do
237 * operations on them without sleeping (or doing allocations/splits).
238 *
239 * This should be called with the tree lock held.
240 */
241static int merge_state(struct extent_io_tree *tree,
242 struct extent_state *state)
243{
244 struct extent_state *other;
245 struct rb_node *other_node;
246
247 if (state->state & EXTENT_IOBITS)
248 return 0;
249
250 other_node = rb_prev(&state->rb_node);
251 if (other_node) {
252 other = rb_entry(other_node, struct extent_state, rb_node);
253 if (other->end == state->start - 1 &&
254 other->state == state->state) {
255 state->start = other->start;
70dec807 256 other->tree = NULL;
80ea96b1 257 if (tree->last == other)
d7fc640e 258 tree->last = state;
d1310b2e
CM
259 rb_erase(&other->rb_node, &tree->state);
260 free_extent_state(other);
261 }
262 }
263 other_node = rb_next(&state->rb_node);
264 if (other_node) {
265 other = rb_entry(other_node, struct extent_state, rb_node);
266 if (other->start == state->end + 1 &&
267 other->state == state->state) {
268 other->start = state->start;
70dec807 269 state->tree = NULL;
80ea96b1 270 if (tree->last == state)
d7fc640e 271 tree->last = other;
d1310b2e
CM
272 rb_erase(&state->rb_node, &tree->state);
273 free_extent_state(state);
274 }
275 }
276 return 0;
277}
278
291d673e
CM
279static void set_state_cb(struct extent_io_tree *tree,
280 struct extent_state *state,
281 unsigned long bits)
282{
283 if (tree->ops && tree->ops->set_bit_hook) {
284 tree->ops->set_bit_hook(tree->mapping->host, state->start,
b0c68f8b 285 state->end, state->state, bits);
291d673e
CM
286 }
287}
288
289static void clear_state_cb(struct extent_io_tree *tree,
290 struct extent_state *state,
291 unsigned long bits)
292{
293 if (tree->ops && tree->ops->set_bit_hook) {
294 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
b0c68f8b 295 state->end, state->state, bits);
291d673e
CM
296 }
297}
298
d1310b2e
CM
299/*
300 * insert an extent_state struct into the tree. 'bits' are set on the
301 * struct before it is inserted.
302 *
303 * This may return -EEXIST if the extent is already there, in which case the
304 * state struct is freed.
305 *
306 * The tree lock is not taken internally. This is a utility function and
307 * probably isn't what you want to call (see set/clear_extent_bit).
308 */
309static int insert_state(struct extent_io_tree *tree,
310 struct extent_state *state, u64 start, u64 end,
311 int bits)
312{
313 struct rb_node *node;
314
315 if (end < start) {
316 printk("end < start %Lu %Lu\n", end, start);
317 WARN_ON(1);
318 }
319 if (bits & EXTENT_DIRTY)
320 tree->dirty_bytes += end - start + 1;
b0c68f8b 321 set_state_cb(tree, state, bits);
d1310b2e
CM
322 state->state |= bits;
323 state->start = start;
324 state->end = end;
325 node = tree_insert(&tree->state, end, &state->rb_node);
326 if (node) {
327 struct extent_state *found;
328 found = rb_entry(node, struct extent_state, rb_node);
329 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
330 free_extent_state(state);
331 return -EEXIST;
332 }
70dec807 333 state->tree = tree;
80ea96b1 334 tree->last = state;
d1310b2e
CM
335 merge_state(tree, state);
336 return 0;
337}
338
339/*
340 * split a given extent state struct in two, inserting the preallocated
341 * struct 'prealloc' as the newly created second half. 'split' indicates an
342 * offset inside 'orig' where it should be split.
343 *
344 * Before calling,
345 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
346 * are two extent state structs in the tree:
347 * prealloc: [orig->start, split - 1]
348 * orig: [ split, orig->end ]
349 *
350 * The tree locks are not taken by this function. They need to be held
351 * by the caller.
352 */
353static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
354 struct extent_state *prealloc, u64 split)
355{
356 struct rb_node *node;
357 prealloc->start = orig->start;
358 prealloc->end = split - 1;
359 prealloc->state = orig->state;
360 orig->start = split;
361
362 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
363 if (node) {
364 struct extent_state *found;
365 found = rb_entry(node, struct extent_state, rb_node);
366 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
367 free_extent_state(prealloc);
368 return -EEXIST;
369 }
70dec807 370 prealloc->tree = tree;
d1310b2e
CM
371 return 0;
372}
373
374/*
375 * utility function to clear some bits in an extent state struct.
376 * it will optionally wake up any one waiting on this state (wake == 1), or
377 * forcibly remove the state from the tree (delete == 1).
378 *
379 * If no bits are set on the state struct after clearing things, the
380 * struct is freed and removed from the tree
381 */
382static int clear_state_bit(struct extent_io_tree *tree,
383 struct extent_state *state, int bits, int wake,
384 int delete)
385{
386 int ret = state->state & bits;
387
388 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
389 u64 range = state->end - state->start + 1;
390 WARN_ON(range > tree->dirty_bytes);
391 tree->dirty_bytes -= range;
392 }
291d673e 393 clear_state_cb(tree, state, bits);
b0c68f8b 394 state->state &= ~bits;
d1310b2e
CM
395 if (wake)
396 wake_up(&state->wq);
397 if (delete || state->state == 0) {
70dec807 398 if (state->tree) {
ae9d1285 399 clear_state_cb(tree, state, state->state);
d7fc640e
CM
400 if (tree->last == state) {
401 tree->last = extent_state_next(state);
402 }
d1310b2e 403 rb_erase(&state->rb_node, &tree->state);
70dec807 404 state->tree = NULL;
d1310b2e
CM
405 free_extent_state(state);
406 } else {
407 WARN_ON(1);
408 }
409 } else {
410 merge_state(tree, state);
411 }
412 return ret;
413}
414
415/*
416 * clear some bits on a range in the tree. This may require splitting
417 * or inserting elements in the tree, so the gfp mask is used to
418 * indicate which allocations or sleeping are allowed.
419 *
420 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
421 * the given range from the tree regardless of state (ie for truncate).
422 *
423 * the range [start, end] is inclusive.
424 *
425 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
426 * bits were already set, or zero if none of the bits were already set.
427 */
428int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
429 int bits, int wake, int delete, gfp_t mask)
430{
431 struct extent_state *state;
432 struct extent_state *prealloc = NULL;
433 struct rb_node *node;
434 unsigned long flags;
435 int err;
436 int set = 0;
437
438again:
439 if (!prealloc && (mask & __GFP_WAIT)) {
440 prealloc = alloc_extent_state(mask);
441 if (!prealloc)
442 return -ENOMEM;
443 }
444
70dec807 445 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
446 /*
447 * this search will find the extents that end after
448 * our range starts
449 */
80ea96b1 450 node = tree_search(tree, start);
d1310b2e
CM
451 if (!node)
452 goto out;
453 state = rb_entry(node, struct extent_state, rb_node);
454 if (state->start > end)
455 goto out;
456 WARN_ON(state->end < start);
457
458 /*
459 * | ---- desired range ---- |
460 * | state | or
461 * | ------------- state -------------- |
462 *
463 * We need to split the extent we found, and may flip
464 * bits on second half.
465 *
466 * If the extent we found extends past our range, we
467 * just split and search again. It'll get split again
468 * the next time though.
469 *
470 * If the extent we found is inside our range, we clear
471 * the desired bit on it.
472 */
473
474 if (state->start < start) {
70dec807
CM
475 if (!prealloc)
476 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
477 err = split_state(tree, state, prealloc, start);
478 BUG_ON(err == -EEXIST);
479 prealloc = NULL;
480 if (err)
481 goto out;
482 if (state->end <= end) {
483 start = state->end + 1;
484 set |= clear_state_bit(tree, state, bits,
485 wake, delete);
486 } else {
487 start = state->start;
488 }
489 goto search_again;
490 }
491 /*
492 * | ---- desired range ---- |
493 * | state |
494 * We need to split the extent, and clear the bit
495 * on the first half
496 */
497 if (state->start <= end && state->end > end) {
70dec807
CM
498 if (!prealloc)
499 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
500 err = split_state(tree, state, prealloc, end + 1);
501 BUG_ON(err == -EEXIST);
502
503 if (wake)
504 wake_up(&state->wq);
505 set |= clear_state_bit(tree, prealloc, bits,
506 wake, delete);
507 prealloc = NULL;
508 goto out;
509 }
510
511 start = state->end + 1;
512 set |= clear_state_bit(tree, state, bits, wake, delete);
513 goto search_again;
514
515out:
70dec807 516 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
517 if (prealloc)
518 free_extent_state(prealloc);
519
520 return set;
521
522search_again:
523 if (start > end)
524 goto out;
70dec807 525 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
526 if (mask & __GFP_WAIT)
527 cond_resched();
528 goto again;
529}
530EXPORT_SYMBOL(clear_extent_bit);
531
532static int wait_on_state(struct extent_io_tree *tree,
533 struct extent_state *state)
534{
535 DEFINE_WAIT(wait);
536 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
70dec807 537 spin_unlock_irq(&tree->lock);
d1310b2e 538 schedule();
70dec807 539 spin_lock_irq(&tree->lock);
d1310b2e
CM
540 finish_wait(&state->wq, &wait);
541 return 0;
542}
543
544/*
545 * waits for one or more bits to clear on a range in the state tree.
546 * The range [start, end] is inclusive.
547 * The tree lock is taken by this function
548 */
549int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
550{
551 struct extent_state *state;
552 struct rb_node *node;
553
70dec807 554 spin_lock_irq(&tree->lock);
d1310b2e
CM
555again:
556 while (1) {
557 /*
558 * this search will find all the extents that end after
559 * our range starts
560 */
80ea96b1 561 node = tree_search(tree, start);
d1310b2e
CM
562 if (!node)
563 break;
564
565 state = rb_entry(node, struct extent_state, rb_node);
566
567 if (state->start > end)
568 goto out;
569
570 if (state->state & bits) {
571 start = state->start;
572 atomic_inc(&state->refs);
573 wait_on_state(tree, state);
574 free_extent_state(state);
575 goto again;
576 }
577 start = state->end + 1;
578
579 if (start > end)
580 break;
581
582 if (need_resched()) {
70dec807 583 spin_unlock_irq(&tree->lock);
d1310b2e 584 cond_resched();
70dec807 585 spin_lock_irq(&tree->lock);
d1310b2e
CM
586 }
587 }
588out:
70dec807 589 spin_unlock_irq(&tree->lock);
d1310b2e
CM
590 return 0;
591}
592EXPORT_SYMBOL(wait_extent_bit);
593
594static void set_state_bits(struct extent_io_tree *tree,
595 struct extent_state *state,
596 int bits)
597{
598 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
599 u64 range = state->end - state->start + 1;
600 tree->dirty_bytes += range;
601 }
291d673e 602 set_state_cb(tree, state, bits);
b0c68f8b 603 state->state |= bits;
d1310b2e
CM
604}
605
606/*
607 * set some bits on a range in the tree. This may require allocations
608 * or sleeping, so the gfp mask is used to indicate what is allowed.
609 *
610 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
611 * range already has the desired bits set. The start of the existing
612 * range is returned in failed_start in this case.
613 *
614 * [start, end] is inclusive
615 * This takes the tree lock.
616 */
617int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
618 int exclusive, u64 *failed_start, gfp_t mask)
619{
620 struct extent_state *state;
621 struct extent_state *prealloc = NULL;
622 struct rb_node *node;
623 unsigned long flags;
624 int err = 0;
625 int set;
626 u64 last_start;
627 u64 last_end;
628again:
629 if (!prealloc && (mask & __GFP_WAIT)) {
630 prealloc = alloc_extent_state(mask);
631 if (!prealloc)
632 return -ENOMEM;
633 }
634
70dec807 635 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
636 /*
637 * this search will find all the extents that end after
638 * our range starts.
639 */
80ea96b1 640 node = tree_search(tree, start);
d1310b2e
CM
641 if (!node) {
642 err = insert_state(tree, prealloc, start, end, bits);
643 prealloc = NULL;
644 BUG_ON(err == -EEXIST);
645 goto out;
646 }
647
648 state = rb_entry(node, struct extent_state, rb_node);
649 last_start = state->start;
650 last_end = state->end;
651
652 /*
653 * | ---- desired range ---- |
654 * | state |
655 *
656 * Just lock what we found and keep going
657 */
658 if (state->start == start && state->end <= end) {
659 set = state->state & bits;
660 if (set && exclusive) {
661 *failed_start = state->start;
662 err = -EEXIST;
663 goto out;
664 }
665 set_state_bits(tree, state, bits);
666 start = state->end + 1;
667 merge_state(tree, state);
668 goto search_again;
669 }
670
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * or
675 * | ------------- state -------------- |
676 *
677 * We need to split the extent we found, and may flip bits on
678 * second half.
679 *
680 * If the extent we found extends past our
681 * range, we just split and search again. It'll get split
682 * again the next time though.
683 *
684 * If the extent we found is inside our range, we set the
685 * desired bit on it.
686 */
687 if (state->start < start) {
688 set = state->state & bits;
689 if (exclusive && set) {
690 *failed_start = start;
691 err = -EEXIST;
692 goto out;
693 }
694 err = split_state(tree, state, prealloc, start);
695 BUG_ON(err == -EEXIST);
696 prealloc = NULL;
697 if (err)
698 goto out;
699 if (state->end <= end) {
700 set_state_bits(tree, state, bits);
701 start = state->end + 1;
702 merge_state(tree, state);
703 } else {
704 start = state->start;
705 }
706 goto search_again;
707 }
708 /*
709 * | ---- desired range ---- |
710 * | state | or | state |
711 *
712 * There's a hole, we need to insert something in it and
713 * ignore the extent we found.
714 */
715 if (state->start > start) {
716 u64 this_end;
717 if (end < last_start)
718 this_end = end;
719 else
720 this_end = last_start -1;
721 err = insert_state(tree, prealloc, start, this_end,
722 bits);
723 prealloc = NULL;
724 BUG_ON(err == -EEXIST);
725 if (err)
726 goto out;
727 start = this_end + 1;
728 goto search_again;
729 }
730 /*
731 * | ---- desired range ---- |
732 * | state |
733 * We need to split the extent, and set the bit
734 * on the first half
735 */
736 if (state->start <= end && state->end > end) {
737 set = state->state & bits;
738 if (exclusive && set) {
739 *failed_start = start;
740 err = -EEXIST;
741 goto out;
742 }
743 err = split_state(tree, state, prealloc, end + 1);
744 BUG_ON(err == -EEXIST);
745
746 set_state_bits(tree, prealloc, bits);
747 merge_state(tree, prealloc);
748 prealloc = NULL;
749 goto out;
750 }
751
752 goto search_again;
753
754out:
70dec807 755 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
756 if (prealloc)
757 free_extent_state(prealloc);
758
759 return err;
760
761search_again:
762 if (start > end)
763 goto out;
70dec807 764 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
765 if (mask & __GFP_WAIT)
766 cond_resched();
767 goto again;
768}
769EXPORT_SYMBOL(set_extent_bit);
770
771/* wrappers around set/clear extent bit */
772int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
773 gfp_t mask)
774{
775 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
776 mask);
777}
778EXPORT_SYMBOL(set_extent_dirty);
779
780int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
781 int bits, gfp_t mask)
782{
783 return set_extent_bit(tree, start, end, bits, 0, NULL,
784 mask);
785}
786EXPORT_SYMBOL(set_extent_bits);
787
788int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
789 int bits, gfp_t mask)
790{
791 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
792}
793EXPORT_SYMBOL(clear_extent_bits);
794
795int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
796 gfp_t mask)
797{
798 return set_extent_bit(tree, start, end,
799 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
800 mask);
801}
802EXPORT_SYMBOL(set_extent_delalloc);
803
804int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
805 gfp_t mask)
806{
807 return clear_extent_bit(tree, start, end,
808 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
809}
810EXPORT_SYMBOL(clear_extent_dirty);
811
812int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
813 gfp_t mask)
814{
815 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
816 mask);
817}
818EXPORT_SYMBOL(set_extent_new);
819
820int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
821 gfp_t mask)
822{
823 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
824}
825EXPORT_SYMBOL(clear_extent_new);
826
827int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
828 gfp_t mask)
829{
830 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
831 mask);
832}
833EXPORT_SYMBOL(set_extent_uptodate);
834
835int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
836 gfp_t mask)
837{
838 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
839}
840EXPORT_SYMBOL(clear_extent_uptodate);
841
842int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
843 gfp_t mask)
844{
845 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
846 0, NULL, mask);
847}
848EXPORT_SYMBOL(set_extent_writeback);
849
850int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
851 gfp_t mask)
852{
853 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
854}
855EXPORT_SYMBOL(clear_extent_writeback);
856
857int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
858{
859 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
860}
861EXPORT_SYMBOL(wait_on_extent_writeback);
862
d1310b2e
CM
863int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
864{
865 int err;
866 u64 failed_start;
867 while (1) {
868 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
869 &failed_start, mask);
870 if (err == -EEXIST && (mask & __GFP_WAIT)) {
871 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
872 start = failed_start;
873 } else {
874 break;
875 }
876 WARN_ON(start > end);
877 }
878 return err;
879}
880EXPORT_SYMBOL(lock_extent);
881
882int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
883 gfp_t mask)
884{
885 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
886}
887EXPORT_SYMBOL(unlock_extent);
888
889/*
890 * helper function to set pages and extents in the tree dirty
891 */
892int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
893{
894 unsigned long index = start >> PAGE_CACHE_SHIFT;
895 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
896 struct page *page;
897
898 while (index <= end_index) {
899 page = find_get_page(tree->mapping, index);
900 BUG_ON(!page);
901 __set_page_dirty_nobuffers(page);
902 page_cache_release(page);
903 index++;
904 }
905 set_extent_dirty(tree, start, end, GFP_NOFS);
906 return 0;
907}
908EXPORT_SYMBOL(set_range_dirty);
909
910/*
911 * helper function to set both pages and extents in the tree writeback
912 */
913int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
914{
915 unsigned long index = start >> PAGE_CACHE_SHIFT;
916 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
917 struct page *page;
918
919 while (index <= end_index) {
920 page = find_get_page(tree->mapping, index);
921 BUG_ON(!page);
922 set_page_writeback(page);
923 page_cache_release(page);
924 index++;
925 }
926 set_extent_writeback(tree, start, end, GFP_NOFS);
927 return 0;
928}
929EXPORT_SYMBOL(set_range_writeback);
930
931int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
932 u64 *start_ret, u64 *end_ret, int bits)
933{
934 struct rb_node *node;
935 struct extent_state *state;
936 int ret = 1;
937
70dec807 938 spin_lock_irq(&tree->lock);
d1310b2e
CM
939 /*
940 * this search will find all the extents that end after
941 * our range starts.
942 */
80ea96b1 943 node = tree_search(tree, start);
d1310b2e
CM
944 if (!node || IS_ERR(node)) {
945 goto out;
946 }
947
948 while(1) {
949 state = rb_entry(node, struct extent_state, rb_node);
950 if (state->end >= start && (state->state & bits)) {
951 *start_ret = state->start;
952 *end_ret = state->end;
953 ret = 0;
954 break;
955 }
956 node = rb_next(node);
957 if (!node)
958 break;
959 }
960out:
70dec807 961 spin_unlock_irq(&tree->lock);
d1310b2e
CM
962 return ret;
963}
964EXPORT_SYMBOL(find_first_extent_bit);
965
d7fc640e
CM
966struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
967 u64 start, int bits)
968{
969 struct rb_node *node;
970 struct extent_state *state;
971
972 /*
973 * this search will find all the extents that end after
974 * our range starts.
975 */
976 node = tree_search(tree, start);
977 if (!node || IS_ERR(node)) {
978 goto out;
979 }
980
981 while(1) {
982 state = rb_entry(node, struct extent_state, rb_node);
983 if (state->end >= start && (state->state & bits)) {
984 return state;
985 }
986 node = rb_next(node);
987 if (!node)
988 break;
989 }
990out:
991 return NULL;
992}
993EXPORT_SYMBOL(find_first_extent_bit_state);
994
d1310b2e
CM
995u64 find_lock_delalloc_range(struct extent_io_tree *tree,
996 u64 *start, u64 *end, u64 max_bytes)
997{
998 struct rb_node *node;
999 struct extent_state *state;
1000 u64 cur_start = *start;
1001 u64 found = 0;
1002 u64 total_bytes = 0;
1003
70dec807 1004 spin_lock_irq(&tree->lock);
d1310b2e
CM
1005 /*
1006 * this search will find all the extents that end after
1007 * our range starts.
1008 */
1009search_again:
80ea96b1 1010 node = tree_search(tree, cur_start);
d1310b2e
CM
1011 if (!node || IS_ERR(node)) {
1012 *end = (u64)-1;
1013 goto out;
1014 }
1015
1016 while(1) {
1017 state = rb_entry(node, struct extent_state, rb_node);
1018 if (found && state->start != cur_start) {
1019 goto out;
1020 }
1021 if (!(state->state & EXTENT_DELALLOC)) {
1022 if (!found)
1023 *end = state->end;
1024 goto out;
1025 }
1026 if (!found) {
1027 struct extent_state *prev_state;
1028 struct rb_node *prev_node = node;
1029 while(1) {
1030 prev_node = rb_prev(prev_node);
1031 if (!prev_node)
1032 break;
1033 prev_state = rb_entry(prev_node,
1034 struct extent_state,
1035 rb_node);
1036 if (!(prev_state->state & EXTENT_DELALLOC))
1037 break;
1038 state = prev_state;
1039 node = prev_node;
1040 }
1041 }
1042 if (state->state & EXTENT_LOCKED) {
1043 DEFINE_WAIT(wait);
1044 atomic_inc(&state->refs);
1045 prepare_to_wait(&state->wq, &wait,
1046 TASK_UNINTERRUPTIBLE);
70dec807 1047 spin_unlock_irq(&tree->lock);
d1310b2e 1048 schedule();
70dec807 1049 spin_lock_irq(&tree->lock);
d1310b2e
CM
1050 finish_wait(&state->wq, &wait);
1051 free_extent_state(state);
1052 goto search_again;
1053 }
291d673e 1054 set_state_cb(tree, state, EXTENT_LOCKED);
b0c68f8b 1055 state->state |= EXTENT_LOCKED;
d1310b2e
CM
1056 if (!found)
1057 *start = state->start;
1058 found++;
1059 *end = state->end;
1060 cur_start = state->end + 1;
1061 node = rb_next(node);
1062 if (!node)
1063 break;
1064 total_bytes += state->end - state->start + 1;
1065 if (total_bytes >= max_bytes)
1066 break;
1067 }
1068out:
70dec807 1069 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1070 return found;
1071}
1072
1073u64 count_range_bits(struct extent_io_tree *tree,
1074 u64 *start, u64 search_end, u64 max_bytes,
1075 unsigned long bits)
1076{
1077 struct rb_node *node;
1078 struct extent_state *state;
1079 u64 cur_start = *start;
1080 u64 total_bytes = 0;
1081 int found = 0;
1082
1083 if (search_end <= cur_start) {
1084 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1085 WARN_ON(1);
1086 return 0;
1087 }
1088
70dec807 1089 spin_lock_irq(&tree->lock);
d1310b2e
CM
1090 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1091 total_bytes = tree->dirty_bytes;
1092 goto out;
1093 }
1094 /*
1095 * this search will find all the extents that end after
1096 * our range starts.
1097 */
80ea96b1 1098 node = tree_search(tree, cur_start);
d1310b2e
CM
1099 if (!node || IS_ERR(node)) {
1100 goto out;
1101 }
1102
1103 while(1) {
1104 state = rb_entry(node, struct extent_state, rb_node);
1105 if (state->start > search_end)
1106 break;
1107 if (state->end >= cur_start && (state->state & bits)) {
1108 total_bytes += min(search_end, state->end) + 1 -
1109 max(cur_start, state->start);
1110 if (total_bytes >= max_bytes)
1111 break;
1112 if (!found) {
1113 *start = state->start;
1114 found = 1;
1115 }
1116 }
1117 node = rb_next(node);
1118 if (!node)
1119 break;
1120 }
1121out:
70dec807 1122 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1123 return total_bytes;
1124}
1125/*
1126 * helper function to lock both pages and extents in the tree.
1127 * pages must be locked first.
1128 */
1129int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1130{
1131 unsigned long index = start >> PAGE_CACHE_SHIFT;
1132 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1133 struct page *page;
1134 int err;
1135
1136 while (index <= end_index) {
1137 page = grab_cache_page(tree->mapping, index);
1138 if (!page) {
1139 err = -ENOMEM;
1140 goto failed;
1141 }
1142 if (IS_ERR(page)) {
1143 err = PTR_ERR(page);
1144 goto failed;
1145 }
1146 index++;
1147 }
1148 lock_extent(tree, start, end, GFP_NOFS);
1149 return 0;
1150
1151failed:
1152 /*
1153 * we failed above in getting the page at 'index', so we undo here
1154 * up to but not including the page at 'index'
1155 */
1156 end_index = index;
1157 index = start >> PAGE_CACHE_SHIFT;
1158 while (index < end_index) {
1159 page = find_get_page(tree->mapping, index);
1160 unlock_page(page);
1161 page_cache_release(page);
1162 index++;
1163 }
1164 return err;
1165}
1166EXPORT_SYMBOL(lock_range);
1167
1168/*
1169 * helper function to unlock both pages and extents in the tree.
1170 */
1171int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1172{
1173 unsigned long index = start >> PAGE_CACHE_SHIFT;
1174 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1175 struct page *page;
1176
1177 while (index <= end_index) {
1178 page = find_get_page(tree->mapping, index);
1179 unlock_page(page);
1180 page_cache_release(page);
1181 index++;
1182 }
1183 unlock_extent(tree, start, end, GFP_NOFS);
1184 return 0;
1185}
1186EXPORT_SYMBOL(unlock_range);
1187
1188int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1189{
1190 struct rb_node *node;
1191 struct extent_state *state;
1192 int ret = 0;
1193
70dec807 1194 spin_lock_irq(&tree->lock);
d1310b2e
CM
1195 /*
1196 * this search will find all the extents that end after
1197 * our range starts.
1198 */
80ea96b1 1199 node = tree_search(tree, start);
d1310b2e
CM
1200 if (!node || IS_ERR(node)) {
1201 ret = -ENOENT;
1202 goto out;
1203 }
1204 state = rb_entry(node, struct extent_state, rb_node);
1205 if (state->start != start) {
1206 ret = -ENOENT;
1207 goto out;
1208 }
1209 state->private = private;
1210out:
70dec807 1211 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1212 return ret;
1213}
1214
1215int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1216{
1217 struct rb_node *node;
1218 struct extent_state *state;
1219 int ret = 0;
1220
70dec807 1221 spin_lock_irq(&tree->lock);
d1310b2e
CM
1222 /*
1223 * this search will find all the extents that end after
1224 * our range starts.
1225 */
80ea96b1 1226 node = tree_search(tree, start);
d1310b2e
CM
1227 if (!node || IS_ERR(node)) {
1228 ret = -ENOENT;
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232 if (state->start != start) {
1233 ret = -ENOENT;
1234 goto out;
1235 }
1236 *private = state->private;
1237out:
70dec807 1238 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1239 return ret;
1240}
1241
1242/*
1243 * searches a range in the state tree for a given mask.
70dec807 1244 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1245 * has the bits set. Otherwise, 1 is returned if any bit in the
1246 * range is found set.
1247 */
1248int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1249 int bits, int filled)
1250{
1251 struct extent_state *state = NULL;
1252 struct rb_node *node;
1253 int bitset = 0;
1254 unsigned long flags;
1255
70dec807 1256 spin_lock_irqsave(&tree->lock, flags);
80ea96b1 1257 node = tree_search(tree, start);
d1310b2e
CM
1258 while (node && start <= end) {
1259 state = rb_entry(node, struct extent_state, rb_node);
1260
1261 if (filled && state->start > start) {
1262 bitset = 0;
1263 break;
1264 }
1265
1266 if (state->start > end)
1267 break;
1268
1269 if (state->state & bits) {
1270 bitset = 1;
1271 if (!filled)
1272 break;
1273 } else if (filled) {
1274 bitset = 0;
1275 break;
1276 }
1277 start = state->end + 1;
1278 if (start > end)
1279 break;
1280 node = rb_next(node);
1281 if (!node) {
1282 if (filled)
1283 bitset = 0;
1284 break;
1285 }
1286 }
70dec807 1287 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
1288 return bitset;
1289}
1290EXPORT_SYMBOL(test_range_bit);
1291
1292/*
1293 * helper function to set a given page up to date if all the
1294 * extents in the tree for that page are up to date
1295 */
1296static int check_page_uptodate(struct extent_io_tree *tree,
1297 struct page *page)
1298{
1299 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1300 u64 end = start + PAGE_CACHE_SIZE - 1;
1301 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1302 SetPageUptodate(page);
1303 return 0;
1304}
1305
1306/*
1307 * helper function to unlock a page if all the extents in the tree
1308 * for that page are unlocked
1309 */
1310static int check_page_locked(struct extent_io_tree *tree,
1311 struct page *page)
1312{
1313 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1314 u64 end = start + PAGE_CACHE_SIZE - 1;
1315 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1316 unlock_page(page);
1317 return 0;
1318}
1319
1320/*
1321 * helper function to end page writeback if all the extents
1322 * in the tree for that page are done with writeback
1323 */
1324static int check_page_writeback(struct extent_io_tree *tree,
1325 struct page *page)
1326{
1327 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1328 u64 end = start + PAGE_CACHE_SIZE - 1;
1329 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1330 end_page_writeback(page);
1331 return 0;
1332}
1333
1334/* lots and lots of room for performance fixes in the end_bio funcs */
1335
1336/*
1337 * after a writepage IO is done, we need to:
1338 * clear the uptodate bits on error
1339 * clear the writeback bits in the extent tree for this IO
1340 * end_page_writeback if the page has no more pending IO
1341 *
1342 * Scheduling is not allowed, so the extent state tree is expected
1343 * to have one and only one object corresponding to this IO.
1344 */
1345#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1346static void end_bio_extent_writepage(struct bio *bio, int err)
1347#else
1348static int end_bio_extent_writepage(struct bio *bio,
1349 unsigned int bytes_done, int err)
1350#endif
1351{
1352 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1353 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1354 struct extent_state *state = bio->bi_private;
1355 struct extent_io_tree *tree = state->tree;
1356 struct rb_node *node;
d1310b2e
CM
1357 u64 start;
1358 u64 end;
70dec807 1359 u64 cur;
d1310b2e 1360 int whole_page;
70dec807 1361 unsigned long flags;
d1310b2e
CM
1362
1363#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1364 if (bio->bi_size)
1365 return 1;
1366#endif
d1310b2e
CM
1367 do {
1368 struct page *page = bvec->bv_page;
1369 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1370 bvec->bv_offset;
1371 end = start + bvec->bv_len - 1;
1372
1373 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1374 whole_page = 1;
1375 else
1376 whole_page = 0;
1377
1378 if (--bvec >= bio->bi_io_vec)
1379 prefetchw(&bvec->bv_page->flags);
1380
1381 if (!uptodate) {
1382 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1383 ClearPageUptodate(page);
1384 SetPageError(page);
1385 }
70dec807
CM
1386
1387 if (tree->ops && tree->ops->writepage_end_io_hook) {
1388 tree->ops->writepage_end_io_hook(page, start, end,
1389 state);
1390 }
1391
1392 /*
1393 * bios can get merged in funny ways, and so we need to
1394 * be careful with the state variable. We know the
1395 * state won't be merged with others because it has
1396 * WRITEBACK set, but we can't be sure each biovec is
1397 * sequential in the file. So, if our cached state
1398 * doesn't match the expected end, search the tree
1399 * for the correct one.
1400 */
1401
1402 spin_lock_irqsave(&tree->lock, flags);
1403 if (!state || state->end != end) {
1404 state = NULL;
80ea96b1 1405 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1406 if (node) {
1407 state = rb_entry(node, struct extent_state,
1408 rb_node);
1409 if (state->end != end ||
1410 !(state->state & EXTENT_WRITEBACK))
1411 state = NULL;
1412 }
1413 if (!state) {
1414 spin_unlock_irqrestore(&tree->lock, flags);
1415 clear_extent_writeback(tree, start,
1416 end, GFP_ATOMIC);
1417 goto next_io;
1418 }
1419 }
1420 cur = end;
1421 while(1) {
1422 struct extent_state *clear = state;
1423 cur = state->start;
1424 node = rb_prev(&state->rb_node);
1425 if (node) {
1426 state = rb_entry(node,
1427 struct extent_state,
1428 rb_node);
1429 } else {
1430 state = NULL;
1431 }
1432
1433 clear_state_bit(tree, clear, EXTENT_WRITEBACK,
1434 1, 0);
1435 if (cur == start)
1436 break;
1437 if (cur < start) {
1438 WARN_ON(1);
1439 break;
1440 }
1441 if (!node)
1442 break;
1443 }
1444 /* before releasing the lock, make sure the next state
1445 * variable has the expected bits set and corresponds
1446 * to the correct offsets in the file
1447 */
1448 if (state && (state->end + 1 != start ||
c2e639f0 1449 !(state->state & EXTENT_WRITEBACK))) {
70dec807
CM
1450 state = NULL;
1451 }
1452 spin_unlock_irqrestore(&tree->lock, flags);
1453next_io:
d1310b2e
CM
1454
1455 if (whole_page)
1456 end_page_writeback(page);
1457 else
1458 check_page_writeback(tree, page);
d1310b2e 1459 } while (bvec >= bio->bi_io_vec);
d1310b2e
CM
1460 bio_put(bio);
1461#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1462 return 0;
1463#endif
1464}
1465
1466/*
1467 * after a readpage IO is done, we need to:
1468 * clear the uptodate bits on error
1469 * set the uptodate bits if things worked
1470 * set the page up to date if all extents in the tree are uptodate
1471 * clear the lock bit in the extent tree
1472 * unlock the page if there are no other extents locked for it
1473 *
1474 * Scheduling is not allowed, so the extent state tree is expected
1475 * to have one and only one object corresponding to this IO.
1476 */
1477#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1478static void end_bio_extent_readpage(struct bio *bio, int err)
1479#else
1480static int end_bio_extent_readpage(struct bio *bio,
1481 unsigned int bytes_done, int err)
1482#endif
1483{
1484 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1485 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1486 struct extent_state *state = bio->bi_private;
1487 struct extent_io_tree *tree = state->tree;
1488 struct rb_node *node;
d1310b2e
CM
1489 u64 start;
1490 u64 end;
70dec807
CM
1491 u64 cur;
1492 unsigned long flags;
d1310b2e
CM
1493 int whole_page;
1494 int ret;
1495
1496#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1497 if (bio->bi_size)
1498 return 1;
1499#endif
1500
1501 do {
1502 struct page *page = bvec->bv_page;
1503 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1504 bvec->bv_offset;
1505 end = start + bvec->bv_len - 1;
1506
1507 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1508 whole_page = 1;
1509 else
1510 whole_page = 0;
1511
1512 if (--bvec >= bio->bi_io_vec)
1513 prefetchw(&bvec->bv_page->flags);
1514
1515 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807
CM
1516 ret = tree->ops->readpage_end_io_hook(page, start, end,
1517 state);
d1310b2e
CM
1518 if (ret)
1519 uptodate = 0;
1520 }
d1310b2e 1521
70dec807
CM
1522 spin_lock_irqsave(&tree->lock, flags);
1523 if (!state || state->end != end) {
1524 state = NULL;
80ea96b1 1525 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1526 if (node) {
1527 state = rb_entry(node, struct extent_state,
1528 rb_node);
1529 if (state->end != end ||
1530 !(state->state & EXTENT_LOCKED))
1531 state = NULL;
1532 }
1533 if (!state) {
1534 spin_unlock_irqrestore(&tree->lock, flags);
1535 set_extent_uptodate(tree, start, end,
1536 GFP_ATOMIC);
1537 unlock_extent(tree, start, end, GFP_ATOMIC);
1538 goto next_io;
1539 }
1540 }
d1310b2e 1541
70dec807
CM
1542 cur = end;
1543 while(1) {
1544 struct extent_state *clear = state;
1545 cur = state->start;
1546 node = rb_prev(&state->rb_node);
1547 if (node) {
1548 state = rb_entry(node,
1549 struct extent_state,
1550 rb_node);
1551 } else {
1552 state = NULL;
1553 }
291d673e 1554 set_state_cb(tree, clear, EXTENT_UPTODATE);
b0c68f8b 1555 clear->state |= EXTENT_UPTODATE;
70dec807
CM
1556 clear_state_bit(tree, clear, EXTENT_LOCKED,
1557 1, 0);
1558 if (cur == start)
1559 break;
1560 if (cur < start) {
1561 WARN_ON(1);
1562 break;
1563 }
1564 if (!node)
1565 break;
1566 }
1567 /* before releasing the lock, make sure the next state
1568 * variable has the expected bits set and corresponds
1569 * to the correct offsets in the file
1570 */
1571 if (state && (state->end + 1 != start ||
c2e639f0 1572 !(state->state & EXTENT_LOCKED))) {
70dec807
CM
1573 state = NULL;
1574 }
1575 spin_unlock_irqrestore(&tree->lock, flags);
1576next_io:
1577 if (whole_page) {
1578 if (uptodate) {
1579 SetPageUptodate(page);
1580 } else {
1581 ClearPageUptodate(page);
1582 SetPageError(page);
1583 }
d1310b2e 1584 unlock_page(page);
70dec807
CM
1585 } else {
1586 if (uptodate) {
1587 check_page_uptodate(tree, page);
1588 } else {
1589 ClearPageUptodate(page);
1590 SetPageError(page);
1591 }
d1310b2e 1592 check_page_locked(tree, page);
70dec807 1593 }
d1310b2e
CM
1594 } while (bvec >= bio->bi_io_vec);
1595
1596 bio_put(bio);
1597#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1598 return 0;
1599#endif
1600}
1601
1602/*
1603 * IO done from prepare_write is pretty simple, we just unlock
1604 * the structs in the extent tree when done, and set the uptodate bits
1605 * as appropriate.
1606 */
1607#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1608static void end_bio_extent_preparewrite(struct bio *bio, int err)
1609#else
1610static int end_bio_extent_preparewrite(struct bio *bio,
1611 unsigned int bytes_done, int err)
1612#endif
1613{
1614 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1615 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1616 struct extent_state *state = bio->bi_private;
1617 struct extent_io_tree *tree = state->tree;
d1310b2e
CM
1618 u64 start;
1619 u64 end;
1620
1621#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1622 if (bio->bi_size)
1623 return 1;
1624#endif
1625
1626 do {
1627 struct page *page = bvec->bv_page;
1628 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1629 bvec->bv_offset;
1630 end = start + bvec->bv_len - 1;
1631
1632 if (--bvec >= bio->bi_io_vec)
1633 prefetchw(&bvec->bv_page->flags);
1634
1635 if (uptodate) {
1636 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1637 } else {
1638 ClearPageUptodate(page);
1639 SetPageError(page);
1640 }
1641
1642 unlock_extent(tree, start, end, GFP_ATOMIC);
1643
1644 } while (bvec >= bio->bi_io_vec);
1645
1646 bio_put(bio);
1647#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1648 return 0;
1649#endif
1650}
1651
1652static struct bio *
1653extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1654 gfp_t gfp_flags)
1655{
1656 struct bio *bio;
1657
1658 bio = bio_alloc(gfp_flags, nr_vecs);
1659
1660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1661 while (!bio && (nr_vecs /= 2))
1662 bio = bio_alloc(gfp_flags, nr_vecs);
1663 }
1664
1665 if (bio) {
1666 bio->bi_bdev = bdev;
1667 bio->bi_sector = first_sector;
1668 }
1669 return bio;
1670}
1671
1672static int submit_one_bio(int rw, struct bio *bio)
1673{
1674 u64 maxsector;
1675 int ret = 0;
70dec807
CM
1676 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1677 struct page *page = bvec->bv_page;
1678 struct extent_io_tree *tree = bio->bi_private;
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 u64 start;
1682 u64 end;
1683
1684 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1685 end = start + bvec->bv_len - 1;
1686
1687 spin_lock_irq(&tree->lock);
80ea96b1 1688 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1689 BUG_ON(!node);
1690 state = rb_entry(node, struct extent_state, rb_node);
1691 while(state->end < end) {
1692 node = rb_next(node);
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 }
1695 BUG_ON(state->end != end);
1696 spin_unlock_irq(&tree->lock);
1697
1698 bio->bi_private = state;
d1310b2e
CM
1699
1700 bio_get(bio);
1701
1702 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1703 if (maxsector < bio->bi_sector) {
1704 printk("sector too large max %Lu got %llu\n", maxsector,
1705 (unsigned long long)bio->bi_sector);
1706 WARN_ON(1);
1707 }
065631f6 1708 if (tree->ops && tree->ops->submit_bio_hook)
0b86a832
CM
1709 tree->ops->submit_bio_hook(page->mapping->host, rw, bio);
1710 else
1711 submit_bio(rw, bio);
d1310b2e
CM
1712 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1713 ret = -EOPNOTSUPP;
1714 bio_put(bio);
1715 return ret;
1716}
1717
1718static int submit_extent_page(int rw, struct extent_io_tree *tree,
1719 struct page *page, sector_t sector,
1720 size_t size, unsigned long offset,
1721 struct block_device *bdev,
1722 struct bio **bio_ret,
1723 unsigned long max_pages,
1724 bio_end_io_t end_io_func)
1725{
1726 int ret = 0;
1727 struct bio *bio;
1728 int nr;
1729
1730 if (bio_ret && *bio_ret) {
1731 bio = *bio_ret;
1732 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
239b14b3
CM
1733 (tree->ops && tree->ops->merge_bio_hook &&
1734 tree->ops->merge_bio_hook(page, offset, size, bio)) ||
d1310b2e
CM
1735 bio_add_page(bio, page, size, offset) < size) {
1736 ret = submit_one_bio(rw, bio);
1737 bio = NULL;
1738 } else {
1739 return 0;
1740 }
1741 }
961d0232 1742 nr = bio_get_nr_vecs(bdev);
d1310b2e
CM
1743 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1744 if (!bio) {
1745 printk("failed to allocate bio nr %d\n", nr);
1746 }
70dec807
CM
1747
1748
d1310b2e
CM
1749 bio_add_page(bio, page, size, offset);
1750 bio->bi_end_io = end_io_func;
1751 bio->bi_private = tree;
70dec807 1752
d1310b2e
CM
1753 if (bio_ret) {
1754 *bio_ret = bio;
1755 } else {
1756 ret = submit_one_bio(rw, bio);
1757 }
1758
1759 return ret;
1760}
1761
1762void set_page_extent_mapped(struct page *page)
1763{
1764 if (!PagePrivate(page)) {
1765 SetPagePrivate(page);
1766 WARN_ON(!page->mapping->a_ops->invalidatepage);
1767 set_page_private(page, EXTENT_PAGE_PRIVATE);
1768 page_cache_get(page);
1769 }
1770}
1771
1772void set_page_extent_head(struct page *page, unsigned long len)
1773{
1774 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1775}
1776
1777/*
1778 * basic readpage implementation. Locked extent state structs are inserted
1779 * into the tree that are removed when the IO is done (by the end_io
1780 * handlers)
1781 */
1782static int __extent_read_full_page(struct extent_io_tree *tree,
1783 struct page *page,
1784 get_extent_t *get_extent,
1785 struct bio **bio)
1786{
1787 struct inode *inode = page->mapping->host;
1788 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1789 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1790 u64 end;
1791 u64 cur = start;
1792 u64 extent_offset;
1793 u64 last_byte = i_size_read(inode);
1794 u64 block_start;
1795 u64 cur_end;
1796 sector_t sector;
1797 struct extent_map *em;
1798 struct block_device *bdev;
1799 int ret;
1800 int nr = 0;
1801 size_t page_offset = 0;
1802 size_t iosize;
1803 size_t blocksize = inode->i_sb->s_blocksize;
1804
1805 set_page_extent_mapped(page);
1806
1807 end = page_end;
1808 lock_extent(tree, start, end, GFP_NOFS);
1809
1810 while (cur <= end) {
1811 if (cur >= last_byte) {
1812 char *userpage;
1813 iosize = PAGE_CACHE_SIZE - page_offset;
1814 userpage = kmap_atomic(page, KM_USER0);
1815 memset(userpage + page_offset, 0, iosize);
1816 flush_dcache_page(page);
1817 kunmap_atomic(userpage, KM_USER0);
1818 set_extent_uptodate(tree, cur, cur + iosize - 1,
1819 GFP_NOFS);
1820 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1821 break;
1822 }
1823 em = get_extent(inode, page, page_offset, cur,
1824 end - cur + 1, 0);
1825 if (IS_ERR(em) || !em) {
1826 SetPageError(page);
1827 unlock_extent(tree, cur, end, GFP_NOFS);
1828 break;
1829 }
1830
1831 extent_offset = cur - em->start;
1832 BUG_ON(extent_map_end(em) <= cur);
1833 BUG_ON(end < cur);
1834
1835 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1836 cur_end = min(extent_map_end(em) - 1, end);
1837 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1838 sector = (em->block_start + extent_offset) >> 9;
1839 bdev = em->bdev;
1840 block_start = em->block_start;
1841 free_extent_map(em);
1842 em = NULL;
1843
1844 /* we've found a hole, just zero and go on */
1845 if (block_start == EXTENT_MAP_HOLE) {
1846 char *userpage;
1847 userpage = kmap_atomic(page, KM_USER0);
1848 memset(userpage + page_offset, 0, iosize);
1849 flush_dcache_page(page);
1850 kunmap_atomic(userpage, KM_USER0);
1851
1852 set_extent_uptodate(tree, cur, cur + iosize - 1,
1853 GFP_NOFS);
1854 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1855 cur = cur + iosize;
1856 page_offset += iosize;
1857 continue;
1858 }
1859 /* the get_extent function already copied into the page */
1860 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1861 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1862 cur = cur + iosize;
1863 page_offset += iosize;
1864 continue;
1865 }
70dec807
CM
1866 /* we have an inline extent but it didn't get marked up
1867 * to date. Error out
1868 */
1869 if (block_start == EXTENT_MAP_INLINE) {
1870 SetPageError(page);
1871 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1872 cur = cur + iosize;
1873 page_offset += iosize;
1874 continue;
1875 }
d1310b2e
CM
1876
1877 ret = 0;
1878 if (tree->ops && tree->ops->readpage_io_hook) {
1879 ret = tree->ops->readpage_io_hook(page, cur,
1880 cur + iosize - 1);
1881 }
1882 if (!ret) {
1883 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1884 nr -= page->index;
1885 ret = submit_extent_page(READ, tree, page,
1886 sector, iosize, page_offset,
1887 bdev, bio, nr,
1888 end_bio_extent_readpage);
1889 }
1890 if (ret)
1891 SetPageError(page);
1892 cur = cur + iosize;
1893 page_offset += iosize;
1894 nr++;
1895 }
1896 if (!nr) {
1897 if (!PageError(page))
1898 SetPageUptodate(page);
1899 unlock_page(page);
1900 }
1901 return 0;
1902}
1903
1904int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
1905 get_extent_t *get_extent)
1906{
1907 struct bio *bio = NULL;
1908 int ret;
1909
1910 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1911 if (bio)
1912 submit_one_bio(READ, bio);
1913 return ret;
1914}
1915EXPORT_SYMBOL(extent_read_full_page);
1916
1917/*
1918 * the writepage semantics are similar to regular writepage. extent
1919 * records are inserted to lock ranges in the tree, and as dirty areas
1920 * are found, they are marked writeback. Then the lock bits are removed
1921 * and the end_io handler clears the writeback ranges
1922 */
1923static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1924 void *data)
1925{
1926 struct inode *inode = page->mapping->host;
1927 struct extent_page_data *epd = data;
1928 struct extent_io_tree *tree = epd->tree;
1929 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1930 u64 delalloc_start;
1931 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1932 u64 end;
1933 u64 cur = start;
1934 u64 extent_offset;
1935 u64 last_byte = i_size_read(inode);
1936 u64 block_start;
1937 u64 iosize;
1938 sector_t sector;
1939 struct extent_map *em;
1940 struct block_device *bdev;
1941 int ret;
1942 int nr = 0;
1943 size_t page_offset = 0;
1944 size_t blocksize;
1945 loff_t i_size = i_size_read(inode);
1946 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1947 u64 nr_delalloc;
1948 u64 delalloc_end;
1949
1950 WARN_ON(!PageLocked(page));
1951 if (page->index > end_index) {
1952 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1953 unlock_page(page);
1954 return 0;
1955 }
1956
1957 if (page->index == end_index) {
1958 char *userpage;
1959
1960 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1961
1962 userpage = kmap_atomic(page, KM_USER0);
1963 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1964 flush_dcache_page(page);
1965 kunmap_atomic(userpage, KM_USER0);
1966 }
1967
1968 set_page_extent_mapped(page);
1969
1970 delalloc_start = start;
1971 delalloc_end = 0;
1972 while(delalloc_end < page_end) {
1973 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1974 &delalloc_end,
1975 128 * 1024 * 1024);
1976 if (nr_delalloc == 0) {
1977 delalloc_start = delalloc_end + 1;
1978 continue;
1979 }
1980 tree->ops->fill_delalloc(inode, delalloc_start,
1981 delalloc_end);
1982 clear_extent_bit(tree, delalloc_start,
1983 delalloc_end,
1984 EXTENT_LOCKED | EXTENT_DELALLOC,
1985 1, 0, GFP_NOFS);
1986 delalloc_start = delalloc_end + 1;
1987 }
1988 lock_extent(tree, start, page_end, GFP_NOFS);
1989
1990 end = page_end;
1991 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1992 printk("found delalloc bits after lock_extent\n");
1993 }
1994
1995 if (last_byte <= start) {
1996 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1997 goto done;
1998 }
1999
2000 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
2001 blocksize = inode->i_sb->s_blocksize;
2002
2003 while (cur <= end) {
2004 if (cur >= last_byte) {
2005 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2006 break;
2007 }
2008 em = epd->get_extent(inode, page, page_offset, cur,
2009 end - cur + 1, 1);
2010 if (IS_ERR(em) || !em) {
2011 SetPageError(page);
2012 break;
2013 }
2014
2015 extent_offset = cur - em->start;
2016 BUG_ON(extent_map_end(em) <= cur);
2017 BUG_ON(end < cur);
2018 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2019 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2020 sector = (em->block_start + extent_offset) >> 9;
2021 bdev = em->bdev;
2022 block_start = em->block_start;
2023 free_extent_map(em);
2024 em = NULL;
2025
2026 if (block_start == EXTENT_MAP_HOLE ||
2027 block_start == EXTENT_MAP_INLINE) {
2028 clear_extent_dirty(tree, cur,
2029 cur + iosize - 1, GFP_NOFS);
2030 cur = cur + iosize;
2031 page_offset += iosize;
2032 continue;
2033 }
2034
2035 /* leave this out until we have a page_mkwrite call */
2036 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2037 EXTENT_DIRTY, 0)) {
2038 cur = cur + iosize;
2039 page_offset += iosize;
2040 continue;
2041 }
2042 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2043 if (tree->ops && tree->ops->writepage_io_hook) {
2044 ret = tree->ops->writepage_io_hook(page, cur,
2045 cur + iosize - 1);
2046 } else {
2047 ret = 0;
2048 }
2049 if (ret)
2050 SetPageError(page);
2051 else {
2052 unsigned long max_nr = end_index + 1;
2053 set_range_writeback(tree, cur, cur + iosize - 1);
2054 if (!PageWriteback(page)) {
2055 printk("warning page %lu not writeback, "
2056 "cur %llu end %llu\n", page->index,
2057 (unsigned long long)cur,
2058 (unsigned long long)end);
2059 }
2060
2061 ret = submit_extent_page(WRITE, tree, page, sector,
2062 iosize, page_offset, bdev,
2063 &epd->bio, max_nr,
2064 end_bio_extent_writepage);
2065 if (ret)
2066 SetPageError(page);
2067 }
2068 cur = cur + iosize;
2069 page_offset += iosize;
2070 nr++;
2071 }
2072done:
2073 if (nr == 0) {
2074 /* make sure the mapping tag for page dirty gets cleared */
2075 set_page_writeback(page);
2076 end_page_writeback(page);
2077 }
2078 unlock_extent(tree, start, page_end, GFP_NOFS);
2079 unlock_page(page);
2080 return 0;
2081}
2082
2083#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2084
2085/* Taken directly from 2.6.23 for 2.6.18 back port */
2086typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
2087 void *data);
2088
2089/**
2090 * write_cache_pages - walk the list of dirty pages of the given address space
2091 * and write all of them.
2092 * @mapping: address space structure to write
2093 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2094 * @writepage: function called for each page
2095 * @data: data passed to writepage function
2096 *
2097 * If a page is already under I/O, write_cache_pages() skips it, even
2098 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2099 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2100 * and msync() need to guarantee that all the data which was dirty at the time
2101 * the call was made get new I/O started against them. If wbc->sync_mode is
2102 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2103 * existing IO to complete.
2104 */
2105static int write_cache_pages(struct address_space *mapping,
2106 struct writeback_control *wbc, writepage_t writepage,
2107 void *data)
2108{
2109 struct backing_dev_info *bdi = mapping->backing_dev_info;
2110 int ret = 0;
2111 int done = 0;
2112 struct pagevec pvec;
2113 int nr_pages;
2114 pgoff_t index;
2115 pgoff_t end; /* Inclusive */
2116 int scanned = 0;
2117 int range_whole = 0;
2118
2119 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2120 wbc->encountered_congestion = 1;
2121 return 0;
2122 }
2123
2124 pagevec_init(&pvec, 0);
2125 if (wbc->range_cyclic) {
2126 index = mapping->writeback_index; /* Start from prev offset */
2127 end = -1;
2128 } else {
2129 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2130 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2131 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2132 range_whole = 1;
2133 scanned = 1;
2134 }
2135retry:
2136 while (!done && (index <= end) &&
2137 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2138 PAGECACHE_TAG_DIRTY,
2139 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2140 unsigned i;
2141
2142 scanned = 1;
2143 for (i = 0; i < nr_pages; i++) {
2144 struct page *page = pvec.pages[i];
2145
2146 /*
2147 * At this point we hold neither mapping->tree_lock nor
2148 * lock on the page itself: the page may be truncated or
2149 * invalidated (changing page->mapping to NULL), or even
2150 * swizzled back from swapper_space to tmpfs file
2151 * mapping
2152 */
2153 lock_page(page);
2154
2155 if (unlikely(page->mapping != mapping)) {
2156 unlock_page(page);
2157 continue;
2158 }
2159
2160 if (!wbc->range_cyclic && page->index > end) {
2161 done = 1;
2162 unlock_page(page);
2163 continue;
2164 }
2165
2166 if (wbc->sync_mode != WB_SYNC_NONE)
2167 wait_on_page_writeback(page);
2168
2169 if (PageWriteback(page) ||
2170 !clear_page_dirty_for_io(page)) {
2171 unlock_page(page);
2172 continue;
2173 }
2174
2175 ret = (*writepage)(page, wbc, data);
2176
2177 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2178 unlock_page(page);
2179 ret = 0;
2180 }
2181 if (ret || (--(wbc->nr_to_write) <= 0))
2182 done = 1;
2183 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2184 wbc->encountered_congestion = 1;
2185 done = 1;
2186 }
2187 }
2188 pagevec_release(&pvec);
2189 cond_resched();
2190 }
2191 if (!scanned && !done) {
2192 /*
2193 * We hit the last page and there is more work to be done: wrap
2194 * back to the start of the file
2195 */
2196 scanned = 1;
2197 index = 0;
2198 goto retry;
2199 }
2200 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2201 mapping->writeback_index = index;
2202 return ret;
2203}
2204#endif
2205
2206int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2207 get_extent_t *get_extent,
2208 struct writeback_control *wbc)
2209{
2210 int ret;
2211 struct address_space *mapping = page->mapping;
2212 struct extent_page_data epd = {
2213 .bio = NULL,
2214 .tree = tree,
2215 .get_extent = get_extent,
2216 };
2217 struct writeback_control wbc_writepages = {
2218 .bdi = wbc->bdi,
2219 .sync_mode = WB_SYNC_NONE,
2220 .older_than_this = NULL,
2221 .nr_to_write = 64,
2222 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2223 .range_end = (loff_t)-1,
2224 };
2225
2226
2227 ret = __extent_writepage(page, wbc, &epd);
2228
2229 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2230 if (epd.bio) {
2231 submit_one_bio(WRITE, epd.bio);
2232 }
2233 return ret;
2234}
2235EXPORT_SYMBOL(extent_write_full_page);
2236
2237
2238int extent_writepages(struct extent_io_tree *tree,
2239 struct address_space *mapping,
2240 get_extent_t *get_extent,
2241 struct writeback_control *wbc)
2242{
2243 int ret = 0;
2244 struct extent_page_data epd = {
2245 .bio = NULL,
2246 .tree = tree,
2247 .get_extent = get_extent,
2248 };
2249
2250 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2251 if (epd.bio) {
2252 submit_one_bio(WRITE, epd.bio);
2253 }
2254 return ret;
2255}
2256EXPORT_SYMBOL(extent_writepages);
2257
2258int extent_readpages(struct extent_io_tree *tree,
2259 struct address_space *mapping,
2260 struct list_head *pages, unsigned nr_pages,
2261 get_extent_t get_extent)
2262{
2263 struct bio *bio = NULL;
2264 unsigned page_idx;
2265 struct pagevec pvec;
2266
2267 pagevec_init(&pvec, 0);
2268 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2269 struct page *page = list_entry(pages->prev, struct page, lru);
2270
2271 prefetchw(&page->flags);
2272 list_del(&page->lru);
2273 /*
2274 * what we want to do here is call add_to_page_cache_lru,
2275 * but that isn't exported, so we reproduce it here
2276 */
2277 if (!add_to_page_cache(page, mapping,
2278 page->index, GFP_KERNEL)) {
2279
2280 /* open coding of lru_cache_add, also not exported */
2281 page_cache_get(page);
2282 if (!pagevec_add(&pvec, page))
2283 __pagevec_lru_add(&pvec);
2284 __extent_read_full_page(tree, page, get_extent, &bio);
2285 }
2286 page_cache_release(page);
2287 }
2288 if (pagevec_count(&pvec))
2289 __pagevec_lru_add(&pvec);
2290 BUG_ON(!list_empty(pages));
2291 if (bio)
2292 submit_one_bio(READ, bio);
2293 return 0;
2294}
2295EXPORT_SYMBOL(extent_readpages);
2296
2297/*
2298 * basic invalidatepage code, this waits on any locked or writeback
2299 * ranges corresponding to the page, and then deletes any extent state
2300 * records from the tree
2301 */
2302int extent_invalidatepage(struct extent_io_tree *tree,
2303 struct page *page, unsigned long offset)
2304{
2305 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2306 u64 end = start + PAGE_CACHE_SIZE - 1;
2307 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2308
2309 start += (offset + blocksize -1) & ~(blocksize - 1);
2310 if (start > end)
2311 return 0;
2312
2313 lock_extent(tree, start, end, GFP_NOFS);
2314 wait_on_extent_writeback(tree, start, end);
2315 clear_extent_bit(tree, start, end,
2316 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2317 1, 1, GFP_NOFS);
2318 return 0;
2319}
2320EXPORT_SYMBOL(extent_invalidatepage);
2321
2322/*
2323 * simple commit_write call, set_range_dirty is used to mark both
2324 * the pages and the extent records as dirty
2325 */
2326int extent_commit_write(struct extent_io_tree *tree,
2327 struct inode *inode, struct page *page,
2328 unsigned from, unsigned to)
2329{
2330 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2331
2332 set_page_extent_mapped(page);
2333 set_page_dirty(page);
2334
2335 if (pos > inode->i_size) {
2336 i_size_write(inode, pos);
2337 mark_inode_dirty(inode);
2338 }
2339 return 0;
2340}
2341EXPORT_SYMBOL(extent_commit_write);
2342
2343int extent_prepare_write(struct extent_io_tree *tree,
2344 struct inode *inode, struct page *page,
2345 unsigned from, unsigned to, get_extent_t *get_extent)
2346{
2347 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2348 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2349 u64 block_start;
2350 u64 orig_block_start;
2351 u64 block_end;
2352 u64 cur_end;
2353 struct extent_map *em;
2354 unsigned blocksize = 1 << inode->i_blkbits;
2355 size_t page_offset = 0;
2356 size_t block_off_start;
2357 size_t block_off_end;
2358 int err = 0;
2359 int iocount = 0;
2360 int ret = 0;
2361 int isnew;
2362
2363 set_page_extent_mapped(page);
2364
2365 block_start = (page_start + from) & ~((u64)blocksize - 1);
2366 block_end = (page_start + to - 1) | (blocksize - 1);
2367 orig_block_start = block_start;
2368
2369 lock_extent(tree, page_start, page_end, GFP_NOFS);
2370 while(block_start <= block_end) {
2371 em = get_extent(inode, page, page_offset, block_start,
2372 block_end - block_start + 1, 1);
2373 if (IS_ERR(em) || !em) {
2374 goto err;
2375 }
2376 cur_end = min(block_end, extent_map_end(em) - 1);
2377 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2378 block_off_end = block_off_start + blocksize;
2379 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2380
2381 if (!PageUptodate(page) && isnew &&
2382 (block_off_end > to || block_off_start < from)) {
2383 void *kaddr;
2384
2385 kaddr = kmap_atomic(page, KM_USER0);
2386 if (block_off_end > to)
2387 memset(kaddr + to, 0, block_off_end - to);
2388 if (block_off_start < from)
2389 memset(kaddr + block_off_start, 0,
2390 from - block_off_start);
2391 flush_dcache_page(page);
2392 kunmap_atomic(kaddr, KM_USER0);
2393 }
2394 if ((em->block_start != EXTENT_MAP_HOLE &&
2395 em->block_start != EXTENT_MAP_INLINE) &&
2396 !isnew && !PageUptodate(page) &&
2397 (block_off_end > to || block_off_start < from) &&
2398 !test_range_bit(tree, block_start, cur_end,
2399 EXTENT_UPTODATE, 1)) {
2400 u64 sector;
2401 u64 extent_offset = block_start - em->start;
2402 size_t iosize;
2403 sector = (em->block_start + extent_offset) >> 9;
2404 iosize = (cur_end - block_start + blocksize) &
2405 ~((u64)blocksize - 1);
2406 /*
2407 * we've already got the extent locked, but we
2408 * need to split the state such that our end_bio
2409 * handler can clear the lock.
2410 */
2411 set_extent_bit(tree, block_start,
2412 block_start + iosize - 1,
2413 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2414 ret = submit_extent_page(READ, tree, page,
2415 sector, iosize, page_offset, em->bdev,
2416 NULL, 1,
2417 end_bio_extent_preparewrite);
2418 iocount++;
2419 block_start = block_start + iosize;
2420 } else {
2421 set_extent_uptodate(tree, block_start, cur_end,
2422 GFP_NOFS);
2423 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2424 block_start = cur_end + 1;
2425 }
2426 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2427 free_extent_map(em);
2428 }
2429 if (iocount) {
2430 wait_extent_bit(tree, orig_block_start,
2431 block_end, EXTENT_LOCKED);
2432 }
2433 check_page_uptodate(tree, page);
2434err:
2435 /* FIXME, zero out newly allocated blocks on error */
2436 return err;
2437}
2438EXPORT_SYMBOL(extent_prepare_write);
2439
2440/*
2441 * a helper for releasepage. As long as there are no locked extents
2442 * in the range corresponding to the page, both state records and extent
2443 * map records are removed
2444 */
2445int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
2446 struct extent_io_tree *tree, struct page *page,
2447 gfp_t mask)
d1310b2e
CM
2448{
2449 struct extent_map *em;
2450 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2451 u64 end = start + PAGE_CACHE_SIZE - 1;
2452 u64 orig_start = start;
2453 int ret = 1;
70dec807
CM
2454 if ((mask & __GFP_WAIT) &&
2455 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 2456 u64 len;
70dec807 2457 while (start <= end) {
39b5637f 2458 len = end - start + 1;
70dec807 2459 spin_lock(&map->lock);
39b5637f 2460 em = lookup_extent_mapping(map, start, len);
70dec807
CM
2461 if (!em || IS_ERR(em)) {
2462 spin_unlock(&map->lock);
2463 break;
2464 }
2465 if (em->start != start) {
2466 spin_unlock(&map->lock);
2467 free_extent_map(em);
2468 break;
2469 }
2470 if (!test_range_bit(tree, em->start,
2471 extent_map_end(em) - 1,
2472 EXTENT_LOCKED, 0)) {
2473 remove_extent_mapping(map, em);
2474 /* once for the rb tree */
2475 free_extent_map(em);
2476 }
2477 start = extent_map_end(em);
d1310b2e 2478 spin_unlock(&map->lock);
70dec807
CM
2479
2480 /* once for us */
d1310b2e
CM
2481 free_extent_map(em);
2482 }
d1310b2e 2483 }
70dec807 2484 if (test_range_bit(tree, orig_start, end, EXTENT_IOBITS, 0))
d1310b2e 2485 ret = 0;
70dec807
CM
2486 else {
2487 if ((mask & GFP_NOFS) == GFP_NOFS)
2488 mask = GFP_NOFS;
d1310b2e 2489 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
70dec807
CM
2490 1, 1, mask);
2491 }
d1310b2e
CM
2492 return ret;
2493}
2494EXPORT_SYMBOL(try_release_extent_mapping);
2495
2496sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2497 get_extent_t *get_extent)
2498{
2499 struct inode *inode = mapping->host;
2500 u64 start = iblock << inode->i_blkbits;
2501 sector_t sector = 0;
2502 struct extent_map *em;
2503
2504 em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0);
2505 if (!em || IS_ERR(em))
2506 return 0;
2507
2508 if (em->block_start == EXTENT_MAP_INLINE ||
2509 em->block_start == EXTENT_MAP_HOLE)
2510 goto out;
2511
2512 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
d1310b2e
CM
2513out:
2514 free_extent_map(em);
2515 return sector;
2516}
2517
2518static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb)
2519{
2520 if (list_empty(&eb->lru)) {
2521 extent_buffer_get(eb);
2522 list_add(&eb->lru, &tree->buffer_lru);
2523 tree->lru_size++;
2524 if (tree->lru_size >= BUFFER_LRU_MAX) {
2525 struct extent_buffer *rm;
2526 rm = list_entry(tree->buffer_lru.prev,
2527 struct extent_buffer, lru);
2528 tree->lru_size--;
2529 list_del_init(&rm->lru);
2530 free_extent_buffer(rm);
2531 }
2532 } else
2533 list_move(&eb->lru, &tree->buffer_lru);
2534 return 0;
2535}
2536static struct extent_buffer *find_lru(struct extent_io_tree *tree,
2537 u64 start, unsigned long len)
2538{
2539 struct list_head *lru = &tree->buffer_lru;
2540 struct list_head *cur = lru->next;
2541 struct extent_buffer *eb;
2542
2543 if (list_empty(lru))
2544 return NULL;
2545
2546 do {
2547 eb = list_entry(cur, struct extent_buffer, lru);
2548 if (eb->start == start && eb->len == len) {
2549 extent_buffer_get(eb);
2550 return eb;
2551 }
2552 cur = cur->next;
2553 } while (cur != lru);
2554 return NULL;
2555}
2556
2557static inline unsigned long num_extent_pages(u64 start, u64 len)
2558{
2559 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2560 (start >> PAGE_CACHE_SHIFT);
2561}
2562
2563static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2564 unsigned long i)
2565{
2566 struct page *p;
2567 struct address_space *mapping;
2568
2569 if (i == 0)
2570 return eb->first_page;
2571 i += eb->start >> PAGE_CACHE_SHIFT;
2572 mapping = eb->first_page->mapping;
2573 read_lock_irq(&mapping->tree_lock);
2574 p = radix_tree_lookup(&mapping->page_tree, i);
2575 read_unlock_irq(&mapping->tree_lock);
2576 return p;
2577}
2578
2579static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2580 u64 start,
2581 unsigned long len,
2582 gfp_t mask)
2583{
2584 struct extent_buffer *eb = NULL;
2585
2586 spin_lock(&tree->lru_lock);
2587 eb = find_lru(tree, start, len);
2588 spin_unlock(&tree->lru_lock);
2589 if (eb) {
2590 return eb;
2591 }
2592
2593 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2594 INIT_LIST_HEAD(&eb->lru);
2595 eb->start = start;
2596 eb->len = len;
2597 atomic_set(&eb->refs, 1);
2598
2599 return eb;
2600}
2601
2602static void __free_extent_buffer(struct extent_buffer *eb)
2603{
2604 kmem_cache_free(extent_buffer_cache, eb);
2605}
2606
2607struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2608 u64 start, unsigned long len,
2609 struct page *page0,
2610 gfp_t mask)
2611{
2612 unsigned long num_pages = num_extent_pages(start, len);
2613 unsigned long i;
2614 unsigned long index = start >> PAGE_CACHE_SHIFT;
2615 struct extent_buffer *eb;
2616 struct page *p;
2617 struct address_space *mapping = tree->mapping;
2618 int uptodate = 1;
2619
2620 eb = __alloc_extent_buffer(tree, start, len, mask);
2621 if (!eb || IS_ERR(eb))
2622 return NULL;
2623
2624 if (eb->flags & EXTENT_BUFFER_FILLED)
2625 goto lru_add;
2626
2627 if (page0) {
2628 eb->first_page = page0;
2629 i = 1;
2630 index++;
2631 page_cache_get(page0);
2632 mark_page_accessed(page0);
2633 set_page_extent_mapped(page0);
2634 WARN_ON(!PageUptodate(page0));
2635 set_page_extent_head(page0, len);
2636 } else {
2637 i = 0;
2638 }
2639 for (; i < num_pages; i++, index++) {
2640 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2641 if (!p) {
2642 WARN_ON(1);
2643 goto fail;
2644 }
2645 set_page_extent_mapped(p);
2646 mark_page_accessed(p);
2647 if (i == 0) {
2648 eb->first_page = p;
2649 set_page_extent_head(p, len);
2650 } else {
2651 set_page_private(p, EXTENT_PAGE_PRIVATE);
2652 }
2653 if (!PageUptodate(p))
2654 uptodate = 0;
2655 unlock_page(p);
2656 }
2657 if (uptodate)
2658 eb->flags |= EXTENT_UPTODATE;
2659 eb->flags |= EXTENT_BUFFER_FILLED;
2660
2661lru_add:
2662 spin_lock(&tree->lru_lock);
2663 add_lru(tree, eb);
2664 spin_unlock(&tree->lru_lock);
2665 return eb;
2666
2667fail:
2668 spin_lock(&tree->lru_lock);
2669 list_del_init(&eb->lru);
2670 spin_unlock(&tree->lru_lock);
2671 if (!atomic_dec_and_test(&eb->refs))
2672 return NULL;
2673 for (index = 1; index < i; index++) {
2674 page_cache_release(extent_buffer_page(eb, index));
2675 }
2676 if (i > 0)
2677 page_cache_release(extent_buffer_page(eb, 0));
2678 __free_extent_buffer(eb);
2679 return NULL;
2680}
2681EXPORT_SYMBOL(alloc_extent_buffer);
2682
2683struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
2684 u64 start, unsigned long len,
2685 gfp_t mask)
2686{
2687 unsigned long num_pages = num_extent_pages(start, len);
2688 unsigned long i;
2689 unsigned long index = start >> PAGE_CACHE_SHIFT;
2690 struct extent_buffer *eb;
2691 struct page *p;
2692 struct address_space *mapping = tree->mapping;
2693 int uptodate = 1;
2694
2695 eb = __alloc_extent_buffer(tree, start, len, mask);
2696 if (!eb || IS_ERR(eb))
2697 return NULL;
2698
2699 if (eb->flags & EXTENT_BUFFER_FILLED)
2700 goto lru_add;
2701
2702 for (i = 0; i < num_pages; i++, index++) {
2703 p = find_lock_page(mapping, index);
2704 if (!p) {
2705 goto fail;
2706 }
2707 set_page_extent_mapped(p);
2708 mark_page_accessed(p);
2709
2710 if (i == 0) {
2711 eb->first_page = p;
2712 set_page_extent_head(p, len);
2713 } else {
2714 set_page_private(p, EXTENT_PAGE_PRIVATE);
2715 }
2716
2717 if (!PageUptodate(p))
2718 uptodate = 0;
2719 unlock_page(p);
2720 }
2721 if (uptodate)
2722 eb->flags |= EXTENT_UPTODATE;
2723 eb->flags |= EXTENT_BUFFER_FILLED;
2724
2725lru_add:
2726 spin_lock(&tree->lru_lock);
2727 add_lru(tree, eb);
2728 spin_unlock(&tree->lru_lock);
2729 return eb;
2730fail:
2731 spin_lock(&tree->lru_lock);
2732 list_del_init(&eb->lru);
2733 spin_unlock(&tree->lru_lock);
2734 if (!atomic_dec_and_test(&eb->refs))
2735 return NULL;
2736 for (index = 1; index < i; index++) {
2737 page_cache_release(extent_buffer_page(eb, index));
2738 }
2739 if (i > 0)
2740 page_cache_release(extent_buffer_page(eb, 0));
2741 __free_extent_buffer(eb);
2742 return NULL;
2743}
2744EXPORT_SYMBOL(find_extent_buffer);
2745
2746void free_extent_buffer(struct extent_buffer *eb)
2747{
2748 unsigned long i;
2749 unsigned long num_pages;
2750
2751 if (!eb)
2752 return;
2753
2754 if (!atomic_dec_and_test(&eb->refs))
2755 return;
2756
2757 WARN_ON(!list_empty(&eb->lru));
2758 num_pages = num_extent_pages(eb->start, eb->len);
2759
2760 for (i = 1; i < num_pages; i++) {
2761 page_cache_release(extent_buffer_page(eb, i));
2762 }
2763 page_cache_release(extent_buffer_page(eb, 0));
2764 __free_extent_buffer(eb);
2765}
2766EXPORT_SYMBOL(free_extent_buffer);
2767
2768int clear_extent_buffer_dirty(struct extent_io_tree *tree,
2769 struct extent_buffer *eb)
2770{
2771 int set;
2772 unsigned long i;
2773 unsigned long num_pages;
2774 struct page *page;
2775
2776 u64 start = eb->start;
2777 u64 end = start + eb->len - 1;
2778
2779 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2780 num_pages = num_extent_pages(eb->start, eb->len);
2781
2782 for (i = 0; i < num_pages; i++) {
2783 page = extent_buffer_page(eb, i);
2784 lock_page(page);
2785 if (i == 0)
2786 set_page_extent_head(page, eb->len);
2787 else
2788 set_page_private(page, EXTENT_PAGE_PRIVATE);
2789
2790 /*
2791 * if we're on the last page or the first page and the
2792 * block isn't aligned on a page boundary, do extra checks
2793 * to make sure we don't clean page that is partially dirty
2794 */
2795 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2796 ((i == num_pages - 1) &&
2797 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2798 start = (u64)page->index << PAGE_CACHE_SHIFT;
2799 end = start + PAGE_CACHE_SIZE - 1;
2800 if (test_range_bit(tree, start, end,
2801 EXTENT_DIRTY, 0)) {
2802 unlock_page(page);
2803 continue;
2804 }
2805 }
2806 clear_page_dirty_for_io(page);
70dec807 2807 read_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2808 if (!PageDirty(page)) {
2809 radix_tree_tag_clear(&page->mapping->page_tree,
2810 page_index(page),
2811 PAGECACHE_TAG_DIRTY);
2812 }
70dec807 2813 read_unlock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2814 unlock_page(page);
2815 }
2816 return 0;
2817}
2818EXPORT_SYMBOL(clear_extent_buffer_dirty);
2819
2820int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
2821 struct extent_buffer *eb)
2822{
2823 return wait_on_extent_writeback(tree, eb->start,
2824 eb->start + eb->len - 1);
2825}
2826EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2827
2828int set_extent_buffer_dirty(struct extent_io_tree *tree,
2829 struct extent_buffer *eb)
2830{
2831 unsigned long i;
2832 unsigned long num_pages;
2833
2834 num_pages = num_extent_pages(eb->start, eb->len);
2835 for (i = 0; i < num_pages; i++) {
2836 struct page *page = extent_buffer_page(eb, i);
2837 /* writepage may need to do something special for the
2838 * first page, we have to make sure page->private is
2839 * properly set. releasepage may drop page->private
2840 * on us if the page isn't already dirty.
2841 */
2842 if (i == 0) {
2843 lock_page(page);
2844 set_page_extent_head(page, eb->len);
2845 } else if (PagePrivate(page) &&
2846 page->private != EXTENT_PAGE_PRIVATE) {
2847 lock_page(page);
2848 set_page_extent_mapped(page);
2849 unlock_page(page);
2850 }
2851 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2852 if (i == 0)
2853 unlock_page(page);
2854 }
2855 return set_extent_dirty(tree, eb->start,
2856 eb->start + eb->len - 1, GFP_NOFS);
2857}
2858EXPORT_SYMBOL(set_extent_buffer_dirty);
2859
2860int set_extent_buffer_uptodate(struct extent_io_tree *tree,
2861 struct extent_buffer *eb)
2862{
2863 unsigned long i;
2864 struct page *page;
2865 unsigned long num_pages;
2866
2867 num_pages = num_extent_pages(eb->start, eb->len);
2868
2869 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2870 GFP_NOFS);
2871 for (i = 0; i < num_pages; i++) {
2872 page = extent_buffer_page(eb, i);
2873 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2874 ((i == num_pages - 1) &&
2875 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2876 check_page_uptodate(tree, page);
2877 continue;
2878 }
2879 SetPageUptodate(page);
2880 }
2881 return 0;
2882}
2883EXPORT_SYMBOL(set_extent_buffer_uptodate);
2884
2885int extent_buffer_uptodate(struct extent_io_tree *tree,
2886 struct extent_buffer *eb)
2887{
2888 if (eb->flags & EXTENT_UPTODATE)
2889 return 1;
2890 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2891 EXTENT_UPTODATE, 1);
2892}
2893EXPORT_SYMBOL(extent_buffer_uptodate);
2894
2895int read_extent_buffer_pages(struct extent_io_tree *tree,
2896 struct extent_buffer *eb,
a86c12c7
CM
2897 u64 start, int wait,
2898 get_extent_t *get_extent)
d1310b2e
CM
2899{
2900 unsigned long i;
2901 unsigned long start_i;
2902 struct page *page;
2903 int err;
2904 int ret = 0;
2905 unsigned long num_pages;
a86c12c7
CM
2906 struct bio *bio = NULL;
2907
d1310b2e
CM
2908
2909 if (eb->flags & EXTENT_UPTODATE)
2910 return 0;
2911
2912 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2913 EXTENT_UPTODATE, 1)) {
2914 return 0;
2915 }
2916
2917 if (start) {
2918 WARN_ON(start < eb->start);
2919 start_i = (start >> PAGE_CACHE_SHIFT) -
2920 (eb->start >> PAGE_CACHE_SHIFT);
2921 } else {
2922 start_i = 0;
2923 }
2924
2925 num_pages = num_extent_pages(eb->start, eb->len);
2926 for (i = start_i; i < num_pages; i++) {
2927 page = extent_buffer_page(eb, i);
2928 if (PageUptodate(page)) {
2929 continue;
2930 }
2931 if (!wait) {
2932 if (TestSetPageLocked(page)) {
2933 continue;
2934 }
2935 } else {
2936 lock_page(page);
2937 }
2938 if (!PageUptodate(page)) {
a86c12c7
CM
2939 err = __extent_read_full_page(tree, page,
2940 get_extent, &bio);
d1310b2e
CM
2941 if (err) {
2942 ret = err;
2943 }
2944 } else {
2945 unlock_page(page);
2946 }
2947 }
2948
a86c12c7
CM
2949 if (bio)
2950 submit_one_bio(READ, bio);
2951
d1310b2e
CM
2952 if (ret || !wait) {
2953 return ret;
2954 }
d1310b2e
CM
2955 for (i = start_i; i < num_pages; i++) {
2956 page = extent_buffer_page(eb, i);
2957 wait_on_page_locked(page);
2958 if (!PageUptodate(page)) {
2959 ret = -EIO;
2960 }
2961 }
2962 if (!ret)
2963 eb->flags |= EXTENT_UPTODATE;
2964 return ret;
2965}
2966EXPORT_SYMBOL(read_extent_buffer_pages);
2967
2968void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2969 unsigned long start,
2970 unsigned long len)
2971{
2972 size_t cur;
2973 size_t offset;
2974 struct page *page;
2975 char *kaddr;
2976 char *dst = (char *)dstv;
2977 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2978 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2979 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2980
2981 WARN_ON(start > eb->len);
2982 WARN_ON(start + len > eb->start + eb->len);
2983
2984 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2985
2986 while(len > 0) {
2987 page = extent_buffer_page(eb, i);
2988 if (!PageUptodate(page)) {
2989 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2990 WARN_ON(1);
2991 }
2992 WARN_ON(!PageUptodate(page));
2993
2994 cur = min(len, (PAGE_CACHE_SIZE - offset));
2995 kaddr = kmap_atomic(page, KM_USER1);
2996 memcpy(dst, kaddr + offset, cur);
2997 kunmap_atomic(kaddr, KM_USER1);
2998
2999 dst += cur;
3000 len -= cur;
3001 offset = 0;
3002 i++;
3003 }
3004}
3005EXPORT_SYMBOL(read_extent_buffer);
3006
3007int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3008 unsigned long min_len, char **token, char **map,
3009 unsigned long *map_start,
3010 unsigned long *map_len, int km)
3011{
3012 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3013 char *kaddr;
3014 struct page *p;
3015 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3016 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3017 unsigned long end_i = (start_offset + start + min_len - 1) >>
3018 PAGE_CACHE_SHIFT;
3019
3020 if (i != end_i)
3021 return -EINVAL;
3022
3023 if (i == 0) {
3024 offset = start_offset;
3025 *map_start = 0;
3026 } else {
3027 offset = 0;
3028 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3029 }
3030 if (start + min_len > eb->len) {
3031printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3032 WARN_ON(1);
3033 }
3034
3035 p = extent_buffer_page(eb, i);
3036 WARN_ON(!PageUptodate(p));
3037 kaddr = kmap_atomic(p, km);
3038 *token = kaddr;
3039 *map = kaddr + offset;
3040 *map_len = PAGE_CACHE_SIZE - offset;
3041 return 0;
3042}
3043EXPORT_SYMBOL(map_private_extent_buffer);
3044
3045int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3046 unsigned long min_len,
3047 char **token, char **map,
3048 unsigned long *map_start,
3049 unsigned long *map_len, int km)
3050{
3051 int err;
3052 int save = 0;
3053 if (eb->map_token) {
3054 unmap_extent_buffer(eb, eb->map_token, km);
3055 eb->map_token = NULL;
3056 save = 1;
3057 }
3058 err = map_private_extent_buffer(eb, start, min_len, token, map,
3059 map_start, map_len, km);
3060 if (!err && save) {
3061 eb->map_token = *token;
3062 eb->kaddr = *map;
3063 eb->map_start = *map_start;
3064 eb->map_len = *map_len;
3065 }
3066 return err;
3067}
3068EXPORT_SYMBOL(map_extent_buffer);
3069
3070void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3071{
3072 kunmap_atomic(token, km);
3073}
3074EXPORT_SYMBOL(unmap_extent_buffer);
3075
3076int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3077 unsigned long start,
3078 unsigned long len)
3079{
3080 size_t cur;
3081 size_t offset;
3082 struct page *page;
3083 char *kaddr;
3084 char *ptr = (char *)ptrv;
3085 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3086 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3087 int ret = 0;
3088
3089 WARN_ON(start > eb->len);
3090 WARN_ON(start + len > eb->start + eb->len);
3091
3092 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3093
3094 while(len > 0) {
3095 page = extent_buffer_page(eb, i);
3096 WARN_ON(!PageUptodate(page));
3097
3098 cur = min(len, (PAGE_CACHE_SIZE - offset));
3099
3100 kaddr = kmap_atomic(page, KM_USER0);
3101 ret = memcmp(ptr, kaddr + offset, cur);
3102 kunmap_atomic(kaddr, KM_USER0);
3103 if (ret)
3104 break;
3105
3106 ptr += cur;
3107 len -= cur;
3108 offset = 0;
3109 i++;
3110 }
3111 return ret;
3112}
3113EXPORT_SYMBOL(memcmp_extent_buffer);
3114
3115void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3116 unsigned long start, unsigned long len)
3117{
3118 size_t cur;
3119 size_t offset;
3120 struct page *page;
3121 char *kaddr;
3122 char *src = (char *)srcv;
3123 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3124 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3125
3126 WARN_ON(start > eb->len);
3127 WARN_ON(start + len > eb->start + eb->len);
3128
3129 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3130
3131 while(len > 0) {
3132 page = extent_buffer_page(eb, i);
3133 WARN_ON(!PageUptodate(page));
3134
3135 cur = min(len, PAGE_CACHE_SIZE - offset);
3136 kaddr = kmap_atomic(page, KM_USER1);
3137 memcpy(kaddr + offset, src, cur);
3138 kunmap_atomic(kaddr, KM_USER1);
3139
3140 src += cur;
3141 len -= cur;
3142 offset = 0;
3143 i++;
3144 }
3145}
3146EXPORT_SYMBOL(write_extent_buffer);
3147
3148void memset_extent_buffer(struct extent_buffer *eb, char c,
3149 unsigned long start, unsigned long len)
3150{
3151 size_t cur;
3152 size_t offset;
3153 struct page *page;
3154 char *kaddr;
3155 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3156 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3157
3158 WARN_ON(start > eb->len);
3159 WARN_ON(start + len > eb->start + eb->len);
3160
3161 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3162
3163 while(len > 0) {
3164 page = extent_buffer_page(eb, i);
3165 WARN_ON(!PageUptodate(page));
3166
3167 cur = min(len, PAGE_CACHE_SIZE - offset);
3168 kaddr = kmap_atomic(page, KM_USER0);
3169 memset(kaddr + offset, c, cur);
3170 kunmap_atomic(kaddr, KM_USER0);
3171
3172 len -= cur;
3173 offset = 0;
3174 i++;
3175 }
3176}
3177EXPORT_SYMBOL(memset_extent_buffer);
3178
3179void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3180 unsigned long dst_offset, unsigned long src_offset,
3181 unsigned long len)
3182{
3183 u64 dst_len = dst->len;
3184 size_t cur;
3185 size_t offset;
3186 struct page *page;
3187 char *kaddr;
3188 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3189 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3190
3191 WARN_ON(src->len != dst_len);
3192
3193 offset = (start_offset + dst_offset) &
3194 ((unsigned long)PAGE_CACHE_SIZE - 1);
3195
3196 while(len > 0) {
3197 page = extent_buffer_page(dst, i);
3198 WARN_ON(!PageUptodate(page));
3199
3200 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3201
3202 kaddr = kmap_atomic(page, KM_USER0);
3203 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3204 kunmap_atomic(kaddr, KM_USER0);
3205
3206 src_offset += cur;
3207 len -= cur;
3208 offset = 0;
3209 i++;
3210 }
3211}
3212EXPORT_SYMBOL(copy_extent_buffer);
3213
3214static void move_pages(struct page *dst_page, struct page *src_page,
3215 unsigned long dst_off, unsigned long src_off,
3216 unsigned long len)
3217{
3218 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3219 if (dst_page == src_page) {
3220 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3221 } else {
3222 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3223 char *p = dst_kaddr + dst_off + len;
3224 char *s = src_kaddr + src_off + len;
3225
3226 while (len--)
3227 *--p = *--s;
3228
3229 kunmap_atomic(src_kaddr, KM_USER1);
3230 }
3231 kunmap_atomic(dst_kaddr, KM_USER0);
3232}
3233
3234static void copy_pages(struct page *dst_page, struct page *src_page,
3235 unsigned long dst_off, unsigned long src_off,
3236 unsigned long len)
3237{
3238 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3239 char *src_kaddr;
3240
3241 if (dst_page != src_page)
3242 src_kaddr = kmap_atomic(src_page, KM_USER1);
3243 else
3244 src_kaddr = dst_kaddr;
3245
3246 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3247 kunmap_atomic(dst_kaddr, KM_USER0);
3248 if (dst_page != src_page)
3249 kunmap_atomic(src_kaddr, KM_USER1);
3250}
3251
3252void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3253 unsigned long src_offset, unsigned long len)
3254{
3255 size_t cur;
3256 size_t dst_off_in_page;
3257 size_t src_off_in_page;
3258 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3259 unsigned long dst_i;
3260 unsigned long src_i;
3261
3262 if (src_offset + len > dst->len) {
3263 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3264 src_offset, len, dst->len);
3265 BUG_ON(1);
3266 }
3267 if (dst_offset + len > dst->len) {
3268 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3269 dst_offset, len, dst->len);
3270 BUG_ON(1);
3271 }
3272
3273 while(len > 0) {
3274 dst_off_in_page = (start_offset + dst_offset) &
3275 ((unsigned long)PAGE_CACHE_SIZE - 1);
3276 src_off_in_page = (start_offset + src_offset) &
3277 ((unsigned long)PAGE_CACHE_SIZE - 1);
3278
3279 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3280 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3281
3282 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3283 src_off_in_page));
3284 cur = min_t(unsigned long, cur,
3285 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3286
3287 copy_pages(extent_buffer_page(dst, dst_i),
3288 extent_buffer_page(dst, src_i),
3289 dst_off_in_page, src_off_in_page, cur);
3290
3291 src_offset += cur;
3292 dst_offset += cur;
3293 len -= cur;
3294 }
3295}
3296EXPORT_SYMBOL(memcpy_extent_buffer);
3297
3298void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3299 unsigned long src_offset, unsigned long len)
3300{
3301 size_t cur;
3302 size_t dst_off_in_page;
3303 size_t src_off_in_page;
3304 unsigned long dst_end = dst_offset + len - 1;
3305 unsigned long src_end = src_offset + len - 1;
3306 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3307 unsigned long dst_i;
3308 unsigned long src_i;
3309
3310 if (src_offset + len > dst->len) {
3311 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3312 src_offset, len, dst->len);
3313 BUG_ON(1);
3314 }
3315 if (dst_offset + len > dst->len) {
3316 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3317 dst_offset, len, dst->len);
3318 BUG_ON(1);
3319 }
3320 if (dst_offset < src_offset) {
3321 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3322 return;
3323 }
3324 while(len > 0) {
3325 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3326 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3327
3328 dst_off_in_page = (start_offset + dst_end) &
3329 ((unsigned long)PAGE_CACHE_SIZE - 1);
3330 src_off_in_page = (start_offset + src_end) &
3331 ((unsigned long)PAGE_CACHE_SIZE - 1);
3332
3333 cur = min_t(unsigned long, len, src_off_in_page + 1);
3334 cur = min(cur, dst_off_in_page + 1);
3335 move_pages(extent_buffer_page(dst, dst_i),
3336 extent_buffer_page(dst, src_i),
3337 dst_off_in_page - cur + 1,
3338 src_off_in_page - cur + 1, cur);
3339
3340 dst_end -= cur;
3341 src_end -= cur;
3342 len -= cur;
3343 }
3344}
3345EXPORT_SYMBOL(memmove_extent_buffer);