btrfs: assert page mapping lock in attach_extent_buffer_page
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 38static LIST_HEAD(states);
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 40
3fd63727
JB
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
6d49ba1b
ES
44{
45 unsigned long flags;
46
3fd63727 47 spin_lock_irqsave(lock, flags);
6d49ba1b 48 list_add(new, head);
3fd63727 49 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
50}
51
3fd63727
JB
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
6d49ba1b
ES
54{
55 unsigned long flags;
56
3fd63727 57 spin_lock_irqsave(lock, flags);
6d49ba1b 58 list_del(entry);
3fd63727 59 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
60}
61
3fd63727 62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 63{
6d49ba1b 64 struct extent_buffer *eb;
3fd63727 65 unsigned long flags;
6d49ba1b 66
8c38938c
JB
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
3fd63727
JB
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
8c38938c
JB
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
33ca832f
JB
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
3fd63727 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
6d49ba1b
ES
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
b7ac31b7 97 refcount_read(&state->refs));
6d49ba1b
ES
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
6d49ba1b 101}
8d599ae1 102
a5dee37d
JB
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 106 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 107{
65a680f6
NB
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
8d599ae1 120}
6d49ba1b 121#else
3fd63727
JB
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 124#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 126#endif
d1310b2e 127
d1310b2e
CM
128struct tree_entry {
129 u64 start;
130 u64 end;
d1310b2e
CM
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
771ed689
CM
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
ffbd517d
CM
139 unsigned int extent_locked:1;
140
70fd7614 141 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 142 unsigned int sync_io:1;
d1310b2e
CM
143};
144
57599c7e 145static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
57599c7e 152 return 0;
d38ed27f 153 if (set && (state->state & bits) == bits)
57599c7e 154 return 0;
fefdc557 155 if (!set && (state->state & bits) == 0)
57599c7e 156 return 0;
d38ed27f 157 changeset->bytes_changed += state->end - state->start + 1;
53d32359 158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 159 GFP_ATOMIC);
57599c7e 160 return ret;
d38ed27f
QW
161}
162
c1be9c1a
NB
163int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
bb58eb9e
QW
165{
166 blk_status_t ret = 0;
bb58eb9e 167 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
168
169 bio->bi_private = NULL;
170
908930f3
NB
171 if (is_data_inode(tree->private_data))
172 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
173 bio_flags);
174 else
1b36294a
NB
175 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
176 mirror_num, bio_flags);
bb58eb9e
QW
177
178 return blk_status_to_errno(ret);
179}
180
3065976b
QW
181/* Cleanup unsubmitted bios */
182static void end_write_bio(struct extent_page_data *epd, int ret)
183{
184 if (epd->bio) {
185 epd->bio->bi_status = errno_to_blk_status(ret);
186 bio_endio(epd->bio);
187 epd->bio = NULL;
188 }
189}
190
f4340622
QW
191/*
192 * Submit bio from extent page data via submit_one_bio
193 *
194 * Return 0 if everything is OK.
195 * Return <0 for error.
196 */
197static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 198{
f4340622 199 int ret = 0;
bb58eb9e 200
f4340622 201 if (epd->bio) {
bb58eb9e 202 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
203 /*
204 * Clean up of epd->bio is handled by its endio function.
205 * And endio is either triggered by successful bio execution
206 * or the error handler of submit bio hook.
207 * So at this point, no matter what happened, we don't need
208 * to clean up epd->bio.
209 */
bb58eb9e
QW
210 epd->bio = NULL;
211 }
f4340622 212 return ret;
bb58eb9e 213}
e2932ee0 214
6f0d04f8 215int __init extent_state_cache_init(void)
d1310b2e 216{
837e1972 217 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 218 sizeof(struct extent_state), 0,
fba4b697 219 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
220 if (!extent_state_cache)
221 return -ENOMEM;
6f0d04f8
JB
222 return 0;
223}
d1310b2e 224
6f0d04f8
JB
225int __init extent_io_init(void)
226{
837e1972 227 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 228 sizeof(struct extent_buffer), 0,
fba4b697 229 SLAB_MEM_SPREAD, NULL);
d1310b2e 230 if (!extent_buffer_cache)
6f0d04f8 231 return -ENOMEM;
9be3395b 232
8ac9f7c1
KO
233 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
234 offsetof(struct btrfs_io_bio, bio),
235 BIOSET_NEED_BVECS))
9be3395b 236 goto free_buffer_cache;
b208c2f7 237
8ac9f7c1 238 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
239 goto free_bioset;
240
d1310b2e
CM
241 return 0;
242
b208c2f7 243free_bioset:
8ac9f7c1 244 bioset_exit(&btrfs_bioset);
b208c2f7 245
9be3395b
CM
246free_buffer_cache:
247 kmem_cache_destroy(extent_buffer_cache);
248 extent_buffer_cache = NULL;
6f0d04f8
JB
249 return -ENOMEM;
250}
9be3395b 251
6f0d04f8
JB
252void __cold extent_state_cache_exit(void)
253{
254 btrfs_extent_state_leak_debug_check();
d1310b2e 255 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
256}
257
e67c718b 258void __cold extent_io_exit(void)
d1310b2e 259{
8c0a8537
KS
260 /*
261 * Make sure all delayed rcu free are flushed before we
262 * destroy caches.
263 */
264 rcu_barrier();
5598e900 265 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 266 bioset_exit(&btrfs_bioset);
d1310b2e
CM
267}
268
41a2ee75
JB
269/*
270 * For the file_extent_tree, we want to hold the inode lock when we lookup and
271 * update the disk_i_size, but lockdep will complain because our io_tree we hold
272 * the tree lock and get the inode lock when setting delalloc. These two things
273 * are unrelated, so make a class for the file_extent_tree so we don't get the
274 * two locking patterns mixed up.
275 */
276static struct lock_class_key file_extent_tree_class;
277
c258d6e3 278void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
279 struct extent_io_tree *tree, unsigned int owner,
280 void *private_data)
d1310b2e 281{
c258d6e3 282 tree->fs_info = fs_info;
6bef4d31 283 tree->state = RB_ROOT;
d1310b2e 284 tree->dirty_bytes = 0;
70dec807 285 spin_lock_init(&tree->lock);
c6100a4b 286 tree->private_data = private_data;
43eb5f29 287 tree->owner = owner;
41a2ee75
JB
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 290}
d1310b2e 291
41e7acd3
NB
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
b2950863 321static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
322{
323 struct extent_state *state;
d1310b2e 324
3ba7ab22
MH
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 330 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 331 if (!state)
d1310b2e
CM
332 return state;
333 state->state = 0;
47dc196a 334 state->failrec = NULL;
27a3507d 335 RB_CLEAR_NODE(&state->rb_node);
3fd63727 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 337 refcount_set(&state->refs, 1);
d1310b2e 338 init_waitqueue_head(&state->wq);
143bede5 339 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
340 return state;
341}
d1310b2e 342
4845e44f 343void free_extent_state(struct extent_state *state)
d1310b2e 344{
d1310b2e
CM
345 if (!state)
346 return;
b7ac31b7 347 if (refcount_dec_and_test(&state->refs)) {
27a3507d 348 WARN_ON(extent_state_in_tree(state));
3fd63727 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 350 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
d1310b2e 354
f2071b21
FM
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
12cfbad9
FDBM
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
d1310b2e 361{
f2071b21 362 struct rb_node **p;
d397712b 363 struct rb_node *parent = NULL;
d1310b2e
CM
364 struct tree_entry *entry;
365
12cfbad9
FDBM
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
f2071b21 372 p = search_start ? &search_start : &root->rb_node;
d397712b 373 while (*p) {
d1310b2e
CM
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
12cfbad9 385do_insert:
d1310b2e
CM
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
8666e638
NB
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
80ea96b1 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 410 struct rb_node **next_ret,
352646c7 411 struct rb_node **prev_ret,
12cfbad9
FDBM
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
d1310b2e 414{
80ea96b1 415 struct rb_root *root = &tree->state;
12cfbad9 416 struct rb_node **n = &root->rb_node;
d1310b2e
CM
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
12cfbad9
FDBM
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
425 prev_entry = entry;
426
427 if (offset < entry->start)
12cfbad9 428 n = &(*n)->rb_left;
d1310b2e 429 else if (offset > entry->end)
12cfbad9 430 n = &(*n)->rb_right;
d397712b 431 else
12cfbad9 432 return *n;
d1310b2e
CM
433 }
434
12cfbad9
FDBM
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
352646c7 440 if (next_ret) {
d1310b2e 441 orig_prev = prev;
d397712b 442 while (prev && offset > prev_entry->end) {
d1310b2e
CM
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
352646c7 446 *next_ret = prev;
d1310b2e
CM
447 prev = orig_prev;
448 }
449
352646c7 450 if (prev_ret) {
d1310b2e 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 452 while (prev && offset < prev_entry->start) {
d1310b2e
CM
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
352646c7 456 *prev_ret = prev;
d1310b2e
CM
457 }
458 return NULL;
459}
460
12cfbad9
FDBM
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
d1310b2e 466{
352646c7 467 struct rb_node *next= NULL;
d1310b2e 468 struct rb_node *ret;
70dec807 469
352646c7 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 471 if (!ret)
352646c7 472 return next;
d1310b2e
CM
473 return ret;
474}
475
12cfbad9
FDBM
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
d1310b2e
CM
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
1bf85046
JM
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
d1310b2e
CM
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
8882679e 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 498 return;
d1310b2e
CM
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
5c848198
NB
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
d1310b2e 509 state->start = other->start;
d1310b2e 510 rb_erase(&other->rb_node, &tree->state);
27a3507d 511 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
5c848198
NB
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
df98b6e2 524 state->end = other->end;
df98b6e2 525 rb_erase(&other->rb_node, &tree->state);
27a3507d 526 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 527 free_extent_state(other);
d1310b2e
CM
528 }
529 }
d1310b2e
CM
530}
531
3150b699 532static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
3150b699 535
d1310b2e
CM
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
548 struct rb_node ***p,
549 struct rb_node **parent,
d38ed27f 550 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
551{
552 struct rb_node *node;
553
2792237d
DS
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
d1310b2e
CM
559 state->start = start;
560 state->end = end;
9ed74f2d 561
d38ed27f 562 set_state_bits(tree, state, bits, changeset);
3150b699 563
f2071b21 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 570 found->start, found->end, start, end);
d1310b2e
CM
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
9ed74f2d 595
abbb55f4
NB
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 598
d1310b2e
CM
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
f2071b21
FM
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
d1310b2e 606 if (node) {
d1310b2e
CM
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
cdc6a395
LZ
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
d1310b2e
CM
622/*
623 * utility function to clear some bits in an extent state struct.
52042d8e 624 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
cdc6a395
LZ
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
fefdc557
QW
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
d1310b2e 633{
cdc6a395 634 struct extent_state *next;
9ee49a04 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 636 int ret;
d1310b2e 637
0ca1f7ce 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
a36bb5f9
NB
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
57599c7e
DS
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
32c00aff 649 state->state &= ~bits_to_clear;
d1310b2e
CM
650 if (wake)
651 wake_up(&state->wq);
0ca1f7ce 652 if (state->state == 0) {
cdc6a395 653 next = next_state(state);
27a3507d 654 if (extent_state_in_tree(state)) {
d1310b2e 655 rb_erase(&state->rb_node, &tree->state);
27a3507d 656 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
cdc6a395 663 next = next_state(state);
d1310b2e 664 }
cdc6a395 665 return next;
d1310b2e
CM
666}
667
8233767a
XG
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
48a3b636 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 678{
05912a3c
DS
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
683}
684
d1310b2e
CM
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
6763af84 695 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 696 */
66b0c887 697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
701{
702 struct extent_state *state;
2c64c53d 703 struct extent_state *cached;
d1310b2e
CM
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
5c939df5 706 u64 last_end;
d1310b2e 707 int err;
2ac55d41 708 int clear = 0;
d1310b2e 709
a5dee37d 710 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 712
7ee9e440
JB
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
0ca1f7ce
YZ
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 718
8882679e 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 720 clear = 1;
d1310b2e 721again:
d0164adc 722 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
d1310b2e 730 prealloc = alloc_extent_state(mask);
d1310b2e
CM
731 }
732
cad321ad 733 spin_lock(&tree->lock);
2c64c53d
CM
734 if (cached_state) {
735 cached = *cached_state;
2ac55d41
JB
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
27a3507d
FM
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
2ac55d41 744 if (clear)
b7ac31b7 745 refcount_dec(&cached->refs);
2c64c53d 746 state = cached;
42daec29 747 goto hit_next;
2c64c53d 748 }
2ac55d41
JB
749 if (clear)
750 free_extent_state(cached);
2c64c53d 751 }
d1310b2e
CM
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
d1310b2e
CM
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 760hit_next:
d1310b2e
CM
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
5c939df5 764 last_end = state->end;
d1310b2e 765
0449314a 766 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
767 if (!(state->state & bits)) {
768 state = next_state(state);
0449314a 769 goto next;
cdc6a395 770 }
0449314a 771
d1310b2e
CM
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
8233767a
XG
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
d1310b2e 791 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
792 if (err)
793 extent_io_tree_panic(tree, err);
794
d1310b2e
CM
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
fefdc557
QW
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
d1ac6e41 801 goto next;
d1310b2e
CM
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
8233767a
XG
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
d1310b2e 814 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
815 if (err)
816 extent_io_tree_panic(tree, err);
817
d1310b2e
CM
818 if (wake)
819 wake_up(&state->wq);
42daec29 820
fefdc557 821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 822
d1310b2e
CM
823 prealloc = NULL;
824 goto out;
825 }
42daec29 826
fefdc557 827 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 828next:
5c939df5
YZ
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
cdc6a395 832 if (start <= end && state && !need_resched())
692e5759 833 goto hit_next;
d1310b2e
CM
834
835search_again:
836 if (start > end)
837 goto out;
cad321ad 838 spin_unlock(&tree->lock);
d0164adc 839 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
840 cond_resched();
841 goto again;
7ab5cb2a
DS
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
d1310b2e 850}
d1310b2e 851
143bede5
JM
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
641f5219
CH
854 __releases(tree->lock)
855 __acquires(tree->lock)
d1310b2e
CM
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 859 spin_unlock(&tree->lock);
d1310b2e 860 schedule();
cad321ad 861 spin_lock(&tree->lock);
d1310b2e 862 finish_wait(&state->wq, &wait);
d1310b2e
CM
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
41074888
DS
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
d1310b2e
CM
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
a5dee37d 876 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 877
cad321ad 878 spin_lock(&tree->lock);
d1310b2e
CM
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
80ea96b1 885 node = tree_search(tree, start);
c50d3e71 886process_node:
d1310b2e
CM
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
b7ac31b7 897 refcount_inc(&state->refs);
d1310b2e
CM
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
c50d3e71
FM
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
d1310b2e
CM
911 }
912out:
cad321ad 913 spin_unlock(&tree->lock);
d1310b2e 914}
d1310b2e 915
1bf85046 916static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 917 struct extent_state *state,
d38ed27f 918 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 919{
9ee49a04 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 921 int ret;
9ed74f2d 922
e06a1fc9
NB
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
0ca1f7ce 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
57599c7e
DS
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
0ca1f7ce 932 state->state |= bits_to_set;
d1310b2e
CM
933}
934
e38e2ed7
FM
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
9ee49a04 937 unsigned flags)
2c64c53d
CM
938{
939 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 940 if (!flags || (state->state & flags)) {
2c64c53d 941 *cached_ptr = state;
b7ac31b7 942 refcount_inc(&state->refs);
2c64c53d
CM
943 }
944 }
945}
946
e38e2ed7
FM
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
8882679e 951 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
952}
953
d1310b2e 954/*
1edbb734
CM
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 957 *
1edbb734
CM
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
d1310b2e 961 *
1edbb734 962 * [start, end] is inclusive This takes the tree lock.
d1310b2e 963 */
1edbb734 964
3fbe5c02
JM
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 967 unsigned bits, unsigned exclusive_bits,
41074888 968 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 969 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
12cfbad9
FDBM
974 struct rb_node **p;
975 struct rb_node *parent;
d1310b2e 976 int err = 0;
d1310b2e
CM
977 u64 last_start;
978 u64 last_end;
42daec29 979
a5dee37d 980 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 982
3f6bb4ae
QW
983 if (exclusive_bits)
984 ASSERT(failed_start);
985 else
986 ASSERT(failed_start == NULL);
d1310b2e 987again:
d0164adc 988 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
989 /*
990 * Don't care for allocation failure here because we might end
991 * up not needing the pre-allocated extent state at all, which
992 * is the case if we only have in the tree extent states that
993 * cover our input range and don't cover too any other range.
994 * If we end up needing a new extent state we allocate it later.
995 */
d1310b2e 996 prealloc = alloc_extent_state(mask);
d1310b2e
CM
997 }
998
cad321ad 999 spin_lock(&tree->lock);
9655d298
CM
1000 if (cached_state && *cached_state) {
1001 state = *cached_state;
df98b6e2 1002 if (state->start <= start && state->end > start &&
27a3507d 1003 extent_state_in_tree(state)) {
9655d298
CM
1004 node = &state->rb_node;
1005 goto hit_next;
1006 }
1007 }
d1310b2e
CM
1008 /*
1009 * this search will find all the extents that end after
1010 * our range starts.
1011 */
12cfbad9 1012 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1013 if (!node) {
8233767a
XG
1014 prealloc = alloc_extent_state_atomic(prealloc);
1015 BUG_ON(!prealloc);
12cfbad9 1016 err = insert_state(tree, prealloc, start, end,
d38ed27f 1017 &p, &parent, &bits, changeset);
c2d904e0
JM
1018 if (err)
1019 extent_io_tree_panic(tree, err);
1020
c42ac0bc 1021 cache_state(prealloc, cached_state);
d1310b2e 1022 prealloc = NULL;
d1310b2e
CM
1023 goto out;
1024 }
d1310b2e 1025 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1026hit_next:
d1310b2e
CM
1027 last_start = state->start;
1028 last_end = state->end;
1029
1030 /*
1031 * | ---- desired range ---- |
1032 * | state |
1033 *
1034 * Just lock what we found and keep going
1035 */
1036 if (state->start == start && state->end <= end) {
1edbb734 1037 if (state->state & exclusive_bits) {
d1310b2e
CM
1038 *failed_start = state->start;
1039 err = -EEXIST;
1040 goto out;
1041 }
42daec29 1042
d38ed27f 1043 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1044 cache_state(state, cached_state);
d1310b2e 1045 merge_state(tree, state);
5c939df5
YZ
1046 if (last_end == (u64)-1)
1047 goto out;
1048 start = last_end + 1;
d1ac6e41
LB
1049 state = next_state(state);
1050 if (start < end && state && state->start == start &&
1051 !need_resched())
1052 goto hit_next;
d1310b2e
CM
1053 goto search_again;
1054 }
1055
1056 /*
1057 * | ---- desired range ---- |
1058 * | state |
1059 * or
1060 * | ------------- state -------------- |
1061 *
1062 * We need to split the extent we found, and may flip bits on
1063 * second half.
1064 *
1065 * If the extent we found extends past our
1066 * range, we just split and search again. It'll get split
1067 * again the next time though.
1068 *
1069 * If the extent we found is inside our range, we set the
1070 * desired bit on it.
1071 */
1072 if (state->start < start) {
1edbb734 1073 if (state->state & exclusive_bits) {
d1310b2e
CM
1074 *failed_start = start;
1075 err = -EEXIST;
1076 goto out;
1077 }
8233767a 1078
55ffaabe
FM
1079 /*
1080 * If this extent already has all the bits we want set, then
1081 * skip it, not necessary to split it or do anything with it.
1082 */
1083 if ((state->state & bits) == bits) {
1084 start = state->end + 1;
1085 cache_state(state, cached_state);
1086 goto search_again;
1087 }
1088
8233767a
XG
1089 prealloc = alloc_extent_state_atomic(prealloc);
1090 BUG_ON(!prealloc);
d1310b2e 1091 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1092 if (err)
1093 extent_io_tree_panic(tree, err);
1094
d1310b2e
CM
1095 prealloc = NULL;
1096 if (err)
1097 goto out;
1098 if (state->end <= end) {
d38ed27f 1099 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1100 cache_state(state, cached_state);
d1310b2e 1101 merge_state(tree, state);
5c939df5
YZ
1102 if (last_end == (u64)-1)
1103 goto out;
1104 start = last_end + 1;
d1ac6e41
LB
1105 state = next_state(state);
1106 if (start < end && state && state->start == start &&
1107 !need_resched())
1108 goto hit_next;
d1310b2e
CM
1109 }
1110 goto search_again;
1111 }
1112 /*
1113 * | ---- desired range ---- |
1114 * | state | or | state |
1115 *
1116 * There's a hole, we need to insert something in it and
1117 * ignore the extent we found.
1118 */
1119 if (state->start > start) {
1120 u64 this_end;
1121 if (end < last_start)
1122 this_end = end;
1123 else
d397712b 1124 this_end = last_start - 1;
8233767a
XG
1125
1126 prealloc = alloc_extent_state_atomic(prealloc);
1127 BUG_ON(!prealloc);
c7f895a2
XG
1128
1129 /*
1130 * Avoid to free 'prealloc' if it can be merged with
1131 * the later extent.
1132 */
d1310b2e 1133 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1134 NULL, NULL, &bits, changeset);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137
9ed74f2d
JB
1138 cache_state(prealloc, cached_state);
1139 prealloc = NULL;
d1310b2e
CM
1140 start = this_end + 1;
1141 goto search_again;
1142 }
1143 /*
1144 * | ---- desired range ---- |
1145 * | state |
1146 * We need to split the extent, and set the bit
1147 * on the first half
1148 */
1149 if (state->start <= end && state->end > end) {
1edbb734 1150 if (state->state & exclusive_bits) {
d1310b2e
CM
1151 *failed_start = start;
1152 err = -EEXIST;
1153 goto out;
1154 }
8233767a
XG
1155
1156 prealloc = alloc_extent_state_atomic(prealloc);
1157 BUG_ON(!prealloc);
d1310b2e 1158 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1159 if (err)
1160 extent_io_tree_panic(tree, err);
d1310b2e 1161
d38ed27f 1162 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1163 cache_state(prealloc, cached_state);
d1310b2e
CM
1164 merge_state(tree, prealloc);
1165 prealloc = NULL;
1166 goto out;
1167 }
1168
b5a4ba14
DS
1169search_again:
1170 if (start > end)
1171 goto out;
1172 spin_unlock(&tree->lock);
1173 if (gfpflags_allow_blocking(mask))
1174 cond_resched();
1175 goto again;
d1310b2e
CM
1176
1177out:
cad321ad 1178 spin_unlock(&tree->lock);
d1310b2e
CM
1179 if (prealloc)
1180 free_extent_state(prealloc);
1181
1182 return err;
1183
d1310b2e 1184}
d1310b2e 1185
41074888 1186int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
3f6bb4ae 1187 unsigned bits, struct extent_state **cached_state, gfp_t mask)
3fbe5c02 1188{
3f6bb4ae
QW
1189 return __set_extent_bit(tree, start, end, bits, 0, NULL, cached_state,
1190 mask, NULL);
3fbe5c02
JM
1191}
1192
1193
462d6fac 1194/**
10983f2e
LB
1195 * convert_extent_bit - convert all bits in a given range from one bit to
1196 * another
462d6fac
JB
1197 * @tree: the io tree to search
1198 * @start: the start offset in bytes
1199 * @end: the end offset in bytes (inclusive)
1200 * @bits: the bits to set in this range
1201 * @clear_bits: the bits to clear in this range
e6138876 1202 * @cached_state: state that we're going to cache
462d6fac
JB
1203 *
1204 * This will go through and set bits for the given range. If any states exist
1205 * already in this range they are set with the given bit and cleared of the
1206 * clear_bits. This is only meant to be used by things that are mergeable, ie
1207 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1208 * boundary bits like LOCK.
210aa277
DS
1209 *
1210 * All allocations are done with GFP_NOFS.
462d6fac
JB
1211 */
1212int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1213 unsigned bits, unsigned clear_bits,
210aa277 1214 struct extent_state **cached_state)
462d6fac
JB
1215{
1216 struct extent_state *state;
1217 struct extent_state *prealloc = NULL;
1218 struct rb_node *node;
12cfbad9
FDBM
1219 struct rb_node **p;
1220 struct rb_node *parent;
462d6fac
JB
1221 int err = 0;
1222 u64 last_start;
1223 u64 last_end;
c8fd3de7 1224 bool first_iteration = true;
462d6fac 1225
a5dee37d 1226 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1227 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1228 clear_bits);
8d599ae1 1229
462d6fac 1230again:
210aa277 1231 if (!prealloc) {
c8fd3de7
FM
1232 /*
1233 * Best effort, don't worry if extent state allocation fails
1234 * here for the first iteration. We might have a cached state
1235 * that matches exactly the target range, in which case no
1236 * extent state allocations are needed. We'll only know this
1237 * after locking the tree.
1238 */
210aa277 1239 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1240 if (!prealloc && !first_iteration)
462d6fac
JB
1241 return -ENOMEM;
1242 }
1243
1244 spin_lock(&tree->lock);
e6138876
JB
1245 if (cached_state && *cached_state) {
1246 state = *cached_state;
1247 if (state->start <= start && state->end > start &&
27a3507d 1248 extent_state_in_tree(state)) {
e6138876
JB
1249 node = &state->rb_node;
1250 goto hit_next;
1251 }
1252 }
1253
462d6fac
JB
1254 /*
1255 * this search will find all the extents that end after
1256 * our range starts.
1257 */
12cfbad9 1258 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1259 if (!node) {
1260 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1261 if (!prealloc) {
1262 err = -ENOMEM;
1263 goto out;
1264 }
12cfbad9 1265 err = insert_state(tree, prealloc, start, end,
d38ed27f 1266 &p, &parent, &bits, NULL);
c2d904e0
JM
1267 if (err)
1268 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1269 cache_state(prealloc, cached_state);
1270 prealloc = NULL;
462d6fac
JB
1271 goto out;
1272 }
1273 state = rb_entry(node, struct extent_state, rb_node);
1274hit_next:
1275 last_start = state->start;
1276 last_end = state->end;
1277
1278 /*
1279 * | ---- desired range ---- |
1280 * | state |
1281 *
1282 * Just lock what we found and keep going
1283 */
1284 if (state->start == start && state->end <= end) {
d38ed27f 1285 set_state_bits(tree, state, &bits, NULL);
e6138876 1286 cache_state(state, cached_state);
fefdc557 1287 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1288 if (last_end == (u64)-1)
1289 goto out;
462d6fac 1290 start = last_end + 1;
d1ac6e41
LB
1291 if (start < end && state && state->start == start &&
1292 !need_resched())
1293 goto hit_next;
462d6fac
JB
1294 goto search_again;
1295 }
1296
1297 /*
1298 * | ---- desired range ---- |
1299 * | state |
1300 * or
1301 * | ------------- state -------------- |
1302 *
1303 * We need to split the extent we found, and may flip bits on
1304 * second half.
1305 *
1306 * If the extent we found extends past our
1307 * range, we just split and search again. It'll get split
1308 * again the next time though.
1309 *
1310 * If the extent we found is inside our range, we set the
1311 * desired bit on it.
1312 */
1313 if (state->start < start) {
1314 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1315 if (!prealloc) {
1316 err = -ENOMEM;
1317 goto out;
1318 }
462d6fac 1319 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1320 if (err)
1321 extent_io_tree_panic(tree, err);
462d6fac
JB
1322 prealloc = NULL;
1323 if (err)
1324 goto out;
1325 if (state->end <= end) {
d38ed27f 1326 set_state_bits(tree, state, &bits, NULL);
e6138876 1327 cache_state(state, cached_state);
fefdc557
QW
1328 state = clear_state_bit(tree, state, &clear_bits, 0,
1329 NULL);
462d6fac
JB
1330 if (last_end == (u64)-1)
1331 goto out;
1332 start = last_end + 1;
d1ac6e41
LB
1333 if (start < end && state && state->start == start &&
1334 !need_resched())
1335 goto hit_next;
462d6fac
JB
1336 }
1337 goto search_again;
1338 }
1339 /*
1340 * | ---- desired range ---- |
1341 * | state | or | state |
1342 *
1343 * There's a hole, we need to insert something in it and
1344 * ignore the extent we found.
1345 */
1346 if (state->start > start) {
1347 u64 this_end;
1348 if (end < last_start)
1349 this_end = end;
1350 else
1351 this_end = last_start - 1;
1352
1353 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1354 if (!prealloc) {
1355 err = -ENOMEM;
1356 goto out;
1357 }
462d6fac
JB
1358
1359 /*
1360 * Avoid to free 'prealloc' if it can be merged with
1361 * the later extent.
1362 */
1363 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1364 NULL, NULL, &bits, NULL);
c2d904e0
JM
1365 if (err)
1366 extent_io_tree_panic(tree, err);
e6138876 1367 cache_state(prealloc, cached_state);
462d6fac
JB
1368 prealloc = NULL;
1369 start = this_end + 1;
1370 goto search_again;
1371 }
1372 /*
1373 * | ---- desired range ---- |
1374 * | state |
1375 * We need to split the extent, and set the bit
1376 * on the first half
1377 */
1378 if (state->start <= end && state->end > end) {
1379 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1380 if (!prealloc) {
1381 err = -ENOMEM;
1382 goto out;
1383 }
462d6fac
JB
1384
1385 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1386 if (err)
1387 extent_io_tree_panic(tree, err);
462d6fac 1388
d38ed27f 1389 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1390 cache_state(prealloc, cached_state);
fefdc557 1391 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1392 prealloc = NULL;
1393 goto out;
1394 }
1395
462d6fac
JB
1396search_again:
1397 if (start > end)
1398 goto out;
1399 spin_unlock(&tree->lock);
210aa277 1400 cond_resched();
c8fd3de7 1401 first_iteration = false;
462d6fac 1402 goto again;
462d6fac
JB
1403
1404out:
1405 spin_unlock(&tree->lock);
1406 if (prealloc)
1407 free_extent_state(prealloc);
1408
1409 return err;
462d6fac
JB
1410}
1411
d1310b2e 1412/* wrappers around set/clear extent bit */
d38ed27f 1413int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1414 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1415{
1416 /*
1417 * We don't support EXTENT_LOCKED yet, as current changeset will
1418 * record any bits changed, so for EXTENT_LOCKED case, it will
1419 * either fail with -EEXIST or changeset will record the whole
1420 * range.
1421 */
1422 BUG_ON(bits & EXTENT_LOCKED);
1423
2c53b912 1424 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1425 changeset);
1426}
1427
4ca73656
NB
1428int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1429 unsigned bits)
1430{
1431 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1432 GFP_NOWAIT, NULL);
1433}
1434
fefdc557
QW
1435int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1436 unsigned bits, int wake, int delete,
ae0f1625 1437 struct extent_state **cached)
fefdc557
QW
1438{
1439 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1440 cached, GFP_NOFS, NULL);
fefdc557
QW
1441}
1442
fefdc557 1443int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1444 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1445{
1446 /*
1447 * Don't support EXTENT_LOCKED case, same reason as
1448 * set_record_extent_bits().
1449 */
1450 BUG_ON(bits & EXTENT_LOCKED);
1451
f734c44a 1452 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1453 changeset);
1454}
1455
d352ac68
CM
1456/*
1457 * either insert or lock state struct between start and end use mask to tell
1458 * us if waiting is desired.
1459 */
1edbb734 1460int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1461 struct extent_state **cached_state)
d1310b2e
CM
1462{
1463 int err;
1464 u64 failed_start;
9ee49a04 1465
d1310b2e 1466 while (1) {
ff13db41 1467 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1468 EXTENT_LOCKED, &failed_start,
d38ed27f 1469 cached_state, GFP_NOFS, NULL);
d0082371 1470 if (err == -EEXIST) {
d1310b2e
CM
1471 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1472 start = failed_start;
d0082371 1473 } else
d1310b2e 1474 break;
d1310b2e
CM
1475 WARN_ON(start > end);
1476 }
1477 return err;
1478}
d1310b2e 1479
d0082371 1480int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1481{
1482 int err;
1483 u64 failed_start;
1484
3fbe5c02 1485 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1486 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1487 if (err == -EEXIST) {
1488 if (failed_start > start)
1489 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1490 EXTENT_LOCKED, 1, 0, NULL);
25179201 1491 return 0;
6643558d 1492 }
25179201
JB
1493 return 1;
1494}
25179201 1495
bd1fa4f0 1496void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1497{
09cbfeaf
KS
1498 unsigned long index = start >> PAGE_SHIFT;
1499 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1500 struct page *page;
1501
1502 while (index <= end_index) {
1503 page = find_get_page(inode->i_mapping, index);
1504 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1505 clear_page_dirty_for_io(page);
09cbfeaf 1506 put_page(page);
4adaa611
CM
1507 index++;
1508 }
4adaa611
CM
1509}
1510
f6311572 1511void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1512{
09cbfeaf
KS
1513 unsigned long index = start >> PAGE_SHIFT;
1514 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1515 struct page *page;
1516
1517 while (index <= end_index) {
1518 page = find_get_page(inode->i_mapping, index);
1519 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1520 __set_page_dirty_nobuffers(page);
8d38633c 1521 account_page_redirty(page);
09cbfeaf 1522 put_page(page);
4adaa611
CM
1523 index++;
1524 }
4adaa611
CM
1525}
1526
d352ac68
CM
1527/* find the first state struct with 'bits' set after 'start', and
1528 * return it. tree->lock must be held. NULL will returned if
1529 * nothing was found after 'start'
1530 */
48a3b636
ES
1531static struct extent_state *
1532find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1533 u64 start, unsigned bits)
d7fc640e
CM
1534{
1535 struct rb_node *node;
1536 struct extent_state *state;
1537
1538 /*
1539 * this search will find all the extents that end after
1540 * our range starts.
1541 */
1542 node = tree_search(tree, start);
d397712b 1543 if (!node)
d7fc640e 1544 goto out;
d7fc640e 1545
d397712b 1546 while (1) {
d7fc640e 1547 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1548 if (state->end >= start && (state->state & bits))
d7fc640e 1549 return state;
d397712b 1550
d7fc640e
CM
1551 node = rb_next(node);
1552 if (!node)
1553 break;
1554 }
1555out:
1556 return NULL;
1557}
d7fc640e 1558
69261c4b 1559/*
03509b78 1560 * Find the first offset in the io tree with one or more @bits set.
69261c4b 1561 *
03509b78
QW
1562 * Note: If there are multiple bits set in @bits, any of them will match.
1563 *
1564 * Return 0 if we find something, and update @start_ret and @end_ret.
1565 * Return 1 if we found nothing.
69261c4b
XG
1566 */
1567int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1568 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1569 struct extent_state **cached_state)
69261c4b
XG
1570{
1571 struct extent_state *state;
1572 int ret = 1;
1573
1574 spin_lock(&tree->lock);
e6138876
JB
1575 if (cached_state && *cached_state) {
1576 state = *cached_state;
27a3507d 1577 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1578 while ((state = next_state(state)) != NULL) {
e6138876
JB
1579 if (state->state & bits)
1580 goto got_it;
e6138876
JB
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 goto out;
1585 }
1586 free_extent_state(*cached_state);
1587 *cached_state = NULL;
1588 }
1589
69261c4b 1590 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1591got_it:
69261c4b 1592 if (state) {
e38e2ed7 1593 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1594 *start_ret = state->start;
1595 *end_ret = state->end;
1596 ret = 0;
1597 }
e6138876 1598out:
69261c4b
XG
1599 spin_unlock(&tree->lock);
1600 return ret;
1601}
1602
41a2ee75
JB
1603/**
1604 * find_contiguous_extent_bit: find a contiguous area of bits
1605 * @tree - io tree to check
1606 * @start - offset to start the search from
1607 * @start_ret - the first offset we found with the bits set
1608 * @end_ret - the final contiguous range of the bits that were set
1609 * @bits - bits to look for
1610 *
1611 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1612 * to set bits appropriately, and then merge them again. During this time it
1613 * will drop the tree->lock, so use this helper if you want to find the actual
1614 * contiguous area for given bits. We will search to the first bit we find, and
1615 * then walk down the tree until we find a non-contiguous area. The area
1616 * returned will be the full contiguous area with the bits set.
1617 */
1618int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1619 u64 *start_ret, u64 *end_ret, unsigned bits)
1620{
1621 struct extent_state *state;
1622 int ret = 1;
1623
1624 spin_lock(&tree->lock);
1625 state = find_first_extent_bit_state(tree, start, bits);
1626 if (state) {
1627 *start_ret = state->start;
1628 *end_ret = state->end;
1629 while ((state = next_state(state)) != NULL) {
1630 if (state->start > (*end_ret + 1))
1631 break;
1632 *end_ret = state->end;
1633 }
1634 ret = 0;
1635 }
1636 spin_unlock(&tree->lock);
1637 return ret;
1638}
1639
45bfcfc1 1640/**
1eaebb34
NB
1641 * find_first_clear_extent_bit - find the first range that has @bits not set.
1642 * This range could start before @start.
45bfcfc1
NB
1643 *
1644 * @tree - the tree to search
1645 * @start - the offset at/after which the found extent should start
1646 * @start_ret - records the beginning of the range
1647 * @end_ret - records the end of the range (inclusive)
1648 * @bits - the set of bits which must be unset
1649 *
1650 * Since unallocated range is also considered one which doesn't have the bits
1651 * set it's possible that @end_ret contains -1, this happens in case the range
1652 * spans (last_range_end, end of device]. In this case it's up to the caller to
1653 * trim @end_ret to the appropriate size.
1654 */
1655void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1656 u64 *start_ret, u64 *end_ret, unsigned bits)
1657{
1658 struct extent_state *state;
1659 struct rb_node *node, *prev = NULL, *next;
1660
1661 spin_lock(&tree->lock);
1662
1663 /* Find first extent with bits cleared */
1664 while (1) {
1665 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1666 if (!node && !next && !prev) {
1667 /*
1668 * Tree is completely empty, send full range and let
1669 * caller deal with it
1670 */
1671 *start_ret = 0;
1672 *end_ret = -1;
1673 goto out;
1674 } else if (!node && !next) {
1675 /*
1676 * We are past the last allocated chunk, set start at
1677 * the end of the last extent.
1678 */
1679 state = rb_entry(prev, struct extent_state, rb_node);
1680 *start_ret = state->end + 1;
1681 *end_ret = -1;
1682 goto out;
1683 } else if (!node) {
45bfcfc1 1684 node = next;
45bfcfc1 1685 }
1eaebb34
NB
1686 /*
1687 * At this point 'node' either contains 'start' or start is
1688 * before 'node'
1689 */
45bfcfc1 1690 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1691
1692 if (in_range(start, state->start, state->end - state->start + 1)) {
1693 if (state->state & bits) {
1694 /*
1695 * |--range with bits sets--|
1696 * |
1697 * start
1698 */
1699 start = state->end + 1;
1700 } else {
1701 /*
1702 * 'start' falls within a range that doesn't
1703 * have the bits set, so take its start as
1704 * the beginning of the desired range
1705 *
1706 * |--range with bits cleared----|
1707 * |
1708 * start
1709 */
1710 *start_ret = state->start;
1711 break;
1712 }
45bfcfc1 1713 } else {
1eaebb34
NB
1714 /*
1715 * |---prev range---|---hole/unset---|---node range---|
1716 * |
1717 * start
1718 *
1719 * or
1720 *
1721 * |---hole/unset--||--first node--|
1722 * 0 |
1723 * start
1724 */
1725 if (prev) {
1726 state = rb_entry(prev, struct extent_state,
1727 rb_node);
1728 *start_ret = state->end + 1;
1729 } else {
1730 *start_ret = 0;
1731 }
45bfcfc1
NB
1732 break;
1733 }
1734 }
1735
1736 /*
1737 * Find the longest stretch from start until an entry which has the
1738 * bits set
1739 */
1740 while (1) {
1741 state = rb_entry(node, struct extent_state, rb_node);
1742 if (state->end >= start && !(state->state & bits)) {
1743 *end_ret = state->end;
1744 } else {
1745 *end_ret = state->start - 1;
1746 break;
1747 }
1748
1749 node = rb_next(node);
1750 if (!node)
1751 break;
1752 }
1753out:
1754 spin_unlock(&tree->lock);
1755}
1756
d352ac68
CM
1757/*
1758 * find a contiguous range of bytes in the file marked as delalloc, not
1759 * more than 'max_bytes'. start and end are used to return the range,
1760 *
3522e903 1761 * true is returned if we find something, false if nothing was in the tree
d352ac68 1762 */
083e75e7
JB
1763bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1764 u64 *end, u64 max_bytes,
1765 struct extent_state **cached_state)
d1310b2e
CM
1766{
1767 struct rb_node *node;
1768 struct extent_state *state;
1769 u64 cur_start = *start;
3522e903 1770 bool found = false;
d1310b2e
CM
1771 u64 total_bytes = 0;
1772
cad321ad 1773 spin_lock(&tree->lock);
c8b97818 1774
d1310b2e
CM
1775 /*
1776 * this search will find all the extents that end after
1777 * our range starts.
1778 */
80ea96b1 1779 node = tree_search(tree, cur_start);
2b114d1d 1780 if (!node) {
3522e903 1781 *end = (u64)-1;
d1310b2e
CM
1782 goto out;
1783 }
1784
d397712b 1785 while (1) {
d1310b2e 1786 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1787 if (found && (state->start != cur_start ||
1788 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1789 goto out;
1790 }
1791 if (!(state->state & EXTENT_DELALLOC)) {
1792 if (!found)
1793 *end = state->end;
1794 goto out;
1795 }
c2a128d2 1796 if (!found) {
d1310b2e 1797 *start = state->start;
c2a128d2 1798 *cached_state = state;
b7ac31b7 1799 refcount_inc(&state->refs);
c2a128d2 1800 }
3522e903 1801 found = true;
d1310b2e
CM
1802 *end = state->end;
1803 cur_start = state->end + 1;
1804 node = rb_next(node);
d1310b2e 1805 total_bytes += state->end - state->start + 1;
7bf811a5 1806 if (total_bytes >= max_bytes)
573aecaf 1807 break;
573aecaf 1808 if (!node)
d1310b2e
CM
1809 break;
1810 }
1811out:
cad321ad 1812 spin_unlock(&tree->lock);
d1310b2e
CM
1813 return found;
1814}
1815
da2c7009
LB
1816static int __process_pages_contig(struct address_space *mapping,
1817 struct page *locked_page,
1818 pgoff_t start_index, pgoff_t end_index,
1819 unsigned long page_ops, pgoff_t *index_ret);
1820
143bede5
JM
1821static noinline void __unlock_for_delalloc(struct inode *inode,
1822 struct page *locked_page,
1823 u64 start, u64 end)
c8b97818 1824{
09cbfeaf
KS
1825 unsigned long index = start >> PAGE_SHIFT;
1826 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1827
76c0021d 1828 ASSERT(locked_page);
c8b97818 1829 if (index == locked_page->index && end_index == index)
143bede5 1830 return;
c8b97818 1831
76c0021d
LB
1832 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1833 PAGE_UNLOCK, NULL);
c8b97818
CM
1834}
1835
1836static noinline int lock_delalloc_pages(struct inode *inode,
1837 struct page *locked_page,
1838 u64 delalloc_start,
1839 u64 delalloc_end)
1840{
09cbfeaf 1841 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1842 unsigned long index_ret = index;
09cbfeaf 1843 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1844 int ret;
c8b97818 1845
76c0021d 1846 ASSERT(locked_page);
c8b97818
CM
1847 if (index == locked_page->index && index == end_index)
1848 return 0;
1849
76c0021d
LB
1850 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1851 end_index, PAGE_LOCK, &index_ret);
1852 if (ret == -EAGAIN)
1853 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1854 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1855 return ret;
1856}
1857
1858/*
3522e903
LF
1859 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1860 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1861 *
3522e903
LF
1862 * Return: true if we find something
1863 * false if nothing was in the tree
c8b97818 1864 */
ce9f967f 1865EXPORT_FOR_TESTS
3522e903 1866noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1867 struct page *locked_page, u64 *start,
917aacec 1868 u64 *end)
c8b97818 1869{
9978059b 1870 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1871 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1872 u64 delalloc_start;
1873 u64 delalloc_end;
3522e903 1874 bool found;
9655d298 1875 struct extent_state *cached_state = NULL;
c8b97818
CM
1876 int ret;
1877 int loops = 0;
1878
1879again:
1880 /* step one, find a bunch of delalloc bytes starting at start */
1881 delalloc_start = *start;
1882 delalloc_end = 0;
083e75e7
JB
1883 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1884 max_bytes, &cached_state);
70b99e69 1885 if (!found || delalloc_end <= *start) {
c8b97818
CM
1886 *start = delalloc_start;
1887 *end = delalloc_end;
c2a128d2 1888 free_extent_state(cached_state);
3522e903 1889 return false;
c8b97818
CM
1890 }
1891
70b99e69
CM
1892 /*
1893 * start comes from the offset of locked_page. We have to lock
1894 * pages in order, so we can't process delalloc bytes before
1895 * locked_page
1896 */
d397712b 1897 if (delalloc_start < *start)
70b99e69 1898 delalloc_start = *start;
70b99e69 1899
c8b97818
CM
1900 /*
1901 * make sure to limit the number of pages we try to lock down
c8b97818 1902 */
7bf811a5
JB
1903 if (delalloc_end + 1 - delalloc_start > max_bytes)
1904 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1905
c8b97818
CM
1906 /* step two, lock all the pages after the page that has start */
1907 ret = lock_delalloc_pages(inode, locked_page,
1908 delalloc_start, delalloc_end);
9bfd61d9 1909 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1910 if (ret == -EAGAIN) {
1911 /* some of the pages are gone, lets avoid looping by
1912 * shortening the size of the delalloc range we're searching
1913 */
9655d298 1914 free_extent_state(cached_state);
7d788742 1915 cached_state = NULL;
c8b97818 1916 if (!loops) {
09cbfeaf 1917 max_bytes = PAGE_SIZE;
c8b97818
CM
1918 loops = 1;
1919 goto again;
1920 } else {
3522e903 1921 found = false;
c8b97818
CM
1922 goto out_failed;
1923 }
1924 }
c8b97818
CM
1925
1926 /* step three, lock the state bits for the whole range */
ff13db41 1927 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1928
1929 /* then test to make sure it is all still delalloc */
1930 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1931 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1932 if (!ret) {
9655d298 1933 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1934 &cached_state);
c8b97818
CM
1935 __unlock_for_delalloc(inode, locked_page,
1936 delalloc_start, delalloc_end);
1937 cond_resched();
1938 goto again;
1939 }
9655d298 1940 free_extent_state(cached_state);
c8b97818
CM
1941 *start = delalloc_start;
1942 *end = delalloc_end;
1943out_failed:
1944 return found;
1945}
1946
da2c7009
LB
1947static int __process_pages_contig(struct address_space *mapping,
1948 struct page *locked_page,
1949 pgoff_t start_index, pgoff_t end_index,
1950 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1951{
873695b3 1952 unsigned long nr_pages = end_index - start_index + 1;
12e3360f 1953 unsigned long pages_processed = 0;
873695b3 1954 pgoff_t index = start_index;
c8b97818 1955 struct page *pages[16];
873695b3 1956 unsigned ret;
da2c7009 1957 int err = 0;
c8b97818 1958 int i;
771ed689 1959
da2c7009
LB
1960 if (page_ops & PAGE_LOCK) {
1961 ASSERT(page_ops == PAGE_LOCK);
1962 ASSERT(index_ret && *index_ret == start_index);
1963 }
1964
704de49d 1965 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1966 mapping_set_error(mapping, -EIO);
704de49d 1967
d397712b 1968 while (nr_pages > 0) {
873695b3 1969 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1970 min_t(unsigned long,
1971 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1972 if (ret == 0) {
1973 /*
1974 * Only if we're going to lock these pages,
1975 * can we find nothing at @index.
1976 */
1977 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1978 err = -EAGAIN;
1979 goto out;
da2c7009 1980 }
8b62b72b 1981
da2c7009 1982 for (i = 0; i < ret; i++) {
c2790a2e 1983 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1984 SetPagePrivate2(pages[i]);
1985
1d53c9e6 1986 if (locked_page && pages[i] == locked_page) {
09cbfeaf 1987 put_page(pages[i]);
12e3360f 1988 pages_processed++;
c8b97818
CM
1989 continue;
1990 }
c2790a2e 1991 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1992 clear_page_dirty_for_io(pages[i]);
c2790a2e 1993 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1994 set_page_writeback(pages[i]);
704de49d
FM
1995 if (page_ops & PAGE_SET_ERROR)
1996 SetPageError(pages[i]);
c2790a2e 1997 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1998 end_page_writeback(pages[i]);
c2790a2e 1999 if (page_ops & PAGE_UNLOCK)
771ed689 2000 unlock_page(pages[i]);
da2c7009
LB
2001 if (page_ops & PAGE_LOCK) {
2002 lock_page(pages[i]);
2003 if (!PageDirty(pages[i]) ||
2004 pages[i]->mapping != mapping) {
2005 unlock_page(pages[i]);
5909ca11
RK
2006 for (; i < ret; i++)
2007 put_page(pages[i]);
da2c7009
LB
2008 err = -EAGAIN;
2009 goto out;
2010 }
2011 }
09cbfeaf 2012 put_page(pages[i]);
12e3360f 2013 pages_processed++;
c8b97818
CM
2014 }
2015 nr_pages -= ret;
2016 index += ret;
2017 cond_resched();
2018 }
da2c7009
LB
2019out:
2020 if (err && index_ret)
12e3360f 2021 *index_ret = start_index + pages_processed - 1;
da2c7009 2022 return err;
c8b97818 2023}
c8b97818 2024
ad7ff17b 2025void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a
NB
2026 struct page *locked_page,
2027 unsigned clear_bits,
2028 unsigned long page_ops)
873695b3 2029{
ad7ff17b 2030 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2031
ad7ff17b 2032 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
873695b3 2033 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 2034 page_ops, NULL);
873695b3
LB
2035}
2036
d352ac68
CM
2037/*
2038 * count the number of bytes in the tree that have a given bit(s)
2039 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2040 * cached. The total number found is returned.
2041 */
d1310b2e
CM
2042u64 count_range_bits(struct extent_io_tree *tree,
2043 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 2044 unsigned bits, int contig)
d1310b2e
CM
2045{
2046 struct rb_node *node;
2047 struct extent_state *state;
2048 u64 cur_start = *start;
2049 u64 total_bytes = 0;
ec29ed5b 2050 u64 last = 0;
d1310b2e
CM
2051 int found = 0;
2052
fae7f21c 2053 if (WARN_ON(search_end <= cur_start))
d1310b2e 2054 return 0;
d1310b2e 2055
cad321ad 2056 spin_lock(&tree->lock);
d1310b2e
CM
2057 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2058 total_bytes = tree->dirty_bytes;
2059 goto out;
2060 }
2061 /*
2062 * this search will find all the extents that end after
2063 * our range starts.
2064 */
80ea96b1 2065 node = tree_search(tree, cur_start);
d397712b 2066 if (!node)
d1310b2e 2067 goto out;
d1310b2e 2068
d397712b 2069 while (1) {
d1310b2e
CM
2070 state = rb_entry(node, struct extent_state, rb_node);
2071 if (state->start > search_end)
2072 break;
ec29ed5b
CM
2073 if (contig && found && state->start > last + 1)
2074 break;
2075 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2076 total_bytes += min(search_end, state->end) + 1 -
2077 max(cur_start, state->start);
2078 if (total_bytes >= max_bytes)
2079 break;
2080 if (!found) {
af60bed2 2081 *start = max(cur_start, state->start);
d1310b2e
CM
2082 found = 1;
2083 }
ec29ed5b
CM
2084 last = state->end;
2085 } else if (contig && found) {
2086 break;
d1310b2e
CM
2087 }
2088 node = rb_next(node);
2089 if (!node)
2090 break;
2091 }
2092out:
cad321ad 2093 spin_unlock(&tree->lock);
d1310b2e
CM
2094 return total_bytes;
2095}
b2950863 2096
d352ac68
CM
2097/*
2098 * set the private field for a given byte offset in the tree. If there isn't
2099 * an extent_state there already, this does nothing.
2100 */
b3f167aa
JB
2101int set_state_failrec(struct extent_io_tree *tree, u64 start,
2102 struct io_failure_record *failrec)
d1310b2e
CM
2103{
2104 struct rb_node *node;
2105 struct extent_state *state;
2106 int ret = 0;
2107
cad321ad 2108 spin_lock(&tree->lock);
d1310b2e
CM
2109 /*
2110 * this search will find all the extents that end after
2111 * our range starts.
2112 */
80ea96b1 2113 node = tree_search(tree, start);
2b114d1d 2114 if (!node) {
d1310b2e
CM
2115 ret = -ENOENT;
2116 goto out;
2117 }
2118 state = rb_entry(node, struct extent_state, rb_node);
2119 if (state->start != start) {
2120 ret = -ENOENT;
2121 goto out;
2122 }
47dc196a 2123 state->failrec = failrec;
d1310b2e 2124out:
cad321ad 2125 spin_unlock(&tree->lock);
d1310b2e
CM
2126 return ret;
2127}
2128
2279a270 2129struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2130{
2131 struct rb_node *node;
2132 struct extent_state *state;
2279a270 2133 struct io_failure_record *failrec;
d1310b2e 2134
cad321ad 2135 spin_lock(&tree->lock);
d1310b2e
CM
2136 /*
2137 * this search will find all the extents that end after
2138 * our range starts.
2139 */
80ea96b1 2140 node = tree_search(tree, start);
2b114d1d 2141 if (!node) {
2279a270 2142 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2143 goto out;
2144 }
2145 state = rb_entry(node, struct extent_state, rb_node);
2146 if (state->start != start) {
2279a270 2147 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2148 goto out;
2149 }
2279a270
NB
2150
2151 failrec = state->failrec;
d1310b2e 2152out:
cad321ad 2153 spin_unlock(&tree->lock);
2279a270 2154 return failrec;
d1310b2e
CM
2155}
2156
2157/*
2158 * searches a range in the state tree for a given mask.
70dec807 2159 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2160 * has the bits set. Otherwise, 1 is returned if any bit in the
2161 * range is found set.
2162 */
2163int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2164 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2165{
2166 struct extent_state *state = NULL;
2167 struct rb_node *node;
2168 int bitset = 0;
d1310b2e 2169
cad321ad 2170 spin_lock(&tree->lock);
27a3507d 2171 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2172 cached->end > start)
9655d298
CM
2173 node = &cached->rb_node;
2174 else
2175 node = tree_search(tree, start);
d1310b2e
CM
2176 while (node && start <= end) {
2177 state = rb_entry(node, struct extent_state, rb_node);
2178
2179 if (filled && state->start > start) {
2180 bitset = 0;
2181 break;
2182 }
2183
2184 if (state->start > end)
2185 break;
2186
2187 if (state->state & bits) {
2188 bitset = 1;
2189 if (!filled)
2190 break;
2191 } else if (filled) {
2192 bitset = 0;
2193 break;
2194 }
46562cec
CM
2195
2196 if (state->end == (u64)-1)
2197 break;
2198
d1310b2e
CM
2199 start = state->end + 1;
2200 if (start > end)
2201 break;
2202 node = rb_next(node);
2203 if (!node) {
2204 if (filled)
2205 bitset = 0;
2206 break;
2207 }
2208 }
cad321ad 2209 spin_unlock(&tree->lock);
d1310b2e
CM
2210 return bitset;
2211}
d1310b2e
CM
2212
2213/*
2214 * helper function to set a given page up to date if all the
2215 * extents in the tree for that page are up to date
2216 */
143bede5 2217static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2218{
4eee4fa4 2219 u64 start = page_offset(page);
09cbfeaf 2220 u64 end = start + PAGE_SIZE - 1;
9655d298 2221 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2222 SetPageUptodate(page);
d1310b2e
CM
2223}
2224
7870d082
JB
2225int free_io_failure(struct extent_io_tree *failure_tree,
2226 struct extent_io_tree *io_tree,
2227 struct io_failure_record *rec)
4a54c8c1
JS
2228{
2229 int ret;
2230 int err = 0;
4a54c8c1 2231
47dc196a 2232 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2233 ret = clear_extent_bits(failure_tree, rec->start,
2234 rec->start + rec->len - 1,
91166212 2235 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2236 if (ret)
2237 err = ret;
2238
7870d082 2239 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2240 rec->start + rec->len - 1,
91166212 2241 EXTENT_DAMAGED);
53b381b3
DW
2242 if (ret && !err)
2243 err = ret;
4a54c8c1
JS
2244
2245 kfree(rec);
2246 return err;
2247}
2248
4a54c8c1
JS
2249/*
2250 * this bypasses the standard btrfs submit functions deliberately, as
2251 * the standard behavior is to write all copies in a raid setup. here we only
2252 * want to write the one bad copy. so we do the mapping for ourselves and issue
2253 * submit_bio directly.
3ec706c8 2254 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2255 * actually prevents the read that triggered the error from finishing.
2256 * currently, there can be no more than two copies of every data bit. thus,
2257 * exactly one rewrite is required.
2258 */
6ec656bc
JB
2259int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2260 u64 length, u64 logical, struct page *page,
2261 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2262{
2263 struct bio *bio;
2264 struct btrfs_device *dev;
4a54c8c1
JS
2265 u64 map_length = 0;
2266 u64 sector;
2267 struct btrfs_bio *bbio = NULL;
2268 int ret;
2269
1751e8a6 2270 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2271 BUG_ON(!mirror_num);
2272
c5e4c3d7 2273 bio = btrfs_io_bio_alloc(1);
4f024f37 2274 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2275 map_length = length;
2276
b5de8d0d
FM
2277 /*
2278 * Avoid races with device replace and make sure our bbio has devices
2279 * associated to its stripes that don't go away while we are doing the
2280 * read repair operation.
2281 */
2282 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2283 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2284 /*
2285 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2286 * to update all raid stripes, but here we just want to correct
2287 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2288 * stripe's dev and sector.
2289 */
2290 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2291 &map_length, &bbio, 0);
2292 if (ret) {
2293 btrfs_bio_counter_dec(fs_info);
2294 bio_put(bio);
2295 return -EIO;
2296 }
2297 ASSERT(bbio->mirror_num == 1);
2298 } else {
2299 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2300 &map_length, &bbio, mirror_num);
2301 if (ret) {
2302 btrfs_bio_counter_dec(fs_info);
2303 bio_put(bio);
2304 return -EIO;
2305 }
2306 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2307 }
c725328c
LB
2308
2309 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2310 bio->bi_iter.bi_sector = sector;
c725328c 2311 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2312 btrfs_put_bbio(bbio);
ebbede42
AJ
2313 if (!dev || !dev->bdev ||
2314 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2315 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2316 bio_put(bio);
2317 return -EIO;
2318 }
74d46992 2319 bio_set_dev(bio, dev->bdev);
70fd7614 2320 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2321 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2322
4e49ea4a 2323 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2324 /* try to remap that extent elsewhere? */
b5de8d0d 2325 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2326 bio_put(bio);
442a4f63 2327 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2328 return -EIO;
2329 }
2330
b14af3b4
DS
2331 btrfs_info_rl_in_rcu(fs_info,
2332 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2333 ino, start,
1203b681 2334 rcu_str_deref(dev->name), sector);
b5de8d0d 2335 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2336 bio_put(bio);
2337 return 0;
2338}
2339
2b48966a 2340int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2341{
20a1fbf9 2342 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2343 u64 start = eb->start;
cc5e31a4 2344 int i, num_pages = num_extent_pages(eb);
d95603b2 2345 int ret = 0;
ea466794 2346
bc98a42c 2347 if (sb_rdonly(fs_info->sb))
908960c6
ID
2348 return -EROFS;
2349
ea466794 2350 for (i = 0; i < num_pages; i++) {
fb85fc9a 2351 struct page *p = eb->pages[i];
1203b681 2352
6ec656bc 2353 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2354 start - page_offset(p), mirror_num);
ea466794
JB
2355 if (ret)
2356 break;
09cbfeaf 2357 start += PAGE_SIZE;
ea466794
JB
2358 }
2359
2360 return ret;
2361}
2362
4a54c8c1
JS
2363/*
2364 * each time an IO finishes, we do a fast check in the IO failure tree
2365 * to see if we need to process or clean up an io_failure_record
2366 */
7870d082
JB
2367int clean_io_failure(struct btrfs_fs_info *fs_info,
2368 struct extent_io_tree *failure_tree,
2369 struct extent_io_tree *io_tree, u64 start,
2370 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2371{
2372 u64 private;
4a54c8c1 2373 struct io_failure_record *failrec;
4a54c8c1
JS
2374 struct extent_state *state;
2375 int num_copies;
4a54c8c1 2376 int ret;
4a54c8c1
JS
2377
2378 private = 0;
7870d082
JB
2379 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2380 EXTENT_DIRTY, 0);
4a54c8c1
JS
2381 if (!ret)
2382 return 0;
2383
2279a270
NB
2384 failrec = get_state_failrec(failure_tree, start);
2385 if (IS_ERR(failrec))
4a54c8c1
JS
2386 return 0;
2387
4a54c8c1
JS
2388 BUG_ON(!failrec->this_mirror);
2389
2390 if (failrec->in_validation) {
2391 /* there was no real error, just free the record */
ab8d0fc4
JM
2392 btrfs_debug(fs_info,
2393 "clean_io_failure: freeing dummy error at %llu",
2394 failrec->start);
4a54c8c1
JS
2395 goto out;
2396 }
bc98a42c 2397 if (sb_rdonly(fs_info->sb))
908960c6 2398 goto out;
4a54c8c1 2399
7870d082
JB
2400 spin_lock(&io_tree->lock);
2401 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2402 failrec->start,
2403 EXTENT_LOCKED);
7870d082 2404 spin_unlock(&io_tree->lock);
4a54c8c1 2405
883d0de4
MX
2406 if (state && state->start <= failrec->start &&
2407 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2408 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2409 failrec->len);
4a54c8c1 2410 if (num_copies > 1) {
7870d082
JB
2411 repair_io_failure(fs_info, ino, start, failrec->len,
2412 failrec->logical, page, pg_offset,
2413 failrec->failed_mirror);
4a54c8c1
JS
2414 }
2415 }
2416
2417out:
7870d082 2418 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2419
454ff3de 2420 return 0;
4a54c8c1
JS
2421}
2422
f612496b
MX
2423/*
2424 * Can be called when
2425 * - hold extent lock
2426 * - under ordered extent
2427 * - the inode is freeing
2428 */
7ab7956e 2429void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2430{
7ab7956e 2431 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2432 struct io_failure_record *failrec;
2433 struct extent_state *state, *next;
2434
2435 if (RB_EMPTY_ROOT(&failure_tree->state))
2436 return;
2437
2438 spin_lock(&failure_tree->lock);
2439 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2440 while (state) {
2441 if (state->start > end)
2442 break;
2443
2444 ASSERT(state->end <= end);
2445
2446 next = next_state(state);
2447
47dc196a 2448 failrec = state->failrec;
f612496b
MX
2449 free_extent_state(state);
2450 kfree(failrec);
2451
2452 state = next;
2453 }
2454 spin_unlock(&failure_tree->lock);
2455}
2456
3526302f
NB
2457static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2458 u64 start, u64 end)
4a54c8c1 2459{
ab8d0fc4 2460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2461 struct io_failure_record *failrec;
4a54c8c1 2462 struct extent_map *em;
4a54c8c1
JS
2463 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2464 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2465 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2466 int ret;
4a54c8c1
JS
2467 u64 logical;
2468
2279a270 2469 failrec = get_state_failrec(failure_tree, start);
3526302f 2470 if (!IS_ERR(failrec)) {
ab8d0fc4
JM
2471 btrfs_debug(fs_info,
2472 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2473 failrec->logical, failrec->start, failrec->len,
2474 failrec->in_validation);
4a54c8c1
JS
2475 /*
2476 * when data can be on disk more than twice, add to failrec here
2477 * (e.g. with a list for failed_mirror) to make
2478 * clean_io_failure() clean all those errors at once.
2479 */
3526302f
NB
2480
2481 return failrec;
4a54c8c1 2482 }
2fe6303e 2483
3526302f
NB
2484 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2485 if (!failrec)
2486 return ERR_PTR(-ENOMEM);
2fe6303e 2487
3526302f
NB
2488 failrec->start = start;
2489 failrec->len = end - start + 1;
2490 failrec->this_mirror = 0;
2491 failrec->bio_flags = 0;
2492 failrec->in_validation = 0;
2493
2494 read_lock(&em_tree->lock);
2495 em = lookup_extent_mapping(em_tree, start, failrec->len);
2496 if (!em) {
2497 read_unlock(&em_tree->lock);
2498 kfree(failrec);
2499 return ERR_PTR(-EIO);
2500 }
2501
2502 if (em->start > start || em->start + em->len <= start) {
2503 free_extent_map(em);
2504 em = NULL;
2505 }
2506 read_unlock(&em_tree->lock);
2507 if (!em) {
2508 kfree(failrec);
2509 return ERR_PTR(-EIO);
2510 }
2511
2512 logical = start - em->start;
2513 logical = em->block_start + logical;
2514 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2515 logical = em->block_start;
2516 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2517 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2518 }
2519
2520 btrfs_debug(fs_info,
2521 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2522 logical, start, failrec->len);
2523
2524 failrec->logical = logical;
2525 free_extent_map(em);
2526
2527 /* Set the bits in the private failure tree */
2528 ret = set_extent_bits(failure_tree, start, end,
2529 EXTENT_LOCKED | EXTENT_DIRTY);
2530 if (ret >= 0) {
2531 ret = set_state_failrec(failure_tree, start, failrec);
2532 /* Set the bits in the inode's tree */
2533 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2534 } else if (ret < 0) {
2535 kfree(failrec);
2536 return ERR_PTR(ret);
2537 }
2538
2539 return failrec;
2fe6303e
MX
2540}
2541
ce06d3ec
OS
2542static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2543 struct io_failure_record *failrec,
2544 int failed_mirror)
2fe6303e 2545{
ab8d0fc4 2546 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2547 int num_copies;
2548
ab8d0fc4 2549 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2550 if (num_copies == 1) {
2551 /*
2552 * we only have a single copy of the data, so don't bother with
2553 * all the retry and error correction code that follows. no
2554 * matter what the error is, it is very likely to persist.
2555 */
ab8d0fc4
JM
2556 btrfs_debug(fs_info,
2557 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2558 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2559 return false;
4a54c8c1
JS
2560 }
2561
4a54c8c1
JS
2562 /*
2563 * there are two premises:
2564 * a) deliver good data to the caller
2565 * b) correct the bad sectors on disk
2566 */
c7333972 2567 if (needs_validation) {
4a54c8c1
JS
2568 /*
2569 * to fulfill b), we need to know the exact failing sectors, as
2570 * we don't want to rewrite any more than the failed ones. thus,
2571 * we need separate read requests for the failed bio
2572 *
2573 * if the following BUG_ON triggers, our validation request got
2574 * merged. we need separate requests for our algorithm to work.
2575 */
2576 BUG_ON(failrec->in_validation);
2577 failrec->in_validation = 1;
2578 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2579 } else {
2580 /*
2581 * we're ready to fulfill a) and b) alongside. get a good copy
2582 * of the failed sector and if we succeed, we have setup
2583 * everything for repair_io_failure to do the rest for us.
2584 */
2585 if (failrec->in_validation) {
2586 BUG_ON(failrec->this_mirror != failed_mirror);
2587 failrec->in_validation = 0;
2588 failrec->this_mirror = 0;
2589 }
2590 failrec->failed_mirror = failed_mirror;
2591 failrec->this_mirror++;
2592 if (failrec->this_mirror == failed_mirror)
2593 failrec->this_mirror++;
4a54c8c1
JS
2594 }
2595
facc8a22 2596 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2597 btrfs_debug(fs_info,
2598 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2599 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2600 return false;
4a54c8c1
JS
2601 }
2602
c3cfb656 2603 return true;
2fe6303e
MX
2604}
2605
c7333972 2606static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2fe6303e 2607{
c7333972 2608 u64 len = 0;
77d5d689 2609 const u32 blocksize = inode->i_sb->s_blocksize;
2fe6303e 2610
f337bd74
OS
2611 /*
2612 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2613 * I/O error. In this case, we already know exactly which sector was
2614 * bad, so we don't need to validate.
2615 */
2616 if (bio->bi_status == BLK_STS_OK)
2617 return false;
4a54c8c1 2618
c7333972
OS
2619 /*
2620 * We need to validate each sector individually if the failed I/O was
2621 * for multiple sectors.
77d5d689
OS
2622 *
2623 * There are a few possible bios that can end up here:
2624 * 1. A buffered read bio, which is not cloned.
2625 * 2. A direct I/O read bio, which is cloned.
2626 * 3. A (buffered or direct) repair bio, which is not cloned.
2627 *
2628 * For cloned bios (case 2), we can get the size from
2629 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2630 * it from the bvecs.
c7333972 2631 */
77d5d689
OS
2632 if (bio_flagged(bio, BIO_CLONED)) {
2633 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
c7333972 2634 return true;
77d5d689
OS
2635 } else {
2636 struct bio_vec *bvec;
2637 int i;
facc8a22 2638
77d5d689
OS
2639 bio_for_each_bvec_all(bvec, bio, i) {
2640 len += bvec->bv_len;
2641 if (len > blocksize)
2642 return true;
2643 }
facc8a22 2644 }
c7333972 2645 return false;
2fe6303e
MX
2646}
2647
77d5d689
OS
2648blk_status_t btrfs_submit_read_repair(struct inode *inode,
2649 struct bio *failed_bio, u64 phy_offset,
2650 struct page *page, unsigned int pgoff,
2651 u64 start, u64 end, int failed_mirror,
2652 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2653{
2654 struct io_failure_record *failrec;
77d5d689 2655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2656 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2657 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
77d5d689 2658 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
265fdfa6 2659 const int icsum = phy_offset >> fs_info->sectorsize_bits;
c7333972 2660 bool need_validation;
77d5d689
OS
2661 struct bio *repair_bio;
2662 struct btrfs_io_bio *repair_io_bio;
4e4cbee9 2663 blk_status_t status;
2fe6303e 2664
77d5d689
OS
2665 btrfs_debug(fs_info,
2666 "repair read error: read error at %llu", start);
2fe6303e 2667
1f7ad75b 2668 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2669
3526302f
NB
2670 failrec = btrfs_get_io_failure_record(inode, start, end);
2671 if (IS_ERR(failrec))
2672 return errno_to_blk_status(PTR_ERR(failrec));
2fe6303e 2673
c7333972 2674 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2fe6303e 2675
c7333972 2676 if (!btrfs_check_repairable(inode, need_validation, failrec,
c3cfb656 2677 failed_mirror)) {
7870d082 2678 free_io_failure(failure_tree, tree, failrec);
77d5d689 2679 return BLK_STS_IOERR;
2fe6303e
MX
2680 }
2681
77d5d689
OS
2682 repair_bio = btrfs_io_bio_alloc(1);
2683 repair_io_bio = btrfs_io_bio(repair_bio);
2684 repair_bio->bi_opf = REQ_OP_READ;
c7333972 2685 if (need_validation)
77d5d689
OS
2686 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2687 repair_bio->bi_end_io = failed_bio->bi_end_io;
2688 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2689 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2690
77d5d689 2691 if (failed_io_bio->csum) {
223486c2 2692 const u32 csum_size = fs_info->csum_size;
77d5d689
OS
2693
2694 repair_io_bio->csum = repair_io_bio->csum_inline;
2695 memcpy(repair_io_bio->csum,
2696 failed_io_bio->csum + csum_size * icsum, csum_size);
2697 }
2fe6303e 2698
77d5d689
OS
2699 bio_add_page(repair_bio, page, failrec->len, pgoff);
2700 repair_io_bio->logical = failrec->start;
2701 repair_io_bio->iter = repair_bio->bi_iter;
4a54c8c1 2702
ab8d0fc4 2703 btrfs_debug(btrfs_sb(inode->i_sb),
77d5d689
OS
2704"repair read error: submitting new read to mirror %d, in_validation=%d",
2705 failrec->this_mirror, failrec->in_validation);
4a54c8c1 2706
77d5d689
OS
2707 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2708 failrec->bio_flags);
4e4cbee9 2709 if (status) {
7870d082 2710 free_io_failure(failure_tree, tree, failrec);
77d5d689 2711 bio_put(repair_bio);
6c387ab2 2712 }
77d5d689 2713 return status;
4a54c8c1
JS
2714}
2715
d1310b2e
CM
2716/* lots and lots of room for performance fixes in the end_bio funcs */
2717
b5227c07 2718void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2719{
2720 int uptodate = (err == 0);
3e2426bd 2721 int ret = 0;
87826df0 2722
c629732d 2723 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2724
87826df0 2725 if (!uptodate) {
87826df0
JM
2726 ClearPageUptodate(page);
2727 SetPageError(page);
bff5baf8 2728 ret = err < 0 ? err : -EIO;
5dca6eea 2729 mapping_set_error(page->mapping, ret);
87826df0 2730 }
87826df0
JM
2731}
2732
d1310b2e
CM
2733/*
2734 * after a writepage IO is done, we need to:
2735 * clear the uptodate bits on error
2736 * clear the writeback bits in the extent tree for this IO
2737 * end_page_writeback if the page has no more pending IO
2738 *
2739 * Scheduling is not allowed, so the extent state tree is expected
2740 * to have one and only one object corresponding to this IO.
2741 */
4246a0b6 2742static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2743{
4e4cbee9 2744 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2745 struct bio_vec *bvec;
d1310b2e
CM
2746 u64 start;
2747 u64 end;
6dc4f100 2748 struct bvec_iter_all iter_all;
d1310b2e 2749
c09abff8 2750 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2751 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2752 struct page *page = bvec->bv_page;
0b246afa
JM
2753 struct inode *inode = page->mapping->host;
2754 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2755
17a5adcc
AO
2756 /* We always issue full-page reads, but if some block
2757 * in a page fails to read, blk_update_request() will
2758 * advance bv_offset and adjust bv_len to compensate.
2759 * Print a warning for nonzero offsets, and an error
2760 * if they don't add up to a full page. */
09cbfeaf
KS
2761 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2762 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2763 btrfs_err(fs_info,
efe120a0
FH
2764 "partial page write in btrfs with offset %u and length %u",
2765 bvec->bv_offset, bvec->bv_len);
2766 else
0b246afa 2767 btrfs_info(fs_info,
5d163e0e 2768 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2769 bvec->bv_offset, bvec->bv_len);
2770 }
d1310b2e 2771
17a5adcc
AO
2772 start = page_offset(page);
2773 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2774
4e4cbee9 2775 end_extent_writepage(page, error, start, end);
17a5adcc 2776 end_page_writeback(page);
2c30c71b 2777 }
2b1f55b0 2778
d1310b2e 2779 bio_put(bio);
d1310b2e
CM
2780}
2781
883d0de4
MX
2782static void
2783endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2784 int uptodate)
2785{
2786 struct extent_state *cached = NULL;
2787 u64 end = start + len - 1;
2788
2789 if (uptodate && tree->track_uptodate)
2790 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2791 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2792}
2793
d1310b2e
CM
2794/*
2795 * after a readpage IO is done, we need to:
2796 * clear the uptodate bits on error
2797 * set the uptodate bits if things worked
2798 * set the page up to date if all extents in the tree are uptodate
2799 * clear the lock bit in the extent tree
2800 * unlock the page if there are no other extents locked for it
2801 *
2802 * Scheduling is not allowed, so the extent state tree is expected
2803 * to have one and only one object corresponding to this IO.
2804 */
4246a0b6 2805static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2806{
2c30c71b 2807 struct bio_vec *bvec;
4e4cbee9 2808 int uptodate = !bio->bi_status;
facc8a22 2809 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2810 struct extent_io_tree *tree, *failure_tree;
facc8a22 2811 u64 offset = 0;
d1310b2e
CM
2812 u64 start;
2813 u64 end;
facc8a22 2814 u64 len;
883d0de4
MX
2815 u64 extent_start = 0;
2816 u64 extent_len = 0;
5cf1ab56 2817 int mirror;
d1310b2e 2818 int ret;
6dc4f100 2819 struct bvec_iter_all iter_all;
d1310b2e 2820
c09abff8 2821 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2822 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2823 struct page *page = bvec->bv_page;
a71754fc 2824 struct inode *inode = page->mapping->host;
ab8d0fc4 2825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b8bbd46 2826 u32 sectorsize = fs_info->sectorsize;
507903b8 2827
ab8d0fc4
JM
2828 btrfs_debug(fs_info,
2829 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2830 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2831 io_bio->mirror_num);
a71754fc 2832 tree = &BTRFS_I(inode)->io_tree;
7870d082 2833 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2834
8b8bbd46
QW
2835 /*
2836 * We always issue full-sector reads, but if some block in a
2837 * page fails to read, blk_update_request() will advance
2838 * bv_offset and adjust bv_len to compensate. Print a warning
2839 * for unaligned offsets, and an error if they don't add up to
2840 * a full sector.
2841 */
2842 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2843 btrfs_err(fs_info,
2844 "partial page read in btrfs with offset %u and length %u",
2845 bvec->bv_offset, bvec->bv_len);
2846 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
2847 sectorsize))
2848 btrfs_info(fs_info,
2849 "incomplete page read with offset %u and length %u",
2850 bvec->bv_offset, bvec->bv_len);
2851
2852 start = page_offset(page) + bvec->bv_offset;
2853 end = start + bvec->bv_len - 1;
facc8a22 2854 len = bvec->bv_len;
d1310b2e 2855
9be3395b 2856 mirror = io_bio->mirror_num;
78e62c02 2857 if (likely(uptodate)) {
be17b3af 2858 if (is_data_inode(inode))
9a446d6a
NB
2859 ret = btrfs_verify_data_csum(io_bio, offset, page,
2860 start, end, mirror);
2861 else
2862 ret = btrfs_validate_metadata_buffer(io_bio,
2863 offset, page, start, end, mirror);
5ee0844d 2864 if (ret)
d1310b2e 2865 uptodate = 0;
5ee0844d 2866 else
7870d082
JB
2867 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2868 failure_tree, tree, start,
2869 page,
2870 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2871 }
ea466794 2872
f2a09da9
MX
2873 if (likely(uptodate))
2874 goto readpage_ok;
2875
be17b3af 2876 if (is_data_inode(inode)) {
9d0d1c8b 2877
f4a8e656 2878 /*
78e62c02
NB
2879 * The generic bio_readpage_error handles errors the
2880 * following way: If possible, new read requests are
2881 * created and submitted and will end up in
2882 * end_bio_extent_readpage as well (if we're lucky,
2883 * not in the !uptodate case). In that case it returns
2884 * 0 and we just go on with the next page in our bio.
2885 * If it can't handle the error it will return -EIO and
2886 * we remain responsible for that page.
f4a8e656 2887 */
77d5d689
OS
2888 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2889 start - page_offset(page),
2890 start, end, mirror,
908930f3 2891 btrfs_submit_data_bio)) {
78e62c02
NB
2892 uptodate = !bio->bi_status;
2893 offset += len;
2894 continue;
2895 }
2896 } else {
2897 struct extent_buffer *eb;
2898
2899 eb = (struct extent_buffer *)page->private;
2900 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2901 eb->read_mirror = mirror;
2902 atomic_dec(&eb->io_pages);
2903 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2904 &eb->bflags))
2905 btree_readahead_hook(eb, -EIO);
7e38326f 2906 }
f2a09da9 2907readpage_ok:
883d0de4 2908 if (likely(uptodate)) {
a71754fc 2909 loff_t i_size = i_size_read(inode);
09cbfeaf 2910 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2911 unsigned off;
a71754fc
JB
2912
2913 /* Zero out the end if this page straddles i_size */
7073017a 2914 off = offset_in_page(i_size);
a583c026 2915 if (page->index == end_index && off)
09cbfeaf 2916 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2917 SetPageUptodate(page);
70dec807 2918 } else {
17a5adcc
AO
2919 ClearPageUptodate(page);
2920 SetPageError(page);
70dec807 2921 }
17a5adcc 2922 unlock_page(page);
facc8a22 2923 offset += len;
883d0de4
MX
2924
2925 if (unlikely(!uptodate)) {
2926 if (extent_len) {
2927 endio_readpage_release_extent(tree,
2928 extent_start,
2929 extent_len, 1);
2930 extent_start = 0;
2931 extent_len = 0;
2932 }
2933 endio_readpage_release_extent(tree, start,
2934 end - start + 1, 0);
2935 } else if (!extent_len) {
2936 extent_start = start;
2937 extent_len = end + 1 - start;
2938 } else if (extent_start + extent_len == start) {
2939 extent_len += end + 1 - start;
2940 } else {
2941 endio_readpage_release_extent(tree, extent_start,
2942 extent_len, uptodate);
2943 extent_start = start;
2944 extent_len = end + 1 - start;
2945 }
2c30c71b 2946 }
d1310b2e 2947
883d0de4
MX
2948 if (extent_len)
2949 endio_readpage_release_extent(tree, extent_start, extent_len,
2950 uptodate);
b3a0dd50 2951 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2952 bio_put(bio);
d1310b2e
CM
2953}
2954
9be3395b 2955/*
184f999e
DS
2956 * Initialize the members up to but not including 'bio'. Use after allocating a
2957 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2958 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2959 */
184f999e 2960static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2961{
184f999e
DS
2962 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2963}
d1310b2e 2964
9be3395b 2965/*
6e707bcd
DS
2966 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2967 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2968 * for the appropriate container_of magic
9be3395b 2969 */
e749af44 2970struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2971{
2972 struct bio *bio;
d1310b2e 2973
8ac9f7c1 2974 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2975 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2976 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2977 return bio;
2978}
2979
8b6c1d56 2980struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2981{
23ea8e5a
MX
2982 struct btrfs_io_bio *btrfs_bio;
2983 struct bio *new;
9be3395b 2984
6e707bcd 2985 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2986 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2987 btrfs_bio = btrfs_io_bio(new);
184f999e 2988 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2989 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2990 return new;
2991}
9be3395b 2992
c5e4c3d7 2993struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2994{
facc8a22
MX
2995 struct bio *bio;
2996
6e707bcd 2997 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2998 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2999 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 3000 return bio;
9be3395b
CM
3001}
3002
e477094f 3003struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
3004{
3005 struct bio *bio;
3006 struct btrfs_io_bio *btrfs_bio;
3007
3008 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3009 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3010 ASSERT(bio);
3011
3012 btrfs_bio = btrfs_io_bio(bio);
184f999e 3013 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
3014
3015 bio_trim(bio, offset >> 9, size >> 9);
17347cec 3016 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
3017 return bio;
3018}
9be3395b 3019
4b81ba48
DS
3020/*
3021 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3022 * @wbc: optional writeback control for io accounting
3023 * @page: page to add to the bio
3024 * @pg_offset: offset of the new bio or to check whether we are adding
3025 * a contiguous page to the previous one
3026 * @size: portion of page that we want to write
3027 * @offset: starting offset in the page
5c2b1fd7 3028 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3029 * @end_io_func: end_io callback for new bio
3030 * @mirror_num: desired mirror to read/write
3031 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3032 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3033 */
0ceb34bf 3034static int submit_extent_page(unsigned int opf,
da2f0f74 3035 struct writeback_control *wbc,
6273b7f8 3036 struct page *page, u64 offset,
6c5a4e2c 3037 size_t size, unsigned long pg_offset,
d1310b2e 3038 struct bio **bio_ret,
f188591e 3039 bio_end_io_t end_io_func,
c8b97818
CM
3040 int mirror_num,
3041 unsigned long prev_bio_flags,
005efedf
FM
3042 unsigned long bio_flags,
3043 bool force_bio_submit)
d1310b2e
CM
3044{
3045 int ret = 0;
3046 struct bio *bio;
e940e9a7 3047 size_t io_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 3048 sector_t sector = offset >> 9;
0ceb34bf 3049 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
d1310b2e 3050
5c2b1fd7
DS
3051 ASSERT(bio_ret);
3052
3053 if (*bio_ret) {
0c8508a6
DS
3054 bool contig;
3055 bool can_merge = true;
3056
d1310b2e 3057 bio = *bio_ret;
0c8508a6 3058 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 3059 contig = bio->bi_iter.bi_sector == sector;
c8b97818 3060 else
f73a1c7d 3061 contig = bio_end_sector(bio) == sector;
c8b97818 3062
e940e9a7 3063 if (btrfs_bio_fits_in_stripe(page, io_size, bio, bio_flags))
0c8508a6
DS
3064 can_merge = false;
3065
3066 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 3067 force_bio_submit ||
e940e9a7 3068 bio_add_page(bio, page, io_size, pg_offset) < io_size) {
1f7ad75b 3069 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
3070 if (ret < 0) {
3071 *bio_ret = NULL;
79787eaa 3072 return ret;
289454ad 3073 }
d1310b2e
CM
3074 bio = NULL;
3075 } else {
da2f0f74 3076 if (wbc)
e940e9a7 3077 wbc_account_cgroup_owner(wbc, page, io_size);
d1310b2e
CM
3078 return 0;
3079 }
3080 }
c8b97818 3081
e749af44 3082 bio = btrfs_bio_alloc(offset);
e940e9a7 3083 bio_add_page(bio, page, io_size, pg_offset);
d1310b2e
CM
3084 bio->bi_end_io = end_io_func;
3085 bio->bi_private = tree;
e6959b93 3086 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 3087 bio->bi_opf = opf;
da2f0f74 3088 if (wbc) {
429aebc0
DS
3089 struct block_device *bdev;
3090
3091 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3092 bio_set_dev(bio, bdev);
da2f0f74 3093 wbc_init_bio(wbc, bio);
e940e9a7 3094 wbc_account_cgroup_owner(wbc, page, io_size);
da2f0f74 3095 }
70dec807 3096
5c2b1fd7 3097 *bio_ret = bio;
d1310b2e
CM
3098
3099 return ret;
3100}
3101
48a3b636
ES
3102static void attach_extent_buffer_page(struct extent_buffer *eb,
3103 struct page *page)
d1310b2e 3104{
0d01e247
QW
3105 /*
3106 * If the page is mapped to btree inode, we should hold the private
3107 * lock to prevent race.
3108 * For cloned or dummy extent buffers, their pages are not mapped and
3109 * will not race with any other ebs.
3110 */
3111 if (page->mapping)
3112 lockdep_assert_held(&page->mapping->private_lock);
3113
d1b89bc0
GJ
3114 if (!PagePrivate(page))
3115 attach_page_private(page, eb);
3116 else
4f2de97a 3117 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3118}
3119
4f2de97a 3120void set_page_extent_mapped(struct page *page)
d1310b2e 3121{
d1b89bc0
GJ
3122 if (!PagePrivate(page))
3123 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
d1310b2e
CM
3124}
3125
125bac01
MX
3126static struct extent_map *
3127__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 3128 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
3129{
3130 struct extent_map *em;
3131
3132 if (em_cached && *em_cached) {
3133 em = *em_cached;
cbc0e928 3134 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3135 start < extent_map_end(em)) {
490b54d6 3136 refcount_inc(&em->refs);
125bac01
MX
3137 return em;
3138 }
3139
3140 free_extent_map(em);
3141 *em_cached = NULL;
3142 }
3143
1a5ee1e6 3144 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3145 if (em_cached && !IS_ERR_OR_NULL(em)) {
3146 BUG_ON(*em_cached);
490b54d6 3147 refcount_inc(&em->refs);
125bac01
MX
3148 *em_cached = em;
3149 }
3150 return em;
3151}
d1310b2e
CM
3152/*
3153 * basic readpage implementation. Locked extent state structs are inserted
3154 * into the tree that are removed when the IO is done (by the end_io
3155 * handlers)
79787eaa 3156 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3157 * return 0 on success, otherwise return error
d1310b2e 3158 */
0f208812
NB
3159int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3160 struct bio **bio, unsigned long *bio_flags,
3161 unsigned int read_flags, u64 *prev_em_start)
d1310b2e
CM
3162{
3163 struct inode *inode = page->mapping->host;
4eee4fa4 3164 u64 start = page_offset(page);
8eec8296 3165 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3166 u64 cur = start;
3167 u64 extent_offset;
3168 u64 last_byte = i_size_read(inode);
3169 u64 block_start;
3170 u64 cur_end;
d1310b2e 3171 struct extent_map *em;
baf863b9 3172 int ret = 0;
d1310b2e 3173 int nr = 0;
306e16ce 3174 size_t pg_offset = 0;
d1310b2e
CM
3175 size_t iosize;
3176 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3177 unsigned long this_bio_flag = 0;
f657a31c 3178 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3179
d1310b2e
CM
3180 set_page_extent_mapped(page);
3181
90a887c9
DM
3182 if (!PageUptodate(page)) {
3183 if (cleancache_get_page(page) == 0) {
3184 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3185 unlock_extent(tree, start, end);
90a887c9
DM
3186 goto out;
3187 }
3188 }
3189
09cbfeaf 3190 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3191 char *userpage;
7073017a 3192 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3193
3194 if (zero_offset) {
09cbfeaf 3195 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3196 userpage = kmap_atomic(page);
c8b97818
CM
3197 memset(userpage + zero_offset, 0, iosize);
3198 flush_dcache_page(page);
7ac687d9 3199 kunmap_atomic(userpage);
c8b97818
CM
3200 }
3201 }
d1310b2e 3202 while (cur <= end) {
005efedf 3203 bool force_bio_submit = false;
6273b7f8 3204 u64 offset;
c8f2f24b 3205
d1310b2e
CM
3206 if (cur >= last_byte) {
3207 char *userpage;
507903b8
AJ
3208 struct extent_state *cached = NULL;
3209
09cbfeaf 3210 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3211 userpage = kmap_atomic(page);
306e16ce 3212 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3213 flush_dcache_page(page);
7ac687d9 3214 kunmap_atomic(userpage);
d1310b2e 3215 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3216 &cached, GFP_NOFS);
7f042a83 3217 unlock_extent_cached(tree, cur,
e43bbe5e 3218 cur + iosize - 1, &cached);
d1310b2e
CM
3219 break;
3220 }
125bac01 3221 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 3222 end - cur + 1, em_cached);
c704005d 3223 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3224 SetPageError(page);
7f042a83 3225 unlock_extent(tree, cur, end);
d1310b2e
CM
3226 break;
3227 }
d1310b2e
CM
3228 extent_offset = cur - em->start;
3229 BUG_ON(extent_map_end(em) <= cur);
3230 BUG_ON(end < cur);
3231
261507a0 3232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3233 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3234 extent_set_compress_type(&this_bio_flag,
3235 em->compress_type);
3236 }
c8b97818 3237
d1310b2e
CM
3238 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3239 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3240 iosize = ALIGN(iosize, blocksize);
949b3273 3241 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
6273b7f8 3242 offset = em->block_start;
949b3273 3243 else
6273b7f8 3244 offset = em->block_start + extent_offset;
d1310b2e 3245 block_start = em->block_start;
d899e052
YZ
3246 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3247 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3248
3249 /*
3250 * If we have a file range that points to a compressed extent
260db43c 3251 * and it's followed by a consecutive file range that points
005efedf
FM
3252 * to the same compressed extent (possibly with a different
3253 * offset and/or length, so it either points to the whole extent
3254 * or only part of it), we must make sure we do not submit a
3255 * single bio to populate the pages for the 2 ranges because
3256 * this makes the compressed extent read zero out the pages
3257 * belonging to the 2nd range. Imagine the following scenario:
3258 *
3259 * File layout
3260 * [0 - 8K] [8K - 24K]
3261 * | |
3262 * | |
3263 * points to extent X, points to extent X,
3264 * offset 4K, length of 8K offset 0, length 16K
3265 *
3266 * [extent X, compressed length = 4K uncompressed length = 16K]
3267 *
3268 * If the bio to read the compressed extent covers both ranges,
3269 * it will decompress extent X into the pages belonging to the
3270 * first range and then it will stop, zeroing out the remaining
3271 * pages that belong to the other range that points to extent X.
3272 * So here we make sure we submit 2 bios, one for the first
3273 * range and another one for the third range. Both will target
3274 * the same physical extent from disk, but we can't currently
3275 * make the compressed bio endio callback populate the pages
3276 * for both ranges because each compressed bio is tightly
3277 * coupled with a single extent map, and each range can have
3278 * an extent map with a different offset value relative to the
3279 * uncompressed data of our extent and different lengths. This
3280 * is a corner case so we prioritize correctness over
3281 * non-optimal behavior (submitting 2 bios for the same extent).
3282 */
3283 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3284 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3285 *prev_em_start != em->start)
005efedf
FM
3286 force_bio_submit = true;
3287
3288 if (prev_em_start)
8e928218 3289 *prev_em_start = em->start;
005efedf 3290
d1310b2e
CM
3291 free_extent_map(em);
3292 em = NULL;
3293
3294 /* we've found a hole, just zero and go on */
3295 if (block_start == EXTENT_MAP_HOLE) {
3296 char *userpage;
507903b8
AJ
3297 struct extent_state *cached = NULL;
3298
7ac687d9 3299 userpage = kmap_atomic(page);
306e16ce 3300 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3301 flush_dcache_page(page);
7ac687d9 3302 kunmap_atomic(userpage);
d1310b2e
CM
3303
3304 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3305 &cached, GFP_NOFS);
7f042a83 3306 unlock_extent_cached(tree, cur,
e43bbe5e 3307 cur + iosize - 1, &cached);
d1310b2e 3308 cur = cur + iosize;
306e16ce 3309 pg_offset += iosize;
d1310b2e
CM
3310 continue;
3311 }
3312 /* the get_extent function already copied into the page */
9655d298
CM
3313 if (test_range_bit(tree, cur, cur_end,
3314 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3315 check_page_uptodate(tree, page);
7f042a83 3316 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3317 cur = cur + iosize;
306e16ce 3318 pg_offset += iosize;
d1310b2e
CM
3319 continue;
3320 }
70dec807
CM
3321 /* we have an inline extent but it didn't get marked up
3322 * to date. Error out
3323 */
3324 if (block_start == EXTENT_MAP_INLINE) {
3325 SetPageError(page);
7f042a83 3326 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3327 cur = cur + iosize;
306e16ce 3328 pg_offset += iosize;
70dec807
CM
3329 continue;
3330 }
d1310b2e 3331
0ceb34bf 3332 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
949b3273 3333 page, offset, iosize,
fa17ed06 3334 pg_offset, bio,
fd513000 3335 end_bio_extent_readpage, 0,
c8b97818 3336 *bio_flags,
005efedf
FM
3337 this_bio_flag,
3338 force_bio_submit);
c8f2f24b
JB
3339 if (!ret) {
3340 nr++;
3341 *bio_flags = this_bio_flag;
3342 } else {
d1310b2e 3343 SetPageError(page);
7f042a83 3344 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3345 goto out;
edd33c99 3346 }
d1310b2e 3347 cur = cur + iosize;
306e16ce 3348 pg_offset += iosize;
d1310b2e 3349 }
90a887c9 3350out:
d1310b2e
CM
3351 if (!nr) {
3352 if (!PageError(page))
3353 SetPageUptodate(page);
3354 unlock_page(page);
3355 }
baf863b9 3356 return ret;
d1310b2e
CM
3357}
3358
b6660e80 3359static inline void contiguous_readpages(struct page *pages[], int nr_pages,
9974090b 3360 u64 start, u64 end,
125bac01 3361 struct extent_map **em_cached,
d3fac6ba 3362 struct bio **bio,
1f7ad75b 3363 unsigned long *bio_flags,
808f80b4 3364 u64 *prev_em_start)
9974090b 3365{
23d31bd4 3366 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3367 int index;
3368
b272ae22 3369 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3370
3371 for (index = 0; index < nr_pages; index++) {
0f208812
NB
3372 btrfs_do_readpage(pages[index], em_cached, bio, bio_flags,
3373 REQ_RAHEAD, prev_em_start);
09cbfeaf 3374 put_page(pages[index]);
9974090b
MX
3375 }
3376}
3377
3d4b9496 3378static void update_nr_written(struct writeback_control *wbc,
a9132667 3379 unsigned long nr_written)
11c8349b
CM
3380{
3381 wbc->nr_to_write -= nr_written;
11c8349b
CM
3382}
3383
d1310b2e 3384/*
40f76580
CM
3385 * helper for __extent_writepage, doing all of the delayed allocation setup.
3386 *
5eaad97a 3387 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3388 * to write the page (copy into inline extent). In this case the IO has
3389 * been started and the page is already unlocked.
3390 *
3391 * This returns 0 if all went well (page still locked)
3392 * This returns < 0 if there were errors (page still locked)
d1310b2e 3393 */
cd4c0bf9 3394static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
8cc0237a
NB
3395 struct page *page, struct writeback_control *wbc,
3396 u64 delalloc_start, unsigned long *nr_written)
40f76580 3397{
09cbfeaf 3398 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3399 bool found;
40f76580
CM
3400 u64 delalloc_to_write = 0;
3401 u64 delalloc_end = 0;
3402 int ret;
3403 int page_started = 0;
3404
40f76580
CM
3405
3406 while (delalloc_end < page_end) {
cd4c0bf9 3407 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3408 &delalloc_start,
917aacec 3409 &delalloc_end);
3522e903 3410 if (!found) {
40f76580
CM
3411 delalloc_start = delalloc_end + 1;
3412 continue;
3413 }
cd4c0bf9 3414 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
5eaad97a 3415 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3416 if (ret) {
3417 SetPageError(page);
5eaad97a
NB
3418 /*
3419 * btrfs_run_delalloc_range should return < 0 for error
3420 * but just in case, we use > 0 here meaning the IO is
3421 * started, so we don't want to return > 0 unless
3422 * things are going well.
40f76580 3423 */
b69d1ee9 3424 return ret < 0 ? ret : -EIO;
40f76580
CM
3425 }
3426 /*
ea1754a0
KS
3427 * delalloc_end is already one less than the total length, so
3428 * we don't subtract one from PAGE_SIZE
40f76580
CM
3429 */
3430 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3431 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3432 delalloc_start = delalloc_end + 1;
3433 }
3434 if (wbc->nr_to_write < delalloc_to_write) {
3435 int thresh = 8192;
3436
3437 if (delalloc_to_write < thresh * 2)
3438 thresh = delalloc_to_write;
3439 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3440 thresh);
3441 }
3442
3443 /* did the fill delalloc function already unlock and start
3444 * the IO?
3445 */
3446 if (page_started) {
3447 /*
3448 * we've unlocked the page, so we can't update
3449 * the mapping's writeback index, just update
3450 * nr_to_write.
3451 */
3452 wbc->nr_to_write -= *nr_written;
3453 return 1;
3454 }
3455
b69d1ee9 3456 return 0;
40f76580
CM
3457}
3458
3459/*
3460 * helper for __extent_writepage. This calls the writepage start hooks,
3461 * and does the loop to map the page into extents and bios.
3462 *
3463 * We return 1 if the IO is started and the page is unlocked,
3464 * 0 if all went well (page still locked)
3465 * < 0 if there were errors (page still locked)
3466 */
d4580fe2 3467static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3468 struct page *page,
3469 struct writeback_control *wbc,
3470 struct extent_page_data *epd,
3471 loff_t i_size,
3472 unsigned long nr_written,
57e5ffeb 3473 int *nr_ret)
d1310b2e 3474{
d4580fe2 3475 struct extent_io_tree *tree = &inode->io_tree;
4eee4fa4 3476 u64 start = page_offset(page);
09cbfeaf 3477 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3478 u64 end;
3479 u64 cur = start;
3480 u64 extent_offset;
d1310b2e
CM
3481 u64 block_start;
3482 u64 iosize;
d1310b2e 3483 struct extent_map *em;
7f3c74fb 3484 size_t pg_offset = 0;
d1310b2e 3485 size_t blocksize;
40f76580
CM
3486 int ret = 0;
3487 int nr = 0;
57e5ffeb 3488 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3489 bool compressed;
c8b97818 3490
d75855b4
NB
3491 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3492 if (ret) {
3493 /* Fixup worker will requeue */
5ab58055 3494 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3495 update_nr_written(wbc, nr_written);
3496 unlock_page(page);
3497 return 1;
247e743c
CM
3498 }
3499
11c8349b
CM
3500 /*
3501 * we don't want to touch the inode after unlocking the page,
3502 * so we update the mapping writeback index now
3503 */
3d4b9496 3504 update_nr_written(wbc, nr_written + 1);
771ed689 3505
d1310b2e 3506 end = page_end;
d4580fe2 3507 blocksize = inode->vfs_inode.i_sb->s_blocksize;
d1310b2e
CM
3508
3509 while (cur <= end) {
40f76580 3510 u64 em_end;
6273b7f8 3511 u64 offset;
58409edd 3512
40f76580 3513 if (cur >= i_size) {
7087a9d8 3514 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3515 page_end, 1);
d1310b2e
CM
3516 break;
3517 }
d4580fe2 3518 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c704005d 3519 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3520 SetPageError(page);
61391d56 3521 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3522 break;
3523 }
3524
3525 extent_offset = cur - em->start;
40f76580
CM
3526 em_end = extent_map_end(em);
3527 BUG_ON(em_end <= cur);
d1310b2e 3528 BUG_ON(end < cur);
40f76580 3529 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3530 iosize = ALIGN(iosize, blocksize);
6273b7f8 3531 offset = em->block_start + extent_offset;
d1310b2e 3532 block_start = em->block_start;
c8b97818 3533 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3534 free_extent_map(em);
3535 em = NULL;
3536
c8b97818
CM
3537 /*
3538 * compressed and inline extents are written through other
3539 * paths in the FS
3540 */
3541 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3542 block_start == EXTENT_MAP_INLINE) {
c8b04030 3543 if (compressed)
c8b97818 3544 nr++;
c8b04030
OS
3545 else
3546 btrfs_writepage_endio_finish_ordered(page, cur,
3547 cur + iosize - 1, 1);
c8b97818 3548 cur += iosize;
7f3c74fb 3549 pg_offset += iosize;
d1310b2e
CM
3550 continue;
3551 }
c8b97818 3552
5cdc84bf 3553 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd 3554 if (!PageWriteback(page)) {
d4580fe2 3555 btrfs_err(inode->root->fs_info,
58409edd
DS
3556 "page %lu not writeback, cur %llu end %llu",
3557 page->index, cur, end);
d1310b2e 3558 }
7f3c74fb 3559
0ceb34bf 3560 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
6273b7f8 3561 page, offset, iosize, pg_offset,
fa17ed06 3562 &epd->bio,
58409edd
DS
3563 end_bio_extent_writepage,
3564 0, 0, 0, false);
fe01aa65 3565 if (ret) {
58409edd 3566 SetPageError(page);
fe01aa65
TK
3567 if (PageWriteback(page))
3568 end_page_writeback(page);
3569 }
d1310b2e 3570
d1310b2e 3571 cur = cur + iosize;
7f3c74fb 3572 pg_offset += iosize;
d1310b2e
CM
3573 nr++;
3574 }
40f76580 3575 *nr_ret = nr;
40f76580
CM
3576 return ret;
3577}
3578
3579/*
3580 * the writepage semantics are similar to regular writepage. extent
3581 * records are inserted to lock ranges in the tree, and as dirty areas
3582 * are found, they are marked writeback. Then the lock bits are removed
3583 * and the end_io handler clears the writeback ranges
3065976b
QW
3584 *
3585 * Return 0 if everything goes well.
3586 * Return <0 for error.
40f76580
CM
3587 */
3588static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3589 struct extent_page_data *epd)
40f76580
CM
3590{
3591 struct inode *inode = page->mapping->host;
40f76580 3592 u64 start = page_offset(page);
09cbfeaf 3593 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3594 int ret;
3595 int nr = 0;
eb70d222 3596 size_t pg_offset;
40f76580 3597 loff_t i_size = i_size_read(inode);
09cbfeaf 3598 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3599 unsigned long nr_written = 0;
3600
40f76580
CM
3601 trace___extent_writepage(page, inode, wbc);
3602
3603 WARN_ON(!PageLocked(page));
3604
3605 ClearPageError(page);
3606
7073017a 3607 pg_offset = offset_in_page(i_size);
40f76580
CM
3608 if (page->index > end_index ||
3609 (page->index == end_index && !pg_offset)) {
09cbfeaf 3610 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3611 unlock_page(page);
3612 return 0;
3613 }
3614
3615 if (page->index == end_index) {
3616 char *userpage;
3617
3618 userpage = kmap_atomic(page);
3619 memset(userpage + pg_offset, 0,
09cbfeaf 3620 PAGE_SIZE - pg_offset);
40f76580
CM
3621 kunmap_atomic(userpage);
3622 flush_dcache_page(page);
3623 }
3624
40f76580
CM
3625 set_page_extent_mapped(page);
3626
7789a55a 3627 if (!epd->extent_locked) {
cd4c0bf9
NB
3628 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3629 &nr_written);
7789a55a 3630 if (ret == 1)
169d2c87 3631 return 0;
7789a55a
NB
3632 if (ret)
3633 goto done;
3634 }
40f76580 3635
d4580fe2
NB
3636 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3637 nr_written, &nr);
40f76580 3638 if (ret == 1)
169d2c87 3639 return 0;
40f76580 3640
d1310b2e
CM
3641done:
3642 if (nr == 0) {
3643 /* make sure the mapping tag for page dirty gets cleared */
3644 set_page_writeback(page);
3645 end_page_writeback(page);
3646 }
61391d56
FM
3647 if (PageError(page)) {
3648 ret = ret < 0 ? ret : -EIO;
3649 end_extent_writepage(page, ret, start, page_end);
3650 }
d1310b2e 3651 unlock_page(page);
3065976b 3652 ASSERT(ret <= 0);
40f76580 3653 return ret;
d1310b2e
CM
3654}
3655
fd8b2b61 3656void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3657{
74316201
N
3658 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3659 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3660}
3661
18dfa711
FM
3662static void end_extent_buffer_writeback(struct extent_buffer *eb)
3663{
3664 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3665 smp_mb__after_atomic();
3666 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3667}
3668
2e3c2513 3669/*
a3efb2f0 3670 * Lock extent buffer status and pages for writeback.
2e3c2513 3671 *
a3efb2f0
QW
3672 * May try to flush write bio if we can't get the lock.
3673 *
3674 * Return 0 if the extent buffer doesn't need to be submitted.
3675 * (E.g. the extent buffer is not dirty)
3676 * Return >0 is the extent buffer is submitted to bio.
3677 * Return <0 if something went wrong, no page is locked.
2e3c2513 3678 */
9df76fb5 3679static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3680 struct extent_page_data *epd)
0b32f4bb 3681{
9df76fb5 3682 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3683 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3684 int flush = 0;
3685 int ret = 0;
3686
3687 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3688 ret = flush_write_bio(epd);
2e3c2513
QW
3689 if (ret < 0)
3690 return ret;
3691 flush = 1;
0b32f4bb
JB
3692 btrfs_tree_lock(eb);
3693 }
3694
3695 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3696 btrfs_tree_unlock(eb);
3697 if (!epd->sync_io)
3698 return 0;
3699 if (!flush) {
f4340622 3700 ret = flush_write_bio(epd);
2e3c2513
QW
3701 if (ret < 0)
3702 return ret;
0b32f4bb
JB
3703 flush = 1;
3704 }
a098d8e8
CM
3705 while (1) {
3706 wait_on_extent_buffer_writeback(eb);
3707 btrfs_tree_lock(eb);
3708 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3709 break;
0b32f4bb 3710 btrfs_tree_unlock(eb);
0b32f4bb
JB
3711 }
3712 }
3713
51561ffe
JB
3714 /*
3715 * We need to do this to prevent races in people who check if the eb is
3716 * under IO since we can end up having no IO bits set for a short period
3717 * of time.
3718 */
3719 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3720 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3721 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3722 spin_unlock(&eb->refs_lock);
0b32f4bb 3723 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3724 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3725 -eb->len,
3726 fs_info->dirty_metadata_batch);
0b32f4bb 3727 ret = 1;
51561ffe
JB
3728 } else {
3729 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3730 }
3731
3732 btrfs_tree_unlock(eb);
3733
3734 if (!ret)
3735 return ret;
3736
65ad0104 3737 num_pages = num_extent_pages(eb);
0b32f4bb 3738 for (i = 0; i < num_pages; i++) {
fb85fc9a 3739 struct page *p = eb->pages[i];
0b32f4bb
JB
3740
3741 if (!trylock_page(p)) {
3742 if (!flush) {
18dfa711
FM
3743 int err;
3744
3745 err = flush_write_bio(epd);
3746 if (err < 0) {
3747 ret = err;
2e3c2513
QW
3748 failed_page_nr = i;
3749 goto err_unlock;
3750 }
0b32f4bb
JB
3751 flush = 1;
3752 }
3753 lock_page(p);
3754 }
3755 }
3756
3757 return ret;
2e3c2513
QW
3758err_unlock:
3759 /* Unlock already locked pages */
3760 for (i = 0; i < failed_page_nr; i++)
3761 unlock_page(eb->pages[i]);
18dfa711
FM
3762 /*
3763 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3764 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3765 * be made and undo everything done before.
3766 */
3767 btrfs_tree_lock(eb);
3768 spin_lock(&eb->refs_lock);
3769 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3770 end_extent_buffer_writeback(eb);
3771 spin_unlock(&eb->refs_lock);
3772 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3773 fs_info->dirty_metadata_batch);
3774 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3775 btrfs_tree_unlock(eb);
2e3c2513 3776 return ret;
0b32f4bb
JB
3777}
3778
656f30db
FM
3779static void set_btree_ioerr(struct page *page)
3780{
3781 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3782 struct btrfs_fs_info *fs_info;
656f30db
FM
3783
3784 SetPageError(page);
3785 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3786 return;
3787
eb5b64f1
DZ
3788 /*
3789 * If we error out, we should add back the dirty_metadata_bytes
3790 * to make it consistent.
3791 */
3792 fs_info = eb->fs_info;
3793 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3794 eb->len, fs_info->dirty_metadata_batch);
3795
656f30db
FM
3796 /*
3797 * If writeback for a btree extent that doesn't belong to a log tree
3798 * failed, increment the counter transaction->eb_write_errors.
3799 * We do this because while the transaction is running and before it's
3800 * committing (when we call filemap_fdata[write|wait]_range against
3801 * the btree inode), we might have
3802 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3803 * returns an error or an error happens during writeback, when we're
3804 * committing the transaction we wouldn't know about it, since the pages
3805 * can be no longer dirty nor marked anymore for writeback (if a
3806 * subsequent modification to the extent buffer didn't happen before the
3807 * transaction commit), which makes filemap_fdata[write|wait]_range not
3808 * able to find the pages tagged with SetPageError at transaction
3809 * commit time. So if this happens we must abort the transaction,
3810 * otherwise we commit a super block with btree roots that point to
3811 * btree nodes/leafs whose content on disk is invalid - either garbage
3812 * or the content of some node/leaf from a past generation that got
3813 * cowed or deleted and is no longer valid.
3814 *
3815 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3816 * not be enough - we need to distinguish between log tree extents vs
3817 * non-log tree extents, and the next filemap_fdatawait_range() call
3818 * will catch and clear such errors in the mapping - and that call might
3819 * be from a log sync and not from a transaction commit. Also, checking
3820 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3821 * not done and would not be reliable - the eb might have been released
3822 * from memory and reading it back again means that flag would not be
3823 * set (since it's a runtime flag, not persisted on disk).
3824 *
3825 * Using the flags below in the btree inode also makes us achieve the
3826 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3827 * writeback for all dirty pages and before filemap_fdatawait_range()
3828 * is called, the writeback for all dirty pages had already finished
3829 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3830 * filemap_fdatawait_range() would return success, as it could not know
3831 * that writeback errors happened (the pages were no longer tagged for
3832 * writeback).
3833 */
3834 switch (eb->log_index) {
3835 case -1:
afcdd129 3836 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3837 break;
3838 case 0:
afcdd129 3839 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3840 break;
3841 case 1:
afcdd129 3842 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3843 break;
3844 default:
3845 BUG(); /* unexpected, logic error */
3846 }
3847}
3848
4246a0b6 3849static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3850{
2c30c71b 3851 struct bio_vec *bvec;
0b32f4bb 3852 struct extent_buffer *eb;
2b070cfe 3853 int done;
6dc4f100 3854 struct bvec_iter_all iter_all;
0b32f4bb 3855
c09abff8 3856 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3857 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3858 struct page *page = bvec->bv_page;
3859
0b32f4bb
JB
3860 eb = (struct extent_buffer *)page->private;
3861 BUG_ON(!eb);
3862 done = atomic_dec_and_test(&eb->io_pages);
3863
4e4cbee9 3864 if (bio->bi_status ||
4246a0b6 3865 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3866 ClearPageUptodate(page);
656f30db 3867 set_btree_ioerr(page);
0b32f4bb
JB
3868 }
3869
3870 end_page_writeback(page);
3871
3872 if (!done)
3873 continue;
3874
3875 end_extent_buffer_writeback(eb);
2c30c71b 3876 }
0b32f4bb
JB
3877
3878 bio_put(bio);
0b32f4bb
JB
3879}
3880
0e378df1 3881static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3882 struct writeback_control *wbc,
3883 struct extent_page_data *epd)
3884{
0b32f4bb 3885 u64 offset = eb->start;
851cd173 3886 u32 nritems;
cc5e31a4 3887 int i, num_pages;
851cd173 3888 unsigned long start, end;
ff40adf7 3889 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3890 int ret = 0;
0b32f4bb 3891
656f30db 3892 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3893 num_pages = num_extent_pages(eb);
0b32f4bb 3894 atomic_set(&eb->io_pages, num_pages);
de0022b9 3895
851cd173
LB
3896 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3897 nritems = btrfs_header_nritems(eb);
3eb548ee 3898 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3899 end = btrfs_node_key_ptr_offset(nritems);
3900
b159fa28 3901 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3902 } else {
3903 /*
3904 * leaf:
3905 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3906 */
3907 start = btrfs_item_nr_offset(nritems);
8f881e8c 3908 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3909 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3910 }
3911
0b32f4bb 3912 for (i = 0; i < num_pages; i++) {
fb85fc9a 3913 struct page *p = eb->pages[i];
0b32f4bb
JB
3914
3915 clear_page_dirty_for_io(p);
3916 set_page_writeback(p);
0ceb34bf 3917 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
fa17ed06 3918 p, offset, PAGE_SIZE, 0,
c2df8bb4 3919 &epd->bio,
1f7ad75b 3920 end_bio_extent_buffer_writepage,
18fdc679 3921 0, 0, 0, false);
0b32f4bb 3922 if (ret) {
656f30db 3923 set_btree_ioerr(p);
fe01aa65
TK
3924 if (PageWriteback(p))
3925 end_page_writeback(p);
0b32f4bb
JB
3926 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3927 end_extent_buffer_writeback(eb);
3928 ret = -EIO;
3929 break;
3930 }
09cbfeaf 3931 offset += PAGE_SIZE;
3d4b9496 3932 update_nr_written(wbc, 1);
0b32f4bb
JB
3933 unlock_page(p);
3934 }
3935
3936 if (unlikely(ret)) {
3937 for (; i < num_pages; i++) {
bbf65cf0 3938 struct page *p = eb->pages[i];
81465028 3939 clear_page_dirty_for_io(p);
0b32f4bb
JB
3940 unlock_page(p);
3941 }
3942 }
3943
3944 return ret;
3945}
3946
3947int btree_write_cache_pages(struct address_space *mapping,
3948 struct writeback_control *wbc)
3949{
0b32f4bb
JB
3950 struct extent_buffer *eb, *prev_eb = NULL;
3951 struct extent_page_data epd = {
3952 .bio = NULL,
0b32f4bb
JB
3953 .extent_locked = 0,
3954 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3955 };
b3ff8f1d 3956 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
3957 int ret = 0;
3958 int done = 0;
3959 int nr_to_write_done = 0;
3960 struct pagevec pvec;
3961 int nr_pages;
3962 pgoff_t index;
3963 pgoff_t end; /* Inclusive */
3964 int scanned = 0;
10bbd235 3965 xa_mark_t tag;
0b32f4bb 3966
86679820 3967 pagevec_init(&pvec);
0b32f4bb
JB
3968 if (wbc->range_cyclic) {
3969 index = mapping->writeback_index; /* Start from prev offset */
3970 end = -1;
556755a8
JB
3971 /*
3972 * Start from the beginning does not need to cycle over the
3973 * range, mark it as scanned.
3974 */
3975 scanned = (index == 0);
0b32f4bb 3976 } else {
09cbfeaf
KS
3977 index = wbc->range_start >> PAGE_SHIFT;
3978 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3979 scanned = 1;
3980 }
3981 if (wbc->sync_mode == WB_SYNC_ALL)
3982 tag = PAGECACHE_TAG_TOWRITE;
3983 else
3984 tag = PAGECACHE_TAG_DIRTY;
3985retry:
3986 if (wbc->sync_mode == WB_SYNC_ALL)
3987 tag_pages_for_writeback(mapping, index, end);
3988 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3989 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3990 tag))) {
0b32f4bb
JB
3991 unsigned i;
3992
0b32f4bb
JB
3993 for (i = 0; i < nr_pages; i++) {
3994 struct page *page = pvec.pages[i];
3995
3996 if (!PagePrivate(page))
3997 continue;
3998
b5bae261
JB
3999 spin_lock(&mapping->private_lock);
4000 if (!PagePrivate(page)) {
4001 spin_unlock(&mapping->private_lock);
4002 continue;
4003 }
4004
0b32f4bb 4005 eb = (struct extent_buffer *)page->private;
b5bae261
JB
4006
4007 /*
4008 * Shouldn't happen and normally this would be a BUG_ON
4009 * but no sense in crashing the users box for something
4010 * we can survive anyway.
4011 */
fae7f21c 4012 if (WARN_ON(!eb)) {
b5bae261 4013 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
4014 continue;
4015 }
4016
b5bae261
JB
4017 if (eb == prev_eb) {
4018 spin_unlock(&mapping->private_lock);
0b32f4bb 4019 continue;
b5bae261 4020 }
0b32f4bb 4021
b5bae261
JB
4022 ret = atomic_inc_not_zero(&eb->refs);
4023 spin_unlock(&mapping->private_lock);
4024 if (!ret)
0b32f4bb 4025 continue;
0b32f4bb
JB
4026
4027 prev_eb = eb;
9df76fb5 4028 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4029 if (!ret) {
4030 free_extent_buffer(eb);
4031 continue;
0607eb1d
FM
4032 } else if (ret < 0) {
4033 done = 1;
4034 free_extent_buffer(eb);
4035 break;
0b32f4bb
JB
4036 }
4037
0ab02063 4038 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4039 if (ret) {
4040 done = 1;
4041 free_extent_buffer(eb);
4042 break;
4043 }
4044 free_extent_buffer(eb);
4045
4046 /*
4047 * the filesystem may choose to bump up nr_to_write.
4048 * We have to make sure to honor the new nr_to_write
4049 * at any time
4050 */
4051 nr_to_write_done = wbc->nr_to_write <= 0;
4052 }
4053 pagevec_release(&pvec);
4054 cond_resched();
4055 }
4056 if (!scanned && !done) {
4057 /*
4058 * We hit the last page and there is more work to be done: wrap
4059 * back to the start of the file
4060 */
4061 scanned = 1;
4062 index = 0;
4063 goto retry;
4064 }
2b952eea
QW
4065 ASSERT(ret <= 0);
4066 if (ret < 0) {
4067 end_write_bio(&epd, ret);
4068 return ret;
4069 }
b3ff8f1d
QW
4070 /*
4071 * If something went wrong, don't allow any metadata write bio to be
4072 * submitted.
4073 *
4074 * This would prevent use-after-free if we had dirty pages not
4075 * cleaned up, which can still happen by fuzzed images.
4076 *
4077 * - Bad extent tree
4078 * Allowing existing tree block to be allocated for other trees.
4079 *
4080 * - Log tree operations
4081 * Exiting tree blocks get allocated to log tree, bumps its
4082 * generation, then get cleaned in tree re-balance.
4083 * Such tree block will not be written back, since it's clean,
4084 * thus no WRITTEN flag set.
4085 * And after log writes back, this tree block is not traced by
4086 * any dirty extent_io_tree.
4087 *
4088 * - Offending tree block gets re-dirtied from its original owner
4089 * Since it has bumped generation, no WRITTEN flag, it can be
4090 * reused without COWing. This tree block will not be traced
4091 * by btrfs_transaction::dirty_pages.
4092 *
4093 * Now such dirty tree block will not be cleaned by any dirty
4094 * extent io tree. Thus we don't want to submit such wild eb
4095 * if the fs already has error.
4096 */
4097 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4098 ret = flush_write_bio(&epd);
4099 } else {
fbabd4a3 4100 ret = -EROFS;
b3ff8f1d
QW
4101 end_write_bio(&epd, ret);
4102 }
0b32f4bb
JB
4103 return ret;
4104}
4105
d1310b2e 4106/**
4bef0848 4107 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4108 * @mapping: address space structure to write
4109 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4110 * @data: data passed to __extent_writepage function
d1310b2e
CM
4111 *
4112 * If a page is already under I/O, write_cache_pages() skips it, even
4113 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4114 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4115 * and msync() need to guarantee that all the data which was dirty at the time
4116 * the call was made get new I/O started against them. If wbc->sync_mode is
4117 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4118 * existing IO to complete.
4119 */
4242b64a 4120static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4121 struct writeback_control *wbc,
aab6e9ed 4122 struct extent_page_data *epd)
d1310b2e 4123{
7fd1a3f7 4124 struct inode *inode = mapping->host;
d1310b2e
CM
4125 int ret = 0;
4126 int done = 0;
f85d7d6c 4127 int nr_to_write_done = 0;
d1310b2e
CM
4128 struct pagevec pvec;
4129 int nr_pages;
4130 pgoff_t index;
4131 pgoff_t end; /* Inclusive */
a9132667
LB
4132 pgoff_t done_index;
4133 int range_whole = 0;
d1310b2e 4134 int scanned = 0;
10bbd235 4135 xa_mark_t tag;
d1310b2e 4136
7fd1a3f7
JB
4137 /*
4138 * We have to hold onto the inode so that ordered extents can do their
4139 * work when the IO finishes. The alternative to this is failing to add
4140 * an ordered extent if the igrab() fails there and that is a huge pain
4141 * to deal with, so instead just hold onto the inode throughout the
4142 * writepages operation. If it fails here we are freeing up the inode
4143 * anyway and we'd rather not waste our time writing out stuff that is
4144 * going to be truncated anyway.
4145 */
4146 if (!igrab(inode))
4147 return 0;
4148
86679820 4149 pagevec_init(&pvec);
d1310b2e
CM
4150 if (wbc->range_cyclic) {
4151 index = mapping->writeback_index; /* Start from prev offset */
4152 end = -1;
556755a8
JB
4153 /*
4154 * Start from the beginning does not need to cycle over the
4155 * range, mark it as scanned.
4156 */
4157 scanned = (index == 0);
d1310b2e 4158 } else {
09cbfeaf
KS
4159 index = wbc->range_start >> PAGE_SHIFT;
4160 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4161 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4162 range_whole = 1;
d1310b2e
CM
4163 scanned = 1;
4164 }
3cd24c69
EL
4165
4166 /*
4167 * We do the tagged writepage as long as the snapshot flush bit is set
4168 * and we are the first one who do the filemap_flush() on this inode.
4169 *
4170 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4171 * not race in and drop the bit.
4172 */
4173 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4174 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4175 &BTRFS_I(inode)->runtime_flags))
4176 wbc->tagged_writepages = 1;
4177
4178 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4179 tag = PAGECACHE_TAG_TOWRITE;
4180 else
4181 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4182retry:
3cd24c69 4183 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4184 tag_pages_for_writeback(mapping, index, end);
a9132667 4185 done_index = index;
f85d7d6c 4186 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4187 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4188 &index, end, tag))) {
d1310b2e
CM
4189 unsigned i;
4190
d1310b2e
CM
4191 for (i = 0; i < nr_pages; i++) {
4192 struct page *page = pvec.pages[i];
4193
f7bddf1e 4194 done_index = page->index + 1;
d1310b2e 4195 /*
b93b0163
MW
4196 * At this point we hold neither the i_pages lock nor
4197 * the page lock: the page may be truncated or
4198 * invalidated (changing page->mapping to NULL),
4199 * or even swizzled back from swapper_space to
4200 * tmpfs file mapping
d1310b2e 4201 */
c8f2f24b 4202 if (!trylock_page(page)) {
f4340622
QW
4203 ret = flush_write_bio(epd);
4204 BUG_ON(ret < 0);
c8f2f24b 4205 lock_page(page);
01d658f2 4206 }
d1310b2e
CM
4207
4208 if (unlikely(page->mapping != mapping)) {
4209 unlock_page(page);
4210 continue;
4211 }
4212
d2c3f4f6 4213 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4214 if (PageWriteback(page)) {
4215 ret = flush_write_bio(epd);
4216 BUG_ON(ret < 0);
4217 }
d1310b2e 4218 wait_on_page_writeback(page);
d2c3f4f6 4219 }
d1310b2e
CM
4220
4221 if (PageWriteback(page) ||
4222 !clear_page_dirty_for_io(page)) {
4223 unlock_page(page);
4224 continue;
4225 }
4226
aab6e9ed 4227 ret = __extent_writepage(page, wbc, epd);
a9132667 4228 if (ret < 0) {
a9132667
LB
4229 done = 1;
4230 break;
4231 }
f85d7d6c
CM
4232
4233 /*
4234 * the filesystem may choose to bump up nr_to_write.
4235 * We have to make sure to honor the new nr_to_write
4236 * at any time
4237 */
4238 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4239 }
4240 pagevec_release(&pvec);
4241 cond_resched();
4242 }
894b36e3 4243 if (!scanned && !done) {
d1310b2e
CM
4244 /*
4245 * We hit the last page and there is more work to be done: wrap
4246 * back to the start of the file
4247 */
4248 scanned = 1;
4249 index = 0;
42ffb0bf
JB
4250
4251 /*
4252 * If we're looping we could run into a page that is locked by a
4253 * writer and that writer could be waiting on writeback for a
4254 * page in our current bio, and thus deadlock, so flush the
4255 * write bio here.
4256 */
4257 ret = flush_write_bio(epd);
4258 if (!ret)
4259 goto retry;
d1310b2e 4260 }
a9132667
LB
4261
4262 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4263 mapping->writeback_index = done_index;
4264
7fd1a3f7 4265 btrfs_add_delayed_iput(inode);
894b36e3 4266 return ret;
d1310b2e 4267}
d1310b2e 4268
0a9b0e53 4269int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4270{
4271 int ret;
d1310b2e
CM
4272 struct extent_page_data epd = {
4273 .bio = NULL,
771ed689 4274 .extent_locked = 0,
ffbd517d 4275 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4276 };
d1310b2e 4277
d1310b2e 4278 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4279 ASSERT(ret <= 0);
4280 if (ret < 0) {
4281 end_write_bio(&epd, ret);
4282 return ret;
4283 }
d1310b2e 4284
3065976b
QW
4285 ret = flush_write_bio(&epd);
4286 ASSERT(ret <= 0);
d1310b2e
CM
4287 return ret;
4288}
d1310b2e 4289
5e3ee236 4290int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4291 int mode)
4292{
4293 int ret = 0;
4294 struct address_space *mapping = inode->i_mapping;
4295 struct page *page;
09cbfeaf
KS
4296 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4297 PAGE_SHIFT;
771ed689
CM
4298
4299 struct extent_page_data epd = {
4300 .bio = NULL,
771ed689 4301 .extent_locked = 1,
ffbd517d 4302 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4303 };
4304 struct writeback_control wbc_writepages = {
771ed689 4305 .sync_mode = mode,
771ed689
CM
4306 .nr_to_write = nr_pages * 2,
4307 .range_start = start,
4308 .range_end = end + 1,
ec39f769
CM
4309 /* We're called from an async helper function */
4310 .punt_to_cgroup = 1,
4311 .no_cgroup_owner = 1,
771ed689
CM
4312 };
4313
dbb70bec 4314 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4315 while (start <= end) {
09cbfeaf 4316 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4317 if (clear_page_dirty_for_io(page))
4318 ret = __extent_writepage(page, &wbc_writepages, &epd);
4319 else {
7087a9d8 4320 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4321 start + PAGE_SIZE - 1, 1);
771ed689
CM
4322 unlock_page(page);
4323 }
09cbfeaf
KS
4324 put_page(page);
4325 start += PAGE_SIZE;
771ed689
CM
4326 }
4327
02c6db4f 4328 ASSERT(ret <= 0);
dbb70bec
CM
4329 if (ret == 0)
4330 ret = flush_write_bio(&epd);
4331 else
02c6db4f 4332 end_write_bio(&epd, ret);
dbb70bec
CM
4333
4334 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4335 return ret;
4336}
d1310b2e 4337
8ae225a8 4338int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4339 struct writeback_control *wbc)
4340{
4341 int ret = 0;
4342 struct extent_page_data epd = {
4343 .bio = NULL,
771ed689 4344 .extent_locked = 0,
ffbd517d 4345 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4346 };
4347
935db853 4348 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4349 ASSERT(ret <= 0);
4350 if (ret < 0) {
4351 end_write_bio(&epd, ret);
4352 return ret;
4353 }
4354 ret = flush_write_bio(&epd);
d1310b2e
CM
4355 return ret;
4356}
d1310b2e 4357
ba206a02 4358void extent_readahead(struct readahead_control *rac)
d1310b2e
CM
4359{
4360 struct bio *bio = NULL;
c8b97818 4361 unsigned long bio_flags = 0;
67c9684f 4362 struct page *pagepool[16];
125bac01 4363 struct extent_map *em_cached = NULL;
808f80b4 4364 u64 prev_em_start = (u64)-1;
ba206a02 4365 int nr;
d1310b2e 4366
ba206a02
MWO
4367 while ((nr = readahead_page_batch(rac, pagepool))) {
4368 u64 contig_start = page_offset(pagepool[0]);
4369 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
e65ef21e 4370
ba206a02 4371 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
e65ef21e 4372
ba206a02
MWO
4373 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4374 &em_cached, &bio, &bio_flags, &prev_em_start);
d1310b2e 4375 }
67c9684f 4376
125bac01
MX
4377 if (em_cached)
4378 free_extent_map(em_cached);
4379
ba206a02
MWO
4380 if (bio) {
4381 if (submit_one_bio(bio, 0, bio_flags))
4382 return;
4383 }
d1310b2e 4384}
d1310b2e
CM
4385
4386/*
4387 * basic invalidatepage code, this waits on any locked or writeback
4388 * ranges corresponding to the page, and then deletes any extent state
4389 * records from the tree
4390 */
4391int extent_invalidatepage(struct extent_io_tree *tree,
4392 struct page *page, unsigned long offset)
4393{
2ac55d41 4394 struct extent_state *cached_state = NULL;
4eee4fa4 4395 u64 start = page_offset(page);
09cbfeaf 4396 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4397 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4398
fda2832f 4399 start += ALIGN(offset, blocksize);
d1310b2e
CM
4400 if (start > end)
4401 return 0;
4402
ff13db41 4403 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4404 wait_on_page_writeback(page);
e182163d
OS
4405 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4406 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4407 return 0;
4408}
d1310b2e 4409
7b13b7b1
CM
4410/*
4411 * a helper for releasepage, this tests for areas of the page that
4412 * are locked or under IO and drops the related state bits if it is safe
4413 * to drop the page.
4414 */
29c68b2d 4415static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4416 struct page *page, gfp_t mask)
7b13b7b1 4417{
4eee4fa4 4418 u64 start = page_offset(page);
09cbfeaf 4419 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4420 int ret = 1;
4421
8882679e 4422 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4423 ret = 0;
8882679e 4424 } else {
11ef160f
CM
4425 /*
4426 * at this point we can safely clear everything except the
4427 * locked bit and the nodatasum bit
4428 */
66b0c887 4429 ret = __clear_extent_bit(tree, start, end,
11ef160f 4430 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4431 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4432
4433 /* if clear_extent_bit failed for enomem reasons,
4434 * we can't allow the release to continue.
4435 */
4436 if (ret < 0)
4437 ret = 0;
4438 else
4439 ret = 1;
7b13b7b1
CM
4440 }
4441 return ret;
4442}
7b13b7b1 4443
d1310b2e
CM
4444/*
4445 * a helper for releasepage. As long as there are no locked extents
4446 * in the range corresponding to the page, both state records and extent
4447 * map records are removed
4448 */
477a30ba 4449int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4450{
4451 struct extent_map *em;
4eee4fa4 4452 u64 start = page_offset(page);
09cbfeaf 4453 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4454 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4455 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4456 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4457
d0164adc 4458 if (gfpflags_allow_blocking(mask) &&
ee22184b 4459 page->mapping->host->i_size > SZ_16M) {
39b5637f 4460 u64 len;
70dec807 4461 while (start <= end) {
fbc2bd7e
FM
4462 struct btrfs_fs_info *fs_info;
4463 u64 cur_gen;
4464
39b5637f 4465 len = end - start + 1;
890871be 4466 write_lock(&map->lock);
39b5637f 4467 em = lookup_extent_mapping(map, start, len);
285190d9 4468 if (!em) {
890871be 4469 write_unlock(&map->lock);
70dec807
CM
4470 break;
4471 }
7f3c74fb
CM
4472 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4473 em->start != start) {
890871be 4474 write_unlock(&map->lock);
70dec807
CM
4475 free_extent_map(em);
4476 break;
4477 }
3d6448e6
FM
4478 if (test_range_bit(tree, em->start,
4479 extent_map_end(em) - 1,
4480 EXTENT_LOCKED, 0, NULL))
4481 goto next;
4482 /*
4483 * If it's not in the list of modified extents, used
4484 * by a fast fsync, we can remove it. If it's being
4485 * logged we can safely remove it since fsync took an
4486 * extra reference on the em.
4487 */
4488 if (list_empty(&em->list) ||
fbc2bd7e
FM
4489 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4490 goto remove_em;
4491 /*
4492 * If it's in the list of modified extents, remove it
4493 * only if its generation is older then the current one,
4494 * in which case we don't need it for a fast fsync.
4495 * Otherwise don't remove it, we could be racing with an
4496 * ongoing fast fsync that could miss the new extent.
4497 */
4498 fs_info = btrfs_inode->root->fs_info;
4499 spin_lock(&fs_info->trans_lock);
4500 cur_gen = fs_info->generation;
4501 spin_unlock(&fs_info->trans_lock);
4502 if (em->generation >= cur_gen)
4503 goto next;
4504remove_em:
5e548b32
FM
4505 /*
4506 * We only remove extent maps that are not in the list of
4507 * modified extents or that are in the list but with a
4508 * generation lower then the current generation, so there
4509 * is no need to set the full fsync flag on the inode (it
4510 * hurts the fsync performance for workloads with a data
4511 * size that exceeds or is close to the system's memory).
4512 */
fbc2bd7e
FM
4513 remove_extent_mapping(map, em);
4514 /* once for the rb tree */
4515 free_extent_map(em);
3d6448e6 4516next:
70dec807 4517 start = extent_map_end(em);
890871be 4518 write_unlock(&map->lock);
70dec807
CM
4519
4520 /* once for us */
d1310b2e 4521 free_extent_map(em);
9f47eb54
PM
4522
4523 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 4524 }
d1310b2e 4525 }
29c68b2d 4526 return try_release_extent_state(tree, page, mask);
d1310b2e 4527}
d1310b2e 4528
ec29ed5b
CM
4529/*
4530 * helper function for fiemap, which doesn't want to see any holes.
4531 * This maps until we find something past 'last'
4532 */
f1bbde8d 4533static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
e3350e16 4534 u64 offset, u64 last)
ec29ed5b 4535{
f1bbde8d 4536 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4537 struct extent_map *em;
4538 u64 len;
4539
4540 if (offset >= last)
4541 return NULL;
4542
67871254 4543 while (1) {
ec29ed5b
CM
4544 len = last - offset;
4545 if (len == 0)
4546 break;
fda2832f 4547 len = ALIGN(len, sectorsize);
f1bbde8d 4548 em = btrfs_get_extent_fiemap(inode, offset, len);
c704005d 4549 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4550 return em;
4551
4552 /* if this isn't a hole return it */
4a2d25cd 4553 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4554 return em;
ec29ed5b
CM
4555
4556 /* this is a hole, advance to the next extent */
4557 offset = extent_map_end(em);
4558 free_extent_map(em);
4559 if (offset >= last)
4560 break;
4561 }
4562 return NULL;
4563}
4564
4751832d
QW
4565/*
4566 * To cache previous fiemap extent
4567 *
4568 * Will be used for merging fiemap extent
4569 */
4570struct fiemap_cache {
4571 u64 offset;
4572 u64 phys;
4573 u64 len;
4574 u32 flags;
4575 bool cached;
4576};
4577
4578/*
4579 * Helper to submit fiemap extent.
4580 *
4581 * Will try to merge current fiemap extent specified by @offset, @phys,
4582 * @len and @flags with cached one.
4583 * And only when we fails to merge, cached one will be submitted as
4584 * fiemap extent.
4585 *
4586 * Return value is the same as fiemap_fill_next_extent().
4587 */
4588static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4589 struct fiemap_cache *cache,
4590 u64 offset, u64 phys, u64 len, u32 flags)
4591{
4592 int ret = 0;
4593
4594 if (!cache->cached)
4595 goto assign;
4596
4597 /*
4598 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4599 * fiemap extent won't overlap with cached one.
4751832d
QW
4600 * Not recoverable.
4601 *
4602 * NOTE: Physical address can overlap, due to compression
4603 */
4604 if (cache->offset + cache->len > offset) {
4605 WARN_ON(1);
4606 return -EINVAL;
4607 }
4608
4609 /*
4610 * Only merges fiemap extents if
4611 * 1) Their logical addresses are continuous
4612 *
4613 * 2) Their physical addresses are continuous
4614 * So truly compressed (physical size smaller than logical size)
4615 * extents won't get merged with each other
4616 *
4617 * 3) Share same flags except FIEMAP_EXTENT_LAST
4618 * So regular extent won't get merged with prealloc extent
4619 */
4620 if (cache->offset + cache->len == offset &&
4621 cache->phys + cache->len == phys &&
4622 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4623 (flags & ~FIEMAP_EXTENT_LAST)) {
4624 cache->len += len;
4625 cache->flags |= flags;
4626 goto try_submit_last;
4627 }
4628
4629 /* Not mergeable, need to submit cached one */
4630 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4631 cache->len, cache->flags);
4632 cache->cached = false;
4633 if (ret)
4634 return ret;
4635assign:
4636 cache->cached = true;
4637 cache->offset = offset;
4638 cache->phys = phys;
4639 cache->len = len;
4640 cache->flags = flags;
4641try_submit_last:
4642 if (cache->flags & FIEMAP_EXTENT_LAST) {
4643 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4644 cache->phys, cache->len, cache->flags);
4645 cache->cached = false;
4646 }
4647 return ret;
4648}
4649
4650/*
848c23b7 4651 * Emit last fiemap cache
4751832d 4652 *
848c23b7
QW
4653 * The last fiemap cache may still be cached in the following case:
4654 * 0 4k 8k
4655 * |<- Fiemap range ->|
4656 * |<------------ First extent ----------->|
4657 *
4658 * In this case, the first extent range will be cached but not emitted.
4659 * So we must emit it before ending extent_fiemap().
4751832d 4660 */
5c5aff98 4661static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4662 struct fiemap_cache *cache)
4751832d
QW
4663{
4664 int ret;
4665
4666 if (!cache->cached)
4667 return 0;
4668
4751832d
QW
4669 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4670 cache->len, cache->flags);
4671 cache->cached = false;
4672 if (ret > 0)
4673 ret = 0;
4674 return ret;
4675}
4676
facee0a0 4677int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 4678 u64 start, u64 len)
1506fcc8 4679{
975f84fe 4680 int ret = 0;
1506fcc8
YS
4681 u64 off = start;
4682 u64 max = start + len;
4683 u32 flags = 0;
975f84fe
JB
4684 u32 found_type;
4685 u64 last;
ec29ed5b 4686 u64 last_for_get_extent = 0;
1506fcc8 4687 u64 disko = 0;
facee0a0 4688 u64 isize = i_size_read(&inode->vfs_inode);
975f84fe 4689 struct btrfs_key found_key;
1506fcc8 4690 struct extent_map *em = NULL;
2ac55d41 4691 struct extent_state *cached_state = NULL;
975f84fe 4692 struct btrfs_path *path;
facee0a0 4693 struct btrfs_root *root = inode->root;
4751832d 4694 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4695 struct ulist *roots;
4696 struct ulist *tmp_ulist;
1506fcc8 4697 int end = 0;
ec29ed5b
CM
4698 u64 em_start = 0;
4699 u64 em_len = 0;
4700 u64 em_end = 0;
1506fcc8
YS
4701
4702 if (len == 0)
4703 return -EINVAL;
4704
975f84fe
JB
4705 path = btrfs_alloc_path();
4706 if (!path)
4707 return -ENOMEM;
975f84fe 4708
5911c8fe
DS
4709 roots = ulist_alloc(GFP_KERNEL);
4710 tmp_ulist = ulist_alloc(GFP_KERNEL);
4711 if (!roots || !tmp_ulist) {
4712 ret = -ENOMEM;
4713 goto out_free_ulist;
4714 }
4715
facee0a0
NB
4716 start = round_down(start, btrfs_inode_sectorsize(inode));
4717 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4718
ec29ed5b
CM
4719 /*
4720 * lookup the last file extent. We're not using i_size here
4721 * because there might be preallocation past i_size
4722 */
facee0a0
NB
4723 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4724 0);
975f84fe 4725 if (ret < 0) {
5911c8fe 4726 goto out_free_ulist;
2d324f59
LB
4727 } else {
4728 WARN_ON(!ret);
4729 if (ret == 1)
4730 ret = 0;
975f84fe 4731 }
2d324f59 4732
975f84fe 4733 path->slots[0]--;
975f84fe 4734 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4735 found_type = found_key.type;
975f84fe 4736
ec29ed5b 4737 /* No extents, but there might be delalloc bits */
facee0a0 4738 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4739 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4740 /* have to trust i_size as the end */
4741 last = (u64)-1;
4742 last_for_get_extent = isize;
4743 } else {
4744 /*
4745 * remember the start of the last extent. There are a
4746 * bunch of different factors that go into the length of the
4747 * extent, so its much less complex to remember where it started
4748 */
4749 last = found_key.offset;
4750 last_for_get_extent = last + 1;
975f84fe 4751 }
fe09e16c 4752 btrfs_release_path(path);
975f84fe 4753
ec29ed5b
CM
4754 /*
4755 * we might have some extents allocated but more delalloc past those
4756 * extents. so, we trust isize unless the start of the last extent is
4757 * beyond isize
4758 */
4759 if (last < isize) {
4760 last = (u64)-1;
4761 last_for_get_extent = isize;
4762 }
4763
facee0a0 4764 lock_extent_bits(&inode->io_tree, start, start + len - 1,
d0082371 4765 &cached_state);
ec29ed5b 4766
facee0a0 4767 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4768 if (!em)
4769 goto out;
4770 if (IS_ERR(em)) {
4771 ret = PTR_ERR(em);
4772 goto out;
4773 }
975f84fe 4774
1506fcc8 4775 while (!end) {
b76bb701 4776 u64 offset_in_extent = 0;
ea8efc74
CM
4777
4778 /* break if the extent we found is outside the range */
4779 if (em->start >= max || extent_map_end(em) < off)
4780 break;
4781
4782 /*
4783 * get_extent may return an extent that starts before our
4784 * requested range. We have to make sure the ranges
4785 * we return to fiemap always move forward and don't
4786 * overlap, so adjust the offsets here
4787 */
4788 em_start = max(em->start, off);
1506fcc8 4789
ea8efc74
CM
4790 /*
4791 * record the offset from the start of the extent
b76bb701
JB
4792 * for adjusting the disk offset below. Only do this if the
4793 * extent isn't compressed since our in ram offset may be past
4794 * what we have actually allocated on disk.
ea8efc74 4795 */
b76bb701
JB
4796 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4797 offset_in_extent = em_start - em->start;
ec29ed5b 4798 em_end = extent_map_end(em);
ea8efc74 4799 em_len = em_end - em_start;
1506fcc8 4800 flags = 0;
f0986318
FM
4801 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4802 disko = em->block_start + offset_in_extent;
4803 else
4804 disko = 0;
1506fcc8 4805
ea8efc74
CM
4806 /*
4807 * bump off for our next call to get_extent
4808 */
4809 off = extent_map_end(em);
4810 if (off >= max)
4811 end = 1;
4812
93dbfad7 4813 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4814 end = 1;
4815 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4816 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4817 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4818 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4819 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4820 flags |= (FIEMAP_EXTENT_DELALLOC |
4821 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4822 } else if (fieinfo->fi_extents_max) {
4823 u64 bytenr = em->block_start -
4824 (em->start - em->orig_start);
fe09e16c 4825
fe09e16c
LB
4826 /*
4827 * As btrfs supports shared space, this information
4828 * can be exported to userspace tools via
dc046b10
JB
4829 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4830 * then we're just getting a count and we can skip the
4831 * lookup stuff.
fe09e16c 4832 */
facee0a0 4833 ret = btrfs_check_shared(root, btrfs_ino(inode),
5911c8fe 4834 bytenr, roots, tmp_ulist);
dc046b10 4835 if (ret < 0)
fe09e16c 4836 goto out_free;
dc046b10 4837 if (ret)
fe09e16c 4838 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4839 ret = 0;
1506fcc8
YS
4840 }
4841 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4842 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4843 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4844 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4845
1506fcc8
YS
4846 free_extent_map(em);
4847 em = NULL;
ec29ed5b
CM
4848 if ((em_start >= last) || em_len == (u64)-1 ||
4849 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4850 flags |= FIEMAP_EXTENT_LAST;
4851 end = 1;
4852 }
4853
ec29ed5b 4854 /* now scan forward to see if this is really the last extent. */
facee0a0 4855 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4856 if (IS_ERR(em)) {
4857 ret = PTR_ERR(em);
4858 goto out;
4859 }
4860 if (!em) {
975f84fe
JB
4861 flags |= FIEMAP_EXTENT_LAST;
4862 end = 1;
4863 }
4751832d
QW
4864 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4865 em_len, flags);
26e726af
CS
4866 if (ret) {
4867 if (ret == 1)
4868 ret = 0;
ec29ed5b 4869 goto out_free;
26e726af 4870 }
1506fcc8
YS
4871 }
4872out_free:
4751832d 4873 if (!ret)
5c5aff98 4874 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4875 free_extent_map(em);
4876out:
facee0a0 4877 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
e43bbe5e 4878 &cached_state);
5911c8fe
DS
4879
4880out_free_ulist:
e02d48ea 4881 btrfs_free_path(path);
5911c8fe
DS
4882 ulist_free(roots);
4883 ulist_free(tmp_ulist);
1506fcc8
YS
4884 return ret;
4885}
4886
727011e0
CM
4887static void __free_extent_buffer(struct extent_buffer *eb)
4888{
727011e0
CM
4889 kmem_cache_free(extent_buffer_cache, eb);
4890}
4891
2b48966a 4892int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
4893{
4894 return (atomic_read(&eb->io_pages) ||
4895 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4896 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4897}
4898
4899/*
55ac0139 4900 * Release all pages attached to the extent buffer.
db7f3436 4901 */
55ac0139 4902static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4903{
d64766fd
NB
4904 int i;
4905 int num_pages;
b0132a3b 4906 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4907
4908 BUG_ON(extent_buffer_under_io(eb));
4909
d64766fd
NB
4910 num_pages = num_extent_pages(eb);
4911 for (i = 0; i < num_pages; i++) {
4912 struct page *page = eb->pages[i];
db7f3436 4913
5d2361db
FL
4914 if (!page)
4915 continue;
4916 if (mapped)
db7f3436 4917 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4918 /*
4919 * We do this since we'll remove the pages after we've
4920 * removed the eb from the radix tree, so we could race
4921 * and have this page now attached to the new eb. So
4922 * only clear page_private if it's still connected to
4923 * this eb.
4924 */
4925 if (PagePrivate(page) &&
4926 page->private == (unsigned long)eb) {
4927 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4928 BUG_ON(PageDirty(page));
4929 BUG_ON(PageWriteback(page));
db7f3436 4930 /*
5d2361db
FL
4931 * We need to make sure we haven't be attached
4932 * to a new eb.
db7f3436 4933 */
d1b89bc0 4934 detach_page_private(page);
db7f3436 4935 }
5d2361db
FL
4936
4937 if (mapped)
4938 spin_unlock(&page->mapping->private_lock);
4939
01327610 4940 /* One for when we allocated the page */
09cbfeaf 4941 put_page(page);
d64766fd 4942 }
db7f3436
JB
4943}
4944
4945/*
4946 * Helper for releasing the extent buffer.
4947 */
4948static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4949{
55ac0139 4950 btrfs_release_extent_buffer_pages(eb);
8c38938c 4951 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
4952 __free_extent_buffer(eb);
4953}
4954
f28491e0
JB
4955static struct extent_buffer *
4956__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4957 unsigned long len)
d1310b2e
CM
4958{
4959 struct extent_buffer *eb = NULL;
4960
d1b5c567 4961 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4962 eb->start = start;
4963 eb->len = len;
f28491e0 4964 eb->fs_info = fs_info;
815a51c7 4965 eb->bflags = 0;
196d59ab 4966 init_rwsem(&eb->lock);
329ced79 4967 eb->lock_recursed = false;
b4ce94de 4968
3fd63727
JB
4969 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4970 &fs_info->allocated_ebs);
6d49ba1b 4971
3083ee2e 4972 spin_lock_init(&eb->refs_lock);
d1310b2e 4973 atomic_set(&eb->refs, 1);
0b32f4bb 4974 atomic_set(&eb->io_pages, 0);
727011e0 4975
b8dae313
DS
4976 /*
4977 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4978 */
4979 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4980 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4981 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4982
4983 return eb;
4984}
4985
2b48966a 4986struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 4987{
cc5e31a4 4988 int i;
815a51c7
JS
4989 struct page *p;
4990 struct extent_buffer *new;
cc5e31a4 4991 int num_pages = num_extent_pages(src);
815a51c7 4992
3f556f78 4993 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4994 if (new == NULL)
4995 return NULL;
4996
4997 for (i = 0; i < num_pages; i++) {
9ec72677 4998 p = alloc_page(GFP_NOFS);
db7f3436
JB
4999 if (!p) {
5000 btrfs_release_extent_buffer(new);
5001 return NULL;
5002 }
815a51c7
JS
5003 attach_extent_buffer_page(new, p);
5004 WARN_ON(PageDirty(p));
5005 SetPageUptodate(p);
5006 new->pages[i] = p;
fba1acf9 5007 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
5008 }
5009
815a51c7 5010 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 5011 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
5012
5013 return new;
5014}
5015
0f331229
OS
5016struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5017 u64 start, unsigned long len)
815a51c7
JS
5018{
5019 struct extent_buffer *eb;
cc5e31a4
DS
5020 int num_pages;
5021 int i;
815a51c7 5022
3f556f78 5023 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5024 if (!eb)
5025 return NULL;
5026
65ad0104 5027 num_pages = num_extent_pages(eb);
815a51c7 5028 for (i = 0; i < num_pages; i++) {
9ec72677 5029 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5030 if (!eb->pages[i])
5031 goto err;
5032 }
5033 set_extent_buffer_uptodate(eb);
5034 btrfs_set_header_nritems(eb, 0);
b0132a3b 5035 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5036
5037 return eb;
5038err:
84167d19
SB
5039 for (; i > 0; i--)
5040 __free_page(eb->pages[i - 1]);
815a51c7
JS
5041 __free_extent_buffer(eb);
5042 return NULL;
5043}
5044
0f331229 5045struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5046 u64 start)
0f331229 5047{
da17066c 5048 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5049}
5050
0b32f4bb
JB
5051static void check_buffer_tree_ref(struct extent_buffer *eb)
5052{
242e18c7 5053 int refs;
6bf9cd2e
BB
5054 /*
5055 * The TREE_REF bit is first set when the extent_buffer is added
5056 * to the radix tree. It is also reset, if unset, when a new reference
5057 * is created by find_extent_buffer.
0b32f4bb 5058 *
6bf9cd2e
BB
5059 * It is only cleared in two cases: freeing the last non-tree
5060 * reference to the extent_buffer when its STALE bit is set or
5061 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5062 *
6bf9cd2e
BB
5063 * In both cases, care is taken to ensure that the extent_buffer's
5064 * pages are not under io. However, releasepage can be concurrently
5065 * called with creating new references, which is prone to race
5066 * conditions between the calls to check_buffer_tree_ref in those
5067 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5068 *
6bf9cd2e
BB
5069 * The actual lifetime of the extent_buffer in the radix tree is
5070 * adequately protected by the refcount, but the TREE_REF bit and
5071 * its corresponding reference are not. To protect against this
5072 * class of races, we call check_buffer_tree_ref from the codepaths
5073 * which trigger io after they set eb->io_pages. Note that once io is
5074 * initiated, TREE_REF can no longer be cleared, so that is the
5075 * moment at which any such race is best fixed.
0b32f4bb 5076 */
242e18c7
CM
5077 refs = atomic_read(&eb->refs);
5078 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5079 return;
5080
594831c4
JB
5081 spin_lock(&eb->refs_lock);
5082 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5083 atomic_inc(&eb->refs);
594831c4 5084 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5085}
5086
2457aec6
MG
5087static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5088 struct page *accessed)
5df4235e 5089{
cc5e31a4 5090 int num_pages, i;
5df4235e 5091
0b32f4bb
JB
5092 check_buffer_tree_ref(eb);
5093
65ad0104 5094 num_pages = num_extent_pages(eb);
5df4235e 5095 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5096 struct page *p = eb->pages[i];
5097
2457aec6
MG
5098 if (p != accessed)
5099 mark_page_accessed(p);
5df4235e
JB
5100 }
5101}
5102
f28491e0
JB
5103struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5104 u64 start)
452c75c3
CS
5105{
5106 struct extent_buffer *eb;
5107
5108 rcu_read_lock();
f28491e0 5109 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5110 start >> PAGE_SHIFT);
452c75c3
CS
5111 if (eb && atomic_inc_not_zero(&eb->refs)) {
5112 rcu_read_unlock();
062c19e9
FM
5113 /*
5114 * Lock our eb's refs_lock to avoid races with
5115 * free_extent_buffer. When we get our eb it might be flagged
5116 * with EXTENT_BUFFER_STALE and another task running
5117 * free_extent_buffer might have seen that flag set,
5118 * eb->refs == 2, that the buffer isn't under IO (dirty and
5119 * writeback flags not set) and it's still in the tree (flag
5120 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5121 * of decrementing the extent buffer's reference count twice.
5122 * So here we could race and increment the eb's reference count,
5123 * clear its stale flag, mark it as dirty and drop our reference
5124 * before the other task finishes executing free_extent_buffer,
5125 * which would later result in an attempt to free an extent
5126 * buffer that is dirty.
5127 */
5128 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5129 spin_lock(&eb->refs_lock);
5130 spin_unlock(&eb->refs_lock);
5131 }
2457aec6 5132 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5133 return eb;
5134 }
5135 rcu_read_unlock();
5136
5137 return NULL;
5138}
5139
faa2dbf0
JB
5140#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5141struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5142 u64 start)
faa2dbf0
JB
5143{
5144 struct extent_buffer *eb, *exists = NULL;
5145 int ret;
5146
5147 eb = find_extent_buffer(fs_info, start);
5148 if (eb)
5149 return eb;
da17066c 5150 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 5151 if (!eb)
b6293c82 5152 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
5153 eb->fs_info = fs_info;
5154again:
e1860a77 5155 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
5156 if (ret) {
5157 exists = ERR_PTR(ret);
faa2dbf0 5158 goto free_eb;
b6293c82 5159 }
faa2dbf0
JB
5160 spin_lock(&fs_info->buffer_lock);
5161 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5162 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5163 spin_unlock(&fs_info->buffer_lock);
5164 radix_tree_preload_end();
5165 if (ret == -EEXIST) {
5166 exists = find_extent_buffer(fs_info, start);
5167 if (exists)
5168 goto free_eb;
5169 else
5170 goto again;
5171 }
5172 check_buffer_tree_ref(eb);
5173 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5174
faa2dbf0
JB
5175 return eb;
5176free_eb:
5177 btrfs_release_extent_buffer(eb);
5178 return exists;
5179}
5180#endif
5181
f28491e0 5182struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5183 u64 start)
d1310b2e 5184{
da17066c 5185 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5186 int num_pages;
5187 int i;
09cbfeaf 5188 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5189 struct extent_buffer *eb;
6af118ce 5190 struct extent_buffer *exists = NULL;
d1310b2e 5191 struct page *p;
f28491e0 5192 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5193 int uptodate = 1;
19fe0a8b 5194 int ret;
d1310b2e 5195
da17066c 5196 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5197 btrfs_err(fs_info, "bad tree block start %llu", start);
5198 return ERR_PTR(-EINVAL);
5199 }
5200
f28491e0 5201 eb = find_extent_buffer(fs_info, start);
452c75c3 5202 if (eb)
6af118ce 5203 return eb;
6af118ce 5204
23d79d81 5205 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5206 if (!eb)
c871b0f2 5207 return ERR_PTR(-ENOMEM);
d1310b2e 5208
65ad0104 5209 num_pages = num_extent_pages(eb);
727011e0 5210 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5211 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5212 if (!p) {
5213 exists = ERR_PTR(-ENOMEM);
6af118ce 5214 goto free_eb;
c871b0f2 5215 }
4f2de97a
JB
5216
5217 spin_lock(&mapping->private_lock);
5218 if (PagePrivate(p)) {
5219 /*
5220 * We could have already allocated an eb for this page
5221 * and attached one so lets see if we can get a ref on
5222 * the existing eb, and if we can we know it's good and
5223 * we can just return that one, else we know we can just
5224 * overwrite page->private.
5225 */
5226 exists = (struct extent_buffer *)p->private;
5227 if (atomic_inc_not_zero(&exists->refs)) {
5228 spin_unlock(&mapping->private_lock);
5229 unlock_page(p);
09cbfeaf 5230 put_page(p);
2457aec6 5231 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5232 goto free_eb;
5233 }
5ca64f45 5234 exists = NULL;
4f2de97a 5235
0b32f4bb 5236 /*
4f2de97a
JB
5237 * Do this so attach doesn't complain and we need to
5238 * drop the ref the old guy had.
5239 */
5240 ClearPagePrivate(p);
0b32f4bb 5241 WARN_ON(PageDirty(p));
09cbfeaf 5242 put_page(p);
d1310b2e 5243 }
4f2de97a
JB
5244 attach_extent_buffer_page(eb, p);
5245 spin_unlock(&mapping->private_lock);
0b32f4bb 5246 WARN_ON(PageDirty(p));
727011e0 5247 eb->pages[i] = p;
d1310b2e
CM
5248 if (!PageUptodate(p))
5249 uptodate = 0;
eb14ab8e
CM
5250
5251 /*
b16d011e
NB
5252 * We can't unlock the pages just yet since the extent buffer
5253 * hasn't been properly inserted in the radix tree, this
5254 * opens a race with btree_releasepage which can free a page
5255 * while we are still filling in all pages for the buffer and
5256 * we could crash.
eb14ab8e 5257 */
d1310b2e
CM
5258 }
5259 if (uptodate)
b4ce94de 5260 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5261again:
e1860a77 5262 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5263 if (ret) {
5264 exists = ERR_PTR(ret);
19fe0a8b 5265 goto free_eb;
c871b0f2 5266 }
19fe0a8b 5267
f28491e0
JB
5268 spin_lock(&fs_info->buffer_lock);
5269 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5270 start >> PAGE_SHIFT, eb);
f28491e0 5271 spin_unlock(&fs_info->buffer_lock);
452c75c3 5272 radix_tree_preload_end();
19fe0a8b 5273 if (ret == -EEXIST) {
f28491e0 5274 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5275 if (exists)
5276 goto free_eb;
5277 else
115391d2 5278 goto again;
6af118ce 5279 }
6af118ce 5280 /* add one reference for the tree */
0b32f4bb 5281 check_buffer_tree_ref(eb);
34b41ace 5282 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5283
5284 /*
b16d011e
NB
5285 * Now it's safe to unlock the pages because any calls to
5286 * btree_releasepage will correctly detect that a page belongs to a
5287 * live buffer and won't free them prematurely.
eb14ab8e 5288 */
28187ae5
NB
5289 for (i = 0; i < num_pages; i++)
5290 unlock_page(eb->pages[i]);
d1310b2e
CM
5291 return eb;
5292
6af118ce 5293free_eb:
5ca64f45 5294 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5295 for (i = 0; i < num_pages; i++) {
5296 if (eb->pages[i])
5297 unlock_page(eb->pages[i]);
5298 }
eb14ab8e 5299
897ca6e9 5300 btrfs_release_extent_buffer(eb);
6af118ce 5301 return exists;
d1310b2e 5302}
d1310b2e 5303
3083ee2e
JB
5304static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5305{
5306 struct extent_buffer *eb =
5307 container_of(head, struct extent_buffer, rcu_head);
5308
5309 __free_extent_buffer(eb);
5310}
5311
f7a52a40 5312static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 5313 __releases(&eb->refs_lock)
3083ee2e 5314{
07e21c4d
NB
5315 lockdep_assert_held(&eb->refs_lock);
5316
3083ee2e
JB
5317 WARN_ON(atomic_read(&eb->refs) == 0);
5318 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5319 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5320 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5321
815a51c7 5322 spin_unlock(&eb->refs_lock);
3083ee2e 5323
f28491e0
JB
5324 spin_lock(&fs_info->buffer_lock);
5325 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5326 eb->start >> PAGE_SHIFT);
f28491e0 5327 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5328 } else {
5329 spin_unlock(&eb->refs_lock);
815a51c7 5330 }
3083ee2e 5331
8c38938c 5332 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 5333 /* Should be safe to release our pages at this point */
55ac0139 5334 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5335#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5336 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5337 __free_extent_buffer(eb);
5338 return 1;
5339 }
5340#endif
3083ee2e 5341 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5342 return 1;
3083ee2e
JB
5343 }
5344 spin_unlock(&eb->refs_lock);
e64860aa
JB
5345
5346 return 0;
3083ee2e
JB
5347}
5348
d1310b2e
CM
5349void free_extent_buffer(struct extent_buffer *eb)
5350{
242e18c7
CM
5351 int refs;
5352 int old;
d1310b2e
CM
5353 if (!eb)
5354 return;
5355
242e18c7
CM
5356 while (1) {
5357 refs = atomic_read(&eb->refs);
46cc775e
NB
5358 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5359 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5360 refs == 1))
242e18c7
CM
5361 break;
5362 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5363 if (old == refs)
5364 return;
5365 }
5366
3083ee2e
JB
5367 spin_lock(&eb->refs_lock);
5368 if (atomic_read(&eb->refs) == 2 &&
5369 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5370 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5371 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5372 atomic_dec(&eb->refs);
5373
5374 /*
5375 * I know this is terrible, but it's temporary until we stop tracking
5376 * the uptodate bits and such for the extent buffers.
5377 */
f7a52a40 5378 release_extent_buffer(eb);
3083ee2e
JB
5379}
5380
5381void free_extent_buffer_stale(struct extent_buffer *eb)
5382{
5383 if (!eb)
d1310b2e
CM
5384 return;
5385
3083ee2e
JB
5386 spin_lock(&eb->refs_lock);
5387 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5388
0b32f4bb 5389 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5390 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5391 atomic_dec(&eb->refs);
f7a52a40 5392 release_extent_buffer(eb);
d1310b2e 5393}
d1310b2e 5394
2b48966a 5395void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 5396{
cc5e31a4
DS
5397 int i;
5398 int num_pages;
d1310b2e
CM
5399 struct page *page;
5400
65ad0104 5401 num_pages = num_extent_pages(eb);
d1310b2e
CM
5402
5403 for (i = 0; i < num_pages; i++) {
fb85fc9a 5404 page = eb->pages[i];
b9473439 5405 if (!PageDirty(page))
d2c3f4f6
CM
5406 continue;
5407
a61e6f29 5408 lock_page(page);
eb14ab8e
CM
5409 WARN_ON(!PagePrivate(page));
5410
d1310b2e 5411 clear_page_dirty_for_io(page);
b93b0163 5412 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5413 if (!PageDirty(page))
5414 __xa_clear_mark(&page->mapping->i_pages,
5415 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5416 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5417 ClearPageError(page);
a61e6f29 5418 unlock_page(page);
d1310b2e 5419 }
0b32f4bb 5420 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5421}
d1310b2e 5422
abb57ef3 5423bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5424{
cc5e31a4
DS
5425 int i;
5426 int num_pages;
abb57ef3 5427 bool was_dirty;
d1310b2e 5428
0b32f4bb
JB
5429 check_buffer_tree_ref(eb);
5430
b9473439 5431 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5432
65ad0104 5433 num_pages = num_extent_pages(eb);
3083ee2e 5434 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5435 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5436
abb57ef3
LB
5437 if (!was_dirty)
5438 for (i = 0; i < num_pages; i++)
5439 set_page_dirty(eb->pages[i]);
51995c39
LB
5440
5441#ifdef CONFIG_BTRFS_DEBUG
5442 for (i = 0; i < num_pages; i++)
5443 ASSERT(PageDirty(eb->pages[i]));
5444#endif
5445
b9473439 5446 return was_dirty;
d1310b2e 5447}
d1310b2e 5448
69ba3927 5449void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5450{
cc5e31a4 5451 int i;
1259ab75 5452 struct page *page;
cc5e31a4 5453 int num_pages;
1259ab75 5454
b4ce94de 5455 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5456 num_pages = num_extent_pages(eb);
1259ab75 5457 for (i = 0; i < num_pages; i++) {
fb85fc9a 5458 page = eb->pages[i];
33958dc6
CM
5459 if (page)
5460 ClearPageUptodate(page);
1259ab75 5461 }
1259ab75
CM
5462}
5463
09c25a8c 5464void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5465{
cc5e31a4 5466 int i;
d1310b2e 5467 struct page *page;
cc5e31a4 5468 int num_pages;
d1310b2e 5469
0b32f4bb 5470 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5471 num_pages = num_extent_pages(eb);
d1310b2e 5472 for (i = 0; i < num_pages; i++) {
fb85fc9a 5473 page = eb->pages[i];
d1310b2e
CM
5474 SetPageUptodate(page);
5475 }
d1310b2e 5476}
d1310b2e 5477
c2ccfbc6 5478int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5479{
cc5e31a4 5480 int i;
d1310b2e
CM
5481 struct page *page;
5482 int err;
5483 int ret = 0;
ce9adaa5
CM
5484 int locked_pages = 0;
5485 int all_uptodate = 1;
cc5e31a4 5486 int num_pages;
727011e0 5487 unsigned long num_reads = 0;
a86c12c7 5488 struct bio *bio = NULL;
c8b97818 5489 unsigned long bio_flags = 0;
a86c12c7 5490
b4ce94de 5491 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5492 return 0;
5493
65ad0104 5494 num_pages = num_extent_pages(eb);
8436ea91 5495 for (i = 0; i < num_pages; i++) {
fb85fc9a 5496 page = eb->pages[i];
bb82ab88 5497 if (wait == WAIT_NONE) {
2db04966 5498 if (!trylock_page(page))
ce9adaa5 5499 goto unlock_exit;
d1310b2e
CM
5500 } else {
5501 lock_page(page);
5502 }
ce9adaa5 5503 locked_pages++;
2571e739
LB
5504 }
5505 /*
5506 * We need to firstly lock all pages to make sure that
5507 * the uptodate bit of our pages won't be affected by
5508 * clear_extent_buffer_uptodate().
5509 */
8436ea91 5510 for (i = 0; i < num_pages; i++) {
2571e739 5511 page = eb->pages[i];
727011e0
CM
5512 if (!PageUptodate(page)) {
5513 num_reads++;
ce9adaa5 5514 all_uptodate = 0;
727011e0 5515 }
ce9adaa5 5516 }
2571e739 5517
ce9adaa5 5518 if (all_uptodate) {
8436ea91 5519 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5520 goto unlock_exit;
5521 }
5522
656f30db 5523 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5524 eb->read_mirror = 0;
0b32f4bb 5525 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
5526 /*
5527 * It is possible for releasepage to clear the TREE_REF bit before we
5528 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5529 */
5530 check_buffer_tree_ref(eb);
8436ea91 5531 for (i = 0; i < num_pages; i++) {
fb85fc9a 5532 page = eb->pages[i];
baf863b9 5533
ce9adaa5 5534 if (!PageUptodate(page)) {
baf863b9
LB
5535 if (ret) {
5536 atomic_dec(&eb->io_pages);
5537 unlock_page(page);
5538 continue;
5539 }
5540
f188591e 5541 ClearPageError(page);
0420177c
NB
5542 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
5543 page, page_offset(page), PAGE_SIZE, 0,
5544 &bio, end_bio_extent_readpage,
5545 mirror_num, 0, 0, false);
baf863b9 5546 if (err) {
baf863b9 5547 /*
0420177c
NB
5548 * We failed to submit the bio so it's the
5549 * caller's responsibility to perform cleanup
5550 * i.e unlock page/set error bit.
baf863b9 5551 */
0420177c
NB
5552 ret = err;
5553 SetPageError(page);
5554 unlock_page(page);
baf863b9
LB
5555 atomic_dec(&eb->io_pages);
5556 }
d1310b2e
CM
5557 } else {
5558 unlock_page(page);
5559 }
5560 }
5561
355808c2 5562 if (bio) {
1f7ad75b 5563 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5564 if (err)
5565 return err;
355808c2 5566 }
a86c12c7 5567
bb82ab88 5568 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5569 return ret;
d397712b 5570
8436ea91 5571 for (i = 0; i < num_pages; i++) {
fb85fc9a 5572 page = eb->pages[i];
d1310b2e 5573 wait_on_page_locked(page);
d397712b 5574 if (!PageUptodate(page))
d1310b2e 5575 ret = -EIO;
d1310b2e 5576 }
d397712b 5577
d1310b2e 5578 return ret;
ce9adaa5
CM
5579
5580unlock_exit:
d397712b 5581 while (locked_pages > 0) {
ce9adaa5 5582 locked_pages--;
8436ea91
JB
5583 page = eb->pages[locked_pages];
5584 unlock_page(page);
ce9adaa5
CM
5585 }
5586 return ret;
d1310b2e 5587}
d1310b2e 5588
f98b6215
QW
5589static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5590 unsigned long len)
5591{
5592 btrfs_warn(eb->fs_info,
5593 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5594 eb->start, eb->len, start, len);
5595 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5596
5597 return true;
5598}
5599
5600/*
5601 * Check if the [start, start + len) range is valid before reading/writing
5602 * the eb.
5603 * NOTE: @start and @len are offset inside the eb, not logical address.
5604 *
5605 * Caller should not touch the dst/src memory if this function returns error.
5606 */
5607static inline int check_eb_range(const struct extent_buffer *eb,
5608 unsigned long start, unsigned long len)
5609{
5610 unsigned long offset;
5611
5612 /* start, start + len should not go beyond eb->len nor overflow */
5613 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5614 return report_eb_range(eb, start, len);
5615
5616 return false;
5617}
5618
1cbb1f45
JM
5619void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5620 unsigned long start, unsigned long len)
d1310b2e
CM
5621{
5622 size_t cur;
5623 size_t offset;
5624 struct page *page;
5625 char *kaddr;
5626 char *dst = (char *)dstv;
c60ac0ff 5627 unsigned long i = start >> PAGE_SHIFT;
d1310b2e 5628
f98b6215 5629 if (check_eb_range(eb, start, len))
f716abd5 5630 return;
d1310b2e 5631
c60ac0ff 5632 offset = offset_in_page(start);
d1310b2e 5633
d397712b 5634 while (len > 0) {
fb85fc9a 5635 page = eb->pages[i];
d1310b2e 5636
09cbfeaf 5637 cur = min(len, (PAGE_SIZE - offset));
a6591715 5638 kaddr = page_address(page);
d1310b2e 5639 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5640
5641 dst += cur;
5642 len -= cur;
5643 offset = 0;
5644 i++;
5645 }
5646}
d1310b2e 5647
a48b73ec
JB
5648int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5649 void __user *dstv,
5650 unsigned long start, unsigned long len)
550ac1d8
GH
5651{
5652 size_t cur;
5653 size_t offset;
5654 struct page *page;
5655 char *kaddr;
5656 char __user *dst = (char __user *)dstv;
c60ac0ff 5657 unsigned long i = start >> PAGE_SHIFT;
550ac1d8
GH
5658 int ret = 0;
5659
5660 WARN_ON(start > eb->len);
5661 WARN_ON(start + len > eb->start + eb->len);
5662
c60ac0ff 5663 offset = offset_in_page(start);
550ac1d8
GH
5664
5665 while (len > 0) {
fb85fc9a 5666 page = eb->pages[i];
550ac1d8 5667
09cbfeaf 5668 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 5669 kaddr = page_address(page);
a48b73ec 5670 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
5671 ret = -EFAULT;
5672 break;
5673 }
5674
5675 dst += cur;
5676 len -= cur;
5677 offset = 0;
5678 i++;
5679 }
5680
5681 return ret;
5682}
5683
1cbb1f45
JM
5684int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5685 unsigned long start, unsigned long len)
d1310b2e
CM
5686{
5687 size_t cur;
5688 size_t offset;
5689 struct page *page;
5690 char *kaddr;
5691 char *ptr = (char *)ptrv;
c60ac0ff 5692 unsigned long i = start >> PAGE_SHIFT;
d1310b2e
CM
5693 int ret = 0;
5694
f98b6215
QW
5695 if (check_eb_range(eb, start, len))
5696 return -EINVAL;
d1310b2e 5697
c60ac0ff 5698 offset = offset_in_page(start);
d1310b2e 5699
d397712b 5700 while (len > 0) {
fb85fc9a 5701 page = eb->pages[i];
d1310b2e 5702
09cbfeaf 5703 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5704
a6591715 5705 kaddr = page_address(page);
d1310b2e 5706 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5707 if (ret)
5708 break;
5709
5710 ptr += cur;
5711 len -= cur;
5712 offset = 0;
5713 i++;
5714 }
5715 return ret;
5716}
d1310b2e 5717
2b48966a 5718void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
5719 const void *srcv)
5720{
5721 char *kaddr;
5722
5723 WARN_ON(!PageUptodate(eb->pages[0]));
5724 kaddr = page_address(eb->pages[0]);
5725 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5726 BTRFS_FSID_SIZE);
5727}
5728
2b48966a 5729void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
5730{
5731 char *kaddr;
5732
5733 WARN_ON(!PageUptodate(eb->pages[0]));
5734 kaddr = page_address(eb->pages[0]);
5735 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5736 BTRFS_FSID_SIZE);
5737}
5738
2b48966a 5739void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
5740 unsigned long start, unsigned long len)
5741{
5742 size_t cur;
5743 size_t offset;
5744 struct page *page;
5745 char *kaddr;
5746 char *src = (char *)srcv;
c60ac0ff 5747 unsigned long i = start >> PAGE_SHIFT;
d1310b2e 5748
f98b6215
QW
5749 if (check_eb_range(eb, start, len))
5750 return;
d1310b2e 5751
c60ac0ff 5752 offset = offset_in_page(start);
d1310b2e 5753
d397712b 5754 while (len > 0) {
fb85fc9a 5755 page = eb->pages[i];
d1310b2e
CM
5756 WARN_ON(!PageUptodate(page));
5757
09cbfeaf 5758 cur = min(len, PAGE_SIZE - offset);
a6591715 5759 kaddr = page_address(page);
d1310b2e 5760 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5761
5762 src += cur;
5763 len -= cur;
5764 offset = 0;
5765 i++;
5766 }
5767}
d1310b2e 5768
2b48966a 5769void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 5770 unsigned long len)
d1310b2e
CM
5771{
5772 size_t cur;
5773 size_t offset;
5774 struct page *page;
5775 char *kaddr;
c60ac0ff 5776 unsigned long i = start >> PAGE_SHIFT;
d1310b2e 5777
f98b6215
QW
5778 if (check_eb_range(eb, start, len))
5779 return;
d1310b2e 5780
c60ac0ff 5781 offset = offset_in_page(start);
d1310b2e 5782
d397712b 5783 while (len > 0) {
fb85fc9a 5784 page = eb->pages[i];
d1310b2e
CM
5785 WARN_ON(!PageUptodate(page));
5786
09cbfeaf 5787 cur = min(len, PAGE_SIZE - offset);
a6591715 5788 kaddr = page_address(page);
b159fa28 5789 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5790
5791 len -= cur;
5792 offset = 0;
5793 i++;
5794 }
5795}
d1310b2e 5796
2b48966a
DS
5797void copy_extent_buffer_full(const struct extent_buffer *dst,
5798 const struct extent_buffer *src)
58e8012c
DS
5799{
5800 int i;
cc5e31a4 5801 int num_pages;
58e8012c
DS
5802
5803 ASSERT(dst->len == src->len);
5804
65ad0104 5805 num_pages = num_extent_pages(dst);
58e8012c
DS
5806 for (i = 0; i < num_pages; i++)
5807 copy_page(page_address(dst->pages[i]),
5808 page_address(src->pages[i]));
5809}
5810
2b48966a
DS
5811void copy_extent_buffer(const struct extent_buffer *dst,
5812 const struct extent_buffer *src,
d1310b2e
CM
5813 unsigned long dst_offset, unsigned long src_offset,
5814 unsigned long len)
5815{
5816 u64 dst_len = dst->len;
5817 size_t cur;
5818 size_t offset;
5819 struct page *page;
5820 char *kaddr;
c60ac0ff 5821 unsigned long i = dst_offset >> PAGE_SHIFT;
d1310b2e 5822
f98b6215
QW
5823 if (check_eb_range(dst, dst_offset, len) ||
5824 check_eb_range(src, src_offset, len))
5825 return;
5826
d1310b2e
CM
5827 WARN_ON(src->len != dst_len);
5828
c60ac0ff 5829 offset = offset_in_page(dst_offset);
d1310b2e 5830
d397712b 5831 while (len > 0) {
fb85fc9a 5832 page = dst->pages[i];
d1310b2e
CM
5833 WARN_ON(!PageUptodate(page));
5834
09cbfeaf 5835 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5836
a6591715 5837 kaddr = page_address(page);
d1310b2e 5838 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5839
5840 src_offset += cur;
5841 len -= cur;
5842 offset = 0;
5843 i++;
5844 }
5845}
d1310b2e 5846
3e1e8bb7
OS
5847/*
5848 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5849 * given bit number
5850 * @eb: the extent buffer
5851 * @start: offset of the bitmap item in the extent buffer
5852 * @nr: bit number
5853 * @page_index: return index of the page in the extent buffer that contains the
5854 * given bit number
5855 * @page_offset: return offset into the page given by page_index
5856 *
5857 * This helper hides the ugliness of finding the byte in an extent buffer which
5858 * contains a given bit.
5859 */
2b48966a 5860static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
5861 unsigned long start, unsigned long nr,
5862 unsigned long *page_index,
5863 size_t *page_offset)
5864{
3e1e8bb7
OS
5865 size_t byte_offset = BIT_BYTE(nr);
5866 size_t offset;
5867
5868 /*
5869 * The byte we want is the offset of the extent buffer + the offset of
5870 * the bitmap item in the extent buffer + the offset of the byte in the
5871 * bitmap item.
5872 */
c60ac0ff 5873 offset = start + byte_offset;
3e1e8bb7 5874
09cbfeaf 5875 *page_index = offset >> PAGE_SHIFT;
7073017a 5876 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5877}
5878
5879/**
5880 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5881 * @eb: the extent buffer
5882 * @start: offset of the bitmap item in the extent buffer
5883 * @nr: bit number to test
5884 */
2b48966a 5885int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5886 unsigned long nr)
5887{
2fe1d551 5888 u8 *kaddr;
3e1e8bb7
OS
5889 struct page *page;
5890 unsigned long i;
5891 size_t offset;
5892
5893 eb_bitmap_offset(eb, start, nr, &i, &offset);
5894 page = eb->pages[i];
5895 WARN_ON(!PageUptodate(page));
5896 kaddr = page_address(page);
5897 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5898}
5899
5900/**
5901 * extent_buffer_bitmap_set - set an area of a bitmap
5902 * @eb: the extent buffer
5903 * @start: offset of the bitmap item in the extent buffer
5904 * @pos: bit number of the first bit
5905 * @len: number of bits to set
5906 */
2b48966a 5907void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5908 unsigned long pos, unsigned long len)
5909{
2fe1d551 5910 u8 *kaddr;
3e1e8bb7
OS
5911 struct page *page;
5912 unsigned long i;
5913 size_t offset;
5914 const unsigned int size = pos + len;
5915 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5916 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5917
5918 eb_bitmap_offset(eb, start, pos, &i, &offset);
5919 page = eb->pages[i];
5920 WARN_ON(!PageUptodate(page));
5921 kaddr = page_address(page);
5922
5923 while (len >= bits_to_set) {
5924 kaddr[offset] |= mask_to_set;
5925 len -= bits_to_set;
5926 bits_to_set = BITS_PER_BYTE;
9c894696 5927 mask_to_set = ~0;
09cbfeaf 5928 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5929 offset = 0;
5930 page = eb->pages[++i];
5931 WARN_ON(!PageUptodate(page));
5932 kaddr = page_address(page);
5933 }
5934 }
5935 if (len) {
5936 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5937 kaddr[offset] |= mask_to_set;
5938 }
5939}
5940
5941
5942/**
5943 * extent_buffer_bitmap_clear - clear an area of a bitmap
5944 * @eb: the extent buffer
5945 * @start: offset of the bitmap item in the extent buffer
5946 * @pos: bit number of the first bit
5947 * @len: number of bits to clear
5948 */
2b48966a
DS
5949void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5950 unsigned long start, unsigned long pos,
5951 unsigned long len)
3e1e8bb7 5952{
2fe1d551 5953 u8 *kaddr;
3e1e8bb7
OS
5954 struct page *page;
5955 unsigned long i;
5956 size_t offset;
5957 const unsigned int size = pos + len;
5958 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5959 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5960
5961 eb_bitmap_offset(eb, start, pos, &i, &offset);
5962 page = eb->pages[i];
5963 WARN_ON(!PageUptodate(page));
5964 kaddr = page_address(page);
5965
5966 while (len >= bits_to_clear) {
5967 kaddr[offset] &= ~mask_to_clear;
5968 len -= bits_to_clear;
5969 bits_to_clear = BITS_PER_BYTE;
9c894696 5970 mask_to_clear = ~0;
09cbfeaf 5971 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5972 offset = 0;
5973 page = eb->pages[++i];
5974 WARN_ON(!PageUptodate(page));
5975 kaddr = page_address(page);
5976 }
5977 }
5978 if (len) {
5979 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5980 kaddr[offset] &= ~mask_to_clear;
5981 }
5982}
5983
3387206f
ST
5984static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5985{
5986 unsigned long distance = (src > dst) ? src - dst : dst - src;
5987 return distance < len;
5988}
5989
d1310b2e
CM
5990static void copy_pages(struct page *dst_page, struct page *src_page,
5991 unsigned long dst_off, unsigned long src_off,
5992 unsigned long len)
5993{
a6591715 5994 char *dst_kaddr = page_address(dst_page);
d1310b2e 5995 char *src_kaddr;
727011e0 5996 int must_memmove = 0;
d1310b2e 5997
3387206f 5998 if (dst_page != src_page) {
a6591715 5999 src_kaddr = page_address(src_page);
3387206f 6000 } else {
d1310b2e 6001 src_kaddr = dst_kaddr;
727011e0
CM
6002 if (areas_overlap(src_off, dst_off, len))
6003 must_memmove = 1;
3387206f 6004 }
d1310b2e 6005
727011e0
CM
6006 if (must_memmove)
6007 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6008 else
6009 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
6010}
6011
2b48966a
DS
6012void memcpy_extent_buffer(const struct extent_buffer *dst,
6013 unsigned long dst_offset, unsigned long src_offset,
6014 unsigned long len)
d1310b2e
CM
6015{
6016 size_t cur;
6017 size_t dst_off_in_page;
6018 size_t src_off_in_page;
d1310b2e
CM
6019 unsigned long dst_i;
6020 unsigned long src_i;
6021
f98b6215
QW
6022 if (check_eb_range(dst, dst_offset, len) ||
6023 check_eb_range(dst, src_offset, len))
6024 return;
d1310b2e 6025
d397712b 6026 while (len > 0) {
c60ac0ff
DS
6027 dst_off_in_page = offset_in_page(dst_offset);
6028 src_off_in_page = offset_in_page(src_offset);
d1310b2e 6029
c60ac0ff
DS
6030 dst_i = dst_offset >> PAGE_SHIFT;
6031 src_i = src_offset >> PAGE_SHIFT;
d1310b2e 6032
09cbfeaf 6033 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
6034 src_off_in_page));
6035 cur = min_t(unsigned long, cur,
09cbfeaf 6036 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 6037
fb85fc9a 6038 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6039 dst_off_in_page, src_off_in_page, cur);
6040
6041 src_offset += cur;
6042 dst_offset += cur;
6043 len -= cur;
6044 }
6045}
d1310b2e 6046
2b48966a
DS
6047void memmove_extent_buffer(const struct extent_buffer *dst,
6048 unsigned long dst_offset, unsigned long src_offset,
6049 unsigned long len)
d1310b2e
CM
6050{
6051 size_t cur;
6052 size_t dst_off_in_page;
6053 size_t src_off_in_page;
6054 unsigned long dst_end = dst_offset + len - 1;
6055 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
6056 unsigned long dst_i;
6057 unsigned long src_i;
6058
f98b6215
QW
6059 if (check_eb_range(dst, dst_offset, len) ||
6060 check_eb_range(dst, src_offset, len))
6061 return;
727011e0 6062 if (dst_offset < src_offset) {
d1310b2e
CM
6063 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6064 return;
6065 }
d397712b 6066 while (len > 0) {
c60ac0ff
DS
6067 dst_i = dst_end >> PAGE_SHIFT;
6068 src_i = src_end >> PAGE_SHIFT;
d1310b2e 6069
c60ac0ff
DS
6070 dst_off_in_page = offset_in_page(dst_end);
6071 src_off_in_page = offset_in_page(src_end);
d1310b2e
CM
6072
6073 cur = min_t(unsigned long, len, src_off_in_page + 1);
6074 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6075 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6076 dst_off_in_page - cur + 1,
6077 src_off_in_page - cur + 1, cur);
6078
6079 dst_end -= cur;
6080 src_end -= cur;
6081 len -= cur;
6082 }
6083}
6af118ce 6084
f7a52a40 6085int try_release_extent_buffer(struct page *page)
19fe0a8b 6086{
6af118ce 6087 struct extent_buffer *eb;
6af118ce 6088
3083ee2e 6089 /*
01327610 6090 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6091 * now.
6092 */
6093 spin_lock(&page->mapping->private_lock);
6094 if (!PagePrivate(page)) {
6095 spin_unlock(&page->mapping->private_lock);
4f2de97a 6096 return 1;
45f49bce 6097 }
6af118ce 6098
3083ee2e
JB
6099 eb = (struct extent_buffer *)page->private;
6100 BUG_ON(!eb);
19fe0a8b
MX
6101
6102 /*
3083ee2e
JB
6103 * This is a little awful but should be ok, we need to make sure that
6104 * the eb doesn't disappear out from under us while we're looking at
6105 * this page.
19fe0a8b 6106 */
3083ee2e 6107 spin_lock(&eb->refs_lock);
0b32f4bb 6108 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6109 spin_unlock(&eb->refs_lock);
6110 spin_unlock(&page->mapping->private_lock);
6111 return 0;
b9473439 6112 }
3083ee2e 6113 spin_unlock(&page->mapping->private_lock);
897ca6e9 6114
19fe0a8b 6115 /*
3083ee2e
JB
6116 * If tree ref isn't set then we know the ref on this eb is a real ref,
6117 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6118 */
3083ee2e
JB
6119 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6120 spin_unlock(&eb->refs_lock);
6121 return 0;
b9473439 6122 }
19fe0a8b 6123
f7a52a40 6124 return release_extent_buffer(eb);
6af118ce 6125}