Btrfs: assert page dirty bit on extent buffer pages
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
c6100a4b
JB
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
8d599ae1 95}
6d49ba1b
ES
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 101#endif
d1310b2e 102
d1310b2e
CM
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
d1310b2e
CM
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
771ed689
CM
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
70fd7614 119 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
57599c7e 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
57599c7e 130 return 0;
d38ed27f 131 if (set && (state->state & bits) == bits)
57599c7e 132 return 0;
fefdc557 133 if (!set && (state->state & bits) == 0)
57599c7e 134 return 0;
d38ed27f 135 changeset->bytes_changed += state->end - state->start + 1;
53d32359 136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 137 GFP_ATOMIC);
57599c7e 138 return ret;
d38ed27f
QW
139}
140
aab6e9ed 141static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 146 sizeof(struct extent_state), 0,
fba4b697 147 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 152 sizeof(struct extent_buffer), 0,
fba4b697 153 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b 156
8ac9f7c1
KO
157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio),
159 BIOSET_NEED_BVECS))
9be3395b 160 goto free_buffer_cache;
b208c2f7 161
8ac9f7c1 162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7 167free_bioset:
8ac9f7c1 168 bioset_exit(&btrfs_bioset);
b208c2f7 169
9be3395b
CM
170free_buffer_cache:
171 kmem_cache_destroy(extent_buffer_cache);
172 extent_buffer_cache = NULL;
173
d1310b2e
CM
174free_state_cache:
175 kmem_cache_destroy(extent_state_cache);
9be3395b 176 extent_state_cache = NULL;
d1310b2e
CM
177 return -ENOMEM;
178}
179
e67c718b 180void __cold extent_io_exit(void)
d1310b2e 181{
6d49ba1b 182 btrfs_leak_debug_check();
8c0a8537
KS
183
184 /*
185 * Make sure all delayed rcu free are flushed before we
186 * destroy caches.
187 */
188 rcu_barrier();
5598e900
KM
189 kmem_cache_destroy(extent_state_cache);
190 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 191 bioset_exit(&btrfs_bioset);
d1310b2e
CM
192}
193
194void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 195 void *private_data)
d1310b2e 196{
6bef4d31 197 tree->state = RB_ROOT;
d1310b2e
CM
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
70dec807 200 spin_lock_init(&tree->lock);
c6100a4b 201 tree->private_data = private_data;
d1310b2e 202}
d1310b2e 203
b2950863 204static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
205{
206 struct extent_state *state;
d1310b2e 207
3ba7ab22
MH
208 /*
209 * The given mask might be not appropriate for the slab allocator,
210 * drop the unsupported bits
211 */
212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 213 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 214 if (!state)
d1310b2e
CM
215 return state;
216 state->state = 0;
47dc196a 217 state->failrec = NULL;
27a3507d 218 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 219 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 220 refcount_set(&state->refs, 1);
d1310b2e 221 init_waitqueue_head(&state->wq);
143bede5 222 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
223 return state;
224}
d1310b2e 225
4845e44f 226void free_extent_state(struct extent_state *state)
d1310b2e 227{
d1310b2e
CM
228 if (!state)
229 return;
b7ac31b7 230 if (refcount_dec_and_test(&state->refs)) {
27a3507d 231 WARN_ON(extent_state_in_tree(state));
6d49ba1b 232 btrfs_leak_debug_del(&state->leak_list);
143bede5 233 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
234 kmem_cache_free(extent_state_cache, state);
235 }
236}
d1310b2e 237
f2071b21
FM
238static struct rb_node *tree_insert(struct rb_root *root,
239 struct rb_node *search_start,
240 u64 offset,
12cfbad9
FDBM
241 struct rb_node *node,
242 struct rb_node ***p_in,
243 struct rb_node **parent_in)
d1310b2e 244{
f2071b21 245 struct rb_node **p;
d397712b 246 struct rb_node *parent = NULL;
d1310b2e
CM
247 struct tree_entry *entry;
248
12cfbad9
FDBM
249 if (p_in && parent_in) {
250 p = *p_in;
251 parent = *parent_in;
252 goto do_insert;
253 }
254
f2071b21 255 p = search_start ? &search_start : &root->rb_node;
d397712b 256 while (*p) {
d1310b2e
CM
257 parent = *p;
258 entry = rb_entry(parent, struct tree_entry, rb_node);
259
260 if (offset < entry->start)
261 p = &(*p)->rb_left;
262 else if (offset > entry->end)
263 p = &(*p)->rb_right;
264 else
265 return parent;
266 }
267
12cfbad9 268do_insert:
d1310b2e
CM
269 rb_link_node(node, parent, p);
270 rb_insert_color(node, root);
271 return NULL;
272}
273
80ea96b1 274static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
275 struct rb_node **prev_ret,
276 struct rb_node **next_ret,
277 struct rb_node ***p_ret,
278 struct rb_node **parent_ret)
d1310b2e 279{
80ea96b1 280 struct rb_root *root = &tree->state;
12cfbad9 281 struct rb_node **n = &root->rb_node;
d1310b2e
CM
282 struct rb_node *prev = NULL;
283 struct rb_node *orig_prev = NULL;
284 struct tree_entry *entry;
285 struct tree_entry *prev_entry = NULL;
286
12cfbad9
FDBM
287 while (*n) {
288 prev = *n;
289 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
290 prev_entry = entry;
291
292 if (offset < entry->start)
12cfbad9 293 n = &(*n)->rb_left;
d1310b2e 294 else if (offset > entry->end)
12cfbad9 295 n = &(*n)->rb_right;
d397712b 296 else
12cfbad9 297 return *n;
d1310b2e
CM
298 }
299
12cfbad9
FDBM
300 if (p_ret)
301 *p_ret = n;
302 if (parent_ret)
303 *parent_ret = prev;
304
d1310b2e
CM
305 if (prev_ret) {
306 orig_prev = prev;
d397712b 307 while (prev && offset > prev_entry->end) {
d1310b2e
CM
308 prev = rb_next(prev);
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 }
311 *prev_ret = prev;
312 prev = orig_prev;
313 }
314
315 if (next_ret) {
316 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 317 while (prev && offset < prev_entry->start) {
d1310b2e
CM
318 prev = rb_prev(prev);
319 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 }
321 *next_ret = prev;
322 }
323 return NULL;
324}
325
12cfbad9
FDBM
326static inline struct rb_node *
327tree_search_for_insert(struct extent_io_tree *tree,
328 u64 offset,
329 struct rb_node ***p_ret,
330 struct rb_node **parent_ret)
d1310b2e 331{
70dec807 332 struct rb_node *prev = NULL;
d1310b2e 333 struct rb_node *ret;
70dec807 334
12cfbad9 335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 336 if (!ret)
d1310b2e
CM
337 return prev;
338 return ret;
339}
340
12cfbad9
FDBM
341static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342 u64 offset)
343{
344 return tree_search_for_insert(tree, offset, NULL, NULL);
345}
346
9ed74f2d
JB
347static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348 struct extent_state *other)
349{
350 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 351 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 399 struct extent_state *state, unsigned *bits)
291d673e 400{
1bf85046 401 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 402 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 406 struct extent_state *state, unsigned *bits)
291d673e 407{
9ed74f2d 408 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 409 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
413 struct extent_state *state, unsigned *bits,
414 struct extent_changeset *changeset);
3150b699 415
d1310b2e
CM
416/*
417 * insert an extent_state struct into the tree. 'bits' are set on the
418 * struct before it is inserted.
419 *
420 * This may return -EEXIST if the extent is already there, in which case the
421 * state struct is freed.
422 *
423 * The tree lock is not taken internally. This is a utility function and
424 * probably isn't what you want to call (see set/clear_extent_bit).
425 */
426static int insert_state(struct extent_io_tree *tree,
427 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
428 struct rb_node ***p,
429 struct rb_node **parent,
d38ed27f 430 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
431{
432 struct rb_node *node;
433
31b1a2bd 434 if (end < start)
efe120a0 435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 436 end, start);
d1310b2e
CM
437 state->start = start;
438 state->end = end;
9ed74f2d 439
d38ed27f 440 set_state_bits(tree, state, bits, changeset);
3150b699 441
f2071b21 442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
443 if (node) {
444 struct extent_state *found;
445 found = rb_entry(node, struct extent_state, rb_node);
62e85577 446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 458 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
fefdc557
QW
514 unsigned *bits, int wake,
515 struct extent_changeset *changeset)
d1310b2e 516{
cdc6a395 517 struct extent_state *next;
9ee49a04 518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 519 int ret;
d1310b2e 520
0ca1f7ce 521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
522 u64 range = state->end - state->start + 1;
523 WARN_ON(range > tree->dirty_bytes);
524 tree->dirty_bytes -= range;
525 }
291d673e 526 clear_state_cb(tree, state, bits);
57599c7e
DS
527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528 BUG_ON(ret < 0);
32c00aff 529 state->state &= ~bits_to_clear;
d1310b2e
CM
530 if (wake)
531 wake_up(&state->wq);
0ca1f7ce 532 if (state->state == 0) {
cdc6a395 533 next = next_state(state);
27a3507d 534 if (extent_state_in_tree(state)) {
d1310b2e 535 rb_erase(&state->rb_node, &tree->state);
27a3507d 536 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
537 free_extent_state(state);
538 } else {
539 WARN_ON(1);
540 }
541 } else {
542 merge_state(tree, state);
cdc6a395 543 next = next_state(state);
d1310b2e 544 }
cdc6a395 545 return next;
d1310b2e
CM
546}
547
8233767a
XG
548static struct extent_state *
549alloc_extent_state_atomic(struct extent_state *prealloc)
550{
551 if (!prealloc)
552 prealloc = alloc_extent_state(GFP_ATOMIC);
553
554 return prealloc;
555}
556
48a3b636 557static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 558{
05912a3c
DS
559 struct inode *inode = tree->private_data;
560
561 btrfs_panic(btrfs_sb(inode->i_sb), err,
562 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
563}
564
d1310b2e
CM
565/*
566 * clear some bits on a range in the tree. This may require splitting
567 * or inserting elements in the tree, so the gfp mask is used to
568 * indicate which allocations or sleeping are allowed.
569 *
570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571 * the given range from the tree regardless of state (ie for truncate).
572 *
573 * the range [start, end] is inclusive.
574 *
6763af84 575 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 576 */
66b0c887 577int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
578 unsigned bits, int wake, int delete,
579 struct extent_state **cached_state,
580 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
581{
582 struct extent_state *state;
2c64c53d 583 struct extent_state *cached;
d1310b2e
CM
584 struct extent_state *prealloc = NULL;
585 struct rb_node *node;
5c939df5 586 u64 last_end;
d1310b2e 587 int err;
2ac55d41 588 int clear = 0;
d1310b2e 589
a5dee37d 590 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 591
7ee9e440
JB
592 if (bits & EXTENT_DELALLOC)
593 bits |= EXTENT_NORESERVE;
594
0ca1f7ce
YZ
595 if (delete)
596 bits |= ~EXTENT_CTLBITS;
597 bits |= EXTENT_FIRST_DELALLOC;
598
2ac55d41
JB
599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600 clear = 1;
d1310b2e 601again:
d0164adc 602 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
603 /*
604 * Don't care for allocation failure here because we might end
605 * up not needing the pre-allocated extent state at all, which
606 * is the case if we only have in the tree extent states that
607 * cover our input range and don't cover too any other range.
608 * If we end up needing a new extent state we allocate it later.
609 */
d1310b2e 610 prealloc = alloc_extent_state(mask);
d1310b2e
CM
611 }
612
cad321ad 613 spin_lock(&tree->lock);
2c64c53d
CM
614 if (cached_state) {
615 cached = *cached_state;
2ac55d41
JB
616
617 if (clear) {
618 *cached_state = NULL;
619 cached_state = NULL;
620 }
621
27a3507d
FM
622 if (cached && extent_state_in_tree(cached) &&
623 cached->start <= start && cached->end > start) {
2ac55d41 624 if (clear)
b7ac31b7 625 refcount_dec(&cached->refs);
2c64c53d 626 state = cached;
42daec29 627 goto hit_next;
2c64c53d 628 }
2ac55d41
JB
629 if (clear)
630 free_extent_state(cached);
2c64c53d 631 }
d1310b2e
CM
632 /*
633 * this search will find the extents that end after
634 * our range starts
635 */
80ea96b1 636 node = tree_search(tree, start);
d1310b2e
CM
637 if (!node)
638 goto out;
639 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 640hit_next:
d1310b2e
CM
641 if (state->start > end)
642 goto out;
643 WARN_ON(state->end < start);
5c939df5 644 last_end = state->end;
d1310b2e 645
0449314a 646 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
647 if (!(state->state & bits)) {
648 state = next_state(state);
0449314a 649 goto next;
cdc6a395 650 }
0449314a 651
d1310b2e
CM
652 /*
653 * | ---- desired range ---- |
654 * | state | or
655 * | ------------- state -------------- |
656 *
657 * We need to split the extent we found, and may flip
658 * bits on second half.
659 *
660 * If the extent we found extends past our range, we
661 * just split and search again. It'll get split again
662 * the next time though.
663 *
664 * If the extent we found is inside our range, we clear
665 * the desired bit on it.
666 */
667
668 if (state->start < start) {
8233767a
XG
669 prealloc = alloc_extent_state_atomic(prealloc);
670 BUG_ON(!prealloc);
d1310b2e 671 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
672 if (err)
673 extent_io_tree_panic(tree, err);
674
d1310b2e
CM
675 prealloc = NULL;
676 if (err)
677 goto out;
678 if (state->end <= end) {
fefdc557
QW
679 state = clear_state_bit(tree, state, &bits, wake,
680 changeset);
d1ac6e41 681 goto next;
d1310b2e
CM
682 }
683 goto search_again;
684 }
685 /*
686 * | ---- desired range ---- |
687 * | state |
688 * We need to split the extent, and clear the bit
689 * on the first half
690 */
691 if (state->start <= end && state->end > end) {
8233767a
XG
692 prealloc = alloc_extent_state_atomic(prealloc);
693 BUG_ON(!prealloc);
d1310b2e 694 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
695 if (err)
696 extent_io_tree_panic(tree, err);
697
d1310b2e
CM
698 if (wake)
699 wake_up(&state->wq);
42daec29 700
fefdc557 701 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 702
d1310b2e
CM
703 prealloc = NULL;
704 goto out;
705 }
42daec29 706
fefdc557 707 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 708next:
5c939df5
YZ
709 if (last_end == (u64)-1)
710 goto out;
711 start = last_end + 1;
cdc6a395 712 if (start <= end && state && !need_resched())
692e5759 713 goto hit_next;
d1310b2e
CM
714
715search_again:
716 if (start > end)
717 goto out;
cad321ad 718 spin_unlock(&tree->lock);
d0164adc 719 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
720 cond_resched();
721 goto again;
7ab5cb2a
DS
722
723out:
724 spin_unlock(&tree->lock);
725 if (prealloc)
726 free_extent_state(prealloc);
727
728 return 0;
729
d1310b2e 730}
d1310b2e 731
143bede5
JM
732static void wait_on_state(struct extent_io_tree *tree,
733 struct extent_state *state)
641f5219
CH
734 __releases(tree->lock)
735 __acquires(tree->lock)
d1310b2e
CM
736{
737 DEFINE_WAIT(wait);
738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 739 spin_unlock(&tree->lock);
d1310b2e 740 schedule();
cad321ad 741 spin_lock(&tree->lock);
d1310b2e 742 finish_wait(&state->wq, &wait);
d1310b2e
CM
743}
744
745/*
746 * waits for one or more bits to clear on a range in the state tree.
747 * The range [start, end] is inclusive.
748 * The tree lock is taken by this function
749 */
41074888
DS
750static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751 unsigned long bits)
d1310b2e
CM
752{
753 struct extent_state *state;
754 struct rb_node *node;
755
a5dee37d 756 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 757
cad321ad 758 spin_lock(&tree->lock);
d1310b2e
CM
759again:
760 while (1) {
761 /*
762 * this search will find all the extents that end after
763 * our range starts
764 */
80ea96b1 765 node = tree_search(tree, start);
c50d3e71 766process_node:
d1310b2e
CM
767 if (!node)
768 break;
769
770 state = rb_entry(node, struct extent_state, rb_node);
771
772 if (state->start > end)
773 goto out;
774
775 if (state->state & bits) {
776 start = state->start;
b7ac31b7 777 refcount_inc(&state->refs);
d1310b2e
CM
778 wait_on_state(tree, state);
779 free_extent_state(state);
780 goto again;
781 }
782 start = state->end + 1;
783
784 if (start > end)
785 break;
786
c50d3e71
FM
787 if (!cond_resched_lock(&tree->lock)) {
788 node = rb_next(node);
789 goto process_node;
790 }
d1310b2e
CM
791 }
792out:
cad321ad 793 spin_unlock(&tree->lock);
d1310b2e 794}
d1310b2e 795
1bf85046 796static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 797 struct extent_state *state,
d38ed27f 798 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 799{
9ee49a04 800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 801 int ret;
9ed74f2d 802
1bf85046 803 set_state_cb(tree, state, bits);
0ca1f7ce 804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
805 u64 range = state->end - state->start + 1;
806 tree->dirty_bytes += range;
807 }
57599c7e
DS
808 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809 BUG_ON(ret < 0);
0ca1f7ce 810 state->state |= bits_to_set;
d1310b2e
CM
811}
812
e38e2ed7
FM
813static void cache_state_if_flags(struct extent_state *state,
814 struct extent_state **cached_ptr,
9ee49a04 815 unsigned flags)
2c64c53d
CM
816{
817 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 818 if (!flags || (state->state & flags)) {
2c64c53d 819 *cached_ptr = state;
b7ac31b7 820 refcount_inc(&state->refs);
2c64c53d
CM
821 }
822 }
823}
824
e38e2ed7
FM
825static void cache_state(struct extent_state *state,
826 struct extent_state **cached_ptr)
827{
828 return cache_state_if_flags(state, cached_ptr,
829 EXTENT_IOBITS | EXTENT_BOUNDARY);
830}
831
d1310b2e 832/*
1edbb734
CM
833 * set some bits on a range in the tree. This may require allocations or
834 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 835 *
1edbb734
CM
836 * If any of the exclusive bits are set, this will fail with -EEXIST if some
837 * part of the range already has the desired bits set. The start of the
838 * existing range is returned in failed_start in this case.
d1310b2e 839 *
1edbb734 840 * [start, end] is inclusive This takes the tree lock.
d1310b2e 841 */
1edbb734 842
3fbe5c02
JM
843static int __must_check
844__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 845 unsigned bits, unsigned exclusive_bits,
41074888 846 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 847 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
848{
849 struct extent_state *state;
850 struct extent_state *prealloc = NULL;
851 struct rb_node *node;
12cfbad9
FDBM
852 struct rb_node **p;
853 struct rb_node *parent;
d1310b2e 854 int err = 0;
d1310b2e
CM
855 u64 last_start;
856 u64 last_end;
42daec29 857
a5dee37d 858 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 859
0ca1f7ce 860 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 861again:
d0164adc 862 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
863 /*
864 * Don't care for allocation failure here because we might end
865 * up not needing the pre-allocated extent state at all, which
866 * is the case if we only have in the tree extent states that
867 * cover our input range and don't cover too any other range.
868 * If we end up needing a new extent state we allocate it later.
869 */
d1310b2e 870 prealloc = alloc_extent_state(mask);
d1310b2e
CM
871 }
872
cad321ad 873 spin_lock(&tree->lock);
9655d298
CM
874 if (cached_state && *cached_state) {
875 state = *cached_state;
df98b6e2 876 if (state->start <= start && state->end > start &&
27a3507d 877 extent_state_in_tree(state)) {
9655d298
CM
878 node = &state->rb_node;
879 goto hit_next;
880 }
881 }
d1310b2e
CM
882 /*
883 * this search will find all the extents that end after
884 * our range starts.
885 */
12cfbad9 886 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 887 if (!node) {
8233767a
XG
888 prealloc = alloc_extent_state_atomic(prealloc);
889 BUG_ON(!prealloc);
12cfbad9 890 err = insert_state(tree, prealloc, start, end,
d38ed27f 891 &p, &parent, &bits, changeset);
c2d904e0
JM
892 if (err)
893 extent_io_tree_panic(tree, err);
894
c42ac0bc 895 cache_state(prealloc, cached_state);
d1310b2e 896 prealloc = NULL;
d1310b2e
CM
897 goto out;
898 }
d1310b2e 899 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 900hit_next:
d1310b2e
CM
901 last_start = state->start;
902 last_end = state->end;
903
904 /*
905 * | ---- desired range ---- |
906 * | state |
907 *
908 * Just lock what we found and keep going
909 */
910 if (state->start == start && state->end <= end) {
1edbb734 911 if (state->state & exclusive_bits) {
d1310b2e
CM
912 *failed_start = state->start;
913 err = -EEXIST;
914 goto out;
915 }
42daec29 916
d38ed27f 917 set_state_bits(tree, state, &bits, changeset);
2c64c53d 918 cache_state(state, cached_state);
d1310b2e 919 merge_state(tree, state);
5c939df5
YZ
920 if (last_end == (u64)-1)
921 goto out;
922 start = last_end + 1;
d1ac6e41
LB
923 state = next_state(state);
924 if (start < end && state && state->start == start &&
925 !need_resched())
926 goto hit_next;
d1310b2e
CM
927 goto search_again;
928 }
929
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * or
934 * | ------------- state -------------- |
935 *
936 * We need to split the extent we found, and may flip bits on
937 * second half.
938 *
939 * If the extent we found extends past our
940 * range, we just split and search again. It'll get split
941 * again the next time though.
942 *
943 * If the extent we found is inside our range, we set the
944 * desired bit on it.
945 */
946 if (state->start < start) {
1edbb734 947 if (state->state & exclusive_bits) {
d1310b2e
CM
948 *failed_start = start;
949 err = -EEXIST;
950 goto out;
951 }
8233767a
XG
952
953 prealloc = alloc_extent_state_atomic(prealloc);
954 BUG_ON(!prealloc);
d1310b2e 955 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
956 if (err)
957 extent_io_tree_panic(tree, err);
958
d1310b2e
CM
959 prealloc = NULL;
960 if (err)
961 goto out;
962 if (state->end <= end) {
d38ed27f 963 set_state_bits(tree, state, &bits, changeset);
2c64c53d 964 cache_state(state, cached_state);
d1310b2e 965 merge_state(tree, state);
5c939df5
YZ
966 if (last_end == (u64)-1)
967 goto out;
968 start = last_end + 1;
d1ac6e41
LB
969 state = next_state(state);
970 if (start < end && state && state->start == start &&
971 !need_resched())
972 goto hit_next;
d1310b2e
CM
973 }
974 goto search_again;
975 }
976 /*
977 * | ---- desired range ---- |
978 * | state | or | state |
979 *
980 * There's a hole, we need to insert something in it and
981 * ignore the extent we found.
982 */
983 if (state->start > start) {
984 u64 this_end;
985 if (end < last_start)
986 this_end = end;
987 else
d397712b 988 this_end = last_start - 1;
8233767a
XG
989
990 prealloc = alloc_extent_state_atomic(prealloc);
991 BUG_ON(!prealloc);
c7f895a2
XG
992
993 /*
994 * Avoid to free 'prealloc' if it can be merged with
995 * the later extent.
996 */
d1310b2e 997 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 998 NULL, NULL, &bits, changeset);
c2d904e0
JM
999 if (err)
1000 extent_io_tree_panic(tree, err);
1001
9ed74f2d
JB
1002 cache_state(prealloc, cached_state);
1003 prealloc = NULL;
d1310b2e
CM
1004 start = this_end + 1;
1005 goto search_again;
1006 }
1007 /*
1008 * | ---- desired range ---- |
1009 * | state |
1010 * We need to split the extent, and set the bit
1011 * on the first half
1012 */
1013 if (state->start <= end && state->end > end) {
1edbb734 1014 if (state->state & exclusive_bits) {
d1310b2e
CM
1015 *failed_start = start;
1016 err = -EEXIST;
1017 goto out;
1018 }
8233767a
XG
1019
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
d1310b2e 1022 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1023 if (err)
1024 extent_io_tree_panic(tree, err);
d1310b2e 1025
d38ed27f 1026 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1027 cache_state(prealloc, cached_state);
d1310b2e
CM
1028 merge_state(tree, prealloc);
1029 prealloc = NULL;
1030 goto out;
1031 }
1032
b5a4ba14
DS
1033search_again:
1034 if (start > end)
1035 goto out;
1036 spin_unlock(&tree->lock);
1037 if (gfpflags_allow_blocking(mask))
1038 cond_resched();
1039 goto again;
d1310b2e
CM
1040
1041out:
cad321ad 1042 spin_unlock(&tree->lock);
d1310b2e
CM
1043 if (prealloc)
1044 free_extent_state(prealloc);
1045
1046 return err;
1047
d1310b2e 1048}
d1310b2e 1049
41074888 1050int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1051 unsigned bits, u64 * failed_start,
41074888 1052 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1053{
1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1055 cached_state, mask, NULL);
3fbe5c02
JM
1056}
1057
1058
462d6fac 1059/**
10983f2e
LB
1060 * convert_extent_bit - convert all bits in a given range from one bit to
1061 * another
462d6fac
JB
1062 * @tree: the io tree to search
1063 * @start: the start offset in bytes
1064 * @end: the end offset in bytes (inclusive)
1065 * @bits: the bits to set in this range
1066 * @clear_bits: the bits to clear in this range
e6138876 1067 * @cached_state: state that we're going to cache
462d6fac
JB
1068 *
1069 * This will go through and set bits for the given range. If any states exist
1070 * already in this range they are set with the given bit and cleared of the
1071 * clear_bits. This is only meant to be used by things that are mergeable, ie
1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1073 * boundary bits like LOCK.
210aa277
DS
1074 *
1075 * All allocations are done with GFP_NOFS.
462d6fac
JB
1076 */
1077int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1078 unsigned bits, unsigned clear_bits,
210aa277 1079 struct extent_state **cached_state)
462d6fac
JB
1080{
1081 struct extent_state *state;
1082 struct extent_state *prealloc = NULL;
1083 struct rb_node *node;
12cfbad9
FDBM
1084 struct rb_node **p;
1085 struct rb_node *parent;
462d6fac
JB
1086 int err = 0;
1087 u64 last_start;
1088 u64 last_end;
c8fd3de7 1089 bool first_iteration = true;
462d6fac 1090
a5dee37d 1091 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1092
462d6fac 1093again:
210aa277 1094 if (!prealloc) {
c8fd3de7
FM
1095 /*
1096 * Best effort, don't worry if extent state allocation fails
1097 * here for the first iteration. We might have a cached state
1098 * that matches exactly the target range, in which case no
1099 * extent state allocations are needed. We'll only know this
1100 * after locking the tree.
1101 */
210aa277 1102 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1103 if (!prealloc && !first_iteration)
462d6fac
JB
1104 return -ENOMEM;
1105 }
1106
1107 spin_lock(&tree->lock);
e6138876
JB
1108 if (cached_state && *cached_state) {
1109 state = *cached_state;
1110 if (state->start <= start && state->end > start &&
27a3507d 1111 extent_state_in_tree(state)) {
e6138876
JB
1112 node = &state->rb_node;
1113 goto hit_next;
1114 }
1115 }
1116
462d6fac
JB
1117 /*
1118 * this search will find all the extents that end after
1119 * our range starts.
1120 */
12cfbad9 1121 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1122 if (!node) {
1123 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1124 if (!prealloc) {
1125 err = -ENOMEM;
1126 goto out;
1127 }
12cfbad9 1128 err = insert_state(tree, prealloc, start, end,
d38ed27f 1129 &p, &parent, &bits, NULL);
c2d904e0
JM
1130 if (err)
1131 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1132 cache_state(prealloc, cached_state);
1133 prealloc = NULL;
462d6fac
JB
1134 goto out;
1135 }
1136 state = rb_entry(node, struct extent_state, rb_node);
1137hit_next:
1138 last_start = state->start;
1139 last_end = state->end;
1140
1141 /*
1142 * | ---- desired range ---- |
1143 * | state |
1144 *
1145 * Just lock what we found and keep going
1146 */
1147 if (state->start == start && state->end <= end) {
d38ed27f 1148 set_state_bits(tree, state, &bits, NULL);
e6138876 1149 cache_state(state, cached_state);
fefdc557 1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1151 if (last_end == (u64)-1)
1152 goto out;
462d6fac 1153 start = last_end + 1;
d1ac6e41
LB
1154 if (start < end && state && state->start == start &&
1155 !need_resched())
1156 goto hit_next;
462d6fac
JB
1157 goto search_again;
1158 }
1159
1160 /*
1161 * | ---- desired range ---- |
1162 * | state |
1163 * or
1164 * | ------------- state -------------- |
1165 *
1166 * We need to split the extent we found, and may flip bits on
1167 * second half.
1168 *
1169 * If the extent we found extends past our
1170 * range, we just split and search again. It'll get split
1171 * again the next time though.
1172 *
1173 * If the extent we found is inside our range, we set the
1174 * desired bit on it.
1175 */
1176 if (state->start < start) {
1177 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1178 if (!prealloc) {
1179 err = -ENOMEM;
1180 goto out;
1181 }
462d6fac 1182 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1183 if (err)
1184 extent_io_tree_panic(tree, err);
462d6fac
JB
1185 prealloc = NULL;
1186 if (err)
1187 goto out;
1188 if (state->end <= end) {
d38ed27f 1189 set_state_bits(tree, state, &bits, NULL);
e6138876 1190 cache_state(state, cached_state);
fefdc557
QW
1191 state = clear_state_bit(tree, state, &clear_bits, 0,
1192 NULL);
462d6fac
JB
1193 if (last_end == (u64)-1)
1194 goto out;
1195 start = last_end + 1;
d1ac6e41
LB
1196 if (start < end && state && state->start == start &&
1197 !need_resched())
1198 goto hit_next;
462d6fac
JB
1199 }
1200 goto search_again;
1201 }
1202 /*
1203 * | ---- desired range ---- |
1204 * | state | or | state |
1205 *
1206 * There's a hole, we need to insert something in it and
1207 * ignore the extent we found.
1208 */
1209 if (state->start > start) {
1210 u64 this_end;
1211 if (end < last_start)
1212 this_end = end;
1213 else
1214 this_end = last_start - 1;
1215
1216 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1217 if (!prealloc) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
462d6fac
JB
1221
1222 /*
1223 * Avoid to free 'prealloc' if it can be merged with
1224 * the later extent.
1225 */
1226 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1227 NULL, NULL, &bits, NULL);
c2d904e0
JM
1228 if (err)
1229 extent_io_tree_panic(tree, err);
e6138876 1230 cache_state(prealloc, cached_state);
462d6fac
JB
1231 prealloc = NULL;
1232 start = this_end + 1;
1233 goto search_again;
1234 }
1235 /*
1236 * | ---- desired range ---- |
1237 * | state |
1238 * We need to split the extent, and set the bit
1239 * on the first half
1240 */
1241 if (state->start <= end && state->end > end) {
1242 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1243 if (!prealloc) {
1244 err = -ENOMEM;
1245 goto out;
1246 }
462d6fac
JB
1247
1248 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1249 if (err)
1250 extent_io_tree_panic(tree, err);
462d6fac 1251
d38ed27f 1252 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1253 cache_state(prealloc, cached_state);
fefdc557 1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1255 prealloc = NULL;
1256 goto out;
1257 }
1258
462d6fac
JB
1259search_again:
1260 if (start > end)
1261 goto out;
1262 spin_unlock(&tree->lock);
210aa277 1263 cond_resched();
c8fd3de7 1264 first_iteration = false;
462d6fac 1265 goto again;
462d6fac
JB
1266
1267out:
1268 spin_unlock(&tree->lock);
1269 if (prealloc)
1270 free_extent_state(prealloc);
1271
1272 return err;
462d6fac
JB
1273}
1274
d1310b2e 1275/* wrappers around set/clear extent bit */
d38ed27f 1276int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1277 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1278{
1279 /*
1280 * We don't support EXTENT_LOCKED yet, as current changeset will
1281 * record any bits changed, so for EXTENT_LOCKED case, it will
1282 * either fail with -EEXIST or changeset will record the whole
1283 * range.
1284 */
1285 BUG_ON(bits & EXTENT_LOCKED);
1286
2c53b912 1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1288 changeset);
1289}
1290
fefdc557
QW
1291int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292 unsigned bits, int wake, int delete,
ae0f1625 1293 struct extent_state **cached)
fefdc557
QW
1294{
1295 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1296 cached, GFP_NOFS, NULL);
fefdc557
QW
1297}
1298
fefdc557 1299int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1300 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1301{
1302 /*
1303 * Don't support EXTENT_LOCKED case, same reason as
1304 * set_record_extent_bits().
1305 */
1306 BUG_ON(bits & EXTENT_LOCKED);
1307
f734c44a 1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1309 changeset);
1310}
1311
d352ac68
CM
1312/*
1313 * either insert or lock state struct between start and end use mask to tell
1314 * us if waiting is desired.
1315 */
1edbb734 1316int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1317 struct extent_state **cached_state)
d1310b2e
CM
1318{
1319 int err;
1320 u64 failed_start;
9ee49a04 1321
d1310b2e 1322 while (1) {
ff13db41 1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1324 EXTENT_LOCKED, &failed_start,
d38ed27f 1325 cached_state, GFP_NOFS, NULL);
d0082371 1326 if (err == -EEXIST) {
d1310b2e
CM
1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328 start = failed_start;
d0082371 1329 } else
d1310b2e 1330 break;
d1310b2e
CM
1331 WARN_ON(start > end);
1332 }
1333 return err;
1334}
d1310b2e 1335
d0082371 1336int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1337{
1338 int err;
1339 u64 failed_start;
1340
3fbe5c02 1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1342 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1343 if (err == -EEXIST) {
1344 if (failed_start > start)
1345 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1346 EXTENT_LOCKED, 1, 0, NULL);
25179201 1347 return 0;
6643558d 1348 }
25179201
JB
1349 return 1;
1350}
25179201 1351
bd1fa4f0 1352void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1353{
09cbfeaf
KS
1354 unsigned long index = start >> PAGE_SHIFT;
1355 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1356 struct page *page;
1357
1358 while (index <= end_index) {
1359 page = find_get_page(inode->i_mapping, index);
1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361 clear_page_dirty_for_io(page);
09cbfeaf 1362 put_page(page);
4adaa611
CM
1363 index++;
1364 }
4adaa611
CM
1365}
1366
f6311572 1367void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1368{
09cbfeaf
KS
1369 unsigned long index = start >> PAGE_SHIFT;
1370 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1371 struct page *page;
1372
1373 while (index <= end_index) {
1374 page = find_get_page(inode->i_mapping, index);
1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1376 __set_page_dirty_nobuffers(page);
8d38633c 1377 account_page_redirty(page);
09cbfeaf 1378 put_page(page);
4adaa611
CM
1379 index++;
1380 }
4adaa611
CM
1381}
1382
d352ac68
CM
1383/* find the first state struct with 'bits' set after 'start', and
1384 * return it. tree->lock must be held. NULL will returned if
1385 * nothing was found after 'start'
1386 */
48a3b636
ES
1387static struct extent_state *
1388find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1389 u64 start, unsigned bits)
d7fc640e
CM
1390{
1391 struct rb_node *node;
1392 struct extent_state *state;
1393
1394 /*
1395 * this search will find all the extents that end after
1396 * our range starts.
1397 */
1398 node = tree_search(tree, start);
d397712b 1399 if (!node)
d7fc640e 1400 goto out;
d7fc640e 1401
d397712b 1402 while (1) {
d7fc640e 1403 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1404 if (state->end >= start && (state->state & bits))
d7fc640e 1405 return state;
d397712b 1406
d7fc640e
CM
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 }
1411out:
1412 return NULL;
1413}
d7fc640e 1414
69261c4b
XG
1415/*
1416 * find the first offset in the io tree with 'bits' set. zero is
1417 * returned if we find something, and *start_ret and *end_ret are
1418 * set to reflect the state struct that was found.
1419 *
477d7eaf 1420 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1421 */
1422int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1423 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1424 struct extent_state **cached_state)
69261c4b
XG
1425{
1426 struct extent_state *state;
1427 int ret = 1;
1428
1429 spin_lock(&tree->lock);
e6138876
JB
1430 if (cached_state && *cached_state) {
1431 state = *cached_state;
27a3507d 1432 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1433 while ((state = next_state(state)) != NULL) {
e6138876
JB
1434 if (state->state & bits)
1435 goto got_it;
e6138876
JB
1436 }
1437 free_extent_state(*cached_state);
1438 *cached_state = NULL;
1439 goto out;
1440 }
1441 free_extent_state(*cached_state);
1442 *cached_state = NULL;
1443 }
1444
69261c4b 1445 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1446got_it:
69261c4b 1447 if (state) {
e38e2ed7 1448 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1449 *start_ret = state->start;
1450 *end_ret = state->end;
1451 ret = 0;
1452 }
e6138876 1453out:
69261c4b
XG
1454 spin_unlock(&tree->lock);
1455 return ret;
1456}
1457
d352ac68
CM
1458/*
1459 * find a contiguous range of bytes in the file marked as delalloc, not
1460 * more than 'max_bytes'. start and end are used to return the range,
1461 *
1462 * 1 is returned if we find something, 0 if nothing was in the tree
1463 */
c8b97818 1464static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1465 u64 *start, u64 *end, u64 max_bytes,
1466 struct extent_state **cached_state)
d1310b2e
CM
1467{
1468 struct rb_node *node;
1469 struct extent_state *state;
1470 u64 cur_start = *start;
1471 u64 found = 0;
1472 u64 total_bytes = 0;
1473
cad321ad 1474 spin_lock(&tree->lock);
c8b97818 1475
d1310b2e
CM
1476 /*
1477 * this search will find all the extents that end after
1478 * our range starts.
1479 */
80ea96b1 1480 node = tree_search(tree, cur_start);
2b114d1d 1481 if (!node) {
3b951516
CM
1482 if (!found)
1483 *end = (u64)-1;
d1310b2e
CM
1484 goto out;
1485 }
1486
d397712b 1487 while (1) {
d1310b2e 1488 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1489 if (found && (state->start != cur_start ||
1490 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1491 goto out;
1492 }
1493 if (!(state->state & EXTENT_DELALLOC)) {
1494 if (!found)
1495 *end = state->end;
1496 goto out;
1497 }
c2a128d2 1498 if (!found) {
d1310b2e 1499 *start = state->start;
c2a128d2 1500 *cached_state = state;
b7ac31b7 1501 refcount_inc(&state->refs);
c2a128d2 1502 }
d1310b2e
CM
1503 found++;
1504 *end = state->end;
1505 cur_start = state->end + 1;
1506 node = rb_next(node);
d1310b2e 1507 total_bytes += state->end - state->start + 1;
7bf811a5 1508 if (total_bytes >= max_bytes)
573aecaf 1509 break;
573aecaf 1510 if (!node)
d1310b2e
CM
1511 break;
1512 }
1513out:
cad321ad 1514 spin_unlock(&tree->lock);
d1310b2e
CM
1515 return found;
1516}
1517
da2c7009
LB
1518static int __process_pages_contig(struct address_space *mapping,
1519 struct page *locked_page,
1520 pgoff_t start_index, pgoff_t end_index,
1521 unsigned long page_ops, pgoff_t *index_ret);
1522
143bede5
JM
1523static noinline void __unlock_for_delalloc(struct inode *inode,
1524 struct page *locked_page,
1525 u64 start, u64 end)
c8b97818 1526{
09cbfeaf
KS
1527 unsigned long index = start >> PAGE_SHIFT;
1528 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1529
76c0021d 1530 ASSERT(locked_page);
c8b97818 1531 if (index == locked_page->index && end_index == index)
143bede5 1532 return;
c8b97818 1533
76c0021d
LB
1534 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1535 PAGE_UNLOCK, NULL);
c8b97818
CM
1536}
1537
1538static noinline int lock_delalloc_pages(struct inode *inode,
1539 struct page *locked_page,
1540 u64 delalloc_start,
1541 u64 delalloc_end)
1542{
09cbfeaf 1543 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1544 unsigned long index_ret = index;
09cbfeaf 1545 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1546 int ret;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818
CM
1549 if (index == locked_page->index && index == end_index)
1550 return 0;
1551
76c0021d
LB
1552 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1553 end_index, PAGE_LOCK, &index_ret);
1554 if (ret == -EAGAIN)
1555 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1556 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1557 return ret;
1558}
1559
1560/*
1561 * find a contiguous range of bytes in the file marked as delalloc, not
1562 * more than 'max_bytes'. start and end are used to return the range,
1563 *
1564 * 1 is returned if we find something, 0 if nothing was in the tree
1565 */
294e30fe
JB
1566STATIC u64 find_lock_delalloc_range(struct inode *inode,
1567 struct extent_io_tree *tree,
1568 struct page *locked_page, u64 *start,
1569 u64 *end, u64 max_bytes)
c8b97818
CM
1570{
1571 u64 delalloc_start;
1572 u64 delalloc_end;
1573 u64 found;
9655d298 1574 struct extent_state *cached_state = NULL;
c8b97818
CM
1575 int ret;
1576 int loops = 0;
1577
1578again:
1579 /* step one, find a bunch of delalloc bytes starting at start */
1580 delalloc_start = *start;
1581 delalloc_end = 0;
1582 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1583 max_bytes, &cached_state);
70b99e69 1584 if (!found || delalloc_end <= *start) {
c8b97818
CM
1585 *start = delalloc_start;
1586 *end = delalloc_end;
c2a128d2 1587 free_extent_state(cached_state);
385fe0be 1588 return 0;
c8b97818
CM
1589 }
1590
70b99e69
CM
1591 /*
1592 * start comes from the offset of locked_page. We have to lock
1593 * pages in order, so we can't process delalloc bytes before
1594 * locked_page
1595 */
d397712b 1596 if (delalloc_start < *start)
70b99e69 1597 delalloc_start = *start;
70b99e69 1598
c8b97818
CM
1599 /*
1600 * make sure to limit the number of pages we try to lock down
c8b97818 1601 */
7bf811a5
JB
1602 if (delalloc_end + 1 - delalloc_start > max_bytes)
1603 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1604
c8b97818
CM
1605 /* step two, lock all the pages after the page that has start */
1606 ret = lock_delalloc_pages(inode, locked_page,
1607 delalloc_start, delalloc_end);
1608 if (ret == -EAGAIN) {
1609 /* some of the pages are gone, lets avoid looping by
1610 * shortening the size of the delalloc range we're searching
1611 */
9655d298 1612 free_extent_state(cached_state);
7d788742 1613 cached_state = NULL;
c8b97818 1614 if (!loops) {
09cbfeaf 1615 max_bytes = PAGE_SIZE;
c8b97818
CM
1616 loops = 1;
1617 goto again;
1618 } else {
1619 found = 0;
1620 goto out_failed;
1621 }
1622 }
79787eaa 1623 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1624
1625 /* step three, lock the state bits for the whole range */
ff13db41 1626 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1627
1628 /* then test to make sure it is all still delalloc */
1629 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1630 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1631 if (!ret) {
9655d298 1632 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1633 &cached_state);
c8b97818
CM
1634 __unlock_for_delalloc(inode, locked_page,
1635 delalloc_start, delalloc_end);
1636 cond_resched();
1637 goto again;
1638 }
9655d298 1639 free_extent_state(cached_state);
c8b97818
CM
1640 *start = delalloc_start;
1641 *end = delalloc_end;
1642out_failed:
1643 return found;
1644}
1645
da2c7009
LB
1646static int __process_pages_contig(struct address_space *mapping,
1647 struct page *locked_page,
1648 pgoff_t start_index, pgoff_t end_index,
1649 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1650{
873695b3 1651 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1652 unsigned long pages_locked = 0;
873695b3 1653 pgoff_t index = start_index;
c8b97818 1654 struct page *pages[16];
873695b3 1655 unsigned ret;
da2c7009 1656 int err = 0;
c8b97818 1657 int i;
771ed689 1658
da2c7009
LB
1659 if (page_ops & PAGE_LOCK) {
1660 ASSERT(page_ops == PAGE_LOCK);
1661 ASSERT(index_ret && *index_ret == start_index);
1662 }
1663
704de49d 1664 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1665 mapping_set_error(mapping, -EIO);
704de49d 1666
d397712b 1667 while (nr_pages > 0) {
873695b3 1668 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1669 min_t(unsigned long,
1670 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1671 if (ret == 0) {
1672 /*
1673 * Only if we're going to lock these pages,
1674 * can we find nothing at @index.
1675 */
1676 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1677 err = -EAGAIN;
1678 goto out;
da2c7009 1679 }
8b62b72b 1680
da2c7009 1681 for (i = 0; i < ret; i++) {
c2790a2e 1682 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1683 SetPagePrivate2(pages[i]);
1684
c8b97818 1685 if (pages[i] == locked_page) {
09cbfeaf 1686 put_page(pages[i]);
da2c7009 1687 pages_locked++;
c8b97818
CM
1688 continue;
1689 }
c2790a2e 1690 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1691 clear_page_dirty_for_io(pages[i]);
c2790a2e 1692 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1693 set_page_writeback(pages[i]);
704de49d
FM
1694 if (page_ops & PAGE_SET_ERROR)
1695 SetPageError(pages[i]);
c2790a2e 1696 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1697 end_page_writeback(pages[i]);
c2790a2e 1698 if (page_ops & PAGE_UNLOCK)
771ed689 1699 unlock_page(pages[i]);
da2c7009
LB
1700 if (page_ops & PAGE_LOCK) {
1701 lock_page(pages[i]);
1702 if (!PageDirty(pages[i]) ||
1703 pages[i]->mapping != mapping) {
1704 unlock_page(pages[i]);
1705 put_page(pages[i]);
1706 err = -EAGAIN;
1707 goto out;
1708 }
1709 }
09cbfeaf 1710 put_page(pages[i]);
da2c7009 1711 pages_locked++;
c8b97818
CM
1712 }
1713 nr_pages -= ret;
1714 index += ret;
1715 cond_resched();
1716 }
da2c7009
LB
1717out:
1718 if (err && index_ret)
1719 *index_ret = start_index + pages_locked - 1;
1720 return err;
c8b97818 1721}
c8b97818 1722
873695b3
LB
1723void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1724 u64 delalloc_end, struct page *locked_page,
1725 unsigned clear_bits,
1726 unsigned long page_ops)
1727{
1728 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1729 NULL);
873695b3
LB
1730
1731 __process_pages_contig(inode->i_mapping, locked_page,
1732 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1733 page_ops, NULL);
873695b3
LB
1734}
1735
d352ac68
CM
1736/*
1737 * count the number of bytes in the tree that have a given bit(s)
1738 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1739 * cached. The total number found is returned.
1740 */
d1310b2e
CM
1741u64 count_range_bits(struct extent_io_tree *tree,
1742 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1743 unsigned bits, int contig)
d1310b2e
CM
1744{
1745 struct rb_node *node;
1746 struct extent_state *state;
1747 u64 cur_start = *start;
1748 u64 total_bytes = 0;
ec29ed5b 1749 u64 last = 0;
d1310b2e
CM
1750 int found = 0;
1751
fae7f21c 1752 if (WARN_ON(search_end <= cur_start))
d1310b2e 1753 return 0;
d1310b2e 1754
cad321ad 1755 spin_lock(&tree->lock);
d1310b2e
CM
1756 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1757 total_bytes = tree->dirty_bytes;
1758 goto out;
1759 }
1760 /*
1761 * this search will find all the extents that end after
1762 * our range starts.
1763 */
80ea96b1 1764 node = tree_search(tree, cur_start);
d397712b 1765 if (!node)
d1310b2e 1766 goto out;
d1310b2e 1767
d397712b 1768 while (1) {
d1310b2e
CM
1769 state = rb_entry(node, struct extent_state, rb_node);
1770 if (state->start > search_end)
1771 break;
ec29ed5b
CM
1772 if (contig && found && state->start > last + 1)
1773 break;
1774 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1775 total_bytes += min(search_end, state->end) + 1 -
1776 max(cur_start, state->start);
1777 if (total_bytes >= max_bytes)
1778 break;
1779 if (!found) {
af60bed2 1780 *start = max(cur_start, state->start);
d1310b2e
CM
1781 found = 1;
1782 }
ec29ed5b
CM
1783 last = state->end;
1784 } else if (contig && found) {
1785 break;
d1310b2e
CM
1786 }
1787 node = rb_next(node);
1788 if (!node)
1789 break;
1790 }
1791out:
cad321ad 1792 spin_unlock(&tree->lock);
d1310b2e
CM
1793 return total_bytes;
1794}
b2950863 1795
d352ac68
CM
1796/*
1797 * set the private field for a given byte offset in the tree. If there isn't
1798 * an extent_state there already, this does nothing.
1799 */
f827ba9a 1800static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1801 struct io_failure_record *failrec)
d1310b2e
CM
1802{
1803 struct rb_node *node;
1804 struct extent_state *state;
1805 int ret = 0;
1806
cad321ad 1807 spin_lock(&tree->lock);
d1310b2e
CM
1808 /*
1809 * this search will find all the extents that end after
1810 * our range starts.
1811 */
80ea96b1 1812 node = tree_search(tree, start);
2b114d1d 1813 if (!node) {
d1310b2e
CM
1814 ret = -ENOENT;
1815 goto out;
1816 }
1817 state = rb_entry(node, struct extent_state, rb_node);
1818 if (state->start != start) {
1819 ret = -ENOENT;
1820 goto out;
1821 }
47dc196a 1822 state->failrec = failrec;
d1310b2e 1823out:
cad321ad 1824 spin_unlock(&tree->lock);
d1310b2e
CM
1825 return ret;
1826}
1827
f827ba9a 1828static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1829 struct io_failure_record **failrec)
d1310b2e
CM
1830{
1831 struct rb_node *node;
1832 struct extent_state *state;
1833 int ret = 0;
1834
cad321ad 1835 spin_lock(&tree->lock);
d1310b2e
CM
1836 /*
1837 * this search will find all the extents that end after
1838 * our range starts.
1839 */
80ea96b1 1840 node = tree_search(tree, start);
2b114d1d 1841 if (!node) {
d1310b2e
CM
1842 ret = -ENOENT;
1843 goto out;
1844 }
1845 state = rb_entry(node, struct extent_state, rb_node);
1846 if (state->start != start) {
1847 ret = -ENOENT;
1848 goto out;
1849 }
47dc196a 1850 *failrec = state->failrec;
d1310b2e 1851out:
cad321ad 1852 spin_unlock(&tree->lock);
d1310b2e
CM
1853 return ret;
1854}
1855
1856/*
1857 * searches a range in the state tree for a given mask.
70dec807 1858 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1859 * has the bits set. Otherwise, 1 is returned if any bit in the
1860 * range is found set.
1861 */
1862int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1863 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1864{
1865 struct extent_state *state = NULL;
1866 struct rb_node *node;
1867 int bitset = 0;
d1310b2e 1868
cad321ad 1869 spin_lock(&tree->lock);
27a3507d 1870 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1871 cached->end > start)
9655d298
CM
1872 node = &cached->rb_node;
1873 else
1874 node = tree_search(tree, start);
d1310b2e
CM
1875 while (node && start <= end) {
1876 state = rb_entry(node, struct extent_state, rb_node);
1877
1878 if (filled && state->start > start) {
1879 bitset = 0;
1880 break;
1881 }
1882
1883 if (state->start > end)
1884 break;
1885
1886 if (state->state & bits) {
1887 bitset = 1;
1888 if (!filled)
1889 break;
1890 } else if (filled) {
1891 bitset = 0;
1892 break;
1893 }
46562cec
CM
1894
1895 if (state->end == (u64)-1)
1896 break;
1897
d1310b2e
CM
1898 start = state->end + 1;
1899 if (start > end)
1900 break;
1901 node = rb_next(node);
1902 if (!node) {
1903 if (filled)
1904 bitset = 0;
1905 break;
1906 }
1907 }
cad321ad 1908 spin_unlock(&tree->lock);
d1310b2e
CM
1909 return bitset;
1910}
d1310b2e
CM
1911
1912/*
1913 * helper function to set a given page up to date if all the
1914 * extents in the tree for that page are up to date
1915 */
143bede5 1916static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1917{
4eee4fa4 1918 u64 start = page_offset(page);
09cbfeaf 1919 u64 end = start + PAGE_SIZE - 1;
9655d298 1920 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1921 SetPageUptodate(page);
d1310b2e
CM
1922}
1923
7870d082
JB
1924int free_io_failure(struct extent_io_tree *failure_tree,
1925 struct extent_io_tree *io_tree,
1926 struct io_failure_record *rec)
4a54c8c1
JS
1927{
1928 int ret;
1929 int err = 0;
4a54c8c1 1930
47dc196a 1931 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1932 ret = clear_extent_bits(failure_tree, rec->start,
1933 rec->start + rec->len - 1,
91166212 1934 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1935 if (ret)
1936 err = ret;
1937
7870d082 1938 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1939 rec->start + rec->len - 1,
91166212 1940 EXTENT_DAMAGED);
53b381b3
DW
1941 if (ret && !err)
1942 err = ret;
4a54c8c1
JS
1943
1944 kfree(rec);
1945 return err;
1946}
1947
4a54c8c1
JS
1948/*
1949 * this bypasses the standard btrfs submit functions deliberately, as
1950 * the standard behavior is to write all copies in a raid setup. here we only
1951 * want to write the one bad copy. so we do the mapping for ourselves and issue
1952 * submit_bio directly.
3ec706c8 1953 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1954 * actually prevents the read that triggered the error from finishing.
1955 * currently, there can be no more than two copies of every data bit. thus,
1956 * exactly one rewrite is required.
1957 */
6ec656bc
JB
1958int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1959 u64 length, u64 logical, struct page *page,
1960 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1961{
1962 struct bio *bio;
1963 struct btrfs_device *dev;
4a54c8c1
JS
1964 u64 map_length = 0;
1965 u64 sector;
1966 struct btrfs_bio *bbio = NULL;
1967 int ret;
1968
1751e8a6 1969 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1970 BUG_ON(!mirror_num);
1971
c5e4c3d7 1972 bio = btrfs_io_bio_alloc(1);
4f024f37 1973 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1974 map_length = length;
1975
b5de8d0d
FM
1976 /*
1977 * Avoid races with device replace and make sure our bbio has devices
1978 * associated to its stripes that don't go away while we are doing the
1979 * read repair operation.
1980 */
1981 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1982 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1983 /*
1984 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1985 * to update all raid stripes, but here we just want to correct
1986 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1987 * stripe's dev and sector.
1988 */
1989 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1990 &map_length, &bbio, 0);
1991 if (ret) {
1992 btrfs_bio_counter_dec(fs_info);
1993 bio_put(bio);
1994 return -EIO;
1995 }
1996 ASSERT(bbio->mirror_num == 1);
1997 } else {
1998 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1999 &map_length, &bbio, mirror_num);
2000 if (ret) {
2001 btrfs_bio_counter_dec(fs_info);
2002 bio_put(bio);
2003 return -EIO;
2004 }
2005 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2006 }
c725328c
LB
2007
2008 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2009 bio->bi_iter.bi_sector = sector;
c725328c 2010 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2011 btrfs_put_bbio(bbio);
ebbede42
AJ
2012 if (!dev || !dev->bdev ||
2013 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2014 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2015 bio_put(bio);
2016 return -EIO;
2017 }
74d46992 2018 bio_set_dev(bio, dev->bdev);
70fd7614 2019 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2020 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2021
4e49ea4a 2022 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2023 /* try to remap that extent elsewhere? */
b5de8d0d 2024 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2025 bio_put(bio);
442a4f63 2026 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2027 return -EIO;
2028 }
2029
b14af3b4
DS
2030 btrfs_info_rl_in_rcu(fs_info,
2031 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2032 ino, start,
1203b681 2033 rcu_str_deref(dev->name), sector);
b5de8d0d 2034 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2035 bio_put(bio);
2036 return 0;
2037}
2038
2ff7e61e
JM
2039int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2040 struct extent_buffer *eb, int mirror_num)
ea466794 2041{
ea466794 2042 u64 start = eb->start;
cc5e31a4 2043 int i, num_pages = num_extent_pages(eb);
d95603b2 2044 int ret = 0;
ea466794 2045
bc98a42c 2046 if (sb_rdonly(fs_info->sb))
908960c6
ID
2047 return -EROFS;
2048
ea466794 2049 for (i = 0; i < num_pages; i++) {
fb85fc9a 2050 struct page *p = eb->pages[i];
1203b681 2051
6ec656bc 2052 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2053 start - page_offset(p), mirror_num);
ea466794
JB
2054 if (ret)
2055 break;
09cbfeaf 2056 start += PAGE_SIZE;
ea466794
JB
2057 }
2058
2059 return ret;
2060}
2061
4a54c8c1
JS
2062/*
2063 * each time an IO finishes, we do a fast check in the IO failure tree
2064 * to see if we need to process or clean up an io_failure_record
2065 */
7870d082
JB
2066int clean_io_failure(struct btrfs_fs_info *fs_info,
2067 struct extent_io_tree *failure_tree,
2068 struct extent_io_tree *io_tree, u64 start,
2069 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2070{
2071 u64 private;
4a54c8c1 2072 struct io_failure_record *failrec;
4a54c8c1
JS
2073 struct extent_state *state;
2074 int num_copies;
4a54c8c1 2075 int ret;
4a54c8c1
JS
2076
2077 private = 0;
7870d082
JB
2078 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2079 EXTENT_DIRTY, 0);
4a54c8c1
JS
2080 if (!ret)
2081 return 0;
2082
7870d082 2083 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2084 if (ret)
2085 return 0;
2086
4a54c8c1
JS
2087 BUG_ON(!failrec->this_mirror);
2088
2089 if (failrec->in_validation) {
2090 /* there was no real error, just free the record */
ab8d0fc4
JM
2091 btrfs_debug(fs_info,
2092 "clean_io_failure: freeing dummy error at %llu",
2093 failrec->start);
4a54c8c1
JS
2094 goto out;
2095 }
bc98a42c 2096 if (sb_rdonly(fs_info->sb))
908960c6 2097 goto out;
4a54c8c1 2098
7870d082
JB
2099 spin_lock(&io_tree->lock);
2100 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2101 failrec->start,
2102 EXTENT_LOCKED);
7870d082 2103 spin_unlock(&io_tree->lock);
4a54c8c1 2104
883d0de4
MX
2105 if (state && state->start <= failrec->start &&
2106 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2107 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2108 failrec->len);
4a54c8c1 2109 if (num_copies > 1) {
7870d082
JB
2110 repair_io_failure(fs_info, ino, start, failrec->len,
2111 failrec->logical, page, pg_offset,
2112 failrec->failed_mirror);
4a54c8c1
JS
2113 }
2114 }
2115
2116out:
7870d082 2117 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2118
454ff3de 2119 return 0;
4a54c8c1
JS
2120}
2121
f612496b
MX
2122/*
2123 * Can be called when
2124 * - hold extent lock
2125 * - under ordered extent
2126 * - the inode is freeing
2127 */
7ab7956e 2128void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2129{
7ab7956e 2130 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2131 struct io_failure_record *failrec;
2132 struct extent_state *state, *next;
2133
2134 if (RB_EMPTY_ROOT(&failure_tree->state))
2135 return;
2136
2137 spin_lock(&failure_tree->lock);
2138 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2139 while (state) {
2140 if (state->start > end)
2141 break;
2142
2143 ASSERT(state->end <= end);
2144
2145 next = next_state(state);
2146
47dc196a 2147 failrec = state->failrec;
f612496b
MX
2148 free_extent_state(state);
2149 kfree(failrec);
2150
2151 state = next;
2152 }
2153 spin_unlock(&failure_tree->lock);
2154}
2155
2fe6303e 2156int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2157 struct io_failure_record **failrec_ret)
4a54c8c1 2158{
ab8d0fc4 2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2160 struct io_failure_record *failrec;
4a54c8c1 2161 struct extent_map *em;
4a54c8c1
JS
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2164 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2165 int ret;
4a54c8c1
JS
2166 u64 logical;
2167
47dc196a 2168 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2169 if (ret) {
2170 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2171 if (!failrec)
2172 return -ENOMEM;
2fe6303e 2173
4a54c8c1
JS
2174 failrec->start = start;
2175 failrec->len = end - start + 1;
2176 failrec->this_mirror = 0;
2177 failrec->bio_flags = 0;
2178 failrec->in_validation = 0;
2179
2180 read_lock(&em_tree->lock);
2181 em = lookup_extent_mapping(em_tree, start, failrec->len);
2182 if (!em) {
2183 read_unlock(&em_tree->lock);
2184 kfree(failrec);
2185 return -EIO;
2186 }
2187
68ba990f 2188 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2189 free_extent_map(em);
2190 em = NULL;
2191 }
2192 read_unlock(&em_tree->lock);
7a2d6a64 2193 if (!em) {
4a54c8c1
JS
2194 kfree(failrec);
2195 return -EIO;
2196 }
2fe6303e 2197
4a54c8c1
JS
2198 logical = start - em->start;
2199 logical = em->block_start + logical;
2200 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2201 logical = em->block_start;
2202 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2203 extent_set_compress_type(&failrec->bio_flags,
2204 em->compress_type);
2205 }
2fe6303e 2206
ab8d0fc4
JM
2207 btrfs_debug(fs_info,
2208 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2209 logical, start, failrec->len);
2fe6303e 2210
4a54c8c1
JS
2211 failrec->logical = logical;
2212 free_extent_map(em);
2213
2214 /* set the bits in the private failure tree */
2215 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2216 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2217 if (ret >= 0)
47dc196a 2218 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2219 /* set the bits in the inode's tree */
2220 if (ret >= 0)
ceeb0ae7 2221 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2222 if (ret < 0) {
2223 kfree(failrec);
2224 return ret;
2225 }
2226 } else {
ab8d0fc4
JM
2227 btrfs_debug(fs_info,
2228 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2229 failrec->logical, failrec->start, failrec->len,
2230 failrec->in_validation);
4a54c8c1
JS
2231 /*
2232 * when data can be on disk more than twice, add to failrec here
2233 * (e.g. with a list for failed_mirror) to make
2234 * clean_io_failure() clean all those errors at once.
2235 */
2236 }
2fe6303e
MX
2237
2238 *failrec_ret = failrec;
2239
2240 return 0;
2241}
2242
a0b60d72 2243bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2244 struct io_failure_record *failrec, int failed_mirror)
2245{
ab8d0fc4 2246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2247 int num_copies;
2248
ab8d0fc4 2249 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2250 if (num_copies == 1) {
2251 /*
2252 * we only have a single copy of the data, so don't bother with
2253 * all the retry and error correction code that follows. no
2254 * matter what the error is, it is very likely to persist.
2255 */
ab8d0fc4
JM
2256 btrfs_debug(fs_info,
2257 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2258 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2259 return false;
4a54c8c1
JS
2260 }
2261
4a54c8c1
JS
2262 /*
2263 * there are two premises:
2264 * a) deliver good data to the caller
2265 * b) correct the bad sectors on disk
2266 */
a0b60d72 2267 if (failed_bio_pages > 1) {
4a54c8c1
JS
2268 /*
2269 * to fulfill b), we need to know the exact failing sectors, as
2270 * we don't want to rewrite any more than the failed ones. thus,
2271 * we need separate read requests for the failed bio
2272 *
2273 * if the following BUG_ON triggers, our validation request got
2274 * merged. we need separate requests for our algorithm to work.
2275 */
2276 BUG_ON(failrec->in_validation);
2277 failrec->in_validation = 1;
2278 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2279 } else {
2280 /*
2281 * we're ready to fulfill a) and b) alongside. get a good copy
2282 * of the failed sector and if we succeed, we have setup
2283 * everything for repair_io_failure to do the rest for us.
2284 */
2285 if (failrec->in_validation) {
2286 BUG_ON(failrec->this_mirror != failed_mirror);
2287 failrec->in_validation = 0;
2288 failrec->this_mirror = 0;
2289 }
2290 failrec->failed_mirror = failed_mirror;
2291 failrec->this_mirror++;
2292 if (failrec->this_mirror == failed_mirror)
2293 failrec->this_mirror++;
4a54c8c1
JS
2294 }
2295
facc8a22 2296 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2297 btrfs_debug(fs_info,
2298 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2299 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2300 return false;
4a54c8c1
JS
2301 }
2302
c3cfb656 2303 return true;
2fe6303e
MX
2304}
2305
2306
2307struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2308 struct io_failure_record *failrec,
2309 struct page *page, int pg_offset, int icsum,
8b110e39 2310 bio_end_io_t *endio_func, void *data)
2fe6303e 2311{
0b246afa 2312 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2313 struct bio *bio;
2314 struct btrfs_io_bio *btrfs_failed_bio;
2315 struct btrfs_io_bio *btrfs_bio;
2316
c5e4c3d7 2317 bio = btrfs_io_bio_alloc(1);
2fe6303e 2318 bio->bi_end_io = endio_func;
4f024f37 2319 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2320 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2321 bio->bi_iter.bi_size = 0;
8b110e39 2322 bio->bi_private = data;
4a54c8c1 2323
facc8a22
MX
2324 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2325 if (btrfs_failed_bio->csum) {
facc8a22
MX
2326 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2327
2328 btrfs_bio = btrfs_io_bio(bio);
2329 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2330 icsum *= csum_size;
2331 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2332 csum_size);
2333 }
2334
2fe6303e
MX
2335 bio_add_page(bio, page, failrec->len, pg_offset);
2336
2337 return bio;
2338}
2339
2340/*
2341 * this is a generic handler for readpage errors (default
2342 * readpage_io_failed_hook). if other copies exist, read those and write back
2343 * good data to the failed position. does not investigate in remapping the
2344 * failed extent elsewhere, hoping the device will be smart enough to do this as
2345 * needed
2346 */
2347
2348static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2349 struct page *page, u64 start, u64 end,
2350 int failed_mirror)
2351{
2352 struct io_failure_record *failrec;
2353 struct inode *inode = page->mapping->host;
2354 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2355 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2356 struct bio *bio;
70fd7614 2357 int read_mode = 0;
4e4cbee9 2358 blk_status_t status;
2fe6303e 2359 int ret;
a0b60d72 2360 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2361
1f7ad75b 2362 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2363
2364 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2365 if (ret)
2366 return ret;
2367
a0b60d72 2368 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2369 failed_mirror)) {
7870d082 2370 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2371 return -EIO;
2372 }
2373
a0b60d72 2374 if (failed_bio_pages > 1)
70fd7614 2375 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2376
2377 phy_offset >>= inode->i_sb->s_blocksize_bits;
2378 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2379 start - page_offset(page),
8b110e39
MX
2380 (int)phy_offset, failed_bio->bi_end_io,
2381 NULL);
ebcc3263 2382 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2383
ab8d0fc4
JM
2384 btrfs_debug(btrfs_sb(inode->i_sb),
2385 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2386 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2387
8c27cb35 2388 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2389 failrec->bio_flags, 0);
4e4cbee9 2390 if (status) {
7870d082 2391 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2392 bio_put(bio);
4e4cbee9 2393 ret = blk_status_to_errno(status);
6c387ab2
MX
2394 }
2395
013bd4c3 2396 return ret;
4a54c8c1
JS
2397}
2398
d1310b2e
CM
2399/* lots and lots of room for performance fixes in the end_bio funcs */
2400
b5227c07 2401void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2402{
2403 int uptodate = (err == 0);
2404 struct extent_io_tree *tree;
3e2426bd 2405 int ret = 0;
87826df0
JM
2406
2407 tree = &BTRFS_I(page->mapping->host)->io_tree;
2408
c3988d63
DS
2409 if (tree->ops && tree->ops->writepage_end_io_hook)
2410 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2411 uptodate);
87826df0 2412
87826df0 2413 if (!uptodate) {
87826df0
JM
2414 ClearPageUptodate(page);
2415 SetPageError(page);
bff5baf8 2416 ret = err < 0 ? err : -EIO;
5dca6eea 2417 mapping_set_error(page->mapping, ret);
87826df0 2418 }
87826df0
JM
2419}
2420
d1310b2e
CM
2421/*
2422 * after a writepage IO is done, we need to:
2423 * clear the uptodate bits on error
2424 * clear the writeback bits in the extent tree for this IO
2425 * end_page_writeback if the page has no more pending IO
2426 *
2427 * Scheduling is not allowed, so the extent state tree is expected
2428 * to have one and only one object corresponding to this IO.
2429 */
4246a0b6 2430static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2431{
4e4cbee9 2432 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2433 struct bio_vec *bvec;
d1310b2e
CM
2434 u64 start;
2435 u64 end;
2c30c71b 2436 int i;
d1310b2e 2437
c09abff8 2438 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2439 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2440 struct page *page = bvec->bv_page;
0b246afa
JM
2441 struct inode *inode = page->mapping->host;
2442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2443
17a5adcc
AO
2444 /* We always issue full-page reads, but if some block
2445 * in a page fails to read, blk_update_request() will
2446 * advance bv_offset and adjust bv_len to compensate.
2447 * Print a warning for nonzero offsets, and an error
2448 * if they don't add up to a full page. */
09cbfeaf
KS
2449 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2450 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2451 btrfs_err(fs_info,
efe120a0
FH
2452 "partial page write in btrfs with offset %u and length %u",
2453 bvec->bv_offset, bvec->bv_len);
2454 else
0b246afa 2455 btrfs_info(fs_info,
5d163e0e 2456 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2457 bvec->bv_offset, bvec->bv_len);
2458 }
d1310b2e 2459
17a5adcc
AO
2460 start = page_offset(page);
2461 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2462
4e4cbee9 2463 end_extent_writepage(page, error, start, end);
17a5adcc 2464 end_page_writeback(page);
2c30c71b 2465 }
2b1f55b0 2466
d1310b2e 2467 bio_put(bio);
d1310b2e
CM
2468}
2469
883d0de4
MX
2470static void
2471endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2472 int uptodate)
2473{
2474 struct extent_state *cached = NULL;
2475 u64 end = start + len - 1;
2476
2477 if (uptodate && tree->track_uptodate)
2478 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2479 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2480}
2481
d1310b2e
CM
2482/*
2483 * after a readpage IO is done, we need to:
2484 * clear the uptodate bits on error
2485 * set the uptodate bits if things worked
2486 * set the page up to date if all extents in the tree are uptodate
2487 * clear the lock bit in the extent tree
2488 * unlock the page if there are no other extents locked for it
2489 *
2490 * Scheduling is not allowed, so the extent state tree is expected
2491 * to have one and only one object corresponding to this IO.
2492 */
4246a0b6 2493static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2494{
2c30c71b 2495 struct bio_vec *bvec;
4e4cbee9 2496 int uptodate = !bio->bi_status;
facc8a22 2497 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2498 struct extent_io_tree *tree, *failure_tree;
facc8a22 2499 u64 offset = 0;
d1310b2e
CM
2500 u64 start;
2501 u64 end;
facc8a22 2502 u64 len;
883d0de4
MX
2503 u64 extent_start = 0;
2504 u64 extent_len = 0;
5cf1ab56 2505 int mirror;
d1310b2e 2506 int ret;
2c30c71b 2507 int i;
d1310b2e 2508
c09abff8 2509 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2510 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2511 struct page *page = bvec->bv_page;
a71754fc 2512 struct inode *inode = page->mapping->host;
ab8d0fc4 2513 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2514
ab8d0fc4
JM
2515 btrfs_debug(fs_info,
2516 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2517 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2518 io_bio->mirror_num);
a71754fc 2519 tree = &BTRFS_I(inode)->io_tree;
7870d082 2520 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2521
17a5adcc
AO
2522 /* We always issue full-page reads, but if some block
2523 * in a page fails to read, blk_update_request() will
2524 * advance bv_offset and adjust bv_len to compensate.
2525 * Print a warning for nonzero offsets, and an error
2526 * if they don't add up to a full page. */
09cbfeaf
KS
2527 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2528 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2529 btrfs_err(fs_info,
2530 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2531 bvec->bv_offset, bvec->bv_len);
2532 else
ab8d0fc4
JM
2533 btrfs_info(fs_info,
2534 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2535 bvec->bv_offset, bvec->bv_len);
2536 }
d1310b2e 2537
17a5adcc
AO
2538 start = page_offset(page);
2539 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2540 len = bvec->bv_len;
d1310b2e 2541
9be3395b 2542 mirror = io_bio->mirror_num;
20c9801d 2543 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2544 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2545 page, start, end,
2546 mirror);
5ee0844d 2547 if (ret)
d1310b2e 2548 uptodate = 0;
5ee0844d 2549 else
7870d082
JB
2550 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2551 failure_tree, tree, start,
2552 page,
2553 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2554 }
ea466794 2555
f2a09da9
MX
2556 if (likely(uptodate))
2557 goto readpage_ok;
2558
20a7db8a 2559 if (tree->ops) {
5cf1ab56 2560 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2561 if (ret == -EAGAIN) {
2562 /*
2563 * Data inode's readpage_io_failed_hook() always
2564 * returns -EAGAIN.
2565 *
2566 * The generic bio_readpage_error handles errors
2567 * the following way: If possible, new read
2568 * requests are created and submitted and will
2569 * end up in end_bio_extent_readpage as well (if
2570 * we're lucky, not in the !uptodate case). In
2571 * that case it returns 0 and we just go on with
2572 * the next page in our bio. If it can't handle
2573 * the error it will return -EIO and we remain
2574 * responsible for that page.
2575 */
2576 ret = bio_readpage_error(bio, offset, page,
2577 start, end, mirror);
2578 if (ret == 0) {
4e4cbee9 2579 uptodate = !bio->bi_status;
9d0d1c8b
LB
2580 offset += len;
2581 continue;
2582 }
2583 }
2584
f4a8e656 2585 /*
9d0d1c8b
LB
2586 * metadata's readpage_io_failed_hook() always returns
2587 * -EIO and fixes nothing. -EIO is also returned if
2588 * data inode error could not be fixed.
f4a8e656 2589 */
9d0d1c8b 2590 ASSERT(ret == -EIO);
7e38326f 2591 }
f2a09da9 2592readpage_ok:
883d0de4 2593 if (likely(uptodate)) {
a71754fc 2594 loff_t i_size = i_size_read(inode);
09cbfeaf 2595 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2596 unsigned off;
a71754fc
JB
2597
2598 /* Zero out the end if this page straddles i_size */
09cbfeaf 2599 off = i_size & (PAGE_SIZE-1);
a583c026 2600 if (page->index == end_index && off)
09cbfeaf 2601 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2602 SetPageUptodate(page);
70dec807 2603 } else {
17a5adcc
AO
2604 ClearPageUptodate(page);
2605 SetPageError(page);
70dec807 2606 }
17a5adcc 2607 unlock_page(page);
facc8a22 2608 offset += len;
883d0de4
MX
2609
2610 if (unlikely(!uptodate)) {
2611 if (extent_len) {
2612 endio_readpage_release_extent(tree,
2613 extent_start,
2614 extent_len, 1);
2615 extent_start = 0;
2616 extent_len = 0;
2617 }
2618 endio_readpage_release_extent(tree, start,
2619 end - start + 1, 0);
2620 } else if (!extent_len) {
2621 extent_start = start;
2622 extent_len = end + 1 - start;
2623 } else if (extent_start + extent_len == start) {
2624 extent_len += end + 1 - start;
2625 } else {
2626 endio_readpage_release_extent(tree, extent_start,
2627 extent_len, uptodate);
2628 extent_start = start;
2629 extent_len = end + 1 - start;
2630 }
2c30c71b 2631 }
d1310b2e 2632
883d0de4
MX
2633 if (extent_len)
2634 endio_readpage_release_extent(tree, extent_start, extent_len,
2635 uptodate);
facc8a22 2636 if (io_bio->end_io)
4e4cbee9 2637 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2638 bio_put(bio);
d1310b2e
CM
2639}
2640
9be3395b 2641/*
184f999e
DS
2642 * Initialize the members up to but not including 'bio'. Use after allocating a
2643 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2644 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2645 */
184f999e 2646static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2647{
184f999e
DS
2648 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2649}
d1310b2e 2650
9be3395b 2651/*
6e707bcd
DS
2652 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2653 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2654 * for the appropriate container_of magic
9be3395b 2655 */
c821e7f3 2656struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2657{
2658 struct bio *bio;
d1310b2e 2659
8ac9f7c1 2660 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2661 bio_set_dev(bio, bdev);
c821e7f3 2662 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2663 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2664 return bio;
2665}
2666
8b6c1d56 2667struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2668{
23ea8e5a
MX
2669 struct btrfs_io_bio *btrfs_bio;
2670 struct bio *new;
9be3395b 2671
6e707bcd 2672 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2673 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2674 btrfs_bio = btrfs_io_bio(new);
184f999e 2675 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2676 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2677 return new;
2678}
9be3395b 2679
c5e4c3d7 2680struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2681{
facc8a22
MX
2682 struct bio *bio;
2683
6e707bcd 2684 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2685 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2686 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2687 return bio;
9be3395b
CM
2688}
2689
e477094f 2690struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2691{
2692 struct bio *bio;
2693 struct btrfs_io_bio *btrfs_bio;
2694
2695 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2696 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2697 ASSERT(bio);
2698
2699 btrfs_bio = btrfs_io_bio(bio);
184f999e 2700 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2701
2702 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2703 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2704 return bio;
2705}
9be3395b 2706
1f7ad75b
MC
2707static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2708 unsigned long bio_flags)
d1310b2e 2709{
4e4cbee9 2710 blk_status_t ret = 0;
c45a8f2d 2711 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2712 struct page *page = bvec->bv_page;
2713 struct extent_io_tree *tree = bio->bi_private;
70dec807 2714 u64 start;
70dec807 2715
4eee4fa4 2716 start = page_offset(page) + bvec->bv_offset;
70dec807 2717
902b22f3 2718 bio->bi_private = NULL;
d1310b2e 2719
20c9801d 2720 if (tree->ops)
c6100a4b 2721 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2722 mirror_num, bio_flags, start);
0b86a832 2723 else
4e49ea4a 2724 btrfsic_submit_bio(bio);
4a54c8c1 2725
4e4cbee9 2726 return blk_status_to_errno(ret);
d1310b2e
CM
2727}
2728
4b81ba48
DS
2729/*
2730 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2731 * @tree: tree so we can call our merge_bio hook
2732 * @wbc: optional writeback control for io accounting
2733 * @page: page to add to the bio
2734 * @pg_offset: offset of the new bio or to check whether we are adding
2735 * a contiguous page to the previous one
2736 * @size: portion of page that we want to write
2737 * @offset: starting offset in the page
2738 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2739 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2740 * @end_io_func: end_io callback for new bio
2741 * @mirror_num: desired mirror to read/write
2742 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2743 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2744 */
2745static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2746 struct writeback_control *wbc,
6273b7f8 2747 struct page *page, u64 offset,
6c5a4e2c 2748 size_t size, unsigned long pg_offset,
d1310b2e
CM
2749 struct block_device *bdev,
2750 struct bio **bio_ret,
f188591e 2751 bio_end_io_t end_io_func,
c8b97818
CM
2752 int mirror_num,
2753 unsigned long prev_bio_flags,
005efedf
FM
2754 unsigned long bio_flags,
2755 bool force_bio_submit)
d1310b2e
CM
2756{
2757 int ret = 0;
2758 struct bio *bio;
09cbfeaf 2759 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2760 sector_t sector = offset >> 9;
d1310b2e 2761
5c2b1fd7
DS
2762 ASSERT(bio_ret);
2763
2764 if (*bio_ret) {
0c8508a6
DS
2765 bool contig;
2766 bool can_merge = true;
2767
d1310b2e 2768 bio = *bio_ret;
0c8508a6 2769 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2770 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2771 else
f73a1c7d 2772 contig = bio_end_sector(bio) == sector;
c8b97818 2773
00032d38
DS
2774 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2775 bio, bio_flags))
0c8508a6
DS
2776 can_merge = false;
2777
2778 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2779 force_bio_submit ||
6c5a4e2c 2780 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2781 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2782 if (ret < 0) {
2783 *bio_ret = NULL;
79787eaa 2784 return ret;
289454ad 2785 }
d1310b2e
CM
2786 bio = NULL;
2787 } else {
da2f0f74
CM
2788 if (wbc)
2789 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2790 return 0;
2791 }
2792 }
c8b97818 2793
6273b7f8 2794 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2795 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2796 bio->bi_end_io = end_io_func;
2797 bio->bi_private = tree;
e6959b93 2798 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2799 bio->bi_opf = opf;
da2f0f74
CM
2800 if (wbc) {
2801 wbc_init_bio(wbc, bio);
2802 wbc_account_io(wbc, page, page_size);
2803 }
70dec807 2804
5c2b1fd7 2805 *bio_ret = bio;
d1310b2e
CM
2806
2807 return ret;
2808}
2809
48a3b636
ES
2810static void attach_extent_buffer_page(struct extent_buffer *eb,
2811 struct page *page)
d1310b2e
CM
2812{
2813 if (!PagePrivate(page)) {
2814 SetPagePrivate(page);
09cbfeaf 2815 get_page(page);
4f2de97a
JB
2816 set_page_private(page, (unsigned long)eb);
2817 } else {
2818 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2819 }
2820}
2821
4f2de97a 2822void set_page_extent_mapped(struct page *page)
d1310b2e 2823{
4f2de97a
JB
2824 if (!PagePrivate(page)) {
2825 SetPagePrivate(page);
09cbfeaf 2826 get_page(page);
4f2de97a
JB
2827 set_page_private(page, EXTENT_PAGE_PRIVATE);
2828 }
d1310b2e
CM
2829}
2830
125bac01
MX
2831static struct extent_map *
2832__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2833 u64 start, u64 len, get_extent_t *get_extent,
2834 struct extent_map **em_cached)
2835{
2836 struct extent_map *em;
2837
2838 if (em_cached && *em_cached) {
2839 em = *em_cached;
cbc0e928 2840 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2841 start < extent_map_end(em)) {
490b54d6 2842 refcount_inc(&em->refs);
125bac01
MX
2843 return em;
2844 }
2845
2846 free_extent_map(em);
2847 *em_cached = NULL;
2848 }
2849
fc4f21b1 2850 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2851 if (em_cached && !IS_ERR_OR_NULL(em)) {
2852 BUG_ON(*em_cached);
490b54d6 2853 refcount_inc(&em->refs);
125bac01
MX
2854 *em_cached = em;
2855 }
2856 return em;
2857}
d1310b2e
CM
2858/*
2859 * basic readpage implementation. Locked extent state structs are inserted
2860 * into the tree that are removed when the IO is done (by the end_io
2861 * handlers)
79787eaa 2862 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2863 * return 0 on success, otherwise return error
d1310b2e 2864 */
9974090b
MX
2865static int __do_readpage(struct extent_io_tree *tree,
2866 struct page *page,
2867 get_extent_t *get_extent,
125bac01 2868 struct extent_map **em_cached,
9974090b 2869 struct bio **bio, int mirror_num,
f1c77c55 2870 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2871 u64 *prev_em_start)
d1310b2e
CM
2872{
2873 struct inode *inode = page->mapping->host;
4eee4fa4 2874 u64 start = page_offset(page);
8eec8296 2875 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2876 u64 cur = start;
2877 u64 extent_offset;
2878 u64 last_byte = i_size_read(inode);
2879 u64 block_start;
2880 u64 cur_end;
d1310b2e
CM
2881 struct extent_map *em;
2882 struct block_device *bdev;
baf863b9 2883 int ret = 0;
d1310b2e 2884 int nr = 0;
306e16ce 2885 size_t pg_offset = 0;
d1310b2e 2886 size_t iosize;
c8b97818 2887 size_t disk_io_size;
d1310b2e 2888 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2889 unsigned long this_bio_flag = 0;
d1310b2e
CM
2890
2891 set_page_extent_mapped(page);
2892
90a887c9
DM
2893 if (!PageUptodate(page)) {
2894 if (cleancache_get_page(page) == 0) {
2895 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2896 unlock_extent(tree, start, end);
90a887c9
DM
2897 goto out;
2898 }
2899 }
2900
09cbfeaf 2901 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2902 char *userpage;
09cbfeaf 2903 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2904
2905 if (zero_offset) {
09cbfeaf 2906 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2907 userpage = kmap_atomic(page);
c8b97818
CM
2908 memset(userpage + zero_offset, 0, iosize);
2909 flush_dcache_page(page);
7ac687d9 2910 kunmap_atomic(userpage);
c8b97818
CM
2911 }
2912 }
d1310b2e 2913 while (cur <= end) {
005efedf 2914 bool force_bio_submit = false;
6273b7f8 2915 u64 offset;
c8f2f24b 2916
d1310b2e
CM
2917 if (cur >= last_byte) {
2918 char *userpage;
507903b8
AJ
2919 struct extent_state *cached = NULL;
2920
09cbfeaf 2921 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2922 userpage = kmap_atomic(page);
306e16ce 2923 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2924 flush_dcache_page(page);
7ac687d9 2925 kunmap_atomic(userpage);
d1310b2e 2926 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2927 &cached, GFP_NOFS);
7f042a83 2928 unlock_extent_cached(tree, cur,
e43bbe5e 2929 cur + iosize - 1, &cached);
d1310b2e
CM
2930 break;
2931 }
125bac01
MX
2932 em = __get_extent_map(inode, page, pg_offset, cur,
2933 end - cur + 1, get_extent, em_cached);
c704005d 2934 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2935 SetPageError(page);
7f042a83 2936 unlock_extent(tree, cur, end);
d1310b2e
CM
2937 break;
2938 }
d1310b2e
CM
2939 extent_offset = cur - em->start;
2940 BUG_ON(extent_map_end(em) <= cur);
2941 BUG_ON(end < cur);
2942
261507a0 2943 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2944 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2945 extent_set_compress_type(&this_bio_flag,
2946 em->compress_type);
2947 }
c8b97818 2948
d1310b2e
CM
2949 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2950 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2951 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2952 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2953 disk_io_size = em->block_len;
6273b7f8 2954 offset = em->block_start;
c8b97818 2955 } else {
6273b7f8 2956 offset = em->block_start + extent_offset;
c8b97818
CM
2957 disk_io_size = iosize;
2958 }
d1310b2e
CM
2959 bdev = em->bdev;
2960 block_start = em->block_start;
d899e052
YZ
2961 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2962 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2963
2964 /*
2965 * If we have a file range that points to a compressed extent
2966 * and it's followed by a consecutive file range that points to
2967 * to the same compressed extent (possibly with a different
2968 * offset and/or length, so it either points to the whole extent
2969 * or only part of it), we must make sure we do not submit a
2970 * single bio to populate the pages for the 2 ranges because
2971 * this makes the compressed extent read zero out the pages
2972 * belonging to the 2nd range. Imagine the following scenario:
2973 *
2974 * File layout
2975 * [0 - 8K] [8K - 24K]
2976 * | |
2977 * | |
2978 * points to extent X, points to extent X,
2979 * offset 4K, length of 8K offset 0, length 16K
2980 *
2981 * [extent X, compressed length = 4K uncompressed length = 16K]
2982 *
2983 * If the bio to read the compressed extent covers both ranges,
2984 * it will decompress extent X into the pages belonging to the
2985 * first range and then it will stop, zeroing out the remaining
2986 * pages that belong to the other range that points to extent X.
2987 * So here we make sure we submit 2 bios, one for the first
2988 * range and another one for the third range. Both will target
2989 * the same physical extent from disk, but we can't currently
2990 * make the compressed bio endio callback populate the pages
2991 * for both ranges because each compressed bio is tightly
2992 * coupled with a single extent map, and each range can have
2993 * an extent map with a different offset value relative to the
2994 * uncompressed data of our extent and different lengths. This
2995 * is a corner case so we prioritize correctness over
2996 * non-optimal behavior (submitting 2 bios for the same extent).
2997 */
2998 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2999 prev_em_start && *prev_em_start != (u64)-1 &&
3000 *prev_em_start != em->orig_start)
3001 force_bio_submit = true;
3002
3003 if (prev_em_start)
3004 *prev_em_start = em->orig_start;
3005
d1310b2e
CM
3006 free_extent_map(em);
3007 em = NULL;
3008
3009 /* we've found a hole, just zero and go on */
3010 if (block_start == EXTENT_MAP_HOLE) {
3011 char *userpage;
507903b8
AJ
3012 struct extent_state *cached = NULL;
3013
7ac687d9 3014 userpage = kmap_atomic(page);
306e16ce 3015 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3016 flush_dcache_page(page);
7ac687d9 3017 kunmap_atomic(userpage);
d1310b2e
CM
3018
3019 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3020 &cached, GFP_NOFS);
7f042a83 3021 unlock_extent_cached(tree, cur,
e43bbe5e 3022 cur + iosize - 1, &cached);
d1310b2e 3023 cur = cur + iosize;
306e16ce 3024 pg_offset += iosize;
d1310b2e
CM
3025 continue;
3026 }
3027 /* the get_extent function already copied into the page */
9655d298
CM
3028 if (test_range_bit(tree, cur, cur_end,
3029 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3030 check_page_uptodate(tree, page);
7f042a83 3031 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3032 cur = cur + iosize;
306e16ce 3033 pg_offset += iosize;
d1310b2e
CM
3034 continue;
3035 }
70dec807
CM
3036 /* we have an inline extent but it didn't get marked up
3037 * to date. Error out
3038 */
3039 if (block_start == EXTENT_MAP_INLINE) {
3040 SetPageError(page);
7f042a83 3041 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3042 cur = cur + iosize;
306e16ce 3043 pg_offset += iosize;
70dec807
CM
3044 continue;
3045 }
d1310b2e 3046
4b81ba48 3047 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3048 page, offset, disk_io_size,
3049 pg_offset, bdev, bio,
c8b97818
CM
3050 end_bio_extent_readpage, mirror_num,
3051 *bio_flags,
005efedf
FM
3052 this_bio_flag,
3053 force_bio_submit);
c8f2f24b
JB
3054 if (!ret) {
3055 nr++;
3056 *bio_flags = this_bio_flag;
3057 } else {
d1310b2e 3058 SetPageError(page);
7f042a83 3059 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3060 goto out;
edd33c99 3061 }
d1310b2e 3062 cur = cur + iosize;
306e16ce 3063 pg_offset += iosize;
d1310b2e 3064 }
90a887c9 3065out:
d1310b2e
CM
3066 if (!nr) {
3067 if (!PageError(page))
3068 SetPageUptodate(page);
3069 unlock_page(page);
3070 }
baf863b9 3071 return ret;
d1310b2e
CM
3072}
3073
9974090b
MX
3074static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3075 struct page *pages[], int nr_pages,
3076 u64 start, u64 end,
125bac01 3077 struct extent_map **em_cached,
d3fac6ba 3078 struct bio **bio,
1f7ad75b 3079 unsigned long *bio_flags,
808f80b4 3080 u64 *prev_em_start)
9974090b
MX
3081{
3082 struct inode *inode;
3083 struct btrfs_ordered_extent *ordered;
3084 int index;
3085
3086 inode = pages[0]->mapping->host;
3087 while (1) {
3088 lock_extent(tree, start, end);
a776c6fa 3089 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3090 end - start + 1);
3091 if (!ordered)
3092 break;
3093 unlock_extent(tree, start, end);
3094 btrfs_start_ordered_extent(inode, ordered, 1);
3095 btrfs_put_ordered_extent(ordered);
3096 }
3097
3098 for (index = 0; index < nr_pages; index++) {
4ef77695 3099 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3100 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3101 put_page(pages[index]);
9974090b
MX
3102 }
3103}
3104
3105static void __extent_readpages(struct extent_io_tree *tree,
3106 struct page *pages[],
e4d17ef5 3107 int nr_pages,
125bac01 3108 struct extent_map **em_cached,
d3fac6ba 3109 struct bio **bio, unsigned long *bio_flags,
808f80b4 3110 u64 *prev_em_start)
9974090b 3111{
35a3621b 3112 u64 start = 0;
9974090b
MX
3113 u64 end = 0;
3114 u64 page_start;
3115 int index;
35a3621b 3116 int first_index = 0;
9974090b
MX
3117
3118 for (index = 0; index < nr_pages; index++) {
3119 page_start = page_offset(pages[index]);
3120 if (!end) {
3121 start = page_start;
09cbfeaf 3122 end = start + PAGE_SIZE - 1;
9974090b
MX
3123 first_index = index;
3124 } else if (end + 1 == page_start) {
09cbfeaf 3125 end += PAGE_SIZE;
9974090b
MX
3126 } else {
3127 __do_contiguous_readpages(tree, &pages[first_index],
3128 index - first_index, start,
4ef77695 3129 end, em_cached,
d3fac6ba 3130 bio, bio_flags,
1f7ad75b 3131 prev_em_start);
9974090b 3132 start = page_start;
09cbfeaf 3133 end = start + PAGE_SIZE - 1;
9974090b
MX
3134 first_index = index;
3135 }
3136 }
3137
3138 if (end)
3139 __do_contiguous_readpages(tree, &pages[first_index],
3140 index - first_index, start,
4ef77695 3141 end, em_cached, bio,
d3fac6ba 3142 bio_flags, prev_em_start);
9974090b
MX
3143}
3144
3145static int __extent_read_full_page(struct extent_io_tree *tree,
3146 struct page *page,
3147 get_extent_t *get_extent,
3148 struct bio **bio, int mirror_num,
f1c77c55
DS
3149 unsigned long *bio_flags,
3150 unsigned int read_flags)
9974090b
MX
3151{
3152 struct inode *inode = page->mapping->host;
3153 struct btrfs_ordered_extent *ordered;
3154 u64 start = page_offset(page);
09cbfeaf 3155 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3156 int ret;
3157
3158 while (1) {
3159 lock_extent(tree, start, end);
a776c6fa 3160 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3161 PAGE_SIZE);
9974090b
MX
3162 if (!ordered)
3163 break;
3164 unlock_extent(tree, start, end);
3165 btrfs_start_ordered_extent(inode, ordered, 1);
3166 btrfs_put_ordered_extent(ordered);
3167 }
3168
125bac01 3169 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3170 bio_flags, read_flags, NULL);
9974090b
MX
3171 return ret;
3172}
3173
d1310b2e 3174int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3175 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3176{
3177 struct bio *bio = NULL;
c8b97818 3178 unsigned long bio_flags = 0;
d1310b2e
CM
3179 int ret;
3180
8ddc7d9c 3181 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3182 &bio_flags, 0);
d1310b2e 3183 if (bio)
1f7ad75b 3184 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3185 return ret;
3186}
d1310b2e 3187
3d4b9496 3188static void update_nr_written(struct writeback_control *wbc,
a9132667 3189 unsigned long nr_written)
11c8349b
CM
3190{
3191 wbc->nr_to_write -= nr_written;
11c8349b
CM
3192}
3193
d1310b2e 3194/*
40f76580
CM
3195 * helper for __extent_writepage, doing all of the delayed allocation setup.
3196 *
3197 * This returns 1 if our fill_delalloc function did all the work required
3198 * to write the page (copy into inline extent). In this case the IO has
3199 * been started and the page is already unlocked.
3200 *
3201 * This returns 0 if all went well (page still locked)
3202 * This returns < 0 if there were errors (page still locked)
d1310b2e 3203 */
40f76580
CM
3204static noinline_for_stack int writepage_delalloc(struct inode *inode,
3205 struct page *page, struct writeback_control *wbc,
3206 struct extent_page_data *epd,
3207 u64 delalloc_start,
3208 unsigned long *nr_written)
3209{
3210 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3211 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3212 u64 nr_delalloc;
3213 u64 delalloc_to_write = 0;
3214 u64 delalloc_end = 0;
3215 int ret;
3216 int page_started = 0;
3217
3218 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3219 return 0;
3220
3221 while (delalloc_end < page_end) {
3222 nr_delalloc = find_lock_delalloc_range(inode, tree,
3223 page,
3224 &delalloc_start,
3225 &delalloc_end,
dcab6a3b 3226 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3227 if (nr_delalloc == 0) {
3228 delalloc_start = delalloc_end + 1;
3229 continue;
3230 }
3231 ret = tree->ops->fill_delalloc(inode, page,
3232 delalloc_start,
3233 delalloc_end,
3234 &page_started,
f82b7359 3235 nr_written, wbc);
40f76580
CM
3236 /* File system has been set read-only */
3237 if (ret) {
3238 SetPageError(page);
3239 /* fill_delalloc should be return < 0 for error
3240 * but just in case, we use > 0 here meaning the
3241 * IO is started, so we don't want to return > 0
3242 * unless things are going well.
3243 */
3244 ret = ret < 0 ? ret : -EIO;
3245 goto done;
3246 }
3247 /*
ea1754a0
KS
3248 * delalloc_end is already one less than the total length, so
3249 * we don't subtract one from PAGE_SIZE
40f76580
CM
3250 */
3251 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3252 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3253 delalloc_start = delalloc_end + 1;
3254 }
3255 if (wbc->nr_to_write < delalloc_to_write) {
3256 int thresh = 8192;
3257
3258 if (delalloc_to_write < thresh * 2)
3259 thresh = delalloc_to_write;
3260 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3261 thresh);
3262 }
3263
3264 /* did the fill delalloc function already unlock and start
3265 * the IO?
3266 */
3267 if (page_started) {
3268 /*
3269 * we've unlocked the page, so we can't update
3270 * the mapping's writeback index, just update
3271 * nr_to_write.
3272 */
3273 wbc->nr_to_write -= *nr_written;
3274 return 1;
3275 }
3276
3277 ret = 0;
3278
3279done:
3280 return ret;
3281}
3282
3283/*
3284 * helper for __extent_writepage. This calls the writepage start hooks,
3285 * and does the loop to map the page into extents and bios.
3286 *
3287 * We return 1 if the IO is started and the page is unlocked,
3288 * 0 if all went well (page still locked)
3289 * < 0 if there were errors (page still locked)
3290 */
3291static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3292 struct page *page,
3293 struct writeback_control *wbc,
3294 struct extent_page_data *epd,
3295 loff_t i_size,
3296 unsigned long nr_written,
f1c77c55 3297 unsigned int write_flags, int *nr_ret)
d1310b2e 3298{
d1310b2e 3299 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3300 u64 start = page_offset(page);
09cbfeaf 3301 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3302 u64 end;
3303 u64 cur = start;
3304 u64 extent_offset;
d1310b2e
CM
3305 u64 block_start;
3306 u64 iosize;
d1310b2e
CM
3307 struct extent_map *em;
3308 struct block_device *bdev;
7f3c74fb 3309 size_t pg_offset = 0;
d1310b2e 3310 size_t blocksize;
40f76580
CM
3311 int ret = 0;
3312 int nr = 0;
3313 bool compressed;
c8b97818 3314
247e743c 3315 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3316 ret = tree->ops->writepage_start_hook(page, start,
3317 page_end);
87826df0
JM
3318 if (ret) {
3319 /* Fixup worker will requeue */
3320 if (ret == -EBUSY)
3321 wbc->pages_skipped++;
3322 else
3323 redirty_page_for_writepage(wbc, page);
40f76580 3324
3d4b9496 3325 update_nr_written(wbc, nr_written);
247e743c 3326 unlock_page(page);
bcf93489 3327 return 1;
247e743c
CM
3328 }
3329 }
3330
11c8349b
CM
3331 /*
3332 * we don't want to touch the inode after unlocking the page,
3333 * so we update the mapping writeback index now
3334 */
3d4b9496 3335 update_nr_written(wbc, nr_written + 1);
771ed689 3336
d1310b2e 3337 end = page_end;
40f76580 3338 if (i_size <= start) {
e6dcd2dc
CM
3339 if (tree->ops && tree->ops->writepage_end_io_hook)
3340 tree->ops->writepage_end_io_hook(page, start,
3341 page_end, NULL, 1);
d1310b2e
CM
3342 goto done;
3343 }
3344
d1310b2e
CM
3345 blocksize = inode->i_sb->s_blocksize;
3346
3347 while (cur <= end) {
40f76580 3348 u64 em_end;
6273b7f8 3349 u64 offset;
58409edd 3350
40f76580 3351 if (cur >= i_size) {
e6dcd2dc
CM
3352 if (tree->ops && tree->ops->writepage_end_io_hook)
3353 tree->ops->writepage_end_io_hook(page, cur,
3354 page_end, NULL, 1);
d1310b2e
CM
3355 break;
3356 }
3c98c62f 3357 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3358 end - cur + 1, 1);
c704005d 3359 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3360 SetPageError(page);
61391d56 3361 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3362 break;
3363 }
3364
3365 extent_offset = cur - em->start;
40f76580
CM
3366 em_end = extent_map_end(em);
3367 BUG_ON(em_end <= cur);
d1310b2e 3368 BUG_ON(end < cur);
40f76580 3369 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3370 iosize = ALIGN(iosize, blocksize);
6273b7f8 3371 offset = em->block_start + extent_offset;
d1310b2e
CM
3372 bdev = em->bdev;
3373 block_start = em->block_start;
c8b97818 3374 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3375 free_extent_map(em);
3376 em = NULL;
3377
c8b97818
CM
3378 /*
3379 * compressed and inline extents are written through other
3380 * paths in the FS
3381 */
3382 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3383 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3384 /*
3385 * end_io notification does not happen here for
3386 * compressed extents
3387 */
3388 if (!compressed && tree->ops &&
3389 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3390 tree->ops->writepage_end_io_hook(page, cur,
3391 cur + iosize - 1,
3392 NULL, 1);
c8b97818
CM
3393 else if (compressed) {
3394 /* we don't want to end_page_writeback on
3395 * a compressed extent. this happens
3396 * elsewhere
3397 */
3398 nr++;
3399 }
3400
3401 cur += iosize;
7f3c74fb 3402 pg_offset += iosize;
d1310b2e
CM
3403 continue;
3404 }
c8b97818 3405
5cdc84bf 3406 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3407 if (!PageWriteback(page)) {
3408 btrfs_err(BTRFS_I(inode)->root->fs_info,
3409 "page %lu not writeback, cur %llu end %llu",
3410 page->index, cur, end);
d1310b2e 3411 }
7f3c74fb 3412
4b81ba48 3413 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3414 page, offset, iosize, pg_offset,
c2df8bb4 3415 bdev, &epd->bio,
58409edd
DS
3416 end_bio_extent_writepage,
3417 0, 0, 0, false);
fe01aa65 3418 if (ret) {
58409edd 3419 SetPageError(page);
fe01aa65
TK
3420 if (PageWriteback(page))
3421 end_page_writeback(page);
3422 }
d1310b2e 3423
d1310b2e 3424 cur = cur + iosize;
7f3c74fb 3425 pg_offset += iosize;
d1310b2e
CM
3426 nr++;
3427 }
40f76580
CM
3428done:
3429 *nr_ret = nr;
40f76580
CM
3430 return ret;
3431}
3432
3433/*
3434 * the writepage semantics are similar to regular writepage. extent
3435 * records are inserted to lock ranges in the tree, and as dirty areas
3436 * are found, they are marked writeback. Then the lock bits are removed
3437 * and the end_io handler clears the writeback ranges
3438 */
3439static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3440 struct extent_page_data *epd)
40f76580
CM
3441{
3442 struct inode *inode = page->mapping->host;
40f76580 3443 u64 start = page_offset(page);
09cbfeaf 3444 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3445 int ret;
3446 int nr = 0;
3447 size_t pg_offset = 0;
3448 loff_t i_size = i_size_read(inode);
09cbfeaf 3449 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3450 unsigned int write_flags = 0;
40f76580
CM
3451 unsigned long nr_written = 0;
3452
ff40adf7 3453 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3454
3455 trace___extent_writepage(page, inode, wbc);
3456
3457 WARN_ON(!PageLocked(page));
3458
3459 ClearPageError(page);
3460
09cbfeaf 3461 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3462 if (page->index > end_index ||
3463 (page->index == end_index && !pg_offset)) {
09cbfeaf 3464 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3465 unlock_page(page);
3466 return 0;
3467 }
3468
3469 if (page->index == end_index) {
3470 char *userpage;
3471
3472 userpage = kmap_atomic(page);
3473 memset(userpage + pg_offset, 0,
09cbfeaf 3474 PAGE_SIZE - pg_offset);
40f76580
CM
3475 kunmap_atomic(userpage);
3476 flush_dcache_page(page);
3477 }
3478
3479 pg_offset = 0;
3480
3481 set_page_extent_mapped(page);
3482
3483 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3484 if (ret == 1)
3485 goto done_unlocked;
3486 if (ret)
3487 goto done;
3488
3489 ret = __extent_writepage_io(inode, page, wbc, epd,
3490 i_size, nr_written, write_flags, &nr);
3491 if (ret == 1)
3492 goto done_unlocked;
3493
d1310b2e
CM
3494done:
3495 if (nr == 0) {
3496 /* make sure the mapping tag for page dirty gets cleared */
3497 set_page_writeback(page);
3498 end_page_writeback(page);
3499 }
61391d56
FM
3500 if (PageError(page)) {
3501 ret = ret < 0 ? ret : -EIO;
3502 end_extent_writepage(page, ret, start, page_end);
3503 }
d1310b2e 3504 unlock_page(page);
40f76580 3505 return ret;
771ed689 3506
11c8349b 3507done_unlocked:
d1310b2e
CM
3508 return 0;
3509}
3510
fd8b2b61 3511void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3512{
74316201
N
3513 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3514 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3515}
3516
0e378df1
CM
3517static noinline_for_stack int
3518lock_extent_buffer_for_io(struct extent_buffer *eb,
3519 struct btrfs_fs_info *fs_info,
3520 struct extent_page_data *epd)
0b32f4bb 3521{
cc5e31a4 3522 int i, num_pages;
0b32f4bb
JB
3523 int flush = 0;
3524 int ret = 0;
3525
3526 if (!btrfs_try_tree_write_lock(eb)) {
3527 flush = 1;
3528 flush_write_bio(epd);
3529 btrfs_tree_lock(eb);
3530 }
3531
3532 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3533 btrfs_tree_unlock(eb);
3534 if (!epd->sync_io)
3535 return 0;
3536 if (!flush) {
3537 flush_write_bio(epd);
3538 flush = 1;
3539 }
a098d8e8
CM
3540 while (1) {
3541 wait_on_extent_buffer_writeback(eb);
3542 btrfs_tree_lock(eb);
3543 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3544 break;
0b32f4bb 3545 btrfs_tree_unlock(eb);
0b32f4bb
JB
3546 }
3547 }
3548
51561ffe
JB
3549 /*
3550 * We need to do this to prevent races in people who check if the eb is
3551 * under IO since we can end up having no IO bits set for a short period
3552 * of time.
3553 */
3554 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3555 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3556 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3557 spin_unlock(&eb->refs_lock);
0b32f4bb 3558 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3559 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3560 -eb->len,
3561 fs_info->dirty_metadata_batch);
0b32f4bb 3562 ret = 1;
51561ffe
JB
3563 } else {
3564 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3565 }
3566
3567 btrfs_tree_unlock(eb);
3568
3569 if (!ret)
3570 return ret;
3571
65ad0104 3572 num_pages = num_extent_pages(eb);
0b32f4bb 3573 for (i = 0; i < num_pages; i++) {
fb85fc9a 3574 struct page *p = eb->pages[i];
0b32f4bb
JB
3575
3576 if (!trylock_page(p)) {
3577 if (!flush) {
3578 flush_write_bio(epd);
3579 flush = 1;
3580 }
3581 lock_page(p);
3582 }
3583 }
3584
3585 return ret;
3586}
3587
3588static void end_extent_buffer_writeback(struct extent_buffer *eb)
3589{
3590 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3591 smp_mb__after_atomic();
0b32f4bb
JB
3592 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3593}
3594
656f30db
FM
3595static void set_btree_ioerr(struct page *page)
3596{
3597 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3598
3599 SetPageError(page);
3600 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3601 return;
3602
3603 /*
3604 * If writeback for a btree extent that doesn't belong to a log tree
3605 * failed, increment the counter transaction->eb_write_errors.
3606 * We do this because while the transaction is running and before it's
3607 * committing (when we call filemap_fdata[write|wait]_range against
3608 * the btree inode), we might have
3609 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3610 * returns an error or an error happens during writeback, when we're
3611 * committing the transaction we wouldn't know about it, since the pages
3612 * can be no longer dirty nor marked anymore for writeback (if a
3613 * subsequent modification to the extent buffer didn't happen before the
3614 * transaction commit), which makes filemap_fdata[write|wait]_range not
3615 * able to find the pages tagged with SetPageError at transaction
3616 * commit time. So if this happens we must abort the transaction,
3617 * otherwise we commit a super block with btree roots that point to
3618 * btree nodes/leafs whose content on disk is invalid - either garbage
3619 * or the content of some node/leaf from a past generation that got
3620 * cowed or deleted and is no longer valid.
3621 *
3622 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3623 * not be enough - we need to distinguish between log tree extents vs
3624 * non-log tree extents, and the next filemap_fdatawait_range() call
3625 * will catch and clear such errors in the mapping - and that call might
3626 * be from a log sync and not from a transaction commit. Also, checking
3627 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3628 * not done and would not be reliable - the eb might have been released
3629 * from memory and reading it back again means that flag would not be
3630 * set (since it's a runtime flag, not persisted on disk).
3631 *
3632 * Using the flags below in the btree inode also makes us achieve the
3633 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3634 * writeback for all dirty pages and before filemap_fdatawait_range()
3635 * is called, the writeback for all dirty pages had already finished
3636 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3637 * filemap_fdatawait_range() would return success, as it could not know
3638 * that writeback errors happened (the pages were no longer tagged for
3639 * writeback).
3640 */
3641 switch (eb->log_index) {
3642 case -1:
afcdd129 3643 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3644 break;
3645 case 0:
afcdd129 3646 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3647 break;
3648 case 1:
afcdd129 3649 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3650 break;
3651 default:
3652 BUG(); /* unexpected, logic error */
3653 }
3654}
3655
4246a0b6 3656static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3657{
2c30c71b 3658 struct bio_vec *bvec;
0b32f4bb 3659 struct extent_buffer *eb;
2c30c71b 3660 int i, done;
0b32f4bb 3661
c09abff8 3662 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3663 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3664 struct page *page = bvec->bv_page;
3665
0b32f4bb
JB
3666 eb = (struct extent_buffer *)page->private;
3667 BUG_ON(!eb);
3668 done = atomic_dec_and_test(&eb->io_pages);
3669
4e4cbee9 3670 if (bio->bi_status ||
4246a0b6 3671 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3672 ClearPageUptodate(page);
656f30db 3673 set_btree_ioerr(page);
0b32f4bb
JB
3674 }
3675
3676 end_page_writeback(page);
3677
3678 if (!done)
3679 continue;
3680
3681 end_extent_buffer_writeback(eb);
2c30c71b 3682 }
0b32f4bb
JB
3683
3684 bio_put(bio);
0b32f4bb
JB
3685}
3686
0e378df1 3687static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3688 struct btrfs_fs_info *fs_info,
3689 struct writeback_control *wbc,
3690 struct extent_page_data *epd)
3691{
3692 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3693 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3694 u64 offset = eb->start;
851cd173 3695 u32 nritems;
cc5e31a4 3696 int i, num_pages;
851cd173 3697 unsigned long start, end;
ff40adf7 3698 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3699 int ret = 0;
0b32f4bb 3700
656f30db 3701 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3702 num_pages = num_extent_pages(eb);
0b32f4bb 3703 atomic_set(&eb->io_pages, num_pages);
de0022b9 3704
851cd173
LB
3705 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3706 nritems = btrfs_header_nritems(eb);
3eb548ee 3707 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3708 end = btrfs_node_key_ptr_offset(nritems);
3709
b159fa28 3710 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3711 } else {
3712 /*
3713 * leaf:
3714 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3715 */
3716 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3717 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3718 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3719 }
3720
0b32f4bb 3721 for (i = 0; i < num_pages; i++) {
fb85fc9a 3722 struct page *p = eb->pages[i];
0b32f4bb
JB
3723
3724 clear_page_dirty_for_io(p);
3725 set_page_writeback(p);
4b81ba48 3726 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3727 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3728 &epd->bio,
1f7ad75b 3729 end_bio_extent_buffer_writepage,
18fdc679 3730 0, 0, 0, false);
0b32f4bb 3731 if (ret) {
656f30db 3732 set_btree_ioerr(p);
fe01aa65
TK
3733 if (PageWriteback(p))
3734 end_page_writeback(p);
0b32f4bb
JB
3735 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3736 end_extent_buffer_writeback(eb);
3737 ret = -EIO;
3738 break;
3739 }
09cbfeaf 3740 offset += PAGE_SIZE;
3d4b9496 3741 update_nr_written(wbc, 1);
0b32f4bb
JB
3742 unlock_page(p);
3743 }
3744
3745 if (unlikely(ret)) {
3746 for (; i < num_pages; i++) {
bbf65cf0 3747 struct page *p = eb->pages[i];
81465028 3748 clear_page_dirty_for_io(p);
0b32f4bb
JB
3749 unlock_page(p);
3750 }
3751 }
3752
3753 return ret;
3754}
3755
3756int btree_write_cache_pages(struct address_space *mapping,
3757 struct writeback_control *wbc)
3758{
3759 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3760 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3761 struct extent_buffer *eb, *prev_eb = NULL;
3762 struct extent_page_data epd = {
3763 .bio = NULL,
3764 .tree = tree,
3765 .extent_locked = 0,
3766 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3767 };
3768 int ret = 0;
3769 int done = 0;
3770 int nr_to_write_done = 0;
3771 struct pagevec pvec;
3772 int nr_pages;
3773 pgoff_t index;
3774 pgoff_t end; /* Inclusive */
3775 int scanned = 0;
3776 int tag;
3777
86679820 3778 pagevec_init(&pvec);
0b32f4bb
JB
3779 if (wbc->range_cyclic) {
3780 index = mapping->writeback_index; /* Start from prev offset */
3781 end = -1;
3782 } else {
09cbfeaf
KS
3783 index = wbc->range_start >> PAGE_SHIFT;
3784 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3785 scanned = 1;
3786 }
3787 if (wbc->sync_mode == WB_SYNC_ALL)
3788 tag = PAGECACHE_TAG_TOWRITE;
3789 else
3790 tag = PAGECACHE_TAG_DIRTY;
3791retry:
3792 if (wbc->sync_mode == WB_SYNC_ALL)
3793 tag_pages_for_writeback(mapping, index, end);
3794 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3795 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3796 tag))) {
0b32f4bb
JB
3797 unsigned i;
3798
3799 scanned = 1;
3800 for (i = 0; i < nr_pages; i++) {
3801 struct page *page = pvec.pages[i];
3802
3803 if (!PagePrivate(page))
3804 continue;
3805
b5bae261
JB
3806 spin_lock(&mapping->private_lock);
3807 if (!PagePrivate(page)) {
3808 spin_unlock(&mapping->private_lock);
3809 continue;
3810 }
3811
0b32f4bb 3812 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3813
3814 /*
3815 * Shouldn't happen and normally this would be a BUG_ON
3816 * but no sense in crashing the users box for something
3817 * we can survive anyway.
3818 */
fae7f21c 3819 if (WARN_ON(!eb)) {
b5bae261 3820 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3821 continue;
3822 }
3823
b5bae261
JB
3824 if (eb == prev_eb) {
3825 spin_unlock(&mapping->private_lock);
0b32f4bb 3826 continue;
b5bae261 3827 }
0b32f4bb 3828
b5bae261
JB
3829 ret = atomic_inc_not_zero(&eb->refs);
3830 spin_unlock(&mapping->private_lock);
3831 if (!ret)
0b32f4bb 3832 continue;
0b32f4bb
JB
3833
3834 prev_eb = eb;
3835 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3836 if (!ret) {
3837 free_extent_buffer(eb);
3838 continue;
3839 }
3840
3841 ret = write_one_eb(eb, fs_info, wbc, &epd);
3842 if (ret) {
3843 done = 1;
3844 free_extent_buffer(eb);
3845 break;
3846 }
3847 free_extent_buffer(eb);
3848
3849 /*
3850 * the filesystem may choose to bump up nr_to_write.
3851 * We have to make sure to honor the new nr_to_write
3852 * at any time
3853 */
3854 nr_to_write_done = wbc->nr_to_write <= 0;
3855 }
3856 pagevec_release(&pvec);
3857 cond_resched();
3858 }
3859 if (!scanned && !done) {
3860 /*
3861 * We hit the last page and there is more work to be done: wrap
3862 * back to the start of the file
3863 */
3864 scanned = 1;
3865 index = 0;
3866 goto retry;
3867 }
3868 flush_write_bio(&epd);
3869 return ret;
3870}
3871
d1310b2e 3872/**
4bef0848 3873 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3874 * @mapping: address space structure to write
3875 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3876 * @data: data passed to __extent_writepage function
d1310b2e
CM
3877 *
3878 * If a page is already under I/O, write_cache_pages() skips it, even
3879 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3880 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3881 * and msync() need to guarantee that all the data which was dirty at the time
3882 * the call was made get new I/O started against them. If wbc->sync_mode is
3883 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3884 * existing IO to complete.
3885 */
4242b64a 3886static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3887 struct writeback_control *wbc,
aab6e9ed 3888 struct extent_page_data *epd)
d1310b2e 3889{
7fd1a3f7 3890 struct inode *inode = mapping->host;
d1310b2e
CM
3891 int ret = 0;
3892 int done = 0;
f85d7d6c 3893 int nr_to_write_done = 0;
d1310b2e
CM
3894 struct pagevec pvec;
3895 int nr_pages;
3896 pgoff_t index;
3897 pgoff_t end; /* Inclusive */
a9132667
LB
3898 pgoff_t done_index;
3899 int range_whole = 0;
d1310b2e 3900 int scanned = 0;
f7aaa06b 3901 int tag;
d1310b2e 3902
7fd1a3f7
JB
3903 /*
3904 * We have to hold onto the inode so that ordered extents can do their
3905 * work when the IO finishes. The alternative to this is failing to add
3906 * an ordered extent if the igrab() fails there and that is a huge pain
3907 * to deal with, so instead just hold onto the inode throughout the
3908 * writepages operation. If it fails here we are freeing up the inode
3909 * anyway and we'd rather not waste our time writing out stuff that is
3910 * going to be truncated anyway.
3911 */
3912 if (!igrab(inode))
3913 return 0;
3914
86679820 3915 pagevec_init(&pvec);
d1310b2e
CM
3916 if (wbc->range_cyclic) {
3917 index = mapping->writeback_index; /* Start from prev offset */
3918 end = -1;
3919 } else {
09cbfeaf
KS
3920 index = wbc->range_start >> PAGE_SHIFT;
3921 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3922 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3923 range_whole = 1;
d1310b2e
CM
3924 scanned = 1;
3925 }
f7aaa06b
JB
3926 if (wbc->sync_mode == WB_SYNC_ALL)
3927 tag = PAGECACHE_TAG_TOWRITE;
3928 else
3929 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3930retry:
f7aaa06b
JB
3931 if (wbc->sync_mode == WB_SYNC_ALL)
3932 tag_pages_for_writeback(mapping, index, end);
a9132667 3933 done_index = index;
f85d7d6c 3934 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3935 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3936 &index, end, tag))) {
d1310b2e
CM
3937 unsigned i;
3938
3939 scanned = 1;
3940 for (i = 0; i < nr_pages; i++) {
3941 struct page *page = pvec.pages[i];
3942
a9132667 3943 done_index = page->index;
d1310b2e 3944 /*
b93b0163
MW
3945 * At this point we hold neither the i_pages lock nor
3946 * the page lock: the page may be truncated or
3947 * invalidated (changing page->mapping to NULL),
3948 * or even swizzled back from swapper_space to
3949 * tmpfs file mapping
d1310b2e 3950 */
c8f2f24b 3951 if (!trylock_page(page)) {
aab6e9ed 3952 flush_write_bio(epd);
c8f2f24b 3953 lock_page(page);
01d658f2 3954 }
d1310b2e
CM
3955
3956 if (unlikely(page->mapping != mapping)) {
3957 unlock_page(page);
3958 continue;
3959 }
3960
d2c3f4f6 3961 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3962 if (PageWriteback(page))
aab6e9ed 3963 flush_write_bio(epd);
d1310b2e 3964 wait_on_page_writeback(page);
d2c3f4f6 3965 }
d1310b2e
CM
3966
3967 if (PageWriteback(page) ||
3968 !clear_page_dirty_for_io(page)) {
3969 unlock_page(page);
3970 continue;
3971 }
3972
aab6e9ed 3973 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3974
3975 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3976 unlock_page(page);
3977 ret = 0;
3978 }
a9132667
LB
3979 if (ret < 0) {
3980 /*
3981 * done_index is set past this page,
3982 * so media errors will not choke
3983 * background writeout for the entire
3984 * file. This has consequences for
3985 * range_cyclic semantics (ie. it may
3986 * not be suitable for data integrity
3987 * writeout).
3988 */
3989 done_index = page->index + 1;
3990 done = 1;
3991 break;
3992 }
f85d7d6c
CM
3993
3994 /*
3995 * the filesystem may choose to bump up nr_to_write.
3996 * We have to make sure to honor the new nr_to_write
3997 * at any time
3998 */
3999 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4000 }
4001 pagevec_release(&pvec);
4002 cond_resched();
4003 }
894b36e3 4004 if (!scanned && !done) {
d1310b2e
CM
4005 /*
4006 * We hit the last page and there is more work to be done: wrap
4007 * back to the start of the file
4008 */
4009 scanned = 1;
4010 index = 0;
4011 goto retry;
4012 }
a9132667
LB
4013
4014 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4015 mapping->writeback_index = done_index;
4016
7fd1a3f7 4017 btrfs_add_delayed_iput(inode);
894b36e3 4018 return ret;
d1310b2e 4019}
d1310b2e 4020
aab6e9ed 4021static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4022{
d2c3f4f6 4023 if (epd->bio) {
355808c2
JM
4024 int ret;
4025
18fdc679 4026 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4027 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4028 epd->bio = NULL;
4029 }
4030}
4031
0a9b0e53 4032int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4033{
4034 int ret;
d1310b2e
CM
4035 struct extent_page_data epd = {
4036 .bio = NULL,
0a9b0e53 4037 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4038 .extent_locked = 0,
ffbd517d 4039 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4040 };
d1310b2e 4041
d1310b2e
CM
4042 ret = __extent_writepage(page, wbc, &epd);
4043
e2932ee0 4044 flush_write_bio(&epd);
d1310b2e
CM
4045 return ret;
4046}
d1310b2e 4047
5e3ee236 4048int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4049 int mode)
4050{
4051 int ret = 0;
4052 struct address_space *mapping = inode->i_mapping;
5e3ee236 4053 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4054 struct page *page;
09cbfeaf
KS
4055 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4056 PAGE_SHIFT;
771ed689
CM
4057
4058 struct extent_page_data epd = {
4059 .bio = NULL,
4060 .tree = tree,
771ed689 4061 .extent_locked = 1,
ffbd517d 4062 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4063 };
4064 struct writeback_control wbc_writepages = {
771ed689 4065 .sync_mode = mode,
771ed689
CM
4066 .nr_to_write = nr_pages * 2,
4067 .range_start = start,
4068 .range_end = end + 1,
4069 };
4070
d397712b 4071 while (start <= end) {
09cbfeaf 4072 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4073 if (clear_page_dirty_for_io(page))
4074 ret = __extent_writepage(page, &wbc_writepages, &epd);
4075 else {
4076 if (tree->ops && tree->ops->writepage_end_io_hook)
4077 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4078 start + PAGE_SIZE - 1,
771ed689
CM
4079 NULL, 1);
4080 unlock_page(page);
4081 }
09cbfeaf
KS
4082 put_page(page);
4083 start += PAGE_SIZE;
771ed689
CM
4084 }
4085
e2932ee0 4086 flush_write_bio(&epd);
771ed689
CM
4087 return ret;
4088}
d1310b2e 4089
8ae225a8 4090int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4091 struct writeback_control *wbc)
4092{
4093 int ret = 0;
4094 struct extent_page_data epd = {
4095 .bio = NULL,
8ae225a8 4096 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4097 .extent_locked = 0,
ffbd517d 4098 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4099 };
4100
935db853 4101 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4102 flush_write_bio(&epd);
d1310b2e
CM
4103 return ret;
4104}
d1310b2e 4105
2a3ff0ad
NB
4106int extent_readpages(struct address_space *mapping, struct list_head *pages,
4107 unsigned nr_pages)
d1310b2e
CM
4108{
4109 struct bio *bio = NULL;
4110 unsigned page_idx;
c8b97818 4111 unsigned long bio_flags = 0;
67c9684f
LB
4112 struct page *pagepool[16];
4113 struct page *page;
125bac01 4114 struct extent_map *em_cached = NULL;
2a3ff0ad 4115 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4116 int nr = 0;
808f80b4 4117 u64 prev_em_start = (u64)-1;
d1310b2e 4118
d1310b2e 4119 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4120 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4121
4122 prefetchw(&page->flags);
4123 list_del(&page->lru);
67c9684f 4124 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4125 page->index,
4126 readahead_gfp_mask(mapping))) {
09cbfeaf 4127 put_page(page);
67c9684f 4128 continue;
d1310b2e 4129 }
67c9684f
LB
4130
4131 pagepool[nr++] = page;
4132 if (nr < ARRAY_SIZE(pagepool))
4133 continue;
e4d17ef5
DS
4134 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4135 &bio_flags, &prev_em_start);
67c9684f 4136 nr = 0;
d1310b2e 4137 }
9974090b 4138 if (nr)
e4d17ef5
DS
4139 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4140 &bio_flags, &prev_em_start);
67c9684f 4141
125bac01
MX
4142 if (em_cached)
4143 free_extent_map(em_cached);
4144
d1310b2e
CM
4145 BUG_ON(!list_empty(pages));
4146 if (bio)
1f7ad75b 4147 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4148 return 0;
4149}
d1310b2e
CM
4150
4151/*
4152 * basic invalidatepage code, this waits on any locked or writeback
4153 * ranges corresponding to the page, and then deletes any extent state
4154 * records from the tree
4155 */
4156int extent_invalidatepage(struct extent_io_tree *tree,
4157 struct page *page, unsigned long offset)
4158{
2ac55d41 4159 struct extent_state *cached_state = NULL;
4eee4fa4 4160 u64 start = page_offset(page);
09cbfeaf 4161 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4162 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4163
fda2832f 4164 start += ALIGN(offset, blocksize);
d1310b2e
CM
4165 if (start > end)
4166 return 0;
4167
ff13db41 4168 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4169 wait_on_page_writeback(page);
d1310b2e 4170 clear_extent_bit(tree, start, end,
32c00aff
JB
4171 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4172 EXTENT_DO_ACCOUNTING,
ae0f1625 4173 1, 1, &cached_state);
d1310b2e
CM
4174 return 0;
4175}
d1310b2e 4176
7b13b7b1
CM
4177/*
4178 * a helper for releasepage, this tests for areas of the page that
4179 * are locked or under IO and drops the related state bits if it is safe
4180 * to drop the page.
4181 */
29c68b2d 4182static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4183 struct page *page, gfp_t mask)
7b13b7b1 4184{
4eee4fa4 4185 u64 start = page_offset(page);
09cbfeaf 4186 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4187 int ret = 1;
4188
211f90e6 4189 if (test_range_bit(tree, start, end,
8b62b72b 4190 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4191 ret = 0;
4192 else {
11ef160f
CM
4193 /*
4194 * at this point we can safely clear everything except the
4195 * locked bit and the nodatasum bit
4196 */
66b0c887 4197 ret = __clear_extent_bit(tree, start, end,
11ef160f 4198 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4199 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4200
4201 /* if clear_extent_bit failed for enomem reasons,
4202 * we can't allow the release to continue.
4203 */
4204 if (ret < 0)
4205 ret = 0;
4206 else
4207 ret = 1;
7b13b7b1
CM
4208 }
4209 return ret;
4210}
7b13b7b1 4211
d1310b2e
CM
4212/*
4213 * a helper for releasepage. As long as there are no locked extents
4214 * in the range corresponding to the page, both state records and extent
4215 * map records are removed
4216 */
477a30ba 4217int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4218{
4219 struct extent_map *em;
4eee4fa4 4220 u64 start = page_offset(page);
09cbfeaf 4221 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4222 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4223 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4224 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4225
d0164adc 4226 if (gfpflags_allow_blocking(mask) &&
ee22184b 4227 page->mapping->host->i_size > SZ_16M) {
39b5637f 4228 u64 len;
70dec807 4229 while (start <= end) {
39b5637f 4230 len = end - start + 1;
890871be 4231 write_lock(&map->lock);
39b5637f 4232 em = lookup_extent_mapping(map, start, len);
285190d9 4233 if (!em) {
890871be 4234 write_unlock(&map->lock);
70dec807
CM
4235 break;
4236 }
7f3c74fb
CM
4237 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4238 em->start != start) {
890871be 4239 write_unlock(&map->lock);
70dec807
CM
4240 free_extent_map(em);
4241 break;
4242 }
4243 if (!test_range_bit(tree, em->start,
4244 extent_map_end(em) - 1,
8b62b72b 4245 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4246 0, NULL)) {
bd3599a0
FM
4247 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4248 &btrfs_inode->runtime_flags);
70dec807
CM
4249 remove_extent_mapping(map, em);
4250 /* once for the rb tree */
4251 free_extent_map(em);
4252 }
4253 start = extent_map_end(em);
890871be 4254 write_unlock(&map->lock);
70dec807
CM
4255
4256 /* once for us */
d1310b2e
CM
4257 free_extent_map(em);
4258 }
d1310b2e 4259 }
29c68b2d 4260 return try_release_extent_state(tree, page, mask);
d1310b2e 4261}
d1310b2e 4262
ec29ed5b
CM
4263/*
4264 * helper function for fiemap, which doesn't want to see any holes.
4265 * This maps until we find something past 'last'
4266 */
4267static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4268 u64 offset, u64 last)
ec29ed5b 4269{
da17066c 4270 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4271 struct extent_map *em;
4272 u64 len;
4273
4274 if (offset >= last)
4275 return NULL;
4276
67871254 4277 while (1) {
ec29ed5b
CM
4278 len = last - offset;
4279 if (len == 0)
4280 break;
fda2832f 4281 len = ALIGN(len, sectorsize);
e3350e16
DS
4282 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4283 len, 0);
c704005d 4284 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4285 return em;
4286
4287 /* if this isn't a hole return it */
4a2d25cd 4288 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4289 return em;
ec29ed5b
CM
4290
4291 /* this is a hole, advance to the next extent */
4292 offset = extent_map_end(em);
4293 free_extent_map(em);
4294 if (offset >= last)
4295 break;
4296 }
4297 return NULL;
4298}
4299
4751832d
QW
4300/*
4301 * To cache previous fiemap extent
4302 *
4303 * Will be used for merging fiemap extent
4304 */
4305struct fiemap_cache {
4306 u64 offset;
4307 u64 phys;
4308 u64 len;
4309 u32 flags;
4310 bool cached;
4311};
4312
4313/*
4314 * Helper to submit fiemap extent.
4315 *
4316 * Will try to merge current fiemap extent specified by @offset, @phys,
4317 * @len and @flags with cached one.
4318 * And only when we fails to merge, cached one will be submitted as
4319 * fiemap extent.
4320 *
4321 * Return value is the same as fiemap_fill_next_extent().
4322 */
4323static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4324 struct fiemap_cache *cache,
4325 u64 offset, u64 phys, u64 len, u32 flags)
4326{
4327 int ret = 0;
4328
4329 if (!cache->cached)
4330 goto assign;
4331
4332 /*
4333 * Sanity check, extent_fiemap() should have ensured that new
4334 * fiemap extent won't overlap with cahced one.
4335 * Not recoverable.
4336 *
4337 * NOTE: Physical address can overlap, due to compression
4338 */
4339 if (cache->offset + cache->len > offset) {
4340 WARN_ON(1);
4341 return -EINVAL;
4342 }
4343
4344 /*
4345 * Only merges fiemap extents if
4346 * 1) Their logical addresses are continuous
4347 *
4348 * 2) Their physical addresses are continuous
4349 * So truly compressed (physical size smaller than logical size)
4350 * extents won't get merged with each other
4351 *
4352 * 3) Share same flags except FIEMAP_EXTENT_LAST
4353 * So regular extent won't get merged with prealloc extent
4354 */
4355 if (cache->offset + cache->len == offset &&
4356 cache->phys + cache->len == phys &&
4357 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4358 (flags & ~FIEMAP_EXTENT_LAST)) {
4359 cache->len += len;
4360 cache->flags |= flags;
4361 goto try_submit_last;
4362 }
4363
4364 /* Not mergeable, need to submit cached one */
4365 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4366 cache->len, cache->flags);
4367 cache->cached = false;
4368 if (ret)
4369 return ret;
4370assign:
4371 cache->cached = true;
4372 cache->offset = offset;
4373 cache->phys = phys;
4374 cache->len = len;
4375 cache->flags = flags;
4376try_submit_last:
4377 if (cache->flags & FIEMAP_EXTENT_LAST) {
4378 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4379 cache->phys, cache->len, cache->flags);
4380 cache->cached = false;
4381 }
4382 return ret;
4383}
4384
4385/*
848c23b7 4386 * Emit last fiemap cache
4751832d 4387 *
848c23b7
QW
4388 * The last fiemap cache may still be cached in the following case:
4389 * 0 4k 8k
4390 * |<- Fiemap range ->|
4391 * |<------------ First extent ----------->|
4392 *
4393 * In this case, the first extent range will be cached but not emitted.
4394 * So we must emit it before ending extent_fiemap().
4751832d 4395 */
848c23b7
QW
4396static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4397 struct fiemap_extent_info *fieinfo,
4398 struct fiemap_cache *cache)
4751832d
QW
4399{
4400 int ret;
4401
4402 if (!cache->cached)
4403 return 0;
4404
4751832d
QW
4405 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4406 cache->len, cache->flags);
4407 cache->cached = false;
4408 if (ret > 0)
4409 ret = 0;
4410 return ret;
4411}
4412
1506fcc8 4413int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4414 __u64 start, __u64 len)
1506fcc8 4415{
975f84fe 4416 int ret = 0;
1506fcc8
YS
4417 u64 off = start;
4418 u64 max = start + len;
4419 u32 flags = 0;
975f84fe
JB
4420 u32 found_type;
4421 u64 last;
ec29ed5b 4422 u64 last_for_get_extent = 0;
1506fcc8 4423 u64 disko = 0;
ec29ed5b 4424 u64 isize = i_size_read(inode);
975f84fe 4425 struct btrfs_key found_key;
1506fcc8 4426 struct extent_map *em = NULL;
2ac55d41 4427 struct extent_state *cached_state = NULL;
975f84fe 4428 struct btrfs_path *path;
dc046b10 4429 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4430 struct fiemap_cache cache = { 0 };
1506fcc8 4431 int end = 0;
ec29ed5b
CM
4432 u64 em_start = 0;
4433 u64 em_len = 0;
4434 u64 em_end = 0;
1506fcc8
YS
4435
4436 if (len == 0)
4437 return -EINVAL;
4438
975f84fe
JB
4439 path = btrfs_alloc_path();
4440 if (!path)
4441 return -ENOMEM;
4442 path->leave_spinning = 1;
4443
da17066c
JM
4444 start = round_down(start, btrfs_inode_sectorsize(inode));
4445 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4446
ec29ed5b
CM
4447 /*
4448 * lookup the last file extent. We're not using i_size here
4449 * because there might be preallocation past i_size
4450 */
f85b7379
DS
4451 ret = btrfs_lookup_file_extent(NULL, root, path,
4452 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4453 if (ret < 0) {
4454 btrfs_free_path(path);
4455 return ret;
2d324f59
LB
4456 } else {
4457 WARN_ON(!ret);
4458 if (ret == 1)
4459 ret = 0;
975f84fe 4460 }
2d324f59 4461
975f84fe 4462 path->slots[0]--;
975f84fe 4463 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4464 found_type = found_key.type;
975f84fe 4465
ec29ed5b 4466 /* No extents, but there might be delalloc bits */
4a0cc7ca 4467 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4468 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4469 /* have to trust i_size as the end */
4470 last = (u64)-1;
4471 last_for_get_extent = isize;
4472 } else {
4473 /*
4474 * remember the start of the last extent. There are a
4475 * bunch of different factors that go into the length of the
4476 * extent, so its much less complex to remember where it started
4477 */
4478 last = found_key.offset;
4479 last_for_get_extent = last + 1;
975f84fe 4480 }
fe09e16c 4481 btrfs_release_path(path);
975f84fe 4482
ec29ed5b
CM
4483 /*
4484 * we might have some extents allocated but more delalloc past those
4485 * extents. so, we trust isize unless the start of the last extent is
4486 * beyond isize
4487 */
4488 if (last < isize) {
4489 last = (u64)-1;
4490 last_for_get_extent = isize;
4491 }
4492
ff13db41 4493 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4494 &cached_state);
ec29ed5b 4495
e3350e16 4496 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4497 if (!em)
4498 goto out;
4499 if (IS_ERR(em)) {
4500 ret = PTR_ERR(em);
4501 goto out;
4502 }
975f84fe 4503
1506fcc8 4504 while (!end) {
b76bb701 4505 u64 offset_in_extent = 0;
ea8efc74
CM
4506
4507 /* break if the extent we found is outside the range */
4508 if (em->start >= max || extent_map_end(em) < off)
4509 break;
4510
4511 /*
4512 * get_extent may return an extent that starts before our
4513 * requested range. We have to make sure the ranges
4514 * we return to fiemap always move forward and don't
4515 * overlap, so adjust the offsets here
4516 */
4517 em_start = max(em->start, off);
1506fcc8 4518
ea8efc74
CM
4519 /*
4520 * record the offset from the start of the extent
b76bb701
JB
4521 * for adjusting the disk offset below. Only do this if the
4522 * extent isn't compressed since our in ram offset may be past
4523 * what we have actually allocated on disk.
ea8efc74 4524 */
b76bb701
JB
4525 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4526 offset_in_extent = em_start - em->start;
ec29ed5b 4527 em_end = extent_map_end(em);
ea8efc74 4528 em_len = em_end - em_start;
1506fcc8 4529 flags = 0;
f0986318
FM
4530 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4531 disko = em->block_start + offset_in_extent;
4532 else
4533 disko = 0;
1506fcc8 4534
ea8efc74
CM
4535 /*
4536 * bump off for our next call to get_extent
4537 */
4538 off = extent_map_end(em);
4539 if (off >= max)
4540 end = 1;
4541
93dbfad7 4542 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4543 end = 1;
4544 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4545 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4546 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4547 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4548 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4549 flags |= (FIEMAP_EXTENT_DELALLOC |
4550 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4551 } else if (fieinfo->fi_extents_max) {
4552 u64 bytenr = em->block_start -
4553 (em->start - em->orig_start);
fe09e16c 4554
fe09e16c
LB
4555 /*
4556 * As btrfs supports shared space, this information
4557 * can be exported to userspace tools via
dc046b10
JB
4558 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4559 * then we're just getting a count and we can skip the
4560 * lookup stuff.
fe09e16c 4561 */
bb739cf0
EN
4562 ret = btrfs_check_shared(root,
4563 btrfs_ino(BTRFS_I(inode)),
4564 bytenr);
dc046b10 4565 if (ret < 0)
fe09e16c 4566 goto out_free;
dc046b10 4567 if (ret)
fe09e16c 4568 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4569 ret = 0;
1506fcc8
YS
4570 }
4571 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4572 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4573 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4574 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4575
1506fcc8
YS
4576 free_extent_map(em);
4577 em = NULL;
ec29ed5b
CM
4578 if ((em_start >= last) || em_len == (u64)-1 ||
4579 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4580 flags |= FIEMAP_EXTENT_LAST;
4581 end = 1;
4582 }
4583
ec29ed5b 4584 /* now scan forward to see if this is really the last extent. */
e3350e16 4585 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4586 if (IS_ERR(em)) {
4587 ret = PTR_ERR(em);
4588 goto out;
4589 }
4590 if (!em) {
975f84fe
JB
4591 flags |= FIEMAP_EXTENT_LAST;
4592 end = 1;
4593 }
4751832d
QW
4594 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4595 em_len, flags);
26e726af
CS
4596 if (ret) {
4597 if (ret == 1)
4598 ret = 0;
ec29ed5b 4599 goto out_free;
26e726af 4600 }
1506fcc8
YS
4601 }
4602out_free:
4751832d 4603 if (!ret)
848c23b7 4604 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4605 free_extent_map(em);
4606out:
fe09e16c 4607 btrfs_free_path(path);
a52f4cd2 4608 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4609 &cached_state);
1506fcc8
YS
4610 return ret;
4611}
4612
727011e0
CM
4613static void __free_extent_buffer(struct extent_buffer *eb)
4614{
6d49ba1b 4615 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4616 kmem_cache_free(extent_buffer_cache, eb);
4617}
4618
a26e8c9f 4619int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4620{
4621 return (atomic_read(&eb->io_pages) ||
4622 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4623 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4624}
4625
4626/*
55ac0139 4627 * Release all pages attached to the extent buffer.
db7f3436 4628 */
55ac0139 4629static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4630{
d64766fd
NB
4631 int i;
4632 int num_pages;
b0132a3b 4633 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4634
4635 BUG_ON(extent_buffer_under_io(eb));
4636
d64766fd
NB
4637 num_pages = num_extent_pages(eb);
4638 for (i = 0; i < num_pages; i++) {
4639 struct page *page = eb->pages[i];
db7f3436 4640
5d2361db
FL
4641 if (!page)
4642 continue;
4643 if (mapped)
db7f3436 4644 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4645 /*
4646 * We do this since we'll remove the pages after we've
4647 * removed the eb from the radix tree, so we could race
4648 * and have this page now attached to the new eb. So
4649 * only clear page_private if it's still connected to
4650 * this eb.
4651 */
4652 if (PagePrivate(page) &&
4653 page->private == (unsigned long)eb) {
4654 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4655 BUG_ON(PageDirty(page));
4656 BUG_ON(PageWriteback(page));
db7f3436 4657 /*
5d2361db
FL
4658 * We need to make sure we haven't be attached
4659 * to a new eb.
db7f3436 4660 */
5d2361db
FL
4661 ClearPagePrivate(page);
4662 set_page_private(page, 0);
4663 /* One for the page private */
09cbfeaf 4664 put_page(page);
db7f3436 4665 }
5d2361db
FL
4666
4667 if (mapped)
4668 spin_unlock(&page->mapping->private_lock);
4669
01327610 4670 /* One for when we allocated the page */
09cbfeaf 4671 put_page(page);
d64766fd 4672 }
db7f3436
JB
4673}
4674
4675/*
4676 * Helper for releasing the extent buffer.
4677 */
4678static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4679{
55ac0139 4680 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4681 __free_extent_buffer(eb);
4682}
4683
f28491e0
JB
4684static struct extent_buffer *
4685__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4686 unsigned long len)
d1310b2e
CM
4687{
4688 struct extent_buffer *eb = NULL;
4689
d1b5c567 4690 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4691 eb->start = start;
4692 eb->len = len;
f28491e0 4693 eb->fs_info = fs_info;
815a51c7 4694 eb->bflags = 0;
bd681513
CM
4695 rwlock_init(&eb->lock);
4696 atomic_set(&eb->write_locks, 0);
4697 atomic_set(&eb->read_locks, 0);
4698 atomic_set(&eb->blocking_readers, 0);
4699 atomic_set(&eb->blocking_writers, 0);
4700 atomic_set(&eb->spinning_readers, 0);
4701 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4702 eb->lock_nested = 0;
bd681513
CM
4703 init_waitqueue_head(&eb->write_lock_wq);
4704 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4705
6d49ba1b
ES
4706 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4707
3083ee2e 4708 spin_lock_init(&eb->refs_lock);
d1310b2e 4709 atomic_set(&eb->refs, 1);
0b32f4bb 4710 atomic_set(&eb->io_pages, 0);
727011e0 4711
b8dae313
DS
4712 /*
4713 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4714 */
4715 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4716 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4717 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4718
4719 return eb;
4720}
4721
815a51c7
JS
4722struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4723{
cc5e31a4 4724 int i;
815a51c7
JS
4725 struct page *p;
4726 struct extent_buffer *new;
cc5e31a4 4727 int num_pages = num_extent_pages(src);
815a51c7 4728
3f556f78 4729 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4730 if (new == NULL)
4731 return NULL;
4732
4733 for (i = 0; i < num_pages; i++) {
9ec72677 4734 p = alloc_page(GFP_NOFS);
db7f3436
JB
4735 if (!p) {
4736 btrfs_release_extent_buffer(new);
4737 return NULL;
4738 }
815a51c7
JS
4739 attach_extent_buffer_page(new, p);
4740 WARN_ON(PageDirty(p));
4741 SetPageUptodate(p);
4742 new->pages[i] = p;
fba1acf9 4743 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4744 }
4745
815a51c7 4746 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4747 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4748
4749 return new;
4750}
4751
0f331229
OS
4752struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4753 u64 start, unsigned long len)
815a51c7
JS
4754{
4755 struct extent_buffer *eb;
cc5e31a4
DS
4756 int num_pages;
4757 int i;
815a51c7 4758
3f556f78 4759 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4760 if (!eb)
4761 return NULL;
4762
65ad0104 4763 num_pages = num_extent_pages(eb);
815a51c7 4764 for (i = 0; i < num_pages; i++) {
9ec72677 4765 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4766 if (!eb->pages[i])
4767 goto err;
4768 }
4769 set_extent_buffer_uptodate(eb);
4770 btrfs_set_header_nritems(eb, 0);
b0132a3b 4771 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4772
4773 return eb;
4774err:
84167d19
SB
4775 for (; i > 0; i--)
4776 __free_page(eb->pages[i - 1]);
815a51c7
JS
4777 __free_extent_buffer(eb);
4778 return NULL;
4779}
4780
0f331229 4781struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4782 u64 start)
0f331229 4783{
da17066c 4784 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4785}
4786
0b32f4bb
JB
4787static void check_buffer_tree_ref(struct extent_buffer *eb)
4788{
242e18c7 4789 int refs;
0b32f4bb
JB
4790 /* the ref bit is tricky. We have to make sure it is set
4791 * if we have the buffer dirty. Otherwise the
4792 * code to free a buffer can end up dropping a dirty
4793 * page
4794 *
4795 * Once the ref bit is set, it won't go away while the
4796 * buffer is dirty or in writeback, and it also won't
4797 * go away while we have the reference count on the
4798 * eb bumped.
4799 *
4800 * We can't just set the ref bit without bumping the
4801 * ref on the eb because free_extent_buffer might
4802 * see the ref bit and try to clear it. If this happens
4803 * free_extent_buffer might end up dropping our original
4804 * ref by mistake and freeing the page before we are able
4805 * to add one more ref.
4806 *
4807 * So bump the ref count first, then set the bit. If someone
4808 * beat us to it, drop the ref we added.
4809 */
242e18c7
CM
4810 refs = atomic_read(&eb->refs);
4811 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4812 return;
4813
594831c4
JB
4814 spin_lock(&eb->refs_lock);
4815 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4816 atomic_inc(&eb->refs);
594831c4 4817 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4818}
4819
2457aec6
MG
4820static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4821 struct page *accessed)
5df4235e 4822{
cc5e31a4 4823 int num_pages, i;
5df4235e 4824
0b32f4bb
JB
4825 check_buffer_tree_ref(eb);
4826
65ad0104 4827 num_pages = num_extent_pages(eb);
5df4235e 4828 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4829 struct page *p = eb->pages[i];
4830
2457aec6
MG
4831 if (p != accessed)
4832 mark_page_accessed(p);
5df4235e
JB
4833 }
4834}
4835
f28491e0
JB
4836struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4837 u64 start)
452c75c3
CS
4838{
4839 struct extent_buffer *eb;
4840
4841 rcu_read_lock();
f28491e0 4842 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4843 start >> PAGE_SHIFT);
452c75c3
CS
4844 if (eb && atomic_inc_not_zero(&eb->refs)) {
4845 rcu_read_unlock();
062c19e9
FM
4846 /*
4847 * Lock our eb's refs_lock to avoid races with
4848 * free_extent_buffer. When we get our eb it might be flagged
4849 * with EXTENT_BUFFER_STALE and another task running
4850 * free_extent_buffer might have seen that flag set,
4851 * eb->refs == 2, that the buffer isn't under IO (dirty and
4852 * writeback flags not set) and it's still in the tree (flag
4853 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4854 * of decrementing the extent buffer's reference count twice.
4855 * So here we could race and increment the eb's reference count,
4856 * clear its stale flag, mark it as dirty and drop our reference
4857 * before the other task finishes executing free_extent_buffer,
4858 * which would later result in an attempt to free an extent
4859 * buffer that is dirty.
4860 */
4861 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4862 spin_lock(&eb->refs_lock);
4863 spin_unlock(&eb->refs_lock);
4864 }
2457aec6 4865 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4866 return eb;
4867 }
4868 rcu_read_unlock();
4869
4870 return NULL;
4871}
4872
faa2dbf0
JB
4873#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4874struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4875 u64 start)
faa2dbf0
JB
4876{
4877 struct extent_buffer *eb, *exists = NULL;
4878 int ret;
4879
4880 eb = find_extent_buffer(fs_info, start);
4881 if (eb)
4882 return eb;
da17066c 4883 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4884 if (!eb)
4885 return NULL;
4886 eb->fs_info = fs_info;
4887again:
e1860a77 4888 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4889 if (ret)
4890 goto free_eb;
4891 spin_lock(&fs_info->buffer_lock);
4892 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4893 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4894 spin_unlock(&fs_info->buffer_lock);
4895 radix_tree_preload_end();
4896 if (ret == -EEXIST) {
4897 exists = find_extent_buffer(fs_info, start);
4898 if (exists)
4899 goto free_eb;
4900 else
4901 goto again;
4902 }
4903 check_buffer_tree_ref(eb);
4904 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4905
4906 /*
4907 * We will free dummy extent buffer's if they come into
4908 * free_extent_buffer with a ref count of 2, but if we are using this we
4909 * want the buffers to stay in memory until we're done with them, so
4910 * bump the ref count again.
4911 */
4912 atomic_inc(&eb->refs);
4913 return eb;
4914free_eb:
4915 btrfs_release_extent_buffer(eb);
4916 return exists;
4917}
4918#endif
4919
f28491e0 4920struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4921 u64 start)
d1310b2e 4922{
da17066c 4923 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4924 int num_pages;
4925 int i;
09cbfeaf 4926 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4927 struct extent_buffer *eb;
6af118ce 4928 struct extent_buffer *exists = NULL;
d1310b2e 4929 struct page *p;
f28491e0 4930 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4931 int uptodate = 1;
19fe0a8b 4932 int ret;
d1310b2e 4933
da17066c 4934 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4935 btrfs_err(fs_info, "bad tree block start %llu", start);
4936 return ERR_PTR(-EINVAL);
4937 }
4938
f28491e0 4939 eb = find_extent_buffer(fs_info, start);
452c75c3 4940 if (eb)
6af118ce 4941 return eb;
6af118ce 4942
23d79d81 4943 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4944 if (!eb)
c871b0f2 4945 return ERR_PTR(-ENOMEM);
d1310b2e 4946
65ad0104 4947 num_pages = num_extent_pages(eb);
727011e0 4948 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4949 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4950 if (!p) {
4951 exists = ERR_PTR(-ENOMEM);
6af118ce 4952 goto free_eb;
c871b0f2 4953 }
4f2de97a
JB
4954
4955 spin_lock(&mapping->private_lock);
4956 if (PagePrivate(p)) {
4957 /*
4958 * We could have already allocated an eb for this page
4959 * and attached one so lets see if we can get a ref on
4960 * the existing eb, and if we can we know it's good and
4961 * we can just return that one, else we know we can just
4962 * overwrite page->private.
4963 */
4964 exists = (struct extent_buffer *)p->private;
4965 if (atomic_inc_not_zero(&exists->refs)) {
4966 spin_unlock(&mapping->private_lock);
4967 unlock_page(p);
09cbfeaf 4968 put_page(p);
2457aec6 4969 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4970 goto free_eb;
4971 }
5ca64f45 4972 exists = NULL;
4f2de97a 4973
0b32f4bb 4974 /*
4f2de97a
JB
4975 * Do this so attach doesn't complain and we need to
4976 * drop the ref the old guy had.
4977 */
4978 ClearPagePrivate(p);
0b32f4bb 4979 WARN_ON(PageDirty(p));
09cbfeaf 4980 put_page(p);
d1310b2e 4981 }
4f2de97a
JB
4982 attach_extent_buffer_page(eb, p);
4983 spin_unlock(&mapping->private_lock);
0b32f4bb 4984 WARN_ON(PageDirty(p));
727011e0 4985 eb->pages[i] = p;
d1310b2e
CM
4986 if (!PageUptodate(p))
4987 uptodate = 0;
eb14ab8e
CM
4988
4989 /*
b16d011e
NB
4990 * We can't unlock the pages just yet since the extent buffer
4991 * hasn't been properly inserted in the radix tree, this
4992 * opens a race with btree_releasepage which can free a page
4993 * while we are still filling in all pages for the buffer and
4994 * we could crash.
eb14ab8e 4995 */
d1310b2e
CM
4996 }
4997 if (uptodate)
b4ce94de 4998 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4999again:
e1860a77 5000 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5001 if (ret) {
5002 exists = ERR_PTR(ret);
19fe0a8b 5003 goto free_eb;
c871b0f2 5004 }
19fe0a8b 5005
f28491e0
JB
5006 spin_lock(&fs_info->buffer_lock);
5007 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5008 start >> PAGE_SHIFT, eb);
f28491e0 5009 spin_unlock(&fs_info->buffer_lock);
452c75c3 5010 radix_tree_preload_end();
19fe0a8b 5011 if (ret == -EEXIST) {
f28491e0 5012 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5013 if (exists)
5014 goto free_eb;
5015 else
115391d2 5016 goto again;
6af118ce 5017 }
6af118ce 5018 /* add one reference for the tree */
0b32f4bb 5019 check_buffer_tree_ref(eb);
34b41ace 5020 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5021
5022 /*
b16d011e
NB
5023 * Now it's safe to unlock the pages because any calls to
5024 * btree_releasepage will correctly detect that a page belongs to a
5025 * live buffer and won't free them prematurely.
eb14ab8e 5026 */
28187ae5
NB
5027 for (i = 0; i < num_pages; i++)
5028 unlock_page(eb->pages[i]);
d1310b2e
CM
5029 return eb;
5030
6af118ce 5031free_eb:
5ca64f45 5032 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5033 for (i = 0; i < num_pages; i++) {
5034 if (eb->pages[i])
5035 unlock_page(eb->pages[i]);
5036 }
eb14ab8e 5037
897ca6e9 5038 btrfs_release_extent_buffer(eb);
6af118ce 5039 return exists;
d1310b2e 5040}
d1310b2e 5041
3083ee2e
JB
5042static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5043{
5044 struct extent_buffer *eb =
5045 container_of(head, struct extent_buffer, rcu_head);
5046
5047 __free_extent_buffer(eb);
5048}
5049
f7a52a40 5050static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5051{
07e21c4d
NB
5052 lockdep_assert_held(&eb->refs_lock);
5053
3083ee2e
JB
5054 WARN_ON(atomic_read(&eb->refs) == 0);
5055 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5056 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5057 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5058
815a51c7 5059 spin_unlock(&eb->refs_lock);
3083ee2e 5060
f28491e0
JB
5061 spin_lock(&fs_info->buffer_lock);
5062 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5063 eb->start >> PAGE_SHIFT);
f28491e0 5064 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5065 } else {
5066 spin_unlock(&eb->refs_lock);
815a51c7 5067 }
3083ee2e
JB
5068
5069 /* Should be safe to release our pages at this point */
55ac0139 5070 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5071#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5072 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5073 __free_extent_buffer(eb);
5074 return 1;
5075 }
5076#endif
3083ee2e 5077 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5078 return 1;
3083ee2e
JB
5079 }
5080 spin_unlock(&eb->refs_lock);
e64860aa
JB
5081
5082 return 0;
3083ee2e
JB
5083}
5084
d1310b2e
CM
5085void free_extent_buffer(struct extent_buffer *eb)
5086{
242e18c7
CM
5087 int refs;
5088 int old;
d1310b2e
CM
5089 if (!eb)
5090 return;
5091
242e18c7
CM
5092 while (1) {
5093 refs = atomic_read(&eb->refs);
5094 if (refs <= 3)
5095 break;
5096 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5097 if (old == refs)
5098 return;
5099 }
5100
3083ee2e 5101 spin_lock(&eb->refs_lock);
815a51c7 5102 if (atomic_read(&eb->refs) == 2 &&
b0132a3b 5103 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
815a51c7
JS
5104 atomic_dec(&eb->refs);
5105
3083ee2e
JB
5106 if (atomic_read(&eb->refs) == 2 &&
5107 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5108 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5109 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5110 atomic_dec(&eb->refs);
5111
5112 /*
5113 * I know this is terrible, but it's temporary until we stop tracking
5114 * the uptodate bits and such for the extent buffers.
5115 */
f7a52a40 5116 release_extent_buffer(eb);
3083ee2e
JB
5117}
5118
5119void free_extent_buffer_stale(struct extent_buffer *eb)
5120{
5121 if (!eb)
d1310b2e
CM
5122 return;
5123
3083ee2e
JB
5124 spin_lock(&eb->refs_lock);
5125 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5126
0b32f4bb 5127 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5128 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5129 atomic_dec(&eb->refs);
f7a52a40 5130 release_extent_buffer(eb);
d1310b2e 5131}
d1310b2e 5132
1d4284bd 5133void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5134{
cc5e31a4
DS
5135 int i;
5136 int num_pages;
d1310b2e
CM
5137 struct page *page;
5138
65ad0104 5139 num_pages = num_extent_pages(eb);
d1310b2e
CM
5140
5141 for (i = 0; i < num_pages; i++) {
fb85fc9a 5142 page = eb->pages[i];
b9473439 5143 if (!PageDirty(page))
d2c3f4f6
CM
5144 continue;
5145
a61e6f29 5146 lock_page(page);
eb14ab8e
CM
5147 WARN_ON(!PagePrivate(page));
5148
d1310b2e 5149 clear_page_dirty_for_io(page);
b93b0163 5150 xa_lock_irq(&page->mapping->i_pages);
d1310b2e 5151 if (!PageDirty(page)) {
b93b0163 5152 radix_tree_tag_clear(&page->mapping->i_pages,
d1310b2e
CM
5153 page_index(page),
5154 PAGECACHE_TAG_DIRTY);
5155 }
b93b0163 5156 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5157 ClearPageError(page);
a61e6f29 5158 unlock_page(page);
d1310b2e 5159 }
0b32f4bb 5160 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5161}
d1310b2e 5162
0b32f4bb 5163int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5164{
cc5e31a4
DS
5165 int i;
5166 int num_pages;
b9473439 5167 int was_dirty = 0;
d1310b2e 5168
0b32f4bb
JB
5169 check_buffer_tree_ref(eb);
5170
b9473439 5171 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5172
65ad0104 5173 num_pages = num_extent_pages(eb);
3083ee2e 5174 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5175 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5176
b9473439 5177 for (i = 0; i < num_pages; i++)
fb85fc9a 5178 set_page_dirty(eb->pages[i]);
51995c39
LB
5179
5180#ifdef CONFIG_BTRFS_DEBUG
5181 for (i = 0; i < num_pages; i++)
5182 ASSERT(PageDirty(eb->pages[i]));
5183#endif
5184
b9473439 5185 return was_dirty;
d1310b2e 5186}
d1310b2e 5187
69ba3927 5188void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5189{
cc5e31a4 5190 int i;
1259ab75 5191 struct page *page;
cc5e31a4 5192 int num_pages;
1259ab75 5193
b4ce94de 5194 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5195 num_pages = num_extent_pages(eb);
1259ab75 5196 for (i = 0; i < num_pages; i++) {
fb85fc9a 5197 page = eb->pages[i];
33958dc6
CM
5198 if (page)
5199 ClearPageUptodate(page);
1259ab75 5200 }
1259ab75
CM
5201}
5202
09c25a8c 5203void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5204{
cc5e31a4 5205 int i;
d1310b2e 5206 struct page *page;
cc5e31a4 5207 int num_pages;
d1310b2e 5208
0b32f4bb 5209 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5210 num_pages = num_extent_pages(eb);
d1310b2e 5211 for (i = 0; i < num_pages; i++) {
fb85fc9a 5212 page = eb->pages[i];
d1310b2e
CM
5213 SetPageUptodate(page);
5214 }
d1310b2e 5215}
d1310b2e 5216
d1310b2e 5217int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5218 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5219{
cc5e31a4 5220 int i;
d1310b2e
CM
5221 struct page *page;
5222 int err;
5223 int ret = 0;
ce9adaa5
CM
5224 int locked_pages = 0;
5225 int all_uptodate = 1;
cc5e31a4 5226 int num_pages;
727011e0 5227 unsigned long num_reads = 0;
a86c12c7 5228 struct bio *bio = NULL;
c8b97818 5229 unsigned long bio_flags = 0;
a86c12c7 5230
b4ce94de 5231 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5232 return 0;
5233
65ad0104 5234 num_pages = num_extent_pages(eb);
8436ea91 5235 for (i = 0; i < num_pages; i++) {
fb85fc9a 5236 page = eb->pages[i];
bb82ab88 5237 if (wait == WAIT_NONE) {
2db04966 5238 if (!trylock_page(page))
ce9adaa5 5239 goto unlock_exit;
d1310b2e
CM
5240 } else {
5241 lock_page(page);
5242 }
ce9adaa5 5243 locked_pages++;
2571e739
LB
5244 }
5245 /*
5246 * We need to firstly lock all pages to make sure that
5247 * the uptodate bit of our pages won't be affected by
5248 * clear_extent_buffer_uptodate().
5249 */
8436ea91 5250 for (i = 0; i < num_pages; i++) {
2571e739 5251 page = eb->pages[i];
727011e0
CM
5252 if (!PageUptodate(page)) {
5253 num_reads++;
ce9adaa5 5254 all_uptodate = 0;
727011e0 5255 }
ce9adaa5 5256 }
2571e739 5257
ce9adaa5 5258 if (all_uptodate) {
8436ea91 5259 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5260 goto unlock_exit;
5261 }
5262
656f30db 5263 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5264 eb->read_mirror = 0;
0b32f4bb 5265 atomic_set(&eb->io_pages, num_reads);
8436ea91 5266 for (i = 0; i < num_pages; i++) {
fb85fc9a 5267 page = eb->pages[i];
baf863b9 5268
ce9adaa5 5269 if (!PageUptodate(page)) {
baf863b9
LB
5270 if (ret) {
5271 atomic_dec(&eb->io_pages);
5272 unlock_page(page);
5273 continue;
5274 }
5275
f188591e 5276 ClearPageError(page);
a86c12c7 5277 err = __extent_read_full_page(tree, page,
6af49dbd 5278 btree_get_extent, &bio,
d4c7ca86 5279 mirror_num, &bio_flags,
1f7ad75b 5280 REQ_META);
baf863b9 5281 if (err) {
d1310b2e 5282 ret = err;
baf863b9
LB
5283 /*
5284 * We use &bio in above __extent_read_full_page,
5285 * so we ensure that if it returns error, the
5286 * current page fails to add itself to bio and
5287 * it's been unlocked.
5288 *
5289 * We must dec io_pages by ourselves.
5290 */
5291 atomic_dec(&eb->io_pages);
5292 }
d1310b2e
CM
5293 } else {
5294 unlock_page(page);
5295 }
5296 }
5297
355808c2 5298 if (bio) {
1f7ad75b 5299 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5300 if (err)
5301 return err;
355808c2 5302 }
a86c12c7 5303
bb82ab88 5304 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5305 return ret;
d397712b 5306
8436ea91 5307 for (i = 0; i < num_pages; i++) {
fb85fc9a 5308 page = eb->pages[i];
d1310b2e 5309 wait_on_page_locked(page);
d397712b 5310 if (!PageUptodate(page))
d1310b2e 5311 ret = -EIO;
d1310b2e 5312 }
d397712b 5313
d1310b2e 5314 return ret;
ce9adaa5
CM
5315
5316unlock_exit:
d397712b 5317 while (locked_pages > 0) {
ce9adaa5 5318 locked_pages--;
8436ea91
JB
5319 page = eb->pages[locked_pages];
5320 unlock_page(page);
ce9adaa5
CM
5321 }
5322 return ret;
d1310b2e 5323}
d1310b2e 5324
1cbb1f45
JM
5325void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5326 unsigned long start, unsigned long len)
d1310b2e
CM
5327{
5328 size_t cur;
5329 size_t offset;
5330 struct page *page;
5331 char *kaddr;
5332 char *dst = (char *)dstv;
09cbfeaf
KS
5333 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5334 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5335
f716abd5
LB
5336 if (start + len > eb->len) {
5337 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5338 eb->start, eb->len, start, len);
5339 memset(dst, 0, len);
5340 return;
5341 }
d1310b2e 5342
09cbfeaf 5343 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5344
d397712b 5345 while (len > 0) {
fb85fc9a 5346 page = eb->pages[i];
d1310b2e 5347
09cbfeaf 5348 cur = min(len, (PAGE_SIZE - offset));
a6591715 5349 kaddr = page_address(page);
d1310b2e 5350 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5351
5352 dst += cur;
5353 len -= cur;
5354 offset = 0;
5355 i++;
5356 }
5357}
d1310b2e 5358
1cbb1f45
JM
5359int read_extent_buffer_to_user(const struct extent_buffer *eb,
5360 void __user *dstv,
5361 unsigned long start, unsigned long len)
550ac1d8
GH
5362{
5363 size_t cur;
5364 size_t offset;
5365 struct page *page;
5366 char *kaddr;
5367 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5368 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5369 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5370 int ret = 0;
5371
5372 WARN_ON(start > eb->len);
5373 WARN_ON(start + len > eb->start + eb->len);
5374
09cbfeaf 5375 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5376
5377 while (len > 0) {
fb85fc9a 5378 page = eb->pages[i];
550ac1d8 5379
09cbfeaf 5380 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5381 kaddr = page_address(page);
5382 if (copy_to_user(dst, kaddr + offset, cur)) {
5383 ret = -EFAULT;
5384 break;
5385 }
5386
5387 dst += cur;
5388 len -= cur;
5389 offset = 0;
5390 i++;
5391 }
5392
5393 return ret;
5394}
5395
415b35a5
LB
5396/*
5397 * return 0 if the item is found within a page.
5398 * return 1 if the item spans two pages.
5399 * return -EINVAL otherwise.
5400 */
1cbb1f45
JM
5401int map_private_extent_buffer(const struct extent_buffer *eb,
5402 unsigned long start, unsigned long min_len,
5403 char **map, unsigned long *map_start,
5404 unsigned long *map_len)
d1310b2e 5405{
09cbfeaf 5406 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5407 char *kaddr;
5408 struct page *p;
09cbfeaf
KS
5409 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5410 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5411 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5412 PAGE_SHIFT;
d1310b2e 5413
f716abd5
LB
5414 if (start + min_len > eb->len) {
5415 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5416 eb->start, eb->len, start, min_len);
5417 return -EINVAL;
5418 }
5419
d1310b2e 5420 if (i != end_i)
415b35a5 5421 return 1;
d1310b2e
CM
5422
5423 if (i == 0) {
5424 offset = start_offset;
5425 *map_start = 0;
5426 } else {
5427 offset = 0;
09cbfeaf 5428 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5429 }
d397712b 5430
fb85fc9a 5431 p = eb->pages[i];
a6591715 5432 kaddr = page_address(p);
d1310b2e 5433 *map = kaddr + offset;
09cbfeaf 5434 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5435 return 0;
5436}
d1310b2e 5437
1cbb1f45
JM
5438int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5439 unsigned long start, unsigned long len)
d1310b2e
CM
5440{
5441 size_t cur;
5442 size_t offset;
5443 struct page *page;
5444 char *kaddr;
5445 char *ptr = (char *)ptrv;
09cbfeaf
KS
5446 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5447 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5448 int ret = 0;
5449
5450 WARN_ON(start > eb->len);
5451 WARN_ON(start + len > eb->start + eb->len);
5452
09cbfeaf 5453 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5454
d397712b 5455 while (len > 0) {
fb85fc9a 5456 page = eb->pages[i];
d1310b2e 5457
09cbfeaf 5458 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5459
a6591715 5460 kaddr = page_address(page);
d1310b2e 5461 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5462 if (ret)
5463 break;
5464
5465 ptr += cur;
5466 len -= cur;
5467 offset = 0;
5468 i++;
5469 }
5470 return ret;
5471}
d1310b2e 5472
f157bf76
DS
5473void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5474 const void *srcv)
5475{
5476 char *kaddr;
5477
5478 WARN_ON(!PageUptodate(eb->pages[0]));
5479 kaddr = page_address(eb->pages[0]);
5480 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5481 BTRFS_FSID_SIZE);
5482}
5483
5484void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5485{
5486 char *kaddr;
5487
5488 WARN_ON(!PageUptodate(eb->pages[0]));
5489 kaddr = page_address(eb->pages[0]);
5490 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5491 BTRFS_FSID_SIZE);
5492}
5493
d1310b2e
CM
5494void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5495 unsigned long start, unsigned long len)
5496{
5497 size_t cur;
5498 size_t offset;
5499 struct page *page;
5500 char *kaddr;
5501 char *src = (char *)srcv;
09cbfeaf
KS
5502 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5503 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5504
5505 WARN_ON(start > eb->len);
5506 WARN_ON(start + len > eb->start + eb->len);
5507
09cbfeaf 5508 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5509
d397712b 5510 while (len > 0) {
fb85fc9a 5511 page = eb->pages[i];
d1310b2e
CM
5512 WARN_ON(!PageUptodate(page));
5513
09cbfeaf 5514 cur = min(len, PAGE_SIZE - offset);
a6591715 5515 kaddr = page_address(page);
d1310b2e 5516 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5517
5518 src += cur;
5519 len -= cur;
5520 offset = 0;
5521 i++;
5522 }
5523}
d1310b2e 5524
b159fa28
DS
5525void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5526 unsigned long len)
d1310b2e
CM
5527{
5528 size_t cur;
5529 size_t offset;
5530 struct page *page;
5531 char *kaddr;
09cbfeaf
KS
5532 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5533 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5534
5535 WARN_ON(start > eb->len);
5536 WARN_ON(start + len > eb->start + eb->len);
5537
09cbfeaf 5538 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5539
d397712b 5540 while (len > 0) {
fb85fc9a 5541 page = eb->pages[i];
d1310b2e
CM
5542 WARN_ON(!PageUptodate(page));
5543
09cbfeaf 5544 cur = min(len, PAGE_SIZE - offset);
a6591715 5545 kaddr = page_address(page);
b159fa28 5546 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5547
5548 len -= cur;
5549 offset = 0;
5550 i++;
5551 }
5552}
d1310b2e 5553
58e8012c
DS
5554void copy_extent_buffer_full(struct extent_buffer *dst,
5555 struct extent_buffer *src)
5556{
5557 int i;
cc5e31a4 5558 int num_pages;
58e8012c
DS
5559
5560 ASSERT(dst->len == src->len);
5561
65ad0104 5562 num_pages = num_extent_pages(dst);
58e8012c
DS
5563 for (i = 0; i < num_pages; i++)
5564 copy_page(page_address(dst->pages[i]),
5565 page_address(src->pages[i]));
5566}
5567
d1310b2e
CM
5568void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5569 unsigned long dst_offset, unsigned long src_offset,
5570 unsigned long len)
5571{
5572 u64 dst_len = dst->len;
5573 size_t cur;
5574 size_t offset;
5575 struct page *page;
5576 char *kaddr;
09cbfeaf
KS
5577 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5578 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5579
5580 WARN_ON(src->len != dst_len);
5581
5582 offset = (start_offset + dst_offset) &
09cbfeaf 5583 (PAGE_SIZE - 1);
d1310b2e 5584
d397712b 5585 while (len > 0) {
fb85fc9a 5586 page = dst->pages[i];
d1310b2e
CM
5587 WARN_ON(!PageUptodate(page));
5588
09cbfeaf 5589 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5590
a6591715 5591 kaddr = page_address(page);
d1310b2e 5592 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5593
5594 src_offset += cur;
5595 len -= cur;
5596 offset = 0;
5597 i++;
5598 }
5599}
d1310b2e 5600
3e1e8bb7
OS
5601/*
5602 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5603 * given bit number
5604 * @eb: the extent buffer
5605 * @start: offset of the bitmap item in the extent buffer
5606 * @nr: bit number
5607 * @page_index: return index of the page in the extent buffer that contains the
5608 * given bit number
5609 * @page_offset: return offset into the page given by page_index
5610 *
5611 * This helper hides the ugliness of finding the byte in an extent buffer which
5612 * contains a given bit.
5613 */
5614static inline void eb_bitmap_offset(struct extent_buffer *eb,
5615 unsigned long start, unsigned long nr,
5616 unsigned long *page_index,
5617 size_t *page_offset)
5618{
09cbfeaf 5619 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5620 size_t byte_offset = BIT_BYTE(nr);
5621 size_t offset;
5622
5623 /*
5624 * The byte we want is the offset of the extent buffer + the offset of
5625 * the bitmap item in the extent buffer + the offset of the byte in the
5626 * bitmap item.
5627 */
5628 offset = start_offset + start + byte_offset;
5629
09cbfeaf
KS
5630 *page_index = offset >> PAGE_SHIFT;
5631 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5632}
5633
5634/**
5635 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5636 * @eb: the extent buffer
5637 * @start: offset of the bitmap item in the extent buffer
5638 * @nr: bit number to test
5639 */
5640int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5641 unsigned long nr)
5642{
2fe1d551 5643 u8 *kaddr;
3e1e8bb7
OS
5644 struct page *page;
5645 unsigned long i;
5646 size_t offset;
5647
5648 eb_bitmap_offset(eb, start, nr, &i, &offset);
5649 page = eb->pages[i];
5650 WARN_ON(!PageUptodate(page));
5651 kaddr = page_address(page);
5652 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5653}
5654
5655/**
5656 * extent_buffer_bitmap_set - set an area of a bitmap
5657 * @eb: the extent buffer
5658 * @start: offset of the bitmap item in the extent buffer
5659 * @pos: bit number of the first bit
5660 * @len: number of bits to set
5661 */
5662void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5663 unsigned long pos, unsigned long len)
5664{
2fe1d551 5665 u8 *kaddr;
3e1e8bb7
OS
5666 struct page *page;
5667 unsigned long i;
5668 size_t offset;
5669 const unsigned int size = pos + len;
5670 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5671 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5672
5673 eb_bitmap_offset(eb, start, pos, &i, &offset);
5674 page = eb->pages[i];
5675 WARN_ON(!PageUptodate(page));
5676 kaddr = page_address(page);
5677
5678 while (len >= bits_to_set) {
5679 kaddr[offset] |= mask_to_set;
5680 len -= bits_to_set;
5681 bits_to_set = BITS_PER_BYTE;
9c894696 5682 mask_to_set = ~0;
09cbfeaf 5683 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5684 offset = 0;
5685 page = eb->pages[++i];
5686 WARN_ON(!PageUptodate(page));
5687 kaddr = page_address(page);
5688 }
5689 }
5690 if (len) {
5691 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5692 kaddr[offset] |= mask_to_set;
5693 }
5694}
5695
5696
5697/**
5698 * extent_buffer_bitmap_clear - clear an area of a bitmap
5699 * @eb: the extent buffer
5700 * @start: offset of the bitmap item in the extent buffer
5701 * @pos: bit number of the first bit
5702 * @len: number of bits to clear
5703 */
5704void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5705 unsigned long pos, unsigned long len)
5706{
2fe1d551 5707 u8 *kaddr;
3e1e8bb7
OS
5708 struct page *page;
5709 unsigned long i;
5710 size_t offset;
5711 const unsigned int size = pos + len;
5712 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5713 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5714
5715 eb_bitmap_offset(eb, start, pos, &i, &offset);
5716 page = eb->pages[i];
5717 WARN_ON(!PageUptodate(page));
5718 kaddr = page_address(page);
5719
5720 while (len >= bits_to_clear) {
5721 kaddr[offset] &= ~mask_to_clear;
5722 len -= bits_to_clear;
5723 bits_to_clear = BITS_PER_BYTE;
9c894696 5724 mask_to_clear = ~0;
09cbfeaf 5725 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5726 offset = 0;
5727 page = eb->pages[++i];
5728 WARN_ON(!PageUptodate(page));
5729 kaddr = page_address(page);
5730 }
5731 }
5732 if (len) {
5733 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5734 kaddr[offset] &= ~mask_to_clear;
5735 }
5736}
5737
3387206f
ST
5738static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5739{
5740 unsigned long distance = (src > dst) ? src - dst : dst - src;
5741 return distance < len;
5742}
5743
d1310b2e
CM
5744static void copy_pages(struct page *dst_page, struct page *src_page,
5745 unsigned long dst_off, unsigned long src_off,
5746 unsigned long len)
5747{
a6591715 5748 char *dst_kaddr = page_address(dst_page);
d1310b2e 5749 char *src_kaddr;
727011e0 5750 int must_memmove = 0;
d1310b2e 5751
3387206f 5752 if (dst_page != src_page) {
a6591715 5753 src_kaddr = page_address(src_page);
3387206f 5754 } else {
d1310b2e 5755 src_kaddr = dst_kaddr;
727011e0
CM
5756 if (areas_overlap(src_off, dst_off, len))
5757 must_memmove = 1;
3387206f 5758 }
d1310b2e 5759
727011e0
CM
5760 if (must_memmove)
5761 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5762 else
5763 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5764}
5765
5766void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5767 unsigned long src_offset, unsigned long len)
5768{
0b246afa 5769 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5770 size_t cur;
5771 size_t dst_off_in_page;
5772 size_t src_off_in_page;
09cbfeaf 5773 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5774 unsigned long dst_i;
5775 unsigned long src_i;
5776
5777 if (src_offset + len > dst->len) {
0b246afa 5778 btrfs_err(fs_info,
5d163e0e
JM
5779 "memmove bogus src_offset %lu move len %lu dst len %lu",
5780 src_offset, len, dst->len);
d1310b2e
CM
5781 BUG_ON(1);
5782 }
5783 if (dst_offset + len > dst->len) {
0b246afa 5784 btrfs_err(fs_info,
5d163e0e
JM
5785 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5786 dst_offset, len, dst->len);
d1310b2e
CM
5787 BUG_ON(1);
5788 }
5789
d397712b 5790 while (len > 0) {
d1310b2e 5791 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5792 (PAGE_SIZE - 1);
d1310b2e 5793 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5794 (PAGE_SIZE - 1);
d1310b2e 5795
09cbfeaf
KS
5796 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5797 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5798
09cbfeaf 5799 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5800 src_off_in_page));
5801 cur = min_t(unsigned long, cur,
09cbfeaf 5802 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5803
fb85fc9a 5804 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5805 dst_off_in_page, src_off_in_page, cur);
5806
5807 src_offset += cur;
5808 dst_offset += cur;
5809 len -= cur;
5810 }
5811}
d1310b2e
CM
5812
5813void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5814 unsigned long src_offset, unsigned long len)
5815{
0b246afa 5816 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5817 size_t cur;
5818 size_t dst_off_in_page;
5819 size_t src_off_in_page;
5820 unsigned long dst_end = dst_offset + len - 1;
5821 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5822 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5823 unsigned long dst_i;
5824 unsigned long src_i;
5825
5826 if (src_offset + len > dst->len) {
0b246afa 5827 btrfs_err(fs_info,
5d163e0e
JM
5828 "memmove bogus src_offset %lu move len %lu len %lu",
5829 src_offset, len, dst->len);
d1310b2e
CM
5830 BUG_ON(1);
5831 }
5832 if (dst_offset + len > dst->len) {
0b246afa 5833 btrfs_err(fs_info,
5d163e0e
JM
5834 "memmove bogus dst_offset %lu move len %lu len %lu",
5835 dst_offset, len, dst->len);
d1310b2e
CM
5836 BUG_ON(1);
5837 }
727011e0 5838 if (dst_offset < src_offset) {
d1310b2e
CM
5839 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5840 return;
5841 }
d397712b 5842 while (len > 0) {
09cbfeaf
KS
5843 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5844 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5845
5846 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5847 (PAGE_SIZE - 1);
d1310b2e 5848 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5849 (PAGE_SIZE - 1);
d1310b2e
CM
5850
5851 cur = min_t(unsigned long, len, src_off_in_page + 1);
5852 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5853 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5854 dst_off_in_page - cur + 1,
5855 src_off_in_page - cur + 1, cur);
5856
5857 dst_end -= cur;
5858 src_end -= cur;
5859 len -= cur;
5860 }
5861}
6af118ce 5862
f7a52a40 5863int try_release_extent_buffer(struct page *page)
19fe0a8b 5864{
6af118ce 5865 struct extent_buffer *eb;
6af118ce 5866
3083ee2e 5867 /*
01327610 5868 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5869 * now.
5870 */
5871 spin_lock(&page->mapping->private_lock);
5872 if (!PagePrivate(page)) {
5873 spin_unlock(&page->mapping->private_lock);
4f2de97a 5874 return 1;
45f49bce 5875 }
6af118ce 5876
3083ee2e
JB
5877 eb = (struct extent_buffer *)page->private;
5878 BUG_ON(!eb);
19fe0a8b
MX
5879
5880 /*
3083ee2e
JB
5881 * This is a little awful but should be ok, we need to make sure that
5882 * the eb doesn't disappear out from under us while we're looking at
5883 * this page.
19fe0a8b 5884 */
3083ee2e 5885 spin_lock(&eb->refs_lock);
0b32f4bb 5886 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5887 spin_unlock(&eb->refs_lock);
5888 spin_unlock(&page->mapping->private_lock);
5889 return 0;
b9473439 5890 }
3083ee2e 5891 spin_unlock(&page->mapping->private_lock);
897ca6e9 5892
19fe0a8b 5893 /*
3083ee2e
JB
5894 * If tree ref isn't set then we know the ref on this eb is a real ref,
5895 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5896 */
3083ee2e
JB
5897 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5898 spin_unlock(&eb->refs_lock);
5899 return 0;
b9473439 5900 }
19fe0a8b 5901
f7a52a40 5902 return release_extent_buffer(eb);
6af118ce 5903}