btrfs: drop extent_changeset from set_extent_bit
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
4a54c8c1 23#include "volumes.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
2a5232a8 32#include "compression.h"
d1310b2e 33
d1310b2e
CM
34static struct kmem_cache *extent_buffer_cache;
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
a40246e8
JB
37static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
38{
39 struct btrfs_fs_info *fs_info = eb->fs_info;
40 unsigned long flags;
41
42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
43 list_add(&eb->leak_list, &fs_info->allocated_ebs);
44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
45}
46
a40246e8
JB
47static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
48{
49 struct btrfs_fs_info *fs_info = eb->fs_info;
50 unsigned long flags;
51
52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
53 list_del(&eb->leak_list);
54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
6d49ba1b
ES
55}
56
3fd63727 57void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 58{
6d49ba1b 59 struct extent_buffer *eb;
3fd63727 60 unsigned long flags;
6d49ba1b 61
8c38938c
JB
62 /*
63 * If we didn't get into open_ctree our allocated_ebs will not be
64 * initialized, so just skip this.
65 */
66 if (!fs_info->allocated_ebs.next)
67 return;
68
b95b78e6 69 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
71 while (!list_empty(&fs_info->allocated_ebs)) {
72 eb = list_first_entry(&fs_info->allocated_ebs,
73 struct extent_buffer, leak_list);
8c38938c
JB
74 pr_err(
75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
77 btrfs_header_owner(eb));
33ca832f
JB
78 list_del(&eb->leak_list);
79 kmem_cache_free(extent_buffer_cache, eb);
80 }
3fd63727 81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f 82}
6d49ba1b 83#else
a40246e8 84#define btrfs_leak_debug_add_eb(eb) do {} while (0)
a40246e8 85#define btrfs_leak_debug_del_eb(eb) do {} while (0)
4bef0848 86#endif
d1310b2e 87
7aab8b32
CH
88/*
89 * Structure to record info about the bio being assembled, and other info like
90 * how many bytes are there before stripe/ordered extent boundary.
91 */
92struct btrfs_bio_ctrl {
93 struct bio *bio;
722c82ac 94 int mirror_num;
0f07003b 95 enum btrfs_compression_type compress_type;
7aab8b32
CH
96 u32 len_to_stripe_boundary;
97 u32 len_to_oe_boundary;
98};
99
d1310b2e 100struct extent_page_data {
390ed29b 101 struct btrfs_bio_ctrl bio_ctrl;
771ed689
CM
102 /* tells writepage not to lock the state bits for this range
103 * it still does the unlocking
104 */
ffbd517d
CM
105 unsigned int extent_locked:1;
106
70fd7614 107 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 108 unsigned int sync_io:1;
d1310b2e
CM
109};
110
722c82ac 111static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 112{
722c82ac 113 struct bio *bio;
7aa51232 114 struct bio_vec *bv;
722c82ac
CH
115 struct inode *inode;
116 int mirror_num;
117
118 if (!bio_ctrl->bio)
119 return;
bb58eb9e 120
722c82ac 121 bio = bio_ctrl->bio;
7aa51232
CH
122 bv = bio_first_bvec_all(bio);
123 inode = bv->bv_page->mapping->host;
722c82ac 124 mirror_num = bio_ctrl->mirror_num;
bb58eb9e 125
e0eefe07
QW
126 /* Caller should ensure the bio has at least some range added */
127 ASSERT(bio->bi_iter.bi_size);
c9583ada 128
7aa51232 129 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
bb58eb9e 130
c93104e7
CH
131 if (!is_data_inode(inode))
132 btrfs_submit_metadata_bio(inode, bio, mirror_num);
133 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
134 btrfs_submit_data_write_bio(inode, bio, mirror_num);
908930f3 135 else
722c82ac
CH
136 btrfs_submit_data_read_bio(inode, bio, mirror_num,
137 bio_ctrl->compress_type);
390ed29b 138
917f32a2 139 /* The bio is owned by the end_io handler now */
722c82ac 140 bio_ctrl->bio = NULL;
3065976b
QW
141}
142
f4340622 143/*
9845e5dd 144 * Submit or fail the current bio in an extent_page_data structure.
f4340622 145 */
9845e5dd 146static void submit_write_bio(struct extent_page_data *epd, int ret)
bb58eb9e 147{
390ed29b 148 struct bio *bio = epd->bio_ctrl.bio;
bb58eb9e 149
9845e5dd
CH
150 if (!bio)
151 return;
152
153 if (ret) {
154 ASSERT(ret < 0);
917f32a2
CH
155 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
156 /* The bio is owned by the end_io handler now */
390ed29b 157 epd->bio_ctrl.bio = NULL;
9845e5dd 158 } else {
722c82ac 159 submit_one_bio(&epd->bio_ctrl);
bb58eb9e
QW
160 }
161}
e2932ee0 162
a62a3bd9
JB
163int __init extent_buffer_init_cachep(void)
164{
837e1972 165 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 166 sizeof(struct extent_buffer), 0,
fba4b697 167 SLAB_MEM_SPREAD, NULL);
a62a3bd9 168 if (!extent_buffer_cache)
6f0d04f8 169 return -ENOMEM;
b208c2f7 170
d1310b2e 171 return 0;
d1310b2e
CM
172}
173
a62a3bd9 174void __cold extent_buffer_free_cachep(void)
d1310b2e 175{
8c0a8537
KS
176 /*
177 * Make sure all delayed rcu free are flushed before we
178 * destroy caches.
179 */
180 rcu_barrier();
5598e900 181 kmem_cache_destroy(extent_buffer_cache);
d1310b2e
CM
182}
183
bd1fa4f0 184void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 185{
09cbfeaf
KS
186 unsigned long index = start >> PAGE_SHIFT;
187 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
188 struct page *page;
189
190 while (index <= end_index) {
191 page = find_get_page(inode->i_mapping, index);
192 BUG_ON(!page); /* Pages should be in the extent_io_tree */
193 clear_page_dirty_for_io(page);
09cbfeaf 194 put_page(page);
4adaa611
CM
195 index++;
196 }
4adaa611
CM
197}
198
f6311572 199void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 200{
ebf55c88 201 struct address_space *mapping = inode->i_mapping;
09cbfeaf
KS
202 unsigned long index = start >> PAGE_SHIFT;
203 unsigned long end_index = end >> PAGE_SHIFT;
ebf55c88 204 struct folio *folio;
4adaa611
CM
205
206 while (index <= end_index) {
ebf55c88
MWO
207 folio = filemap_get_folio(mapping, index);
208 filemap_dirty_folio(mapping, folio);
209 folio_account_redirty(folio);
210 index += folio_nr_pages(folio);
211 folio_put(folio);
4adaa611 212 }
4adaa611
CM
213}
214
ed8f13bf
QW
215/*
216 * Process one page for __process_pages_contig().
217 *
218 * Return >0 if we hit @page == @locked_page.
219 * Return 0 if we updated the page status.
220 * Return -EGAIN if the we need to try again.
221 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
222 */
e38992be
QW
223static int process_one_page(struct btrfs_fs_info *fs_info,
224 struct address_space *mapping,
ed8f13bf 225 struct page *page, struct page *locked_page,
e38992be 226 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 227{
e38992be
QW
228 u32 len;
229
230 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
231 len = end + 1 - start;
232
ed8f13bf 233 if (page_ops & PAGE_SET_ORDERED)
b945a463 234 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 235 if (page_ops & PAGE_SET_ERROR)
e38992be 236 btrfs_page_clamp_set_error(fs_info, page, start, len);
ed8f13bf 237 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
238 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
239 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
240 }
241 if (page_ops & PAGE_END_WRITEBACK)
e38992be 242 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a
QW
243
244 if (page == locked_page)
245 return 1;
246
ed8f13bf 247 if (page_ops & PAGE_LOCK) {
1e1de387
QW
248 int ret;
249
250 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
251 if (ret)
252 return ret;
ed8f13bf 253 if (!PageDirty(page) || page->mapping != mapping) {
1e1de387 254 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
255 return -EAGAIN;
256 }
257 }
258 if (page_ops & PAGE_UNLOCK)
1e1de387 259 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
260 return 0;
261}
262
da2c7009
LB
263static int __process_pages_contig(struct address_space *mapping,
264 struct page *locked_page,
98af9ab1 265 u64 start, u64 end, unsigned long page_ops,
ed8f13bf
QW
266 u64 *processed_end)
267{
e38992be 268 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
269 pgoff_t start_index = start >> PAGE_SHIFT;
270 pgoff_t end_index = end >> PAGE_SHIFT;
271 pgoff_t index = start_index;
272 unsigned long nr_pages = end_index - start_index + 1;
273 unsigned long pages_processed = 0;
274 struct page *pages[16];
275 int err = 0;
276 int i;
277
278 if (page_ops & PAGE_LOCK) {
279 ASSERT(page_ops == PAGE_LOCK);
280 ASSERT(processed_end && *processed_end == start);
281 }
282
283 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
284 mapping_set_error(mapping, -EIO);
285
286 while (nr_pages > 0) {
287 int found_pages;
288
289 found_pages = find_get_pages_contig(mapping, index,
290 min_t(unsigned long,
291 nr_pages, ARRAY_SIZE(pages)), pages);
292 if (found_pages == 0) {
293 /*
294 * Only if we're going to lock these pages, we can find
295 * nothing at @index.
296 */
297 ASSERT(page_ops & PAGE_LOCK);
298 err = -EAGAIN;
299 goto out;
300 }
301
302 for (i = 0; i < found_pages; i++) {
303 int process_ret;
304
e38992be
QW
305 process_ret = process_one_page(fs_info, mapping,
306 pages[i], locked_page, page_ops,
307 start, end);
ed8f13bf
QW
308 if (process_ret < 0) {
309 for (; i < found_pages; i++)
310 put_page(pages[i]);
311 err = -EAGAIN;
312 goto out;
313 }
314 put_page(pages[i]);
315 pages_processed++;
316 }
317 nr_pages -= found_pages;
318 index += found_pages;
319 cond_resched();
320 }
321out:
322 if (err && processed_end) {
323 /*
324 * Update @processed_end. I know this is awful since it has
325 * two different return value patterns (inclusive vs exclusive).
326 *
327 * But the exclusive pattern is necessary if @start is 0, or we
328 * underflow and check against processed_end won't work as
329 * expected.
330 */
331 if (pages_processed)
332 *processed_end = min(end,
333 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
334 else
335 *processed_end = start;
336 }
337 return err;
338}
da2c7009 339
143bede5
JM
340static noinline void __unlock_for_delalloc(struct inode *inode,
341 struct page *locked_page,
342 u64 start, u64 end)
c8b97818 343{
09cbfeaf
KS
344 unsigned long index = start >> PAGE_SHIFT;
345 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 346
76c0021d 347 ASSERT(locked_page);
c8b97818 348 if (index == locked_page->index && end_index == index)
143bede5 349 return;
c8b97818 350
98af9ab1 351 __process_pages_contig(inode->i_mapping, locked_page, start, end,
76c0021d 352 PAGE_UNLOCK, NULL);
c8b97818
CM
353}
354
355static noinline int lock_delalloc_pages(struct inode *inode,
356 struct page *locked_page,
357 u64 delalloc_start,
358 u64 delalloc_end)
359{
09cbfeaf 360 unsigned long index = delalloc_start >> PAGE_SHIFT;
09cbfeaf 361 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
98af9ab1 362 u64 processed_end = delalloc_start;
c8b97818 363 int ret;
c8b97818 364
76c0021d 365 ASSERT(locked_page);
c8b97818
CM
366 if (index == locked_page->index && index == end_index)
367 return 0;
368
98af9ab1
QW
369 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
370 delalloc_end, PAGE_LOCK, &processed_end);
371 if (ret == -EAGAIN && processed_end > delalloc_start)
76c0021d 372 __unlock_for_delalloc(inode, locked_page, delalloc_start,
98af9ab1 373 processed_end);
c8b97818
CM
374 return ret;
375}
376
377/*
3522e903 378 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 379 * more than @max_bytes.
c8b97818 380 *
2749f7ef
QW
381 * @start: The original start bytenr to search.
382 * Will store the extent range start bytenr.
383 * @end: The original end bytenr of the search range
384 * Will store the extent range end bytenr.
385 *
386 * Return true if we find a delalloc range which starts inside the original
387 * range, and @start/@end will store the delalloc range start/end.
388 *
389 * Return false if we can't find any delalloc range which starts inside the
390 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 391 */
ce9f967f 392EXPORT_FOR_TESTS
3522e903 393noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 394 struct page *locked_page, u64 *start,
917aacec 395 u64 *end)
c8b97818 396{
f7b12a62 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 398 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
399 const u64 orig_start = *start;
400 const u64 orig_end = *end;
f7b12a62
NA
401 /* The sanity tests may not set a valid fs_info. */
402 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
403 u64 delalloc_start;
404 u64 delalloc_end;
3522e903 405 bool found;
9655d298 406 struct extent_state *cached_state = NULL;
c8b97818
CM
407 int ret;
408 int loops = 0;
409
2749f7ef
QW
410 /* Caller should pass a valid @end to indicate the search range end */
411 ASSERT(orig_end > orig_start);
412
413 /* The range should at least cover part of the page */
414 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
415 orig_end <= page_offset(locked_page)));
c8b97818
CM
416again:
417 /* step one, find a bunch of delalloc bytes starting at start */
418 delalloc_start = *start;
419 delalloc_end = 0;
083e75e7
JB
420 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
421 max_bytes, &cached_state);
2749f7ef 422 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 423 *start = delalloc_start;
2749f7ef
QW
424
425 /* @delalloc_end can be -1, never go beyond @orig_end */
426 *end = min(delalloc_end, orig_end);
c2a128d2 427 free_extent_state(cached_state);
3522e903 428 return false;
c8b97818
CM
429 }
430
70b99e69
CM
431 /*
432 * start comes from the offset of locked_page. We have to lock
433 * pages in order, so we can't process delalloc bytes before
434 * locked_page
435 */
d397712b 436 if (delalloc_start < *start)
70b99e69 437 delalloc_start = *start;
70b99e69 438
c8b97818
CM
439 /*
440 * make sure to limit the number of pages we try to lock down
c8b97818 441 */
7bf811a5
JB
442 if (delalloc_end + 1 - delalloc_start > max_bytes)
443 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 444
c8b97818
CM
445 /* step two, lock all the pages after the page that has start */
446 ret = lock_delalloc_pages(inode, locked_page,
447 delalloc_start, delalloc_end);
9bfd61d9 448 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
449 if (ret == -EAGAIN) {
450 /* some of the pages are gone, lets avoid looping by
451 * shortening the size of the delalloc range we're searching
452 */
9655d298 453 free_extent_state(cached_state);
7d788742 454 cached_state = NULL;
c8b97818 455 if (!loops) {
09cbfeaf 456 max_bytes = PAGE_SIZE;
c8b97818
CM
457 loops = 1;
458 goto again;
459 } else {
3522e903 460 found = false;
c8b97818
CM
461 goto out_failed;
462 }
463 }
c8b97818
CM
464
465 /* step three, lock the state bits for the whole range */
ff13db41 466 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
467
468 /* then test to make sure it is all still delalloc */
469 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 470 EXTENT_DELALLOC, 1, cached_state);
c8b97818 471 if (!ret) {
9655d298 472 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 473 &cached_state);
c8b97818
CM
474 __unlock_for_delalloc(inode, locked_page,
475 delalloc_start, delalloc_end);
476 cond_resched();
477 goto again;
478 }
9655d298 479 free_extent_state(cached_state);
c8b97818
CM
480 *start = delalloc_start;
481 *end = delalloc_end;
482out_failed:
483 return found;
484}
485
ad7ff17b 486void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 487 struct page *locked_page,
f97e27e9 488 u32 clear_bits, unsigned long page_ops)
873695b3 489{
dbbf4992 490 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 0, NULL);
873695b3 491
ad7ff17b 492 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
98af9ab1 493 start, end, page_ops, NULL);
873695b3
LB
494}
495
87c11705
JB
496static int insert_failrec(struct btrfs_inode *inode,
497 struct io_failure_record *failrec)
d1310b2e 498{
87c11705 499 struct rb_node *exist;
d1310b2e 500
87c11705
JB
501 spin_lock(&inode->io_failure_lock);
502 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
503 &failrec->rb_node);
504 spin_unlock(&inode->io_failure_lock);
505
506 return (exist == NULL) ? 0 : -EEXIST;
d1310b2e
CM
507}
508
87c11705 509static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
d1310b2e
CM
510{
511 struct rb_node *node;
87c11705 512 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
d1310b2e 513
87c11705
JB
514 spin_lock(&inode->io_failure_lock);
515 node = rb_simple_search(&inode->io_failure_tree, start);
516 if (node)
517 failrec = rb_entry(node, struct io_failure_record, rb_node);
518 spin_unlock(&inode->io_failure_lock);
2279a270 519 return failrec;
d1310b2e
CM
520}
521
87c11705 522static int free_io_failure(struct btrfs_inode *inode,
a2061748 523 struct io_failure_record *rec)
4a54c8c1
JS
524{
525 int ret;
4a54c8c1 526
87c11705
JB
527 spin_lock(&inode->io_failure_lock);
528 rb_erase(&rec->rb_node, &inode->io_failure_tree);
529 spin_unlock(&inode->io_failure_lock);
4a54c8c1 530
87c11705
JB
531 ret = clear_extent_bits(&inode->io_tree, rec->bytenr,
532 rec->bytenr + rec->len - 1,
91166212 533 EXTENT_DAMAGED);
4a54c8c1 534 kfree(rec);
87c11705 535 return ret;
4a54c8c1
JS
536}
537
4a54c8c1
JS
538/*
539 * this bypasses the standard btrfs submit functions deliberately, as
540 * the standard behavior is to write all copies in a raid setup. here we only
541 * want to write the one bad copy. so we do the mapping for ourselves and issue
542 * submit_bio directly.
3ec706c8 543 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
544 * actually prevents the read that triggered the error from finishing.
545 * currently, there can be no more than two copies of every data bit. thus,
546 * exactly one rewrite is required.
547 */
38d5e541
QW
548static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
549 u64 length, u64 logical, struct page *page,
550 unsigned int pg_offset, int mirror_num)
4a54c8c1 551{
4a54c8c1 552 struct btrfs_device *dev;
e9458bfe
CH
553 struct bio_vec bvec;
554 struct bio bio;
4a54c8c1
JS
555 u64 map_length = 0;
556 u64 sector;
4c664611 557 struct btrfs_io_context *bioc = NULL;
e9458bfe 558 int ret = 0;
4a54c8c1 559
1751e8a6 560 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
561 BUG_ON(!mirror_num);
562
554aed7d
JT
563 if (btrfs_repair_one_zone(fs_info, logical))
564 return 0;
f7ef5287 565
4a54c8c1
JS
566 map_length = length;
567
b5de8d0d 568 /*
4c664611 569 * Avoid races with device replace and make sure our bioc has devices
b5de8d0d
FM
570 * associated to its stripes that don't go away while we are doing the
571 * read repair operation.
572 */
573 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 574 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
575 /*
576 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
577 * to update all raid stripes, but here we just want to correct
578 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
579 * stripe's dev and sector.
580 */
581 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
4c664611 582 &map_length, &bioc, 0);
e9458bfe
CH
583 if (ret)
584 goto out_counter_dec;
4c664611 585 ASSERT(bioc->mirror_num == 1);
c725328c
LB
586 } else {
587 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4c664611 588 &map_length, &bioc, mirror_num);
e9458bfe
CH
589 if (ret)
590 goto out_counter_dec;
4c664611 591 BUG_ON(mirror_num != bioc->mirror_num);
4a54c8c1 592 }
c725328c 593
4c664611 594 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
4c664611
QW
595 dev = bioc->stripes[bioc->mirror_num - 1].dev;
596 btrfs_put_bioc(bioc);
e9458bfe 597
ebbede42
AJ
598 if (!dev || !dev->bdev ||
599 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
e9458bfe
CH
600 ret = -EIO;
601 goto out_counter_dec;
4a54c8c1 602 }
4a54c8c1 603
e9458bfe
CH
604 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
605 bio.bi_iter.bi_sector = sector;
606 __bio_add_page(&bio, page, length, pg_offset);
607
608 btrfsic_check_bio(&bio);
609 ret = submit_bio_wait(&bio);
610 if (ret) {
4a54c8c1 611 /* try to remap that extent elsewhere? */
442a4f63 612 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
e9458bfe 613 goto out_bio_uninit;
4a54c8c1
JS
614 }
615
b14af3b4
DS
616 btrfs_info_rl_in_rcu(fs_info,
617 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 618 ino, start,
1203b681 619 rcu_str_deref(dev->name), sector);
e9458bfe
CH
620 ret = 0;
621
622out_bio_uninit:
623 bio_uninit(&bio);
624out_counter_dec:
b5de8d0d 625 btrfs_bio_counter_dec(fs_info);
e9458bfe 626 return ret;
4a54c8c1
JS
627}
628
2b48966a 629int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 630{
20a1fbf9 631 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 632 u64 start = eb->start;
cc5e31a4 633 int i, num_pages = num_extent_pages(eb);
d95603b2 634 int ret = 0;
ea466794 635
bc98a42c 636 if (sb_rdonly(fs_info->sb))
908960c6
ID
637 return -EROFS;
638
ea466794 639 for (i = 0; i < num_pages; i++) {
fb85fc9a 640 struct page *p = eb->pages[i];
1203b681 641
6ec656bc 642 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 643 start - page_offset(p), mirror_num);
ea466794
JB
644 if (ret)
645 break;
09cbfeaf 646 start += PAGE_SIZE;
ea466794
JB
647 }
648
649 return ret;
650}
651
c144c63f
CH
652static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
653{
654 if (cur_mirror == failrec->num_copies)
655 return cur_mirror + 1 - failrec->num_copies;
656 return cur_mirror + 1;
657}
658
659static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
660{
661 if (cur_mirror == 1)
662 return failrec->num_copies;
663 return cur_mirror - 1;
664}
665
4a54c8c1
JS
666/*
667 * each time an IO finishes, we do a fast check in the IO failure tree
668 * to see if we need to process or clean up an io_failure_record
669 */
0d0a762c
JB
670int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
671 struct page *page, unsigned int pg_offset)
4a54c8c1 672{
0d0a762c 673 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0d0a762c
JB
674 struct extent_io_tree *io_tree = &inode->io_tree;
675 u64 ino = btrfs_ino(inode);
cdca85b0 676 u64 locked_start, locked_end;
4a54c8c1 677 struct io_failure_record *failrec;
c144c63f 678 int mirror;
cdca85b0 679 int ret;
4a54c8c1 680
87c11705 681 failrec = get_failrec(inode, start);
2279a270 682 if (IS_ERR(failrec))
4a54c8c1
JS
683 return 0;
684
4a54c8c1
JS
685 BUG_ON(!failrec->this_mirror);
686
bc98a42c 687 if (sb_rdonly(fs_info->sb))
908960c6 688 goto out;
4a54c8c1 689
cdca85b0
JB
690 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
691 &locked_end, EXTENT_LOCKED, NULL);
692 if (ret || locked_start > failrec->bytenr ||
693 locked_end < failrec->bytenr + failrec->len - 1)
c144c63f
CH
694 goto out;
695
696 mirror = failrec->this_mirror;
697 do {
698 mirror = prev_mirror(failrec, mirror);
699 repair_io_failure(fs_info, ino, start, failrec->len,
700 failrec->logical, page, pg_offset, mirror);
701 } while (mirror != failrec->failed_mirror);
4a54c8c1
JS
702
703out:
87c11705 704 free_io_failure(inode, failrec);
454ff3de 705 return 0;
4a54c8c1
JS
706}
707
f612496b
MX
708/*
709 * Can be called when
710 * - hold extent lock
711 * - under ordered extent
712 * - the inode is freeing
713 */
7ab7956e 714void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 715{
f612496b 716 struct io_failure_record *failrec;
87c11705 717 struct rb_node *node, *next;
f612496b 718
87c11705 719 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
f612496b
MX
720 return;
721
87c11705
JB
722 spin_lock(&inode->io_failure_lock);
723 node = rb_simple_search_first(&inode->io_failure_tree, start);
724 while (node) {
725 failrec = rb_entry(node, struct io_failure_record, rb_node);
726 if (failrec->bytenr > end)
f612496b
MX
727 break;
728
87c11705
JB
729 next = rb_next(node);
730 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
f612496b
MX
731 kfree(failrec);
732
87c11705 733 node = next;
f612496b 734 }
87c11705 735 spin_unlock(&inode->io_failure_lock);
f612496b
MX
736}
737
3526302f 738static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
7aa51232
CH
739 struct btrfs_bio *bbio,
740 unsigned int bio_offset)
4a54c8c1 741{
ab8d0fc4 742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7aa51232 743 u64 start = bbio->file_offset + bio_offset;
2fe6303e 744 struct io_failure_record *failrec;
4a54c8c1 745 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
150e4b05 746 const u32 sectorsize = fs_info->sectorsize;
4a54c8c1 747 int ret;
4a54c8c1 748
87c11705 749 failrec = get_failrec(BTRFS_I(inode), start);
3526302f 750 if (!IS_ERR(failrec)) {
ab8d0fc4 751 btrfs_debug(fs_info,
1245835d 752 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
87c11705 753 failrec->logical, failrec->bytenr, failrec->len);
4a54c8c1
JS
754 /*
755 * when data can be on disk more than twice, add to failrec here
756 * (e.g. with a list for failed_mirror) to make
757 * clean_io_failure() clean all those errors at once.
758 */
7aa51232 759 ASSERT(failrec->this_mirror == bbio->mirror_num);
c144c63f 760 ASSERT(failrec->len == fs_info->sectorsize);
3526302f 761 return failrec;
4a54c8c1 762 }
2fe6303e 763
3526302f
NB
764 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
765 if (!failrec)
766 return ERR_PTR(-ENOMEM);
2fe6303e 767
87c11705
JB
768 RB_CLEAR_NODE(&failrec->rb_node);
769 failrec->bytenr = start;
150e4b05 770 failrec->len = sectorsize;
7aa51232
CH
771 failrec->failed_mirror = bbio->mirror_num;
772 failrec->this_mirror = bbio->mirror_num;
81bd9328 773 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
3526302f 774
3526302f 775 btrfs_debug(fs_info,
81bd9328
CH
776 "new io failure record logical %llu start %llu",
777 failrec->logical, start);
3526302f 778
81bd9328 779 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
c144c63f
CH
780 if (failrec->num_copies == 1) {
781 /*
782 * We only have a single copy of the data, so don't bother with
783 * all the retry and error correction code that follows. No
784 * matter what the error is, it is very likely to persist.
785 */
786 btrfs_debug(fs_info,
787 "cannot repair logical %llu num_copies %d",
788 failrec->logical, failrec->num_copies);
3526302f
NB
789 kfree(failrec);
790 return ERR_PTR(-EIO);
791 }
792
3526302f 793 /* Set the bits in the private failure tree */
87c11705
JB
794 ret = insert_failrec(BTRFS_I(inode), failrec);
795 if (ret) {
3526302f
NB
796 kfree(failrec);
797 return ERR_PTR(ret);
798 }
87c11705
JB
799 ret = set_extent_bits(tree, start, start + sectorsize - 1,
800 EXTENT_DAMAGED);
801 if (ret) {
802 free_io_failure(BTRFS_I(inode), failrec);
803 return ERR_PTR(ret);
804 }
3526302f
NB
805
806 return failrec;
2fe6303e
MX
807}
808
7aa51232
CH
809int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
810 u32 bio_offset, struct page *page, unsigned int pgoff,
150e4b05 811 submit_bio_hook_t *submit_bio_hook)
2fe6303e 812{
7aa51232 813 u64 start = failed_bbio->file_offset + bio_offset;
2fe6303e 814 struct io_failure_record *failrec;
77d5d689 815 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7aa51232 816 struct bio *failed_bio = &failed_bbio->bio;
7ffd27e3 817 const int icsum = bio_offset >> fs_info->sectorsize_bits;
77d5d689 818 struct bio *repair_bio;
c3a3b19b 819 struct btrfs_bio *repair_bbio;
2fe6303e 820
77d5d689
OS
821 btrfs_debug(fs_info,
822 "repair read error: read error at %llu", start);
2fe6303e 823
1f7ad75b 824 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 825
7aa51232 826 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
3526302f 827 if (IS_ERR(failrec))
150e4b05 828 return PTR_ERR(failrec);
2fe6303e 829
c144c63f
CH
830 /*
831 * There are two premises:
832 * a) deliver good data to the caller
833 * b) correct the bad sectors on disk
834 *
835 * Since we're only doing repair for one sector, we only need to get
836 * a good copy of the failed sector and if we succeed, we have setup
837 * everything for repair_io_failure to do the rest for us.
838 */
839 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
840 if (failrec->this_mirror == failrec->failed_mirror) {
841 btrfs_debug(fs_info,
842 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
843 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
87c11705 844 free_io_failure(BTRFS_I(inode), failrec);
150e4b05 845 return -EIO;
2fe6303e
MX
846 }
847
917f32a2
CH
848 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
849 failed_bbio->private);
c3a3b19b 850 repair_bbio = btrfs_bio(repair_bio);
00d82525 851 repair_bbio->file_offset = start;
77d5d689 852 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2fe6303e 853
c3a3b19b 854 if (failed_bbio->csum) {
223486c2 855 const u32 csum_size = fs_info->csum_size;
77d5d689 856
c3a3b19b
QW
857 repair_bbio->csum = repair_bbio->csum_inline;
858 memcpy(repair_bbio->csum,
859 failed_bbio->csum + csum_size * icsum, csum_size);
77d5d689 860 }
2fe6303e 861
77d5d689 862 bio_add_page(repair_bio, page, failrec->len, pgoff);
c3a3b19b 863 repair_bbio->iter = repair_bio->bi_iter;
4a54c8c1 864
ab8d0fc4 865 btrfs_debug(btrfs_sb(inode->i_sb),
1245835d
QW
866 "repair read error: submitting new read to mirror %d",
867 failrec->this_mirror);
4a54c8c1 868
8cbc3001
JB
869 /*
870 * At this point we have a bio, so any errors from submit_bio_hook()
871 * will be handled by the endio on the repair_bio, so we can't return an
872 * error here.
873 */
81bd9328 874 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
8cbc3001 875 return BLK_STS_OK;
150e4b05
QW
876}
877
878static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
879{
880 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
881
882 ASSERT(page_offset(page) <= start &&
883 start + len <= page_offset(page) + PAGE_SIZE);
884
150e4b05 885 if (uptodate) {
14605409
BB
886 if (fsverity_active(page->mapping->host) &&
887 !PageError(page) &&
888 !PageUptodate(page) &&
889 start < i_size_read(page->mapping->host) &&
890 !fsverity_verify_page(page)) {
891 btrfs_page_set_error(fs_info, page, start, len);
892 } else {
893 btrfs_page_set_uptodate(fs_info, page, start, len);
894 }
150e4b05
QW
895 } else {
896 btrfs_page_clear_uptodate(fs_info, page, start, len);
897 btrfs_page_set_error(fs_info, page, start, len);
898 }
899
fbca46eb 900 if (!btrfs_is_subpage(fs_info, page))
150e4b05 901 unlock_page(page);
3d078efa 902 else
150e4b05
QW
903 btrfs_subpage_end_reader(fs_info, page, start, len);
904}
905
a5aa7ab6
CH
906static void end_sector_io(struct page *page, u64 offset, bool uptodate)
907{
908 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
909 const u32 sectorsize = inode->root->fs_info->sectorsize;
910 struct extent_state *cached = NULL;
911
912 end_page_read(page, uptodate, offset, sectorsize);
913 if (uptodate)
914 set_extent_uptodate(&inode->io_tree, offset,
915 offset + sectorsize - 1, &cached, GFP_ATOMIC);
916 unlock_extent_cached_atomic(&inode->io_tree, offset,
917 offset + sectorsize - 1, &cached);
918}
919
7aa51232
CH
920static void submit_data_read_repair(struct inode *inode,
921 struct btrfs_bio *failed_bbio,
fd5a6f63 922 u32 bio_offset, const struct bio_vec *bvec,
7aa51232 923 unsigned int error_bitmap)
150e4b05 924{
fd5a6f63 925 const unsigned int pgoff = bvec->bv_offset;
150e4b05 926 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
fd5a6f63
QW
927 struct page *page = bvec->bv_page;
928 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
929 const u64 end = start + bvec->bv_len - 1;
150e4b05
QW
930 const u32 sectorsize = fs_info->sectorsize;
931 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
150e4b05
QW
932 int i;
933
7aa51232 934 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
150e4b05 935
c0111c44
QW
936 /* This repair is only for data */
937 ASSERT(is_data_inode(inode));
938
150e4b05
QW
939 /* We're here because we had some read errors or csum mismatch */
940 ASSERT(error_bitmap);
941
942 /*
943 * We only get called on buffered IO, thus page must be mapped and bio
944 * must not be cloned.
945 */
7aa51232 946 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
150e4b05
QW
947
948 /* Iterate through all the sectors in the range */
949 for (i = 0; i < nr_bits; i++) {
950 const unsigned int offset = i * sectorsize;
150e4b05
QW
951 bool uptodate = false;
952 int ret;
953
954 if (!(error_bitmap & (1U << i))) {
955 /*
956 * This sector has no error, just end the page read
957 * and unlock the range.
958 */
959 uptodate = true;
960 goto next;
961 }
962
7aa51232
CH
963 ret = btrfs_repair_one_sector(inode, failed_bbio,
964 bio_offset + offset, page, pgoff + offset,
965 btrfs_submit_data_read_bio);
150e4b05
QW
966 if (!ret) {
967 /*
968 * We have submitted the read repair, the page release
969 * will be handled by the endio function of the
970 * submitted repair bio.
971 * Thus we don't need to do any thing here.
972 */
973 continue;
974 }
975 /*
fd5a6f63
QW
976 * Continue on failed repair, otherwise the remaining sectors
977 * will not be properly unlocked.
150e4b05 978 */
150e4b05 979next:
a5aa7ab6 980 end_sector_io(page, start + offset, uptodate);
150e4b05 981 }
4a54c8c1
JS
982}
983
d1310b2e
CM
984/* lots and lots of room for performance fixes in the end_bio funcs */
985
b5227c07 986void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0 987{
38a39ac7 988 struct btrfs_inode *inode;
25c1252a 989 const bool uptodate = (err == 0);
3e2426bd 990 int ret = 0;
87826df0 991
38a39ac7
QW
992 ASSERT(page && page->mapping);
993 inode = BTRFS_I(page->mapping->host);
994 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
87826df0 995
87826df0 996 if (!uptodate) {
963e4db8
QW
997 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
998 u32 len;
999
1000 ASSERT(end + 1 - start <= U32_MAX);
1001 len = end + 1 - start;
1002
1003 btrfs_page_clear_uptodate(fs_info, page, start, len);
1004 btrfs_page_set_error(fs_info, page, start, len);
bff5baf8 1005 ret = err < 0 ? err : -EIO;
5dca6eea 1006 mapping_set_error(page->mapping, ret);
87826df0 1007 }
87826df0
JM
1008}
1009
d1310b2e
CM
1010/*
1011 * after a writepage IO is done, we need to:
1012 * clear the uptodate bits on error
1013 * clear the writeback bits in the extent tree for this IO
1014 * end_page_writeback if the page has no more pending IO
1015 *
1016 * Scheduling is not allowed, so the extent state tree is expected
1017 * to have one and only one object corresponding to this IO.
1018 */
917f32a2 1019static void end_bio_extent_writepage(struct btrfs_bio *bbio)
d1310b2e 1020{
917f32a2 1021 struct bio *bio = &bbio->bio;
4e4cbee9 1022 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 1023 struct bio_vec *bvec;
d1310b2e
CM
1024 u64 start;
1025 u64 end;
6dc4f100 1026 struct bvec_iter_all iter_all;
d8e3fb10 1027 bool first_bvec = true;
d1310b2e 1028
c09abff8 1029 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 1030 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 1031 struct page *page = bvec->bv_page;
0b246afa
JM
1032 struct inode *inode = page->mapping->host;
1033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db
QW
1034 const u32 sectorsize = fs_info->sectorsize;
1035
1036 /* Our read/write should always be sector aligned. */
1037 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1038 btrfs_err(fs_info,
1039 "partial page write in btrfs with offset %u and length %u",
1040 bvec->bv_offset, bvec->bv_len);
1041 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
1042 btrfs_info(fs_info,
1043 "incomplete page write with offset %u and length %u",
1044 bvec->bv_offset, bvec->bv_len);
1045
1046 start = page_offset(page) + bvec->bv_offset;
1047 end = start + bvec->bv_len - 1;
d1310b2e 1048
d8e3fb10
NA
1049 if (first_bvec) {
1050 btrfs_record_physical_zoned(inode, start, bio);
1051 first_bvec = false;
1052 }
1053
4e4cbee9 1054 end_extent_writepage(page, error, start, end);
9047e317
QW
1055
1056 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2c30c71b 1057 }
2b1f55b0 1058
d1310b2e 1059 bio_put(bio);
d1310b2e
CM
1060}
1061
94e8c95c
QW
1062/*
1063 * Record previously processed extent range
1064 *
1065 * For endio_readpage_release_extent() to handle a full extent range, reducing
1066 * the extent io operations.
1067 */
1068struct processed_extent {
1069 struct btrfs_inode *inode;
1070 /* Start of the range in @inode */
1071 u64 start;
2e626e56 1072 /* End of the range in @inode */
94e8c95c
QW
1073 u64 end;
1074 bool uptodate;
1075};
1076
1077/*
1078 * Try to release processed extent range
1079 *
1080 * May not release the extent range right now if the current range is
1081 * contiguous to processed extent.
1082 *
1083 * Will release processed extent when any of @inode, @uptodate, the range is
1084 * no longer contiguous to the processed range.
1085 *
1086 * Passing @inode == NULL will force processed extent to be released.
1087 */
1088static void endio_readpage_release_extent(struct processed_extent *processed,
1089 struct btrfs_inode *inode, u64 start, u64 end,
1090 bool uptodate)
883d0de4
MX
1091{
1092 struct extent_state *cached = NULL;
94e8c95c
QW
1093 struct extent_io_tree *tree;
1094
1095 /* The first extent, initialize @processed */
1096 if (!processed->inode)
1097 goto update;
883d0de4 1098
94e8c95c
QW
1099 /*
1100 * Contiguous to processed extent, just uptodate the end.
1101 *
1102 * Several things to notice:
1103 *
1104 * - bio can be merged as long as on-disk bytenr is contiguous
1105 * This means we can have page belonging to other inodes, thus need to
1106 * check if the inode still matches.
1107 * - bvec can contain range beyond current page for multi-page bvec
1108 * Thus we need to do processed->end + 1 >= start check
1109 */
1110 if (processed->inode == inode && processed->uptodate == uptodate &&
1111 processed->end + 1 >= start && end >= processed->end) {
1112 processed->end = end;
1113 return;
1114 }
1115
1116 tree = &processed->inode->io_tree;
1117 /*
1118 * Now we don't have range contiguous to the processed range, release
1119 * the processed range now.
1120 */
94e8c95c
QW
1121 unlock_extent_cached_atomic(tree, processed->start, processed->end,
1122 &cached);
1123
1124update:
1125 /* Update processed to current range */
1126 processed->inode = inode;
1127 processed->start = start;
1128 processed->end = end;
1129 processed->uptodate = uptodate;
883d0de4
MX
1130}
1131
92082d40
QW
1132static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1133{
1134 ASSERT(PageLocked(page));
fbca46eb 1135 if (!btrfs_is_subpage(fs_info, page))
92082d40
QW
1136 return;
1137
1138 ASSERT(PagePrivate(page));
1139 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1140}
1141
d9bb77d5 1142/*
01cd3909 1143 * Find extent buffer for a givne bytenr.
d9bb77d5
QW
1144 *
1145 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1146 * in endio context.
1147 */
1148static struct extent_buffer *find_extent_buffer_readpage(
1149 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1150{
1151 struct extent_buffer *eb;
1152
1153 /*
1154 * For regular sectorsize, we can use page->private to grab extent
1155 * buffer
1156 */
fbca46eb 1157 if (fs_info->nodesize >= PAGE_SIZE) {
d9bb77d5
QW
1158 ASSERT(PagePrivate(page) && page->private);
1159 return (struct extent_buffer *)page->private;
1160 }
1161
01cd3909
DS
1162 /* For subpage case, we need to lookup buffer radix tree */
1163 rcu_read_lock();
1164 eb = radix_tree_lookup(&fs_info->buffer_radix,
1165 bytenr >> fs_info->sectorsize_bits);
1166 rcu_read_unlock();
d9bb77d5
QW
1167 ASSERT(eb);
1168 return eb;
1169}
1170
d1310b2e
CM
1171/*
1172 * after a readpage IO is done, we need to:
1173 * clear the uptodate bits on error
1174 * set the uptodate bits if things worked
1175 * set the page up to date if all extents in the tree are uptodate
1176 * clear the lock bit in the extent tree
1177 * unlock the page if there are no other extents locked for it
1178 *
1179 * Scheduling is not allowed, so the extent state tree is expected
1180 * to have one and only one object corresponding to this IO.
1181 */
917f32a2 1182static void end_bio_extent_readpage(struct btrfs_bio *bbio)
d1310b2e 1183{
917f32a2 1184 struct bio *bio = &bbio->bio;
2c30c71b 1185 struct bio_vec *bvec;
94e8c95c 1186 struct processed_extent processed = { 0 };
7ffd27e3
QW
1187 /*
1188 * The offset to the beginning of a bio, since one bio can never be
1189 * larger than UINT_MAX, u32 here is enough.
1190 */
1191 u32 bio_offset = 0;
5cf1ab56 1192 int mirror;
6dc4f100 1193 struct bvec_iter_all iter_all;
d1310b2e 1194
c09abff8 1195 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 1196 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 1197 bool uptodate = !bio->bi_status;
d1310b2e 1198 struct page *page = bvec->bv_page;
a71754fc 1199 struct inode *inode = page->mapping->host;
ab8d0fc4 1200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3 1201 const u32 sectorsize = fs_info->sectorsize;
150e4b05 1202 unsigned int error_bitmap = (unsigned int)-1;
97861cd1 1203 bool repair = false;
7ffd27e3
QW
1204 u64 start;
1205 u64 end;
1206 u32 len;
507903b8 1207
ab8d0fc4
JM
1208 btrfs_debug(fs_info,
1209 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 1210 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 1211 bbio->mirror_num);
902b22f3 1212
8b8bbd46
QW
1213 /*
1214 * We always issue full-sector reads, but if some block in a
1215 * page fails to read, blk_update_request() will advance
1216 * bv_offset and adjust bv_len to compensate. Print a warning
1217 * for unaligned offsets, and an error if they don't add up to
1218 * a full sector.
1219 */
1220 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1221 btrfs_err(fs_info,
1222 "partial page read in btrfs with offset %u and length %u",
1223 bvec->bv_offset, bvec->bv_len);
1224 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1225 sectorsize))
1226 btrfs_info(fs_info,
1227 "incomplete page read with offset %u and length %u",
1228 bvec->bv_offset, bvec->bv_len);
1229
1230 start = page_offset(page) + bvec->bv_offset;
1231 end = start + bvec->bv_len - 1;
facc8a22 1232 len = bvec->bv_len;
d1310b2e 1233
c3a3b19b 1234 mirror = bbio->mirror_num;
78e62c02 1235 if (likely(uptodate)) {
150e4b05 1236 if (is_data_inode(inode)) {
c3a3b19b 1237 error_bitmap = btrfs_verify_data_csum(bbio,
5e295768 1238 bio_offset, page, start, end);
97861cd1
CH
1239 if (error_bitmap)
1240 uptodate = false;
150e4b05 1241 } else {
97861cd1
CH
1242 if (btrfs_validate_metadata_buffer(bbio,
1243 page, start, end, mirror))
1244 uptodate = false;
150e4b05 1245 }
d1310b2e 1246 }
ea466794 1247
883d0de4 1248 if (likely(uptodate)) {
a71754fc 1249 loff_t i_size = i_size_read(inode);
09cbfeaf 1250 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 1251
0d0a762c 1252 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
97861cd1 1253
c28ea613
QW
1254 /*
1255 * Zero out the remaining part if this range straddles
1256 * i_size.
1257 *
1258 * Here we should only zero the range inside the bvec,
1259 * not touch anything else.
1260 *
1261 * NOTE: i_size is exclusive while end is inclusive.
1262 */
1263 if (page->index == end_index && i_size <= end) {
1264 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 1265 offset_in_page(start));
c28ea613
QW
1266
1267 zero_user_segment(page, zero_start,
1268 offset_in_page(end) + 1);
1269 }
97861cd1
CH
1270 } else if (is_data_inode(inode)) {
1271 /*
1272 * Only try to repair bios that actually made it to a
1273 * device. If the bio failed to be submitted mirror
1274 * is 0 and we need to fail it without retrying.
81bd9328
CH
1275 *
1276 * This also includes the high level bios for compressed
1277 * extents - these never make it to a device and repair
1278 * is already handled on the lower compressed bio.
97861cd1
CH
1279 */
1280 if (mirror > 0)
1281 repair = true;
1282 } else {
1283 struct extent_buffer *eb;
1284
1285 eb = find_extent_buffer_readpage(fs_info, page, start);
1286 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1287 eb->read_mirror = mirror;
1288 atomic_dec(&eb->io_pages);
70dec807 1289 }
97861cd1
CH
1290
1291 if (repair) {
1292 /*
1293 * submit_data_read_repair() will handle all the good
1294 * and bad sectors, we just continue to the next bvec.
1295 */
7aa51232
CH
1296 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1297 error_bitmap);
97861cd1
CH
1298 } else {
1299 /* Update page status and unlock */
1300 end_page_read(page, uptodate, start, len);
1301 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1302 start, end, PageUptodate(page));
70dec807 1303 }
97861cd1 1304
7ffd27e3
QW
1305 ASSERT(bio_offset + len > bio_offset);
1306 bio_offset += len;
883d0de4 1307
2c30c71b 1308 }
94e8c95c
QW
1309 /* Release the last extent */
1310 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
c3a3b19b 1311 btrfs_bio_free_csum(bbio);
d1310b2e 1312 bio_put(bio);
d1310b2e
CM
1313}
1314
dd137dd1
STD
1315/**
1316 * Populate every free slot in a provided array with pages.
1317 *
1318 * @nr_pages: number of pages to allocate
1319 * @page_array: the array to fill with pages; any existing non-null entries in
1320 * the array will be skipped
1321 *
1322 * Return: 0 if all pages were able to be allocated;
1323 * -ENOMEM otherwise, and the caller is responsible for freeing all
1324 * non-null page pointers in the array.
1325 */
1326int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1327{
91d6ac1d 1328 unsigned int allocated;
dd137dd1 1329
91d6ac1d
STD
1330 for (allocated = 0; allocated < nr_pages;) {
1331 unsigned int last = allocated;
dd137dd1 1332
91d6ac1d
STD
1333 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1334
395cb57e
STD
1335 if (allocated == nr_pages)
1336 return 0;
1337
91d6ac1d
STD
1338 /*
1339 * During this iteration, no page could be allocated, even
1340 * though alloc_pages_bulk_array() falls back to alloc_page()
1341 * if it could not bulk-allocate. So we must be out of memory.
1342 */
1343 if (allocated == last)
dd137dd1 1344 return -ENOMEM;
395cb57e
STD
1345
1346 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
1347 }
1348 return 0;
1349}
1350
953651eb
NA
1351/**
1352 * Attempt to add a page to bio
1353 *
be8d1a2a 1354 * @bio_ctrl: record both the bio, and its bio_flags
953651eb
NA
1355 * @page: page to add to the bio
1356 * @disk_bytenr: offset of the new bio or to check whether we are adding
1357 * a contiguous page to the previous one
953651eb 1358 * @size: portion of page that we want to write
be8d1a2a 1359 * @pg_offset: starting offset in the page
cb3a12d9 1360 * @compress_type: compression type of the current bio to see if we can merge them
953651eb
NA
1361 *
1362 * Attempt to add a page to bio considering stripe alignment etc.
1363 *
e0eefe07
QW
1364 * Return >= 0 for the number of bytes added to the bio.
1365 * Can return 0 if the current bio is already at stripe/zone boundary.
1366 * Return <0 for error.
953651eb 1367 */
e0eefe07
QW
1368static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1369 struct page *page,
1370 u64 disk_bytenr, unsigned int size,
1371 unsigned int pg_offset,
cb3a12d9 1372 enum btrfs_compression_type compress_type)
953651eb 1373{
390ed29b
QW
1374 struct bio *bio = bio_ctrl->bio;
1375 u32 bio_size = bio->bi_iter.bi_size;
e0eefe07 1376 u32 real_size;
953651eb 1377 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
4a445b7b 1378 bool contig = false;
e1326f03 1379 int ret;
953651eb 1380
390ed29b
QW
1381 ASSERT(bio);
1382 /* The limit should be calculated when bio_ctrl->bio is allocated */
1383 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
0f07003b 1384 if (bio_ctrl->compress_type != compress_type)
e0eefe07 1385 return 0;
953651eb 1386
4a445b7b
QW
1387
1388 if (bio->bi_iter.bi_size == 0) {
1389 /* We can always add a page into an empty bio. */
1390 contig = true;
1391 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1392 struct bio_vec *bvec = bio_last_bvec_all(bio);
1393
1394 /*
1395 * The contig check requires the following conditions to be met:
1396 * 1) The pages are belonging to the same inode
1397 * This is implied by the call chain.
1398 *
1399 * 2) The range has adjacent logical bytenr
1400 *
1401 * 3) The range has adjacent file offset
1402 * This is required for the usage of btrfs_bio->file_offset.
1403 */
1404 if (bio_end_sector(bio) == sector &&
1405 page_offset(bvec->bv_page) + bvec->bv_offset +
1406 bvec->bv_len == page_offset(page) + pg_offset)
1407 contig = true;
1408 } else {
1409 /*
1410 * For compression, all IO should have its logical bytenr
1411 * set to the starting bytenr of the compressed extent.
1412 */
953651eb 1413 contig = bio->bi_iter.bi_sector == sector;
4a445b7b
QW
1414 }
1415
953651eb 1416 if (!contig)
e0eefe07 1417 return 0;
953651eb 1418
e0eefe07
QW
1419 real_size = min(bio_ctrl->len_to_oe_boundary,
1420 bio_ctrl->len_to_stripe_boundary) - bio_size;
1421 real_size = min(real_size, size);
1422
1423 /*
1424 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1425 * bio will still execute its endio function on the page!
1426 */
1427 if (real_size == 0)
1428 return 0;
953651eb 1429
390ed29b 1430 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
e0eefe07 1431 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
390ed29b 1432 else
e0eefe07 1433 ret = bio_add_page(bio, page, real_size, pg_offset);
e1326f03 1434
e0eefe07 1435 return ret;
953651eb
NA
1436}
1437
390ed29b 1438static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
939c7feb 1439 struct btrfs_inode *inode, u64 file_offset)
390ed29b
QW
1440{
1441 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1442 struct btrfs_io_geometry geom;
1443 struct btrfs_ordered_extent *ordered;
1444 struct extent_map *em;
1445 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1446 int ret;
1447
1448 /*
1449 * Pages for compressed extent are never submitted to disk directly,
1450 * thus it has no real boundary, just set them to U32_MAX.
1451 *
1452 * The split happens for real compressed bio, which happens in
1453 * btrfs_submit_compressed_read/write().
1454 */
0f07003b 1455 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
390ed29b
QW
1456 bio_ctrl->len_to_oe_boundary = U32_MAX;
1457 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1458 return 0;
1459 }
1460 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1461 if (IS_ERR(em))
1462 return PTR_ERR(em);
1463 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1464 logical, &geom);
1465 free_extent_map(em);
1466 if (ret < 0) {
1467 return ret;
1468 }
1469 if (geom.len > U32_MAX)
1470 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1471 else
1472 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1473
73672710 1474 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
390ed29b
QW
1475 bio_ctrl->len_to_oe_boundary = U32_MAX;
1476 return 0;
1477 }
1478
390ed29b 1479 /* Ordered extent not yet created, so we're good */
939c7feb 1480 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
390ed29b
QW
1481 if (!ordered) {
1482 bio_ctrl->len_to_oe_boundary = U32_MAX;
1483 return 0;
1484 }
1485
1486 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1487 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1488 btrfs_put_ordered_extent(ordered);
1489 return 0;
1490}
1491
e0eefe07
QW
1492static int alloc_new_bio(struct btrfs_inode *inode,
1493 struct btrfs_bio_ctrl *bio_ctrl,
1494 struct writeback_control *wbc,
bf9486d6 1495 blk_opf_t opf,
917f32a2 1496 btrfs_bio_end_io_t end_io_func,
939c7feb 1497 u64 disk_bytenr, u32 offset, u64 file_offset,
cb3a12d9 1498 enum btrfs_compression_type compress_type)
e0eefe07
QW
1499{
1500 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1501 struct bio *bio;
1502 int ret;
1503
917f32a2 1504 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, end_io_func, NULL);
e0eefe07
QW
1505 /*
1506 * For compressed page range, its disk_bytenr is always @disk_bytenr
1507 * passed in, no matter if we have added any range into previous bio.
1508 */
cb3a12d9 1509 if (compress_type != BTRFS_COMPRESS_NONE)
cd8e0cca 1510 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
e0eefe07 1511 else
cd8e0cca 1512 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
e0eefe07 1513 bio_ctrl->bio = bio;
0f07003b 1514 bio_ctrl->compress_type = compress_type;
939c7feb
NA
1515 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1516 if (ret < 0)
1517 goto error;
e0eefe07 1518
50f1cff3
CH
1519 if (wbc) {
1520 /*
1521 * For Zone append we need the correct block_device that we are
1522 * going to write to set in the bio to be able to respect the
1523 * hardware limitation. Look it up here:
1524 */
1525 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1526 struct btrfs_device *dev;
1527
1528 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1529 fs_info->sectorsize);
1530 if (IS_ERR(dev)) {
1531 ret = PTR_ERR(dev);
1532 goto error;
1533 }
e0eefe07 1534
50f1cff3
CH
1535 bio_set_dev(bio, dev->bdev);
1536 } else {
1537 /*
1538 * Otherwise pick the last added device to support
1539 * cgroup writeback. For multi-device file systems this
1540 * means blk-cgroup policies have to always be set on the
1541 * last added/replaced device. This is a bit odd but has
1542 * been like that for a long time.
1543 */
1544 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
e0eefe07 1545 }
50f1cff3
CH
1546 wbc_init_bio(wbc, bio);
1547 } else {
1548 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
e0eefe07
QW
1549 }
1550 return 0;
1551error:
1552 bio_ctrl->bio = NULL;
917f32a2 1553 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
e0eefe07
QW
1554 return ret;
1555}
1556
4b81ba48
DS
1557/*
1558 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
1559 * @wbc: optional writeback control for io accounting
1560 * @page: page to add to the bio
0c64c33c
QW
1561 * @disk_bytenr: logical bytenr where the write will be
1562 * @size: portion of page that we want to write to
b8b3d625
DS
1563 * @pg_offset: offset of the new bio or to check whether we are adding
1564 * a contiguous page to the previous one
5c2b1fd7 1565 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
1566 * @end_io_func: end_io callback for new bio
1567 * @mirror_num: desired mirror to read/write
1568 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
cb3a12d9 1569 * @compress_type: compress type for current bio
4b81ba48 1570 */
bf9486d6 1571static int submit_extent_page(blk_opf_t opf,
da2f0f74 1572 struct writeback_control *wbc,
390ed29b 1573 struct btrfs_bio_ctrl *bio_ctrl,
0c64c33c 1574 struct page *page, u64 disk_bytenr,
6c5a4e2c 1575 size_t size, unsigned long pg_offset,
917f32a2 1576 btrfs_bio_end_io_t end_io_func,
cb3a12d9 1577 enum btrfs_compression_type compress_type,
005efedf 1578 bool force_bio_submit)
d1310b2e
CM
1579{
1580 int ret = 0;
e1326f03 1581 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
e0eefe07 1582 unsigned int cur = pg_offset;
d1310b2e 1583
390ed29b 1584 ASSERT(bio_ctrl);
5c2b1fd7 1585
390ed29b
QW
1586 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1587 pg_offset + size <= PAGE_SIZE);
722c82ac
CH
1588 if (force_bio_submit)
1589 submit_one_bio(bio_ctrl);
e0eefe07
QW
1590
1591 while (cur < pg_offset + size) {
1592 u32 offset = cur - pg_offset;
1593 int added;
1594
1595 /* Allocate new bio if needed */
1596 if (!bio_ctrl->bio) {
1597 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1598 end_io_func, disk_bytenr, offset,
939c7feb 1599 page_offset(page) + cur,
cb3a12d9 1600 compress_type);
e0eefe07
QW
1601 if (ret < 0)
1602 return ret;
1603 }
1604 /*
1605 * We must go through btrfs_bio_add_page() to ensure each
1606 * page range won't cross various boundaries.
1607 */
cb3a12d9 1608 if (compress_type != BTRFS_COMPRESS_NONE)
e0eefe07
QW
1609 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1610 size - offset, pg_offset + offset,
cb3a12d9 1611 compress_type);
e0eefe07
QW
1612 else
1613 added = btrfs_bio_add_page(bio_ctrl, page,
1614 disk_bytenr + offset, size - offset,
cb3a12d9 1615 pg_offset + offset, compress_type);
e0eefe07
QW
1616
1617 /* Metadata page range should never be split */
1618 if (!is_data_inode(&inode->vfs_inode))
1619 ASSERT(added == 0 || added == size - offset);
1620
1621 /* At least we added some page, update the account */
1622 if (wbc && added)
1623 wbc_account_cgroup_owner(wbc, page, added);
1624
1625 /* We have reached boundary, submit right now */
1626 if (added < size - offset) {
1627 /* The bio should contain some page(s) */
1628 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
722c82ac 1629 submit_one_bio(bio_ctrl);
d1310b2e 1630 }
e0eefe07 1631 cur += added;
d1310b2e 1632 }
e0eefe07 1633 return 0;
d1310b2e
CM
1634}
1635
760f991f
QW
1636static int attach_extent_buffer_page(struct extent_buffer *eb,
1637 struct page *page,
1638 struct btrfs_subpage *prealloc)
d1310b2e 1639{
760f991f
QW
1640 struct btrfs_fs_info *fs_info = eb->fs_info;
1641 int ret = 0;
1642
0d01e247
QW
1643 /*
1644 * If the page is mapped to btree inode, we should hold the private
1645 * lock to prevent race.
1646 * For cloned or dummy extent buffers, their pages are not mapped and
1647 * will not race with any other ebs.
1648 */
1649 if (page->mapping)
1650 lockdep_assert_held(&page->mapping->private_lock);
1651
fbca46eb 1652 if (fs_info->nodesize >= PAGE_SIZE) {
760f991f
QW
1653 if (!PagePrivate(page))
1654 attach_page_private(page, eb);
1655 else
1656 WARN_ON(page->private != (unsigned long)eb);
1657 return 0;
1658 }
1659
1660 /* Already mapped, just free prealloc */
1661 if (PagePrivate(page)) {
1662 btrfs_free_subpage(prealloc);
1663 return 0;
1664 }
1665
1666 if (prealloc)
1667 /* Has preallocated memory for subpage */
1668 attach_page_private(page, prealloc);
d1b89bc0 1669 else
760f991f
QW
1670 /* Do new allocation to attach subpage */
1671 ret = btrfs_attach_subpage(fs_info, page,
1672 BTRFS_SUBPAGE_METADATA);
1673 return ret;
d1310b2e
CM
1674}
1675
32443de3 1676int set_page_extent_mapped(struct page *page)
d1310b2e 1677{
32443de3
QW
1678 struct btrfs_fs_info *fs_info;
1679
1680 ASSERT(page->mapping);
1681
1682 if (PagePrivate(page))
1683 return 0;
1684
1685 fs_info = btrfs_sb(page->mapping->host->i_sb);
1686
fbca46eb 1687 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
1688 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1689
1690 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1691 return 0;
1692}
1693
1694void clear_page_extent_mapped(struct page *page)
1695{
1696 struct btrfs_fs_info *fs_info;
1697
1698 ASSERT(page->mapping);
1699
d1b89bc0 1700 if (!PagePrivate(page))
32443de3
QW
1701 return;
1702
1703 fs_info = btrfs_sb(page->mapping->host->i_sb);
fbca46eb 1704 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
1705 return btrfs_detach_subpage(fs_info, page);
1706
1707 detach_page_private(page);
d1310b2e
CM
1708}
1709
125bac01
MX
1710static struct extent_map *
1711__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 1712 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
1713{
1714 struct extent_map *em;
1715
1716 if (em_cached && *em_cached) {
1717 em = *em_cached;
cbc0e928 1718 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 1719 start < extent_map_end(em)) {
490b54d6 1720 refcount_inc(&em->refs);
125bac01
MX
1721 return em;
1722 }
1723
1724 free_extent_map(em);
1725 *em_cached = NULL;
1726 }
1727
1a5ee1e6 1728 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 1729 if (em_cached && !IS_ERR(em)) {
125bac01 1730 BUG_ON(*em_cached);
490b54d6 1731 refcount_inc(&em->refs);
125bac01
MX
1732 *em_cached = em;
1733 }
1734 return em;
1735}
d1310b2e
CM
1736/*
1737 * basic readpage implementation. Locked extent state structs are inserted
1738 * into the tree that are removed when the IO is done (by the end_io
1739 * handlers)
79787eaa 1740 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 1741 * return 0 on success, otherwise return error
d1310b2e 1742 */
7aab8b32 1743static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
390ed29b 1744 struct btrfs_bio_ctrl *bio_ctrl,
bf9486d6 1745 blk_opf_t read_flags, u64 *prev_em_start)
d1310b2e
CM
1746{
1747 struct inode *inode = page->mapping->host;
92082d40 1748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 1749 u64 start = page_offset(page);
8eec8296 1750 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
1751 u64 cur = start;
1752 u64 extent_offset;
1753 u64 last_byte = i_size_read(inode);
1754 u64 block_start;
d1310b2e 1755 struct extent_map *em;
baf863b9 1756 int ret = 0;
306e16ce 1757 size_t pg_offset = 0;
d1310b2e
CM
1758 size_t iosize;
1759 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 1760 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 1761
32443de3
QW
1762 ret = set_page_extent_mapped(page);
1763 if (ret < 0) {
1764 unlock_extent(tree, start, end);
92082d40
QW
1765 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1766 unlock_page(page);
32443de3
QW
1767 goto out;
1768 }
d1310b2e 1769
09cbfeaf 1770 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 1771 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
1772
1773 if (zero_offset) {
09cbfeaf 1774 iosize = PAGE_SIZE - zero_offset;
d048b9c2 1775 memzero_page(page, zero_offset, iosize);
c8b97818
CM
1776 }
1777 }
92082d40 1778 begin_page_read(fs_info, page);
d1310b2e 1779 while (cur <= end) {
4c37a793 1780 unsigned long this_bio_flag = 0;
005efedf 1781 bool force_bio_submit = false;
0c64c33c 1782 u64 disk_bytenr;
c8f2f24b 1783
6a404910 1784 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 1785 if (cur >= last_byte) {
507903b8
AJ
1786 struct extent_state *cached = NULL;
1787
09cbfeaf 1788 iosize = PAGE_SIZE - pg_offset;
d048b9c2 1789 memzero_page(page, pg_offset, iosize);
d1310b2e 1790 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 1791 &cached, GFP_NOFS);
7f042a83 1792 unlock_extent_cached(tree, cur,
e43bbe5e 1793 cur + iosize - 1, &cached);
92082d40 1794 end_page_read(page, true, cur, iosize);
d1310b2e
CM
1795 break;
1796 }
125bac01 1797 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 1798 end - cur + 1, em_cached);
c0347550 1799 if (IS_ERR(em)) {
7f042a83 1800 unlock_extent(tree, cur, end);
92082d40 1801 end_page_read(page, false, cur, end + 1 - cur);
bbf0ea7e 1802 ret = PTR_ERR(em);
d1310b2e
CM
1803 break;
1804 }
d1310b2e
CM
1805 extent_offset = cur - em->start;
1806 BUG_ON(extent_map_end(em) <= cur);
1807 BUG_ON(end < cur);
1808
7f6ca7f2
DS
1809 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1810 this_bio_flag = em->compress_type;
c8b97818 1811
d1310b2e 1812 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 1813 iosize = ALIGN(iosize, blocksize);
2a5232a8 1814 if (this_bio_flag != BTRFS_COMPRESS_NONE)
0c64c33c 1815 disk_bytenr = em->block_start;
949b3273 1816 else
0c64c33c 1817 disk_bytenr = em->block_start + extent_offset;
d1310b2e 1818 block_start = em->block_start;
d899e052
YZ
1819 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1820 block_start = EXTENT_MAP_HOLE;
005efedf
FM
1821
1822 /*
1823 * If we have a file range that points to a compressed extent
260db43c 1824 * and it's followed by a consecutive file range that points
005efedf
FM
1825 * to the same compressed extent (possibly with a different
1826 * offset and/or length, so it either points to the whole extent
1827 * or only part of it), we must make sure we do not submit a
1828 * single bio to populate the pages for the 2 ranges because
1829 * this makes the compressed extent read zero out the pages
1830 * belonging to the 2nd range. Imagine the following scenario:
1831 *
1832 * File layout
1833 * [0 - 8K] [8K - 24K]
1834 * | |
1835 * | |
1836 * points to extent X, points to extent X,
1837 * offset 4K, length of 8K offset 0, length 16K
1838 *
1839 * [extent X, compressed length = 4K uncompressed length = 16K]
1840 *
1841 * If the bio to read the compressed extent covers both ranges,
1842 * it will decompress extent X into the pages belonging to the
1843 * first range and then it will stop, zeroing out the remaining
1844 * pages that belong to the other range that points to extent X.
1845 * So here we make sure we submit 2 bios, one for the first
1846 * range and another one for the third range. Both will target
1847 * the same physical extent from disk, but we can't currently
1848 * make the compressed bio endio callback populate the pages
1849 * for both ranges because each compressed bio is tightly
1850 * coupled with a single extent map, and each range can have
1851 * an extent map with a different offset value relative to the
1852 * uncompressed data of our extent and different lengths. This
1853 * is a corner case so we prioritize correctness over
1854 * non-optimal behavior (submitting 2 bios for the same extent).
1855 */
1856 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1857 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 1858 *prev_em_start != em->start)
005efedf
FM
1859 force_bio_submit = true;
1860
1861 if (prev_em_start)
8e928218 1862 *prev_em_start = em->start;
005efedf 1863
d1310b2e
CM
1864 free_extent_map(em);
1865 em = NULL;
1866
1867 /* we've found a hole, just zero and go on */
1868 if (block_start == EXTENT_MAP_HOLE) {
507903b8
AJ
1869 struct extent_state *cached = NULL;
1870
d048b9c2 1871 memzero_page(page, pg_offset, iosize);
d1310b2e
CM
1872
1873 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 1874 &cached, GFP_NOFS);
7f042a83 1875 unlock_extent_cached(tree, cur,
e43bbe5e 1876 cur + iosize - 1, &cached);
92082d40 1877 end_page_read(page, true, cur, iosize);
d1310b2e 1878 cur = cur + iosize;
306e16ce 1879 pg_offset += iosize;
d1310b2e
CM
1880 continue;
1881 }
1882 /* the get_extent function already copied into the page */
70dec807 1883 if (block_start == EXTENT_MAP_INLINE) {
7f042a83 1884 unlock_extent(tree, cur, cur + iosize - 1);
52b029f4 1885 end_page_read(page, true, cur, iosize);
70dec807 1886 cur = cur + iosize;
306e16ce 1887 pg_offset += iosize;
70dec807
CM
1888 continue;
1889 }
d1310b2e 1890
0ceb34bf 1891 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
390ed29b 1892 bio_ctrl, page, disk_bytenr, iosize,
722c82ac
CH
1893 pg_offset, end_bio_extent_readpage,
1894 this_bio_flag, force_bio_submit);
ad3fc794 1895 if (ret) {
10f7f6f8
QW
1896 /*
1897 * We have to unlock the remaining range, or the page
1898 * will never be unlocked.
1899 */
1900 unlock_extent(tree, cur, end);
1901 end_page_read(page, false, cur, end + 1 - cur);
baf863b9 1902 goto out;
edd33c99 1903 }
d1310b2e 1904 cur = cur + iosize;
306e16ce 1905 pg_offset += iosize;
d1310b2e 1906 }
90a887c9 1907out:
baf863b9 1908 return ret;
d1310b2e
CM
1909}
1910
fdaf9a58 1911int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 1912{
fdaf9a58 1913 struct page *page = &folio->page;
7aab8b32
CH
1914 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1915 u64 start = page_offset(page);
1916 u64 end = start + PAGE_SIZE - 1;
1917 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1918 int ret;
1919
1920 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1921
1922 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1923 /*
1924 * If btrfs_do_readpage() failed we will want to submit the assembled
1925 * bio to do the cleanup.
1926 */
722c82ac 1927 submit_one_bio(&bio_ctrl);
7aab8b32
CH
1928 return ret;
1929}
1930
b6660e80 1931static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
1932 u64 start, u64 end,
1933 struct extent_map **em_cached,
1934 struct btrfs_bio_ctrl *bio_ctrl,
1935 u64 *prev_em_start)
9974090b 1936{
23d31bd4 1937 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
1938 int index;
1939
b272ae22 1940 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
1941
1942 for (index = 0; index < nr_pages; index++) {
390ed29b 1943 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
0f208812 1944 REQ_RAHEAD, prev_em_start);
09cbfeaf 1945 put_page(pages[index]);
9974090b
MX
1946 }
1947}
1948
d1310b2e 1949/*
40f76580
CM
1950 * helper for __extent_writepage, doing all of the delayed allocation setup.
1951 *
5eaad97a 1952 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
1953 * to write the page (copy into inline extent). In this case the IO has
1954 * been started and the page is already unlocked.
1955 *
1956 * This returns 0 if all went well (page still locked)
1957 * This returns < 0 if there were errors (page still locked)
d1310b2e 1958 */
cd4c0bf9 1959static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 1960 struct page *page, struct writeback_control *wbc)
40f76580 1961{
2749f7ef 1962 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
cf3075fb 1963 u64 delalloc_start = page_offset(page);
40f76580 1964 u64 delalloc_to_write = 0;
83f1b680
QW
1965 /* How many pages are started by btrfs_run_delalloc_range() */
1966 unsigned long nr_written = 0;
40f76580
CM
1967 int ret;
1968 int page_started = 0;
1969
2749f7ef
QW
1970 while (delalloc_start < page_end) {
1971 u64 delalloc_end = page_end;
1972 bool found;
40f76580 1973
cd4c0bf9 1974 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 1975 &delalloc_start,
917aacec 1976 &delalloc_end);
3522e903 1977 if (!found) {
40f76580
CM
1978 delalloc_start = delalloc_end + 1;
1979 continue;
1980 }
cd4c0bf9 1981 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
83f1b680 1982 delalloc_end, &page_started, &nr_written, wbc);
40f76580 1983 if (ret) {
963e4db8
QW
1984 btrfs_page_set_error(inode->root->fs_info, page,
1985 page_offset(page), PAGE_SIZE);
7361b4ae 1986 return ret;
40f76580
CM
1987 }
1988 /*
ea1754a0
KS
1989 * delalloc_end is already one less than the total length, so
1990 * we don't subtract one from PAGE_SIZE
40f76580
CM
1991 */
1992 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 1993 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
1994 delalloc_start = delalloc_end + 1;
1995 }
1996 if (wbc->nr_to_write < delalloc_to_write) {
1997 int thresh = 8192;
1998
1999 if (delalloc_to_write < thresh * 2)
2000 thresh = delalloc_to_write;
2001 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2002 thresh);
2003 }
2004
83f1b680 2005 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
40f76580
CM
2006 if (page_started) {
2007 /*
83f1b680
QW
2008 * We've unlocked the page, so we can't update the mapping's
2009 * writeback index, just update nr_to_write.
40f76580 2010 */
83f1b680 2011 wbc->nr_to_write -= nr_written;
40f76580
CM
2012 return 1;
2013 }
2014
b69d1ee9 2015 return 0;
40f76580
CM
2016}
2017
c5ef5c6c
QW
2018/*
2019 * Find the first byte we need to write.
2020 *
2021 * For subpage, one page can contain several sectors, and
2022 * __extent_writepage_io() will just grab all extent maps in the page
2023 * range and try to submit all non-inline/non-compressed extents.
2024 *
2025 * This is a big problem for subpage, we shouldn't re-submit already written
2026 * data at all.
2027 * This function will lookup subpage dirty bit to find which range we really
2028 * need to submit.
2029 *
2030 * Return the next dirty range in [@start, @end).
2031 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
2032 */
2033static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
2034 struct page *page, u64 *start, u64 *end)
2035{
2036 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 2037 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
2038 u64 orig_start = *start;
2039 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 2040 unsigned long flags;
72a69cd0 2041 int range_start_bit;
c5ef5c6c
QW
2042 int range_end_bit;
2043
2044 /*
2045 * For regular sector size == page size case, since one page only
2046 * contains one sector, we return the page offset directly.
2047 */
fbca46eb 2048 if (!btrfs_is_subpage(fs_info, page)) {
c5ef5c6c
QW
2049 *start = page_offset(page);
2050 *end = page_offset(page) + PAGE_SIZE;
2051 return;
2052 }
2053
72a69cd0
QW
2054 range_start_bit = spi->dirty_offset +
2055 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
2056
c5ef5c6c
QW
2057 /* We should have the page locked, but just in case */
2058 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
2059 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
2060 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
2061 spin_unlock_irqrestore(&subpage->lock, flags);
2062
72a69cd0
QW
2063 range_start_bit -= spi->dirty_offset;
2064 range_end_bit -= spi->dirty_offset;
2065
c5ef5c6c
QW
2066 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
2067 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
2068}
2069
40f76580
CM
2070/*
2071 * helper for __extent_writepage. This calls the writepage start hooks,
2072 * and does the loop to map the page into extents and bios.
2073 *
2074 * We return 1 if the IO is started and the page is unlocked,
2075 * 0 if all went well (page still locked)
2076 * < 0 if there were errors (page still locked)
2077 */
d4580fe2 2078static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
2079 struct page *page,
2080 struct writeback_control *wbc,
2081 struct extent_page_data *epd,
2082 loff_t i_size,
57e5ffeb 2083 int *nr_ret)
d1310b2e 2084{
6bc5636a 2085 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
2086 u64 cur = page_offset(page);
2087 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 2088 u64 extent_offset;
d1310b2e 2089 u64 block_start;
d1310b2e 2090 struct extent_map *em;
44e5801f 2091 int saved_ret = 0;
40f76580
CM
2092 int ret = 0;
2093 int nr = 0;
bf9486d6
BVA
2094 enum req_op op = REQ_OP_WRITE;
2095 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
44e5801f 2096 bool has_error = false;
40f76580 2097 bool compressed;
c8b97818 2098
a129ffb8 2099 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
2100 if (ret) {
2101 /* Fixup worker will requeue */
5ab58055 2102 redirty_page_for_writepage(wbc, page);
d75855b4
NB
2103 unlock_page(page);
2104 return 1;
247e743c
CM
2105 }
2106
11c8349b
CM
2107 /*
2108 * we don't want to touch the inode after unlocking the page,
2109 * so we update the mapping writeback index now
2110 */
572f3dad 2111 wbc->nr_to_write--;
771ed689 2112
d1310b2e 2113 while (cur <= end) {
0c64c33c 2114 u64 disk_bytenr;
40f76580 2115 u64 em_end;
c5ef5c6c
QW
2116 u64 dirty_range_start = cur;
2117 u64 dirty_range_end;
6bc5636a 2118 u32 iosize;
58409edd 2119
40f76580 2120 if (cur >= i_size) {
38a39ac7 2121 btrfs_writepage_endio_finish_ordered(inode, page, cur,
25c1252a 2122 end, true);
cc1d0d93
QW
2123 /*
2124 * This range is beyond i_size, thus we don't need to
2125 * bother writing back.
2126 * But we still need to clear the dirty subpage bit, or
2127 * the next time the page gets dirtied, we will try to
2128 * writeback the sectors with subpage dirty bits,
2129 * causing writeback without ordered extent.
2130 */
2131 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
d1310b2e
CM
2132 break;
2133 }
c5ef5c6c
QW
2134
2135 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2136 &dirty_range_end);
2137 if (cur < dirty_range_start) {
2138 cur = dirty_range_start;
2139 continue;
2140 }
2141
d4580fe2 2142 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c0347550 2143 if (IS_ERR(em)) {
c5ef5c6c 2144 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
61391d56 2145 ret = PTR_ERR_OR_ZERO(em);
44e5801f
QW
2146 has_error = true;
2147 if (!saved_ret)
2148 saved_ret = ret;
d1310b2e
CM
2149 break;
2150 }
2151
2152 extent_offset = cur - em->start;
40f76580 2153 em_end = extent_map_end(em);
6bc5636a
QW
2154 ASSERT(cur <= em_end);
2155 ASSERT(cur < end);
2156 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2157 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
d1310b2e 2158 block_start = em->block_start;
c8b97818 2159 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6bc5636a
QW
2160 disk_bytenr = em->block_start + extent_offset;
2161
c5ef5c6c
QW
2162 /*
2163 * Note that em_end from extent_map_end() and dirty_range_end from
2164 * find_next_dirty_byte() are all exclusive
2165 */
2166 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d8e3fb10 2167
e380adfc 2168 if (btrfs_use_zone_append(inode, em->block_start))
bf9486d6 2169 op = REQ_OP_ZONE_APPEND;
d8e3fb10 2170
d1310b2e
CM
2171 free_extent_map(em);
2172 em = NULL;
2173
c8b97818
CM
2174 /*
2175 * compressed and inline extents are written through other
2176 * paths in the FS
2177 */
2178 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2179 block_start == EXTENT_MAP_INLINE) {
c8b04030 2180 if (compressed)
c8b97818 2181 nr++;
c8b04030 2182 else
38a39ac7 2183 btrfs_writepage_endio_finish_ordered(inode,
25c1252a 2184 page, cur, cur + iosize - 1, true);
cc1d0d93 2185 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
c8b97818 2186 cur += iosize;
d1310b2e
CM
2187 continue;
2188 }
c8b97818 2189
d2a91064 2190 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 2191 if (!PageWriteback(page)) {
d4580fe2 2192 btrfs_err(inode->root->fs_info,
58409edd
DS
2193 "page %lu not writeback, cur %llu end %llu",
2194 page->index, cur, end);
d1310b2e 2195 }
7f3c74fb 2196
c5ef5c6c
QW
2197 /*
2198 * Although the PageDirty bit is cleared before entering this
2199 * function, subpage dirty bit is not cleared.
2200 * So clear subpage dirty bit here so next time we won't submit
2201 * page for range already written to disk.
2202 */
2203 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2204
bf9486d6 2205 ret = submit_extent_page(op | write_flags, wbc,
390ed29b 2206 &epd->bio_ctrl, page,
d8e3fb10 2207 disk_bytenr, iosize,
390ed29b 2208 cur - page_offset(page),
58409edd 2209 end_bio_extent_writepage,
722c82ac 2210 0, false);
fe01aa65 2211 if (ret) {
44e5801f
QW
2212 has_error = true;
2213 if (!saved_ret)
2214 saved_ret = ret;
2215
c5ef5c6c 2216 btrfs_page_set_error(fs_info, page, cur, iosize);
fe01aa65 2217 if (PageWriteback(page))
c5ef5c6c
QW
2218 btrfs_page_clear_writeback(fs_info, page, cur,
2219 iosize);
fe01aa65 2220 }
d1310b2e 2221
6bc5636a 2222 cur += iosize;
d1310b2e
CM
2223 nr++;
2224 }
cc1d0d93
QW
2225 /*
2226 * If we finish without problem, we should not only clear page dirty,
2227 * but also empty subpage dirty bits
2228 */
44e5801f 2229 if (!has_error)
cc1d0d93 2230 btrfs_page_assert_not_dirty(fs_info, page);
44e5801f
QW
2231 else
2232 ret = saved_ret;
40f76580 2233 *nr_ret = nr;
40f76580
CM
2234 return ret;
2235}
2236
2237/*
2238 * the writepage semantics are similar to regular writepage. extent
2239 * records are inserted to lock ranges in the tree, and as dirty areas
2240 * are found, they are marked writeback. Then the lock bits are removed
2241 * and the end_io handler clears the writeback ranges
3065976b
QW
2242 *
2243 * Return 0 if everything goes well.
2244 * Return <0 for error.
40f76580
CM
2245 */
2246static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 2247 struct extent_page_data *epd)
40f76580 2248{
8e1dec8e 2249 struct folio *folio = page_folio(page);
40f76580 2250 struct inode *inode = page->mapping->host;
e55a0de1 2251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
cf3075fb
QW
2252 const u64 page_start = page_offset(page);
2253 const u64 page_end = page_start + PAGE_SIZE - 1;
40f76580
CM
2254 int ret;
2255 int nr = 0;
eb70d222 2256 size_t pg_offset;
40f76580 2257 loff_t i_size = i_size_read(inode);
09cbfeaf 2258 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 2259
40f76580
CM
2260 trace___extent_writepage(page, inode, wbc);
2261
2262 WARN_ON(!PageLocked(page));
2263
963e4db8
QW
2264 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2265 page_offset(page), PAGE_SIZE);
40f76580 2266
7073017a 2267 pg_offset = offset_in_page(i_size);
40f76580
CM
2268 if (page->index > end_index ||
2269 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
2270 folio_invalidate(folio, 0, folio_size(folio));
2271 folio_unlock(folio);
40f76580
CM
2272 return 0;
2273 }
2274
21a8935e 2275 if (page->index == end_index)
d048b9c2 2276 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 2277
32443de3
QW
2278 ret = set_page_extent_mapped(page);
2279 if (ret < 0) {
2280 SetPageError(page);
2281 goto done;
2282 }
40f76580 2283
7789a55a 2284 if (!epd->extent_locked) {
83f1b680 2285 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
7789a55a 2286 if (ret == 1)
169d2c87 2287 return 0;
7789a55a
NB
2288 if (ret)
2289 goto done;
2290 }
40f76580 2291
d4580fe2 2292 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
83f1b680 2293 &nr);
40f76580 2294 if (ret == 1)
169d2c87 2295 return 0;
40f76580 2296
d1310b2e
CM
2297done:
2298 if (nr == 0) {
2299 /* make sure the mapping tag for page dirty gets cleared */
2300 set_page_writeback(page);
2301 end_page_writeback(page);
2302 }
963e4db8
QW
2303 /*
2304 * Here we used to have a check for PageError() and then set @ret and
2305 * call end_extent_writepage().
2306 *
2307 * But in fact setting @ret here will cause different error paths
2308 * between subpage and regular sectorsize.
2309 *
2310 * For regular page size, we never submit current page, but only add
2311 * current page to current bio.
2312 * The bio submission can only happen in next page.
2313 * Thus if we hit the PageError() branch, @ret is already set to
2314 * non-zero value and will not get updated for regular sectorsize.
2315 *
2316 * But for subpage case, it's possible we submit part of current page,
2317 * thus can get PageError() set by submitted bio of the same page,
2318 * while our @ret is still 0.
2319 *
2320 * So here we unify the behavior and don't set @ret.
2321 * Error can still be properly passed to higher layer as page will
2322 * be set error, here we just don't handle the IO failure.
2323 *
2324 * NOTE: This is just a hotfix for subpage.
2325 * The root fix will be properly ending ordered extent when we hit
2326 * an error during writeback.
2327 *
2328 * But that needs a bigger refactoring, as we not only need to grab the
2329 * submitted OE, but also need to know exactly at which bytenr we hit
2330 * the error.
2331 * Currently the full page based __extent_writepage_io() is not
2332 * capable of that.
2333 */
2334 if (PageError(page))
cf3075fb 2335 end_extent_writepage(page, ret, page_start, page_end);
e55a0de1
QW
2336 if (epd->extent_locked) {
2337 /*
2338 * If epd->extent_locked, it's from extent_write_locked_range(),
2339 * the page can either be locked by lock_page() or
2340 * process_one_page().
2341 * Let btrfs_page_unlock_writer() handle both cases.
2342 */
2343 ASSERT(wbc);
2344 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2345 wbc->range_end + 1 - wbc->range_start);
2346 } else {
2347 unlock_page(page);
2348 }
3065976b 2349 ASSERT(ret <= 0);
40f76580 2350 return ret;
d1310b2e
CM
2351}
2352
fd8b2b61 2353void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 2354{
74316201
N
2355 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2356 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
2357}
2358
18dfa711
FM
2359static void end_extent_buffer_writeback(struct extent_buffer *eb)
2360{
2361 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2362 smp_mb__after_atomic();
2363 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2364}
2365
2e3c2513 2366/*
a3efb2f0 2367 * Lock extent buffer status and pages for writeback.
2e3c2513 2368 *
a3efb2f0
QW
2369 * May try to flush write bio if we can't get the lock.
2370 *
2371 * Return 0 if the extent buffer doesn't need to be submitted.
2372 * (E.g. the extent buffer is not dirty)
2373 * Return >0 is the extent buffer is submitted to bio.
2374 * Return <0 if something went wrong, no page is locked.
2e3c2513 2375 */
9df76fb5 2376static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 2377 struct extent_page_data *epd)
0b32f4bb 2378{
9df76fb5 2379 struct btrfs_fs_info *fs_info = eb->fs_info;
c9583ada 2380 int i, num_pages;
0b32f4bb
JB
2381 int flush = 0;
2382 int ret = 0;
2383
2384 if (!btrfs_try_tree_write_lock(eb)) {
9845e5dd 2385 submit_write_bio(epd, 0);
2e3c2513 2386 flush = 1;
0b32f4bb
JB
2387 btrfs_tree_lock(eb);
2388 }
2389
2390 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2391 btrfs_tree_unlock(eb);
2392 if (!epd->sync_io)
2393 return 0;
2394 if (!flush) {
9845e5dd 2395 submit_write_bio(epd, 0);
0b32f4bb
JB
2396 flush = 1;
2397 }
a098d8e8
CM
2398 while (1) {
2399 wait_on_extent_buffer_writeback(eb);
2400 btrfs_tree_lock(eb);
2401 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2402 break;
0b32f4bb 2403 btrfs_tree_unlock(eb);
0b32f4bb
JB
2404 }
2405 }
2406
51561ffe
JB
2407 /*
2408 * We need to do this to prevent races in people who check if the eb is
2409 * under IO since we can end up having no IO bits set for a short period
2410 * of time.
2411 */
2412 spin_lock(&eb->refs_lock);
0b32f4bb
JB
2413 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2414 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 2415 spin_unlock(&eb->refs_lock);
0b32f4bb 2416 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
2417 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2418 -eb->len,
2419 fs_info->dirty_metadata_batch);
0b32f4bb 2420 ret = 1;
51561ffe
JB
2421 } else {
2422 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
2423 }
2424
2425 btrfs_tree_unlock(eb);
2426
f3156df9
QW
2427 /*
2428 * Either we don't need to submit any tree block, or we're submitting
2429 * subpage eb.
2430 * Subpage metadata doesn't use page locking at all, so we can skip
2431 * the page locking.
2432 */
fbca46eb 2433 if (!ret || fs_info->nodesize < PAGE_SIZE)
0b32f4bb
JB
2434 return ret;
2435
65ad0104 2436 num_pages = num_extent_pages(eb);
0b32f4bb 2437 for (i = 0; i < num_pages; i++) {
fb85fc9a 2438 struct page *p = eb->pages[i];
0b32f4bb
JB
2439
2440 if (!trylock_page(p)) {
2441 if (!flush) {
9845e5dd 2442 submit_write_bio(epd, 0);
0b32f4bb
JB
2443 flush = 1;
2444 }
2445 lock_page(p);
2446 }
2447 }
2448
2e3c2513 2449 return ret;
0b32f4bb
JB
2450}
2451
5a2c6075 2452static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
656f30db 2453{
5a2c6075 2454 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 2455
5a2c6075 2456 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
656f30db
FM
2457 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2458 return;
2459
c2e39305
JB
2460 /*
2461 * A read may stumble upon this buffer later, make sure that it gets an
2462 * error and knows there was an error.
2463 */
2464 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2465
68b85589
JB
2466 /*
2467 * We need to set the mapping with the io error as well because a write
2468 * error will flip the file system readonly, and then syncfs() will
2469 * return a 0 because we are readonly if we don't modify the err seq for
2470 * the superblock.
2471 */
2472 mapping_set_error(page->mapping, -EIO);
2473
eb5b64f1
DZ
2474 /*
2475 * If we error out, we should add back the dirty_metadata_bytes
2476 * to make it consistent.
2477 */
eb5b64f1
DZ
2478 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2479 eb->len, fs_info->dirty_metadata_batch);
2480
656f30db
FM
2481 /*
2482 * If writeback for a btree extent that doesn't belong to a log tree
2483 * failed, increment the counter transaction->eb_write_errors.
2484 * We do this because while the transaction is running and before it's
2485 * committing (when we call filemap_fdata[write|wait]_range against
2486 * the btree inode), we might have
2487 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2488 * returns an error or an error happens during writeback, when we're
2489 * committing the transaction we wouldn't know about it, since the pages
2490 * can be no longer dirty nor marked anymore for writeback (if a
2491 * subsequent modification to the extent buffer didn't happen before the
2492 * transaction commit), which makes filemap_fdata[write|wait]_range not
2493 * able to find the pages tagged with SetPageError at transaction
2494 * commit time. So if this happens we must abort the transaction,
2495 * otherwise we commit a super block with btree roots that point to
2496 * btree nodes/leafs whose content on disk is invalid - either garbage
2497 * or the content of some node/leaf from a past generation that got
2498 * cowed or deleted and is no longer valid.
2499 *
2500 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2501 * not be enough - we need to distinguish between log tree extents vs
2502 * non-log tree extents, and the next filemap_fdatawait_range() call
2503 * will catch and clear such errors in the mapping - and that call might
2504 * be from a log sync and not from a transaction commit. Also, checking
2505 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2506 * not done and would not be reliable - the eb might have been released
2507 * from memory and reading it back again means that flag would not be
2508 * set (since it's a runtime flag, not persisted on disk).
2509 *
2510 * Using the flags below in the btree inode also makes us achieve the
2511 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2512 * writeback for all dirty pages and before filemap_fdatawait_range()
2513 * is called, the writeback for all dirty pages had already finished
2514 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2515 * filemap_fdatawait_range() would return success, as it could not know
2516 * that writeback errors happened (the pages were no longer tagged for
2517 * writeback).
2518 */
2519 switch (eb->log_index) {
2520 case -1:
5a2c6075 2521 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
2522 break;
2523 case 0:
5a2c6075 2524 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
2525 break;
2526 case 1:
5a2c6075 2527 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
2528 break;
2529 default:
2530 BUG(); /* unexpected, logic error */
2531 }
2532}
2533
2f3186d8
QW
2534/*
2535 * The endio specific version which won't touch any unsafe spinlock in endio
2536 * context.
2537 */
2538static struct extent_buffer *find_extent_buffer_nolock(
2539 struct btrfs_fs_info *fs_info, u64 start)
2540{
2541 struct extent_buffer *eb;
2542
2543 rcu_read_lock();
01cd3909
DS
2544 eb = radix_tree_lookup(&fs_info->buffer_radix,
2545 start >> fs_info->sectorsize_bits);
2f3186d8
QW
2546 if (eb && atomic_inc_not_zero(&eb->refs)) {
2547 rcu_read_unlock();
2548 return eb;
2549 }
2550 rcu_read_unlock();
2551 return NULL;
2552}
2553
2554/*
2555 * The endio function for subpage extent buffer write.
2556 *
2557 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2558 * after all extent buffers in the page has finished their writeback.
2559 */
917f32a2 2560static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2f3186d8 2561{
917f32a2 2562 struct bio *bio = &bbio->bio;
fa04c165 2563 struct btrfs_fs_info *fs_info;
2f3186d8
QW
2564 struct bio_vec *bvec;
2565 struct bvec_iter_all iter_all;
2566
fa04c165 2567 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
fbca46eb 2568 ASSERT(fs_info->nodesize < PAGE_SIZE);
fa04c165 2569
2f3186d8
QW
2570 ASSERT(!bio_flagged(bio, BIO_CLONED));
2571 bio_for_each_segment_all(bvec, bio, iter_all) {
2572 struct page *page = bvec->bv_page;
2573 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2574 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2575 u64 cur_bytenr = bvec_start;
2576
2577 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2578
2579 /* Iterate through all extent buffers in the range */
2580 while (cur_bytenr <= bvec_end) {
2581 struct extent_buffer *eb;
2582 int done;
2583
2584 /*
2585 * Here we can't use find_extent_buffer(), as it may
2586 * try to lock eb->refs_lock, which is not safe in endio
2587 * context.
2588 */
2589 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2590 ASSERT(eb);
2591
2592 cur_bytenr = eb->start + eb->len;
2593
2594 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2595 done = atomic_dec_and_test(&eb->io_pages);
2596 ASSERT(done);
2597
2598 if (bio->bi_status ||
2599 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2600 ClearPageUptodate(page);
2601 set_btree_ioerr(page, eb);
2602 }
2603
2604 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2605 eb->len);
2606 end_extent_buffer_writeback(eb);
2607 /*
2608 * free_extent_buffer() will grab spinlock which is not
2609 * safe in endio context. Thus here we manually dec
2610 * the ref.
2611 */
2612 atomic_dec(&eb->refs);
2613 }
2614 }
2615 bio_put(bio);
2616}
2617
917f32a2 2618static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
0b32f4bb 2619{
917f32a2 2620 struct bio *bio = &bbio->bio;
2c30c71b 2621 struct bio_vec *bvec;
0b32f4bb 2622 struct extent_buffer *eb;
2b070cfe 2623 int done;
6dc4f100 2624 struct bvec_iter_all iter_all;
0b32f4bb 2625
c09abff8 2626 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2627 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
2628 struct page *page = bvec->bv_page;
2629
0b32f4bb
JB
2630 eb = (struct extent_buffer *)page->private;
2631 BUG_ON(!eb);
2632 done = atomic_dec_and_test(&eb->io_pages);
2633
4e4cbee9 2634 if (bio->bi_status ||
4246a0b6 2635 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 2636 ClearPageUptodate(page);
5a2c6075 2637 set_btree_ioerr(page, eb);
0b32f4bb
JB
2638 }
2639
2640 end_page_writeback(page);
2641
2642 if (!done)
2643 continue;
2644
2645 end_extent_buffer_writeback(eb);
2c30c71b 2646 }
0b32f4bb
JB
2647
2648 bio_put(bio);
0b32f4bb
JB
2649}
2650
fa04c165
QW
2651static void prepare_eb_write(struct extent_buffer *eb)
2652{
2653 u32 nritems;
2654 unsigned long start;
2655 unsigned long end;
2656
2657 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2658 atomic_set(&eb->io_pages, num_extent_pages(eb));
2659
2660 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2661 nritems = btrfs_header_nritems(eb);
2662 if (btrfs_header_level(eb) > 0) {
2663 end = btrfs_node_key_ptr_offset(nritems);
2664 memzero_extent_buffer(eb, end, eb->len - end);
2665 } else {
2666 /*
2667 * Leaf:
2668 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2669 */
2670 start = btrfs_item_nr_offset(nritems);
2671 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
2672 memzero_extent_buffer(eb, start, end - start);
2673 }
2674}
2675
35b6ddfa
QW
2676/*
2677 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2678 * Page locking is only utilized at minimum to keep the VMM code happy.
35b6ddfa
QW
2679 */
2680static int write_one_subpage_eb(struct extent_buffer *eb,
2681 struct writeback_control *wbc,
2682 struct extent_page_data *epd)
2683{
2684 struct btrfs_fs_info *fs_info = eb->fs_info;
2685 struct page *page = eb->pages[0];
353767e4 2686 blk_opf_t write_flags = wbc_to_write_flags(wbc);
35b6ddfa
QW
2687 bool no_dirty_ebs = false;
2688 int ret;
2689
fa04c165
QW
2690 prepare_eb_write(eb);
2691
35b6ddfa
QW
2692 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2693 lock_page(page);
2694 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2695
2696 /* Check if this is the last dirty bit to update nr_written */
2697 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2698 eb->start, eb->len);
2699 if (no_dirty_ebs)
2700 clear_page_dirty_for_io(page);
2701
390ed29b
QW
2702 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2703 &epd->bio_ctrl, page, eb->start, eb->len,
2704 eb->start - page_offset(page),
722c82ac 2705 end_bio_subpage_eb_writepage, 0, false);
35b6ddfa
QW
2706 if (ret) {
2707 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2708 set_btree_ioerr(page, eb);
2709 unlock_page(page);
2710
2711 if (atomic_dec_and_test(&eb->io_pages))
2712 end_extent_buffer_writeback(eb);
2713 return -EIO;
2714 }
2715 unlock_page(page);
2716 /*
2717 * Submission finished without problem, if no range of the page is
2718 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2719 */
2720 if (no_dirty_ebs)
572f3dad 2721 wbc->nr_to_write--;
35b6ddfa
QW
2722 return ret;
2723}
2724
0e378df1 2725static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
2726 struct writeback_control *wbc,
2727 struct extent_page_data *epd)
2728{
0c64c33c 2729 u64 disk_bytenr = eb->start;
cc5e31a4 2730 int i, num_pages;
353767e4 2731 blk_opf_t write_flags = wbc_to_write_flags(wbc);
d7dbe9e7 2732 int ret = 0;
0b32f4bb 2733
fa04c165 2734 prepare_eb_write(eb);
35b6ddfa 2735
fa04c165 2736 num_pages = num_extent_pages(eb);
0b32f4bb 2737 for (i = 0; i < num_pages; i++) {
fb85fc9a 2738 struct page *p = eb->pages[i];
0b32f4bb
JB
2739
2740 clear_page_dirty_for_io(p);
2741 set_page_writeback(p);
0ceb34bf 2742 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
390ed29b
QW
2743 &epd->bio_ctrl, p, disk_bytenr,
2744 PAGE_SIZE, 0,
1f7ad75b 2745 end_bio_extent_buffer_writepage,
722c82ac 2746 0, false);
0b32f4bb 2747 if (ret) {
5a2c6075 2748 set_btree_ioerr(p, eb);
fe01aa65
TK
2749 if (PageWriteback(p))
2750 end_page_writeback(p);
0b32f4bb
JB
2751 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2752 end_extent_buffer_writeback(eb);
2753 ret = -EIO;
2754 break;
2755 }
0c64c33c 2756 disk_bytenr += PAGE_SIZE;
572f3dad 2757 wbc->nr_to_write--;
0b32f4bb
JB
2758 unlock_page(p);
2759 }
2760
2761 if (unlikely(ret)) {
2762 for (; i < num_pages; i++) {
bbf65cf0 2763 struct page *p = eb->pages[i];
81465028 2764 clear_page_dirty_for_io(p);
0b32f4bb
JB
2765 unlock_page(p);
2766 }
2767 }
2768
2769 return ret;
2770}
2771
c4aec299
QW
2772/*
2773 * Submit one subpage btree page.
2774 *
2775 * The main difference to submit_eb_page() is:
2776 * - Page locking
2777 * For subpage, we don't rely on page locking at all.
2778 *
2779 * - Flush write bio
2780 * We only flush bio if we may be unable to fit current extent buffers into
2781 * current bio.
2782 *
2783 * Return >=0 for the number of submitted extent buffers.
2784 * Return <0 for fatal error.
2785 */
2786static int submit_eb_subpage(struct page *page,
2787 struct writeback_control *wbc,
2788 struct extent_page_data *epd)
2789{
2790 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2791 int submitted = 0;
2792 u64 page_start = page_offset(page);
2793 int bit_start = 0;
c4aec299
QW
2794 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2795 int ret;
2796
2797 /* Lock and write each dirty extent buffers in the range */
72a69cd0 2798 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
2799 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2800 struct extent_buffer *eb;
2801 unsigned long flags;
2802 u64 start;
2803
2804 /*
2805 * Take private lock to ensure the subpage won't be detached
2806 * in the meantime.
2807 */
2808 spin_lock(&page->mapping->private_lock);
2809 if (!PagePrivate(page)) {
2810 spin_unlock(&page->mapping->private_lock);
2811 break;
2812 }
2813 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
2814 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2815 subpage->bitmaps)) {
c4aec299
QW
2816 spin_unlock_irqrestore(&subpage->lock, flags);
2817 spin_unlock(&page->mapping->private_lock);
2818 bit_start++;
2819 continue;
2820 }
2821
2822 start = page_start + bit_start * fs_info->sectorsize;
2823 bit_start += sectors_per_node;
2824
2825 /*
2826 * Here we just want to grab the eb without touching extra
2827 * spin locks, so call find_extent_buffer_nolock().
2828 */
2829 eb = find_extent_buffer_nolock(fs_info, start);
2830 spin_unlock_irqrestore(&subpage->lock, flags);
2831 spin_unlock(&page->mapping->private_lock);
2832
2833 /*
2834 * The eb has already reached 0 refs thus find_extent_buffer()
2835 * doesn't return it. We don't need to write back such eb
2836 * anyway.
2837 */
2838 if (!eb)
2839 continue;
2840
2841 ret = lock_extent_buffer_for_io(eb, epd);
2842 if (ret == 0) {
2843 free_extent_buffer(eb);
2844 continue;
2845 }
2846 if (ret < 0) {
2847 free_extent_buffer(eb);
2848 goto cleanup;
2849 }
fa04c165 2850 ret = write_one_subpage_eb(eb, wbc, epd);
c4aec299
QW
2851 free_extent_buffer(eb);
2852 if (ret < 0)
2853 goto cleanup;
2854 submitted++;
2855 }
2856 return submitted;
2857
2858cleanup:
2859 /* We hit error, end bio for the submitted extent buffers */
9845e5dd 2860 submit_write_bio(epd, ret);
c4aec299
QW
2861 return ret;
2862}
2863
f91e0d0c
QW
2864/*
2865 * Submit all page(s) of one extent buffer.
2866 *
2867 * @page: the page of one extent buffer
2868 * @eb_context: to determine if we need to submit this page, if current page
2869 * belongs to this eb, we don't need to submit
2870 *
2871 * The caller should pass each page in their bytenr order, and here we use
2872 * @eb_context to determine if we have submitted pages of one extent buffer.
2873 *
2874 * If we have, we just skip until we hit a new page that doesn't belong to
2875 * current @eb_context.
2876 *
2877 * If not, we submit all the page(s) of the extent buffer.
2878 *
2879 * Return >0 if we have submitted the extent buffer successfully.
2880 * Return 0 if we don't need to submit the page, as it's already submitted by
2881 * previous call.
2882 * Return <0 for fatal error.
2883 */
2884static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2885 struct extent_page_data *epd,
2886 struct extent_buffer **eb_context)
2887{
2888 struct address_space *mapping = page->mapping;
0bc09ca1 2889 struct btrfs_block_group *cache = NULL;
f91e0d0c
QW
2890 struct extent_buffer *eb;
2891 int ret;
2892
2893 if (!PagePrivate(page))
2894 return 0;
2895
fbca46eb 2896 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
c4aec299
QW
2897 return submit_eb_subpage(page, wbc, epd);
2898
f91e0d0c
QW
2899 spin_lock(&mapping->private_lock);
2900 if (!PagePrivate(page)) {
2901 spin_unlock(&mapping->private_lock);
2902 return 0;
2903 }
2904
2905 eb = (struct extent_buffer *)page->private;
2906
2907 /*
2908 * Shouldn't happen and normally this would be a BUG_ON but no point
2909 * crashing the machine for something we can survive anyway.
2910 */
2911 if (WARN_ON(!eb)) {
2912 spin_unlock(&mapping->private_lock);
2913 return 0;
2914 }
2915
2916 if (eb == *eb_context) {
2917 spin_unlock(&mapping->private_lock);
2918 return 0;
2919 }
2920 ret = atomic_inc_not_zero(&eb->refs);
2921 spin_unlock(&mapping->private_lock);
2922 if (!ret)
2923 return 0;
2924
0bc09ca1
NA
2925 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2926 /*
2927 * If for_sync, this hole will be filled with
2928 * trasnsaction commit.
2929 */
2930 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2931 ret = -EAGAIN;
2932 else
2933 ret = 0;
2934 free_extent_buffer(eb);
2935 return ret;
2936 }
2937
f91e0d0c
QW
2938 *eb_context = eb;
2939
2940 ret = lock_extent_buffer_for_io(eb, epd);
2941 if (ret <= 0) {
0bc09ca1
NA
2942 btrfs_revert_meta_write_pointer(cache, eb);
2943 if (cache)
2944 btrfs_put_block_group(cache);
f91e0d0c
QW
2945 free_extent_buffer(eb);
2946 return ret;
2947 }
be1a1d7a 2948 if (cache) {
d3e29967
NB
2949 /*
2950 * Implies write in zoned mode. Mark the last eb in a block group.
2951 */
56fbb0a4 2952 btrfs_schedule_zone_finish_bg(cache, eb);
d3e29967 2953 btrfs_put_block_group(cache);
be1a1d7a 2954 }
f91e0d0c
QW
2955 ret = write_one_eb(eb, wbc, epd);
2956 free_extent_buffer(eb);
2957 if (ret < 0)
2958 return ret;
2959 return 1;
2960}
2961
0b32f4bb
JB
2962int btree_write_cache_pages(struct address_space *mapping,
2963 struct writeback_control *wbc)
2964{
f91e0d0c 2965 struct extent_buffer *eb_context = NULL;
0b32f4bb 2966 struct extent_page_data epd = {
390ed29b 2967 .bio_ctrl = { 0 },
0b32f4bb
JB
2968 .extent_locked = 0,
2969 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2970 };
b3ff8f1d 2971 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
2972 int ret = 0;
2973 int done = 0;
2974 int nr_to_write_done = 0;
2975 struct pagevec pvec;
2976 int nr_pages;
2977 pgoff_t index;
2978 pgoff_t end; /* Inclusive */
2979 int scanned = 0;
10bbd235 2980 xa_mark_t tag;
0b32f4bb 2981
86679820 2982 pagevec_init(&pvec);
0b32f4bb
JB
2983 if (wbc->range_cyclic) {
2984 index = mapping->writeback_index; /* Start from prev offset */
2985 end = -1;
556755a8
JB
2986 /*
2987 * Start from the beginning does not need to cycle over the
2988 * range, mark it as scanned.
2989 */
2990 scanned = (index == 0);
0b32f4bb 2991 } else {
09cbfeaf
KS
2992 index = wbc->range_start >> PAGE_SHIFT;
2993 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
2994 scanned = 1;
2995 }
2996 if (wbc->sync_mode == WB_SYNC_ALL)
2997 tag = PAGECACHE_TAG_TOWRITE;
2998 else
2999 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 3000 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
3001retry:
3002 if (wbc->sync_mode == WB_SYNC_ALL)
3003 tag_pages_for_writeback(mapping, index, end);
3004 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3005 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3006 tag))) {
0b32f4bb
JB
3007 unsigned i;
3008
0b32f4bb
JB
3009 for (i = 0; i < nr_pages; i++) {
3010 struct page *page = pvec.pages[i];
3011
f91e0d0c
QW
3012 ret = submit_eb_page(page, wbc, &epd, &eb_context);
3013 if (ret == 0)
0b32f4bb 3014 continue;
f91e0d0c 3015 if (ret < 0) {
0b32f4bb 3016 done = 1;
0b32f4bb
JB
3017 break;
3018 }
0b32f4bb
JB
3019
3020 /*
3021 * the filesystem may choose to bump up nr_to_write.
3022 * We have to make sure to honor the new nr_to_write
3023 * at any time
3024 */
3025 nr_to_write_done = wbc->nr_to_write <= 0;
3026 }
3027 pagevec_release(&pvec);
3028 cond_resched();
3029 }
3030 if (!scanned && !done) {
3031 /*
3032 * We hit the last page and there is more work to be done: wrap
3033 * back to the start of the file
3034 */
3035 scanned = 1;
3036 index = 0;
3037 goto retry;
3038 }
b3ff8f1d
QW
3039 /*
3040 * If something went wrong, don't allow any metadata write bio to be
3041 * submitted.
3042 *
3043 * This would prevent use-after-free if we had dirty pages not
3044 * cleaned up, which can still happen by fuzzed images.
3045 *
3046 * - Bad extent tree
3047 * Allowing existing tree block to be allocated for other trees.
3048 *
3049 * - Log tree operations
3050 * Exiting tree blocks get allocated to log tree, bumps its
3051 * generation, then get cleaned in tree re-balance.
3052 * Such tree block will not be written back, since it's clean,
3053 * thus no WRITTEN flag set.
3054 * And after log writes back, this tree block is not traced by
3055 * any dirty extent_io_tree.
3056 *
3057 * - Offending tree block gets re-dirtied from its original owner
3058 * Since it has bumped generation, no WRITTEN flag, it can be
3059 * reused without COWing. This tree block will not be traced
3060 * by btrfs_transaction::dirty_pages.
3061 *
3062 * Now such dirty tree block will not be cleaned by any dirty
3063 * extent io tree. Thus we don't want to submit such wild eb
3064 * if the fs already has error.
9845e5dd 3065 *
c9583ada
QW
3066 * We can get ret > 0 from submit_extent_page() indicating how many ebs
3067 * were submitted. Reset it to 0 to avoid false alerts for the caller.
3068 */
3069 if (ret > 0)
3070 ret = 0;
9845e5dd
CH
3071 if (!ret && BTRFS_FS_ERROR(fs_info))
3072 ret = -EROFS;
3073 submit_write_bio(&epd, ret);
3074
3075 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
3076 return ret;
3077}
3078
d1310b2e 3079/**
3bed2da1
NB
3080 * Walk the list of dirty pages of the given address space and write all of them.
3081 *
d1310b2e 3082 * @mapping: address space structure to write
3bed2da1
NB
3083 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3084 * @epd: holds context for the write, namely the bio
d1310b2e
CM
3085 *
3086 * If a page is already under I/O, write_cache_pages() skips it, even
3087 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3088 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3089 * and msync() need to guarantee that all the data which was dirty at the time
3090 * the call was made get new I/O started against them. If wbc->sync_mode is
3091 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3092 * existing IO to complete.
3093 */
4242b64a 3094static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3095 struct writeback_control *wbc,
aab6e9ed 3096 struct extent_page_data *epd)
d1310b2e 3097{
7fd1a3f7 3098 struct inode *inode = mapping->host;
d1310b2e
CM
3099 int ret = 0;
3100 int done = 0;
f85d7d6c 3101 int nr_to_write_done = 0;
d1310b2e
CM
3102 struct pagevec pvec;
3103 int nr_pages;
3104 pgoff_t index;
3105 pgoff_t end; /* Inclusive */
a9132667
LB
3106 pgoff_t done_index;
3107 int range_whole = 0;
d1310b2e 3108 int scanned = 0;
10bbd235 3109 xa_mark_t tag;
d1310b2e 3110
7fd1a3f7
JB
3111 /*
3112 * We have to hold onto the inode so that ordered extents can do their
3113 * work when the IO finishes. The alternative to this is failing to add
3114 * an ordered extent if the igrab() fails there and that is a huge pain
3115 * to deal with, so instead just hold onto the inode throughout the
3116 * writepages operation. If it fails here we are freeing up the inode
3117 * anyway and we'd rather not waste our time writing out stuff that is
3118 * going to be truncated anyway.
3119 */
3120 if (!igrab(inode))
3121 return 0;
3122
86679820 3123 pagevec_init(&pvec);
d1310b2e
CM
3124 if (wbc->range_cyclic) {
3125 index = mapping->writeback_index; /* Start from prev offset */
3126 end = -1;
556755a8
JB
3127 /*
3128 * Start from the beginning does not need to cycle over the
3129 * range, mark it as scanned.
3130 */
3131 scanned = (index == 0);
d1310b2e 3132 } else {
09cbfeaf
KS
3133 index = wbc->range_start >> PAGE_SHIFT;
3134 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3135 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3136 range_whole = 1;
d1310b2e
CM
3137 scanned = 1;
3138 }
3cd24c69
EL
3139
3140 /*
3141 * We do the tagged writepage as long as the snapshot flush bit is set
3142 * and we are the first one who do the filemap_flush() on this inode.
3143 *
3144 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3145 * not race in and drop the bit.
3146 */
3147 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3148 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3149 &BTRFS_I(inode)->runtime_flags))
3150 wbc->tagged_writepages = 1;
3151
3152 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3153 tag = PAGECACHE_TAG_TOWRITE;
3154 else
3155 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3156retry:
3cd24c69 3157 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3158 tag_pages_for_writeback(mapping, index, end);
a9132667 3159 done_index = index;
f85d7d6c 3160 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3161 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3162 &index, end, tag))) {
d1310b2e
CM
3163 unsigned i;
3164
d1310b2e
CM
3165 for (i = 0; i < nr_pages; i++) {
3166 struct page *page = pvec.pages[i];
3167
f7bddf1e 3168 done_index = page->index + 1;
d1310b2e 3169 /*
b93b0163
MW
3170 * At this point we hold neither the i_pages lock nor
3171 * the page lock: the page may be truncated or
3172 * invalidated (changing page->mapping to NULL),
3173 * or even swizzled back from swapper_space to
3174 * tmpfs file mapping
d1310b2e 3175 */
c8f2f24b 3176 if (!trylock_page(page)) {
9845e5dd 3177 submit_write_bio(epd, 0);
c8f2f24b 3178 lock_page(page);
01d658f2 3179 }
d1310b2e
CM
3180
3181 if (unlikely(page->mapping != mapping)) {
3182 unlock_page(page);
3183 continue;
3184 }
3185
d2c3f4f6 3186 if (wbc->sync_mode != WB_SYNC_NONE) {
c9583ada 3187 if (PageWriteback(page))
9845e5dd 3188 submit_write_bio(epd, 0);
d1310b2e 3189 wait_on_page_writeback(page);
d2c3f4f6 3190 }
d1310b2e
CM
3191
3192 if (PageWriteback(page) ||
3193 !clear_page_dirty_for_io(page)) {
3194 unlock_page(page);
3195 continue;
3196 }
3197
aab6e9ed 3198 ret = __extent_writepage(page, wbc, epd);
a9132667 3199 if (ret < 0) {
a9132667
LB
3200 done = 1;
3201 break;
3202 }
f85d7d6c
CM
3203
3204 /*
3205 * the filesystem may choose to bump up nr_to_write.
3206 * We have to make sure to honor the new nr_to_write
3207 * at any time
3208 */
3209 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3210 }
3211 pagevec_release(&pvec);
3212 cond_resched();
3213 }
894b36e3 3214 if (!scanned && !done) {
d1310b2e
CM
3215 /*
3216 * We hit the last page and there is more work to be done: wrap
3217 * back to the start of the file
3218 */
3219 scanned = 1;
3220 index = 0;
42ffb0bf
JB
3221
3222 /*
3223 * If we're looping we could run into a page that is locked by a
3224 * writer and that writer could be waiting on writeback for a
3225 * page in our current bio, and thus deadlock, so flush the
3226 * write bio here.
3227 */
9845e5dd 3228 submit_write_bio(epd, 0);
c9583ada 3229 goto retry;
d1310b2e 3230 }
a9132667
LB
3231
3232 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3233 mapping->writeback_index = done_index;
3234
7fd1a3f7 3235 btrfs_add_delayed_iput(inode);
894b36e3 3236 return ret;
d1310b2e 3237}
d1310b2e 3238
2bd0fc93
QW
3239/*
3240 * Submit the pages in the range to bio for call sites which delalloc range has
3241 * already been ran (aka, ordered extent inserted) and all pages are still
3242 * locked.
3243 */
3244int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
771ed689 3245{
2bd0fc93
QW
3246 bool found_error = false;
3247 int first_error = 0;
771ed689
CM
3248 int ret = 0;
3249 struct address_space *mapping = inode->i_mapping;
3250 struct page *page;
2bd0fc93 3251 u64 cur = start;
66448b9d
QW
3252 unsigned long nr_pages;
3253 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
771ed689 3254 struct extent_page_data epd = {
390ed29b 3255 .bio_ctrl = { 0 },
771ed689 3256 .extent_locked = 1,
2bd0fc93 3257 .sync_io = 1,
771ed689
CM
3258 };
3259 struct writeback_control wbc_writepages = {
2bd0fc93 3260 .sync_mode = WB_SYNC_ALL,
771ed689
CM
3261 .range_start = start,
3262 .range_end = end + 1,
ec39f769
CM
3263 /* We're called from an async helper function */
3264 .punt_to_cgroup = 1,
3265 .no_cgroup_owner = 1,
771ed689
CM
3266 };
3267
66448b9d
QW
3268 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3269 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3270 PAGE_SHIFT;
3271 wbc_writepages.nr_to_write = nr_pages * 2;
3272
dbb70bec 3273 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
2bd0fc93 3274 while (cur <= end) {
66448b9d
QW
3275 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3276
2bd0fc93
QW
3277 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3278 /*
3279 * All pages in the range are locked since
3280 * btrfs_run_delalloc_range(), thus there is no way to clear
3281 * the page dirty flag.
3282 */
66448b9d 3283 ASSERT(PageLocked(page));
2bd0fc93
QW
3284 ASSERT(PageDirty(page));
3285 clear_page_dirty_for_io(page);
3286 ret = __extent_writepage(page, &wbc_writepages, &epd);
3287 ASSERT(ret <= 0);
3288 if (ret < 0) {
3289 found_error = true;
3290 first_error = ret;
771ed689 3291 }
09cbfeaf 3292 put_page(page);
66448b9d 3293 cur = cur_end + 1;
771ed689
CM
3294 }
3295
9845e5dd 3296 submit_write_bio(&epd, found_error ? ret : 0);
dbb70bec
CM
3297
3298 wbc_detach_inode(&wbc_writepages);
2bd0fc93
QW
3299 if (found_error)
3300 return first_error;
771ed689
CM
3301 return ret;
3302}
d1310b2e 3303
8ae225a8 3304int extent_writepages(struct address_space *mapping,
d1310b2e
CM
3305 struct writeback_control *wbc)
3306{
35156d85 3307 struct inode *inode = mapping->host;
d1310b2e
CM
3308 int ret = 0;
3309 struct extent_page_data epd = {
390ed29b 3310 .bio_ctrl = { 0 },
771ed689 3311 .extent_locked = 0,
ffbd517d 3312 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3313 };
3314
35156d85
JT
3315 /*
3316 * Allow only a single thread to do the reloc work in zoned mode to
3317 * protect the write pointer updates.
3318 */
869f4cdc 3319 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
935db853 3320 ret = extent_write_cache_pages(mapping, wbc, &epd);
9845e5dd 3321 submit_write_bio(&epd, ret);
19ab78ca 3322 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
3323 return ret;
3324}
d1310b2e 3325
ba206a02 3326void extent_readahead(struct readahead_control *rac)
d1310b2e 3327{
390ed29b 3328 struct btrfs_bio_ctrl bio_ctrl = { 0 };
67c9684f 3329 struct page *pagepool[16];
125bac01 3330 struct extent_map *em_cached = NULL;
808f80b4 3331 u64 prev_em_start = (u64)-1;
ba206a02 3332 int nr;
d1310b2e 3333
ba206a02 3334 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
3335 u64 contig_start = readahead_pos(rac);
3336 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 3337
ba206a02 3338 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 3339 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 3340 }
67c9684f 3341
125bac01
MX
3342 if (em_cached)
3343 free_extent_map(em_cached);
722c82ac 3344 submit_one_bio(&bio_ctrl);
d1310b2e 3345}
d1310b2e
CM
3346
3347/*
895586eb
MWO
3348 * basic invalidate_folio code, this waits on any locked or writeback
3349 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
3350 * records from the tree
3351 */
895586eb
MWO
3352int extent_invalidate_folio(struct extent_io_tree *tree,
3353 struct folio *folio, size_t offset)
d1310b2e 3354{
2ac55d41 3355 struct extent_state *cached_state = NULL;
895586eb
MWO
3356 u64 start = folio_pos(folio);
3357 u64 end = start + folio_size(folio) - 1;
3358 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
d1310b2e 3359
829ddec9
QW
3360 /* This function is only called for the btree inode */
3361 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3362
fda2832f 3363 start += ALIGN(offset, blocksize);
d1310b2e
CM
3364 if (start > end)
3365 return 0;
3366
ff13db41 3367 lock_extent_bits(tree, start, end, &cached_state);
895586eb 3368 folio_wait_writeback(folio);
829ddec9
QW
3369
3370 /*
3371 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3372 * so here we only need to unlock the extent range to free any
3373 * existing extent state.
3374 */
3375 unlock_extent_cached(tree, start, end, &cached_state);
d1310b2e
CM
3376 return 0;
3377}
d1310b2e 3378
7b13b7b1 3379/*
f913cff3 3380 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
3381 * are locked or under IO and drops the related state bits if it is safe
3382 * to drop the page.
3383 */
29c68b2d 3384static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 3385 struct page *page, gfp_t mask)
7b13b7b1 3386{
4eee4fa4 3387 u64 start = page_offset(page);
09cbfeaf 3388 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
3389 int ret = 1;
3390
8882679e 3391 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 3392 ret = 0;
8882679e 3393 } else {
11ef160f 3394 /*
2766ff61
FM
3395 * At this point we can safely clear everything except the
3396 * locked bit, the nodatasum bit and the delalloc new bit.
3397 * The delalloc new bit will be cleared by ordered extent
3398 * completion.
11ef160f 3399 */
66b0c887 3400 ret = __clear_extent_bit(tree, start, end,
2766ff61 3401 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
dbbf4992 3402 0, NULL, mask, NULL);
e3f24cc5
CM
3403
3404 /* if clear_extent_bit failed for enomem reasons,
3405 * we can't allow the release to continue.
3406 */
3407 if (ret < 0)
3408 ret = 0;
3409 else
3410 ret = 1;
7b13b7b1
CM
3411 }
3412 return ret;
3413}
7b13b7b1 3414
d1310b2e 3415/*
f913cff3 3416 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
3417 * in the range corresponding to the page, both state records and extent
3418 * map records are removed
3419 */
477a30ba 3420int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
3421{
3422 struct extent_map *em;
4eee4fa4 3423 u64 start = page_offset(page);
09cbfeaf 3424 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
3425 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3426 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3427 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 3428
d0164adc 3429 if (gfpflags_allow_blocking(mask) &&
ee22184b 3430 page->mapping->host->i_size > SZ_16M) {
39b5637f 3431 u64 len;
70dec807 3432 while (start <= end) {
fbc2bd7e
FM
3433 struct btrfs_fs_info *fs_info;
3434 u64 cur_gen;
3435
39b5637f 3436 len = end - start + 1;
890871be 3437 write_lock(&map->lock);
39b5637f 3438 em = lookup_extent_mapping(map, start, len);
285190d9 3439 if (!em) {
890871be 3440 write_unlock(&map->lock);
70dec807
CM
3441 break;
3442 }
7f3c74fb
CM
3443 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3444 em->start != start) {
890871be 3445 write_unlock(&map->lock);
70dec807
CM
3446 free_extent_map(em);
3447 break;
3448 }
3d6448e6
FM
3449 if (test_range_bit(tree, em->start,
3450 extent_map_end(em) - 1,
3451 EXTENT_LOCKED, 0, NULL))
3452 goto next;
3453 /*
3454 * If it's not in the list of modified extents, used
3455 * by a fast fsync, we can remove it. If it's being
3456 * logged we can safely remove it since fsync took an
3457 * extra reference on the em.
3458 */
3459 if (list_empty(&em->list) ||
fbc2bd7e
FM
3460 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3461 goto remove_em;
3462 /*
3463 * If it's in the list of modified extents, remove it
3464 * only if its generation is older then the current one,
3465 * in which case we don't need it for a fast fsync.
3466 * Otherwise don't remove it, we could be racing with an
3467 * ongoing fast fsync that could miss the new extent.
3468 */
3469 fs_info = btrfs_inode->root->fs_info;
3470 spin_lock(&fs_info->trans_lock);
3471 cur_gen = fs_info->generation;
3472 spin_unlock(&fs_info->trans_lock);
3473 if (em->generation >= cur_gen)
3474 goto next;
3475remove_em:
5e548b32
FM
3476 /*
3477 * We only remove extent maps that are not in the list of
3478 * modified extents or that are in the list but with a
3479 * generation lower then the current generation, so there
3480 * is no need to set the full fsync flag on the inode (it
3481 * hurts the fsync performance for workloads with a data
3482 * size that exceeds or is close to the system's memory).
3483 */
fbc2bd7e
FM
3484 remove_extent_mapping(map, em);
3485 /* once for the rb tree */
3486 free_extent_map(em);
3d6448e6 3487next:
70dec807 3488 start = extent_map_end(em);
890871be 3489 write_unlock(&map->lock);
70dec807
CM
3490
3491 /* once for us */
d1310b2e 3492 free_extent_map(em);
9f47eb54
PM
3493
3494 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 3495 }
d1310b2e 3496 }
29c68b2d 3497 return try_release_extent_state(tree, page, mask);
d1310b2e 3498}
d1310b2e 3499
4751832d
QW
3500/*
3501 * To cache previous fiemap extent
3502 *
3503 * Will be used for merging fiemap extent
3504 */
3505struct fiemap_cache {
3506 u64 offset;
3507 u64 phys;
3508 u64 len;
3509 u32 flags;
3510 bool cached;
3511};
3512
3513/*
3514 * Helper to submit fiemap extent.
3515 *
3516 * Will try to merge current fiemap extent specified by @offset, @phys,
3517 * @len and @flags with cached one.
3518 * And only when we fails to merge, cached one will be submitted as
3519 * fiemap extent.
3520 *
3521 * Return value is the same as fiemap_fill_next_extent().
3522 */
3523static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3524 struct fiemap_cache *cache,
3525 u64 offset, u64 phys, u64 len, u32 flags)
3526{
3527 int ret = 0;
3528
ac3c0d36
FM
3529 /* Set at the end of extent_fiemap(). */
3530 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3531
4751832d
QW
3532 if (!cache->cached)
3533 goto assign;
3534
3535 /*
3536 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 3537 * fiemap extent won't overlap with cached one.
4751832d
QW
3538 * Not recoverable.
3539 *
3540 * NOTE: Physical address can overlap, due to compression
3541 */
3542 if (cache->offset + cache->len > offset) {
3543 WARN_ON(1);
3544 return -EINVAL;
3545 }
3546
3547 /*
3548 * Only merges fiemap extents if
3549 * 1) Their logical addresses are continuous
3550 *
3551 * 2) Their physical addresses are continuous
3552 * So truly compressed (physical size smaller than logical size)
3553 * extents won't get merged with each other
3554 *
ac3c0d36 3555 * 3) Share same flags
4751832d
QW
3556 */
3557 if (cache->offset + cache->len == offset &&
3558 cache->phys + cache->len == phys &&
ac3c0d36 3559 cache->flags == flags) {
4751832d 3560 cache->len += len;
ac3c0d36 3561 return 0;
4751832d
QW
3562 }
3563
3564 /* Not mergeable, need to submit cached one */
3565 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3566 cache->len, cache->flags);
3567 cache->cached = false;
3568 if (ret)
3569 return ret;
3570assign:
3571 cache->cached = true;
3572 cache->offset = offset;
3573 cache->phys = phys;
3574 cache->len = len;
3575 cache->flags = flags;
ac3c0d36
FM
3576
3577 return 0;
4751832d
QW
3578}
3579
3580/*
848c23b7 3581 * Emit last fiemap cache
4751832d 3582 *
848c23b7
QW
3583 * The last fiemap cache may still be cached in the following case:
3584 * 0 4k 8k
3585 * |<- Fiemap range ->|
3586 * |<------------ First extent ----------->|
3587 *
3588 * In this case, the first extent range will be cached but not emitted.
3589 * So we must emit it before ending extent_fiemap().
4751832d 3590 */
5c5aff98 3591static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 3592 struct fiemap_cache *cache)
4751832d
QW
3593{
3594 int ret;
3595
3596 if (!cache->cached)
3597 return 0;
3598
4751832d
QW
3599 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3600 cache->len, cache->flags);
3601 cache->cached = false;
3602 if (ret > 0)
3603 ret = 0;
3604 return ret;
3605}
3606
ac3c0d36 3607static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
1506fcc8 3608{
ac3c0d36
FM
3609 struct extent_buffer *clone;
3610 struct btrfs_key key;
3611 int slot;
3612 int ret;
3613
3614 path->slots[0]++;
3615 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3616 return 0;
3617
3618 ret = btrfs_next_leaf(inode->root, path);
3619 if (ret != 0)
3620 return ret;
3621
3622 /*
3623 * Don't bother with cloning if there are no more file extent items for
3624 * our inode.
3625 */
3626 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3627 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3628 return 1;
3629
3630 /* See the comment at fiemap_search_slot() about why we clone. */
3631 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3632 if (!clone)
3633 return -ENOMEM;
3634
3635 slot = path->slots[0];
3636 btrfs_release_path(path);
3637 path->nodes[0] = clone;
3638 path->slots[0] = slot;
3639
3640 return 0;
3641}
3642
3643/*
3644 * Search for the first file extent item that starts at a given file offset or
3645 * the one that starts immediately before that offset.
3646 * Returns: 0 on success, < 0 on error, 1 if not found.
3647 */
3648static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3649 u64 file_offset)
3650{
3651 const u64 ino = btrfs_ino(inode);
facee0a0 3652 struct btrfs_root *root = inode->root;
ac3c0d36
FM
3653 struct extent_buffer *clone;
3654 struct btrfs_key key;
3655 int slot;
3656 int ret;
1506fcc8 3657
ac3c0d36
FM
3658 key.objectid = ino;
3659 key.type = BTRFS_EXTENT_DATA_KEY;
3660 key.offset = file_offset;
3661
3662 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3663 if (ret < 0)
3664 return ret;
3665
3666 if (ret > 0 && path->slots[0] > 0) {
3667 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3668 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3669 path->slots[0]--;
3670 }
3671
3672 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3673 ret = btrfs_next_leaf(root, path);
3674 if (ret != 0)
3675 return ret;
3676
3677 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3678 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3679 return 1;
5911c8fe
DS
3680 }
3681
15c7745c 3682 /*
ac3c0d36
FM
3683 * We clone the leaf and use it during fiemap. This is because while
3684 * using the leaf we do expensive things like checking if an extent is
3685 * shared, which can take a long time. In order to prevent blocking
3686 * other tasks for too long, we use a clone of the leaf. We have locked
3687 * the file range in the inode's io tree, so we know none of our file
3688 * extent items can change. This way we avoid blocking other tasks that
3689 * want to insert items for other inodes in the same leaf or b+tree
3690 * rebalance operations (triggered for example when someone is trying
3691 * to push items into this leaf when trying to insert an item in a
3692 * neighbour leaf).
3693 * We also need the private clone because holding a read lock on an
3694 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3695 * when we call fiemap_fill_next_extent(), because that may cause a page
3696 * fault when filling the user space buffer with fiemap data.
15c7745c 3697 */
ac3c0d36
FM
3698 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3699 if (!clone)
3700 return -ENOMEM;
3701
3702 slot = path->slots[0];
3703 btrfs_release_path(path);
3704 path->nodes[0] = clone;
3705 path->slots[0] = slot;
3706
3707 return 0;
3708}
3709
3710/*
3711 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3712 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3713 * extent. The end offset (@end) is inclusive.
3714 */
3715static int fiemap_process_hole(struct btrfs_inode *inode,
3716 struct fiemap_extent_info *fieinfo,
3717 struct fiemap_cache *cache,
3718 struct btrfs_backref_shared_cache *backref_cache,
3719 u64 disk_bytenr, u64 extent_offset,
3720 u64 extent_gen,
3721 struct ulist *roots, struct ulist *tmp_ulist,
3722 u64 start, u64 end)
3723{
3724 const u64 i_size = i_size_read(&inode->vfs_inode);
3725 const u64 ino = btrfs_ino(inode);
3726 u64 cur_offset = start;
3727 u64 last_delalloc_end = 0;
3728 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3729 bool checked_extent_shared = false;
3730 int ret;
4d479cf0 3731
ec29ed5b 3732 /*
ac3c0d36
FM
3733 * There can be no delalloc past i_size, so don't waste time looking for
3734 * it beyond i_size.
ec29ed5b 3735 */
ac3c0d36
FM
3736 while (cur_offset < end && cur_offset < i_size) {
3737 u64 delalloc_start;
3738 u64 delalloc_end;
3739 u64 prealloc_start;
3740 u64 prealloc_len = 0;
3741 bool delalloc;
3742
3743 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3744 &delalloc_start,
3745 &delalloc_end);
3746 if (!delalloc)
3747 break;
2d324f59 3748
ec29ed5b 3749 /*
ac3c0d36
FM
3750 * If this is a prealloc extent we have to report every section
3751 * of it that has no delalloc.
ec29ed5b 3752 */
ac3c0d36
FM
3753 if (disk_bytenr != 0) {
3754 if (last_delalloc_end == 0) {
3755 prealloc_start = start;
3756 prealloc_len = delalloc_start - start;
3757 } else {
3758 prealloc_start = last_delalloc_end + 1;
3759 prealloc_len = delalloc_start - prealloc_start;
3760 }
3761 }
3762
3763 if (prealloc_len > 0) {
3764 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3765 ret = btrfs_is_data_extent_shared(inode->root,
3766 ino, disk_bytenr,
3767 extent_gen, roots,
3768 tmp_ulist,
3769 backref_cache);
3770 if (ret < 0)
3771 return ret;
3772 else if (ret > 0)
3773 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3774
3775 checked_extent_shared = true;
3776 }
3777 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3778 disk_bytenr + extent_offset,
3779 prealloc_len, prealloc_flags);
3780 if (ret)
3781 return ret;
3782 extent_offset += prealloc_len;
3783 }
3784
3785 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3786 delalloc_end + 1 - delalloc_start,
3787 FIEMAP_EXTENT_DELALLOC |
3788 FIEMAP_EXTENT_UNKNOWN);
3789 if (ret)
3790 return ret;
3791
3792 last_delalloc_end = delalloc_end;
3793 cur_offset = delalloc_end + 1;
3794 extent_offset += cur_offset - delalloc_start;
3795 cond_resched();
3796 }
3797
3798 /*
3799 * Either we found no delalloc for the whole prealloc extent or we have
3800 * a prealloc extent that spans i_size or starts at or after i_size.
3801 */
3802 if (disk_bytenr != 0 && last_delalloc_end < end) {
3803 u64 prealloc_start;
3804 u64 prealloc_len;
3805
3806 if (last_delalloc_end == 0) {
3807 prealloc_start = start;
3808 prealloc_len = end + 1 - start;
3809 } else {
3810 prealloc_start = last_delalloc_end + 1;
3811 prealloc_len = end + 1 - prealloc_start;
3812 }
3813
3814 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3815 ret = btrfs_is_data_extent_shared(inode->root,
3816 ino, disk_bytenr,
3817 extent_gen, roots,
3818 tmp_ulist,
3819 backref_cache);
3820 if (ret < 0)
3821 return ret;
3822 else if (ret > 0)
3823 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3824 }
3825 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3826 disk_bytenr + extent_offset,
3827 prealloc_len, prealloc_flags);
3828 if (ret)
3829 return ret;
3830 }
3831
3832 return 0;
3833}
3834
3835static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3836 struct btrfs_path *path,
3837 u64 *last_extent_end_ret)
3838{
3839 const u64 ino = btrfs_ino(inode);
3840 struct btrfs_root *root = inode->root;
3841 struct extent_buffer *leaf;
3842 struct btrfs_file_extent_item *ei;
3843 struct btrfs_key key;
3844 u64 disk_bytenr;
3845 int ret;
3846
3847 /*
3848 * Lookup the last file extent. We're not using i_size here because
3849 * there might be preallocation past i_size.
3850 */
3851 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3852 /* There can't be a file extent item at offset (u64)-1 */
3853 ASSERT(ret != 0);
3854 if (ret < 0)
3855 return ret;
3856
3857 /*
3858 * For a non-existing key, btrfs_search_slot() always leaves us at a
3859 * slot > 0, except if the btree is empty, which is impossible because
3860 * at least it has the inode item for this inode and all the items for
3861 * the root inode 256.
3862 */
3863 ASSERT(path->slots[0] > 0);
3864 path->slots[0]--;
3865 leaf = path->nodes[0];
3866 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3867 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3868 /* No file extent items in the subvolume tree. */
3869 *last_extent_end_ret = 0;
3870 return 0;
975f84fe 3871 }
975f84fe 3872
ec29ed5b 3873 /*
ac3c0d36
FM
3874 * For an inline extent, the disk_bytenr is where inline data starts at,
3875 * so first check if we have an inline extent item before checking if we
3876 * have an implicit hole (disk_bytenr == 0).
ec29ed5b 3877 */
ac3c0d36
FM
3878 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3879 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3880 *last_extent_end_ret = btrfs_file_extent_end(path);
3881 return 0;
ec29ed5b
CM
3882 }
3883
ac3c0d36
FM
3884 /*
3885 * Find the last file extent item that is not a hole (when NO_HOLES is
3886 * not enabled). This should take at most 2 iterations in the worst
3887 * case: we have one hole file extent item at slot 0 of a leaf and
3888 * another hole file extent item as the last item in the previous leaf.
3889 * This is because we merge file extent items that represent holes.
3890 */
3891 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3892 while (disk_bytenr == 0) {
3893 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3894 if (ret < 0) {
3895 return ret;
3896 } else if (ret > 0) {
3897 /* No file extent items that are not holes. */
3898 *last_extent_end_ret = 0;
3899 return 0;
3900 }
3901 leaf = path->nodes[0];
3902 ei = btrfs_item_ptr(leaf, path->slots[0],
3903 struct btrfs_file_extent_item);
3904 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3905 }
ec29ed5b 3906
ac3c0d36
FM
3907 *last_extent_end_ret = btrfs_file_extent_end(path);
3908 return 0;
3909}
3910
3911int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3912 u64 start, u64 len)
3913{
3914 const u64 ino = btrfs_ino(inode);
3915 struct extent_state *cached_state = NULL;
3916 struct btrfs_path *path;
3917 struct btrfs_root *root = inode->root;
3918 struct fiemap_cache cache = { 0 };
3919 struct btrfs_backref_shared_cache *backref_cache;
3920 struct ulist *roots;
3921 struct ulist *tmp_ulist;
3922 u64 last_extent_end;
3923 u64 prev_extent_end;
3924 u64 lockstart;
3925 u64 lockend;
3926 bool stopped = false;
3927 int ret;
3928
3929 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
3930 path = btrfs_alloc_path();
3931 roots = ulist_alloc(GFP_KERNEL);
3932 tmp_ulist = ulist_alloc(GFP_KERNEL);
3933 if (!backref_cache || !path || !roots || !tmp_ulist) {
3934 ret = -ENOMEM;
1506fcc8
YS
3935 goto out;
3936 }
975f84fe 3937
ac3c0d36
FM
3938 lockstart = round_down(start, btrfs_inode_sectorsize(inode));
3939 lockend = round_up(start + len, btrfs_inode_sectorsize(inode));
3940 prev_extent_end = lockstart;
ea8efc74 3941
ac3c0d36 3942 lock_extent_bits(&inode->io_tree, lockstart, lockend, &cached_state);
ea8efc74 3943
ac3c0d36
FM
3944 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3945 if (ret < 0)
3946 goto out_unlock;
3947 btrfs_release_path(path);
1506fcc8 3948
ac3c0d36
FM
3949 path->reada = READA_FORWARD;
3950 ret = fiemap_search_slot(inode, path, lockstart);
3951 if (ret < 0) {
3952 goto out_unlock;
3953 } else if (ret > 0) {
ea8efc74 3954 /*
ac3c0d36
FM
3955 * No file extent item found, but we may have delalloc between
3956 * the current offset and i_size. So check for that.
ea8efc74 3957 */
ac3c0d36
FM
3958 ret = 0;
3959 goto check_eof_delalloc;
3960 }
3961
3962 while (prev_extent_end < lockend) {
3963 struct extent_buffer *leaf = path->nodes[0];
3964 struct btrfs_file_extent_item *ei;
3965 struct btrfs_key key;
3966 u64 extent_end;
3967 u64 extent_len;
3968 u64 extent_offset = 0;
3969 u64 extent_gen;
3970 u64 disk_bytenr = 0;
3971 u64 flags = 0;
3972 int extent_type;
3973 u8 compression;
3974
3975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3976 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3977 break;
3978
3979 extent_end = btrfs_file_extent_end(path);
1506fcc8 3980
ea8efc74 3981 /*
ac3c0d36
FM
3982 * The first iteration can leave us at an extent item that ends
3983 * before our range's start. Move to the next item.
ea8efc74 3984 */
ac3c0d36
FM
3985 if (extent_end <= lockstart)
3986 goto next_item;
fe09e16c 3987
ac3c0d36
FM
3988 /* We have in implicit hole (NO_HOLES feature enabled). */
3989 if (prev_extent_end < key.offset) {
3990 const u64 range_end = min(key.offset, lockend) - 1;
b8f164e3 3991
ac3c0d36
FM
3992 ret = fiemap_process_hole(inode, fieinfo, &cache,
3993 backref_cache, 0, 0, 0,
3994 roots, tmp_ulist,
3995 prev_extent_end, range_end);
3996 if (ret < 0) {
3997 goto out_unlock;
3998 } else if (ret > 0) {
3999 /* fiemap_fill_next_extent() told us to stop. */
4000 stopped = true;
4001 break;
4002 }
1506fcc8 4003
ac3c0d36
FM
4004 /* We've reached the end of the fiemap range, stop. */
4005 if (key.offset >= lockend) {
4006 stopped = true;
4007 break;
4008 }
1506fcc8
YS
4009 }
4010
ac3c0d36
FM
4011 extent_len = extent_end - key.offset;
4012 ei = btrfs_item_ptr(leaf, path->slots[0],
4013 struct btrfs_file_extent_item);
4014 compression = btrfs_file_extent_compression(leaf, ei);
4015 extent_type = btrfs_file_extent_type(leaf, ei);
4016 extent_gen = btrfs_file_extent_generation(leaf, ei);
4017
4018 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4019 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
4020 if (compression == BTRFS_COMPRESS_NONE)
4021 extent_offset = btrfs_file_extent_offset(leaf, ei);
ec29ed5b 4022 }
ac3c0d36
FM
4023
4024 if (compression != BTRFS_COMPRESS_NONE)
4025 flags |= FIEMAP_EXTENT_ENCODED;
4026
4027 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4028 flags |= FIEMAP_EXTENT_DATA_INLINE;
4029 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
4030 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
4031 extent_len, flags);
4032 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
4033 ret = fiemap_process_hole(inode, fieinfo, &cache,
4034 backref_cache,
4035 disk_bytenr, extent_offset,
4036 extent_gen, roots, tmp_ulist,
4037 key.offset, extent_end - 1);
4038 } else if (disk_bytenr == 0) {
4039 /* We have an explicit hole. */
4040 ret = fiemap_process_hole(inode, fieinfo, &cache,
4041 backref_cache, 0, 0, 0,
4042 roots, tmp_ulist,
4043 key.offset, extent_end - 1);
4044 } else {
4045 /* We have a regular extent. */
4046 if (fieinfo->fi_extents_max) {
4047 ret = btrfs_is_data_extent_shared(root, ino,
4048 disk_bytenr,
4049 extent_gen,
4050 roots,
4051 tmp_ulist,
4052 backref_cache);
4053 if (ret < 0)
4054 goto out_unlock;
4055 else if (ret > 0)
4056 flags |= FIEMAP_EXTENT_SHARED;
4057 }
4058
4059 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
4060 disk_bytenr + extent_offset,
4061 extent_len, flags);
975f84fe 4062 }
ac3c0d36
FM
4063
4064 if (ret < 0) {
4065 goto out_unlock;
4066 } else if (ret > 0) {
4067 /* fiemap_fill_next_extent() told us to stop. */
4068 stopped = true;
4069 break;
26e726af 4070 }
09fbc1c8 4071
ac3c0d36
FM
4072 prev_extent_end = extent_end;
4073next_item:
09fbc1c8
FM
4074 if (fatal_signal_pending(current)) {
4075 ret = -EINTR;
ac3c0d36 4076 goto out_unlock;
09fbc1c8 4077 }
ac3c0d36
FM
4078
4079 ret = fiemap_next_leaf_item(inode, path);
4080 if (ret < 0) {
4081 goto out_unlock;
4082 } else if (ret > 0) {
4083 /* No more file extent items for this inode. */
4084 break;
4085 }
4086 cond_resched();
1506fcc8 4087 }
5911c8fe 4088
ac3c0d36
FM
4089check_eof_delalloc:
4090 /*
4091 * Release (and free) the path before emitting any final entries to
4092 * fiemap_fill_next_extent() to keep lockdep happy. This is because
4093 * once we find no more file extent items exist, we may have a
4094 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
4095 * faults when copying data to the user space buffer.
4096 */
4097 btrfs_free_path(path);
4098 path = NULL;
4099
4100 if (!stopped && prev_extent_end < lockend) {
4101 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
4102 0, 0, 0, roots, tmp_ulist,
4103 prev_extent_end, lockend - 1);
4104 if (ret < 0)
4105 goto out_unlock;
4106 prev_extent_end = lockend;
4107 }
4108
4109 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
4110 const u64 i_size = i_size_read(&inode->vfs_inode);
4111
4112 if (prev_extent_end < i_size) {
4113 u64 delalloc_start;
4114 u64 delalloc_end;
4115 bool delalloc;
4116
4117 delalloc = btrfs_find_delalloc_in_range(inode,
4118 prev_extent_end,
4119 i_size - 1,
4120 &delalloc_start,
4121 &delalloc_end);
4122 if (!delalloc)
4123 cache.flags |= FIEMAP_EXTENT_LAST;
4124 } else {
4125 cache.flags |= FIEMAP_EXTENT_LAST;
4126 }
4127 }
4128
4129 ret = emit_last_fiemap_cache(fieinfo, &cache);
4130
4131out_unlock:
4132 unlock_extent_cached(&inode->io_tree, lockstart, lockend, &cached_state);
4133out:
12a824dc 4134 kfree(backref_cache);
e02d48ea 4135 btrfs_free_path(path);
5911c8fe
DS
4136 ulist_free(roots);
4137 ulist_free(tmp_ulist);
1506fcc8
YS
4138 return ret;
4139}
4140
727011e0
CM
4141static void __free_extent_buffer(struct extent_buffer *eb)
4142{
727011e0
CM
4143 kmem_cache_free(extent_buffer_cache, eb);
4144}
4145
2b48966a 4146int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
4147{
4148 return (atomic_read(&eb->io_pages) ||
4149 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4150 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4151}
4152
8ff8466d 4153static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 4154{
8ff8466d 4155 struct btrfs_subpage *subpage;
db7f3436 4156
8ff8466d 4157 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 4158
8ff8466d
QW
4159 if (PagePrivate(page)) {
4160 subpage = (struct btrfs_subpage *)page->private;
4161 if (atomic_read(&subpage->eb_refs))
4162 return true;
3d078efa
QW
4163 /*
4164 * Even there is no eb refs here, we may still have
4165 * end_page_read() call relying on page::private.
4166 */
4167 if (atomic_read(&subpage->readers))
4168 return true;
8ff8466d
QW
4169 }
4170 return false;
4171}
db7f3436 4172
8ff8466d
QW
4173static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4174{
4175 struct btrfs_fs_info *fs_info = eb->fs_info;
4176 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4177
4178 /*
4179 * For mapped eb, we're going to change the page private, which should
4180 * be done under the private_lock.
4181 */
4182 if (mapped)
4183 spin_lock(&page->mapping->private_lock);
4184
4185 if (!PagePrivate(page)) {
5d2361db 4186 if (mapped)
8ff8466d
QW
4187 spin_unlock(&page->mapping->private_lock);
4188 return;
4189 }
4190
fbca46eb 4191 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
4192 /*
4193 * We do this since we'll remove the pages after we've
4194 * removed the eb from the radix tree, so we could race
4195 * and have this page now attached to the new eb. So
4196 * only clear page_private if it's still connected to
4197 * this eb.
4198 */
4199 if (PagePrivate(page) &&
4200 page->private == (unsigned long)eb) {
4201 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4202 BUG_ON(PageDirty(page));
4203 BUG_ON(PageWriteback(page));
db7f3436 4204 /*
5d2361db
FL
4205 * We need to make sure we haven't be attached
4206 * to a new eb.
db7f3436 4207 */
d1b89bc0 4208 detach_page_private(page);
db7f3436 4209 }
5d2361db
FL
4210 if (mapped)
4211 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
4212 return;
4213 }
4214
4215 /*
4216 * For subpage, we can have dummy eb with page private. In this case,
4217 * we can directly detach the private as such page is only attached to
4218 * one dummy eb, no sharing.
4219 */
4220 if (!mapped) {
4221 btrfs_detach_subpage(fs_info, page);
4222 return;
4223 }
4224
4225 btrfs_page_dec_eb_refs(fs_info, page);
4226
4227 /*
4228 * We can only detach the page private if there are no other ebs in the
3d078efa 4229 * page range and no unfinished IO.
8ff8466d
QW
4230 */
4231 if (!page_range_has_eb(fs_info, page))
4232 btrfs_detach_subpage(fs_info, page);
4233
4234 spin_unlock(&page->mapping->private_lock);
4235}
4236
4237/* Release all pages attached to the extent buffer */
4238static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4239{
4240 int i;
4241 int num_pages;
4242
4243 ASSERT(!extent_buffer_under_io(eb));
4244
4245 num_pages = num_extent_pages(eb);
4246 for (i = 0; i < num_pages; i++) {
4247 struct page *page = eb->pages[i];
4248
4249 if (!page)
4250 continue;
4251
4252 detach_extent_buffer_page(eb, page);
5d2361db 4253
01327610 4254 /* One for when we allocated the page */
09cbfeaf 4255 put_page(page);
d64766fd 4256 }
db7f3436
JB
4257}
4258
4259/*
4260 * Helper for releasing the extent buffer.
4261 */
4262static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4263{
55ac0139 4264 btrfs_release_extent_buffer_pages(eb);
a40246e8 4265 btrfs_leak_debug_del_eb(eb);
db7f3436
JB
4266 __free_extent_buffer(eb);
4267}
4268
f28491e0
JB
4269static struct extent_buffer *
4270__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4271 unsigned long len)
d1310b2e
CM
4272{
4273 struct extent_buffer *eb = NULL;
4274
d1b5c567 4275 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4276 eb->start = start;
4277 eb->len = len;
f28491e0 4278 eb->fs_info = fs_info;
815a51c7 4279 eb->bflags = 0;
196d59ab 4280 init_rwsem(&eb->lock);
b4ce94de 4281
a40246e8 4282 btrfs_leak_debug_add_eb(eb);
d3575156 4283 INIT_LIST_HEAD(&eb->release_list);
6d49ba1b 4284
3083ee2e 4285 spin_lock_init(&eb->refs_lock);
d1310b2e 4286 atomic_set(&eb->refs, 1);
0b32f4bb 4287 atomic_set(&eb->io_pages, 0);
727011e0 4288
deb67895 4289 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
4290
4291 return eb;
4292}
4293
2b48966a 4294struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 4295{
cc5e31a4 4296 int i;
815a51c7 4297 struct extent_buffer *new;
cc5e31a4 4298 int num_pages = num_extent_pages(src);
dd137dd1 4299 int ret;
815a51c7 4300
3f556f78 4301 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4302 if (new == NULL)
4303 return NULL;
4304
62c053fb
QW
4305 /*
4306 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4307 * btrfs_release_extent_buffer() have different behavior for
4308 * UNMAPPED subpage extent buffer.
4309 */
4310 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4311
dd137dd1
STD
4312 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
4313 ret = btrfs_alloc_page_array(num_pages, new->pages);
4314 if (ret) {
4315 btrfs_release_extent_buffer(new);
4316 return NULL;
4317 }
4318
815a51c7 4319 for (i = 0; i < num_pages; i++) {
760f991f 4320 int ret;
dd137dd1 4321 struct page *p = new->pages[i];
760f991f 4322
760f991f
QW
4323 ret = attach_extent_buffer_page(new, p, NULL);
4324 if (ret < 0) {
760f991f
QW
4325 btrfs_release_extent_buffer(new);
4326 return NULL;
4327 }
815a51c7 4328 WARN_ON(PageDirty(p));
fba1acf9 4329 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7 4330 }
92d83e94 4331 set_extent_buffer_uptodate(new);
815a51c7
JS
4332
4333 return new;
4334}
4335
0f331229
OS
4336struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4337 u64 start, unsigned long len)
815a51c7
JS
4338{
4339 struct extent_buffer *eb;
cc5e31a4
DS
4340 int num_pages;
4341 int i;
dd137dd1 4342 int ret;
815a51c7 4343
3f556f78 4344 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4345 if (!eb)
4346 return NULL;
4347
65ad0104 4348 num_pages = num_extent_pages(eb);
dd137dd1
STD
4349 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4350 if (ret)
4351 goto err;
4352
815a51c7 4353 for (i = 0; i < num_pages; i++) {
dd137dd1 4354 struct page *p = eb->pages[i];
09bc1f0f 4355
dd137dd1 4356 ret = attach_extent_buffer_page(eb, p, NULL);
09bc1f0f
QW
4357 if (ret < 0)
4358 goto err;
815a51c7 4359 }
dd137dd1 4360
815a51c7
JS
4361 set_extent_buffer_uptodate(eb);
4362 btrfs_set_header_nritems(eb, 0);
b0132a3b 4363 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4364
4365 return eb;
4366err:
dd137dd1
STD
4367 for (i = 0; i < num_pages; i++) {
4368 if (eb->pages[i]) {
4369 detach_extent_buffer_page(eb, eb->pages[i]);
4370 __free_page(eb->pages[i]);
4371 }
09bc1f0f 4372 }
815a51c7
JS
4373 __free_extent_buffer(eb);
4374 return NULL;
4375}
4376
0f331229 4377struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4378 u64 start)
0f331229 4379{
da17066c 4380 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4381}
4382
0b32f4bb
JB
4383static void check_buffer_tree_ref(struct extent_buffer *eb)
4384{
242e18c7 4385 int refs;
6bf9cd2e
BB
4386 /*
4387 * The TREE_REF bit is first set when the extent_buffer is added
4388 * to the radix tree. It is also reset, if unset, when a new reference
4389 * is created by find_extent_buffer.
0b32f4bb 4390 *
6bf9cd2e
BB
4391 * It is only cleared in two cases: freeing the last non-tree
4392 * reference to the extent_buffer when its STALE bit is set or
f913cff3 4393 * calling release_folio when the tree reference is the only reference.
0b32f4bb 4394 *
6bf9cd2e 4395 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 4396 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
4397 * called with creating new references, which is prone to race
4398 * conditions between the calls to check_buffer_tree_ref in those
4399 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 4400 *
6bf9cd2e
BB
4401 * The actual lifetime of the extent_buffer in the radix tree is
4402 * adequately protected by the refcount, but the TREE_REF bit and
4403 * its corresponding reference are not. To protect against this
4404 * class of races, we call check_buffer_tree_ref from the codepaths
4405 * which trigger io after they set eb->io_pages. Note that once io is
4406 * initiated, TREE_REF can no longer be cleared, so that is the
4407 * moment at which any such race is best fixed.
0b32f4bb 4408 */
242e18c7
CM
4409 refs = atomic_read(&eb->refs);
4410 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4411 return;
4412
594831c4
JB
4413 spin_lock(&eb->refs_lock);
4414 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4415 atomic_inc(&eb->refs);
594831c4 4416 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4417}
4418
2457aec6
MG
4419static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4420 struct page *accessed)
5df4235e 4421{
cc5e31a4 4422 int num_pages, i;
5df4235e 4423
0b32f4bb
JB
4424 check_buffer_tree_ref(eb);
4425
65ad0104 4426 num_pages = num_extent_pages(eb);
5df4235e 4427 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4428 struct page *p = eb->pages[i];
4429
2457aec6
MG
4430 if (p != accessed)
4431 mark_page_accessed(p);
5df4235e
JB
4432 }
4433}
4434
f28491e0
JB
4435struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4436 u64 start)
452c75c3
CS
4437{
4438 struct extent_buffer *eb;
4439
2f3186d8
QW
4440 eb = find_extent_buffer_nolock(fs_info, start);
4441 if (!eb)
4442 return NULL;
4443 /*
4444 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4445 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4446 * another task running free_extent_buffer() might have seen that flag
4447 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4448 * writeback flags not set) and it's still in the tree (flag
4449 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4450 * decrementing the extent buffer's reference count twice. So here we
4451 * could race and increment the eb's reference count, clear its stale
4452 * flag, mark it as dirty and drop our reference before the other task
4453 * finishes executing free_extent_buffer, which would later result in
4454 * an attempt to free an extent buffer that is dirty.
4455 */
4456 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4457 spin_lock(&eb->refs_lock);
4458 spin_unlock(&eb->refs_lock);
452c75c3 4459 }
2f3186d8
QW
4460 mark_extent_buffer_accessed(eb, NULL);
4461 return eb;
452c75c3
CS
4462}
4463
faa2dbf0
JB
4464#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4465struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4466 u64 start)
faa2dbf0
JB
4467{
4468 struct extent_buffer *eb, *exists = NULL;
4469 int ret;
4470
4471 eb = find_extent_buffer(fs_info, start);
4472 if (eb)
4473 return eb;
da17066c 4474 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 4475 if (!eb)
b6293c82 4476 return ERR_PTR(-ENOMEM);
faa2dbf0 4477 eb->fs_info = fs_info;
01cd3909
DS
4478again:
4479 ret = radix_tree_preload(GFP_NOFS);
4480 if (ret) {
4481 exists = ERR_PTR(ret);
4482 goto free_eb;
4483 }
4484 spin_lock(&fs_info->buffer_lock);
4485 ret = radix_tree_insert(&fs_info->buffer_radix,
4486 start >> fs_info->sectorsize_bits, eb);
4487 spin_unlock(&fs_info->buffer_lock);
4488 radix_tree_preload_end();
4489 if (ret == -EEXIST) {
4490 exists = find_extent_buffer(fs_info, start);
4491 if (exists)
faa2dbf0 4492 goto free_eb;
01cd3909
DS
4493 else
4494 goto again;
4495 }
faa2dbf0
JB
4496 check_buffer_tree_ref(eb);
4497 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4498
faa2dbf0
JB
4499 return eb;
4500free_eb:
4501 btrfs_release_extent_buffer(eb);
4502 return exists;
4503}
4504#endif
4505
81982210
QW
4506static struct extent_buffer *grab_extent_buffer(
4507 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
4508{
4509 struct extent_buffer *exists;
4510
81982210
QW
4511 /*
4512 * For subpage case, we completely rely on radix tree to ensure we
4513 * don't try to insert two ebs for the same bytenr. So here we always
4514 * return NULL and just continue.
4515 */
fbca46eb 4516 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
4517 return NULL;
4518
c0f0a9e7
QW
4519 /* Page not yet attached to an extent buffer */
4520 if (!PagePrivate(page))
4521 return NULL;
4522
4523 /*
4524 * We could have already allocated an eb for this page and attached one
4525 * so lets see if we can get a ref on the existing eb, and if we can we
4526 * know it's good and we can just return that one, else we know we can
4527 * just overwrite page->private.
4528 */
4529 exists = (struct extent_buffer *)page->private;
4530 if (atomic_inc_not_zero(&exists->refs))
4531 return exists;
4532
4533 WARN_ON(PageDirty(page));
4534 detach_page_private(page);
4535 return NULL;
4536}
4537
fbca46eb
QW
4538static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4539{
4540 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4541 btrfs_err(fs_info, "bad tree block start %llu", start);
4542 return -EINVAL;
4543 }
4544
4545 if (fs_info->nodesize < PAGE_SIZE &&
4546 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4547 btrfs_err(fs_info,
4548 "tree block crosses page boundary, start %llu nodesize %u",
4549 start, fs_info->nodesize);
4550 return -EINVAL;
4551 }
4552 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 4553 !PAGE_ALIGNED(start)) {
fbca46eb
QW
4554 btrfs_err(fs_info,
4555 "tree block is not page aligned, start %llu nodesize %u",
4556 start, fs_info->nodesize);
4557 return -EINVAL;
4558 }
4559 return 0;
4560}
4561
f28491e0 4562struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 4563 u64 start, u64 owner_root, int level)
d1310b2e 4564{
da17066c 4565 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4566 int num_pages;
4567 int i;
09cbfeaf 4568 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4569 struct extent_buffer *eb;
6af118ce 4570 struct extent_buffer *exists = NULL;
d1310b2e 4571 struct page *p;
f28491e0 4572 struct address_space *mapping = fs_info->btree_inode->i_mapping;
b40130b2 4573 u64 lockdep_owner = owner_root;
d1310b2e 4574 int uptodate = 1;
19fe0a8b 4575 int ret;
d1310b2e 4576
fbca46eb 4577 if (check_eb_alignment(fs_info, start))
c871b0f2 4578 return ERR_PTR(-EINVAL);
c871b0f2 4579
e9306ad4
QW
4580#if BITS_PER_LONG == 32
4581 if (start >= MAX_LFS_FILESIZE) {
4582 btrfs_err_rl(fs_info,
4583 "extent buffer %llu is beyond 32bit page cache limit", start);
4584 btrfs_err_32bit_limit(fs_info);
4585 return ERR_PTR(-EOVERFLOW);
4586 }
4587 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4588 btrfs_warn_32bit_limit(fs_info);
4589#endif
4590
f28491e0 4591 eb = find_extent_buffer(fs_info, start);
452c75c3 4592 if (eb)
6af118ce 4593 return eb;
6af118ce 4594
23d79d81 4595 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4596 if (!eb)
c871b0f2 4597 return ERR_PTR(-ENOMEM);
b40130b2
JB
4598
4599 /*
4600 * The reloc trees are just snapshots, so we need them to appear to be
4601 * just like any other fs tree WRT lockdep.
4602 */
4603 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4604 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4605
4606 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
d1310b2e 4607
65ad0104 4608 num_pages = num_extent_pages(eb);
727011e0 4609 for (i = 0; i < num_pages; i++, index++) {
760f991f
QW
4610 struct btrfs_subpage *prealloc = NULL;
4611
d1b5c567 4612 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4613 if (!p) {
4614 exists = ERR_PTR(-ENOMEM);
6af118ce 4615 goto free_eb;
c871b0f2 4616 }
4f2de97a 4617
760f991f
QW
4618 /*
4619 * Preallocate page->private for subpage case, so that we won't
4620 * allocate memory with private_lock hold. The memory will be
4621 * freed by attach_extent_buffer_page() or freed manually if
4622 * we exit earlier.
4623 *
4624 * Although we have ensured one subpage eb can only have one
4625 * page, but it may change in the future for 16K page size
4626 * support, so we still preallocate the memory in the loop.
4627 */
fbca46eb 4628 if (fs_info->nodesize < PAGE_SIZE) {
651fb419
QW
4629 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4630 if (IS_ERR(prealloc)) {
4631 ret = PTR_ERR(prealloc);
fdf250db
QW
4632 unlock_page(p);
4633 put_page(p);
4634 exists = ERR_PTR(ret);
4635 goto free_eb;
4636 }
760f991f
QW
4637 }
4638
4f2de97a 4639 spin_lock(&mapping->private_lock);
81982210 4640 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
4641 if (exists) {
4642 spin_unlock(&mapping->private_lock);
4643 unlock_page(p);
4644 put_page(p);
4645 mark_extent_buffer_accessed(exists, p);
760f991f 4646 btrfs_free_subpage(prealloc);
c0f0a9e7 4647 goto free_eb;
d1310b2e 4648 }
760f991f
QW
4649 /* Should not fail, as we have preallocated the memory */
4650 ret = attach_extent_buffer_page(eb, p, prealloc);
4651 ASSERT(!ret);
8ff8466d
QW
4652 /*
4653 * To inform we have extra eb under allocation, so that
4654 * detach_extent_buffer_page() won't release the page private
4655 * when the eb hasn't yet been inserted into radix tree.
4656 *
4657 * The ref will be decreased when the eb released the page, in
4658 * detach_extent_buffer_page().
4659 * Thus needs no special handling in error path.
4660 */
4661 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 4662 spin_unlock(&mapping->private_lock);
760f991f 4663
1e5eb3d6 4664 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 4665 eb->pages[i] = p;
d1310b2e
CM
4666 if (!PageUptodate(p))
4667 uptodate = 0;
eb14ab8e
CM
4668
4669 /*
b16d011e
NB
4670 * We can't unlock the pages just yet since the extent buffer
4671 * hasn't been properly inserted in the radix tree, this
f913cff3 4672 * opens a race with btree_release_folio which can free a page
b16d011e
NB
4673 * while we are still filling in all pages for the buffer and
4674 * we could crash.
eb14ab8e 4675 */
d1310b2e
CM
4676 }
4677 if (uptodate)
b4ce94de 4678 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
01cd3909
DS
4679again:
4680 ret = radix_tree_preload(GFP_NOFS);
4681 if (ret) {
4682 exists = ERR_PTR(ret);
4683 goto free_eb;
4684 }
4685
4686 spin_lock(&fs_info->buffer_lock);
4687 ret = radix_tree_insert(&fs_info->buffer_radix,
4688 start >> fs_info->sectorsize_bits, eb);
4689 spin_unlock(&fs_info->buffer_lock);
4690 radix_tree_preload_end();
4691 if (ret == -EEXIST) {
4692 exists = find_extent_buffer(fs_info, start);
4693 if (exists)
452c75c3 4694 goto free_eb;
01cd3909
DS
4695 else
4696 goto again;
4697 }
6af118ce 4698 /* add one reference for the tree */
0b32f4bb 4699 check_buffer_tree_ref(eb);
34b41ace 4700 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4701
4702 /*
b16d011e 4703 * Now it's safe to unlock the pages because any calls to
f913cff3 4704 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 4705 * live buffer and won't free them prematurely.
eb14ab8e 4706 */
28187ae5
NB
4707 for (i = 0; i < num_pages; i++)
4708 unlock_page(eb->pages[i]);
d1310b2e
CM
4709 return eb;
4710
6af118ce 4711free_eb:
5ca64f45 4712 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4713 for (i = 0; i < num_pages; i++) {
4714 if (eb->pages[i])
4715 unlock_page(eb->pages[i]);
4716 }
eb14ab8e 4717
897ca6e9 4718 btrfs_release_extent_buffer(eb);
6af118ce 4719 return exists;
d1310b2e 4720}
d1310b2e 4721
3083ee2e
JB
4722static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4723{
4724 struct extent_buffer *eb =
4725 container_of(head, struct extent_buffer, rcu_head);
4726
4727 __free_extent_buffer(eb);
4728}
4729
f7a52a40 4730static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 4731 __releases(&eb->refs_lock)
3083ee2e 4732{
07e21c4d
NB
4733 lockdep_assert_held(&eb->refs_lock);
4734
3083ee2e
JB
4735 WARN_ON(atomic_read(&eb->refs) == 0);
4736 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4737 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4738 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4739
815a51c7 4740 spin_unlock(&eb->refs_lock);
3083ee2e 4741
01cd3909
DS
4742 spin_lock(&fs_info->buffer_lock);
4743 radix_tree_delete(&fs_info->buffer_radix,
4744 eb->start >> fs_info->sectorsize_bits);
4745 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4746 } else {
4747 spin_unlock(&eb->refs_lock);
815a51c7 4748 }
3083ee2e 4749
a40246e8 4750 btrfs_leak_debug_del_eb(eb);
3083ee2e 4751 /* Should be safe to release our pages at this point */
55ac0139 4752 btrfs_release_extent_buffer_pages(eb);
bcb7e449 4753#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 4754 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
4755 __free_extent_buffer(eb);
4756 return 1;
4757 }
4758#endif
3083ee2e 4759 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4760 return 1;
3083ee2e
JB
4761 }
4762 spin_unlock(&eb->refs_lock);
e64860aa
JB
4763
4764 return 0;
3083ee2e
JB
4765}
4766
d1310b2e
CM
4767void free_extent_buffer(struct extent_buffer *eb)
4768{
242e18c7 4769 int refs;
d1310b2e
CM
4770 if (!eb)
4771 return;
4772
e5677f05 4773 refs = atomic_read(&eb->refs);
242e18c7 4774 while (1) {
46cc775e
NB
4775 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4776 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4777 refs == 1))
242e18c7 4778 break;
e5677f05 4779 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
242e18c7
CM
4780 return;
4781 }
4782
3083ee2e
JB
4783 spin_lock(&eb->refs_lock);
4784 if (atomic_read(&eb->refs) == 2 &&
4785 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4786 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4787 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4788 atomic_dec(&eb->refs);
4789
4790 /*
4791 * I know this is terrible, but it's temporary until we stop tracking
4792 * the uptodate bits and such for the extent buffers.
4793 */
f7a52a40 4794 release_extent_buffer(eb);
3083ee2e
JB
4795}
4796
4797void free_extent_buffer_stale(struct extent_buffer *eb)
4798{
4799 if (!eb)
d1310b2e
CM
4800 return;
4801
3083ee2e
JB
4802 spin_lock(&eb->refs_lock);
4803 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4804
0b32f4bb 4805 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4806 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4807 atomic_dec(&eb->refs);
f7a52a40 4808 release_extent_buffer(eb);
d1310b2e 4809}
d1310b2e 4810
0d27797e
QW
4811static void btree_clear_page_dirty(struct page *page)
4812{
4813 ASSERT(PageDirty(page));
4814 ASSERT(PageLocked(page));
4815 clear_page_dirty_for_io(page);
4816 xa_lock_irq(&page->mapping->i_pages);
4817 if (!PageDirty(page))
4818 __xa_clear_mark(&page->mapping->i_pages,
4819 page_index(page), PAGECACHE_TAG_DIRTY);
4820 xa_unlock_irq(&page->mapping->i_pages);
4821}
4822
4823static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4824{
4825 struct btrfs_fs_info *fs_info = eb->fs_info;
4826 struct page *page = eb->pages[0];
4827 bool last;
4828
4829 /* btree_clear_page_dirty() needs page locked */
4830 lock_page(page);
4831 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4832 eb->len);
4833 if (last)
4834 btree_clear_page_dirty(page);
4835 unlock_page(page);
4836 WARN_ON(atomic_read(&eb->refs) == 0);
4837}
4838
2b48966a 4839void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 4840{
cc5e31a4
DS
4841 int i;
4842 int num_pages;
d1310b2e
CM
4843 struct page *page;
4844
fbca46eb 4845 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
4846 return clear_subpage_extent_buffer_dirty(eb);
4847
65ad0104 4848 num_pages = num_extent_pages(eb);
d1310b2e
CM
4849
4850 for (i = 0; i < num_pages; i++) {
fb85fc9a 4851 page = eb->pages[i];
b9473439 4852 if (!PageDirty(page))
d2c3f4f6 4853 continue;
a61e6f29 4854 lock_page(page);
0d27797e 4855 btree_clear_page_dirty(page);
bf0da8c1 4856 ClearPageError(page);
a61e6f29 4857 unlock_page(page);
d1310b2e 4858 }
0b32f4bb 4859 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4860}
d1310b2e 4861
abb57ef3 4862bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4863{
cc5e31a4
DS
4864 int i;
4865 int num_pages;
abb57ef3 4866 bool was_dirty;
d1310b2e 4867
0b32f4bb
JB
4868 check_buffer_tree_ref(eb);
4869
b9473439 4870 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4871
65ad0104 4872 num_pages = num_extent_pages(eb);
3083ee2e 4873 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4874 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4875
0d27797e 4876 if (!was_dirty) {
fbca46eb 4877 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 4878
0d27797e
QW
4879 /*
4880 * For subpage case, we can have other extent buffers in the
4881 * same page, and in clear_subpage_extent_buffer_dirty() we
4882 * have to clear page dirty without subpage lock held.
4883 * This can cause race where our page gets dirty cleared after
4884 * we just set it.
4885 *
4886 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4887 * its page for other reasons, we can use page lock to prevent
4888 * the above race.
4889 */
4890 if (subpage)
4891 lock_page(eb->pages[0]);
4892 for (i = 0; i < num_pages; i++)
4893 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4894 eb->start, eb->len);
4895 if (subpage)
4896 unlock_page(eb->pages[0]);
4897 }
51995c39
LB
4898#ifdef CONFIG_BTRFS_DEBUG
4899 for (i = 0; i < num_pages; i++)
4900 ASSERT(PageDirty(eb->pages[i]));
4901#endif
4902
b9473439 4903 return was_dirty;
d1310b2e 4904}
d1310b2e 4905
69ba3927 4906void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 4907{
251f2acc 4908 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 4909 struct page *page;
cc5e31a4 4910 int num_pages;
251f2acc 4911 int i;
1259ab75 4912
b4ce94de 4913 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 4914 num_pages = num_extent_pages(eb);
1259ab75 4915 for (i = 0; i < num_pages; i++) {
fb85fc9a 4916 page = eb->pages[i];
fbca46eb
QW
4917 if (!page)
4918 continue;
4919
4920 /*
4921 * This is special handling for metadata subpage, as regular
4922 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4923 */
4924 if (fs_info->nodesize >= PAGE_SIZE)
4925 ClearPageUptodate(page);
4926 else
4927 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4928 eb->len);
1259ab75 4929 }
1259ab75
CM
4930}
4931
09c25a8c 4932void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4933{
251f2acc 4934 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 4935 struct page *page;
cc5e31a4 4936 int num_pages;
251f2acc 4937 int i;
d1310b2e 4938
0b32f4bb 4939 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 4940 num_pages = num_extent_pages(eb);
d1310b2e 4941 for (i = 0; i < num_pages; i++) {
fb85fc9a 4942 page = eb->pages[i];
fbca46eb
QW
4943
4944 /*
4945 * This is special handling for metadata subpage, as regular
4946 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4947 */
4948 if (fs_info->nodesize >= PAGE_SIZE)
4949 SetPageUptodate(page);
4950 else
4951 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4952 eb->len);
d1310b2e 4953 }
d1310b2e 4954}
d1310b2e 4955
4012daf7
QW
4956static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4957 int mirror_num)
4958{
4959 struct btrfs_fs_info *fs_info = eb->fs_info;
4960 struct extent_io_tree *io_tree;
4961 struct page *page = eb->pages[0];
722c82ac
CH
4962 struct btrfs_bio_ctrl bio_ctrl = {
4963 .mirror_num = mirror_num,
4964 };
4012daf7
QW
4965 int ret = 0;
4966
4967 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4968 ASSERT(PagePrivate(page));
4969 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4970
4971 if (wait == WAIT_NONE) {
dc56219f
GR
4972 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
4973 return -EAGAIN;
4012daf7
QW
4974 } else {
4975 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
4976 if (ret < 0)
4977 return ret;
4978 }
4979
4980 ret = 0;
4981 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4982 PageUptodate(page) ||
4983 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4984 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4985 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
4986 return ret;
4987 }
4988
4989 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4990 eb->read_mirror = 0;
4991 atomic_set(&eb->io_pages, 1);
4992 check_buffer_tree_ref(eb);
4993 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4994
3d078efa 4995 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
08a6f464 4996 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
390ed29b
QW
4997 page, eb->start, eb->len,
4998 eb->start - page_offset(page),
722c82ac 4999 end_bio_extent_readpage, 0, true);
4012daf7
QW
5000 if (ret) {
5001 /*
5002 * In the endio function, if we hit something wrong we will
5003 * increase the io_pages, so here we need to decrease it for
5004 * error path.
5005 */
5006 atomic_dec(&eb->io_pages);
5007 }
722c82ac 5008 submit_one_bio(&bio_ctrl);
4012daf7
QW
5009 if (ret || wait != WAIT_COMPLETE)
5010 return ret;
5011
5012 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
5013 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5014 ret = -EIO;
5015 return ret;
5016}
5017
c2ccfbc6 5018int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5019{
cc5e31a4 5020 int i;
d1310b2e
CM
5021 struct page *page;
5022 int err;
5023 int ret = 0;
ce9adaa5
CM
5024 int locked_pages = 0;
5025 int all_uptodate = 1;
cc5e31a4 5026 int num_pages;
727011e0 5027 unsigned long num_reads = 0;
722c82ac
CH
5028 struct btrfs_bio_ctrl bio_ctrl = {
5029 .mirror_num = mirror_num,
5030 };
a86c12c7 5031
b4ce94de 5032 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5033 return 0;
5034
651740a5
JB
5035 /*
5036 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
5037 * operation, which could potentially still be in flight. In this case
5038 * we simply want to return an error.
5039 */
5040 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
5041 return -EIO;
5042
fbca46eb 5043 if (eb->fs_info->nodesize < PAGE_SIZE)
4012daf7
QW
5044 return read_extent_buffer_subpage(eb, wait, mirror_num);
5045
65ad0104 5046 num_pages = num_extent_pages(eb);
8436ea91 5047 for (i = 0; i < num_pages; i++) {
fb85fc9a 5048 page = eb->pages[i];
bb82ab88 5049 if (wait == WAIT_NONE) {
2c4d8cb7
QW
5050 /*
5051 * WAIT_NONE is only utilized by readahead. If we can't
5052 * acquire the lock atomically it means either the eb
5053 * is being read out or under modification.
5054 * Either way the eb will be or has been cached,
5055 * readahead can exit safely.
5056 */
2db04966 5057 if (!trylock_page(page))
ce9adaa5 5058 goto unlock_exit;
d1310b2e
CM
5059 } else {
5060 lock_page(page);
5061 }
ce9adaa5 5062 locked_pages++;
2571e739
LB
5063 }
5064 /*
5065 * We need to firstly lock all pages to make sure that
5066 * the uptodate bit of our pages won't be affected by
5067 * clear_extent_buffer_uptodate().
5068 */
8436ea91 5069 for (i = 0; i < num_pages; i++) {
2571e739 5070 page = eb->pages[i];
727011e0
CM
5071 if (!PageUptodate(page)) {
5072 num_reads++;
ce9adaa5 5073 all_uptodate = 0;
727011e0 5074 }
ce9adaa5 5075 }
2571e739 5076
ce9adaa5 5077 if (all_uptodate) {
8436ea91 5078 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5079 goto unlock_exit;
5080 }
5081
656f30db 5082 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5083 eb->read_mirror = 0;
0b32f4bb 5084 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e 5085 /*
f913cff3 5086 * It is possible for release_folio to clear the TREE_REF bit before we
6bf9cd2e
BB
5087 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5088 */
5089 check_buffer_tree_ref(eb);
8436ea91 5090 for (i = 0; i < num_pages; i++) {
fb85fc9a 5091 page = eb->pages[i];
baf863b9 5092
ce9adaa5 5093 if (!PageUptodate(page)) {
baf863b9
LB
5094 if (ret) {
5095 atomic_dec(&eb->io_pages);
5096 unlock_page(page);
5097 continue;
5098 }
5099
f188591e 5100 ClearPageError(page);
08a6f464 5101 err = submit_extent_page(REQ_OP_READ, NULL,
390ed29b
QW
5102 &bio_ctrl, page, page_offset(page),
5103 PAGE_SIZE, 0, end_bio_extent_readpage,
722c82ac 5104 0, false);
baf863b9 5105 if (err) {
baf863b9 5106 /*
0420177c
NB
5107 * We failed to submit the bio so it's the
5108 * caller's responsibility to perform cleanup
5109 * i.e unlock page/set error bit.
baf863b9 5110 */
0420177c
NB
5111 ret = err;
5112 SetPageError(page);
5113 unlock_page(page);
baf863b9
LB
5114 atomic_dec(&eb->io_pages);
5115 }
d1310b2e
CM
5116 } else {
5117 unlock_page(page);
5118 }
5119 }
5120
722c82ac 5121 submit_one_bio(&bio_ctrl);
a86c12c7 5122
bb82ab88 5123 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5124 return ret;
d397712b 5125
8436ea91 5126 for (i = 0; i < num_pages; i++) {
fb85fc9a 5127 page = eb->pages[i];
d1310b2e 5128 wait_on_page_locked(page);
d397712b 5129 if (!PageUptodate(page))
d1310b2e 5130 ret = -EIO;
d1310b2e 5131 }
d397712b 5132
d1310b2e 5133 return ret;
ce9adaa5
CM
5134
5135unlock_exit:
d397712b 5136 while (locked_pages > 0) {
ce9adaa5 5137 locked_pages--;
8436ea91
JB
5138 page = eb->pages[locked_pages];
5139 unlock_page(page);
ce9adaa5
CM
5140 }
5141 return ret;
d1310b2e 5142}
d1310b2e 5143
f98b6215
QW
5144static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5145 unsigned long len)
5146{
5147 btrfs_warn(eb->fs_info,
5148 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5149 eb->start, eb->len, start, len);
5150 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5151
5152 return true;
5153}
5154
5155/*
5156 * Check if the [start, start + len) range is valid before reading/writing
5157 * the eb.
5158 * NOTE: @start and @len are offset inside the eb, not logical address.
5159 *
5160 * Caller should not touch the dst/src memory if this function returns error.
5161 */
5162static inline int check_eb_range(const struct extent_buffer *eb,
5163 unsigned long start, unsigned long len)
5164{
5165 unsigned long offset;
5166
5167 /* start, start + len should not go beyond eb->len nor overflow */
5168 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5169 return report_eb_range(eb, start, len);
5170
5171 return false;
5172}
5173
1cbb1f45
JM
5174void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5175 unsigned long start, unsigned long len)
d1310b2e
CM
5176{
5177 size_t cur;
5178 size_t offset;
5179 struct page *page;
5180 char *kaddr;
5181 char *dst = (char *)dstv;
884b07d0 5182 unsigned long i = get_eb_page_index(start);
d1310b2e 5183
f98b6215 5184 if (check_eb_range(eb, start, len))
f716abd5 5185 return;
d1310b2e 5186
884b07d0 5187 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5188
d397712b 5189 while (len > 0) {
fb85fc9a 5190 page = eb->pages[i];
d1310b2e 5191
09cbfeaf 5192 cur = min(len, (PAGE_SIZE - offset));
a6591715 5193 kaddr = page_address(page);
d1310b2e 5194 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5195
5196 dst += cur;
5197 len -= cur;
5198 offset = 0;
5199 i++;
5200 }
5201}
d1310b2e 5202
a48b73ec
JB
5203int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5204 void __user *dstv,
5205 unsigned long start, unsigned long len)
550ac1d8
GH
5206{
5207 size_t cur;
5208 size_t offset;
5209 struct page *page;
5210 char *kaddr;
5211 char __user *dst = (char __user *)dstv;
884b07d0 5212 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
5213 int ret = 0;
5214
5215 WARN_ON(start > eb->len);
5216 WARN_ON(start + len > eb->start + eb->len);
5217
884b07d0 5218 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
5219
5220 while (len > 0) {
fb85fc9a 5221 page = eb->pages[i];
550ac1d8 5222
09cbfeaf 5223 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 5224 kaddr = page_address(page);
a48b73ec 5225 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
5226 ret = -EFAULT;
5227 break;
5228 }
5229
5230 dst += cur;
5231 len -= cur;
5232 offset = 0;
5233 i++;
5234 }
5235
5236 return ret;
5237}
5238
1cbb1f45
JM
5239int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5240 unsigned long start, unsigned long len)
d1310b2e
CM
5241{
5242 size_t cur;
5243 size_t offset;
5244 struct page *page;
5245 char *kaddr;
5246 char *ptr = (char *)ptrv;
884b07d0 5247 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
5248 int ret = 0;
5249
f98b6215
QW
5250 if (check_eb_range(eb, start, len))
5251 return -EINVAL;
d1310b2e 5252
884b07d0 5253 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5254
d397712b 5255 while (len > 0) {
fb85fc9a 5256 page = eb->pages[i];
d1310b2e 5257
09cbfeaf 5258 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5259
a6591715 5260 kaddr = page_address(page);
d1310b2e 5261 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5262 if (ret)
5263 break;
5264
5265 ptr += cur;
5266 len -= cur;
5267 offset = 0;
5268 i++;
5269 }
5270 return ret;
5271}
d1310b2e 5272
b8f95771
QW
5273/*
5274 * Check that the extent buffer is uptodate.
5275 *
5276 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5277 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5278 */
5279static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5280 struct page *page)
5281{
5282 struct btrfs_fs_info *fs_info = eb->fs_info;
5283
a50e1fcb
JB
5284 /*
5285 * If we are using the commit root we could potentially clear a page
5286 * Uptodate while we're using the extent buffer that we've previously
5287 * looked up. We don't want to complain in this case, as the page was
5288 * valid before, we just didn't write it out. Instead we want to catch
5289 * the case where we didn't actually read the block properly, which
5290 * would have !PageUptodate && !PageError, as we clear PageError before
5291 * reading.
5292 */
fbca46eb 5293 if (fs_info->nodesize < PAGE_SIZE) {
a50e1fcb 5294 bool uptodate, error;
b8f95771
QW
5295
5296 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5297 eb->start, eb->len);
a50e1fcb
JB
5298 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5299 WARN_ON(!uptodate && !error);
b8f95771 5300 } else {
a50e1fcb 5301 WARN_ON(!PageUptodate(page) && !PageError(page));
b8f95771
QW
5302 }
5303}
5304
2b48966a 5305void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
5306 const void *srcv)
5307{
5308 char *kaddr;
5309
b8f95771 5310 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
5311 kaddr = page_address(eb->pages[0]) +
5312 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5313 chunk_tree_uuid));
5314 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
5315}
5316
2b48966a 5317void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
5318{
5319 char *kaddr;
5320
b8f95771 5321 assert_eb_page_uptodate(eb, eb->pages[0]);
24880be5
DS
5322 kaddr = page_address(eb->pages[0]) +
5323 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5324 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
f157bf76
DS
5325}
5326
2b48966a 5327void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
5328 unsigned long start, unsigned long len)
5329{
5330 size_t cur;
5331 size_t offset;
5332 struct page *page;
5333 char *kaddr;
5334 char *src = (char *)srcv;
884b07d0 5335 unsigned long i = get_eb_page_index(start);
d1310b2e 5336
d3575156
NA
5337 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5338
f98b6215
QW
5339 if (check_eb_range(eb, start, len))
5340 return;
d1310b2e 5341
884b07d0 5342 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5343
d397712b 5344 while (len > 0) {
fb85fc9a 5345 page = eb->pages[i];
b8f95771 5346 assert_eb_page_uptodate(eb, page);
d1310b2e 5347
09cbfeaf 5348 cur = min(len, PAGE_SIZE - offset);
a6591715 5349 kaddr = page_address(page);
d1310b2e 5350 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5351
5352 src += cur;
5353 len -= cur;
5354 offset = 0;
5355 i++;
5356 }
5357}
d1310b2e 5358
2b48966a 5359void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 5360 unsigned long len)
d1310b2e
CM
5361{
5362 size_t cur;
5363 size_t offset;
5364 struct page *page;
5365 char *kaddr;
884b07d0 5366 unsigned long i = get_eb_page_index(start);
d1310b2e 5367
f98b6215
QW
5368 if (check_eb_range(eb, start, len))
5369 return;
d1310b2e 5370
884b07d0 5371 offset = get_eb_offset_in_page(eb, start);
d1310b2e 5372
d397712b 5373 while (len > 0) {
fb85fc9a 5374 page = eb->pages[i];
b8f95771 5375 assert_eb_page_uptodate(eb, page);
d1310b2e 5376
09cbfeaf 5377 cur = min(len, PAGE_SIZE - offset);
a6591715 5378 kaddr = page_address(page);
b159fa28 5379 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5380
5381 len -= cur;
5382 offset = 0;
5383 i++;
5384 }
5385}
d1310b2e 5386
2b48966a
DS
5387void copy_extent_buffer_full(const struct extent_buffer *dst,
5388 const struct extent_buffer *src)
58e8012c
DS
5389{
5390 int i;
cc5e31a4 5391 int num_pages;
58e8012c
DS
5392
5393 ASSERT(dst->len == src->len);
5394
fbca46eb 5395 if (dst->fs_info->nodesize >= PAGE_SIZE) {
884b07d0
QW
5396 num_pages = num_extent_pages(dst);
5397 for (i = 0; i < num_pages; i++)
5398 copy_page(page_address(dst->pages[i]),
5399 page_address(src->pages[i]));
5400 } else {
5401 size_t src_offset = get_eb_offset_in_page(src, 0);
5402 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5403
fbca46eb 5404 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
884b07d0
QW
5405 memcpy(page_address(dst->pages[0]) + dst_offset,
5406 page_address(src->pages[0]) + src_offset,
5407 src->len);
5408 }
58e8012c
DS
5409}
5410
2b48966a
DS
5411void copy_extent_buffer(const struct extent_buffer *dst,
5412 const struct extent_buffer *src,
d1310b2e
CM
5413 unsigned long dst_offset, unsigned long src_offset,
5414 unsigned long len)
5415{
5416 u64 dst_len = dst->len;
5417 size_t cur;
5418 size_t offset;
5419 struct page *page;
5420 char *kaddr;
884b07d0 5421 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 5422
f98b6215
QW
5423 if (check_eb_range(dst, dst_offset, len) ||
5424 check_eb_range(src, src_offset, len))
5425 return;
5426
d1310b2e
CM
5427 WARN_ON(src->len != dst_len);
5428
884b07d0 5429 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 5430
d397712b 5431 while (len > 0) {
fb85fc9a 5432 page = dst->pages[i];
b8f95771 5433 assert_eb_page_uptodate(dst, page);
d1310b2e 5434
09cbfeaf 5435 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5436
a6591715 5437 kaddr = page_address(page);
d1310b2e 5438 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5439
5440 src_offset += cur;
5441 len -= cur;
5442 offset = 0;
5443 i++;
5444 }
5445}
d1310b2e 5446
3e1e8bb7
OS
5447/*
5448 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5449 * given bit number
5450 * @eb: the extent buffer
5451 * @start: offset of the bitmap item in the extent buffer
5452 * @nr: bit number
5453 * @page_index: return index of the page in the extent buffer that contains the
5454 * given bit number
5455 * @page_offset: return offset into the page given by page_index
5456 *
5457 * This helper hides the ugliness of finding the byte in an extent buffer which
5458 * contains a given bit.
5459 */
2b48966a 5460static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
5461 unsigned long start, unsigned long nr,
5462 unsigned long *page_index,
5463 size_t *page_offset)
5464{
3e1e8bb7
OS
5465 size_t byte_offset = BIT_BYTE(nr);
5466 size_t offset;
5467
5468 /*
5469 * The byte we want is the offset of the extent buffer + the offset of
5470 * the bitmap item in the extent buffer + the offset of the byte in the
5471 * bitmap item.
5472 */
884b07d0 5473 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 5474
09cbfeaf 5475 *page_index = offset >> PAGE_SHIFT;
7073017a 5476 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5477}
5478
5479/**
5480 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5481 * @eb: the extent buffer
5482 * @start: offset of the bitmap item in the extent buffer
5483 * @nr: bit number to test
5484 */
2b48966a 5485int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5486 unsigned long nr)
5487{
2fe1d551 5488 u8 *kaddr;
3e1e8bb7
OS
5489 struct page *page;
5490 unsigned long i;
5491 size_t offset;
5492
5493 eb_bitmap_offset(eb, start, nr, &i, &offset);
5494 page = eb->pages[i];
b8f95771 5495 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5496 kaddr = page_address(page);
5497 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5498}
5499
5500/**
5501 * extent_buffer_bitmap_set - set an area of a bitmap
5502 * @eb: the extent buffer
5503 * @start: offset of the bitmap item in the extent buffer
5504 * @pos: bit number of the first bit
5505 * @len: number of bits to set
5506 */
2b48966a 5507void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5508 unsigned long pos, unsigned long len)
5509{
2fe1d551 5510 u8 *kaddr;
3e1e8bb7
OS
5511 struct page *page;
5512 unsigned long i;
5513 size_t offset;
5514 const unsigned int size = pos + len;
5515 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5516 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5517
5518 eb_bitmap_offset(eb, start, pos, &i, &offset);
5519 page = eb->pages[i];
b8f95771 5520 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5521 kaddr = page_address(page);
5522
5523 while (len >= bits_to_set) {
5524 kaddr[offset] |= mask_to_set;
5525 len -= bits_to_set;
5526 bits_to_set = BITS_PER_BYTE;
9c894696 5527 mask_to_set = ~0;
09cbfeaf 5528 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5529 offset = 0;
5530 page = eb->pages[++i];
b8f95771 5531 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5532 kaddr = page_address(page);
5533 }
5534 }
5535 if (len) {
5536 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5537 kaddr[offset] |= mask_to_set;
5538 }
5539}
5540
5541
5542/**
5543 * extent_buffer_bitmap_clear - clear an area of a bitmap
5544 * @eb: the extent buffer
5545 * @start: offset of the bitmap item in the extent buffer
5546 * @pos: bit number of the first bit
5547 * @len: number of bits to clear
5548 */
2b48966a
DS
5549void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5550 unsigned long start, unsigned long pos,
5551 unsigned long len)
3e1e8bb7 5552{
2fe1d551 5553 u8 *kaddr;
3e1e8bb7
OS
5554 struct page *page;
5555 unsigned long i;
5556 size_t offset;
5557 const unsigned int size = pos + len;
5558 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5559 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5560
5561 eb_bitmap_offset(eb, start, pos, &i, &offset);
5562 page = eb->pages[i];
b8f95771 5563 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5564 kaddr = page_address(page);
5565
5566 while (len >= bits_to_clear) {
5567 kaddr[offset] &= ~mask_to_clear;
5568 len -= bits_to_clear;
5569 bits_to_clear = BITS_PER_BYTE;
9c894696 5570 mask_to_clear = ~0;
09cbfeaf 5571 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5572 offset = 0;
5573 page = eb->pages[++i];
b8f95771 5574 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
5575 kaddr = page_address(page);
5576 }
5577 }
5578 if (len) {
5579 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5580 kaddr[offset] &= ~mask_to_clear;
5581 }
5582}
5583
3387206f
ST
5584static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5585{
5586 unsigned long distance = (src > dst) ? src - dst : dst - src;
5587 return distance < len;
5588}
5589
d1310b2e
CM
5590static void copy_pages(struct page *dst_page, struct page *src_page,
5591 unsigned long dst_off, unsigned long src_off,
5592 unsigned long len)
5593{
a6591715 5594 char *dst_kaddr = page_address(dst_page);
d1310b2e 5595 char *src_kaddr;
727011e0 5596 int must_memmove = 0;
d1310b2e 5597
3387206f 5598 if (dst_page != src_page) {
a6591715 5599 src_kaddr = page_address(src_page);
3387206f 5600 } else {
d1310b2e 5601 src_kaddr = dst_kaddr;
727011e0
CM
5602 if (areas_overlap(src_off, dst_off, len))
5603 must_memmove = 1;
3387206f 5604 }
d1310b2e 5605
727011e0
CM
5606 if (must_memmove)
5607 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5608 else
5609 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5610}
5611
2b48966a
DS
5612void memcpy_extent_buffer(const struct extent_buffer *dst,
5613 unsigned long dst_offset, unsigned long src_offset,
5614 unsigned long len)
d1310b2e
CM
5615{
5616 size_t cur;
5617 size_t dst_off_in_page;
5618 size_t src_off_in_page;
d1310b2e
CM
5619 unsigned long dst_i;
5620 unsigned long src_i;
5621
f98b6215
QW
5622 if (check_eb_range(dst, dst_offset, len) ||
5623 check_eb_range(dst, src_offset, len))
5624 return;
d1310b2e 5625
d397712b 5626 while (len > 0) {
884b07d0
QW
5627 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5628 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
d1310b2e 5629
884b07d0
QW
5630 dst_i = get_eb_page_index(dst_offset);
5631 src_i = get_eb_page_index(src_offset);
d1310b2e 5632
09cbfeaf 5633 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5634 src_off_in_page));
5635 cur = min_t(unsigned long, cur,
09cbfeaf 5636 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5637
fb85fc9a 5638 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5639 dst_off_in_page, src_off_in_page, cur);
5640
5641 src_offset += cur;
5642 dst_offset += cur;
5643 len -= cur;
5644 }
5645}
d1310b2e 5646
2b48966a
DS
5647void memmove_extent_buffer(const struct extent_buffer *dst,
5648 unsigned long dst_offset, unsigned long src_offset,
5649 unsigned long len)
d1310b2e
CM
5650{
5651 size_t cur;
5652 size_t dst_off_in_page;
5653 size_t src_off_in_page;
5654 unsigned long dst_end = dst_offset + len - 1;
5655 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
5656 unsigned long dst_i;
5657 unsigned long src_i;
5658
f98b6215
QW
5659 if (check_eb_range(dst, dst_offset, len) ||
5660 check_eb_range(dst, src_offset, len))
5661 return;
727011e0 5662 if (dst_offset < src_offset) {
d1310b2e
CM
5663 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5664 return;
5665 }
d397712b 5666 while (len > 0) {
884b07d0
QW
5667 dst_i = get_eb_page_index(dst_end);
5668 src_i = get_eb_page_index(src_end);
d1310b2e 5669
884b07d0
QW
5670 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5671 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
5672
5673 cur = min_t(unsigned long, len, src_off_in_page + 1);
5674 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5675 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5676 dst_off_in_page - cur + 1,
5677 src_off_in_page - cur + 1, cur);
5678
5679 dst_end -= cur;
5680 src_end -= cur;
5681 len -= cur;
5682 }
5683}
6af118ce 5684
01cd3909 5685#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
5686static struct extent_buffer *get_next_extent_buffer(
5687 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5688{
01cd3909
DS
5689 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5690 struct extent_buffer *found = NULL;
d1e86e3f 5691 u64 page_start = page_offset(page);
01cd3909 5692 u64 cur = page_start;
d1e86e3f
QW
5693
5694 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
5695 lockdep_assert_held(&fs_info->buffer_lock);
5696
01cd3909
DS
5697 while (cur < page_start + PAGE_SIZE) {
5698 int ret;
5699 int i;
5700
5701 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5702 (void **)gang, cur >> fs_info->sectorsize_bits,
5703 min_t(unsigned int, GANG_LOOKUP_SIZE,
5704 PAGE_SIZE / fs_info->nodesize));
5705 if (ret == 0)
5706 goto out;
5707 for (i = 0; i < ret; i++) {
5708 /* Already beyond page end */
5709 if (gang[i]->start >= page_start + PAGE_SIZE)
5710 goto out;
5711 /* Found one */
5712 if (gang[i]->start >= bytenr) {
5713 found = gang[i];
5714 goto out;
5715 }
5716 }
5717 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 5718 }
01cd3909
DS
5719out:
5720 return found;
d1e86e3f
QW
5721}
5722
5723static int try_release_subpage_extent_buffer(struct page *page)
5724{
5725 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5726 u64 cur = page_offset(page);
5727 const u64 end = page_offset(page) + PAGE_SIZE;
5728 int ret;
5729
5730 while (cur < end) {
5731 struct extent_buffer *eb = NULL;
5732
5733 /*
5734 * Unlike try_release_extent_buffer() which uses page->private
5735 * to grab buffer, for subpage case we rely on radix tree, thus
5736 * we need to ensure radix tree consistency.
5737 *
5738 * We also want an atomic snapshot of the radix tree, thus go
5739 * with spinlock rather than RCU.
5740 */
5741 spin_lock(&fs_info->buffer_lock);
5742 eb = get_next_extent_buffer(fs_info, page, cur);
5743 if (!eb) {
5744 /* No more eb in the page range after or at cur */
5745 spin_unlock(&fs_info->buffer_lock);
5746 break;
5747 }
5748 cur = eb->start + eb->len;
5749
5750 /*
5751 * The same as try_release_extent_buffer(), to ensure the eb
5752 * won't disappear out from under us.
5753 */
5754 spin_lock(&eb->refs_lock);
5755 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5756 spin_unlock(&eb->refs_lock);
5757 spin_unlock(&fs_info->buffer_lock);
5758 break;
5759 }
5760 spin_unlock(&fs_info->buffer_lock);
5761
5762 /*
5763 * If tree ref isn't set then we know the ref on this eb is a
5764 * real ref, so just return, this eb will likely be freed soon
5765 * anyway.
5766 */
5767 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5768 spin_unlock(&eb->refs_lock);
5769 break;
5770 }
5771
5772 /*
5773 * Here we don't care about the return value, we will always
5774 * check the page private at the end. And
5775 * release_extent_buffer() will release the refs_lock.
5776 */
5777 release_extent_buffer(eb);
5778 }
5779 /*
5780 * Finally to check if we have cleared page private, as if we have
5781 * released all ebs in the page, the page private should be cleared now.
5782 */
5783 spin_lock(&page->mapping->private_lock);
5784 if (!PagePrivate(page))
5785 ret = 1;
5786 else
5787 ret = 0;
5788 spin_unlock(&page->mapping->private_lock);
5789 return ret;
5790
5791}
5792
f7a52a40 5793int try_release_extent_buffer(struct page *page)
19fe0a8b 5794{
6af118ce 5795 struct extent_buffer *eb;
6af118ce 5796
fbca46eb 5797 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
d1e86e3f
QW
5798 return try_release_subpage_extent_buffer(page);
5799
3083ee2e 5800 /*
d1e86e3f
QW
5801 * We need to make sure nobody is changing page->private, as we rely on
5802 * page->private as the pointer to extent buffer.
3083ee2e
JB
5803 */
5804 spin_lock(&page->mapping->private_lock);
5805 if (!PagePrivate(page)) {
5806 spin_unlock(&page->mapping->private_lock);
4f2de97a 5807 return 1;
45f49bce 5808 }
6af118ce 5809
3083ee2e
JB
5810 eb = (struct extent_buffer *)page->private;
5811 BUG_ON(!eb);
19fe0a8b
MX
5812
5813 /*
3083ee2e
JB
5814 * This is a little awful but should be ok, we need to make sure that
5815 * the eb doesn't disappear out from under us while we're looking at
5816 * this page.
19fe0a8b 5817 */
3083ee2e 5818 spin_lock(&eb->refs_lock);
0b32f4bb 5819 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5820 spin_unlock(&eb->refs_lock);
5821 spin_unlock(&page->mapping->private_lock);
5822 return 0;
b9473439 5823 }
3083ee2e 5824 spin_unlock(&page->mapping->private_lock);
897ca6e9 5825
19fe0a8b 5826 /*
3083ee2e
JB
5827 * If tree ref isn't set then we know the ref on this eb is a real ref,
5828 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5829 */
3083ee2e
JB
5830 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5831 spin_unlock(&eb->refs_lock);
5832 return 0;
b9473439 5833 }
19fe0a8b 5834
f7a52a40 5835 return release_extent_buffer(eb);
6af118ce 5836}
bfb484d9
JB
5837
5838/*
5839 * btrfs_readahead_tree_block - attempt to readahead a child block
5840 * @fs_info: the fs_info
5841 * @bytenr: bytenr to read
3fbaf258 5842 * @owner_root: objectid of the root that owns this eb
bfb484d9 5843 * @gen: generation for the uptodate check, can be 0
3fbaf258 5844 * @level: level for the eb
bfb484d9
JB
5845 *
5846 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5847 * normal uptodate check of the eb, without checking the generation. If we have
5848 * to read the block we will not block on anything.
5849 */
5850void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 5851 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9
JB
5852{
5853 struct extent_buffer *eb;
5854 int ret;
5855
3fbaf258 5856 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
5857 if (IS_ERR(eb))
5858 return;
5859
5860 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5861 free_extent_buffer(eb);
5862 return;
5863 }
5864
5865 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
5866 if (ret < 0)
5867 free_extent_buffer_stale(eb);
5868 else
5869 free_extent_buffer(eb);
5870}
5871
5872/*
5873 * btrfs_readahead_node_child - readahead a node's child block
5874 * @node: parent node we're reading from
5875 * @slot: slot in the parent node for the child we want to read
5876 *
5877 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5878 * the slot in the node provided.
5879 */
5880void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5881{
5882 btrfs_readahead_tree_block(node->fs_info,
5883 btrfs_node_blockptr(node, slot),
3fbaf258
JB
5884 btrfs_header_owner(node),
5885 btrfs_node_ptr_generation(node, slot),
5886 btrfs_header_level(node) - 1);
bfb484d9 5887}