btrfs: simplify the pending I/O counting in struct compressed_bio
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
4a54c8c1 23#include "volumes.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
2a5232a8 32#include "compression.h"
d1310b2e 33
d1310b2e
CM
34static struct kmem_cache *extent_state_cache;
35static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 36static struct bio_set btrfs_bioset;
d1310b2e 37
27a3507d
FM
38static inline bool extent_state_in_tree(const struct extent_state *state)
39{
40 return !RB_EMPTY_NODE(&state->rb_node);
41}
42
6d49ba1b 43#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 44static LIST_HEAD(states);
d397712b 45static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 46
3fd63727
JB
47static inline void btrfs_leak_debug_add(spinlock_t *lock,
48 struct list_head *new,
49 struct list_head *head)
6d49ba1b
ES
50{
51 unsigned long flags;
52
3fd63727 53 spin_lock_irqsave(lock, flags);
6d49ba1b 54 list_add(new, head);
3fd63727 55 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
56}
57
3fd63727
JB
58static inline void btrfs_leak_debug_del(spinlock_t *lock,
59 struct list_head *entry)
6d49ba1b
ES
60{
61 unsigned long flags;
62
3fd63727 63 spin_lock_irqsave(lock, flags);
6d49ba1b 64 list_del(entry);
3fd63727 65 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
66}
67
3fd63727 68void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 69{
6d49ba1b 70 struct extent_buffer *eb;
3fd63727 71 unsigned long flags;
6d49ba1b 72
8c38938c
JB
73 /*
74 * If we didn't get into open_ctree our allocated_ebs will not be
75 * initialized, so just skip this.
76 */
77 if (!fs_info->allocated_ebs.next)
78 return;
79
b95b78e6 80 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
81 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
82 while (!list_empty(&fs_info->allocated_ebs)) {
83 eb = list_first_entry(&fs_info->allocated_ebs,
84 struct extent_buffer, leak_list);
8c38938c
JB
85 pr_err(
86 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
87 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
88 btrfs_header_owner(eb));
33ca832f
JB
89 list_del(&eb->leak_list);
90 kmem_cache_free(extent_buffer_cache, eb);
91 }
3fd63727 92 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
93}
94
95static inline void btrfs_extent_state_leak_debug_check(void)
96{
97 struct extent_state *state;
98
6d49ba1b
ES
99 while (!list_empty(&states)) {
100 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 101 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
102 state->start, state->end, state->state,
103 extent_state_in_tree(state),
b7ac31b7 104 refcount_read(&state->refs));
6d49ba1b
ES
105 list_del(&state->leak_list);
106 kmem_cache_free(extent_state_cache, state);
107 }
6d49ba1b 108}
8d599ae1 109
a5dee37d
JB
110#define btrfs_debug_check_extent_io_range(tree, start, end) \
111 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 112static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 113 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 114{
65a680f6
NB
115 struct inode *inode = tree->private_data;
116 u64 isize;
117
118 if (!inode || !is_data_inode(inode))
119 return;
120
121 isize = i_size_read(inode);
122 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
123 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
124 "%s: ino %llu isize %llu odd range [%llu,%llu]",
125 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
126 }
8d599ae1 127}
6d49ba1b 128#else
3fd63727
JB
129#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
130#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 131#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 132#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 133#endif
d1310b2e 134
d1310b2e
CM
135struct tree_entry {
136 u64 start;
137 u64 end;
d1310b2e
CM
138 struct rb_node rb_node;
139};
140
7aab8b32
CH
141/*
142 * Structure to record info about the bio being assembled, and other info like
143 * how many bytes are there before stripe/ordered extent boundary.
144 */
145struct btrfs_bio_ctrl {
146 struct bio *bio;
722c82ac 147 int mirror_num;
0f07003b 148 enum btrfs_compression_type compress_type;
7aab8b32
CH
149 u32 len_to_stripe_boundary;
150 u32 len_to_oe_boundary;
151};
152
d1310b2e 153struct extent_page_data {
390ed29b 154 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
155 /* tells writepage not to lock the state bits for this range
156 * it still does the unlocking
157 */
ffbd517d
CM
158 unsigned int extent_locked:1;
159
70fd7614 160 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 161 unsigned int sync_io:1;
d1310b2e
CM
162};
163
f97e27e9 164static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
165 struct extent_changeset *changeset,
166 int set)
167{
168 int ret;
169
170 if (!changeset)
57599c7e 171 return 0;
d38ed27f 172 if (set && (state->state & bits) == bits)
57599c7e 173 return 0;
fefdc557 174 if (!set && (state->state & bits) == 0)
57599c7e 175 return 0;
d38ed27f 176 changeset->bytes_changed += state->end - state->start + 1;
53d32359 177 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 178 GFP_ATOMIC);
57599c7e 179 return ret;
d38ed27f
QW
180}
181
722c82ac 182static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 183{
722c82ac
CH
184 struct bio *bio;
185 struct inode *inode;
186 int mirror_num;
187
188 if (!bio_ctrl->bio)
189 return;
190
191 bio = bio_ctrl->bio;
192 inode = bio_first_page_all(bio)->mapping->host;
193 mirror_num = bio_ctrl->mirror_num;
bb58eb9e 194
e0eefe07
QW
195 /* Caller should ensure the bio has at least some range added */
196 ASSERT(bio->bi_iter.bi_size);
c9583ada 197
c93104e7
CH
198 if (!is_data_inode(inode))
199 btrfs_submit_metadata_bio(inode, bio, mirror_num);
200 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
201 btrfs_submit_data_write_bio(inode, bio, mirror_num);
908930f3 202 else
722c82ac
CH
203 btrfs_submit_data_read_bio(inode, bio, mirror_num,
204 bio_ctrl->compress_type);
c93104e7 205
722c82ac
CH
206 /* The bio is owned by the bi_end_io handler now */
207 bio_ctrl->bio = NULL;
bb58eb9e
QW
208}
209
f4340622 210/*
9845e5dd 211 * Submit or fail the current bio in an extent_page_data structure.
f4340622 212 */
9845e5dd 213static void submit_write_bio(struct extent_page_data *epd, int ret)
bb58eb9e 214{
390ed29b 215 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 216
9845e5dd
CH
217 if (!bio)
218 return;
219
220 if (ret) {
221 ASSERT(ret < 0);
222 bio->bi_status = errno_to_blk_status(ret);
223 bio_endio(bio);
722c82ac
CH
224 /* The bio is owned by the bi_end_io handler now */
225 epd->bio_ctrl.bio = NULL;
9845e5dd 226 } else {
722c82ac 227 submit_one_bio(&epd->bio_ctrl);
bb58eb9e
QW
228 }
229}
e2932ee0 230
6f0d04f8 231int __init extent_state_cache_init(void)
d1310b2e 232{
837e1972 233 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 234 sizeof(struct extent_state), 0,
fba4b697 235 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
236 if (!extent_state_cache)
237 return -ENOMEM;
6f0d04f8
JB
238 return 0;
239}
d1310b2e 240
6f0d04f8
JB
241int __init extent_io_init(void)
242{
837e1972 243 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 244 sizeof(struct extent_buffer), 0,
fba4b697 245 SLAB_MEM_SPREAD, NULL);
d1310b2e 246 if (!extent_buffer_cache)
6f0d04f8 247 return -ENOMEM;
9be3395b 248
8ac9f7c1 249 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
c3a3b19b 250 offsetof(struct btrfs_bio, bio),
8ac9f7c1 251 BIOSET_NEED_BVECS))
9be3395b 252 goto free_buffer_cache;
b208c2f7 253
8ac9f7c1 254 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
255 goto free_bioset;
256
d1310b2e
CM
257 return 0;
258
b208c2f7 259free_bioset:
8ac9f7c1 260 bioset_exit(&btrfs_bioset);
b208c2f7 261
9be3395b
CM
262free_buffer_cache:
263 kmem_cache_destroy(extent_buffer_cache);
264 extent_buffer_cache = NULL;
6f0d04f8
JB
265 return -ENOMEM;
266}
9be3395b 267
6f0d04f8
JB
268void __cold extent_state_cache_exit(void)
269{
270 btrfs_extent_state_leak_debug_check();
d1310b2e 271 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
272}
273
e67c718b 274void __cold extent_io_exit(void)
d1310b2e 275{
8c0a8537
KS
276 /*
277 * Make sure all delayed rcu free are flushed before we
278 * destroy caches.
279 */
280 rcu_barrier();
5598e900 281 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 282 bioset_exit(&btrfs_bioset);
d1310b2e
CM
283}
284
41a2ee75
JB
285/*
286 * For the file_extent_tree, we want to hold the inode lock when we lookup and
287 * update the disk_i_size, but lockdep will complain because our io_tree we hold
288 * the tree lock and get the inode lock when setting delalloc. These two things
289 * are unrelated, so make a class for the file_extent_tree so we don't get the
290 * two locking patterns mixed up.
291 */
292static struct lock_class_key file_extent_tree_class;
293
c258d6e3 294void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
295 struct extent_io_tree *tree, unsigned int owner,
296 void *private_data)
d1310b2e 297{
c258d6e3 298 tree->fs_info = fs_info;
6bef4d31 299 tree->state = RB_ROOT;
d1310b2e 300 tree->dirty_bytes = 0;
70dec807 301 spin_lock_init(&tree->lock);
c6100a4b 302 tree->private_data = private_data;
43eb5f29 303 tree->owner = owner;
41a2ee75
JB
304 if (owner == IO_TREE_INODE_FILE_EXTENT)
305 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 306}
d1310b2e 307
41e7acd3
NB
308void extent_io_tree_release(struct extent_io_tree *tree)
309{
310 spin_lock(&tree->lock);
311 /*
312 * Do a single barrier for the waitqueue_active check here, the state
313 * of the waitqueue should not change once extent_io_tree_release is
314 * called.
315 */
316 smp_mb();
317 while (!RB_EMPTY_ROOT(&tree->state)) {
318 struct rb_node *node;
319 struct extent_state *state;
320
321 node = rb_first(&tree->state);
322 state = rb_entry(node, struct extent_state, rb_node);
323 rb_erase(&state->rb_node, &tree->state);
324 RB_CLEAR_NODE(&state->rb_node);
325 /*
326 * btree io trees aren't supposed to have tasks waiting for
327 * changes in the flags of extent states ever.
328 */
329 ASSERT(!waitqueue_active(&state->wq));
330 free_extent_state(state);
331
332 cond_resched_lock(&tree->lock);
333 }
334 spin_unlock(&tree->lock);
335}
336
b2950863 337static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
338{
339 struct extent_state *state;
d1310b2e 340
3ba7ab22
MH
341 /*
342 * The given mask might be not appropriate for the slab allocator,
343 * drop the unsupported bits
344 */
345 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 346 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 347 if (!state)
d1310b2e
CM
348 return state;
349 state->state = 0;
47dc196a 350 state->failrec = NULL;
27a3507d 351 RB_CLEAR_NODE(&state->rb_node);
3fd63727 352 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 353 refcount_set(&state->refs, 1);
d1310b2e 354 init_waitqueue_head(&state->wq);
143bede5 355 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
356 return state;
357}
d1310b2e 358
4845e44f 359void free_extent_state(struct extent_state *state)
d1310b2e 360{
d1310b2e
CM
361 if (!state)
362 return;
b7ac31b7 363 if (refcount_dec_and_test(&state->refs)) {
27a3507d 364 WARN_ON(extent_state_in_tree(state));
3fd63727 365 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 366 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
367 kmem_cache_free(extent_state_cache, state);
368 }
369}
d1310b2e 370
8666e638 371/**
3bed2da1
NB
372 * Search @tree for an entry that contains @offset. Such entry would have
373 * entry->start <= offset && entry->end >= offset.
8666e638 374 *
3bed2da1
NB
375 * @tree: the tree to search
376 * @offset: offset that should fall within an entry in @tree
9db33891 377 * @node_ret: pointer where new node should be anchored (used when inserting an
3bed2da1
NB
378 * entry in the tree)
379 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
380 * containing @offset
381 *
9db33891
DS
382 * Return a pointer to the entry that contains @offset byte address and don't change
383 * @node_ret and @parent_ret.
384 *
385 * If no such entry exists, return pointer to entry that ends before @offset
386 * and fill parameters @node_ret and @parent_ret, ie. does not return NULL.
8666e638 387 */
9db33891
DS
388static inline struct rb_node *tree_search_for_insert(struct extent_io_tree *tree,
389 u64 offset,
390 struct rb_node ***node_ret,
391 struct rb_node **parent_ret)
d1310b2e 392{
80ea96b1 393 struct rb_root *root = &tree->state;
9db33891 394 struct rb_node **node = &root->rb_node;
d1310b2e 395 struct rb_node *prev = NULL;
d1310b2e 396 struct tree_entry *entry;
d1310b2e 397
9db33891
DS
398 while (*node) {
399 prev = *node;
12cfbad9 400 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
401
402 if (offset < entry->start)
9db33891 403 node = &(*node)->rb_left;
d1310b2e 404 else if (offset > entry->end)
9db33891 405 node = &(*node)->rb_right;
d397712b 406 else
9db33891 407 return *node;
d1310b2e
CM
408 }
409
9db33891
DS
410 if (node_ret)
411 *node_ret = node;
12cfbad9
FDBM
412 if (parent_ret)
413 *parent_ret = prev;
414
9db33891
DS
415 /* Search neighbors until we find the first one past the end */
416 while (prev && offset > entry->end) {
417 prev = rb_next(prev);
418 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
419 }
420
9db33891 421 return prev;
d1310b2e
CM
422}
423
9db33891
DS
424/*
425 * Inexact rb-tree search, return the next entry if @offset is not found
426 */
427static inline struct rb_node *tree_search(struct extent_io_tree *tree, u64 offset)
428{
429 return tree_search_for_insert(tree, offset, NULL, NULL);
430}
431
432/**
433 * Search offset in the tree or fill neighbor rbtree node pointers.
434 *
435 * @tree: the tree to search
436 * @offset: offset that should fall within an entry in @tree
437 * @next_ret: pointer to the first entry whose range ends after @offset
438 * @prev_ret: pointer to the first entry whose range begins before @offset
439 *
440 * Return a pointer to the entry that contains @offset byte address. If no
441 * such entry exists, then return NULL and fill @prev_ret and @next_ret.
442 * Otherwise return the found entry and other pointers are left untouched.
443 */
444static struct rb_node *tree_search_prev_next(struct extent_io_tree *tree,
445 u64 offset,
446 struct rb_node **prev_ret,
447 struct rb_node **next_ret)
12cfbad9 448{
bebb22c1
DS
449 struct rb_root *root = &tree->state;
450 struct rb_node **node = &root->rb_node;
451 struct rb_node *prev = NULL;
9db33891 452 struct rb_node *orig_prev = NULL;
bebb22c1
DS
453 struct tree_entry *entry;
454
9db33891
DS
455 ASSERT(prev_ret);
456 ASSERT(next_ret);
457
bebb22c1
DS
458 while (*node) {
459 prev = *node;
460 entry = rb_entry(prev, struct tree_entry, rb_node);
461
462 if (offset < entry->start)
463 node = &(*node)->rb_left;
464 else if (offset > entry->end)
465 node = &(*node)->rb_right;
466 else
467 return *node;
468 }
469
9db33891 470 orig_prev = prev;
bebb22c1
DS
471 while (prev && offset > entry->end) {
472 prev = rb_next(prev);
473 entry = rb_entry(prev, struct tree_entry, rb_node);
474 }
9db33891
DS
475 *next_ret = prev;
476 prev = orig_prev;
bebb22c1 477
9db33891
DS
478 entry = rb_entry(prev, struct tree_entry, rb_node);
479 while (prev && offset < entry->start) {
480 prev = rb_prev(prev);
481 entry = rb_entry(prev, struct tree_entry, rb_node);
482 }
483 *prev_ret = prev;
12cfbad9 484
9db33891 485 return NULL;
ec60c76f
DS
486}
487
d1310b2e
CM
488/*
489 * utility function to look for merge candidates inside a given range.
490 * Any extents with matching state are merged together into a single
491 * extent in the tree. Extents with EXTENT_IO in their state field
492 * are not merged because the end_io handlers need to be able to do
493 * operations on them without sleeping (or doing allocations/splits).
494 *
495 * This should be called with the tree lock held.
496 */
1bf85046
JM
497static void merge_state(struct extent_io_tree *tree,
498 struct extent_state *state)
d1310b2e
CM
499{
500 struct extent_state *other;
501 struct rb_node *other_node;
502
8882679e 503 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 504 return;
d1310b2e
CM
505
506 other_node = rb_prev(&state->rb_node);
507 if (other_node) {
508 other = rb_entry(other_node, struct extent_state, rb_node);
509 if (other->end == state->start - 1 &&
510 other->state == state->state) {
5c848198
NB
511 if (tree->private_data &&
512 is_data_inode(tree->private_data))
513 btrfs_merge_delalloc_extent(tree->private_data,
514 state, other);
d1310b2e 515 state->start = other->start;
d1310b2e 516 rb_erase(&other->rb_node, &tree->state);
27a3507d 517 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
518 free_extent_state(other);
519 }
520 }
521 other_node = rb_next(&state->rb_node);
522 if (other_node) {
523 other = rb_entry(other_node, struct extent_state, rb_node);
524 if (other->start == state->end + 1 &&
525 other->state == state->state) {
5c848198
NB
526 if (tree->private_data &&
527 is_data_inode(tree->private_data))
528 btrfs_merge_delalloc_extent(tree->private_data,
529 state, other);
df98b6e2 530 state->end = other->end;
df98b6e2 531 rb_erase(&other->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 533 free_extent_state(other);
d1310b2e
CM
534 }
535 }
d1310b2e
CM
536}
537
3150b699 538static void set_state_bits(struct extent_io_tree *tree,
6d92b304 539 struct extent_state *state, u32 bits,
d38ed27f 540 struct extent_changeset *changeset);
3150b699 541
d1310b2e
CM
542/*
543 * insert an extent_state struct into the tree. 'bits' are set on the
544 * struct before it is inserted.
545 *
546 * This may return -EEXIST if the extent is already there, in which case the
547 * state struct is freed.
548 *
549 * The tree lock is not taken internally. This is a utility function and
550 * probably isn't what you want to call (see set/clear_extent_bit).
551 */
552static int insert_state(struct extent_io_tree *tree,
cee51268 553 struct extent_state *state,
6d92b304 554 u32 bits, struct extent_changeset *changeset)
d1310b2e 555{
c7e118cf
DS
556 struct rb_node **node;
557 struct rb_node *parent;
cee51268 558 const u64 end = state->end;
9ed74f2d 559
d38ed27f 560 set_state_bits(tree, state, bits, changeset);
3150b699 561
c7e118cf
DS
562 node = &tree->state.rb_node;
563 while (*node) {
564 struct tree_entry *entry;
565
566 parent = *node;
567 entry = rb_entry(parent, struct tree_entry, rb_node);
568
569 if (end < entry->start) {
570 node = &(*node)->rb_left;
571 } else if (end > entry->end) {
572 node = &(*node)->rb_right;
573 } else {
574 btrfs_err(tree->fs_info,
575 "found node %llu %llu on insert of %llu %llu",
cee51268 576 entry->start, entry->end, state->start, end);
c7e118cf
DS
577 return -EEXIST;
578 }
579 }
580
c7e118cf
DS
581 rb_link_node(&state->rb_node, parent, node);
582 rb_insert_color(&state->rb_node, &tree->state);
583
d1310b2e
CM
584 merge_state(tree, state);
585 return 0;
586}
587
fb8f07d2
DS
588/*
589 * Insert state to @tree to the location given by @node and @parent.
590 */
591static void insert_state_fast(struct extent_io_tree *tree,
592 struct extent_state *state, struct rb_node **node,
593 struct rb_node *parent, unsigned bits,
594 struct extent_changeset *changeset)
595{
596 set_state_bits(tree, state, bits, changeset);
597 rb_link_node(&state->rb_node, parent, node);
598 rb_insert_color(&state->rb_node, &tree->state);
599 merge_state(tree, state);
600}
601
d1310b2e
CM
602/*
603 * split a given extent state struct in two, inserting the preallocated
604 * struct 'prealloc' as the newly created second half. 'split' indicates an
605 * offset inside 'orig' where it should be split.
606 *
607 * Before calling,
608 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
609 * are two extent state structs in the tree:
610 * prealloc: [orig->start, split - 1]
611 * orig: [ split, orig->end ]
612 *
613 * The tree locks are not taken by this function. They need to be held
614 * by the caller.
615 */
616static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
617 struct extent_state *prealloc, u64 split)
618{
12c9cdda
DS
619 struct rb_node *parent = NULL;
620 struct rb_node **node;
9ed74f2d 621
abbb55f4
NB
622 if (tree->private_data && is_data_inode(tree->private_data))
623 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 624
d1310b2e
CM
625 prealloc->start = orig->start;
626 prealloc->end = split - 1;
627 prealloc->state = orig->state;
628 orig->start = split;
629
12c9cdda
DS
630 parent = &orig->rb_node;
631 node = &parent;
632 while (*node) {
633 struct tree_entry *entry;
634
635 parent = *node;
636 entry = rb_entry(parent, struct tree_entry, rb_node);
637
638 if (prealloc->end < entry->start) {
639 node = &(*node)->rb_left;
640 } else if (prealloc->end > entry->end) {
641 node = &(*node)->rb_right;
642 } else {
643 free_extent_state(prealloc);
644 return -EEXIST;
645 }
d1310b2e 646 }
12c9cdda
DS
647
648 rb_link_node(&prealloc->rb_node, parent, node);
649 rb_insert_color(&prealloc->rb_node, &tree->state);
650
d1310b2e
CM
651 return 0;
652}
653
cdc6a395
LZ
654static struct extent_state *next_state(struct extent_state *state)
655{
656 struct rb_node *next = rb_next(&state->rb_node);
657 if (next)
658 return rb_entry(next, struct extent_state, rb_node);
659 else
660 return NULL;
661}
662
d1310b2e
CM
663/*
664 * utility function to clear some bits in an extent state struct.
52042d8e 665 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
666 *
667 * If no bits are set on the state struct after clearing things, the
668 * struct is freed and removed from the tree
669 */
cdc6a395
LZ
670static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
671 struct extent_state *state,
6d92b304 672 u32 bits, int wake,
fefdc557 673 struct extent_changeset *changeset)
d1310b2e 674{
cdc6a395 675 struct extent_state *next;
6d92b304 676 u32 bits_to_clear = bits & ~EXTENT_CTLBITS;
57599c7e 677 int ret;
d1310b2e 678
0ca1f7ce 679 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
680 u64 range = state->end - state->start + 1;
681 WARN_ON(range > tree->dirty_bytes);
682 tree->dirty_bytes -= range;
683 }
a36bb5f9
NB
684
685 if (tree->private_data && is_data_inode(tree->private_data))
686 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
687
57599c7e
DS
688 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
689 BUG_ON(ret < 0);
32c00aff 690 state->state &= ~bits_to_clear;
d1310b2e
CM
691 if (wake)
692 wake_up(&state->wq);
0ca1f7ce 693 if (state->state == 0) {
cdc6a395 694 next = next_state(state);
27a3507d 695 if (extent_state_in_tree(state)) {
d1310b2e 696 rb_erase(&state->rb_node, &tree->state);
27a3507d 697 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
698 free_extent_state(state);
699 } else {
700 WARN_ON(1);
701 }
702 } else {
703 merge_state(tree, state);
cdc6a395 704 next = next_state(state);
d1310b2e 705 }
cdc6a395 706 return next;
d1310b2e
CM
707}
708
8233767a
XG
709static struct extent_state *
710alloc_extent_state_atomic(struct extent_state *prealloc)
711{
712 if (!prealloc)
713 prealloc = alloc_extent_state(GFP_ATOMIC);
714
715 return prealloc;
716}
717
48a3b636 718static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 719{
29b665cc 720 btrfs_panic(tree->fs_info, err,
05912a3c 721 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
722}
723
d1310b2e
CM
724/*
725 * clear some bits on a range in the tree. This may require splitting
726 * or inserting elements in the tree, so the gfp mask is used to
727 * indicate which allocations or sleeping are allowed.
728 *
729 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
730 * the given range from the tree regardless of state (ie for truncate).
731 *
732 * the range [start, end] is inclusive.
733 *
6763af84 734 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 735 */
66b0c887 736int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
737 u32 bits, int wake, int delete,
738 struct extent_state **cached_state,
739 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
740{
741 struct extent_state *state;
2c64c53d 742 struct extent_state *cached;
d1310b2e
CM
743 struct extent_state *prealloc = NULL;
744 struct rb_node *node;
5c939df5 745 u64 last_end;
d1310b2e 746 int err;
2ac55d41 747 int clear = 0;
d1310b2e 748
a5dee37d 749 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 750 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 751
7ee9e440
JB
752 if (bits & EXTENT_DELALLOC)
753 bits |= EXTENT_NORESERVE;
754
0ca1f7ce
YZ
755 if (delete)
756 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 757
8882679e 758 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 759 clear = 1;
d1310b2e 760again:
d0164adc 761 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
762 /*
763 * Don't care for allocation failure here because we might end
764 * up not needing the pre-allocated extent state at all, which
765 * is the case if we only have in the tree extent states that
766 * cover our input range and don't cover too any other range.
767 * If we end up needing a new extent state we allocate it later.
768 */
d1310b2e 769 prealloc = alloc_extent_state(mask);
d1310b2e
CM
770 }
771
cad321ad 772 spin_lock(&tree->lock);
2c64c53d
CM
773 if (cached_state) {
774 cached = *cached_state;
2ac55d41
JB
775
776 if (clear) {
777 *cached_state = NULL;
778 cached_state = NULL;
779 }
780
27a3507d
FM
781 if (cached && extent_state_in_tree(cached) &&
782 cached->start <= start && cached->end > start) {
2ac55d41 783 if (clear)
b7ac31b7 784 refcount_dec(&cached->refs);
2c64c53d 785 state = cached;
42daec29 786 goto hit_next;
2c64c53d 787 }
2ac55d41
JB
788 if (clear)
789 free_extent_state(cached);
2c64c53d 790 }
d1310b2e
CM
791 /*
792 * this search will find the extents that end after
793 * our range starts
794 */
80ea96b1 795 node = tree_search(tree, start);
d1310b2e
CM
796 if (!node)
797 goto out;
798 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 799hit_next:
d1310b2e
CM
800 if (state->start > end)
801 goto out;
802 WARN_ON(state->end < start);
5c939df5 803 last_end = state->end;
d1310b2e 804
0449314a 805 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
806 if (!(state->state & bits)) {
807 state = next_state(state);
0449314a 808 goto next;
cdc6a395 809 }
0449314a 810
d1310b2e
CM
811 /*
812 * | ---- desired range ---- |
813 * | state | or
814 * | ------------- state -------------- |
815 *
816 * We need to split the extent we found, and may flip
817 * bits on second half.
818 *
819 * If the extent we found extends past our range, we
820 * just split and search again. It'll get split again
821 * the next time though.
822 *
823 * If the extent we found is inside our range, we clear
824 * the desired bit on it.
825 */
826
827 if (state->start < start) {
8233767a
XG
828 prealloc = alloc_extent_state_atomic(prealloc);
829 BUG_ON(!prealloc);
d1310b2e 830 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
831 if (err)
832 extent_io_tree_panic(tree, err);
833
d1310b2e
CM
834 prealloc = NULL;
835 if (err)
836 goto out;
837 if (state->end <= end) {
6d92b304 838 state = clear_state_bit(tree, state, bits, wake, changeset);
d1ac6e41 839 goto next;
d1310b2e
CM
840 }
841 goto search_again;
842 }
843 /*
844 * | ---- desired range ---- |
845 * | state |
846 * We need to split the extent, and clear the bit
847 * on the first half
848 */
849 if (state->start <= end && state->end > end) {
8233767a
XG
850 prealloc = alloc_extent_state_atomic(prealloc);
851 BUG_ON(!prealloc);
d1310b2e 852 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
853 if (err)
854 extent_io_tree_panic(tree, err);
855
d1310b2e
CM
856 if (wake)
857 wake_up(&state->wq);
42daec29 858
6d92b304 859 clear_state_bit(tree, prealloc, bits, wake, changeset);
9ed74f2d 860
d1310b2e
CM
861 prealloc = NULL;
862 goto out;
863 }
42daec29 864
6d92b304 865 state = clear_state_bit(tree, state, bits, wake, changeset);
0449314a 866next:
5c939df5
YZ
867 if (last_end == (u64)-1)
868 goto out;
869 start = last_end + 1;
cdc6a395 870 if (start <= end && state && !need_resched())
692e5759 871 goto hit_next;
d1310b2e
CM
872
873search_again:
874 if (start > end)
875 goto out;
cad321ad 876 spin_unlock(&tree->lock);
d0164adc 877 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
878 cond_resched();
879 goto again;
7ab5cb2a
DS
880
881out:
882 spin_unlock(&tree->lock);
883 if (prealloc)
884 free_extent_state(prealloc);
885
886 return 0;
887
d1310b2e 888}
d1310b2e 889
143bede5
JM
890static void wait_on_state(struct extent_io_tree *tree,
891 struct extent_state *state)
641f5219
CH
892 __releases(tree->lock)
893 __acquires(tree->lock)
d1310b2e
CM
894{
895 DEFINE_WAIT(wait);
896 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 897 spin_unlock(&tree->lock);
d1310b2e 898 schedule();
cad321ad 899 spin_lock(&tree->lock);
d1310b2e 900 finish_wait(&state->wq, &wait);
d1310b2e
CM
901}
902
903/*
904 * waits for one or more bits to clear on a range in the state tree.
905 * The range [start, end] is inclusive.
906 * The tree lock is taken by this function
907 */
41074888 908static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 909 u32 bits)
d1310b2e
CM
910{
911 struct extent_state *state;
912 struct rb_node *node;
913
a5dee37d 914 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 915
cad321ad 916 spin_lock(&tree->lock);
d1310b2e
CM
917again:
918 while (1) {
919 /*
920 * this search will find all the extents that end after
921 * our range starts
922 */
80ea96b1 923 node = tree_search(tree, start);
c50d3e71 924process_node:
d1310b2e
CM
925 if (!node)
926 break;
927
928 state = rb_entry(node, struct extent_state, rb_node);
929
930 if (state->start > end)
931 goto out;
932
933 if (state->state & bits) {
934 start = state->start;
b7ac31b7 935 refcount_inc(&state->refs);
d1310b2e
CM
936 wait_on_state(tree, state);
937 free_extent_state(state);
938 goto again;
939 }
940 start = state->end + 1;
941
942 if (start > end)
943 break;
944
c50d3e71
FM
945 if (!cond_resched_lock(&tree->lock)) {
946 node = rb_next(node);
947 goto process_node;
948 }
d1310b2e
CM
949 }
950out:
cad321ad 951 spin_unlock(&tree->lock);
d1310b2e 952}
d1310b2e 953
1bf85046 954static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 955 struct extent_state *state,
6d92b304 956 u32 bits, struct extent_changeset *changeset)
d1310b2e 957{
6d92b304 958 u32 bits_to_set = bits & ~EXTENT_CTLBITS;
57599c7e 959 int ret;
9ed74f2d 960
e06a1fc9
NB
961 if (tree->private_data && is_data_inode(tree->private_data))
962 btrfs_set_delalloc_extent(tree->private_data, state, bits);
963
0ca1f7ce 964 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
965 u64 range = state->end - state->start + 1;
966 tree->dirty_bytes += range;
967 }
57599c7e
DS
968 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
969 BUG_ON(ret < 0);
0ca1f7ce 970 state->state |= bits_to_set;
d1310b2e
CM
971}
972
e38e2ed7
FM
973static void cache_state_if_flags(struct extent_state *state,
974 struct extent_state **cached_ptr,
9ee49a04 975 unsigned flags)
2c64c53d
CM
976{
977 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 978 if (!flags || (state->state & flags)) {
2c64c53d 979 *cached_ptr = state;
b7ac31b7 980 refcount_inc(&state->refs);
2c64c53d
CM
981 }
982 }
983}
984
e38e2ed7
FM
985static void cache_state(struct extent_state *state,
986 struct extent_state **cached_ptr)
987{
988 return cache_state_if_flags(state, cached_ptr,
8882679e 989 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
990}
991
d1310b2e 992/*
1edbb734
CM
993 * set some bits on a range in the tree. This may require allocations or
994 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 995 *
1edbb734
CM
996 * If any of the exclusive bits are set, this will fail with -EEXIST if some
997 * part of the range already has the desired bits set. The start of the
998 * existing range is returned in failed_start in this case.
d1310b2e 999 *
1edbb734 1000 * [start, end] is inclusive This takes the tree lock.
d1310b2e 1001 */
f97e27e9
QW
1002int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
1003 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
1004 struct extent_state **cached_state, gfp_t mask,
1005 struct extent_changeset *changeset)
d1310b2e
CM
1006{
1007 struct extent_state *state;
1008 struct extent_state *prealloc = NULL;
1009 struct rb_node *node;
12cfbad9
FDBM
1010 struct rb_node **p;
1011 struct rb_node *parent;
d1310b2e 1012 int err = 0;
d1310b2e
CM
1013 u64 last_start;
1014 u64 last_end;
42daec29 1015
a5dee37d 1016 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 1017 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 1018
3f6bb4ae
QW
1019 if (exclusive_bits)
1020 ASSERT(failed_start);
1021 else
1022 ASSERT(failed_start == NULL);
d1310b2e 1023again:
d0164adc 1024 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
1025 /*
1026 * Don't care for allocation failure here because we might end
1027 * up not needing the pre-allocated extent state at all, which
1028 * is the case if we only have in the tree extent states that
1029 * cover our input range and don't cover too any other range.
1030 * If we end up needing a new extent state we allocate it later.
1031 */
d1310b2e 1032 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1033 }
1034
cad321ad 1035 spin_lock(&tree->lock);
9655d298
CM
1036 if (cached_state && *cached_state) {
1037 state = *cached_state;
df98b6e2 1038 if (state->start <= start && state->end > start &&
27a3507d 1039 extent_state_in_tree(state)) {
9655d298
CM
1040 node = &state->rb_node;
1041 goto hit_next;
1042 }
1043 }
d1310b2e
CM
1044 /*
1045 * this search will find all the extents that end after
1046 * our range starts.
1047 */
12cfbad9 1048 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1049 if (!node) {
8233767a
XG
1050 prealloc = alloc_extent_state_atomic(prealloc);
1051 BUG_ON(!prealloc);
cee51268
DS
1052 prealloc->start = start;
1053 prealloc->end = end;
fb8f07d2 1054 insert_state_fast(tree, prealloc, p, parent, bits, changeset);
c42ac0bc 1055 cache_state(prealloc, cached_state);
d1310b2e 1056 prealloc = NULL;
d1310b2e
CM
1057 goto out;
1058 }
d1310b2e 1059 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1060hit_next:
d1310b2e
CM
1061 last_start = state->start;
1062 last_end = state->end;
1063
1064 /*
1065 * | ---- desired range ---- |
1066 * | state |
1067 *
1068 * Just lock what we found and keep going
1069 */
1070 if (state->start == start && state->end <= end) {
1edbb734 1071 if (state->state & exclusive_bits) {
d1310b2e
CM
1072 *failed_start = state->start;
1073 err = -EEXIST;
1074 goto out;
1075 }
42daec29 1076
6d92b304 1077 set_state_bits(tree, state, bits, changeset);
2c64c53d 1078 cache_state(state, cached_state);
d1310b2e 1079 merge_state(tree, state);
5c939df5
YZ
1080 if (last_end == (u64)-1)
1081 goto out;
1082 start = last_end + 1;
d1ac6e41
LB
1083 state = next_state(state);
1084 if (start < end && state && state->start == start &&
1085 !need_resched())
1086 goto hit_next;
d1310b2e
CM
1087 goto search_again;
1088 }
1089
1090 /*
1091 * | ---- desired range ---- |
1092 * | state |
1093 * or
1094 * | ------------- state -------------- |
1095 *
1096 * We need to split the extent we found, and may flip bits on
1097 * second half.
1098 *
1099 * If the extent we found extends past our
1100 * range, we just split and search again. It'll get split
1101 * again the next time though.
1102 *
1103 * If the extent we found is inside our range, we set the
1104 * desired bit on it.
1105 */
1106 if (state->start < start) {
1edbb734 1107 if (state->state & exclusive_bits) {
d1310b2e
CM
1108 *failed_start = start;
1109 err = -EEXIST;
1110 goto out;
1111 }
8233767a 1112
55ffaabe
FM
1113 /*
1114 * If this extent already has all the bits we want set, then
1115 * skip it, not necessary to split it or do anything with it.
1116 */
1117 if ((state->state & bits) == bits) {
1118 start = state->end + 1;
1119 cache_state(state, cached_state);
1120 goto search_again;
1121 }
1122
8233767a
XG
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 BUG_ON(!prealloc);
d1310b2e 1125 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1126 if (err)
1127 extent_io_tree_panic(tree, err);
1128
d1310b2e
CM
1129 prealloc = NULL;
1130 if (err)
1131 goto out;
1132 if (state->end <= end) {
6d92b304 1133 set_state_bits(tree, state, bits, changeset);
2c64c53d 1134 cache_state(state, cached_state);
d1310b2e 1135 merge_state(tree, state);
5c939df5
YZ
1136 if (last_end == (u64)-1)
1137 goto out;
1138 start = last_end + 1;
d1ac6e41
LB
1139 state = next_state(state);
1140 if (start < end && state && state->start == start &&
1141 !need_resched())
1142 goto hit_next;
d1310b2e
CM
1143 }
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state | or | state |
1149 *
1150 * There's a hole, we need to insert something in it and
1151 * ignore the extent we found.
1152 */
1153 if (state->start > start) {
1154 u64 this_end;
1155 if (end < last_start)
1156 this_end = end;
1157 else
d397712b 1158 this_end = last_start - 1;
8233767a
XG
1159
1160 prealloc = alloc_extent_state_atomic(prealloc);
1161 BUG_ON(!prealloc);
c7f895a2
XG
1162
1163 /*
1164 * Avoid to free 'prealloc' if it can be merged with
1165 * the later extent.
1166 */
cee51268
DS
1167 prealloc->start = start;
1168 prealloc->end = this_end;
c367602a 1169 err = insert_state(tree, prealloc, bits, changeset);
c2d904e0
JM
1170 if (err)
1171 extent_io_tree_panic(tree, err);
1172
9ed74f2d
JB
1173 cache_state(prealloc, cached_state);
1174 prealloc = NULL;
d1310b2e
CM
1175 start = this_end + 1;
1176 goto search_again;
1177 }
1178 /*
1179 * | ---- desired range ---- |
1180 * | state |
1181 * We need to split the extent, and set the bit
1182 * on the first half
1183 */
1184 if (state->start <= end && state->end > end) {
1edbb734 1185 if (state->state & exclusive_bits) {
d1310b2e
CM
1186 *failed_start = start;
1187 err = -EEXIST;
1188 goto out;
1189 }
8233767a
XG
1190
1191 prealloc = alloc_extent_state_atomic(prealloc);
1192 BUG_ON(!prealloc);
d1310b2e 1193 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1194 if (err)
1195 extent_io_tree_panic(tree, err);
d1310b2e 1196
6d92b304 1197 set_state_bits(tree, prealloc, bits, changeset);
2c64c53d 1198 cache_state(prealloc, cached_state);
d1310b2e
CM
1199 merge_state(tree, prealloc);
1200 prealloc = NULL;
1201 goto out;
1202 }
1203
b5a4ba14
DS
1204search_again:
1205 if (start > end)
1206 goto out;
1207 spin_unlock(&tree->lock);
1208 if (gfpflags_allow_blocking(mask))
1209 cond_resched();
1210 goto again;
d1310b2e
CM
1211
1212out:
cad321ad 1213 spin_unlock(&tree->lock);
d1310b2e
CM
1214 if (prealloc)
1215 free_extent_state(prealloc);
1216
1217 return err;
1218
d1310b2e 1219}
d1310b2e 1220
462d6fac 1221/**
10983f2e
LB
1222 * convert_extent_bit - convert all bits in a given range from one bit to
1223 * another
462d6fac
JB
1224 * @tree: the io tree to search
1225 * @start: the start offset in bytes
1226 * @end: the end offset in bytes (inclusive)
1227 * @bits: the bits to set in this range
1228 * @clear_bits: the bits to clear in this range
e6138876 1229 * @cached_state: state that we're going to cache
462d6fac
JB
1230 *
1231 * This will go through and set bits for the given range. If any states exist
1232 * already in this range they are set with the given bit and cleared of the
1233 * clear_bits. This is only meant to be used by things that are mergeable, ie
1234 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1235 * boundary bits like LOCK.
210aa277
DS
1236 *
1237 * All allocations are done with GFP_NOFS.
462d6fac
JB
1238 */
1239int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1240 u32 bits, u32 clear_bits,
210aa277 1241 struct extent_state **cached_state)
462d6fac
JB
1242{
1243 struct extent_state *state;
1244 struct extent_state *prealloc = NULL;
1245 struct rb_node *node;
12cfbad9
FDBM
1246 struct rb_node **p;
1247 struct rb_node *parent;
462d6fac
JB
1248 int err = 0;
1249 u64 last_start;
1250 u64 last_end;
c8fd3de7 1251 bool first_iteration = true;
462d6fac 1252
a5dee37d 1253 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1254 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1255 clear_bits);
8d599ae1 1256
462d6fac 1257again:
210aa277 1258 if (!prealloc) {
c8fd3de7
FM
1259 /*
1260 * Best effort, don't worry if extent state allocation fails
1261 * here for the first iteration. We might have a cached state
1262 * that matches exactly the target range, in which case no
1263 * extent state allocations are needed. We'll only know this
1264 * after locking the tree.
1265 */
210aa277 1266 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1267 if (!prealloc && !first_iteration)
462d6fac
JB
1268 return -ENOMEM;
1269 }
1270
1271 spin_lock(&tree->lock);
e6138876
JB
1272 if (cached_state && *cached_state) {
1273 state = *cached_state;
1274 if (state->start <= start && state->end > start &&
27a3507d 1275 extent_state_in_tree(state)) {
e6138876
JB
1276 node = &state->rb_node;
1277 goto hit_next;
1278 }
1279 }
1280
462d6fac
JB
1281 /*
1282 * this search will find all the extents that end after
1283 * our range starts.
1284 */
12cfbad9 1285 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1286 if (!node) {
1287 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1288 if (!prealloc) {
1289 err = -ENOMEM;
1290 goto out;
1291 }
cee51268
DS
1292 prealloc->start = start;
1293 prealloc->end = end;
fb8f07d2 1294 insert_state_fast(tree, prealloc, p, parent, bits, NULL);
c42ac0bc
FDBM
1295 cache_state(prealloc, cached_state);
1296 prealloc = NULL;
462d6fac
JB
1297 goto out;
1298 }
1299 state = rb_entry(node, struct extent_state, rb_node);
1300hit_next:
1301 last_start = state->start;
1302 last_end = state->end;
1303
1304 /*
1305 * | ---- desired range ---- |
1306 * | state |
1307 *
1308 * Just lock what we found and keep going
1309 */
1310 if (state->start == start && state->end <= end) {
6d92b304 1311 set_state_bits(tree, state, bits, NULL);
e6138876 1312 cache_state(state, cached_state);
6d92b304 1313 state = clear_state_bit(tree, state, clear_bits, 0, NULL);
462d6fac
JB
1314 if (last_end == (u64)-1)
1315 goto out;
462d6fac 1316 start = last_end + 1;
d1ac6e41
LB
1317 if (start < end && state && state->start == start &&
1318 !need_resched())
1319 goto hit_next;
462d6fac
JB
1320 goto search_again;
1321 }
1322
1323 /*
1324 * | ---- desired range ---- |
1325 * | state |
1326 * or
1327 * | ------------- state -------------- |
1328 *
1329 * We need to split the extent we found, and may flip bits on
1330 * second half.
1331 *
1332 * If the extent we found extends past our
1333 * range, we just split and search again. It'll get split
1334 * again the next time though.
1335 *
1336 * If the extent we found is inside our range, we set the
1337 * desired bit on it.
1338 */
1339 if (state->start < start) {
1340 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1341 if (!prealloc) {
1342 err = -ENOMEM;
1343 goto out;
1344 }
462d6fac 1345 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1346 if (err)
1347 extent_io_tree_panic(tree, err);
462d6fac
JB
1348 prealloc = NULL;
1349 if (err)
1350 goto out;
1351 if (state->end <= end) {
6d92b304 1352 set_state_bits(tree, state, bits, NULL);
e6138876 1353 cache_state(state, cached_state);
6d92b304 1354 state = clear_state_bit(tree, state, clear_bits, 0, NULL);
462d6fac
JB
1355 if (last_end == (u64)-1)
1356 goto out;
1357 start = last_end + 1;
d1ac6e41
LB
1358 if (start < end && state && state->start == start &&
1359 !need_resched())
1360 goto hit_next;
462d6fac
JB
1361 }
1362 goto search_again;
1363 }
1364 /*
1365 * | ---- desired range ---- |
1366 * | state | or | state |
1367 *
1368 * There's a hole, we need to insert something in it and
1369 * ignore the extent we found.
1370 */
1371 if (state->start > start) {
1372 u64 this_end;
1373 if (end < last_start)
1374 this_end = end;
1375 else
1376 this_end = last_start - 1;
1377
1378 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1379 if (!prealloc) {
1380 err = -ENOMEM;
1381 goto out;
1382 }
462d6fac
JB
1383
1384 /*
1385 * Avoid to free 'prealloc' if it can be merged with
1386 * the later extent.
1387 */
cee51268
DS
1388 prealloc->start = start;
1389 prealloc->end = this_end;
c367602a 1390 err = insert_state(tree, prealloc, bits, NULL);
c2d904e0
JM
1391 if (err)
1392 extent_io_tree_panic(tree, err);
e6138876 1393 cache_state(prealloc, cached_state);
462d6fac
JB
1394 prealloc = NULL;
1395 start = this_end + 1;
1396 goto search_again;
1397 }
1398 /*
1399 * | ---- desired range ---- |
1400 * | state |
1401 * We need to split the extent, and set the bit
1402 * on the first half
1403 */
1404 if (state->start <= end && state->end > end) {
1405 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1406 if (!prealloc) {
1407 err = -ENOMEM;
1408 goto out;
1409 }
462d6fac
JB
1410
1411 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1412 if (err)
1413 extent_io_tree_panic(tree, err);
462d6fac 1414
6d92b304 1415 set_state_bits(tree, prealloc, bits, NULL);
e6138876 1416 cache_state(prealloc, cached_state);
6d92b304 1417 clear_state_bit(tree, prealloc, clear_bits, 0, NULL);
462d6fac
JB
1418 prealloc = NULL;
1419 goto out;
1420 }
1421
462d6fac
JB
1422search_again:
1423 if (start > end)
1424 goto out;
1425 spin_unlock(&tree->lock);
210aa277 1426 cond_resched();
c8fd3de7 1427 first_iteration = false;
462d6fac 1428 goto again;
462d6fac
JB
1429
1430out:
1431 spin_unlock(&tree->lock);
1432 if (prealloc)
1433 free_extent_state(prealloc);
1434
1435 return err;
462d6fac
JB
1436}
1437
d1310b2e 1438/* wrappers around set/clear extent bit */
d38ed27f 1439int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1440 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1441{
1442 /*
1443 * We don't support EXTENT_LOCKED yet, as current changeset will
1444 * record any bits changed, so for EXTENT_LOCKED case, it will
1445 * either fail with -EEXIST or changeset will record the whole
1446 * range.
1447 */
1448 BUG_ON(bits & EXTENT_LOCKED);
1449
1cab5e72
NB
1450 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1451 changeset);
d38ed27f
QW
1452}
1453
4ca73656 1454int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1455 u32 bits)
4ca73656 1456{
1cab5e72
NB
1457 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1458 GFP_NOWAIT, NULL);
4ca73656
NB
1459}
1460
fefdc557 1461int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1462 u32 bits, int wake, int delete,
ae0f1625 1463 struct extent_state **cached)
fefdc557
QW
1464{
1465 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1466 cached, GFP_NOFS, NULL);
fefdc557
QW
1467}
1468
fefdc557 1469int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1470 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1471{
1472 /*
1473 * Don't support EXTENT_LOCKED case, same reason as
1474 * set_record_extent_bits().
1475 */
1476 BUG_ON(bits & EXTENT_LOCKED);
1477
f734c44a 1478 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1479 changeset);
1480}
1481
d352ac68
CM
1482/*
1483 * either insert or lock state struct between start and end use mask to tell
1484 * us if waiting is desired.
1485 */
1edbb734 1486int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1487 struct extent_state **cached_state)
d1310b2e
CM
1488{
1489 int err;
1490 u64 failed_start;
9ee49a04 1491
d1310b2e 1492 while (1) {
1cab5e72
NB
1493 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1494 EXTENT_LOCKED, &failed_start,
1495 cached_state, GFP_NOFS, NULL);
d0082371 1496 if (err == -EEXIST) {
d1310b2e
CM
1497 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1498 start = failed_start;
d0082371 1499 } else
d1310b2e 1500 break;
d1310b2e
CM
1501 WARN_ON(start > end);
1502 }
1503 return err;
1504}
d1310b2e 1505
d0082371 1506int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1507{
1508 int err;
1509 u64 failed_start;
1510
1cab5e72
NB
1511 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1512 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1513 if (err == -EEXIST) {
1514 if (failed_start > start)
1515 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1516 EXTENT_LOCKED, 1, 0, NULL);
25179201 1517 return 0;
6643558d 1518 }
25179201
JB
1519 return 1;
1520}
25179201 1521
bd1fa4f0 1522void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1523{
09cbfeaf
KS
1524 unsigned long index = start >> PAGE_SHIFT;
1525 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1526 struct page *page;
1527
1528 while (index <= end_index) {
1529 page = find_get_page(inode->i_mapping, index);
1530 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1531 clear_page_dirty_for_io(page);
09cbfeaf 1532 put_page(page);
4adaa611
CM
1533 index++;
1534 }
4adaa611
CM
1535}
1536
f6311572 1537void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1538{
ebf55c88 1539 struct address_space *mapping = inode->i_mapping;
09cbfeaf
KS
1540 unsigned long index = start >> PAGE_SHIFT;
1541 unsigned long end_index = end >> PAGE_SHIFT;
ebf55c88 1542 struct folio *folio;
4adaa611
CM
1543
1544 while (index <= end_index) {
ebf55c88
MWO
1545 folio = filemap_get_folio(mapping, index);
1546 filemap_dirty_folio(mapping, folio);
1547 folio_account_redirty(folio);
1548 index += folio_nr_pages(folio);
1549 folio_put(folio);
4adaa611 1550 }
4adaa611
CM
1551}
1552
d352ac68
CM
1553/* find the first state struct with 'bits' set after 'start', and
1554 * return it. tree->lock must be held. NULL will returned if
1555 * nothing was found after 'start'
1556 */
48a3b636 1557static struct extent_state *
f97e27e9 1558find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1559{
1560 struct rb_node *node;
1561 struct extent_state *state;
1562
1563 /*
1564 * this search will find all the extents that end after
1565 * our range starts.
1566 */
1567 node = tree_search(tree, start);
d397712b 1568 if (!node)
d7fc640e 1569 goto out;
d7fc640e 1570
d397712b 1571 while (1) {
d7fc640e 1572 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1573 if (state->end >= start && (state->state & bits))
d7fc640e 1574 return state;
d397712b 1575
d7fc640e
CM
1576 node = rb_next(node);
1577 if (!node)
1578 break;
1579 }
1580out:
1581 return NULL;
1582}
d7fc640e 1583
69261c4b 1584/*
03509b78 1585 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1586 *
03509b78
QW
1587 * Note: If there are multiple bits set in @bits, any of them will match.
1588 *
1589 * Return 0 if we find something, and update @start_ret and @end_ret.
1590 * Return 1 if we found nothing.
69261c4b
XG
1591 */
1592int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1593 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1594 struct extent_state **cached_state)
69261c4b
XG
1595{
1596 struct extent_state *state;
1597 int ret = 1;
1598
1599 spin_lock(&tree->lock);
e6138876
JB
1600 if (cached_state && *cached_state) {
1601 state = *cached_state;
27a3507d 1602 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1603 while ((state = next_state(state)) != NULL) {
e6138876
JB
1604 if (state->state & bits)
1605 goto got_it;
e6138876
JB
1606 }
1607 free_extent_state(*cached_state);
1608 *cached_state = NULL;
1609 goto out;
1610 }
1611 free_extent_state(*cached_state);
1612 *cached_state = NULL;
1613 }
1614
69261c4b 1615 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1616got_it:
69261c4b 1617 if (state) {
e38e2ed7 1618 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1619 *start_ret = state->start;
1620 *end_ret = state->end;
1621 ret = 0;
1622 }
e6138876 1623out:
69261c4b
XG
1624 spin_unlock(&tree->lock);
1625 return ret;
1626}
1627
41a2ee75 1628/**
3bed2da1
NB
1629 * Find a contiguous area of bits
1630 *
1631 * @tree: io tree to check
1632 * @start: offset to start the search from
1633 * @start_ret: the first offset we found with the bits set
1634 * @end_ret: the final contiguous range of the bits that were set
1635 * @bits: bits to look for
41a2ee75
JB
1636 *
1637 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1638 * to set bits appropriately, and then merge them again. During this time it
1639 * will drop the tree->lock, so use this helper if you want to find the actual
1640 * contiguous area for given bits. We will search to the first bit we find, and
1641 * then walk down the tree until we find a non-contiguous area. The area
1642 * returned will be the full contiguous area with the bits set.
1643 */
1644int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1645 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1646{
1647 struct extent_state *state;
1648 int ret = 1;
1649
1650 spin_lock(&tree->lock);
1651 state = find_first_extent_bit_state(tree, start, bits);
1652 if (state) {
1653 *start_ret = state->start;
1654 *end_ret = state->end;
1655 while ((state = next_state(state)) != NULL) {
1656 if (state->start > (*end_ret + 1))
1657 break;
1658 *end_ret = state->end;
1659 }
1660 ret = 0;
1661 }
1662 spin_unlock(&tree->lock);
1663 return ret;
1664}
1665
45bfcfc1 1666/**
3bed2da1
NB
1667 * Find the first range that has @bits not set. This range could start before
1668 * @start.
45bfcfc1 1669 *
3bed2da1
NB
1670 * @tree: the tree to search
1671 * @start: offset at/after which the found extent should start
1672 * @start_ret: records the beginning of the range
1673 * @end_ret: records the end of the range (inclusive)
1674 * @bits: the set of bits which must be unset
45bfcfc1
NB
1675 *
1676 * Since unallocated range is also considered one which doesn't have the bits
1677 * set it's possible that @end_ret contains -1, this happens in case the range
1678 * spans (last_range_end, end of device]. In this case it's up to the caller to
1679 * trim @end_ret to the appropriate size.
1680 */
1681void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1682 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1683{
1684 struct extent_state *state;
1685 struct rb_node *node, *prev = NULL, *next;
1686
1687 spin_lock(&tree->lock);
1688
1689 /* Find first extent with bits cleared */
1690 while (1) {
9db33891 1691 node = tree_search_prev_next(tree, start, &prev, &next);
5750c375
NB
1692 if (!node && !next && !prev) {
1693 /*
1694 * Tree is completely empty, send full range and let
1695 * caller deal with it
1696 */
1697 *start_ret = 0;
1698 *end_ret = -1;
1699 goto out;
1700 } else if (!node && !next) {
1701 /*
1702 * We are past the last allocated chunk, set start at
1703 * the end of the last extent.
1704 */
1705 state = rb_entry(prev, struct extent_state, rb_node);
1706 *start_ret = state->end + 1;
1707 *end_ret = -1;
1708 goto out;
1709 } else if (!node) {
45bfcfc1 1710 node = next;
45bfcfc1 1711 }
1eaebb34
NB
1712 /*
1713 * At this point 'node' either contains 'start' or start is
1714 * before 'node'
1715 */
45bfcfc1 1716 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1717
1718 if (in_range(start, state->start, state->end - state->start + 1)) {
1719 if (state->state & bits) {
1720 /*
1721 * |--range with bits sets--|
1722 * |
1723 * start
1724 */
1725 start = state->end + 1;
1726 } else {
1727 /*
1728 * 'start' falls within a range that doesn't
1729 * have the bits set, so take its start as
1730 * the beginning of the desired range
1731 *
1732 * |--range with bits cleared----|
1733 * |
1734 * start
1735 */
1736 *start_ret = state->start;
1737 break;
1738 }
45bfcfc1 1739 } else {
1eaebb34
NB
1740 /*
1741 * |---prev range---|---hole/unset---|---node range---|
1742 * |
1743 * start
1744 *
1745 * or
1746 *
1747 * |---hole/unset--||--first node--|
1748 * 0 |
1749 * start
1750 */
1751 if (prev) {
1752 state = rb_entry(prev, struct extent_state,
1753 rb_node);
1754 *start_ret = state->end + 1;
1755 } else {
1756 *start_ret = 0;
1757 }
45bfcfc1
NB
1758 break;
1759 }
1760 }
1761
1762 /*
1763 * Find the longest stretch from start until an entry which has the
1764 * bits set
1765 */
1766 while (1) {
1767 state = rb_entry(node, struct extent_state, rb_node);
1768 if (state->end >= start && !(state->state & bits)) {
1769 *end_ret = state->end;
1770 } else {
1771 *end_ret = state->start - 1;
1772 break;
1773 }
1774
1775 node = rb_next(node);
1776 if (!node)
1777 break;
1778 }
1779out:
1780 spin_unlock(&tree->lock);
1781}
1782
d352ac68
CM
1783/*
1784 * find a contiguous range of bytes in the file marked as delalloc, not
1785 * more than 'max_bytes'. start and end are used to return the range,
1786 *
3522e903 1787 * true is returned if we find something, false if nothing was in the tree
d352ac68 1788 */
083e75e7
JB
1789bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1790 u64 *end, u64 max_bytes,
1791 struct extent_state **cached_state)
d1310b2e
CM
1792{
1793 struct rb_node *node;
1794 struct extent_state *state;
1795 u64 cur_start = *start;
3522e903 1796 bool found = false;
d1310b2e
CM
1797 u64 total_bytes = 0;
1798
cad321ad 1799 spin_lock(&tree->lock);
c8b97818 1800
d1310b2e
CM
1801 /*
1802 * this search will find all the extents that end after
1803 * our range starts.
1804 */
80ea96b1 1805 node = tree_search(tree, cur_start);
2b114d1d 1806 if (!node) {
3522e903 1807 *end = (u64)-1;
d1310b2e
CM
1808 goto out;
1809 }
1810
d397712b 1811 while (1) {
d1310b2e 1812 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1813 if (found && (state->start != cur_start ||
1814 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1815 goto out;
1816 }
1817 if (!(state->state & EXTENT_DELALLOC)) {
1818 if (!found)
1819 *end = state->end;
1820 goto out;
1821 }
c2a128d2 1822 if (!found) {
d1310b2e 1823 *start = state->start;
c2a128d2 1824 *cached_state = state;
b7ac31b7 1825 refcount_inc(&state->refs);
c2a128d2 1826 }
3522e903 1827 found = true;
d1310b2e
CM
1828 *end = state->end;
1829 cur_start = state->end + 1;
1830 node = rb_next(node);
d1310b2e 1831 total_bytes += state->end - state->start + 1;
7bf811a5 1832 if (total_bytes >= max_bytes)
573aecaf 1833 break;
573aecaf 1834 if (!node)
d1310b2e
CM
1835 break;
1836 }
1837out:
cad321ad 1838 spin_unlock(&tree->lock);
d1310b2e
CM
1839 return found;
1840}
1841
ed8f13bf
QW
1842/*
1843 * Process one page for __process_pages_contig().
1844 *
1845 * Return >0 if we hit @page == @locked_page.
1846 * Return 0 if we updated the page status.
1847 * Return -EGAIN if the we need to try again.
1848 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1849 */
e38992be
QW
1850static int process_one_page(struct btrfs_fs_info *fs_info,
1851 struct address_space *mapping,
ed8f13bf 1852 struct page *page, struct page *locked_page,
e38992be 1853 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1854{
e38992be
QW
1855 u32 len;
1856
1857 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1858 len = end + 1 - start;
1859
ed8f13bf 1860 if (page_ops & PAGE_SET_ORDERED)
b945a463 1861 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 1862 if (page_ops & PAGE_SET_ERROR)
e38992be 1863 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1864 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1865 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1866 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1867 }
1868 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1869 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
1870
1871 if (page == locked_page)
1872 return 1;
1873
ed8f13bf 1874 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1875 int ret;
1876
1877 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1878 if (ret)
1879 return ret;
ed8f13bf 1880 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1881 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1882 return -EAGAIN;
1883 }
1884 }
1885 if (page_ops & PAGE_UNLOCK)
1e1de387 1886 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1887 return 0;
1888}
1889
da2c7009
LB
1890static int __process_pages_contig(struct address_space *mapping,
1891 struct page *locked_page,
98af9ab1 1892 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1893 u64 *processed_end)
1894{
e38992be 1895 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1896 pgoff_t start_index = start >> PAGE_SHIFT;
1897 pgoff_t end_index = end >> PAGE_SHIFT;
1898 pgoff_t index = start_index;
1899 unsigned long nr_pages = end_index - start_index + 1;
1900 unsigned long pages_processed = 0;
1901 struct page *pages[16];
1902 int err = 0;
1903 int i;
1904
1905 if (page_ops & PAGE_LOCK) {
1906 ASSERT(page_ops == PAGE_LOCK);
1907 ASSERT(processed_end && *processed_end == start);
1908 }
1909
1910 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1911 mapping_set_error(mapping, -EIO);
1912
1913 while (nr_pages > 0) {
1914 int found_pages;
1915
1916 found_pages = find_get_pages_contig(mapping, index,
1917 min_t(unsigned long,
1918 nr_pages, ARRAY_SIZE(pages)), pages);
1919 if (found_pages == 0) {
1920 /*
1921 * Only if we're going to lock these pages, we can find
1922 * nothing at @index.
1923 */
1924 ASSERT(page_ops & PAGE_LOCK);
1925 err = -EAGAIN;
1926 goto out;
1927 }
1928
1929 for (i = 0; i < found_pages; i++) {
1930 int process_ret;
1931
e38992be
QW
1932 process_ret = process_one_page(fs_info, mapping,
1933 pages[i], locked_page, page_ops,
1934 start, end);
ed8f13bf
QW
1935 if (process_ret < 0) {
1936 for (; i < found_pages; i++)
1937 put_page(pages[i]);
1938 err = -EAGAIN;
1939 goto out;
1940 }
1941 put_page(pages[i]);
1942 pages_processed++;
1943 }
1944 nr_pages -= found_pages;
1945 index += found_pages;
1946 cond_resched();
1947 }
1948out:
1949 if (err && processed_end) {
1950 /*
1951 * Update @processed_end. I know this is awful since it has
1952 * two different return value patterns (inclusive vs exclusive).
1953 *
1954 * But the exclusive pattern is necessary if @start is 0, or we
1955 * underflow and check against processed_end won't work as
1956 * expected.
1957 */
1958 if (pages_processed)
1959 *processed_end = min(end,
1960 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1961 else
1962 *processed_end = start;
1963 }
1964 return err;
1965}
da2c7009 1966
143bede5
JM
1967static noinline void __unlock_for_delalloc(struct inode *inode,
1968 struct page *locked_page,
1969 u64 start, u64 end)
c8b97818 1970{
09cbfeaf
KS
1971 unsigned long index = start >> PAGE_SHIFT;
1972 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1973
76c0021d 1974 ASSERT(locked_page);
c8b97818 1975 if (index == locked_page->index && end_index == index)
143bede5 1976 return;
c8b97818 1977
98af9ab1 1978 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1979 PAGE_UNLOCK, NULL);
c8b97818
CM
1980}
1981
1982static noinline int lock_delalloc_pages(struct inode *inode,
1983 struct page *locked_page,
1984 u64 delalloc_start,
1985 u64 delalloc_end)
1986{
09cbfeaf 1987 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1988 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1989 u64 processed_end = delalloc_start;
c8b97818 1990 int ret;
c8b97818 1991
76c0021d 1992 ASSERT(locked_page);
c8b97818
CM
1993 if (index == locked_page->index && index == end_index)
1994 return 0;
1995
98af9ab1
QW
1996 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1997 delalloc_end, PAGE_LOCK, &processed_end);
1998 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1999 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 2000 processed_end);
c8b97818
CM
2001 return ret;
2002}
2003
2004/*
3522e903 2005 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 2006 * more than @max_bytes.
c8b97818 2007 *
2749f7ef
QW
2008 * @start: The original start bytenr to search.
2009 * Will store the extent range start bytenr.
2010 * @end: The original end bytenr of the search range
2011 * Will store the extent range end bytenr.
2012 *
2013 * Return true if we find a delalloc range which starts inside the original
2014 * range, and @start/@end will store the delalloc range start/end.
2015 *
2016 * Return false if we can't find any delalloc range which starts inside the
2017 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 2018 */
ce9f967f 2019EXPORT_FOR_TESTS
3522e903 2020noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 2021 struct page *locked_page, u64 *start,
917aacec 2022 u64 *end)
c8b97818 2023{
f7b12a62 2024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 2025 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
2026 const u64 orig_start = *start;
2027 const u64 orig_end = *end;
f7b12a62
NA
2028 /* The sanity tests may not set a valid fs_info. */
2029 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
2030 u64 delalloc_start;
2031 u64 delalloc_end;
3522e903 2032 bool found;
9655d298 2033 struct extent_state *cached_state = NULL;
c8b97818
CM
2034 int ret;
2035 int loops = 0;
2036
2749f7ef
QW
2037 /* Caller should pass a valid @end to indicate the search range end */
2038 ASSERT(orig_end > orig_start);
2039
2040 /* The range should at least cover part of the page */
2041 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2042 orig_end <= page_offset(locked_page)));
c8b97818
CM
2043again:
2044 /* step one, find a bunch of delalloc bytes starting at start */
2045 delalloc_start = *start;
2046 delalloc_end = 0;
083e75e7
JB
2047 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2048 max_bytes, &cached_state);
2749f7ef 2049 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 2050 *start = delalloc_start;
2749f7ef
QW
2051
2052 /* @delalloc_end can be -1, never go beyond @orig_end */
2053 *end = min(delalloc_end, orig_end);
c2a128d2 2054 free_extent_state(cached_state);
3522e903 2055 return false;
c8b97818
CM
2056 }
2057
70b99e69
CM
2058 /*
2059 * start comes from the offset of locked_page. We have to lock
2060 * pages in order, so we can't process delalloc bytes before
2061 * locked_page
2062 */
d397712b 2063 if (delalloc_start < *start)
70b99e69 2064 delalloc_start = *start;
70b99e69 2065
c8b97818
CM
2066 /*
2067 * make sure to limit the number of pages we try to lock down
c8b97818 2068 */
7bf811a5
JB
2069 if (delalloc_end + 1 - delalloc_start > max_bytes)
2070 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2071
c8b97818
CM
2072 /* step two, lock all the pages after the page that has start */
2073 ret = lock_delalloc_pages(inode, locked_page,
2074 delalloc_start, delalloc_end);
9bfd61d9 2075 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2076 if (ret == -EAGAIN) {
2077 /* some of the pages are gone, lets avoid looping by
2078 * shortening the size of the delalloc range we're searching
2079 */
9655d298 2080 free_extent_state(cached_state);
7d788742 2081 cached_state = NULL;
c8b97818 2082 if (!loops) {
09cbfeaf 2083 max_bytes = PAGE_SIZE;
c8b97818
CM
2084 loops = 1;
2085 goto again;
2086 } else {
3522e903 2087 found = false;
c8b97818
CM
2088 goto out_failed;
2089 }
2090 }
c8b97818
CM
2091
2092 /* step three, lock the state bits for the whole range */
ff13db41 2093 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2094
2095 /* then test to make sure it is all still delalloc */
2096 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2097 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2098 if (!ret) {
9655d298 2099 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2100 &cached_state);
c8b97818
CM
2101 __unlock_for_delalloc(inode, locked_page,
2102 delalloc_start, delalloc_end);
2103 cond_resched();
2104 goto again;
2105 }
9655d298 2106 free_extent_state(cached_state);
c8b97818
CM
2107 *start = delalloc_start;
2108 *end = delalloc_end;
2109out_failed:
2110 return found;
2111}
2112
ad7ff17b 2113void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2114 struct page *locked_page,
f97e27e9 2115 u32 clear_bits, unsigned long page_ops)
873695b3 2116{
ad7ff17b 2117 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2118
ad7ff17b 2119 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2120 start, end, page_ops, NULL);
873695b3
LB
2121}
2122
d352ac68
CM
2123/*
2124 * count the number of bytes in the tree that have a given bit(s)
2125 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2126 * cached. The total number found is returned.
2127 */
d1310b2e
CM
2128u64 count_range_bits(struct extent_io_tree *tree,
2129 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2130 u32 bits, int contig)
d1310b2e
CM
2131{
2132 struct rb_node *node;
2133 struct extent_state *state;
2134 u64 cur_start = *start;
2135 u64 total_bytes = 0;
ec29ed5b 2136 u64 last = 0;
d1310b2e
CM
2137 int found = 0;
2138
fae7f21c 2139 if (WARN_ON(search_end <= cur_start))
d1310b2e 2140 return 0;
d1310b2e 2141
cad321ad 2142 spin_lock(&tree->lock);
d1310b2e
CM
2143 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2144 total_bytes = tree->dirty_bytes;
2145 goto out;
2146 }
2147 /*
2148 * this search will find all the extents that end after
2149 * our range starts.
2150 */
80ea96b1 2151 node = tree_search(tree, cur_start);
d397712b 2152 if (!node)
d1310b2e 2153 goto out;
d1310b2e 2154
d397712b 2155 while (1) {
d1310b2e
CM
2156 state = rb_entry(node, struct extent_state, rb_node);
2157 if (state->start > search_end)
2158 break;
ec29ed5b
CM
2159 if (contig && found && state->start > last + 1)
2160 break;
2161 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2162 total_bytes += min(search_end, state->end) + 1 -
2163 max(cur_start, state->start);
2164 if (total_bytes >= max_bytes)
2165 break;
2166 if (!found) {
af60bed2 2167 *start = max(cur_start, state->start);
d1310b2e
CM
2168 found = 1;
2169 }
ec29ed5b
CM
2170 last = state->end;
2171 } else if (contig && found) {
2172 break;
d1310b2e
CM
2173 }
2174 node = rb_next(node);
2175 if (!node)
2176 break;
2177 }
2178out:
cad321ad 2179 spin_unlock(&tree->lock);
d1310b2e
CM
2180 return total_bytes;
2181}
b2950863 2182
d352ac68
CM
2183/*
2184 * set the private field for a given byte offset in the tree. If there isn't
2185 * an extent_state there already, this does nothing.
2186 */
b3f167aa
JB
2187int set_state_failrec(struct extent_io_tree *tree, u64 start,
2188 struct io_failure_record *failrec)
d1310b2e
CM
2189{
2190 struct rb_node *node;
2191 struct extent_state *state;
2192 int ret = 0;
2193
cad321ad 2194 spin_lock(&tree->lock);
d1310b2e
CM
2195 /*
2196 * this search will find all the extents that end after
2197 * our range starts.
2198 */
80ea96b1 2199 node = tree_search(tree, start);
2b114d1d 2200 if (!node) {
d1310b2e
CM
2201 ret = -ENOENT;
2202 goto out;
2203 }
2204 state = rb_entry(node, struct extent_state, rb_node);
2205 if (state->start != start) {
2206 ret = -ENOENT;
2207 goto out;
2208 }
47dc196a 2209 state->failrec = failrec;
d1310b2e 2210out:
cad321ad 2211 spin_unlock(&tree->lock);
d1310b2e
CM
2212 return ret;
2213}
2214
2279a270 2215struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2216{
2217 struct rb_node *node;
2218 struct extent_state *state;
2279a270 2219 struct io_failure_record *failrec;
d1310b2e 2220
cad321ad 2221 spin_lock(&tree->lock);
d1310b2e
CM
2222 /*
2223 * this search will find all the extents that end after
2224 * our range starts.
2225 */
80ea96b1 2226 node = tree_search(tree, start);
2b114d1d 2227 if (!node) {
2279a270 2228 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2229 goto out;
2230 }
2231 state = rb_entry(node, struct extent_state, rb_node);
2232 if (state->start != start) {
2279a270 2233 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2234 goto out;
2235 }
2279a270
NB
2236
2237 failrec = state->failrec;
d1310b2e 2238out:
cad321ad 2239 spin_unlock(&tree->lock);
2279a270 2240 return failrec;
d1310b2e
CM
2241}
2242
2243/*
2244 * searches a range in the state tree for a given mask.
70dec807 2245 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2246 * has the bits set. Otherwise, 1 is returned if any bit in the
2247 * range is found set.
2248 */
2249int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2250 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2251{
2252 struct extent_state *state = NULL;
2253 struct rb_node *node;
2254 int bitset = 0;
d1310b2e 2255
cad321ad 2256 spin_lock(&tree->lock);
27a3507d 2257 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2258 cached->end > start)
9655d298
CM
2259 node = &cached->rb_node;
2260 else
2261 node = tree_search(tree, start);
d1310b2e
CM
2262 while (node && start <= end) {
2263 state = rb_entry(node, struct extent_state, rb_node);
2264
2265 if (filled && state->start > start) {
2266 bitset = 0;
2267 break;
2268 }
2269
2270 if (state->start > end)
2271 break;
2272
2273 if (state->state & bits) {
2274 bitset = 1;
2275 if (!filled)
2276 break;
2277 } else if (filled) {
2278 bitset = 0;
2279 break;
2280 }
46562cec
CM
2281
2282 if (state->end == (u64)-1)
2283 break;
2284
d1310b2e
CM
2285 start = state->end + 1;
2286 if (start > end)
2287 break;
2288 node = rb_next(node);
2289 if (!node) {
2290 if (filled)
2291 bitset = 0;
2292 break;
2293 }
2294 }
cad321ad 2295 spin_unlock(&tree->lock);
d1310b2e
CM
2296 return bitset;
2297}
d1310b2e 2298
7870d082
JB
2299int free_io_failure(struct extent_io_tree *failure_tree,
2300 struct extent_io_tree *io_tree,
2301 struct io_failure_record *rec)
4a54c8c1
JS
2302{
2303 int ret;
2304 int err = 0;
4a54c8c1 2305
47dc196a 2306 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2307 ret = clear_extent_bits(failure_tree, rec->start,
2308 rec->start + rec->len - 1,
91166212 2309 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2310 if (ret)
2311 err = ret;
2312
7870d082 2313 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2314 rec->start + rec->len - 1,
91166212 2315 EXTENT_DAMAGED);
53b381b3
DW
2316 if (ret && !err)
2317 err = ret;
4a54c8c1
JS
2318
2319 kfree(rec);
2320 return err;
2321}
2322
4a54c8c1
JS
2323/*
2324 * this bypasses the standard btrfs submit functions deliberately, as
2325 * the standard behavior is to write all copies in a raid setup. here we only
2326 * want to write the one bad copy. so we do the mapping for ourselves and issue
2327 * submit_bio directly.
3ec706c8 2328 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2329 * actually prevents the read that triggered the error from finishing.
2330 * currently, there can be no more than two copies of every data bit. thus,
2331 * exactly one rewrite is required.
2332 */
38d5e541
QW
2333static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2334 u64 length, u64 logical, struct page *page,
2335 unsigned int pg_offset, int mirror_num)
4a54c8c1 2336{
4a54c8c1 2337 struct btrfs_device *dev;
e9458bfe
CH
2338 struct bio_vec bvec;
2339 struct bio bio;
4a54c8c1
JS
2340 u64 map_length = 0;
2341 u64 sector;
4c664611 2342 struct btrfs_io_context *bioc = NULL;
e9458bfe 2343 int ret = 0;
4a54c8c1 2344
1751e8a6 2345 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2346 BUG_ON(!mirror_num);
2347
554aed7d
JT
2348 if (btrfs_repair_one_zone(fs_info, logical))
2349 return 0;
f7ef5287 2350
4a54c8c1
JS
2351 map_length = length;
2352
b5de8d0d 2353 /*
4c664611 2354 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
2355 * associated to its stripes that don't go away while we are doing the
2356 * read repair operation.
2357 */
2358 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2359 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2360 /*
2361 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2362 * to update all raid stripes, but here we just want to correct
2363 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2364 * stripe's dev and sector.
2365 */
2366 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 2367 &map_length, &bioc, 0);
e9458bfe
CH
2368 if (ret)
2369 goto out_counter_dec;
4c664611 2370 ASSERT(bioc->mirror_num == 1);
c725328c
LB
2371 } else {
2372 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 2373 &map_length, &bioc, mirror_num);
e9458bfe
CH
2374 if (ret)
2375 goto out_counter_dec;
4c664611 2376 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 2377 }
c725328c 2378
4c664611 2379 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4c664611
QW
2380 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2381 btrfs_put_bioc(bioc);
e9458bfe 2382
ebbede42
AJ
2383 if (!dev || !dev->bdev ||
2384 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
e9458bfe
CH
2385 ret = -EIO;
2386 goto out_counter_dec;
4a54c8c1 2387 }
4a54c8c1 2388
e9458bfe
CH
2389 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
2390 bio.bi_iter.bi_sector = sector;
2391 __bio_add_page(&bio, page, length, pg_offset);
2392
2393 btrfsic_check_bio(&bio);
2394 ret = submit_bio_wait(&bio);
2395 if (ret) {
4a54c8c1 2396 /* try to remap that extent elsewhere? */
442a4f63 2397 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
e9458bfe 2398 goto out_bio_uninit;
4a54c8c1
JS
2399 }
2400
b14af3b4
DS
2401 btrfs_info_rl_in_rcu(fs_info,
2402 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2403 ino, start,
1203b681 2404 rcu_str_deref(dev->name), sector);
e9458bfe
CH
2405 ret = 0;
2406
2407out_bio_uninit:
2408 bio_uninit(&bio);
2409out_counter_dec:
b5de8d0d 2410 btrfs_bio_counter_dec(fs_info);
e9458bfe 2411 return ret;
4a54c8c1
JS
2412}
2413
2b48966a 2414int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2415{
20a1fbf9 2416 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2417 u64 start = eb->start;
cc5e31a4 2418 int i, num_pages = num_extent_pages(eb);
d95603b2 2419 int ret = 0;
ea466794 2420
bc98a42c 2421 if (sb_rdonly(fs_info->sb))
908960c6
ID
2422 return -EROFS;
2423
ea466794 2424 for (i = 0; i < num_pages; i++) {
fb85fc9a 2425 struct page *p = eb->pages[i];
1203b681 2426
6ec656bc 2427 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2428 start - page_offset(p), mirror_num);
ea466794
JB
2429 if (ret)
2430 break;
09cbfeaf 2431 start += PAGE_SIZE;
ea466794
JB
2432 }
2433
2434 return ret;
2435}
2436
c144c63f
CH
2437static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
2438{
2439 if (cur_mirror == failrec->num_copies)
2440 return cur_mirror + 1 - failrec->num_copies;
2441 return cur_mirror + 1;
2442}
2443
2444static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
2445{
2446 if (cur_mirror == 1)
2447 return failrec->num_copies;
2448 return cur_mirror - 1;
2449}
2450
4a54c8c1
JS
2451/*
2452 * each time an IO finishes, we do a fast check in the IO failure tree
2453 * to see if we need to process or clean up an io_failure_record
2454 */
7870d082
JB
2455int clean_io_failure(struct btrfs_fs_info *fs_info,
2456 struct extent_io_tree *failure_tree,
2457 struct extent_io_tree *io_tree, u64 start,
2458 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2459{
2460 u64 private;
4a54c8c1 2461 struct io_failure_record *failrec;
4a54c8c1 2462 struct extent_state *state;
c144c63f 2463 int mirror;
4a54c8c1 2464 int ret;
4a54c8c1
JS
2465
2466 private = 0;
7870d082
JB
2467 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2468 EXTENT_DIRTY, 0);
4a54c8c1
JS
2469 if (!ret)
2470 return 0;
2471
2279a270
NB
2472 failrec = get_state_failrec(failure_tree, start);
2473 if (IS_ERR(failrec))
4a54c8c1
JS
2474 return 0;
2475
4a54c8c1
JS
2476 BUG_ON(!failrec->this_mirror);
2477
bc98a42c 2478 if (sb_rdonly(fs_info->sb))
908960c6 2479 goto out;
4a54c8c1 2480
7870d082
JB
2481 spin_lock(&io_tree->lock);
2482 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2483 failrec->start,
2484 EXTENT_LOCKED);
7870d082 2485 spin_unlock(&io_tree->lock);
4a54c8c1 2486
c144c63f
CH
2487 if (!state || state->start > failrec->start ||
2488 state->end < failrec->start + failrec->len - 1)
2489 goto out;
2490
2491 mirror = failrec->this_mirror;
2492 do {
2493 mirror = prev_mirror(failrec, mirror);
2494 repair_io_failure(fs_info, ino, start, failrec->len,
2495 failrec->logical, page, pg_offset, mirror);
2496 } while (mirror != failrec->failed_mirror);
4a54c8c1
JS
2497
2498out:
7870d082 2499 free_io_failure(failure_tree, io_tree, failrec);
454ff3de 2500 return 0;
4a54c8c1
JS
2501}
2502
f612496b
MX
2503/*
2504 * Can be called when
2505 * - hold extent lock
2506 * - under ordered extent
2507 * - the inode is freeing
2508 */
7ab7956e 2509void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2510{
7ab7956e 2511 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2512 struct io_failure_record *failrec;
2513 struct extent_state *state, *next;
2514
2515 if (RB_EMPTY_ROOT(&failure_tree->state))
2516 return;
2517
2518 spin_lock(&failure_tree->lock);
2519 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2520 while (state) {
2521 if (state->start > end)
2522 break;
2523
2524 ASSERT(state->end <= end);
2525
2526 next = next_state(state);
2527
47dc196a 2528 failrec = state->failrec;
f612496b
MX
2529 free_extent_state(state);
2530 kfree(failrec);
2531
2532 state = next;
2533 }
2534 spin_unlock(&failure_tree->lock);
2535}
2536
3526302f 2537static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
c144c63f
CH
2538 u64 start,
2539 int failed_mirror)
4a54c8c1 2540{
ab8d0fc4 2541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2542 struct io_failure_record *failrec;
4a54c8c1 2543 struct extent_map *em;
4a54c8c1
JS
2544 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2545 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2546 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2547 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2548 int ret;
4a54c8c1
JS
2549 u64 logical;
2550
2279a270 2551 failrec = get_state_failrec(failure_tree, start);
3526302f 2552 if (!IS_ERR(failrec)) {
ab8d0fc4 2553 btrfs_debug(fs_info,
1245835d
QW
2554 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2555 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2556 /*
2557 * when data can be on disk more than twice, add to failrec here
2558 * (e.g. with a list for failed_mirror) to make
2559 * clean_io_failure() clean all those errors at once.
2560 */
c144c63f
CH
2561 ASSERT(failrec->this_mirror == failed_mirror);
2562 ASSERT(failrec->len == fs_info->sectorsize);
3526302f 2563 return failrec;
4a54c8c1 2564 }
2fe6303e 2565
3526302f
NB
2566 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2567 if (!failrec)
2568 return ERR_PTR(-ENOMEM);
2fe6303e 2569
3526302f 2570 failrec->start = start;
150e4b05 2571 failrec->len = sectorsize;
c144c63f
CH
2572 failrec->failed_mirror = failed_mirror;
2573 failrec->this_mirror = failed_mirror;
0ff40013 2574 failrec->compress_type = BTRFS_COMPRESS_NONE;
3526302f
NB
2575
2576 read_lock(&em_tree->lock);
2577 em = lookup_extent_mapping(em_tree, start, failrec->len);
2578 if (!em) {
2579 read_unlock(&em_tree->lock);
2580 kfree(failrec);
2581 return ERR_PTR(-EIO);
2582 }
2583
2584 if (em->start > start || em->start + em->len <= start) {
2585 free_extent_map(em);
2586 em = NULL;
2587 }
2588 read_unlock(&em_tree->lock);
2589 if (!em) {
2590 kfree(failrec);
2591 return ERR_PTR(-EIO);
2592 }
2593
2594 logical = start - em->start;
2595 logical = em->block_start + logical;
2596 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2597 logical = em->block_start;
0ff40013 2598 failrec->compress_type = em->compress_type;
3526302f
NB
2599 }
2600
2601 btrfs_debug(fs_info,
2602 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2603 logical, start, failrec->len);
2604
2605 failrec->logical = logical;
2606 free_extent_map(em);
2607
c144c63f
CH
2608 failrec->num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
2609 if (failrec->num_copies == 1) {
2610 /*
2611 * We only have a single copy of the data, so don't bother with
2612 * all the retry and error correction code that follows. No
2613 * matter what the error is, it is very likely to persist.
2614 */
2615 btrfs_debug(fs_info,
2616 "cannot repair logical %llu num_copies %d",
2617 failrec->logical, failrec->num_copies);
2618 kfree(failrec);
2619 return ERR_PTR(-EIO);
2620 }
2621
3526302f 2622 /* Set the bits in the private failure tree */
150e4b05 2623 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2624 EXTENT_LOCKED | EXTENT_DIRTY);
2625 if (ret >= 0) {
2626 ret = set_state_failrec(failure_tree, start, failrec);
2627 /* Set the bits in the inode's tree */
150e4b05
QW
2628 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2629 EXTENT_DAMAGED);
3526302f
NB
2630 } else if (ret < 0) {
2631 kfree(failrec);
2632 return ERR_PTR(ret);
2633 }
2634
2635 return failrec;
2fe6303e
MX
2636}
2637
150e4b05
QW
2638int btrfs_repair_one_sector(struct inode *inode,
2639 struct bio *failed_bio, u32 bio_offset,
2640 struct page *page, unsigned int pgoff,
2641 u64 start, int failed_mirror,
2642 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2643{
2644 struct io_failure_record *failrec;
77d5d689 2645 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2646 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2647 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
c3a3b19b 2648 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
7ffd27e3 2649 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 2650 struct bio *repair_bio;
c3a3b19b 2651 struct btrfs_bio *repair_bbio;
2fe6303e 2652
77d5d689
OS
2653 btrfs_debug(fs_info,
2654 "repair read error: read error at %llu", start);
2fe6303e 2655
1f7ad75b 2656 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2657
c144c63f 2658 failrec = btrfs_get_io_failure_record(inode, start, failed_mirror);
3526302f 2659 if (IS_ERR(failrec))
150e4b05 2660 return PTR_ERR(failrec);
2fe6303e 2661
c144c63f
CH
2662 /*
2663 * There are two premises:
2664 * a) deliver good data to the caller
2665 * b) correct the bad sectors on disk
2666 *
2667 * Since we're only doing repair for one sector, we only need to get
2668 * a good copy of the failed sector and if we succeed, we have setup
2669 * everything for repair_io_failure to do the rest for us.
2670 */
2671 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
2672 if (failrec->this_mirror == failrec->failed_mirror) {
2673 btrfs_debug(fs_info,
2674 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
2675 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
7870d082 2676 free_io_failure(failure_tree, tree, failrec);
150e4b05 2677 return -EIO;
2fe6303e
MX
2678 }
2679
c3a3b19b
QW
2680 repair_bio = btrfs_bio_alloc(1);
2681 repair_bbio = btrfs_bio(repair_bio);
00d82525 2682 repair_bbio->file_offset = start;
77d5d689 2683 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2684 repair_bio->bi_end_io = failed_bio->bi_end_io;
2685 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2686 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2687
c3a3b19b 2688 if (failed_bbio->csum) {
223486c2 2689 const u32 csum_size = fs_info->csum_size;
77d5d689 2690
c3a3b19b
QW
2691 repair_bbio->csum = repair_bbio->csum_inline;
2692 memcpy(repair_bbio->csum,
2693 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 2694 }
2fe6303e 2695
77d5d689 2696 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 2697 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 2698
ab8d0fc4 2699 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2700 "repair read error: submitting new read to mirror %d",
2701 failrec->this_mirror);
4a54c8c1 2702
8cbc3001
JB
2703 /*
2704 * At this point we have a bio, so any errors from submit_bio_hook()
2705 * will be handled by the endio on the repair_bio, so we can't return an
2706 * error here.
2707 */
0ff40013 2708 submit_bio_hook(inode, repair_bio, failrec->this_mirror, failrec->compress_type);
8cbc3001 2709 return BLK_STS_OK;
150e4b05
QW
2710}
2711
2712static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2713{
2714 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2715
2716 ASSERT(page_offset(page) <= start &&
2717 start + len <= page_offset(page) + PAGE_SIZE);
2718
150e4b05 2719 if (uptodate) {
14605409
BB
2720 if (fsverity_active(page->mapping->host) &&
2721 !PageError(page) &&
2722 !PageUptodate(page) &&
2723 start < i_size_read(page->mapping->host) &&
2724 !fsverity_verify_page(page)) {
2725 btrfs_page_set_error(fs_info, page, start, len);
2726 } else {
2727 btrfs_page_set_uptodate(fs_info, page, start, len);
2728 }
150e4b05
QW
2729 } else {
2730 btrfs_page_clear_uptodate(fs_info, page, start, len);
2731 btrfs_page_set_error(fs_info, page, start, len);
2732 }
2733
fbca46eb 2734 if (!btrfs_is_subpage(fs_info, page))
150e4b05 2735 unlock_page(page);
3d078efa 2736 else
150e4b05
QW
2737 btrfs_subpage_end_reader(fs_info, page, start, len);
2738}
2739
a5aa7ab6
CH
2740static void end_sector_io(struct page *page, u64 offset, bool uptodate)
2741{
2742 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
2743 const u32 sectorsize = inode->root->fs_info->sectorsize;
2744 struct extent_state *cached = NULL;
2745
2746 end_page_read(page, uptodate, offset, sectorsize);
2747 if (uptodate)
2748 set_extent_uptodate(&inode->io_tree, offset,
2749 offset + sectorsize - 1, &cached, GFP_ATOMIC);
2750 unlock_extent_cached_atomic(&inode->io_tree, offset,
2751 offset + sectorsize - 1, &cached);
2752}
2753
fd5a6f63
QW
2754static void submit_data_read_repair(struct inode *inode, struct bio *failed_bio,
2755 u32 bio_offset, const struct bio_vec *bvec,
2756 int failed_mirror, unsigned int error_bitmap)
150e4b05 2757{
fd5a6f63 2758 const unsigned int pgoff = bvec->bv_offset;
150e4b05 2759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
fd5a6f63
QW
2760 struct page *page = bvec->bv_page;
2761 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
2762 const u64 end = start + bvec->bv_len - 1;
150e4b05
QW
2763 const u32 sectorsize = fs_info->sectorsize;
2764 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
150e4b05
QW
2765 int i;
2766
2767 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2768
c0111c44
QW
2769 /* This repair is only for data */
2770 ASSERT(is_data_inode(inode));
2771
150e4b05
QW
2772 /* We're here because we had some read errors or csum mismatch */
2773 ASSERT(error_bitmap);
2774
2775 /*
2776 * We only get called on buffered IO, thus page must be mapped and bio
2777 * must not be cloned.
2778 */
2779 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2780
2781 /* Iterate through all the sectors in the range */
2782 for (i = 0; i < nr_bits; i++) {
2783 const unsigned int offset = i * sectorsize;
150e4b05
QW
2784 bool uptodate = false;
2785 int ret;
2786
2787 if (!(error_bitmap & (1U << i))) {
2788 /*
2789 * This sector has no error, just end the page read
2790 * and unlock the range.
2791 */
2792 uptodate = true;
2793 goto next;
2794 }
2795
2796 ret = btrfs_repair_one_sector(inode, failed_bio,
2797 bio_offset + offset,
2798 page, pgoff + offset, start + offset,
c93104e7 2799 failed_mirror, btrfs_submit_data_read_bio);
150e4b05
QW
2800 if (!ret) {
2801 /*
2802 * We have submitted the read repair, the page release
2803 * will be handled by the endio function of the
2804 * submitted repair bio.
2805 * Thus we don't need to do any thing here.
2806 */
2807 continue;
2808 }
2809 /*
fd5a6f63
QW
2810 * Continue on failed repair, otherwise the remaining sectors
2811 * will not be properly unlocked.
150e4b05 2812 */
150e4b05 2813next:
a5aa7ab6 2814 end_sector_io(page, start + offset, uptodate);
150e4b05 2815 }
4a54c8c1
JS
2816}
2817
d1310b2e
CM
2818/* lots and lots of room for performance fixes in the end_bio funcs */
2819
b5227c07 2820void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2821{
38a39ac7 2822 struct btrfs_inode *inode;
25c1252a 2823 const bool uptodate = (err == 0);
3e2426bd 2824 int ret = 0;
87826df0 2825
38a39ac7
QW
2826 ASSERT(page && page->mapping);
2827 inode = BTRFS_I(page->mapping->host);
2828 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2829
87826df0 2830 if (!uptodate) {
963e4db8
QW
2831 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2832 u32 len;
2833
2834 ASSERT(end + 1 - start <= U32_MAX);
2835 len = end + 1 - start;
2836
2837 btrfs_page_clear_uptodate(fs_info, page, start, len);
2838 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 2839 ret = err < 0 ? err : -EIO;
5dca6eea 2840 mapping_set_error(page->mapping, ret);
87826df0 2841 }
87826df0
JM
2842}
2843
d1310b2e
CM
2844/*
2845 * after a writepage IO is done, we need to:
2846 * clear the uptodate bits on error
2847 * clear the writeback bits in the extent tree for this IO
2848 * end_page_writeback if the page has no more pending IO
2849 *
2850 * Scheduling is not allowed, so the extent state tree is expected
2851 * to have one and only one object corresponding to this IO.
2852 */
4246a0b6 2853static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2854{
4e4cbee9 2855 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2856 struct bio_vec *bvec;
d1310b2e
CM
2857 u64 start;
2858 u64 end;
6dc4f100 2859 struct bvec_iter_all iter_all;
d8e3fb10 2860 bool first_bvec = true;
d1310b2e 2861
c09abff8 2862 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2863 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2864 struct page *page = bvec->bv_page;
0b246afa
JM
2865 struct inode *inode = page->mapping->host;
2866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2867 const u32 sectorsize = fs_info->sectorsize;
2868
2869 /* Our read/write should always be sector aligned. */
2870 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2871 btrfs_err(fs_info,
2872 "partial page write in btrfs with offset %u and length %u",
2873 bvec->bv_offset, bvec->bv_len);
2874 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2875 btrfs_info(fs_info,
2876 "incomplete page write with offset %u and length %u",
2877 bvec->bv_offset, bvec->bv_len);
2878
2879 start = page_offset(page) + bvec->bv_offset;
2880 end = start + bvec->bv_len - 1;
d1310b2e 2881
d8e3fb10
NA
2882 if (first_bvec) {
2883 btrfs_record_physical_zoned(inode, start, bio);
2884 first_bvec = false;
2885 }
2886
4e4cbee9 2887 end_extent_writepage(page, error, start, end);
9047e317
QW
2888
2889 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2890 }
2b1f55b0 2891
d1310b2e 2892 bio_put(bio);
d1310b2e
CM
2893}
2894
94e8c95c
QW
2895/*
2896 * Record previously processed extent range
2897 *
2898 * For endio_readpage_release_extent() to handle a full extent range, reducing
2899 * the extent io operations.
2900 */
2901struct processed_extent {
2902 struct btrfs_inode *inode;
2903 /* Start of the range in @inode */
2904 u64 start;
2e626e56 2905 /* End of the range in @inode */
94e8c95c
QW
2906 u64 end;
2907 bool uptodate;
2908};
2909
2910/*
2911 * Try to release processed extent range
2912 *
2913 * May not release the extent range right now if the current range is
2914 * contiguous to processed extent.
2915 *
2916 * Will release processed extent when any of @inode, @uptodate, the range is
2917 * no longer contiguous to the processed range.
2918 *
2919 * Passing @inode == NULL will force processed extent to be released.
2920 */
2921static void endio_readpage_release_extent(struct processed_extent *processed,
2922 struct btrfs_inode *inode, u64 start, u64 end,
2923 bool uptodate)
883d0de4
MX
2924{
2925 struct extent_state *cached = NULL;
94e8c95c
QW
2926 struct extent_io_tree *tree;
2927
2928 /* The first extent, initialize @processed */
2929 if (!processed->inode)
2930 goto update;
883d0de4 2931
94e8c95c
QW
2932 /*
2933 * Contiguous to processed extent, just uptodate the end.
2934 *
2935 * Several things to notice:
2936 *
2937 * - bio can be merged as long as on-disk bytenr is contiguous
2938 * This means we can have page belonging to other inodes, thus need to
2939 * check if the inode still matches.
2940 * - bvec can contain range beyond current page for multi-page bvec
2941 * Thus we need to do processed->end + 1 >= start check
2942 */
2943 if (processed->inode == inode && processed->uptodate == uptodate &&
2944 processed->end + 1 >= start && end >= processed->end) {
2945 processed->end = end;
2946 return;
2947 }
2948
2949 tree = &processed->inode->io_tree;
2950 /*
2951 * Now we don't have range contiguous to the processed range, release
2952 * the processed range now.
2953 */
2954 if (processed->uptodate && tree->track_uptodate)
2955 set_extent_uptodate(tree, processed->start, processed->end,
2956 &cached, GFP_ATOMIC);
2957 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2958 &cached);
2959
2960update:
2961 /* Update processed to current range */
2962 processed->inode = inode;
2963 processed->start = start;
2964 processed->end = end;
2965 processed->uptodate = uptodate;
883d0de4
MX
2966}
2967
92082d40
QW
2968static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2969{
2970 ASSERT(PageLocked(page));
fbca46eb 2971 if (!btrfs_is_subpage(fs_info, page))
92082d40
QW
2972 return;
2973
2974 ASSERT(PagePrivate(page));
2975 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2976}
2977
d9bb77d5 2978/*
01cd3909 2979 * Find extent buffer for a givne bytenr.
d9bb77d5
QW
2980 *
2981 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2982 * in endio context.
2983 */
2984static struct extent_buffer *find_extent_buffer_readpage(
2985 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2986{
2987 struct extent_buffer *eb;
2988
2989 /*
2990 * For regular sectorsize, we can use page->private to grab extent
2991 * buffer
2992 */
fbca46eb 2993 if (fs_info->nodesize >= PAGE_SIZE) {
d9bb77d5
QW
2994 ASSERT(PagePrivate(page) && page->private);
2995 return (struct extent_buffer *)page->private;
2996 }
2997
01cd3909
DS
2998 /* For subpage case, we need to lookup buffer radix tree */
2999 rcu_read_lock();
3000 eb = radix_tree_lookup(&fs_info->buffer_radix,
3001 bytenr >> fs_info->sectorsize_bits);
3002 rcu_read_unlock();
d9bb77d5
QW
3003 ASSERT(eb);
3004 return eb;
3005}
3006
d1310b2e
CM
3007/*
3008 * after a readpage IO is done, we need to:
3009 * clear the uptodate bits on error
3010 * set the uptodate bits if things worked
3011 * set the page up to date if all extents in the tree are uptodate
3012 * clear the lock bit in the extent tree
3013 * unlock the page if there are no other extents locked for it
3014 *
3015 * Scheduling is not allowed, so the extent state tree is expected
3016 * to have one and only one object corresponding to this IO.
3017 */
4246a0b6 3018static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 3019{
2c30c71b 3020 struct bio_vec *bvec;
c3a3b19b 3021 struct btrfs_bio *bbio = btrfs_bio(bio);
7870d082 3022 struct extent_io_tree *tree, *failure_tree;
94e8c95c 3023 struct processed_extent processed = { 0 };
7ffd27e3
QW
3024 /*
3025 * The offset to the beginning of a bio, since one bio can never be
3026 * larger than UINT_MAX, u32 here is enough.
3027 */
3028 u32 bio_offset = 0;
5cf1ab56 3029 int mirror;
6dc4f100 3030 struct bvec_iter_all iter_all;
d1310b2e 3031
c09abff8 3032 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3033 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 3034 bool uptodate = !bio->bi_status;
d1310b2e 3035 struct page *page = bvec->bv_page;
a71754fc 3036 struct inode *inode = page->mapping->host;
ab8d0fc4 3037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3038 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3039 unsigned int error_bitmap = (unsigned int)-1;
97861cd1 3040 bool repair = false;
7ffd27e3
QW
3041 u64 start;
3042 u64 end;
3043 u32 len;
507903b8 3044
ab8d0fc4
JM
3045 btrfs_debug(fs_info,
3046 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3047 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 3048 bbio->mirror_num);
a71754fc 3049 tree = &BTRFS_I(inode)->io_tree;
7870d082 3050 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3051
8b8bbd46
QW
3052 /*
3053 * We always issue full-sector reads, but if some block in a
3054 * page fails to read, blk_update_request() will advance
3055 * bv_offset and adjust bv_len to compensate. Print a warning
3056 * for unaligned offsets, and an error if they don't add up to
3057 * a full sector.
3058 */
3059 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3060 btrfs_err(fs_info,
3061 "partial page read in btrfs with offset %u and length %u",
3062 bvec->bv_offset, bvec->bv_len);
3063 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3064 sectorsize))
3065 btrfs_info(fs_info,
3066 "incomplete page read with offset %u and length %u",
3067 bvec->bv_offset, bvec->bv_len);
3068
3069 start = page_offset(page) + bvec->bv_offset;
3070 end = start + bvec->bv_len - 1;
facc8a22 3071 len = bvec->bv_len;
d1310b2e 3072
c3a3b19b 3073 mirror = bbio->mirror_num;
78e62c02 3074 if (likely(uptodate)) {
150e4b05 3075 if (is_data_inode(inode)) {
c3a3b19b 3076 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 3077 bio_offset, page, start, end);
97861cd1
CH
3078 if (error_bitmap)
3079 uptodate = false;
150e4b05 3080 } else {
97861cd1
CH
3081 if (btrfs_validate_metadata_buffer(bbio,
3082 page, start, end, mirror))
3083 uptodate = false;
150e4b05 3084 }
d1310b2e 3085 }
ea466794 3086
883d0de4 3087 if (likely(uptodate)) {
a71754fc 3088 loff_t i_size = i_size_read(inode);
09cbfeaf 3089 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3090
97861cd1
CH
3091 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3092 failure_tree, tree, start, page,
3093 btrfs_ino(BTRFS_I(inode)), 0);
3094
c28ea613
QW
3095 /*
3096 * Zero out the remaining part if this range straddles
3097 * i_size.
3098 *
3099 * Here we should only zero the range inside the bvec,
3100 * not touch anything else.
3101 *
3102 * NOTE: i_size is exclusive while end is inclusive.
3103 */
3104 if (page->index == end_index && i_size <= end) {
3105 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3106 offset_in_page(start));
c28ea613
QW
3107
3108 zero_user_segment(page, zero_start,
3109 offset_in_page(end) + 1);
3110 }
97861cd1
CH
3111 } else if (is_data_inode(inode)) {
3112 /*
3113 * Only try to repair bios that actually made it to a
3114 * device. If the bio failed to be submitted mirror
3115 * is 0 and we need to fail it without retrying.
3116 */
3117 if (mirror > 0)
3118 repair = true;
3119 } else {
3120 struct extent_buffer *eb;
3121
3122 eb = find_extent_buffer_readpage(fs_info, page, start);
3123 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3124 eb->read_mirror = mirror;
3125 atomic_dec(&eb->io_pages);
70dec807 3126 }
97861cd1
CH
3127
3128 if (repair) {
3129 /*
3130 * submit_data_read_repair() will handle all the good
3131 * and bad sectors, we just continue to the next bvec.
3132 */
3133 submit_data_read_repair(inode, bio, bio_offset, bvec,
3134 mirror, error_bitmap);
3135 } else {
3136 /* Update page status and unlock */
3137 end_page_read(page, uptodate, start, len);
3138 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3139 start, end, PageUptodate(page));
3140 }
3141
7ffd27e3
QW
3142 ASSERT(bio_offset + len > bio_offset);
3143 bio_offset += len;
883d0de4 3144
2c30c71b 3145 }
94e8c95c
QW
3146 /* Release the last extent */
3147 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 3148 btrfs_bio_free_csum(bbio);
d1310b2e 3149 bio_put(bio);
d1310b2e
CM
3150}
3151
dd137dd1
STD
3152/**
3153 * Populate every free slot in a provided array with pages.
3154 *
3155 * @nr_pages: number of pages to allocate
3156 * @page_array: the array to fill with pages; any existing non-null entries in
3157 * the array will be skipped
3158 *
3159 * Return: 0 if all pages were able to be allocated;
3160 * -ENOMEM otherwise, and the caller is responsible for freeing all
3161 * non-null page pointers in the array.
3162 */
3163int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
3164{
91d6ac1d 3165 unsigned int allocated;
dd137dd1 3166
91d6ac1d
STD
3167 for (allocated = 0; allocated < nr_pages;) {
3168 unsigned int last = allocated;
dd137dd1 3169
91d6ac1d
STD
3170 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
3171
395cb57e
STD
3172 if (allocated == nr_pages)
3173 return 0;
3174
91d6ac1d
STD
3175 /*
3176 * During this iteration, no page could be allocated, even
3177 * though alloc_pages_bulk_array() falls back to alloc_page()
3178 * if it could not bulk-allocate. So we must be out of memory.
3179 */
3180 if (allocated == last)
dd137dd1 3181 return -ENOMEM;
395cb57e
STD
3182
3183 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
3184 }
3185 return 0;
3186}
3187
9be3395b 3188/*
184f999e
DS
3189 * Initialize the members up to but not including 'bio'. Use after allocating a
3190 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3191 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3192 */
c3a3b19b 3193static inline void btrfs_bio_init(struct btrfs_bio *bbio)
d1310b2e 3194{
c3a3b19b 3195 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
184f999e 3196}
d1310b2e 3197
9be3395b 3198/*
cd8e0cca
QW
3199 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3200 *
3201 * The bio allocation is backed by bioset and does not fail.
9be3395b 3202 */
c3a3b19b 3203struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
d1310b2e
CM
3204{
3205 struct bio *bio;
d1310b2e 3206
cd8e0cca 3207 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
609be106 3208 bio = bio_alloc_bioset(NULL, nr_iovecs, 0, GFP_NOFS, &btrfs_bioset);
c3a3b19b 3209 btrfs_bio_init(btrfs_bio(bio));
d1310b2e
CM
3210 return bio;
3211}
3212
21dda654 3213struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
2f8e9140
LB
3214{
3215 struct bio *bio;
c3a3b19b 3216 struct btrfs_bio *bbio;
2f8e9140 3217
21dda654
CK
3218 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3219
2f8e9140 3220 /* this will never fail when it's backed by a bioset */
abfc426d 3221 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3222 ASSERT(bio);
3223
c3a3b19b
QW
3224 bbio = btrfs_bio(bio);
3225 btrfs_bio_init(bbio);
2f8e9140
LB
3226
3227 bio_trim(bio, offset >> 9, size >> 9);
c3a3b19b 3228 bbio->iter = bio->bi_iter;
2f8e9140
LB
3229 return bio;
3230}
9be3395b 3231
953651eb
NA
3232/**
3233 * Attempt to add a page to bio
3234 *
be8d1a2a 3235 * @bio_ctrl: record both the bio, and its bio_flags
953651eb
NA
3236 * @page: page to add to the bio
3237 * @disk_bytenr: offset of the new bio or to check whether we are adding
3238 * a contiguous page to the previous one
953651eb 3239 * @size: portion of page that we want to write
be8d1a2a 3240 * @pg_offset: starting offset in the page
cb3a12d9 3241 * @compress_type: compression type of the current bio to see if we can merge them
953651eb
NA
3242 *
3243 * Attempt to add a page to bio considering stripe alignment etc.
3244 *
e0eefe07
QW
3245 * Return >= 0 for the number of bytes added to the bio.
3246 * Can return 0 if the current bio is already at stripe/zone boundary.
3247 * Return <0 for error.
953651eb 3248 */
e0eefe07
QW
3249static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3250 struct page *page,
3251 u64 disk_bytenr, unsigned int size,
3252 unsigned int pg_offset,
cb3a12d9 3253 enum btrfs_compression_type compress_type)
953651eb 3254{
390ed29b
QW
3255 struct bio *bio = bio_ctrl->bio;
3256 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 3257 u32 real_size;
953651eb
NA
3258 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3259 bool contig;
e1326f03 3260 int ret;
953651eb 3261
390ed29b
QW
3262 ASSERT(bio);
3263 /* The limit should be calculated when bio_ctrl->bio is allocated */
3264 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
0f07003b 3265 if (bio_ctrl->compress_type != compress_type)
e0eefe07 3266 return 0;
953651eb 3267
0f07003b 3268 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
953651eb
NA
3269 contig = bio->bi_iter.bi_sector == sector;
3270 else
3271 contig = bio_end_sector(bio) == sector;
3272 if (!contig)
e0eefe07 3273 return 0;
953651eb 3274
e0eefe07
QW
3275 real_size = min(bio_ctrl->len_to_oe_boundary,
3276 bio_ctrl->len_to_stripe_boundary) - bio_size;
3277 real_size = min(real_size, size);
3278
3279 /*
3280 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3281 * bio will still execute its endio function on the page!
3282 */
3283 if (real_size == 0)
3284 return 0;
953651eb 3285
390ed29b 3286 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 3287 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 3288 else
e0eefe07 3289 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 3290
e0eefe07 3291 return ret;
953651eb
NA
3292}
3293
390ed29b 3294static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 3295 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
3296{
3297 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3298 struct btrfs_io_geometry geom;
3299 struct btrfs_ordered_extent *ordered;
3300 struct extent_map *em;
3301 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3302 int ret;
3303
3304 /*
3305 * Pages for compressed extent are never submitted to disk directly,
3306 * thus it has no real boundary, just set them to U32_MAX.
3307 *
3308 * The split happens for real compressed bio, which happens in
3309 * btrfs_submit_compressed_read/write().
3310 */
0f07003b 3311 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
390ed29b
QW
3312 bio_ctrl->len_to_oe_boundary = U32_MAX;
3313 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3314 return 0;
3315 }
3316 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3317 if (IS_ERR(em))
3318 return PTR_ERR(em);
3319 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3320 logical, &geom);
3321 free_extent_map(em);
3322 if (ret < 0) {
3323 return ret;
3324 }
3325 if (geom.len > U32_MAX)
3326 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3327 else
3328 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3329
73672710 3330 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
390ed29b
QW
3331 bio_ctrl->len_to_oe_boundary = U32_MAX;
3332 return 0;
3333 }
3334
390ed29b 3335 /* Ordered extent not yet created, so we're good */
939c7feb 3336 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
3337 if (!ordered) {
3338 bio_ctrl->len_to_oe_boundary = U32_MAX;
3339 return 0;
3340 }
3341
3342 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3343 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3344 btrfs_put_ordered_extent(ordered);
3345 return 0;
3346}
3347
e0eefe07
QW
3348static int alloc_new_bio(struct btrfs_inode *inode,
3349 struct btrfs_bio_ctrl *bio_ctrl,
3350 struct writeback_control *wbc,
3351 unsigned int opf,
3352 bio_end_io_t end_io_func,
939c7feb 3353 u64 disk_bytenr, u32 offset, u64 file_offset,
cb3a12d9 3354 enum btrfs_compression_type compress_type)
e0eefe07
QW
3355{
3356 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3357 struct bio *bio;
3358 int ret;
3359
c3a3b19b 3360 bio = btrfs_bio_alloc(BIO_MAX_VECS);
e0eefe07
QW
3361 /*
3362 * For compressed page range, its disk_bytenr is always @disk_bytenr
3363 * passed in, no matter if we have added any range into previous bio.
3364 */
cb3a12d9 3365 if (compress_type != BTRFS_COMPRESS_NONE)
cd8e0cca 3366 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 3367 else
cd8e0cca 3368 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07 3369 bio_ctrl->bio = bio;
0f07003b 3370 bio_ctrl->compress_type = compress_type;
e0eefe07 3371 bio->bi_end_io = end_io_func;
e0eefe07 3372 bio->bi_opf = opf;
939c7feb
NA
3373 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3374 if (ret < 0)
3375 goto error;
e0eefe07 3376
50f1cff3
CH
3377 if (wbc) {
3378 /*
3379 * For Zone append we need the correct block_device that we are
3380 * going to write to set in the bio to be able to respect the
3381 * hardware limitation. Look it up here:
3382 */
3383 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
3384 struct btrfs_device *dev;
3385
3386 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
3387 fs_info->sectorsize);
3388 if (IS_ERR(dev)) {
3389 ret = PTR_ERR(dev);
3390 goto error;
3391 }
e0eefe07 3392
50f1cff3
CH
3393 bio_set_dev(bio, dev->bdev);
3394 } else {
3395 /*
3396 * Otherwise pick the last added device to support
3397 * cgroup writeback. For multi-device file systems this
3398 * means blk-cgroup policies have to always be set on the
3399 * last added/replaced device. This is a bit odd but has
3400 * been like that for a long time.
3401 */
3402 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
e0eefe07 3403 }
50f1cff3
CH
3404 wbc_init_bio(wbc, bio);
3405 } else {
3406 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
e0eefe07
QW
3407 }
3408 return 0;
3409error:
3410 bio_ctrl->bio = NULL;
3411 bio->bi_status = errno_to_blk_status(ret);
3412 bio_endio(bio);
3413 return ret;
3414}
3415
4b81ba48
DS
3416/*
3417 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3418 * @wbc: optional writeback control for io accounting
3419 * @page: page to add to the bio
0c64c33c
QW
3420 * @disk_bytenr: logical bytenr where the write will be
3421 * @size: portion of page that we want to write to
b8b3d625
DS
3422 * @pg_offset: offset of the new bio or to check whether we are adding
3423 * a contiguous page to the previous one
5c2b1fd7 3424 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3425 * @end_io_func: end_io callback for new bio
3426 * @mirror_num: desired mirror to read/write
3427 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
cb3a12d9 3428 * @compress_type: compress type for current bio
4b81ba48 3429 */
0ceb34bf 3430static int submit_extent_page(unsigned int opf,
da2f0f74 3431 struct writeback_control *wbc,
390ed29b 3432 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3433 struct page *page, u64 disk_bytenr,
6c5a4e2c 3434 size_t size, unsigned long pg_offset,
f188591e 3435 bio_end_io_t end_io_func,
cb3a12d9 3436 enum btrfs_compression_type compress_type,
005efedf 3437 bool force_bio_submit)
d1310b2e
CM
3438{
3439 int ret = 0;
e1326f03 3440 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 3441 unsigned int cur = pg_offset;
d1310b2e 3442
390ed29b 3443 ASSERT(bio_ctrl);
5c2b1fd7 3444
390ed29b
QW
3445 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3446 pg_offset + size <= PAGE_SIZE);
722c82ac
CH
3447 if (force_bio_submit)
3448 submit_one_bio(bio_ctrl);
e0eefe07
QW
3449
3450 while (cur < pg_offset + size) {
3451 u32 offset = cur - pg_offset;
3452 int added;
3453
3454 /* Allocate new bio if needed */
3455 if (!bio_ctrl->bio) {
3456 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3457 end_io_func, disk_bytenr, offset,
939c7feb 3458 page_offset(page) + cur,
cb3a12d9 3459 compress_type);
e0eefe07
QW
3460 if (ret < 0)
3461 return ret;
3462 }
3463 /*
3464 * We must go through btrfs_bio_add_page() to ensure each
3465 * page range won't cross various boundaries.
3466 */
cb3a12d9 3467 if (compress_type != BTRFS_COMPRESS_NONE)
e0eefe07
QW
3468 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3469 size - offset, pg_offset + offset,
cb3a12d9 3470 compress_type);
e0eefe07
QW
3471 else
3472 added = btrfs_bio_add_page(bio_ctrl, page,
3473 disk_bytenr + offset, size - offset,
cb3a12d9 3474 pg_offset + offset, compress_type);
e0eefe07
QW
3475
3476 /* Metadata page range should never be split */
3477 if (!is_data_inode(&inode->vfs_inode))
3478 ASSERT(added == 0 || added == size - offset);
3479
3480 /* At least we added some page, update the account */
3481 if (wbc && added)
3482 wbc_account_cgroup_owner(wbc, page, added);
3483
3484 /* We have reached boundary, submit right now */
3485 if (added < size - offset) {
3486 /* The bio should contain some page(s) */
3487 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
722c82ac 3488 submit_one_bio(bio_ctrl);
d1310b2e 3489 }
e0eefe07 3490 cur += added;
d1310b2e 3491 }
e0eefe07 3492 return 0;
d1310b2e
CM
3493}
3494
760f991f
QW
3495static int attach_extent_buffer_page(struct extent_buffer *eb,
3496 struct page *page,
3497 struct btrfs_subpage *prealloc)
d1310b2e 3498{
760f991f
QW
3499 struct btrfs_fs_info *fs_info = eb->fs_info;
3500 int ret = 0;
3501
0d01e247
QW
3502 /*
3503 * If the page is mapped to btree inode, we should hold the private
3504 * lock to prevent race.
3505 * For cloned or dummy extent buffers, their pages are not mapped and
3506 * will not race with any other ebs.
3507 */
3508 if (page->mapping)
3509 lockdep_assert_held(&page->mapping->private_lock);
3510
fbca46eb 3511 if (fs_info->nodesize >= PAGE_SIZE) {
760f991f
QW
3512 if (!PagePrivate(page))
3513 attach_page_private(page, eb);
3514 else
3515 WARN_ON(page->private != (unsigned long)eb);
3516 return 0;
3517 }
3518
3519 /* Already mapped, just free prealloc */
3520 if (PagePrivate(page)) {
3521 btrfs_free_subpage(prealloc);
3522 return 0;
3523 }
3524
3525 if (prealloc)
3526 /* Has preallocated memory for subpage */
3527 attach_page_private(page, prealloc);
d1b89bc0 3528 else
760f991f
QW
3529 /* Do new allocation to attach subpage */
3530 ret = btrfs_attach_subpage(fs_info, page,
3531 BTRFS_SUBPAGE_METADATA);
3532 return ret;
d1310b2e
CM
3533}
3534
32443de3 3535int set_page_extent_mapped(struct page *page)
d1310b2e 3536{
32443de3
QW
3537 struct btrfs_fs_info *fs_info;
3538
3539 ASSERT(page->mapping);
3540
3541 if (PagePrivate(page))
3542 return 0;
3543
3544 fs_info = btrfs_sb(page->mapping->host->i_sb);
3545
fbca46eb 3546 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
3547 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3548
3549 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3550 return 0;
3551}
3552
3553void clear_page_extent_mapped(struct page *page)
3554{
3555 struct btrfs_fs_info *fs_info;
3556
3557 ASSERT(page->mapping);
3558
d1b89bc0 3559 if (!PagePrivate(page))
32443de3
QW
3560 return;
3561
3562 fs_info = btrfs_sb(page->mapping->host->i_sb);
fbca46eb 3563 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
3564 return btrfs_detach_subpage(fs_info, page);
3565
3566 detach_page_private(page);
d1310b2e
CM
3567}
3568
125bac01
MX
3569static struct extent_map *
3570__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3571 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3572{
3573 struct extent_map *em;
3574
3575 if (em_cached && *em_cached) {
3576 em = *em_cached;
cbc0e928 3577 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3578 start < extent_map_end(em)) {
490b54d6 3579 refcount_inc(&em->refs);
125bac01
MX
3580 return em;
3581 }
3582
3583 free_extent_map(em);
3584 *em_cached = NULL;
3585 }
3586
1a5ee1e6 3587 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 3588 if (em_cached && !IS_ERR(em)) {
125bac01 3589 BUG_ON(*em_cached);
490b54d6 3590 refcount_inc(&em->refs);
125bac01
MX
3591 *em_cached = em;
3592 }
3593 return em;
3594}
d1310b2e
CM
3595/*
3596 * basic readpage implementation. Locked extent state structs are inserted
3597 * into the tree that are removed when the IO is done (by the end_io
3598 * handlers)
79787eaa 3599 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3600 * return 0 on success, otherwise return error
d1310b2e 3601 */
7aab8b32 3602static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3603 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3604 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3605{
3606 struct inode *inode = page->mapping->host;
92082d40 3607 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3608 u64 start = page_offset(page);
8eec8296 3609 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3610 u64 cur = start;
3611 u64 extent_offset;
3612 u64 last_byte = i_size_read(inode);
3613 u64 block_start;
3614 u64 cur_end;
d1310b2e 3615 struct extent_map *em;
baf863b9 3616 int ret = 0;
306e16ce 3617 size_t pg_offset = 0;
d1310b2e
CM
3618 size_t iosize;
3619 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 3620 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3621
32443de3
QW
3622 ret = set_page_extent_mapped(page);
3623 if (ret < 0) {
3624 unlock_extent(tree, start, end);
92082d40
QW
3625 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3626 unlock_page(page);
32443de3
QW
3627 goto out;
3628 }
d1310b2e 3629
09cbfeaf 3630 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3631 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3632
3633 if (zero_offset) {
09cbfeaf 3634 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3635 memzero_page(page, zero_offset, iosize);
c8b97818
CM
3636 }
3637 }
92082d40 3638 begin_page_read(fs_info, page);
d1310b2e 3639 while (cur <= end) {
4c37a793 3640 unsigned long this_bio_flag = 0;
005efedf 3641 bool force_bio_submit = false;
0c64c33c 3642 u64 disk_bytenr;
c8f2f24b 3643
6a404910 3644 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 3645 if (cur >= last_byte) {
507903b8
AJ
3646 struct extent_state *cached = NULL;
3647
09cbfeaf 3648 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3649 memzero_page(page, pg_offset, iosize);
d1310b2e 3650 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3651 &cached, GFP_NOFS);
7f042a83 3652 unlock_extent_cached(tree, cur,
e43bbe5e 3653 cur + iosize - 1, &cached);
92082d40 3654 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3655 break;
3656 }
125bac01 3657 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3658 end - cur + 1, em_cached);
c0347550 3659 if (IS_ERR(em)) {
7f042a83 3660 unlock_extent(tree, cur, end);
92082d40 3661 end_page_read(page, false, cur, end + 1 - cur);
bbf0ea7e 3662 ret = PTR_ERR(em);
d1310b2e
CM
3663 break;
3664 }
d1310b2e
CM
3665 extent_offset = cur - em->start;
3666 BUG_ON(extent_map_end(em) <= cur);
3667 BUG_ON(end < cur);
3668
7f6ca7f2
DS
3669 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3670 this_bio_flag = em->compress_type;
c8b97818 3671
d1310b2e
CM
3672 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3673 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3674 iosize = ALIGN(iosize, blocksize);
2a5232a8 3675 if (this_bio_flag != BTRFS_COMPRESS_NONE)
0c64c33c 3676 disk_bytenr = em->block_start;
949b3273 3677 else
0c64c33c 3678 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3679 block_start = em->block_start;
d899e052
YZ
3680 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3681 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3682
3683 /*
3684 * If we have a file range that points to a compressed extent
260db43c 3685 * and it's followed by a consecutive file range that points
005efedf
FM
3686 * to the same compressed extent (possibly with a different
3687 * offset and/or length, so it either points to the whole extent
3688 * or only part of it), we must make sure we do not submit a
3689 * single bio to populate the pages for the 2 ranges because
3690 * this makes the compressed extent read zero out the pages
3691 * belonging to the 2nd range. Imagine the following scenario:
3692 *
3693 * File layout
3694 * [0 - 8K] [8K - 24K]
3695 * | |
3696 * | |
3697 * points to extent X, points to extent X,
3698 * offset 4K, length of 8K offset 0, length 16K
3699 *
3700 * [extent X, compressed length = 4K uncompressed length = 16K]
3701 *
3702 * If the bio to read the compressed extent covers both ranges,
3703 * it will decompress extent X into the pages belonging to the
3704 * first range and then it will stop, zeroing out the remaining
3705 * pages that belong to the other range that points to extent X.
3706 * So here we make sure we submit 2 bios, one for the first
3707 * range and another one for the third range. Both will target
3708 * the same physical extent from disk, but we can't currently
3709 * make the compressed bio endio callback populate the pages
3710 * for both ranges because each compressed bio is tightly
3711 * coupled with a single extent map, and each range can have
3712 * an extent map with a different offset value relative to the
3713 * uncompressed data of our extent and different lengths. This
3714 * is a corner case so we prioritize correctness over
3715 * non-optimal behavior (submitting 2 bios for the same extent).
3716 */
3717 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3718 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3719 *prev_em_start != em->start)
005efedf
FM
3720 force_bio_submit = true;
3721
3722 if (prev_em_start)
8e928218 3723 *prev_em_start = em->start;
005efedf 3724
d1310b2e
CM
3725 free_extent_map(em);
3726 em = NULL;
3727
3728 /* we've found a hole, just zero and go on */
3729 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3730 struct extent_state *cached = NULL;
3731
d048b9c2 3732 memzero_page(page, pg_offset, iosize);
d1310b2e
CM
3733
3734 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3735 &cached, GFP_NOFS);
7f042a83 3736 unlock_extent_cached(tree, cur,
e43bbe5e 3737 cur + iosize - 1, &cached);
92082d40 3738 end_page_read(page, true, cur, iosize);
d1310b2e 3739 cur = cur + iosize;
306e16ce 3740 pg_offset += iosize;
d1310b2e
CM
3741 continue;
3742 }
3743 /* the get_extent function already copied into the page */
9655d298
CM
3744 if (test_range_bit(tree, cur, cur_end,
3745 EXTENT_UPTODATE, 1, NULL)) {
7f042a83 3746 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3747 end_page_read(page, true, cur, iosize);
d1310b2e 3748 cur = cur + iosize;
306e16ce 3749 pg_offset += iosize;
d1310b2e
CM
3750 continue;
3751 }
70dec807
CM
3752 /* we have an inline extent but it didn't get marked up
3753 * to date. Error out
3754 */
3755 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3756 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3757 end_page_read(page, false, cur, iosize);
70dec807 3758 cur = cur + iosize;
306e16ce 3759 pg_offset += iosize;
70dec807
CM
3760 continue;
3761 }
d1310b2e 3762
0ceb34bf 3763 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b 3764 bio_ctrl, page, disk_bytenr, iosize,
722c82ac
CH
3765 pg_offset, end_bio_extent_readpage,
3766 this_bio_flag, force_bio_submit);
ad3fc794 3767 if (ret) {
10f7f6f8
QW
3768 /*
3769 * We have to unlock the remaining range, or the page
3770 * will never be unlocked.
3771 */
3772 unlock_extent(tree, cur, end);
3773 end_page_read(page, false, cur, end + 1 - cur);
baf863b9 3774 goto out;
edd33c99 3775 }
d1310b2e 3776 cur = cur + iosize;
306e16ce 3777 pg_offset += iosize;
d1310b2e 3778 }
90a887c9 3779out:
baf863b9 3780 return ret;
d1310b2e
CM
3781}
3782
fdaf9a58 3783int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 3784{
fdaf9a58 3785 struct page *page = &folio->page;
7aab8b32
CH
3786 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3787 u64 start = page_offset(page);
3788 u64 end = start + PAGE_SIZE - 1;
3789 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3790 int ret;
3791
3792 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3793
3794 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
3795 /*
3796 * If btrfs_do_readpage() failed we will want to submit the assembled
3797 * bio to do the cleanup.
3798 */
722c82ac 3799 submit_one_bio(&bio_ctrl);
7aab8b32
CH
3800 return ret;
3801}
3802
b6660e80 3803static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3804 u64 start, u64 end,
3805 struct extent_map **em_cached,
3806 struct btrfs_bio_ctrl *bio_ctrl,
3807 u64 *prev_em_start)
9974090b 3808{
23d31bd4 3809 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3810 int index;
3811
b272ae22 3812 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3813
3814 for (index = 0; index < nr_pages; index++) {
390ed29b 3815 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3816 REQ_RAHEAD, prev_em_start);
09cbfeaf 3817 put_page(pages[index]);
9974090b
MX
3818 }
3819}
3820
d1310b2e 3821/*
40f76580
CM
3822 * helper for __extent_writepage, doing all of the delayed allocation setup.
3823 *
5eaad97a 3824 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3825 * to write the page (copy into inline extent). In this case the IO has
3826 * been started and the page is already unlocked.
3827 *
3828 * This returns 0 if all went well (page still locked)
3829 * This returns < 0 if there were errors (page still locked)
d1310b2e 3830 */
cd4c0bf9 3831static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 3832 struct page *page, struct writeback_control *wbc)
40f76580 3833{
2749f7ef 3834 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 3835 u64 delalloc_start = page_offset(page);
40f76580 3836 u64 delalloc_to_write = 0;
83f1b680
QW
3837 /* How many pages are started by btrfs_run_delalloc_range() */
3838 unsigned long nr_written = 0;
40f76580
CM
3839 int ret;
3840 int page_started = 0;
3841
2749f7ef
QW
3842 while (delalloc_start < page_end) {
3843 u64 delalloc_end = page_end;
3844 bool found;
40f76580 3845
cd4c0bf9 3846 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3847 &delalloc_start,
917aacec 3848 &delalloc_end);
3522e903 3849 if (!found) {
40f76580
CM
3850 delalloc_start = delalloc_end + 1;
3851 continue;
3852 }
cd4c0bf9 3853 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 3854 delalloc_end, &page_started, &nr_written, wbc);
40f76580 3855 if (ret) {
963e4db8
QW
3856 btrfs_page_set_error(inode->root->fs_info, page,
3857 page_offset(page), PAGE_SIZE);
7361b4ae 3858 return ret;
40f76580
CM
3859 }
3860 /*
ea1754a0
KS
3861 * delalloc_end is already one less than the total length, so
3862 * we don't subtract one from PAGE_SIZE
40f76580
CM
3863 */
3864 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3865 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3866 delalloc_start = delalloc_end + 1;
3867 }
3868 if (wbc->nr_to_write < delalloc_to_write) {
3869 int thresh = 8192;
3870
3871 if (delalloc_to_write < thresh * 2)
3872 thresh = delalloc_to_write;
3873 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3874 thresh);
3875 }
3876
83f1b680 3877 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
3878 if (page_started) {
3879 /*
83f1b680
QW
3880 * We've unlocked the page, so we can't update the mapping's
3881 * writeback index, just update nr_to_write.
40f76580 3882 */
83f1b680 3883 wbc->nr_to_write -= nr_written;
40f76580
CM
3884 return 1;
3885 }
3886
b69d1ee9 3887 return 0;
40f76580
CM
3888}
3889
c5ef5c6c
QW
3890/*
3891 * Find the first byte we need to write.
3892 *
3893 * For subpage, one page can contain several sectors, and
3894 * __extent_writepage_io() will just grab all extent maps in the page
3895 * range and try to submit all non-inline/non-compressed extents.
3896 *
3897 * This is a big problem for subpage, we shouldn't re-submit already written
3898 * data at all.
3899 * This function will lookup subpage dirty bit to find which range we really
3900 * need to submit.
3901 *
3902 * Return the next dirty range in [@start, @end).
3903 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3904 */
3905static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3906 struct page *page, u64 *start, u64 *end)
3907{
3908 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 3909 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
3910 u64 orig_start = *start;
3911 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 3912 unsigned long flags;
72a69cd0 3913 int range_start_bit;
c5ef5c6c
QW
3914 int range_end_bit;
3915
3916 /*
3917 * For regular sector size == page size case, since one page only
3918 * contains one sector, we return the page offset directly.
3919 */
fbca46eb 3920 if (!btrfs_is_subpage(fs_info, page)) {
c5ef5c6c
QW
3921 *start = page_offset(page);
3922 *end = page_offset(page) + PAGE_SIZE;
3923 return;
3924 }
3925
72a69cd0
QW
3926 range_start_bit = spi->dirty_offset +
3927 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3928
c5ef5c6c
QW
3929 /* We should have the page locked, but just in case */
3930 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
3931 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3932 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
3933 spin_unlock_irqrestore(&subpage->lock, flags);
3934
72a69cd0
QW
3935 range_start_bit -= spi->dirty_offset;
3936 range_end_bit -= spi->dirty_offset;
3937
c5ef5c6c
QW
3938 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3939 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3940}
3941
40f76580
CM
3942/*
3943 * helper for __extent_writepage. This calls the writepage start hooks,
3944 * and does the loop to map the page into extents and bios.
3945 *
3946 * We return 1 if the IO is started and the page is unlocked,
3947 * 0 if all went well (page still locked)
3948 * < 0 if there were errors (page still locked)
3949 */
d4580fe2 3950static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3951 struct page *page,
3952 struct writeback_control *wbc,
3953 struct extent_page_data *epd,
3954 loff_t i_size,
57e5ffeb 3955 int *nr_ret)
d1310b2e 3956{
6bc5636a 3957 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
3958 u64 cur = page_offset(page);
3959 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 3960 u64 extent_offset;
d1310b2e 3961 u64 block_start;
d1310b2e 3962 struct extent_map *em;
44e5801f 3963 int saved_ret = 0;
40f76580
CM
3964 int ret = 0;
3965 int nr = 0;
d8e3fb10 3966 u32 opf = REQ_OP_WRITE;
57e5ffeb 3967 const unsigned int write_flags = wbc_to_write_flags(wbc);
44e5801f 3968 bool has_error = false;
40f76580 3969 bool compressed;
c8b97818 3970
a129ffb8 3971 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
3972 if (ret) {
3973 /* Fixup worker will requeue */
5ab58055 3974 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3975 unlock_page(page);
3976 return 1;
247e743c
CM
3977 }
3978
11c8349b
CM
3979 /*
3980 * we don't want to touch the inode after unlocking the page,
3981 * so we update the mapping writeback index now
3982 */
572f3dad 3983 wbc->nr_to_write--;
771ed689 3984
d1310b2e 3985 while (cur <= end) {
0c64c33c 3986 u64 disk_bytenr;
40f76580 3987 u64 em_end;
c5ef5c6c
QW
3988 u64 dirty_range_start = cur;
3989 u64 dirty_range_end;
6bc5636a 3990 u32 iosize;
58409edd 3991
40f76580 3992 if (cur >= i_size) {
38a39ac7 3993 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 3994 end, true);
cc1d0d93
QW
3995 /*
3996 * This range is beyond i_size, thus we don't need to
3997 * bother writing back.
3998 * But we still need to clear the dirty subpage bit, or
3999 * the next time the page gets dirtied, we will try to
4000 * writeback the sectors with subpage dirty bits,
4001 * causing writeback without ordered extent.
4002 */
4003 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
4004 break;
4005 }
c5ef5c6c
QW
4006
4007 find_next_dirty_byte(fs_info, page, &dirty_range_start,
4008 &dirty_range_end);
4009 if (cur < dirty_range_start) {
4010 cur = dirty_range_start;
4011 continue;
4012 }
4013
d4580fe2 4014 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c0347550 4015 if (IS_ERR(em)) {
c5ef5c6c 4016 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 4017 ret = PTR_ERR_OR_ZERO(em);
44e5801f
QW
4018 has_error = true;
4019 if (!saved_ret)
4020 saved_ret = ret;
d1310b2e
CM
4021 break;
4022 }
4023
4024 extent_offset = cur - em->start;
40f76580 4025 em_end = extent_map_end(em);
6bc5636a
QW
4026 ASSERT(cur <= em_end);
4027 ASSERT(cur < end);
4028 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
4029 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 4030 block_start = em->block_start;
c8b97818 4031 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
4032 disk_bytenr = em->block_start + extent_offset;
4033
c5ef5c6c
QW
4034 /*
4035 * Note that em_end from extent_map_end() and dirty_range_end from
4036 * find_next_dirty_byte() are all exclusive
4037 */
4038 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 4039
e380adfc 4040 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
4041 opf = REQ_OP_ZONE_APPEND;
4042
d1310b2e
CM
4043 free_extent_map(em);
4044 em = NULL;
4045
c8b97818
CM
4046 /*
4047 * compressed and inline extents are written through other
4048 * paths in the FS
4049 */
4050 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 4051 block_start == EXTENT_MAP_INLINE) {
c8b04030 4052 if (compressed)
c8b97818 4053 nr++;
c8b04030 4054 else
38a39ac7 4055 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 4056 page, cur, cur + iosize - 1, true);
cc1d0d93 4057 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 4058 cur += iosize;
d1310b2e
CM
4059 continue;
4060 }
c8b97818 4061
d2a91064 4062 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 4063 if (!PageWriteback(page)) {
d4580fe2 4064 btrfs_err(inode->root->fs_info,
58409edd
DS
4065 "page %lu not writeback, cur %llu end %llu",
4066 page->index, cur, end);
d1310b2e 4067 }
7f3c74fb 4068
c5ef5c6c
QW
4069 /*
4070 * Although the PageDirty bit is cleared before entering this
4071 * function, subpage dirty bit is not cleared.
4072 * So clear subpage dirty bit here so next time we won't submit
4073 * page for range already written to disk.
4074 */
4075 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4076
390ed29b
QW
4077 ret = submit_extent_page(opf | write_flags, wbc,
4078 &epd->bio_ctrl, page,
d8e3fb10 4079 disk_bytenr, iosize,
390ed29b 4080 cur - page_offset(page),
58409edd 4081 end_bio_extent_writepage,
722c82ac 4082 0, false);
fe01aa65 4083 if (ret) {
44e5801f
QW
4084 has_error = true;
4085 if (!saved_ret)
4086 saved_ret = ret;
4087
c5ef5c6c 4088 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 4089 if (PageWriteback(page))
c5ef5c6c
QW
4090 btrfs_page_clear_writeback(fs_info, page, cur,
4091 iosize);
fe01aa65 4092 }
d1310b2e 4093
6bc5636a 4094 cur += iosize;
d1310b2e
CM
4095 nr++;
4096 }
cc1d0d93
QW
4097 /*
4098 * If we finish without problem, we should not only clear page dirty,
4099 * but also empty subpage dirty bits
4100 */
44e5801f 4101 if (!has_error)
cc1d0d93 4102 btrfs_page_assert_not_dirty(fs_info, page);
44e5801f
QW
4103 else
4104 ret = saved_ret;
40f76580 4105 *nr_ret = nr;
40f76580
CM
4106 return ret;
4107}
4108
4109/*
4110 * the writepage semantics are similar to regular writepage. extent
4111 * records are inserted to lock ranges in the tree, and as dirty areas
4112 * are found, they are marked writeback. Then the lock bits are removed
4113 * and the end_io handler clears the writeback ranges
3065976b
QW
4114 *
4115 * Return 0 if everything goes well.
4116 * Return <0 for error.
40f76580
CM
4117 */
4118static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 4119 struct extent_page_data *epd)
40f76580 4120{
8e1dec8e 4121 struct folio *folio = page_folio(page);
40f76580 4122 struct inode *inode = page->mapping->host;
e55a0de1 4123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
4124 const u64 page_start = page_offset(page);
4125 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
4126 int ret;
4127 int nr = 0;
eb70d222 4128 size_t pg_offset;
40f76580 4129 loff_t i_size = i_size_read(inode);
09cbfeaf 4130 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 4131
40f76580
CM
4132 trace___extent_writepage(page, inode, wbc);
4133
4134 WARN_ON(!PageLocked(page));
4135
963e4db8
QW
4136 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4137 page_offset(page), PAGE_SIZE);
40f76580 4138
7073017a 4139 pg_offset = offset_in_page(i_size);
40f76580
CM
4140 if (page->index > end_index ||
4141 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
4142 folio_invalidate(folio, 0, folio_size(folio));
4143 folio_unlock(folio);
40f76580
CM
4144 return 0;
4145 }
4146
21a8935e 4147 if (page->index == end_index)
d048b9c2 4148 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 4149
32443de3
QW
4150 ret = set_page_extent_mapped(page);
4151 if (ret < 0) {
4152 SetPageError(page);
4153 goto done;
4154 }
40f76580 4155
7789a55a 4156 if (!epd->extent_locked) {
83f1b680 4157 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 4158 if (ret == 1)
169d2c87 4159 return 0;
7789a55a
NB
4160 if (ret)
4161 goto done;
4162 }
40f76580 4163
d4580fe2 4164 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 4165 &nr);
40f76580 4166 if (ret == 1)
169d2c87 4167 return 0;
40f76580 4168
d1310b2e
CM
4169done:
4170 if (nr == 0) {
4171 /* make sure the mapping tag for page dirty gets cleared */
4172 set_page_writeback(page);
4173 end_page_writeback(page);
4174 }
963e4db8
QW
4175 /*
4176 * Here we used to have a check for PageError() and then set @ret and
4177 * call end_extent_writepage().
4178 *
4179 * But in fact setting @ret here will cause different error paths
4180 * between subpage and regular sectorsize.
4181 *
4182 * For regular page size, we never submit current page, but only add
4183 * current page to current bio.
4184 * The bio submission can only happen in next page.
4185 * Thus if we hit the PageError() branch, @ret is already set to
4186 * non-zero value and will not get updated for regular sectorsize.
4187 *
4188 * But for subpage case, it's possible we submit part of current page,
4189 * thus can get PageError() set by submitted bio of the same page,
4190 * while our @ret is still 0.
4191 *
4192 * So here we unify the behavior and don't set @ret.
4193 * Error can still be properly passed to higher layer as page will
4194 * be set error, here we just don't handle the IO failure.
4195 *
4196 * NOTE: This is just a hotfix for subpage.
4197 * The root fix will be properly ending ordered extent when we hit
4198 * an error during writeback.
4199 *
4200 * But that needs a bigger refactoring, as we not only need to grab the
4201 * submitted OE, but also need to know exactly at which bytenr we hit
4202 * the error.
4203 * Currently the full page based __extent_writepage_io() is not
4204 * capable of that.
4205 */
4206 if (PageError(page))
cf3075fb 4207 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
4208 if (epd->extent_locked) {
4209 /*
4210 * If epd->extent_locked, it's from extent_write_locked_range(),
4211 * the page can either be locked by lock_page() or
4212 * process_one_page().
4213 * Let btrfs_page_unlock_writer() handle both cases.
4214 */
4215 ASSERT(wbc);
4216 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4217 wbc->range_end + 1 - wbc->range_start);
4218 } else {
4219 unlock_page(page);
4220 }
3065976b 4221 ASSERT(ret <= 0);
40f76580 4222 return ret;
d1310b2e
CM
4223}
4224
fd8b2b61 4225void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 4226{
74316201
N
4227 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4228 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
4229}
4230
18dfa711
FM
4231static void end_extent_buffer_writeback(struct extent_buffer *eb)
4232{
4233 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4234 smp_mb__after_atomic();
4235 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4236}
4237
2e3c2513 4238/*
a3efb2f0 4239 * Lock extent buffer status and pages for writeback.
2e3c2513 4240 *
a3efb2f0
QW
4241 * May try to flush write bio if we can't get the lock.
4242 *
4243 * Return 0 if the extent buffer doesn't need to be submitted.
4244 * (E.g. the extent buffer is not dirty)
4245 * Return >0 is the extent buffer is submitted to bio.
4246 * Return <0 if something went wrong, no page is locked.
2e3c2513 4247 */
9df76fb5 4248static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4249 struct extent_page_data *epd)
0b32f4bb 4250{
9df76fb5 4251 struct btrfs_fs_info *fs_info = eb->fs_info;
c9583ada 4252 int i, num_pages;
0b32f4bb
JB
4253 int flush = 0;
4254 int ret = 0;
4255
4256 if (!btrfs_try_tree_write_lock(eb)) {
9845e5dd 4257 submit_write_bio(epd, 0);
2e3c2513 4258 flush = 1;
0b32f4bb
JB
4259 btrfs_tree_lock(eb);
4260 }
4261
4262 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4263 btrfs_tree_unlock(eb);
4264 if (!epd->sync_io)
4265 return 0;
4266 if (!flush) {
9845e5dd 4267 submit_write_bio(epd, 0);
0b32f4bb
JB
4268 flush = 1;
4269 }
a098d8e8
CM
4270 while (1) {
4271 wait_on_extent_buffer_writeback(eb);
4272 btrfs_tree_lock(eb);
4273 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4274 break;
0b32f4bb 4275 btrfs_tree_unlock(eb);
0b32f4bb
JB
4276 }
4277 }
4278
51561ffe
JB
4279 /*
4280 * We need to do this to prevent races in people who check if the eb is
4281 * under IO since we can end up having no IO bits set for a short period
4282 * of time.
4283 */
4284 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4285 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4286 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4287 spin_unlock(&eb->refs_lock);
0b32f4bb 4288 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4289 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4290 -eb->len,
4291 fs_info->dirty_metadata_batch);
0b32f4bb 4292 ret = 1;
51561ffe
JB
4293 } else {
4294 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4295 }
4296
4297 btrfs_tree_unlock(eb);
4298
f3156df9
QW
4299 /*
4300 * Either we don't need to submit any tree block, or we're submitting
4301 * subpage eb.
4302 * Subpage metadata doesn't use page locking at all, so we can skip
4303 * the page locking.
4304 */
fbca46eb 4305 if (!ret || fs_info->nodesize < PAGE_SIZE)
0b32f4bb
JB
4306 return ret;
4307
65ad0104 4308 num_pages = num_extent_pages(eb);
0b32f4bb 4309 for (i = 0; i < num_pages; i++) {
fb85fc9a 4310 struct page *p = eb->pages[i];
0b32f4bb
JB
4311
4312 if (!trylock_page(p)) {
4313 if (!flush) {
9845e5dd 4314 submit_write_bio(epd, 0);
0b32f4bb
JB
4315 flush = 1;
4316 }
4317 lock_page(p);
4318 }
4319 }
4320
2e3c2513 4321 return ret;
0b32f4bb
JB
4322}
4323
5a2c6075 4324static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4325{
5a2c6075 4326 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4327
5a2c6075 4328 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4329 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4330 return;
4331
c2e39305
JB
4332 /*
4333 * A read may stumble upon this buffer later, make sure that it gets an
4334 * error and knows there was an error.
4335 */
4336 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4337
68b85589
JB
4338 /*
4339 * We need to set the mapping with the io error as well because a write
4340 * error will flip the file system readonly, and then syncfs() will
4341 * return a 0 because we are readonly if we don't modify the err seq for
4342 * the superblock.
4343 */
4344 mapping_set_error(page->mapping, -EIO);
4345
eb5b64f1
DZ
4346 /*
4347 * If we error out, we should add back the dirty_metadata_bytes
4348 * to make it consistent.
4349 */
eb5b64f1
DZ
4350 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4351 eb->len, fs_info->dirty_metadata_batch);
4352
656f30db
FM
4353 /*
4354 * If writeback for a btree extent that doesn't belong to a log tree
4355 * failed, increment the counter transaction->eb_write_errors.
4356 * We do this because while the transaction is running and before it's
4357 * committing (when we call filemap_fdata[write|wait]_range against
4358 * the btree inode), we might have
4359 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4360 * returns an error or an error happens during writeback, when we're
4361 * committing the transaction we wouldn't know about it, since the pages
4362 * can be no longer dirty nor marked anymore for writeback (if a
4363 * subsequent modification to the extent buffer didn't happen before the
4364 * transaction commit), which makes filemap_fdata[write|wait]_range not
4365 * able to find the pages tagged with SetPageError at transaction
4366 * commit time. So if this happens we must abort the transaction,
4367 * otherwise we commit a super block with btree roots that point to
4368 * btree nodes/leafs whose content on disk is invalid - either garbage
4369 * or the content of some node/leaf from a past generation that got
4370 * cowed or deleted and is no longer valid.
4371 *
4372 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4373 * not be enough - we need to distinguish between log tree extents vs
4374 * non-log tree extents, and the next filemap_fdatawait_range() call
4375 * will catch and clear such errors in the mapping - and that call might
4376 * be from a log sync and not from a transaction commit. Also, checking
4377 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4378 * not done and would not be reliable - the eb might have been released
4379 * from memory and reading it back again means that flag would not be
4380 * set (since it's a runtime flag, not persisted on disk).
4381 *
4382 * Using the flags below in the btree inode also makes us achieve the
4383 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4384 * writeback for all dirty pages and before filemap_fdatawait_range()
4385 * is called, the writeback for all dirty pages had already finished
4386 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4387 * filemap_fdatawait_range() would return success, as it could not know
4388 * that writeback errors happened (the pages were no longer tagged for
4389 * writeback).
4390 */
4391 switch (eb->log_index) {
4392 case -1:
5a2c6075 4393 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4394 break;
4395 case 0:
5a2c6075 4396 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4397 break;
4398 case 1:
5a2c6075 4399 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4400 break;
4401 default:
4402 BUG(); /* unexpected, logic error */
4403 }
4404}
4405
2f3186d8
QW
4406/*
4407 * The endio specific version which won't touch any unsafe spinlock in endio
4408 * context.
4409 */
4410static struct extent_buffer *find_extent_buffer_nolock(
4411 struct btrfs_fs_info *fs_info, u64 start)
4412{
4413 struct extent_buffer *eb;
4414
4415 rcu_read_lock();
01cd3909
DS
4416 eb = radix_tree_lookup(&fs_info->buffer_radix,
4417 start >> fs_info->sectorsize_bits);
2f3186d8
QW
4418 if (eb && atomic_inc_not_zero(&eb->refs)) {
4419 rcu_read_unlock();
4420 return eb;
4421 }
4422 rcu_read_unlock();
4423 return NULL;
4424}
4425
4426/*
4427 * The endio function for subpage extent buffer write.
4428 *
4429 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4430 * after all extent buffers in the page has finished their writeback.
4431 */
fa04c165 4432static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4433{
fa04c165 4434 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4435 struct bio_vec *bvec;
4436 struct bvec_iter_all iter_all;
4437
fa04c165 4438 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
fbca46eb 4439 ASSERT(fs_info->nodesize < PAGE_SIZE);
fa04c165 4440
2f3186d8
QW
4441 ASSERT(!bio_flagged(bio, BIO_CLONED));
4442 bio_for_each_segment_all(bvec, bio, iter_all) {
4443 struct page *page = bvec->bv_page;
4444 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4445 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4446 u64 cur_bytenr = bvec_start;
4447
4448 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4449
4450 /* Iterate through all extent buffers in the range */
4451 while (cur_bytenr <= bvec_end) {
4452 struct extent_buffer *eb;
4453 int done;
4454
4455 /*
4456 * Here we can't use find_extent_buffer(), as it may
4457 * try to lock eb->refs_lock, which is not safe in endio
4458 * context.
4459 */
4460 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4461 ASSERT(eb);
4462
4463 cur_bytenr = eb->start + eb->len;
4464
4465 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4466 done = atomic_dec_and_test(&eb->io_pages);
4467 ASSERT(done);
4468
4469 if (bio->bi_status ||
4470 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4471 ClearPageUptodate(page);
4472 set_btree_ioerr(page, eb);
4473 }
4474
4475 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4476 eb->len);
4477 end_extent_buffer_writeback(eb);
4478 /*
4479 * free_extent_buffer() will grab spinlock which is not
4480 * safe in endio context. Thus here we manually dec
4481 * the ref.
4482 */
4483 atomic_dec(&eb->refs);
4484 }
4485 }
4486 bio_put(bio);
4487}
4488
4246a0b6 4489static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4490{
2c30c71b 4491 struct bio_vec *bvec;
0b32f4bb 4492 struct extent_buffer *eb;
2b070cfe 4493 int done;
6dc4f100 4494 struct bvec_iter_all iter_all;
0b32f4bb 4495
c09abff8 4496 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4497 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4498 struct page *page = bvec->bv_page;
4499
0b32f4bb
JB
4500 eb = (struct extent_buffer *)page->private;
4501 BUG_ON(!eb);
4502 done = atomic_dec_and_test(&eb->io_pages);
4503
4e4cbee9 4504 if (bio->bi_status ||
4246a0b6 4505 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4506 ClearPageUptodate(page);
5a2c6075 4507 set_btree_ioerr(page, eb);
0b32f4bb
JB
4508 }
4509
4510 end_page_writeback(page);
4511
4512 if (!done)
4513 continue;
4514
4515 end_extent_buffer_writeback(eb);
2c30c71b 4516 }
0b32f4bb
JB
4517
4518 bio_put(bio);
0b32f4bb
JB
4519}
4520
fa04c165
QW
4521static void prepare_eb_write(struct extent_buffer *eb)
4522{
4523 u32 nritems;
4524 unsigned long start;
4525 unsigned long end;
4526
4527 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4528 atomic_set(&eb->io_pages, num_extent_pages(eb));
4529
4530 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4531 nritems = btrfs_header_nritems(eb);
4532 if (btrfs_header_level(eb) > 0) {
4533 end = btrfs_node_key_ptr_offset(nritems);
4534 memzero_extent_buffer(eb, end, eb->len - end);
4535 } else {
4536 /*
4537 * Leaf:
4538 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4539 */
4540 start = btrfs_item_nr_offset(nritems);
4541 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4542 memzero_extent_buffer(eb, start, end - start);
4543 }
4544}
4545
35b6ddfa
QW
4546/*
4547 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4548 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4549 */
4550static int write_one_subpage_eb(struct extent_buffer *eb,
4551 struct writeback_control *wbc,
4552 struct extent_page_data *epd)
4553{
4554 struct btrfs_fs_info *fs_info = eb->fs_info;
4555 struct page *page = eb->pages[0];
08a6f464 4556 unsigned int write_flags = wbc_to_write_flags(wbc);
35b6ddfa
QW
4557 bool no_dirty_ebs = false;
4558 int ret;
4559
fa04c165
QW
4560 prepare_eb_write(eb);
4561
35b6ddfa
QW
4562 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4563 lock_page(page);
4564 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4565
4566 /* Check if this is the last dirty bit to update nr_written */
4567 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4568 eb->start, eb->len);
4569 if (no_dirty_ebs)
4570 clear_page_dirty_for_io(page);
4571
390ed29b
QW
4572 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4573 &epd->bio_ctrl, page, eb->start, eb->len,
4574 eb->start - page_offset(page),
722c82ac 4575 end_bio_subpage_eb_writepage, 0, false);
35b6ddfa
QW
4576 if (ret) {
4577 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4578 set_btree_ioerr(page, eb);
4579 unlock_page(page);
4580
4581 if (atomic_dec_and_test(&eb->io_pages))
4582 end_extent_buffer_writeback(eb);
4583 return -EIO;
4584 }
4585 unlock_page(page);
4586 /*
4587 * Submission finished without problem, if no range of the page is
4588 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4589 */
4590 if (no_dirty_ebs)
572f3dad 4591 wbc->nr_to_write--;
35b6ddfa
QW
4592 return ret;
4593}
4594
0e378df1 4595static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4596 struct writeback_control *wbc,
4597 struct extent_page_data *epd)
4598{
0c64c33c 4599 u64 disk_bytenr = eb->start;
cc5e31a4 4600 int i, num_pages;
08a6f464 4601 unsigned int write_flags = wbc_to_write_flags(wbc);
d7dbe9e7 4602 int ret = 0;
0b32f4bb 4603
fa04c165 4604 prepare_eb_write(eb);
35b6ddfa 4605
fa04c165 4606 num_pages = num_extent_pages(eb);
0b32f4bb 4607 for (i = 0; i < num_pages; i++) {
fb85fc9a 4608 struct page *p = eb->pages[i];
0b32f4bb
JB
4609
4610 clear_page_dirty_for_io(p);
4611 set_page_writeback(p);
0ceb34bf 4612 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4613 &epd->bio_ctrl, p, disk_bytenr,
4614 PAGE_SIZE, 0,
1f7ad75b 4615 end_bio_extent_buffer_writepage,
722c82ac 4616 0, false);
0b32f4bb 4617 if (ret) {
5a2c6075 4618 set_btree_ioerr(p, eb);
fe01aa65
TK
4619 if (PageWriteback(p))
4620 end_page_writeback(p);
0b32f4bb
JB
4621 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4622 end_extent_buffer_writeback(eb);
4623 ret = -EIO;
4624 break;
4625 }
0c64c33c 4626 disk_bytenr += PAGE_SIZE;
572f3dad 4627 wbc->nr_to_write--;
0b32f4bb
JB
4628 unlock_page(p);
4629 }
4630
4631 if (unlikely(ret)) {
4632 for (; i < num_pages; i++) {
bbf65cf0 4633 struct page *p = eb->pages[i];
81465028 4634 clear_page_dirty_for_io(p);
0b32f4bb
JB
4635 unlock_page(p);
4636 }
4637 }
4638
4639 return ret;
4640}
4641
c4aec299
QW
4642/*
4643 * Submit one subpage btree page.
4644 *
4645 * The main difference to submit_eb_page() is:
4646 * - Page locking
4647 * For subpage, we don't rely on page locking at all.
4648 *
4649 * - Flush write bio
4650 * We only flush bio if we may be unable to fit current extent buffers into
4651 * current bio.
4652 *
4653 * Return >=0 for the number of submitted extent buffers.
4654 * Return <0 for fatal error.
4655 */
4656static int submit_eb_subpage(struct page *page,
4657 struct writeback_control *wbc,
4658 struct extent_page_data *epd)
4659{
4660 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4661 int submitted = 0;
4662 u64 page_start = page_offset(page);
4663 int bit_start = 0;
c4aec299
QW
4664 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4665 int ret;
4666
4667 /* Lock and write each dirty extent buffers in the range */
72a69cd0 4668 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
4669 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4670 struct extent_buffer *eb;
4671 unsigned long flags;
4672 u64 start;
4673
4674 /*
4675 * Take private lock to ensure the subpage won't be detached
4676 * in the meantime.
4677 */
4678 spin_lock(&page->mapping->private_lock);
4679 if (!PagePrivate(page)) {
4680 spin_unlock(&page->mapping->private_lock);
4681 break;
4682 }
4683 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
4684 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4685 subpage->bitmaps)) {
c4aec299
QW
4686 spin_unlock_irqrestore(&subpage->lock, flags);
4687 spin_unlock(&page->mapping->private_lock);
4688 bit_start++;
4689 continue;
4690 }
4691
4692 start = page_start + bit_start * fs_info->sectorsize;
4693 bit_start += sectors_per_node;
4694
4695 /*
4696 * Here we just want to grab the eb without touching extra
4697 * spin locks, so call find_extent_buffer_nolock().
4698 */
4699 eb = find_extent_buffer_nolock(fs_info, start);
4700 spin_unlock_irqrestore(&subpage->lock, flags);
4701 spin_unlock(&page->mapping->private_lock);
4702
4703 /*
4704 * The eb has already reached 0 refs thus find_extent_buffer()
4705 * doesn't return it. We don't need to write back such eb
4706 * anyway.
4707 */
4708 if (!eb)
4709 continue;
4710
4711 ret = lock_extent_buffer_for_io(eb, epd);
4712 if (ret == 0) {
4713 free_extent_buffer(eb);
4714 continue;
4715 }
4716 if (ret < 0) {
4717 free_extent_buffer(eb);
4718 goto cleanup;
4719 }
fa04c165 4720 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4721 free_extent_buffer(eb);
4722 if (ret < 0)
4723 goto cleanup;
4724 submitted++;
4725 }
4726 return submitted;
4727
4728cleanup:
4729 /* We hit error, end bio for the submitted extent buffers */
9845e5dd 4730 submit_write_bio(epd, ret);
c4aec299
QW
4731 return ret;
4732}
4733
f91e0d0c
QW
4734/*
4735 * Submit all page(s) of one extent buffer.
4736 *
4737 * @page: the page of one extent buffer
4738 * @eb_context: to determine if we need to submit this page, if current page
4739 * belongs to this eb, we don't need to submit
4740 *
4741 * The caller should pass each page in their bytenr order, and here we use
4742 * @eb_context to determine if we have submitted pages of one extent buffer.
4743 *
4744 * If we have, we just skip until we hit a new page that doesn't belong to
4745 * current @eb_context.
4746 *
4747 * If not, we submit all the page(s) of the extent buffer.
4748 *
4749 * Return >0 if we have submitted the extent buffer successfully.
4750 * Return 0 if we don't need to submit the page, as it's already submitted by
4751 * previous call.
4752 * Return <0 for fatal error.
4753 */
4754static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4755 struct extent_page_data *epd,
4756 struct extent_buffer **eb_context)
4757{
4758 struct address_space *mapping = page->mapping;
0bc09ca1 4759 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4760 struct extent_buffer *eb;
4761 int ret;
4762
4763 if (!PagePrivate(page))
4764 return 0;
4765
fbca46eb 4766 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
c4aec299
QW
4767 return submit_eb_subpage(page, wbc, epd);
4768
f91e0d0c
QW
4769 spin_lock(&mapping->private_lock);
4770 if (!PagePrivate(page)) {
4771 spin_unlock(&mapping->private_lock);
4772 return 0;
4773 }
4774
4775 eb = (struct extent_buffer *)page->private;
4776
4777 /*
4778 * Shouldn't happen and normally this would be a BUG_ON but no point
4779 * crashing the machine for something we can survive anyway.
4780 */
4781 if (WARN_ON(!eb)) {
4782 spin_unlock(&mapping->private_lock);
4783 return 0;
4784 }
4785
4786 if (eb == *eb_context) {
4787 spin_unlock(&mapping->private_lock);
4788 return 0;
4789 }
4790 ret = atomic_inc_not_zero(&eb->refs);
4791 spin_unlock(&mapping->private_lock);
4792 if (!ret)
4793 return 0;
4794
0bc09ca1
NA
4795 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4796 /*
4797 * If for_sync, this hole will be filled with
4798 * trasnsaction commit.
4799 */
4800 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4801 ret = -EAGAIN;
4802 else
4803 ret = 0;
4804 free_extent_buffer(eb);
4805 return ret;
4806 }
4807
f91e0d0c
QW
4808 *eb_context = eb;
4809
4810 ret = lock_extent_buffer_for_io(eb, epd);
4811 if (ret <= 0) {
0bc09ca1
NA
4812 btrfs_revert_meta_write_pointer(cache, eb);
4813 if (cache)
4814 btrfs_put_block_group(cache);
f91e0d0c
QW
4815 free_extent_buffer(eb);
4816 return ret;
4817 }
be1a1d7a 4818 if (cache) {
d3e29967
NB
4819 /*
4820 * Implies write in zoned mode. Mark the last eb in a block group.
4821 */
56fbb0a4 4822 btrfs_schedule_zone_finish_bg(cache, eb);
d3e29967 4823 btrfs_put_block_group(cache);
be1a1d7a 4824 }
f91e0d0c
QW
4825 ret = write_one_eb(eb, wbc, epd);
4826 free_extent_buffer(eb);
4827 if (ret < 0)
4828 return ret;
4829 return 1;
4830}
4831
0b32f4bb
JB
4832int btree_write_cache_pages(struct address_space *mapping,
4833 struct writeback_control *wbc)
4834{
f91e0d0c 4835 struct extent_buffer *eb_context = NULL;
0b32f4bb 4836 struct extent_page_data epd = {
390ed29b 4837 .bio_ctrl = { 0 },
0b32f4bb
JB
4838 .extent_locked = 0,
4839 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4840 };
b3ff8f1d 4841 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4842 int ret = 0;
4843 int done = 0;
4844 int nr_to_write_done = 0;
4845 struct pagevec pvec;
4846 int nr_pages;
4847 pgoff_t index;
4848 pgoff_t end; /* Inclusive */
4849 int scanned = 0;
10bbd235 4850 xa_mark_t tag;
0b32f4bb 4851
86679820 4852 pagevec_init(&pvec);
0b32f4bb
JB
4853 if (wbc->range_cyclic) {
4854 index = mapping->writeback_index; /* Start from prev offset */
4855 end = -1;
556755a8
JB
4856 /*
4857 * Start from the beginning does not need to cycle over the
4858 * range, mark it as scanned.
4859 */
4860 scanned = (index == 0);
0b32f4bb 4861 } else {
09cbfeaf
KS
4862 index = wbc->range_start >> PAGE_SHIFT;
4863 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4864 scanned = 1;
4865 }
4866 if (wbc->sync_mode == WB_SYNC_ALL)
4867 tag = PAGECACHE_TAG_TOWRITE;
4868 else
4869 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4870 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4871retry:
4872 if (wbc->sync_mode == WB_SYNC_ALL)
4873 tag_pages_for_writeback(mapping, index, end);
4874 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4875 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4876 tag))) {
0b32f4bb
JB
4877 unsigned i;
4878
0b32f4bb
JB
4879 for (i = 0; i < nr_pages; i++) {
4880 struct page *page = pvec.pages[i];
4881
f91e0d0c
QW
4882 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4883 if (ret == 0)
0b32f4bb 4884 continue;
f91e0d0c 4885 if (ret < 0) {
0b32f4bb 4886 done = 1;
0b32f4bb
JB
4887 break;
4888 }
0b32f4bb
JB
4889
4890 /*
4891 * the filesystem may choose to bump up nr_to_write.
4892 * We have to make sure to honor the new nr_to_write
4893 * at any time
4894 */
4895 nr_to_write_done = wbc->nr_to_write <= 0;
4896 }
4897 pagevec_release(&pvec);
4898 cond_resched();
4899 }
4900 if (!scanned && !done) {
4901 /*
4902 * We hit the last page and there is more work to be done: wrap
4903 * back to the start of the file
4904 */
4905 scanned = 1;
4906 index = 0;
4907 goto retry;
4908 }
b3ff8f1d
QW
4909 /*
4910 * If something went wrong, don't allow any metadata write bio to be
4911 * submitted.
4912 *
4913 * This would prevent use-after-free if we had dirty pages not
4914 * cleaned up, which can still happen by fuzzed images.
4915 *
4916 * - Bad extent tree
4917 * Allowing existing tree block to be allocated for other trees.
4918 *
4919 * - Log tree operations
4920 * Exiting tree blocks get allocated to log tree, bumps its
4921 * generation, then get cleaned in tree re-balance.
4922 * Such tree block will not be written back, since it's clean,
4923 * thus no WRITTEN flag set.
4924 * And after log writes back, this tree block is not traced by
4925 * any dirty extent_io_tree.
4926 *
4927 * - Offending tree block gets re-dirtied from its original owner
4928 * Since it has bumped generation, no WRITTEN flag, it can be
4929 * reused without COWing. This tree block will not be traced
4930 * by btrfs_transaction::dirty_pages.
4931 *
4932 * Now such dirty tree block will not be cleaned by any dirty
4933 * extent io tree. Thus we don't want to submit such wild eb
4934 * if the fs already has error.
9845e5dd 4935 *
c9583ada
QW
4936 * We can get ret > 0 from submit_extent_page() indicating how many ebs
4937 * were submitted. Reset it to 0 to avoid false alerts for the caller.
4938 */
4939 if (ret > 0)
4940 ret = 0;
9845e5dd
CH
4941 if (!ret && BTRFS_FS_ERROR(fs_info))
4942 ret = -EROFS;
4943 submit_write_bio(&epd, ret);
4944
4945 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4946 return ret;
4947}
4948
d1310b2e 4949/**
3bed2da1
NB
4950 * Walk the list of dirty pages of the given address space and write all of them.
4951 *
d1310b2e 4952 * @mapping: address space structure to write
3bed2da1
NB
4953 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4954 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4955 *
4956 * If a page is already under I/O, write_cache_pages() skips it, even
4957 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4958 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4959 * and msync() need to guarantee that all the data which was dirty at the time
4960 * the call was made get new I/O started against them. If wbc->sync_mode is
4961 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4962 * existing IO to complete.
4963 */
4242b64a 4964static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4965 struct writeback_control *wbc,
aab6e9ed 4966 struct extent_page_data *epd)
d1310b2e 4967{
7fd1a3f7 4968 struct inode *inode = mapping->host;
d1310b2e
CM
4969 int ret = 0;
4970 int done = 0;
f85d7d6c 4971 int nr_to_write_done = 0;
d1310b2e
CM
4972 struct pagevec pvec;
4973 int nr_pages;
4974 pgoff_t index;
4975 pgoff_t end; /* Inclusive */
a9132667
LB
4976 pgoff_t done_index;
4977 int range_whole = 0;
d1310b2e 4978 int scanned = 0;
10bbd235 4979 xa_mark_t tag;
d1310b2e 4980
7fd1a3f7
JB
4981 /*
4982 * We have to hold onto the inode so that ordered extents can do their
4983 * work when the IO finishes. The alternative to this is failing to add
4984 * an ordered extent if the igrab() fails there and that is a huge pain
4985 * to deal with, so instead just hold onto the inode throughout the
4986 * writepages operation. If it fails here we are freeing up the inode
4987 * anyway and we'd rather not waste our time writing out stuff that is
4988 * going to be truncated anyway.
4989 */
4990 if (!igrab(inode))
4991 return 0;
4992
86679820 4993 pagevec_init(&pvec);
d1310b2e
CM
4994 if (wbc->range_cyclic) {
4995 index = mapping->writeback_index; /* Start from prev offset */
4996 end = -1;
556755a8
JB
4997 /*
4998 * Start from the beginning does not need to cycle over the
4999 * range, mark it as scanned.
5000 */
5001 scanned = (index == 0);
d1310b2e 5002 } else {
09cbfeaf
KS
5003 index = wbc->range_start >> PAGE_SHIFT;
5004 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
5005 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
5006 range_whole = 1;
d1310b2e
CM
5007 scanned = 1;
5008 }
3cd24c69
EL
5009
5010 /*
5011 * We do the tagged writepage as long as the snapshot flush bit is set
5012 * and we are the first one who do the filemap_flush() on this inode.
5013 *
5014 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
5015 * not race in and drop the bit.
5016 */
5017 if (range_whole && wbc->nr_to_write == LONG_MAX &&
5018 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
5019 &BTRFS_I(inode)->runtime_flags))
5020 wbc->tagged_writepages = 1;
5021
5022 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
5023 tag = PAGECACHE_TAG_TOWRITE;
5024 else
5025 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 5026retry:
3cd24c69 5027 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 5028 tag_pages_for_writeback(mapping, index, end);
a9132667 5029 done_index = index;
f85d7d6c 5030 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
5031 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5032 &index, end, tag))) {
d1310b2e
CM
5033 unsigned i;
5034
d1310b2e
CM
5035 for (i = 0; i < nr_pages; i++) {
5036 struct page *page = pvec.pages[i];
5037
f7bddf1e 5038 done_index = page->index + 1;
d1310b2e 5039 /*
b93b0163
MW
5040 * At this point we hold neither the i_pages lock nor
5041 * the page lock: the page may be truncated or
5042 * invalidated (changing page->mapping to NULL),
5043 * or even swizzled back from swapper_space to
5044 * tmpfs file mapping
d1310b2e 5045 */
c8f2f24b 5046 if (!trylock_page(page)) {
9845e5dd 5047 submit_write_bio(epd, 0);
c8f2f24b 5048 lock_page(page);
01d658f2 5049 }
d1310b2e
CM
5050
5051 if (unlikely(page->mapping != mapping)) {
5052 unlock_page(page);
5053 continue;
5054 }
5055
d2c3f4f6 5056 if (wbc->sync_mode != WB_SYNC_NONE) {
c9583ada 5057 if (PageWriteback(page))
9845e5dd 5058 submit_write_bio(epd, 0);
d1310b2e 5059 wait_on_page_writeback(page);
d2c3f4f6 5060 }
d1310b2e
CM
5061
5062 if (PageWriteback(page) ||
5063 !clear_page_dirty_for_io(page)) {
5064 unlock_page(page);
5065 continue;
5066 }
5067
aab6e9ed 5068 ret = __extent_writepage(page, wbc, epd);
a9132667 5069 if (ret < 0) {
a9132667
LB
5070 done = 1;
5071 break;
5072 }
f85d7d6c
CM
5073
5074 /*
5075 * the filesystem may choose to bump up nr_to_write.
5076 * We have to make sure to honor the new nr_to_write
5077 * at any time
5078 */
5079 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
5080 }
5081 pagevec_release(&pvec);
5082 cond_resched();
5083 }
894b36e3 5084 if (!scanned && !done) {
d1310b2e
CM
5085 /*
5086 * We hit the last page and there is more work to be done: wrap
5087 * back to the start of the file
5088 */
5089 scanned = 1;
5090 index = 0;
42ffb0bf
JB
5091
5092 /*
5093 * If we're looping we could run into a page that is locked by a
5094 * writer and that writer could be waiting on writeback for a
5095 * page in our current bio, and thus deadlock, so flush the
5096 * write bio here.
5097 */
9845e5dd 5098 submit_write_bio(epd, 0);
c9583ada 5099 goto retry;
d1310b2e 5100 }
a9132667
LB
5101
5102 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5103 mapping->writeback_index = done_index;
5104
7fd1a3f7 5105 btrfs_add_delayed_iput(inode);
894b36e3 5106 return ret;
d1310b2e 5107}
d1310b2e 5108
2bd0fc93
QW
5109/*
5110 * Submit the pages in the range to bio for call sites which delalloc range has
5111 * already been ran (aka, ordered extent inserted) and all pages are still
5112 * locked.
5113 */
5114int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 5115{
2bd0fc93
QW
5116 bool found_error = false;
5117 int first_error = 0;
771ed689
CM
5118 int ret = 0;
5119 struct address_space *mapping = inode->i_mapping;
5120 struct page *page;
2bd0fc93 5121 u64 cur = start;
66448b9d
QW
5122 unsigned long nr_pages;
5123 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 5124 struct extent_page_data epd = {
390ed29b 5125 .bio_ctrl = { 0 },
771ed689 5126 .extent_locked = 1,
2bd0fc93 5127 .sync_io = 1,
771ed689
CM
5128 };
5129 struct writeback_control wbc_writepages = {
2bd0fc93 5130 .sync_mode = WB_SYNC_ALL,
771ed689
CM
5131 .range_start = start,
5132 .range_end = end + 1,
ec39f769
CM
5133 /* We're called from an async helper function */
5134 .punt_to_cgroup = 1,
5135 .no_cgroup_owner = 1,
771ed689
CM
5136 };
5137
66448b9d
QW
5138 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5139 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5140 PAGE_SHIFT;
5141 wbc_writepages.nr_to_write = nr_pages * 2;
5142
dbb70bec 5143 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 5144 while (cur <= end) {
66448b9d
QW
5145 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5146
2bd0fc93
QW
5147 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5148 /*
5149 * All pages in the range are locked since
5150 * btrfs_run_delalloc_range(), thus there is no way to clear
5151 * the page dirty flag.
5152 */
66448b9d 5153 ASSERT(PageLocked(page));
2bd0fc93
QW
5154 ASSERT(PageDirty(page));
5155 clear_page_dirty_for_io(page);
5156 ret = __extent_writepage(page, &wbc_writepages, &epd);
5157 ASSERT(ret <= 0);
5158 if (ret < 0) {
5159 found_error = true;
5160 first_error = ret;
771ed689 5161 }
09cbfeaf 5162 put_page(page);
66448b9d 5163 cur = cur_end + 1;
771ed689
CM
5164 }
5165
9845e5dd 5166 submit_write_bio(&epd, found_error ? ret : 0);
dbb70bec
CM
5167
5168 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
5169 if (found_error)
5170 return first_error;
771ed689
CM
5171 return ret;
5172}
d1310b2e 5173
8ae225a8 5174int extent_writepages(struct address_space *mapping,
d1310b2e
CM
5175 struct writeback_control *wbc)
5176{
35156d85 5177 struct inode *inode = mapping->host;
d1310b2e
CM
5178 int ret = 0;
5179 struct extent_page_data epd = {
390ed29b 5180 .bio_ctrl = { 0 },
771ed689 5181 .extent_locked = 0,
ffbd517d 5182 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
5183 };
5184
35156d85
JT
5185 /*
5186 * Allow only a single thread to do the reloc work in zoned mode to
5187 * protect the write pointer updates.
5188 */
869f4cdc 5189 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 5190 ret = extent_write_cache_pages(mapping, wbc, &epd);
9845e5dd 5191 submit_write_bio(&epd, ret);
19ab78ca 5192 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
5193 return ret;
5194}
d1310b2e 5195
ba206a02 5196void extent_readahead(struct readahead_control *rac)
d1310b2e 5197{
390ed29b 5198 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 5199 struct page *pagepool[16];
125bac01 5200 struct extent_map *em_cached = NULL;
808f80b4 5201 u64 prev_em_start = (u64)-1;
ba206a02 5202 int nr;
d1310b2e 5203
ba206a02 5204 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
5205 u64 contig_start = readahead_pos(rac);
5206 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 5207
ba206a02 5208 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 5209 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 5210 }
67c9684f 5211
125bac01
MX
5212 if (em_cached)
5213 free_extent_map(em_cached);
722c82ac 5214 submit_one_bio(&bio_ctrl);
d1310b2e 5215}
d1310b2e
CM
5216
5217/*
895586eb
MWO
5218 * basic invalidate_folio code, this waits on any locked or writeback
5219 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
5220 * records from the tree
5221 */
895586eb
MWO
5222int extent_invalidate_folio(struct extent_io_tree *tree,
5223 struct folio *folio, size_t offset)
d1310b2e 5224{
2ac55d41 5225 struct extent_state *cached_state = NULL;
895586eb
MWO
5226 u64 start = folio_pos(folio);
5227 u64 end = start + folio_size(folio) - 1;
5228 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
d1310b2e 5229
829ddec9
QW
5230 /* This function is only called for the btree inode */
5231 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5232
fda2832f 5233 start += ALIGN(offset, blocksize);
d1310b2e
CM
5234 if (start > end)
5235 return 0;
5236
ff13db41 5237 lock_extent_bits(tree, start, end, &cached_state);
895586eb 5238 folio_wait_writeback(folio);
829ddec9
QW
5239
5240 /*
5241 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5242 * so here we only need to unlock the extent range to free any
5243 * existing extent state.
5244 */
5245 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5246 return 0;
5247}
d1310b2e 5248
7b13b7b1 5249/*
f913cff3 5250 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
5251 * are locked or under IO and drops the related state bits if it is safe
5252 * to drop the page.
5253 */
29c68b2d 5254static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5255 struct page *page, gfp_t mask)
7b13b7b1 5256{
4eee4fa4 5257 u64 start = page_offset(page);
09cbfeaf 5258 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5259 int ret = 1;
5260
8882679e 5261 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5262 ret = 0;
8882679e 5263 } else {
11ef160f 5264 /*
2766ff61
FM
5265 * At this point we can safely clear everything except the
5266 * locked bit, the nodatasum bit and the delalloc new bit.
5267 * The delalloc new bit will be cleared by ordered extent
5268 * completion.
11ef160f 5269 */
66b0c887 5270 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5271 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5272 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5273
5274 /* if clear_extent_bit failed for enomem reasons,
5275 * we can't allow the release to continue.
5276 */
5277 if (ret < 0)
5278 ret = 0;
5279 else
5280 ret = 1;
7b13b7b1
CM
5281 }
5282 return ret;
5283}
7b13b7b1 5284
d1310b2e 5285/*
f913cff3 5286 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
5287 * in the range corresponding to the page, both state records and extent
5288 * map records are removed
5289 */
477a30ba 5290int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5291{
5292 struct extent_map *em;
4eee4fa4 5293 u64 start = page_offset(page);
09cbfeaf 5294 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5295 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5296 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5297 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5298
d0164adc 5299 if (gfpflags_allow_blocking(mask) &&
ee22184b 5300 page->mapping->host->i_size > SZ_16M) {
39b5637f 5301 u64 len;
70dec807 5302 while (start <= end) {
fbc2bd7e
FM
5303 struct btrfs_fs_info *fs_info;
5304 u64 cur_gen;
5305
39b5637f 5306 len = end - start + 1;
890871be 5307 write_lock(&map->lock);
39b5637f 5308 em = lookup_extent_mapping(map, start, len);
285190d9 5309 if (!em) {
890871be 5310 write_unlock(&map->lock);
70dec807
CM
5311 break;
5312 }
7f3c74fb
CM
5313 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5314 em->start != start) {
890871be 5315 write_unlock(&map->lock);
70dec807
CM
5316 free_extent_map(em);
5317 break;
5318 }
3d6448e6
FM
5319 if (test_range_bit(tree, em->start,
5320 extent_map_end(em) - 1,
5321 EXTENT_LOCKED, 0, NULL))
5322 goto next;
5323 /*
5324 * If it's not in the list of modified extents, used
5325 * by a fast fsync, we can remove it. If it's being
5326 * logged we can safely remove it since fsync took an
5327 * extra reference on the em.
5328 */
5329 if (list_empty(&em->list) ||
fbc2bd7e
FM
5330 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5331 goto remove_em;
5332 /*
5333 * If it's in the list of modified extents, remove it
5334 * only if its generation is older then the current one,
5335 * in which case we don't need it for a fast fsync.
5336 * Otherwise don't remove it, we could be racing with an
5337 * ongoing fast fsync that could miss the new extent.
5338 */
5339 fs_info = btrfs_inode->root->fs_info;
5340 spin_lock(&fs_info->trans_lock);
5341 cur_gen = fs_info->generation;
5342 spin_unlock(&fs_info->trans_lock);
5343 if (em->generation >= cur_gen)
5344 goto next;
5345remove_em:
5e548b32
FM
5346 /*
5347 * We only remove extent maps that are not in the list of
5348 * modified extents or that are in the list but with a
5349 * generation lower then the current generation, so there
5350 * is no need to set the full fsync flag on the inode (it
5351 * hurts the fsync performance for workloads with a data
5352 * size that exceeds or is close to the system's memory).
5353 */
fbc2bd7e
FM
5354 remove_extent_mapping(map, em);
5355 /* once for the rb tree */
5356 free_extent_map(em);
3d6448e6 5357next:
70dec807 5358 start = extent_map_end(em);
890871be 5359 write_unlock(&map->lock);
70dec807
CM
5360
5361 /* once for us */
d1310b2e 5362 free_extent_map(em);
9f47eb54
PM
5363
5364 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5365 }
d1310b2e 5366 }
29c68b2d 5367 return try_release_extent_state(tree, page, mask);
d1310b2e 5368}
d1310b2e 5369
ec29ed5b
CM
5370/*
5371 * helper function for fiemap, which doesn't want to see any holes.
5372 * This maps until we find something past 'last'
5373 */
f1bbde8d 5374static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5375 u64 offset, u64 last)
ec29ed5b 5376{
f1bbde8d 5377 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5378 struct extent_map *em;
5379 u64 len;
5380
5381 if (offset >= last)
5382 return NULL;
5383
67871254 5384 while (1) {
ec29ed5b
CM
5385 len = last - offset;
5386 if (len == 0)
5387 break;
fda2832f 5388 len = ALIGN(len, sectorsize);
f1bbde8d 5389 em = btrfs_get_extent_fiemap(inode, offset, len);
6b5b7a41 5390 if (IS_ERR(em))
ec29ed5b
CM
5391 return em;
5392
5393 /* if this isn't a hole return it */
4a2d25cd 5394 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5395 return em;
ec29ed5b
CM
5396
5397 /* this is a hole, advance to the next extent */
5398 offset = extent_map_end(em);
5399 free_extent_map(em);
5400 if (offset >= last)
5401 break;
5402 }
5403 return NULL;
5404}
5405
4751832d
QW
5406/*
5407 * To cache previous fiemap extent
5408 *
5409 * Will be used for merging fiemap extent
5410 */
5411struct fiemap_cache {
5412 u64 offset;
5413 u64 phys;
5414 u64 len;
5415 u32 flags;
5416 bool cached;
5417};
5418
5419/*
5420 * Helper to submit fiemap extent.
5421 *
5422 * Will try to merge current fiemap extent specified by @offset, @phys,
5423 * @len and @flags with cached one.
5424 * And only when we fails to merge, cached one will be submitted as
5425 * fiemap extent.
5426 *
5427 * Return value is the same as fiemap_fill_next_extent().
5428 */
5429static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5430 struct fiemap_cache *cache,
5431 u64 offset, u64 phys, u64 len, u32 flags)
5432{
5433 int ret = 0;
5434
5435 if (!cache->cached)
5436 goto assign;
5437
5438 /*
5439 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5440 * fiemap extent won't overlap with cached one.
4751832d
QW
5441 * Not recoverable.
5442 *
5443 * NOTE: Physical address can overlap, due to compression
5444 */
5445 if (cache->offset + cache->len > offset) {
5446 WARN_ON(1);
5447 return -EINVAL;
5448 }
5449
5450 /*
5451 * Only merges fiemap extents if
5452 * 1) Their logical addresses are continuous
5453 *
5454 * 2) Their physical addresses are continuous
5455 * So truly compressed (physical size smaller than logical size)
5456 * extents won't get merged with each other
5457 *
5458 * 3) Share same flags except FIEMAP_EXTENT_LAST
5459 * So regular extent won't get merged with prealloc extent
5460 */
5461 if (cache->offset + cache->len == offset &&
5462 cache->phys + cache->len == phys &&
5463 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5464 (flags & ~FIEMAP_EXTENT_LAST)) {
5465 cache->len += len;
5466 cache->flags |= flags;
5467 goto try_submit_last;
5468 }
5469
5470 /* Not mergeable, need to submit cached one */
5471 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5472 cache->len, cache->flags);
5473 cache->cached = false;
5474 if (ret)
5475 return ret;
5476assign:
5477 cache->cached = true;
5478 cache->offset = offset;
5479 cache->phys = phys;
5480 cache->len = len;
5481 cache->flags = flags;
5482try_submit_last:
5483 if (cache->flags & FIEMAP_EXTENT_LAST) {
5484 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5485 cache->phys, cache->len, cache->flags);
5486 cache->cached = false;
5487 }
5488 return ret;
5489}
5490
5491/*
848c23b7 5492 * Emit last fiemap cache
4751832d 5493 *
848c23b7
QW
5494 * The last fiemap cache may still be cached in the following case:
5495 * 0 4k 8k
5496 * |<- Fiemap range ->|
5497 * |<------------ First extent ----------->|
5498 *
5499 * In this case, the first extent range will be cached but not emitted.
5500 * So we must emit it before ending extent_fiemap().
4751832d 5501 */
5c5aff98 5502static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5503 struct fiemap_cache *cache)
4751832d
QW
5504{
5505 int ret;
5506
5507 if (!cache->cached)
5508 return 0;
5509
4751832d
QW
5510 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5511 cache->len, cache->flags);
5512 cache->cached = false;
5513 if (ret > 0)
5514 ret = 0;
5515 return ret;
5516}
5517
facee0a0 5518int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5519 u64 start, u64 len)
1506fcc8 5520{
975f84fe 5521 int ret = 0;
15c7745c 5522 u64 off;
1506fcc8
YS
5523 u64 max = start + len;
5524 u32 flags = 0;
975f84fe
JB
5525 u32 found_type;
5526 u64 last;
ec29ed5b 5527 u64 last_for_get_extent = 0;
1506fcc8 5528 u64 disko = 0;
facee0a0 5529 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5530 struct btrfs_key found_key;
1506fcc8 5531 struct extent_map *em = NULL;
2ac55d41 5532 struct extent_state *cached_state = NULL;
975f84fe 5533 struct btrfs_path *path;
facee0a0 5534 struct btrfs_root *root = inode->root;
4751832d 5535 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5536 struct ulist *roots;
5537 struct ulist *tmp_ulist;
1506fcc8 5538 int end = 0;
ec29ed5b
CM
5539 u64 em_start = 0;
5540 u64 em_len = 0;
5541 u64 em_end = 0;
1506fcc8
YS
5542
5543 if (len == 0)
5544 return -EINVAL;
5545
975f84fe
JB
5546 path = btrfs_alloc_path();
5547 if (!path)
5548 return -ENOMEM;
975f84fe 5549
5911c8fe
DS
5550 roots = ulist_alloc(GFP_KERNEL);
5551 tmp_ulist = ulist_alloc(GFP_KERNEL);
5552 if (!roots || !tmp_ulist) {
5553 ret = -ENOMEM;
5554 goto out_free_ulist;
5555 }
5556
15c7745c
BB
5557 /*
5558 * We can't initialize that to 'start' as this could miss extents due
5559 * to extent item merging
5560 */
5561 off = 0;
facee0a0
NB
5562 start = round_down(start, btrfs_inode_sectorsize(inode));
5563 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5564
ec29ed5b
CM
5565 /*
5566 * lookup the last file extent. We're not using i_size here
5567 * because there might be preallocation past i_size
5568 */
facee0a0
NB
5569 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5570 0);
975f84fe 5571 if (ret < 0) {
5911c8fe 5572 goto out_free_ulist;
2d324f59
LB
5573 } else {
5574 WARN_ON(!ret);
5575 if (ret == 1)
5576 ret = 0;
975f84fe 5577 }
2d324f59 5578
975f84fe 5579 path->slots[0]--;
975f84fe 5580 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5581 found_type = found_key.type;
975f84fe 5582
ec29ed5b 5583 /* No extents, but there might be delalloc bits */
facee0a0 5584 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5585 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5586 /* have to trust i_size as the end */
5587 last = (u64)-1;
5588 last_for_get_extent = isize;
5589 } else {
5590 /*
5591 * remember the start of the last extent. There are a
5592 * bunch of different factors that go into the length of the
5593 * extent, so its much less complex to remember where it started
5594 */
5595 last = found_key.offset;
5596 last_for_get_extent = last + 1;
975f84fe 5597 }
fe09e16c 5598 btrfs_release_path(path);
975f84fe 5599
ec29ed5b
CM
5600 /*
5601 * we might have some extents allocated but more delalloc past those
5602 * extents. so, we trust isize unless the start of the last extent is
5603 * beyond isize
5604 */
5605 if (last < isize) {
5606 last = (u64)-1;
5607 last_for_get_extent = isize;
5608 }
5609
facee0a0 5610 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5611 &cached_state);
ec29ed5b 5612
facee0a0 5613 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5614 if (!em)
5615 goto out;
5616 if (IS_ERR(em)) {
5617 ret = PTR_ERR(em);
5618 goto out;
5619 }
975f84fe 5620
1506fcc8 5621 while (!end) {
b76bb701 5622 u64 offset_in_extent = 0;
ea8efc74
CM
5623
5624 /* break if the extent we found is outside the range */
5625 if (em->start >= max || extent_map_end(em) < off)
5626 break;
5627
5628 /*
5629 * get_extent may return an extent that starts before our
5630 * requested range. We have to make sure the ranges
5631 * we return to fiemap always move forward and don't
5632 * overlap, so adjust the offsets here
5633 */
5634 em_start = max(em->start, off);
1506fcc8 5635
ea8efc74
CM
5636 /*
5637 * record the offset from the start of the extent
b76bb701
JB
5638 * for adjusting the disk offset below. Only do this if the
5639 * extent isn't compressed since our in ram offset may be past
5640 * what we have actually allocated on disk.
ea8efc74 5641 */
b76bb701
JB
5642 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5643 offset_in_extent = em_start - em->start;
ec29ed5b 5644 em_end = extent_map_end(em);
ea8efc74 5645 em_len = em_end - em_start;
1506fcc8 5646 flags = 0;
f0986318
FM
5647 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5648 disko = em->block_start + offset_in_extent;
5649 else
5650 disko = 0;
1506fcc8 5651
ea8efc74
CM
5652 /*
5653 * bump off for our next call to get_extent
5654 */
5655 off = extent_map_end(em);
5656 if (off >= max)
5657 end = 1;
5658
93dbfad7 5659 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5660 end = 1;
5661 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5662 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5663 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5664 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5665 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5666 flags |= (FIEMAP_EXTENT_DELALLOC |
5667 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5668 } else if (fieinfo->fi_extents_max) {
5669 u64 bytenr = em->block_start -
5670 (em->start - em->orig_start);
fe09e16c 5671
fe09e16c
LB
5672 /*
5673 * As btrfs supports shared space, this information
5674 * can be exported to userspace tools via
dc046b10
JB
5675 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5676 * then we're just getting a count and we can skip the
5677 * lookup stuff.
fe09e16c 5678 */
facee0a0 5679 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5680 bytenr, roots, tmp_ulist);
dc046b10 5681 if (ret < 0)
fe09e16c 5682 goto out_free;
dc046b10 5683 if (ret)
fe09e16c 5684 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5685 ret = 0;
1506fcc8
YS
5686 }
5687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5688 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5690 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5691
1506fcc8
YS
5692 free_extent_map(em);
5693 em = NULL;
ec29ed5b
CM
5694 if ((em_start >= last) || em_len == (u64)-1 ||
5695 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5696 flags |= FIEMAP_EXTENT_LAST;
5697 end = 1;
5698 }
5699
ec29ed5b 5700 /* now scan forward to see if this is really the last extent. */
facee0a0 5701 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5702 if (IS_ERR(em)) {
5703 ret = PTR_ERR(em);
5704 goto out;
5705 }
5706 if (!em) {
975f84fe
JB
5707 flags |= FIEMAP_EXTENT_LAST;
5708 end = 1;
5709 }
4751832d
QW
5710 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5711 em_len, flags);
26e726af
CS
5712 if (ret) {
5713 if (ret == 1)
5714 ret = 0;
ec29ed5b 5715 goto out_free;
26e726af 5716 }
1506fcc8
YS
5717 }
5718out_free:
4751832d 5719 if (!ret)
5c5aff98 5720 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5721 free_extent_map(em);
5722out:
facee0a0 5723 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5724 &cached_state);
5911c8fe
DS
5725
5726out_free_ulist:
e02d48ea 5727 btrfs_free_path(path);
5911c8fe
DS
5728 ulist_free(roots);
5729 ulist_free(tmp_ulist);
1506fcc8
YS
5730 return ret;
5731}
5732
727011e0
CM
5733static void __free_extent_buffer(struct extent_buffer *eb)
5734{
727011e0
CM
5735 kmem_cache_free(extent_buffer_cache, eb);
5736}
5737
2b48966a 5738int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5739{
5740 return (atomic_read(&eb->io_pages) ||
5741 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5742 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5743}
5744
8ff8466d 5745static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5746{
8ff8466d 5747 struct btrfs_subpage *subpage;
db7f3436 5748
8ff8466d 5749 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5750
8ff8466d
QW
5751 if (PagePrivate(page)) {
5752 subpage = (struct btrfs_subpage *)page->private;
5753 if (atomic_read(&subpage->eb_refs))
5754 return true;
3d078efa
QW
5755 /*
5756 * Even there is no eb refs here, we may still have
5757 * end_page_read() call relying on page::private.
5758 */
5759 if (atomic_read(&subpage->readers))
5760 return true;
8ff8466d
QW
5761 }
5762 return false;
5763}
db7f3436 5764
8ff8466d
QW
5765static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5766{
5767 struct btrfs_fs_info *fs_info = eb->fs_info;
5768 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5769
5770 /*
5771 * For mapped eb, we're going to change the page private, which should
5772 * be done under the private_lock.
5773 */
5774 if (mapped)
5775 spin_lock(&page->mapping->private_lock);
5776
5777 if (!PagePrivate(page)) {
5d2361db 5778 if (mapped)
8ff8466d
QW
5779 spin_unlock(&page->mapping->private_lock);
5780 return;
5781 }
5782
fbca46eb 5783 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
5784 /*
5785 * We do this since we'll remove the pages after we've
5786 * removed the eb from the radix tree, so we could race
5787 * and have this page now attached to the new eb. So
5788 * only clear page_private if it's still connected to
5789 * this eb.
5790 */
5791 if (PagePrivate(page) &&
5792 page->private == (unsigned long)eb) {
5793 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5794 BUG_ON(PageDirty(page));
5795 BUG_ON(PageWriteback(page));
db7f3436 5796 /*
5d2361db
FL
5797 * We need to make sure we haven't be attached
5798 * to a new eb.
db7f3436 5799 */
d1b89bc0 5800 detach_page_private(page);
db7f3436 5801 }
5d2361db
FL
5802 if (mapped)
5803 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5804 return;
5805 }
5806
5807 /*
5808 * For subpage, we can have dummy eb with page private. In this case,
5809 * we can directly detach the private as such page is only attached to
5810 * one dummy eb, no sharing.
5811 */
5812 if (!mapped) {
5813 btrfs_detach_subpage(fs_info, page);
5814 return;
5815 }
5816
5817 btrfs_page_dec_eb_refs(fs_info, page);
5818
5819 /*
5820 * We can only detach the page private if there are no other ebs in the
3d078efa 5821 * page range and no unfinished IO.
8ff8466d
QW
5822 */
5823 if (!page_range_has_eb(fs_info, page))
5824 btrfs_detach_subpage(fs_info, page);
5825
5826 spin_unlock(&page->mapping->private_lock);
5827}
5828
5829/* Release all pages attached to the extent buffer */
5830static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5831{
5832 int i;
5833 int num_pages;
5834
5835 ASSERT(!extent_buffer_under_io(eb));
5836
5837 num_pages = num_extent_pages(eb);
5838 for (i = 0; i < num_pages; i++) {
5839 struct page *page = eb->pages[i];
5840
5841 if (!page)
5842 continue;
5843
5844 detach_extent_buffer_page(eb, page);
5d2361db 5845
01327610 5846 /* One for when we allocated the page */
09cbfeaf 5847 put_page(page);
d64766fd 5848 }
db7f3436
JB
5849}
5850
5851/*
5852 * Helper for releasing the extent buffer.
5853 */
5854static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5855{
55ac0139 5856 btrfs_release_extent_buffer_pages(eb);
8c38938c 5857 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5858 __free_extent_buffer(eb);
5859}
5860
f28491e0
JB
5861static struct extent_buffer *
5862__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5863 unsigned long len)
d1310b2e
CM
5864{
5865 struct extent_buffer *eb = NULL;
5866
d1b5c567 5867 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5868 eb->start = start;
5869 eb->len = len;
f28491e0 5870 eb->fs_info = fs_info;
815a51c7 5871 eb->bflags = 0;
196d59ab 5872 init_rwsem(&eb->lock);
b4ce94de 5873
3fd63727
JB
5874 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5875 &fs_info->allocated_ebs);
d3575156 5876 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5877
3083ee2e 5878 spin_lock_init(&eb->refs_lock);
d1310b2e 5879 atomic_set(&eb->refs, 1);
0b32f4bb 5880 atomic_set(&eb->io_pages, 0);
727011e0 5881
deb67895 5882 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5883
5884 return eb;
5885}
5886
2b48966a 5887struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5888{
cc5e31a4 5889 int i;
815a51c7 5890 struct extent_buffer *new;
cc5e31a4 5891 int num_pages = num_extent_pages(src);
dd137dd1 5892 int ret;
815a51c7 5893
3f556f78 5894 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5895 if (new == NULL)
5896 return NULL;
5897
62c053fb
QW
5898 /*
5899 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5900 * btrfs_release_extent_buffer() have different behavior for
5901 * UNMAPPED subpage extent buffer.
5902 */
5903 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5904
dd137dd1
STD
5905 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
5906 ret = btrfs_alloc_page_array(num_pages, new->pages);
5907 if (ret) {
5908 btrfs_release_extent_buffer(new);
5909 return NULL;
5910 }
5911
815a51c7 5912 for (i = 0; i < num_pages; i++) {
760f991f 5913 int ret;
dd137dd1 5914 struct page *p = new->pages[i];
760f991f 5915
760f991f
QW
5916 ret = attach_extent_buffer_page(new, p, NULL);
5917 if (ret < 0) {
760f991f
QW
5918 btrfs_release_extent_buffer(new);
5919 return NULL;
5920 }
815a51c7 5921 WARN_ON(PageDirty(p));
fba1acf9 5922 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5923 }
92d83e94 5924 set_extent_buffer_uptodate(new);
815a51c7
JS
5925
5926 return new;
5927}
5928
0f331229
OS
5929struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5930 u64 start, unsigned long len)
815a51c7
JS
5931{
5932 struct extent_buffer *eb;
cc5e31a4
DS
5933 int num_pages;
5934 int i;
dd137dd1 5935 int ret;
815a51c7 5936
3f556f78 5937 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5938 if (!eb)
5939 return NULL;
5940
65ad0104 5941 num_pages = num_extent_pages(eb);
dd137dd1
STD
5942 ret = btrfs_alloc_page_array(num_pages, eb->pages);
5943 if (ret)
5944 goto err;
5945
815a51c7 5946 for (i = 0; i < num_pages; i++) {
dd137dd1 5947 struct page *p = eb->pages[i];
09bc1f0f 5948
dd137dd1 5949 ret = attach_extent_buffer_page(eb, p, NULL);
09bc1f0f
QW
5950 if (ret < 0)
5951 goto err;
815a51c7 5952 }
dd137dd1 5953
815a51c7
JS
5954 set_extent_buffer_uptodate(eb);
5955 btrfs_set_header_nritems(eb, 0);
b0132a3b 5956 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5957
5958 return eb;
5959err:
dd137dd1
STD
5960 for (i = 0; i < num_pages; i++) {
5961 if (eb->pages[i]) {
5962 detach_extent_buffer_page(eb, eb->pages[i]);
5963 __free_page(eb->pages[i]);
5964 }
09bc1f0f 5965 }
815a51c7
JS
5966 __free_extent_buffer(eb);
5967 return NULL;
5968}
5969
0f331229 5970struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5971 u64 start)
0f331229 5972{
da17066c 5973 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5974}
5975
0b32f4bb
JB
5976static void check_buffer_tree_ref(struct extent_buffer *eb)
5977{
242e18c7 5978 int refs;
6bf9cd2e
BB
5979 /*
5980 * The TREE_REF bit is first set when the extent_buffer is added
5981 * to the radix tree. It is also reset, if unset, when a new reference
5982 * is created by find_extent_buffer.
0b32f4bb 5983 *
6bf9cd2e
BB
5984 * It is only cleared in two cases: freeing the last non-tree
5985 * reference to the extent_buffer when its STALE bit is set or
f913cff3 5986 * calling release_folio when the tree reference is the only reference.
0b32f4bb 5987 *
6bf9cd2e 5988 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 5989 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
5990 * called with creating new references, which is prone to race
5991 * conditions between the calls to check_buffer_tree_ref in those
5992 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5993 *
6bf9cd2e
BB
5994 * The actual lifetime of the extent_buffer in the radix tree is
5995 * adequately protected by the refcount, but the TREE_REF bit and
5996 * its corresponding reference are not. To protect against this
5997 * class of races, we call check_buffer_tree_ref from the codepaths
5998 * which trigger io after they set eb->io_pages. Note that once io is
5999 * initiated, TREE_REF can no longer be cleared, so that is the
6000 * moment at which any such race is best fixed.
0b32f4bb 6001 */
242e18c7
CM
6002 refs = atomic_read(&eb->refs);
6003 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6004 return;
6005
594831c4
JB
6006 spin_lock(&eb->refs_lock);
6007 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 6008 atomic_inc(&eb->refs);
594831c4 6009 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
6010}
6011
2457aec6
MG
6012static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6013 struct page *accessed)
5df4235e 6014{
cc5e31a4 6015 int num_pages, i;
5df4235e 6016
0b32f4bb
JB
6017 check_buffer_tree_ref(eb);
6018
65ad0104 6019 num_pages = num_extent_pages(eb);
5df4235e 6020 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
6021 struct page *p = eb->pages[i];
6022
2457aec6
MG
6023 if (p != accessed)
6024 mark_page_accessed(p);
5df4235e
JB
6025 }
6026}
6027
f28491e0
JB
6028struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6029 u64 start)
452c75c3
CS
6030{
6031 struct extent_buffer *eb;
6032
2f3186d8
QW
6033 eb = find_extent_buffer_nolock(fs_info, start);
6034 if (!eb)
6035 return NULL;
6036 /*
6037 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6038 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6039 * another task running free_extent_buffer() might have seen that flag
6040 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6041 * writeback flags not set) and it's still in the tree (flag
6042 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6043 * decrementing the extent buffer's reference count twice. So here we
6044 * could race and increment the eb's reference count, clear its stale
6045 * flag, mark it as dirty and drop our reference before the other task
6046 * finishes executing free_extent_buffer, which would later result in
6047 * an attempt to free an extent buffer that is dirty.
6048 */
6049 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6050 spin_lock(&eb->refs_lock);
6051 spin_unlock(&eb->refs_lock);
452c75c3 6052 }
2f3186d8
QW
6053 mark_extent_buffer_accessed(eb, NULL);
6054 return eb;
452c75c3
CS
6055}
6056
faa2dbf0
JB
6057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6058struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 6059 u64 start)
faa2dbf0
JB
6060{
6061 struct extent_buffer *eb, *exists = NULL;
6062 int ret;
6063
6064 eb = find_extent_buffer(fs_info, start);
6065 if (eb)
6066 return eb;
da17066c 6067 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 6068 if (!eb)
b6293c82 6069 return ERR_PTR(-ENOMEM);
faa2dbf0 6070 eb->fs_info = fs_info;
01cd3909
DS
6071again:
6072 ret = radix_tree_preload(GFP_NOFS);
6073 if (ret) {
6074 exists = ERR_PTR(ret);
6075 goto free_eb;
6076 }
6077 spin_lock(&fs_info->buffer_lock);
6078 ret = radix_tree_insert(&fs_info->buffer_radix,
6079 start >> fs_info->sectorsize_bits, eb);
6080 spin_unlock(&fs_info->buffer_lock);
6081 radix_tree_preload_end();
6082 if (ret == -EEXIST) {
6083 exists = find_extent_buffer(fs_info, start);
6084 if (exists)
faa2dbf0 6085 goto free_eb;
01cd3909
DS
6086 else
6087 goto again;
6088 }
faa2dbf0
JB
6089 check_buffer_tree_ref(eb);
6090 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6091
faa2dbf0
JB
6092 return eb;
6093free_eb:
6094 btrfs_release_extent_buffer(eb);
6095 return exists;
6096}
6097#endif
6098
81982210
QW
6099static struct extent_buffer *grab_extent_buffer(
6100 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
6101{
6102 struct extent_buffer *exists;
6103
81982210
QW
6104 /*
6105 * For subpage case, we completely rely on radix tree to ensure we
6106 * don't try to insert two ebs for the same bytenr. So here we always
6107 * return NULL and just continue.
6108 */
fbca46eb 6109 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
6110 return NULL;
6111
c0f0a9e7
QW
6112 /* Page not yet attached to an extent buffer */
6113 if (!PagePrivate(page))
6114 return NULL;
6115
6116 /*
6117 * We could have already allocated an eb for this page and attached one
6118 * so lets see if we can get a ref on the existing eb, and if we can we
6119 * know it's good and we can just return that one, else we know we can
6120 * just overwrite page->private.
6121 */
6122 exists = (struct extent_buffer *)page->private;
6123 if (atomic_inc_not_zero(&exists->refs))
6124 return exists;
6125
6126 WARN_ON(PageDirty(page));
6127 detach_page_private(page);
6128 return NULL;
6129}
6130
fbca46eb
QW
6131static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
6132{
6133 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6134 btrfs_err(fs_info, "bad tree block start %llu", start);
6135 return -EINVAL;
6136 }
6137
6138 if (fs_info->nodesize < PAGE_SIZE &&
6139 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
6140 btrfs_err(fs_info,
6141 "tree block crosses page boundary, start %llu nodesize %u",
6142 start, fs_info->nodesize);
6143 return -EINVAL;
6144 }
6145 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 6146 !PAGE_ALIGNED(start)) {
fbca46eb
QW
6147 btrfs_err(fs_info,
6148 "tree block is not page aligned, start %llu nodesize %u",
6149 start, fs_info->nodesize);
6150 return -EINVAL;
6151 }
6152 return 0;
6153}
6154
f28491e0 6155struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 6156 u64 start, u64 owner_root, int level)
d1310b2e 6157{
da17066c 6158 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
6159 int num_pages;
6160 int i;
09cbfeaf 6161 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 6162 struct extent_buffer *eb;
6af118ce 6163 struct extent_buffer *exists = NULL;
d1310b2e 6164 struct page *p;
f28491e0 6165 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 6166 int uptodate = 1;
19fe0a8b 6167 int ret;
d1310b2e 6168
fbca46eb 6169 if (check_eb_alignment(fs_info, start))
c871b0f2 6170 return ERR_PTR(-EINVAL);
c871b0f2 6171
e9306ad4
QW
6172#if BITS_PER_LONG == 32
6173 if (start >= MAX_LFS_FILESIZE) {
6174 btrfs_err_rl(fs_info,
6175 "extent buffer %llu is beyond 32bit page cache limit", start);
6176 btrfs_err_32bit_limit(fs_info);
6177 return ERR_PTR(-EOVERFLOW);
6178 }
6179 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6180 btrfs_warn_32bit_limit(fs_info);
6181#endif
6182
f28491e0 6183 eb = find_extent_buffer(fs_info, start);
452c75c3 6184 if (eb)
6af118ce 6185 return eb;
6af118ce 6186
23d79d81 6187 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 6188 if (!eb)
c871b0f2 6189 return ERR_PTR(-ENOMEM);
e114c545 6190 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 6191
65ad0104 6192 num_pages = num_extent_pages(eb);
727011e0 6193 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
6194 struct btrfs_subpage *prealloc = NULL;
6195
d1b5c567 6196 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
6197 if (!p) {
6198 exists = ERR_PTR(-ENOMEM);
6af118ce 6199 goto free_eb;
c871b0f2 6200 }
4f2de97a 6201
760f991f
QW
6202 /*
6203 * Preallocate page->private for subpage case, so that we won't
6204 * allocate memory with private_lock hold. The memory will be
6205 * freed by attach_extent_buffer_page() or freed manually if
6206 * we exit earlier.
6207 *
6208 * Although we have ensured one subpage eb can only have one
6209 * page, but it may change in the future for 16K page size
6210 * support, so we still preallocate the memory in the loop.
6211 */
fbca46eb 6212 if (fs_info->nodesize < PAGE_SIZE) {
651fb419
QW
6213 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6214 if (IS_ERR(prealloc)) {
6215 ret = PTR_ERR(prealloc);
fdf250db
QW
6216 unlock_page(p);
6217 put_page(p);
6218 exists = ERR_PTR(ret);
6219 goto free_eb;
6220 }
760f991f
QW
6221 }
6222
4f2de97a 6223 spin_lock(&mapping->private_lock);
81982210 6224 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
6225 if (exists) {
6226 spin_unlock(&mapping->private_lock);
6227 unlock_page(p);
6228 put_page(p);
6229 mark_extent_buffer_accessed(exists, p);
760f991f 6230 btrfs_free_subpage(prealloc);
c0f0a9e7 6231 goto free_eb;
d1310b2e 6232 }
760f991f
QW
6233 /* Should not fail, as we have preallocated the memory */
6234 ret = attach_extent_buffer_page(eb, p, prealloc);
6235 ASSERT(!ret);
8ff8466d
QW
6236 /*
6237 * To inform we have extra eb under allocation, so that
6238 * detach_extent_buffer_page() won't release the page private
6239 * when the eb hasn't yet been inserted into radix tree.
6240 *
6241 * The ref will be decreased when the eb released the page, in
6242 * detach_extent_buffer_page().
6243 * Thus needs no special handling in error path.
6244 */
6245 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6246 spin_unlock(&mapping->private_lock);
760f991f 6247
1e5eb3d6 6248 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6249 eb->pages[i] = p;
d1310b2e
CM
6250 if (!PageUptodate(p))
6251 uptodate = 0;
eb14ab8e
CM
6252
6253 /*
b16d011e
NB
6254 * We can't unlock the pages just yet since the extent buffer
6255 * hasn't been properly inserted in the radix tree, this
f913cff3 6256 * opens a race with btree_release_folio which can free a page
b16d011e
NB
6257 * while we are still filling in all pages for the buffer and
6258 * we could crash.
eb14ab8e 6259 */
d1310b2e
CM
6260 }
6261 if (uptodate)
b4ce94de 6262 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
01cd3909
DS
6263again:
6264 ret = radix_tree_preload(GFP_NOFS);
6265 if (ret) {
6266 exists = ERR_PTR(ret);
6267 goto free_eb;
6268 }
6269
6270 spin_lock(&fs_info->buffer_lock);
6271 ret = radix_tree_insert(&fs_info->buffer_radix,
6272 start >> fs_info->sectorsize_bits, eb);
6273 spin_unlock(&fs_info->buffer_lock);
6274 radix_tree_preload_end();
6275 if (ret == -EEXIST) {
6276 exists = find_extent_buffer(fs_info, start);
6277 if (exists)
452c75c3 6278 goto free_eb;
01cd3909
DS
6279 else
6280 goto again;
6281 }
6af118ce 6282 /* add one reference for the tree */
0b32f4bb 6283 check_buffer_tree_ref(eb);
34b41ace 6284 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6285
6286 /*
b16d011e 6287 * Now it's safe to unlock the pages because any calls to
f913cff3 6288 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 6289 * live buffer and won't free them prematurely.
eb14ab8e 6290 */
28187ae5
NB
6291 for (i = 0; i < num_pages; i++)
6292 unlock_page(eb->pages[i]);
d1310b2e
CM
6293 return eb;
6294
6af118ce 6295free_eb:
5ca64f45 6296 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6297 for (i = 0; i < num_pages; i++) {
6298 if (eb->pages[i])
6299 unlock_page(eb->pages[i]);
6300 }
eb14ab8e 6301
897ca6e9 6302 btrfs_release_extent_buffer(eb);
6af118ce 6303 return exists;
d1310b2e 6304}
d1310b2e 6305
3083ee2e
JB
6306static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6307{
6308 struct extent_buffer *eb =
6309 container_of(head, struct extent_buffer, rcu_head);
6310
6311 __free_extent_buffer(eb);
6312}
6313
f7a52a40 6314static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6315 __releases(&eb->refs_lock)
3083ee2e 6316{
07e21c4d
NB
6317 lockdep_assert_held(&eb->refs_lock);
6318
3083ee2e
JB
6319 WARN_ON(atomic_read(&eb->refs) == 0);
6320 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6321 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6322 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6323
815a51c7 6324 spin_unlock(&eb->refs_lock);
3083ee2e 6325
01cd3909
DS
6326 spin_lock(&fs_info->buffer_lock);
6327 radix_tree_delete(&fs_info->buffer_radix,
6328 eb->start >> fs_info->sectorsize_bits);
6329 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6330 } else {
6331 spin_unlock(&eb->refs_lock);
815a51c7 6332 }
3083ee2e 6333
8c38938c 6334 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6335 /* Should be safe to release our pages at this point */
55ac0139 6336 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6337#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6338 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6339 __free_extent_buffer(eb);
6340 return 1;
6341 }
6342#endif
3083ee2e 6343 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6344 return 1;
3083ee2e
JB
6345 }
6346 spin_unlock(&eb->refs_lock);
e64860aa
JB
6347
6348 return 0;
3083ee2e
JB
6349}
6350
d1310b2e
CM
6351void free_extent_buffer(struct extent_buffer *eb)
6352{
242e18c7
CM
6353 int refs;
6354 int old;
d1310b2e
CM
6355 if (!eb)
6356 return;
6357
242e18c7
CM
6358 while (1) {
6359 refs = atomic_read(&eb->refs);
46cc775e
NB
6360 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6361 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6362 refs == 1))
242e18c7
CM
6363 break;
6364 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6365 if (old == refs)
6366 return;
6367 }
6368
3083ee2e
JB
6369 spin_lock(&eb->refs_lock);
6370 if (atomic_read(&eb->refs) == 2 &&
6371 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6372 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6373 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6374 atomic_dec(&eb->refs);
6375
6376 /*
6377 * I know this is terrible, but it's temporary until we stop tracking
6378 * the uptodate bits and such for the extent buffers.
6379 */
f7a52a40 6380 release_extent_buffer(eb);
3083ee2e
JB
6381}
6382
6383void free_extent_buffer_stale(struct extent_buffer *eb)
6384{
6385 if (!eb)
d1310b2e
CM
6386 return;
6387
3083ee2e
JB
6388 spin_lock(&eb->refs_lock);
6389 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6390
0b32f4bb 6391 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6392 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6393 atomic_dec(&eb->refs);
f7a52a40 6394 release_extent_buffer(eb);
d1310b2e 6395}
d1310b2e 6396
0d27797e
QW
6397static void btree_clear_page_dirty(struct page *page)
6398{
6399 ASSERT(PageDirty(page));
6400 ASSERT(PageLocked(page));
6401 clear_page_dirty_for_io(page);
6402 xa_lock_irq(&page->mapping->i_pages);
6403 if (!PageDirty(page))
6404 __xa_clear_mark(&page->mapping->i_pages,
6405 page_index(page), PAGECACHE_TAG_DIRTY);
6406 xa_unlock_irq(&page->mapping->i_pages);
6407}
6408
6409static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6410{
6411 struct btrfs_fs_info *fs_info = eb->fs_info;
6412 struct page *page = eb->pages[0];
6413 bool last;
6414
6415 /* btree_clear_page_dirty() needs page locked */
6416 lock_page(page);
6417 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6418 eb->len);
6419 if (last)
6420 btree_clear_page_dirty(page);
6421 unlock_page(page);
6422 WARN_ON(atomic_read(&eb->refs) == 0);
6423}
6424
2b48966a 6425void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6426{
cc5e31a4
DS
6427 int i;
6428 int num_pages;
d1310b2e
CM
6429 struct page *page;
6430
fbca46eb 6431 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
6432 return clear_subpage_extent_buffer_dirty(eb);
6433
65ad0104 6434 num_pages = num_extent_pages(eb);
d1310b2e
CM
6435
6436 for (i = 0; i < num_pages; i++) {
fb85fc9a 6437 page = eb->pages[i];
b9473439 6438 if (!PageDirty(page))
d2c3f4f6 6439 continue;
a61e6f29 6440 lock_page(page);
0d27797e 6441 btree_clear_page_dirty(page);
bf0da8c1 6442 ClearPageError(page);
a61e6f29 6443 unlock_page(page);
d1310b2e 6444 }
0b32f4bb 6445 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6446}
d1310b2e 6447
abb57ef3 6448bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6449{
cc5e31a4
DS
6450 int i;
6451 int num_pages;
abb57ef3 6452 bool was_dirty;
d1310b2e 6453
0b32f4bb
JB
6454 check_buffer_tree_ref(eb);
6455
b9473439 6456 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6457
65ad0104 6458 num_pages = num_extent_pages(eb);
3083ee2e 6459 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6460 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6461
0d27797e 6462 if (!was_dirty) {
fbca46eb 6463 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 6464
0d27797e
QW
6465 /*
6466 * For subpage case, we can have other extent buffers in the
6467 * same page, and in clear_subpage_extent_buffer_dirty() we
6468 * have to clear page dirty without subpage lock held.
6469 * This can cause race where our page gets dirty cleared after
6470 * we just set it.
6471 *
6472 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6473 * its page for other reasons, we can use page lock to prevent
6474 * the above race.
6475 */
6476 if (subpage)
6477 lock_page(eb->pages[0]);
6478 for (i = 0; i < num_pages; i++)
6479 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6480 eb->start, eb->len);
6481 if (subpage)
6482 unlock_page(eb->pages[0]);
6483 }
51995c39
LB
6484#ifdef CONFIG_BTRFS_DEBUG
6485 for (i = 0; i < num_pages; i++)
6486 ASSERT(PageDirty(eb->pages[i]));
6487#endif
6488
b9473439 6489 return was_dirty;
d1310b2e 6490}
d1310b2e 6491
69ba3927 6492void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6493{
251f2acc 6494 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6495 struct page *page;
cc5e31a4 6496 int num_pages;
251f2acc 6497 int i;
1259ab75 6498
b4ce94de 6499 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6500 num_pages = num_extent_pages(eb);
1259ab75 6501 for (i = 0; i < num_pages; i++) {
fb85fc9a 6502 page = eb->pages[i];
fbca46eb
QW
6503 if (!page)
6504 continue;
6505
6506 /*
6507 * This is special handling for metadata subpage, as regular
6508 * btrfs_is_subpage() can not handle cloned/dummy metadata.
6509 */
6510 if (fs_info->nodesize >= PAGE_SIZE)
6511 ClearPageUptodate(page);
6512 else
6513 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
6514 eb->len);
1259ab75 6515 }
1259ab75
CM
6516}
6517
09c25a8c 6518void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6519{
251f2acc 6520 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6521 struct page *page;
cc5e31a4 6522 int num_pages;
251f2acc 6523 int i;
d1310b2e 6524
0b32f4bb 6525 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6526 num_pages = num_extent_pages(eb);
d1310b2e 6527 for (i = 0; i < num_pages; i++) {
fb85fc9a 6528 page = eb->pages[i];
fbca46eb
QW
6529
6530 /*
6531 * This is special handling for metadata subpage, as regular
6532 * btrfs_is_subpage() can not handle cloned/dummy metadata.
6533 */
6534 if (fs_info->nodesize >= PAGE_SIZE)
6535 SetPageUptodate(page);
6536 else
6537 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
6538 eb->len);
d1310b2e 6539 }
d1310b2e 6540}
d1310b2e 6541
4012daf7
QW
6542static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6543 int mirror_num)
6544{
6545 struct btrfs_fs_info *fs_info = eb->fs_info;
6546 struct extent_io_tree *io_tree;
6547 struct page *page = eb->pages[0];
722c82ac
CH
6548 struct btrfs_bio_ctrl bio_ctrl = {
6549 .mirror_num = mirror_num,
6550 };
4012daf7
QW
6551 int ret = 0;
6552
6553 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6554 ASSERT(PagePrivate(page));
6555 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6556
6557 if (wait == WAIT_NONE) {
dc56219f
GR
6558 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6559 return -EAGAIN;
4012daf7
QW
6560 } else {
6561 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6562 if (ret < 0)
6563 return ret;
6564 }
6565
6566 ret = 0;
6567 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6568 PageUptodate(page) ||
6569 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6570 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6571 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6572 return ret;
6573 }
6574
6575 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6576 eb->read_mirror = 0;
6577 atomic_set(&eb->io_pages, 1);
6578 check_buffer_tree_ref(eb);
6579 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6580
3d078efa 6581 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
08a6f464 6582 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
390ed29b
QW
6583 page, eb->start, eb->len,
6584 eb->start - page_offset(page),
722c82ac 6585 end_bio_extent_readpage, 0, true);
4012daf7
QW
6586 if (ret) {
6587 /*
6588 * In the endio function, if we hit something wrong we will
6589 * increase the io_pages, so here we need to decrease it for
6590 * error path.
6591 */
6592 atomic_dec(&eb->io_pages);
6593 }
722c82ac 6594 submit_one_bio(&bio_ctrl);
4012daf7
QW
6595 if (ret || wait != WAIT_COMPLETE)
6596 return ret;
6597
6598 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6599 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6600 ret = -EIO;
6601 return ret;
6602}
6603
c2ccfbc6 6604int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6605{
cc5e31a4 6606 int i;
d1310b2e
CM
6607 struct page *page;
6608 int err;
6609 int ret = 0;
ce9adaa5
CM
6610 int locked_pages = 0;
6611 int all_uptodate = 1;
cc5e31a4 6612 int num_pages;
727011e0 6613 unsigned long num_reads = 0;
722c82ac
CH
6614 struct btrfs_bio_ctrl bio_ctrl = {
6615 .mirror_num = mirror_num,
6616 };
a86c12c7 6617
b4ce94de 6618 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6619 return 0;
6620
651740a5
JB
6621 /*
6622 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6623 * operation, which could potentially still be in flight. In this case
6624 * we simply want to return an error.
6625 */
6626 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6627 return -EIO;
6628
fbca46eb 6629 if (eb->fs_info->nodesize < PAGE_SIZE)
4012daf7
QW
6630 return read_extent_buffer_subpage(eb, wait, mirror_num);
6631
65ad0104 6632 num_pages = num_extent_pages(eb);
8436ea91 6633 for (i = 0; i < num_pages; i++) {
fb85fc9a 6634 page = eb->pages[i];
bb82ab88 6635 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6636 /*
6637 * WAIT_NONE is only utilized by readahead. If we can't
6638 * acquire the lock atomically it means either the eb
6639 * is being read out or under modification.
6640 * Either way the eb will be or has been cached,
6641 * readahead can exit safely.
6642 */
2db04966 6643 if (!trylock_page(page))
ce9adaa5 6644 goto unlock_exit;
d1310b2e
CM
6645 } else {
6646 lock_page(page);
6647 }
ce9adaa5 6648 locked_pages++;
2571e739
LB
6649 }
6650 /*
6651 * We need to firstly lock all pages to make sure that
6652 * the uptodate bit of our pages won't be affected by
6653 * clear_extent_buffer_uptodate().
6654 */
8436ea91 6655 for (i = 0; i < num_pages; i++) {
2571e739 6656 page = eb->pages[i];
727011e0
CM
6657 if (!PageUptodate(page)) {
6658 num_reads++;
ce9adaa5 6659 all_uptodate = 0;
727011e0 6660 }
ce9adaa5 6661 }
2571e739 6662
ce9adaa5 6663 if (all_uptodate) {
8436ea91 6664 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6665 goto unlock_exit;
6666 }
6667
656f30db 6668 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6669 eb->read_mirror = 0;
0b32f4bb 6670 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e 6671 /*
f913cff3 6672 * It is possible for release_folio to clear the TREE_REF bit before we
6bf9cd2e
BB
6673 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6674 */
6675 check_buffer_tree_ref(eb);
8436ea91 6676 for (i = 0; i < num_pages; i++) {
fb85fc9a 6677 page = eb->pages[i];
baf863b9 6678
ce9adaa5 6679 if (!PageUptodate(page)) {
baf863b9
LB
6680 if (ret) {
6681 atomic_dec(&eb->io_pages);
6682 unlock_page(page);
6683 continue;
6684 }
6685
f188591e 6686 ClearPageError(page);
08a6f464 6687 err = submit_extent_page(REQ_OP_READ, NULL,
390ed29b
QW
6688 &bio_ctrl, page, page_offset(page),
6689 PAGE_SIZE, 0, end_bio_extent_readpage,
722c82ac 6690 0, false);
baf863b9 6691 if (err) {
baf863b9 6692 /*
0420177c
NB
6693 * We failed to submit the bio so it's the
6694 * caller's responsibility to perform cleanup
6695 * i.e unlock page/set error bit.
baf863b9 6696 */
0420177c
NB
6697 ret = err;
6698 SetPageError(page);
6699 unlock_page(page);
baf863b9
LB
6700 atomic_dec(&eb->io_pages);
6701 }
d1310b2e
CM
6702 } else {
6703 unlock_page(page);
6704 }
6705 }
6706
722c82ac 6707 submit_one_bio(&bio_ctrl);
a86c12c7 6708
bb82ab88 6709 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6710 return ret;
d397712b 6711
8436ea91 6712 for (i = 0; i < num_pages; i++) {
fb85fc9a 6713 page = eb->pages[i];
d1310b2e 6714 wait_on_page_locked(page);
d397712b 6715 if (!PageUptodate(page))
d1310b2e 6716 ret = -EIO;
d1310b2e 6717 }
d397712b 6718
d1310b2e 6719 return ret;
ce9adaa5
CM
6720
6721unlock_exit:
d397712b 6722 while (locked_pages > 0) {
ce9adaa5 6723 locked_pages--;
8436ea91
JB
6724 page = eb->pages[locked_pages];
6725 unlock_page(page);
ce9adaa5
CM
6726 }
6727 return ret;
d1310b2e 6728}
d1310b2e 6729
f98b6215
QW
6730static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6731 unsigned long len)
6732{
6733 btrfs_warn(eb->fs_info,
6734 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6735 eb->start, eb->len, start, len);
6736 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6737
6738 return true;
6739}
6740
6741/*
6742 * Check if the [start, start + len) range is valid before reading/writing
6743 * the eb.
6744 * NOTE: @start and @len are offset inside the eb, not logical address.
6745 *
6746 * Caller should not touch the dst/src memory if this function returns error.
6747 */
6748static inline int check_eb_range(const struct extent_buffer *eb,
6749 unsigned long start, unsigned long len)
6750{
6751 unsigned long offset;
6752
6753 /* start, start + len should not go beyond eb->len nor overflow */
6754 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6755 return report_eb_range(eb, start, len);
6756
6757 return false;
6758}
6759
1cbb1f45
JM
6760void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6761 unsigned long start, unsigned long len)
d1310b2e
CM
6762{
6763 size_t cur;
6764 size_t offset;
6765 struct page *page;
6766 char *kaddr;
6767 char *dst = (char *)dstv;
884b07d0 6768 unsigned long i = get_eb_page_index(start);
d1310b2e 6769
f98b6215 6770 if (check_eb_range(eb, start, len))
f716abd5 6771 return;
d1310b2e 6772
884b07d0 6773 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6774
d397712b 6775 while (len > 0) {
fb85fc9a 6776 page = eb->pages[i];
d1310b2e 6777
09cbfeaf 6778 cur = min(len, (PAGE_SIZE - offset));
a6591715 6779 kaddr = page_address(page);
d1310b2e 6780 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6781
6782 dst += cur;
6783 len -= cur;
6784 offset = 0;
6785 i++;
6786 }
6787}
d1310b2e 6788
a48b73ec
JB
6789int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6790 void __user *dstv,
6791 unsigned long start, unsigned long len)
550ac1d8
GH
6792{
6793 size_t cur;
6794 size_t offset;
6795 struct page *page;
6796 char *kaddr;
6797 char __user *dst = (char __user *)dstv;
884b07d0 6798 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6799 int ret = 0;
6800
6801 WARN_ON(start > eb->len);
6802 WARN_ON(start + len > eb->start + eb->len);
6803
884b07d0 6804 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6805
6806 while (len > 0) {
fb85fc9a 6807 page = eb->pages[i];
550ac1d8 6808
09cbfeaf 6809 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6810 kaddr = page_address(page);
a48b73ec 6811 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6812 ret = -EFAULT;
6813 break;
6814 }
6815
6816 dst += cur;
6817 len -= cur;
6818 offset = 0;
6819 i++;
6820 }
6821
6822 return ret;
6823}
6824
1cbb1f45
JM
6825int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6826 unsigned long start, unsigned long len)
d1310b2e
CM
6827{
6828 size_t cur;
6829 size_t offset;
6830 struct page *page;
6831 char *kaddr;
6832 char *ptr = (char *)ptrv;
884b07d0 6833 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6834 int ret = 0;
6835
f98b6215
QW
6836 if (check_eb_range(eb, start, len))
6837 return -EINVAL;
d1310b2e 6838
884b07d0 6839 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6840
d397712b 6841 while (len > 0) {
fb85fc9a 6842 page = eb->pages[i];
d1310b2e 6843
09cbfeaf 6844 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6845
a6591715 6846 kaddr = page_address(page);
d1310b2e 6847 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6848 if (ret)
6849 break;
6850
6851 ptr += cur;
6852 len -= cur;
6853 offset = 0;
6854 i++;
6855 }
6856 return ret;
6857}
d1310b2e 6858
b8f95771
QW
6859/*
6860 * Check that the extent buffer is uptodate.
6861 *
6862 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6863 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6864 */
6865static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6866 struct page *page)
6867{
6868 struct btrfs_fs_info *fs_info = eb->fs_info;
6869
a50e1fcb
JB
6870 /*
6871 * If we are using the commit root we could potentially clear a page
6872 * Uptodate while we're using the extent buffer that we've previously
6873 * looked up. We don't want to complain in this case, as the page was
6874 * valid before, we just didn't write it out. Instead we want to catch
6875 * the case where we didn't actually read the block properly, which
6876 * would have !PageUptodate && !PageError, as we clear PageError before
6877 * reading.
6878 */
fbca46eb 6879 if (fs_info->nodesize < PAGE_SIZE) {
a50e1fcb 6880 bool uptodate, error;
b8f95771
QW
6881
6882 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6883 eb->start, eb->len);
a50e1fcb
JB
6884 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6885 WARN_ON(!uptodate && !error);
b8f95771 6886 } else {
a50e1fcb 6887 WARN_ON(!PageUptodate(page) && !PageError(page));
b8f95771
QW
6888 }
6889}
6890
2b48966a 6891void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6892 const void *srcv)
6893{
6894 char *kaddr;
6895
b8f95771 6896 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6897 kaddr = page_address(eb->pages[0]) +
6898 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6899 chunk_tree_uuid));
6900 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6901}
6902
2b48966a 6903void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6904{
6905 char *kaddr;
6906
b8f95771 6907 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6908 kaddr = page_address(eb->pages[0]) +
6909 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6910 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6911}
6912
2b48966a 6913void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6914 unsigned long start, unsigned long len)
6915{
6916 size_t cur;
6917 size_t offset;
6918 struct page *page;
6919 char *kaddr;
6920 char *src = (char *)srcv;
884b07d0 6921 unsigned long i = get_eb_page_index(start);
d1310b2e 6922
d3575156
NA
6923 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6924
f98b6215
QW
6925 if (check_eb_range(eb, start, len))
6926 return;
d1310b2e 6927
884b07d0 6928 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6929
d397712b 6930 while (len > 0) {
fb85fc9a 6931 page = eb->pages[i];
b8f95771 6932 assert_eb_page_uptodate(eb, page);
d1310b2e 6933
09cbfeaf 6934 cur = min(len, PAGE_SIZE - offset);
a6591715 6935 kaddr = page_address(page);
d1310b2e 6936 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6937
6938 src += cur;
6939 len -= cur;
6940 offset = 0;
6941 i++;
6942 }
6943}
d1310b2e 6944
2b48966a 6945void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6946 unsigned long len)
d1310b2e
CM
6947{
6948 size_t cur;
6949 size_t offset;
6950 struct page *page;
6951 char *kaddr;
884b07d0 6952 unsigned long i = get_eb_page_index(start);
d1310b2e 6953
f98b6215
QW
6954 if (check_eb_range(eb, start, len))
6955 return;
d1310b2e 6956
884b07d0 6957 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6958
d397712b 6959 while (len > 0) {
fb85fc9a 6960 page = eb->pages[i];
b8f95771 6961 assert_eb_page_uptodate(eb, page);
d1310b2e 6962
09cbfeaf 6963 cur = min(len, PAGE_SIZE - offset);
a6591715 6964 kaddr = page_address(page);
b159fa28 6965 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6966
6967 len -= cur;
6968 offset = 0;
6969 i++;
6970 }
6971}
d1310b2e 6972
2b48966a
DS
6973void copy_extent_buffer_full(const struct extent_buffer *dst,
6974 const struct extent_buffer *src)
58e8012c
DS
6975{
6976 int i;
cc5e31a4 6977 int num_pages;
58e8012c
DS
6978
6979 ASSERT(dst->len == src->len);
6980
fbca46eb 6981 if (dst->fs_info->nodesize >= PAGE_SIZE) {
884b07d0
QW
6982 num_pages = num_extent_pages(dst);
6983 for (i = 0; i < num_pages; i++)
6984 copy_page(page_address(dst->pages[i]),
6985 page_address(src->pages[i]));
6986 } else {
6987 size_t src_offset = get_eb_offset_in_page(src, 0);
6988 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6989
fbca46eb 6990 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
884b07d0
QW
6991 memcpy(page_address(dst->pages[0]) + dst_offset,
6992 page_address(src->pages[0]) + src_offset,
6993 src->len);
6994 }
58e8012c
DS
6995}
6996
2b48966a
DS
6997void copy_extent_buffer(const struct extent_buffer *dst,
6998 const struct extent_buffer *src,
d1310b2e
CM
6999 unsigned long dst_offset, unsigned long src_offset,
7000 unsigned long len)
7001{
7002 u64 dst_len = dst->len;
7003 size_t cur;
7004 size_t offset;
7005 struct page *page;
7006 char *kaddr;
884b07d0 7007 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 7008
f98b6215
QW
7009 if (check_eb_range(dst, dst_offset, len) ||
7010 check_eb_range(src, src_offset, len))
7011 return;
7012
d1310b2e
CM
7013 WARN_ON(src->len != dst_len);
7014
884b07d0 7015 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 7016
d397712b 7017 while (len > 0) {
fb85fc9a 7018 page = dst->pages[i];
b8f95771 7019 assert_eb_page_uptodate(dst, page);
d1310b2e 7020
09cbfeaf 7021 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 7022
a6591715 7023 kaddr = page_address(page);
d1310b2e 7024 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
7025
7026 src_offset += cur;
7027 len -= cur;
7028 offset = 0;
7029 i++;
7030 }
7031}
d1310b2e 7032
3e1e8bb7
OS
7033/*
7034 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7035 * given bit number
7036 * @eb: the extent buffer
7037 * @start: offset of the bitmap item in the extent buffer
7038 * @nr: bit number
7039 * @page_index: return index of the page in the extent buffer that contains the
7040 * given bit number
7041 * @page_offset: return offset into the page given by page_index
7042 *
7043 * This helper hides the ugliness of finding the byte in an extent buffer which
7044 * contains a given bit.
7045 */
2b48966a 7046static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
7047 unsigned long start, unsigned long nr,
7048 unsigned long *page_index,
7049 size_t *page_offset)
7050{
3e1e8bb7
OS
7051 size_t byte_offset = BIT_BYTE(nr);
7052 size_t offset;
7053
7054 /*
7055 * The byte we want is the offset of the extent buffer + the offset of
7056 * the bitmap item in the extent buffer + the offset of the byte in the
7057 * bitmap item.
7058 */
884b07d0 7059 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 7060
09cbfeaf 7061 *page_index = offset >> PAGE_SHIFT;
7073017a 7062 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
7063}
7064
7065/**
7066 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7067 * @eb: the extent buffer
7068 * @start: offset of the bitmap item in the extent buffer
7069 * @nr: bit number to test
7070 */
2b48966a 7071int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7072 unsigned long nr)
7073{
2fe1d551 7074 u8 *kaddr;
3e1e8bb7
OS
7075 struct page *page;
7076 unsigned long i;
7077 size_t offset;
7078
7079 eb_bitmap_offset(eb, start, nr, &i, &offset);
7080 page = eb->pages[i];
b8f95771 7081 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7082 kaddr = page_address(page);
7083 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7084}
7085
7086/**
7087 * extent_buffer_bitmap_set - set an area of a bitmap
7088 * @eb: the extent buffer
7089 * @start: offset of the bitmap item in the extent buffer
7090 * @pos: bit number of the first bit
7091 * @len: number of bits to set
7092 */
2b48966a 7093void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7094 unsigned long pos, unsigned long len)
7095{
2fe1d551 7096 u8 *kaddr;
3e1e8bb7
OS
7097 struct page *page;
7098 unsigned long i;
7099 size_t offset;
7100 const unsigned int size = pos + len;
7101 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7102 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7103
7104 eb_bitmap_offset(eb, start, pos, &i, &offset);
7105 page = eb->pages[i];
b8f95771 7106 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7107 kaddr = page_address(page);
7108
7109 while (len >= bits_to_set) {
7110 kaddr[offset] |= mask_to_set;
7111 len -= bits_to_set;
7112 bits_to_set = BITS_PER_BYTE;
9c894696 7113 mask_to_set = ~0;
09cbfeaf 7114 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7115 offset = 0;
7116 page = eb->pages[++i];
b8f95771 7117 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7118 kaddr = page_address(page);
7119 }
7120 }
7121 if (len) {
7122 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7123 kaddr[offset] |= mask_to_set;
7124 }
7125}
7126
7127
7128/**
7129 * extent_buffer_bitmap_clear - clear an area of a bitmap
7130 * @eb: the extent buffer
7131 * @start: offset of the bitmap item in the extent buffer
7132 * @pos: bit number of the first bit
7133 * @len: number of bits to clear
7134 */
2b48966a
DS
7135void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7136 unsigned long start, unsigned long pos,
7137 unsigned long len)
3e1e8bb7 7138{
2fe1d551 7139 u8 *kaddr;
3e1e8bb7
OS
7140 struct page *page;
7141 unsigned long i;
7142 size_t offset;
7143 const unsigned int size = pos + len;
7144 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7145 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7146
7147 eb_bitmap_offset(eb, start, pos, &i, &offset);
7148 page = eb->pages[i];
b8f95771 7149 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7150 kaddr = page_address(page);
7151
7152 while (len >= bits_to_clear) {
7153 kaddr[offset] &= ~mask_to_clear;
7154 len -= bits_to_clear;
7155 bits_to_clear = BITS_PER_BYTE;
9c894696 7156 mask_to_clear = ~0;
09cbfeaf 7157 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7158 offset = 0;
7159 page = eb->pages[++i];
b8f95771 7160 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7161 kaddr = page_address(page);
7162 }
7163 }
7164 if (len) {
7165 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7166 kaddr[offset] &= ~mask_to_clear;
7167 }
7168}
7169
3387206f
ST
7170static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7171{
7172 unsigned long distance = (src > dst) ? src - dst : dst - src;
7173 return distance < len;
7174}
7175
d1310b2e
CM
7176static void copy_pages(struct page *dst_page, struct page *src_page,
7177 unsigned long dst_off, unsigned long src_off,
7178 unsigned long len)
7179{
a6591715 7180 char *dst_kaddr = page_address(dst_page);
d1310b2e 7181 char *src_kaddr;
727011e0 7182 int must_memmove = 0;
d1310b2e 7183
3387206f 7184 if (dst_page != src_page) {
a6591715 7185 src_kaddr = page_address(src_page);
3387206f 7186 } else {
d1310b2e 7187 src_kaddr = dst_kaddr;
727011e0
CM
7188 if (areas_overlap(src_off, dst_off, len))
7189 must_memmove = 1;
3387206f 7190 }
d1310b2e 7191
727011e0
CM
7192 if (must_memmove)
7193 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7194 else
7195 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
7196}
7197
2b48966a
DS
7198void memcpy_extent_buffer(const struct extent_buffer *dst,
7199 unsigned long dst_offset, unsigned long src_offset,
7200 unsigned long len)
d1310b2e
CM
7201{
7202 size_t cur;
7203 size_t dst_off_in_page;
7204 size_t src_off_in_page;
d1310b2e
CM
7205 unsigned long dst_i;
7206 unsigned long src_i;
7207
f98b6215
QW
7208 if (check_eb_range(dst, dst_offset, len) ||
7209 check_eb_range(dst, src_offset, len))
7210 return;
d1310b2e 7211
d397712b 7212 while (len > 0) {
884b07d0
QW
7213 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7214 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 7215
884b07d0
QW
7216 dst_i = get_eb_page_index(dst_offset);
7217 src_i = get_eb_page_index(src_offset);
d1310b2e 7218
09cbfeaf 7219 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
7220 src_off_in_page));
7221 cur = min_t(unsigned long, cur,
09cbfeaf 7222 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 7223
fb85fc9a 7224 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7225 dst_off_in_page, src_off_in_page, cur);
7226
7227 src_offset += cur;
7228 dst_offset += cur;
7229 len -= cur;
7230 }
7231}
d1310b2e 7232
2b48966a
DS
7233void memmove_extent_buffer(const struct extent_buffer *dst,
7234 unsigned long dst_offset, unsigned long src_offset,
7235 unsigned long len)
d1310b2e
CM
7236{
7237 size_t cur;
7238 size_t dst_off_in_page;
7239 size_t src_off_in_page;
7240 unsigned long dst_end = dst_offset + len - 1;
7241 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
7242 unsigned long dst_i;
7243 unsigned long src_i;
7244
f98b6215
QW
7245 if (check_eb_range(dst, dst_offset, len) ||
7246 check_eb_range(dst, src_offset, len))
7247 return;
727011e0 7248 if (dst_offset < src_offset) {
d1310b2e
CM
7249 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7250 return;
7251 }
d397712b 7252 while (len > 0) {
884b07d0
QW
7253 dst_i = get_eb_page_index(dst_end);
7254 src_i = get_eb_page_index(src_end);
d1310b2e 7255
884b07d0
QW
7256 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7257 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
7258
7259 cur = min_t(unsigned long, len, src_off_in_page + 1);
7260 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 7261 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7262 dst_off_in_page - cur + 1,
7263 src_off_in_page - cur + 1, cur);
7264
7265 dst_end -= cur;
7266 src_end -= cur;
7267 len -= cur;
7268 }
7269}
6af118ce 7270
01cd3909 7271#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
7272static struct extent_buffer *get_next_extent_buffer(
7273 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7274{
01cd3909
DS
7275 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7276 struct extent_buffer *found = NULL;
d1e86e3f 7277 u64 page_start = page_offset(page);
01cd3909 7278 u64 cur = page_start;
d1e86e3f
QW
7279
7280 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
7281 lockdep_assert_held(&fs_info->buffer_lock);
7282
01cd3909
DS
7283 while (cur < page_start + PAGE_SIZE) {
7284 int ret;
7285 int i;
7286
7287 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7288 (void **)gang, cur >> fs_info->sectorsize_bits,
7289 min_t(unsigned int, GANG_LOOKUP_SIZE,
7290 PAGE_SIZE / fs_info->nodesize));
7291 if (ret == 0)
7292 goto out;
7293 for (i = 0; i < ret; i++) {
7294 /* Already beyond page end */
7295 if (gang[i]->start >= page_start + PAGE_SIZE)
7296 goto out;
7297 /* Found one */
7298 if (gang[i]->start >= bytenr) {
7299 found = gang[i];
7300 goto out;
7301 }
7302 }
7303 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 7304 }
01cd3909
DS
7305out:
7306 return found;
d1e86e3f
QW
7307}
7308
7309static int try_release_subpage_extent_buffer(struct page *page)
7310{
7311 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7312 u64 cur = page_offset(page);
7313 const u64 end = page_offset(page) + PAGE_SIZE;
7314 int ret;
7315
7316 while (cur < end) {
7317 struct extent_buffer *eb = NULL;
7318
7319 /*
7320 * Unlike try_release_extent_buffer() which uses page->private
7321 * to grab buffer, for subpage case we rely on radix tree, thus
7322 * we need to ensure radix tree consistency.
7323 *
7324 * We also want an atomic snapshot of the radix tree, thus go
7325 * with spinlock rather than RCU.
7326 */
7327 spin_lock(&fs_info->buffer_lock);
7328 eb = get_next_extent_buffer(fs_info, page, cur);
7329 if (!eb) {
7330 /* No more eb in the page range after or at cur */
7331 spin_unlock(&fs_info->buffer_lock);
7332 break;
7333 }
7334 cur = eb->start + eb->len;
7335
7336 /*
7337 * The same as try_release_extent_buffer(), to ensure the eb
7338 * won't disappear out from under us.
7339 */
7340 spin_lock(&eb->refs_lock);
7341 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7342 spin_unlock(&eb->refs_lock);
7343 spin_unlock(&fs_info->buffer_lock);
7344 break;
7345 }
7346 spin_unlock(&fs_info->buffer_lock);
7347
7348 /*
7349 * If tree ref isn't set then we know the ref on this eb is a
7350 * real ref, so just return, this eb will likely be freed soon
7351 * anyway.
7352 */
7353 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7354 spin_unlock(&eb->refs_lock);
7355 break;
7356 }
7357
7358 /*
7359 * Here we don't care about the return value, we will always
7360 * check the page private at the end. And
7361 * release_extent_buffer() will release the refs_lock.
7362 */
7363 release_extent_buffer(eb);
7364 }
7365 /*
7366 * Finally to check if we have cleared page private, as if we have
7367 * released all ebs in the page, the page private should be cleared now.
7368 */
7369 spin_lock(&page->mapping->private_lock);
7370 if (!PagePrivate(page))
7371 ret = 1;
7372 else
7373 ret = 0;
7374 spin_unlock(&page->mapping->private_lock);
7375 return ret;
7376
7377}
7378
f7a52a40 7379int try_release_extent_buffer(struct page *page)
19fe0a8b 7380{
6af118ce 7381 struct extent_buffer *eb;
6af118ce 7382
fbca46eb 7383 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
d1e86e3f
QW
7384 return try_release_subpage_extent_buffer(page);
7385
3083ee2e 7386 /*
d1e86e3f
QW
7387 * We need to make sure nobody is changing page->private, as we rely on
7388 * page->private as the pointer to extent buffer.
3083ee2e
JB
7389 */
7390 spin_lock(&page->mapping->private_lock);
7391 if (!PagePrivate(page)) {
7392 spin_unlock(&page->mapping->private_lock);
4f2de97a 7393 return 1;
45f49bce 7394 }
6af118ce 7395
3083ee2e
JB
7396 eb = (struct extent_buffer *)page->private;
7397 BUG_ON(!eb);
19fe0a8b
MX
7398
7399 /*
3083ee2e
JB
7400 * This is a little awful but should be ok, we need to make sure that
7401 * the eb doesn't disappear out from under us while we're looking at
7402 * this page.
19fe0a8b 7403 */
3083ee2e 7404 spin_lock(&eb->refs_lock);
0b32f4bb 7405 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7406 spin_unlock(&eb->refs_lock);
7407 spin_unlock(&page->mapping->private_lock);
7408 return 0;
b9473439 7409 }
3083ee2e 7410 spin_unlock(&page->mapping->private_lock);
897ca6e9 7411
19fe0a8b 7412 /*
3083ee2e
JB
7413 * If tree ref isn't set then we know the ref on this eb is a real ref,
7414 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7415 */
3083ee2e
JB
7416 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7417 spin_unlock(&eb->refs_lock);
7418 return 0;
b9473439 7419 }
19fe0a8b 7420
f7a52a40 7421 return release_extent_buffer(eb);
6af118ce 7422}
bfb484d9
JB
7423
7424/*
7425 * btrfs_readahead_tree_block - attempt to readahead a child block
7426 * @fs_info: the fs_info
7427 * @bytenr: bytenr to read
3fbaf258 7428 * @owner_root: objectid of the root that owns this eb
bfb484d9 7429 * @gen: generation for the uptodate check, can be 0
3fbaf258 7430 * @level: level for the eb
bfb484d9
JB
7431 *
7432 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7433 * normal uptodate check of the eb, without checking the generation. If we have
7434 * to read the block we will not block on anything.
7435 */
7436void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7437 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7438{
7439 struct extent_buffer *eb;
7440 int ret;
7441
3fbaf258 7442 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7443 if (IS_ERR(eb))
7444 return;
7445
7446 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7447 free_extent_buffer(eb);
7448 return;
7449 }
7450
7451 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7452 if (ret < 0)
7453 free_extent_buffer_stale(eb);
7454 else
7455 free_extent_buffer(eb);
7456}
7457
7458/*
7459 * btrfs_readahead_node_child - readahead a node's child block
7460 * @node: parent node we're reading from
7461 * @slot: slot in the parent node for the child we want to read
7462 *
7463 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7464 * the slot in the node provided.
7465 */
7466void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7467{
7468 btrfs_readahead_tree_block(node->fs_info,
7469 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7470 btrfs_header_owner(node),
7471 btrfs_node_ptr_generation(node, slot),
7472 btrfs_header_level(node) - 1);
bfb484d9 7473}