btrfs: do not try to repair bio that has no mirror set
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
14605409 15#include <linux/fsverity.h>
cea62800 16#include "misc.h"
d1310b2e 17#include "extent_io.h"
9c7d3a54 18#include "extent-io-tree.h"
d1310b2e 19#include "extent_map.h"
902b22f3
DW
20#include "ctree.h"
21#include "btrfs_inode.h"
4a54c8c1 22#include "volumes.h"
21adbd5c 23#include "check-integrity.h"
0b32f4bb 24#include "locking.h"
606686ee 25#include "rcu-string.h"
fe09e16c 26#include "backref.h"
6af49dbd 27#include "disk-io.h"
760f991f 28#include "subpage.h"
d3575156 29#include "zoned.h"
0bc09ca1 30#include "block-group.h"
d1310b2e 31
d1310b2e
CM
32static struct kmem_cache *extent_state_cache;
33static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 34static struct bio_set btrfs_bioset;
d1310b2e 35
27a3507d
FM
36static inline bool extent_state_in_tree(const struct extent_state *state)
37{
38 return !RB_EMPTY_NODE(&state->rb_node);
39}
40
6d49ba1b 41#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 42static LIST_HEAD(states);
d397712b 43static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 44
3fd63727
JB
45static inline void btrfs_leak_debug_add(spinlock_t *lock,
46 struct list_head *new,
47 struct list_head *head)
6d49ba1b
ES
48{
49 unsigned long flags;
50
3fd63727 51 spin_lock_irqsave(lock, flags);
6d49ba1b 52 list_add(new, head);
3fd63727 53 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
54}
55
3fd63727
JB
56static inline void btrfs_leak_debug_del(spinlock_t *lock,
57 struct list_head *entry)
6d49ba1b
ES
58{
59 unsigned long flags;
60
3fd63727 61 spin_lock_irqsave(lock, flags);
6d49ba1b 62 list_del(entry);
3fd63727 63 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
64}
65
3fd63727 66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 67{
6d49ba1b 68 struct extent_buffer *eb;
3fd63727 69 unsigned long flags;
6d49ba1b 70
8c38938c
JB
71 /*
72 * If we didn't get into open_ctree our allocated_ebs will not be
73 * initialized, so just skip this.
74 */
75 if (!fs_info->allocated_ebs.next)
76 return;
77
3fd63727
JB
78 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
79 while (!list_empty(&fs_info->allocated_ebs)) {
80 eb = list_first_entry(&fs_info->allocated_ebs,
81 struct extent_buffer, leak_list);
8c38938c
JB
82 pr_err(
83 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
84 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
85 btrfs_header_owner(eb));
33ca832f
JB
86 list_del(&eb->leak_list);
87 kmem_cache_free(extent_buffer_cache, eb);
88 }
3fd63727 89 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
90}
91
92static inline void btrfs_extent_state_leak_debug_check(void)
93{
94 struct extent_state *state;
95
6d49ba1b
ES
96 while (!list_empty(&states)) {
97 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 98 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
99 state->start, state->end, state->state,
100 extent_state_in_tree(state),
b7ac31b7 101 refcount_read(&state->refs));
6d49ba1b
ES
102 list_del(&state->leak_list);
103 kmem_cache_free(extent_state_cache, state);
104 }
6d49ba1b 105}
8d599ae1 106
a5dee37d
JB
107#define btrfs_debug_check_extent_io_range(tree, start, end) \
108 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 110 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 111{
65a680f6
NB
112 struct inode *inode = tree->private_data;
113 u64 isize;
114
115 if (!inode || !is_data_inode(inode))
116 return;
117
118 isize = i_size_read(inode);
119 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
120 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
121 "%s: ino %llu isize %llu odd range [%llu,%llu]",
122 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
123 }
8d599ae1 124}
6d49ba1b 125#else
3fd63727
JB
126#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
127#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 128#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 129#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 130#endif
d1310b2e 131
d1310b2e
CM
132struct tree_entry {
133 u64 start;
134 u64 end;
d1310b2e
CM
135 struct rb_node rb_node;
136};
137
138struct extent_page_data {
390ed29b 139 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
140 /* tells writepage not to lock the state bits for this range
141 * it still does the unlocking
142 */
ffbd517d
CM
143 unsigned int extent_locked:1;
144
70fd7614 145 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 146 unsigned int sync_io:1;
d1310b2e
CM
147};
148
f97e27e9 149static int add_extent_changeset(struct extent_state *state, u32 bits,
d38ed27f
QW
150 struct extent_changeset *changeset,
151 int set)
152{
153 int ret;
154
155 if (!changeset)
57599c7e 156 return 0;
d38ed27f 157 if (set && (state->state & bits) == bits)
57599c7e 158 return 0;
fefdc557 159 if (!set && (state->state & bits) == 0)
57599c7e 160 return 0;
d38ed27f 161 changeset->bytes_changed += state->end - state->start + 1;
53d32359 162 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 163 GFP_ATOMIC);
57599c7e 164 return ret;
d38ed27f
QW
165}
166
c1be9c1a
NB
167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
168 unsigned long bio_flags)
bb58eb9e
QW
169{
170 blk_status_t ret = 0;
bb58eb9e 171 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
172
173 bio->bi_private = NULL;
174
e0eefe07
QW
175 /* Caller should ensure the bio has at least some range added */
176 ASSERT(bio->bi_iter.bi_size);
908930f3
NB
177 if (is_data_inode(tree->private_data))
178 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
179 bio_flags);
180 else
1b36294a
NB
181 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
182 mirror_num, bio_flags);
bb58eb9e
QW
183
184 return blk_status_to_errno(ret);
185}
186
3065976b
QW
187/* Cleanup unsubmitted bios */
188static void end_write_bio(struct extent_page_data *epd, int ret)
189{
390ed29b
QW
190 struct bio *bio = epd->bio_ctrl.bio;
191
192 if (bio) {
193 bio->bi_status = errno_to_blk_status(ret);
194 bio_endio(bio);
195 epd->bio_ctrl.bio = NULL;
3065976b
QW
196 }
197}
198
f4340622
QW
199/*
200 * Submit bio from extent page data via submit_one_bio
201 *
202 * Return 0 if everything is OK.
203 * Return <0 for error.
204 */
205static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 206{
f4340622 207 int ret = 0;
390ed29b 208 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 209
390ed29b
QW
210 if (bio) {
211 ret = submit_one_bio(bio, 0, 0);
f4340622
QW
212 /*
213 * Clean up of epd->bio is handled by its endio function.
214 * And endio is either triggered by successful bio execution
215 * or the error handler of submit bio hook.
216 * So at this point, no matter what happened, we don't need
217 * to clean up epd->bio.
218 */
390ed29b 219 epd->bio_ctrl.bio = NULL;
bb58eb9e 220 }
f4340622 221 return ret;
bb58eb9e 222}
e2932ee0 223
6f0d04f8 224int __init extent_state_cache_init(void)
d1310b2e 225{
837e1972 226 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 227 sizeof(struct extent_state), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
229 if (!extent_state_cache)
230 return -ENOMEM;
6f0d04f8
JB
231 return 0;
232}
d1310b2e 233
6f0d04f8
JB
234int __init extent_io_init(void)
235{
837e1972 236 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 237 sizeof(struct extent_buffer), 0,
fba4b697 238 SLAB_MEM_SPREAD, NULL);
d1310b2e 239 if (!extent_buffer_cache)
6f0d04f8 240 return -ENOMEM;
9be3395b 241
8ac9f7c1 242 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
c3a3b19b 243 offsetof(struct btrfs_bio, bio),
8ac9f7c1 244 BIOSET_NEED_BVECS))
9be3395b 245 goto free_buffer_cache;
b208c2f7 246
8ac9f7c1 247 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
248 goto free_bioset;
249
d1310b2e
CM
250 return 0;
251
b208c2f7 252free_bioset:
8ac9f7c1 253 bioset_exit(&btrfs_bioset);
b208c2f7 254
9be3395b
CM
255free_buffer_cache:
256 kmem_cache_destroy(extent_buffer_cache);
257 extent_buffer_cache = NULL;
6f0d04f8
JB
258 return -ENOMEM;
259}
9be3395b 260
6f0d04f8
JB
261void __cold extent_state_cache_exit(void)
262{
263 btrfs_extent_state_leak_debug_check();
d1310b2e 264 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
265}
266
e67c718b 267void __cold extent_io_exit(void)
d1310b2e 268{
8c0a8537
KS
269 /*
270 * Make sure all delayed rcu free are flushed before we
271 * destroy caches.
272 */
273 rcu_barrier();
5598e900 274 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 275 bioset_exit(&btrfs_bioset);
d1310b2e
CM
276}
277
41a2ee75
JB
278/*
279 * For the file_extent_tree, we want to hold the inode lock when we lookup and
280 * update the disk_i_size, but lockdep will complain because our io_tree we hold
281 * the tree lock and get the inode lock when setting delalloc. These two things
282 * are unrelated, so make a class for the file_extent_tree so we don't get the
283 * two locking patterns mixed up.
284 */
285static struct lock_class_key file_extent_tree_class;
286
c258d6e3 287void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
288 struct extent_io_tree *tree, unsigned int owner,
289 void *private_data)
d1310b2e 290{
c258d6e3 291 tree->fs_info = fs_info;
6bef4d31 292 tree->state = RB_ROOT;
d1310b2e 293 tree->dirty_bytes = 0;
70dec807 294 spin_lock_init(&tree->lock);
c6100a4b 295 tree->private_data = private_data;
43eb5f29 296 tree->owner = owner;
41a2ee75
JB
297 if (owner == IO_TREE_INODE_FILE_EXTENT)
298 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 299}
d1310b2e 300
41e7acd3
NB
301void extent_io_tree_release(struct extent_io_tree *tree)
302{
303 spin_lock(&tree->lock);
304 /*
305 * Do a single barrier for the waitqueue_active check here, the state
306 * of the waitqueue should not change once extent_io_tree_release is
307 * called.
308 */
309 smp_mb();
310 while (!RB_EMPTY_ROOT(&tree->state)) {
311 struct rb_node *node;
312 struct extent_state *state;
313
314 node = rb_first(&tree->state);
315 state = rb_entry(node, struct extent_state, rb_node);
316 rb_erase(&state->rb_node, &tree->state);
317 RB_CLEAR_NODE(&state->rb_node);
318 /*
319 * btree io trees aren't supposed to have tasks waiting for
320 * changes in the flags of extent states ever.
321 */
322 ASSERT(!waitqueue_active(&state->wq));
323 free_extent_state(state);
324
325 cond_resched_lock(&tree->lock);
326 }
327 spin_unlock(&tree->lock);
328}
329
b2950863 330static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
331{
332 struct extent_state *state;
d1310b2e 333
3ba7ab22
MH
334 /*
335 * The given mask might be not appropriate for the slab allocator,
336 * drop the unsupported bits
337 */
338 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 339 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 340 if (!state)
d1310b2e
CM
341 return state;
342 state->state = 0;
47dc196a 343 state->failrec = NULL;
27a3507d 344 RB_CLEAR_NODE(&state->rb_node);
3fd63727 345 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 346 refcount_set(&state->refs, 1);
d1310b2e 347 init_waitqueue_head(&state->wq);
143bede5 348 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
349 return state;
350}
d1310b2e 351
4845e44f 352void free_extent_state(struct extent_state *state)
d1310b2e 353{
d1310b2e
CM
354 if (!state)
355 return;
b7ac31b7 356 if (refcount_dec_and_test(&state->refs)) {
27a3507d 357 WARN_ON(extent_state_in_tree(state));
3fd63727 358 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 359 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
360 kmem_cache_free(extent_state_cache, state);
361 }
362}
d1310b2e 363
f2071b21
FM
364static struct rb_node *tree_insert(struct rb_root *root,
365 struct rb_node *search_start,
366 u64 offset,
12cfbad9
FDBM
367 struct rb_node *node,
368 struct rb_node ***p_in,
369 struct rb_node **parent_in)
d1310b2e 370{
f2071b21 371 struct rb_node **p;
d397712b 372 struct rb_node *parent = NULL;
d1310b2e
CM
373 struct tree_entry *entry;
374
12cfbad9
FDBM
375 if (p_in && parent_in) {
376 p = *p_in;
377 parent = *parent_in;
378 goto do_insert;
379 }
380
f2071b21 381 p = search_start ? &search_start : &root->rb_node;
d397712b 382 while (*p) {
d1310b2e
CM
383 parent = *p;
384 entry = rb_entry(parent, struct tree_entry, rb_node);
385
386 if (offset < entry->start)
387 p = &(*p)->rb_left;
388 else if (offset > entry->end)
389 p = &(*p)->rb_right;
390 else
391 return parent;
392 }
393
12cfbad9 394do_insert:
d1310b2e
CM
395 rb_link_node(node, parent, p);
396 rb_insert_color(node, root);
397 return NULL;
398}
399
8666e638 400/**
3bed2da1
NB
401 * Search @tree for an entry that contains @offset. Such entry would have
402 * entry->start <= offset && entry->end >= offset.
8666e638 403 *
3bed2da1
NB
404 * @tree: the tree to search
405 * @offset: offset that should fall within an entry in @tree
406 * @next_ret: pointer to the first entry whose range ends after @offset
407 * @prev_ret: pointer to the first entry whose range begins before @offset
408 * @p_ret: pointer where new node should be anchored (used when inserting an
409 * entry in the tree)
410 * @parent_ret: points to entry which would have been the parent of the entry,
8666e638
NB
411 * containing @offset
412 *
413 * This function returns a pointer to the entry that contains @offset byte
414 * address. If no such entry exists, then NULL is returned and the other
415 * pointer arguments to the function are filled, otherwise the found entry is
416 * returned and other pointers are left untouched.
417 */
80ea96b1 418static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 419 struct rb_node **next_ret,
352646c7 420 struct rb_node **prev_ret,
12cfbad9
FDBM
421 struct rb_node ***p_ret,
422 struct rb_node **parent_ret)
d1310b2e 423{
80ea96b1 424 struct rb_root *root = &tree->state;
12cfbad9 425 struct rb_node **n = &root->rb_node;
d1310b2e
CM
426 struct rb_node *prev = NULL;
427 struct rb_node *orig_prev = NULL;
428 struct tree_entry *entry;
429 struct tree_entry *prev_entry = NULL;
430
12cfbad9
FDBM
431 while (*n) {
432 prev = *n;
433 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
434 prev_entry = entry;
435
436 if (offset < entry->start)
12cfbad9 437 n = &(*n)->rb_left;
d1310b2e 438 else if (offset > entry->end)
12cfbad9 439 n = &(*n)->rb_right;
d397712b 440 else
12cfbad9 441 return *n;
d1310b2e
CM
442 }
443
12cfbad9
FDBM
444 if (p_ret)
445 *p_ret = n;
446 if (parent_ret)
447 *parent_ret = prev;
448
352646c7 449 if (next_ret) {
d1310b2e 450 orig_prev = prev;
d397712b 451 while (prev && offset > prev_entry->end) {
d1310b2e
CM
452 prev = rb_next(prev);
453 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
454 }
352646c7 455 *next_ret = prev;
d1310b2e
CM
456 prev = orig_prev;
457 }
458
352646c7 459 if (prev_ret) {
d1310b2e 460 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 461 while (prev && offset < prev_entry->start) {
d1310b2e
CM
462 prev = rb_prev(prev);
463 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
464 }
352646c7 465 *prev_ret = prev;
d1310b2e
CM
466 }
467 return NULL;
468}
469
12cfbad9
FDBM
470static inline struct rb_node *
471tree_search_for_insert(struct extent_io_tree *tree,
472 u64 offset,
473 struct rb_node ***p_ret,
474 struct rb_node **parent_ret)
d1310b2e 475{
352646c7 476 struct rb_node *next= NULL;
d1310b2e 477 struct rb_node *ret;
70dec807 478
352646c7 479 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 480 if (!ret)
352646c7 481 return next;
d1310b2e
CM
482 return ret;
483}
484
12cfbad9
FDBM
485static inline struct rb_node *tree_search(struct extent_io_tree *tree,
486 u64 offset)
487{
488 return tree_search_for_insert(tree, offset, NULL, NULL);
489}
490
d1310b2e
CM
491/*
492 * utility function to look for merge candidates inside a given range.
493 * Any extents with matching state are merged together into a single
494 * extent in the tree. Extents with EXTENT_IO in their state field
495 * are not merged because the end_io handlers need to be able to do
496 * operations on them without sleeping (or doing allocations/splits).
497 *
498 * This should be called with the tree lock held.
499 */
1bf85046
JM
500static void merge_state(struct extent_io_tree *tree,
501 struct extent_state *state)
d1310b2e
CM
502{
503 struct extent_state *other;
504 struct rb_node *other_node;
505
8882679e 506 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 507 return;
d1310b2e
CM
508
509 other_node = rb_prev(&state->rb_node);
510 if (other_node) {
511 other = rb_entry(other_node, struct extent_state, rb_node);
512 if (other->end == state->start - 1 &&
513 other->state == state->state) {
5c848198
NB
514 if (tree->private_data &&
515 is_data_inode(tree->private_data))
516 btrfs_merge_delalloc_extent(tree->private_data,
517 state, other);
d1310b2e 518 state->start = other->start;
d1310b2e 519 rb_erase(&other->rb_node, &tree->state);
27a3507d 520 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
521 free_extent_state(other);
522 }
523 }
524 other_node = rb_next(&state->rb_node);
525 if (other_node) {
526 other = rb_entry(other_node, struct extent_state, rb_node);
527 if (other->start == state->end + 1 &&
528 other->state == state->state) {
5c848198
NB
529 if (tree->private_data &&
530 is_data_inode(tree->private_data))
531 btrfs_merge_delalloc_extent(tree->private_data,
532 state, other);
df98b6e2 533 state->end = other->end;
df98b6e2 534 rb_erase(&other->rb_node, &tree->state);
27a3507d 535 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 536 free_extent_state(other);
d1310b2e
CM
537 }
538 }
d1310b2e
CM
539}
540
3150b699 541static void set_state_bits(struct extent_io_tree *tree,
f97e27e9 542 struct extent_state *state, u32 *bits,
d38ed27f 543 struct extent_changeset *changeset);
3150b699 544
d1310b2e
CM
545/*
546 * insert an extent_state struct into the tree. 'bits' are set on the
547 * struct before it is inserted.
548 *
549 * This may return -EEXIST if the extent is already there, in which case the
550 * state struct is freed.
551 *
552 * The tree lock is not taken internally. This is a utility function and
553 * probably isn't what you want to call (see set/clear_extent_bit).
554 */
555static int insert_state(struct extent_io_tree *tree,
556 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
557 struct rb_node ***p,
558 struct rb_node **parent,
f97e27e9 559 u32 *bits, struct extent_changeset *changeset)
d1310b2e
CM
560{
561 struct rb_node *node;
562
2792237d
DS
563 if (end < start) {
564 btrfs_err(tree->fs_info,
565 "insert state: end < start %llu %llu", end, start);
566 WARN_ON(1);
567 }
d1310b2e
CM
568 state->start = start;
569 state->end = end;
9ed74f2d 570
d38ed27f 571 set_state_bits(tree, state, bits, changeset);
3150b699 572
f2071b21 573 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
574 if (node) {
575 struct extent_state *found;
576 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
577 btrfs_err(tree->fs_info,
578 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 579 found->start, found->end, start, end);
d1310b2e
CM
580 return -EEXIST;
581 }
582 merge_state(tree, state);
583 return 0;
584}
585
586/*
587 * split a given extent state struct in two, inserting the preallocated
588 * struct 'prealloc' as the newly created second half. 'split' indicates an
589 * offset inside 'orig' where it should be split.
590 *
591 * Before calling,
592 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
593 * are two extent state structs in the tree:
594 * prealloc: [orig->start, split - 1]
595 * orig: [ split, orig->end ]
596 *
597 * The tree locks are not taken by this function. They need to be held
598 * by the caller.
599 */
600static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
601 struct extent_state *prealloc, u64 split)
602{
603 struct rb_node *node;
9ed74f2d 604
abbb55f4
NB
605 if (tree->private_data && is_data_inode(tree->private_data))
606 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 607
d1310b2e
CM
608 prealloc->start = orig->start;
609 prealloc->end = split - 1;
610 prealloc->state = orig->state;
611 orig->start = split;
612
f2071b21
FM
613 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
614 &prealloc->rb_node, NULL, NULL);
d1310b2e 615 if (node) {
d1310b2e
CM
616 free_extent_state(prealloc);
617 return -EEXIST;
618 }
619 return 0;
620}
621
cdc6a395
LZ
622static struct extent_state *next_state(struct extent_state *state)
623{
624 struct rb_node *next = rb_next(&state->rb_node);
625 if (next)
626 return rb_entry(next, struct extent_state, rb_node);
627 else
628 return NULL;
629}
630
d1310b2e
CM
631/*
632 * utility function to clear some bits in an extent state struct.
52042d8e 633 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
634 *
635 * If no bits are set on the state struct after clearing things, the
636 * struct is freed and removed from the tree
637 */
cdc6a395
LZ
638static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
639 struct extent_state *state,
f97e27e9 640 u32 *bits, int wake,
fefdc557 641 struct extent_changeset *changeset)
d1310b2e 642{
cdc6a395 643 struct extent_state *next;
f97e27e9 644 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 645 int ret;
d1310b2e 646
0ca1f7ce 647 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
648 u64 range = state->end - state->start + 1;
649 WARN_ON(range > tree->dirty_bytes);
650 tree->dirty_bytes -= range;
651 }
a36bb5f9
NB
652
653 if (tree->private_data && is_data_inode(tree->private_data))
654 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
655
57599c7e
DS
656 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
657 BUG_ON(ret < 0);
32c00aff 658 state->state &= ~bits_to_clear;
d1310b2e
CM
659 if (wake)
660 wake_up(&state->wq);
0ca1f7ce 661 if (state->state == 0) {
cdc6a395 662 next = next_state(state);
27a3507d 663 if (extent_state_in_tree(state)) {
d1310b2e 664 rb_erase(&state->rb_node, &tree->state);
27a3507d 665 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
666 free_extent_state(state);
667 } else {
668 WARN_ON(1);
669 }
670 } else {
671 merge_state(tree, state);
cdc6a395 672 next = next_state(state);
d1310b2e 673 }
cdc6a395 674 return next;
d1310b2e
CM
675}
676
8233767a
XG
677static struct extent_state *
678alloc_extent_state_atomic(struct extent_state *prealloc)
679{
680 if (!prealloc)
681 prealloc = alloc_extent_state(GFP_ATOMIC);
682
683 return prealloc;
684}
685
48a3b636 686static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 687{
29b665cc 688 btrfs_panic(tree->fs_info, err,
05912a3c 689 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
690}
691
d1310b2e
CM
692/*
693 * clear some bits on a range in the tree. This may require splitting
694 * or inserting elements in the tree, so the gfp mask is used to
695 * indicate which allocations or sleeping are allowed.
696 *
697 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
698 * the given range from the tree regardless of state (ie for truncate).
699 *
700 * the range [start, end] is inclusive.
701 *
6763af84 702 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 703 */
66b0c887 704int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9
QW
705 u32 bits, int wake, int delete,
706 struct extent_state **cached_state,
707 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
708{
709 struct extent_state *state;
2c64c53d 710 struct extent_state *cached;
d1310b2e
CM
711 struct extent_state *prealloc = NULL;
712 struct rb_node *node;
5c939df5 713 u64 last_end;
d1310b2e 714 int err;
2ac55d41 715 int clear = 0;
d1310b2e 716
a5dee37d 717 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 718 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 719
7ee9e440
JB
720 if (bits & EXTENT_DELALLOC)
721 bits |= EXTENT_NORESERVE;
722
0ca1f7ce
YZ
723 if (delete)
724 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 725
8882679e 726 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 727 clear = 1;
d1310b2e 728again:
d0164adc 729 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
730 /*
731 * Don't care for allocation failure here because we might end
732 * up not needing the pre-allocated extent state at all, which
733 * is the case if we only have in the tree extent states that
734 * cover our input range and don't cover too any other range.
735 * If we end up needing a new extent state we allocate it later.
736 */
d1310b2e 737 prealloc = alloc_extent_state(mask);
d1310b2e
CM
738 }
739
cad321ad 740 spin_lock(&tree->lock);
2c64c53d
CM
741 if (cached_state) {
742 cached = *cached_state;
2ac55d41
JB
743
744 if (clear) {
745 *cached_state = NULL;
746 cached_state = NULL;
747 }
748
27a3507d
FM
749 if (cached && extent_state_in_tree(cached) &&
750 cached->start <= start && cached->end > start) {
2ac55d41 751 if (clear)
b7ac31b7 752 refcount_dec(&cached->refs);
2c64c53d 753 state = cached;
42daec29 754 goto hit_next;
2c64c53d 755 }
2ac55d41
JB
756 if (clear)
757 free_extent_state(cached);
2c64c53d 758 }
d1310b2e
CM
759 /*
760 * this search will find the extents that end after
761 * our range starts
762 */
80ea96b1 763 node = tree_search(tree, start);
d1310b2e
CM
764 if (!node)
765 goto out;
766 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 767hit_next:
d1310b2e
CM
768 if (state->start > end)
769 goto out;
770 WARN_ON(state->end < start);
5c939df5 771 last_end = state->end;
d1310b2e 772
0449314a 773 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
774 if (!(state->state & bits)) {
775 state = next_state(state);
0449314a 776 goto next;
cdc6a395 777 }
0449314a 778
d1310b2e
CM
779 /*
780 * | ---- desired range ---- |
781 * | state | or
782 * | ------------- state -------------- |
783 *
784 * We need to split the extent we found, and may flip
785 * bits on second half.
786 *
787 * If the extent we found extends past our range, we
788 * just split and search again. It'll get split again
789 * the next time though.
790 *
791 * If the extent we found is inside our range, we clear
792 * the desired bit on it.
793 */
794
795 if (state->start < start) {
8233767a
XG
796 prealloc = alloc_extent_state_atomic(prealloc);
797 BUG_ON(!prealloc);
d1310b2e 798 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
799 if (err)
800 extent_io_tree_panic(tree, err);
801
d1310b2e
CM
802 prealloc = NULL;
803 if (err)
804 goto out;
805 if (state->end <= end) {
fefdc557
QW
806 state = clear_state_bit(tree, state, &bits, wake,
807 changeset);
d1ac6e41 808 goto next;
d1310b2e
CM
809 }
810 goto search_again;
811 }
812 /*
813 * | ---- desired range ---- |
814 * | state |
815 * We need to split the extent, and clear the bit
816 * on the first half
817 */
818 if (state->start <= end && state->end > end) {
8233767a
XG
819 prealloc = alloc_extent_state_atomic(prealloc);
820 BUG_ON(!prealloc);
d1310b2e 821 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
822 if (err)
823 extent_io_tree_panic(tree, err);
824
d1310b2e
CM
825 if (wake)
826 wake_up(&state->wq);
42daec29 827
fefdc557 828 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 829
d1310b2e
CM
830 prealloc = NULL;
831 goto out;
832 }
42daec29 833
fefdc557 834 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 835next:
5c939df5
YZ
836 if (last_end == (u64)-1)
837 goto out;
838 start = last_end + 1;
cdc6a395 839 if (start <= end && state && !need_resched())
692e5759 840 goto hit_next;
d1310b2e
CM
841
842search_again:
843 if (start > end)
844 goto out;
cad321ad 845 spin_unlock(&tree->lock);
d0164adc 846 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
847 cond_resched();
848 goto again;
7ab5cb2a
DS
849
850out:
851 spin_unlock(&tree->lock);
852 if (prealloc)
853 free_extent_state(prealloc);
854
855 return 0;
856
d1310b2e 857}
d1310b2e 858
143bede5
JM
859static void wait_on_state(struct extent_io_tree *tree,
860 struct extent_state *state)
641f5219
CH
861 __releases(tree->lock)
862 __acquires(tree->lock)
d1310b2e
CM
863{
864 DEFINE_WAIT(wait);
865 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 866 spin_unlock(&tree->lock);
d1310b2e 867 schedule();
cad321ad 868 spin_lock(&tree->lock);
d1310b2e 869 finish_wait(&state->wq, &wait);
d1310b2e
CM
870}
871
872/*
873 * waits for one or more bits to clear on a range in the state tree.
874 * The range [start, end] is inclusive.
875 * The tree lock is taken by this function
876 */
41074888 877static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 878 u32 bits)
d1310b2e
CM
879{
880 struct extent_state *state;
881 struct rb_node *node;
882
a5dee37d 883 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 884
cad321ad 885 spin_lock(&tree->lock);
d1310b2e
CM
886again:
887 while (1) {
888 /*
889 * this search will find all the extents that end after
890 * our range starts
891 */
80ea96b1 892 node = tree_search(tree, start);
c50d3e71 893process_node:
d1310b2e
CM
894 if (!node)
895 break;
896
897 state = rb_entry(node, struct extent_state, rb_node);
898
899 if (state->start > end)
900 goto out;
901
902 if (state->state & bits) {
903 start = state->start;
b7ac31b7 904 refcount_inc(&state->refs);
d1310b2e
CM
905 wait_on_state(tree, state);
906 free_extent_state(state);
907 goto again;
908 }
909 start = state->end + 1;
910
911 if (start > end)
912 break;
913
c50d3e71
FM
914 if (!cond_resched_lock(&tree->lock)) {
915 node = rb_next(node);
916 goto process_node;
917 }
d1310b2e
CM
918 }
919out:
cad321ad 920 spin_unlock(&tree->lock);
d1310b2e 921}
d1310b2e 922
1bf85046 923static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 924 struct extent_state *state,
f97e27e9 925 u32 *bits, struct extent_changeset *changeset)
d1310b2e 926{
f97e27e9 927 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 928 int ret;
9ed74f2d 929
e06a1fc9
NB
930 if (tree->private_data && is_data_inode(tree->private_data))
931 btrfs_set_delalloc_extent(tree->private_data, state, bits);
932
0ca1f7ce 933 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
934 u64 range = state->end - state->start + 1;
935 tree->dirty_bytes += range;
936 }
57599c7e
DS
937 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
938 BUG_ON(ret < 0);
0ca1f7ce 939 state->state |= bits_to_set;
d1310b2e
CM
940}
941
e38e2ed7
FM
942static void cache_state_if_flags(struct extent_state *state,
943 struct extent_state **cached_ptr,
9ee49a04 944 unsigned flags)
2c64c53d
CM
945{
946 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 947 if (!flags || (state->state & flags)) {
2c64c53d 948 *cached_ptr = state;
b7ac31b7 949 refcount_inc(&state->refs);
2c64c53d
CM
950 }
951 }
952}
953
e38e2ed7
FM
954static void cache_state(struct extent_state *state,
955 struct extent_state **cached_ptr)
956{
957 return cache_state_if_flags(state, cached_ptr,
8882679e 958 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
959}
960
d1310b2e 961/*
1edbb734
CM
962 * set some bits on a range in the tree. This may require allocations or
963 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 964 *
1edbb734
CM
965 * If any of the exclusive bits are set, this will fail with -EEXIST if some
966 * part of the range already has the desired bits set. The start of the
967 * existing range is returned in failed_start in this case.
d1310b2e 968 *
1edbb734 969 * [start, end] is inclusive This takes the tree lock.
d1310b2e 970 */
f97e27e9
QW
971int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
972 u32 exclusive_bits, u64 *failed_start,
1cab5e72
NB
973 struct extent_state **cached_state, gfp_t mask,
974 struct extent_changeset *changeset)
d1310b2e
CM
975{
976 struct extent_state *state;
977 struct extent_state *prealloc = NULL;
978 struct rb_node *node;
12cfbad9
FDBM
979 struct rb_node **p;
980 struct rb_node *parent;
d1310b2e 981 int err = 0;
d1310b2e
CM
982 u64 last_start;
983 u64 last_end;
42daec29 984
a5dee37d 985 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 986 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 987
3f6bb4ae
QW
988 if (exclusive_bits)
989 ASSERT(failed_start);
990 else
991 ASSERT(failed_start == NULL);
d1310b2e 992again:
d0164adc 993 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
994 /*
995 * Don't care for allocation failure here because we might end
996 * up not needing the pre-allocated extent state at all, which
997 * is the case if we only have in the tree extent states that
998 * cover our input range and don't cover too any other range.
999 * If we end up needing a new extent state we allocate it later.
1000 */
d1310b2e 1001 prealloc = alloc_extent_state(mask);
d1310b2e
CM
1002 }
1003
cad321ad 1004 spin_lock(&tree->lock);
9655d298
CM
1005 if (cached_state && *cached_state) {
1006 state = *cached_state;
df98b6e2 1007 if (state->start <= start && state->end > start &&
27a3507d 1008 extent_state_in_tree(state)) {
9655d298
CM
1009 node = &state->rb_node;
1010 goto hit_next;
1011 }
1012 }
d1310b2e
CM
1013 /*
1014 * this search will find all the extents that end after
1015 * our range starts.
1016 */
12cfbad9 1017 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1018 if (!node) {
8233767a
XG
1019 prealloc = alloc_extent_state_atomic(prealloc);
1020 BUG_ON(!prealloc);
12cfbad9 1021 err = insert_state(tree, prealloc, start, end,
d38ed27f 1022 &p, &parent, &bits, changeset);
c2d904e0
JM
1023 if (err)
1024 extent_io_tree_panic(tree, err);
1025
c42ac0bc 1026 cache_state(prealloc, cached_state);
d1310b2e 1027 prealloc = NULL;
d1310b2e
CM
1028 goto out;
1029 }
d1310b2e 1030 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1031hit_next:
d1310b2e
CM
1032 last_start = state->start;
1033 last_end = state->end;
1034
1035 /*
1036 * | ---- desired range ---- |
1037 * | state |
1038 *
1039 * Just lock what we found and keep going
1040 */
1041 if (state->start == start && state->end <= end) {
1edbb734 1042 if (state->state & exclusive_bits) {
d1310b2e
CM
1043 *failed_start = state->start;
1044 err = -EEXIST;
1045 goto out;
1046 }
42daec29 1047
d38ed27f 1048 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1049 cache_state(state, cached_state);
d1310b2e 1050 merge_state(tree, state);
5c939df5
YZ
1051 if (last_end == (u64)-1)
1052 goto out;
1053 start = last_end + 1;
d1ac6e41
LB
1054 state = next_state(state);
1055 if (start < end && state && state->start == start &&
1056 !need_resched())
1057 goto hit_next;
d1310b2e
CM
1058 goto search_again;
1059 }
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 * or
1065 * | ------------- state -------------- |
1066 *
1067 * We need to split the extent we found, and may flip bits on
1068 * second half.
1069 *
1070 * If the extent we found extends past our
1071 * range, we just split and search again. It'll get split
1072 * again the next time though.
1073 *
1074 * If the extent we found is inside our range, we set the
1075 * desired bit on it.
1076 */
1077 if (state->start < start) {
1edbb734 1078 if (state->state & exclusive_bits) {
d1310b2e
CM
1079 *failed_start = start;
1080 err = -EEXIST;
1081 goto out;
1082 }
8233767a 1083
55ffaabe
FM
1084 /*
1085 * If this extent already has all the bits we want set, then
1086 * skip it, not necessary to split it or do anything with it.
1087 */
1088 if ((state->state & bits) == bits) {
1089 start = state->end + 1;
1090 cache_state(state, cached_state);
1091 goto search_again;
1092 }
1093
8233767a
XG
1094 prealloc = alloc_extent_state_atomic(prealloc);
1095 BUG_ON(!prealloc);
d1310b2e 1096 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
1099
d1310b2e
CM
1100 prealloc = NULL;
1101 if (err)
1102 goto out;
1103 if (state->end <= end) {
d38ed27f 1104 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1105 cache_state(state, cached_state);
d1310b2e 1106 merge_state(tree, state);
5c939df5
YZ
1107 if (last_end == (u64)-1)
1108 goto out;
1109 start = last_end + 1;
d1ac6e41
LB
1110 state = next_state(state);
1111 if (start < end && state && state->start == start &&
1112 !need_resched())
1113 goto hit_next;
d1310b2e
CM
1114 }
1115 goto search_again;
1116 }
1117 /*
1118 * | ---- desired range ---- |
1119 * | state | or | state |
1120 *
1121 * There's a hole, we need to insert something in it and
1122 * ignore the extent we found.
1123 */
1124 if (state->start > start) {
1125 u64 this_end;
1126 if (end < last_start)
1127 this_end = end;
1128 else
d397712b 1129 this_end = last_start - 1;
8233767a
XG
1130
1131 prealloc = alloc_extent_state_atomic(prealloc);
1132 BUG_ON(!prealloc);
c7f895a2
XG
1133
1134 /*
1135 * Avoid to free 'prealloc' if it can be merged with
1136 * the later extent.
1137 */
d1310b2e 1138 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1139 NULL, NULL, &bits, changeset);
c2d904e0
JM
1140 if (err)
1141 extent_io_tree_panic(tree, err);
1142
9ed74f2d
JB
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
d1310b2e
CM
1145 start = this_end + 1;
1146 goto search_again;
1147 }
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 * We need to split the extent, and set the bit
1152 * on the first half
1153 */
1154 if (state->start <= end && state->end > end) {
1edbb734 1155 if (state->state & exclusive_bits) {
d1310b2e
CM
1156 *failed_start = start;
1157 err = -EEXIST;
1158 goto out;
1159 }
8233767a
XG
1160
1161 prealloc = alloc_extent_state_atomic(prealloc);
1162 BUG_ON(!prealloc);
d1310b2e 1163 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1164 if (err)
1165 extent_io_tree_panic(tree, err);
d1310b2e 1166
d38ed27f 1167 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1168 cache_state(prealloc, cached_state);
d1310b2e
CM
1169 merge_state(tree, prealloc);
1170 prealloc = NULL;
1171 goto out;
1172 }
1173
b5a4ba14
DS
1174search_again:
1175 if (start > end)
1176 goto out;
1177 spin_unlock(&tree->lock);
1178 if (gfpflags_allow_blocking(mask))
1179 cond_resched();
1180 goto again;
d1310b2e
CM
1181
1182out:
cad321ad 1183 spin_unlock(&tree->lock);
d1310b2e
CM
1184 if (prealloc)
1185 free_extent_state(prealloc);
1186
1187 return err;
1188
d1310b2e 1189}
d1310b2e 1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1210 u32 bits, u32 clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1411 u32 bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1cab5e72
NB
1421 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
d38ed27f
QW
1423}
1424
4ca73656 1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1426 u32 bits)
4ca73656 1427{
1cab5e72
NB
1428 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
4ca73656
NB
1430}
1431
fefdc557 1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1433 u32 bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 1441 u32 bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
1cab5e72
NB
1464 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
1cab5e72
NB
1482 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636 1528static struct extent_state *
f97e27e9 1529find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
d7fc640e
CM
1530{
1531 struct rb_node *node;
1532 struct extent_state *state;
1533
1534 /*
1535 * this search will find all the extents that end after
1536 * our range starts.
1537 */
1538 node = tree_search(tree, start);
d397712b 1539 if (!node)
d7fc640e 1540 goto out;
d7fc640e 1541
d397712b 1542 while (1) {
d7fc640e 1543 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1544 if (state->end >= start && (state->state & bits))
d7fc640e 1545 return state;
d397712b 1546
d7fc640e
CM
1547 node = rb_next(node);
1548 if (!node)
1549 break;
1550 }
1551out:
1552 return NULL;
1553}
d7fc640e 1554
69261c4b 1555/*
03509b78 1556 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1557 *
03509b78
QW
1558 * Note: If there are multiple bits set in @bits, any of them will match.
1559 *
1560 * Return 0 if we find something, and update @start_ret and @end_ret.
1561 * Return 1 if we found nothing.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1564 u64 *start_ret, u64 *end_ret, u32 bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75 1599/**
3bed2da1
NB
1600 * Find a contiguous area of bits
1601 *
1602 * @tree: io tree to check
1603 * @start: offset to start the search from
1604 * @start_ret: the first offset we found with the bits set
1605 * @end_ret: the final contiguous range of the bits that were set
1606 * @bits: bits to look for
41a2ee75
JB
1607 *
1608 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1609 * to set bits appropriately, and then merge them again. During this time it
1610 * will drop the tree->lock, so use this helper if you want to find the actual
1611 * contiguous area for given bits. We will search to the first bit we find, and
1612 * then walk down the tree until we find a non-contiguous area. The area
1613 * returned will be the full contiguous area with the bits set.
1614 */
1615int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1616 u64 *start_ret, u64 *end_ret, u32 bits)
41a2ee75
JB
1617{
1618 struct extent_state *state;
1619 int ret = 1;
1620
1621 spin_lock(&tree->lock);
1622 state = find_first_extent_bit_state(tree, start, bits);
1623 if (state) {
1624 *start_ret = state->start;
1625 *end_ret = state->end;
1626 while ((state = next_state(state)) != NULL) {
1627 if (state->start > (*end_ret + 1))
1628 break;
1629 *end_ret = state->end;
1630 }
1631 ret = 0;
1632 }
1633 spin_unlock(&tree->lock);
1634 return ret;
1635}
1636
45bfcfc1 1637/**
3bed2da1
NB
1638 * Find the first range that has @bits not set. This range could start before
1639 * @start.
45bfcfc1 1640 *
3bed2da1
NB
1641 * @tree: the tree to search
1642 * @start: offset at/after which the found extent should start
1643 * @start_ret: records the beginning of the range
1644 * @end_ret: records the end of the range (inclusive)
1645 * @bits: the set of bits which must be unset
45bfcfc1
NB
1646 *
1647 * Since unallocated range is also considered one which doesn't have the bits
1648 * set it's possible that @end_ret contains -1, this happens in case the range
1649 * spans (last_range_end, end of device]. In this case it's up to the caller to
1650 * trim @end_ret to the appropriate size.
1651 */
1652void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
f97e27e9 1653 u64 *start_ret, u64 *end_ret, u32 bits)
45bfcfc1
NB
1654{
1655 struct extent_state *state;
1656 struct rb_node *node, *prev = NULL, *next;
1657
1658 spin_lock(&tree->lock);
1659
1660 /* Find first extent with bits cleared */
1661 while (1) {
1662 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1663 if (!node && !next && !prev) {
1664 /*
1665 * Tree is completely empty, send full range and let
1666 * caller deal with it
1667 */
1668 *start_ret = 0;
1669 *end_ret = -1;
1670 goto out;
1671 } else if (!node && !next) {
1672 /*
1673 * We are past the last allocated chunk, set start at
1674 * the end of the last extent.
1675 */
1676 state = rb_entry(prev, struct extent_state, rb_node);
1677 *start_ret = state->end + 1;
1678 *end_ret = -1;
1679 goto out;
1680 } else if (!node) {
45bfcfc1 1681 node = next;
45bfcfc1 1682 }
1eaebb34
NB
1683 /*
1684 * At this point 'node' either contains 'start' or start is
1685 * before 'node'
1686 */
45bfcfc1 1687 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1688
1689 if (in_range(start, state->start, state->end - state->start + 1)) {
1690 if (state->state & bits) {
1691 /*
1692 * |--range with bits sets--|
1693 * |
1694 * start
1695 */
1696 start = state->end + 1;
1697 } else {
1698 /*
1699 * 'start' falls within a range that doesn't
1700 * have the bits set, so take its start as
1701 * the beginning of the desired range
1702 *
1703 * |--range with bits cleared----|
1704 * |
1705 * start
1706 */
1707 *start_ret = state->start;
1708 break;
1709 }
45bfcfc1 1710 } else {
1eaebb34
NB
1711 /*
1712 * |---prev range---|---hole/unset---|---node range---|
1713 * |
1714 * start
1715 *
1716 * or
1717 *
1718 * |---hole/unset--||--first node--|
1719 * 0 |
1720 * start
1721 */
1722 if (prev) {
1723 state = rb_entry(prev, struct extent_state,
1724 rb_node);
1725 *start_ret = state->end + 1;
1726 } else {
1727 *start_ret = 0;
1728 }
45bfcfc1
NB
1729 break;
1730 }
1731 }
1732
1733 /*
1734 * Find the longest stretch from start until an entry which has the
1735 * bits set
1736 */
1737 while (1) {
1738 state = rb_entry(node, struct extent_state, rb_node);
1739 if (state->end >= start && !(state->state & bits)) {
1740 *end_ret = state->end;
1741 } else {
1742 *end_ret = state->start - 1;
1743 break;
1744 }
1745
1746 node = rb_next(node);
1747 if (!node)
1748 break;
1749 }
1750out:
1751 spin_unlock(&tree->lock);
1752}
1753
d352ac68
CM
1754/*
1755 * find a contiguous range of bytes in the file marked as delalloc, not
1756 * more than 'max_bytes'. start and end are used to return the range,
1757 *
3522e903 1758 * true is returned if we find something, false if nothing was in the tree
d352ac68 1759 */
083e75e7
JB
1760bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1761 u64 *end, u64 max_bytes,
1762 struct extent_state **cached_state)
d1310b2e
CM
1763{
1764 struct rb_node *node;
1765 struct extent_state *state;
1766 u64 cur_start = *start;
3522e903 1767 bool found = false;
d1310b2e
CM
1768 u64 total_bytes = 0;
1769
cad321ad 1770 spin_lock(&tree->lock);
c8b97818 1771
d1310b2e
CM
1772 /*
1773 * this search will find all the extents that end after
1774 * our range starts.
1775 */
80ea96b1 1776 node = tree_search(tree, cur_start);
2b114d1d 1777 if (!node) {
3522e903 1778 *end = (u64)-1;
d1310b2e
CM
1779 goto out;
1780 }
1781
d397712b 1782 while (1) {
d1310b2e 1783 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1784 if (found && (state->start != cur_start ||
1785 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1786 goto out;
1787 }
1788 if (!(state->state & EXTENT_DELALLOC)) {
1789 if (!found)
1790 *end = state->end;
1791 goto out;
1792 }
c2a128d2 1793 if (!found) {
d1310b2e 1794 *start = state->start;
c2a128d2 1795 *cached_state = state;
b7ac31b7 1796 refcount_inc(&state->refs);
c2a128d2 1797 }
3522e903 1798 found = true;
d1310b2e
CM
1799 *end = state->end;
1800 cur_start = state->end + 1;
1801 node = rb_next(node);
d1310b2e 1802 total_bytes += state->end - state->start + 1;
7bf811a5 1803 if (total_bytes >= max_bytes)
573aecaf 1804 break;
573aecaf 1805 if (!node)
d1310b2e
CM
1806 break;
1807 }
1808out:
cad321ad 1809 spin_unlock(&tree->lock);
d1310b2e
CM
1810 return found;
1811}
1812
ed8f13bf
QW
1813/*
1814 * Process one page for __process_pages_contig().
1815 *
1816 * Return >0 if we hit @page == @locked_page.
1817 * Return 0 if we updated the page status.
1818 * Return -EGAIN if the we need to try again.
1819 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1820 */
e38992be
QW
1821static int process_one_page(struct btrfs_fs_info *fs_info,
1822 struct address_space *mapping,
ed8f13bf 1823 struct page *page, struct page *locked_page,
e38992be 1824 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 1825{
e38992be
QW
1826 u32 len;
1827
1828 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1829 len = end + 1 - start;
1830
ed8f13bf 1831 if (page_ops & PAGE_SET_ORDERED)
b945a463 1832 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 1833 if (page_ops & PAGE_SET_ERROR)
e38992be 1834 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 1835 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
1836 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1837 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
1838 }
1839 if (page_ops & PAGE_END_WRITEBACK)
e38992be 1840 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
1841
1842 if (page == locked_page)
1843 return 1;
1844
ed8f13bf 1845 if (page_ops & PAGE_LOCK) {
1e1de387
QW
1846 int ret;
1847
1848 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1849 if (ret)
1850 return ret;
ed8f13bf 1851 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 1852 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1853 return -EAGAIN;
1854 }
1855 }
1856 if (page_ops & PAGE_UNLOCK)
1e1de387 1857 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
1858 return 0;
1859}
1860
da2c7009
LB
1861static int __process_pages_contig(struct address_space *mapping,
1862 struct page *locked_page,
98af9ab1 1863 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
1864 u64 *processed_end)
1865{
e38992be 1866 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
1867 pgoff_t start_index = start >> PAGE_SHIFT;
1868 pgoff_t end_index = end >> PAGE_SHIFT;
1869 pgoff_t index = start_index;
1870 unsigned long nr_pages = end_index - start_index + 1;
1871 unsigned long pages_processed = 0;
1872 struct page *pages[16];
1873 int err = 0;
1874 int i;
1875
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(processed_end && *processed_end == start);
1879 }
1880
1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1882 mapping_set_error(mapping, -EIO);
1883
1884 while (nr_pages > 0) {
1885 int found_pages;
1886
1887 found_pages = find_get_pages_contig(mapping, index,
1888 min_t(unsigned long,
1889 nr_pages, ARRAY_SIZE(pages)), pages);
1890 if (found_pages == 0) {
1891 /*
1892 * Only if we're going to lock these pages, we can find
1893 * nothing at @index.
1894 */
1895 ASSERT(page_ops & PAGE_LOCK);
1896 err = -EAGAIN;
1897 goto out;
1898 }
1899
1900 for (i = 0; i < found_pages; i++) {
1901 int process_ret;
1902
e38992be
QW
1903 process_ret = process_one_page(fs_info, mapping,
1904 pages[i], locked_page, page_ops,
1905 start, end);
ed8f13bf
QW
1906 if (process_ret < 0) {
1907 for (; i < found_pages; i++)
1908 put_page(pages[i]);
1909 err = -EAGAIN;
1910 goto out;
1911 }
1912 put_page(pages[i]);
1913 pages_processed++;
1914 }
1915 nr_pages -= found_pages;
1916 index += found_pages;
1917 cond_resched();
1918 }
1919out:
1920 if (err && processed_end) {
1921 /*
1922 * Update @processed_end. I know this is awful since it has
1923 * two different return value patterns (inclusive vs exclusive).
1924 *
1925 * But the exclusive pattern is necessary if @start is 0, or we
1926 * underflow and check against processed_end won't work as
1927 * expected.
1928 */
1929 if (pages_processed)
1930 *processed_end = min(end,
1931 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1932 else
1933 *processed_end = start;
1934 }
1935 return err;
1936}
da2c7009 1937
143bede5
JM
1938static noinline void __unlock_for_delalloc(struct inode *inode,
1939 struct page *locked_page,
1940 u64 start, u64 end)
c8b97818 1941{
09cbfeaf
KS
1942 unsigned long index = start >> PAGE_SHIFT;
1943 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1944
76c0021d 1945 ASSERT(locked_page);
c8b97818 1946 if (index == locked_page->index && end_index == index)
143bede5 1947 return;
c8b97818 1948
98af9ab1 1949 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 1950 PAGE_UNLOCK, NULL);
c8b97818
CM
1951}
1952
1953static noinline int lock_delalloc_pages(struct inode *inode,
1954 struct page *locked_page,
1955 u64 delalloc_start,
1956 u64 delalloc_end)
1957{
09cbfeaf 1958 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 1959 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 1960 u64 processed_end = delalloc_start;
c8b97818 1961 int ret;
c8b97818 1962
76c0021d 1963 ASSERT(locked_page);
c8b97818
CM
1964 if (index == locked_page->index && index == end_index)
1965 return 0;
1966
98af9ab1
QW
1967 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1968 delalloc_end, PAGE_LOCK, &processed_end);
1969 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 1970 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 1971 processed_end);
c8b97818
CM
1972 return ret;
1973}
1974
1975/*
3522e903 1976 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 1977 * more than @max_bytes.
c8b97818 1978 *
2749f7ef
QW
1979 * @start: The original start bytenr to search.
1980 * Will store the extent range start bytenr.
1981 * @end: The original end bytenr of the search range
1982 * Will store the extent range end bytenr.
1983 *
1984 * Return true if we find a delalloc range which starts inside the original
1985 * range, and @start/@end will store the delalloc range start/end.
1986 *
1987 * Return false if we can't find any delalloc range which starts inside the
1988 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 1989 */
ce9f967f 1990EXPORT_FOR_TESTS
3522e903 1991noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1992 struct page *locked_page, u64 *start,
917aacec 1993 u64 *end)
c8b97818 1994{
9978059b 1995 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
1996 const u64 orig_start = *start;
1997 const u64 orig_end = *end;
917aacec 1998 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1999 u64 delalloc_start;
2000 u64 delalloc_end;
3522e903 2001 bool found;
9655d298 2002 struct extent_state *cached_state = NULL;
c8b97818
CM
2003 int ret;
2004 int loops = 0;
2005
2749f7ef
QW
2006 /* Caller should pass a valid @end to indicate the search range end */
2007 ASSERT(orig_end > orig_start);
2008
2009 /* The range should at least cover part of the page */
2010 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2011 orig_end <= page_offset(locked_page)));
c8b97818
CM
2012again:
2013 /* step one, find a bunch of delalloc bytes starting at start */
2014 delalloc_start = *start;
2015 delalloc_end = 0;
083e75e7
JB
2016 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2017 max_bytes, &cached_state);
2749f7ef 2018 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 2019 *start = delalloc_start;
2749f7ef
QW
2020
2021 /* @delalloc_end can be -1, never go beyond @orig_end */
2022 *end = min(delalloc_end, orig_end);
c2a128d2 2023 free_extent_state(cached_state);
3522e903 2024 return false;
c8b97818
CM
2025 }
2026
70b99e69
CM
2027 /*
2028 * start comes from the offset of locked_page. We have to lock
2029 * pages in order, so we can't process delalloc bytes before
2030 * locked_page
2031 */
d397712b 2032 if (delalloc_start < *start)
70b99e69 2033 delalloc_start = *start;
70b99e69 2034
c8b97818
CM
2035 /*
2036 * make sure to limit the number of pages we try to lock down
c8b97818 2037 */
7bf811a5
JB
2038 if (delalloc_end + 1 - delalloc_start > max_bytes)
2039 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 2040
c8b97818
CM
2041 /* step two, lock all the pages after the page that has start */
2042 ret = lock_delalloc_pages(inode, locked_page,
2043 delalloc_start, delalloc_end);
9bfd61d9 2044 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
2045 if (ret == -EAGAIN) {
2046 /* some of the pages are gone, lets avoid looping by
2047 * shortening the size of the delalloc range we're searching
2048 */
9655d298 2049 free_extent_state(cached_state);
7d788742 2050 cached_state = NULL;
c8b97818 2051 if (!loops) {
09cbfeaf 2052 max_bytes = PAGE_SIZE;
c8b97818
CM
2053 loops = 1;
2054 goto again;
2055 } else {
3522e903 2056 found = false;
c8b97818
CM
2057 goto out_failed;
2058 }
2059 }
c8b97818
CM
2060
2061 /* step three, lock the state bits for the whole range */
ff13db41 2062 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
2063
2064 /* then test to make sure it is all still delalloc */
2065 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 2066 EXTENT_DELALLOC, 1, cached_state);
c8b97818 2067 if (!ret) {
9655d298 2068 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 2069 &cached_state);
c8b97818
CM
2070 __unlock_for_delalloc(inode, locked_page,
2071 delalloc_start, delalloc_end);
2072 cond_resched();
2073 goto again;
2074 }
9655d298 2075 free_extent_state(cached_state);
c8b97818
CM
2076 *start = delalloc_start;
2077 *end = delalloc_end;
2078out_failed:
2079 return found;
2080}
2081
ad7ff17b 2082void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 2083 struct page *locked_page,
f97e27e9 2084 u32 clear_bits, unsigned long page_ops)
873695b3 2085{
ad7ff17b 2086 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2087
ad7ff17b 2088 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 2089 start, end, page_ops, NULL);
873695b3
LB
2090}
2091
d352ac68
CM
2092/*
2093 * count the number of bytes in the tree that have a given bit(s)
2094 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2095 * cached. The total number found is returned.
2096 */
d1310b2e
CM
2097u64 count_range_bits(struct extent_io_tree *tree,
2098 u64 *start, u64 search_end, u64 max_bytes,
f97e27e9 2099 u32 bits, int contig)
d1310b2e
CM
2100{
2101 struct rb_node *node;
2102 struct extent_state *state;
2103 u64 cur_start = *start;
2104 u64 total_bytes = 0;
ec29ed5b 2105 u64 last = 0;
d1310b2e
CM
2106 int found = 0;
2107
fae7f21c 2108 if (WARN_ON(search_end <= cur_start))
d1310b2e 2109 return 0;
d1310b2e 2110
cad321ad 2111 spin_lock(&tree->lock);
d1310b2e
CM
2112 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2113 total_bytes = tree->dirty_bytes;
2114 goto out;
2115 }
2116 /*
2117 * this search will find all the extents that end after
2118 * our range starts.
2119 */
80ea96b1 2120 node = tree_search(tree, cur_start);
d397712b 2121 if (!node)
d1310b2e 2122 goto out;
d1310b2e 2123
d397712b 2124 while (1) {
d1310b2e
CM
2125 state = rb_entry(node, struct extent_state, rb_node);
2126 if (state->start > search_end)
2127 break;
ec29ed5b
CM
2128 if (contig && found && state->start > last + 1)
2129 break;
2130 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2131 total_bytes += min(search_end, state->end) + 1 -
2132 max(cur_start, state->start);
2133 if (total_bytes >= max_bytes)
2134 break;
2135 if (!found) {
af60bed2 2136 *start = max(cur_start, state->start);
d1310b2e
CM
2137 found = 1;
2138 }
ec29ed5b
CM
2139 last = state->end;
2140 } else if (contig && found) {
2141 break;
d1310b2e
CM
2142 }
2143 node = rb_next(node);
2144 if (!node)
2145 break;
2146 }
2147out:
cad321ad 2148 spin_unlock(&tree->lock);
d1310b2e
CM
2149 return total_bytes;
2150}
b2950863 2151
d352ac68
CM
2152/*
2153 * set the private field for a given byte offset in the tree. If there isn't
2154 * an extent_state there already, this does nothing.
2155 */
b3f167aa
JB
2156int set_state_failrec(struct extent_io_tree *tree, u64 start,
2157 struct io_failure_record *failrec)
d1310b2e
CM
2158{
2159 struct rb_node *node;
2160 struct extent_state *state;
2161 int ret = 0;
2162
cad321ad 2163 spin_lock(&tree->lock);
d1310b2e
CM
2164 /*
2165 * this search will find all the extents that end after
2166 * our range starts.
2167 */
80ea96b1 2168 node = tree_search(tree, start);
2b114d1d 2169 if (!node) {
d1310b2e
CM
2170 ret = -ENOENT;
2171 goto out;
2172 }
2173 state = rb_entry(node, struct extent_state, rb_node);
2174 if (state->start != start) {
2175 ret = -ENOENT;
2176 goto out;
2177 }
47dc196a 2178 state->failrec = failrec;
d1310b2e 2179out:
cad321ad 2180 spin_unlock(&tree->lock);
d1310b2e
CM
2181 return ret;
2182}
2183
2279a270 2184struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2185{
2186 struct rb_node *node;
2187 struct extent_state *state;
2279a270 2188 struct io_failure_record *failrec;
d1310b2e 2189
cad321ad 2190 spin_lock(&tree->lock);
d1310b2e
CM
2191 /*
2192 * this search will find all the extents that end after
2193 * our range starts.
2194 */
80ea96b1 2195 node = tree_search(tree, start);
2b114d1d 2196 if (!node) {
2279a270 2197 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2198 goto out;
2199 }
2200 state = rb_entry(node, struct extent_state, rb_node);
2201 if (state->start != start) {
2279a270 2202 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2203 goto out;
2204 }
2279a270
NB
2205
2206 failrec = state->failrec;
d1310b2e 2207out:
cad321ad 2208 spin_unlock(&tree->lock);
2279a270 2209 return failrec;
d1310b2e
CM
2210}
2211
2212/*
2213 * searches a range in the state tree for a given mask.
70dec807 2214 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2215 * has the bits set. Otherwise, 1 is returned if any bit in the
2216 * range is found set.
2217 */
2218int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
f97e27e9 2219 u32 bits, int filled, struct extent_state *cached)
d1310b2e
CM
2220{
2221 struct extent_state *state = NULL;
2222 struct rb_node *node;
2223 int bitset = 0;
d1310b2e 2224
cad321ad 2225 spin_lock(&tree->lock);
27a3507d 2226 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2227 cached->end > start)
9655d298
CM
2228 node = &cached->rb_node;
2229 else
2230 node = tree_search(tree, start);
d1310b2e
CM
2231 while (node && start <= end) {
2232 state = rb_entry(node, struct extent_state, rb_node);
2233
2234 if (filled && state->start > start) {
2235 bitset = 0;
2236 break;
2237 }
2238
2239 if (state->start > end)
2240 break;
2241
2242 if (state->state & bits) {
2243 bitset = 1;
2244 if (!filled)
2245 break;
2246 } else if (filled) {
2247 bitset = 0;
2248 break;
2249 }
46562cec
CM
2250
2251 if (state->end == (u64)-1)
2252 break;
2253
d1310b2e
CM
2254 start = state->end + 1;
2255 if (start > end)
2256 break;
2257 node = rb_next(node);
2258 if (!node) {
2259 if (filled)
2260 bitset = 0;
2261 break;
2262 }
2263 }
cad321ad 2264 spin_unlock(&tree->lock);
d1310b2e
CM
2265 return bitset;
2266}
d1310b2e 2267
7870d082
JB
2268int free_io_failure(struct extent_io_tree *failure_tree,
2269 struct extent_io_tree *io_tree,
2270 struct io_failure_record *rec)
4a54c8c1
JS
2271{
2272 int ret;
2273 int err = 0;
4a54c8c1 2274
47dc196a 2275 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2276 ret = clear_extent_bits(failure_tree, rec->start,
2277 rec->start + rec->len - 1,
91166212 2278 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2279 if (ret)
2280 err = ret;
2281
7870d082 2282 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2283 rec->start + rec->len - 1,
91166212 2284 EXTENT_DAMAGED);
53b381b3
DW
2285 if (ret && !err)
2286 err = ret;
4a54c8c1
JS
2287
2288 kfree(rec);
2289 return err;
2290}
2291
4a54c8c1
JS
2292/*
2293 * this bypasses the standard btrfs submit functions deliberately, as
2294 * the standard behavior is to write all copies in a raid setup. here we only
2295 * want to write the one bad copy. so we do the mapping for ourselves and issue
2296 * submit_bio directly.
3ec706c8 2297 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2298 * actually prevents the read that triggered the error from finishing.
2299 * currently, there can be no more than two copies of every data bit. thus,
2300 * exactly one rewrite is required.
2301 */
38d5e541
QW
2302static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2303 u64 length, u64 logical, struct page *page,
2304 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2305{
2306 struct bio *bio;
2307 struct btrfs_device *dev;
4a54c8c1
JS
2308 u64 map_length = 0;
2309 u64 sector;
4c664611 2310 struct btrfs_io_context *bioc = NULL;
4a54c8c1
JS
2311 int ret;
2312
1751e8a6 2313 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2314 BUG_ON(!mirror_num);
2315
554aed7d
JT
2316 if (btrfs_repair_one_zone(fs_info, logical))
2317 return 0;
f7ef5287 2318
c3a3b19b 2319 bio = btrfs_bio_alloc(1);
4f024f37 2320 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2321 map_length = length;
2322
b5de8d0d 2323 /*
4c664611 2324 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
2325 * associated to its stripes that don't go away while we are doing the
2326 * read repair operation.
2327 */
2328 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2329 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2330 /*
2331 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2332 * to update all raid stripes, but here we just want to correct
2333 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2334 * stripe's dev and sector.
2335 */
2336 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 2337 &map_length, &bioc, 0);
c725328c
LB
2338 if (ret) {
2339 btrfs_bio_counter_dec(fs_info);
2340 bio_put(bio);
2341 return -EIO;
2342 }
4c664611 2343 ASSERT(bioc->mirror_num == 1);
c725328c
LB
2344 } else {
2345 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 2346 &map_length, &bioc, mirror_num);
c725328c
LB
2347 if (ret) {
2348 btrfs_bio_counter_dec(fs_info);
2349 bio_put(bio);
2350 return -EIO;
2351 }
4c664611 2352 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 2353 }
c725328c 2354
4c664611 2355 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4f024f37 2356 bio->bi_iter.bi_sector = sector;
4c664611
QW
2357 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2358 btrfs_put_bioc(bioc);
ebbede42
AJ
2359 if (!dev || !dev->bdev ||
2360 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2361 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2362 bio_put(bio);
2363 return -EIO;
2364 }
74d46992 2365 bio_set_dev(bio, dev->bdev);
70fd7614 2366 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2367 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2368
4e49ea4a 2369 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2370 /* try to remap that extent elsewhere? */
b5de8d0d 2371 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2372 bio_put(bio);
442a4f63 2373 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2374 return -EIO;
2375 }
2376
b14af3b4
DS
2377 btrfs_info_rl_in_rcu(fs_info,
2378 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2379 ino, start,
1203b681 2380 rcu_str_deref(dev->name), sector);
b5de8d0d 2381 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2382 bio_put(bio);
2383 return 0;
2384}
2385
2b48966a 2386int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2387{
20a1fbf9 2388 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2389 u64 start = eb->start;
cc5e31a4 2390 int i, num_pages = num_extent_pages(eb);
d95603b2 2391 int ret = 0;
ea466794 2392
bc98a42c 2393 if (sb_rdonly(fs_info->sb))
908960c6
ID
2394 return -EROFS;
2395
ea466794 2396 for (i = 0; i < num_pages; i++) {
fb85fc9a 2397 struct page *p = eb->pages[i];
1203b681 2398
6ec656bc 2399 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2400 start - page_offset(p), mirror_num);
ea466794
JB
2401 if (ret)
2402 break;
09cbfeaf 2403 start += PAGE_SIZE;
ea466794
JB
2404 }
2405
2406 return ret;
2407}
2408
4a54c8c1
JS
2409/*
2410 * each time an IO finishes, we do a fast check in the IO failure tree
2411 * to see if we need to process or clean up an io_failure_record
2412 */
7870d082
JB
2413int clean_io_failure(struct btrfs_fs_info *fs_info,
2414 struct extent_io_tree *failure_tree,
2415 struct extent_io_tree *io_tree, u64 start,
2416 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2417{
2418 u64 private;
4a54c8c1 2419 struct io_failure_record *failrec;
4a54c8c1
JS
2420 struct extent_state *state;
2421 int num_copies;
4a54c8c1 2422 int ret;
4a54c8c1
JS
2423
2424 private = 0;
7870d082
JB
2425 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2426 EXTENT_DIRTY, 0);
4a54c8c1
JS
2427 if (!ret)
2428 return 0;
2429
2279a270
NB
2430 failrec = get_state_failrec(failure_tree, start);
2431 if (IS_ERR(failrec))
4a54c8c1
JS
2432 return 0;
2433
4a54c8c1
JS
2434 BUG_ON(!failrec->this_mirror);
2435
bc98a42c 2436 if (sb_rdonly(fs_info->sb))
908960c6 2437 goto out;
4a54c8c1 2438
7870d082
JB
2439 spin_lock(&io_tree->lock);
2440 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2441 failrec->start,
2442 EXTENT_LOCKED);
7870d082 2443 spin_unlock(&io_tree->lock);
4a54c8c1 2444
883d0de4
MX
2445 if (state && state->start <= failrec->start &&
2446 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2447 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2448 failrec->len);
4a54c8c1 2449 if (num_copies > 1) {
7870d082
JB
2450 repair_io_failure(fs_info, ino, start, failrec->len,
2451 failrec->logical, page, pg_offset,
2452 failrec->failed_mirror);
4a54c8c1
JS
2453 }
2454 }
2455
2456out:
7870d082 2457 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2458
454ff3de 2459 return 0;
4a54c8c1
JS
2460}
2461
f612496b
MX
2462/*
2463 * Can be called when
2464 * - hold extent lock
2465 * - under ordered extent
2466 * - the inode is freeing
2467 */
7ab7956e 2468void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2469{
7ab7956e 2470 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2471 struct io_failure_record *failrec;
2472 struct extent_state *state, *next;
2473
2474 if (RB_EMPTY_ROOT(&failure_tree->state))
2475 return;
2476
2477 spin_lock(&failure_tree->lock);
2478 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2479 while (state) {
2480 if (state->start > end)
2481 break;
2482
2483 ASSERT(state->end <= end);
2484
2485 next = next_state(state);
2486
47dc196a 2487 failrec = state->failrec;
f612496b
MX
2488 free_extent_state(state);
2489 kfree(failrec);
2490
2491 state = next;
2492 }
2493 spin_unlock(&failure_tree->lock);
2494}
2495
3526302f 2496static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
150e4b05 2497 u64 start)
4a54c8c1 2498{
ab8d0fc4 2499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2500 struct io_failure_record *failrec;
4a54c8c1 2501 struct extent_map *em;
4a54c8c1
JS
2502 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2503 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2504 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
150e4b05 2505 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 2506 int ret;
4a54c8c1
JS
2507 u64 logical;
2508
2279a270 2509 failrec = get_state_failrec(failure_tree, start);
3526302f 2510 if (!IS_ERR(failrec)) {
ab8d0fc4 2511 btrfs_debug(fs_info,
1245835d
QW
2512 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2513 failrec->logical, failrec->start, failrec->len);
4a54c8c1
JS
2514 /*
2515 * when data can be on disk more than twice, add to failrec here
2516 * (e.g. with a list for failed_mirror) to make
2517 * clean_io_failure() clean all those errors at once.
2518 */
3526302f
NB
2519
2520 return failrec;
4a54c8c1 2521 }
2fe6303e 2522
3526302f
NB
2523 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2524 if (!failrec)
2525 return ERR_PTR(-ENOMEM);
2fe6303e 2526
3526302f 2527 failrec->start = start;
150e4b05 2528 failrec->len = sectorsize;
3526302f
NB
2529 failrec->this_mirror = 0;
2530 failrec->bio_flags = 0;
3526302f
NB
2531
2532 read_lock(&em_tree->lock);
2533 em = lookup_extent_mapping(em_tree, start, failrec->len);
2534 if (!em) {
2535 read_unlock(&em_tree->lock);
2536 kfree(failrec);
2537 return ERR_PTR(-EIO);
2538 }
2539
2540 if (em->start > start || em->start + em->len <= start) {
2541 free_extent_map(em);
2542 em = NULL;
2543 }
2544 read_unlock(&em_tree->lock);
2545 if (!em) {
2546 kfree(failrec);
2547 return ERR_PTR(-EIO);
2548 }
2549
2550 logical = start - em->start;
2551 logical = em->block_start + logical;
2552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2553 logical = em->block_start;
2554 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2555 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2556 }
2557
2558 btrfs_debug(fs_info,
2559 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2560 logical, start, failrec->len);
2561
2562 failrec->logical = logical;
2563 free_extent_map(em);
2564
2565 /* Set the bits in the private failure tree */
150e4b05 2566 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
3526302f
NB
2567 EXTENT_LOCKED | EXTENT_DIRTY);
2568 if (ret >= 0) {
2569 ret = set_state_failrec(failure_tree, start, failrec);
2570 /* Set the bits in the inode's tree */
150e4b05
QW
2571 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2572 EXTENT_DAMAGED);
3526302f
NB
2573 } else if (ret < 0) {
2574 kfree(failrec);
2575 return ERR_PTR(ret);
2576 }
2577
2578 return failrec;
2fe6303e
MX
2579}
2580
1245835d 2581static bool btrfs_check_repairable(struct inode *inode,
ce06d3ec
OS
2582 struct io_failure_record *failrec,
2583 int failed_mirror)
2fe6303e 2584{
ab8d0fc4 2585 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2586 int num_copies;
2587
ab8d0fc4 2588 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2589 if (num_copies == 1) {
2590 /*
2591 * we only have a single copy of the data, so don't bother with
2592 * all the retry and error correction code that follows. no
2593 * matter what the error is, it is very likely to persist.
2594 */
ab8d0fc4
JM
2595 btrfs_debug(fs_info,
2596 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2598 return false;
4a54c8c1
JS
2599 }
2600
1245835d
QW
2601 /* The failure record should only contain one sector */
2602 ASSERT(failrec->len == fs_info->sectorsize);
2603
4a54c8c1 2604 /*
1245835d
QW
2605 * There are two premises:
2606 * a) deliver good data to the caller
2607 * b) correct the bad sectors on disk
2608 *
2609 * Since we're only doing repair for one sector, we only need to get
2610 * a good copy of the failed sector and if we succeed, we have setup
2611 * everything for repair_io_failure to do the rest for us.
4a54c8c1 2612 */
510671d2 2613 ASSERT(failed_mirror);
1245835d
QW
2614 failrec->failed_mirror = failed_mirror;
2615 failrec->this_mirror++;
2616 if (failrec->this_mirror == failed_mirror)
4a54c8c1 2617 failrec->this_mirror++;
4a54c8c1 2618
facc8a22 2619 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2620 btrfs_debug(fs_info,
2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2622 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2623 return false;
4a54c8c1
JS
2624 }
2625
c3cfb656 2626 return true;
2fe6303e
MX
2627}
2628
150e4b05
QW
2629int btrfs_repair_one_sector(struct inode *inode,
2630 struct bio *failed_bio, u32 bio_offset,
2631 struct page *page, unsigned int pgoff,
2632 u64 start, int failed_mirror,
2633 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2634{
2635 struct io_failure_record *failrec;
77d5d689 2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
c3a3b19b 2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
7ffd27e3 2640 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 2641 struct bio *repair_bio;
c3a3b19b 2642 struct btrfs_bio *repair_bbio;
4e4cbee9 2643 blk_status_t status;
2fe6303e 2644
77d5d689
OS
2645 btrfs_debug(fs_info,
2646 "repair read error: read error at %llu", start);
2fe6303e 2647
1f7ad75b 2648 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2649
150e4b05 2650 failrec = btrfs_get_io_failure_record(inode, start);
3526302f 2651 if (IS_ERR(failrec))
150e4b05 2652 return PTR_ERR(failrec);
2fe6303e 2653
1245835d
QW
2654
2655 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
7870d082 2656 free_io_failure(failure_tree, tree, failrec);
150e4b05 2657 return -EIO;
2fe6303e
MX
2658 }
2659
c3a3b19b
QW
2660 repair_bio = btrfs_bio_alloc(1);
2661 repair_bbio = btrfs_bio(repair_bio);
77d5d689 2662 repair_bio->bi_opf = REQ_OP_READ;
77d5d689
OS
2663 repair_bio->bi_end_io = failed_bio->bi_end_io;
2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2665 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2666
c3a3b19b 2667 if (failed_bbio->csum) {
223486c2 2668 const u32 csum_size = fs_info->csum_size;
77d5d689 2669
c3a3b19b
QW
2670 repair_bbio->csum = repair_bbio->csum_inline;
2671 memcpy(repair_bbio->csum,
2672 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 2673 }
2fe6303e 2674
77d5d689 2675 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 2676 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 2677
ab8d0fc4 2678 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
2679 "repair read error: submitting new read to mirror %d",
2680 failrec->this_mirror);
4a54c8c1 2681
77d5d689
OS
2682 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2683 failrec->bio_flags);
4e4cbee9 2684 if (status) {
7870d082 2685 free_io_failure(failure_tree, tree, failrec);
77d5d689 2686 bio_put(repair_bio);
6c387ab2 2687 }
150e4b05
QW
2688 return blk_status_to_errno(status);
2689}
2690
2691static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2692{
2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2694
2695 ASSERT(page_offset(page) <= start &&
2696 start + len <= page_offset(page) + PAGE_SIZE);
2697
150e4b05 2698 if (uptodate) {
14605409
BB
2699 if (fsverity_active(page->mapping->host) &&
2700 !PageError(page) &&
2701 !PageUptodate(page) &&
2702 start < i_size_read(page->mapping->host) &&
2703 !fsverity_verify_page(page)) {
2704 btrfs_page_set_error(fs_info, page, start, len);
2705 } else {
2706 btrfs_page_set_uptodate(fs_info, page, start, len);
2707 }
150e4b05
QW
2708 } else {
2709 btrfs_page_clear_uptodate(fs_info, page, start, len);
2710 btrfs_page_set_error(fs_info, page, start, len);
2711 }
2712
2713 if (fs_info->sectorsize == PAGE_SIZE)
2714 unlock_page(page);
3d078efa 2715 else
150e4b05
QW
2716 btrfs_subpage_end_reader(fs_info, page, start, len);
2717}
2718
2719static blk_status_t submit_read_repair(struct inode *inode,
2720 struct bio *failed_bio, u32 bio_offset,
2721 struct page *page, unsigned int pgoff,
2722 u64 start, u64 end, int failed_mirror,
2723 unsigned int error_bitmap,
2724 submit_bio_hook_t *submit_bio_hook)
2725{
2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2727 const u32 sectorsize = fs_info->sectorsize;
2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2729 int error = 0;
2730 int i;
2731
2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2733
2734 /* We're here because we had some read errors or csum mismatch */
2735 ASSERT(error_bitmap);
2736
2737 /*
2738 * We only get called on buffered IO, thus page must be mapped and bio
2739 * must not be cloned.
2740 */
2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2742
2743 /* Iterate through all the sectors in the range */
2744 for (i = 0; i < nr_bits; i++) {
2745 const unsigned int offset = i * sectorsize;
2746 struct extent_state *cached = NULL;
2747 bool uptodate = false;
2748 int ret;
2749
2750 if (!(error_bitmap & (1U << i))) {
2751 /*
2752 * This sector has no error, just end the page read
2753 * and unlock the range.
2754 */
2755 uptodate = true;
2756 goto next;
2757 }
2758
2759 ret = btrfs_repair_one_sector(inode, failed_bio,
2760 bio_offset + offset,
2761 page, pgoff + offset, start + offset,
2762 failed_mirror, submit_bio_hook);
2763 if (!ret) {
2764 /*
2765 * We have submitted the read repair, the page release
2766 * will be handled by the endio function of the
2767 * submitted repair bio.
2768 * Thus we don't need to do any thing here.
2769 */
2770 continue;
2771 }
2772 /*
2773 * Repair failed, just record the error but still continue.
2774 * Or the remaining sectors will not be properly unlocked.
2775 */
2776 if (!error)
2777 error = ret;
2778next:
2779 end_page_read(page, uptodate, start + offset, sectorsize);
2780 if (uptodate)
2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2782 start + offset,
2783 start + offset + sectorsize - 1,
2784 &cached, GFP_ATOMIC);
2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2786 start + offset,
2787 start + offset + sectorsize - 1,
2788 &cached);
2789 }
2790 return errno_to_blk_status(error);
4a54c8c1
JS
2791}
2792
d1310b2e
CM
2793/* lots and lots of room for performance fixes in the end_bio funcs */
2794
b5227c07 2795void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 2796{
38a39ac7 2797 struct btrfs_inode *inode;
25c1252a 2798 const bool uptodate = (err == 0);
3e2426bd 2799 int ret = 0;
87826df0 2800
38a39ac7
QW
2801 ASSERT(page && page->mapping);
2802 inode = BTRFS_I(page->mapping->host);
2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 2804
87826df0 2805 if (!uptodate) {
963e4db8
QW
2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2807 u32 len;
2808
2809 ASSERT(end + 1 - start <= U32_MAX);
2810 len = end + 1 - start;
2811
2812 btrfs_page_clear_uptodate(fs_info, page, start, len);
2813 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 2814 ret = err < 0 ? err : -EIO;
5dca6eea 2815 mapping_set_error(page->mapping, ret);
87826df0 2816 }
87826df0
JM
2817}
2818
d1310b2e
CM
2819/*
2820 * after a writepage IO is done, we need to:
2821 * clear the uptodate bits on error
2822 * clear the writeback bits in the extent tree for this IO
2823 * end_page_writeback if the page has no more pending IO
2824 *
2825 * Scheduling is not allowed, so the extent state tree is expected
2826 * to have one and only one object corresponding to this IO.
2827 */
4246a0b6 2828static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2829{
4e4cbee9 2830 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2831 struct bio_vec *bvec;
d1310b2e
CM
2832 u64 start;
2833 u64 end;
6dc4f100 2834 struct bvec_iter_all iter_all;
d8e3fb10 2835 bool first_bvec = true;
d1310b2e 2836
c09abff8 2837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2838 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2839 struct page *page = bvec->bv_page;
0b246afa
JM
2840 struct inode *inode = page->mapping->host;
2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
2842 const u32 sectorsize = fs_info->sectorsize;
2843
2844 /* Our read/write should always be sector aligned. */
2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2846 btrfs_err(fs_info,
2847 "partial page write in btrfs with offset %u and length %u",
2848 bvec->bv_offset, bvec->bv_len);
2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2850 btrfs_info(fs_info,
2851 "incomplete page write with offset %u and length %u",
2852 bvec->bv_offset, bvec->bv_len);
2853
2854 start = page_offset(page) + bvec->bv_offset;
2855 end = start + bvec->bv_len - 1;
d1310b2e 2856
d8e3fb10
NA
2857 if (first_bvec) {
2858 btrfs_record_physical_zoned(inode, start, bio);
2859 first_bvec = false;
2860 }
2861
4e4cbee9 2862 end_extent_writepage(page, error, start, end);
9047e317
QW
2863
2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 2865 }
2b1f55b0 2866
d1310b2e 2867 bio_put(bio);
d1310b2e
CM
2868}
2869
94e8c95c
QW
2870/*
2871 * Record previously processed extent range
2872 *
2873 * For endio_readpage_release_extent() to handle a full extent range, reducing
2874 * the extent io operations.
2875 */
2876struct processed_extent {
2877 struct btrfs_inode *inode;
2878 /* Start of the range in @inode */
2879 u64 start;
2e626e56 2880 /* End of the range in @inode */
94e8c95c
QW
2881 u64 end;
2882 bool uptodate;
2883};
2884
2885/*
2886 * Try to release processed extent range
2887 *
2888 * May not release the extent range right now if the current range is
2889 * contiguous to processed extent.
2890 *
2891 * Will release processed extent when any of @inode, @uptodate, the range is
2892 * no longer contiguous to the processed range.
2893 *
2894 * Passing @inode == NULL will force processed extent to be released.
2895 */
2896static void endio_readpage_release_extent(struct processed_extent *processed,
2897 struct btrfs_inode *inode, u64 start, u64 end,
2898 bool uptodate)
883d0de4
MX
2899{
2900 struct extent_state *cached = NULL;
94e8c95c
QW
2901 struct extent_io_tree *tree;
2902
2903 /* The first extent, initialize @processed */
2904 if (!processed->inode)
2905 goto update;
883d0de4 2906
94e8c95c
QW
2907 /*
2908 * Contiguous to processed extent, just uptodate the end.
2909 *
2910 * Several things to notice:
2911 *
2912 * - bio can be merged as long as on-disk bytenr is contiguous
2913 * This means we can have page belonging to other inodes, thus need to
2914 * check if the inode still matches.
2915 * - bvec can contain range beyond current page for multi-page bvec
2916 * Thus we need to do processed->end + 1 >= start check
2917 */
2918 if (processed->inode == inode && processed->uptodate == uptodate &&
2919 processed->end + 1 >= start && end >= processed->end) {
2920 processed->end = end;
2921 return;
2922 }
2923
2924 tree = &processed->inode->io_tree;
2925 /*
2926 * Now we don't have range contiguous to the processed range, release
2927 * the processed range now.
2928 */
2929 if (processed->uptodate && tree->track_uptodate)
2930 set_extent_uptodate(tree, processed->start, processed->end,
2931 &cached, GFP_ATOMIC);
2932 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2933 &cached);
2934
2935update:
2936 /* Update processed to current range */
2937 processed->inode = inode;
2938 processed->start = start;
2939 processed->end = end;
2940 processed->uptodate = uptodate;
883d0de4
MX
2941}
2942
92082d40
QW
2943static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2944{
2945 ASSERT(PageLocked(page));
2946 if (fs_info->sectorsize == PAGE_SIZE)
2947 return;
2948
2949 ASSERT(PagePrivate(page));
2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2951}
2952
d9bb77d5
QW
2953/*
2954 * Find extent buffer for a givne bytenr.
2955 *
2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2957 * in endio context.
2958 */
2959static struct extent_buffer *find_extent_buffer_readpage(
2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2961{
2962 struct extent_buffer *eb;
2963
2964 /*
2965 * For regular sectorsize, we can use page->private to grab extent
2966 * buffer
2967 */
2968 if (fs_info->sectorsize == PAGE_SIZE) {
2969 ASSERT(PagePrivate(page) && page->private);
2970 return (struct extent_buffer *)page->private;
2971 }
2972
2973 /* For subpage case, we need to lookup buffer radix tree */
2974 rcu_read_lock();
2975 eb = radix_tree_lookup(&fs_info->buffer_radix,
2976 bytenr >> fs_info->sectorsize_bits);
2977 rcu_read_unlock();
2978 ASSERT(eb);
2979 return eb;
2980}
2981
d1310b2e
CM
2982/*
2983 * after a readpage IO is done, we need to:
2984 * clear the uptodate bits on error
2985 * set the uptodate bits if things worked
2986 * set the page up to date if all extents in the tree are uptodate
2987 * clear the lock bit in the extent tree
2988 * unlock the page if there are no other extents locked for it
2989 *
2990 * Scheduling is not allowed, so the extent state tree is expected
2991 * to have one and only one object corresponding to this IO.
2992 */
4246a0b6 2993static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2994{
2c30c71b 2995 struct bio_vec *bvec;
c3a3b19b 2996 struct btrfs_bio *bbio = btrfs_bio(bio);
7870d082 2997 struct extent_io_tree *tree, *failure_tree;
94e8c95c 2998 struct processed_extent processed = { 0 };
7ffd27e3
QW
2999 /*
3000 * The offset to the beginning of a bio, since one bio can never be
3001 * larger than UINT_MAX, u32 here is enough.
3002 */
3003 u32 bio_offset = 0;
5cf1ab56 3004 int mirror;
d1310b2e 3005 int ret;
6dc4f100 3006 struct bvec_iter_all iter_all;
d1310b2e 3007
c09abff8 3008 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3009 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 3010 bool uptodate = !bio->bi_status;
d1310b2e 3011 struct page *page = bvec->bv_page;
a71754fc 3012 struct inode *inode = page->mapping->host;
ab8d0fc4 3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 3014 const u32 sectorsize = fs_info->sectorsize;
150e4b05 3015 unsigned int error_bitmap = (unsigned int)-1;
7ffd27e3
QW
3016 u64 start;
3017 u64 end;
3018 u32 len;
507903b8 3019
ab8d0fc4
JM
3020 btrfs_debug(fs_info,
3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 3022 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 3023 bbio->mirror_num);
a71754fc 3024 tree = &BTRFS_I(inode)->io_tree;
7870d082 3025 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 3026
8b8bbd46
QW
3027 /*
3028 * We always issue full-sector reads, but if some block in a
3029 * page fails to read, blk_update_request() will advance
3030 * bv_offset and adjust bv_len to compensate. Print a warning
3031 * for unaligned offsets, and an error if they don't add up to
3032 * a full sector.
3033 */
3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3035 btrfs_err(fs_info,
3036 "partial page read in btrfs with offset %u and length %u",
3037 bvec->bv_offset, bvec->bv_len);
3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3039 sectorsize))
3040 btrfs_info(fs_info,
3041 "incomplete page read with offset %u and length %u",
3042 bvec->bv_offset, bvec->bv_len);
3043
3044 start = page_offset(page) + bvec->bv_offset;
3045 end = start + bvec->bv_len - 1;
facc8a22 3046 len = bvec->bv_len;
d1310b2e 3047
c3a3b19b 3048 mirror = bbio->mirror_num;
78e62c02 3049 if (likely(uptodate)) {
150e4b05 3050 if (is_data_inode(inode)) {
c3a3b19b 3051 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 3052 bio_offset, page, start, end);
150e4b05
QW
3053 ret = error_bitmap;
3054 } else {
c3a3b19b 3055 ret = btrfs_validate_metadata_buffer(bbio,
8e1dc982 3056 page, start, end, mirror);
150e4b05 3057 }
5ee0844d 3058 if (ret)
150e4b05 3059 uptodate = false;
5ee0844d 3060 else
7870d082
JB
3061 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3062 failure_tree, tree, start,
3063 page,
3064 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 3065 }
ea466794 3066
f2a09da9
MX
3067 if (likely(uptodate))
3068 goto readpage_ok;
3069
be17b3af 3070 if (is_data_inode(inode)) {
510671d2
JB
3071 /*
3072 * If we failed to submit the IO at all we'll have a
3073 * mirror_num == 0, in which case we need to just mark
3074 * the page with an error and unlock it and carry on.
3075 */
3076 if (mirror == 0)
3077 goto readpage_ok;
3078
f4a8e656 3079 /*
150e4b05
QW
3080 * btrfs_submit_read_repair() will handle all the good
3081 * and bad sectors, we just continue to the next bvec.
f4a8e656 3082 */
150e4b05
QW
3083 submit_read_repair(inode, bio, bio_offset, page,
3084 start - page_offset(page), start,
3085 end, mirror, error_bitmap,
3086 btrfs_submit_data_bio);
3087
3088 ASSERT(bio_offset + len > bio_offset);
3089 bio_offset += len;
3090 continue;
78e62c02
NB
3091 } else {
3092 struct extent_buffer *eb;
3093
d9bb77d5 3094 eb = find_extent_buffer_readpage(fs_info, page, start);
78e62c02
NB
3095 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3096 eb->read_mirror = mirror;
3097 atomic_dec(&eb->io_pages);
7e38326f 3098 }
f2a09da9 3099readpage_ok:
883d0de4 3100 if (likely(uptodate)) {
a71754fc 3101 loff_t i_size = i_size_read(inode);
09cbfeaf 3102 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 3103
c28ea613
QW
3104 /*
3105 * Zero out the remaining part if this range straddles
3106 * i_size.
3107 *
3108 * Here we should only zero the range inside the bvec,
3109 * not touch anything else.
3110 *
3111 * NOTE: i_size is exclusive while end is inclusive.
3112 */
3113 if (page->index == end_index && i_size <= end) {
3114 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 3115 offset_in_page(start));
c28ea613
QW
3116
3117 zero_user_segment(page, zero_start,
3118 offset_in_page(end) + 1);
3119 }
70dec807 3120 }
7ffd27e3
QW
3121 ASSERT(bio_offset + len > bio_offset);
3122 bio_offset += len;
883d0de4 3123
e09caaf9 3124 /* Update page status and unlock */
92082d40 3125 end_page_read(page, uptodate, start, len);
94e8c95c 3126 endio_readpage_release_extent(&processed, BTRFS_I(inode),
14605409 3127 start, end, PageUptodate(page));
2c30c71b 3128 }
94e8c95c
QW
3129 /* Release the last extent */
3130 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 3131 btrfs_bio_free_csum(bbio);
d1310b2e 3132 bio_put(bio);
d1310b2e
CM
3133}
3134
9be3395b 3135/*
184f999e
DS
3136 * Initialize the members up to but not including 'bio'. Use after allocating a
3137 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3138 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 3139 */
c3a3b19b 3140static inline void btrfs_bio_init(struct btrfs_bio *bbio)
d1310b2e 3141{
c3a3b19b 3142 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
184f999e 3143}
d1310b2e 3144
9be3395b 3145/*
cd8e0cca
QW
3146 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3147 *
3148 * The bio allocation is backed by bioset and does not fail.
9be3395b 3149 */
c3a3b19b 3150struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
d1310b2e
CM
3151{
3152 struct bio *bio;
d1310b2e 3153
cd8e0cca
QW
3154 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3155 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
c3a3b19b 3156 btrfs_bio_init(btrfs_bio(bio));
d1310b2e
CM
3157 return bio;
3158}
3159
8b6c1d56 3160struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 3161{
c3a3b19b 3162 struct btrfs_bio *bbio;
23ea8e5a 3163 struct bio *new;
9be3395b 3164
6e707bcd 3165 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3166 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
c3a3b19b
QW
3167 bbio = btrfs_bio(new);
3168 btrfs_bio_init(bbio);
3169 bbio->iter = bio->bi_iter;
23ea8e5a
MX
3170 return new;
3171}
9be3395b 3172
21dda654 3173struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
2f8e9140
LB
3174{
3175 struct bio *bio;
c3a3b19b 3176 struct btrfs_bio *bbio;
2f8e9140 3177
21dda654
CK
3178 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3179
2f8e9140 3180 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3181 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3182 ASSERT(bio);
3183
c3a3b19b
QW
3184 bbio = btrfs_bio(bio);
3185 btrfs_bio_init(bbio);
2f8e9140
LB
3186
3187 bio_trim(bio, offset >> 9, size >> 9);
c3a3b19b 3188 bbio->iter = bio->bi_iter;
2f8e9140
LB
3189 return bio;
3190}
9be3395b 3191
953651eb
NA
3192/**
3193 * Attempt to add a page to bio
3194 *
be8d1a2a 3195 * @bio_ctrl: record both the bio, and its bio_flags
953651eb
NA
3196 * @page: page to add to the bio
3197 * @disk_bytenr: offset of the new bio or to check whether we are adding
3198 * a contiguous page to the previous one
953651eb 3199 * @size: portion of page that we want to write
be8d1a2a 3200 * @pg_offset: starting offset in the page
953651eb 3201 * @bio_flags: flags of the current bio to see if we can merge them
953651eb
NA
3202 *
3203 * Attempt to add a page to bio considering stripe alignment etc.
3204 *
e0eefe07
QW
3205 * Return >= 0 for the number of bytes added to the bio.
3206 * Can return 0 if the current bio is already at stripe/zone boundary.
3207 * Return <0 for error.
953651eb 3208 */
e0eefe07
QW
3209static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3210 struct page *page,
3211 u64 disk_bytenr, unsigned int size,
3212 unsigned int pg_offset,
3213 unsigned long bio_flags)
953651eb 3214{
390ed29b
QW
3215 struct bio *bio = bio_ctrl->bio;
3216 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 3217 u32 real_size;
953651eb
NA
3218 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3219 bool contig;
e1326f03 3220 int ret;
953651eb 3221
390ed29b
QW
3222 ASSERT(bio);
3223 /* The limit should be calculated when bio_ctrl->bio is allocated */
3224 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3225 if (bio_ctrl->bio_flags != bio_flags)
e0eefe07 3226 return 0;
953651eb 3227
390ed29b 3228 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
953651eb
NA
3229 contig = bio->bi_iter.bi_sector == sector;
3230 else
3231 contig = bio_end_sector(bio) == sector;
3232 if (!contig)
e0eefe07 3233 return 0;
953651eb 3234
e0eefe07
QW
3235 real_size = min(bio_ctrl->len_to_oe_boundary,
3236 bio_ctrl->len_to_stripe_boundary) - bio_size;
3237 real_size = min(real_size, size);
3238
3239 /*
3240 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3241 * bio will still execute its endio function on the page!
3242 */
3243 if (real_size == 0)
3244 return 0;
953651eb 3245
390ed29b 3246 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 3247 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 3248 else
e0eefe07 3249 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 3250
e0eefe07 3251 return ret;
953651eb
NA
3252}
3253
390ed29b 3254static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 3255 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
3256{
3257 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3258 struct btrfs_io_geometry geom;
3259 struct btrfs_ordered_extent *ordered;
3260 struct extent_map *em;
3261 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3262 int ret;
3263
3264 /*
3265 * Pages for compressed extent are never submitted to disk directly,
3266 * thus it has no real boundary, just set them to U32_MAX.
3267 *
3268 * The split happens for real compressed bio, which happens in
3269 * btrfs_submit_compressed_read/write().
3270 */
3271 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3272 bio_ctrl->len_to_oe_boundary = U32_MAX;
3273 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3274 return 0;
3275 }
3276 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3277 if (IS_ERR(em))
3278 return PTR_ERR(em);
3279 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3280 logical, &geom);
3281 free_extent_map(em);
3282 if (ret < 0) {
3283 return ret;
3284 }
3285 if (geom.len > U32_MAX)
3286 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3287 else
3288 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3289
73672710 3290 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
390ed29b
QW
3291 bio_ctrl->len_to_oe_boundary = U32_MAX;
3292 return 0;
3293 }
3294
390ed29b 3295 /* Ordered extent not yet created, so we're good */
939c7feb 3296 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
3297 if (!ordered) {
3298 bio_ctrl->len_to_oe_boundary = U32_MAX;
3299 return 0;
3300 }
3301
3302 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3303 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3304 btrfs_put_ordered_extent(ordered);
3305 return 0;
3306}
3307
e0eefe07
QW
3308static int alloc_new_bio(struct btrfs_inode *inode,
3309 struct btrfs_bio_ctrl *bio_ctrl,
3310 struct writeback_control *wbc,
3311 unsigned int opf,
3312 bio_end_io_t end_io_func,
939c7feb 3313 u64 disk_bytenr, u32 offset, u64 file_offset,
e0eefe07
QW
3314 unsigned long bio_flags)
3315{
3316 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3317 struct bio *bio;
3318 int ret;
3319
c3a3b19b 3320 bio = btrfs_bio_alloc(BIO_MAX_VECS);
e0eefe07
QW
3321 /*
3322 * For compressed page range, its disk_bytenr is always @disk_bytenr
3323 * passed in, no matter if we have added any range into previous bio.
3324 */
3325 if (bio_flags & EXTENT_BIO_COMPRESSED)
cd8e0cca 3326 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 3327 else
cd8e0cca 3328 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07
QW
3329 bio_ctrl->bio = bio;
3330 bio_ctrl->bio_flags = bio_flags;
e0eefe07
QW
3331 bio->bi_end_io = end_io_func;
3332 bio->bi_private = &inode->io_tree;
3333 bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3334 bio->bi_opf = opf;
939c7feb
NA
3335 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3336 if (ret < 0)
3337 goto error;
e0eefe07
QW
3338 if (wbc) {
3339 struct block_device *bdev;
3340
d24fa5c1 3341 bdev = fs_info->fs_devices->latest_dev->bdev;
e0eefe07
QW
3342 bio_set_dev(bio, bdev);
3343 wbc_init_bio(wbc, bio);
3344 }
73672710 3345 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
e0eefe07
QW
3346 struct btrfs_device *device;
3347
3348 device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3349 fs_info->sectorsize);
3350 if (IS_ERR(device)) {
3351 ret = PTR_ERR(device);
3352 goto error;
3353 }
3354
c3a3b19b 3355 btrfs_bio(bio)->device = device;
e0eefe07
QW
3356 }
3357 return 0;
3358error:
3359 bio_ctrl->bio = NULL;
3360 bio->bi_status = errno_to_blk_status(ret);
3361 bio_endio(bio);
3362 return ret;
3363}
3364
4b81ba48
DS
3365/*
3366 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3367 * @wbc: optional writeback control for io accounting
3368 * @page: page to add to the bio
0c64c33c
QW
3369 * @disk_bytenr: logical bytenr where the write will be
3370 * @size: portion of page that we want to write to
b8b3d625
DS
3371 * @pg_offset: offset of the new bio or to check whether we are adding
3372 * a contiguous page to the previous one
5c2b1fd7 3373 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3374 * @end_io_func: end_io callback for new bio
3375 * @mirror_num: desired mirror to read/write
3376 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3377 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3378 */
0ceb34bf 3379static int submit_extent_page(unsigned int opf,
da2f0f74 3380 struct writeback_control *wbc,
390ed29b 3381 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 3382 struct page *page, u64 disk_bytenr,
6c5a4e2c 3383 size_t size, unsigned long pg_offset,
f188591e 3384 bio_end_io_t end_io_func,
c8b97818 3385 int mirror_num,
005efedf
FM
3386 unsigned long bio_flags,
3387 bool force_bio_submit)
d1310b2e
CM
3388{
3389 int ret = 0;
e1326f03 3390 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 3391 unsigned int cur = pg_offset;
d1310b2e 3392
390ed29b 3393 ASSERT(bio_ctrl);
5c2b1fd7 3394
390ed29b
QW
3395 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3396 pg_offset + size <= PAGE_SIZE);
e0eefe07
QW
3397 if (force_bio_submit && bio_ctrl->bio) {
3398 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3399 bio_ctrl->bio = NULL;
3400 if (ret < 0)
3401 return ret;
3402 }
3403
3404 while (cur < pg_offset + size) {
3405 u32 offset = cur - pg_offset;
3406 int added;
3407
3408 /* Allocate new bio if needed */
3409 if (!bio_ctrl->bio) {
3410 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3411 end_io_func, disk_bytenr, offset,
939c7feb 3412 page_offset(page) + cur,
e0eefe07
QW
3413 bio_flags);
3414 if (ret < 0)
3415 return ret;
3416 }
3417 /*
3418 * We must go through btrfs_bio_add_page() to ensure each
3419 * page range won't cross various boundaries.
3420 */
3421 if (bio_flags & EXTENT_BIO_COMPRESSED)
3422 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3423 size - offset, pg_offset + offset,
3424 bio_flags);
3425 else
3426 added = btrfs_bio_add_page(bio_ctrl, page,
3427 disk_bytenr + offset, size - offset,
3428 pg_offset + offset, bio_flags);
3429
3430 /* Metadata page range should never be split */
3431 if (!is_data_inode(&inode->vfs_inode))
3432 ASSERT(added == 0 || added == size - offset);
3433
3434 /* At least we added some page, update the account */
3435 if (wbc && added)
3436 wbc_account_cgroup_owner(wbc, page, added);
3437
3438 /* We have reached boundary, submit right now */
3439 if (added < size - offset) {
3440 /* The bio should contain some page(s) */
3441 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3442 ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3443 bio_ctrl->bio_flags);
390ed29b
QW
3444 bio_ctrl->bio = NULL;
3445 if (ret < 0)
79787eaa 3446 return ret;
d1310b2e 3447 }
e0eefe07 3448 cur += added;
d1310b2e 3449 }
e0eefe07 3450 return 0;
d1310b2e
CM
3451}
3452
760f991f
QW
3453static int attach_extent_buffer_page(struct extent_buffer *eb,
3454 struct page *page,
3455 struct btrfs_subpage *prealloc)
d1310b2e 3456{
760f991f
QW
3457 struct btrfs_fs_info *fs_info = eb->fs_info;
3458 int ret = 0;
3459
0d01e247
QW
3460 /*
3461 * If the page is mapped to btree inode, we should hold the private
3462 * lock to prevent race.
3463 * For cloned or dummy extent buffers, their pages are not mapped and
3464 * will not race with any other ebs.
3465 */
3466 if (page->mapping)
3467 lockdep_assert_held(&page->mapping->private_lock);
3468
760f991f
QW
3469 if (fs_info->sectorsize == PAGE_SIZE) {
3470 if (!PagePrivate(page))
3471 attach_page_private(page, eb);
3472 else
3473 WARN_ON(page->private != (unsigned long)eb);
3474 return 0;
3475 }
3476
3477 /* Already mapped, just free prealloc */
3478 if (PagePrivate(page)) {
3479 btrfs_free_subpage(prealloc);
3480 return 0;
3481 }
3482
3483 if (prealloc)
3484 /* Has preallocated memory for subpage */
3485 attach_page_private(page, prealloc);
d1b89bc0 3486 else
760f991f
QW
3487 /* Do new allocation to attach subpage */
3488 ret = btrfs_attach_subpage(fs_info, page,
3489 BTRFS_SUBPAGE_METADATA);
3490 return ret;
d1310b2e
CM
3491}
3492
32443de3 3493int set_page_extent_mapped(struct page *page)
d1310b2e 3494{
32443de3
QW
3495 struct btrfs_fs_info *fs_info;
3496
3497 ASSERT(page->mapping);
3498
3499 if (PagePrivate(page))
3500 return 0;
3501
3502 fs_info = btrfs_sb(page->mapping->host->i_sb);
3503
3504 if (fs_info->sectorsize < PAGE_SIZE)
3505 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3506
3507 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3508 return 0;
3509}
3510
3511void clear_page_extent_mapped(struct page *page)
3512{
3513 struct btrfs_fs_info *fs_info;
3514
3515 ASSERT(page->mapping);
3516
d1b89bc0 3517 if (!PagePrivate(page))
32443de3
QW
3518 return;
3519
3520 fs_info = btrfs_sb(page->mapping->host->i_sb);
3521 if (fs_info->sectorsize < PAGE_SIZE)
3522 return btrfs_detach_subpage(fs_info, page);
3523
3524 detach_page_private(page);
d1310b2e
CM
3525}
3526
125bac01
MX
3527static struct extent_map *
3528__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3529 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3530{
3531 struct extent_map *em;
3532
3533 if (em_cached && *em_cached) {
3534 em = *em_cached;
cbc0e928 3535 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3536 start < extent_map_end(em)) {
490b54d6 3537 refcount_inc(&em->refs);
125bac01
MX
3538 return em;
3539 }
3540
3541 free_extent_map(em);
3542 *em_cached = NULL;
3543 }
3544
1a5ee1e6 3545 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 3546 if (em_cached && !IS_ERR(em)) {
125bac01 3547 BUG_ON(*em_cached);
490b54d6 3548 refcount_inc(&em->refs);
125bac01
MX
3549 *em_cached = em;
3550 }
3551 return em;
3552}
d1310b2e
CM
3553/*
3554 * basic readpage implementation. Locked extent state structs are inserted
3555 * into the tree that are removed when the IO is done (by the end_io
3556 * handlers)
79787eaa 3557 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3558 * return 0 on success, otherwise return error
d1310b2e 3559 */
0f208812 3560int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 3561 struct btrfs_bio_ctrl *bio_ctrl,
0f208812 3562 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3563{
3564 struct inode *inode = page->mapping->host;
92082d40 3565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 3566 u64 start = page_offset(page);
8eec8296 3567 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3568 u64 cur = start;
3569 u64 extent_offset;
3570 u64 last_byte = i_size_read(inode);
3571 u64 block_start;
3572 u64 cur_end;
d1310b2e 3573 struct extent_map *em;
baf863b9 3574 int ret = 0;
306e16ce 3575 size_t pg_offset = 0;
d1310b2e
CM
3576 size_t iosize;
3577 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 3578 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3579
32443de3
QW
3580 ret = set_page_extent_mapped(page);
3581 if (ret < 0) {
3582 unlock_extent(tree, start, end);
92082d40
QW
3583 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3584 unlock_page(page);
32443de3
QW
3585 goto out;
3586 }
d1310b2e 3587
09cbfeaf 3588 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 3589 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3590
3591 if (zero_offset) {
09cbfeaf 3592 iosize = PAGE_SIZE - zero_offset;
d048b9c2 3593 memzero_page(page, zero_offset, iosize);
c8b97818 3594 flush_dcache_page(page);
c8b97818
CM
3595 }
3596 }
92082d40 3597 begin_page_read(fs_info, page);
d1310b2e 3598 while (cur <= end) {
4c37a793 3599 unsigned long this_bio_flag = 0;
005efedf 3600 bool force_bio_submit = false;
0c64c33c 3601 u64 disk_bytenr;
c8f2f24b 3602
6a404910 3603 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 3604 if (cur >= last_byte) {
507903b8
AJ
3605 struct extent_state *cached = NULL;
3606
09cbfeaf 3607 iosize = PAGE_SIZE - pg_offset;
d048b9c2 3608 memzero_page(page, pg_offset, iosize);
d1310b2e 3609 flush_dcache_page(page);
d1310b2e 3610 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3611 &cached, GFP_NOFS);
7f042a83 3612 unlock_extent_cached(tree, cur,
e43bbe5e 3613 cur + iosize - 1, &cached);
92082d40 3614 end_page_read(page, true, cur, iosize);
d1310b2e
CM
3615 break;
3616 }
125bac01 3617 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3618 end - cur + 1, em_cached);
c0347550 3619 if (IS_ERR(em)) {
7f042a83 3620 unlock_extent(tree, cur, end);
92082d40 3621 end_page_read(page, false, cur, end + 1 - cur);
bbf0ea7e 3622 ret = PTR_ERR(em);
d1310b2e
CM
3623 break;
3624 }
d1310b2e
CM
3625 extent_offset = cur - em->start;
3626 BUG_ON(extent_map_end(em) <= cur);
3627 BUG_ON(end < cur);
3628
261507a0 3629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3630 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3631 extent_set_compress_type(&this_bio_flag,
3632 em->compress_type);
3633 }
c8b97818 3634
d1310b2e
CM
3635 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3636 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3637 iosize = ALIGN(iosize, blocksize);
949b3273 3638 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
0c64c33c 3639 disk_bytenr = em->block_start;
949b3273 3640 else
0c64c33c 3641 disk_bytenr = em->block_start + extent_offset;
d1310b2e 3642 block_start = em->block_start;
d899e052
YZ
3643 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3644 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3645
3646 /*
3647 * If we have a file range that points to a compressed extent
260db43c 3648 * and it's followed by a consecutive file range that points
005efedf
FM
3649 * to the same compressed extent (possibly with a different
3650 * offset and/or length, so it either points to the whole extent
3651 * or only part of it), we must make sure we do not submit a
3652 * single bio to populate the pages for the 2 ranges because
3653 * this makes the compressed extent read zero out the pages
3654 * belonging to the 2nd range. Imagine the following scenario:
3655 *
3656 * File layout
3657 * [0 - 8K] [8K - 24K]
3658 * | |
3659 * | |
3660 * points to extent X, points to extent X,
3661 * offset 4K, length of 8K offset 0, length 16K
3662 *
3663 * [extent X, compressed length = 4K uncompressed length = 16K]
3664 *
3665 * If the bio to read the compressed extent covers both ranges,
3666 * it will decompress extent X into the pages belonging to the
3667 * first range and then it will stop, zeroing out the remaining
3668 * pages that belong to the other range that points to extent X.
3669 * So here we make sure we submit 2 bios, one for the first
3670 * range and another one for the third range. Both will target
3671 * the same physical extent from disk, but we can't currently
3672 * make the compressed bio endio callback populate the pages
3673 * for both ranges because each compressed bio is tightly
3674 * coupled with a single extent map, and each range can have
3675 * an extent map with a different offset value relative to the
3676 * uncompressed data of our extent and different lengths. This
3677 * is a corner case so we prioritize correctness over
3678 * non-optimal behavior (submitting 2 bios for the same extent).
3679 */
3680 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3681 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3682 *prev_em_start != em->start)
005efedf
FM
3683 force_bio_submit = true;
3684
3685 if (prev_em_start)
8e928218 3686 *prev_em_start = em->start;
005efedf 3687
d1310b2e
CM
3688 free_extent_map(em);
3689 em = NULL;
3690
3691 /* we've found a hole, just zero and go on */
3692 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
3693 struct extent_state *cached = NULL;
3694
d048b9c2 3695 memzero_page(page, pg_offset, iosize);
d1310b2e 3696 flush_dcache_page(page);
d1310b2e
CM
3697
3698 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3699 &cached, GFP_NOFS);
7f042a83 3700 unlock_extent_cached(tree, cur,
e43bbe5e 3701 cur + iosize - 1, &cached);
92082d40 3702 end_page_read(page, true, cur, iosize);
d1310b2e 3703 cur = cur + iosize;
306e16ce 3704 pg_offset += iosize;
d1310b2e
CM
3705 continue;
3706 }
3707 /* the get_extent function already copied into the page */
9655d298
CM
3708 if (test_range_bit(tree, cur, cur_end,
3709 EXTENT_UPTODATE, 1, NULL)) {
7f042a83 3710 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3711 end_page_read(page, true, cur, iosize);
d1310b2e 3712 cur = cur + iosize;
306e16ce 3713 pg_offset += iosize;
d1310b2e
CM
3714 continue;
3715 }
70dec807
CM
3716 /* we have an inline extent but it didn't get marked up
3717 * to date. Error out
3718 */
3719 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 3720 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3721 end_page_read(page, false, cur, iosize);
70dec807 3722 cur = cur + iosize;
306e16ce 3723 pg_offset += iosize;
70dec807
CM
3724 continue;
3725 }
d1310b2e 3726
0ceb34bf 3727 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b
QW
3728 bio_ctrl, page, disk_bytenr, iosize,
3729 pg_offset,
fd513000 3730 end_bio_extent_readpage, 0,
005efedf
FM
3731 this_bio_flag,
3732 force_bio_submit);
ad3fc794 3733 if (ret) {
7f042a83 3734 unlock_extent(tree, cur, cur + iosize - 1);
92082d40 3735 end_page_read(page, false, cur, iosize);
baf863b9 3736 goto out;
edd33c99 3737 }
d1310b2e 3738 cur = cur + iosize;
306e16ce 3739 pg_offset += iosize;
d1310b2e 3740 }
90a887c9 3741out:
baf863b9 3742 return ret;
d1310b2e
CM
3743}
3744
b6660e80 3745static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
3746 u64 start, u64 end,
3747 struct extent_map **em_cached,
3748 struct btrfs_bio_ctrl *bio_ctrl,
3749 u64 *prev_em_start)
9974090b 3750{
23d31bd4 3751 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3752 int index;
3753
b272ae22 3754 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3755
3756 for (index = 0; index < nr_pages; index++) {
390ed29b 3757 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 3758 REQ_RAHEAD, prev_em_start);
09cbfeaf 3759 put_page(pages[index]);
9974090b
MX
3760 }
3761}
3762
3d4b9496 3763static void update_nr_written(struct writeback_control *wbc,
a9132667 3764 unsigned long nr_written)
11c8349b
CM
3765{
3766 wbc->nr_to_write -= nr_written;
11c8349b
CM
3767}
3768
d1310b2e 3769/*
40f76580
CM
3770 * helper for __extent_writepage, doing all of the delayed allocation setup.
3771 *
5eaad97a 3772 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3773 * to write the page (copy into inline extent). In this case the IO has
3774 * been started and the page is already unlocked.
3775 *
3776 * This returns 0 if all went well (page still locked)
3777 * This returns < 0 if there were errors (page still locked)
d1310b2e 3778 */
cd4c0bf9 3779static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 3780 struct page *page, struct writeback_control *wbc)
40f76580 3781{
2749f7ef 3782 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 3783 u64 delalloc_start = page_offset(page);
40f76580 3784 u64 delalloc_to_write = 0;
83f1b680
QW
3785 /* How many pages are started by btrfs_run_delalloc_range() */
3786 unsigned long nr_written = 0;
40f76580
CM
3787 int ret;
3788 int page_started = 0;
3789
2749f7ef
QW
3790 while (delalloc_start < page_end) {
3791 u64 delalloc_end = page_end;
3792 bool found;
40f76580 3793
cd4c0bf9 3794 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3795 &delalloc_start,
917aacec 3796 &delalloc_end);
3522e903 3797 if (!found) {
40f76580
CM
3798 delalloc_start = delalloc_end + 1;
3799 continue;
3800 }
cd4c0bf9 3801 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 3802 delalloc_end, &page_started, &nr_written, wbc);
40f76580 3803 if (ret) {
963e4db8
QW
3804 btrfs_page_set_error(inode->root->fs_info, page,
3805 page_offset(page), PAGE_SIZE);
7361b4ae 3806 return ret;
40f76580
CM
3807 }
3808 /*
ea1754a0
KS
3809 * delalloc_end is already one less than the total length, so
3810 * we don't subtract one from PAGE_SIZE
40f76580
CM
3811 */
3812 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3813 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3814 delalloc_start = delalloc_end + 1;
3815 }
3816 if (wbc->nr_to_write < delalloc_to_write) {
3817 int thresh = 8192;
3818
3819 if (delalloc_to_write < thresh * 2)
3820 thresh = delalloc_to_write;
3821 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3822 thresh);
3823 }
3824
83f1b680 3825 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
3826 if (page_started) {
3827 /*
83f1b680
QW
3828 * We've unlocked the page, so we can't update the mapping's
3829 * writeback index, just update nr_to_write.
40f76580 3830 */
83f1b680 3831 wbc->nr_to_write -= nr_written;
40f76580
CM
3832 return 1;
3833 }
3834
b69d1ee9 3835 return 0;
40f76580
CM
3836}
3837
c5ef5c6c
QW
3838/*
3839 * Find the first byte we need to write.
3840 *
3841 * For subpage, one page can contain several sectors, and
3842 * __extent_writepage_io() will just grab all extent maps in the page
3843 * range and try to submit all non-inline/non-compressed extents.
3844 *
3845 * This is a big problem for subpage, we shouldn't re-submit already written
3846 * data at all.
3847 * This function will lookup subpage dirty bit to find which range we really
3848 * need to submit.
3849 *
3850 * Return the next dirty range in [@start, @end).
3851 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3852 */
3853static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3854 struct page *page, u64 *start, u64 *end)
3855{
3856 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 3857 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
3858 u64 orig_start = *start;
3859 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 3860 unsigned long flags;
72a69cd0 3861 int range_start_bit;
c5ef5c6c
QW
3862 int range_end_bit;
3863
3864 /*
3865 * For regular sector size == page size case, since one page only
3866 * contains one sector, we return the page offset directly.
3867 */
3868 if (fs_info->sectorsize == PAGE_SIZE) {
3869 *start = page_offset(page);
3870 *end = page_offset(page) + PAGE_SIZE;
3871 return;
3872 }
3873
72a69cd0
QW
3874 range_start_bit = spi->dirty_offset +
3875 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3876
c5ef5c6c
QW
3877 /* We should have the page locked, but just in case */
3878 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
3879 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3880 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
3881 spin_unlock_irqrestore(&subpage->lock, flags);
3882
72a69cd0
QW
3883 range_start_bit -= spi->dirty_offset;
3884 range_end_bit -= spi->dirty_offset;
3885
c5ef5c6c
QW
3886 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3887 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3888}
3889
40f76580
CM
3890/*
3891 * helper for __extent_writepage. This calls the writepage start hooks,
3892 * and does the loop to map the page into extents and bios.
3893 *
3894 * We return 1 if the IO is started and the page is unlocked,
3895 * 0 if all went well (page still locked)
3896 * < 0 if there were errors (page still locked)
3897 */
d4580fe2 3898static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3899 struct page *page,
3900 struct writeback_control *wbc,
3901 struct extent_page_data *epd,
3902 loff_t i_size,
57e5ffeb 3903 int *nr_ret)
d1310b2e 3904{
6bc5636a 3905 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
3906 u64 cur = page_offset(page);
3907 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 3908 u64 extent_offset;
d1310b2e 3909 u64 block_start;
d1310b2e 3910 struct extent_map *em;
40f76580
CM
3911 int ret = 0;
3912 int nr = 0;
d8e3fb10 3913 u32 opf = REQ_OP_WRITE;
57e5ffeb 3914 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3915 bool compressed;
c8b97818 3916
a129ffb8 3917 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
3918 if (ret) {
3919 /* Fixup worker will requeue */
5ab58055 3920 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3921 unlock_page(page);
3922 return 1;
247e743c
CM
3923 }
3924
11c8349b
CM
3925 /*
3926 * we don't want to touch the inode after unlocking the page,
3927 * so we update the mapping writeback index now
3928 */
83f1b680 3929 update_nr_written(wbc, 1);
771ed689 3930
d1310b2e 3931 while (cur <= end) {
0c64c33c 3932 u64 disk_bytenr;
40f76580 3933 u64 em_end;
c5ef5c6c
QW
3934 u64 dirty_range_start = cur;
3935 u64 dirty_range_end;
6bc5636a 3936 u32 iosize;
58409edd 3937
40f76580 3938 if (cur >= i_size) {
38a39ac7 3939 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 3940 end, true);
cc1d0d93
QW
3941 /*
3942 * This range is beyond i_size, thus we don't need to
3943 * bother writing back.
3944 * But we still need to clear the dirty subpage bit, or
3945 * the next time the page gets dirtied, we will try to
3946 * writeback the sectors with subpage dirty bits,
3947 * causing writeback without ordered extent.
3948 */
3949 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
3950 break;
3951 }
c5ef5c6c
QW
3952
3953 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3954 &dirty_range_end);
3955 if (cur < dirty_range_start) {
3956 cur = dirty_range_start;
3957 continue;
3958 }
3959
d4580fe2 3960 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c0347550 3961 if (IS_ERR(em)) {
c5ef5c6c 3962 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 3963 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3964 break;
3965 }
3966
3967 extent_offset = cur - em->start;
40f76580 3968 em_end = extent_map_end(em);
6bc5636a
QW
3969 ASSERT(cur <= em_end);
3970 ASSERT(cur < end);
3971 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3972 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 3973 block_start = em->block_start;
c8b97818 3974 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
3975 disk_bytenr = em->block_start + extent_offset;
3976
c5ef5c6c
QW
3977 /*
3978 * Note that em_end from extent_map_end() and dirty_range_end from
3979 * find_next_dirty_byte() are all exclusive
3980 */
3981 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 3982
e380adfc 3983 if (btrfs_use_zone_append(inode, em->block_start))
d8e3fb10
NA
3984 opf = REQ_OP_ZONE_APPEND;
3985
d1310b2e
CM
3986 free_extent_map(em);
3987 em = NULL;
3988
c8b97818
CM
3989 /*
3990 * compressed and inline extents are written through other
3991 * paths in the FS
3992 */
3993 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3994 block_start == EXTENT_MAP_INLINE) {
c8b04030 3995 if (compressed)
c8b97818 3996 nr++;
c8b04030 3997 else
38a39ac7 3998 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 3999 page, cur, cur + iosize - 1, true);
cc1d0d93 4000 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 4001 cur += iosize;
d1310b2e
CM
4002 continue;
4003 }
c8b97818 4004
d2a91064 4005 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 4006 if (!PageWriteback(page)) {
d4580fe2 4007 btrfs_err(inode->root->fs_info,
58409edd
DS
4008 "page %lu not writeback, cur %llu end %llu",
4009 page->index, cur, end);
d1310b2e 4010 }
7f3c74fb 4011
c5ef5c6c
QW
4012 /*
4013 * Although the PageDirty bit is cleared before entering this
4014 * function, subpage dirty bit is not cleared.
4015 * So clear subpage dirty bit here so next time we won't submit
4016 * page for range already written to disk.
4017 */
4018 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4019
390ed29b
QW
4020 ret = submit_extent_page(opf | write_flags, wbc,
4021 &epd->bio_ctrl, page,
d8e3fb10 4022 disk_bytenr, iosize,
390ed29b 4023 cur - page_offset(page),
58409edd 4024 end_bio_extent_writepage,
390ed29b 4025 0, 0, false);
fe01aa65 4026 if (ret) {
c5ef5c6c 4027 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 4028 if (PageWriteback(page))
c5ef5c6c
QW
4029 btrfs_page_clear_writeback(fs_info, page, cur,
4030 iosize);
fe01aa65 4031 }
d1310b2e 4032
6bc5636a 4033 cur += iosize;
d1310b2e
CM
4034 nr++;
4035 }
cc1d0d93
QW
4036 /*
4037 * If we finish without problem, we should not only clear page dirty,
4038 * but also empty subpage dirty bits
4039 */
4040 if (!ret)
4041 btrfs_page_assert_not_dirty(fs_info, page);
40f76580 4042 *nr_ret = nr;
40f76580
CM
4043 return ret;
4044}
4045
4046/*
4047 * the writepage semantics are similar to regular writepage. extent
4048 * records are inserted to lock ranges in the tree, and as dirty areas
4049 * are found, they are marked writeback. Then the lock bits are removed
4050 * and the end_io handler clears the writeback ranges
3065976b
QW
4051 *
4052 * Return 0 if everything goes well.
4053 * Return <0 for error.
40f76580
CM
4054 */
4055static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 4056 struct extent_page_data *epd)
40f76580
CM
4057{
4058 struct inode *inode = page->mapping->host;
e55a0de1 4059 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
4060 const u64 page_start = page_offset(page);
4061 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
4062 int ret;
4063 int nr = 0;
eb70d222 4064 size_t pg_offset;
40f76580 4065 loff_t i_size = i_size_read(inode);
09cbfeaf 4066 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 4067
40f76580
CM
4068 trace___extent_writepage(page, inode, wbc);
4069
4070 WARN_ON(!PageLocked(page));
4071
963e4db8
QW
4072 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4073 page_offset(page), PAGE_SIZE);
40f76580 4074
7073017a 4075 pg_offset = offset_in_page(i_size);
40f76580
CM
4076 if (page->index > end_index ||
4077 (page->index == end_index && !pg_offset)) {
09cbfeaf 4078 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
4079 unlock_page(page);
4080 return 0;
4081 }
4082
4083 if (page->index == end_index) {
d048b9c2 4084 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580
CM
4085 flush_dcache_page(page);
4086 }
4087
32443de3
QW
4088 ret = set_page_extent_mapped(page);
4089 if (ret < 0) {
4090 SetPageError(page);
4091 goto done;
4092 }
40f76580 4093
7789a55a 4094 if (!epd->extent_locked) {
83f1b680 4095 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 4096 if (ret == 1)
169d2c87 4097 return 0;
7789a55a
NB
4098 if (ret)
4099 goto done;
4100 }
40f76580 4101
d4580fe2 4102 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 4103 &nr);
40f76580 4104 if (ret == 1)
169d2c87 4105 return 0;
40f76580 4106
d1310b2e
CM
4107done:
4108 if (nr == 0) {
4109 /* make sure the mapping tag for page dirty gets cleared */
4110 set_page_writeback(page);
4111 end_page_writeback(page);
4112 }
963e4db8
QW
4113 /*
4114 * Here we used to have a check for PageError() and then set @ret and
4115 * call end_extent_writepage().
4116 *
4117 * But in fact setting @ret here will cause different error paths
4118 * between subpage and regular sectorsize.
4119 *
4120 * For regular page size, we never submit current page, but only add
4121 * current page to current bio.
4122 * The bio submission can only happen in next page.
4123 * Thus if we hit the PageError() branch, @ret is already set to
4124 * non-zero value and will not get updated for regular sectorsize.
4125 *
4126 * But for subpage case, it's possible we submit part of current page,
4127 * thus can get PageError() set by submitted bio of the same page,
4128 * while our @ret is still 0.
4129 *
4130 * So here we unify the behavior and don't set @ret.
4131 * Error can still be properly passed to higher layer as page will
4132 * be set error, here we just don't handle the IO failure.
4133 *
4134 * NOTE: This is just a hotfix for subpage.
4135 * The root fix will be properly ending ordered extent when we hit
4136 * an error during writeback.
4137 *
4138 * But that needs a bigger refactoring, as we not only need to grab the
4139 * submitted OE, but also need to know exactly at which bytenr we hit
4140 * the error.
4141 * Currently the full page based __extent_writepage_io() is not
4142 * capable of that.
4143 */
4144 if (PageError(page))
cf3075fb 4145 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
4146 if (epd->extent_locked) {
4147 /*
4148 * If epd->extent_locked, it's from extent_write_locked_range(),
4149 * the page can either be locked by lock_page() or
4150 * process_one_page().
4151 * Let btrfs_page_unlock_writer() handle both cases.
4152 */
4153 ASSERT(wbc);
4154 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4155 wbc->range_end + 1 - wbc->range_start);
4156 } else {
4157 unlock_page(page);
4158 }
3065976b 4159 ASSERT(ret <= 0);
40f76580 4160 return ret;
d1310b2e
CM
4161}
4162
fd8b2b61 4163void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 4164{
74316201
N
4165 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4166 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
4167}
4168
18dfa711
FM
4169static void end_extent_buffer_writeback(struct extent_buffer *eb)
4170{
be1a1d7a
NA
4171 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
4172 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);
4173
18dfa711
FM
4174 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4175 smp_mb__after_atomic();
4176 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4177}
4178
2e3c2513 4179/*
a3efb2f0 4180 * Lock extent buffer status and pages for writeback.
2e3c2513 4181 *
a3efb2f0
QW
4182 * May try to flush write bio if we can't get the lock.
4183 *
4184 * Return 0 if the extent buffer doesn't need to be submitted.
4185 * (E.g. the extent buffer is not dirty)
4186 * Return >0 is the extent buffer is submitted to bio.
4187 * Return <0 if something went wrong, no page is locked.
2e3c2513 4188 */
9df76fb5 4189static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 4190 struct extent_page_data *epd)
0b32f4bb 4191{
9df76fb5 4192 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 4193 int i, num_pages, failed_page_nr;
0b32f4bb
JB
4194 int flush = 0;
4195 int ret = 0;
4196
4197 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 4198 ret = flush_write_bio(epd);
2e3c2513
QW
4199 if (ret < 0)
4200 return ret;
4201 flush = 1;
0b32f4bb
JB
4202 btrfs_tree_lock(eb);
4203 }
4204
4205 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4206 btrfs_tree_unlock(eb);
4207 if (!epd->sync_io)
4208 return 0;
4209 if (!flush) {
f4340622 4210 ret = flush_write_bio(epd);
2e3c2513
QW
4211 if (ret < 0)
4212 return ret;
0b32f4bb
JB
4213 flush = 1;
4214 }
a098d8e8
CM
4215 while (1) {
4216 wait_on_extent_buffer_writeback(eb);
4217 btrfs_tree_lock(eb);
4218 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4219 break;
0b32f4bb 4220 btrfs_tree_unlock(eb);
0b32f4bb
JB
4221 }
4222 }
4223
51561ffe
JB
4224 /*
4225 * We need to do this to prevent races in people who check if the eb is
4226 * under IO since we can end up having no IO bits set for a short period
4227 * of time.
4228 */
4229 spin_lock(&eb->refs_lock);
0b32f4bb
JB
4230 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4231 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 4232 spin_unlock(&eb->refs_lock);
0b32f4bb 4233 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
4234 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4235 -eb->len,
4236 fs_info->dirty_metadata_batch);
0b32f4bb 4237 ret = 1;
51561ffe
JB
4238 } else {
4239 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4240 }
4241
4242 btrfs_tree_unlock(eb);
4243
f3156df9
QW
4244 /*
4245 * Either we don't need to submit any tree block, or we're submitting
4246 * subpage eb.
4247 * Subpage metadata doesn't use page locking at all, so we can skip
4248 * the page locking.
4249 */
4250 if (!ret || fs_info->sectorsize < PAGE_SIZE)
0b32f4bb
JB
4251 return ret;
4252
65ad0104 4253 num_pages = num_extent_pages(eb);
0b32f4bb 4254 for (i = 0; i < num_pages; i++) {
fb85fc9a 4255 struct page *p = eb->pages[i];
0b32f4bb
JB
4256
4257 if (!trylock_page(p)) {
4258 if (!flush) {
18dfa711
FM
4259 int err;
4260
4261 err = flush_write_bio(epd);
4262 if (err < 0) {
4263 ret = err;
2e3c2513
QW
4264 failed_page_nr = i;
4265 goto err_unlock;
4266 }
0b32f4bb
JB
4267 flush = 1;
4268 }
4269 lock_page(p);
4270 }
4271 }
4272
4273 return ret;
2e3c2513
QW
4274err_unlock:
4275 /* Unlock already locked pages */
4276 for (i = 0; i < failed_page_nr; i++)
4277 unlock_page(eb->pages[i]);
18dfa711
FM
4278 /*
4279 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4280 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4281 * be made and undo everything done before.
4282 */
4283 btrfs_tree_lock(eb);
4284 spin_lock(&eb->refs_lock);
4285 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4286 end_extent_buffer_writeback(eb);
4287 spin_unlock(&eb->refs_lock);
4288 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4289 fs_info->dirty_metadata_batch);
4290 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4291 btrfs_tree_unlock(eb);
2e3c2513 4292 return ret;
0b32f4bb
JB
4293}
4294
5a2c6075 4295static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 4296{
5a2c6075 4297 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 4298
5a2c6075 4299 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
4300 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4301 return;
4302
c2e39305
JB
4303 /*
4304 * A read may stumble upon this buffer later, make sure that it gets an
4305 * error and knows there was an error.
4306 */
4307 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4308
68b85589
JB
4309 /*
4310 * We need to set the mapping with the io error as well because a write
4311 * error will flip the file system readonly, and then syncfs() will
4312 * return a 0 because we are readonly if we don't modify the err seq for
4313 * the superblock.
4314 */
4315 mapping_set_error(page->mapping, -EIO);
4316
eb5b64f1
DZ
4317 /*
4318 * If we error out, we should add back the dirty_metadata_bytes
4319 * to make it consistent.
4320 */
eb5b64f1
DZ
4321 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4322 eb->len, fs_info->dirty_metadata_batch);
4323
656f30db
FM
4324 /*
4325 * If writeback for a btree extent that doesn't belong to a log tree
4326 * failed, increment the counter transaction->eb_write_errors.
4327 * We do this because while the transaction is running and before it's
4328 * committing (when we call filemap_fdata[write|wait]_range against
4329 * the btree inode), we might have
4330 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4331 * returns an error or an error happens during writeback, when we're
4332 * committing the transaction we wouldn't know about it, since the pages
4333 * can be no longer dirty nor marked anymore for writeback (if a
4334 * subsequent modification to the extent buffer didn't happen before the
4335 * transaction commit), which makes filemap_fdata[write|wait]_range not
4336 * able to find the pages tagged with SetPageError at transaction
4337 * commit time. So if this happens we must abort the transaction,
4338 * otherwise we commit a super block with btree roots that point to
4339 * btree nodes/leafs whose content on disk is invalid - either garbage
4340 * or the content of some node/leaf from a past generation that got
4341 * cowed or deleted and is no longer valid.
4342 *
4343 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4344 * not be enough - we need to distinguish between log tree extents vs
4345 * non-log tree extents, and the next filemap_fdatawait_range() call
4346 * will catch and clear such errors in the mapping - and that call might
4347 * be from a log sync and not from a transaction commit. Also, checking
4348 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4349 * not done and would not be reliable - the eb might have been released
4350 * from memory and reading it back again means that flag would not be
4351 * set (since it's a runtime flag, not persisted on disk).
4352 *
4353 * Using the flags below in the btree inode also makes us achieve the
4354 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4355 * writeback for all dirty pages and before filemap_fdatawait_range()
4356 * is called, the writeback for all dirty pages had already finished
4357 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4358 * filemap_fdatawait_range() would return success, as it could not know
4359 * that writeback errors happened (the pages were no longer tagged for
4360 * writeback).
4361 */
4362 switch (eb->log_index) {
4363 case -1:
5a2c6075 4364 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
4365 break;
4366 case 0:
5a2c6075 4367 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
4368 break;
4369 case 1:
5a2c6075 4370 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
4371 break;
4372 default:
4373 BUG(); /* unexpected, logic error */
4374 }
4375}
4376
2f3186d8
QW
4377/*
4378 * The endio specific version which won't touch any unsafe spinlock in endio
4379 * context.
4380 */
4381static struct extent_buffer *find_extent_buffer_nolock(
4382 struct btrfs_fs_info *fs_info, u64 start)
4383{
4384 struct extent_buffer *eb;
4385
4386 rcu_read_lock();
4387 eb = radix_tree_lookup(&fs_info->buffer_radix,
4388 start >> fs_info->sectorsize_bits);
4389 if (eb && atomic_inc_not_zero(&eb->refs)) {
4390 rcu_read_unlock();
4391 return eb;
4392 }
4393 rcu_read_unlock();
4394 return NULL;
4395}
4396
4397/*
4398 * The endio function for subpage extent buffer write.
4399 *
4400 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4401 * after all extent buffers in the page has finished their writeback.
4402 */
fa04c165 4403static void end_bio_subpage_eb_writepage(struct bio *bio)
2f3186d8 4404{
fa04c165 4405 struct btrfs_fs_info *fs_info;
2f3186d8
QW
4406 struct bio_vec *bvec;
4407 struct bvec_iter_all iter_all;
4408
fa04c165
QW
4409 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4410 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4411
2f3186d8
QW
4412 ASSERT(!bio_flagged(bio, BIO_CLONED));
4413 bio_for_each_segment_all(bvec, bio, iter_all) {
4414 struct page *page = bvec->bv_page;
4415 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4416 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4417 u64 cur_bytenr = bvec_start;
4418
4419 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4420
4421 /* Iterate through all extent buffers in the range */
4422 while (cur_bytenr <= bvec_end) {
4423 struct extent_buffer *eb;
4424 int done;
4425
4426 /*
4427 * Here we can't use find_extent_buffer(), as it may
4428 * try to lock eb->refs_lock, which is not safe in endio
4429 * context.
4430 */
4431 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4432 ASSERT(eb);
4433
4434 cur_bytenr = eb->start + eb->len;
4435
4436 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4437 done = atomic_dec_and_test(&eb->io_pages);
4438 ASSERT(done);
4439
4440 if (bio->bi_status ||
4441 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4442 ClearPageUptodate(page);
4443 set_btree_ioerr(page, eb);
4444 }
4445
4446 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4447 eb->len);
4448 end_extent_buffer_writeback(eb);
4449 /*
4450 * free_extent_buffer() will grab spinlock which is not
4451 * safe in endio context. Thus here we manually dec
4452 * the ref.
4453 */
4454 atomic_dec(&eb->refs);
4455 }
4456 }
4457 bio_put(bio);
4458}
4459
4246a0b6 4460static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 4461{
2c30c71b 4462 struct bio_vec *bvec;
0b32f4bb 4463 struct extent_buffer *eb;
2b070cfe 4464 int done;
6dc4f100 4465 struct bvec_iter_all iter_all;
0b32f4bb 4466
c09abff8 4467 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 4468 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
4469 struct page *page = bvec->bv_page;
4470
0b32f4bb
JB
4471 eb = (struct extent_buffer *)page->private;
4472 BUG_ON(!eb);
4473 done = atomic_dec_and_test(&eb->io_pages);
4474
4e4cbee9 4475 if (bio->bi_status ||
4246a0b6 4476 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 4477 ClearPageUptodate(page);
5a2c6075 4478 set_btree_ioerr(page, eb);
0b32f4bb
JB
4479 }
4480
4481 end_page_writeback(page);
4482
4483 if (!done)
4484 continue;
4485
4486 end_extent_buffer_writeback(eb);
2c30c71b 4487 }
0b32f4bb
JB
4488
4489 bio_put(bio);
0b32f4bb
JB
4490}
4491
fa04c165
QW
4492static void prepare_eb_write(struct extent_buffer *eb)
4493{
4494 u32 nritems;
4495 unsigned long start;
4496 unsigned long end;
4497
4498 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4499 atomic_set(&eb->io_pages, num_extent_pages(eb));
4500
4501 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4502 nritems = btrfs_header_nritems(eb);
4503 if (btrfs_header_level(eb) > 0) {
4504 end = btrfs_node_key_ptr_offset(nritems);
4505 memzero_extent_buffer(eb, end, eb->len - end);
4506 } else {
4507 /*
4508 * Leaf:
4509 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4510 */
4511 start = btrfs_item_nr_offset(nritems);
4512 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4513 memzero_extent_buffer(eb, start, end - start);
4514 }
4515}
4516
35b6ddfa
QW
4517/*
4518 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4519 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
4520 */
4521static int write_one_subpage_eb(struct extent_buffer *eb,
4522 struct writeback_control *wbc,
4523 struct extent_page_data *epd)
4524{
4525 struct btrfs_fs_info *fs_info = eb->fs_info;
4526 struct page *page = eb->pages[0];
4527 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4528 bool no_dirty_ebs = false;
4529 int ret;
4530
fa04c165
QW
4531 prepare_eb_write(eb);
4532
35b6ddfa
QW
4533 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4534 lock_page(page);
4535 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4536
4537 /* Check if this is the last dirty bit to update nr_written */
4538 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4539 eb->start, eb->len);
4540 if (no_dirty_ebs)
4541 clear_page_dirty_for_io(page);
4542
390ed29b
QW
4543 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4544 &epd->bio_ctrl, page, eb->start, eb->len,
4545 eb->start - page_offset(page),
fa04c165 4546 end_bio_subpage_eb_writepage, 0, 0, false);
35b6ddfa
QW
4547 if (ret) {
4548 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4549 set_btree_ioerr(page, eb);
4550 unlock_page(page);
4551
4552 if (atomic_dec_and_test(&eb->io_pages))
4553 end_extent_buffer_writeback(eb);
4554 return -EIO;
4555 }
4556 unlock_page(page);
4557 /*
4558 * Submission finished without problem, if no range of the page is
4559 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4560 */
4561 if (no_dirty_ebs)
4562 update_nr_written(wbc, 1);
4563 return ret;
4564}
4565
0e378df1 4566static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
4567 struct writeback_control *wbc,
4568 struct extent_page_data *epd)
4569{
0c64c33c 4570 u64 disk_bytenr = eb->start;
cc5e31a4 4571 int i, num_pages;
ff40adf7 4572 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 4573 int ret = 0;
0b32f4bb 4574
fa04c165 4575 prepare_eb_write(eb);
35b6ddfa 4576
fa04c165 4577 num_pages = num_extent_pages(eb);
0b32f4bb 4578 for (i = 0; i < num_pages; i++) {
fb85fc9a 4579 struct page *p = eb->pages[i];
0b32f4bb
JB
4580
4581 clear_page_dirty_for_io(p);
4582 set_page_writeback(p);
0ceb34bf 4583 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
4584 &epd->bio_ctrl, p, disk_bytenr,
4585 PAGE_SIZE, 0,
1f7ad75b 4586 end_bio_extent_buffer_writepage,
390ed29b 4587 0, 0, false);
0b32f4bb 4588 if (ret) {
5a2c6075 4589 set_btree_ioerr(p, eb);
fe01aa65
TK
4590 if (PageWriteback(p))
4591 end_page_writeback(p);
0b32f4bb
JB
4592 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4593 end_extent_buffer_writeback(eb);
4594 ret = -EIO;
4595 break;
4596 }
0c64c33c 4597 disk_bytenr += PAGE_SIZE;
3d4b9496 4598 update_nr_written(wbc, 1);
0b32f4bb
JB
4599 unlock_page(p);
4600 }
4601
4602 if (unlikely(ret)) {
4603 for (; i < num_pages; i++) {
bbf65cf0 4604 struct page *p = eb->pages[i];
81465028 4605 clear_page_dirty_for_io(p);
0b32f4bb
JB
4606 unlock_page(p);
4607 }
4608 }
4609
4610 return ret;
4611}
4612
c4aec299
QW
4613/*
4614 * Submit one subpage btree page.
4615 *
4616 * The main difference to submit_eb_page() is:
4617 * - Page locking
4618 * For subpage, we don't rely on page locking at all.
4619 *
4620 * - Flush write bio
4621 * We only flush bio if we may be unable to fit current extent buffers into
4622 * current bio.
4623 *
4624 * Return >=0 for the number of submitted extent buffers.
4625 * Return <0 for fatal error.
4626 */
4627static int submit_eb_subpage(struct page *page,
4628 struct writeback_control *wbc,
4629 struct extent_page_data *epd)
4630{
4631 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4632 int submitted = 0;
4633 u64 page_start = page_offset(page);
4634 int bit_start = 0;
c4aec299
QW
4635 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4636 int ret;
4637
4638 /* Lock and write each dirty extent buffers in the range */
72a69cd0 4639 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
4640 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4641 struct extent_buffer *eb;
4642 unsigned long flags;
4643 u64 start;
4644
4645 /*
4646 * Take private lock to ensure the subpage won't be detached
4647 * in the meantime.
4648 */
4649 spin_lock(&page->mapping->private_lock);
4650 if (!PagePrivate(page)) {
4651 spin_unlock(&page->mapping->private_lock);
4652 break;
4653 }
4654 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
4655 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4656 subpage->bitmaps)) {
c4aec299
QW
4657 spin_unlock_irqrestore(&subpage->lock, flags);
4658 spin_unlock(&page->mapping->private_lock);
4659 bit_start++;
4660 continue;
4661 }
4662
4663 start = page_start + bit_start * fs_info->sectorsize;
4664 bit_start += sectors_per_node;
4665
4666 /*
4667 * Here we just want to grab the eb without touching extra
4668 * spin locks, so call find_extent_buffer_nolock().
4669 */
4670 eb = find_extent_buffer_nolock(fs_info, start);
4671 spin_unlock_irqrestore(&subpage->lock, flags);
4672 spin_unlock(&page->mapping->private_lock);
4673
4674 /*
4675 * The eb has already reached 0 refs thus find_extent_buffer()
4676 * doesn't return it. We don't need to write back such eb
4677 * anyway.
4678 */
4679 if (!eb)
4680 continue;
4681
4682 ret = lock_extent_buffer_for_io(eb, epd);
4683 if (ret == 0) {
4684 free_extent_buffer(eb);
4685 continue;
4686 }
4687 if (ret < 0) {
4688 free_extent_buffer(eb);
4689 goto cleanup;
4690 }
fa04c165 4691 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
4692 free_extent_buffer(eb);
4693 if (ret < 0)
4694 goto cleanup;
4695 submitted++;
4696 }
4697 return submitted;
4698
4699cleanup:
4700 /* We hit error, end bio for the submitted extent buffers */
4701 end_write_bio(epd, ret);
4702 return ret;
4703}
4704
f91e0d0c
QW
4705/*
4706 * Submit all page(s) of one extent buffer.
4707 *
4708 * @page: the page of one extent buffer
4709 * @eb_context: to determine if we need to submit this page, if current page
4710 * belongs to this eb, we don't need to submit
4711 *
4712 * The caller should pass each page in their bytenr order, and here we use
4713 * @eb_context to determine if we have submitted pages of one extent buffer.
4714 *
4715 * If we have, we just skip until we hit a new page that doesn't belong to
4716 * current @eb_context.
4717 *
4718 * If not, we submit all the page(s) of the extent buffer.
4719 *
4720 * Return >0 if we have submitted the extent buffer successfully.
4721 * Return 0 if we don't need to submit the page, as it's already submitted by
4722 * previous call.
4723 * Return <0 for fatal error.
4724 */
4725static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4726 struct extent_page_data *epd,
4727 struct extent_buffer **eb_context)
4728{
4729 struct address_space *mapping = page->mapping;
0bc09ca1 4730 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
4731 struct extent_buffer *eb;
4732 int ret;
4733
4734 if (!PagePrivate(page))
4735 return 0;
4736
c4aec299
QW
4737 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4738 return submit_eb_subpage(page, wbc, epd);
4739
f91e0d0c
QW
4740 spin_lock(&mapping->private_lock);
4741 if (!PagePrivate(page)) {
4742 spin_unlock(&mapping->private_lock);
4743 return 0;
4744 }
4745
4746 eb = (struct extent_buffer *)page->private;
4747
4748 /*
4749 * Shouldn't happen and normally this would be a BUG_ON but no point
4750 * crashing the machine for something we can survive anyway.
4751 */
4752 if (WARN_ON(!eb)) {
4753 spin_unlock(&mapping->private_lock);
4754 return 0;
4755 }
4756
4757 if (eb == *eb_context) {
4758 spin_unlock(&mapping->private_lock);
4759 return 0;
4760 }
4761 ret = atomic_inc_not_zero(&eb->refs);
4762 spin_unlock(&mapping->private_lock);
4763 if (!ret)
4764 return 0;
4765
0bc09ca1
NA
4766 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4767 /*
4768 * If for_sync, this hole will be filled with
4769 * trasnsaction commit.
4770 */
4771 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4772 ret = -EAGAIN;
4773 else
4774 ret = 0;
4775 free_extent_buffer(eb);
4776 return ret;
4777 }
4778
f91e0d0c
QW
4779 *eb_context = eb;
4780
4781 ret = lock_extent_buffer_for_io(eb, epd);
4782 if (ret <= 0) {
0bc09ca1
NA
4783 btrfs_revert_meta_write_pointer(cache, eb);
4784 if (cache)
4785 btrfs_put_block_group(cache);
f91e0d0c
QW
4786 free_extent_buffer(eb);
4787 return ret;
4788 }
be1a1d7a
NA
4789 if (cache) {
4790 /* Impiles write in zoned mode */
0bc09ca1 4791 btrfs_put_block_group(cache);
be1a1d7a
NA
4792 /* Mark the last eb in a block group */
4793 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
4794 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4795 }
f91e0d0c
QW
4796 ret = write_one_eb(eb, wbc, epd);
4797 free_extent_buffer(eb);
4798 if (ret < 0)
4799 return ret;
4800 return 1;
4801}
4802
0b32f4bb
JB
4803int btree_write_cache_pages(struct address_space *mapping,
4804 struct writeback_control *wbc)
4805{
f91e0d0c 4806 struct extent_buffer *eb_context = NULL;
0b32f4bb 4807 struct extent_page_data epd = {
390ed29b 4808 .bio_ctrl = { 0 },
0b32f4bb
JB
4809 .extent_locked = 0,
4810 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4811 };
b3ff8f1d 4812 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
4813 int ret = 0;
4814 int done = 0;
4815 int nr_to_write_done = 0;
4816 struct pagevec pvec;
4817 int nr_pages;
4818 pgoff_t index;
4819 pgoff_t end; /* Inclusive */
4820 int scanned = 0;
10bbd235 4821 xa_mark_t tag;
0b32f4bb 4822
86679820 4823 pagevec_init(&pvec);
0b32f4bb
JB
4824 if (wbc->range_cyclic) {
4825 index = mapping->writeback_index; /* Start from prev offset */
4826 end = -1;
556755a8
JB
4827 /*
4828 * Start from the beginning does not need to cycle over the
4829 * range, mark it as scanned.
4830 */
4831 scanned = (index == 0);
0b32f4bb 4832 } else {
09cbfeaf
KS
4833 index = wbc->range_start >> PAGE_SHIFT;
4834 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4835 scanned = 1;
4836 }
4837 if (wbc->sync_mode == WB_SYNC_ALL)
4838 tag = PAGECACHE_TAG_TOWRITE;
4839 else
4840 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 4841 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
4842retry:
4843 if (wbc->sync_mode == WB_SYNC_ALL)
4844 tag_pages_for_writeback(mapping, index, end);
4845 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4846 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4847 tag))) {
0b32f4bb
JB
4848 unsigned i;
4849
0b32f4bb
JB
4850 for (i = 0; i < nr_pages; i++) {
4851 struct page *page = pvec.pages[i];
4852
f91e0d0c
QW
4853 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4854 if (ret == 0)
0b32f4bb 4855 continue;
f91e0d0c 4856 if (ret < 0) {
0b32f4bb 4857 done = 1;
0b32f4bb
JB
4858 break;
4859 }
0b32f4bb
JB
4860
4861 /*
4862 * the filesystem may choose to bump up nr_to_write.
4863 * We have to make sure to honor the new nr_to_write
4864 * at any time
4865 */
4866 nr_to_write_done = wbc->nr_to_write <= 0;
4867 }
4868 pagevec_release(&pvec);
4869 cond_resched();
4870 }
4871 if (!scanned && !done) {
4872 /*
4873 * We hit the last page and there is more work to be done: wrap
4874 * back to the start of the file
4875 */
4876 scanned = 1;
4877 index = 0;
4878 goto retry;
4879 }
2b952eea
QW
4880 if (ret < 0) {
4881 end_write_bio(&epd, ret);
0bc09ca1 4882 goto out;
2b952eea 4883 }
b3ff8f1d
QW
4884 /*
4885 * If something went wrong, don't allow any metadata write bio to be
4886 * submitted.
4887 *
4888 * This would prevent use-after-free if we had dirty pages not
4889 * cleaned up, which can still happen by fuzzed images.
4890 *
4891 * - Bad extent tree
4892 * Allowing existing tree block to be allocated for other trees.
4893 *
4894 * - Log tree operations
4895 * Exiting tree blocks get allocated to log tree, bumps its
4896 * generation, then get cleaned in tree re-balance.
4897 * Such tree block will not be written back, since it's clean,
4898 * thus no WRITTEN flag set.
4899 * And after log writes back, this tree block is not traced by
4900 * any dirty extent_io_tree.
4901 *
4902 * - Offending tree block gets re-dirtied from its original owner
4903 * Since it has bumped generation, no WRITTEN flag, it can be
4904 * reused without COWing. This tree block will not be traced
4905 * by btrfs_transaction::dirty_pages.
4906 *
4907 * Now such dirty tree block will not be cleaned by any dirty
4908 * extent io tree. Thus we don't want to submit such wild eb
4909 * if the fs already has error.
4910 */
84961539 4911 if (!BTRFS_FS_ERROR(fs_info)) {
b3ff8f1d
QW
4912 ret = flush_write_bio(&epd);
4913 } else {
fbabd4a3 4914 ret = -EROFS;
b3ff8f1d
QW
4915 end_write_bio(&epd, ret);
4916 }
0bc09ca1
NA
4917out:
4918 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
4919 return ret;
4920}
4921
d1310b2e 4922/**
3bed2da1
NB
4923 * Walk the list of dirty pages of the given address space and write all of them.
4924 *
d1310b2e 4925 * @mapping: address space structure to write
3bed2da1
NB
4926 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4927 * @epd: holds context for the write, namely the bio
d1310b2e
CM
4928 *
4929 * If a page is already under I/O, write_cache_pages() skips it, even
4930 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4931 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4932 * and msync() need to guarantee that all the data which was dirty at the time
4933 * the call was made get new I/O started against them. If wbc->sync_mode is
4934 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4935 * existing IO to complete.
4936 */
4242b64a 4937static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4938 struct writeback_control *wbc,
aab6e9ed 4939 struct extent_page_data *epd)
d1310b2e 4940{
7fd1a3f7 4941 struct inode *inode = mapping->host;
d1310b2e
CM
4942 int ret = 0;
4943 int done = 0;
f85d7d6c 4944 int nr_to_write_done = 0;
d1310b2e
CM
4945 struct pagevec pvec;
4946 int nr_pages;
4947 pgoff_t index;
4948 pgoff_t end; /* Inclusive */
a9132667
LB
4949 pgoff_t done_index;
4950 int range_whole = 0;
d1310b2e 4951 int scanned = 0;
10bbd235 4952 xa_mark_t tag;
d1310b2e 4953
7fd1a3f7
JB
4954 /*
4955 * We have to hold onto the inode so that ordered extents can do their
4956 * work when the IO finishes. The alternative to this is failing to add
4957 * an ordered extent if the igrab() fails there and that is a huge pain
4958 * to deal with, so instead just hold onto the inode throughout the
4959 * writepages operation. If it fails here we are freeing up the inode
4960 * anyway and we'd rather not waste our time writing out stuff that is
4961 * going to be truncated anyway.
4962 */
4963 if (!igrab(inode))
4964 return 0;
4965
86679820 4966 pagevec_init(&pvec);
d1310b2e
CM
4967 if (wbc->range_cyclic) {
4968 index = mapping->writeback_index; /* Start from prev offset */
4969 end = -1;
556755a8
JB
4970 /*
4971 * Start from the beginning does not need to cycle over the
4972 * range, mark it as scanned.
4973 */
4974 scanned = (index == 0);
d1310b2e 4975 } else {
09cbfeaf
KS
4976 index = wbc->range_start >> PAGE_SHIFT;
4977 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4978 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4979 range_whole = 1;
d1310b2e
CM
4980 scanned = 1;
4981 }
3cd24c69
EL
4982
4983 /*
4984 * We do the tagged writepage as long as the snapshot flush bit is set
4985 * and we are the first one who do the filemap_flush() on this inode.
4986 *
4987 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4988 * not race in and drop the bit.
4989 */
4990 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4991 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4992 &BTRFS_I(inode)->runtime_flags))
4993 wbc->tagged_writepages = 1;
4994
4995 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4996 tag = PAGECACHE_TAG_TOWRITE;
4997 else
4998 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4999retry:
3cd24c69 5000 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 5001 tag_pages_for_writeback(mapping, index, end);
a9132667 5002 done_index = index;
f85d7d6c 5003 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
5004 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5005 &index, end, tag))) {
d1310b2e
CM
5006 unsigned i;
5007
d1310b2e
CM
5008 for (i = 0; i < nr_pages; i++) {
5009 struct page *page = pvec.pages[i];
5010
f7bddf1e 5011 done_index = page->index + 1;
d1310b2e 5012 /*
b93b0163
MW
5013 * At this point we hold neither the i_pages lock nor
5014 * the page lock: the page may be truncated or
5015 * invalidated (changing page->mapping to NULL),
5016 * or even swizzled back from swapper_space to
5017 * tmpfs file mapping
d1310b2e 5018 */
c8f2f24b 5019 if (!trylock_page(page)) {
f4340622
QW
5020 ret = flush_write_bio(epd);
5021 BUG_ON(ret < 0);
c8f2f24b 5022 lock_page(page);
01d658f2 5023 }
d1310b2e
CM
5024
5025 if (unlikely(page->mapping != mapping)) {
5026 unlock_page(page);
5027 continue;
5028 }
5029
d2c3f4f6 5030 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
5031 if (PageWriteback(page)) {
5032 ret = flush_write_bio(epd);
5033 BUG_ON(ret < 0);
5034 }
d1310b2e 5035 wait_on_page_writeback(page);
d2c3f4f6 5036 }
d1310b2e
CM
5037
5038 if (PageWriteback(page) ||
5039 !clear_page_dirty_for_io(page)) {
5040 unlock_page(page);
5041 continue;
5042 }
5043
aab6e9ed 5044 ret = __extent_writepage(page, wbc, epd);
a9132667 5045 if (ret < 0) {
a9132667
LB
5046 done = 1;
5047 break;
5048 }
f85d7d6c
CM
5049
5050 /*
5051 * the filesystem may choose to bump up nr_to_write.
5052 * We have to make sure to honor the new nr_to_write
5053 * at any time
5054 */
5055 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
5056 }
5057 pagevec_release(&pvec);
5058 cond_resched();
5059 }
894b36e3 5060 if (!scanned && !done) {
d1310b2e
CM
5061 /*
5062 * We hit the last page and there is more work to be done: wrap
5063 * back to the start of the file
5064 */
5065 scanned = 1;
5066 index = 0;
42ffb0bf
JB
5067
5068 /*
5069 * If we're looping we could run into a page that is locked by a
5070 * writer and that writer could be waiting on writeback for a
5071 * page in our current bio, and thus deadlock, so flush the
5072 * write bio here.
5073 */
5074 ret = flush_write_bio(epd);
5075 if (!ret)
5076 goto retry;
d1310b2e 5077 }
a9132667
LB
5078
5079 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5080 mapping->writeback_index = done_index;
5081
7fd1a3f7 5082 btrfs_add_delayed_iput(inode);
894b36e3 5083 return ret;
d1310b2e 5084}
d1310b2e 5085
0a9b0e53 5086int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
5087{
5088 int ret;
d1310b2e 5089 struct extent_page_data epd = {
390ed29b 5090 .bio_ctrl = { 0 },
771ed689 5091 .extent_locked = 0,
ffbd517d 5092 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 5093 };
d1310b2e 5094
d1310b2e 5095 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
5096 ASSERT(ret <= 0);
5097 if (ret < 0) {
5098 end_write_bio(&epd, ret);
5099 return ret;
5100 }
d1310b2e 5101
3065976b
QW
5102 ret = flush_write_bio(&epd);
5103 ASSERT(ret <= 0);
d1310b2e
CM
5104 return ret;
5105}
d1310b2e 5106
2bd0fc93
QW
5107/*
5108 * Submit the pages in the range to bio for call sites which delalloc range has
5109 * already been ran (aka, ordered extent inserted) and all pages are still
5110 * locked.
5111 */
5112int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 5113{
2bd0fc93
QW
5114 bool found_error = false;
5115 int first_error = 0;
771ed689
CM
5116 int ret = 0;
5117 struct address_space *mapping = inode->i_mapping;
5118 struct page *page;
2bd0fc93 5119 u64 cur = start;
66448b9d
QW
5120 unsigned long nr_pages;
5121 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 5122 struct extent_page_data epd = {
390ed29b 5123 .bio_ctrl = { 0 },
771ed689 5124 .extent_locked = 1,
2bd0fc93 5125 .sync_io = 1,
771ed689
CM
5126 };
5127 struct writeback_control wbc_writepages = {
2bd0fc93 5128 .sync_mode = WB_SYNC_ALL,
771ed689
CM
5129 .range_start = start,
5130 .range_end = end + 1,
ec39f769
CM
5131 /* We're called from an async helper function */
5132 .punt_to_cgroup = 1,
5133 .no_cgroup_owner = 1,
771ed689
CM
5134 };
5135
66448b9d
QW
5136 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5137 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5138 PAGE_SHIFT;
5139 wbc_writepages.nr_to_write = nr_pages * 2;
5140
dbb70bec 5141 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 5142 while (cur <= end) {
66448b9d
QW
5143 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5144
2bd0fc93
QW
5145 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5146 /*
5147 * All pages in the range are locked since
5148 * btrfs_run_delalloc_range(), thus there is no way to clear
5149 * the page dirty flag.
5150 */
66448b9d 5151 ASSERT(PageLocked(page));
2bd0fc93
QW
5152 ASSERT(PageDirty(page));
5153 clear_page_dirty_for_io(page);
5154 ret = __extent_writepage(page, &wbc_writepages, &epd);
5155 ASSERT(ret <= 0);
5156 if (ret < 0) {
5157 found_error = true;
5158 first_error = ret;
771ed689 5159 }
09cbfeaf 5160 put_page(page);
66448b9d 5161 cur = cur_end + 1;
771ed689
CM
5162 }
5163
2bd0fc93 5164 if (!found_error)
dbb70bec
CM
5165 ret = flush_write_bio(&epd);
5166 else
02c6db4f 5167 end_write_bio(&epd, ret);
dbb70bec
CM
5168
5169 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
5170 if (found_error)
5171 return first_error;
771ed689
CM
5172 return ret;
5173}
d1310b2e 5174
8ae225a8 5175int extent_writepages(struct address_space *mapping,
d1310b2e
CM
5176 struct writeback_control *wbc)
5177{
35156d85 5178 struct inode *inode = mapping->host;
d1310b2e
CM
5179 int ret = 0;
5180 struct extent_page_data epd = {
390ed29b 5181 .bio_ctrl = { 0 },
771ed689 5182 .extent_locked = 0,
ffbd517d 5183 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
5184 };
5185
35156d85
JT
5186 /*
5187 * Allow only a single thread to do the reloc work in zoned mode to
5188 * protect the write pointer updates.
5189 */
869f4cdc 5190 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 5191 ret = extent_write_cache_pages(mapping, wbc, &epd);
869f4cdc 5192 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
a2a72fbd
QW
5193 ASSERT(ret <= 0);
5194 if (ret < 0) {
5195 end_write_bio(&epd, ret);
5196 return ret;
5197 }
5198 ret = flush_write_bio(&epd);
d1310b2e
CM
5199 return ret;
5200}
d1310b2e 5201
ba206a02 5202void extent_readahead(struct readahead_control *rac)
d1310b2e 5203{
390ed29b 5204 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 5205 struct page *pagepool[16];
125bac01 5206 struct extent_map *em_cached = NULL;
808f80b4 5207 u64 prev_em_start = (u64)-1;
ba206a02 5208 int nr;
d1310b2e 5209
ba206a02 5210 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
5211 u64 contig_start = readahead_pos(rac);
5212 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 5213
ba206a02 5214 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 5215 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 5216 }
67c9684f 5217
125bac01
MX
5218 if (em_cached)
5219 free_extent_map(em_cached);
5220
390ed29b
QW
5221 if (bio_ctrl.bio) {
5222 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
ba206a02
MWO
5223 return;
5224 }
d1310b2e 5225}
d1310b2e
CM
5226
5227/*
5228 * basic invalidatepage code, this waits on any locked or writeback
5229 * ranges corresponding to the page, and then deletes any extent state
5230 * records from the tree
5231 */
5232int extent_invalidatepage(struct extent_io_tree *tree,
5233 struct page *page, unsigned long offset)
5234{
2ac55d41 5235 struct extent_state *cached_state = NULL;
4eee4fa4 5236 u64 start = page_offset(page);
09cbfeaf 5237 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
5238 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5239
829ddec9
QW
5240 /* This function is only called for the btree inode */
5241 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5242
fda2832f 5243 start += ALIGN(offset, blocksize);
d1310b2e
CM
5244 if (start > end)
5245 return 0;
5246
ff13db41 5247 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 5248 wait_on_page_writeback(page);
829ddec9
QW
5249
5250 /*
5251 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5252 * so here we only need to unlock the extent range to free any
5253 * existing extent state.
5254 */
5255 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
5256 return 0;
5257}
d1310b2e 5258
7b13b7b1
CM
5259/*
5260 * a helper for releasepage, this tests for areas of the page that
5261 * are locked or under IO and drops the related state bits if it is safe
5262 * to drop the page.
5263 */
29c68b2d 5264static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 5265 struct page *page, gfp_t mask)
7b13b7b1 5266{
4eee4fa4 5267 u64 start = page_offset(page);
09cbfeaf 5268 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
5269 int ret = 1;
5270
8882679e 5271 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 5272 ret = 0;
8882679e 5273 } else {
11ef160f 5274 /*
2766ff61
FM
5275 * At this point we can safely clear everything except the
5276 * locked bit, the nodatasum bit and the delalloc new bit.
5277 * The delalloc new bit will be cleared by ordered extent
5278 * completion.
11ef160f 5279 */
66b0c887 5280 ret = __clear_extent_bit(tree, start, end,
2766ff61
FM
5281 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5282 0, 0, NULL, mask, NULL);
e3f24cc5
CM
5283
5284 /* if clear_extent_bit failed for enomem reasons,
5285 * we can't allow the release to continue.
5286 */
5287 if (ret < 0)
5288 ret = 0;
5289 else
5290 ret = 1;
7b13b7b1
CM
5291 }
5292 return ret;
5293}
7b13b7b1 5294
d1310b2e
CM
5295/*
5296 * a helper for releasepage. As long as there are no locked extents
5297 * in the range corresponding to the page, both state records and extent
5298 * map records are removed
5299 */
477a30ba 5300int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
5301{
5302 struct extent_map *em;
4eee4fa4 5303 u64 start = page_offset(page);
09cbfeaf 5304 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
5305 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5306 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5307 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 5308
d0164adc 5309 if (gfpflags_allow_blocking(mask) &&
ee22184b 5310 page->mapping->host->i_size > SZ_16M) {
39b5637f 5311 u64 len;
70dec807 5312 while (start <= end) {
fbc2bd7e
FM
5313 struct btrfs_fs_info *fs_info;
5314 u64 cur_gen;
5315
39b5637f 5316 len = end - start + 1;
890871be 5317 write_lock(&map->lock);
39b5637f 5318 em = lookup_extent_mapping(map, start, len);
285190d9 5319 if (!em) {
890871be 5320 write_unlock(&map->lock);
70dec807
CM
5321 break;
5322 }
7f3c74fb
CM
5323 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5324 em->start != start) {
890871be 5325 write_unlock(&map->lock);
70dec807
CM
5326 free_extent_map(em);
5327 break;
5328 }
3d6448e6
FM
5329 if (test_range_bit(tree, em->start,
5330 extent_map_end(em) - 1,
5331 EXTENT_LOCKED, 0, NULL))
5332 goto next;
5333 /*
5334 * If it's not in the list of modified extents, used
5335 * by a fast fsync, we can remove it. If it's being
5336 * logged we can safely remove it since fsync took an
5337 * extra reference on the em.
5338 */
5339 if (list_empty(&em->list) ||
fbc2bd7e
FM
5340 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5341 goto remove_em;
5342 /*
5343 * If it's in the list of modified extents, remove it
5344 * only if its generation is older then the current one,
5345 * in which case we don't need it for a fast fsync.
5346 * Otherwise don't remove it, we could be racing with an
5347 * ongoing fast fsync that could miss the new extent.
5348 */
5349 fs_info = btrfs_inode->root->fs_info;
5350 spin_lock(&fs_info->trans_lock);
5351 cur_gen = fs_info->generation;
5352 spin_unlock(&fs_info->trans_lock);
5353 if (em->generation >= cur_gen)
5354 goto next;
5355remove_em:
5e548b32
FM
5356 /*
5357 * We only remove extent maps that are not in the list of
5358 * modified extents or that are in the list but with a
5359 * generation lower then the current generation, so there
5360 * is no need to set the full fsync flag on the inode (it
5361 * hurts the fsync performance for workloads with a data
5362 * size that exceeds or is close to the system's memory).
5363 */
fbc2bd7e
FM
5364 remove_extent_mapping(map, em);
5365 /* once for the rb tree */
5366 free_extent_map(em);
3d6448e6 5367next:
70dec807 5368 start = extent_map_end(em);
890871be 5369 write_unlock(&map->lock);
70dec807
CM
5370
5371 /* once for us */
d1310b2e 5372 free_extent_map(em);
9f47eb54
PM
5373
5374 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 5375 }
d1310b2e 5376 }
29c68b2d 5377 return try_release_extent_state(tree, page, mask);
d1310b2e 5378}
d1310b2e 5379
ec29ed5b
CM
5380/*
5381 * helper function for fiemap, which doesn't want to see any holes.
5382 * This maps until we find something past 'last'
5383 */
f1bbde8d 5384static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 5385 u64 offset, u64 last)
ec29ed5b 5386{
f1bbde8d 5387 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
5388 struct extent_map *em;
5389 u64 len;
5390
5391 if (offset >= last)
5392 return NULL;
5393
67871254 5394 while (1) {
ec29ed5b
CM
5395 len = last - offset;
5396 if (len == 0)
5397 break;
fda2832f 5398 len = ALIGN(len, sectorsize);
f1bbde8d 5399 em = btrfs_get_extent_fiemap(inode, offset, len);
6b5b7a41 5400 if (IS_ERR(em))
ec29ed5b
CM
5401 return em;
5402
5403 /* if this isn't a hole return it */
4a2d25cd 5404 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 5405 return em;
ec29ed5b
CM
5406
5407 /* this is a hole, advance to the next extent */
5408 offset = extent_map_end(em);
5409 free_extent_map(em);
5410 if (offset >= last)
5411 break;
5412 }
5413 return NULL;
5414}
5415
4751832d
QW
5416/*
5417 * To cache previous fiemap extent
5418 *
5419 * Will be used for merging fiemap extent
5420 */
5421struct fiemap_cache {
5422 u64 offset;
5423 u64 phys;
5424 u64 len;
5425 u32 flags;
5426 bool cached;
5427};
5428
5429/*
5430 * Helper to submit fiemap extent.
5431 *
5432 * Will try to merge current fiemap extent specified by @offset, @phys,
5433 * @len and @flags with cached one.
5434 * And only when we fails to merge, cached one will be submitted as
5435 * fiemap extent.
5436 *
5437 * Return value is the same as fiemap_fill_next_extent().
5438 */
5439static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5440 struct fiemap_cache *cache,
5441 u64 offset, u64 phys, u64 len, u32 flags)
5442{
5443 int ret = 0;
5444
5445 if (!cache->cached)
5446 goto assign;
5447
5448 /*
5449 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 5450 * fiemap extent won't overlap with cached one.
4751832d
QW
5451 * Not recoverable.
5452 *
5453 * NOTE: Physical address can overlap, due to compression
5454 */
5455 if (cache->offset + cache->len > offset) {
5456 WARN_ON(1);
5457 return -EINVAL;
5458 }
5459
5460 /*
5461 * Only merges fiemap extents if
5462 * 1) Their logical addresses are continuous
5463 *
5464 * 2) Their physical addresses are continuous
5465 * So truly compressed (physical size smaller than logical size)
5466 * extents won't get merged with each other
5467 *
5468 * 3) Share same flags except FIEMAP_EXTENT_LAST
5469 * So regular extent won't get merged with prealloc extent
5470 */
5471 if (cache->offset + cache->len == offset &&
5472 cache->phys + cache->len == phys &&
5473 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5474 (flags & ~FIEMAP_EXTENT_LAST)) {
5475 cache->len += len;
5476 cache->flags |= flags;
5477 goto try_submit_last;
5478 }
5479
5480 /* Not mergeable, need to submit cached one */
5481 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5482 cache->len, cache->flags);
5483 cache->cached = false;
5484 if (ret)
5485 return ret;
5486assign:
5487 cache->cached = true;
5488 cache->offset = offset;
5489 cache->phys = phys;
5490 cache->len = len;
5491 cache->flags = flags;
5492try_submit_last:
5493 if (cache->flags & FIEMAP_EXTENT_LAST) {
5494 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5495 cache->phys, cache->len, cache->flags);
5496 cache->cached = false;
5497 }
5498 return ret;
5499}
5500
5501/*
848c23b7 5502 * Emit last fiemap cache
4751832d 5503 *
848c23b7
QW
5504 * The last fiemap cache may still be cached in the following case:
5505 * 0 4k 8k
5506 * |<- Fiemap range ->|
5507 * |<------------ First extent ----------->|
5508 *
5509 * In this case, the first extent range will be cached but not emitted.
5510 * So we must emit it before ending extent_fiemap().
4751832d 5511 */
5c5aff98 5512static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 5513 struct fiemap_cache *cache)
4751832d
QW
5514{
5515 int ret;
5516
5517 if (!cache->cached)
5518 return 0;
5519
4751832d
QW
5520 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5521 cache->len, cache->flags);
5522 cache->cached = false;
5523 if (ret > 0)
5524 ret = 0;
5525 return ret;
5526}
5527
facee0a0 5528int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 5529 u64 start, u64 len)
1506fcc8 5530{
975f84fe 5531 int ret = 0;
15c7745c 5532 u64 off;
1506fcc8
YS
5533 u64 max = start + len;
5534 u32 flags = 0;
975f84fe
JB
5535 u32 found_type;
5536 u64 last;
ec29ed5b 5537 u64 last_for_get_extent = 0;
1506fcc8 5538 u64 disko = 0;
facee0a0 5539 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 5540 struct btrfs_key found_key;
1506fcc8 5541 struct extent_map *em = NULL;
2ac55d41 5542 struct extent_state *cached_state = NULL;
975f84fe 5543 struct btrfs_path *path;
facee0a0 5544 struct btrfs_root *root = inode->root;
4751832d 5545 struct fiemap_cache cache = { 0 };
5911c8fe
DS
5546 struct ulist *roots;
5547 struct ulist *tmp_ulist;
1506fcc8 5548 int end = 0;
ec29ed5b
CM
5549 u64 em_start = 0;
5550 u64 em_len = 0;
5551 u64 em_end = 0;
1506fcc8
YS
5552
5553 if (len == 0)
5554 return -EINVAL;
5555
975f84fe
JB
5556 path = btrfs_alloc_path();
5557 if (!path)
5558 return -ENOMEM;
975f84fe 5559
5911c8fe
DS
5560 roots = ulist_alloc(GFP_KERNEL);
5561 tmp_ulist = ulist_alloc(GFP_KERNEL);
5562 if (!roots || !tmp_ulist) {
5563 ret = -ENOMEM;
5564 goto out_free_ulist;
5565 }
5566
15c7745c
BB
5567 /*
5568 * We can't initialize that to 'start' as this could miss extents due
5569 * to extent item merging
5570 */
5571 off = 0;
facee0a0
NB
5572 start = round_down(start, btrfs_inode_sectorsize(inode));
5573 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 5574
ec29ed5b
CM
5575 /*
5576 * lookup the last file extent. We're not using i_size here
5577 * because there might be preallocation past i_size
5578 */
facee0a0
NB
5579 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5580 0);
975f84fe 5581 if (ret < 0) {
5911c8fe 5582 goto out_free_ulist;
2d324f59
LB
5583 } else {
5584 WARN_ON(!ret);
5585 if (ret == 1)
5586 ret = 0;
975f84fe 5587 }
2d324f59 5588
975f84fe 5589 path->slots[0]--;
975f84fe 5590 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 5591 found_type = found_key.type;
975f84fe 5592
ec29ed5b 5593 /* No extents, but there might be delalloc bits */
facee0a0 5594 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 5595 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
5596 /* have to trust i_size as the end */
5597 last = (u64)-1;
5598 last_for_get_extent = isize;
5599 } else {
5600 /*
5601 * remember the start of the last extent. There are a
5602 * bunch of different factors that go into the length of the
5603 * extent, so its much less complex to remember where it started
5604 */
5605 last = found_key.offset;
5606 last_for_get_extent = last + 1;
975f84fe 5607 }
fe09e16c 5608 btrfs_release_path(path);
975f84fe 5609
ec29ed5b
CM
5610 /*
5611 * we might have some extents allocated but more delalloc past those
5612 * extents. so, we trust isize unless the start of the last extent is
5613 * beyond isize
5614 */
5615 if (last < isize) {
5616 last = (u64)-1;
5617 last_for_get_extent = isize;
5618 }
5619
facee0a0 5620 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 5621 &cached_state);
ec29ed5b 5622
facee0a0 5623 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
5624 if (!em)
5625 goto out;
5626 if (IS_ERR(em)) {
5627 ret = PTR_ERR(em);
5628 goto out;
5629 }
975f84fe 5630
1506fcc8 5631 while (!end) {
b76bb701 5632 u64 offset_in_extent = 0;
ea8efc74
CM
5633
5634 /* break if the extent we found is outside the range */
5635 if (em->start >= max || extent_map_end(em) < off)
5636 break;
5637
5638 /*
5639 * get_extent may return an extent that starts before our
5640 * requested range. We have to make sure the ranges
5641 * we return to fiemap always move forward and don't
5642 * overlap, so adjust the offsets here
5643 */
5644 em_start = max(em->start, off);
1506fcc8 5645
ea8efc74
CM
5646 /*
5647 * record the offset from the start of the extent
b76bb701
JB
5648 * for adjusting the disk offset below. Only do this if the
5649 * extent isn't compressed since our in ram offset may be past
5650 * what we have actually allocated on disk.
ea8efc74 5651 */
b76bb701
JB
5652 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5653 offset_in_extent = em_start - em->start;
ec29ed5b 5654 em_end = extent_map_end(em);
ea8efc74 5655 em_len = em_end - em_start;
1506fcc8 5656 flags = 0;
f0986318
FM
5657 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5658 disko = em->block_start + offset_in_extent;
5659 else
5660 disko = 0;
1506fcc8 5661
ea8efc74
CM
5662 /*
5663 * bump off for our next call to get_extent
5664 */
5665 off = extent_map_end(em);
5666 if (off >= max)
5667 end = 1;
5668
93dbfad7 5669 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
5670 end = 1;
5671 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 5672 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
5673 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5674 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 5675 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
5676 flags |= (FIEMAP_EXTENT_DELALLOC |
5677 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
5678 } else if (fieinfo->fi_extents_max) {
5679 u64 bytenr = em->block_start -
5680 (em->start - em->orig_start);
fe09e16c 5681
fe09e16c
LB
5682 /*
5683 * As btrfs supports shared space, this information
5684 * can be exported to userspace tools via
dc046b10
JB
5685 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5686 * then we're just getting a count and we can skip the
5687 * lookup stuff.
fe09e16c 5688 */
facee0a0 5689 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 5690 bytenr, roots, tmp_ulist);
dc046b10 5691 if (ret < 0)
fe09e16c 5692 goto out_free;
dc046b10 5693 if (ret)
fe09e16c 5694 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 5695 ret = 0;
1506fcc8
YS
5696 }
5697 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5698 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
5699 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5700 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 5701
1506fcc8
YS
5702 free_extent_map(em);
5703 em = NULL;
ec29ed5b
CM
5704 if ((em_start >= last) || em_len == (u64)-1 ||
5705 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
5706 flags |= FIEMAP_EXTENT_LAST;
5707 end = 1;
5708 }
5709
ec29ed5b 5710 /* now scan forward to see if this is really the last extent. */
facee0a0 5711 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
5712 if (IS_ERR(em)) {
5713 ret = PTR_ERR(em);
5714 goto out;
5715 }
5716 if (!em) {
975f84fe
JB
5717 flags |= FIEMAP_EXTENT_LAST;
5718 end = 1;
5719 }
4751832d
QW
5720 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5721 em_len, flags);
26e726af
CS
5722 if (ret) {
5723 if (ret == 1)
5724 ret = 0;
ec29ed5b 5725 goto out_free;
26e726af 5726 }
1506fcc8
YS
5727 }
5728out_free:
4751832d 5729 if (!ret)
5c5aff98 5730 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
5731 free_extent_map(em);
5732out:
facee0a0 5733 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 5734 &cached_state);
5911c8fe
DS
5735
5736out_free_ulist:
e02d48ea 5737 btrfs_free_path(path);
5911c8fe
DS
5738 ulist_free(roots);
5739 ulist_free(tmp_ulist);
1506fcc8
YS
5740 return ret;
5741}
5742
727011e0
CM
5743static void __free_extent_buffer(struct extent_buffer *eb)
5744{
727011e0
CM
5745 kmem_cache_free(extent_buffer_cache, eb);
5746}
5747
2b48966a 5748int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
5749{
5750 return (atomic_read(&eb->io_pages) ||
5751 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5752 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5753}
5754
8ff8466d 5755static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 5756{
8ff8466d 5757 struct btrfs_subpage *subpage;
db7f3436 5758
8ff8466d 5759 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 5760
8ff8466d
QW
5761 if (PagePrivate(page)) {
5762 subpage = (struct btrfs_subpage *)page->private;
5763 if (atomic_read(&subpage->eb_refs))
5764 return true;
3d078efa
QW
5765 /*
5766 * Even there is no eb refs here, we may still have
5767 * end_page_read() call relying on page::private.
5768 */
5769 if (atomic_read(&subpage->readers))
5770 return true;
8ff8466d
QW
5771 }
5772 return false;
5773}
db7f3436 5774
8ff8466d
QW
5775static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5776{
5777 struct btrfs_fs_info *fs_info = eb->fs_info;
5778 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5779
5780 /*
5781 * For mapped eb, we're going to change the page private, which should
5782 * be done under the private_lock.
5783 */
5784 if (mapped)
5785 spin_lock(&page->mapping->private_lock);
5786
5787 if (!PagePrivate(page)) {
5d2361db 5788 if (mapped)
8ff8466d
QW
5789 spin_unlock(&page->mapping->private_lock);
5790 return;
5791 }
5792
5793 if (fs_info->sectorsize == PAGE_SIZE) {
5d2361db
FL
5794 /*
5795 * We do this since we'll remove the pages after we've
5796 * removed the eb from the radix tree, so we could race
5797 * and have this page now attached to the new eb. So
5798 * only clear page_private if it's still connected to
5799 * this eb.
5800 */
5801 if (PagePrivate(page) &&
5802 page->private == (unsigned long)eb) {
5803 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5804 BUG_ON(PageDirty(page));
5805 BUG_ON(PageWriteback(page));
db7f3436 5806 /*
5d2361db
FL
5807 * We need to make sure we haven't be attached
5808 * to a new eb.
db7f3436 5809 */
d1b89bc0 5810 detach_page_private(page);
db7f3436 5811 }
5d2361db
FL
5812 if (mapped)
5813 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
5814 return;
5815 }
5816
5817 /*
5818 * For subpage, we can have dummy eb with page private. In this case,
5819 * we can directly detach the private as such page is only attached to
5820 * one dummy eb, no sharing.
5821 */
5822 if (!mapped) {
5823 btrfs_detach_subpage(fs_info, page);
5824 return;
5825 }
5826
5827 btrfs_page_dec_eb_refs(fs_info, page);
5828
5829 /*
5830 * We can only detach the page private if there are no other ebs in the
3d078efa 5831 * page range and no unfinished IO.
8ff8466d
QW
5832 */
5833 if (!page_range_has_eb(fs_info, page))
5834 btrfs_detach_subpage(fs_info, page);
5835
5836 spin_unlock(&page->mapping->private_lock);
5837}
5838
5839/* Release all pages attached to the extent buffer */
5840static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5841{
5842 int i;
5843 int num_pages;
5844
5845 ASSERT(!extent_buffer_under_io(eb));
5846
5847 num_pages = num_extent_pages(eb);
5848 for (i = 0; i < num_pages; i++) {
5849 struct page *page = eb->pages[i];
5850
5851 if (!page)
5852 continue;
5853
5854 detach_extent_buffer_page(eb, page);
5d2361db 5855
01327610 5856 /* One for when we allocated the page */
09cbfeaf 5857 put_page(page);
d64766fd 5858 }
db7f3436
JB
5859}
5860
5861/*
5862 * Helper for releasing the extent buffer.
5863 */
5864static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5865{
55ac0139 5866 btrfs_release_extent_buffer_pages(eb);
8c38938c 5867 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
5868 __free_extent_buffer(eb);
5869}
5870
f28491e0
JB
5871static struct extent_buffer *
5872__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 5873 unsigned long len)
d1310b2e
CM
5874{
5875 struct extent_buffer *eb = NULL;
5876
d1b5c567 5877 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
5878 eb->start = start;
5879 eb->len = len;
f28491e0 5880 eb->fs_info = fs_info;
815a51c7 5881 eb->bflags = 0;
196d59ab 5882 init_rwsem(&eb->lock);
b4ce94de 5883
3fd63727
JB
5884 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5885 &fs_info->allocated_ebs);
d3575156 5886 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 5887
3083ee2e 5888 spin_lock_init(&eb->refs_lock);
d1310b2e 5889 atomic_set(&eb->refs, 1);
0b32f4bb 5890 atomic_set(&eb->io_pages, 0);
727011e0 5891
deb67895 5892 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
5893
5894 return eb;
5895}
5896
2b48966a 5897struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5898{
cc5e31a4 5899 int i;
815a51c7
JS
5900 struct page *p;
5901 struct extent_buffer *new;
cc5e31a4 5902 int num_pages = num_extent_pages(src);
815a51c7 5903
3f556f78 5904 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5905 if (new == NULL)
5906 return NULL;
5907
62c053fb
QW
5908 /*
5909 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5910 * btrfs_release_extent_buffer() have different behavior for
5911 * UNMAPPED subpage extent buffer.
5912 */
5913 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5914
815a51c7 5915 for (i = 0; i < num_pages; i++) {
760f991f
QW
5916 int ret;
5917
9ec72677 5918 p = alloc_page(GFP_NOFS);
db7f3436
JB
5919 if (!p) {
5920 btrfs_release_extent_buffer(new);
5921 return NULL;
5922 }
760f991f
QW
5923 ret = attach_extent_buffer_page(new, p, NULL);
5924 if (ret < 0) {
5925 put_page(p);
5926 btrfs_release_extent_buffer(new);
5927 return NULL;
5928 }
815a51c7 5929 WARN_ON(PageDirty(p));
815a51c7 5930 new->pages[i] = p;
fba1acf9 5931 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 5932 }
92d83e94 5933 set_extent_buffer_uptodate(new);
815a51c7
JS
5934
5935 return new;
5936}
5937
0f331229
OS
5938struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5939 u64 start, unsigned long len)
815a51c7
JS
5940{
5941 struct extent_buffer *eb;
cc5e31a4
DS
5942 int num_pages;
5943 int i;
815a51c7 5944
3f556f78 5945 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5946 if (!eb)
5947 return NULL;
5948
65ad0104 5949 num_pages = num_extent_pages(eb);
815a51c7 5950 for (i = 0; i < num_pages; i++) {
09bc1f0f
QW
5951 int ret;
5952
9ec72677 5953 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5954 if (!eb->pages[i])
5955 goto err;
09bc1f0f
QW
5956 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5957 if (ret < 0)
5958 goto err;
815a51c7
JS
5959 }
5960 set_extent_buffer_uptodate(eb);
5961 btrfs_set_header_nritems(eb, 0);
b0132a3b 5962 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5963
5964 return eb;
5965err:
09bc1f0f
QW
5966 for (; i > 0; i--) {
5967 detach_extent_buffer_page(eb, eb->pages[i - 1]);
84167d19 5968 __free_page(eb->pages[i - 1]);
09bc1f0f 5969 }
815a51c7
JS
5970 __free_extent_buffer(eb);
5971 return NULL;
5972}
5973
0f331229 5974struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5975 u64 start)
0f331229 5976{
da17066c 5977 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5978}
5979
0b32f4bb
JB
5980static void check_buffer_tree_ref(struct extent_buffer *eb)
5981{
242e18c7 5982 int refs;
6bf9cd2e
BB
5983 /*
5984 * The TREE_REF bit is first set when the extent_buffer is added
5985 * to the radix tree. It is also reset, if unset, when a new reference
5986 * is created by find_extent_buffer.
0b32f4bb 5987 *
6bf9cd2e
BB
5988 * It is only cleared in two cases: freeing the last non-tree
5989 * reference to the extent_buffer when its STALE bit is set or
5990 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5991 *
6bf9cd2e
BB
5992 * In both cases, care is taken to ensure that the extent_buffer's
5993 * pages are not under io. However, releasepage can be concurrently
5994 * called with creating new references, which is prone to race
5995 * conditions between the calls to check_buffer_tree_ref in those
5996 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5997 *
6bf9cd2e
BB
5998 * The actual lifetime of the extent_buffer in the radix tree is
5999 * adequately protected by the refcount, but the TREE_REF bit and
6000 * its corresponding reference are not. To protect against this
6001 * class of races, we call check_buffer_tree_ref from the codepaths
6002 * which trigger io after they set eb->io_pages. Note that once io is
6003 * initiated, TREE_REF can no longer be cleared, so that is the
6004 * moment at which any such race is best fixed.
0b32f4bb 6005 */
242e18c7
CM
6006 refs = atomic_read(&eb->refs);
6007 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6008 return;
6009
594831c4
JB
6010 spin_lock(&eb->refs_lock);
6011 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 6012 atomic_inc(&eb->refs);
594831c4 6013 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
6014}
6015
2457aec6
MG
6016static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6017 struct page *accessed)
5df4235e 6018{
cc5e31a4 6019 int num_pages, i;
5df4235e 6020
0b32f4bb
JB
6021 check_buffer_tree_ref(eb);
6022
65ad0104 6023 num_pages = num_extent_pages(eb);
5df4235e 6024 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
6025 struct page *p = eb->pages[i];
6026
2457aec6
MG
6027 if (p != accessed)
6028 mark_page_accessed(p);
5df4235e
JB
6029 }
6030}
6031
f28491e0
JB
6032struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6033 u64 start)
452c75c3
CS
6034{
6035 struct extent_buffer *eb;
6036
2f3186d8
QW
6037 eb = find_extent_buffer_nolock(fs_info, start);
6038 if (!eb)
6039 return NULL;
6040 /*
6041 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6042 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6043 * another task running free_extent_buffer() might have seen that flag
6044 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6045 * writeback flags not set) and it's still in the tree (flag
6046 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6047 * decrementing the extent buffer's reference count twice. So here we
6048 * could race and increment the eb's reference count, clear its stale
6049 * flag, mark it as dirty and drop our reference before the other task
6050 * finishes executing free_extent_buffer, which would later result in
6051 * an attempt to free an extent buffer that is dirty.
6052 */
6053 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6054 spin_lock(&eb->refs_lock);
6055 spin_unlock(&eb->refs_lock);
452c75c3 6056 }
2f3186d8
QW
6057 mark_extent_buffer_accessed(eb, NULL);
6058 return eb;
452c75c3
CS
6059}
6060
faa2dbf0
JB
6061#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6062struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 6063 u64 start)
faa2dbf0
JB
6064{
6065 struct extent_buffer *eb, *exists = NULL;
6066 int ret;
6067
6068 eb = find_extent_buffer(fs_info, start);
6069 if (eb)
6070 return eb;
da17066c 6071 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 6072 if (!eb)
b6293c82 6073 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
6074 eb->fs_info = fs_info;
6075again:
e1860a77 6076 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
6077 if (ret) {
6078 exists = ERR_PTR(ret);
faa2dbf0 6079 goto free_eb;
b6293c82 6080 }
faa2dbf0
JB
6081 spin_lock(&fs_info->buffer_lock);
6082 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6083 start >> fs_info->sectorsize_bits, eb);
faa2dbf0
JB
6084 spin_unlock(&fs_info->buffer_lock);
6085 radix_tree_preload_end();
6086 if (ret == -EEXIST) {
6087 exists = find_extent_buffer(fs_info, start);
6088 if (exists)
6089 goto free_eb;
6090 else
6091 goto again;
6092 }
6093 check_buffer_tree_ref(eb);
6094 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
faa2dbf0
JB
6096 return eb;
6097free_eb:
6098 btrfs_release_extent_buffer(eb);
6099 return exists;
6100}
6101#endif
6102
81982210
QW
6103static struct extent_buffer *grab_extent_buffer(
6104 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
6105{
6106 struct extent_buffer *exists;
6107
81982210
QW
6108 /*
6109 * For subpage case, we completely rely on radix tree to ensure we
6110 * don't try to insert two ebs for the same bytenr. So here we always
6111 * return NULL and just continue.
6112 */
6113 if (fs_info->sectorsize < PAGE_SIZE)
6114 return NULL;
6115
c0f0a9e7
QW
6116 /* Page not yet attached to an extent buffer */
6117 if (!PagePrivate(page))
6118 return NULL;
6119
6120 /*
6121 * We could have already allocated an eb for this page and attached one
6122 * so lets see if we can get a ref on the existing eb, and if we can we
6123 * know it's good and we can just return that one, else we know we can
6124 * just overwrite page->private.
6125 */
6126 exists = (struct extent_buffer *)page->private;
6127 if (atomic_inc_not_zero(&exists->refs))
6128 return exists;
6129
6130 WARN_ON(PageDirty(page));
6131 detach_page_private(page);
6132 return NULL;
6133}
6134
f28491e0 6135struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 6136 u64 start, u64 owner_root, int level)
d1310b2e 6137{
da17066c 6138 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
6139 int num_pages;
6140 int i;
09cbfeaf 6141 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 6142 struct extent_buffer *eb;
6af118ce 6143 struct extent_buffer *exists = NULL;
d1310b2e 6144 struct page *p;
f28491e0 6145 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 6146 int uptodate = 1;
19fe0a8b 6147 int ret;
d1310b2e 6148
da17066c 6149 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
6150 btrfs_err(fs_info, "bad tree block start %llu", start);
6151 return ERR_PTR(-EINVAL);
6152 }
6153
e9306ad4
QW
6154#if BITS_PER_LONG == 32
6155 if (start >= MAX_LFS_FILESIZE) {
6156 btrfs_err_rl(fs_info,
6157 "extent buffer %llu is beyond 32bit page cache limit", start);
6158 btrfs_err_32bit_limit(fs_info);
6159 return ERR_PTR(-EOVERFLOW);
6160 }
6161 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6162 btrfs_warn_32bit_limit(fs_info);
6163#endif
6164
1aaac38c
QW
6165 if (fs_info->sectorsize < PAGE_SIZE &&
6166 offset_in_page(start) + len > PAGE_SIZE) {
6167 btrfs_err(fs_info,
6168 "tree block crosses page boundary, start %llu nodesize %lu",
6169 start, len);
6170 return ERR_PTR(-EINVAL);
6171 }
6172
f28491e0 6173 eb = find_extent_buffer(fs_info, start);
452c75c3 6174 if (eb)
6af118ce 6175 return eb;
6af118ce 6176
23d79d81 6177 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 6178 if (!eb)
c871b0f2 6179 return ERR_PTR(-ENOMEM);
e114c545 6180 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
d1310b2e 6181
65ad0104 6182 num_pages = num_extent_pages(eb);
727011e0 6183 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
6184 struct btrfs_subpage *prealloc = NULL;
6185
d1b5c567 6186 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
6187 if (!p) {
6188 exists = ERR_PTR(-ENOMEM);
6af118ce 6189 goto free_eb;
c871b0f2 6190 }
4f2de97a 6191
760f991f
QW
6192 /*
6193 * Preallocate page->private for subpage case, so that we won't
6194 * allocate memory with private_lock hold. The memory will be
6195 * freed by attach_extent_buffer_page() or freed manually if
6196 * we exit earlier.
6197 *
6198 * Although we have ensured one subpage eb can only have one
6199 * page, but it may change in the future for 16K page size
6200 * support, so we still preallocate the memory in the loop.
6201 */
fdf250db 6202 if (fs_info->sectorsize < PAGE_SIZE) {
651fb419
QW
6203 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6204 if (IS_ERR(prealloc)) {
6205 ret = PTR_ERR(prealloc);
fdf250db
QW
6206 unlock_page(p);
6207 put_page(p);
6208 exists = ERR_PTR(ret);
6209 goto free_eb;
6210 }
760f991f
QW
6211 }
6212
4f2de97a 6213 spin_lock(&mapping->private_lock);
81982210 6214 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
6215 if (exists) {
6216 spin_unlock(&mapping->private_lock);
6217 unlock_page(p);
6218 put_page(p);
6219 mark_extent_buffer_accessed(exists, p);
760f991f 6220 btrfs_free_subpage(prealloc);
c0f0a9e7 6221 goto free_eb;
d1310b2e 6222 }
760f991f
QW
6223 /* Should not fail, as we have preallocated the memory */
6224 ret = attach_extent_buffer_page(eb, p, prealloc);
6225 ASSERT(!ret);
8ff8466d
QW
6226 /*
6227 * To inform we have extra eb under allocation, so that
6228 * detach_extent_buffer_page() won't release the page private
6229 * when the eb hasn't yet been inserted into radix tree.
6230 *
6231 * The ref will be decreased when the eb released the page, in
6232 * detach_extent_buffer_page().
6233 * Thus needs no special handling in error path.
6234 */
6235 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 6236 spin_unlock(&mapping->private_lock);
760f991f 6237
1e5eb3d6 6238 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 6239 eb->pages[i] = p;
d1310b2e
CM
6240 if (!PageUptodate(p))
6241 uptodate = 0;
eb14ab8e
CM
6242
6243 /*
b16d011e
NB
6244 * We can't unlock the pages just yet since the extent buffer
6245 * hasn't been properly inserted in the radix tree, this
6246 * opens a race with btree_releasepage which can free a page
6247 * while we are still filling in all pages for the buffer and
6248 * we could crash.
eb14ab8e 6249 */
d1310b2e
CM
6250 }
6251 if (uptodate)
b4ce94de 6252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 6253again:
e1860a77 6254 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
6255 if (ret) {
6256 exists = ERR_PTR(ret);
19fe0a8b 6257 goto free_eb;
c871b0f2 6258 }
19fe0a8b 6259
f28491e0
JB
6260 spin_lock(&fs_info->buffer_lock);
6261 ret = radix_tree_insert(&fs_info->buffer_radix,
478ef886 6262 start >> fs_info->sectorsize_bits, eb);
f28491e0 6263 spin_unlock(&fs_info->buffer_lock);
452c75c3 6264 radix_tree_preload_end();
19fe0a8b 6265 if (ret == -EEXIST) {
f28491e0 6266 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
6267 if (exists)
6268 goto free_eb;
6269 else
115391d2 6270 goto again;
6af118ce 6271 }
6af118ce 6272 /* add one reference for the tree */
0b32f4bb 6273 check_buffer_tree_ref(eb);
34b41ace 6274 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
6275
6276 /*
b16d011e
NB
6277 * Now it's safe to unlock the pages because any calls to
6278 * btree_releasepage will correctly detect that a page belongs to a
6279 * live buffer and won't free them prematurely.
eb14ab8e 6280 */
28187ae5
NB
6281 for (i = 0; i < num_pages; i++)
6282 unlock_page(eb->pages[i]);
d1310b2e
CM
6283 return eb;
6284
6af118ce 6285free_eb:
5ca64f45 6286 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
6287 for (i = 0; i < num_pages; i++) {
6288 if (eb->pages[i])
6289 unlock_page(eb->pages[i]);
6290 }
eb14ab8e 6291
897ca6e9 6292 btrfs_release_extent_buffer(eb);
6af118ce 6293 return exists;
d1310b2e 6294}
d1310b2e 6295
3083ee2e
JB
6296static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6297{
6298 struct extent_buffer *eb =
6299 container_of(head, struct extent_buffer, rcu_head);
6300
6301 __free_extent_buffer(eb);
6302}
6303
f7a52a40 6304static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 6305 __releases(&eb->refs_lock)
3083ee2e 6306{
07e21c4d
NB
6307 lockdep_assert_held(&eb->refs_lock);
6308
3083ee2e
JB
6309 WARN_ON(atomic_read(&eb->refs) == 0);
6310 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 6311 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 6312 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 6313
815a51c7 6314 spin_unlock(&eb->refs_lock);
3083ee2e 6315
f28491e0
JB
6316 spin_lock(&fs_info->buffer_lock);
6317 radix_tree_delete(&fs_info->buffer_radix,
478ef886 6318 eb->start >> fs_info->sectorsize_bits);
f28491e0 6319 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
6320 } else {
6321 spin_unlock(&eb->refs_lock);
815a51c7 6322 }
3083ee2e 6323
8c38938c 6324 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 6325 /* Should be safe to release our pages at this point */
55ac0139 6326 btrfs_release_extent_buffer_pages(eb);
bcb7e449 6327#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 6328 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
6329 __free_extent_buffer(eb);
6330 return 1;
6331 }
6332#endif
3083ee2e 6333 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 6334 return 1;
3083ee2e
JB
6335 }
6336 spin_unlock(&eb->refs_lock);
e64860aa
JB
6337
6338 return 0;
3083ee2e
JB
6339}
6340
d1310b2e
CM
6341void free_extent_buffer(struct extent_buffer *eb)
6342{
242e18c7
CM
6343 int refs;
6344 int old;
d1310b2e
CM
6345 if (!eb)
6346 return;
6347
242e18c7
CM
6348 while (1) {
6349 refs = atomic_read(&eb->refs);
46cc775e
NB
6350 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6351 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6352 refs == 1))
242e18c7
CM
6353 break;
6354 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6355 if (old == refs)
6356 return;
6357 }
6358
3083ee2e
JB
6359 spin_lock(&eb->refs_lock);
6360 if (atomic_read(&eb->refs) == 2 &&
6361 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 6362 !extent_buffer_under_io(eb) &&
3083ee2e
JB
6363 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6364 atomic_dec(&eb->refs);
6365
6366 /*
6367 * I know this is terrible, but it's temporary until we stop tracking
6368 * the uptodate bits and such for the extent buffers.
6369 */
f7a52a40 6370 release_extent_buffer(eb);
3083ee2e
JB
6371}
6372
6373void free_extent_buffer_stale(struct extent_buffer *eb)
6374{
6375 if (!eb)
d1310b2e
CM
6376 return;
6377
3083ee2e
JB
6378 spin_lock(&eb->refs_lock);
6379 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6380
0b32f4bb 6381 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
6382 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6383 atomic_dec(&eb->refs);
f7a52a40 6384 release_extent_buffer(eb);
d1310b2e 6385}
d1310b2e 6386
0d27797e
QW
6387static void btree_clear_page_dirty(struct page *page)
6388{
6389 ASSERT(PageDirty(page));
6390 ASSERT(PageLocked(page));
6391 clear_page_dirty_for_io(page);
6392 xa_lock_irq(&page->mapping->i_pages);
6393 if (!PageDirty(page))
6394 __xa_clear_mark(&page->mapping->i_pages,
6395 page_index(page), PAGECACHE_TAG_DIRTY);
6396 xa_unlock_irq(&page->mapping->i_pages);
6397}
6398
6399static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6400{
6401 struct btrfs_fs_info *fs_info = eb->fs_info;
6402 struct page *page = eb->pages[0];
6403 bool last;
6404
6405 /* btree_clear_page_dirty() needs page locked */
6406 lock_page(page);
6407 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6408 eb->len);
6409 if (last)
6410 btree_clear_page_dirty(page);
6411 unlock_page(page);
6412 WARN_ON(atomic_read(&eb->refs) == 0);
6413}
6414
2b48966a 6415void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 6416{
cc5e31a4
DS
6417 int i;
6418 int num_pages;
d1310b2e
CM
6419 struct page *page;
6420
0d27797e
QW
6421 if (eb->fs_info->sectorsize < PAGE_SIZE)
6422 return clear_subpage_extent_buffer_dirty(eb);
6423
65ad0104 6424 num_pages = num_extent_pages(eb);
d1310b2e
CM
6425
6426 for (i = 0; i < num_pages; i++) {
fb85fc9a 6427 page = eb->pages[i];
b9473439 6428 if (!PageDirty(page))
d2c3f4f6 6429 continue;
a61e6f29 6430 lock_page(page);
0d27797e 6431 btree_clear_page_dirty(page);
bf0da8c1 6432 ClearPageError(page);
a61e6f29 6433 unlock_page(page);
d1310b2e 6434 }
0b32f4bb 6435 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 6436}
d1310b2e 6437
abb57ef3 6438bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 6439{
cc5e31a4
DS
6440 int i;
6441 int num_pages;
abb57ef3 6442 bool was_dirty;
d1310b2e 6443
0b32f4bb
JB
6444 check_buffer_tree_ref(eb);
6445
b9473439 6446 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 6447
65ad0104 6448 num_pages = num_extent_pages(eb);
3083ee2e 6449 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
6450 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6451
0d27797e
QW
6452 if (!was_dirty) {
6453 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
51995c39 6454
0d27797e
QW
6455 /*
6456 * For subpage case, we can have other extent buffers in the
6457 * same page, and in clear_subpage_extent_buffer_dirty() we
6458 * have to clear page dirty without subpage lock held.
6459 * This can cause race where our page gets dirty cleared after
6460 * we just set it.
6461 *
6462 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6463 * its page for other reasons, we can use page lock to prevent
6464 * the above race.
6465 */
6466 if (subpage)
6467 lock_page(eb->pages[0]);
6468 for (i = 0; i < num_pages; i++)
6469 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6470 eb->start, eb->len);
6471 if (subpage)
6472 unlock_page(eb->pages[0]);
6473 }
51995c39
LB
6474#ifdef CONFIG_BTRFS_DEBUG
6475 for (i = 0; i < num_pages; i++)
6476 ASSERT(PageDirty(eb->pages[i]));
6477#endif
6478
b9473439 6479 return was_dirty;
d1310b2e 6480}
d1310b2e 6481
69ba3927 6482void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 6483{
251f2acc 6484 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 6485 struct page *page;
cc5e31a4 6486 int num_pages;
251f2acc 6487 int i;
1259ab75 6488
b4ce94de 6489 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6490 num_pages = num_extent_pages(eb);
1259ab75 6491 for (i = 0; i < num_pages; i++) {
fb85fc9a 6492 page = eb->pages[i];
33958dc6 6493 if (page)
251f2acc
QW
6494 btrfs_page_clear_uptodate(fs_info, page,
6495 eb->start, eb->len);
1259ab75 6496 }
1259ab75
CM
6497}
6498
09c25a8c 6499void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 6500{
251f2acc 6501 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 6502 struct page *page;
cc5e31a4 6503 int num_pages;
251f2acc 6504 int i;
d1310b2e 6505
0b32f4bb 6506 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 6507 num_pages = num_extent_pages(eb);
d1310b2e 6508 for (i = 0; i < num_pages; i++) {
fb85fc9a 6509 page = eb->pages[i];
251f2acc 6510 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
d1310b2e 6511 }
d1310b2e 6512}
d1310b2e 6513
4012daf7
QW
6514static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6515 int mirror_num)
6516{
6517 struct btrfs_fs_info *fs_info = eb->fs_info;
6518 struct extent_io_tree *io_tree;
6519 struct page *page = eb->pages[0];
390ed29b 6520 struct btrfs_bio_ctrl bio_ctrl = { 0 };
4012daf7
QW
6521 int ret = 0;
6522
6523 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6524 ASSERT(PagePrivate(page));
6525 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6526
6527 if (wait == WAIT_NONE) {
dc56219f
GR
6528 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6529 return -EAGAIN;
4012daf7
QW
6530 } else {
6531 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6532 if (ret < 0)
6533 return ret;
6534 }
6535
6536 ret = 0;
6537 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6538 PageUptodate(page) ||
6539 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6540 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6541 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6542 return ret;
6543 }
6544
6545 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6546 eb->read_mirror = 0;
6547 atomic_set(&eb->io_pages, 1);
6548 check_buffer_tree_ref(eb);
6549 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6550
3d078efa 6551 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
390ed29b
QW
6552 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6553 page, eb->start, eb->len,
6554 eb->start - page_offset(page),
6555 end_bio_extent_readpage, mirror_num, 0,
4012daf7
QW
6556 true);
6557 if (ret) {
6558 /*
6559 * In the endio function, if we hit something wrong we will
6560 * increase the io_pages, so here we need to decrease it for
6561 * error path.
6562 */
6563 atomic_dec(&eb->io_pages);
6564 }
390ed29b 6565 if (bio_ctrl.bio) {
4012daf7
QW
6566 int tmp;
6567
390ed29b
QW
6568 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6569 bio_ctrl.bio = NULL;
4012daf7
QW
6570 if (tmp < 0)
6571 return tmp;
6572 }
6573 if (ret || wait != WAIT_COMPLETE)
6574 return ret;
6575
6576 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6577 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6578 ret = -EIO;
6579 return ret;
6580}
6581
c2ccfbc6 6582int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 6583{
cc5e31a4 6584 int i;
d1310b2e
CM
6585 struct page *page;
6586 int err;
6587 int ret = 0;
ce9adaa5
CM
6588 int locked_pages = 0;
6589 int all_uptodate = 1;
cc5e31a4 6590 int num_pages;
727011e0 6591 unsigned long num_reads = 0;
390ed29b 6592 struct btrfs_bio_ctrl bio_ctrl = { 0 };
a86c12c7 6593
b4ce94de 6594 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
6595 return 0;
6596
651740a5
JB
6597 /*
6598 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6599 * operation, which could potentially still be in flight. In this case
6600 * we simply want to return an error.
6601 */
6602 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6603 return -EIO;
6604
4012daf7
QW
6605 if (eb->fs_info->sectorsize < PAGE_SIZE)
6606 return read_extent_buffer_subpage(eb, wait, mirror_num);
6607
65ad0104 6608 num_pages = num_extent_pages(eb);
8436ea91 6609 for (i = 0; i < num_pages; i++) {
fb85fc9a 6610 page = eb->pages[i];
bb82ab88 6611 if (wait == WAIT_NONE) {
2c4d8cb7
QW
6612 /*
6613 * WAIT_NONE is only utilized by readahead. If we can't
6614 * acquire the lock atomically it means either the eb
6615 * is being read out or under modification.
6616 * Either way the eb will be or has been cached,
6617 * readahead can exit safely.
6618 */
2db04966 6619 if (!trylock_page(page))
ce9adaa5 6620 goto unlock_exit;
d1310b2e
CM
6621 } else {
6622 lock_page(page);
6623 }
ce9adaa5 6624 locked_pages++;
2571e739
LB
6625 }
6626 /*
6627 * We need to firstly lock all pages to make sure that
6628 * the uptodate bit of our pages won't be affected by
6629 * clear_extent_buffer_uptodate().
6630 */
8436ea91 6631 for (i = 0; i < num_pages; i++) {
2571e739 6632 page = eb->pages[i];
727011e0
CM
6633 if (!PageUptodate(page)) {
6634 num_reads++;
ce9adaa5 6635 all_uptodate = 0;
727011e0 6636 }
ce9adaa5 6637 }
2571e739 6638
ce9adaa5 6639 if (all_uptodate) {
8436ea91 6640 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
6641 goto unlock_exit;
6642 }
6643
656f30db 6644 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 6645 eb->read_mirror = 0;
0b32f4bb 6646 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
6647 /*
6648 * It is possible for releasepage to clear the TREE_REF bit before we
6649 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6650 */
6651 check_buffer_tree_ref(eb);
8436ea91 6652 for (i = 0; i < num_pages; i++) {
fb85fc9a 6653 page = eb->pages[i];
baf863b9 6654
ce9adaa5 6655 if (!PageUptodate(page)) {
baf863b9
LB
6656 if (ret) {
6657 atomic_dec(&eb->io_pages);
6658 unlock_page(page);
6659 continue;
6660 }
6661
f188591e 6662 ClearPageError(page);
0420177c 6663 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
390ed29b
QW
6664 &bio_ctrl, page, page_offset(page),
6665 PAGE_SIZE, 0, end_bio_extent_readpage,
6666 mirror_num, 0, false);
baf863b9 6667 if (err) {
baf863b9 6668 /*
0420177c
NB
6669 * We failed to submit the bio so it's the
6670 * caller's responsibility to perform cleanup
6671 * i.e unlock page/set error bit.
baf863b9 6672 */
0420177c
NB
6673 ret = err;
6674 SetPageError(page);
6675 unlock_page(page);
baf863b9
LB
6676 atomic_dec(&eb->io_pages);
6677 }
d1310b2e
CM
6678 } else {
6679 unlock_page(page);
6680 }
6681 }
6682
390ed29b
QW
6683 if (bio_ctrl.bio) {
6684 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6685 bio_ctrl.bio = NULL;
79787eaa
JM
6686 if (err)
6687 return err;
355808c2 6688 }
a86c12c7 6689
bb82ab88 6690 if (ret || wait != WAIT_COMPLETE)
d1310b2e 6691 return ret;
d397712b 6692
8436ea91 6693 for (i = 0; i < num_pages; i++) {
fb85fc9a 6694 page = eb->pages[i];
d1310b2e 6695 wait_on_page_locked(page);
d397712b 6696 if (!PageUptodate(page))
d1310b2e 6697 ret = -EIO;
d1310b2e 6698 }
d397712b 6699
d1310b2e 6700 return ret;
ce9adaa5
CM
6701
6702unlock_exit:
d397712b 6703 while (locked_pages > 0) {
ce9adaa5 6704 locked_pages--;
8436ea91
JB
6705 page = eb->pages[locked_pages];
6706 unlock_page(page);
ce9adaa5
CM
6707 }
6708 return ret;
d1310b2e 6709}
d1310b2e 6710
f98b6215
QW
6711static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6712 unsigned long len)
6713{
6714 btrfs_warn(eb->fs_info,
6715 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6716 eb->start, eb->len, start, len);
6717 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6718
6719 return true;
6720}
6721
6722/*
6723 * Check if the [start, start + len) range is valid before reading/writing
6724 * the eb.
6725 * NOTE: @start and @len are offset inside the eb, not logical address.
6726 *
6727 * Caller should not touch the dst/src memory if this function returns error.
6728 */
6729static inline int check_eb_range(const struct extent_buffer *eb,
6730 unsigned long start, unsigned long len)
6731{
6732 unsigned long offset;
6733
6734 /* start, start + len should not go beyond eb->len nor overflow */
6735 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6736 return report_eb_range(eb, start, len);
6737
6738 return false;
6739}
6740
1cbb1f45
JM
6741void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6742 unsigned long start, unsigned long len)
d1310b2e
CM
6743{
6744 size_t cur;
6745 size_t offset;
6746 struct page *page;
6747 char *kaddr;
6748 char *dst = (char *)dstv;
884b07d0 6749 unsigned long i = get_eb_page_index(start);
d1310b2e 6750
f98b6215 6751 if (check_eb_range(eb, start, len))
f716abd5 6752 return;
d1310b2e 6753
884b07d0 6754 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6755
d397712b 6756 while (len > 0) {
fb85fc9a 6757 page = eb->pages[i];
d1310b2e 6758
09cbfeaf 6759 cur = min(len, (PAGE_SIZE - offset));
a6591715 6760 kaddr = page_address(page);
d1310b2e 6761 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
6762
6763 dst += cur;
6764 len -= cur;
6765 offset = 0;
6766 i++;
6767 }
6768}
d1310b2e 6769
a48b73ec
JB
6770int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6771 void __user *dstv,
6772 unsigned long start, unsigned long len)
550ac1d8
GH
6773{
6774 size_t cur;
6775 size_t offset;
6776 struct page *page;
6777 char *kaddr;
6778 char __user *dst = (char __user *)dstv;
884b07d0 6779 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
6780 int ret = 0;
6781
6782 WARN_ON(start > eb->len);
6783 WARN_ON(start + len > eb->start + eb->len);
6784
884b07d0 6785 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
6786
6787 while (len > 0) {
fb85fc9a 6788 page = eb->pages[i];
550ac1d8 6789
09cbfeaf 6790 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 6791 kaddr = page_address(page);
a48b73ec 6792 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
6793 ret = -EFAULT;
6794 break;
6795 }
6796
6797 dst += cur;
6798 len -= cur;
6799 offset = 0;
6800 i++;
6801 }
6802
6803 return ret;
6804}
6805
1cbb1f45
JM
6806int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6807 unsigned long start, unsigned long len)
d1310b2e
CM
6808{
6809 size_t cur;
6810 size_t offset;
6811 struct page *page;
6812 char *kaddr;
6813 char *ptr = (char *)ptrv;
884b07d0 6814 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
6815 int ret = 0;
6816
f98b6215
QW
6817 if (check_eb_range(eb, start, len))
6818 return -EINVAL;
d1310b2e 6819
884b07d0 6820 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6821
d397712b 6822 while (len > 0) {
fb85fc9a 6823 page = eb->pages[i];
d1310b2e 6824
09cbfeaf 6825 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 6826
a6591715 6827 kaddr = page_address(page);
d1310b2e 6828 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
6829 if (ret)
6830 break;
6831
6832 ptr += cur;
6833 len -= cur;
6834 offset = 0;
6835 i++;
6836 }
6837 return ret;
6838}
d1310b2e 6839
b8f95771
QW
6840/*
6841 * Check that the extent buffer is uptodate.
6842 *
6843 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6844 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6845 */
6846static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6847 struct page *page)
6848{
6849 struct btrfs_fs_info *fs_info = eb->fs_info;
6850
a50e1fcb
JB
6851 /*
6852 * If we are using the commit root we could potentially clear a page
6853 * Uptodate while we're using the extent buffer that we've previously
6854 * looked up. We don't want to complain in this case, as the page was
6855 * valid before, we just didn't write it out. Instead we want to catch
6856 * the case where we didn't actually read the block properly, which
6857 * would have !PageUptodate && !PageError, as we clear PageError before
6858 * reading.
6859 */
b8f95771 6860 if (fs_info->sectorsize < PAGE_SIZE) {
a50e1fcb 6861 bool uptodate, error;
b8f95771
QW
6862
6863 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6864 eb->start, eb->len);
a50e1fcb
JB
6865 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6866 WARN_ON(!uptodate && !error);
b8f95771 6867 } else {
a50e1fcb 6868 WARN_ON(!PageUptodate(page) && !PageError(page));
b8f95771
QW
6869 }
6870}
6871
2b48966a 6872void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
6873 const void *srcv)
6874{
6875 char *kaddr;
6876
b8f95771 6877 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6878 kaddr = page_address(eb->pages[0]) +
6879 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6880 chunk_tree_uuid));
6881 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6882}
6883
2b48966a 6884void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
6885{
6886 char *kaddr;
6887
b8f95771 6888 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
6889 kaddr = page_address(eb->pages[0]) +
6890 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6891 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
6892}
6893
2b48966a 6894void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
6895 unsigned long start, unsigned long len)
6896{
6897 size_t cur;
6898 size_t offset;
6899 struct page *page;
6900 char *kaddr;
6901 char *src = (char *)srcv;
884b07d0 6902 unsigned long i = get_eb_page_index(start);
d1310b2e 6903
d3575156
NA
6904 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6905
f98b6215
QW
6906 if (check_eb_range(eb, start, len))
6907 return;
d1310b2e 6908
884b07d0 6909 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6910
d397712b 6911 while (len > 0) {
fb85fc9a 6912 page = eb->pages[i];
b8f95771 6913 assert_eb_page_uptodate(eb, page);
d1310b2e 6914
09cbfeaf 6915 cur = min(len, PAGE_SIZE - offset);
a6591715 6916 kaddr = page_address(page);
d1310b2e 6917 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
6918
6919 src += cur;
6920 len -= cur;
6921 offset = 0;
6922 i++;
6923 }
6924}
d1310b2e 6925
2b48966a 6926void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 6927 unsigned long len)
d1310b2e
CM
6928{
6929 size_t cur;
6930 size_t offset;
6931 struct page *page;
6932 char *kaddr;
884b07d0 6933 unsigned long i = get_eb_page_index(start);
d1310b2e 6934
f98b6215
QW
6935 if (check_eb_range(eb, start, len))
6936 return;
d1310b2e 6937
884b07d0 6938 offset = get_eb_offset_in_page(eb, start);
d1310b2e 6939
d397712b 6940 while (len > 0) {
fb85fc9a 6941 page = eb->pages[i];
b8f95771 6942 assert_eb_page_uptodate(eb, page);
d1310b2e 6943
09cbfeaf 6944 cur = min(len, PAGE_SIZE - offset);
a6591715 6945 kaddr = page_address(page);
b159fa28 6946 memset(kaddr + offset, 0, cur);
d1310b2e
CM
6947
6948 len -= cur;
6949 offset = 0;
6950 i++;
6951 }
6952}
d1310b2e 6953
2b48966a
DS
6954void copy_extent_buffer_full(const struct extent_buffer *dst,
6955 const struct extent_buffer *src)
58e8012c
DS
6956{
6957 int i;
cc5e31a4 6958 int num_pages;
58e8012c
DS
6959
6960 ASSERT(dst->len == src->len);
6961
884b07d0
QW
6962 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6963 num_pages = num_extent_pages(dst);
6964 for (i = 0; i < num_pages; i++)
6965 copy_page(page_address(dst->pages[i]),
6966 page_address(src->pages[i]));
6967 } else {
6968 size_t src_offset = get_eb_offset_in_page(src, 0);
6969 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6970
6971 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6972 memcpy(page_address(dst->pages[0]) + dst_offset,
6973 page_address(src->pages[0]) + src_offset,
6974 src->len);
6975 }
58e8012c
DS
6976}
6977
2b48966a
DS
6978void copy_extent_buffer(const struct extent_buffer *dst,
6979 const struct extent_buffer *src,
d1310b2e
CM
6980 unsigned long dst_offset, unsigned long src_offset,
6981 unsigned long len)
6982{
6983 u64 dst_len = dst->len;
6984 size_t cur;
6985 size_t offset;
6986 struct page *page;
6987 char *kaddr;
884b07d0 6988 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 6989
f98b6215
QW
6990 if (check_eb_range(dst, dst_offset, len) ||
6991 check_eb_range(src, src_offset, len))
6992 return;
6993
d1310b2e
CM
6994 WARN_ON(src->len != dst_len);
6995
884b07d0 6996 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 6997
d397712b 6998 while (len > 0) {
fb85fc9a 6999 page = dst->pages[i];
b8f95771 7000 assert_eb_page_uptodate(dst, page);
d1310b2e 7001
09cbfeaf 7002 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 7003
a6591715 7004 kaddr = page_address(page);
d1310b2e 7005 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
7006
7007 src_offset += cur;
7008 len -= cur;
7009 offset = 0;
7010 i++;
7011 }
7012}
d1310b2e 7013
3e1e8bb7
OS
7014/*
7015 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7016 * given bit number
7017 * @eb: the extent buffer
7018 * @start: offset of the bitmap item in the extent buffer
7019 * @nr: bit number
7020 * @page_index: return index of the page in the extent buffer that contains the
7021 * given bit number
7022 * @page_offset: return offset into the page given by page_index
7023 *
7024 * This helper hides the ugliness of finding the byte in an extent buffer which
7025 * contains a given bit.
7026 */
2b48966a 7027static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
7028 unsigned long start, unsigned long nr,
7029 unsigned long *page_index,
7030 size_t *page_offset)
7031{
3e1e8bb7
OS
7032 size_t byte_offset = BIT_BYTE(nr);
7033 size_t offset;
7034
7035 /*
7036 * The byte we want is the offset of the extent buffer + the offset of
7037 * the bitmap item in the extent buffer + the offset of the byte in the
7038 * bitmap item.
7039 */
884b07d0 7040 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 7041
09cbfeaf 7042 *page_index = offset >> PAGE_SHIFT;
7073017a 7043 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
7044}
7045
7046/**
7047 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7048 * @eb: the extent buffer
7049 * @start: offset of the bitmap item in the extent buffer
7050 * @nr: bit number to test
7051 */
2b48966a 7052int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7053 unsigned long nr)
7054{
2fe1d551 7055 u8 *kaddr;
3e1e8bb7
OS
7056 struct page *page;
7057 unsigned long i;
7058 size_t offset;
7059
7060 eb_bitmap_offset(eb, start, nr, &i, &offset);
7061 page = eb->pages[i];
b8f95771 7062 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7063 kaddr = page_address(page);
7064 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7065}
7066
7067/**
7068 * extent_buffer_bitmap_set - set an area of a bitmap
7069 * @eb: the extent buffer
7070 * @start: offset of the bitmap item in the extent buffer
7071 * @pos: bit number of the first bit
7072 * @len: number of bits to set
7073 */
2b48966a 7074void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
7075 unsigned long pos, unsigned long len)
7076{
2fe1d551 7077 u8 *kaddr;
3e1e8bb7
OS
7078 struct page *page;
7079 unsigned long i;
7080 size_t offset;
7081 const unsigned int size = pos + len;
7082 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7083 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7084
7085 eb_bitmap_offset(eb, start, pos, &i, &offset);
7086 page = eb->pages[i];
b8f95771 7087 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7088 kaddr = page_address(page);
7089
7090 while (len >= bits_to_set) {
7091 kaddr[offset] |= mask_to_set;
7092 len -= bits_to_set;
7093 bits_to_set = BITS_PER_BYTE;
9c894696 7094 mask_to_set = ~0;
09cbfeaf 7095 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7096 offset = 0;
7097 page = eb->pages[++i];
b8f95771 7098 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7099 kaddr = page_address(page);
7100 }
7101 }
7102 if (len) {
7103 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7104 kaddr[offset] |= mask_to_set;
7105 }
7106}
7107
7108
7109/**
7110 * extent_buffer_bitmap_clear - clear an area of a bitmap
7111 * @eb: the extent buffer
7112 * @start: offset of the bitmap item in the extent buffer
7113 * @pos: bit number of the first bit
7114 * @len: number of bits to clear
7115 */
2b48966a
DS
7116void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7117 unsigned long start, unsigned long pos,
7118 unsigned long len)
3e1e8bb7 7119{
2fe1d551 7120 u8 *kaddr;
3e1e8bb7
OS
7121 struct page *page;
7122 unsigned long i;
7123 size_t offset;
7124 const unsigned int size = pos + len;
7125 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 7126 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
7127
7128 eb_bitmap_offset(eb, start, pos, &i, &offset);
7129 page = eb->pages[i];
b8f95771 7130 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7131 kaddr = page_address(page);
7132
7133 while (len >= bits_to_clear) {
7134 kaddr[offset] &= ~mask_to_clear;
7135 len -= bits_to_clear;
7136 bits_to_clear = BITS_PER_BYTE;
9c894696 7137 mask_to_clear = ~0;
09cbfeaf 7138 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
7139 offset = 0;
7140 page = eb->pages[++i];
b8f95771 7141 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
7142 kaddr = page_address(page);
7143 }
7144 }
7145 if (len) {
7146 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7147 kaddr[offset] &= ~mask_to_clear;
7148 }
7149}
7150
3387206f
ST
7151static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7152{
7153 unsigned long distance = (src > dst) ? src - dst : dst - src;
7154 return distance < len;
7155}
7156
d1310b2e
CM
7157static void copy_pages(struct page *dst_page, struct page *src_page,
7158 unsigned long dst_off, unsigned long src_off,
7159 unsigned long len)
7160{
a6591715 7161 char *dst_kaddr = page_address(dst_page);
d1310b2e 7162 char *src_kaddr;
727011e0 7163 int must_memmove = 0;
d1310b2e 7164
3387206f 7165 if (dst_page != src_page) {
a6591715 7166 src_kaddr = page_address(src_page);
3387206f 7167 } else {
d1310b2e 7168 src_kaddr = dst_kaddr;
727011e0
CM
7169 if (areas_overlap(src_off, dst_off, len))
7170 must_memmove = 1;
3387206f 7171 }
d1310b2e 7172
727011e0
CM
7173 if (must_memmove)
7174 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7175 else
7176 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
7177}
7178
2b48966a
DS
7179void memcpy_extent_buffer(const struct extent_buffer *dst,
7180 unsigned long dst_offset, unsigned long src_offset,
7181 unsigned long len)
d1310b2e
CM
7182{
7183 size_t cur;
7184 size_t dst_off_in_page;
7185 size_t src_off_in_page;
d1310b2e
CM
7186 unsigned long dst_i;
7187 unsigned long src_i;
7188
f98b6215
QW
7189 if (check_eb_range(dst, dst_offset, len) ||
7190 check_eb_range(dst, src_offset, len))
7191 return;
d1310b2e 7192
d397712b 7193 while (len > 0) {
884b07d0
QW
7194 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7195 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 7196
884b07d0
QW
7197 dst_i = get_eb_page_index(dst_offset);
7198 src_i = get_eb_page_index(src_offset);
d1310b2e 7199
09cbfeaf 7200 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
7201 src_off_in_page));
7202 cur = min_t(unsigned long, cur,
09cbfeaf 7203 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 7204
fb85fc9a 7205 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7206 dst_off_in_page, src_off_in_page, cur);
7207
7208 src_offset += cur;
7209 dst_offset += cur;
7210 len -= cur;
7211 }
7212}
d1310b2e 7213
2b48966a
DS
7214void memmove_extent_buffer(const struct extent_buffer *dst,
7215 unsigned long dst_offset, unsigned long src_offset,
7216 unsigned long len)
d1310b2e
CM
7217{
7218 size_t cur;
7219 size_t dst_off_in_page;
7220 size_t src_off_in_page;
7221 unsigned long dst_end = dst_offset + len - 1;
7222 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
7223 unsigned long dst_i;
7224 unsigned long src_i;
7225
f98b6215
QW
7226 if (check_eb_range(dst, dst_offset, len) ||
7227 check_eb_range(dst, src_offset, len))
7228 return;
727011e0 7229 if (dst_offset < src_offset) {
d1310b2e
CM
7230 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7231 return;
7232 }
d397712b 7233 while (len > 0) {
884b07d0
QW
7234 dst_i = get_eb_page_index(dst_end);
7235 src_i = get_eb_page_index(src_end);
d1310b2e 7236
884b07d0
QW
7237 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7238 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
7239
7240 cur = min_t(unsigned long, len, src_off_in_page + 1);
7241 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 7242 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
7243 dst_off_in_page - cur + 1,
7244 src_off_in_page - cur + 1, cur);
7245
7246 dst_end -= cur;
7247 src_end -= cur;
7248 len -= cur;
7249 }
7250}
6af118ce 7251
72a69cd0 7252#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
7253static struct extent_buffer *get_next_extent_buffer(
7254 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7255{
72a69cd0 7256 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
d1e86e3f
QW
7257 struct extent_buffer *found = NULL;
7258 u64 page_start = page_offset(page);
72a69cd0 7259 u64 cur = page_start;
d1e86e3f
QW
7260
7261 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
7262 lockdep_assert_held(&fs_info->buffer_lock);
7263
72a69cd0
QW
7264 while (cur < page_start + PAGE_SIZE) {
7265 int ret;
7266 int i;
7267
7268 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7269 (void **)gang, cur >> fs_info->sectorsize_bits,
7270 min_t(unsigned int, GANG_LOOKUP_SIZE,
7271 PAGE_SIZE / fs_info->nodesize));
7272 if (ret == 0)
7273 goto out;
7274 for (i = 0; i < ret; i++) {
7275 /* Already beyond page end */
7276 if (gang[i]->start >= page_start + PAGE_SIZE)
7277 goto out;
7278 /* Found one */
7279 if (gang[i]->start >= bytenr) {
7280 found = gang[i];
7281 goto out;
7282 }
d1e86e3f 7283 }
72a69cd0 7284 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 7285 }
72a69cd0 7286out:
d1e86e3f
QW
7287 return found;
7288}
7289
7290static int try_release_subpage_extent_buffer(struct page *page)
7291{
7292 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7293 u64 cur = page_offset(page);
7294 const u64 end = page_offset(page) + PAGE_SIZE;
7295 int ret;
7296
7297 while (cur < end) {
7298 struct extent_buffer *eb = NULL;
7299
7300 /*
7301 * Unlike try_release_extent_buffer() which uses page->private
7302 * to grab buffer, for subpage case we rely on radix tree, thus
7303 * we need to ensure radix tree consistency.
7304 *
7305 * We also want an atomic snapshot of the radix tree, thus go
7306 * with spinlock rather than RCU.
7307 */
7308 spin_lock(&fs_info->buffer_lock);
7309 eb = get_next_extent_buffer(fs_info, page, cur);
7310 if (!eb) {
7311 /* No more eb in the page range after or at cur */
7312 spin_unlock(&fs_info->buffer_lock);
7313 break;
7314 }
7315 cur = eb->start + eb->len;
7316
7317 /*
7318 * The same as try_release_extent_buffer(), to ensure the eb
7319 * won't disappear out from under us.
7320 */
7321 spin_lock(&eb->refs_lock);
7322 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7323 spin_unlock(&eb->refs_lock);
7324 spin_unlock(&fs_info->buffer_lock);
7325 break;
7326 }
7327 spin_unlock(&fs_info->buffer_lock);
7328
7329 /*
7330 * If tree ref isn't set then we know the ref on this eb is a
7331 * real ref, so just return, this eb will likely be freed soon
7332 * anyway.
7333 */
7334 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7335 spin_unlock(&eb->refs_lock);
7336 break;
7337 }
7338
7339 /*
7340 * Here we don't care about the return value, we will always
7341 * check the page private at the end. And
7342 * release_extent_buffer() will release the refs_lock.
7343 */
7344 release_extent_buffer(eb);
7345 }
7346 /*
7347 * Finally to check if we have cleared page private, as if we have
7348 * released all ebs in the page, the page private should be cleared now.
7349 */
7350 spin_lock(&page->mapping->private_lock);
7351 if (!PagePrivate(page))
7352 ret = 1;
7353 else
7354 ret = 0;
7355 spin_unlock(&page->mapping->private_lock);
7356 return ret;
7357
7358}
7359
f7a52a40 7360int try_release_extent_buffer(struct page *page)
19fe0a8b 7361{
6af118ce 7362 struct extent_buffer *eb;
6af118ce 7363
d1e86e3f
QW
7364 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7365 return try_release_subpage_extent_buffer(page);
7366
3083ee2e 7367 /*
d1e86e3f
QW
7368 * We need to make sure nobody is changing page->private, as we rely on
7369 * page->private as the pointer to extent buffer.
3083ee2e
JB
7370 */
7371 spin_lock(&page->mapping->private_lock);
7372 if (!PagePrivate(page)) {
7373 spin_unlock(&page->mapping->private_lock);
4f2de97a 7374 return 1;
45f49bce 7375 }
6af118ce 7376
3083ee2e
JB
7377 eb = (struct extent_buffer *)page->private;
7378 BUG_ON(!eb);
19fe0a8b
MX
7379
7380 /*
3083ee2e
JB
7381 * This is a little awful but should be ok, we need to make sure that
7382 * the eb doesn't disappear out from under us while we're looking at
7383 * this page.
19fe0a8b 7384 */
3083ee2e 7385 spin_lock(&eb->refs_lock);
0b32f4bb 7386 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
7387 spin_unlock(&eb->refs_lock);
7388 spin_unlock(&page->mapping->private_lock);
7389 return 0;
b9473439 7390 }
3083ee2e 7391 spin_unlock(&page->mapping->private_lock);
897ca6e9 7392
19fe0a8b 7393 /*
3083ee2e
JB
7394 * If tree ref isn't set then we know the ref on this eb is a real ref,
7395 * so just return, this page will likely be freed soon anyway.
19fe0a8b 7396 */
3083ee2e
JB
7397 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7398 spin_unlock(&eb->refs_lock);
7399 return 0;
b9473439 7400 }
19fe0a8b 7401
f7a52a40 7402 return release_extent_buffer(eb);
6af118ce 7403}
bfb484d9
JB
7404
7405/*
7406 * btrfs_readahead_tree_block - attempt to readahead a child block
7407 * @fs_info: the fs_info
7408 * @bytenr: bytenr to read
3fbaf258 7409 * @owner_root: objectid of the root that owns this eb
bfb484d9 7410 * @gen: generation for the uptodate check, can be 0
3fbaf258 7411 * @level: level for the eb
bfb484d9
JB
7412 *
7413 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7414 * normal uptodate check of the eb, without checking the generation. If we have
7415 * to read the block we will not block on anything.
7416 */
7417void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 7418 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
7419{
7420 struct extent_buffer *eb;
7421 int ret;
7422
3fbaf258 7423 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
7424 if (IS_ERR(eb))
7425 return;
7426
7427 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7428 free_extent_buffer(eb);
7429 return;
7430 }
7431
7432 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7433 if (ret < 0)
7434 free_extent_buffer_stale(eb);
7435 else
7436 free_extent_buffer(eb);
7437}
7438
7439/*
7440 * btrfs_readahead_node_child - readahead a node's child block
7441 * @node: parent node we're reading from
7442 * @slot: slot in the parent node for the child we want to read
7443 *
7444 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7445 * the slot in the node provided.
7446 */
7447void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7448{
7449 btrfs_readahead_tree_block(node->fs_info,
7450 btrfs_node_blockptr(node, slot),
3fbaf258
JB
7451 btrfs_header_owner(node),
7452 btrfs_node_ptr_generation(node, slot),
7453 btrfs_header_level(node) - 1);
bfb484d9 7454}