btrfs: remove unused parameter fs_info from CHECK_FE_ALIGNED
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112struct tree_entry {
113 u64 start;
114 u64 end;
d1310b2e
CM
115 struct rb_node rb_node;
116};
117
118struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
771ed689
CM
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
ffbd517d
CM
124 unsigned int extent_locked:1;
125
70fd7614 126 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 127 unsigned int sync_io:1;
d1310b2e
CM
128};
129
57599c7e 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
131 struct extent_changeset *changeset,
132 int set)
133{
134 int ret;
135
136 if (!changeset)
57599c7e 137 return 0;
d38ed27f 138 if (set && (state->state & bits) == bits)
57599c7e 139 return 0;
fefdc557 140 if (!set && (state->state & bits) == 0)
57599c7e 141 return 0;
d38ed27f 142 changeset->bytes_changed += state->end - state->start + 1;
53d32359 143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 144 GFP_ATOMIC);
57599c7e 145 return ret;
d38ed27f
QW
146}
147
bb58eb9e
QW
148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150{
151 blk_status_t ret = 0;
bb58eb9e 152 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
153
154 bio->bi_private = NULL;
155
156 if (tree->ops)
157 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 158 mirror_num, bio_flags);
bb58eb9e
QW
159 else
160 btrfsic_submit_bio(bio);
161
162 return blk_status_to_errno(ret);
163}
164
3065976b
QW
165/* Cleanup unsubmitted bios */
166static void end_write_bio(struct extent_page_data *epd, int ret)
167{
168 if (epd->bio) {
169 epd->bio->bi_status = errno_to_blk_status(ret);
170 bio_endio(epd->bio);
171 epd->bio = NULL;
172 }
173}
174
f4340622
QW
175/*
176 * Submit bio from extent page data via submit_one_bio
177 *
178 * Return 0 if everything is OK.
179 * Return <0 for error.
180 */
181static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 182{
f4340622 183 int ret = 0;
bb58eb9e 184
f4340622 185 if (epd->bio) {
bb58eb9e 186 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
187 /*
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
193 */
bb58eb9e
QW
194 epd->bio = NULL;
195 }
f4340622 196 return ret;
bb58eb9e 197}
e2932ee0 198
d1310b2e
CM
199int __init extent_io_init(void)
200{
837e1972 201 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 202 sizeof(struct extent_state), 0,
fba4b697 203 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
204 if (!extent_state_cache)
205 return -ENOMEM;
206
837e1972 207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 208 sizeof(struct extent_buffer), 0,
fba4b697 209 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
210 if (!extent_buffer_cache)
211 goto free_state_cache;
9be3395b 212
8ac9f7c1
KO
213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 offsetof(struct btrfs_io_bio, bio),
215 BIOSET_NEED_BVECS))
9be3395b 216 goto free_buffer_cache;
b208c2f7 217
8ac9f7c1 218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
219 goto free_bioset;
220
d1310b2e
CM
221 return 0;
222
b208c2f7 223free_bioset:
8ac9f7c1 224 bioset_exit(&btrfs_bioset);
b208c2f7 225
9be3395b
CM
226free_buffer_cache:
227 kmem_cache_destroy(extent_buffer_cache);
228 extent_buffer_cache = NULL;
229
d1310b2e
CM
230free_state_cache:
231 kmem_cache_destroy(extent_state_cache);
9be3395b 232 extent_state_cache = NULL;
d1310b2e
CM
233 return -ENOMEM;
234}
235
e67c718b 236void __cold extent_io_exit(void)
d1310b2e 237{
6d49ba1b 238 btrfs_leak_debug_check();
8c0a8537
KS
239
240 /*
241 * Make sure all delayed rcu free are flushed before we
242 * destroy caches.
243 */
244 rcu_barrier();
5598e900
KM
245 kmem_cache_destroy(extent_state_cache);
246 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 247 bioset_exit(&btrfs_bioset);
d1310b2e
CM
248}
249
c258d6e3 250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
251 struct extent_io_tree *tree, unsigned int owner,
252 void *private_data)
d1310b2e 253{
c258d6e3 254 tree->fs_info = fs_info;
6bef4d31 255 tree->state = RB_ROOT;
d1310b2e
CM
256 tree->ops = NULL;
257 tree->dirty_bytes = 0;
70dec807 258 spin_lock_init(&tree->lock);
c6100a4b 259 tree->private_data = private_data;
43eb5f29 260 tree->owner = owner;
d1310b2e 261}
d1310b2e 262
41e7acd3
NB
263void extent_io_tree_release(struct extent_io_tree *tree)
264{
265 spin_lock(&tree->lock);
266 /*
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
269 * called.
270 */
271 smp_mb();
272 while (!RB_EMPTY_ROOT(&tree->state)) {
273 struct rb_node *node;
274 struct extent_state *state;
275
276 node = rb_first(&tree->state);
277 state = rb_entry(node, struct extent_state, rb_node);
278 rb_erase(&state->rb_node, &tree->state);
279 RB_CLEAR_NODE(&state->rb_node);
280 /*
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
283 */
284 ASSERT(!waitqueue_active(&state->wq));
285 free_extent_state(state);
286
287 cond_resched_lock(&tree->lock);
288 }
289 spin_unlock(&tree->lock);
290}
291
b2950863 292static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
293{
294 struct extent_state *state;
d1310b2e 295
3ba7ab22
MH
296 /*
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
299 */
300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 301 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 302 if (!state)
d1310b2e
CM
303 return state;
304 state->state = 0;
47dc196a 305 state->failrec = NULL;
27a3507d 306 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 307 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 308 refcount_set(&state->refs, 1);
d1310b2e 309 init_waitqueue_head(&state->wq);
143bede5 310 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
311 return state;
312}
d1310b2e 313
4845e44f 314void free_extent_state(struct extent_state *state)
d1310b2e 315{
d1310b2e
CM
316 if (!state)
317 return;
b7ac31b7 318 if (refcount_dec_and_test(&state->refs)) {
27a3507d 319 WARN_ON(extent_state_in_tree(state));
6d49ba1b 320 btrfs_leak_debug_del(&state->leak_list);
143bede5 321 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
322 kmem_cache_free(extent_state_cache, state);
323 }
324}
d1310b2e 325
f2071b21
FM
326static struct rb_node *tree_insert(struct rb_root *root,
327 struct rb_node *search_start,
328 u64 offset,
12cfbad9
FDBM
329 struct rb_node *node,
330 struct rb_node ***p_in,
331 struct rb_node **parent_in)
d1310b2e 332{
f2071b21 333 struct rb_node **p;
d397712b 334 struct rb_node *parent = NULL;
d1310b2e
CM
335 struct tree_entry *entry;
336
12cfbad9
FDBM
337 if (p_in && parent_in) {
338 p = *p_in;
339 parent = *parent_in;
340 goto do_insert;
341 }
342
f2071b21 343 p = search_start ? &search_start : &root->rb_node;
d397712b 344 while (*p) {
d1310b2e
CM
345 parent = *p;
346 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348 if (offset < entry->start)
349 p = &(*p)->rb_left;
350 else if (offset > entry->end)
351 p = &(*p)->rb_right;
352 else
353 return parent;
354 }
355
12cfbad9 356do_insert:
d1310b2e
CM
357 rb_link_node(node, parent, p);
358 rb_insert_color(node, root);
359 return NULL;
360}
361
80ea96b1 362static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 363 struct rb_node **next_ret,
352646c7 364 struct rb_node **prev_ret,
12cfbad9
FDBM
365 struct rb_node ***p_ret,
366 struct rb_node **parent_ret)
d1310b2e 367{
80ea96b1 368 struct rb_root *root = &tree->state;
12cfbad9 369 struct rb_node **n = &root->rb_node;
d1310b2e
CM
370 struct rb_node *prev = NULL;
371 struct rb_node *orig_prev = NULL;
372 struct tree_entry *entry;
373 struct tree_entry *prev_entry = NULL;
374
12cfbad9
FDBM
375 while (*n) {
376 prev = *n;
377 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
378 prev_entry = entry;
379
380 if (offset < entry->start)
12cfbad9 381 n = &(*n)->rb_left;
d1310b2e 382 else if (offset > entry->end)
12cfbad9 383 n = &(*n)->rb_right;
d397712b 384 else
12cfbad9 385 return *n;
d1310b2e
CM
386 }
387
12cfbad9
FDBM
388 if (p_ret)
389 *p_ret = n;
390 if (parent_ret)
391 *parent_ret = prev;
392
352646c7 393 if (next_ret) {
d1310b2e 394 orig_prev = prev;
d397712b 395 while (prev && offset > prev_entry->end) {
d1310b2e
CM
396 prev = rb_next(prev);
397 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
398 }
352646c7 399 *next_ret = prev;
d1310b2e
CM
400 prev = orig_prev;
401 }
402
352646c7 403 if (prev_ret) {
d1310b2e 404 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 405 while (prev && offset < prev_entry->start) {
d1310b2e
CM
406 prev = rb_prev(prev);
407 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
408 }
352646c7 409 *prev_ret = prev;
d1310b2e
CM
410 }
411 return NULL;
412}
413
12cfbad9
FDBM
414static inline struct rb_node *
415tree_search_for_insert(struct extent_io_tree *tree,
416 u64 offset,
417 struct rb_node ***p_ret,
418 struct rb_node **parent_ret)
d1310b2e 419{
352646c7 420 struct rb_node *next= NULL;
d1310b2e 421 struct rb_node *ret;
70dec807 422
352646c7 423 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 424 if (!ret)
352646c7 425 return next;
d1310b2e
CM
426 return ret;
427}
428
12cfbad9
FDBM
429static inline struct rb_node *tree_search(struct extent_io_tree *tree,
430 u64 offset)
431{
432 return tree_search_for_insert(tree, offset, NULL, NULL);
433}
434
d1310b2e
CM
435/*
436 * utility function to look for merge candidates inside a given range.
437 * Any extents with matching state are merged together into a single
438 * extent in the tree. Extents with EXTENT_IO in their state field
439 * are not merged because the end_io handlers need to be able to do
440 * operations on them without sleeping (or doing allocations/splits).
441 *
442 * This should be called with the tree lock held.
443 */
1bf85046
JM
444static void merge_state(struct extent_io_tree *tree,
445 struct extent_state *state)
d1310b2e
CM
446{
447 struct extent_state *other;
448 struct rb_node *other_node;
449
8882679e 450 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 451 return;
d1310b2e
CM
452
453 other_node = rb_prev(&state->rb_node);
454 if (other_node) {
455 other = rb_entry(other_node, struct extent_state, rb_node);
456 if (other->end == state->start - 1 &&
457 other->state == state->state) {
5c848198
NB
458 if (tree->private_data &&
459 is_data_inode(tree->private_data))
460 btrfs_merge_delalloc_extent(tree->private_data,
461 state, other);
d1310b2e 462 state->start = other->start;
d1310b2e 463 rb_erase(&other->rb_node, &tree->state);
27a3507d 464 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
465 free_extent_state(other);
466 }
467 }
468 other_node = rb_next(&state->rb_node);
469 if (other_node) {
470 other = rb_entry(other_node, struct extent_state, rb_node);
471 if (other->start == state->end + 1 &&
472 other->state == state->state) {
5c848198
NB
473 if (tree->private_data &&
474 is_data_inode(tree->private_data))
475 btrfs_merge_delalloc_extent(tree->private_data,
476 state, other);
df98b6e2 477 state->end = other->end;
df98b6e2 478 rb_erase(&other->rb_node, &tree->state);
27a3507d 479 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 480 free_extent_state(other);
d1310b2e
CM
481 }
482 }
d1310b2e
CM
483}
484
3150b699 485static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
486 struct extent_state *state, unsigned *bits,
487 struct extent_changeset *changeset);
3150b699 488
d1310b2e
CM
489/*
490 * insert an extent_state struct into the tree. 'bits' are set on the
491 * struct before it is inserted.
492 *
493 * This may return -EEXIST if the extent is already there, in which case the
494 * state struct is freed.
495 *
496 * The tree lock is not taken internally. This is a utility function and
497 * probably isn't what you want to call (see set/clear_extent_bit).
498 */
499static int insert_state(struct extent_io_tree *tree,
500 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
501 struct rb_node ***p,
502 struct rb_node **parent,
d38ed27f 503 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
504{
505 struct rb_node *node;
506
31b1a2bd 507 if (end < start)
efe120a0 508 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 509 end, start);
d1310b2e
CM
510 state->start = start;
511 state->end = end;
9ed74f2d 512
d38ed27f 513 set_state_bits(tree, state, bits, changeset);
3150b699 514
f2071b21 515 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
516 if (node) {
517 struct extent_state *found;
518 found = rb_entry(node, struct extent_state, rb_node);
62e85577 519 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 520 found->start, found->end, start, end);
d1310b2e
CM
521 return -EEXIST;
522 }
523 merge_state(tree, state);
524 return 0;
525}
526
527/*
528 * split a given extent state struct in two, inserting the preallocated
529 * struct 'prealloc' as the newly created second half. 'split' indicates an
530 * offset inside 'orig' where it should be split.
531 *
532 * Before calling,
533 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
534 * are two extent state structs in the tree:
535 * prealloc: [orig->start, split - 1]
536 * orig: [ split, orig->end ]
537 *
538 * The tree locks are not taken by this function. They need to be held
539 * by the caller.
540 */
541static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
542 struct extent_state *prealloc, u64 split)
543{
544 struct rb_node *node;
9ed74f2d 545
abbb55f4
NB
546 if (tree->private_data && is_data_inode(tree->private_data))
547 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 548
d1310b2e
CM
549 prealloc->start = orig->start;
550 prealloc->end = split - 1;
551 prealloc->state = orig->state;
552 orig->start = split;
553
f2071b21
FM
554 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
555 &prealloc->rb_node, NULL, NULL);
d1310b2e 556 if (node) {
d1310b2e
CM
557 free_extent_state(prealloc);
558 return -EEXIST;
559 }
560 return 0;
561}
562
cdc6a395
LZ
563static struct extent_state *next_state(struct extent_state *state)
564{
565 struct rb_node *next = rb_next(&state->rb_node);
566 if (next)
567 return rb_entry(next, struct extent_state, rb_node);
568 else
569 return NULL;
570}
571
d1310b2e
CM
572/*
573 * utility function to clear some bits in an extent state struct.
52042d8e 574 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
575 *
576 * If no bits are set on the state struct after clearing things, the
577 * struct is freed and removed from the tree
578 */
cdc6a395
LZ
579static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
580 struct extent_state *state,
fefdc557
QW
581 unsigned *bits, int wake,
582 struct extent_changeset *changeset)
d1310b2e 583{
cdc6a395 584 struct extent_state *next;
9ee49a04 585 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 586 int ret;
d1310b2e 587
0ca1f7ce 588 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
589 u64 range = state->end - state->start + 1;
590 WARN_ON(range > tree->dirty_bytes);
591 tree->dirty_bytes -= range;
592 }
a36bb5f9
NB
593
594 if (tree->private_data && is_data_inode(tree->private_data))
595 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
596
57599c7e
DS
597 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
598 BUG_ON(ret < 0);
32c00aff 599 state->state &= ~bits_to_clear;
d1310b2e
CM
600 if (wake)
601 wake_up(&state->wq);
0ca1f7ce 602 if (state->state == 0) {
cdc6a395 603 next = next_state(state);
27a3507d 604 if (extent_state_in_tree(state)) {
d1310b2e 605 rb_erase(&state->rb_node, &tree->state);
27a3507d 606 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
607 free_extent_state(state);
608 } else {
609 WARN_ON(1);
610 }
611 } else {
612 merge_state(tree, state);
cdc6a395 613 next = next_state(state);
d1310b2e 614 }
cdc6a395 615 return next;
d1310b2e
CM
616}
617
8233767a
XG
618static struct extent_state *
619alloc_extent_state_atomic(struct extent_state *prealloc)
620{
621 if (!prealloc)
622 prealloc = alloc_extent_state(GFP_ATOMIC);
623
624 return prealloc;
625}
626
48a3b636 627static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 628{
05912a3c
DS
629 struct inode *inode = tree->private_data;
630
631 btrfs_panic(btrfs_sb(inode->i_sb), err,
632 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
633}
634
d1310b2e
CM
635/*
636 * clear some bits on a range in the tree. This may require splitting
637 * or inserting elements in the tree, so the gfp mask is used to
638 * indicate which allocations or sleeping are allowed.
639 *
640 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
641 * the given range from the tree regardless of state (ie for truncate).
642 *
643 * the range [start, end] is inclusive.
644 *
6763af84 645 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 646 */
66b0c887 647int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
648 unsigned bits, int wake, int delete,
649 struct extent_state **cached_state,
650 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
651{
652 struct extent_state *state;
2c64c53d 653 struct extent_state *cached;
d1310b2e
CM
654 struct extent_state *prealloc = NULL;
655 struct rb_node *node;
5c939df5 656 u64 last_end;
d1310b2e 657 int err;
2ac55d41 658 int clear = 0;
d1310b2e 659
a5dee37d 660 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 661 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 662
7ee9e440
JB
663 if (bits & EXTENT_DELALLOC)
664 bits |= EXTENT_NORESERVE;
665
0ca1f7ce
YZ
666 if (delete)
667 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 668
8882679e 669 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 670 clear = 1;
d1310b2e 671again:
d0164adc 672 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
673 /*
674 * Don't care for allocation failure here because we might end
675 * up not needing the pre-allocated extent state at all, which
676 * is the case if we only have in the tree extent states that
677 * cover our input range and don't cover too any other range.
678 * If we end up needing a new extent state we allocate it later.
679 */
d1310b2e 680 prealloc = alloc_extent_state(mask);
d1310b2e
CM
681 }
682
cad321ad 683 spin_lock(&tree->lock);
2c64c53d
CM
684 if (cached_state) {
685 cached = *cached_state;
2ac55d41
JB
686
687 if (clear) {
688 *cached_state = NULL;
689 cached_state = NULL;
690 }
691
27a3507d
FM
692 if (cached && extent_state_in_tree(cached) &&
693 cached->start <= start && cached->end > start) {
2ac55d41 694 if (clear)
b7ac31b7 695 refcount_dec(&cached->refs);
2c64c53d 696 state = cached;
42daec29 697 goto hit_next;
2c64c53d 698 }
2ac55d41
JB
699 if (clear)
700 free_extent_state(cached);
2c64c53d 701 }
d1310b2e
CM
702 /*
703 * this search will find the extents that end after
704 * our range starts
705 */
80ea96b1 706 node = tree_search(tree, start);
d1310b2e
CM
707 if (!node)
708 goto out;
709 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 710hit_next:
d1310b2e
CM
711 if (state->start > end)
712 goto out;
713 WARN_ON(state->end < start);
5c939df5 714 last_end = state->end;
d1310b2e 715
0449314a 716 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
717 if (!(state->state & bits)) {
718 state = next_state(state);
0449314a 719 goto next;
cdc6a395 720 }
0449314a 721
d1310b2e
CM
722 /*
723 * | ---- desired range ---- |
724 * | state | or
725 * | ------------- state -------------- |
726 *
727 * We need to split the extent we found, and may flip
728 * bits on second half.
729 *
730 * If the extent we found extends past our range, we
731 * just split and search again. It'll get split again
732 * the next time though.
733 *
734 * If the extent we found is inside our range, we clear
735 * the desired bit on it.
736 */
737
738 if (state->start < start) {
8233767a
XG
739 prealloc = alloc_extent_state_atomic(prealloc);
740 BUG_ON(!prealloc);
d1310b2e 741 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
742 if (err)
743 extent_io_tree_panic(tree, err);
744
d1310b2e
CM
745 prealloc = NULL;
746 if (err)
747 goto out;
748 if (state->end <= end) {
fefdc557
QW
749 state = clear_state_bit(tree, state, &bits, wake,
750 changeset);
d1ac6e41 751 goto next;
d1310b2e
CM
752 }
753 goto search_again;
754 }
755 /*
756 * | ---- desired range ---- |
757 * | state |
758 * We need to split the extent, and clear the bit
759 * on the first half
760 */
761 if (state->start <= end && state->end > end) {
8233767a
XG
762 prealloc = alloc_extent_state_atomic(prealloc);
763 BUG_ON(!prealloc);
d1310b2e 764 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
765 if (err)
766 extent_io_tree_panic(tree, err);
767
d1310b2e
CM
768 if (wake)
769 wake_up(&state->wq);
42daec29 770
fefdc557 771 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 772
d1310b2e
CM
773 prealloc = NULL;
774 goto out;
775 }
42daec29 776
fefdc557 777 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 778next:
5c939df5
YZ
779 if (last_end == (u64)-1)
780 goto out;
781 start = last_end + 1;
cdc6a395 782 if (start <= end && state && !need_resched())
692e5759 783 goto hit_next;
d1310b2e
CM
784
785search_again:
786 if (start > end)
787 goto out;
cad321ad 788 spin_unlock(&tree->lock);
d0164adc 789 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
790 cond_resched();
791 goto again;
7ab5cb2a
DS
792
793out:
794 spin_unlock(&tree->lock);
795 if (prealloc)
796 free_extent_state(prealloc);
797
798 return 0;
799
d1310b2e 800}
d1310b2e 801
143bede5
JM
802static void wait_on_state(struct extent_io_tree *tree,
803 struct extent_state *state)
641f5219
CH
804 __releases(tree->lock)
805 __acquires(tree->lock)
d1310b2e
CM
806{
807 DEFINE_WAIT(wait);
808 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 809 spin_unlock(&tree->lock);
d1310b2e 810 schedule();
cad321ad 811 spin_lock(&tree->lock);
d1310b2e 812 finish_wait(&state->wq, &wait);
d1310b2e
CM
813}
814
815/*
816 * waits for one or more bits to clear on a range in the state tree.
817 * The range [start, end] is inclusive.
818 * The tree lock is taken by this function
819 */
41074888
DS
820static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
821 unsigned long bits)
d1310b2e
CM
822{
823 struct extent_state *state;
824 struct rb_node *node;
825
a5dee37d 826 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 827
cad321ad 828 spin_lock(&tree->lock);
d1310b2e
CM
829again:
830 while (1) {
831 /*
832 * this search will find all the extents that end after
833 * our range starts
834 */
80ea96b1 835 node = tree_search(tree, start);
c50d3e71 836process_node:
d1310b2e
CM
837 if (!node)
838 break;
839
840 state = rb_entry(node, struct extent_state, rb_node);
841
842 if (state->start > end)
843 goto out;
844
845 if (state->state & bits) {
846 start = state->start;
b7ac31b7 847 refcount_inc(&state->refs);
d1310b2e
CM
848 wait_on_state(tree, state);
849 free_extent_state(state);
850 goto again;
851 }
852 start = state->end + 1;
853
854 if (start > end)
855 break;
856
c50d3e71
FM
857 if (!cond_resched_lock(&tree->lock)) {
858 node = rb_next(node);
859 goto process_node;
860 }
d1310b2e
CM
861 }
862out:
cad321ad 863 spin_unlock(&tree->lock);
d1310b2e 864}
d1310b2e 865
1bf85046 866static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 867 struct extent_state *state,
d38ed27f 868 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 869{
9ee49a04 870 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 871 int ret;
9ed74f2d 872
e06a1fc9
NB
873 if (tree->private_data && is_data_inode(tree->private_data))
874 btrfs_set_delalloc_extent(tree->private_data, state, bits);
875
0ca1f7ce 876 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
877 u64 range = state->end - state->start + 1;
878 tree->dirty_bytes += range;
879 }
57599c7e
DS
880 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
881 BUG_ON(ret < 0);
0ca1f7ce 882 state->state |= bits_to_set;
d1310b2e
CM
883}
884
e38e2ed7
FM
885static void cache_state_if_flags(struct extent_state *state,
886 struct extent_state **cached_ptr,
9ee49a04 887 unsigned flags)
2c64c53d
CM
888{
889 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 890 if (!flags || (state->state & flags)) {
2c64c53d 891 *cached_ptr = state;
b7ac31b7 892 refcount_inc(&state->refs);
2c64c53d
CM
893 }
894 }
895}
896
e38e2ed7
FM
897static void cache_state(struct extent_state *state,
898 struct extent_state **cached_ptr)
899{
900 return cache_state_if_flags(state, cached_ptr,
8882679e 901 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
902}
903
d1310b2e 904/*
1edbb734
CM
905 * set some bits on a range in the tree. This may require allocations or
906 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 907 *
1edbb734
CM
908 * If any of the exclusive bits are set, this will fail with -EEXIST if some
909 * part of the range already has the desired bits set. The start of the
910 * existing range is returned in failed_start in this case.
d1310b2e 911 *
1edbb734 912 * [start, end] is inclusive This takes the tree lock.
d1310b2e 913 */
1edbb734 914
3fbe5c02
JM
915static int __must_check
916__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 917 unsigned bits, unsigned exclusive_bits,
41074888 918 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 919 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
920{
921 struct extent_state *state;
922 struct extent_state *prealloc = NULL;
923 struct rb_node *node;
12cfbad9
FDBM
924 struct rb_node **p;
925 struct rb_node *parent;
d1310b2e 926 int err = 0;
d1310b2e
CM
927 u64 last_start;
928 u64 last_end;
42daec29 929
a5dee37d 930 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 931 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 932
d1310b2e 933again:
d0164adc 934 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
935 /*
936 * Don't care for allocation failure here because we might end
937 * up not needing the pre-allocated extent state at all, which
938 * is the case if we only have in the tree extent states that
939 * cover our input range and don't cover too any other range.
940 * If we end up needing a new extent state we allocate it later.
941 */
d1310b2e 942 prealloc = alloc_extent_state(mask);
d1310b2e
CM
943 }
944
cad321ad 945 spin_lock(&tree->lock);
9655d298
CM
946 if (cached_state && *cached_state) {
947 state = *cached_state;
df98b6e2 948 if (state->start <= start && state->end > start &&
27a3507d 949 extent_state_in_tree(state)) {
9655d298
CM
950 node = &state->rb_node;
951 goto hit_next;
952 }
953 }
d1310b2e
CM
954 /*
955 * this search will find all the extents that end after
956 * our range starts.
957 */
12cfbad9 958 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 959 if (!node) {
8233767a
XG
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
12cfbad9 962 err = insert_state(tree, prealloc, start, end,
d38ed27f 963 &p, &parent, &bits, changeset);
c2d904e0
JM
964 if (err)
965 extent_io_tree_panic(tree, err);
966
c42ac0bc 967 cache_state(prealloc, cached_state);
d1310b2e 968 prealloc = NULL;
d1310b2e
CM
969 goto out;
970 }
d1310b2e 971 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 972hit_next:
d1310b2e
CM
973 last_start = state->start;
974 last_end = state->end;
975
976 /*
977 * | ---- desired range ---- |
978 * | state |
979 *
980 * Just lock what we found and keep going
981 */
982 if (state->start == start && state->end <= end) {
1edbb734 983 if (state->state & exclusive_bits) {
d1310b2e
CM
984 *failed_start = state->start;
985 err = -EEXIST;
986 goto out;
987 }
42daec29 988
d38ed27f 989 set_state_bits(tree, state, &bits, changeset);
2c64c53d 990 cache_state(state, cached_state);
d1310b2e 991 merge_state(tree, state);
5c939df5
YZ
992 if (last_end == (u64)-1)
993 goto out;
994 start = last_end + 1;
d1ac6e41
LB
995 state = next_state(state);
996 if (start < end && state && state->start == start &&
997 !need_resched())
998 goto hit_next;
d1310b2e
CM
999 goto search_again;
1000 }
1001
1002 /*
1003 * | ---- desired range ---- |
1004 * | state |
1005 * or
1006 * | ------------- state -------------- |
1007 *
1008 * We need to split the extent we found, and may flip bits on
1009 * second half.
1010 *
1011 * If the extent we found extends past our
1012 * range, we just split and search again. It'll get split
1013 * again the next time though.
1014 *
1015 * If the extent we found is inside our range, we set the
1016 * desired bit on it.
1017 */
1018 if (state->start < start) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
d1310b2e
CM
1031 prealloc = NULL;
1032 if (err)
1033 goto out;
1034 if (state->end <= end) {
d38ed27f 1035 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1036 cache_state(state, cached_state);
d1310b2e 1037 merge_state(tree, state);
5c939df5
YZ
1038 if (last_end == (u64)-1)
1039 goto out;
1040 start = last_end + 1;
d1ac6e41
LB
1041 state = next_state(state);
1042 if (start < end && state && state->start == start &&
1043 !need_resched())
1044 goto hit_next;
d1310b2e
CM
1045 }
1046 goto search_again;
1047 }
1048 /*
1049 * | ---- desired range ---- |
1050 * | state | or | state |
1051 *
1052 * There's a hole, we need to insert something in it and
1053 * ignore the extent we found.
1054 */
1055 if (state->start > start) {
1056 u64 this_end;
1057 if (end < last_start)
1058 this_end = end;
1059 else
d397712b 1060 this_end = last_start - 1;
8233767a
XG
1061
1062 prealloc = alloc_extent_state_atomic(prealloc);
1063 BUG_ON(!prealloc);
c7f895a2
XG
1064
1065 /*
1066 * Avoid to free 'prealloc' if it can be merged with
1067 * the later extent.
1068 */
d1310b2e 1069 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1070 NULL, NULL, &bits, changeset);
c2d904e0
JM
1071 if (err)
1072 extent_io_tree_panic(tree, err);
1073
9ed74f2d
JB
1074 cache_state(prealloc, cached_state);
1075 prealloc = NULL;
d1310b2e
CM
1076 start = this_end + 1;
1077 goto search_again;
1078 }
1079 /*
1080 * | ---- desired range ---- |
1081 * | state |
1082 * We need to split the extent, and set the bit
1083 * on the first half
1084 */
1085 if (state->start <= end && state->end > end) {
1edbb734 1086 if (state->state & exclusive_bits) {
d1310b2e
CM
1087 *failed_start = start;
1088 err = -EEXIST;
1089 goto out;
1090 }
8233767a
XG
1091
1092 prealloc = alloc_extent_state_atomic(prealloc);
1093 BUG_ON(!prealloc);
d1310b2e 1094 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1095 if (err)
1096 extent_io_tree_panic(tree, err);
d1310b2e 1097
d38ed27f 1098 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1099 cache_state(prealloc, cached_state);
d1310b2e
CM
1100 merge_state(tree, prealloc);
1101 prealloc = NULL;
1102 goto out;
1103 }
1104
b5a4ba14
DS
1105search_again:
1106 if (start > end)
1107 goto out;
1108 spin_unlock(&tree->lock);
1109 if (gfpflags_allow_blocking(mask))
1110 cond_resched();
1111 goto again;
d1310b2e
CM
1112
1113out:
cad321ad 1114 spin_unlock(&tree->lock);
d1310b2e
CM
1115 if (prealloc)
1116 free_extent_state(prealloc);
1117
1118 return err;
1119
d1310b2e 1120}
d1310b2e 1121
41074888 1122int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1123 unsigned bits, u64 * failed_start,
41074888 1124 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1125{
1126 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1127 cached_state, mask, NULL);
3fbe5c02
JM
1128}
1129
1130
462d6fac 1131/**
10983f2e
LB
1132 * convert_extent_bit - convert all bits in a given range from one bit to
1133 * another
462d6fac
JB
1134 * @tree: the io tree to search
1135 * @start: the start offset in bytes
1136 * @end: the end offset in bytes (inclusive)
1137 * @bits: the bits to set in this range
1138 * @clear_bits: the bits to clear in this range
e6138876 1139 * @cached_state: state that we're going to cache
462d6fac
JB
1140 *
1141 * This will go through and set bits for the given range. If any states exist
1142 * already in this range they are set with the given bit and cleared of the
1143 * clear_bits. This is only meant to be used by things that are mergeable, ie
1144 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1145 * boundary bits like LOCK.
210aa277
DS
1146 *
1147 * All allocations are done with GFP_NOFS.
462d6fac
JB
1148 */
1149int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1150 unsigned bits, unsigned clear_bits,
210aa277 1151 struct extent_state **cached_state)
462d6fac
JB
1152{
1153 struct extent_state *state;
1154 struct extent_state *prealloc = NULL;
1155 struct rb_node *node;
12cfbad9
FDBM
1156 struct rb_node **p;
1157 struct rb_node *parent;
462d6fac
JB
1158 int err = 0;
1159 u64 last_start;
1160 u64 last_end;
c8fd3de7 1161 bool first_iteration = true;
462d6fac 1162
a5dee37d 1163 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1164 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1165 clear_bits);
8d599ae1 1166
462d6fac 1167again:
210aa277 1168 if (!prealloc) {
c8fd3de7
FM
1169 /*
1170 * Best effort, don't worry if extent state allocation fails
1171 * here for the first iteration. We might have a cached state
1172 * that matches exactly the target range, in which case no
1173 * extent state allocations are needed. We'll only know this
1174 * after locking the tree.
1175 */
210aa277 1176 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1177 if (!prealloc && !first_iteration)
462d6fac
JB
1178 return -ENOMEM;
1179 }
1180
1181 spin_lock(&tree->lock);
e6138876
JB
1182 if (cached_state && *cached_state) {
1183 state = *cached_state;
1184 if (state->start <= start && state->end > start &&
27a3507d 1185 extent_state_in_tree(state)) {
e6138876
JB
1186 node = &state->rb_node;
1187 goto hit_next;
1188 }
1189 }
1190
462d6fac
JB
1191 /*
1192 * this search will find all the extents that end after
1193 * our range starts.
1194 */
12cfbad9 1195 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1196 if (!node) {
1197 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1198 if (!prealloc) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
12cfbad9 1202 err = insert_state(tree, prealloc, start, end,
d38ed27f 1203 &p, &parent, &bits, NULL);
c2d904e0
JM
1204 if (err)
1205 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1206 cache_state(prealloc, cached_state);
1207 prealloc = NULL;
462d6fac
JB
1208 goto out;
1209 }
1210 state = rb_entry(node, struct extent_state, rb_node);
1211hit_next:
1212 last_start = state->start;
1213 last_end = state->end;
1214
1215 /*
1216 * | ---- desired range ---- |
1217 * | state |
1218 *
1219 * Just lock what we found and keep going
1220 */
1221 if (state->start == start && state->end <= end) {
d38ed27f 1222 set_state_bits(tree, state, &bits, NULL);
e6138876 1223 cache_state(state, cached_state);
fefdc557 1224 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1225 if (last_end == (u64)-1)
1226 goto out;
462d6fac 1227 start = last_end + 1;
d1ac6e41
LB
1228 if (start < end && state && state->start == start &&
1229 !need_resched())
1230 goto hit_next;
462d6fac
JB
1231 goto search_again;
1232 }
1233
1234 /*
1235 * | ---- desired range ---- |
1236 * | state |
1237 * or
1238 * | ------------- state -------------- |
1239 *
1240 * We need to split the extent we found, and may flip bits on
1241 * second half.
1242 *
1243 * If the extent we found extends past our
1244 * range, we just split and search again. It'll get split
1245 * again the next time though.
1246 *
1247 * If the extent we found is inside our range, we set the
1248 * desired bit on it.
1249 */
1250 if (state->start < start) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac 1256 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1257 if (err)
1258 extent_io_tree_panic(tree, err);
462d6fac
JB
1259 prealloc = NULL;
1260 if (err)
1261 goto out;
1262 if (state->end <= end) {
d38ed27f 1263 set_state_bits(tree, state, &bits, NULL);
e6138876 1264 cache_state(state, cached_state);
fefdc557
QW
1265 state = clear_state_bit(tree, state, &clear_bits, 0,
1266 NULL);
462d6fac
JB
1267 if (last_end == (u64)-1)
1268 goto out;
1269 start = last_end + 1;
d1ac6e41
LB
1270 if (start < end && state && state->start == start &&
1271 !need_resched())
1272 goto hit_next;
462d6fac
JB
1273 }
1274 goto search_again;
1275 }
1276 /*
1277 * | ---- desired range ---- |
1278 * | state | or | state |
1279 *
1280 * There's a hole, we need to insert something in it and
1281 * ignore the extent we found.
1282 */
1283 if (state->start > start) {
1284 u64 this_end;
1285 if (end < last_start)
1286 this_end = end;
1287 else
1288 this_end = last_start - 1;
1289
1290 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1291 if (!prealloc) {
1292 err = -ENOMEM;
1293 goto out;
1294 }
462d6fac
JB
1295
1296 /*
1297 * Avoid to free 'prealloc' if it can be merged with
1298 * the later extent.
1299 */
1300 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1301 NULL, NULL, &bits, NULL);
c2d904e0
JM
1302 if (err)
1303 extent_io_tree_panic(tree, err);
e6138876 1304 cache_state(prealloc, cached_state);
462d6fac
JB
1305 prealloc = NULL;
1306 start = this_end + 1;
1307 goto search_again;
1308 }
1309 /*
1310 * | ---- desired range ---- |
1311 * | state |
1312 * We need to split the extent, and set the bit
1313 * on the first half
1314 */
1315 if (state->start <= end && state->end > end) {
1316 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1317 if (!prealloc) {
1318 err = -ENOMEM;
1319 goto out;
1320 }
462d6fac
JB
1321
1322 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1323 if (err)
1324 extent_io_tree_panic(tree, err);
462d6fac 1325
d38ed27f 1326 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1327 cache_state(prealloc, cached_state);
fefdc557 1328 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1329 prealloc = NULL;
1330 goto out;
1331 }
1332
462d6fac
JB
1333search_again:
1334 if (start > end)
1335 goto out;
1336 spin_unlock(&tree->lock);
210aa277 1337 cond_resched();
c8fd3de7 1338 first_iteration = false;
462d6fac 1339 goto again;
462d6fac
JB
1340
1341out:
1342 spin_unlock(&tree->lock);
1343 if (prealloc)
1344 free_extent_state(prealloc);
1345
1346 return err;
462d6fac
JB
1347}
1348
d1310b2e 1349/* wrappers around set/clear extent bit */
d38ed27f 1350int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1351 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1352{
1353 /*
1354 * We don't support EXTENT_LOCKED yet, as current changeset will
1355 * record any bits changed, so for EXTENT_LOCKED case, it will
1356 * either fail with -EEXIST or changeset will record the whole
1357 * range.
1358 */
1359 BUG_ON(bits & EXTENT_LOCKED);
1360
2c53b912 1361 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1362 changeset);
1363}
1364
4ca73656
NB
1365int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1366 unsigned bits)
1367{
1368 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1369 GFP_NOWAIT, NULL);
1370}
1371
fefdc557
QW
1372int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1373 unsigned bits, int wake, int delete,
ae0f1625 1374 struct extent_state **cached)
fefdc557
QW
1375{
1376 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1377 cached, GFP_NOFS, NULL);
fefdc557
QW
1378}
1379
fefdc557 1380int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1381 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1382{
1383 /*
1384 * Don't support EXTENT_LOCKED case, same reason as
1385 * set_record_extent_bits().
1386 */
1387 BUG_ON(bits & EXTENT_LOCKED);
1388
f734c44a 1389 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1390 changeset);
1391}
1392
d352ac68
CM
1393/*
1394 * either insert or lock state struct between start and end use mask to tell
1395 * us if waiting is desired.
1396 */
1edbb734 1397int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1398 struct extent_state **cached_state)
d1310b2e
CM
1399{
1400 int err;
1401 u64 failed_start;
9ee49a04 1402
d1310b2e 1403 while (1) {
ff13db41 1404 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1405 EXTENT_LOCKED, &failed_start,
d38ed27f 1406 cached_state, GFP_NOFS, NULL);
d0082371 1407 if (err == -EEXIST) {
d1310b2e
CM
1408 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1409 start = failed_start;
d0082371 1410 } else
d1310b2e 1411 break;
d1310b2e
CM
1412 WARN_ON(start > end);
1413 }
1414 return err;
1415}
d1310b2e 1416
d0082371 1417int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1418{
1419 int err;
1420 u64 failed_start;
1421
3fbe5c02 1422 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1423 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1424 if (err == -EEXIST) {
1425 if (failed_start > start)
1426 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1427 EXTENT_LOCKED, 1, 0, NULL);
25179201 1428 return 0;
6643558d 1429 }
25179201
JB
1430 return 1;
1431}
25179201 1432
bd1fa4f0 1433void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1434{
09cbfeaf
KS
1435 unsigned long index = start >> PAGE_SHIFT;
1436 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1437 struct page *page;
1438
1439 while (index <= end_index) {
1440 page = find_get_page(inode->i_mapping, index);
1441 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1442 clear_page_dirty_for_io(page);
09cbfeaf 1443 put_page(page);
4adaa611
CM
1444 index++;
1445 }
4adaa611
CM
1446}
1447
f6311572 1448void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1449{
09cbfeaf
KS
1450 unsigned long index = start >> PAGE_SHIFT;
1451 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1452 struct page *page;
1453
1454 while (index <= end_index) {
1455 page = find_get_page(inode->i_mapping, index);
1456 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1457 __set_page_dirty_nobuffers(page);
8d38633c 1458 account_page_redirty(page);
09cbfeaf 1459 put_page(page);
4adaa611
CM
1460 index++;
1461 }
4adaa611
CM
1462}
1463
d352ac68
CM
1464/* find the first state struct with 'bits' set after 'start', and
1465 * return it. tree->lock must be held. NULL will returned if
1466 * nothing was found after 'start'
1467 */
48a3b636
ES
1468static struct extent_state *
1469find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1470 u64 start, unsigned bits)
d7fc640e
CM
1471{
1472 struct rb_node *node;
1473 struct extent_state *state;
1474
1475 /*
1476 * this search will find all the extents that end after
1477 * our range starts.
1478 */
1479 node = tree_search(tree, start);
d397712b 1480 if (!node)
d7fc640e 1481 goto out;
d7fc640e 1482
d397712b 1483 while (1) {
d7fc640e 1484 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1485 if (state->end >= start && (state->state & bits))
d7fc640e 1486 return state;
d397712b 1487
d7fc640e
CM
1488 node = rb_next(node);
1489 if (!node)
1490 break;
1491 }
1492out:
1493 return NULL;
1494}
d7fc640e 1495
69261c4b
XG
1496/*
1497 * find the first offset in the io tree with 'bits' set. zero is
1498 * returned if we find something, and *start_ret and *end_ret are
1499 * set to reflect the state struct that was found.
1500 *
477d7eaf 1501 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1502 */
1503int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1504 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1505 struct extent_state **cached_state)
69261c4b
XG
1506{
1507 struct extent_state *state;
1508 int ret = 1;
1509
1510 spin_lock(&tree->lock);
e6138876
JB
1511 if (cached_state && *cached_state) {
1512 state = *cached_state;
27a3507d 1513 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1514 while ((state = next_state(state)) != NULL) {
e6138876
JB
1515 if (state->state & bits)
1516 goto got_it;
e6138876
JB
1517 }
1518 free_extent_state(*cached_state);
1519 *cached_state = NULL;
1520 goto out;
1521 }
1522 free_extent_state(*cached_state);
1523 *cached_state = NULL;
1524 }
1525
69261c4b 1526 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1527got_it:
69261c4b 1528 if (state) {
e38e2ed7 1529 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1530 *start_ret = state->start;
1531 *end_ret = state->end;
1532 ret = 0;
1533 }
e6138876 1534out:
69261c4b
XG
1535 spin_unlock(&tree->lock);
1536 return ret;
1537}
1538
45bfcfc1
NB
1539/**
1540 * find_first_clear_extent_bit - finds the first range that has @bits not set
1541 * and that starts after @start
1542 *
1543 * @tree - the tree to search
1544 * @start - the offset at/after which the found extent should start
1545 * @start_ret - records the beginning of the range
1546 * @end_ret - records the end of the range (inclusive)
1547 * @bits - the set of bits which must be unset
1548 *
1549 * Since unallocated range is also considered one which doesn't have the bits
1550 * set it's possible that @end_ret contains -1, this happens in case the range
1551 * spans (last_range_end, end of device]. In this case it's up to the caller to
1552 * trim @end_ret to the appropriate size.
1553 */
1554void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1555 u64 *start_ret, u64 *end_ret, unsigned bits)
1556{
1557 struct extent_state *state;
1558 struct rb_node *node, *prev = NULL, *next;
1559
1560 spin_lock(&tree->lock);
1561
1562 /* Find first extent with bits cleared */
1563 while (1) {
1564 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1565 if (!node) {
1566 node = next;
1567 if (!node) {
1568 /*
1569 * We are past the last allocated chunk,
1570 * set start at the end of the last extent. The
1571 * device alloc tree should never be empty so
1572 * prev is always set.
1573 */
1574 ASSERT(prev);
1575 state = rb_entry(prev, struct extent_state, rb_node);
1576 *start_ret = state->end + 1;
1577 *end_ret = -1;
1578 goto out;
1579 }
1580 }
1581 state = rb_entry(node, struct extent_state, rb_node);
1582 if (in_range(start, state->start, state->end - state->start + 1) &&
1583 (state->state & bits)) {
1584 start = state->end + 1;
1585 } else {
1586 *start_ret = start;
1587 break;
1588 }
1589 }
1590
1591 /*
1592 * Find the longest stretch from start until an entry which has the
1593 * bits set
1594 */
1595 while (1) {
1596 state = rb_entry(node, struct extent_state, rb_node);
1597 if (state->end >= start && !(state->state & bits)) {
1598 *end_ret = state->end;
1599 } else {
1600 *end_ret = state->start - 1;
1601 break;
1602 }
1603
1604 node = rb_next(node);
1605 if (!node)
1606 break;
1607 }
1608out:
1609 spin_unlock(&tree->lock);
1610}
1611
d352ac68
CM
1612/*
1613 * find a contiguous range of bytes in the file marked as delalloc, not
1614 * more than 'max_bytes'. start and end are used to return the range,
1615 *
3522e903 1616 * true is returned if we find something, false if nothing was in the tree
d352ac68 1617 */
3522e903 1618static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1619 u64 *start, u64 *end, u64 max_bytes,
1620 struct extent_state **cached_state)
d1310b2e
CM
1621{
1622 struct rb_node *node;
1623 struct extent_state *state;
1624 u64 cur_start = *start;
3522e903 1625 bool found = false;
d1310b2e
CM
1626 u64 total_bytes = 0;
1627
cad321ad 1628 spin_lock(&tree->lock);
c8b97818 1629
d1310b2e
CM
1630 /*
1631 * this search will find all the extents that end after
1632 * our range starts.
1633 */
80ea96b1 1634 node = tree_search(tree, cur_start);
2b114d1d 1635 if (!node) {
3522e903 1636 *end = (u64)-1;
d1310b2e
CM
1637 goto out;
1638 }
1639
d397712b 1640 while (1) {
d1310b2e 1641 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1642 if (found && (state->start != cur_start ||
1643 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1644 goto out;
1645 }
1646 if (!(state->state & EXTENT_DELALLOC)) {
1647 if (!found)
1648 *end = state->end;
1649 goto out;
1650 }
c2a128d2 1651 if (!found) {
d1310b2e 1652 *start = state->start;
c2a128d2 1653 *cached_state = state;
b7ac31b7 1654 refcount_inc(&state->refs);
c2a128d2 1655 }
3522e903 1656 found = true;
d1310b2e
CM
1657 *end = state->end;
1658 cur_start = state->end + 1;
1659 node = rb_next(node);
d1310b2e 1660 total_bytes += state->end - state->start + 1;
7bf811a5 1661 if (total_bytes >= max_bytes)
573aecaf 1662 break;
573aecaf 1663 if (!node)
d1310b2e
CM
1664 break;
1665 }
1666out:
cad321ad 1667 spin_unlock(&tree->lock);
d1310b2e
CM
1668 return found;
1669}
1670
da2c7009
LB
1671static int __process_pages_contig(struct address_space *mapping,
1672 struct page *locked_page,
1673 pgoff_t start_index, pgoff_t end_index,
1674 unsigned long page_ops, pgoff_t *index_ret);
1675
143bede5
JM
1676static noinline void __unlock_for_delalloc(struct inode *inode,
1677 struct page *locked_page,
1678 u64 start, u64 end)
c8b97818 1679{
09cbfeaf
KS
1680 unsigned long index = start >> PAGE_SHIFT;
1681 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1682
76c0021d 1683 ASSERT(locked_page);
c8b97818 1684 if (index == locked_page->index && end_index == index)
143bede5 1685 return;
c8b97818 1686
76c0021d
LB
1687 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1688 PAGE_UNLOCK, NULL);
c8b97818
CM
1689}
1690
1691static noinline int lock_delalloc_pages(struct inode *inode,
1692 struct page *locked_page,
1693 u64 delalloc_start,
1694 u64 delalloc_end)
1695{
09cbfeaf 1696 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1697 unsigned long index_ret = index;
09cbfeaf 1698 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1699 int ret;
c8b97818 1700
76c0021d 1701 ASSERT(locked_page);
c8b97818
CM
1702 if (index == locked_page->index && index == end_index)
1703 return 0;
1704
76c0021d
LB
1705 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1706 end_index, PAGE_LOCK, &index_ret);
1707 if (ret == -EAGAIN)
1708 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1709 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1710 return ret;
1711}
1712
1713/*
3522e903
LF
1714 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1715 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1716 *
3522e903
LF
1717 * Return: true if we find something
1718 * false if nothing was in the tree
c8b97818 1719 */
ce9f967f 1720EXPORT_FOR_TESTS
3522e903 1721noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1722 struct extent_io_tree *tree,
1723 struct page *locked_page, u64 *start,
917aacec 1724 u64 *end)
c8b97818 1725{
917aacec 1726 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1727 u64 delalloc_start;
1728 u64 delalloc_end;
3522e903 1729 bool found;
9655d298 1730 struct extent_state *cached_state = NULL;
c8b97818
CM
1731 int ret;
1732 int loops = 0;
1733
1734again:
1735 /* step one, find a bunch of delalloc bytes starting at start */
1736 delalloc_start = *start;
1737 delalloc_end = 0;
1738 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1739 max_bytes, &cached_state);
70b99e69 1740 if (!found || delalloc_end <= *start) {
c8b97818
CM
1741 *start = delalloc_start;
1742 *end = delalloc_end;
c2a128d2 1743 free_extent_state(cached_state);
3522e903 1744 return false;
c8b97818
CM
1745 }
1746
70b99e69
CM
1747 /*
1748 * start comes from the offset of locked_page. We have to lock
1749 * pages in order, so we can't process delalloc bytes before
1750 * locked_page
1751 */
d397712b 1752 if (delalloc_start < *start)
70b99e69 1753 delalloc_start = *start;
70b99e69 1754
c8b97818
CM
1755 /*
1756 * make sure to limit the number of pages we try to lock down
c8b97818 1757 */
7bf811a5
JB
1758 if (delalloc_end + 1 - delalloc_start > max_bytes)
1759 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1760
c8b97818
CM
1761 /* step two, lock all the pages after the page that has start */
1762 ret = lock_delalloc_pages(inode, locked_page,
1763 delalloc_start, delalloc_end);
9bfd61d9 1764 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1765 if (ret == -EAGAIN) {
1766 /* some of the pages are gone, lets avoid looping by
1767 * shortening the size of the delalloc range we're searching
1768 */
9655d298 1769 free_extent_state(cached_state);
7d788742 1770 cached_state = NULL;
c8b97818 1771 if (!loops) {
09cbfeaf 1772 max_bytes = PAGE_SIZE;
c8b97818
CM
1773 loops = 1;
1774 goto again;
1775 } else {
3522e903 1776 found = false;
c8b97818
CM
1777 goto out_failed;
1778 }
1779 }
c8b97818
CM
1780
1781 /* step three, lock the state bits for the whole range */
ff13db41 1782 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1783
1784 /* then test to make sure it is all still delalloc */
1785 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1786 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1787 if (!ret) {
9655d298 1788 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1789 &cached_state);
c8b97818
CM
1790 __unlock_for_delalloc(inode, locked_page,
1791 delalloc_start, delalloc_end);
1792 cond_resched();
1793 goto again;
1794 }
9655d298 1795 free_extent_state(cached_state);
c8b97818
CM
1796 *start = delalloc_start;
1797 *end = delalloc_end;
1798out_failed:
1799 return found;
1800}
1801
da2c7009
LB
1802static int __process_pages_contig(struct address_space *mapping,
1803 struct page *locked_page,
1804 pgoff_t start_index, pgoff_t end_index,
1805 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1806{
873695b3 1807 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1808 unsigned long pages_locked = 0;
873695b3 1809 pgoff_t index = start_index;
c8b97818 1810 struct page *pages[16];
873695b3 1811 unsigned ret;
da2c7009 1812 int err = 0;
c8b97818 1813 int i;
771ed689 1814
da2c7009
LB
1815 if (page_ops & PAGE_LOCK) {
1816 ASSERT(page_ops == PAGE_LOCK);
1817 ASSERT(index_ret && *index_ret == start_index);
1818 }
1819
704de49d 1820 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1821 mapping_set_error(mapping, -EIO);
704de49d 1822
d397712b 1823 while (nr_pages > 0) {
873695b3 1824 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1825 min_t(unsigned long,
1826 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1827 if (ret == 0) {
1828 /*
1829 * Only if we're going to lock these pages,
1830 * can we find nothing at @index.
1831 */
1832 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1833 err = -EAGAIN;
1834 goto out;
da2c7009 1835 }
8b62b72b 1836
da2c7009 1837 for (i = 0; i < ret; i++) {
c2790a2e 1838 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1839 SetPagePrivate2(pages[i]);
1840
c8b97818 1841 if (pages[i] == locked_page) {
09cbfeaf 1842 put_page(pages[i]);
da2c7009 1843 pages_locked++;
c8b97818
CM
1844 continue;
1845 }
c2790a2e 1846 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1847 clear_page_dirty_for_io(pages[i]);
c2790a2e 1848 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1849 set_page_writeback(pages[i]);
704de49d
FM
1850 if (page_ops & PAGE_SET_ERROR)
1851 SetPageError(pages[i]);
c2790a2e 1852 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1853 end_page_writeback(pages[i]);
c2790a2e 1854 if (page_ops & PAGE_UNLOCK)
771ed689 1855 unlock_page(pages[i]);
da2c7009
LB
1856 if (page_ops & PAGE_LOCK) {
1857 lock_page(pages[i]);
1858 if (!PageDirty(pages[i]) ||
1859 pages[i]->mapping != mapping) {
1860 unlock_page(pages[i]);
1861 put_page(pages[i]);
1862 err = -EAGAIN;
1863 goto out;
1864 }
1865 }
09cbfeaf 1866 put_page(pages[i]);
da2c7009 1867 pages_locked++;
c8b97818
CM
1868 }
1869 nr_pages -= ret;
1870 index += ret;
1871 cond_resched();
1872 }
da2c7009
LB
1873out:
1874 if (err && index_ret)
1875 *index_ret = start_index + pages_locked - 1;
1876 return err;
c8b97818 1877}
c8b97818 1878
873695b3
LB
1879void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1880 u64 delalloc_end, struct page *locked_page,
1881 unsigned clear_bits,
1882 unsigned long page_ops)
1883{
1884 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1885 NULL);
873695b3
LB
1886
1887 __process_pages_contig(inode->i_mapping, locked_page,
1888 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1889 page_ops, NULL);
873695b3
LB
1890}
1891
d352ac68
CM
1892/*
1893 * count the number of bytes in the tree that have a given bit(s)
1894 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1895 * cached. The total number found is returned.
1896 */
d1310b2e
CM
1897u64 count_range_bits(struct extent_io_tree *tree,
1898 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1899 unsigned bits, int contig)
d1310b2e
CM
1900{
1901 struct rb_node *node;
1902 struct extent_state *state;
1903 u64 cur_start = *start;
1904 u64 total_bytes = 0;
ec29ed5b 1905 u64 last = 0;
d1310b2e
CM
1906 int found = 0;
1907
fae7f21c 1908 if (WARN_ON(search_end <= cur_start))
d1310b2e 1909 return 0;
d1310b2e 1910
cad321ad 1911 spin_lock(&tree->lock);
d1310b2e
CM
1912 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1913 total_bytes = tree->dirty_bytes;
1914 goto out;
1915 }
1916 /*
1917 * this search will find all the extents that end after
1918 * our range starts.
1919 */
80ea96b1 1920 node = tree_search(tree, cur_start);
d397712b 1921 if (!node)
d1310b2e 1922 goto out;
d1310b2e 1923
d397712b 1924 while (1) {
d1310b2e
CM
1925 state = rb_entry(node, struct extent_state, rb_node);
1926 if (state->start > search_end)
1927 break;
ec29ed5b
CM
1928 if (contig && found && state->start > last + 1)
1929 break;
1930 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1931 total_bytes += min(search_end, state->end) + 1 -
1932 max(cur_start, state->start);
1933 if (total_bytes >= max_bytes)
1934 break;
1935 if (!found) {
af60bed2 1936 *start = max(cur_start, state->start);
d1310b2e
CM
1937 found = 1;
1938 }
ec29ed5b
CM
1939 last = state->end;
1940 } else if (contig && found) {
1941 break;
d1310b2e
CM
1942 }
1943 node = rb_next(node);
1944 if (!node)
1945 break;
1946 }
1947out:
cad321ad 1948 spin_unlock(&tree->lock);
d1310b2e
CM
1949 return total_bytes;
1950}
b2950863 1951
d352ac68
CM
1952/*
1953 * set the private field for a given byte offset in the tree. If there isn't
1954 * an extent_state there already, this does nothing.
1955 */
f827ba9a 1956static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1957 struct io_failure_record *failrec)
d1310b2e
CM
1958{
1959 struct rb_node *node;
1960 struct extent_state *state;
1961 int ret = 0;
1962
cad321ad 1963 spin_lock(&tree->lock);
d1310b2e
CM
1964 /*
1965 * this search will find all the extents that end after
1966 * our range starts.
1967 */
80ea96b1 1968 node = tree_search(tree, start);
2b114d1d 1969 if (!node) {
d1310b2e
CM
1970 ret = -ENOENT;
1971 goto out;
1972 }
1973 state = rb_entry(node, struct extent_state, rb_node);
1974 if (state->start != start) {
1975 ret = -ENOENT;
1976 goto out;
1977 }
47dc196a 1978 state->failrec = failrec;
d1310b2e 1979out:
cad321ad 1980 spin_unlock(&tree->lock);
d1310b2e
CM
1981 return ret;
1982}
1983
f827ba9a 1984static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1985 struct io_failure_record **failrec)
d1310b2e
CM
1986{
1987 struct rb_node *node;
1988 struct extent_state *state;
1989 int ret = 0;
1990
cad321ad 1991 spin_lock(&tree->lock);
d1310b2e
CM
1992 /*
1993 * this search will find all the extents that end after
1994 * our range starts.
1995 */
80ea96b1 1996 node = tree_search(tree, start);
2b114d1d 1997 if (!node) {
d1310b2e
CM
1998 ret = -ENOENT;
1999 goto out;
2000 }
2001 state = rb_entry(node, struct extent_state, rb_node);
2002 if (state->start != start) {
2003 ret = -ENOENT;
2004 goto out;
2005 }
47dc196a 2006 *failrec = state->failrec;
d1310b2e 2007out:
cad321ad 2008 spin_unlock(&tree->lock);
d1310b2e
CM
2009 return ret;
2010}
2011
2012/*
2013 * searches a range in the state tree for a given mask.
70dec807 2014 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2015 * has the bits set. Otherwise, 1 is returned if any bit in the
2016 * range is found set.
2017 */
2018int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2019 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2020{
2021 struct extent_state *state = NULL;
2022 struct rb_node *node;
2023 int bitset = 0;
d1310b2e 2024
cad321ad 2025 spin_lock(&tree->lock);
27a3507d 2026 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2027 cached->end > start)
9655d298
CM
2028 node = &cached->rb_node;
2029 else
2030 node = tree_search(tree, start);
d1310b2e
CM
2031 while (node && start <= end) {
2032 state = rb_entry(node, struct extent_state, rb_node);
2033
2034 if (filled && state->start > start) {
2035 bitset = 0;
2036 break;
2037 }
2038
2039 if (state->start > end)
2040 break;
2041
2042 if (state->state & bits) {
2043 bitset = 1;
2044 if (!filled)
2045 break;
2046 } else if (filled) {
2047 bitset = 0;
2048 break;
2049 }
46562cec
CM
2050
2051 if (state->end == (u64)-1)
2052 break;
2053
d1310b2e
CM
2054 start = state->end + 1;
2055 if (start > end)
2056 break;
2057 node = rb_next(node);
2058 if (!node) {
2059 if (filled)
2060 bitset = 0;
2061 break;
2062 }
2063 }
cad321ad 2064 spin_unlock(&tree->lock);
d1310b2e
CM
2065 return bitset;
2066}
d1310b2e
CM
2067
2068/*
2069 * helper function to set a given page up to date if all the
2070 * extents in the tree for that page are up to date
2071 */
143bede5 2072static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2073{
4eee4fa4 2074 u64 start = page_offset(page);
09cbfeaf 2075 u64 end = start + PAGE_SIZE - 1;
9655d298 2076 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2077 SetPageUptodate(page);
d1310b2e
CM
2078}
2079
7870d082
JB
2080int free_io_failure(struct extent_io_tree *failure_tree,
2081 struct extent_io_tree *io_tree,
2082 struct io_failure_record *rec)
4a54c8c1
JS
2083{
2084 int ret;
2085 int err = 0;
4a54c8c1 2086
47dc196a 2087 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2088 ret = clear_extent_bits(failure_tree, rec->start,
2089 rec->start + rec->len - 1,
91166212 2090 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2091 if (ret)
2092 err = ret;
2093
7870d082 2094 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2095 rec->start + rec->len - 1,
91166212 2096 EXTENT_DAMAGED);
53b381b3
DW
2097 if (ret && !err)
2098 err = ret;
4a54c8c1
JS
2099
2100 kfree(rec);
2101 return err;
2102}
2103
4a54c8c1
JS
2104/*
2105 * this bypasses the standard btrfs submit functions deliberately, as
2106 * the standard behavior is to write all copies in a raid setup. here we only
2107 * want to write the one bad copy. so we do the mapping for ourselves and issue
2108 * submit_bio directly.
3ec706c8 2109 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2110 * actually prevents the read that triggered the error from finishing.
2111 * currently, there can be no more than two copies of every data bit. thus,
2112 * exactly one rewrite is required.
2113 */
6ec656bc
JB
2114int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2115 u64 length, u64 logical, struct page *page,
2116 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2117{
2118 struct bio *bio;
2119 struct btrfs_device *dev;
4a54c8c1
JS
2120 u64 map_length = 0;
2121 u64 sector;
2122 struct btrfs_bio *bbio = NULL;
2123 int ret;
2124
1751e8a6 2125 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2126 BUG_ON(!mirror_num);
2127
c5e4c3d7 2128 bio = btrfs_io_bio_alloc(1);
4f024f37 2129 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2130 map_length = length;
2131
b5de8d0d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are doing the
2135 * read repair operation.
2136 */
2137 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2138 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2139 /*
2140 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2141 * to update all raid stripes, but here we just want to correct
2142 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2143 * stripe's dev and sector.
2144 */
2145 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2146 &map_length, &bbio, 0);
2147 if (ret) {
2148 btrfs_bio_counter_dec(fs_info);
2149 bio_put(bio);
2150 return -EIO;
2151 }
2152 ASSERT(bbio->mirror_num == 1);
2153 } else {
2154 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2155 &map_length, &bbio, mirror_num);
2156 if (ret) {
2157 btrfs_bio_counter_dec(fs_info);
2158 bio_put(bio);
2159 return -EIO;
2160 }
2161 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2162 }
c725328c
LB
2163
2164 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2165 bio->bi_iter.bi_sector = sector;
c725328c 2166 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2167 btrfs_put_bbio(bbio);
ebbede42
AJ
2168 if (!dev || !dev->bdev ||
2169 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2170 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2171 bio_put(bio);
2172 return -EIO;
2173 }
74d46992 2174 bio_set_dev(bio, dev->bdev);
70fd7614 2175 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2176 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2177
4e49ea4a 2178 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2179 /* try to remap that extent elsewhere? */
b5de8d0d 2180 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2181 bio_put(bio);
442a4f63 2182 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2183 return -EIO;
2184 }
2185
b14af3b4
DS
2186 btrfs_info_rl_in_rcu(fs_info,
2187 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2188 ino, start,
1203b681 2189 rcu_str_deref(dev->name), sector);
b5de8d0d 2190 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2191 bio_put(bio);
2192 return 0;
2193}
2194
20a1fbf9 2195int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2196{
20a1fbf9 2197 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2198 u64 start = eb->start;
cc5e31a4 2199 int i, num_pages = num_extent_pages(eb);
d95603b2 2200 int ret = 0;
ea466794 2201
bc98a42c 2202 if (sb_rdonly(fs_info->sb))
908960c6
ID
2203 return -EROFS;
2204
ea466794 2205 for (i = 0; i < num_pages; i++) {
fb85fc9a 2206 struct page *p = eb->pages[i];
1203b681 2207
6ec656bc 2208 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2209 start - page_offset(p), mirror_num);
ea466794
JB
2210 if (ret)
2211 break;
09cbfeaf 2212 start += PAGE_SIZE;
ea466794
JB
2213 }
2214
2215 return ret;
2216}
2217
4a54c8c1
JS
2218/*
2219 * each time an IO finishes, we do a fast check in the IO failure tree
2220 * to see if we need to process or clean up an io_failure_record
2221 */
7870d082
JB
2222int clean_io_failure(struct btrfs_fs_info *fs_info,
2223 struct extent_io_tree *failure_tree,
2224 struct extent_io_tree *io_tree, u64 start,
2225 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2226{
2227 u64 private;
4a54c8c1 2228 struct io_failure_record *failrec;
4a54c8c1
JS
2229 struct extent_state *state;
2230 int num_copies;
4a54c8c1 2231 int ret;
4a54c8c1
JS
2232
2233 private = 0;
7870d082
JB
2234 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2235 EXTENT_DIRTY, 0);
4a54c8c1
JS
2236 if (!ret)
2237 return 0;
2238
7870d082 2239 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2240 if (ret)
2241 return 0;
2242
4a54c8c1
JS
2243 BUG_ON(!failrec->this_mirror);
2244
2245 if (failrec->in_validation) {
2246 /* there was no real error, just free the record */
ab8d0fc4
JM
2247 btrfs_debug(fs_info,
2248 "clean_io_failure: freeing dummy error at %llu",
2249 failrec->start);
4a54c8c1
JS
2250 goto out;
2251 }
bc98a42c 2252 if (sb_rdonly(fs_info->sb))
908960c6 2253 goto out;
4a54c8c1 2254
7870d082
JB
2255 spin_lock(&io_tree->lock);
2256 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2257 failrec->start,
2258 EXTENT_LOCKED);
7870d082 2259 spin_unlock(&io_tree->lock);
4a54c8c1 2260
883d0de4
MX
2261 if (state && state->start <= failrec->start &&
2262 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2263 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2264 failrec->len);
4a54c8c1 2265 if (num_copies > 1) {
7870d082
JB
2266 repair_io_failure(fs_info, ino, start, failrec->len,
2267 failrec->logical, page, pg_offset,
2268 failrec->failed_mirror);
4a54c8c1
JS
2269 }
2270 }
2271
2272out:
7870d082 2273 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2274
454ff3de 2275 return 0;
4a54c8c1
JS
2276}
2277
f612496b
MX
2278/*
2279 * Can be called when
2280 * - hold extent lock
2281 * - under ordered extent
2282 * - the inode is freeing
2283 */
7ab7956e 2284void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2285{
7ab7956e 2286 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2287 struct io_failure_record *failrec;
2288 struct extent_state *state, *next;
2289
2290 if (RB_EMPTY_ROOT(&failure_tree->state))
2291 return;
2292
2293 spin_lock(&failure_tree->lock);
2294 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2295 while (state) {
2296 if (state->start > end)
2297 break;
2298
2299 ASSERT(state->end <= end);
2300
2301 next = next_state(state);
2302
47dc196a 2303 failrec = state->failrec;
f612496b
MX
2304 free_extent_state(state);
2305 kfree(failrec);
2306
2307 state = next;
2308 }
2309 spin_unlock(&failure_tree->lock);
2310}
2311
2fe6303e 2312int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2313 struct io_failure_record **failrec_ret)
4a54c8c1 2314{
ab8d0fc4 2315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2316 struct io_failure_record *failrec;
4a54c8c1 2317 struct extent_map *em;
4a54c8c1
JS
2318 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2319 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2320 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2321 int ret;
4a54c8c1
JS
2322 u64 logical;
2323
47dc196a 2324 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2325 if (ret) {
2326 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2327 if (!failrec)
2328 return -ENOMEM;
2fe6303e 2329
4a54c8c1
JS
2330 failrec->start = start;
2331 failrec->len = end - start + 1;
2332 failrec->this_mirror = 0;
2333 failrec->bio_flags = 0;
2334 failrec->in_validation = 0;
2335
2336 read_lock(&em_tree->lock);
2337 em = lookup_extent_mapping(em_tree, start, failrec->len);
2338 if (!em) {
2339 read_unlock(&em_tree->lock);
2340 kfree(failrec);
2341 return -EIO;
2342 }
2343
68ba990f 2344 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2345 free_extent_map(em);
2346 em = NULL;
2347 }
2348 read_unlock(&em_tree->lock);
7a2d6a64 2349 if (!em) {
4a54c8c1
JS
2350 kfree(failrec);
2351 return -EIO;
2352 }
2fe6303e 2353
4a54c8c1
JS
2354 logical = start - em->start;
2355 logical = em->block_start + logical;
2356 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2357 logical = em->block_start;
2358 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2359 extent_set_compress_type(&failrec->bio_flags,
2360 em->compress_type);
2361 }
2fe6303e 2362
ab8d0fc4
JM
2363 btrfs_debug(fs_info,
2364 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2365 logical, start, failrec->len);
2fe6303e 2366
4a54c8c1
JS
2367 failrec->logical = logical;
2368 free_extent_map(em);
2369
2370 /* set the bits in the private failure tree */
2371 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2372 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2373 if (ret >= 0)
47dc196a 2374 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2375 /* set the bits in the inode's tree */
2376 if (ret >= 0)
ceeb0ae7 2377 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2378 if (ret < 0) {
2379 kfree(failrec);
2380 return ret;
2381 }
2382 } else {
ab8d0fc4
JM
2383 btrfs_debug(fs_info,
2384 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2385 failrec->logical, failrec->start, failrec->len,
2386 failrec->in_validation);
4a54c8c1
JS
2387 /*
2388 * when data can be on disk more than twice, add to failrec here
2389 * (e.g. with a list for failed_mirror) to make
2390 * clean_io_failure() clean all those errors at once.
2391 */
2392 }
2fe6303e
MX
2393
2394 *failrec_ret = failrec;
2395
2396 return 0;
2397}
2398
a0b60d72 2399bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2400 struct io_failure_record *failrec, int failed_mirror)
2401{
ab8d0fc4 2402 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2403 int num_copies;
2404
ab8d0fc4 2405 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2406 if (num_copies == 1) {
2407 /*
2408 * we only have a single copy of the data, so don't bother with
2409 * all the retry and error correction code that follows. no
2410 * matter what the error is, it is very likely to persist.
2411 */
ab8d0fc4
JM
2412 btrfs_debug(fs_info,
2413 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2414 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2415 return false;
4a54c8c1
JS
2416 }
2417
4a54c8c1
JS
2418 /*
2419 * there are two premises:
2420 * a) deliver good data to the caller
2421 * b) correct the bad sectors on disk
2422 */
a0b60d72 2423 if (failed_bio_pages > 1) {
4a54c8c1
JS
2424 /*
2425 * to fulfill b), we need to know the exact failing sectors, as
2426 * we don't want to rewrite any more than the failed ones. thus,
2427 * we need separate read requests for the failed bio
2428 *
2429 * if the following BUG_ON triggers, our validation request got
2430 * merged. we need separate requests for our algorithm to work.
2431 */
2432 BUG_ON(failrec->in_validation);
2433 failrec->in_validation = 1;
2434 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2435 } else {
2436 /*
2437 * we're ready to fulfill a) and b) alongside. get a good copy
2438 * of the failed sector and if we succeed, we have setup
2439 * everything for repair_io_failure to do the rest for us.
2440 */
2441 if (failrec->in_validation) {
2442 BUG_ON(failrec->this_mirror != failed_mirror);
2443 failrec->in_validation = 0;
2444 failrec->this_mirror = 0;
2445 }
2446 failrec->failed_mirror = failed_mirror;
2447 failrec->this_mirror++;
2448 if (failrec->this_mirror == failed_mirror)
2449 failrec->this_mirror++;
4a54c8c1
JS
2450 }
2451
facc8a22 2452 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2453 btrfs_debug(fs_info,
2454 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2455 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2456 return false;
4a54c8c1
JS
2457 }
2458
c3cfb656 2459 return true;
2fe6303e
MX
2460}
2461
2462
2463struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2464 struct io_failure_record *failrec,
2465 struct page *page, int pg_offset, int icsum,
8b110e39 2466 bio_end_io_t *endio_func, void *data)
2fe6303e 2467{
0b246afa 2468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2469 struct bio *bio;
2470 struct btrfs_io_bio *btrfs_failed_bio;
2471 struct btrfs_io_bio *btrfs_bio;
2472
c5e4c3d7 2473 bio = btrfs_io_bio_alloc(1);
2fe6303e 2474 bio->bi_end_io = endio_func;
4f024f37 2475 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2476 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2477 bio->bi_iter.bi_size = 0;
8b110e39 2478 bio->bi_private = data;
4a54c8c1 2479
facc8a22
MX
2480 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2481 if (btrfs_failed_bio->csum) {
facc8a22
MX
2482 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2483
2484 btrfs_bio = btrfs_io_bio(bio);
2485 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2486 icsum *= csum_size;
2487 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2488 csum_size);
2489 }
2490
2fe6303e
MX
2491 bio_add_page(bio, page, failrec->len, pg_offset);
2492
2493 return bio;
2494}
2495
2496/*
78e62c02
NB
2497 * This is a generic handler for readpage errors. If other copies exist, read
2498 * those and write back good data to the failed position. Does not investigate
2499 * in remapping the failed extent elsewhere, hoping the device will be smart
2500 * enough to do this as needed
2fe6303e 2501 */
2fe6303e
MX
2502static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2503 struct page *page, u64 start, u64 end,
2504 int failed_mirror)
2505{
2506 struct io_failure_record *failrec;
2507 struct inode *inode = page->mapping->host;
2508 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2509 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2510 struct bio *bio;
70fd7614 2511 int read_mode = 0;
4e4cbee9 2512 blk_status_t status;
2fe6303e 2513 int ret;
8a2ee44a 2514 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2515
1f7ad75b 2516 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2517
2518 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2519 if (ret)
2520 return ret;
2521
a0b60d72 2522 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2523 failed_mirror)) {
7870d082 2524 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2525 return -EIO;
2526 }
2527
a0b60d72 2528 if (failed_bio_pages > 1)
70fd7614 2529 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2530
2531 phy_offset >>= inode->i_sb->s_blocksize_bits;
2532 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2533 start - page_offset(page),
8b110e39
MX
2534 (int)phy_offset, failed_bio->bi_end_io,
2535 NULL);
ebcc3263 2536 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2537
ab8d0fc4
JM
2538 btrfs_debug(btrfs_sb(inode->i_sb),
2539 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2540 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2541
8c27cb35 2542 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2543 failrec->bio_flags);
4e4cbee9 2544 if (status) {
7870d082 2545 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2546 bio_put(bio);
4e4cbee9 2547 ret = blk_status_to_errno(status);
6c387ab2
MX
2548 }
2549
013bd4c3 2550 return ret;
4a54c8c1
JS
2551}
2552
d1310b2e
CM
2553/* lots and lots of room for performance fixes in the end_bio funcs */
2554
b5227c07 2555void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2556{
2557 int uptodate = (err == 0);
3e2426bd 2558 int ret = 0;
87826df0 2559
c629732d 2560 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2561
87826df0 2562 if (!uptodate) {
87826df0
JM
2563 ClearPageUptodate(page);
2564 SetPageError(page);
bff5baf8 2565 ret = err < 0 ? err : -EIO;
5dca6eea 2566 mapping_set_error(page->mapping, ret);
87826df0 2567 }
87826df0
JM
2568}
2569
d1310b2e
CM
2570/*
2571 * after a writepage IO is done, we need to:
2572 * clear the uptodate bits on error
2573 * clear the writeback bits in the extent tree for this IO
2574 * end_page_writeback if the page has no more pending IO
2575 *
2576 * Scheduling is not allowed, so the extent state tree is expected
2577 * to have one and only one object corresponding to this IO.
2578 */
4246a0b6 2579static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2580{
4e4cbee9 2581 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2582 struct bio_vec *bvec;
d1310b2e
CM
2583 u64 start;
2584 u64 end;
2c30c71b 2585 int i;
6dc4f100 2586 struct bvec_iter_all iter_all;
d1310b2e 2587
c09abff8 2588 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2589 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2590 struct page *page = bvec->bv_page;
0b246afa
JM
2591 struct inode *inode = page->mapping->host;
2592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2593
17a5adcc
AO
2594 /* We always issue full-page reads, but if some block
2595 * in a page fails to read, blk_update_request() will
2596 * advance bv_offset and adjust bv_len to compensate.
2597 * Print a warning for nonzero offsets, and an error
2598 * if they don't add up to a full page. */
09cbfeaf
KS
2599 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2600 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2601 btrfs_err(fs_info,
efe120a0
FH
2602 "partial page write in btrfs with offset %u and length %u",
2603 bvec->bv_offset, bvec->bv_len);
2604 else
0b246afa 2605 btrfs_info(fs_info,
5d163e0e 2606 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2607 bvec->bv_offset, bvec->bv_len);
2608 }
d1310b2e 2609
17a5adcc
AO
2610 start = page_offset(page);
2611 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2612
4e4cbee9 2613 end_extent_writepage(page, error, start, end);
17a5adcc 2614 end_page_writeback(page);
2c30c71b 2615 }
2b1f55b0 2616
d1310b2e 2617 bio_put(bio);
d1310b2e
CM
2618}
2619
883d0de4
MX
2620static void
2621endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2622 int uptodate)
2623{
2624 struct extent_state *cached = NULL;
2625 u64 end = start + len - 1;
2626
2627 if (uptodate && tree->track_uptodate)
2628 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2629 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2630}
2631
d1310b2e
CM
2632/*
2633 * after a readpage IO is done, we need to:
2634 * clear the uptodate bits on error
2635 * set the uptodate bits if things worked
2636 * set the page up to date if all extents in the tree are uptodate
2637 * clear the lock bit in the extent tree
2638 * unlock the page if there are no other extents locked for it
2639 *
2640 * Scheduling is not allowed, so the extent state tree is expected
2641 * to have one and only one object corresponding to this IO.
2642 */
4246a0b6 2643static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2644{
2c30c71b 2645 struct bio_vec *bvec;
4e4cbee9 2646 int uptodate = !bio->bi_status;
facc8a22 2647 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2648 struct extent_io_tree *tree, *failure_tree;
facc8a22 2649 u64 offset = 0;
d1310b2e
CM
2650 u64 start;
2651 u64 end;
facc8a22 2652 u64 len;
883d0de4
MX
2653 u64 extent_start = 0;
2654 u64 extent_len = 0;
5cf1ab56 2655 int mirror;
d1310b2e 2656 int ret;
2c30c71b 2657 int i;
6dc4f100 2658 struct bvec_iter_all iter_all;
d1310b2e 2659
c09abff8 2660 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2661 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2662 struct page *page = bvec->bv_page;
a71754fc 2663 struct inode *inode = page->mapping->host;
ab8d0fc4 2664 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2665 bool data_inode = btrfs_ino(BTRFS_I(inode))
2666 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2667
ab8d0fc4
JM
2668 btrfs_debug(fs_info,
2669 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2670 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2671 io_bio->mirror_num);
a71754fc 2672 tree = &BTRFS_I(inode)->io_tree;
7870d082 2673 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2674
17a5adcc
AO
2675 /* We always issue full-page reads, but if some block
2676 * in a page fails to read, blk_update_request() will
2677 * advance bv_offset and adjust bv_len to compensate.
2678 * Print a warning for nonzero offsets, and an error
2679 * if they don't add up to a full page. */
09cbfeaf
KS
2680 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2681 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2682 btrfs_err(fs_info,
2683 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2684 bvec->bv_offset, bvec->bv_len);
2685 else
ab8d0fc4
JM
2686 btrfs_info(fs_info,
2687 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2688 bvec->bv_offset, bvec->bv_len);
2689 }
d1310b2e 2690
17a5adcc
AO
2691 start = page_offset(page);
2692 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2693 len = bvec->bv_len;
d1310b2e 2694
9be3395b 2695 mirror = io_bio->mirror_num;
78e62c02 2696 if (likely(uptodate)) {
facc8a22
MX
2697 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2698 page, start, end,
2699 mirror);
5ee0844d 2700 if (ret)
d1310b2e 2701 uptodate = 0;
5ee0844d 2702 else
7870d082
JB
2703 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2704 failure_tree, tree, start,
2705 page,
2706 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2707 }
ea466794 2708
f2a09da9
MX
2709 if (likely(uptodate))
2710 goto readpage_ok;
2711
78e62c02 2712 if (data_inode) {
9d0d1c8b 2713
f4a8e656 2714 /*
78e62c02
NB
2715 * The generic bio_readpage_error handles errors the
2716 * following way: If possible, new read requests are
2717 * created and submitted and will end up in
2718 * end_bio_extent_readpage as well (if we're lucky,
2719 * not in the !uptodate case). In that case it returns
2720 * 0 and we just go on with the next page in our bio.
2721 * If it can't handle the error it will return -EIO and
2722 * we remain responsible for that page.
f4a8e656 2723 */
78e62c02
NB
2724 ret = bio_readpage_error(bio, offset, page, start, end,
2725 mirror);
2726 if (ret == 0) {
2727 uptodate = !bio->bi_status;
2728 offset += len;
2729 continue;
2730 }
2731 } else {
2732 struct extent_buffer *eb;
2733
2734 eb = (struct extent_buffer *)page->private;
2735 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2736 eb->read_mirror = mirror;
2737 atomic_dec(&eb->io_pages);
2738 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2739 &eb->bflags))
2740 btree_readahead_hook(eb, -EIO);
7e38326f 2741 }
f2a09da9 2742readpage_ok:
883d0de4 2743 if (likely(uptodate)) {
a71754fc 2744 loff_t i_size = i_size_read(inode);
09cbfeaf 2745 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2746 unsigned off;
a71754fc
JB
2747
2748 /* Zero out the end if this page straddles i_size */
7073017a 2749 off = offset_in_page(i_size);
a583c026 2750 if (page->index == end_index && off)
09cbfeaf 2751 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2752 SetPageUptodate(page);
70dec807 2753 } else {
17a5adcc
AO
2754 ClearPageUptodate(page);
2755 SetPageError(page);
70dec807 2756 }
17a5adcc 2757 unlock_page(page);
facc8a22 2758 offset += len;
883d0de4
MX
2759
2760 if (unlikely(!uptodate)) {
2761 if (extent_len) {
2762 endio_readpage_release_extent(tree,
2763 extent_start,
2764 extent_len, 1);
2765 extent_start = 0;
2766 extent_len = 0;
2767 }
2768 endio_readpage_release_extent(tree, start,
2769 end - start + 1, 0);
2770 } else if (!extent_len) {
2771 extent_start = start;
2772 extent_len = end + 1 - start;
2773 } else if (extent_start + extent_len == start) {
2774 extent_len += end + 1 - start;
2775 } else {
2776 endio_readpage_release_extent(tree, extent_start,
2777 extent_len, uptodate);
2778 extent_start = start;
2779 extent_len = end + 1 - start;
2780 }
2c30c71b 2781 }
d1310b2e 2782
883d0de4
MX
2783 if (extent_len)
2784 endio_readpage_release_extent(tree, extent_start, extent_len,
2785 uptodate);
b3a0dd50 2786 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2787 bio_put(bio);
d1310b2e
CM
2788}
2789
9be3395b 2790/*
184f999e
DS
2791 * Initialize the members up to but not including 'bio'. Use after allocating a
2792 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2793 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2794 */
184f999e 2795static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2796{
184f999e
DS
2797 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2798}
d1310b2e 2799
9be3395b 2800/*
6e707bcd
DS
2801 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2802 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2803 * for the appropriate container_of magic
9be3395b 2804 */
c821e7f3 2805struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2806{
2807 struct bio *bio;
d1310b2e 2808
8ac9f7c1 2809 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2810 bio_set_dev(bio, bdev);
c821e7f3 2811 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2812 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2813 return bio;
2814}
2815
8b6c1d56 2816struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2817{
23ea8e5a
MX
2818 struct btrfs_io_bio *btrfs_bio;
2819 struct bio *new;
9be3395b 2820
6e707bcd 2821 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2822 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2823 btrfs_bio = btrfs_io_bio(new);
184f999e 2824 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2825 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2826 return new;
2827}
9be3395b 2828
c5e4c3d7 2829struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2830{
facc8a22
MX
2831 struct bio *bio;
2832
6e707bcd 2833 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2834 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2835 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2836 return bio;
9be3395b
CM
2837}
2838
e477094f 2839struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2840{
2841 struct bio *bio;
2842 struct btrfs_io_bio *btrfs_bio;
2843
2844 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2845 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2846 ASSERT(bio);
2847
2848 btrfs_bio = btrfs_io_bio(bio);
184f999e 2849 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2850
2851 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2852 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2853 return bio;
2854}
9be3395b 2855
4b81ba48
DS
2856/*
2857 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2858 * @tree: tree so we can call our merge_bio hook
2859 * @wbc: optional writeback control for io accounting
2860 * @page: page to add to the bio
2861 * @pg_offset: offset of the new bio or to check whether we are adding
2862 * a contiguous page to the previous one
2863 * @size: portion of page that we want to write
2864 * @offset: starting offset in the page
2865 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2866 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2867 * @end_io_func: end_io callback for new bio
2868 * @mirror_num: desired mirror to read/write
2869 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2870 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2871 */
2872static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2873 struct writeback_control *wbc,
6273b7f8 2874 struct page *page, u64 offset,
6c5a4e2c 2875 size_t size, unsigned long pg_offset,
d1310b2e
CM
2876 struct block_device *bdev,
2877 struct bio **bio_ret,
f188591e 2878 bio_end_io_t end_io_func,
c8b97818
CM
2879 int mirror_num,
2880 unsigned long prev_bio_flags,
005efedf
FM
2881 unsigned long bio_flags,
2882 bool force_bio_submit)
d1310b2e
CM
2883{
2884 int ret = 0;
2885 struct bio *bio;
09cbfeaf 2886 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2887 sector_t sector = offset >> 9;
d1310b2e 2888
5c2b1fd7
DS
2889 ASSERT(bio_ret);
2890
2891 if (*bio_ret) {
0c8508a6
DS
2892 bool contig;
2893 bool can_merge = true;
2894
d1310b2e 2895 bio = *bio_ret;
0c8508a6 2896 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2897 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2898 else
f73a1c7d 2899 contig = bio_end_sector(bio) == sector;
c8b97818 2900
da12fe54
NB
2901 ASSERT(tree->ops);
2902 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2903 can_merge = false;
2904
2905 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2906 force_bio_submit ||
6c5a4e2c 2907 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2908 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2909 if (ret < 0) {
2910 *bio_ret = NULL;
79787eaa 2911 return ret;
289454ad 2912 }
d1310b2e
CM
2913 bio = NULL;
2914 } else {
da2f0f74
CM
2915 if (wbc)
2916 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2917 return 0;
2918 }
2919 }
c8b97818 2920
6273b7f8 2921 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2922 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2923 bio->bi_end_io = end_io_func;
2924 bio->bi_private = tree;
e6959b93 2925 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2926 bio->bi_opf = opf;
da2f0f74
CM
2927 if (wbc) {
2928 wbc_init_bio(wbc, bio);
2929 wbc_account_io(wbc, page, page_size);
2930 }
70dec807 2931
5c2b1fd7 2932 *bio_ret = bio;
d1310b2e
CM
2933
2934 return ret;
2935}
2936
48a3b636
ES
2937static void attach_extent_buffer_page(struct extent_buffer *eb,
2938 struct page *page)
d1310b2e
CM
2939{
2940 if (!PagePrivate(page)) {
2941 SetPagePrivate(page);
09cbfeaf 2942 get_page(page);
4f2de97a
JB
2943 set_page_private(page, (unsigned long)eb);
2944 } else {
2945 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2946 }
2947}
2948
4f2de97a 2949void set_page_extent_mapped(struct page *page)
d1310b2e 2950{
4f2de97a
JB
2951 if (!PagePrivate(page)) {
2952 SetPagePrivate(page);
09cbfeaf 2953 get_page(page);
4f2de97a
JB
2954 set_page_private(page, EXTENT_PAGE_PRIVATE);
2955 }
d1310b2e
CM
2956}
2957
125bac01
MX
2958static struct extent_map *
2959__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2960 u64 start, u64 len, get_extent_t *get_extent,
2961 struct extent_map **em_cached)
2962{
2963 struct extent_map *em;
2964
2965 if (em_cached && *em_cached) {
2966 em = *em_cached;
cbc0e928 2967 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2968 start < extent_map_end(em)) {
490b54d6 2969 refcount_inc(&em->refs);
125bac01
MX
2970 return em;
2971 }
2972
2973 free_extent_map(em);
2974 *em_cached = NULL;
2975 }
2976
fc4f21b1 2977 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2978 if (em_cached && !IS_ERR_OR_NULL(em)) {
2979 BUG_ON(*em_cached);
490b54d6 2980 refcount_inc(&em->refs);
125bac01
MX
2981 *em_cached = em;
2982 }
2983 return em;
2984}
d1310b2e
CM
2985/*
2986 * basic readpage implementation. Locked extent state structs are inserted
2987 * into the tree that are removed when the IO is done (by the end_io
2988 * handlers)
79787eaa 2989 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2990 * return 0 on success, otherwise return error
d1310b2e 2991 */
9974090b
MX
2992static int __do_readpage(struct extent_io_tree *tree,
2993 struct page *page,
2994 get_extent_t *get_extent,
125bac01 2995 struct extent_map **em_cached,
9974090b 2996 struct bio **bio, int mirror_num,
f1c77c55 2997 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2998 u64 *prev_em_start)
d1310b2e
CM
2999{
3000 struct inode *inode = page->mapping->host;
4eee4fa4 3001 u64 start = page_offset(page);
8eec8296 3002 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3003 u64 cur = start;
3004 u64 extent_offset;
3005 u64 last_byte = i_size_read(inode);
3006 u64 block_start;
3007 u64 cur_end;
d1310b2e
CM
3008 struct extent_map *em;
3009 struct block_device *bdev;
baf863b9 3010 int ret = 0;
d1310b2e 3011 int nr = 0;
306e16ce 3012 size_t pg_offset = 0;
d1310b2e 3013 size_t iosize;
c8b97818 3014 size_t disk_io_size;
d1310b2e 3015 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3016 unsigned long this_bio_flag = 0;
d1310b2e
CM
3017
3018 set_page_extent_mapped(page);
3019
90a887c9
DM
3020 if (!PageUptodate(page)) {
3021 if (cleancache_get_page(page) == 0) {
3022 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3023 unlock_extent(tree, start, end);
90a887c9
DM
3024 goto out;
3025 }
3026 }
3027
09cbfeaf 3028 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3029 char *userpage;
7073017a 3030 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3031
3032 if (zero_offset) {
09cbfeaf 3033 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3034 userpage = kmap_atomic(page);
c8b97818
CM
3035 memset(userpage + zero_offset, 0, iosize);
3036 flush_dcache_page(page);
7ac687d9 3037 kunmap_atomic(userpage);
c8b97818
CM
3038 }
3039 }
d1310b2e 3040 while (cur <= end) {
005efedf 3041 bool force_bio_submit = false;
6273b7f8 3042 u64 offset;
c8f2f24b 3043
d1310b2e
CM
3044 if (cur >= last_byte) {
3045 char *userpage;
507903b8
AJ
3046 struct extent_state *cached = NULL;
3047
09cbfeaf 3048 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3049 userpage = kmap_atomic(page);
306e16ce 3050 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3051 flush_dcache_page(page);
7ac687d9 3052 kunmap_atomic(userpage);
d1310b2e 3053 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3054 &cached, GFP_NOFS);
7f042a83 3055 unlock_extent_cached(tree, cur,
e43bbe5e 3056 cur + iosize - 1, &cached);
d1310b2e
CM
3057 break;
3058 }
125bac01
MX
3059 em = __get_extent_map(inode, page, pg_offset, cur,
3060 end - cur + 1, get_extent, em_cached);
c704005d 3061 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3062 SetPageError(page);
7f042a83 3063 unlock_extent(tree, cur, end);
d1310b2e
CM
3064 break;
3065 }
d1310b2e
CM
3066 extent_offset = cur - em->start;
3067 BUG_ON(extent_map_end(em) <= cur);
3068 BUG_ON(end < cur);
3069
261507a0 3070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3071 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3072 extent_set_compress_type(&this_bio_flag,
3073 em->compress_type);
3074 }
c8b97818 3075
d1310b2e
CM
3076 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3077 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3078 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3079 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3080 disk_io_size = em->block_len;
6273b7f8 3081 offset = em->block_start;
c8b97818 3082 } else {
6273b7f8 3083 offset = em->block_start + extent_offset;
c8b97818
CM
3084 disk_io_size = iosize;
3085 }
d1310b2e
CM
3086 bdev = em->bdev;
3087 block_start = em->block_start;
d899e052
YZ
3088 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3089 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3090
3091 /*
3092 * If we have a file range that points to a compressed extent
3093 * and it's followed by a consecutive file range that points to
3094 * to the same compressed extent (possibly with a different
3095 * offset and/or length, so it either points to the whole extent
3096 * or only part of it), we must make sure we do not submit a
3097 * single bio to populate the pages for the 2 ranges because
3098 * this makes the compressed extent read zero out the pages
3099 * belonging to the 2nd range. Imagine the following scenario:
3100 *
3101 * File layout
3102 * [0 - 8K] [8K - 24K]
3103 * | |
3104 * | |
3105 * points to extent X, points to extent X,
3106 * offset 4K, length of 8K offset 0, length 16K
3107 *
3108 * [extent X, compressed length = 4K uncompressed length = 16K]
3109 *
3110 * If the bio to read the compressed extent covers both ranges,
3111 * it will decompress extent X into the pages belonging to the
3112 * first range and then it will stop, zeroing out the remaining
3113 * pages that belong to the other range that points to extent X.
3114 * So here we make sure we submit 2 bios, one for the first
3115 * range and another one for the third range. Both will target
3116 * the same physical extent from disk, but we can't currently
3117 * make the compressed bio endio callback populate the pages
3118 * for both ranges because each compressed bio is tightly
3119 * coupled with a single extent map, and each range can have
3120 * an extent map with a different offset value relative to the
3121 * uncompressed data of our extent and different lengths. This
3122 * is a corner case so we prioritize correctness over
3123 * non-optimal behavior (submitting 2 bios for the same extent).
3124 */
3125 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3126 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3127 *prev_em_start != em->start)
005efedf
FM
3128 force_bio_submit = true;
3129
3130 if (prev_em_start)
8e928218 3131 *prev_em_start = em->start;
005efedf 3132
d1310b2e
CM
3133 free_extent_map(em);
3134 em = NULL;
3135
3136 /* we've found a hole, just zero and go on */
3137 if (block_start == EXTENT_MAP_HOLE) {
3138 char *userpage;
507903b8
AJ
3139 struct extent_state *cached = NULL;
3140
7ac687d9 3141 userpage = kmap_atomic(page);
306e16ce 3142 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3143 flush_dcache_page(page);
7ac687d9 3144 kunmap_atomic(userpage);
d1310b2e
CM
3145
3146 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3147 &cached, GFP_NOFS);
7f042a83 3148 unlock_extent_cached(tree, cur,
e43bbe5e 3149 cur + iosize - 1, &cached);
d1310b2e 3150 cur = cur + iosize;
306e16ce 3151 pg_offset += iosize;
d1310b2e
CM
3152 continue;
3153 }
3154 /* the get_extent function already copied into the page */
9655d298
CM
3155 if (test_range_bit(tree, cur, cur_end,
3156 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3157 check_page_uptodate(tree, page);
7f042a83 3158 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3159 cur = cur + iosize;
306e16ce 3160 pg_offset += iosize;
d1310b2e
CM
3161 continue;
3162 }
70dec807
CM
3163 /* we have an inline extent but it didn't get marked up
3164 * to date. Error out
3165 */
3166 if (block_start == EXTENT_MAP_INLINE) {
3167 SetPageError(page);
7f042a83 3168 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3169 cur = cur + iosize;
306e16ce 3170 pg_offset += iosize;
70dec807
CM
3171 continue;
3172 }
d1310b2e 3173
4b81ba48 3174 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3175 page, offset, disk_io_size,
3176 pg_offset, bdev, bio,
c8b97818
CM
3177 end_bio_extent_readpage, mirror_num,
3178 *bio_flags,
005efedf
FM
3179 this_bio_flag,
3180 force_bio_submit);
c8f2f24b
JB
3181 if (!ret) {
3182 nr++;
3183 *bio_flags = this_bio_flag;
3184 } else {
d1310b2e 3185 SetPageError(page);
7f042a83 3186 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3187 goto out;
edd33c99 3188 }
d1310b2e 3189 cur = cur + iosize;
306e16ce 3190 pg_offset += iosize;
d1310b2e 3191 }
90a887c9 3192out:
d1310b2e
CM
3193 if (!nr) {
3194 if (!PageError(page))
3195 SetPageUptodate(page);
3196 unlock_page(page);
3197 }
baf863b9 3198 return ret;
d1310b2e
CM
3199}
3200
e65ef21e 3201static inline void contiguous_readpages(struct extent_io_tree *tree,
9974090b
MX
3202 struct page *pages[], int nr_pages,
3203 u64 start, u64 end,
125bac01 3204 struct extent_map **em_cached,
d3fac6ba 3205 struct bio **bio,
1f7ad75b 3206 unsigned long *bio_flags,
808f80b4 3207 u64 *prev_em_start)
9974090b
MX
3208{
3209 struct inode *inode;
3210 struct btrfs_ordered_extent *ordered;
3211 int index;
3212
3213 inode = pages[0]->mapping->host;
3214 while (1) {
3215 lock_extent(tree, start, end);
a776c6fa 3216 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3217 end - start + 1);
3218 if (!ordered)
3219 break;
3220 unlock_extent(tree, start, end);
3221 btrfs_start_ordered_extent(inode, ordered, 1);
3222 btrfs_put_ordered_extent(ordered);
3223 }
3224
3225 for (index = 0; index < nr_pages; index++) {
4ef77695 3226 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3227 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3228 put_page(pages[index]);
9974090b
MX
3229 }
3230}
3231
9974090b
MX
3232static int __extent_read_full_page(struct extent_io_tree *tree,
3233 struct page *page,
3234 get_extent_t *get_extent,
3235 struct bio **bio, int mirror_num,
f1c77c55
DS
3236 unsigned long *bio_flags,
3237 unsigned int read_flags)
9974090b
MX
3238{
3239 struct inode *inode = page->mapping->host;
3240 struct btrfs_ordered_extent *ordered;
3241 u64 start = page_offset(page);
09cbfeaf 3242 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3243 int ret;
3244
3245 while (1) {
3246 lock_extent(tree, start, end);
a776c6fa 3247 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3248 PAGE_SIZE);
9974090b
MX
3249 if (!ordered)
3250 break;
3251 unlock_extent(tree, start, end);
3252 btrfs_start_ordered_extent(inode, ordered, 1);
3253 btrfs_put_ordered_extent(ordered);
3254 }
3255
125bac01 3256 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3257 bio_flags, read_flags, NULL);
9974090b
MX
3258 return ret;
3259}
3260
d1310b2e 3261int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3262 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3263{
3264 struct bio *bio = NULL;
c8b97818 3265 unsigned long bio_flags = 0;
d1310b2e
CM
3266 int ret;
3267
8ddc7d9c 3268 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3269 &bio_flags, 0);
d1310b2e 3270 if (bio)
1f7ad75b 3271 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3272 return ret;
3273}
d1310b2e 3274
3d4b9496 3275static void update_nr_written(struct writeback_control *wbc,
a9132667 3276 unsigned long nr_written)
11c8349b
CM
3277{
3278 wbc->nr_to_write -= nr_written;
11c8349b
CM
3279}
3280
d1310b2e 3281/*
40f76580
CM
3282 * helper for __extent_writepage, doing all of the delayed allocation setup.
3283 *
5eaad97a 3284 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3285 * to write the page (copy into inline extent). In this case the IO has
3286 * been started and the page is already unlocked.
3287 *
3288 * This returns 0 if all went well (page still locked)
3289 * This returns < 0 if there were errors (page still locked)
d1310b2e 3290 */
40f76580 3291static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3292 struct page *page, struct writeback_control *wbc,
3293 u64 delalloc_start, unsigned long *nr_written)
40f76580 3294{
8cc0237a 3295 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3296 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3297 bool found;
40f76580
CM
3298 u64 delalloc_to_write = 0;
3299 u64 delalloc_end = 0;
3300 int ret;
3301 int page_started = 0;
3302
40f76580
CM
3303
3304 while (delalloc_end < page_end) {
3522e903 3305 found = find_lock_delalloc_range(inode, tree,
40f76580
CM
3306 page,
3307 &delalloc_start,
917aacec 3308 &delalloc_end);
3522e903 3309 if (!found) {
40f76580
CM
3310 delalloc_start = delalloc_end + 1;
3311 continue;
3312 }
5eaad97a
NB
3313 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3314 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3315 /* File system has been set read-only */
3316 if (ret) {
3317 SetPageError(page);
5eaad97a
NB
3318 /*
3319 * btrfs_run_delalloc_range should return < 0 for error
3320 * but just in case, we use > 0 here meaning the IO is
3321 * started, so we don't want to return > 0 unless
3322 * things are going well.
40f76580
CM
3323 */
3324 ret = ret < 0 ? ret : -EIO;
3325 goto done;
3326 }
3327 /*
ea1754a0
KS
3328 * delalloc_end is already one less than the total length, so
3329 * we don't subtract one from PAGE_SIZE
40f76580
CM
3330 */
3331 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3332 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3333 delalloc_start = delalloc_end + 1;
3334 }
3335 if (wbc->nr_to_write < delalloc_to_write) {
3336 int thresh = 8192;
3337
3338 if (delalloc_to_write < thresh * 2)
3339 thresh = delalloc_to_write;
3340 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3341 thresh);
3342 }
3343
3344 /* did the fill delalloc function already unlock and start
3345 * the IO?
3346 */
3347 if (page_started) {
3348 /*
3349 * we've unlocked the page, so we can't update
3350 * the mapping's writeback index, just update
3351 * nr_to_write.
3352 */
3353 wbc->nr_to_write -= *nr_written;
3354 return 1;
3355 }
3356
3357 ret = 0;
3358
3359done:
3360 return ret;
3361}
3362
3363/*
3364 * helper for __extent_writepage. This calls the writepage start hooks,
3365 * and does the loop to map the page into extents and bios.
3366 *
3367 * We return 1 if the IO is started and the page is unlocked,
3368 * 0 if all went well (page still locked)
3369 * < 0 if there were errors (page still locked)
3370 */
3371static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3372 struct page *page,
3373 struct writeback_control *wbc,
3374 struct extent_page_data *epd,
3375 loff_t i_size,
3376 unsigned long nr_written,
f1c77c55 3377 unsigned int write_flags, int *nr_ret)
d1310b2e 3378{
d1310b2e 3379 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3380 u64 start = page_offset(page);
09cbfeaf 3381 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3382 u64 end;
3383 u64 cur = start;
3384 u64 extent_offset;
d1310b2e
CM
3385 u64 block_start;
3386 u64 iosize;
d1310b2e
CM
3387 struct extent_map *em;
3388 struct block_device *bdev;
7f3c74fb 3389 size_t pg_offset = 0;
d1310b2e 3390 size_t blocksize;
40f76580
CM
3391 int ret = 0;
3392 int nr = 0;
3393 bool compressed;
c8b97818 3394
d75855b4
NB
3395 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3396 if (ret) {
3397 /* Fixup worker will requeue */
3398 if (ret == -EBUSY)
3399 wbc->pages_skipped++;
3400 else
3401 redirty_page_for_writepage(wbc, page);
40f76580 3402
d75855b4
NB
3403 update_nr_written(wbc, nr_written);
3404 unlock_page(page);
3405 return 1;
247e743c
CM
3406 }
3407
11c8349b
CM
3408 /*
3409 * we don't want to touch the inode after unlocking the page,
3410 * so we update the mapping writeback index now
3411 */
3d4b9496 3412 update_nr_written(wbc, nr_written + 1);
771ed689 3413
d1310b2e 3414 end = page_end;
40f76580 3415 if (i_size <= start) {
c629732d 3416 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3417 goto done;
3418 }
3419
d1310b2e
CM
3420 blocksize = inode->i_sb->s_blocksize;
3421
3422 while (cur <= end) {
40f76580 3423 u64 em_end;
6273b7f8 3424 u64 offset;
58409edd 3425
40f76580 3426 if (cur >= i_size) {
7087a9d8 3427 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3428 page_end, 1);
d1310b2e
CM
3429 break;
3430 }
3c98c62f 3431 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3432 end - cur + 1, 1);
c704005d 3433 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3434 SetPageError(page);
61391d56 3435 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3436 break;
3437 }
3438
3439 extent_offset = cur - em->start;
40f76580
CM
3440 em_end = extent_map_end(em);
3441 BUG_ON(em_end <= cur);
d1310b2e 3442 BUG_ON(end < cur);
40f76580 3443 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3444 iosize = ALIGN(iosize, blocksize);
6273b7f8 3445 offset = em->block_start + extent_offset;
d1310b2e
CM
3446 bdev = em->bdev;
3447 block_start = em->block_start;
c8b97818 3448 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3449 free_extent_map(em);
3450 em = NULL;
3451
c8b97818
CM
3452 /*
3453 * compressed and inline extents are written through other
3454 * paths in the FS
3455 */
3456 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3457 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3458 /*
3459 * end_io notification does not happen here for
3460 * compressed extents
3461 */
7087a9d8
NB
3462 if (!compressed)
3463 btrfs_writepage_endio_finish_ordered(page, cur,
3464 cur + iosize - 1,
c629732d 3465 1);
c8b97818
CM
3466 else if (compressed) {
3467 /* we don't want to end_page_writeback on
3468 * a compressed extent. this happens
3469 * elsewhere
3470 */
3471 nr++;
3472 }
3473
3474 cur += iosize;
7f3c74fb 3475 pg_offset += iosize;
d1310b2e
CM
3476 continue;
3477 }
c8b97818 3478
5cdc84bf 3479 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3480 if (!PageWriteback(page)) {
3481 btrfs_err(BTRFS_I(inode)->root->fs_info,
3482 "page %lu not writeback, cur %llu end %llu",
3483 page->index, cur, end);
d1310b2e 3484 }
7f3c74fb 3485
4b81ba48 3486 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3487 page, offset, iosize, pg_offset,
c2df8bb4 3488 bdev, &epd->bio,
58409edd
DS
3489 end_bio_extent_writepage,
3490 0, 0, 0, false);
fe01aa65 3491 if (ret) {
58409edd 3492 SetPageError(page);
fe01aa65
TK
3493 if (PageWriteback(page))
3494 end_page_writeback(page);
3495 }
d1310b2e 3496
d1310b2e 3497 cur = cur + iosize;
7f3c74fb 3498 pg_offset += iosize;
d1310b2e
CM
3499 nr++;
3500 }
40f76580
CM
3501done:
3502 *nr_ret = nr;
40f76580
CM
3503 return ret;
3504}
3505
3506/*
3507 * the writepage semantics are similar to regular writepage. extent
3508 * records are inserted to lock ranges in the tree, and as dirty areas
3509 * are found, they are marked writeback. Then the lock bits are removed
3510 * and the end_io handler clears the writeback ranges
3065976b
QW
3511 *
3512 * Return 0 if everything goes well.
3513 * Return <0 for error.
40f76580
CM
3514 */
3515static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3516 struct extent_page_data *epd)
40f76580
CM
3517{
3518 struct inode *inode = page->mapping->host;
40f76580 3519 u64 start = page_offset(page);
09cbfeaf 3520 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3521 int ret;
3522 int nr = 0;
3523 size_t pg_offset = 0;
3524 loff_t i_size = i_size_read(inode);
09cbfeaf 3525 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3526 unsigned int write_flags = 0;
40f76580
CM
3527 unsigned long nr_written = 0;
3528
ff40adf7 3529 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3530
3531 trace___extent_writepage(page, inode, wbc);
3532
3533 WARN_ON(!PageLocked(page));
3534
3535 ClearPageError(page);
3536
7073017a 3537 pg_offset = offset_in_page(i_size);
40f76580
CM
3538 if (page->index > end_index ||
3539 (page->index == end_index && !pg_offset)) {
09cbfeaf 3540 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3541 unlock_page(page);
3542 return 0;
3543 }
3544
3545 if (page->index == end_index) {
3546 char *userpage;
3547
3548 userpage = kmap_atomic(page);
3549 memset(userpage + pg_offset, 0,
09cbfeaf 3550 PAGE_SIZE - pg_offset);
40f76580
CM
3551 kunmap_atomic(userpage);
3552 flush_dcache_page(page);
3553 }
3554
3555 pg_offset = 0;
3556
3557 set_page_extent_mapped(page);
3558
7789a55a 3559 if (!epd->extent_locked) {
8cc0237a 3560 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3561 if (ret == 1)
3562 goto done_unlocked;
3563 if (ret)
3564 goto done;
3565 }
40f76580
CM
3566
3567 ret = __extent_writepage_io(inode, page, wbc, epd,
3568 i_size, nr_written, write_flags, &nr);
3569 if (ret == 1)
3570 goto done_unlocked;
3571
d1310b2e
CM
3572done:
3573 if (nr == 0) {
3574 /* make sure the mapping tag for page dirty gets cleared */
3575 set_page_writeback(page);
3576 end_page_writeback(page);
3577 }
61391d56
FM
3578 if (PageError(page)) {
3579 ret = ret < 0 ? ret : -EIO;
3580 end_extent_writepage(page, ret, start, page_end);
3581 }
d1310b2e 3582 unlock_page(page);
3065976b 3583 ASSERT(ret <= 0);
40f76580 3584 return ret;
771ed689 3585
11c8349b 3586done_unlocked:
d1310b2e
CM
3587 return 0;
3588}
3589
fd8b2b61 3590void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3591{
74316201
N
3592 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3593 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3594}
3595
2e3c2513
QW
3596/*
3597 * Lock eb pages and flush the bio if we can't the locks
3598 *
3599 * Return 0 if nothing went wrong
3600 * Return >0 is same as 0, except bio is not submitted
3601 * Return <0 if something went wrong, no page is locked
3602 */
9df76fb5 3603static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3604 struct extent_page_data *epd)
0b32f4bb 3605{
9df76fb5 3606 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3607 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3608 int flush = 0;
3609 int ret = 0;
3610
3611 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3612 ret = flush_write_bio(epd);
2e3c2513
QW
3613 if (ret < 0)
3614 return ret;
3615 flush = 1;
0b32f4bb
JB
3616 btrfs_tree_lock(eb);
3617 }
3618
3619 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3620 btrfs_tree_unlock(eb);
3621 if (!epd->sync_io)
3622 return 0;
3623 if (!flush) {
f4340622 3624 ret = flush_write_bio(epd);
2e3c2513
QW
3625 if (ret < 0)
3626 return ret;
0b32f4bb
JB
3627 flush = 1;
3628 }
a098d8e8
CM
3629 while (1) {
3630 wait_on_extent_buffer_writeback(eb);
3631 btrfs_tree_lock(eb);
3632 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3633 break;
0b32f4bb 3634 btrfs_tree_unlock(eb);
0b32f4bb
JB
3635 }
3636 }
3637
51561ffe
JB
3638 /*
3639 * We need to do this to prevent races in people who check if the eb is
3640 * under IO since we can end up having no IO bits set for a short period
3641 * of time.
3642 */
3643 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3644 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3645 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3646 spin_unlock(&eb->refs_lock);
0b32f4bb 3647 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3648 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3649 -eb->len,
3650 fs_info->dirty_metadata_batch);
0b32f4bb 3651 ret = 1;
51561ffe
JB
3652 } else {
3653 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3654 }
3655
3656 btrfs_tree_unlock(eb);
3657
3658 if (!ret)
3659 return ret;
3660
65ad0104 3661 num_pages = num_extent_pages(eb);
0b32f4bb 3662 for (i = 0; i < num_pages; i++) {
fb85fc9a 3663 struct page *p = eb->pages[i];
0b32f4bb
JB
3664
3665 if (!trylock_page(p)) {
3666 if (!flush) {
f4340622 3667 ret = flush_write_bio(epd);
2e3c2513
QW
3668 if (ret < 0) {
3669 failed_page_nr = i;
3670 goto err_unlock;
3671 }
0b32f4bb
JB
3672 flush = 1;
3673 }
3674 lock_page(p);
3675 }
3676 }
3677
3678 return ret;
2e3c2513
QW
3679err_unlock:
3680 /* Unlock already locked pages */
3681 for (i = 0; i < failed_page_nr; i++)
3682 unlock_page(eb->pages[i]);
3683 return ret;
0b32f4bb
JB
3684}
3685
3686static void end_extent_buffer_writeback(struct extent_buffer *eb)
3687{
3688 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3689 smp_mb__after_atomic();
0b32f4bb
JB
3690 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3691}
3692
656f30db
FM
3693static void set_btree_ioerr(struct page *page)
3694{
3695 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3696
3697 SetPageError(page);
3698 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3699 return;
3700
3701 /*
3702 * If writeback for a btree extent that doesn't belong to a log tree
3703 * failed, increment the counter transaction->eb_write_errors.
3704 * We do this because while the transaction is running and before it's
3705 * committing (when we call filemap_fdata[write|wait]_range against
3706 * the btree inode), we might have
3707 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3708 * returns an error or an error happens during writeback, when we're
3709 * committing the transaction we wouldn't know about it, since the pages
3710 * can be no longer dirty nor marked anymore for writeback (if a
3711 * subsequent modification to the extent buffer didn't happen before the
3712 * transaction commit), which makes filemap_fdata[write|wait]_range not
3713 * able to find the pages tagged with SetPageError at transaction
3714 * commit time. So if this happens we must abort the transaction,
3715 * otherwise we commit a super block with btree roots that point to
3716 * btree nodes/leafs whose content on disk is invalid - either garbage
3717 * or the content of some node/leaf from a past generation that got
3718 * cowed or deleted and is no longer valid.
3719 *
3720 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3721 * not be enough - we need to distinguish between log tree extents vs
3722 * non-log tree extents, and the next filemap_fdatawait_range() call
3723 * will catch and clear such errors in the mapping - and that call might
3724 * be from a log sync and not from a transaction commit. Also, checking
3725 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3726 * not done and would not be reliable - the eb might have been released
3727 * from memory and reading it back again means that flag would not be
3728 * set (since it's a runtime flag, not persisted on disk).
3729 *
3730 * Using the flags below in the btree inode also makes us achieve the
3731 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3732 * writeback for all dirty pages and before filemap_fdatawait_range()
3733 * is called, the writeback for all dirty pages had already finished
3734 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3735 * filemap_fdatawait_range() would return success, as it could not know
3736 * that writeback errors happened (the pages were no longer tagged for
3737 * writeback).
3738 */
3739 switch (eb->log_index) {
3740 case -1:
afcdd129 3741 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3742 break;
3743 case 0:
afcdd129 3744 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3745 break;
3746 case 1:
afcdd129 3747 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3748 break;
3749 default:
3750 BUG(); /* unexpected, logic error */
3751 }
3752}
3753
4246a0b6 3754static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3755{
2c30c71b 3756 struct bio_vec *bvec;
0b32f4bb 3757 struct extent_buffer *eb;
2c30c71b 3758 int i, done;
6dc4f100 3759 struct bvec_iter_all iter_all;
0b32f4bb 3760
c09abff8 3761 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 3762 bio_for_each_segment_all(bvec, bio, i, iter_all) {
0b32f4bb
JB
3763 struct page *page = bvec->bv_page;
3764
0b32f4bb
JB
3765 eb = (struct extent_buffer *)page->private;
3766 BUG_ON(!eb);
3767 done = atomic_dec_and_test(&eb->io_pages);
3768
4e4cbee9 3769 if (bio->bi_status ||
4246a0b6 3770 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3771 ClearPageUptodate(page);
656f30db 3772 set_btree_ioerr(page);
0b32f4bb
JB
3773 }
3774
3775 end_page_writeback(page);
3776
3777 if (!done)
3778 continue;
3779
3780 end_extent_buffer_writeback(eb);
2c30c71b 3781 }
0b32f4bb
JB
3782
3783 bio_put(bio);
0b32f4bb
JB
3784}
3785
0e378df1 3786static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3787 struct writeback_control *wbc,
3788 struct extent_page_data *epd)
3789{
0ab02063 3790 struct btrfs_fs_info *fs_info = eb->fs_info;
0b32f4bb 3791 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3792 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3793 u64 offset = eb->start;
851cd173 3794 u32 nritems;
cc5e31a4 3795 int i, num_pages;
851cd173 3796 unsigned long start, end;
ff40adf7 3797 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3798 int ret = 0;
0b32f4bb 3799
656f30db 3800 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3801 num_pages = num_extent_pages(eb);
0b32f4bb 3802 atomic_set(&eb->io_pages, num_pages);
de0022b9 3803
851cd173
LB
3804 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3805 nritems = btrfs_header_nritems(eb);
3eb548ee 3806 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3807 end = btrfs_node_key_ptr_offset(nritems);
3808
b159fa28 3809 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3810 } else {
3811 /*
3812 * leaf:
3813 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3814 */
3815 start = btrfs_item_nr_offset(nritems);
8f881e8c 3816 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3817 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3818 }
3819
0b32f4bb 3820 for (i = 0; i < num_pages; i++) {
fb85fc9a 3821 struct page *p = eb->pages[i];
0b32f4bb
JB
3822
3823 clear_page_dirty_for_io(p);
3824 set_page_writeback(p);
4b81ba48 3825 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3826 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3827 &epd->bio,
1f7ad75b 3828 end_bio_extent_buffer_writepage,
18fdc679 3829 0, 0, 0, false);
0b32f4bb 3830 if (ret) {
656f30db 3831 set_btree_ioerr(p);
fe01aa65
TK
3832 if (PageWriteback(p))
3833 end_page_writeback(p);
0b32f4bb
JB
3834 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3835 end_extent_buffer_writeback(eb);
3836 ret = -EIO;
3837 break;
3838 }
09cbfeaf 3839 offset += PAGE_SIZE;
3d4b9496 3840 update_nr_written(wbc, 1);
0b32f4bb
JB
3841 unlock_page(p);
3842 }
3843
3844 if (unlikely(ret)) {
3845 for (; i < num_pages; i++) {
bbf65cf0 3846 struct page *p = eb->pages[i];
81465028 3847 clear_page_dirty_for_io(p);
0b32f4bb
JB
3848 unlock_page(p);
3849 }
3850 }
3851
3852 return ret;
3853}
3854
3855int btree_write_cache_pages(struct address_space *mapping,
3856 struct writeback_control *wbc)
3857{
3858 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
0b32f4bb
JB
3859 struct extent_buffer *eb, *prev_eb = NULL;
3860 struct extent_page_data epd = {
3861 .bio = NULL,
3862 .tree = tree,
3863 .extent_locked = 0,
3864 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3865 };
3866 int ret = 0;
3867 int done = 0;
3868 int nr_to_write_done = 0;
3869 struct pagevec pvec;
3870 int nr_pages;
3871 pgoff_t index;
3872 pgoff_t end; /* Inclusive */
3873 int scanned = 0;
10bbd235 3874 xa_mark_t tag;
0b32f4bb 3875
86679820 3876 pagevec_init(&pvec);
0b32f4bb
JB
3877 if (wbc->range_cyclic) {
3878 index = mapping->writeback_index; /* Start from prev offset */
3879 end = -1;
3880 } else {
09cbfeaf
KS
3881 index = wbc->range_start >> PAGE_SHIFT;
3882 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3883 scanned = 1;
3884 }
3885 if (wbc->sync_mode == WB_SYNC_ALL)
3886 tag = PAGECACHE_TAG_TOWRITE;
3887 else
3888 tag = PAGECACHE_TAG_DIRTY;
3889retry:
3890 if (wbc->sync_mode == WB_SYNC_ALL)
3891 tag_pages_for_writeback(mapping, index, end);
3892 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3893 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3894 tag))) {
0b32f4bb
JB
3895 unsigned i;
3896
3897 scanned = 1;
3898 for (i = 0; i < nr_pages; i++) {
3899 struct page *page = pvec.pages[i];
3900
3901 if (!PagePrivate(page))
3902 continue;
3903
b5bae261
JB
3904 spin_lock(&mapping->private_lock);
3905 if (!PagePrivate(page)) {
3906 spin_unlock(&mapping->private_lock);
3907 continue;
3908 }
3909
0b32f4bb 3910 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3911
3912 /*
3913 * Shouldn't happen and normally this would be a BUG_ON
3914 * but no sense in crashing the users box for something
3915 * we can survive anyway.
3916 */
fae7f21c 3917 if (WARN_ON(!eb)) {
b5bae261 3918 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3919 continue;
3920 }
3921
b5bae261
JB
3922 if (eb == prev_eb) {
3923 spin_unlock(&mapping->private_lock);
0b32f4bb 3924 continue;
b5bae261 3925 }
0b32f4bb 3926
b5bae261
JB
3927 ret = atomic_inc_not_zero(&eb->refs);
3928 spin_unlock(&mapping->private_lock);
3929 if (!ret)
0b32f4bb 3930 continue;
0b32f4bb
JB
3931
3932 prev_eb = eb;
9df76fb5 3933 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
3934 if (!ret) {
3935 free_extent_buffer(eb);
3936 continue;
3937 }
3938
0ab02063 3939 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
3940 if (ret) {
3941 done = 1;
3942 free_extent_buffer(eb);
3943 break;
3944 }
3945 free_extent_buffer(eb);
3946
3947 /*
3948 * the filesystem may choose to bump up nr_to_write.
3949 * We have to make sure to honor the new nr_to_write
3950 * at any time
3951 */
3952 nr_to_write_done = wbc->nr_to_write <= 0;
3953 }
3954 pagevec_release(&pvec);
3955 cond_resched();
3956 }
3957 if (!scanned && !done) {
3958 /*
3959 * We hit the last page and there is more work to be done: wrap
3960 * back to the start of the file
3961 */
3962 scanned = 1;
3963 index = 0;
3964 goto retry;
3965 }
2b952eea
QW
3966 ASSERT(ret <= 0);
3967 if (ret < 0) {
3968 end_write_bio(&epd, ret);
3969 return ret;
3970 }
3971 ret = flush_write_bio(&epd);
0b32f4bb
JB
3972 return ret;
3973}
3974
d1310b2e 3975/**
4bef0848 3976 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3977 * @mapping: address space structure to write
3978 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3979 * @data: data passed to __extent_writepage function
d1310b2e
CM
3980 *
3981 * If a page is already under I/O, write_cache_pages() skips it, even
3982 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3983 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3984 * and msync() need to guarantee that all the data which was dirty at the time
3985 * the call was made get new I/O started against them. If wbc->sync_mode is
3986 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3987 * existing IO to complete.
3988 */
4242b64a 3989static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3990 struct writeback_control *wbc,
aab6e9ed 3991 struct extent_page_data *epd)
d1310b2e 3992{
7fd1a3f7 3993 struct inode *inode = mapping->host;
d1310b2e
CM
3994 int ret = 0;
3995 int done = 0;
f85d7d6c 3996 int nr_to_write_done = 0;
d1310b2e
CM
3997 struct pagevec pvec;
3998 int nr_pages;
3999 pgoff_t index;
4000 pgoff_t end; /* Inclusive */
a9132667
LB
4001 pgoff_t done_index;
4002 int range_whole = 0;
d1310b2e 4003 int scanned = 0;
10bbd235 4004 xa_mark_t tag;
d1310b2e 4005
7fd1a3f7
JB
4006 /*
4007 * We have to hold onto the inode so that ordered extents can do their
4008 * work when the IO finishes. The alternative to this is failing to add
4009 * an ordered extent if the igrab() fails there and that is a huge pain
4010 * to deal with, so instead just hold onto the inode throughout the
4011 * writepages operation. If it fails here we are freeing up the inode
4012 * anyway and we'd rather not waste our time writing out stuff that is
4013 * going to be truncated anyway.
4014 */
4015 if (!igrab(inode))
4016 return 0;
4017
86679820 4018 pagevec_init(&pvec);
d1310b2e
CM
4019 if (wbc->range_cyclic) {
4020 index = mapping->writeback_index; /* Start from prev offset */
4021 end = -1;
4022 } else {
09cbfeaf
KS
4023 index = wbc->range_start >> PAGE_SHIFT;
4024 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4025 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4026 range_whole = 1;
d1310b2e
CM
4027 scanned = 1;
4028 }
3cd24c69
EL
4029
4030 /*
4031 * We do the tagged writepage as long as the snapshot flush bit is set
4032 * and we are the first one who do the filemap_flush() on this inode.
4033 *
4034 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4035 * not race in and drop the bit.
4036 */
4037 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4038 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4039 &BTRFS_I(inode)->runtime_flags))
4040 wbc->tagged_writepages = 1;
4041
4042 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4043 tag = PAGECACHE_TAG_TOWRITE;
4044 else
4045 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4046retry:
3cd24c69 4047 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4048 tag_pages_for_writeback(mapping, index, end);
a9132667 4049 done_index = index;
f85d7d6c 4050 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4051 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4052 &index, end, tag))) {
d1310b2e
CM
4053 unsigned i;
4054
4055 scanned = 1;
4056 for (i = 0; i < nr_pages; i++) {
4057 struct page *page = pvec.pages[i];
4058
a9132667 4059 done_index = page->index;
d1310b2e 4060 /*
b93b0163
MW
4061 * At this point we hold neither the i_pages lock nor
4062 * the page lock: the page may be truncated or
4063 * invalidated (changing page->mapping to NULL),
4064 * or even swizzled back from swapper_space to
4065 * tmpfs file mapping
d1310b2e 4066 */
c8f2f24b 4067 if (!trylock_page(page)) {
f4340622
QW
4068 ret = flush_write_bio(epd);
4069 BUG_ON(ret < 0);
c8f2f24b 4070 lock_page(page);
01d658f2 4071 }
d1310b2e
CM
4072
4073 if (unlikely(page->mapping != mapping)) {
4074 unlock_page(page);
4075 continue;
4076 }
4077
d2c3f4f6 4078 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4079 if (PageWriteback(page)) {
4080 ret = flush_write_bio(epd);
4081 BUG_ON(ret < 0);
4082 }
d1310b2e 4083 wait_on_page_writeback(page);
d2c3f4f6 4084 }
d1310b2e
CM
4085
4086 if (PageWriteback(page) ||
4087 !clear_page_dirty_for_io(page)) {
4088 unlock_page(page);
4089 continue;
4090 }
4091
aab6e9ed 4092 ret = __extent_writepage(page, wbc, epd);
a9132667
LB
4093 if (ret < 0) {
4094 /*
4095 * done_index is set past this page,
4096 * so media errors will not choke
4097 * background writeout for the entire
4098 * file. This has consequences for
4099 * range_cyclic semantics (ie. it may
4100 * not be suitable for data integrity
4101 * writeout).
4102 */
4103 done_index = page->index + 1;
4104 done = 1;
4105 break;
4106 }
f85d7d6c
CM
4107
4108 /*
4109 * the filesystem may choose to bump up nr_to_write.
4110 * We have to make sure to honor the new nr_to_write
4111 * at any time
4112 */
4113 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4114 }
4115 pagevec_release(&pvec);
4116 cond_resched();
4117 }
894b36e3 4118 if (!scanned && !done) {
d1310b2e
CM
4119 /*
4120 * We hit the last page and there is more work to be done: wrap
4121 * back to the start of the file
4122 */
4123 scanned = 1;
4124 index = 0;
4125 goto retry;
4126 }
a9132667
LB
4127
4128 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4129 mapping->writeback_index = done_index;
4130
7fd1a3f7 4131 btrfs_add_delayed_iput(inode);
894b36e3 4132 return ret;
d1310b2e 4133}
d1310b2e 4134
0a9b0e53 4135int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4136{
4137 int ret;
d1310b2e
CM
4138 struct extent_page_data epd = {
4139 .bio = NULL,
0a9b0e53 4140 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4141 .extent_locked = 0,
ffbd517d 4142 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4143 };
d1310b2e 4144
d1310b2e 4145 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4146 ASSERT(ret <= 0);
4147 if (ret < 0) {
4148 end_write_bio(&epd, ret);
4149 return ret;
4150 }
d1310b2e 4151
3065976b
QW
4152 ret = flush_write_bio(&epd);
4153 ASSERT(ret <= 0);
d1310b2e
CM
4154 return ret;
4155}
d1310b2e 4156
5e3ee236 4157int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4158 int mode)
4159{
4160 int ret = 0;
4161 struct address_space *mapping = inode->i_mapping;
5e3ee236 4162 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4163 struct page *page;
09cbfeaf
KS
4164 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4165 PAGE_SHIFT;
771ed689
CM
4166
4167 struct extent_page_data epd = {
4168 .bio = NULL,
4169 .tree = tree,
771ed689 4170 .extent_locked = 1,
ffbd517d 4171 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4172 };
4173 struct writeback_control wbc_writepages = {
771ed689 4174 .sync_mode = mode,
771ed689
CM
4175 .nr_to_write = nr_pages * 2,
4176 .range_start = start,
4177 .range_end = end + 1,
4178 };
4179
d397712b 4180 while (start <= end) {
09cbfeaf 4181 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4182 if (clear_page_dirty_for_io(page))
4183 ret = __extent_writepage(page, &wbc_writepages, &epd);
4184 else {
7087a9d8 4185 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4186 start + PAGE_SIZE - 1, 1);
771ed689
CM
4187 unlock_page(page);
4188 }
09cbfeaf
KS
4189 put_page(page);
4190 start += PAGE_SIZE;
771ed689
CM
4191 }
4192
02c6db4f
QW
4193 ASSERT(ret <= 0);
4194 if (ret < 0) {
4195 end_write_bio(&epd, ret);
4196 return ret;
4197 }
4198 ret = flush_write_bio(&epd);
771ed689
CM
4199 return ret;
4200}
d1310b2e 4201
8ae225a8 4202int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4203 struct writeback_control *wbc)
4204{
4205 int ret = 0;
4206 struct extent_page_data epd = {
4207 .bio = NULL,
8ae225a8 4208 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4209 .extent_locked = 0,
ffbd517d 4210 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4211 };
4212
935db853 4213 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4214 ASSERT(ret <= 0);
4215 if (ret < 0) {
4216 end_write_bio(&epd, ret);
4217 return ret;
4218 }
4219 ret = flush_write_bio(&epd);
d1310b2e
CM
4220 return ret;
4221}
d1310b2e 4222
2a3ff0ad
NB
4223int extent_readpages(struct address_space *mapping, struct list_head *pages,
4224 unsigned nr_pages)
d1310b2e
CM
4225{
4226 struct bio *bio = NULL;
c8b97818 4227 unsigned long bio_flags = 0;
67c9684f 4228 struct page *pagepool[16];
125bac01 4229 struct extent_map *em_cached = NULL;
2a3ff0ad 4230 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4231 int nr = 0;
808f80b4 4232 u64 prev_em_start = (u64)-1;
d1310b2e 4233
61ed3a14 4234 while (!list_empty(pages)) {
e65ef21e
NB
4235 u64 contig_end = 0;
4236
61ed3a14 4237 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4238 struct page *page = lru_to_page(pages);
d1310b2e 4239
61ed3a14
NB
4240 prefetchw(&page->flags);
4241 list_del(&page->lru);
4242 if (add_to_page_cache_lru(page, mapping, page->index,
4243 readahead_gfp_mask(mapping))) {
4244 put_page(page);
e65ef21e 4245 break;
61ed3a14
NB
4246 }
4247
4248 pagepool[nr++] = page;
e65ef21e 4249 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4250 }
67c9684f 4251
e65ef21e
NB
4252 if (nr) {
4253 u64 contig_start = page_offset(pagepool[0]);
4254
4255 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4256
4257 contiguous_readpages(tree, pagepool, nr, contig_start,
4258 contig_end, &em_cached, &bio, &bio_flags,
4259 &prev_em_start);
4260 }
d1310b2e 4261 }
67c9684f 4262
125bac01
MX
4263 if (em_cached)
4264 free_extent_map(em_cached);
4265
d1310b2e 4266 if (bio)
1f7ad75b 4267 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4268 return 0;
4269}
d1310b2e
CM
4270
4271/*
4272 * basic invalidatepage code, this waits on any locked or writeback
4273 * ranges corresponding to the page, and then deletes any extent state
4274 * records from the tree
4275 */
4276int extent_invalidatepage(struct extent_io_tree *tree,
4277 struct page *page, unsigned long offset)
4278{
2ac55d41 4279 struct extent_state *cached_state = NULL;
4eee4fa4 4280 u64 start = page_offset(page);
09cbfeaf 4281 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4282 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4283
fda2832f 4284 start += ALIGN(offset, blocksize);
d1310b2e
CM
4285 if (start > end)
4286 return 0;
4287
ff13db41 4288 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4289 wait_on_page_writeback(page);
d1310b2e 4290 clear_extent_bit(tree, start, end,
32c00aff
JB
4291 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4292 EXTENT_DO_ACCOUNTING,
ae0f1625 4293 1, 1, &cached_state);
d1310b2e
CM
4294 return 0;
4295}
d1310b2e 4296
7b13b7b1
CM
4297/*
4298 * a helper for releasepage, this tests for areas of the page that
4299 * are locked or under IO and drops the related state bits if it is safe
4300 * to drop the page.
4301 */
29c68b2d 4302static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4303 struct page *page, gfp_t mask)
7b13b7b1 4304{
4eee4fa4 4305 u64 start = page_offset(page);
09cbfeaf 4306 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4307 int ret = 1;
4308
8882679e 4309 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4310 ret = 0;
8882679e 4311 } else {
11ef160f
CM
4312 /*
4313 * at this point we can safely clear everything except the
4314 * locked bit and the nodatasum bit
4315 */
66b0c887 4316 ret = __clear_extent_bit(tree, start, end,
11ef160f 4317 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4318 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4319
4320 /* if clear_extent_bit failed for enomem reasons,
4321 * we can't allow the release to continue.
4322 */
4323 if (ret < 0)
4324 ret = 0;
4325 else
4326 ret = 1;
7b13b7b1
CM
4327 }
4328 return ret;
4329}
7b13b7b1 4330
d1310b2e
CM
4331/*
4332 * a helper for releasepage. As long as there are no locked extents
4333 * in the range corresponding to the page, both state records and extent
4334 * map records are removed
4335 */
477a30ba 4336int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4337{
4338 struct extent_map *em;
4eee4fa4 4339 u64 start = page_offset(page);
09cbfeaf 4340 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4341 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4342 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4343 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4344
d0164adc 4345 if (gfpflags_allow_blocking(mask) &&
ee22184b 4346 page->mapping->host->i_size > SZ_16M) {
39b5637f 4347 u64 len;
70dec807 4348 while (start <= end) {
39b5637f 4349 len = end - start + 1;
890871be 4350 write_lock(&map->lock);
39b5637f 4351 em = lookup_extent_mapping(map, start, len);
285190d9 4352 if (!em) {
890871be 4353 write_unlock(&map->lock);
70dec807
CM
4354 break;
4355 }
7f3c74fb
CM
4356 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4357 em->start != start) {
890871be 4358 write_unlock(&map->lock);
70dec807
CM
4359 free_extent_map(em);
4360 break;
4361 }
4362 if (!test_range_bit(tree, em->start,
4363 extent_map_end(em) - 1,
4e586ca3 4364 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4365 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4366 &btrfs_inode->runtime_flags);
70dec807
CM
4367 remove_extent_mapping(map, em);
4368 /* once for the rb tree */
4369 free_extent_map(em);
4370 }
4371 start = extent_map_end(em);
890871be 4372 write_unlock(&map->lock);
70dec807
CM
4373
4374 /* once for us */
d1310b2e
CM
4375 free_extent_map(em);
4376 }
d1310b2e 4377 }
29c68b2d 4378 return try_release_extent_state(tree, page, mask);
d1310b2e 4379}
d1310b2e 4380
ec29ed5b
CM
4381/*
4382 * helper function for fiemap, which doesn't want to see any holes.
4383 * This maps until we find something past 'last'
4384 */
4385static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4386 u64 offset, u64 last)
ec29ed5b 4387{
da17066c 4388 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4389 struct extent_map *em;
4390 u64 len;
4391
4392 if (offset >= last)
4393 return NULL;
4394
67871254 4395 while (1) {
ec29ed5b
CM
4396 len = last - offset;
4397 if (len == 0)
4398 break;
fda2832f 4399 len = ALIGN(len, sectorsize);
4ab47a8d 4400 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4401 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4402 return em;
4403
4404 /* if this isn't a hole return it */
4a2d25cd 4405 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4406 return em;
ec29ed5b
CM
4407
4408 /* this is a hole, advance to the next extent */
4409 offset = extent_map_end(em);
4410 free_extent_map(em);
4411 if (offset >= last)
4412 break;
4413 }
4414 return NULL;
4415}
4416
4751832d
QW
4417/*
4418 * To cache previous fiemap extent
4419 *
4420 * Will be used for merging fiemap extent
4421 */
4422struct fiemap_cache {
4423 u64 offset;
4424 u64 phys;
4425 u64 len;
4426 u32 flags;
4427 bool cached;
4428};
4429
4430/*
4431 * Helper to submit fiemap extent.
4432 *
4433 * Will try to merge current fiemap extent specified by @offset, @phys,
4434 * @len and @flags with cached one.
4435 * And only when we fails to merge, cached one will be submitted as
4436 * fiemap extent.
4437 *
4438 * Return value is the same as fiemap_fill_next_extent().
4439 */
4440static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4441 struct fiemap_cache *cache,
4442 u64 offset, u64 phys, u64 len, u32 flags)
4443{
4444 int ret = 0;
4445
4446 if (!cache->cached)
4447 goto assign;
4448
4449 /*
4450 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4451 * fiemap extent won't overlap with cached one.
4751832d
QW
4452 * Not recoverable.
4453 *
4454 * NOTE: Physical address can overlap, due to compression
4455 */
4456 if (cache->offset + cache->len > offset) {
4457 WARN_ON(1);
4458 return -EINVAL;
4459 }
4460
4461 /*
4462 * Only merges fiemap extents if
4463 * 1) Their logical addresses are continuous
4464 *
4465 * 2) Their physical addresses are continuous
4466 * So truly compressed (physical size smaller than logical size)
4467 * extents won't get merged with each other
4468 *
4469 * 3) Share same flags except FIEMAP_EXTENT_LAST
4470 * So regular extent won't get merged with prealloc extent
4471 */
4472 if (cache->offset + cache->len == offset &&
4473 cache->phys + cache->len == phys &&
4474 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4475 (flags & ~FIEMAP_EXTENT_LAST)) {
4476 cache->len += len;
4477 cache->flags |= flags;
4478 goto try_submit_last;
4479 }
4480
4481 /* Not mergeable, need to submit cached one */
4482 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4483 cache->len, cache->flags);
4484 cache->cached = false;
4485 if (ret)
4486 return ret;
4487assign:
4488 cache->cached = true;
4489 cache->offset = offset;
4490 cache->phys = phys;
4491 cache->len = len;
4492 cache->flags = flags;
4493try_submit_last:
4494 if (cache->flags & FIEMAP_EXTENT_LAST) {
4495 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4496 cache->phys, cache->len, cache->flags);
4497 cache->cached = false;
4498 }
4499 return ret;
4500}
4501
4502/*
848c23b7 4503 * Emit last fiemap cache
4751832d 4504 *
848c23b7
QW
4505 * The last fiemap cache may still be cached in the following case:
4506 * 0 4k 8k
4507 * |<- Fiemap range ->|
4508 * |<------------ First extent ----------->|
4509 *
4510 * In this case, the first extent range will be cached but not emitted.
4511 * So we must emit it before ending extent_fiemap().
4751832d 4512 */
848c23b7
QW
4513static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4514 struct fiemap_extent_info *fieinfo,
4515 struct fiemap_cache *cache)
4751832d
QW
4516{
4517 int ret;
4518
4519 if (!cache->cached)
4520 return 0;
4521
4751832d
QW
4522 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4523 cache->len, cache->flags);
4524 cache->cached = false;
4525 if (ret > 0)
4526 ret = 0;
4527 return ret;
4528}
4529
1506fcc8 4530int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4531 __u64 start, __u64 len)
1506fcc8 4532{
975f84fe 4533 int ret = 0;
1506fcc8
YS
4534 u64 off = start;
4535 u64 max = start + len;
4536 u32 flags = 0;
975f84fe
JB
4537 u32 found_type;
4538 u64 last;
ec29ed5b 4539 u64 last_for_get_extent = 0;
1506fcc8 4540 u64 disko = 0;
ec29ed5b 4541 u64 isize = i_size_read(inode);
975f84fe 4542 struct btrfs_key found_key;
1506fcc8 4543 struct extent_map *em = NULL;
2ac55d41 4544 struct extent_state *cached_state = NULL;
975f84fe 4545 struct btrfs_path *path;
dc046b10 4546 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4547 struct fiemap_cache cache = { 0 };
1506fcc8 4548 int end = 0;
ec29ed5b
CM
4549 u64 em_start = 0;
4550 u64 em_len = 0;
4551 u64 em_end = 0;
1506fcc8
YS
4552
4553 if (len == 0)
4554 return -EINVAL;
4555
975f84fe
JB
4556 path = btrfs_alloc_path();
4557 if (!path)
4558 return -ENOMEM;
4559 path->leave_spinning = 1;
4560
da17066c
JM
4561 start = round_down(start, btrfs_inode_sectorsize(inode));
4562 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4563
ec29ed5b
CM
4564 /*
4565 * lookup the last file extent. We're not using i_size here
4566 * because there might be preallocation past i_size
4567 */
f85b7379
DS
4568 ret = btrfs_lookup_file_extent(NULL, root, path,
4569 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4570 if (ret < 0) {
4571 btrfs_free_path(path);
4572 return ret;
2d324f59
LB
4573 } else {
4574 WARN_ON(!ret);
4575 if (ret == 1)
4576 ret = 0;
975f84fe 4577 }
2d324f59 4578
975f84fe 4579 path->slots[0]--;
975f84fe 4580 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4581 found_type = found_key.type;
975f84fe 4582
ec29ed5b 4583 /* No extents, but there might be delalloc bits */
4a0cc7ca 4584 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4585 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4586 /* have to trust i_size as the end */
4587 last = (u64)-1;
4588 last_for_get_extent = isize;
4589 } else {
4590 /*
4591 * remember the start of the last extent. There are a
4592 * bunch of different factors that go into the length of the
4593 * extent, so its much less complex to remember where it started
4594 */
4595 last = found_key.offset;
4596 last_for_get_extent = last + 1;
975f84fe 4597 }
fe09e16c 4598 btrfs_release_path(path);
975f84fe 4599
ec29ed5b
CM
4600 /*
4601 * we might have some extents allocated but more delalloc past those
4602 * extents. so, we trust isize unless the start of the last extent is
4603 * beyond isize
4604 */
4605 if (last < isize) {
4606 last = (u64)-1;
4607 last_for_get_extent = isize;
4608 }
4609
ff13db41 4610 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4611 &cached_state);
ec29ed5b 4612
e3350e16 4613 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4614 if (!em)
4615 goto out;
4616 if (IS_ERR(em)) {
4617 ret = PTR_ERR(em);
4618 goto out;
4619 }
975f84fe 4620
1506fcc8 4621 while (!end) {
b76bb701 4622 u64 offset_in_extent = 0;
ea8efc74
CM
4623
4624 /* break if the extent we found is outside the range */
4625 if (em->start >= max || extent_map_end(em) < off)
4626 break;
4627
4628 /*
4629 * get_extent may return an extent that starts before our
4630 * requested range. We have to make sure the ranges
4631 * we return to fiemap always move forward and don't
4632 * overlap, so adjust the offsets here
4633 */
4634 em_start = max(em->start, off);
1506fcc8 4635
ea8efc74
CM
4636 /*
4637 * record the offset from the start of the extent
b76bb701
JB
4638 * for adjusting the disk offset below. Only do this if the
4639 * extent isn't compressed since our in ram offset may be past
4640 * what we have actually allocated on disk.
ea8efc74 4641 */
b76bb701
JB
4642 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4643 offset_in_extent = em_start - em->start;
ec29ed5b 4644 em_end = extent_map_end(em);
ea8efc74 4645 em_len = em_end - em_start;
1506fcc8 4646 flags = 0;
f0986318
FM
4647 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4648 disko = em->block_start + offset_in_extent;
4649 else
4650 disko = 0;
1506fcc8 4651
ea8efc74
CM
4652 /*
4653 * bump off for our next call to get_extent
4654 */
4655 off = extent_map_end(em);
4656 if (off >= max)
4657 end = 1;
4658
93dbfad7 4659 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4660 end = 1;
4661 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4662 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4663 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4664 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4665 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4666 flags |= (FIEMAP_EXTENT_DELALLOC |
4667 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4668 } else if (fieinfo->fi_extents_max) {
4669 u64 bytenr = em->block_start -
4670 (em->start - em->orig_start);
fe09e16c 4671
fe09e16c
LB
4672 /*
4673 * As btrfs supports shared space, this information
4674 * can be exported to userspace tools via
dc046b10
JB
4675 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4676 * then we're just getting a count and we can skip the
4677 * lookup stuff.
fe09e16c 4678 */
bb739cf0
EN
4679 ret = btrfs_check_shared(root,
4680 btrfs_ino(BTRFS_I(inode)),
4681 bytenr);
dc046b10 4682 if (ret < 0)
fe09e16c 4683 goto out_free;
dc046b10 4684 if (ret)
fe09e16c 4685 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4686 ret = 0;
1506fcc8
YS
4687 }
4688 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4689 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4690 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4691 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4692
1506fcc8
YS
4693 free_extent_map(em);
4694 em = NULL;
ec29ed5b
CM
4695 if ((em_start >= last) || em_len == (u64)-1 ||
4696 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4697 flags |= FIEMAP_EXTENT_LAST;
4698 end = 1;
4699 }
4700
ec29ed5b 4701 /* now scan forward to see if this is really the last extent. */
e3350e16 4702 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4703 if (IS_ERR(em)) {
4704 ret = PTR_ERR(em);
4705 goto out;
4706 }
4707 if (!em) {
975f84fe
JB
4708 flags |= FIEMAP_EXTENT_LAST;
4709 end = 1;
4710 }
4751832d
QW
4711 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4712 em_len, flags);
26e726af
CS
4713 if (ret) {
4714 if (ret == 1)
4715 ret = 0;
ec29ed5b 4716 goto out_free;
26e726af 4717 }
1506fcc8
YS
4718 }
4719out_free:
4751832d 4720 if (!ret)
848c23b7 4721 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4722 free_extent_map(em);
4723out:
fe09e16c 4724 btrfs_free_path(path);
a52f4cd2 4725 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4726 &cached_state);
1506fcc8
YS
4727 return ret;
4728}
4729
727011e0
CM
4730static void __free_extent_buffer(struct extent_buffer *eb)
4731{
6d49ba1b 4732 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4733 kmem_cache_free(extent_buffer_cache, eb);
4734}
4735
a26e8c9f 4736int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4737{
4738 return (atomic_read(&eb->io_pages) ||
4739 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4740 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4741}
4742
4743/*
55ac0139 4744 * Release all pages attached to the extent buffer.
db7f3436 4745 */
55ac0139 4746static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4747{
d64766fd
NB
4748 int i;
4749 int num_pages;
b0132a3b 4750 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4751
4752 BUG_ON(extent_buffer_under_io(eb));
4753
d64766fd
NB
4754 num_pages = num_extent_pages(eb);
4755 for (i = 0; i < num_pages; i++) {
4756 struct page *page = eb->pages[i];
db7f3436 4757
5d2361db
FL
4758 if (!page)
4759 continue;
4760 if (mapped)
db7f3436 4761 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4762 /*
4763 * We do this since we'll remove the pages after we've
4764 * removed the eb from the radix tree, so we could race
4765 * and have this page now attached to the new eb. So
4766 * only clear page_private if it's still connected to
4767 * this eb.
4768 */
4769 if (PagePrivate(page) &&
4770 page->private == (unsigned long)eb) {
4771 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4772 BUG_ON(PageDirty(page));
4773 BUG_ON(PageWriteback(page));
db7f3436 4774 /*
5d2361db
FL
4775 * We need to make sure we haven't be attached
4776 * to a new eb.
db7f3436 4777 */
5d2361db
FL
4778 ClearPagePrivate(page);
4779 set_page_private(page, 0);
4780 /* One for the page private */
09cbfeaf 4781 put_page(page);
db7f3436 4782 }
5d2361db
FL
4783
4784 if (mapped)
4785 spin_unlock(&page->mapping->private_lock);
4786
01327610 4787 /* One for when we allocated the page */
09cbfeaf 4788 put_page(page);
d64766fd 4789 }
db7f3436
JB
4790}
4791
4792/*
4793 * Helper for releasing the extent buffer.
4794 */
4795static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4796{
55ac0139 4797 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4798 __free_extent_buffer(eb);
4799}
4800
f28491e0
JB
4801static struct extent_buffer *
4802__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4803 unsigned long len)
d1310b2e
CM
4804{
4805 struct extent_buffer *eb = NULL;
4806
d1b5c567 4807 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4808 eb->start = start;
4809 eb->len = len;
f28491e0 4810 eb->fs_info = fs_info;
815a51c7 4811 eb->bflags = 0;
bd681513 4812 rwlock_init(&eb->lock);
bd681513
CM
4813 atomic_set(&eb->blocking_readers, 0);
4814 atomic_set(&eb->blocking_writers, 0);
ed1b4ed7 4815 eb->lock_nested = false;
bd681513
CM
4816 init_waitqueue_head(&eb->write_lock_wq);
4817 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4818
6d49ba1b
ES
4819 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4820
3083ee2e 4821 spin_lock_init(&eb->refs_lock);
d1310b2e 4822 atomic_set(&eb->refs, 1);
0b32f4bb 4823 atomic_set(&eb->io_pages, 0);
727011e0 4824
b8dae313
DS
4825 /*
4826 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4827 */
4828 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4829 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4830 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4831
843ccf9f
DS
4832#ifdef CONFIG_BTRFS_DEBUG
4833 atomic_set(&eb->spinning_writers, 0);
afd495a8 4834 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4835 atomic_set(&eb->read_locks, 0);
c79adfc0 4836 atomic_set(&eb->write_locks, 0);
843ccf9f
DS
4837#endif
4838
d1310b2e
CM
4839 return eb;
4840}
4841
815a51c7
JS
4842struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4843{
cc5e31a4 4844 int i;
815a51c7
JS
4845 struct page *p;
4846 struct extent_buffer *new;
cc5e31a4 4847 int num_pages = num_extent_pages(src);
815a51c7 4848
3f556f78 4849 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4850 if (new == NULL)
4851 return NULL;
4852
4853 for (i = 0; i < num_pages; i++) {
9ec72677 4854 p = alloc_page(GFP_NOFS);
db7f3436
JB
4855 if (!p) {
4856 btrfs_release_extent_buffer(new);
4857 return NULL;
4858 }
815a51c7
JS
4859 attach_extent_buffer_page(new, p);
4860 WARN_ON(PageDirty(p));
4861 SetPageUptodate(p);
4862 new->pages[i] = p;
fba1acf9 4863 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4864 }
4865
815a51c7 4866 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4867 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4868
4869 return new;
4870}
4871
0f331229
OS
4872struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4873 u64 start, unsigned long len)
815a51c7
JS
4874{
4875 struct extent_buffer *eb;
cc5e31a4
DS
4876 int num_pages;
4877 int i;
815a51c7 4878
3f556f78 4879 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4880 if (!eb)
4881 return NULL;
4882
65ad0104 4883 num_pages = num_extent_pages(eb);
815a51c7 4884 for (i = 0; i < num_pages; i++) {
9ec72677 4885 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4886 if (!eb->pages[i])
4887 goto err;
4888 }
4889 set_extent_buffer_uptodate(eb);
4890 btrfs_set_header_nritems(eb, 0);
b0132a3b 4891 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4892
4893 return eb;
4894err:
84167d19
SB
4895 for (; i > 0; i--)
4896 __free_page(eb->pages[i - 1]);
815a51c7
JS
4897 __free_extent_buffer(eb);
4898 return NULL;
4899}
4900
0f331229 4901struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4902 u64 start)
0f331229 4903{
da17066c 4904 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4905}
4906
0b32f4bb
JB
4907static void check_buffer_tree_ref(struct extent_buffer *eb)
4908{
242e18c7 4909 int refs;
0b32f4bb
JB
4910 /* the ref bit is tricky. We have to make sure it is set
4911 * if we have the buffer dirty. Otherwise the
4912 * code to free a buffer can end up dropping a dirty
4913 * page
4914 *
4915 * Once the ref bit is set, it won't go away while the
4916 * buffer is dirty or in writeback, and it also won't
4917 * go away while we have the reference count on the
4918 * eb bumped.
4919 *
4920 * We can't just set the ref bit without bumping the
4921 * ref on the eb because free_extent_buffer might
4922 * see the ref bit and try to clear it. If this happens
4923 * free_extent_buffer might end up dropping our original
4924 * ref by mistake and freeing the page before we are able
4925 * to add one more ref.
4926 *
4927 * So bump the ref count first, then set the bit. If someone
4928 * beat us to it, drop the ref we added.
4929 */
242e18c7
CM
4930 refs = atomic_read(&eb->refs);
4931 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4932 return;
4933
594831c4
JB
4934 spin_lock(&eb->refs_lock);
4935 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4936 atomic_inc(&eb->refs);
594831c4 4937 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4938}
4939
2457aec6
MG
4940static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4941 struct page *accessed)
5df4235e 4942{
cc5e31a4 4943 int num_pages, i;
5df4235e 4944
0b32f4bb
JB
4945 check_buffer_tree_ref(eb);
4946
65ad0104 4947 num_pages = num_extent_pages(eb);
5df4235e 4948 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4949 struct page *p = eb->pages[i];
4950
2457aec6
MG
4951 if (p != accessed)
4952 mark_page_accessed(p);
5df4235e
JB
4953 }
4954}
4955
f28491e0
JB
4956struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4957 u64 start)
452c75c3
CS
4958{
4959 struct extent_buffer *eb;
4960
4961 rcu_read_lock();
f28491e0 4962 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4963 start >> PAGE_SHIFT);
452c75c3
CS
4964 if (eb && atomic_inc_not_zero(&eb->refs)) {
4965 rcu_read_unlock();
062c19e9
FM
4966 /*
4967 * Lock our eb's refs_lock to avoid races with
4968 * free_extent_buffer. When we get our eb it might be flagged
4969 * with EXTENT_BUFFER_STALE and another task running
4970 * free_extent_buffer might have seen that flag set,
4971 * eb->refs == 2, that the buffer isn't under IO (dirty and
4972 * writeback flags not set) and it's still in the tree (flag
4973 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4974 * of decrementing the extent buffer's reference count twice.
4975 * So here we could race and increment the eb's reference count,
4976 * clear its stale flag, mark it as dirty and drop our reference
4977 * before the other task finishes executing free_extent_buffer,
4978 * which would later result in an attempt to free an extent
4979 * buffer that is dirty.
4980 */
4981 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4982 spin_lock(&eb->refs_lock);
4983 spin_unlock(&eb->refs_lock);
4984 }
2457aec6 4985 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4986 return eb;
4987 }
4988 rcu_read_unlock();
4989
4990 return NULL;
4991}
4992
faa2dbf0
JB
4993#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4994struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4995 u64 start)
faa2dbf0
JB
4996{
4997 struct extent_buffer *eb, *exists = NULL;
4998 int ret;
4999
5000 eb = find_extent_buffer(fs_info, start);
5001 if (eb)
5002 return eb;
da17066c 5003 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
5004 if (!eb)
5005 return NULL;
5006 eb->fs_info = fs_info;
5007again:
e1860a77 5008 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
5009 if (ret)
5010 goto free_eb;
5011 spin_lock(&fs_info->buffer_lock);
5012 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5013 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5014 spin_unlock(&fs_info->buffer_lock);
5015 radix_tree_preload_end();
5016 if (ret == -EEXIST) {
5017 exists = find_extent_buffer(fs_info, start);
5018 if (exists)
5019 goto free_eb;
5020 else
5021 goto again;
5022 }
5023 check_buffer_tree_ref(eb);
5024 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5025
faa2dbf0
JB
5026 return eb;
5027free_eb:
5028 btrfs_release_extent_buffer(eb);
5029 return exists;
5030}
5031#endif
5032
f28491e0 5033struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5034 u64 start)
d1310b2e 5035{
da17066c 5036 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5037 int num_pages;
5038 int i;
09cbfeaf 5039 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5040 struct extent_buffer *eb;
6af118ce 5041 struct extent_buffer *exists = NULL;
d1310b2e 5042 struct page *p;
f28491e0 5043 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5044 int uptodate = 1;
19fe0a8b 5045 int ret;
d1310b2e 5046
da17066c 5047 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5048 btrfs_err(fs_info, "bad tree block start %llu", start);
5049 return ERR_PTR(-EINVAL);
5050 }
5051
f28491e0 5052 eb = find_extent_buffer(fs_info, start);
452c75c3 5053 if (eb)
6af118ce 5054 return eb;
6af118ce 5055
23d79d81 5056 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5057 if (!eb)
c871b0f2 5058 return ERR_PTR(-ENOMEM);
d1310b2e 5059
65ad0104 5060 num_pages = num_extent_pages(eb);
727011e0 5061 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5062 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5063 if (!p) {
5064 exists = ERR_PTR(-ENOMEM);
6af118ce 5065 goto free_eb;
c871b0f2 5066 }
4f2de97a
JB
5067
5068 spin_lock(&mapping->private_lock);
5069 if (PagePrivate(p)) {
5070 /*
5071 * We could have already allocated an eb for this page
5072 * and attached one so lets see if we can get a ref on
5073 * the existing eb, and if we can we know it's good and
5074 * we can just return that one, else we know we can just
5075 * overwrite page->private.
5076 */
5077 exists = (struct extent_buffer *)p->private;
5078 if (atomic_inc_not_zero(&exists->refs)) {
5079 spin_unlock(&mapping->private_lock);
5080 unlock_page(p);
09cbfeaf 5081 put_page(p);
2457aec6 5082 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5083 goto free_eb;
5084 }
5ca64f45 5085 exists = NULL;
4f2de97a 5086
0b32f4bb 5087 /*
4f2de97a
JB
5088 * Do this so attach doesn't complain and we need to
5089 * drop the ref the old guy had.
5090 */
5091 ClearPagePrivate(p);
0b32f4bb 5092 WARN_ON(PageDirty(p));
09cbfeaf 5093 put_page(p);
d1310b2e 5094 }
4f2de97a
JB
5095 attach_extent_buffer_page(eb, p);
5096 spin_unlock(&mapping->private_lock);
0b32f4bb 5097 WARN_ON(PageDirty(p));
727011e0 5098 eb->pages[i] = p;
d1310b2e
CM
5099 if (!PageUptodate(p))
5100 uptodate = 0;
eb14ab8e
CM
5101
5102 /*
b16d011e
NB
5103 * We can't unlock the pages just yet since the extent buffer
5104 * hasn't been properly inserted in the radix tree, this
5105 * opens a race with btree_releasepage which can free a page
5106 * while we are still filling in all pages for the buffer and
5107 * we could crash.
eb14ab8e 5108 */
d1310b2e
CM
5109 }
5110 if (uptodate)
b4ce94de 5111 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5112again:
e1860a77 5113 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5114 if (ret) {
5115 exists = ERR_PTR(ret);
19fe0a8b 5116 goto free_eb;
c871b0f2 5117 }
19fe0a8b 5118
f28491e0
JB
5119 spin_lock(&fs_info->buffer_lock);
5120 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5121 start >> PAGE_SHIFT, eb);
f28491e0 5122 spin_unlock(&fs_info->buffer_lock);
452c75c3 5123 radix_tree_preload_end();
19fe0a8b 5124 if (ret == -EEXIST) {
f28491e0 5125 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5126 if (exists)
5127 goto free_eb;
5128 else
115391d2 5129 goto again;
6af118ce 5130 }
6af118ce 5131 /* add one reference for the tree */
0b32f4bb 5132 check_buffer_tree_ref(eb);
34b41ace 5133 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5134
5135 /*
b16d011e
NB
5136 * Now it's safe to unlock the pages because any calls to
5137 * btree_releasepage will correctly detect that a page belongs to a
5138 * live buffer and won't free them prematurely.
eb14ab8e 5139 */
28187ae5
NB
5140 for (i = 0; i < num_pages; i++)
5141 unlock_page(eb->pages[i]);
d1310b2e
CM
5142 return eb;
5143
6af118ce 5144free_eb:
5ca64f45 5145 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5146 for (i = 0; i < num_pages; i++) {
5147 if (eb->pages[i])
5148 unlock_page(eb->pages[i]);
5149 }
eb14ab8e 5150
897ca6e9 5151 btrfs_release_extent_buffer(eb);
6af118ce 5152 return exists;
d1310b2e 5153}
d1310b2e 5154
3083ee2e
JB
5155static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5156{
5157 struct extent_buffer *eb =
5158 container_of(head, struct extent_buffer, rcu_head);
5159
5160 __free_extent_buffer(eb);
5161}
5162
f7a52a40 5163static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5164{
07e21c4d
NB
5165 lockdep_assert_held(&eb->refs_lock);
5166
3083ee2e
JB
5167 WARN_ON(atomic_read(&eb->refs) == 0);
5168 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5169 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5170 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5171
815a51c7 5172 spin_unlock(&eb->refs_lock);
3083ee2e 5173
f28491e0
JB
5174 spin_lock(&fs_info->buffer_lock);
5175 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5176 eb->start >> PAGE_SHIFT);
f28491e0 5177 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5178 } else {
5179 spin_unlock(&eb->refs_lock);
815a51c7 5180 }
3083ee2e
JB
5181
5182 /* Should be safe to release our pages at this point */
55ac0139 5183 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5184#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5185 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5186 __free_extent_buffer(eb);
5187 return 1;
5188 }
5189#endif
3083ee2e 5190 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5191 return 1;
3083ee2e
JB
5192 }
5193 spin_unlock(&eb->refs_lock);
e64860aa
JB
5194
5195 return 0;
3083ee2e
JB
5196}
5197
d1310b2e
CM
5198void free_extent_buffer(struct extent_buffer *eb)
5199{
242e18c7
CM
5200 int refs;
5201 int old;
d1310b2e
CM
5202 if (!eb)
5203 return;
5204
242e18c7
CM
5205 while (1) {
5206 refs = atomic_read(&eb->refs);
46cc775e
NB
5207 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5208 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5209 refs == 1))
242e18c7
CM
5210 break;
5211 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5212 if (old == refs)
5213 return;
5214 }
5215
3083ee2e
JB
5216 spin_lock(&eb->refs_lock);
5217 if (atomic_read(&eb->refs) == 2 &&
5218 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5219 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5220 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5221 atomic_dec(&eb->refs);
5222
5223 /*
5224 * I know this is terrible, but it's temporary until we stop tracking
5225 * the uptodate bits and such for the extent buffers.
5226 */
f7a52a40 5227 release_extent_buffer(eb);
3083ee2e
JB
5228}
5229
5230void free_extent_buffer_stale(struct extent_buffer *eb)
5231{
5232 if (!eb)
d1310b2e
CM
5233 return;
5234
3083ee2e
JB
5235 spin_lock(&eb->refs_lock);
5236 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5237
0b32f4bb 5238 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5239 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5240 atomic_dec(&eb->refs);
f7a52a40 5241 release_extent_buffer(eb);
d1310b2e 5242}
d1310b2e 5243
1d4284bd 5244void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5245{
cc5e31a4
DS
5246 int i;
5247 int num_pages;
d1310b2e
CM
5248 struct page *page;
5249
65ad0104 5250 num_pages = num_extent_pages(eb);
d1310b2e
CM
5251
5252 for (i = 0; i < num_pages; i++) {
fb85fc9a 5253 page = eb->pages[i];
b9473439 5254 if (!PageDirty(page))
d2c3f4f6
CM
5255 continue;
5256
a61e6f29 5257 lock_page(page);
eb14ab8e
CM
5258 WARN_ON(!PagePrivate(page));
5259
d1310b2e 5260 clear_page_dirty_for_io(page);
b93b0163 5261 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5262 if (!PageDirty(page))
5263 __xa_clear_mark(&page->mapping->i_pages,
5264 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5265 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5266 ClearPageError(page);
a61e6f29 5267 unlock_page(page);
d1310b2e 5268 }
0b32f4bb 5269 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5270}
d1310b2e 5271
abb57ef3 5272bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5273{
cc5e31a4
DS
5274 int i;
5275 int num_pages;
abb57ef3 5276 bool was_dirty;
d1310b2e 5277
0b32f4bb
JB
5278 check_buffer_tree_ref(eb);
5279
b9473439 5280 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5281
65ad0104 5282 num_pages = num_extent_pages(eb);
3083ee2e 5283 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5284 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5285
abb57ef3
LB
5286 if (!was_dirty)
5287 for (i = 0; i < num_pages; i++)
5288 set_page_dirty(eb->pages[i]);
51995c39
LB
5289
5290#ifdef CONFIG_BTRFS_DEBUG
5291 for (i = 0; i < num_pages; i++)
5292 ASSERT(PageDirty(eb->pages[i]));
5293#endif
5294
b9473439 5295 return was_dirty;
d1310b2e 5296}
d1310b2e 5297
69ba3927 5298void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5299{
cc5e31a4 5300 int i;
1259ab75 5301 struct page *page;
cc5e31a4 5302 int num_pages;
1259ab75 5303
b4ce94de 5304 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5305 num_pages = num_extent_pages(eb);
1259ab75 5306 for (i = 0; i < num_pages; i++) {
fb85fc9a 5307 page = eb->pages[i];
33958dc6
CM
5308 if (page)
5309 ClearPageUptodate(page);
1259ab75 5310 }
1259ab75
CM
5311}
5312
09c25a8c 5313void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5314{
cc5e31a4 5315 int i;
d1310b2e 5316 struct page *page;
cc5e31a4 5317 int num_pages;
d1310b2e 5318
0b32f4bb 5319 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5320 num_pages = num_extent_pages(eb);
d1310b2e 5321 for (i = 0; i < num_pages; i++) {
fb85fc9a 5322 page = eb->pages[i];
d1310b2e
CM
5323 SetPageUptodate(page);
5324 }
d1310b2e 5325}
d1310b2e 5326
c2ccfbc6 5327int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5328{
cc5e31a4 5329 int i;
d1310b2e
CM
5330 struct page *page;
5331 int err;
5332 int ret = 0;
ce9adaa5
CM
5333 int locked_pages = 0;
5334 int all_uptodate = 1;
cc5e31a4 5335 int num_pages;
727011e0 5336 unsigned long num_reads = 0;
a86c12c7 5337 struct bio *bio = NULL;
c8b97818 5338 unsigned long bio_flags = 0;
c2ccfbc6 5339 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
a86c12c7 5340
b4ce94de 5341 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5342 return 0;
5343
65ad0104 5344 num_pages = num_extent_pages(eb);
8436ea91 5345 for (i = 0; i < num_pages; i++) {
fb85fc9a 5346 page = eb->pages[i];
bb82ab88 5347 if (wait == WAIT_NONE) {
2db04966 5348 if (!trylock_page(page))
ce9adaa5 5349 goto unlock_exit;
d1310b2e
CM
5350 } else {
5351 lock_page(page);
5352 }
ce9adaa5 5353 locked_pages++;
2571e739
LB
5354 }
5355 /*
5356 * We need to firstly lock all pages to make sure that
5357 * the uptodate bit of our pages won't be affected by
5358 * clear_extent_buffer_uptodate().
5359 */
8436ea91 5360 for (i = 0; i < num_pages; i++) {
2571e739 5361 page = eb->pages[i];
727011e0
CM
5362 if (!PageUptodate(page)) {
5363 num_reads++;
ce9adaa5 5364 all_uptodate = 0;
727011e0 5365 }
ce9adaa5 5366 }
2571e739 5367
ce9adaa5 5368 if (all_uptodate) {
8436ea91 5369 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5370 goto unlock_exit;
5371 }
5372
656f30db 5373 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5374 eb->read_mirror = 0;
0b32f4bb 5375 atomic_set(&eb->io_pages, num_reads);
8436ea91 5376 for (i = 0; i < num_pages; i++) {
fb85fc9a 5377 page = eb->pages[i];
baf863b9 5378
ce9adaa5 5379 if (!PageUptodate(page)) {
baf863b9
LB
5380 if (ret) {
5381 atomic_dec(&eb->io_pages);
5382 unlock_page(page);
5383 continue;
5384 }
5385
f188591e 5386 ClearPageError(page);
a86c12c7 5387 err = __extent_read_full_page(tree, page,
6af49dbd 5388 btree_get_extent, &bio,
d4c7ca86 5389 mirror_num, &bio_flags,
1f7ad75b 5390 REQ_META);
baf863b9 5391 if (err) {
d1310b2e 5392 ret = err;
baf863b9
LB
5393 /*
5394 * We use &bio in above __extent_read_full_page,
5395 * so we ensure that if it returns error, the
5396 * current page fails to add itself to bio and
5397 * it's been unlocked.
5398 *
5399 * We must dec io_pages by ourselves.
5400 */
5401 atomic_dec(&eb->io_pages);
5402 }
d1310b2e
CM
5403 } else {
5404 unlock_page(page);
5405 }
5406 }
5407
355808c2 5408 if (bio) {
1f7ad75b 5409 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5410 if (err)
5411 return err;
355808c2 5412 }
a86c12c7 5413
bb82ab88 5414 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5415 return ret;
d397712b 5416
8436ea91 5417 for (i = 0; i < num_pages; i++) {
fb85fc9a 5418 page = eb->pages[i];
d1310b2e 5419 wait_on_page_locked(page);
d397712b 5420 if (!PageUptodate(page))
d1310b2e 5421 ret = -EIO;
d1310b2e 5422 }
d397712b 5423
d1310b2e 5424 return ret;
ce9adaa5
CM
5425
5426unlock_exit:
d397712b 5427 while (locked_pages > 0) {
ce9adaa5 5428 locked_pages--;
8436ea91
JB
5429 page = eb->pages[locked_pages];
5430 unlock_page(page);
ce9adaa5
CM
5431 }
5432 return ret;
d1310b2e 5433}
d1310b2e 5434
1cbb1f45
JM
5435void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5436 unsigned long start, unsigned long len)
d1310b2e
CM
5437{
5438 size_t cur;
5439 size_t offset;
5440 struct page *page;
5441 char *kaddr;
5442 char *dst = (char *)dstv;
7073017a 5443 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5444 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5445
f716abd5
LB
5446 if (start + len > eb->len) {
5447 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5448 eb->start, eb->len, start, len);
5449 memset(dst, 0, len);
5450 return;
5451 }
d1310b2e 5452
7073017a 5453 offset = offset_in_page(start_offset + start);
d1310b2e 5454
d397712b 5455 while (len > 0) {
fb85fc9a 5456 page = eb->pages[i];
d1310b2e 5457
09cbfeaf 5458 cur = min(len, (PAGE_SIZE - offset));
a6591715 5459 kaddr = page_address(page);
d1310b2e 5460 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5461
5462 dst += cur;
5463 len -= cur;
5464 offset = 0;
5465 i++;
5466 }
5467}
d1310b2e 5468
1cbb1f45
JM
5469int read_extent_buffer_to_user(const struct extent_buffer *eb,
5470 void __user *dstv,
5471 unsigned long start, unsigned long len)
550ac1d8
GH
5472{
5473 size_t cur;
5474 size_t offset;
5475 struct page *page;
5476 char *kaddr;
5477 char __user *dst = (char __user *)dstv;
7073017a 5478 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5479 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5480 int ret = 0;
5481
5482 WARN_ON(start > eb->len);
5483 WARN_ON(start + len > eb->start + eb->len);
5484
7073017a 5485 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5486
5487 while (len > 0) {
fb85fc9a 5488 page = eb->pages[i];
550ac1d8 5489
09cbfeaf 5490 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5491 kaddr = page_address(page);
5492 if (copy_to_user(dst, kaddr + offset, cur)) {
5493 ret = -EFAULT;
5494 break;
5495 }
5496
5497 dst += cur;
5498 len -= cur;
5499 offset = 0;
5500 i++;
5501 }
5502
5503 return ret;
5504}
5505
415b35a5
LB
5506/*
5507 * return 0 if the item is found within a page.
5508 * return 1 if the item spans two pages.
5509 * return -EINVAL otherwise.
5510 */
1cbb1f45
JM
5511int map_private_extent_buffer(const struct extent_buffer *eb,
5512 unsigned long start, unsigned long min_len,
5513 char **map, unsigned long *map_start,
5514 unsigned long *map_len)
d1310b2e 5515{
cc2c39d6 5516 size_t offset;
d1310b2e
CM
5517 char *kaddr;
5518 struct page *p;
7073017a 5519 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5520 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5521 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5522 PAGE_SHIFT;
d1310b2e 5523
f716abd5
LB
5524 if (start + min_len > eb->len) {
5525 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5526 eb->start, eb->len, start, min_len);
5527 return -EINVAL;
5528 }
5529
d1310b2e 5530 if (i != end_i)
415b35a5 5531 return 1;
d1310b2e
CM
5532
5533 if (i == 0) {
5534 offset = start_offset;
5535 *map_start = 0;
5536 } else {
5537 offset = 0;
09cbfeaf 5538 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5539 }
d397712b 5540
fb85fc9a 5541 p = eb->pages[i];
a6591715 5542 kaddr = page_address(p);
d1310b2e 5543 *map = kaddr + offset;
09cbfeaf 5544 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5545 return 0;
5546}
d1310b2e 5547
1cbb1f45
JM
5548int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5549 unsigned long start, unsigned long len)
d1310b2e
CM
5550{
5551 size_t cur;
5552 size_t offset;
5553 struct page *page;
5554 char *kaddr;
5555 char *ptr = (char *)ptrv;
7073017a 5556 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5557 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5558 int ret = 0;
5559
5560 WARN_ON(start > eb->len);
5561 WARN_ON(start + len > eb->start + eb->len);
5562
7073017a 5563 offset = offset_in_page(start_offset + start);
d1310b2e 5564
d397712b 5565 while (len > 0) {
fb85fc9a 5566 page = eb->pages[i];
d1310b2e 5567
09cbfeaf 5568 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5569
a6591715 5570 kaddr = page_address(page);
d1310b2e 5571 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5572 if (ret)
5573 break;
5574
5575 ptr += cur;
5576 len -= cur;
5577 offset = 0;
5578 i++;
5579 }
5580 return ret;
5581}
d1310b2e 5582
f157bf76
DS
5583void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5584 const void *srcv)
5585{
5586 char *kaddr;
5587
5588 WARN_ON(!PageUptodate(eb->pages[0]));
5589 kaddr = page_address(eb->pages[0]);
5590 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5591 BTRFS_FSID_SIZE);
5592}
5593
5594void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5595{
5596 char *kaddr;
5597
5598 WARN_ON(!PageUptodate(eb->pages[0]));
5599 kaddr = page_address(eb->pages[0]);
5600 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5601 BTRFS_FSID_SIZE);
5602}
5603
d1310b2e
CM
5604void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5605 unsigned long start, unsigned long len)
5606{
5607 size_t cur;
5608 size_t offset;
5609 struct page *page;
5610 char *kaddr;
5611 char *src = (char *)srcv;
7073017a 5612 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5613 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5614
5615 WARN_ON(start > eb->len);
5616 WARN_ON(start + len > eb->start + eb->len);
5617
7073017a 5618 offset = offset_in_page(start_offset + start);
d1310b2e 5619
d397712b 5620 while (len > 0) {
fb85fc9a 5621 page = eb->pages[i];
d1310b2e
CM
5622 WARN_ON(!PageUptodate(page));
5623
09cbfeaf 5624 cur = min(len, PAGE_SIZE - offset);
a6591715 5625 kaddr = page_address(page);
d1310b2e 5626 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5627
5628 src += cur;
5629 len -= cur;
5630 offset = 0;
5631 i++;
5632 }
5633}
d1310b2e 5634
b159fa28
DS
5635void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5636 unsigned long len)
d1310b2e
CM
5637{
5638 size_t cur;
5639 size_t offset;
5640 struct page *page;
5641 char *kaddr;
7073017a 5642 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5643 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5644
5645 WARN_ON(start > eb->len);
5646 WARN_ON(start + len > eb->start + eb->len);
5647
7073017a 5648 offset = offset_in_page(start_offset + start);
d1310b2e 5649
d397712b 5650 while (len > 0) {
fb85fc9a 5651 page = eb->pages[i];
d1310b2e
CM
5652 WARN_ON(!PageUptodate(page));
5653
09cbfeaf 5654 cur = min(len, PAGE_SIZE - offset);
a6591715 5655 kaddr = page_address(page);
b159fa28 5656 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5657
5658 len -= cur;
5659 offset = 0;
5660 i++;
5661 }
5662}
d1310b2e 5663
58e8012c
DS
5664void copy_extent_buffer_full(struct extent_buffer *dst,
5665 struct extent_buffer *src)
5666{
5667 int i;
cc5e31a4 5668 int num_pages;
58e8012c
DS
5669
5670 ASSERT(dst->len == src->len);
5671
65ad0104 5672 num_pages = num_extent_pages(dst);
58e8012c
DS
5673 for (i = 0; i < num_pages; i++)
5674 copy_page(page_address(dst->pages[i]),
5675 page_address(src->pages[i]));
5676}
5677
d1310b2e
CM
5678void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5679 unsigned long dst_offset, unsigned long src_offset,
5680 unsigned long len)
5681{
5682 u64 dst_len = dst->len;
5683 size_t cur;
5684 size_t offset;
5685 struct page *page;
5686 char *kaddr;
7073017a 5687 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5688 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5689
5690 WARN_ON(src->len != dst_len);
5691
7073017a 5692 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5693
d397712b 5694 while (len > 0) {
fb85fc9a 5695 page = dst->pages[i];
d1310b2e
CM
5696 WARN_ON(!PageUptodate(page));
5697
09cbfeaf 5698 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5699
a6591715 5700 kaddr = page_address(page);
d1310b2e 5701 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5702
5703 src_offset += cur;
5704 len -= cur;
5705 offset = 0;
5706 i++;
5707 }
5708}
d1310b2e 5709
3e1e8bb7
OS
5710/*
5711 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5712 * given bit number
5713 * @eb: the extent buffer
5714 * @start: offset of the bitmap item in the extent buffer
5715 * @nr: bit number
5716 * @page_index: return index of the page in the extent buffer that contains the
5717 * given bit number
5718 * @page_offset: return offset into the page given by page_index
5719 *
5720 * This helper hides the ugliness of finding the byte in an extent buffer which
5721 * contains a given bit.
5722 */
5723static inline void eb_bitmap_offset(struct extent_buffer *eb,
5724 unsigned long start, unsigned long nr,
5725 unsigned long *page_index,
5726 size_t *page_offset)
5727{
7073017a 5728 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5729 size_t byte_offset = BIT_BYTE(nr);
5730 size_t offset;
5731
5732 /*
5733 * The byte we want is the offset of the extent buffer + the offset of
5734 * the bitmap item in the extent buffer + the offset of the byte in the
5735 * bitmap item.
5736 */
5737 offset = start_offset + start + byte_offset;
5738
09cbfeaf 5739 *page_index = offset >> PAGE_SHIFT;
7073017a 5740 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5741}
5742
5743/**
5744 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5745 * @eb: the extent buffer
5746 * @start: offset of the bitmap item in the extent buffer
5747 * @nr: bit number to test
5748 */
5749int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5750 unsigned long nr)
5751{
2fe1d551 5752 u8 *kaddr;
3e1e8bb7
OS
5753 struct page *page;
5754 unsigned long i;
5755 size_t offset;
5756
5757 eb_bitmap_offset(eb, start, nr, &i, &offset);
5758 page = eb->pages[i];
5759 WARN_ON(!PageUptodate(page));
5760 kaddr = page_address(page);
5761 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5762}
5763
5764/**
5765 * extent_buffer_bitmap_set - set an area of a bitmap
5766 * @eb: the extent buffer
5767 * @start: offset of the bitmap item in the extent buffer
5768 * @pos: bit number of the first bit
5769 * @len: number of bits to set
5770 */
5771void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5772 unsigned long pos, unsigned long len)
5773{
2fe1d551 5774 u8 *kaddr;
3e1e8bb7
OS
5775 struct page *page;
5776 unsigned long i;
5777 size_t offset;
5778 const unsigned int size = pos + len;
5779 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5780 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5781
5782 eb_bitmap_offset(eb, start, pos, &i, &offset);
5783 page = eb->pages[i];
5784 WARN_ON(!PageUptodate(page));
5785 kaddr = page_address(page);
5786
5787 while (len >= bits_to_set) {
5788 kaddr[offset] |= mask_to_set;
5789 len -= bits_to_set;
5790 bits_to_set = BITS_PER_BYTE;
9c894696 5791 mask_to_set = ~0;
09cbfeaf 5792 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5793 offset = 0;
5794 page = eb->pages[++i];
5795 WARN_ON(!PageUptodate(page));
5796 kaddr = page_address(page);
5797 }
5798 }
5799 if (len) {
5800 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5801 kaddr[offset] |= mask_to_set;
5802 }
5803}
5804
5805
5806/**
5807 * extent_buffer_bitmap_clear - clear an area of a bitmap
5808 * @eb: the extent buffer
5809 * @start: offset of the bitmap item in the extent buffer
5810 * @pos: bit number of the first bit
5811 * @len: number of bits to clear
5812 */
5813void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5814 unsigned long pos, unsigned long len)
5815{
2fe1d551 5816 u8 *kaddr;
3e1e8bb7
OS
5817 struct page *page;
5818 unsigned long i;
5819 size_t offset;
5820 const unsigned int size = pos + len;
5821 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5822 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5823
5824 eb_bitmap_offset(eb, start, pos, &i, &offset);
5825 page = eb->pages[i];
5826 WARN_ON(!PageUptodate(page));
5827 kaddr = page_address(page);
5828
5829 while (len >= bits_to_clear) {
5830 kaddr[offset] &= ~mask_to_clear;
5831 len -= bits_to_clear;
5832 bits_to_clear = BITS_PER_BYTE;
9c894696 5833 mask_to_clear = ~0;
09cbfeaf 5834 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5835 offset = 0;
5836 page = eb->pages[++i];
5837 WARN_ON(!PageUptodate(page));
5838 kaddr = page_address(page);
5839 }
5840 }
5841 if (len) {
5842 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5843 kaddr[offset] &= ~mask_to_clear;
5844 }
5845}
5846
3387206f
ST
5847static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5848{
5849 unsigned long distance = (src > dst) ? src - dst : dst - src;
5850 return distance < len;
5851}
5852
d1310b2e
CM
5853static void copy_pages(struct page *dst_page, struct page *src_page,
5854 unsigned long dst_off, unsigned long src_off,
5855 unsigned long len)
5856{
a6591715 5857 char *dst_kaddr = page_address(dst_page);
d1310b2e 5858 char *src_kaddr;
727011e0 5859 int must_memmove = 0;
d1310b2e 5860
3387206f 5861 if (dst_page != src_page) {
a6591715 5862 src_kaddr = page_address(src_page);
3387206f 5863 } else {
d1310b2e 5864 src_kaddr = dst_kaddr;
727011e0
CM
5865 if (areas_overlap(src_off, dst_off, len))
5866 must_memmove = 1;
3387206f 5867 }
d1310b2e 5868
727011e0
CM
5869 if (must_memmove)
5870 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5871 else
5872 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5873}
5874
5875void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
0b246afa 5878 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
7073017a 5882 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5883 unsigned long dst_i;
5884 unsigned long src_i;
5885
5886 if (src_offset + len > dst->len) {
0b246afa 5887 btrfs_err(fs_info,
5d163e0e
JM
5888 "memmove bogus src_offset %lu move len %lu dst len %lu",
5889 src_offset, len, dst->len);
290342f6 5890 BUG();
d1310b2e
CM
5891 }
5892 if (dst_offset + len > dst->len) {
0b246afa 5893 btrfs_err(fs_info,
5d163e0e
JM
5894 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5895 dst_offset, len, dst->len);
290342f6 5896 BUG();
d1310b2e
CM
5897 }
5898
d397712b 5899 while (len > 0) {
7073017a
JT
5900 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5901 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5902
09cbfeaf
KS
5903 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5904 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5905
09cbfeaf 5906 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5907 src_off_in_page));
5908 cur = min_t(unsigned long, cur,
09cbfeaf 5909 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5910
fb85fc9a 5911 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5912 dst_off_in_page, src_off_in_page, cur);
5913
5914 src_offset += cur;
5915 dst_offset += cur;
5916 len -= cur;
5917 }
5918}
d1310b2e
CM
5919
5920void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5921 unsigned long src_offset, unsigned long len)
5922{
0b246afa 5923 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5924 size_t cur;
5925 size_t dst_off_in_page;
5926 size_t src_off_in_page;
5927 unsigned long dst_end = dst_offset + len - 1;
5928 unsigned long src_end = src_offset + len - 1;
7073017a 5929 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5930 unsigned long dst_i;
5931 unsigned long src_i;
5932
5933 if (src_offset + len > dst->len) {
0b246afa 5934 btrfs_err(fs_info,
5d163e0e
JM
5935 "memmove bogus src_offset %lu move len %lu len %lu",
5936 src_offset, len, dst->len);
290342f6 5937 BUG();
d1310b2e
CM
5938 }
5939 if (dst_offset + len > dst->len) {
0b246afa 5940 btrfs_err(fs_info,
5d163e0e
JM
5941 "memmove bogus dst_offset %lu move len %lu len %lu",
5942 dst_offset, len, dst->len);
290342f6 5943 BUG();
d1310b2e 5944 }
727011e0 5945 if (dst_offset < src_offset) {
d1310b2e
CM
5946 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5947 return;
5948 }
d397712b 5949 while (len > 0) {
09cbfeaf
KS
5950 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5951 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5952
7073017a
JT
5953 dst_off_in_page = offset_in_page(start_offset + dst_end);
5954 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5955
5956 cur = min_t(unsigned long, len, src_off_in_page + 1);
5957 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5958 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5959 dst_off_in_page - cur + 1,
5960 src_off_in_page - cur + 1, cur);
5961
5962 dst_end -= cur;
5963 src_end -= cur;
5964 len -= cur;
5965 }
5966}
6af118ce 5967
f7a52a40 5968int try_release_extent_buffer(struct page *page)
19fe0a8b 5969{
6af118ce 5970 struct extent_buffer *eb;
6af118ce 5971
3083ee2e 5972 /*
01327610 5973 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5974 * now.
5975 */
5976 spin_lock(&page->mapping->private_lock);
5977 if (!PagePrivate(page)) {
5978 spin_unlock(&page->mapping->private_lock);
4f2de97a 5979 return 1;
45f49bce 5980 }
6af118ce 5981
3083ee2e
JB
5982 eb = (struct extent_buffer *)page->private;
5983 BUG_ON(!eb);
19fe0a8b
MX
5984
5985 /*
3083ee2e
JB
5986 * This is a little awful but should be ok, we need to make sure that
5987 * the eb doesn't disappear out from under us while we're looking at
5988 * this page.
19fe0a8b 5989 */
3083ee2e 5990 spin_lock(&eb->refs_lock);
0b32f4bb 5991 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5992 spin_unlock(&eb->refs_lock);
5993 spin_unlock(&page->mapping->private_lock);
5994 return 0;
b9473439 5995 }
3083ee2e 5996 spin_unlock(&page->mapping->private_lock);
897ca6e9 5997
19fe0a8b 5998 /*
3083ee2e
JB
5999 * If tree ref isn't set then we know the ref on this eb is a real ref,
6000 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6001 */
3083ee2e
JB
6002 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6003 spin_unlock(&eb->refs_lock);
6004 return 0;
b9473439 6005 }
19fe0a8b 6006
f7a52a40 6007 return release_extent_buffer(eb);
6af118ce 6008}