Merge remote-tracking branches 'asoc/topic/mc13783', 'asoc/topic/msm8916', 'asoc...
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d1310b2e
CM
2#include <linux/bitops.h>
3#include <linux/slab.h>
4#include <linux/bio.h>
5#include <linux/mm.h>
d1310b2e
CM
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
d1310b2e
CM
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
fe09e16c 23#include "backref.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
771ed689
CM
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
70fd7614 119 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
d38ed27f
QW
123static void add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
130 return;
131 if (set && (state->state & bits) == bits)
132 return;
fefdc557
QW
133 if (!set && (state->state & bits) == 0)
134 return;
d38ed27f 135 changeset->bytes_changed += state->end - state->start + 1;
53d32359 136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
137 GFP_ATOMIC);
138 /* ENOMEM */
139 BUG_ON(ret < 0);
140}
141
0b32f4bb 142static noinline void flush_write_bio(void *data);
c2d904e0
JM
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
c6100a4b
JB
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
c2d904e0 149}
0b32f4bb 150
d1310b2e
CM
151int __init extent_io_init(void)
152{
837e1972 153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 154 sizeof(struct extent_state), 0,
fba4b697 155 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
156 if (!extent_state_cache)
157 return -ENOMEM;
158
837e1972 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 160 sizeof(struct extent_buffer), 0,
fba4b697 161 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
162 if (!extent_buffer_cache)
163 goto free_state_cache;
9be3395b
CM
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
9be3395b
CM
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1751e8a6 1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
c5e4c3d7 1990 bio = btrfs_io_bio_alloc(1);
4f024f37 1991 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1992 map_length = length;
1993
b5de8d0d
FM
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2024 }
c725328c
LB
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2027 bio->bi_iter.bi_sector = sector;
c725328c 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2029 btrfs_put_bbio(bbio);
4a54c8c1 2030 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2031 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2032 bio_put(bio);
2033 return -EIO;
2034 }
74d46992 2035 bio_set_dev(bio, dev->bdev);
70fd7614 2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2037 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2038
4e49ea4a 2039 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2040 /* try to remap that extent elsewhere? */
b5de8d0d 2041 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2042 bio_put(bio);
442a4f63 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2044 return -EIO;
2045 }
2046
b14af3b4
DS
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2049 ino, start,
1203b681 2050 rcu_str_deref(dev->name), sector);
b5de8d0d 2051 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2052 bio_put(bio);
2053 return 0;
2054}
2055
2ff7e61e
JM
2056int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
ea466794 2058{
ea466794
JB
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2061 int ret = 0;
ea466794 2062
bc98a42c 2063 if (sb_rdonly(fs_info->sb))
908960c6
ID
2064 return -EROFS;
2065
ea466794 2066 for (i = 0; i < num_pages; i++) {
fb85fc9a 2067 struct page *p = eb->pages[i];
1203b681 2068
6ec656bc 2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2070 start - page_offset(p), mirror_num);
ea466794
JB
2071 if (ret)
2072 break;
09cbfeaf 2073 start += PAGE_SIZE;
ea466794
JB
2074 }
2075
2076 return ret;
2077}
2078
4a54c8c1
JS
2079/*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
7870d082
JB
2083int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2087{
2088 u64 private;
4a54c8c1 2089 struct io_failure_record *failrec;
4a54c8c1
JS
2090 struct extent_state *state;
2091 int num_copies;
4a54c8c1 2092 int ret;
4a54c8c1
JS
2093
2094 private = 0;
7870d082
JB
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
4a54c8c1
JS
2097 if (!ret)
2098 return 0;
2099
7870d082 2100 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2101 if (ret)
2102 return 0;
2103
4a54c8c1
JS
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
ab8d0fc4
JM
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
4a54c8c1
JS
2111 goto out;
2112 }
bc98a42c 2113 if (sb_rdonly(fs_info->sb))
908960c6 2114 goto out;
4a54c8c1 2115
7870d082
JB
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2118 failrec->start,
2119 EXTENT_LOCKED);
7870d082 2120 spin_unlock(&io_tree->lock);
4a54c8c1 2121
883d0de4
MX
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
4a54c8c1 2126 if (num_copies > 1) {
7870d082
JB
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
4a54c8c1
JS
2130 }
2131 }
2132
2133out:
7870d082 2134 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2135
454ff3de 2136 return 0;
4a54c8c1
JS
2137}
2138
f612496b
MX
2139/*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
7ab7956e 2145void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2146{
7ab7956e 2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
47dc196a 2164 failrec = state->failrec;
f612496b
MX
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171}
2172
2fe6303e 2173int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2174 struct io_failure_record **failrec_ret)
4a54c8c1 2175{
ab8d0fc4 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2177 struct io_failure_record *failrec;
4a54c8c1 2178 struct extent_map *em;
4a54c8c1
JS
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2182 int ret;
4a54c8c1
JS
2183 u64 logical;
2184
47dc196a 2185 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2fe6303e 2190
4a54c8c1
JS
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
68ba990f 2205 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
7a2d6a64 2210 if (!em) {
4a54c8c1
JS
2211 kfree(failrec);
2212 return -EIO;
2213 }
2fe6303e 2214
4a54c8c1
JS
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2fe6303e 2223
ab8d0fc4
JM
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2fe6303e 2227
4a54c8c1
JS
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2233 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2234 if (ret >= 0)
47dc196a 2235 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
ceeb0ae7 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
ab8d0fc4
JM
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
4a54c8c1
JS
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2fe6303e
MX
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258}
2259
c3cfb656 2260bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2fe6303e
MX
2261 struct io_failure_record *failrec, int failed_mirror)
2262{
ab8d0fc4 2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2264 int num_copies;
2265
ab8d0fc4 2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
ab8d0fc4
JM
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2276 return false;
4a54c8c1
JS
2277 }
2278
4a54c8c1
JS
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
4a54c8c1
JS
2311 }
2312
facc8a22 2313 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2317 return false;
4a54c8c1
JS
2318 }
2319
c3cfb656 2320 return true;
2fe6303e
MX
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
8b110e39 2327 bio_end_io_t *endio_func, void *data)
2fe6303e 2328{
0b246afa 2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
c5e4c3d7 2334 bio = btrfs_io_bio_alloc(1);
2fe6303e 2335 bio->bi_end_io = endio_func;
4f024f37 2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2338 bio->bi_iter.bi_size = 0;
8b110e39 2339 bio->bi_private = data;
4a54c8c1 2340
facc8a22
MX
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
facc8a22
MX
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2349 csum_size);
2350 }
2351
2fe6303e
MX
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355}
2356
2357/*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368{
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2373 struct bio *bio;
70fd7614 2374 int read_mode = 0;
4e4cbee9 2375 blk_status_t status;
2fe6303e
MX
2376 int ret;
2377
1f7ad75b 2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2379
2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2381 if (ret)
2382 return ret;
2383
c3cfb656
LB
2384 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2385 failed_mirror)) {
7870d082 2386 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2387 return -EIO;
2388 }
2389
2390 if (failed_bio->bi_vcnt > 1)
70fd7614 2391 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2392
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
8b110e39
MX
2396 (int)phy_offset, failed_bio->bi_end_io,
2397 NULL);
1f7ad75b 2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2399
ab8d0fc4
JM
2400 btrfs_debug(btrfs_sb(inode->i_sb),
2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2402 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2403
8c27cb35 2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2405 failrec->bio_flags, 0);
4e4cbee9 2406 if (status) {
7870d082 2407 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2408 bio_put(bio);
4e4cbee9 2409 ret = blk_status_to_errno(status);
6c387ab2
MX
2410 }
2411
013bd4c3 2412 return ret;
4a54c8c1
JS
2413}
2414
d1310b2e
CM
2415/* lots and lots of room for performance fixes in the end_bio funcs */
2416
b5227c07 2417void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2418{
2419 int uptodate = (err == 0);
2420 struct extent_io_tree *tree;
3e2426bd 2421 int ret = 0;
87826df0
JM
2422
2423 tree = &BTRFS_I(page->mapping->host)->io_tree;
2424
c3988d63
DS
2425 if (tree->ops && tree->ops->writepage_end_io_hook)
2426 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2427 uptodate);
87826df0 2428
87826df0 2429 if (!uptodate) {
87826df0
JM
2430 ClearPageUptodate(page);
2431 SetPageError(page);
bff5baf8 2432 ret = err < 0 ? err : -EIO;
5dca6eea 2433 mapping_set_error(page->mapping, ret);
87826df0 2434 }
87826df0
JM
2435}
2436
d1310b2e
CM
2437/*
2438 * after a writepage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * clear the writeback bits in the extent tree for this IO
2441 * end_page_writeback if the page has no more pending IO
2442 *
2443 * Scheduling is not allowed, so the extent state tree is expected
2444 * to have one and only one object corresponding to this IO.
2445 */
4246a0b6 2446static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2447{
4e4cbee9 2448 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2449 struct bio_vec *bvec;
d1310b2e
CM
2450 u64 start;
2451 u64 end;
2c30c71b 2452 int i;
d1310b2e 2453
c09abff8 2454 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2455 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2456 struct page *page = bvec->bv_page;
0b246afa
JM
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2459
17a5adcc
AO
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
09cbfeaf
KS
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2467 btrfs_err(fs_info,
efe120a0
FH
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
0b246afa 2471 btrfs_info(fs_info,
5d163e0e 2472 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2473 bvec->bv_offset, bvec->bv_len);
2474 }
d1310b2e 2475
17a5adcc
AO
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2478
4e4cbee9 2479 end_extent_writepage(page, error, start, end);
17a5adcc 2480 end_page_writeback(page);
2c30c71b 2481 }
2b1f55b0 2482
d1310b2e 2483 bio_put(bio);
d1310b2e
CM
2484}
2485
883d0de4
MX
2486static void
2487endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489{
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496}
2497
d1310b2e
CM
2498/*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
4246a0b6 2509static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2510{
2c30c71b 2511 struct bio_vec *bvec;
4e4cbee9 2512 int uptodate = !bio->bi_status;
facc8a22 2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2514 struct extent_io_tree *tree, *failure_tree;
facc8a22 2515 u64 offset = 0;
d1310b2e
CM
2516 u64 start;
2517 u64 end;
facc8a22 2518 u64 len;
883d0de4
MX
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
5cf1ab56 2521 int mirror;
d1310b2e 2522 int ret;
2c30c71b 2523 int i;
d1310b2e 2524
c09abff8 2525 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2526 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2527 struct page *page = bvec->bv_page;
a71754fc 2528 struct inode *inode = page->mapping->host;
ab8d0fc4 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2530
ab8d0fc4
JM
2531 btrfs_debug(fs_info,
2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2533 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2534 io_bio->mirror_num);
a71754fc 2535 tree = &BTRFS_I(inode)->io_tree;
7870d082 2536 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2537
17a5adcc
AO
2538 /* We always issue full-page reads, but if some block
2539 * in a page fails to read, blk_update_request() will
2540 * advance bv_offset and adjust bv_len to compensate.
2541 * Print a warning for nonzero offsets, and an error
2542 * if they don't add up to a full page. */
09cbfeaf
KS
2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2545 btrfs_err(fs_info,
2546 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2547 bvec->bv_offset, bvec->bv_len);
2548 else
ab8d0fc4
JM
2549 btrfs_info(fs_info,
2550 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2551 bvec->bv_offset, bvec->bv_len);
2552 }
d1310b2e 2553
17a5adcc
AO
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2556 len = bvec->bv_len;
d1310b2e 2557
9be3395b 2558 mirror = io_bio->mirror_num;
20c9801d 2559 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2561 page, start, end,
2562 mirror);
5ee0844d 2563 if (ret)
d1310b2e 2564 uptodate = 0;
5ee0844d 2565 else
7870d082
JB
2566 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2567 failure_tree, tree, start,
2568 page,
2569 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2570 }
ea466794 2571
f2a09da9
MX
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
20a7db8a 2575 if (tree->ops) {
5cf1ab56 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2577 if (ret == -EAGAIN) {
2578 /*
2579 * Data inode's readpage_io_failed_hook() always
2580 * returns -EAGAIN.
2581 *
2582 * The generic bio_readpage_error handles errors
2583 * the following way: If possible, new read
2584 * requests are created and submitted and will
2585 * end up in end_bio_extent_readpage as well (if
2586 * we're lucky, not in the !uptodate case). In
2587 * that case it returns 0 and we just go on with
2588 * the next page in our bio. If it can't handle
2589 * the error it will return -EIO and we remain
2590 * responsible for that page.
2591 */
2592 ret = bio_readpage_error(bio, offset, page,
2593 start, end, mirror);
2594 if (ret == 0) {
4e4cbee9 2595 uptodate = !bio->bi_status;
9d0d1c8b
LB
2596 offset += len;
2597 continue;
2598 }
2599 }
2600
f4a8e656 2601 /*
9d0d1c8b
LB
2602 * metadata's readpage_io_failed_hook() always returns
2603 * -EIO and fixes nothing. -EIO is also returned if
2604 * data inode error could not be fixed.
f4a8e656 2605 */
9d0d1c8b 2606 ASSERT(ret == -EIO);
7e38326f 2607 }
f2a09da9 2608readpage_ok:
883d0de4 2609 if (likely(uptodate)) {
a71754fc 2610 loff_t i_size = i_size_read(inode);
09cbfeaf 2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2612 unsigned off;
a71754fc
JB
2613
2614 /* Zero out the end if this page straddles i_size */
09cbfeaf 2615 off = i_size & (PAGE_SIZE-1);
a583c026 2616 if (page->index == end_index && off)
09cbfeaf 2617 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2618 SetPageUptodate(page);
70dec807 2619 } else {
17a5adcc
AO
2620 ClearPageUptodate(page);
2621 SetPageError(page);
70dec807 2622 }
17a5adcc 2623 unlock_page(page);
facc8a22 2624 offset += len;
883d0de4
MX
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2c30c71b 2647 }
d1310b2e 2648
883d0de4
MX
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
facc8a22 2652 if (io_bio->end_io)
4e4cbee9 2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2654 bio_put(bio);
d1310b2e
CM
2655}
2656
9be3395b 2657/*
184f999e
DS
2658 * Initialize the members up to but not including 'bio'. Use after allocating a
2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2660 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2661 */
184f999e 2662static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2663{
184f999e
DS
2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2665}
d1310b2e 2666
9be3395b 2667/*
6e707bcd
DS
2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2670 * for the appropriate container_of magic
9be3395b 2671 */
c821e7f3 2672struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2673{
2674 struct bio *bio;
d1310b2e 2675
9f2179a5 2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2677 bio_set_dev(bio, bdev);
c821e7f3 2678 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2679 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2680 return bio;
2681}
2682
8b6c1d56 2683struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2684{
23ea8e5a
MX
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
9be3395b 2687
6e707bcd 2688 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2690 btrfs_bio = btrfs_io_bio(new);
184f999e 2691 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2692 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2693 return new;
2694}
9be3395b 2695
c5e4c3d7 2696struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2697{
facc8a22
MX
2698 struct bio *bio;
2699
6e707bcd 2700 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2702 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2703 return bio;
9be3395b
CM
2704}
2705
e477094f 2706struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2707{
2708 struct bio *bio;
2709 struct btrfs_io_bio *btrfs_bio;
2710
2711 /* this will never fail when it's backed by a bioset */
e477094f 2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2713 ASSERT(bio);
2714
2715 btrfs_bio = btrfs_io_bio(bio);
184f999e 2716 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2717
2718 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2719 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2720 return bio;
2721}
9be3395b 2722
1f7ad75b
MC
2723static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
d1310b2e 2725{
4e4cbee9 2726 blk_status_t ret = 0;
70dec807
CM
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
70dec807 2730 u64 start;
70dec807 2731
4eee4fa4 2732 start = page_offset(page) + bvec->bv_offset;
70dec807 2733
902b22f3 2734 bio->bi_private = NULL;
d1310b2e
CM
2735 bio_get(bio);
2736
20c9801d 2737 if (tree->ops)
c6100a4b 2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2739 mirror_num, bio_flags, start);
0b86a832 2740 else
4e49ea4a 2741 btrfsic_submit_bio(bio);
4a54c8c1 2742
d1310b2e 2743 bio_put(bio);
4e4cbee9 2744 return blk_status_to_errno(ret);
d1310b2e
CM
2745}
2746
1f7ad75b 2747static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2750{
2751 int ret = 0;
20c9801d 2752 if (tree->ops)
81a75f67 2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2754 bio_flags);
3444a972
JM
2755 return ret;
2756
2757}
2758
4b81ba48
DS
2759/*
2760 * @opf: bio REQ_OP_* and REQ_* flags as one value
2761 */
2762static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2763 struct writeback_control *wbc,
6273b7f8 2764 struct page *page, u64 offset,
6c5a4e2c 2765 size_t size, unsigned long pg_offset,
d1310b2e
CM
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
f188591e 2768 bio_end_io_t end_io_func,
c8b97818
CM
2769 int mirror_num,
2770 unsigned long prev_bio_flags,
005efedf
FM
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
d1310b2e
CM
2773{
2774 int ret = 0;
2775 struct bio *bio;
c8b97818 2776 int contig = 0;
c8b97818 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2779 sector_t sector = offset >> 9;
d1310b2e
CM
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
c8b97818 2783 if (old_compressed)
4f024f37 2784 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2785 else
f73a1c7d 2786 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2789 force_bio_submit ||
6c5a4e2c
DS
2790 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2793 if (ret < 0) {
2794 *bio_ret = NULL;
79787eaa 2795 return ret;
289454ad 2796 }
d1310b2e
CM
2797 bio = NULL;
2798 } else {
da2f0f74
CM
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2801 return 0;
2802 }
2803 }
c8b97818 2804
6273b7f8 2805 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2806 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
e6959b93 2809 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2810 bio->bi_opf = opf;
da2f0f74
CM
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2814 }
70dec807 2815
d397712b 2816 if (bio_ret)
d1310b2e 2817 *bio_ret = bio;
d397712b 2818 else
1f7ad75b 2819 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2820
2821 return ret;
2822}
2823
48a3b636
ES
2824static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 struct page *page)
d1310b2e
CM
2826{
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
09cbfeaf 2829 get_page(page);
4f2de97a
JB
2830 set_page_private(page, (unsigned long)eb);
2831 } else {
2832 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2833 }
2834}
2835
4f2de97a 2836void set_page_extent_mapped(struct page *page)
d1310b2e 2837{
4f2de97a
JB
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
09cbfeaf 2840 get_page(page);
4f2de97a
JB
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 }
d1310b2e
CM
2843}
2844
125bac01
MX
2845static struct extent_map *
2846__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2849{
2850 struct extent_map *em;
2851
2852 if (em_cached && *em_cached) {
2853 em = *em_cached;
cbc0e928 2854 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2855 start < extent_map_end(em)) {
490b54d6 2856 refcount_inc(&em->refs);
125bac01
MX
2857 return em;
2858 }
2859
2860 free_extent_map(em);
2861 *em_cached = NULL;
2862 }
2863
fc4f21b1 2864 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 BUG_ON(*em_cached);
490b54d6 2867 refcount_inc(&em->refs);
125bac01
MX
2868 *em_cached = em;
2869 }
2870 return em;
2871}
d1310b2e
CM
2872/*
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
79787eaa 2876 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2877 * return 0 on success, otherwise return error
d1310b2e 2878 */
9974090b
MX
2879static int __do_readpage(struct extent_io_tree *tree,
2880 struct page *page,
2881 get_extent_t *get_extent,
125bac01 2882 struct extent_map **em_cached,
9974090b 2883 struct bio **bio, int mirror_num,
f1c77c55 2884 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2885 u64 *prev_em_start)
d1310b2e
CM
2886{
2887 struct inode *inode = page->mapping->host;
4eee4fa4 2888 u64 start = page_offset(page);
09cbfeaf 2889 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2890 u64 end;
2891 u64 cur = start;
2892 u64 extent_offset;
2893 u64 last_byte = i_size_read(inode);
2894 u64 block_start;
2895 u64 cur_end;
d1310b2e
CM
2896 struct extent_map *em;
2897 struct block_device *bdev;
baf863b9 2898 int ret = 0;
d1310b2e 2899 int nr = 0;
306e16ce 2900 size_t pg_offset = 0;
d1310b2e 2901 size_t iosize;
c8b97818 2902 size_t disk_io_size;
d1310b2e 2903 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2904 unsigned long this_bio_flag = 0;
d1310b2e
CM
2905
2906 set_page_extent_mapped(page);
2907
9974090b 2908 end = page_end;
90a887c9
DM
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2912 unlock_extent(tree, start, end);
90a887c9
DM
2913 goto out;
2914 }
2915 }
2916
09cbfeaf 2917 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2918 char *userpage;
09cbfeaf 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2920
2921 if (zero_offset) {
09cbfeaf 2922 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2923 userpage = kmap_atomic(page);
c8b97818
CM
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
7ac687d9 2926 kunmap_atomic(userpage);
c8b97818
CM
2927 }
2928 }
d1310b2e 2929 while (cur <= end) {
005efedf 2930 bool force_bio_submit = false;
6273b7f8 2931 u64 offset;
c8f2f24b 2932
d1310b2e
CM
2933 if (cur >= last_byte) {
2934 char *userpage;
507903b8
AJ
2935 struct extent_state *cached = NULL;
2936
09cbfeaf 2937 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2938 userpage = kmap_atomic(page);
306e16ce 2939 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2940 flush_dcache_page(page);
7ac687d9 2941 kunmap_atomic(userpage);
d1310b2e 2942 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2943 &cached, GFP_NOFS);
7f042a83
FM
2944 unlock_extent_cached(tree, cur,
2945 cur + iosize - 1,
2946 &cached, GFP_NOFS);
d1310b2e
CM
2947 break;
2948 }
125bac01
MX
2949 em = __get_extent_map(inode, page, pg_offset, cur,
2950 end - cur + 1, get_extent, em_cached);
c704005d 2951 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2952 SetPageError(page);
7f042a83 2953 unlock_extent(tree, cur, end);
d1310b2e
CM
2954 break;
2955 }
d1310b2e
CM
2956 extent_offset = cur - em->start;
2957 BUG_ON(extent_map_end(em) <= cur);
2958 BUG_ON(end < cur);
2959
261507a0 2960 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2961 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2962 extent_set_compress_type(&this_bio_flag,
2963 em->compress_type);
2964 }
c8b97818 2965
d1310b2e
CM
2966 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2967 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2968 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2969 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2970 disk_io_size = em->block_len;
6273b7f8 2971 offset = em->block_start;
c8b97818 2972 } else {
6273b7f8 2973 offset = em->block_start + extent_offset;
c8b97818
CM
2974 disk_io_size = iosize;
2975 }
d1310b2e
CM
2976 bdev = em->bdev;
2977 block_start = em->block_start;
d899e052
YZ
2978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2979 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2980
2981 /*
2982 * If we have a file range that points to a compressed extent
2983 * and it's followed by a consecutive file range that points to
2984 * to the same compressed extent (possibly with a different
2985 * offset and/or length, so it either points to the whole extent
2986 * or only part of it), we must make sure we do not submit a
2987 * single bio to populate the pages for the 2 ranges because
2988 * this makes the compressed extent read zero out the pages
2989 * belonging to the 2nd range. Imagine the following scenario:
2990 *
2991 * File layout
2992 * [0 - 8K] [8K - 24K]
2993 * | |
2994 * | |
2995 * points to extent X, points to extent X,
2996 * offset 4K, length of 8K offset 0, length 16K
2997 *
2998 * [extent X, compressed length = 4K uncompressed length = 16K]
2999 *
3000 * If the bio to read the compressed extent covers both ranges,
3001 * it will decompress extent X into the pages belonging to the
3002 * first range and then it will stop, zeroing out the remaining
3003 * pages that belong to the other range that points to extent X.
3004 * So here we make sure we submit 2 bios, one for the first
3005 * range and another one for the third range. Both will target
3006 * the same physical extent from disk, but we can't currently
3007 * make the compressed bio endio callback populate the pages
3008 * for both ranges because each compressed bio is tightly
3009 * coupled with a single extent map, and each range can have
3010 * an extent map with a different offset value relative to the
3011 * uncompressed data of our extent and different lengths. This
3012 * is a corner case so we prioritize correctness over
3013 * non-optimal behavior (submitting 2 bios for the same extent).
3014 */
3015 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3016 prev_em_start && *prev_em_start != (u64)-1 &&
3017 *prev_em_start != em->orig_start)
3018 force_bio_submit = true;
3019
3020 if (prev_em_start)
3021 *prev_em_start = em->orig_start;
3022
d1310b2e
CM
3023 free_extent_map(em);
3024 em = NULL;
3025
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3028 char *userpage;
507903b8
AJ
3029 struct extent_state *cached = NULL;
3030
7ac687d9 3031 userpage = kmap_atomic(page);
306e16ce 3032 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3033 flush_dcache_page(page);
7ac687d9 3034 kunmap_atomic(userpage);
d1310b2e
CM
3035
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3037 &cached, GFP_NOFS);
7f042a83
FM
3038 unlock_extent_cached(tree, cur,
3039 cur + iosize - 1,
3040 &cached, GFP_NOFS);
d1310b2e 3041 cur = cur + iosize;
306e16ce 3042 pg_offset += iosize;
d1310b2e
CM
3043 continue;
3044 }
3045 /* the get_extent function already copied into the page */
9655d298
CM
3046 if (test_range_bit(tree, cur, cur_end,
3047 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3048 check_page_uptodate(tree, page);
7f042a83 3049 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3050 cur = cur + iosize;
306e16ce 3051 pg_offset += iosize;
d1310b2e
CM
3052 continue;
3053 }
70dec807
CM
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
7f042a83 3059 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3060 cur = cur + iosize;
306e16ce 3061 pg_offset += iosize;
70dec807
CM
3062 continue;
3063 }
d1310b2e 3064
4b81ba48 3065 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3066 page, offset, disk_io_size,
3067 pg_offset, bdev, bio,
c8b97818
CM
3068 end_bio_extent_readpage, mirror_num,
3069 *bio_flags,
005efedf
FM
3070 this_bio_flag,
3071 force_bio_submit);
c8f2f24b
JB
3072 if (!ret) {
3073 nr++;
3074 *bio_flags = this_bio_flag;
3075 } else {
d1310b2e 3076 SetPageError(page);
7f042a83 3077 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3078 goto out;
edd33c99 3079 }
d1310b2e 3080 cur = cur + iosize;
306e16ce 3081 pg_offset += iosize;
d1310b2e 3082 }
90a887c9 3083out:
d1310b2e
CM
3084 if (!nr) {
3085 if (!PageError(page))
3086 SetPageUptodate(page);
3087 unlock_page(page);
3088 }
baf863b9 3089 return ret;
d1310b2e
CM
3090}
3091
9974090b
MX
3092static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3093 struct page *pages[], int nr_pages,
3094 u64 start, u64 end,
3095 get_extent_t *get_extent,
125bac01 3096 struct extent_map **em_cached,
9974090b 3097 struct bio **bio, int mirror_num,
1f7ad75b 3098 unsigned long *bio_flags,
808f80b4 3099 u64 *prev_em_start)
9974090b
MX
3100{
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
a776c6fa 3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
125bac01 3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3119 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3120 put_page(pages[index]);
9974090b
MX
3121 }
3122}
3123
3124static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages, get_extent_t *get_extent,
125bac01 3127 struct extent_map **em_cached,
9974090b 3128 struct bio **bio, int mirror_num,
1f7ad75b 3129 unsigned long *bio_flags,
808f80b4 3130 u64 *prev_em_start)
9974090b 3131{
35a3621b 3132 u64 start = 0;
9974090b
MX
3133 u64 end = 0;
3134 u64 page_start;
3135 int index;
35a3621b 3136 int first_index = 0;
9974090b
MX
3137
3138 for (index = 0; index < nr_pages; index++) {
3139 page_start = page_offset(pages[index]);
3140 if (!end) {
3141 start = page_start;
09cbfeaf 3142 end = start + PAGE_SIZE - 1;
9974090b
MX
3143 first_index = index;
3144 } else if (end + 1 == page_start) {
09cbfeaf 3145 end += PAGE_SIZE;
9974090b
MX
3146 } else {
3147 __do_contiguous_readpages(tree, &pages[first_index],
3148 index - first_index, start,
125bac01
MX
3149 end, get_extent, em_cached,
3150 bio, mirror_num, bio_flags,
1f7ad75b 3151 prev_em_start);
9974090b 3152 start = page_start;
09cbfeaf 3153 end = start + PAGE_SIZE - 1;
9974090b
MX
3154 first_index = index;
3155 }
3156 }
3157
3158 if (end)
3159 __do_contiguous_readpages(tree, &pages[first_index],
3160 index - first_index, start,
125bac01 3161 end, get_extent, em_cached, bio,
1f7ad75b 3162 mirror_num, bio_flags,
808f80b4 3163 prev_em_start);
9974090b
MX
3164}
3165
3166static int __extent_read_full_page(struct extent_io_tree *tree,
3167 struct page *page,
3168 get_extent_t *get_extent,
3169 struct bio **bio, int mirror_num,
f1c77c55
DS
3170 unsigned long *bio_flags,
3171 unsigned int read_flags)
9974090b
MX
3172{
3173 struct inode *inode = page->mapping->host;
3174 struct btrfs_ordered_extent *ordered;
3175 u64 start = page_offset(page);
09cbfeaf 3176 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3177 int ret;
3178
3179 while (1) {
3180 lock_extent(tree, start, end);
a776c6fa 3181 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3182 PAGE_SIZE);
9974090b
MX
3183 if (!ordered)
3184 break;
3185 unlock_extent(tree, start, end);
3186 btrfs_start_ordered_extent(inode, ordered, 1);
3187 btrfs_put_ordered_extent(ordered);
3188 }
3189
125bac01 3190 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3191 bio_flags, read_flags, NULL);
9974090b
MX
3192 return ret;
3193}
3194
d1310b2e 3195int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3196 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3197{
3198 struct bio *bio = NULL;
c8b97818 3199 unsigned long bio_flags = 0;
d1310b2e
CM
3200 int ret;
3201
8ddc7d9c 3202 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3203 &bio_flags, 0);
d1310b2e 3204 if (bio)
1f7ad75b 3205 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3206 return ret;
3207}
d1310b2e 3208
3d4b9496 3209static void update_nr_written(struct writeback_control *wbc,
a9132667 3210 unsigned long nr_written)
11c8349b
CM
3211{
3212 wbc->nr_to_write -= nr_written;
11c8349b
CM
3213}
3214
d1310b2e 3215/*
40f76580
CM
3216 * helper for __extent_writepage, doing all of the delayed allocation setup.
3217 *
3218 * This returns 1 if our fill_delalloc function did all the work required
3219 * to write the page (copy into inline extent). In this case the IO has
3220 * been started and the page is already unlocked.
3221 *
3222 * This returns 0 if all went well (page still locked)
3223 * This returns < 0 if there were errors (page still locked)
d1310b2e 3224 */
40f76580
CM
3225static noinline_for_stack int writepage_delalloc(struct inode *inode,
3226 struct page *page, struct writeback_control *wbc,
3227 struct extent_page_data *epd,
3228 u64 delalloc_start,
3229 unsigned long *nr_written)
3230{
3231 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3232 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3233 u64 nr_delalloc;
3234 u64 delalloc_to_write = 0;
3235 u64 delalloc_end = 0;
3236 int ret;
3237 int page_started = 0;
3238
3239 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3240 return 0;
3241
3242 while (delalloc_end < page_end) {
3243 nr_delalloc = find_lock_delalloc_range(inode, tree,
3244 page,
3245 &delalloc_start,
3246 &delalloc_end,
dcab6a3b 3247 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3248 if (nr_delalloc == 0) {
3249 delalloc_start = delalloc_end + 1;
3250 continue;
3251 }
3252 ret = tree->ops->fill_delalloc(inode, page,
3253 delalloc_start,
3254 delalloc_end,
3255 &page_started,
f82b7359 3256 nr_written, wbc);
40f76580
CM
3257 /* File system has been set read-only */
3258 if (ret) {
3259 SetPageError(page);
3260 /* fill_delalloc should be return < 0 for error
3261 * but just in case, we use > 0 here meaning the
3262 * IO is started, so we don't want to return > 0
3263 * unless things are going well.
3264 */
3265 ret = ret < 0 ? ret : -EIO;
3266 goto done;
3267 }
3268 /*
ea1754a0
KS
3269 * delalloc_end is already one less than the total length, so
3270 * we don't subtract one from PAGE_SIZE
40f76580
CM
3271 */
3272 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3273 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3274 delalloc_start = delalloc_end + 1;
3275 }
3276 if (wbc->nr_to_write < delalloc_to_write) {
3277 int thresh = 8192;
3278
3279 if (delalloc_to_write < thresh * 2)
3280 thresh = delalloc_to_write;
3281 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3282 thresh);
3283 }
3284
3285 /* did the fill delalloc function already unlock and start
3286 * the IO?
3287 */
3288 if (page_started) {
3289 /*
3290 * we've unlocked the page, so we can't update
3291 * the mapping's writeback index, just update
3292 * nr_to_write.
3293 */
3294 wbc->nr_to_write -= *nr_written;
3295 return 1;
3296 }
3297
3298 ret = 0;
3299
3300done:
3301 return ret;
3302}
3303
3304/*
3305 * helper for __extent_writepage. This calls the writepage start hooks,
3306 * and does the loop to map the page into extents and bios.
3307 *
3308 * We return 1 if the IO is started and the page is unlocked,
3309 * 0 if all went well (page still locked)
3310 * < 0 if there were errors (page still locked)
3311 */
3312static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3313 struct page *page,
3314 struct writeback_control *wbc,
3315 struct extent_page_data *epd,
3316 loff_t i_size,
3317 unsigned long nr_written,
f1c77c55 3318 unsigned int write_flags, int *nr_ret)
d1310b2e 3319{
d1310b2e 3320 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3321 u64 start = page_offset(page);
09cbfeaf 3322 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3323 u64 end;
3324 u64 cur = start;
3325 u64 extent_offset;
d1310b2e
CM
3326 u64 block_start;
3327 u64 iosize;
d1310b2e
CM
3328 struct extent_map *em;
3329 struct block_device *bdev;
7f3c74fb 3330 size_t pg_offset = 0;
d1310b2e 3331 size_t blocksize;
40f76580
CM
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
c8b97818 3335
247e743c 3336 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
87826df0
JM
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
40f76580 3345
3d4b9496 3346 update_nr_written(wbc, nr_written);
247e743c 3347 unlock_page(page);
bcf93489 3348 return 1;
247e743c
CM
3349 }
3350 }
3351
11c8349b
CM
3352 /*
3353 * we don't want to touch the inode after unlocking the page,
3354 * so we update the mapping writeback index now
3355 */
3d4b9496 3356 update_nr_written(wbc, nr_written + 1);
771ed689 3357
d1310b2e 3358 end = page_end;
40f76580 3359 if (i_size <= start) {
e6dcd2dc
CM
3360 if (tree->ops && tree->ops->writepage_end_io_hook)
3361 tree->ops->writepage_end_io_hook(page, start,
3362 page_end, NULL, 1);
d1310b2e
CM
3363 goto done;
3364 }
3365
d1310b2e
CM
3366 blocksize = inode->i_sb->s_blocksize;
3367
3368 while (cur <= end) {
40f76580 3369 u64 em_end;
6273b7f8 3370 u64 offset;
58409edd 3371
40f76580 3372 if (cur >= i_size) {
e6dcd2dc
CM
3373 if (tree->ops && tree->ops->writepage_end_io_hook)
3374 tree->ops->writepage_end_io_hook(page, cur,
3375 page_end, NULL, 1);
d1310b2e
CM
3376 break;
3377 }
fc4f21b1 3378 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3379 end - cur + 1, 1);
c704005d 3380 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3381 SetPageError(page);
61391d56 3382 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3383 break;
3384 }
3385
3386 extent_offset = cur - em->start;
40f76580
CM
3387 em_end = extent_map_end(em);
3388 BUG_ON(em_end <= cur);
d1310b2e 3389 BUG_ON(end < cur);
40f76580 3390 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3391 iosize = ALIGN(iosize, blocksize);
6273b7f8 3392 offset = em->block_start + extent_offset;
d1310b2e
CM
3393 bdev = em->bdev;
3394 block_start = em->block_start;
c8b97818 3395 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3396 free_extent_map(em);
3397 em = NULL;
3398
c8b97818
CM
3399 /*
3400 * compressed and inline extents are written through other
3401 * paths in the FS
3402 */
3403 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3404 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3405 /*
3406 * end_io notification does not happen here for
3407 * compressed extents
3408 */
3409 if (!compressed && tree->ops &&
3410 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3411 tree->ops->writepage_end_io_hook(page, cur,
3412 cur + iosize - 1,
3413 NULL, 1);
c8b97818
CM
3414 else if (compressed) {
3415 /* we don't want to end_page_writeback on
3416 * a compressed extent. this happens
3417 * elsewhere
3418 */
3419 nr++;
3420 }
3421
3422 cur += iosize;
7f3c74fb 3423 pg_offset += iosize;
d1310b2e
CM
3424 continue;
3425 }
c8b97818 3426
58409edd
DS
3427 set_range_writeback(tree, cur, cur + iosize - 1);
3428 if (!PageWriteback(page)) {
3429 btrfs_err(BTRFS_I(inode)->root->fs_info,
3430 "page %lu not writeback, cur %llu end %llu",
3431 page->index, cur, end);
d1310b2e 3432 }
7f3c74fb 3433
4b81ba48 3434 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3435 page, offset, iosize, pg_offset,
c2df8bb4 3436 bdev, &epd->bio,
58409edd
DS
3437 end_bio_extent_writepage,
3438 0, 0, 0, false);
fe01aa65 3439 if (ret) {
58409edd 3440 SetPageError(page);
fe01aa65
TK
3441 if (PageWriteback(page))
3442 end_page_writeback(page);
3443 }
d1310b2e 3444
d1310b2e 3445 cur = cur + iosize;
7f3c74fb 3446 pg_offset += iosize;
d1310b2e
CM
3447 nr++;
3448 }
40f76580
CM
3449done:
3450 *nr_ret = nr;
40f76580
CM
3451 return ret;
3452}
3453
3454/*
3455 * the writepage semantics are similar to regular writepage. extent
3456 * records are inserted to lock ranges in the tree, and as dirty areas
3457 * are found, they are marked writeback. Then the lock bits are removed
3458 * and the end_io handler clears the writeback ranges
3459 */
3460static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3461 void *data)
3462{
3463 struct inode *inode = page->mapping->host;
3464 struct extent_page_data *epd = data;
3465 u64 start = page_offset(page);
09cbfeaf 3466 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
09cbfeaf 3471 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3472 unsigned int write_flags = 0;
40f76580
CM
3473 unsigned long nr_written = 0;
3474
ff40adf7 3475 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
09cbfeaf 3483 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
09cbfeaf 3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
09cbfeaf 3496 PAGE_SIZE - pg_offset);
40f76580
CM
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
d1310b2e
CM
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
61391d56
FM
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
d1310b2e 3526 unlock_page(page);
40f76580 3527 return ret;
771ed689 3528
11c8349b 3529done_unlocked:
d1310b2e
CM
3530 return 0;
3531}
3532
fd8b2b61 3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3534{
74316201
N
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3537}
3538
0e378df1
CM
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
0b32f4bb
JB
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
a098d8e8
CM
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
0b32f4bb 3567 btrfs_tree_unlock(eb);
0b32f4bb
JB
3568 }
3569 }
3570
51561ffe
JB
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3579 spin_unlock(&eb->refs_lock);
0b32f4bb 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
0b32f4bb 3584 ret = 1;
51561ffe
JB
3585 } else {
3586 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
fb85fc9a 3596 struct page *p = eb->pages[i];
0b32f4bb
JB
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3613 smp_mb__after_atomic();
0b32f4bb
JB
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
656f30db
FM
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
afcdd129 3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3666 break;
3667 case 0:
afcdd129 3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3669 break;
3670 case 1:
afcdd129 3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676}
3677
4246a0b6 3678static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3679{
2c30c71b 3680 struct bio_vec *bvec;
0b32f4bb 3681 struct extent_buffer *eb;
2c30c71b 3682 int i, done;
0b32f4bb 3683
c09abff8 3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3685 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3686 struct page *page = bvec->bv_page;
3687
0b32f4bb
JB
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
4e4cbee9 3692 if (bio->bi_status ||
4246a0b6 3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3694 ClearPageUptodate(page);
656f30db 3695 set_btree_ioerr(page);
0b32f4bb
JB
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
2c30c71b 3704 }
0b32f4bb
JB
3705
3706 bio_put(bio);
0b32f4bb
JB
3707}
3708
0e378df1 3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713{
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3716 u64 offset = eb->start;
851cd173 3717 u32 nritems;
0b32f4bb 3718 unsigned long i, num_pages;
851cd173 3719 unsigned long start, end;
ff40adf7 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3721 int ret = 0;
0b32f4bb 3722
656f30db 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
de0022b9 3726
851cd173
LB
3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 nritems = btrfs_header_nritems(eb);
3eb548ee 3729 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3730 end = btrfs_node_key_ptr_offset(nritems);
3731
b159fa28 3732 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3733 } else {
3734 /*
3735 * leaf:
3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 */
3738 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3740 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3741 }
3742
0b32f4bb 3743 for (i = 0; i < num_pages; i++) {
fb85fc9a 3744 struct page *p = eb->pages[i];
0b32f4bb
JB
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
4b81ba48 3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3749 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3750 &epd->bio,
1f7ad75b 3751 end_bio_extent_buffer_writepage,
18fdc679 3752 0, 0, 0, false);
0b32f4bb 3753 if (ret) {
656f30db 3754 set_btree_ioerr(p);
fe01aa65
TK
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
0b32f4bb
JB
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
09cbfeaf 3762 offset += PAGE_SIZE;
3d4b9496 3763 update_nr_written(wbc, 1);
0b32f4bb
JB
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
bbf65cf0 3769 struct page *p = eb->pages[i];
81465028 3770 clear_page_dirty_for_io(p);
0b32f4bb
JB
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
86679820 3800 pagevec_init(&pvec);
0b32f4bb
JB
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
09cbfeaf
KS
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3818 tag))) {
0b32f4bb
JB
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
b5bae261
JB
3828 spin_lock(&mapping->private_lock);
3829 if (!PagePrivate(page)) {
3830 spin_unlock(&mapping->private_lock);
3831 continue;
3832 }
3833
0b32f4bb 3834 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3835
3836 /*
3837 * Shouldn't happen and normally this would be a BUG_ON
3838 * but no sense in crashing the users box for something
3839 * we can survive anyway.
3840 */
fae7f21c 3841 if (WARN_ON(!eb)) {
b5bae261 3842 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3843 continue;
3844 }
3845
b5bae261
JB
3846 if (eb == prev_eb) {
3847 spin_unlock(&mapping->private_lock);
0b32f4bb 3848 continue;
b5bae261 3849 }
0b32f4bb 3850
b5bae261
JB
3851 ret = atomic_inc_not_zero(&eb->refs);
3852 spin_unlock(&mapping->private_lock);
3853 if (!ret)
0b32f4bb 3854 continue;
0b32f4bb
JB
3855
3856 prev_eb = eb;
3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 if (!ret) {
3859 free_extent_buffer(eb);
3860 continue;
3861 }
3862
3863 ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 if (ret) {
3865 done = 1;
3866 free_extent_buffer(eb);
3867 break;
3868 }
3869 free_extent_buffer(eb);
3870
3871 /*
3872 * the filesystem may choose to bump up nr_to_write.
3873 * We have to make sure to honor the new nr_to_write
3874 * at any time
3875 */
3876 nr_to_write_done = wbc->nr_to_write <= 0;
3877 }
3878 pagevec_release(&pvec);
3879 cond_resched();
3880 }
3881 if (!scanned && !done) {
3882 /*
3883 * We hit the last page and there is more work to be done: wrap
3884 * back to the start of the file
3885 */
3886 scanned = 1;
3887 index = 0;
3888 goto retry;
3889 }
3890 flush_write_bio(&epd);
3891 return ret;
3892}
3893
d1310b2e 3894/**
4bef0848 3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @writepage: function called for each page
3899 * @data: data passed to writepage function
3900 *
3901 * If a page is already under I/O, write_cache_pages() skips it, even
3902 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3903 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3904 * and msync() need to guarantee that all the data which was dirty at the time
3905 * the call was made get new I/O started against them. If wbc->sync_mode is
3906 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3907 * existing IO to complete.
3908 */
4242b64a 3909static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3910 struct writeback_control *wbc,
d2c3f4f6
CM
3911 writepage_t writepage, void *data,
3912 void (*flush_fn)(void *))
d1310b2e 3913{
7fd1a3f7 3914 struct inode *inode = mapping->host;
d1310b2e
CM
3915 int ret = 0;
3916 int done = 0;
f85d7d6c 3917 int nr_to_write_done = 0;
d1310b2e
CM
3918 struct pagevec pvec;
3919 int nr_pages;
3920 pgoff_t index;
3921 pgoff_t end; /* Inclusive */
a9132667
LB
3922 pgoff_t done_index;
3923 int range_whole = 0;
d1310b2e 3924 int scanned = 0;
f7aaa06b 3925 int tag;
d1310b2e 3926
7fd1a3f7
JB
3927 /*
3928 * We have to hold onto the inode so that ordered extents can do their
3929 * work when the IO finishes. The alternative to this is failing to add
3930 * an ordered extent if the igrab() fails there and that is a huge pain
3931 * to deal with, so instead just hold onto the inode throughout the
3932 * writepages operation. If it fails here we are freeing up the inode
3933 * anyway and we'd rather not waste our time writing out stuff that is
3934 * going to be truncated anyway.
3935 */
3936 if (!igrab(inode))
3937 return 0;
3938
86679820 3939 pagevec_init(&pvec);
d1310b2e
CM
3940 if (wbc->range_cyclic) {
3941 index = mapping->writeback_index; /* Start from prev offset */
3942 end = -1;
3943 } else {
09cbfeaf
KS
3944 index = wbc->range_start >> PAGE_SHIFT;
3945 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3946 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3947 range_whole = 1;
d1310b2e
CM
3948 scanned = 1;
3949 }
f7aaa06b
JB
3950 if (wbc->sync_mode == WB_SYNC_ALL)
3951 tag = PAGECACHE_TAG_TOWRITE;
3952 else
3953 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3954retry:
f7aaa06b
JB
3955 if (wbc->sync_mode == WB_SYNC_ALL)
3956 tag_pages_for_writeback(mapping, index, end);
a9132667 3957 done_index = index;
f85d7d6c 3958 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3959 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3960 &index, end, tag))) {
d1310b2e
CM
3961 unsigned i;
3962
3963 scanned = 1;
3964 for (i = 0; i < nr_pages; i++) {
3965 struct page *page = pvec.pages[i];
3966
a9132667 3967 done_index = page->index;
d1310b2e
CM
3968 /*
3969 * At this point we hold neither mapping->tree_lock nor
3970 * lock on the page itself: the page may be truncated or
3971 * invalidated (changing page->mapping to NULL), or even
3972 * swizzled back from swapper_space to tmpfs file
3973 * mapping
3974 */
c8f2f24b
JB
3975 if (!trylock_page(page)) {
3976 flush_fn(data);
3977 lock_page(page);
01d658f2 3978 }
d1310b2e
CM
3979
3980 if (unlikely(page->mapping != mapping)) {
3981 unlock_page(page);
3982 continue;
3983 }
3984
d2c3f4f6 3985 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3986 if (PageWriteback(page))
3987 flush_fn(data);
d1310b2e 3988 wait_on_page_writeback(page);
d2c3f4f6 3989 }
d1310b2e
CM
3990
3991 if (PageWriteback(page) ||
3992 !clear_page_dirty_for_io(page)) {
3993 unlock_page(page);
3994 continue;
3995 }
3996
3997 ret = (*writepage)(page, wbc, data);
3998
3999 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4000 unlock_page(page);
4001 ret = 0;
4002 }
a9132667
LB
4003 if (ret < 0) {
4004 /*
4005 * done_index is set past this page,
4006 * so media errors will not choke
4007 * background writeout for the entire
4008 * file. This has consequences for
4009 * range_cyclic semantics (ie. it may
4010 * not be suitable for data integrity
4011 * writeout).
4012 */
4013 done_index = page->index + 1;
4014 done = 1;
4015 break;
4016 }
f85d7d6c
CM
4017
4018 /*
4019 * the filesystem may choose to bump up nr_to_write.
4020 * We have to make sure to honor the new nr_to_write
4021 * at any time
4022 */
4023 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4024 }
4025 pagevec_release(&pvec);
4026 cond_resched();
4027 }
894b36e3 4028 if (!scanned && !done) {
d1310b2e
CM
4029 /*
4030 * We hit the last page and there is more work to be done: wrap
4031 * back to the start of the file
4032 */
4033 scanned = 1;
4034 index = 0;
4035 goto retry;
4036 }
a9132667
LB
4037
4038 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4039 mapping->writeback_index = done_index;
4040
7fd1a3f7 4041 btrfs_add_delayed_iput(inode);
894b36e3 4042 return ret;
d1310b2e 4043}
d1310b2e 4044
ffbd517d 4045static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4046{
d2c3f4f6 4047 if (epd->bio) {
355808c2
JM
4048 int ret;
4049
18fdc679 4050 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4051 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4052 epd->bio = NULL;
4053 }
4054}
4055
ffbd517d
CM
4056static noinline void flush_write_bio(void *data)
4057{
4058 struct extent_page_data *epd = data;
4059 flush_epd_write_bio(epd);
4060}
4061
d1310b2e
CM
4062int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4063 get_extent_t *get_extent,
4064 struct writeback_control *wbc)
4065{
4066 int ret;
d1310b2e
CM
4067 struct extent_page_data epd = {
4068 .bio = NULL,
4069 .tree = tree,
4070 .get_extent = get_extent,
771ed689 4071 .extent_locked = 0,
ffbd517d 4072 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4073 };
d1310b2e 4074
d1310b2e
CM
4075 ret = __extent_writepage(page, wbc, &epd);
4076
ffbd517d 4077 flush_epd_write_bio(&epd);
d1310b2e
CM
4078 return ret;
4079}
d1310b2e 4080
771ed689
CM
4081int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4082 u64 start, u64 end, get_extent_t *get_extent,
4083 int mode)
4084{
4085 int ret = 0;
4086 struct address_space *mapping = inode->i_mapping;
4087 struct page *page;
09cbfeaf
KS
4088 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4089 PAGE_SHIFT;
771ed689
CM
4090
4091 struct extent_page_data epd = {
4092 .bio = NULL,
4093 .tree = tree,
4094 .get_extent = get_extent,
4095 .extent_locked = 1,
ffbd517d 4096 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4097 };
4098 struct writeback_control wbc_writepages = {
771ed689 4099 .sync_mode = mode,
771ed689
CM
4100 .nr_to_write = nr_pages * 2,
4101 .range_start = start,
4102 .range_end = end + 1,
4103 };
4104
d397712b 4105 while (start <= end) {
09cbfeaf 4106 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4107 if (clear_page_dirty_for_io(page))
4108 ret = __extent_writepage(page, &wbc_writepages, &epd);
4109 else {
4110 if (tree->ops && tree->ops->writepage_end_io_hook)
4111 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4112 start + PAGE_SIZE - 1,
771ed689
CM
4113 NULL, 1);
4114 unlock_page(page);
4115 }
09cbfeaf
KS
4116 put_page(page);
4117 start += PAGE_SIZE;
771ed689
CM
4118 }
4119
ffbd517d 4120 flush_epd_write_bio(&epd);
771ed689
CM
4121 return ret;
4122}
d1310b2e
CM
4123
4124int extent_writepages(struct extent_io_tree *tree,
4125 struct address_space *mapping,
4126 get_extent_t *get_extent,
4127 struct writeback_control *wbc)
4128{
4129 int ret = 0;
4130 struct extent_page_data epd = {
4131 .bio = NULL,
4132 .tree = tree,
4133 .get_extent = get_extent,
771ed689 4134 .extent_locked = 0,
ffbd517d 4135 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4136 };
4137
4242b64a 4138 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4139 flush_write_bio);
ffbd517d 4140 flush_epd_write_bio(&epd);
d1310b2e
CM
4141 return ret;
4142}
d1310b2e
CM
4143
4144int extent_readpages(struct extent_io_tree *tree,
4145 struct address_space *mapping,
4146 struct list_head *pages, unsigned nr_pages,
4147 get_extent_t get_extent)
4148{
4149 struct bio *bio = NULL;
4150 unsigned page_idx;
c8b97818 4151 unsigned long bio_flags = 0;
67c9684f
LB
4152 struct page *pagepool[16];
4153 struct page *page;
125bac01 4154 struct extent_map *em_cached = NULL;
67c9684f 4155 int nr = 0;
808f80b4 4156 u64 prev_em_start = (u64)-1;
d1310b2e 4157
d1310b2e 4158 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4159 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4160
4161 prefetchw(&page->flags);
4162 list_del(&page->lru);
67c9684f 4163 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4164 page->index,
4165 readahead_gfp_mask(mapping))) {
09cbfeaf 4166 put_page(page);
67c9684f 4167 continue;
d1310b2e 4168 }
67c9684f
LB
4169
4170 pagepool[nr++] = page;
4171 if (nr < ARRAY_SIZE(pagepool))
4172 continue;
125bac01 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4174 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4175 nr = 0;
d1310b2e 4176 }
9974090b 4177 if (nr)
125bac01 4178 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4179 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4180
125bac01
MX
4181 if (em_cached)
4182 free_extent_map(em_cached);
4183
d1310b2e
CM
4184 BUG_ON(!list_empty(pages));
4185 if (bio)
1f7ad75b 4186 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4187 return 0;
4188}
d1310b2e
CM
4189
4190/*
4191 * basic invalidatepage code, this waits on any locked or writeback
4192 * ranges corresponding to the page, and then deletes any extent state
4193 * records from the tree
4194 */
4195int extent_invalidatepage(struct extent_io_tree *tree,
4196 struct page *page, unsigned long offset)
4197{
2ac55d41 4198 struct extent_state *cached_state = NULL;
4eee4fa4 4199 u64 start = page_offset(page);
09cbfeaf 4200 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4201 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4202
fda2832f 4203 start += ALIGN(offset, blocksize);
d1310b2e
CM
4204 if (start > end)
4205 return 0;
4206
ff13db41 4207 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4208 wait_on_page_writeback(page);
d1310b2e 4209 clear_extent_bit(tree, start, end,
32c00aff
JB
4210 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4211 EXTENT_DO_ACCOUNTING,
2ac55d41 4212 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4213 return 0;
4214}
d1310b2e 4215
7b13b7b1
CM
4216/*
4217 * a helper for releasepage, this tests for areas of the page that
4218 * are locked or under IO and drops the related state bits if it is safe
4219 * to drop the page.
4220 */
48a3b636
ES
4221static int try_release_extent_state(struct extent_map_tree *map,
4222 struct extent_io_tree *tree,
4223 struct page *page, gfp_t mask)
7b13b7b1 4224{
4eee4fa4 4225 u64 start = page_offset(page);
09cbfeaf 4226 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4227 int ret = 1;
4228
211f90e6 4229 if (test_range_bit(tree, start, end,
8b62b72b 4230 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4231 ret = 0;
4232 else {
11ef160f
CM
4233 /*
4234 * at this point we can safely clear everything except the
4235 * locked bit and the nodatasum bit
4236 */
e3f24cc5 4237 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4238 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4239 0, 0, NULL, mask);
e3f24cc5
CM
4240
4241 /* if clear_extent_bit failed for enomem reasons,
4242 * we can't allow the release to continue.
4243 */
4244 if (ret < 0)
4245 ret = 0;
4246 else
4247 ret = 1;
7b13b7b1
CM
4248 }
4249 return ret;
4250}
7b13b7b1 4251
d1310b2e
CM
4252/*
4253 * a helper for releasepage. As long as there are no locked extents
4254 * in the range corresponding to the page, both state records and extent
4255 * map records are removed
4256 */
4257int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4258 struct extent_io_tree *tree, struct page *page,
4259 gfp_t mask)
d1310b2e
CM
4260{
4261 struct extent_map *em;
4eee4fa4 4262 u64 start = page_offset(page);
09cbfeaf 4263 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4264
d0164adc 4265 if (gfpflags_allow_blocking(mask) &&
ee22184b 4266 page->mapping->host->i_size > SZ_16M) {
39b5637f 4267 u64 len;
70dec807 4268 while (start <= end) {
39b5637f 4269 len = end - start + 1;
890871be 4270 write_lock(&map->lock);
39b5637f 4271 em = lookup_extent_mapping(map, start, len);
285190d9 4272 if (!em) {
890871be 4273 write_unlock(&map->lock);
70dec807
CM
4274 break;
4275 }
7f3c74fb
CM
4276 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4277 em->start != start) {
890871be 4278 write_unlock(&map->lock);
70dec807
CM
4279 free_extent_map(em);
4280 break;
4281 }
4282 if (!test_range_bit(tree, em->start,
4283 extent_map_end(em) - 1,
8b62b72b 4284 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4285 0, NULL)) {
70dec807
CM
4286 remove_extent_mapping(map, em);
4287 /* once for the rb tree */
4288 free_extent_map(em);
4289 }
4290 start = extent_map_end(em);
890871be 4291 write_unlock(&map->lock);
70dec807
CM
4292
4293 /* once for us */
d1310b2e
CM
4294 free_extent_map(em);
4295 }
d1310b2e 4296 }
7b13b7b1 4297 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4298}
d1310b2e 4299
ec29ed5b
CM
4300/*
4301 * helper function for fiemap, which doesn't want to see any holes.
4302 * This maps until we find something past 'last'
4303 */
4304static struct extent_map *get_extent_skip_holes(struct inode *inode,
4305 u64 offset,
4306 u64 last,
4307 get_extent_t *get_extent)
4308{
da17066c 4309 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4310 struct extent_map *em;
4311 u64 len;
4312
4313 if (offset >= last)
4314 return NULL;
4315
67871254 4316 while (1) {
ec29ed5b
CM
4317 len = last - offset;
4318 if (len == 0)
4319 break;
fda2832f 4320 len = ALIGN(len, sectorsize);
fc4f21b1 4321 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4322 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4323 return em;
4324
4325 /* if this isn't a hole return it */
4326 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4327 em->block_start != EXTENT_MAP_HOLE) {
4328 return em;
4329 }
4330
4331 /* this is a hole, advance to the next extent */
4332 offset = extent_map_end(em);
4333 free_extent_map(em);
4334 if (offset >= last)
4335 break;
4336 }
4337 return NULL;
4338}
4339
4751832d
QW
4340/*
4341 * To cache previous fiemap extent
4342 *
4343 * Will be used for merging fiemap extent
4344 */
4345struct fiemap_cache {
4346 u64 offset;
4347 u64 phys;
4348 u64 len;
4349 u32 flags;
4350 bool cached;
4351};
4352
4353/*
4354 * Helper to submit fiemap extent.
4355 *
4356 * Will try to merge current fiemap extent specified by @offset, @phys,
4357 * @len and @flags with cached one.
4358 * And only when we fails to merge, cached one will be submitted as
4359 * fiemap extent.
4360 *
4361 * Return value is the same as fiemap_fill_next_extent().
4362 */
4363static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4364 struct fiemap_cache *cache,
4365 u64 offset, u64 phys, u64 len, u32 flags)
4366{
4367 int ret = 0;
4368
4369 if (!cache->cached)
4370 goto assign;
4371
4372 /*
4373 * Sanity check, extent_fiemap() should have ensured that new
4374 * fiemap extent won't overlap with cahced one.
4375 * Not recoverable.
4376 *
4377 * NOTE: Physical address can overlap, due to compression
4378 */
4379 if (cache->offset + cache->len > offset) {
4380 WARN_ON(1);
4381 return -EINVAL;
4382 }
4383
4384 /*
4385 * Only merges fiemap extents if
4386 * 1) Their logical addresses are continuous
4387 *
4388 * 2) Their physical addresses are continuous
4389 * So truly compressed (physical size smaller than logical size)
4390 * extents won't get merged with each other
4391 *
4392 * 3) Share same flags except FIEMAP_EXTENT_LAST
4393 * So regular extent won't get merged with prealloc extent
4394 */
4395 if (cache->offset + cache->len == offset &&
4396 cache->phys + cache->len == phys &&
4397 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4398 (flags & ~FIEMAP_EXTENT_LAST)) {
4399 cache->len += len;
4400 cache->flags |= flags;
4401 goto try_submit_last;
4402 }
4403
4404 /* Not mergeable, need to submit cached one */
4405 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4406 cache->len, cache->flags);
4407 cache->cached = false;
4408 if (ret)
4409 return ret;
4410assign:
4411 cache->cached = true;
4412 cache->offset = offset;
4413 cache->phys = phys;
4414 cache->len = len;
4415 cache->flags = flags;
4416try_submit_last:
4417 if (cache->flags & FIEMAP_EXTENT_LAST) {
4418 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4419 cache->phys, cache->len, cache->flags);
4420 cache->cached = false;
4421 }
4422 return ret;
4423}
4424
4425/*
848c23b7 4426 * Emit last fiemap cache
4751832d 4427 *
848c23b7
QW
4428 * The last fiemap cache may still be cached in the following case:
4429 * 0 4k 8k
4430 * |<- Fiemap range ->|
4431 * |<------------ First extent ----------->|
4432 *
4433 * In this case, the first extent range will be cached but not emitted.
4434 * So we must emit it before ending extent_fiemap().
4751832d 4435 */
848c23b7
QW
4436static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4437 struct fiemap_extent_info *fieinfo,
4438 struct fiemap_cache *cache)
4751832d
QW
4439{
4440 int ret;
4441
4442 if (!cache->cached)
4443 return 0;
4444
4751832d
QW
4445 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4446 cache->len, cache->flags);
4447 cache->cached = false;
4448 if (ret > 0)
4449 ret = 0;
4450 return ret;
4451}
4452
1506fcc8
YS
4453int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4454 __u64 start, __u64 len, get_extent_t *get_extent)
4455{
975f84fe 4456 int ret = 0;
1506fcc8
YS
4457 u64 off = start;
4458 u64 max = start + len;
4459 u32 flags = 0;
975f84fe
JB
4460 u32 found_type;
4461 u64 last;
ec29ed5b 4462 u64 last_for_get_extent = 0;
1506fcc8 4463 u64 disko = 0;
ec29ed5b 4464 u64 isize = i_size_read(inode);
975f84fe 4465 struct btrfs_key found_key;
1506fcc8 4466 struct extent_map *em = NULL;
2ac55d41 4467 struct extent_state *cached_state = NULL;
975f84fe 4468 struct btrfs_path *path;
dc046b10 4469 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4470 struct fiemap_cache cache = { 0 };
1506fcc8 4471 int end = 0;
ec29ed5b
CM
4472 u64 em_start = 0;
4473 u64 em_len = 0;
4474 u64 em_end = 0;
1506fcc8
YS
4475
4476 if (len == 0)
4477 return -EINVAL;
4478
975f84fe
JB
4479 path = btrfs_alloc_path();
4480 if (!path)
4481 return -ENOMEM;
4482 path->leave_spinning = 1;
4483
da17066c
JM
4484 start = round_down(start, btrfs_inode_sectorsize(inode));
4485 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4486
ec29ed5b
CM
4487 /*
4488 * lookup the last file extent. We're not using i_size here
4489 * because there might be preallocation past i_size
4490 */
f85b7379
DS
4491 ret = btrfs_lookup_file_extent(NULL, root, path,
4492 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4493 if (ret < 0) {
4494 btrfs_free_path(path);
4495 return ret;
2d324f59
LB
4496 } else {
4497 WARN_ON(!ret);
4498 if (ret == 1)
4499 ret = 0;
975f84fe 4500 }
2d324f59 4501
975f84fe 4502 path->slots[0]--;
975f84fe 4503 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4504 found_type = found_key.type;
975f84fe 4505
ec29ed5b 4506 /* No extents, but there might be delalloc bits */
4a0cc7ca 4507 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4508 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4509 /* have to trust i_size as the end */
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 } else {
4513 /*
4514 * remember the start of the last extent. There are a
4515 * bunch of different factors that go into the length of the
4516 * extent, so its much less complex to remember where it started
4517 */
4518 last = found_key.offset;
4519 last_for_get_extent = last + 1;
975f84fe 4520 }
fe09e16c 4521 btrfs_release_path(path);
975f84fe 4522
ec29ed5b
CM
4523 /*
4524 * we might have some extents allocated but more delalloc past those
4525 * extents. so, we trust isize unless the start of the last extent is
4526 * beyond isize
4527 */
4528 if (last < isize) {
4529 last = (u64)-1;
4530 last_for_get_extent = isize;
4531 }
4532
ff13db41 4533 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4534 &cached_state);
ec29ed5b 4535
4d479cf0 4536 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4537 get_extent);
1506fcc8
YS
4538 if (!em)
4539 goto out;
4540 if (IS_ERR(em)) {
4541 ret = PTR_ERR(em);
4542 goto out;
4543 }
975f84fe 4544
1506fcc8 4545 while (!end) {
b76bb701 4546 u64 offset_in_extent = 0;
ea8efc74
CM
4547
4548 /* break if the extent we found is outside the range */
4549 if (em->start >= max || extent_map_end(em) < off)
4550 break;
4551
4552 /*
4553 * get_extent may return an extent that starts before our
4554 * requested range. We have to make sure the ranges
4555 * we return to fiemap always move forward and don't
4556 * overlap, so adjust the offsets here
4557 */
4558 em_start = max(em->start, off);
1506fcc8 4559
ea8efc74
CM
4560 /*
4561 * record the offset from the start of the extent
b76bb701
JB
4562 * for adjusting the disk offset below. Only do this if the
4563 * extent isn't compressed since our in ram offset may be past
4564 * what we have actually allocated on disk.
ea8efc74 4565 */
b76bb701
JB
4566 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4567 offset_in_extent = em_start - em->start;
ec29ed5b 4568 em_end = extent_map_end(em);
ea8efc74 4569 em_len = em_end - em_start;
1506fcc8
YS
4570 disko = 0;
4571 flags = 0;
4572
ea8efc74
CM
4573 /*
4574 * bump off for our next call to get_extent
4575 */
4576 off = extent_map_end(em);
4577 if (off >= max)
4578 end = 1;
4579
93dbfad7 4580 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4581 end = 1;
4582 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4583 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4584 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4585 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4586 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4587 flags |= (FIEMAP_EXTENT_DELALLOC |
4588 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4589 } else if (fieinfo->fi_extents_max) {
4590 u64 bytenr = em->block_start -
4591 (em->start - em->orig_start);
fe09e16c 4592
ea8efc74 4593 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4594
4595 /*
4596 * As btrfs supports shared space, this information
4597 * can be exported to userspace tools via
dc046b10
JB
4598 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4599 * then we're just getting a count and we can skip the
4600 * lookup stuff.
fe09e16c 4601 */
bb739cf0
EN
4602 ret = btrfs_check_shared(root,
4603 btrfs_ino(BTRFS_I(inode)),
4604 bytenr);
dc046b10 4605 if (ret < 0)
fe09e16c 4606 goto out_free;
dc046b10 4607 if (ret)
fe09e16c 4608 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4609 ret = 0;
1506fcc8
YS
4610 }
4611 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4612 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4613 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4614 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4615
1506fcc8
YS
4616 free_extent_map(em);
4617 em = NULL;
ec29ed5b
CM
4618 if ((em_start >= last) || em_len == (u64)-1 ||
4619 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4620 flags |= FIEMAP_EXTENT_LAST;
4621 end = 1;
4622 }
4623
ec29ed5b
CM
4624 /* now scan forward to see if this is really the last extent. */
4625 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4626 get_extent);
4627 if (IS_ERR(em)) {
4628 ret = PTR_ERR(em);
4629 goto out;
4630 }
4631 if (!em) {
975f84fe
JB
4632 flags |= FIEMAP_EXTENT_LAST;
4633 end = 1;
4634 }
4751832d
QW
4635 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4636 em_len, flags);
26e726af
CS
4637 if (ret) {
4638 if (ret == 1)
4639 ret = 0;
ec29ed5b 4640 goto out_free;
26e726af 4641 }
1506fcc8
YS
4642 }
4643out_free:
4751832d 4644 if (!ret)
848c23b7 4645 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4646 free_extent_map(em);
4647out:
fe09e16c 4648 btrfs_free_path(path);
a52f4cd2 4649 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4650 &cached_state, GFP_NOFS);
1506fcc8
YS
4651 return ret;
4652}
4653
727011e0
CM
4654static void __free_extent_buffer(struct extent_buffer *eb)
4655{
6d49ba1b 4656 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4657 kmem_cache_free(extent_buffer_cache, eb);
4658}
4659
a26e8c9f 4660int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4661{
4662 return (atomic_read(&eb->io_pages) ||
4663 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4664 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4665}
4666
4667/*
4668 * Helper for releasing extent buffer page.
4669 */
a50924e3 4670static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4671{
4672 unsigned long index;
db7f3436
JB
4673 struct page *page;
4674 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4675
4676 BUG_ON(extent_buffer_under_io(eb));
4677
a50924e3
DS
4678 index = num_extent_pages(eb->start, eb->len);
4679 if (index == 0)
db7f3436
JB
4680 return;
4681
4682 do {
4683 index--;
fb85fc9a 4684 page = eb->pages[index];
5d2361db
FL
4685 if (!page)
4686 continue;
4687 if (mapped)
db7f3436 4688 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4689 /*
4690 * We do this since we'll remove the pages after we've
4691 * removed the eb from the radix tree, so we could race
4692 * and have this page now attached to the new eb. So
4693 * only clear page_private if it's still connected to
4694 * this eb.
4695 */
4696 if (PagePrivate(page) &&
4697 page->private == (unsigned long)eb) {
4698 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4699 BUG_ON(PageDirty(page));
4700 BUG_ON(PageWriteback(page));
db7f3436 4701 /*
5d2361db
FL
4702 * We need to make sure we haven't be attached
4703 * to a new eb.
db7f3436 4704 */
5d2361db
FL
4705 ClearPagePrivate(page);
4706 set_page_private(page, 0);
4707 /* One for the page private */
09cbfeaf 4708 put_page(page);
db7f3436 4709 }
5d2361db
FL
4710
4711 if (mapped)
4712 spin_unlock(&page->mapping->private_lock);
4713
01327610 4714 /* One for when we allocated the page */
09cbfeaf 4715 put_page(page);
a50924e3 4716 } while (index != 0);
db7f3436
JB
4717}
4718
4719/*
4720 * Helper for releasing the extent buffer.
4721 */
4722static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4723{
a50924e3 4724 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4725 __free_extent_buffer(eb);
4726}
4727
f28491e0
JB
4728static struct extent_buffer *
4729__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4730 unsigned long len)
d1310b2e
CM
4731{
4732 struct extent_buffer *eb = NULL;
4733
d1b5c567 4734 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4735 eb->start = start;
4736 eb->len = len;
f28491e0 4737 eb->fs_info = fs_info;
815a51c7 4738 eb->bflags = 0;
bd681513
CM
4739 rwlock_init(&eb->lock);
4740 atomic_set(&eb->write_locks, 0);
4741 atomic_set(&eb->read_locks, 0);
4742 atomic_set(&eb->blocking_readers, 0);
4743 atomic_set(&eb->blocking_writers, 0);
4744 atomic_set(&eb->spinning_readers, 0);
4745 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4746 eb->lock_nested = 0;
bd681513
CM
4747 init_waitqueue_head(&eb->write_lock_wq);
4748 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4749
6d49ba1b
ES
4750 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4751
3083ee2e 4752 spin_lock_init(&eb->refs_lock);
d1310b2e 4753 atomic_set(&eb->refs, 1);
0b32f4bb 4754 atomic_set(&eb->io_pages, 0);
727011e0 4755
b8dae313
DS
4756 /*
4757 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4758 */
4759 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4760 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4761 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4762
4763 return eb;
4764}
4765
815a51c7
JS
4766struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4767{
4768 unsigned long i;
4769 struct page *p;
4770 struct extent_buffer *new;
4771 unsigned long num_pages = num_extent_pages(src->start, src->len);
4772
3f556f78 4773 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4774 if (new == NULL)
4775 return NULL;
4776
4777 for (i = 0; i < num_pages; i++) {
9ec72677 4778 p = alloc_page(GFP_NOFS);
db7f3436
JB
4779 if (!p) {
4780 btrfs_release_extent_buffer(new);
4781 return NULL;
4782 }
815a51c7
JS
4783 attach_extent_buffer_page(new, p);
4784 WARN_ON(PageDirty(p));
4785 SetPageUptodate(p);
4786 new->pages[i] = p;
fba1acf9 4787 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4788 }
4789
815a51c7
JS
4790 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4791 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4792
4793 return new;
4794}
4795
0f331229
OS
4796struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4797 u64 start, unsigned long len)
815a51c7
JS
4798{
4799 struct extent_buffer *eb;
3f556f78 4800 unsigned long num_pages;
815a51c7
JS
4801 unsigned long i;
4802
0f331229 4803 num_pages = num_extent_pages(start, len);
3f556f78
DS
4804
4805 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4806 if (!eb)
4807 return NULL;
4808
4809 for (i = 0; i < num_pages; i++) {
9ec72677 4810 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4811 if (!eb->pages[i])
4812 goto err;
4813 }
4814 set_extent_buffer_uptodate(eb);
4815 btrfs_set_header_nritems(eb, 0);
4816 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4817
4818 return eb;
4819err:
84167d19
SB
4820 for (; i > 0; i--)
4821 __free_page(eb->pages[i - 1]);
815a51c7
JS
4822 __free_extent_buffer(eb);
4823 return NULL;
4824}
4825
0f331229 4826struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4827 u64 start)
0f331229 4828{
da17066c 4829 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4830}
4831
0b32f4bb
JB
4832static void check_buffer_tree_ref(struct extent_buffer *eb)
4833{
242e18c7 4834 int refs;
0b32f4bb
JB
4835 /* the ref bit is tricky. We have to make sure it is set
4836 * if we have the buffer dirty. Otherwise the
4837 * code to free a buffer can end up dropping a dirty
4838 * page
4839 *
4840 * Once the ref bit is set, it won't go away while the
4841 * buffer is dirty or in writeback, and it also won't
4842 * go away while we have the reference count on the
4843 * eb bumped.
4844 *
4845 * We can't just set the ref bit without bumping the
4846 * ref on the eb because free_extent_buffer might
4847 * see the ref bit and try to clear it. If this happens
4848 * free_extent_buffer might end up dropping our original
4849 * ref by mistake and freeing the page before we are able
4850 * to add one more ref.
4851 *
4852 * So bump the ref count first, then set the bit. If someone
4853 * beat us to it, drop the ref we added.
4854 */
242e18c7
CM
4855 refs = atomic_read(&eb->refs);
4856 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4857 return;
4858
594831c4
JB
4859 spin_lock(&eb->refs_lock);
4860 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4861 atomic_inc(&eb->refs);
594831c4 4862 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4863}
4864
2457aec6
MG
4865static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4866 struct page *accessed)
5df4235e
JB
4867{
4868 unsigned long num_pages, i;
4869
0b32f4bb
JB
4870 check_buffer_tree_ref(eb);
4871
5df4235e
JB
4872 num_pages = num_extent_pages(eb->start, eb->len);
4873 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4874 struct page *p = eb->pages[i];
4875
2457aec6
MG
4876 if (p != accessed)
4877 mark_page_accessed(p);
5df4235e
JB
4878 }
4879}
4880
f28491e0
JB
4881struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4882 u64 start)
452c75c3
CS
4883{
4884 struct extent_buffer *eb;
4885
4886 rcu_read_lock();
f28491e0 4887 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4888 start >> PAGE_SHIFT);
452c75c3
CS
4889 if (eb && atomic_inc_not_zero(&eb->refs)) {
4890 rcu_read_unlock();
062c19e9
FM
4891 /*
4892 * Lock our eb's refs_lock to avoid races with
4893 * free_extent_buffer. When we get our eb it might be flagged
4894 * with EXTENT_BUFFER_STALE and another task running
4895 * free_extent_buffer might have seen that flag set,
4896 * eb->refs == 2, that the buffer isn't under IO (dirty and
4897 * writeback flags not set) and it's still in the tree (flag
4898 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4899 * of decrementing the extent buffer's reference count twice.
4900 * So here we could race and increment the eb's reference count,
4901 * clear its stale flag, mark it as dirty and drop our reference
4902 * before the other task finishes executing free_extent_buffer,
4903 * which would later result in an attempt to free an extent
4904 * buffer that is dirty.
4905 */
4906 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4907 spin_lock(&eb->refs_lock);
4908 spin_unlock(&eb->refs_lock);
4909 }
2457aec6 4910 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4911 return eb;
4912 }
4913 rcu_read_unlock();
4914
4915 return NULL;
4916}
4917
faa2dbf0
JB
4918#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4919struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4920 u64 start)
faa2dbf0
JB
4921{
4922 struct extent_buffer *eb, *exists = NULL;
4923 int ret;
4924
4925 eb = find_extent_buffer(fs_info, start);
4926 if (eb)
4927 return eb;
da17066c 4928 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4929 if (!eb)
4930 return NULL;
4931 eb->fs_info = fs_info;
4932again:
e1860a77 4933 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4934 if (ret)
4935 goto free_eb;
4936 spin_lock(&fs_info->buffer_lock);
4937 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4938 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4939 spin_unlock(&fs_info->buffer_lock);
4940 radix_tree_preload_end();
4941 if (ret == -EEXIST) {
4942 exists = find_extent_buffer(fs_info, start);
4943 if (exists)
4944 goto free_eb;
4945 else
4946 goto again;
4947 }
4948 check_buffer_tree_ref(eb);
4949 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4950
4951 /*
4952 * We will free dummy extent buffer's if they come into
4953 * free_extent_buffer with a ref count of 2, but if we are using this we
4954 * want the buffers to stay in memory until we're done with them, so
4955 * bump the ref count again.
4956 */
4957 atomic_inc(&eb->refs);
4958 return eb;
4959free_eb:
4960 btrfs_release_extent_buffer(eb);
4961 return exists;
4962}
4963#endif
4964
f28491e0 4965struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4966 u64 start)
d1310b2e 4967{
da17066c 4968 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4969 unsigned long num_pages = num_extent_pages(start, len);
4970 unsigned long i;
09cbfeaf 4971 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4972 struct extent_buffer *eb;
6af118ce 4973 struct extent_buffer *exists = NULL;
d1310b2e 4974 struct page *p;
f28491e0 4975 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4976 int uptodate = 1;
19fe0a8b 4977 int ret;
d1310b2e 4978
da17066c 4979 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4980 btrfs_err(fs_info, "bad tree block start %llu", start);
4981 return ERR_PTR(-EINVAL);
4982 }
4983
f28491e0 4984 eb = find_extent_buffer(fs_info, start);
452c75c3 4985 if (eb)
6af118ce 4986 return eb;
6af118ce 4987
23d79d81 4988 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4989 if (!eb)
c871b0f2 4990 return ERR_PTR(-ENOMEM);
d1310b2e 4991
727011e0 4992 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4993 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4994 if (!p) {
4995 exists = ERR_PTR(-ENOMEM);
6af118ce 4996 goto free_eb;
c871b0f2 4997 }
4f2de97a
JB
4998
4999 spin_lock(&mapping->private_lock);
5000 if (PagePrivate(p)) {
5001 /*
5002 * We could have already allocated an eb for this page
5003 * and attached one so lets see if we can get a ref on
5004 * the existing eb, and if we can we know it's good and
5005 * we can just return that one, else we know we can just
5006 * overwrite page->private.
5007 */
5008 exists = (struct extent_buffer *)p->private;
5009 if (atomic_inc_not_zero(&exists->refs)) {
5010 spin_unlock(&mapping->private_lock);
5011 unlock_page(p);
09cbfeaf 5012 put_page(p);
2457aec6 5013 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5014 goto free_eb;
5015 }
5ca64f45 5016 exists = NULL;
4f2de97a 5017
0b32f4bb 5018 /*
4f2de97a
JB
5019 * Do this so attach doesn't complain and we need to
5020 * drop the ref the old guy had.
5021 */
5022 ClearPagePrivate(p);
0b32f4bb 5023 WARN_ON(PageDirty(p));
09cbfeaf 5024 put_page(p);
d1310b2e 5025 }
4f2de97a
JB
5026 attach_extent_buffer_page(eb, p);
5027 spin_unlock(&mapping->private_lock);
0b32f4bb 5028 WARN_ON(PageDirty(p));
727011e0 5029 eb->pages[i] = p;
d1310b2e
CM
5030 if (!PageUptodate(p))
5031 uptodate = 0;
eb14ab8e
CM
5032
5033 /*
5034 * see below about how we avoid a nasty race with release page
5035 * and why we unlock later
5036 */
d1310b2e
CM
5037 }
5038 if (uptodate)
b4ce94de 5039 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5040again:
e1860a77 5041 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5042 if (ret) {
5043 exists = ERR_PTR(ret);
19fe0a8b 5044 goto free_eb;
c871b0f2 5045 }
19fe0a8b 5046
f28491e0
JB
5047 spin_lock(&fs_info->buffer_lock);
5048 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5049 start >> PAGE_SHIFT, eb);
f28491e0 5050 spin_unlock(&fs_info->buffer_lock);
452c75c3 5051 radix_tree_preload_end();
19fe0a8b 5052 if (ret == -EEXIST) {
f28491e0 5053 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5054 if (exists)
5055 goto free_eb;
5056 else
115391d2 5057 goto again;
6af118ce 5058 }
6af118ce 5059 /* add one reference for the tree */
0b32f4bb 5060 check_buffer_tree_ref(eb);
34b41ace 5061 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5062
5063 /*
5064 * there is a race where release page may have
5065 * tried to find this extent buffer in the radix
5066 * but failed. It will tell the VM it is safe to
5067 * reclaim the, and it will clear the page private bit.
5068 * We must make sure to set the page private bit properly
5069 * after the extent buffer is in the radix tree so
5070 * it doesn't get lost
5071 */
727011e0
CM
5072 SetPageChecked(eb->pages[0]);
5073 for (i = 1; i < num_pages; i++) {
fb85fc9a 5074 p = eb->pages[i];
727011e0
CM
5075 ClearPageChecked(p);
5076 unlock_page(p);
5077 }
5078 unlock_page(eb->pages[0]);
d1310b2e
CM
5079 return eb;
5080
6af118ce 5081free_eb:
5ca64f45 5082 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5083 for (i = 0; i < num_pages; i++) {
5084 if (eb->pages[i])
5085 unlock_page(eb->pages[i]);
5086 }
eb14ab8e 5087
897ca6e9 5088 btrfs_release_extent_buffer(eb);
6af118ce 5089 return exists;
d1310b2e 5090}
d1310b2e 5091
3083ee2e
JB
5092static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5093{
5094 struct extent_buffer *eb =
5095 container_of(head, struct extent_buffer, rcu_head);
5096
5097 __free_extent_buffer(eb);
5098}
5099
3083ee2e 5100/* Expects to have eb->eb_lock already held */
f7a52a40 5101static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5102{
5103 WARN_ON(atomic_read(&eb->refs) == 0);
5104 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5105 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5106 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5107
815a51c7 5108 spin_unlock(&eb->refs_lock);
3083ee2e 5109
f28491e0
JB
5110 spin_lock(&fs_info->buffer_lock);
5111 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5112 eb->start >> PAGE_SHIFT);
f28491e0 5113 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5114 } else {
5115 spin_unlock(&eb->refs_lock);
815a51c7 5116 }
3083ee2e
JB
5117
5118 /* Should be safe to release our pages at this point */
a50924e3 5119 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5121 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5122 __free_extent_buffer(eb);
5123 return 1;
5124 }
5125#endif
3083ee2e 5126 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5127 return 1;
3083ee2e
JB
5128 }
5129 spin_unlock(&eb->refs_lock);
e64860aa
JB
5130
5131 return 0;
3083ee2e
JB
5132}
5133
d1310b2e
CM
5134void free_extent_buffer(struct extent_buffer *eb)
5135{
242e18c7
CM
5136 int refs;
5137 int old;
d1310b2e
CM
5138 if (!eb)
5139 return;
5140
242e18c7
CM
5141 while (1) {
5142 refs = atomic_read(&eb->refs);
5143 if (refs <= 3)
5144 break;
5145 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5146 if (old == refs)
5147 return;
5148 }
5149
3083ee2e 5150 spin_lock(&eb->refs_lock);
815a51c7
JS
5151 if (atomic_read(&eb->refs) == 2 &&
5152 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5153 atomic_dec(&eb->refs);
5154
3083ee2e
JB
5155 if (atomic_read(&eb->refs) == 2 &&
5156 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5157 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5158 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5159 atomic_dec(&eb->refs);
5160
5161 /*
5162 * I know this is terrible, but it's temporary until we stop tracking
5163 * the uptodate bits and such for the extent buffers.
5164 */
f7a52a40 5165 release_extent_buffer(eb);
3083ee2e
JB
5166}
5167
5168void free_extent_buffer_stale(struct extent_buffer *eb)
5169{
5170 if (!eb)
d1310b2e
CM
5171 return;
5172
3083ee2e
JB
5173 spin_lock(&eb->refs_lock);
5174 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5175
0b32f4bb 5176 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5177 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5178 atomic_dec(&eb->refs);
f7a52a40 5179 release_extent_buffer(eb);
d1310b2e 5180}
d1310b2e 5181
1d4284bd 5182void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5183{
d1310b2e
CM
5184 unsigned long i;
5185 unsigned long num_pages;
5186 struct page *page;
5187
d1310b2e
CM
5188 num_pages = num_extent_pages(eb->start, eb->len);
5189
5190 for (i = 0; i < num_pages; i++) {
fb85fc9a 5191 page = eb->pages[i];
b9473439 5192 if (!PageDirty(page))
d2c3f4f6
CM
5193 continue;
5194
a61e6f29 5195 lock_page(page);
eb14ab8e
CM
5196 WARN_ON(!PagePrivate(page));
5197
d1310b2e 5198 clear_page_dirty_for_io(page);
0ee0fda0 5199 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5200 if (!PageDirty(page)) {
5201 radix_tree_tag_clear(&page->mapping->page_tree,
5202 page_index(page),
5203 PAGECACHE_TAG_DIRTY);
5204 }
0ee0fda0 5205 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5206 ClearPageError(page);
a61e6f29 5207 unlock_page(page);
d1310b2e 5208 }
0b32f4bb 5209 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5210}
d1310b2e 5211
0b32f4bb 5212int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5213{
5214 unsigned long i;
5215 unsigned long num_pages;
b9473439 5216 int was_dirty = 0;
d1310b2e 5217
0b32f4bb
JB
5218 check_buffer_tree_ref(eb);
5219
b9473439 5220 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5221
d1310b2e 5222 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5223 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5224 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5225
b9473439 5226 for (i = 0; i < num_pages; i++)
fb85fc9a 5227 set_page_dirty(eb->pages[i]);
b9473439 5228 return was_dirty;
d1310b2e 5229}
d1310b2e 5230
69ba3927 5231void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5232{
5233 unsigned long i;
5234 struct page *page;
5235 unsigned long num_pages;
5236
b4ce94de 5237 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5238 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5239 for (i = 0; i < num_pages; i++) {
fb85fc9a 5240 page = eb->pages[i];
33958dc6
CM
5241 if (page)
5242 ClearPageUptodate(page);
1259ab75 5243 }
1259ab75
CM
5244}
5245
09c25a8c 5246void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5247{
5248 unsigned long i;
5249 struct page *page;
5250 unsigned long num_pages;
5251
0b32f4bb 5252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5253 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5254 for (i = 0; i < num_pages; i++) {
fb85fc9a 5255 page = eb->pages[i];
d1310b2e
CM
5256 SetPageUptodate(page);
5257 }
d1310b2e 5258}
d1310b2e 5259
0b32f4bb 5260int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5261{
0b32f4bb 5262 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5263}
d1310b2e
CM
5264
5265int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5266 struct extent_buffer *eb, int wait,
f188591e 5267 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5268{
5269 unsigned long i;
d1310b2e
CM
5270 struct page *page;
5271 int err;
5272 int ret = 0;
ce9adaa5
CM
5273 int locked_pages = 0;
5274 int all_uptodate = 1;
d1310b2e 5275 unsigned long num_pages;
727011e0 5276 unsigned long num_reads = 0;
a86c12c7 5277 struct bio *bio = NULL;
c8b97818 5278 unsigned long bio_flags = 0;
a86c12c7 5279
b4ce94de 5280 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5281 return 0;
5282
d1310b2e 5283 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5284 for (i = 0; i < num_pages; i++) {
fb85fc9a 5285 page = eb->pages[i];
bb82ab88 5286 if (wait == WAIT_NONE) {
2db04966 5287 if (!trylock_page(page))
ce9adaa5 5288 goto unlock_exit;
d1310b2e
CM
5289 } else {
5290 lock_page(page);
5291 }
ce9adaa5 5292 locked_pages++;
2571e739
LB
5293 }
5294 /*
5295 * We need to firstly lock all pages to make sure that
5296 * the uptodate bit of our pages won't be affected by
5297 * clear_extent_buffer_uptodate().
5298 */
8436ea91 5299 for (i = 0; i < num_pages; i++) {
2571e739 5300 page = eb->pages[i];
727011e0
CM
5301 if (!PageUptodate(page)) {
5302 num_reads++;
ce9adaa5 5303 all_uptodate = 0;
727011e0 5304 }
ce9adaa5 5305 }
2571e739 5306
ce9adaa5 5307 if (all_uptodate) {
8436ea91 5308 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5309 goto unlock_exit;
5310 }
5311
656f30db 5312 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5313 eb->read_mirror = 0;
0b32f4bb 5314 atomic_set(&eb->io_pages, num_reads);
8436ea91 5315 for (i = 0; i < num_pages; i++) {
fb85fc9a 5316 page = eb->pages[i];
baf863b9 5317
ce9adaa5 5318 if (!PageUptodate(page)) {
baf863b9
LB
5319 if (ret) {
5320 atomic_dec(&eb->io_pages);
5321 unlock_page(page);
5322 continue;
5323 }
5324
f188591e 5325 ClearPageError(page);
a86c12c7 5326 err = __extent_read_full_page(tree, page,
f188591e 5327 get_extent, &bio,
d4c7ca86 5328 mirror_num, &bio_flags,
1f7ad75b 5329 REQ_META);
baf863b9 5330 if (err) {
d1310b2e 5331 ret = err;
baf863b9
LB
5332 /*
5333 * We use &bio in above __extent_read_full_page,
5334 * so we ensure that if it returns error, the
5335 * current page fails to add itself to bio and
5336 * it's been unlocked.
5337 *
5338 * We must dec io_pages by ourselves.
5339 */
5340 atomic_dec(&eb->io_pages);
5341 }
d1310b2e
CM
5342 } else {
5343 unlock_page(page);
5344 }
5345 }
5346
355808c2 5347 if (bio) {
1f7ad75b 5348 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5349 if (err)
5350 return err;
355808c2 5351 }
a86c12c7 5352
bb82ab88 5353 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5354 return ret;
d397712b 5355
8436ea91 5356 for (i = 0; i < num_pages; i++) {
fb85fc9a 5357 page = eb->pages[i];
d1310b2e 5358 wait_on_page_locked(page);
d397712b 5359 if (!PageUptodate(page))
d1310b2e 5360 ret = -EIO;
d1310b2e 5361 }
d397712b 5362
d1310b2e 5363 return ret;
ce9adaa5
CM
5364
5365unlock_exit:
d397712b 5366 while (locked_pages > 0) {
ce9adaa5 5367 locked_pages--;
8436ea91
JB
5368 page = eb->pages[locked_pages];
5369 unlock_page(page);
ce9adaa5
CM
5370 }
5371 return ret;
d1310b2e 5372}
d1310b2e 5373
1cbb1f45
JM
5374void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5375 unsigned long start, unsigned long len)
d1310b2e
CM
5376{
5377 size_t cur;
5378 size_t offset;
5379 struct page *page;
5380 char *kaddr;
5381 char *dst = (char *)dstv;
09cbfeaf
KS
5382 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5383 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5384
f716abd5
LB
5385 if (start + len > eb->len) {
5386 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5387 eb->start, eb->len, start, len);
5388 memset(dst, 0, len);
5389 return;
5390 }
d1310b2e 5391
09cbfeaf 5392 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5393
d397712b 5394 while (len > 0) {
fb85fc9a 5395 page = eb->pages[i];
d1310b2e 5396
09cbfeaf 5397 cur = min(len, (PAGE_SIZE - offset));
a6591715 5398 kaddr = page_address(page);
d1310b2e 5399 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5400
5401 dst += cur;
5402 len -= cur;
5403 offset = 0;
5404 i++;
5405 }
5406}
d1310b2e 5407
1cbb1f45
JM
5408int read_extent_buffer_to_user(const struct extent_buffer *eb,
5409 void __user *dstv,
5410 unsigned long start, unsigned long len)
550ac1d8
GH
5411{
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5417 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5419 int ret = 0;
5420
5421 WARN_ON(start > eb->len);
5422 WARN_ON(start + len > eb->start + eb->len);
5423
09cbfeaf 5424 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5425
5426 while (len > 0) {
fb85fc9a 5427 page = eb->pages[i];
550ac1d8 5428
09cbfeaf 5429 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5430 kaddr = page_address(page);
5431 if (copy_to_user(dst, kaddr + offset, cur)) {
5432 ret = -EFAULT;
5433 break;
5434 }
5435
5436 dst += cur;
5437 len -= cur;
5438 offset = 0;
5439 i++;
5440 }
5441
5442 return ret;
5443}
5444
415b35a5
LB
5445/*
5446 * return 0 if the item is found within a page.
5447 * return 1 if the item spans two pages.
5448 * return -EINVAL otherwise.
5449 */
1cbb1f45
JM
5450int map_private_extent_buffer(const struct extent_buffer *eb,
5451 unsigned long start, unsigned long min_len,
5452 char **map, unsigned long *map_start,
5453 unsigned long *map_len)
d1310b2e 5454{
09cbfeaf 5455 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5456 char *kaddr;
5457 struct page *p;
09cbfeaf
KS
5458 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5459 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5460 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5461 PAGE_SHIFT;
d1310b2e 5462
f716abd5
LB
5463 if (start + min_len > eb->len) {
5464 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5465 eb->start, eb->len, start, min_len);
5466 return -EINVAL;
5467 }
5468
d1310b2e 5469 if (i != end_i)
415b35a5 5470 return 1;
d1310b2e
CM
5471
5472 if (i == 0) {
5473 offset = start_offset;
5474 *map_start = 0;
5475 } else {
5476 offset = 0;
09cbfeaf 5477 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5478 }
d397712b 5479
fb85fc9a 5480 p = eb->pages[i];
a6591715 5481 kaddr = page_address(p);
d1310b2e 5482 *map = kaddr + offset;
09cbfeaf 5483 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5484 return 0;
5485}
d1310b2e 5486
1cbb1f45
JM
5487int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5488 unsigned long start, unsigned long len)
d1310b2e
CM
5489{
5490 size_t cur;
5491 size_t offset;
5492 struct page *page;
5493 char *kaddr;
5494 char *ptr = (char *)ptrv;
09cbfeaf
KS
5495 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5496 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5497 int ret = 0;
5498
5499 WARN_ON(start > eb->len);
5500 WARN_ON(start + len > eb->start + eb->len);
5501
09cbfeaf 5502 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5503
d397712b 5504 while (len > 0) {
fb85fc9a 5505 page = eb->pages[i];
d1310b2e 5506
09cbfeaf 5507 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5508
a6591715 5509 kaddr = page_address(page);
d1310b2e 5510 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5511 if (ret)
5512 break;
5513
5514 ptr += cur;
5515 len -= cur;
5516 offset = 0;
5517 i++;
5518 }
5519 return ret;
5520}
d1310b2e 5521
f157bf76
DS
5522void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5523 const void *srcv)
5524{
5525 char *kaddr;
5526
5527 WARN_ON(!PageUptodate(eb->pages[0]));
5528 kaddr = page_address(eb->pages[0]);
5529 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5530 BTRFS_FSID_SIZE);
5531}
5532
5533void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5534{
5535 char *kaddr;
5536
5537 WARN_ON(!PageUptodate(eb->pages[0]));
5538 kaddr = page_address(eb->pages[0]);
5539 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5540 BTRFS_FSID_SIZE);
5541}
5542
d1310b2e
CM
5543void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5544 unsigned long start, unsigned long len)
5545{
5546 size_t cur;
5547 size_t offset;
5548 struct page *page;
5549 char *kaddr;
5550 char *src = (char *)srcv;
09cbfeaf
KS
5551 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5552 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5553
5554 WARN_ON(start > eb->len);
5555 WARN_ON(start + len > eb->start + eb->len);
5556
09cbfeaf 5557 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5558
d397712b 5559 while (len > 0) {
fb85fc9a 5560 page = eb->pages[i];
d1310b2e
CM
5561 WARN_ON(!PageUptodate(page));
5562
09cbfeaf 5563 cur = min(len, PAGE_SIZE - offset);
a6591715 5564 kaddr = page_address(page);
d1310b2e 5565 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5566
5567 src += cur;
5568 len -= cur;
5569 offset = 0;
5570 i++;
5571 }
5572}
d1310b2e 5573
b159fa28
DS
5574void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5575 unsigned long len)
d1310b2e
CM
5576{
5577 size_t cur;
5578 size_t offset;
5579 struct page *page;
5580 char *kaddr;
09cbfeaf
KS
5581 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5582 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5583
5584 WARN_ON(start > eb->len);
5585 WARN_ON(start + len > eb->start + eb->len);
5586
09cbfeaf 5587 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5588
d397712b 5589 while (len > 0) {
fb85fc9a 5590 page = eb->pages[i];
d1310b2e
CM
5591 WARN_ON(!PageUptodate(page));
5592
09cbfeaf 5593 cur = min(len, PAGE_SIZE - offset);
a6591715 5594 kaddr = page_address(page);
b159fa28 5595 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5596
5597 len -= cur;
5598 offset = 0;
5599 i++;
5600 }
5601}
d1310b2e 5602
58e8012c
DS
5603void copy_extent_buffer_full(struct extent_buffer *dst,
5604 struct extent_buffer *src)
5605{
5606 int i;
5607 unsigned num_pages;
5608
5609 ASSERT(dst->len == src->len);
5610
5611 num_pages = num_extent_pages(dst->start, dst->len);
5612 for (i = 0; i < num_pages; i++)
5613 copy_page(page_address(dst->pages[i]),
5614 page_address(src->pages[i]));
5615}
5616
d1310b2e
CM
5617void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5618 unsigned long dst_offset, unsigned long src_offset,
5619 unsigned long len)
5620{
5621 u64 dst_len = dst->len;
5622 size_t cur;
5623 size_t offset;
5624 struct page *page;
5625 char *kaddr;
09cbfeaf
KS
5626 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5627 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5628
5629 WARN_ON(src->len != dst_len);
5630
5631 offset = (start_offset + dst_offset) &
09cbfeaf 5632 (PAGE_SIZE - 1);
d1310b2e 5633
d397712b 5634 while (len > 0) {
fb85fc9a 5635 page = dst->pages[i];
d1310b2e
CM
5636 WARN_ON(!PageUptodate(page));
5637
09cbfeaf 5638 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5639
a6591715 5640 kaddr = page_address(page);
d1310b2e 5641 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5642
5643 src_offset += cur;
5644 len -= cur;
5645 offset = 0;
5646 i++;
5647 }
5648}
d1310b2e 5649
2fe1d551
OS
5650void le_bitmap_set(u8 *map, unsigned int start, int len)
5651{
5652 u8 *p = map + BIT_BYTE(start);
5653 const unsigned int size = start + len;
5654 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5655 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5656
5657 while (len - bits_to_set >= 0) {
5658 *p |= mask_to_set;
5659 len -= bits_to_set;
5660 bits_to_set = BITS_PER_BYTE;
9c894696 5661 mask_to_set = ~0;
2fe1d551
OS
5662 p++;
5663 }
5664 if (len) {
5665 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5666 *p |= mask_to_set;
5667 }
5668}
5669
5670void le_bitmap_clear(u8 *map, unsigned int start, int len)
5671{
5672 u8 *p = map + BIT_BYTE(start);
5673 const unsigned int size = start + len;
5674 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5675 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5676
5677 while (len - bits_to_clear >= 0) {
5678 *p &= ~mask_to_clear;
5679 len -= bits_to_clear;
5680 bits_to_clear = BITS_PER_BYTE;
9c894696 5681 mask_to_clear = ~0;
2fe1d551
OS
5682 p++;
5683 }
5684 if (len) {
5685 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5686 *p &= ~mask_to_clear;
5687 }
5688}
3e1e8bb7
OS
5689
5690/*
5691 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5692 * given bit number
5693 * @eb: the extent buffer
5694 * @start: offset of the bitmap item in the extent buffer
5695 * @nr: bit number
5696 * @page_index: return index of the page in the extent buffer that contains the
5697 * given bit number
5698 * @page_offset: return offset into the page given by page_index
5699 *
5700 * This helper hides the ugliness of finding the byte in an extent buffer which
5701 * contains a given bit.
5702 */
5703static inline void eb_bitmap_offset(struct extent_buffer *eb,
5704 unsigned long start, unsigned long nr,
5705 unsigned long *page_index,
5706 size_t *page_offset)
5707{
09cbfeaf 5708 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5709 size_t byte_offset = BIT_BYTE(nr);
5710 size_t offset;
5711
5712 /*
5713 * The byte we want is the offset of the extent buffer + the offset of
5714 * the bitmap item in the extent buffer + the offset of the byte in the
5715 * bitmap item.
5716 */
5717 offset = start_offset + start + byte_offset;
5718
09cbfeaf
KS
5719 *page_index = offset >> PAGE_SHIFT;
5720 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5721}
5722
5723/**
5724 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5725 * @eb: the extent buffer
5726 * @start: offset of the bitmap item in the extent buffer
5727 * @nr: bit number to test
5728 */
5729int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5730 unsigned long nr)
5731{
2fe1d551 5732 u8 *kaddr;
3e1e8bb7
OS
5733 struct page *page;
5734 unsigned long i;
5735 size_t offset;
5736
5737 eb_bitmap_offset(eb, start, nr, &i, &offset);
5738 page = eb->pages[i];
5739 WARN_ON(!PageUptodate(page));
5740 kaddr = page_address(page);
5741 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5742}
5743
5744/**
5745 * extent_buffer_bitmap_set - set an area of a bitmap
5746 * @eb: the extent buffer
5747 * @start: offset of the bitmap item in the extent buffer
5748 * @pos: bit number of the first bit
5749 * @len: number of bits to set
5750 */
5751void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5752 unsigned long pos, unsigned long len)
5753{
2fe1d551 5754 u8 *kaddr;
3e1e8bb7
OS
5755 struct page *page;
5756 unsigned long i;
5757 size_t offset;
5758 const unsigned int size = pos + len;
5759 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5760 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5761
5762 eb_bitmap_offset(eb, start, pos, &i, &offset);
5763 page = eb->pages[i];
5764 WARN_ON(!PageUptodate(page));
5765 kaddr = page_address(page);
5766
5767 while (len >= bits_to_set) {
5768 kaddr[offset] |= mask_to_set;
5769 len -= bits_to_set;
5770 bits_to_set = BITS_PER_BYTE;
9c894696 5771 mask_to_set = ~0;
09cbfeaf 5772 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5773 offset = 0;
5774 page = eb->pages[++i];
5775 WARN_ON(!PageUptodate(page));
5776 kaddr = page_address(page);
5777 }
5778 }
5779 if (len) {
5780 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5781 kaddr[offset] |= mask_to_set;
5782 }
5783}
5784
5785
5786/**
5787 * extent_buffer_bitmap_clear - clear an area of a bitmap
5788 * @eb: the extent buffer
5789 * @start: offset of the bitmap item in the extent buffer
5790 * @pos: bit number of the first bit
5791 * @len: number of bits to clear
5792 */
5793void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5794 unsigned long pos, unsigned long len)
5795{
2fe1d551 5796 u8 *kaddr;
3e1e8bb7
OS
5797 struct page *page;
5798 unsigned long i;
5799 size_t offset;
5800 const unsigned int size = pos + len;
5801 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5802 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5803
5804 eb_bitmap_offset(eb, start, pos, &i, &offset);
5805 page = eb->pages[i];
5806 WARN_ON(!PageUptodate(page));
5807 kaddr = page_address(page);
5808
5809 while (len >= bits_to_clear) {
5810 kaddr[offset] &= ~mask_to_clear;
5811 len -= bits_to_clear;
5812 bits_to_clear = BITS_PER_BYTE;
9c894696 5813 mask_to_clear = ~0;
09cbfeaf 5814 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5815 offset = 0;
5816 page = eb->pages[++i];
5817 WARN_ON(!PageUptodate(page));
5818 kaddr = page_address(page);
5819 }
5820 }
5821 if (len) {
5822 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5823 kaddr[offset] &= ~mask_to_clear;
5824 }
5825}
5826
3387206f
ST
5827static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5828{
5829 unsigned long distance = (src > dst) ? src - dst : dst - src;
5830 return distance < len;
5831}
5832
d1310b2e
CM
5833static void copy_pages(struct page *dst_page, struct page *src_page,
5834 unsigned long dst_off, unsigned long src_off,
5835 unsigned long len)
5836{
a6591715 5837 char *dst_kaddr = page_address(dst_page);
d1310b2e 5838 char *src_kaddr;
727011e0 5839 int must_memmove = 0;
d1310b2e 5840
3387206f 5841 if (dst_page != src_page) {
a6591715 5842 src_kaddr = page_address(src_page);
3387206f 5843 } else {
d1310b2e 5844 src_kaddr = dst_kaddr;
727011e0
CM
5845 if (areas_overlap(src_off, dst_off, len))
5846 must_memmove = 1;
3387206f 5847 }
d1310b2e 5848
727011e0
CM
5849 if (must_memmove)
5850 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5851 else
5852 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5853}
5854
5855void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5856 unsigned long src_offset, unsigned long len)
5857{
0b246afa 5858 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5859 size_t cur;
5860 size_t dst_off_in_page;
5861 size_t src_off_in_page;
09cbfeaf 5862 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5863 unsigned long dst_i;
5864 unsigned long src_i;
5865
5866 if (src_offset + len > dst->len) {
0b246afa 5867 btrfs_err(fs_info,
5d163e0e
JM
5868 "memmove bogus src_offset %lu move len %lu dst len %lu",
5869 src_offset, len, dst->len);
d1310b2e
CM
5870 BUG_ON(1);
5871 }
5872 if (dst_offset + len > dst->len) {
0b246afa 5873 btrfs_err(fs_info,
5d163e0e
JM
5874 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5875 dst_offset, len, dst->len);
d1310b2e
CM
5876 BUG_ON(1);
5877 }
5878
d397712b 5879 while (len > 0) {
d1310b2e 5880 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5881 (PAGE_SIZE - 1);
d1310b2e 5882 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5883 (PAGE_SIZE - 1);
d1310b2e 5884
09cbfeaf
KS
5885 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5886 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5887
09cbfeaf 5888 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5889 src_off_in_page));
5890 cur = min_t(unsigned long, cur,
09cbfeaf 5891 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5892
fb85fc9a 5893 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5894 dst_off_in_page, src_off_in_page, cur);
5895
5896 src_offset += cur;
5897 dst_offset += cur;
5898 len -= cur;
5899 }
5900}
d1310b2e
CM
5901
5902void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5903 unsigned long src_offset, unsigned long len)
5904{
0b246afa 5905 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5906 size_t cur;
5907 size_t dst_off_in_page;
5908 size_t src_off_in_page;
5909 unsigned long dst_end = dst_offset + len - 1;
5910 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5911 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5912 unsigned long dst_i;
5913 unsigned long src_i;
5914
5915 if (src_offset + len > dst->len) {
0b246afa 5916 btrfs_err(fs_info,
5d163e0e
JM
5917 "memmove bogus src_offset %lu move len %lu len %lu",
5918 src_offset, len, dst->len);
d1310b2e
CM
5919 BUG_ON(1);
5920 }
5921 if (dst_offset + len > dst->len) {
0b246afa 5922 btrfs_err(fs_info,
5d163e0e
JM
5923 "memmove bogus dst_offset %lu move len %lu len %lu",
5924 dst_offset, len, dst->len);
d1310b2e
CM
5925 BUG_ON(1);
5926 }
727011e0 5927 if (dst_offset < src_offset) {
d1310b2e
CM
5928 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5929 return;
5930 }
d397712b 5931 while (len > 0) {
09cbfeaf
KS
5932 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5933 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5934
5935 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5936 (PAGE_SIZE - 1);
d1310b2e 5937 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5938 (PAGE_SIZE - 1);
d1310b2e
CM
5939
5940 cur = min_t(unsigned long, len, src_off_in_page + 1);
5941 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5942 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5943 dst_off_in_page - cur + 1,
5944 src_off_in_page - cur + 1, cur);
5945
5946 dst_end -= cur;
5947 src_end -= cur;
5948 len -= cur;
5949 }
5950}
6af118ce 5951
f7a52a40 5952int try_release_extent_buffer(struct page *page)
19fe0a8b 5953{
6af118ce 5954 struct extent_buffer *eb;
6af118ce 5955
3083ee2e 5956 /*
01327610 5957 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5958 * now.
5959 */
5960 spin_lock(&page->mapping->private_lock);
5961 if (!PagePrivate(page)) {
5962 spin_unlock(&page->mapping->private_lock);
4f2de97a 5963 return 1;
45f49bce 5964 }
6af118ce 5965
3083ee2e
JB
5966 eb = (struct extent_buffer *)page->private;
5967 BUG_ON(!eb);
19fe0a8b
MX
5968
5969 /*
3083ee2e
JB
5970 * This is a little awful but should be ok, we need to make sure that
5971 * the eb doesn't disappear out from under us while we're looking at
5972 * this page.
19fe0a8b 5973 */
3083ee2e 5974 spin_lock(&eb->refs_lock);
0b32f4bb 5975 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5976 spin_unlock(&eb->refs_lock);
5977 spin_unlock(&page->mapping->private_lock);
5978 return 0;
b9473439 5979 }
3083ee2e 5980 spin_unlock(&page->mapping->private_lock);
897ca6e9 5981
19fe0a8b 5982 /*
3083ee2e
JB
5983 * If tree ref isn't set then we know the ref on this eb is a real ref,
5984 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5985 */
3083ee2e
JB
5986 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5987 spin_unlock(&eb->refs_lock);
5988 return 0;
b9473439 5989 }
19fe0a8b 5990
f7a52a40 5991 return release_extent_buffer(eb);
6af118ce 5992}