media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
9be3395b 29static struct bio_set *btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
c6100a4b
JB
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
8d599ae1 95}
6d49ba1b
ES
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 101#endif
d1310b2e 102
d1310b2e
CM
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
d1310b2e
CM
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
771ed689
CM
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
70fd7614 119 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
57599c7e 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
57599c7e 130 return 0;
d38ed27f 131 if (set && (state->state & bits) == bits)
57599c7e 132 return 0;
fefdc557 133 if (!set && (state->state & bits) == 0)
57599c7e 134 return 0;
d38ed27f 135 changeset->bytes_changed += state->end - state->start + 1;
53d32359 136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 137 GFP_ATOMIC);
57599c7e 138 return ret;
d38ed27f
QW
139}
140
aab6e9ed 141static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 142
c2d904e0
JM
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
c6100a4b
JB
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
c2d904e0 149}
0b32f4bb 150
d1310b2e
CM
151int __init extent_io_init(void)
152{
837e1972 153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 154 sizeof(struct extent_state), 0,
fba4b697 155 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
156 if (!extent_state_cache)
157 return -ENOMEM;
158
837e1972 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 160 sizeof(struct extent_buffer), 0,
fba4b697 161 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
162 if (!extent_buffer_cache)
163 goto free_state_cache;
9be3395b
CM
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
9be3395b
CM
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
e67c718b 190void __cold extent_io_exit(void)
d1310b2e 191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 530 int ret;
d1310b2e 531
0ca1f7ce 532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
291d673e 537 clear_state_cb(tree, state, bits);
57599c7e
DS
538 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
539 BUG_ON(ret < 0);
32c00aff 540 state->state &= ~bits_to_clear;
d1310b2e
CM
541 if (wake)
542 wake_up(&state->wq);
0ca1f7ce 543 if (state->state == 0) {
cdc6a395 544 next = next_state(state);
27a3507d 545 if (extent_state_in_tree(state)) {
d1310b2e 546 rb_erase(&state->rb_node, &tree->state);
27a3507d 547 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
548 free_extent_state(state);
549 } else {
550 WARN_ON(1);
551 }
552 } else {
553 merge_state(tree, state);
cdc6a395 554 next = next_state(state);
d1310b2e 555 }
cdc6a395 556 return next;
d1310b2e
CM
557}
558
8233767a
XG
559static struct extent_state *
560alloc_extent_state_atomic(struct extent_state *prealloc)
561{
562 if (!prealloc)
563 prealloc = alloc_extent_state(GFP_ATOMIC);
564
565 return prealloc;
566}
567
48a3b636 568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 569{
5d163e0e
JM
570 btrfs_panic(tree_fs_info(tree), err,
571 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
572}
573
d1310b2e
CM
574/*
575 * clear some bits on a range in the tree. This may require splitting
576 * or inserting elements in the tree, so the gfp mask is used to
577 * indicate which allocations or sleeping are allowed.
578 *
579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
580 * the given range from the tree regardless of state (ie for truncate).
581 *
582 * the range [start, end] is inclusive.
583 *
6763af84 584 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 585 */
66b0c887 586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
587 unsigned bits, int wake, int delete,
588 struct extent_state **cached_state,
589 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
590{
591 struct extent_state *state;
2c64c53d 592 struct extent_state *cached;
d1310b2e
CM
593 struct extent_state *prealloc = NULL;
594 struct rb_node *node;
5c939df5 595 u64 last_end;
d1310b2e 596 int err;
2ac55d41 597 int clear = 0;
d1310b2e 598
a5dee37d 599 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 600
7ee9e440
JB
601 if (bits & EXTENT_DELALLOC)
602 bits |= EXTENT_NORESERVE;
603
0ca1f7ce
YZ
604 if (delete)
605 bits |= ~EXTENT_CTLBITS;
606 bits |= EXTENT_FIRST_DELALLOC;
607
2ac55d41
JB
608 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 clear = 1;
d1310b2e 610again:
d0164adc 611 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
612 /*
613 * Don't care for allocation failure here because we might end
614 * up not needing the pre-allocated extent state at all, which
615 * is the case if we only have in the tree extent states that
616 * cover our input range and don't cover too any other range.
617 * If we end up needing a new extent state we allocate it later.
618 */
d1310b2e 619 prealloc = alloc_extent_state(mask);
d1310b2e
CM
620 }
621
cad321ad 622 spin_lock(&tree->lock);
2c64c53d
CM
623 if (cached_state) {
624 cached = *cached_state;
2ac55d41
JB
625
626 if (clear) {
627 *cached_state = NULL;
628 cached_state = NULL;
629 }
630
27a3507d
FM
631 if (cached && extent_state_in_tree(cached) &&
632 cached->start <= start && cached->end > start) {
2ac55d41 633 if (clear)
b7ac31b7 634 refcount_dec(&cached->refs);
2c64c53d 635 state = cached;
42daec29 636 goto hit_next;
2c64c53d 637 }
2ac55d41
JB
638 if (clear)
639 free_extent_state(cached);
2c64c53d 640 }
d1310b2e
CM
641 /*
642 * this search will find the extents that end after
643 * our range starts
644 */
80ea96b1 645 node = tree_search(tree, start);
d1310b2e
CM
646 if (!node)
647 goto out;
648 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 649hit_next:
d1310b2e
CM
650 if (state->start > end)
651 goto out;
652 WARN_ON(state->end < start);
5c939df5 653 last_end = state->end;
d1310b2e 654
0449314a 655 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
656 if (!(state->state & bits)) {
657 state = next_state(state);
0449314a 658 goto next;
cdc6a395 659 }
0449314a 660
d1310b2e
CM
661 /*
662 * | ---- desired range ---- |
663 * | state | or
664 * | ------------- state -------------- |
665 *
666 * We need to split the extent we found, and may flip
667 * bits on second half.
668 *
669 * If the extent we found extends past our range, we
670 * just split and search again. It'll get split again
671 * the next time though.
672 *
673 * If the extent we found is inside our range, we clear
674 * the desired bit on it.
675 */
676
677 if (state->start < start) {
8233767a
XG
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
d1310b2e 680 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
681 if (err)
682 extent_io_tree_panic(tree, err);
683
d1310b2e
CM
684 prealloc = NULL;
685 if (err)
686 goto out;
687 if (state->end <= end) {
fefdc557
QW
688 state = clear_state_bit(tree, state, &bits, wake,
689 changeset);
d1ac6e41 690 goto next;
d1310b2e
CM
691 }
692 goto search_again;
693 }
694 /*
695 * | ---- desired range ---- |
696 * | state |
697 * We need to split the extent, and clear the bit
698 * on the first half
699 */
700 if (state->start <= end && state->end > end) {
8233767a
XG
701 prealloc = alloc_extent_state_atomic(prealloc);
702 BUG_ON(!prealloc);
d1310b2e 703 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
704 if (err)
705 extent_io_tree_panic(tree, err);
706
d1310b2e
CM
707 if (wake)
708 wake_up(&state->wq);
42daec29 709
fefdc557 710 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 711
d1310b2e
CM
712 prealloc = NULL;
713 goto out;
714 }
42daec29 715
fefdc557 716 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 717next:
5c939df5
YZ
718 if (last_end == (u64)-1)
719 goto out;
720 start = last_end + 1;
cdc6a395 721 if (start <= end && state && !need_resched())
692e5759 722 goto hit_next;
d1310b2e
CM
723
724search_again:
725 if (start > end)
726 goto out;
cad321ad 727 spin_unlock(&tree->lock);
d0164adc 728 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
729 cond_resched();
730 goto again;
7ab5cb2a
DS
731
732out:
733 spin_unlock(&tree->lock);
734 if (prealloc)
735 free_extent_state(prealloc);
736
737 return 0;
738
d1310b2e 739}
d1310b2e 740
143bede5
JM
741static void wait_on_state(struct extent_io_tree *tree,
742 struct extent_state *state)
641f5219
CH
743 __releases(tree->lock)
744 __acquires(tree->lock)
d1310b2e
CM
745{
746 DEFINE_WAIT(wait);
747 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 748 spin_unlock(&tree->lock);
d1310b2e 749 schedule();
cad321ad 750 spin_lock(&tree->lock);
d1310b2e 751 finish_wait(&state->wq, &wait);
d1310b2e
CM
752}
753
754/*
755 * waits for one or more bits to clear on a range in the state tree.
756 * The range [start, end] is inclusive.
757 * The tree lock is taken by this function
758 */
41074888
DS
759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 unsigned long bits)
d1310b2e
CM
761{
762 struct extent_state *state;
763 struct rb_node *node;
764
a5dee37d 765 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 766
cad321ad 767 spin_lock(&tree->lock);
d1310b2e
CM
768again:
769 while (1) {
770 /*
771 * this search will find all the extents that end after
772 * our range starts
773 */
80ea96b1 774 node = tree_search(tree, start);
c50d3e71 775process_node:
d1310b2e
CM
776 if (!node)
777 break;
778
779 state = rb_entry(node, struct extent_state, rb_node);
780
781 if (state->start > end)
782 goto out;
783
784 if (state->state & bits) {
785 start = state->start;
b7ac31b7 786 refcount_inc(&state->refs);
d1310b2e
CM
787 wait_on_state(tree, state);
788 free_extent_state(state);
789 goto again;
790 }
791 start = state->end + 1;
792
793 if (start > end)
794 break;
795
c50d3e71
FM
796 if (!cond_resched_lock(&tree->lock)) {
797 node = rb_next(node);
798 goto process_node;
799 }
d1310b2e
CM
800 }
801out:
cad321ad 802 spin_unlock(&tree->lock);
d1310b2e 803}
d1310b2e 804
1bf85046 805static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 806 struct extent_state *state,
d38ed27f 807 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 808{
9ee49a04 809 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 810 int ret;
9ed74f2d 811
1bf85046 812 set_state_cb(tree, state, bits);
0ca1f7ce 813 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
814 u64 range = state->end - state->start + 1;
815 tree->dirty_bytes += range;
816 }
57599c7e
DS
817 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
818 BUG_ON(ret < 0);
0ca1f7ce 819 state->state |= bits_to_set;
d1310b2e
CM
820}
821
e38e2ed7
FM
822static void cache_state_if_flags(struct extent_state *state,
823 struct extent_state **cached_ptr,
9ee49a04 824 unsigned flags)
2c64c53d
CM
825{
826 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 827 if (!flags || (state->state & flags)) {
2c64c53d 828 *cached_ptr = state;
b7ac31b7 829 refcount_inc(&state->refs);
2c64c53d
CM
830 }
831 }
832}
833
e38e2ed7
FM
834static void cache_state(struct extent_state *state,
835 struct extent_state **cached_ptr)
836{
837 return cache_state_if_flags(state, cached_ptr,
838 EXTENT_IOBITS | EXTENT_BOUNDARY);
839}
840
d1310b2e 841/*
1edbb734
CM
842 * set some bits on a range in the tree. This may require allocations or
843 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 844 *
1edbb734
CM
845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
846 * part of the range already has the desired bits set. The start of the
847 * existing range is returned in failed_start in this case.
d1310b2e 848 *
1edbb734 849 * [start, end] is inclusive This takes the tree lock.
d1310b2e 850 */
1edbb734 851
3fbe5c02
JM
852static int __must_check
853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 854 unsigned bits, unsigned exclusive_bits,
41074888 855 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 856 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
857{
858 struct extent_state *state;
859 struct extent_state *prealloc = NULL;
860 struct rb_node *node;
12cfbad9
FDBM
861 struct rb_node **p;
862 struct rb_node *parent;
d1310b2e 863 int err = 0;
d1310b2e
CM
864 u64 last_start;
865 u64 last_end;
42daec29 866
a5dee37d 867 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 868
0ca1f7ce 869 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 870again:
d0164adc 871 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
872 /*
873 * Don't care for allocation failure here because we might end
874 * up not needing the pre-allocated extent state at all, which
875 * is the case if we only have in the tree extent states that
876 * cover our input range and don't cover too any other range.
877 * If we end up needing a new extent state we allocate it later.
878 */
d1310b2e 879 prealloc = alloc_extent_state(mask);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
b5a4ba14
DS
1042search_again:
1043 if (start > end)
1044 goto out;
1045 spin_unlock(&tree->lock);
1046 if (gfpflags_allow_blocking(mask))
1047 cond_resched();
1048 goto again;
d1310b2e
CM
1049
1050out:
cad321ad 1051 spin_unlock(&tree->lock);
d1310b2e
CM
1052 if (prealloc)
1053 free_extent_state(prealloc);
1054
1055 return err;
1056
d1310b2e 1057}
d1310b2e 1058
41074888 1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1060 unsigned bits, u64 * failed_start,
41074888 1061 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1062{
1063 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1064 cached_state, mask, NULL);
3fbe5c02
JM
1065}
1066
1067
462d6fac 1068/**
10983f2e
LB
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * another
462d6fac
JB
1071 * @tree: the io tree to search
1072 * @start: the start offset in bytes
1073 * @end: the end offset in bytes (inclusive)
1074 * @bits: the bits to set in this range
1075 * @clear_bits: the bits to clear in this range
e6138876 1076 * @cached_state: state that we're going to cache
462d6fac
JB
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
210aa277
DS
1083 *
1084 * All allocations are done with GFP_NOFS.
462d6fac
JB
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
210aa277 1088 struct extent_state **cached_state)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
210aa277 1103 if (!prealloc) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
210aa277 1111 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
462d6fac
JB
1268search_again:
1269 if (start > end)
1270 goto out;
1271 spin_unlock(&tree->lock);
210aa277 1272 cond_resched();
c8fd3de7 1273 first_iteration = false;
462d6fac 1274 goto again;
462d6fac
JB
1275
1276out:
1277 spin_unlock(&tree->lock);
1278 if (prealloc)
1279 free_extent_state(prealloc);
1280
1281 return err;
462d6fac
JB
1282}
1283
d1310b2e 1284/* wrappers around set/clear extent bit */
d38ed27f 1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1286 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1287{
1288 /*
1289 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 * either fail with -EEXIST or changeset will record the whole
1292 * range.
1293 */
1294 BUG_ON(bits & EXTENT_LOCKED);
1295
2c53b912 1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1297 changeset);
1298}
1299
fefdc557
QW
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned bits, int wake, int delete,
ae0f1625 1302 struct extent_state **cached)
fefdc557
QW
1303{
1304 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1305 cached, GFP_NOFS, NULL);
fefdc557
QW
1306}
1307
fefdc557 1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1309 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1310{
1311 /*
1312 * Don't support EXTENT_LOCKED case, same reason as
1313 * set_record_extent_bits().
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
f734c44a 1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1318 changeset);
1319}
1320
d352ac68
CM
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1edbb734 1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1326 struct extent_state **cached_state)
d1310b2e
CM
1327{
1328 int err;
1329 u64 failed_start;
9ee49a04 1330
d1310b2e 1331 while (1) {
ff13db41 1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1333 EXTENT_LOCKED, &failed_start,
d38ed27f 1334 cached_state, GFP_NOFS, NULL);
d0082371 1335 if (err == -EEXIST) {
d1310b2e
CM
1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 start = failed_start;
d0082371 1338 } else
d1310b2e 1339 break;
d1310b2e
CM
1340 WARN_ON(start > end);
1341 }
1342 return err;
1343}
d1310b2e 1344
d0082371 1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1346{
1347 int err;
1348 u64 failed_start;
1349
3fbe5c02 1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1351 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1352 if (err == -EEXIST) {
1353 if (failed_start > start)
1354 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1355 EXTENT_LOCKED, 1, 0, NULL);
25179201 1356 return 0;
6643558d 1357 }
25179201
JB
1358 return 1;
1359}
25179201 1360
bd1fa4f0 1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1362{
09cbfeaf
KS
1363 unsigned long index = start >> PAGE_SHIFT;
1364 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1365 struct page *page;
1366
1367 while (index <= end_index) {
1368 page = find_get_page(inode->i_mapping, index);
1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 clear_page_dirty_for_io(page);
09cbfeaf 1371 put_page(page);
4adaa611
CM
1372 index++;
1373 }
4adaa611
CM
1374}
1375
f6311572 1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1377{
09cbfeaf
KS
1378 unsigned long index = start >> PAGE_SHIFT;
1379 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1385 __set_page_dirty_nobuffers(page);
8d38633c 1386 account_page_redirty(page);
09cbfeaf 1387 put_page(page);
4adaa611
CM
1388 index++;
1389 }
4adaa611
CM
1390}
1391
d1310b2e
CM
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
35de6db2 1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1396{
c6100a4b 1397 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1398}
d1310b2e 1399
d352ac68
CM
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it. tree->lock must be held. NULL will returned if
1402 * nothing was found after 'start'
1403 */
48a3b636
ES
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1406 u64 start, unsigned bits)
d7fc640e
CM
1407{
1408 struct rb_node *node;
1409 struct extent_state *state;
1410
1411 /*
1412 * this search will find all the extents that end after
1413 * our range starts.
1414 */
1415 node = tree_search(tree, start);
d397712b 1416 if (!node)
d7fc640e 1417 goto out;
d7fc640e 1418
d397712b 1419 while (1) {
d7fc640e 1420 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1421 if (state->end >= start && (state->state & bits))
d7fc640e 1422 return state;
d397712b 1423
d7fc640e
CM
1424 node = rb_next(node);
1425 if (!node)
1426 break;
1427 }
1428out:
1429 return NULL;
1430}
d7fc640e 1431
69261c4b
XG
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
477d7eaf 1437 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1440 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1441 struct extent_state **cached_state)
69261c4b
XG
1442{
1443 struct extent_state *state;
e6138876 1444 struct rb_node *n;
69261c4b
XG
1445 int ret = 1;
1446
1447 spin_lock(&tree->lock);
e6138876
JB
1448 if (cached_state && *cached_state) {
1449 state = *cached_state;
27a3507d 1450 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1451 n = rb_next(&state->rb_node);
1452 while (n) {
1453 state = rb_entry(n, struct extent_state,
1454 rb_node);
1455 if (state->state & bits)
1456 goto got_it;
1457 n = rb_next(n);
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 goto out;
1462 }
1463 free_extent_state(*cached_state);
1464 *cached_state = NULL;
1465 }
1466
69261c4b 1467 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1468got_it:
69261c4b 1469 if (state) {
e38e2ed7 1470 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1471 *start_ret = state->start;
1472 *end_ret = state->end;
1473 ret = 0;
1474 }
e6138876 1475out:
69261c4b
XG
1476 spin_unlock(&tree->lock);
1477 return ret;
1478}
1479
d352ac68
CM
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'. start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
c8b97818 1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1487 u64 *start, u64 *end, u64 max_bytes,
1488 struct extent_state **cached_state)
d1310b2e
CM
1489{
1490 struct rb_node *node;
1491 struct extent_state *state;
1492 u64 cur_start = *start;
1493 u64 found = 0;
1494 u64 total_bytes = 0;
1495
cad321ad 1496 spin_lock(&tree->lock);
c8b97818 1497
d1310b2e
CM
1498 /*
1499 * this search will find all the extents that end after
1500 * our range starts.
1501 */
80ea96b1 1502 node = tree_search(tree, cur_start);
2b114d1d 1503 if (!node) {
3b951516
CM
1504 if (!found)
1505 *end = (u64)-1;
d1310b2e
CM
1506 goto out;
1507 }
1508
d397712b 1509 while (1) {
d1310b2e 1510 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1511 if (found && (state->start != cur_start ||
1512 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1513 goto out;
1514 }
1515 if (!(state->state & EXTENT_DELALLOC)) {
1516 if (!found)
1517 *end = state->end;
1518 goto out;
1519 }
c2a128d2 1520 if (!found) {
d1310b2e 1521 *start = state->start;
c2a128d2 1522 *cached_state = state;
b7ac31b7 1523 refcount_inc(&state->refs);
c2a128d2 1524 }
d1310b2e
CM
1525 found++;
1526 *end = state->end;
1527 cur_start = state->end + 1;
1528 node = rb_next(node);
d1310b2e 1529 total_bytes += state->end - state->start + 1;
7bf811a5 1530 if (total_bytes >= max_bytes)
573aecaf 1531 break;
573aecaf 1532 if (!node)
d1310b2e
CM
1533 break;
1534 }
1535out:
cad321ad 1536 spin_unlock(&tree->lock);
d1310b2e
CM
1537 return found;
1538}
1539
da2c7009
LB
1540static int __process_pages_contig(struct address_space *mapping,
1541 struct page *locked_page,
1542 pgoff_t start_index, pgoff_t end_index,
1543 unsigned long page_ops, pgoff_t *index_ret);
1544
143bede5
JM
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
c8b97818 1548{
09cbfeaf
KS
1549 unsigned long index = start >> PAGE_SHIFT;
1550 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1551
76c0021d 1552 ASSERT(locked_page);
c8b97818 1553 if (index == locked_page->index && end_index == index)
143bede5 1554 return;
c8b97818 1555
76c0021d
LB
1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 PAGE_UNLOCK, NULL);
c8b97818
CM
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561 struct page *locked_page,
1562 u64 delalloc_start,
1563 u64 delalloc_end)
1564{
09cbfeaf 1565 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1566 unsigned long index_ret = index;
09cbfeaf 1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1568 int ret;
c8b97818 1569
76c0021d 1570 ASSERT(locked_page);
c8b97818
CM
1571 if (index == locked_page->index && index == end_index)
1572 return 0;
1573
76c0021d
LB
1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 end_index, PAGE_LOCK, &index_ret);
1576 if (ret == -EAGAIN)
1577 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1579 return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'. start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
1587 */
294e30fe
JB
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589 struct extent_io_tree *tree,
1590 struct page *locked_page, u64 *start,
1591 u64 *end, u64 max_bytes)
c8b97818
CM
1592{
1593 u64 delalloc_start;
1594 u64 delalloc_end;
1595 u64 found;
9655d298 1596 struct extent_state *cached_state = NULL;
c8b97818
CM
1597 int ret;
1598 int loops = 0;
1599
1600again:
1601 /* step one, find a bunch of delalloc bytes starting at start */
1602 delalloc_start = *start;
1603 delalloc_end = 0;
1604 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1605 max_bytes, &cached_state);
70b99e69 1606 if (!found || delalloc_end <= *start) {
c8b97818
CM
1607 *start = delalloc_start;
1608 *end = delalloc_end;
c2a128d2 1609 free_extent_state(cached_state);
385fe0be 1610 return 0;
c8b97818
CM
1611 }
1612
70b99e69
CM
1613 /*
1614 * start comes from the offset of locked_page. We have to lock
1615 * pages in order, so we can't process delalloc bytes before
1616 * locked_page
1617 */
d397712b 1618 if (delalloc_start < *start)
70b99e69 1619 delalloc_start = *start;
70b99e69 1620
c8b97818
CM
1621 /*
1622 * make sure to limit the number of pages we try to lock down
c8b97818 1623 */
7bf811a5
JB
1624 if (delalloc_end + 1 - delalloc_start > max_bytes)
1625 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1626
c8b97818
CM
1627 /* step two, lock all the pages after the page that has start */
1628 ret = lock_delalloc_pages(inode, locked_page,
1629 delalloc_start, delalloc_end);
1630 if (ret == -EAGAIN) {
1631 /* some of the pages are gone, lets avoid looping by
1632 * shortening the size of the delalloc range we're searching
1633 */
9655d298 1634 free_extent_state(cached_state);
7d788742 1635 cached_state = NULL;
c8b97818 1636 if (!loops) {
09cbfeaf 1637 max_bytes = PAGE_SIZE;
c8b97818
CM
1638 loops = 1;
1639 goto again;
1640 } else {
1641 found = 0;
1642 goto out_failed;
1643 }
1644 }
79787eaa 1645 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1646
1647 /* step three, lock the state bits for the whole range */
ff13db41 1648 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1649
1650 /* then test to make sure it is all still delalloc */
1651 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1652 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1653 if (!ret) {
9655d298 1654 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1655 &cached_state);
c8b97818
CM
1656 __unlock_for_delalloc(inode, locked_page,
1657 delalloc_start, delalloc_end);
1658 cond_resched();
1659 goto again;
1660 }
9655d298 1661 free_extent_state(cached_state);
c8b97818
CM
1662 *start = delalloc_start;
1663 *end = delalloc_end;
1664out_failed:
1665 return found;
1666}
1667
da2c7009
LB
1668static int __process_pages_contig(struct address_space *mapping,
1669 struct page *locked_page,
1670 pgoff_t start_index, pgoff_t end_index,
1671 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1672{
873695b3 1673 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1674 unsigned long pages_locked = 0;
873695b3 1675 pgoff_t index = start_index;
c8b97818 1676 struct page *pages[16];
873695b3 1677 unsigned ret;
da2c7009 1678 int err = 0;
c8b97818 1679 int i;
771ed689 1680
da2c7009
LB
1681 if (page_ops & PAGE_LOCK) {
1682 ASSERT(page_ops == PAGE_LOCK);
1683 ASSERT(index_ret && *index_ret == start_index);
1684 }
1685
704de49d 1686 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1687 mapping_set_error(mapping, -EIO);
704de49d 1688
d397712b 1689 while (nr_pages > 0) {
873695b3 1690 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1691 min_t(unsigned long,
1692 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1693 if (ret == 0) {
1694 /*
1695 * Only if we're going to lock these pages,
1696 * can we find nothing at @index.
1697 */
1698 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1699 err = -EAGAIN;
1700 goto out;
da2c7009 1701 }
8b62b72b 1702
da2c7009 1703 for (i = 0; i < ret; i++) {
c2790a2e 1704 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1705 SetPagePrivate2(pages[i]);
1706
c8b97818 1707 if (pages[i] == locked_page) {
09cbfeaf 1708 put_page(pages[i]);
da2c7009 1709 pages_locked++;
c8b97818
CM
1710 continue;
1711 }
c2790a2e 1712 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1713 clear_page_dirty_for_io(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1715 set_page_writeback(pages[i]);
704de49d
FM
1716 if (page_ops & PAGE_SET_ERROR)
1717 SetPageError(pages[i]);
c2790a2e 1718 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1719 end_page_writeback(pages[i]);
c2790a2e 1720 if (page_ops & PAGE_UNLOCK)
771ed689 1721 unlock_page(pages[i]);
da2c7009
LB
1722 if (page_ops & PAGE_LOCK) {
1723 lock_page(pages[i]);
1724 if (!PageDirty(pages[i]) ||
1725 pages[i]->mapping != mapping) {
1726 unlock_page(pages[i]);
1727 put_page(pages[i]);
1728 err = -EAGAIN;
1729 goto out;
1730 }
1731 }
09cbfeaf 1732 put_page(pages[i]);
da2c7009 1733 pages_locked++;
c8b97818
CM
1734 }
1735 nr_pages -= ret;
1736 index += ret;
1737 cond_resched();
1738 }
da2c7009
LB
1739out:
1740 if (err && index_ret)
1741 *index_ret = start_index + pages_locked - 1;
1742 return err;
c8b97818 1743}
c8b97818 1744
873695b3
LB
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746 u64 delalloc_end, struct page *locked_page,
1747 unsigned clear_bits,
1748 unsigned long page_ops)
1749{
1750 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1751 NULL);
873695b3
LB
1752
1753 __process_pages_contig(inode->i_mapping, locked_page,
1754 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1755 page_ops, NULL);
873695b3
LB
1756}
1757
d352ac68
CM
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached. The total number found is returned.
1762 */
d1310b2e
CM
1763u64 count_range_bits(struct extent_io_tree *tree,
1764 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1765 unsigned bits, int contig)
d1310b2e
CM
1766{
1767 struct rb_node *node;
1768 struct extent_state *state;
1769 u64 cur_start = *start;
1770 u64 total_bytes = 0;
ec29ed5b 1771 u64 last = 0;
d1310b2e
CM
1772 int found = 0;
1773
fae7f21c 1774 if (WARN_ON(search_end <= cur_start))
d1310b2e 1775 return 0;
d1310b2e 1776
cad321ad 1777 spin_lock(&tree->lock);
d1310b2e
CM
1778 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779 total_bytes = tree->dirty_bytes;
1780 goto out;
1781 }
1782 /*
1783 * this search will find all the extents that end after
1784 * our range starts.
1785 */
80ea96b1 1786 node = tree_search(tree, cur_start);
d397712b 1787 if (!node)
d1310b2e 1788 goto out;
d1310b2e 1789
d397712b 1790 while (1) {
d1310b2e
CM
1791 state = rb_entry(node, struct extent_state, rb_node);
1792 if (state->start > search_end)
1793 break;
ec29ed5b
CM
1794 if (contig && found && state->start > last + 1)
1795 break;
1796 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1797 total_bytes += min(search_end, state->end) + 1 -
1798 max(cur_start, state->start);
1799 if (total_bytes >= max_bytes)
1800 break;
1801 if (!found) {
af60bed2 1802 *start = max(cur_start, state->start);
d1310b2e
CM
1803 found = 1;
1804 }
ec29ed5b
CM
1805 last = state->end;
1806 } else if (contig && found) {
1807 break;
d1310b2e
CM
1808 }
1809 node = rb_next(node);
1810 if (!node)
1811 break;
1812 }
1813out:
cad321ad 1814 spin_unlock(&tree->lock);
d1310b2e
CM
1815 return total_bytes;
1816}
b2950863 1817
d352ac68
CM
1818/*
1819 * set the private field for a given byte offset in the tree. If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
f827ba9a 1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1823 struct io_failure_record *failrec)
d1310b2e
CM
1824{
1825 struct rb_node *node;
1826 struct extent_state *state;
1827 int ret = 0;
1828
cad321ad 1829 spin_lock(&tree->lock);
d1310b2e
CM
1830 /*
1831 * this search will find all the extents that end after
1832 * our range starts.
1833 */
80ea96b1 1834 node = tree_search(tree, start);
2b114d1d 1835 if (!node) {
d1310b2e
CM
1836 ret = -ENOENT;
1837 goto out;
1838 }
1839 state = rb_entry(node, struct extent_state, rb_node);
1840 if (state->start != start) {
1841 ret = -ENOENT;
1842 goto out;
1843 }
47dc196a 1844 state->failrec = failrec;
d1310b2e 1845out:
cad321ad 1846 spin_unlock(&tree->lock);
d1310b2e
CM
1847 return ret;
1848}
1849
f827ba9a 1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1851 struct io_failure_record **failrec)
d1310b2e
CM
1852{
1853 struct rb_node *node;
1854 struct extent_state *state;
1855 int ret = 0;
1856
cad321ad 1857 spin_lock(&tree->lock);
d1310b2e
CM
1858 /*
1859 * this search will find all the extents that end after
1860 * our range starts.
1861 */
80ea96b1 1862 node = tree_search(tree, start);
2b114d1d 1863 if (!node) {
d1310b2e
CM
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state = rb_entry(node, struct extent_state, rb_node);
1868 if (state->start != start) {
1869 ret = -ENOENT;
1870 goto out;
1871 }
47dc196a 1872 *failrec = state->failrec;
d1310b2e 1873out:
cad321ad 1874 spin_unlock(&tree->lock);
d1310b2e
CM
1875 return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
70dec807 1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1881 * has the bits set. Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1885 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1886{
1887 struct extent_state *state = NULL;
1888 struct rb_node *node;
1889 int bitset = 0;
d1310b2e 1890
cad321ad 1891 spin_lock(&tree->lock);
27a3507d 1892 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1893 cached->end > start)
9655d298
CM
1894 node = &cached->rb_node;
1895 else
1896 node = tree_search(tree, start);
d1310b2e
CM
1897 while (node && start <= end) {
1898 state = rb_entry(node, struct extent_state, rb_node);
1899
1900 if (filled && state->start > start) {
1901 bitset = 0;
1902 break;
1903 }
1904
1905 if (state->start > end)
1906 break;
1907
1908 if (state->state & bits) {
1909 bitset = 1;
1910 if (!filled)
1911 break;
1912 } else if (filled) {
1913 bitset = 0;
1914 break;
1915 }
46562cec
CM
1916
1917 if (state->end == (u64)-1)
1918 break;
1919
d1310b2e
CM
1920 start = state->end + 1;
1921 if (start > end)
1922 break;
1923 node = rb_next(node);
1924 if (!node) {
1925 if (filled)
1926 bitset = 0;
1927 break;
1928 }
1929 }
cad321ad 1930 spin_unlock(&tree->lock);
d1310b2e
CM
1931 return bitset;
1932}
d1310b2e
CM
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
143bede5 1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1939{
4eee4fa4 1940 u64 start = page_offset(page);
09cbfeaf 1941 u64 end = start + PAGE_SIZE - 1;
9655d298 1942 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1943 SetPageUptodate(page);
d1310b2e
CM
1944}
1945
7870d082
JB
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947 struct extent_io_tree *io_tree,
1948 struct io_failure_record *rec)
4a54c8c1
JS
1949{
1950 int ret;
1951 int err = 0;
4a54c8c1 1952
47dc196a 1953 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1954 ret = clear_extent_bits(failure_tree, rec->start,
1955 rec->start + rec->len - 1,
91166212 1956 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1957 if (ret)
1958 err = ret;
1959
7870d082 1960 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1961 rec->start + rec->len - 1,
91166212 1962 EXTENT_DAMAGED);
53b381b3
DW
1963 if (ret && !err)
1964 err = ret;
4a54c8c1
JS
1965
1966 kfree(rec);
1967 return err;
1968}
1969
4a54c8c1
JS
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
3ec706c8 1975 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
6ec656bc
JB
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981 u64 length, u64 logical, struct page *page,
1982 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1983{
1984 struct bio *bio;
1985 struct btrfs_device *dev;
4a54c8c1
JS
1986 u64 map_length = 0;
1987 u64 sector;
1988 struct btrfs_bio *bbio = NULL;
1989 int ret;
1990
1751e8a6 1991 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1992 BUG_ON(!mirror_num);
1993
c5e4c3d7 1994 bio = btrfs_io_bio_alloc(1);
4f024f37 1995 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1996 map_length = length;
1997
b5de8d0d
FM
1998 /*
1999 * Avoid races with device replace and make sure our bbio has devices
2000 * associated to its stripes that don't go away while we are doing the
2001 * read repair operation.
2002 */
2003 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2004 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2005 /*
2006 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007 * to update all raid stripes, but here we just want to correct
2008 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009 * stripe's dev and sector.
2010 */
2011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012 &map_length, &bbio, 0);
2013 if (ret) {
2014 btrfs_bio_counter_dec(fs_info);
2015 bio_put(bio);
2016 return -EIO;
2017 }
2018 ASSERT(bbio->mirror_num == 1);
2019 } else {
2020 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021 &map_length, &bbio, mirror_num);
2022 if (ret) {
2023 btrfs_bio_counter_dec(fs_info);
2024 bio_put(bio);
2025 return -EIO;
2026 }
2027 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2028 }
c725328c
LB
2029
2030 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2031 bio->bi_iter.bi_sector = sector;
c725328c 2032 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2033 btrfs_put_bbio(bbio);
ebbede42
AJ
2034 if (!dev || !dev->bdev ||
2035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2036 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2037 bio_put(bio);
2038 return -EIO;
2039 }
74d46992 2040 bio_set_dev(bio, dev->bdev);
70fd7614 2041 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2042 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2043
4e49ea4a 2044 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2045 /* try to remap that extent elsewhere? */
b5de8d0d 2046 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2047 bio_put(bio);
442a4f63 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2049 return -EIO;
2050 }
2051
b14af3b4
DS
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2054 ino, start,
1203b681 2055 rcu_str_deref(dev->name), sector);
b5de8d0d 2056 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2057 bio_put(bio);
2058 return 0;
2059}
2060
2ff7e61e
JM
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_buffer *eb, int mirror_num)
ea466794 2063{
ea466794
JB
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2066 int ret = 0;
ea466794 2067
bc98a42c 2068 if (sb_rdonly(fs_info->sb))
908960c6
ID
2069 return -EROFS;
2070
ea466794 2071 for (i = 0; i < num_pages; i++) {
fb85fc9a 2072 struct page *p = eb->pages[i];
1203b681 2073
6ec656bc 2074 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2075 start - page_offset(p), mirror_num);
ea466794
JB
2076 if (ret)
2077 break;
09cbfeaf 2078 start += PAGE_SIZE;
ea466794
JB
2079 }
2080
2081 return ret;
2082}
2083
4a54c8c1
JS
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
7870d082
JB
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089 struct extent_io_tree *failure_tree,
2090 struct extent_io_tree *io_tree, u64 start,
2091 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2092{
2093 u64 private;
4a54c8c1 2094 struct io_failure_record *failrec;
4a54c8c1
JS
2095 struct extent_state *state;
2096 int num_copies;
4a54c8c1 2097 int ret;
4a54c8c1
JS
2098
2099 private = 0;
7870d082
JB
2100 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101 EXTENT_DIRTY, 0);
4a54c8c1
JS
2102 if (!ret)
2103 return 0;
2104
7870d082 2105 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2106 if (ret)
2107 return 0;
2108
4a54c8c1
JS
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
ab8d0fc4
JM
2113 btrfs_debug(fs_info,
2114 "clean_io_failure: freeing dummy error at %llu",
2115 failrec->start);
4a54c8c1
JS
2116 goto out;
2117 }
bc98a42c 2118 if (sb_rdonly(fs_info->sb))
908960c6 2119 goto out;
4a54c8c1 2120
7870d082
JB
2121 spin_lock(&io_tree->lock);
2122 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2123 failrec->start,
2124 EXTENT_LOCKED);
7870d082 2125 spin_unlock(&io_tree->lock);
4a54c8c1 2126
883d0de4
MX
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
4a54c8c1 2131 if (num_copies > 1) {
7870d082
JB
2132 repair_io_failure(fs_info, ino, start, failrec->len,
2133 failrec->logical, page, pg_offset,
2134 failrec->failed_mirror);
4a54c8c1
JS
2135 }
2136 }
2137
2138out:
7870d082 2139 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2140
454ff3de 2141 return 0;
4a54c8c1
JS
2142}
2143
f612496b
MX
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
7ab7956e 2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2151{
7ab7956e 2152 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
47dc196a 2169 failrec = state->failrec;
f612496b
MX
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176}
2177
2fe6303e 2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2179 struct io_failure_record **failrec_ret)
4a54c8c1 2180{
ab8d0fc4 2181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2182 struct io_failure_record *failrec;
4a54c8c1 2183 struct extent_map *em;
4a54c8c1
JS
2184 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2187 int ret;
4a54c8c1
JS
2188 u64 logical;
2189
47dc196a 2190 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2fe6303e 2195
4a54c8c1
JS
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2201
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2208 }
2209
68ba990f 2210 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2211 free_extent_map(em);
2212 em = NULL;
2213 }
2214 read_unlock(&em_tree->lock);
7a2d6a64 2215 if (!em) {
4a54c8c1
JS
2216 kfree(failrec);
2217 return -EIO;
2218 }
2fe6303e 2219
4a54c8c1
JS
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2227 }
2fe6303e 2228
ab8d0fc4
JM
2229 btrfs_debug(fs_info,
2230 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231 logical, start, failrec->len);
2fe6303e 2232
4a54c8c1
JS
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2238 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2239 if (ret >= 0)
47dc196a 2240 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
ceeb0ae7 2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2244 if (ret < 0) {
2245 kfree(failrec);
2246 return ret;
2247 }
2248 } else {
ab8d0fc4
JM
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
4a54c8c1
JS
2253 /*
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2257 */
2258 }
2fe6303e
MX
2259
2260 *failrec_ret = failrec;
2261
2262 return 0;
2263}
2264
a0b60d72 2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2266 struct io_failure_record *failrec, int failed_mirror)
2267{
ab8d0fc4 2268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2269 int num_copies;
2270
ab8d0fc4 2271 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2272 if (num_copies == 1) {
2273 /*
2274 * we only have a single copy of the data, so don't bother with
2275 * all the retry and error correction code that follows. no
2276 * matter what the error is, it is very likely to persist.
2277 */
ab8d0fc4
JM
2278 btrfs_debug(fs_info,
2279 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2281 return false;
4a54c8c1
JS
2282 }
2283
4a54c8c1
JS
2284 /*
2285 * there are two premises:
2286 * a) deliver good data to the caller
2287 * b) correct the bad sectors on disk
2288 */
a0b60d72 2289 if (failed_bio_pages > 1) {
4a54c8c1
JS
2290 /*
2291 * to fulfill b), we need to know the exact failing sectors, as
2292 * we don't want to rewrite any more than the failed ones. thus,
2293 * we need separate read requests for the failed bio
2294 *
2295 * if the following BUG_ON triggers, our validation request got
2296 * merged. we need separate requests for our algorithm to work.
2297 */
2298 BUG_ON(failrec->in_validation);
2299 failrec->in_validation = 1;
2300 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2301 } else {
2302 /*
2303 * we're ready to fulfill a) and b) alongside. get a good copy
2304 * of the failed sector and if we succeed, we have setup
2305 * everything for repair_io_failure to do the rest for us.
2306 */
2307 if (failrec->in_validation) {
2308 BUG_ON(failrec->this_mirror != failed_mirror);
2309 failrec->in_validation = 0;
2310 failrec->this_mirror = 0;
2311 }
2312 failrec->failed_mirror = failed_mirror;
2313 failrec->this_mirror++;
2314 if (failrec->this_mirror == failed_mirror)
2315 failrec->this_mirror++;
4a54c8c1
JS
2316 }
2317
facc8a22 2318 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2319 btrfs_debug(fs_info,
2320 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2322 return false;
4a54c8c1
JS
2323 }
2324
c3cfb656 2325 return true;
2fe6303e
MX
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
8b110e39 2332 bio_end_io_t *endio_func, void *data)
2fe6303e 2333{
0b246afa 2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2335 struct bio *bio;
2336 struct btrfs_io_bio *btrfs_failed_bio;
2337 struct btrfs_io_bio *btrfs_bio;
2338
c5e4c3d7 2339 bio = btrfs_io_bio_alloc(1);
2fe6303e 2340 bio->bi_end_io = endio_func;
4f024f37 2341 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2342 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2343 bio->bi_iter.bi_size = 0;
8b110e39 2344 bio->bi_private = data;
4a54c8c1 2345
facc8a22
MX
2346 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 if (btrfs_failed_bio->csum) {
facc8a22
MX
2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350 btrfs_bio = btrfs_io_bio(bio);
2351 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2352 icsum *= csum_size;
2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2354 csum_size);
2355 }
2356
2fe6303e
MX
2357 bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359 return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2372 int failed_mirror)
2373{
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2378 struct bio *bio;
70fd7614 2379 int read_mode = 0;
4e4cbee9 2380 blk_status_t status;
2fe6303e 2381 int ret;
a0b60d72 2382 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2383
1f7ad75b 2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
a0b60d72 2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2391 failed_mirror)) {
7870d082 2392 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2393 return -EIO;
2394 }
2395
a0b60d72 2396 if (failed_bio_pages > 1)
70fd7614 2397 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2398
2399 phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 start - page_offset(page),
8b110e39
MX
2402 (int)phy_offset, failed_bio->bi_end_io,
2403 NULL);
1f7ad75b 2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2405
ab8d0fc4
JM
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2409
8c27cb35 2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2411 failrec->bio_flags, 0);
4e4cbee9 2412 if (status) {
7870d082 2413 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2414 bio_put(bio);
4e4cbee9 2415 ret = blk_status_to_errno(status);
6c387ab2
MX
2416 }
2417
013bd4c3 2418 return ret;
4a54c8c1
JS
2419}
2420
d1310b2e
CM
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
b5227c07 2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2424{
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
3e2426bd 2427 int ret = 0;
87826df0
JM
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
c3988d63
DS
2431 if (tree->ops && tree->ops->writepage_end_io_hook)
2432 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433 uptodate);
87826df0 2434
87826df0 2435 if (!uptodate) {
87826df0
JM
2436 ClearPageUptodate(page);
2437 SetPageError(page);
bff5baf8 2438 ret = err < 0 ? err : -EIO;
5dca6eea 2439 mapping_set_error(page->mapping, ret);
87826df0 2440 }
87826df0
JM
2441}
2442
d1310b2e
CM
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
4246a0b6 2452static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2453{
4e4cbee9 2454 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2455 struct bio_vec *bvec;
d1310b2e
CM
2456 u64 start;
2457 u64 end;
2c30c71b 2458 int i;
d1310b2e 2459
c09abff8 2460 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2461 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2462 struct page *page = bvec->bv_page;
0b246afa
JM
2463 struct inode *inode = page->mapping->host;
2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2465
17a5adcc
AO
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
09cbfeaf
KS
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2473 btrfs_err(fs_info,
efe120a0
FH
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
0b246afa 2477 btrfs_info(fs_info,
5d163e0e 2478 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2479 bvec->bv_offset, bvec->bv_len);
2480 }
d1310b2e 2481
17a5adcc
AO
2482 start = page_offset(page);
2483 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2484
4e4cbee9 2485 end_extent_writepage(page, error, start, end);
17a5adcc 2486 end_page_writeback(page);
2c30c71b 2487 }
2b1f55b0 2488
d1310b2e 2489 bio_put(bio);
d1310b2e
CM
2490}
2491
883d0de4
MX
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494 int uptodate)
2495{
2496 struct extent_state *cached = NULL;
2497 u64 end = start + len - 1;
2498
2499 if (uptodate && tree->track_uptodate)
2500 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2501 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2502}
2503
d1310b2e
CM
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
4246a0b6 2515static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2516{
2c30c71b 2517 struct bio_vec *bvec;
4e4cbee9 2518 int uptodate = !bio->bi_status;
facc8a22 2519 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2520 struct extent_io_tree *tree, *failure_tree;
facc8a22 2521 u64 offset = 0;
d1310b2e
CM
2522 u64 start;
2523 u64 end;
facc8a22 2524 u64 len;
883d0de4
MX
2525 u64 extent_start = 0;
2526 u64 extent_len = 0;
5cf1ab56 2527 int mirror;
d1310b2e 2528 int ret;
2c30c71b 2529 int i;
d1310b2e 2530
c09abff8 2531 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2532 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2533 struct page *page = bvec->bv_page;
a71754fc 2534 struct inode *inode = page->mapping->host;
ab8d0fc4 2535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2536
ab8d0fc4
JM
2537 btrfs_debug(fs_info,
2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2539 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2540 io_bio->mirror_num);
a71754fc 2541 tree = &BTRFS_I(inode)->io_tree;
7870d082 2542 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2543
17a5adcc
AO
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
09cbfeaf
KS
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2551 btrfs_err(fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2553 bvec->bv_offset, bvec->bv_len);
2554 else
ab8d0fc4
JM
2555 btrfs_info(fs_info,
2556 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2557 bvec->bv_offset, bvec->bv_len);
2558 }
d1310b2e 2559
17a5adcc
AO
2560 start = page_offset(page);
2561 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2562 len = bvec->bv_len;
d1310b2e 2563
9be3395b 2564 mirror = io_bio->mirror_num;
20c9801d 2565 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 page, start, end,
2568 mirror);
5ee0844d 2569 if (ret)
d1310b2e 2570 uptodate = 0;
5ee0844d 2571 else
7870d082
JB
2572 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 failure_tree, tree, start,
2574 page,
2575 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2576 }
ea466794 2577
f2a09da9
MX
2578 if (likely(uptodate))
2579 goto readpage_ok;
2580
20a7db8a 2581 if (tree->ops) {
5cf1ab56 2582 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2583 if (ret == -EAGAIN) {
2584 /*
2585 * Data inode's readpage_io_failed_hook() always
2586 * returns -EAGAIN.
2587 *
2588 * The generic bio_readpage_error handles errors
2589 * the following way: If possible, new read
2590 * requests are created and submitted and will
2591 * end up in end_bio_extent_readpage as well (if
2592 * we're lucky, not in the !uptodate case). In
2593 * that case it returns 0 and we just go on with
2594 * the next page in our bio. If it can't handle
2595 * the error it will return -EIO and we remain
2596 * responsible for that page.
2597 */
2598 ret = bio_readpage_error(bio, offset, page,
2599 start, end, mirror);
2600 if (ret == 0) {
4e4cbee9 2601 uptodate = !bio->bi_status;
9d0d1c8b
LB
2602 offset += len;
2603 continue;
2604 }
2605 }
2606
f4a8e656 2607 /*
9d0d1c8b
LB
2608 * metadata's readpage_io_failed_hook() always returns
2609 * -EIO and fixes nothing. -EIO is also returned if
2610 * data inode error could not be fixed.
f4a8e656 2611 */
9d0d1c8b 2612 ASSERT(ret == -EIO);
7e38326f 2613 }
f2a09da9 2614readpage_ok:
883d0de4 2615 if (likely(uptodate)) {
a71754fc 2616 loff_t i_size = i_size_read(inode);
09cbfeaf 2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2618 unsigned off;
a71754fc
JB
2619
2620 /* Zero out the end if this page straddles i_size */
09cbfeaf 2621 off = i_size & (PAGE_SIZE-1);
a583c026 2622 if (page->index == end_index && off)
09cbfeaf 2623 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2624 SetPageUptodate(page);
70dec807 2625 } else {
17a5adcc
AO
2626 ClearPageUptodate(page);
2627 SetPageError(page);
70dec807 2628 }
17a5adcc 2629 unlock_page(page);
facc8a22 2630 offset += len;
883d0de4
MX
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2c30c71b 2653 }
d1310b2e 2654
883d0de4
MX
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
facc8a22 2658 if (io_bio->end_io)
4e4cbee9 2659 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2660 bio_put(bio);
d1310b2e
CM
2661}
2662
9be3395b 2663/*
184f999e
DS
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2667 */
184f999e 2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2669{
184f999e
DS
2670 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
d1310b2e 2672
9be3395b 2673/*
6e707bcd
DS
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
9be3395b 2677 */
c821e7f3 2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2679{
2680 struct bio *bio;
d1310b2e 2681
9f2179a5 2682 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2683 bio_set_dev(bio, bdev);
c821e7f3 2684 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2685 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2686 return bio;
2687}
2688
8b6c1d56 2689struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2690{
23ea8e5a
MX
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
9be3395b 2693
6e707bcd 2694 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2695 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2696 btrfs_bio = btrfs_io_bio(new);
184f999e 2697 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2698 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2699 return new;
2700}
9be3395b 2701
c5e4c3d7 2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2703{
facc8a22
MX
2704 struct bio *bio;
2705
6e707bcd 2706 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2707 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2708 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2709 return bio;
9be3395b
CM
2710}
2711
e477094f 2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2713{
2714 struct bio *bio;
2715 struct btrfs_io_bio *btrfs_bio;
2716
2717 /* this will never fail when it's backed by a bioset */
e477094f 2718 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2719 ASSERT(bio);
2720
2721 btrfs_bio = btrfs_io_bio(bio);
184f999e 2722 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2723
2724 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2725 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2726 return bio;
2727}
9be3395b 2728
1f7ad75b
MC
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730 unsigned long bio_flags)
d1310b2e 2731{
4e4cbee9 2732 blk_status_t ret = 0;
c45a8f2d 2733 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2734 struct page *page = bvec->bv_page;
2735 struct extent_io_tree *tree = bio->bi_private;
70dec807 2736 u64 start;
70dec807 2737
4eee4fa4 2738 start = page_offset(page) + bvec->bv_offset;
70dec807 2739
902b22f3 2740 bio->bi_private = NULL;
d1310b2e 2741
20c9801d 2742 if (tree->ops)
c6100a4b 2743 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2744 mirror_num, bio_flags, start);
0b86a832 2745 else
4e49ea4a 2746 btrfsic_submit_bio(bio);
4a54c8c1 2747
4e4cbee9 2748 return blk_status_to_errno(ret);
d1310b2e
CM
2749}
2750
4b81ba48
DS
2751/*
2752 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2753 * @tree: tree so we can call our merge_bio hook
2754 * @wbc: optional writeback control for io accounting
2755 * @page: page to add to the bio
2756 * @pg_offset: offset of the new bio or to check whether we are adding
2757 * a contiguous page to the previous one
2758 * @size: portion of page that we want to write
2759 * @offset: starting offset in the page
2760 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2761 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2762 * @end_io_func: end_io callback for new bio
2763 * @mirror_num: desired mirror to read/write
2764 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2765 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2768 struct writeback_control *wbc,
6273b7f8 2769 struct page *page, u64 offset,
6c5a4e2c 2770 size_t size, unsigned long pg_offset,
d1310b2e
CM
2771 struct block_device *bdev,
2772 struct bio **bio_ret,
f188591e 2773 bio_end_io_t end_io_func,
c8b97818
CM
2774 int mirror_num,
2775 unsigned long prev_bio_flags,
005efedf
FM
2776 unsigned long bio_flags,
2777 bool force_bio_submit)
d1310b2e
CM
2778{
2779 int ret = 0;
2780 struct bio *bio;
09cbfeaf 2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2782 sector_t sector = offset >> 9;
d1310b2e 2783
5c2b1fd7
DS
2784 ASSERT(bio_ret);
2785
2786 if (*bio_ret) {
0c8508a6
DS
2787 bool contig;
2788 bool can_merge = true;
2789
d1310b2e 2790 bio = *bio_ret;
0c8508a6 2791 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2792 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2793 else
f73a1c7d 2794 contig = bio_end_sector(bio) == sector;
c8b97818 2795
0c8508a6
DS
2796 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797 page_size, bio, bio_flags))
2798 can_merge = false;
2799
2800 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2801 force_bio_submit ||
6c5a4e2c 2802 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2803 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2804 if (ret < 0) {
2805 *bio_ret = NULL;
79787eaa 2806 return ret;
289454ad 2807 }
d1310b2e
CM
2808 bio = NULL;
2809 } else {
da2f0f74
CM
2810 if (wbc)
2811 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2812 return 0;
2813 }
2814 }
c8b97818 2815
6273b7f8 2816 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2817 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2818 bio->bi_end_io = end_io_func;
2819 bio->bi_private = tree;
e6959b93 2820 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2821 bio->bi_opf = opf;
da2f0f74
CM
2822 if (wbc) {
2823 wbc_init_bio(wbc, bio);
2824 wbc_account_io(wbc, page, page_size);
2825 }
70dec807 2826
5c2b1fd7 2827 *bio_ret = bio;
d1310b2e
CM
2828
2829 return ret;
2830}
2831
48a3b636
ES
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833 struct page *page)
d1310b2e
CM
2834{
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
09cbfeaf 2837 get_page(page);
4f2de97a
JB
2838 set_page_private(page, (unsigned long)eb);
2839 } else {
2840 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2841 }
2842}
2843
4f2de97a 2844void set_page_extent_mapped(struct page *page)
d1310b2e 2845{
4f2de97a
JB
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
09cbfeaf 2848 get_page(page);
4f2de97a
JB
2849 set_page_private(page, EXTENT_PAGE_PRIVATE);
2850 }
d1310b2e
CM
2851}
2852
125bac01
MX
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855 u64 start, u64 len, get_extent_t *get_extent,
2856 struct extent_map **em_cached)
2857{
2858 struct extent_map *em;
2859
2860 if (em_cached && *em_cached) {
2861 em = *em_cached;
cbc0e928 2862 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2863 start < extent_map_end(em)) {
490b54d6 2864 refcount_inc(&em->refs);
125bac01
MX
2865 return em;
2866 }
2867
2868 free_extent_map(em);
2869 *em_cached = NULL;
2870 }
2871
fc4f21b1 2872 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2873 if (em_cached && !IS_ERR_OR_NULL(em)) {
2874 BUG_ON(*em_cached);
490b54d6 2875 refcount_inc(&em->refs);
125bac01
MX
2876 *em_cached = em;
2877 }
2878 return em;
2879}
d1310b2e
CM
2880/*
2881 * basic readpage implementation. Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
79787eaa 2884 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2885 * return 0 on success, otherwise return error
d1310b2e 2886 */
9974090b
MX
2887static int __do_readpage(struct extent_io_tree *tree,
2888 struct page *page,
2889 get_extent_t *get_extent,
125bac01 2890 struct extent_map **em_cached,
9974090b 2891 struct bio **bio, int mirror_num,
f1c77c55 2892 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2893 u64 *prev_em_start)
d1310b2e
CM
2894{
2895 struct inode *inode = page->mapping->host;
4eee4fa4 2896 u64 start = page_offset(page);
8eec8296 2897 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 cur_end;
d1310b2e
CM
2903 struct extent_map *em;
2904 struct block_device *bdev;
baf863b9 2905 int ret = 0;
d1310b2e 2906 int nr = 0;
306e16ce 2907 size_t pg_offset = 0;
d1310b2e 2908 size_t iosize;
c8b97818 2909 size_t disk_io_size;
d1310b2e 2910 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2911 unsigned long this_bio_flag = 0;
d1310b2e
CM
2912
2913 set_page_extent_mapped(page);
2914
90a887c9
DM
2915 if (!PageUptodate(page)) {
2916 if (cleancache_get_page(page) == 0) {
2917 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2918 unlock_extent(tree, start, end);
90a887c9
DM
2919 goto out;
2920 }
2921 }
2922
09cbfeaf 2923 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2924 char *userpage;
09cbfeaf 2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2926
2927 if (zero_offset) {
09cbfeaf 2928 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2929 userpage = kmap_atomic(page);
c8b97818
CM
2930 memset(userpage + zero_offset, 0, iosize);
2931 flush_dcache_page(page);
7ac687d9 2932 kunmap_atomic(userpage);
c8b97818
CM
2933 }
2934 }
d1310b2e 2935 while (cur <= end) {
005efedf 2936 bool force_bio_submit = false;
6273b7f8 2937 u64 offset;
c8f2f24b 2938
d1310b2e
CM
2939 if (cur >= last_byte) {
2940 char *userpage;
507903b8
AJ
2941 struct extent_state *cached = NULL;
2942
09cbfeaf 2943 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2944 userpage = kmap_atomic(page);
306e16ce 2945 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2946 flush_dcache_page(page);
7ac687d9 2947 kunmap_atomic(userpage);
d1310b2e 2948 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2949 &cached, GFP_NOFS);
7f042a83 2950 unlock_extent_cached(tree, cur,
e43bbe5e 2951 cur + iosize - 1, &cached);
d1310b2e
CM
2952 break;
2953 }
125bac01
MX
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
c704005d 2956 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2957 SetPageError(page);
7f042a83 2958 unlock_extent(tree, cur, end);
d1310b2e
CM
2959 break;
2960 }
d1310b2e
CM
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
261507a0 2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
c8b97818 2970
d1310b2e
CM
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2973 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
6273b7f8 2976 offset = em->block_start;
c8b97818 2977 } else {
6273b7f8 2978 offset = em->block_start + extent_offset;
c8b97818
CM
2979 disk_io_size = iosize;
2980 }
d1310b2e
CM
2981 bdev = em->bdev;
2982 block_start = em->block_start;
d899e052
YZ
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
d1310b2e
CM
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
507903b8
AJ
3034 struct extent_state *cached = NULL;
3035
7ac687d9 3036 userpage = kmap_atomic(page);
306e16ce 3037 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3038 flush_dcache_page(page);
7ac687d9 3039 kunmap_atomic(userpage);
d1310b2e
CM
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3042 &cached, GFP_NOFS);
7f042a83 3043 unlock_extent_cached(tree, cur,
e43bbe5e 3044 cur + iosize - 1, &cached);
d1310b2e 3045 cur = cur + iosize;
306e16ce 3046 pg_offset += iosize;
d1310b2e
CM
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
9655d298
CM
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3052 check_page_uptodate(tree, page);
7f042a83 3053 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3054 cur = cur + iosize;
306e16ce 3055 pg_offset += iosize;
d1310b2e
CM
3056 continue;
3057 }
70dec807
CM
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
7f042a83 3063 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3064 cur = cur + iosize;
306e16ce 3065 pg_offset += iosize;
70dec807
CM
3066 continue;
3067 }
d1310b2e 3068
4b81ba48 3069 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3070 page, offset, disk_io_size,
3071 pg_offset, bdev, bio,
c8b97818
CM
3072 end_bio_extent_readpage, mirror_num,
3073 *bio_flags,
005efedf
FM
3074 this_bio_flag,
3075 force_bio_submit);
c8f2f24b
JB
3076 if (!ret) {
3077 nr++;
3078 *bio_flags = this_bio_flag;
3079 } else {
d1310b2e 3080 SetPageError(page);
7f042a83 3081 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3082 goto out;
edd33c99 3083 }
d1310b2e 3084 cur = cur + iosize;
306e16ce 3085 pg_offset += iosize;
d1310b2e 3086 }
90a887c9 3087out:
d1310b2e
CM
3088 if (!nr) {
3089 if (!PageError(page))
3090 SetPageUptodate(page);
3091 unlock_page(page);
3092 }
baf863b9 3093 return ret;
d1310b2e
CM
3094}
3095
9974090b
MX
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097 struct page *pages[], int nr_pages,
3098 u64 start, u64 end,
125bac01 3099 struct extent_map **em_cached,
d3fac6ba 3100 struct bio **bio,
1f7ad75b 3101 unsigned long *bio_flags,
808f80b4 3102 u64 *prev_em_start)
9974090b
MX
3103{
3104 struct inode *inode;
3105 struct btrfs_ordered_extent *ordered;
3106 int index;
3107
3108 inode = pages[0]->mapping->host;
3109 while (1) {
3110 lock_extent(tree, start, end);
a776c6fa 3111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3112 end - start + 1);
3113 if (!ordered)
3114 break;
3115 unlock_extent(tree, start, end);
3116 btrfs_start_ordered_extent(inode, ordered, 1);
3117 btrfs_put_ordered_extent(ordered);
3118 }
3119
3120 for (index = 0; index < nr_pages; index++) {
4ef77695
DS
3121 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122 bio, 0, bio_flags, 0, prev_em_start);
09cbfeaf 3123 put_page(pages[index]);
9974090b
MX
3124 }
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128 struct page *pages[],
e4d17ef5 3129 int nr_pages,
125bac01 3130 struct extent_map **em_cached,
d3fac6ba 3131 struct bio **bio, unsigned long *bio_flags,
808f80b4 3132 u64 *prev_em_start)
9974090b 3133{
35a3621b 3134 u64 start = 0;
9974090b
MX
3135 u64 end = 0;
3136 u64 page_start;
3137 int index;
35a3621b 3138 int first_index = 0;
9974090b
MX
3139
3140 for (index = 0; index < nr_pages; index++) {
3141 page_start = page_offset(pages[index]);
3142 if (!end) {
3143 start = page_start;
09cbfeaf 3144 end = start + PAGE_SIZE - 1;
9974090b
MX
3145 first_index = index;
3146 } else if (end + 1 == page_start) {
09cbfeaf 3147 end += PAGE_SIZE;
9974090b
MX
3148 } else {
3149 __do_contiguous_readpages(tree, &pages[first_index],
3150 index - first_index, start,
4ef77695 3151 end, em_cached,
d3fac6ba 3152 bio, bio_flags,
1f7ad75b 3153 prev_em_start);
9974090b 3154 start = page_start;
09cbfeaf 3155 end = start + PAGE_SIZE - 1;
9974090b
MX
3156 first_index = index;
3157 }
3158 }
3159
3160 if (end)
3161 __do_contiguous_readpages(tree, &pages[first_index],
3162 index - first_index, start,
4ef77695 3163 end, em_cached, bio,
d3fac6ba 3164 bio_flags, prev_em_start);
9974090b
MX
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
f1c77c55
DS
3171 unsigned long *bio_flags,
3172 unsigned int read_flags)
9974090b
MX
3173{
3174 struct inode *inode = page->mapping->host;
3175 struct btrfs_ordered_extent *ordered;
3176 u64 start = page_offset(page);
09cbfeaf 3177 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3178 int ret;
3179
3180 while (1) {
3181 lock_extent(tree, start, end);
a776c6fa 3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3183 PAGE_SIZE);
9974090b
MX
3184 if (!ordered)
3185 break;
3186 unlock_extent(tree, start, end);
3187 btrfs_start_ordered_extent(inode, ordered, 1);
3188 btrfs_put_ordered_extent(ordered);
3189 }
3190
125bac01 3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3192 bio_flags, read_flags, NULL);
9974090b
MX
3193 return ret;
3194}
3195
d1310b2e 3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3197 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3198{
3199 struct bio *bio = NULL;
c8b97818 3200 unsigned long bio_flags = 0;
d1310b2e
CM
3201 int ret;
3202
8ddc7d9c 3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3204 &bio_flags, 0);
d1310b2e 3205 if (bio)
1f7ad75b 3206 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3207 return ret;
3208}
d1310b2e 3209
3d4b9496 3210static void update_nr_written(struct writeback_control *wbc,
a9132667 3211 unsigned long nr_written)
11c8349b
CM
3212{
3213 wbc->nr_to_write -= nr_written;
11c8349b
CM
3214}
3215
d1310b2e 3216/*
40f76580
CM
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent). In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
d1310b2e 3225 */
40f76580
CM
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 struct page *page, struct writeback_control *wbc,
3228 struct extent_page_data *epd,
3229 u64 delalloc_start,
3230 unsigned long *nr_written)
3231{
3232 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3233 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3234 u64 nr_delalloc;
3235 u64 delalloc_to_write = 0;
3236 u64 delalloc_end = 0;
3237 int ret;
3238 int page_started = 0;
3239
3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 return 0;
3242
3243 while (delalloc_end < page_end) {
3244 nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 page,
3246 &delalloc_start,
3247 &delalloc_end,
dcab6a3b 3248 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3249 if (nr_delalloc == 0) {
3250 delalloc_start = delalloc_end + 1;
3251 continue;
3252 }
3253 ret = tree->ops->fill_delalloc(inode, page,
3254 delalloc_start,
3255 delalloc_end,
3256 &page_started,
f82b7359 3257 nr_written, wbc);
40f76580
CM
3258 /* File system has been set read-only */
3259 if (ret) {
3260 SetPageError(page);
3261 /* fill_delalloc should be return < 0 for error
3262 * but just in case, we use > 0 here meaning the
3263 * IO is started, so we don't want to return > 0
3264 * unless things are going well.
3265 */
3266 ret = ret < 0 ? ret : -EIO;
3267 goto done;
3268 }
3269 /*
ea1754a0
KS
3270 * delalloc_end is already one less than the total length, so
3271 * we don't subtract one from PAGE_SIZE
40f76580
CM
3272 */
3273 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3274 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3275 delalloc_start = delalloc_end + 1;
3276 }
3277 if (wbc->nr_to_write < delalloc_to_write) {
3278 int thresh = 8192;
3279
3280 if (delalloc_to_write < thresh * 2)
3281 thresh = delalloc_to_write;
3282 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 thresh);
3284 }
3285
3286 /* did the fill delalloc function already unlock and start
3287 * the IO?
3288 */
3289 if (page_started) {
3290 /*
3291 * we've unlocked the page, so we can't update
3292 * the mapping's writeback index, just update
3293 * nr_to_write.
3294 */
3295 wbc->nr_to_write -= *nr_written;
3296 return 1;
3297 }
3298
3299 ret = 0;
3300
3301done:
3302 return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage. This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 struct page *page,
3315 struct writeback_control *wbc,
3316 struct extent_page_data *epd,
3317 loff_t i_size,
3318 unsigned long nr_written,
f1c77c55 3319 unsigned int write_flags, int *nr_ret)
d1310b2e 3320{
d1310b2e 3321 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3322 u64 start = page_offset(page);
09cbfeaf 3323 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3324 u64 end;
3325 u64 cur = start;
3326 u64 extent_offset;
d1310b2e
CM
3327 u64 block_start;
3328 u64 iosize;
d1310b2e
CM
3329 struct extent_map *em;
3330 struct block_device *bdev;
7f3c74fb 3331 size_t pg_offset = 0;
d1310b2e 3332 size_t blocksize;
40f76580
CM
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
c8b97818 3336
247e743c 3337 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
87826df0
JM
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
40f76580 3346
3d4b9496 3347 update_nr_written(wbc, nr_written);
247e743c 3348 unlock_page(page);
bcf93489 3349 return 1;
247e743c
CM
3350 }
3351 }
3352
11c8349b
CM
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3d4b9496 3357 update_nr_written(wbc, nr_written + 1);
771ed689 3358
d1310b2e 3359 end = page_end;
40f76580 3360 if (i_size <= start) {
e6dcd2dc
CM
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
d1310b2e
CM
3364 goto done;
3365 }
3366
d1310b2e
CM
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
40f76580 3370 u64 em_end;
6273b7f8 3371 u64 offset;
58409edd 3372
40f76580 3373 if (cur >= i_size) {
e6dcd2dc
CM
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
d1310b2e
CM
3377 break;
3378 }
3c98c62f 3379 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3380 end - cur + 1, 1);
c704005d 3381 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3382 SetPageError(page);
61391d56 3383 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
40f76580
CM
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
d1310b2e 3390 BUG_ON(end < cur);
40f76580 3391 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3392 iosize = ALIGN(iosize, blocksize);
6273b7f8 3393 offset = em->block_start + extent_offset;
d1310b2e
CM
3394 bdev = em->bdev;
3395 block_start = em->block_start;
c8b97818 3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3397 free_extent_map(em);
3398 em = NULL;
3399
c8b97818
CM
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3405 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
c8b97818
CM
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
7f3c74fb 3424 pg_offset += iosize;
d1310b2e
CM
3425 continue;
3426 }
c8b97818 3427
58409edd
DS
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
d1310b2e 3433 }
7f3c74fb 3434
4b81ba48 3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3436 page, offset, iosize, pg_offset,
c2df8bb4 3437 bdev, &epd->bio,
58409edd
DS
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
fe01aa65 3440 if (ret) {
58409edd 3441 SetPageError(page);
fe01aa65
TK
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
d1310b2e 3445
d1310b2e 3446 cur = cur + iosize;
7f3c74fb 3447 pg_offset += iosize;
d1310b2e
CM
3448 nr++;
3449 }
40f76580
CM
3450done:
3451 *nr_ret = nr;
40f76580
CM
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3462 struct extent_page_data *epd)
40f76580
CM
3463{
3464 struct inode *inode = page->mapping->host;
40f76580 3465 u64 start = page_offset(page);
09cbfeaf 3466 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
09cbfeaf 3471 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3472 unsigned int write_flags = 0;
40f76580
CM
3473 unsigned long nr_written = 0;
3474
ff40adf7 3475 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
09cbfeaf 3483 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
09cbfeaf 3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
09cbfeaf 3496 PAGE_SIZE - pg_offset);
40f76580
CM
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
d1310b2e
CM
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
61391d56
FM
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
d1310b2e 3526 unlock_page(page);
40f76580 3527 return ret;
771ed689 3528
11c8349b 3529done_unlocked:
d1310b2e
CM
3530 return 0;
3531}
3532
fd8b2b61 3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3534{
74316201
N
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3537}
3538
0e378df1
CM
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
0b32f4bb
JB
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
a098d8e8
CM
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
0b32f4bb 3567 btrfs_tree_unlock(eb);
0b32f4bb
JB
3568 }
3569 }
3570
51561ffe
JB
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3579 spin_unlock(&eb->refs_lock);
0b32f4bb 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
0b32f4bb 3584 ret = 1;
51561ffe
JB
3585 } else {
3586 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
fb85fc9a 3596 struct page *p = eb->pages[i];
0b32f4bb
JB
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3613 smp_mb__after_atomic();
0b32f4bb
JB
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
656f30db
FM
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
afcdd129 3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3666 break;
3667 case 0:
afcdd129 3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3669 break;
3670 case 1:
afcdd129 3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676}
3677
4246a0b6 3678static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3679{
2c30c71b 3680 struct bio_vec *bvec;
0b32f4bb 3681 struct extent_buffer *eb;
2c30c71b 3682 int i, done;
0b32f4bb 3683
c09abff8 3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3685 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3686 struct page *page = bvec->bv_page;
3687
0b32f4bb
JB
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
4e4cbee9 3692 if (bio->bi_status ||
4246a0b6 3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3694 ClearPageUptodate(page);
656f30db 3695 set_btree_ioerr(page);
0b32f4bb
JB
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
2c30c71b 3704 }
0b32f4bb
JB
3705
3706 bio_put(bio);
0b32f4bb
JB
3707}
3708
0e378df1 3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713{
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3716 u64 offset = eb->start;
851cd173 3717 u32 nritems;
0b32f4bb 3718 unsigned long i, num_pages;
851cd173 3719 unsigned long start, end;
ff40adf7 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3721 int ret = 0;
0b32f4bb 3722
656f30db 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
de0022b9 3726
851cd173
LB
3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 nritems = btrfs_header_nritems(eb);
3eb548ee 3729 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3730 end = btrfs_node_key_ptr_offset(nritems);
3731
b159fa28 3732 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3733 } else {
3734 /*
3735 * leaf:
3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 */
3738 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3740 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3741 }
3742
0b32f4bb 3743 for (i = 0; i < num_pages; i++) {
fb85fc9a 3744 struct page *p = eb->pages[i];
0b32f4bb
JB
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
4b81ba48 3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3749 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3750 &epd->bio,
1f7ad75b 3751 end_bio_extent_buffer_writepage,
18fdc679 3752 0, 0, 0, false);
0b32f4bb 3753 if (ret) {
656f30db 3754 set_btree_ioerr(p);
fe01aa65
TK
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
0b32f4bb
JB
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
09cbfeaf 3762 offset += PAGE_SIZE;
3d4b9496 3763 update_nr_written(wbc, 1);
0b32f4bb
JB
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
bbf65cf0 3769 struct page *p = eb->pages[i];
81465028 3770 clear_page_dirty_for_io(p);
0b32f4bb
JB
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
86679820 3800 pagevec_init(&pvec);
0b32f4bb
JB
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
09cbfeaf
KS
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3818 tag))) {
0b32f4bb
JB
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
b5bae261
JB
3828 spin_lock(&mapping->private_lock);
3829 if (!PagePrivate(page)) {
3830 spin_unlock(&mapping->private_lock);
3831 continue;
3832 }
3833
0b32f4bb 3834 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3835
3836 /*
3837 * Shouldn't happen and normally this would be a BUG_ON
3838 * but no sense in crashing the users box for something
3839 * we can survive anyway.
3840 */
fae7f21c 3841 if (WARN_ON(!eb)) {
b5bae261 3842 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3843 continue;
3844 }
3845
b5bae261
JB
3846 if (eb == prev_eb) {
3847 spin_unlock(&mapping->private_lock);
0b32f4bb 3848 continue;
b5bae261 3849 }
0b32f4bb 3850
b5bae261
JB
3851 ret = atomic_inc_not_zero(&eb->refs);
3852 spin_unlock(&mapping->private_lock);
3853 if (!ret)
0b32f4bb 3854 continue;
0b32f4bb
JB
3855
3856 prev_eb = eb;
3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 if (!ret) {
3859 free_extent_buffer(eb);
3860 continue;
3861 }
3862
3863 ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 if (ret) {
3865 done = 1;
3866 free_extent_buffer(eb);
3867 break;
3868 }
3869 free_extent_buffer(eb);
3870
3871 /*
3872 * the filesystem may choose to bump up nr_to_write.
3873 * We have to make sure to honor the new nr_to_write
3874 * at any time
3875 */
3876 nr_to_write_done = wbc->nr_to_write <= 0;
3877 }
3878 pagevec_release(&pvec);
3879 cond_resched();
3880 }
3881 if (!scanned && !done) {
3882 /*
3883 * We hit the last page and there is more work to be done: wrap
3884 * back to the start of the file
3885 */
3886 scanned = 1;
3887 index = 0;
3888 goto retry;
3889 }
3890 flush_write_bio(&epd);
3891 return ret;
3892}
3893
d1310b2e 3894/**
4bef0848 3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3898 * @data: data passed to __extent_writepage function
d1310b2e
CM
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them. If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
4242b64a 3908static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3909 struct writeback_control *wbc,
aab6e9ed 3910 struct extent_page_data *epd)
d1310b2e 3911{
7fd1a3f7 3912 struct inode *inode = mapping->host;
d1310b2e
CM
3913 int ret = 0;
3914 int done = 0;
f85d7d6c 3915 int nr_to_write_done = 0;
d1310b2e
CM
3916 struct pagevec pvec;
3917 int nr_pages;
3918 pgoff_t index;
3919 pgoff_t end; /* Inclusive */
a9132667
LB
3920 pgoff_t done_index;
3921 int range_whole = 0;
d1310b2e 3922 int scanned = 0;
f7aaa06b 3923 int tag;
d1310b2e 3924
7fd1a3f7
JB
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
86679820 3937 pagevec_init(&pvec);
d1310b2e
CM
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
09cbfeaf
KS
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 range_whole = 1;
d1310b2e
CM
3946 scanned = 1;
3947 }
f7aaa06b
JB
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag = PAGECACHE_TAG_TOWRITE;
3950 else
3951 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3952retry:
f7aaa06b
JB
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag_pages_for_writeback(mapping, index, end);
a9132667 3955 done_index = index;
f85d7d6c 3956 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 &index, end, tag))) {
d1310b2e
CM
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
a9132667 3965 done_index = page->index;
d1310b2e 3966 /*
b93b0163
MW
3967 * At this point we hold neither the i_pages lock nor
3968 * the page lock: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL),
3970 * or even swizzled back from swapper_space to
3971 * tmpfs file mapping
d1310b2e 3972 */
c8f2f24b 3973 if (!trylock_page(page)) {
aab6e9ed 3974 flush_write_bio(epd);
c8f2f24b 3975 lock_page(page);
01d658f2 3976 }
d1310b2e
CM
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
d2c3f4f6 3983 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3984 if (PageWriteback(page))
aab6e9ed 3985 flush_write_bio(epd);
d1310b2e 3986 wait_on_page_writeback(page);
d2c3f4f6 3987 }
d1310b2e
CM
3988
3989 if (PageWriteback(page) ||
3990 !clear_page_dirty_for_io(page)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
aab6e9ed 3995 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3996
3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 unlock_page(page);
3999 ret = 0;
4000 }
a9132667
LB
4001 if (ret < 0) {
4002 /*
4003 * done_index is set past this page,
4004 * so media errors will not choke
4005 * background writeout for the entire
4006 * file. This has consequences for
4007 * range_cyclic semantics (ie. it may
4008 * not be suitable for data integrity
4009 * writeout).
4010 */
4011 done_index = page->index + 1;
4012 done = 1;
4013 break;
4014 }
f85d7d6c
CM
4015
4016 /*
4017 * the filesystem may choose to bump up nr_to_write.
4018 * We have to make sure to honor the new nr_to_write
4019 * at any time
4020 */
4021 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4022 }
4023 pagevec_release(&pvec);
4024 cond_resched();
4025 }
894b36e3 4026 if (!scanned && !done) {
d1310b2e
CM
4027 /*
4028 * We hit the last page and there is more work to be done: wrap
4029 * back to the start of the file
4030 */
4031 scanned = 1;
4032 index = 0;
4033 goto retry;
4034 }
a9132667
LB
4035
4036 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037 mapping->writeback_index = done_index;
4038
7fd1a3f7 4039 btrfs_add_delayed_iput(inode);
894b36e3 4040 return ret;
d1310b2e 4041}
d1310b2e 4042
aab6e9ed 4043static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4044{
d2c3f4f6 4045 if (epd->bio) {
355808c2
JM
4046 int ret;
4047
18fdc679 4048 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4049 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4050 epd->bio = NULL;
4051 }
4052}
4053
0a9b0e53 4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4055{
4056 int ret;
d1310b2e
CM
4057 struct extent_page_data epd = {
4058 .bio = NULL,
0a9b0e53 4059 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4060 .extent_locked = 0,
ffbd517d 4061 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4062 };
d1310b2e 4063
d1310b2e
CM
4064 ret = __extent_writepage(page, wbc, &epd);
4065
e2932ee0 4066 flush_write_bio(&epd);
d1310b2e
CM
4067 return ret;
4068}
d1310b2e 4069
5e3ee236 4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4071 int mode)
4072{
4073 int ret = 0;
4074 struct address_space *mapping = inode->i_mapping;
5e3ee236 4075 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4076 struct page *page;
09cbfeaf
KS
4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 PAGE_SHIFT;
771ed689
CM
4079
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
771ed689 4083 .extent_locked = 1,
ffbd517d 4084 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4085 };
4086 struct writeback_control wbc_writepages = {
771ed689 4087 .sync_mode = mode,
771ed689
CM
4088 .nr_to_write = nr_pages * 2,
4089 .range_start = start,
4090 .range_end = end + 1,
4091 };
4092
d397712b 4093 while (start <= end) {
09cbfeaf 4094 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4095 if (clear_page_dirty_for_io(page))
4096 ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 else {
4098 if (tree->ops && tree->ops->writepage_end_io_hook)
4099 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4100 start + PAGE_SIZE - 1,
771ed689
CM
4101 NULL, 1);
4102 unlock_page(page);
4103 }
09cbfeaf
KS
4104 put_page(page);
4105 start += PAGE_SIZE;
771ed689
CM
4106 }
4107
e2932ee0 4108 flush_write_bio(&epd);
771ed689
CM
4109 return ret;
4110}
d1310b2e
CM
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113 struct address_space *mapping,
d1310b2e
CM
4114 struct writeback_control *wbc)
4115{
4116 int ret = 0;
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
771ed689 4120 .extent_locked = 0,
ffbd517d 4121 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4122 };
4123
935db853 4124 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4125 flush_write_bio(&epd);
d1310b2e
CM
4126 return ret;
4127}
d1310b2e
CM
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130 struct address_space *mapping,
0932584b 4131 struct list_head *pages, unsigned nr_pages)
d1310b2e
CM
4132{
4133 struct bio *bio = NULL;
4134 unsigned page_idx;
c8b97818 4135 unsigned long bio_flags = 0;
67c9684f
LB
4136 struct page *pagepool[16];
4137 struct page *page;
125bac01 4138 struct extent_map *em_cached = NULL;
67c9684f 4139 int nr = 0;
808f80b4 4140 u64 prev_em_start = (u64)-1;
d1310b2e 4141
d1310b2e 4142 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4143 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4144
4145 prefetchw(&page->flags);
4146 list_del(&page->lru);
67c9684f 4147 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4148 page->index,
4149 readahead_gfp_mask(mapping))) {
09cbfeaf 4150 put_page(page);
67c9684f 4151 continue;
d1310b2e 4152 }
67c9684f
LB
4153
4154 pagepool[nr++] = page;
4155 if (nr < ARRAY_SIZE(pagepool))
4156 continue;
e4d17ef5
DS
4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 &bio_flags, &prev_em_start);
67c9684f 4159 nr = 0;
d1310b2e 4160 }
9974090b 4161 if (nr)
e4d17ef5
DS
4162 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163 &bio_flags, &prev_em_start);
67c9684f 4164
125bac01
MX
4165 if (em_cached)
4166 free_extent_map(em_cached);
4167
d1310b2e
CM
4168 BUG_ON(!list_empty(pages));
4169 if (bio)
1f7ad75b 4170 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4171 return 0;
4172}
d1310b2e
CM
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180 struct page *page, unsigned long offset)
4181{
2ac55d41 4182 struct extent_state *cached_state = NULL;
4eee4fa4 4183 u64 start = page_offset(page);
09cbfeaf 4184 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4185 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
fda2832f 4187 start += ALIGN(offset, blocksize);
d1310b2e
CM
4188 if (start > end)
4189 return 0;
4190
ff13db41 4191 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4192 wait_on_page_writeback(page);
d1310b2e 4193 clear_extent_bit(tree, start, end,
32c00aff
JB
4194 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195 EXTENT_DO_ACCOUNTING,
ae0f1625 4196 1, 1, &cached_state);
d1310b2e
CM
4197 return 0;
4198}
d1310b2e 4199
7b13b7b1
CM
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
48a3b636
ES
4205static int try_release_extent_state(struct extent_map_tree *map,
4206 struct extent_io_tree *tree,
4207 struct page *page, gfp_t mask)
7b13b7b1 4208{
4eee4fa4 4209 u64 start = page_offset(page);
09cbfeaf 4210 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4211 int ret = 1;
4212
211f90e6 4213 if (test_range_bit(tree, start, end,
8b62b72b 4214 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4215 ret = 0;
4216 else {
11ef160f
CM
4217 /*
4218 * at this point we can safely clear everything except the
4219 * locked bit and the nodatasum bit
4220 */
66b0c887 4221 ret = __clear_extent_bit(tree, start, end,
11ef160f 4222 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4223 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4224
4225 /* if clear_extent_bit failed for enomem reasons,
4226 * we can't allow the release to continue.
4227 */
4228 if (ret < 0)
4229 ret = 0;
4230 else
4231 ret = 1;
7b13b7b1
CM
4232 }
4233 return ret;
4234}
7b13b7b1 4235
d1310b2e
CM
4236/*
4237 * a helper for releasepage. As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4242 struct extent_io_tree *tree, struct page *page,
4243 gfp_t mask)
d1310b2e
CM
4244{
4245 struct extent_map *em;
4eee4fa4 4246 u64 start = page_offset(page);
09cbfeaf 4247 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4248
d0164adc 4249 if (gfpflags_allow_blocking(mask) &&
ee22184b 4250 page->mapping->host->i_size > SZ_16M) {
39b5637f 4251 u64 len;
70dec807 4252 while (start <= end) {
39b5637f 4253 len = end - start + 1;
890871be 4254 write_lock(&map->lock);
39b5637f 4255 em = lookup_extent_mapping(map, start, len);
285190d9 4256 if (!em) {
890871be 4257 write_unlock(&map->lock);
70dec807
CM
4258 break;
4259 }
7f3c74fb
CM
4260 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261 em->start != start) {
890871be 4262 write_unlock(&map->lock);
70dec807
CM
4263 free_extent_map(em);
4264 break;
4265 }
4266 if (!test_range_bit(tree, em->start,
4267 extent_map_end(em) - 1,
8b62b72b 4268 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4269 0, NULL)) {
70dec807
CM
4270 remove_extent_mapping(map, em);
4271 /* once for the rb tree */
4272 free_extent_map(em);
4273 }
4274 start = extent_map_end(em);
890871be 4275 write_unlock(&map->lock);
70dec807
CM
4276
4277 /* once for us */
d1310b2e
CM
4278 free_extent_map(em);
4279 }
d1310b2e 4280 }
7b13b7b1 4281 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4282}
d1310b2e 4283
ec29ed5b
CM
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4289 u64 offset, u64 last)
ec29ed5b 4290{
da17066c 4291 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4292 struct extent_map *em;
4293 u64 len;
4294
4295 if (offset >= last)
4296 return NULL;
4297
67871254 4298 while (1) {
ec29ed5b
CM
4299 len = last - offset;
4300 if (len == 0)
4301 break;
fda2832f 4302 len = ALIGN(len, sectorsize);
e3350e16
DS
4303 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304 len, 0);
c704005d 4305 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4306 return em;
4307
4308 /* if this isn't a hole return it */
4a2d25cd 4309 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4310 return em;
ec29ed5b
CM
4311
4312 /* this is a hole, advance to the next extent */
4313 offset = extent_map_end(em);
4314 free_extent_map(em);
4315 if (offset >= last)
4316 break;
4317 }
4318 return NULL;
4319}
4320
4751832d
QW
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327 u64 offset;
4328 u64 phys;
4329 u64 len;
4330 u32 flags;
4331 bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345 struct fiemap_cache *cache,
4346 u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348 int ret = 0;
4349
4350 if (!cache->cached)
4351 goto assign;
4352
4353 /*
4354 * Sanity check, extent_fiemap() should have ensured that new
4355 * fiemap extent won't overlap with cahced one.
4356 * Not recoverable.
4357 *
4358 * NOTE: Physical address can overlap, due to compression
4359 */
4360 if (cache->offset + cache->len > offset) {
4361 WARN_ON(1);
4362 return -EINVAL;
4363 }
4364
4365 /*
4366 * Only merges fiemap extents if
4367 * 1) Their logical addresses are continuous
4368 *
4369 * 2) Their physical addresses are continuous
4370 * So truly compressed (physical size smaller than logical size)
4371 * extents won't get merged with each other
4372 *
4373 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374 * So regular extent won't get merged with prealloc extent
4375 */
4376 if (cache->offset + cache->len == offset &&
4377 cache->phys + cache->len == phys &&
4378 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379 (flags & ~FIEMAP_EXTENT_LAST)) {
4380 cache->len += len;
4381 cache->flags |= flags;
4382 goto try_submit_last;
4383 }
4384
4385 /* Not mergeable, need to submit cached one */
4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 cache->len, cache->flags);
4388 cache->cached = false;
4389 if (ret)
4390 return ret;
4391assign:
4392 cache->cached = true;
4393 cache->offset = offset;
4394 cache->phys = phys;
4395 cache->len = len;
4396 cache->flags = flags;
4397try_submit_last:
4398 if (cache->flags & FIEMAP_EXTENT_LAST) {
4399 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400 cache->phys, cache->len, cache->flags);
4401 cache->cached = false;
4402 }
4403 return ret;
4404}
4405
4406/*
848c23b7 4407 * Emit last fiemap cache
4751832d 4408 *
848c23b7
QW
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0 4k 8k
4411 * |<- Fiemap range ->|
4412 * |<------------ First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4751832d 4416 */
848c23b7
QW
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418 struct fiemap_extent_info *fieinfo,
4419 struct fiemap_cache *cache)
4751832d
QW
4420{
4421 int ret;
4422
4423 if (!cache->cached)
4424 return 0;
4425
4751832d
QW
4426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427 cache->len, cache->flags);
4428 cache->cached = false;
4429 if (ret > 0)
4430 ret = 0;
4431 return ret;
4432}
4433
1506fcc8 4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4435 __u64 start, __u64 len)
1506fcc8 4436{
975f84fe 4437 int ret = 0;
1506fcc8
YS
4438 u64 off = start;
4439 u64 max = start + len;
4440 u32 flags = 0;
975f84fe
JB
4441 u32 found_type;
4442 u64 last;
ec29ed5b 4443 u64 last_for_get_extent = 0;
1506fcc8 4444 u64 disko = 0;
ec29ed5b 4445 u64 isize = i_size_read(inode);
975f84fe 4446 struct btrfs_key found_key;
1506fcc8 4447 struct extent_map *em = NULL;
2ac55d41 4448 struct extent_state *cached_state = NULL;
975f84fe 4449 struct btrfs_path *path;
dc046b10 4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4451 struct fiemap_cache cache = { 0 };
1506fcc8 4452 int end = 0;
ec29ed5b
CM
4453 u64 em_start = 0;
4454 u64 em_len = 0;
4455 u64 em_end = 0;
1506fcc8
YS
4456
4457 if (len == 0)
4458 return -EINVAL;
4459
975f84fe
JB
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463 path->leave_spinning = 1;
4464
da17066c
JM
4465 start = round_down(start, btrfs_inode_sectorsize(inode));
4466 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4467
ec29ed5b
CM
4468 /*
4469 * lookup the last file extent. We're not using i_size here
4470 * because there might be preallocation past i_size
4471 */
f85b7379
DS
4472 ret = btrfs_lookup_file_extent(NULL, root, path,
4473 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4474 if (ret < 0) {
4475 btrfs_free_path(path);
4476 return ret;
2d324f59
LB
4477 } else {
4478 WARN_ON(!ret);
4479 if (ret == 1)
4480 ret = 0;
975f84fe 4481 }
2d324f59 4482
975f84fe 4483 path->slots[0]--;
975f84fe 4484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4485 found_type = found_key.type;
975f84fe 4486
ec29ed5b 4487 /* No extents, but there might be delalloc bits */
4a0cc7ca 4488 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4489 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4490 /* have to trust i_size as the end */
4491 last = (u64)-1;
4492 last_for_get_extent = isize;
4493 } else {
4494 /*
4495 * remember the start of the last extent. There are a
4496 * bunch of different factors that go into the length of the
4497 * extent, so its much less complex to remember where it started
4498 */
4499 last = found_key.offset;
4500 last_for_get_extent = last + 1;
975f84fe 4501 }
fe09e16c 4502 btrfs_release_path(path);
975f84fe 4503
ec29ed5b
CM
4504 /*
4505 * we might have some extents allocated but more delalloc past those
4506 * extents. so, we trust isize unless the start of the last extent is
4507 * beyond isize
4508 */
4509 if (last < isize) {
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 }
4513
ff13db41 4514 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4515 &cached_state);
ec29ed5b 4516
e3350e16 4517 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4518 if (!em)
4519 goto out;
4520 if (IS_ERR(em)) {
4521 ret = PTR_ERR(em);
4522 goto out;
4523 }
975f84fe 4524
1506fcc8 4525 while (!end) {
b76bb701 4526 u64 offset_in_extent = 0;
ea8efc74
CM
4527
4528 /* break if the extent we found is outside the range */
4529 if (em->start >= max || extent_map_end(em) < off)
4530 break;
4531
4532 /*
4533 * get_extent may return an extent that starts before our
4534 * requested range. We have to make sure the ranges
4535 * we return to fiemap always move forward and don't
4536 * overlap, so adjust the offsets here
4537 */
4538 em_start = max(em->start, off);
1506fcc8 4539
ea8efc74
CM
4540 /*
4541 * record the offset from the start of the extent
b76bb701
JB
4542 * for adjusting the disk offset below. Only do this if the
4543 * extent isn't compressed since our in ram offset may be past
4544 * what we have actually allocated on disk.
ea8efc74 4545 */
b76bb701
JB
4546 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547 offset_in_extent = em_start - em->start;
ec29ed5b 4548 em_end = extent_map_end(em);
ea8efc74 4549 em_len = em_end - em_start;
1506fcc8
YS
4550 disko = 0;
4551 flags = 0;
4552
ea8efc74
CM
4553 /*
4554 * bump off for our next call to get_extent
4555 */
4556 off = extent_map_end(em);
4557 if (off >= max)
4558 end = 1;
4559
93dbfad7 4560 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4561 end = 1;
4562 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4563 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4564 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4566 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4567 flags |= (FIEMAP_EXTENT_DELALLOC |
4568 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4569 } else if (fieinfo->fi_extents_max) {
4570 u64 bytenr = em->block_start -
4571 (em->start - em->orig_start);
fe09e16c 4572
ea8efc74 4573 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4574
4575 /*
4576 * As btrfs supports shared space, this information
4577 * can be exported to userspace tools via
dc046b10
JB
4578 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4579 * then we're just getting a count and we can skip the
4580 * lookup stuff.
fe09e16c 4581 */
bb739cf0
EN
4582 ret = btrfs_check_shared(root,
4583 btrfs_ino(BTRFS_I(inode)),
4584 bytenr);
dc046b10 4585 if (ret < 0)
fe09e16c 4586 goto out_free;
dc046b10 4587 if (ret)
fe09e16c 4588 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4589 ret = 0;
1506fcc8
YS
4590 }
4591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4595
1506fcc8
YS
4596 free_extent_map(em);
4597 em = NULL;
ec29ed5b
CM
4598 if ((em_start >= last) || em_len == (u64)-1 ||
4599 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4600 flags |= FIEMAP_EXTENT_LAST;
4601 end = 1;
4602 }
4603
ec29ed5b 4604 /* now scan forward to see if this is really the last extent. */
e3350e16 4605 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4606 if (IS_ERR(em)) {
4607 ret = PTR_ERR(em);
4608 goto out;
4609 }
4610 if (!em) {
975f84fe
JB
4611 flags |= FIEMAP_EXTENT_LAST;
4612 end = 1;
4613 }
4751832d
QW
4614 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615 em_len, flags);
26e726af
CS
4616 if (ret) {
4617 if (ret == 1)
4618 ret = 0;
ec29ed5b 4619 goto out_free;
26e726af 4620 }
1506fcc8
YS
4621 }
4622out_free:
4751832d 4623 if (!ret)
848c23b7 4624 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4625 free_extent_map(em);
4626out:
fe09e16c 4627 btrfs_free_path(path);
a52f4cd2 4628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4629 &cached_state);
1506fcc8
YS
4630 return ret;
4631}
4632
727011e0
CM
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
6d49ba1b 4635 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4636 kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
a26e8c9f 4639int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4640{
4641 return (atomic_read(&eb->io_pages) ||
4642 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
a50924e3 4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4650{
4651 unsigned long index;
db7f3436
JB
4652 struct page *page;
4653 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655 BUG_ON(extent_buffer_under_io(eb));
4656
a50924e3
DS
4657 index = num_extent_pages(eb->start, eb->len);
4658 if (index == 0)
db7f3436
JB
4659 return;
4660
4661 do {
4662 index--;
fb85fc9a 4663 page = eb->pages[index];
5d2361db
FL
4664 if (!page)
4665 continue;
4666 if (mapped)
db7f3436 4667 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4668 /*
4669 * We do this since we'll remove the pages after we've
4670 * removed the eb from the radix tree, so we could race
4671 * and have this page now attached to the new eb. So
4672 * only clear page_private if it's still connected to
4673 * this eb.
4674 */
4675 if (PagePrivate(page) &&
4676 page->private == (unsigned long)eb) {
4677 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678 BUG_ON(PageDirty(page));
4679 BUG_ON(PageWriteback(page));
db7f3436 4680 /*
5d2361db
FL
4681 * We need to make sure we haven't be attached
4682 * to a new eb.
db7f3436 4683 */
5d2361db
FL
4684 ClearPagePrivate(page);
4685 set_page_private(page, 0);
4686 /* One for the page private */
09cbfeaf 4687 put_page(page);
db7f3436 4688 }
5d2361db
FL
4689
4690 if (mapped)
4691 spin_unlock(&page->mapping->private_lock);
4692
01327610 4693 /* One for when we allocated the page */
09cbfeaf 4694 put_page(page);
a50924e3 4695 } while (index != 0);
db7f3436
JB
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
a50924e3 4703 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4704 __free_extent_buffer(eb);
4705}
4706
f28491e0
JB
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4709 unsigned long len)
d1310b2e
CM
4710{
4711 struct extent_buffer *eb = NULL;
4712
d1b5c567 4713 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4714 eb->start = start;
4715 eb->len = len;
f28491e0 4716 eb->fs_info = fs_info;
815a51c7 4717 eb->bflags = 0;
bd681513
CM
4718 rwlock_init(&eb->lock);
4719 atomic_set(&eb->write_locks, 0);
4720 atomic_set(&eb->read_locks, 0);
4721 atomic_set(&eb->blocking_readers, 0);
4722 atomic_set(&eb->blocking_writers, 0);
4723 atomic_set(&eb->spinning_readers, 0);
4724 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4725 eb->lock_nested = 0;
bd681513
CM
4726 init_waitqueue_head(&eb->write_lock_wq);
4727 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4728
6d49ba1b
ES
4729 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730
3083ee2e 4731 spin_lock_init(&eb->refs_lock);
d1310b2e 4732 atomic_set(&eb->refs, 1);
0b32f4bb 4733 atomic_set(&eb->io_pages, 0);
727011e0 4734
b8dae313
DS
4735 /*
4736 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 */
4738 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4741
4742 return eb;
4743}
4744
815a51c7
JS
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747 unsigned long i;
4748 struct page *p;
4749 struct extent_buffer *new;
4750 unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
3f556f78 4752 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4753 if (new == NULL)
4754 return NULL;
4755
4756 for (i = 0; i < num_pages; i++) {
9ec72677 4757 p = alloc_page(GFP_NOFS);
db7f3436
JB
4758 if (!p) {
4759 btrfs_release_extent_buffer(new);
4760 return NULL;
4761 }
815a51c7
JS
4762 attach_extent_buffer_page(new, p);
4763 WARN_ON(PageDirty(p));
4764 SetPageUptodate(p);
4765 new->pages[i] = p;
fba1acf9 4766 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4767 }
4768
815a51c7
JS
4769 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772 return new;
4773}
4774
0f331229
OS
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776 u64 start, unsigned long len)
815a51c7
JS
4777{
4778 struct extent_buffer *eb;
3f556f78 4779 unsigned long num_pages;
815a51c7
JS
4780 unsigned long i;
4781
0f331229 4782 num_pages = num_extent_pages(start, len);
3f556f78
DS
4783
4784 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4785 if (!eb)
4786 return NULL;
4787
4788 for (i = 0; i < num_pages; i++) {
9ec72677 4789 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4790 if (!eb->pages[i])
4791 goto err;
4792 }
4793 set_extent_buffer_uptodate(eb);
4794 btrfs_set_header_nritems(eb, 0);
4795 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797 return eb;
4798err:
84167d19
SB
4799 for (; i > 0; i--)
4800 __free_page(eb->pages[i - 1]);
815a51c7
JS
4801 __free_extent_buffer(eb);
4802 return NULL;
4803}
4804
0f331229 4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4806 u64 start)
0f331229 4807{
da17066c 4808 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4809}
4810
0b32f4bb
JB
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
242e18c7 4813 int refs;
0b32f4bb
JB
4814 /* the ref bit is tricky. We have to make sure it is set
4815 * if we have the buffer dirty. Otherwise the
4816 * code to free a buffer can end up dropping a dirty
4817 * page
4818 *
4819 * Once the ref bit is set, it won't go away while the
4820 * buffer is dirty or in writeback, and it also won't
4821 * go away while we have the reference count on the
4822 * eb bumped.
4823 *
4824 * We can't just set the ref bit without bumping the
4825 * ref on the eb because free_extent_buffer might
4826 * see the ref bit and try to clear it. If this happens
4827 * free_extent_buffer might end up dropping our original
4828 * ref by mistake and freeing the page before we are able
4829 * to add one more ref.
4830 *
4831 * So bump the ref count first, then set the bit. If someone
4832 * beat us to it, drop the ref we added.
4833 */
242e18c7
CM
4834 refs = atomic_read(&eb->refs);
4835 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 return;
4837
594831c4
JB
4838 spin_lock(&eb->refs_lock);
4839 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4840 atomic_inc(&eb->refs);
594831c4 4841 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4842}
4843
2457aec6
MG
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845 struct page *accessed)
5df4235e
JB
4846{
4847 unsigned long num_pages, i;
4848
0b32f4bb
JB
4849 check_buffer_tree_ref(eb);
4850
5df4235e
JB
4851 num_pages = num_extent_pages(eb->start, eb->len);
4852 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4853 struct page *p = eb->pages[i];
4854
2457aec6
MG
4855 if (p != accessed)
4856 mark_page_accessed(p);
5df4235e
JB
4857 }
4858}
4859
f28491e0
JB
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861 u64 start)
452c75c3
CS
4862{
4863 struct extent_buffer *eb;
4864
4865 rcu_read_lock();
f28491e0 4866 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4867 start >> PAGE_SHIFT);
452c75c3
CS
4868 if (eb && atomic_inc_not_zero(&eb->refs)) {
4869 rcu_read_unlock();
062c19e9
FM
4870 /*
4871 * Lock our eb's refs_lock to avoid races with
4872 * free_extent_buffer. When we get our eb it might be flagged
4873 * with EXTENT_BUFFER_STALE and another task running
4874 * free_extent_buffer might have seen that flag set,
4875 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876 * writeback flags not set) and it's still in the tree (flag
4877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878 * of decrementing the extent buffer's reference count twice.
4879 * So here we could race and increment the eb's reference count,
4880 * clear its stale flag, mark it as dirty and drop our reference
4881 * before the other task finishes executing free_extent_buffer,
4882 * which would later result in an attempt to free an extent
4883 * buffer that is dirty.
4884 */
4885 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886 spin_lock(&eb->refs_lock);
4887 spin_unlock(&eb->refs_lock);
4888 }
2457aec6 4889 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4890 return eb;
4891 }
4892 rcu_read_unlock();
4893
4894 return NULL;
4895}
4896
faa2dbf0
JB
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4899 u64 start)
faa2dbf0
JB
4900{
4901 struct extent_buffer *eb, *exists = NULL;
4902 int ret;
4903
4904 eb = find_extent_buffer(fs_info, start);
4905 if (eb)
4906 return eb;
da17066c 4907 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4908 if (!eb)
4909 return NULL;
4910 eb->fs_info = fs_info;
4911again:
e1860a77 4912 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4913 if (ret)
4914 goto free_eb;
4915 spin_lock(&fs_info->buffer_lock);
4916 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4917 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4918 spin_unlock(&fs_info->buffer_lock);
4919 radix_tree_preload_end();
4920 if (ret == -EEXIST) {
4921 exists = find_extent_buffer(fs_info, start);
4922 if (exists)
4923 goto free_eb;
4924 else
4925 goto again;
4926 }
4927 check_buffer_tree_ref(eb);
4928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930 /*
4931 * We will free dummy extent buffer's if they come into
4932 * free_extent_buffer with a ref count of 2, but if we are using this we
4933 * want the buffers to stay in memory until we're done with them, so
4934 * bump the ref count again.
4935 */
4936 atomic_inc(&eb->refs);
4937 return eb;
4938free_eb:
4939 btrfs_release_extent_buffer(eb);
4940 return exists;
4941}
4942#endif
4943
f28491e0 4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4945 u64 start)
d1310b2e 4946{
da17066c 4947 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4948 unsigned long num_pages = num_extent_pages(start, len);
4949 unsigned long i;
09cbfeaf 4950 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4951 struct extent_buffer *eb;
6af118ce 4952 struct extent_buffer *exists = NULL;
d1310b2e 4953 struct page *p;
f28491e0 4954 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4955 int uptodate = 1;
19fe0a8b 4956 int ret;
d1310b2e 4957
da17066c 4958 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4959 btrfs_err(fs_info, "bad tree block start %llu", start);
4960 return ERR_PTR(-EINVAL);
4961 }
4962
f28491e0 4963 eb = find_extent_buffer(fs_info, start);
452c75c3 4964 if (eb)
6af118ce 4965 return eb;
6af118ce 4966
23d79d81 4967 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4968 if (!eb)
c871b0f2 4969 return ERR_PTR(-ENOMEM);
d1310b2e 4970
727011e0 4971 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4972 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4973 if (!p) {
4974 exists = ERR_PTR(-ENOMEM);
6af118ce 4975 goto free_eb;
c871b0f2 4976 }
4f2de97a
JB
4977
4978 spin_lock(&mapping->private_lock);
4979 if (PagePrivate(p)) {
4980 /*
4981 * We could have already allocated an eb for this page
4982 * and attached one so lets see if we can get a ref on
4983 * the existing eb, and if we can we know it's good and
4984 * we can just return that one, else we know we can just
4985 * overwrite page->private.
4986 */
4987 exists = (struct extent_buffer *)p->private;
4988 if (atomic_inc_not_zero(&exists->refs)) {
4989 spin_unlock(&mapping->private_lock);
4990 unlock_page(p);
09cbfeaf 4991 put_page(p);
2457aec6 4992 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4993 goto free_eb;
4994 }
5ca64f45 4995 exists = NULL;
4f2de97a 4996
0b32f4bb 4997 /*
4f2de97a
JB
4998 * Do this so attach doesn't complain and we need to
4999 * drop the ref the old guy had.
5000 */
5001 ClearPagePrivate(p);
0b32f4bb 5002 WARN_ON(PageDirty(p));
09cbfeaf 5003 put_page(p);
d1310b2e 5004 }
4f2de97a
JB
5005 attach_extent_buffer_page(eb, p);
5006 spin_unlock(&mapping->private_lock);
0b32f4bb 5007 WARN_ON(PageDirty(p));
727011e0 5008 eb->pages[i] = p;
d1310b2e
CM
5009 if (!PageUptodate(p))
5010 uptodate = 0;
eb14ab8e
CM
5011
5012 /*
5013 * see below about how we avoid a nasty race with release page
5014 * and why we unlock later
5015 */
d1310b2e
CM
5016 }
5017 if (uptodate)
b4ce94de 5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5019again:
e1860a77 5020 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5021 if (ret) {
5022 exists = ERR_PTR(ret);
19fe0a8b 5023 goto free_eb;
c871b0f2 5024 }
19fe0a8b 5025
f28491e0
JB
5026 spin_lock(&fs_info->buffer_lock);
5027 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5028 start >> PAGE_SHIFT, eb);
f28491e0 5029 spin_unlock(&fs_info->buffer_lock);
452c75c3 5030 radix_tree_preload_end();
19fe0a8b 5031 if (ret == -EEXIST) {
f28491e0 5032 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5033 if (exists)
5034 goto free_eb;
5035 else
115391d2 5036 goto again;
6af118ce 5037 }
6af118ce 5038 /* add one reference for the tree */
0b32f4bb 5039 check_buffer_tree_ref(eb);
34b41ace 5040 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5041
5042 /*
5043 * there is a race where release page may have
5044 * tried to find this extent buffer in the radix
5045 * but failed. It will tell the VM it is safe to
5046 * reclaim the, and it will clear the page private bit.
5047 * We must make sure to set the page private bit properly
5048 * after the extent buffer is in the radix tree so
5049 * it doesn't get lost
5050 */
727011e0
CM
5051 SetPageChecked(eb->pages[0]);
5052 for (i = 1; i < num_pages; i++) {
fb85fc9a 5053 p = eb->pages[i];
727011e0
CM
5054 ClearPageChecked(p);
5055 unlock_page(p);
5056 }
5057 unlock_page(eb->pages[0]);
d1310b2e
CM
5058 return eb;
5059
6af118ce 5060free_eb:
5ca64f45 5061 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5062 for (i = 0; i < num_pages; i++) {
5063 if (eb->pages[i])
5064 unlock_page(eb->pages[i]);
5065 }
eb14ab8e 5066
897ca6e9 5067 btrfs_release_extent_buffer(eb);
6af118ce 5068 return exists;
d1310b2e 5069}
d1310b2e 5070
3083ee2e
JB
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073 struct extent_buffer *eb =
5074 container_of(head, struct extent_buffer, rcu_head);
5075
5076 __free_extent_buffer(eb);
5077}
5078
3083ee2e 5079/* Expects to have eb->eb_lock already held */
f7a52a40 5080static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5081{
5082 WARN_ON(atomic_read(&eb->refs) == 0);
5083 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5084 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5085 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5086
815a51c7 5087 spin_unlock(&eb->refs_lock);
3083ee2e 5088
f28491e0
JB
5089 spin_lock(&fs_info->buffer_lock);
5090 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5091 eb->start >> PAGE_SHIFT);
f28491e0 5092 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5093 } else {
5094 spin_unlock(&eb->refs_lock);
815a51c7 5095 }
3083ee2e
JB
5096
5097 /* Should be safe to release our pages at this point */
a50924e3 5098 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101 __free_extent_buffer(eb);
5102 return 1;
5103 }
5104#endif
3083ee2e 5105 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5106 return 1;
3083ee2e
JB
5107 }
5108 spin_unlock(&eb->refs_lock);
e64860aa
JB
5109
5110 return 0;
3083ee2e
JB
5111}
5112
d1310b2e
CM
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
242e18c7
CM
5115 int refs;
5116 int old;
d1310b2e
CM
5117 if (!eb)
5118 return;
5119
242e18c7
CM
5120 while (1) {
5121 refs = atomic_read(&eb->refs);
5122 if (refs <= 3)
5123 break;
5124 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125 if (old == refs)
5126 return;
5127 }
5128
3083ee2e 5129 spin_lock(&eb->refs_lock);
815a51c7
JS
5130 if (atomic_read(&eb->refs) == 2 &&
5131 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132 atomic_dec(&eb->refs);
5133
3083ee2e
JB
5134 if (atomic_read(&eb->refs) == 2 &&
5135 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5136 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 atomic_dec(&eb->refs);
5139
5140 /*
5141 * I know this is terrible, but it's temporary until we stop tracking
5142 * the uptodate bits and such for the extent buffers.
5143 */
f7a52a40 5144 release_extent_buffer(eb);
3083ee2e
JB
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149 if (!eb)
d1310b2e
CM
5150 return;
5151
3083ee2e
JB
5152 spin_lock(&eb->refs_lock);
5153 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
0b32f4bb 5155 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5156 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157 atomic_dec(&eb->refs);
f7a52a40 5158 release_extent_buffer(eb);
d1310b2e 5159}
d1310b2e 5160
1d4284bd 5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5162{
d1310b2e
CM
5163 unsigned long i;
5164 unsigned long num_pages;
5165 struct page *page;
5166
d1310b2e
CM
5167 num_pages = num_extent_pages(eb->start, eb->len);
5168
5169 for (i = 0; i < num_pages; i++) {
fb85fc9a 5170 page = eb->pages[i];
b9473439 5171 if (!PageDirty(page))
d2c3f4f6
CM
5172 continue;
5173
a61e6f29 5174 lock_page(page);
eb14ab8e
CM
5175 WARN_ON(!PagePrivate(page));
5176
d1310b2e 5177 clear_page_dirty_for_io(page);
b93b0163 5178 xa_lock_irq(&page->mapping->i_pages);
d1310b2e 5179 if (!PageDirty(page)) {
b93b0163 5180 radix_tree_tag_clear(&page->mapping->i_pages,
d1310b2e
CM
5181 page_index(page),
5182 PAGECACHE_TAG_DIRTY);
5183 }
b93b0163 5184 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5185 ClearPageError(page);
a61e6f29 5186 unlock_page(page);
d1310b2e 5187 }
0b32f4bb 5188 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5189}
d1310b2e 5190
0b32f4bb 5191int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5192{
5193 unsigned long i;
5194 unsigned long num_pages;
b9473439 5195 int was_dirty = 0;
d1310b2e 5196
0b32f4bb
JB
5197 check_buffer_tree_ref(eb);
5198
b9473439 5199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5200
d1310b2e 5201 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5202 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5203 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
b9473439 5205 for (i = 0; i < num_pages; i++)
fb85fc9a 5206 set_page_dirty(eb->pages[i]);
b9473439 5207 return was_dirty;
d1310b2e 5208}
d1310b2e 5209
69ba3927 5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5211{
5212 unsigned long i;
5213 struct page *page;
5214 unsigned long num_pages;
5215
b4ce94de 5216 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5217 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5218 for (i = 0; i < num_pages; i++) {
fb85fc9a 5219 page = eb->pages[i];
33958dc6
CM
5220 if (page)
5221 ClearPageUptodate(page);
1259ab75 5222 }
1259ab75
CM
5223}
5224
09c25a8c 5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5226{
5227 unsigned long i;
5228 struct page *page;
5229 unsigned long num_pages;
5230
0b32f4bb 5231 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5232 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5233 for (i = 0; i < num_pages; i++) {
fb85fc9a 5234 page = eb->pages[i];
d1310b2e
CM
5235 SetPageUptodate(page);
5236 }
d1310b2e 5237}
d1310b2e 5238
d1310b2e 5239int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5240 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e
CM
5241{
5242 unsigned long i;
d1310b2e
CM
5243 struct page *page;
5244 int err;
5245 int ret = 0;
ce9adaa5
CM
5246 int locked_pages = 0;
5247 int all_uptodate = 1;
d1310b2e 5248 unsigned long num_pages;
727011e0 5249 unsigned long num_reads = 0;
a86c12c7 5250 struct bio *bio = NULL;
c8b97818 5251 unsigned long bio_flags = 0;
a86c12c7 5252
b4ce94de 5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5254 return 0;
5255
d1310b2e 5256 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5257 for (i = 0; i < num_pages; i++) {
fb85fc9a 5258 page = eb->pages[i];
bb82ab88 5259 if (wait == WAIT_NONE) {
2db04966 5260 if (!trylock_page(page))
ce9adaa5 5261 goto unlock_exit;
d1310b2e
CM
5262 } else {
5263 lock_page(page);
5264 }
ce9adaa5 5265 locked_pages++;
2571e739
LB
5266 }
5267 /*
5268 * We need to firstly lock all pages to make sure that
5269 * the uptodate bit of our pages won't be affected by
5270 * clear_extent_buffer_uptodate().
5271 */
8436ea91 5272 for (i = 0; i < num_pages; i++) {
2571e739 5273 page = eb->pages[i];
727011e0
CM
5274 if (!PageUptodate(page)) {
5275 num_reads++;
ce9adaa5 5276 all_uptodate = 0;
727011e0 5277 }
ce9adaa5 5278 }
2571e739 5279
ce9adaa5 5280 if (all_uptodate) {
8436ea91 5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5282 goto unlock_exit;
5283 }
5284
656f30db 5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5286 eb->read_mirror = 0;
0b32f4bb 5287 atomic_set(&eb->io_pages, num_reads);
8436ea91 5288 for (i = 0; i < num_pages; i++) {
fb85fc9a 5289 page = eb->pages[i];
baf863b9 5290
ce9adaa5 5291 if (!PageUptodate(page)) {
baf863b9
LB
5292 if (ret) {
5293 atomic_dec(&eb->io_pages);
5294 unlock_page(page);
5295 continue;
5296 }
5297
f188591e 5298 ClearPageError(page);
a86c12c7 5299 err = __extent_read_full_page(tree, page,
6af49dbd 5300 btree_get_extent, &bio,
d4c7ca86 5301 mirror_num, &bio_flags,
1f7ad75b 5302 REQ_META);
baf863b9 5303 if (err) {
d1310b2e 5304 ret = err;
baf863b9
LB
5305 /*
5306 * We use &bio in above __extent_read_full_page,
5307 * so we ensure that if it returns error, the
5308 * current page fails to add itself to bio and
5309 * it's been unlocked.
5310 *
5311 * We must dec io_pages by ourselves.
5312 */
5313 atomic_dec(&eb->io_pages);
5314 }
d1310b2e
CM
5315 } else {
5316 unlock_page(page);
5317 }
5318 }
5319
355808c2 5320 if (bio) {
1f7ad75b 5321 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5322 if (err)
5323 return err;
355808c2 5324 }
a86c12c7 5325
bb82ab88 5326 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5327 return ret;
d397712b 5328
8436ea91 5329 for (i = 0; i < num_pages; i++) {
fb85fc9a 5330 page = eb->pages[i];
d1310b2e 5331 wait_on_page_locked(page);
d397712b 5332 if (!PageUptodate(page))
d1310b2e 5333 ret = -EIO;
d1310b2e 5334 }
d397712b 5335
d1310b2e 5336 return ret;
ce9adaa5
CM
5337
5338unlock_exit:
d397712b 5339 while (locked_pages > 0) {
ce9adaa5 5340 locked_pages--;
8436ea91
JB
5341 page = eb->pages[locked_pages];
5342 unlock_page(page);
ce9adaa5
CM
5343 }
5344 return ret;
d1310b2e 5345}
d1310b2e 5346
1cbb1f45
JM
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 unsigned long start, unsigned long len)
d1310b2e
CM
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *dst = (char *)dstv;
09cbfeaf
KS
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5357
f716abd5
LB
5358 if (start + len > eb->len) {
5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 eb->start, eb->len, start, len);
5361 memset(dst, 0, len);
5362 return;
5363 }
d1310b2e 5364
09cbfeaf 5365 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5366
d397712b 5367 while (len > 0) {
fb85fc9a 5368 page = eb->pages[i];
d1310b2e 5369
09cbfeaf 5370 cur = min(len, (PAGE_SIZE - offset));
a6591715 5371 kaddr = page_address(page);
d1310b2e 5372 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5373
5374 dst += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379}
d1310b2e 5380
1cbb1f45
JM
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 void __user *dstv,
5383 unsigned long start, unsigned long len)
550ac1d8
GH
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5392 int ret = 0;
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
09cbfeaf 5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5398
5399 while (len > 0) {
fb85fc9a 5400 page = eb->pages[i];
550ac1d8 5401
09cbfeaf 5402 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5403 kaddr = page_address(page);
5404 if (copy_to_user(dst, kaddr + offset, cur)) {
5405 ret = -EFAULT;
5406 break;
5407 }
5408
5409 dst += cur;
5410 len -= cur;
5411 offset = 0;
5412 i++;
5413 }
5414
5415 return ret;
5416}
5417
415b35a5
LB
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
1cbb1f45
JM
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424 unsigned long start, unsigned long min_len,
5425 char **map, unsigned long *map_start,
5426 unsigned long *map_len)
d1310b2e 5427{
09cbfeaf 5428 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5429 char *kaddr;
5430 struct page *p;
09cbfeaf
KS
5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5434 PAGE_SHIFT;
d1310b2e 5435
f716abd5
LB
5436 if (start + min_len > eb->len) {
5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 eb->start, eb->len, start, min_len);
5439 return -EINVAL;
5440 }
5441
d1310b2e 5442 if (i != end_i)
415b35a5 5443 return 1;
d1310b2e
CM
5444
5445 if (i == 0) {
5446 offset = start_offset;
5447 *map_start = 0;
5448 } else {
5449 offset = 0;
09cbfeaf 5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5451 }
d397712b 5452
fb85fc9a 5453 p = eb->pages[i];
a6591715 5454 kaddr = page_address(p);
d1310b2e 5455 *map = kaddr + offset;
09cbfeaf 5456 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5457 return 0;
5458}
d1310b2e 5459
1cbb1f45
JM
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start, unsigned long len)
d1310b2e
CM
5462{
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
09cbfeaf
KS
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
09cbfeaf 5475 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5476
d397712b 5477 while (len > 0) {
fb85fc9a 5478 page = eb->pages[i];
d1310b2e 5479
09cbfeaf 5480 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5481
a6591715 5482 kaddr = page_address(page);
d1310b2e 5483 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493}
d1310b2e 5494
f157bf76
DS
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 const void *srcv)
5497{
5498 char *kaddr;
5499
5500 WARN_ON(!PageUptodate(eb->pages[0]));
5501 kaddr = page_address(eb->pages[0]);
5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508 char *kaddr;
5509
5510 WARN_ON(!PageUptodate(eb->pages[0]));
5511 kaddr = page_address(eb->pages[0]);
5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 BTRFS_FSID_SIZE);
5514}
5515
d1310b2e
CM
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 unsigned long start, unsigned long len)
5518{
5519 size_t cur;
5520 size_t offset;
5521 struct page *page;
5522 char *kaddr;
5523 char *src = (char *)srcv;
09cbfeaf
KS
5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
09cbfeaf 5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5531
d397712b 5532 while (len > 0) {
fb85fc9a 5533 page = eb->pages[i];
d1310b2e
CM
5534 WARN_ON(!PageUptodate(page));
5535
09cbfeaf 5536 cur = min(len, PAGE_SIZE - offset);
a6591715 5537 kaddr = page_address(page);
d1310b2e 5538 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5539
5540 src += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545}
d1310b2e 5546
b159fa28
DS
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 unsigned long len)
d1310b2e
CM
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
09cbfeaf
KS
5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5556
5557 WARN_ON(start > eb->len);
5558 WARN_ON(start + len > eb->start + eb->len);
5559
09cbfeaf 5560 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5561
d397712b 5562 while (len > 0) {
fb85fc9a 5563 page = eb->pages[i];
d1310b2e
CM
5564 WARN_ON(!PageUptodate(page));
5565
09cbfeaf 5566 cur = min(len, PAGE_SIZE - offset);
a6591715 5567 kaddr = page_address(page);
b159fa28 5568 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5569
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574}
d1310b2e 5575
58e8012c
DS
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577 struct extent_buffer *src)
5578{
5579 int i;
5580 unsigned num_pages;
5581
5582 ASSERT(dst->len == src->len);
5583
5584 num_pages = num_extent_pages(dst->start, dst->len);
5585 for (i = 0; i < num_pages; i++)
5586 copy_page(page_address(dst->pages[i]),
5587 page_address(src->pages[i]));
5588}
5589
d1310b2e
CM
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 unsigned long dst_offset, unsigned long src_offset,
5592 unsigned long len)
5593{
5594 u64 dst_len = dst->len;
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
09cbfeaf
KS
5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5601
5602 WARN_ON(src->len != dst_len);
5603
5604 offset = (start_offset + dst_offset) &
09cbfeaf 5605 (PAGE_SIZE - 1);
d1310b2e 5606
d397712b 5607 while (len > 0) {
fb85fc9a 5608 page = dst->pages[i];
d1310b2e
CM
5609 WARN_ON(!PageUptodate(page));
5610
09cbfeaf 5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5612
a6591715 5613 kaddr = page_address(page);
d1310b2e 5614 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5615
5616 src_offset += cur;
5617 len -= cur;
5618 offset = 0;
5619 i++;
5620 }
5621}
d1310b2e 5622
2fe1d551
OS
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625 u8 *p = map + BIT_BYTE(start);
5626 const unsigned int size = start + len;
5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630 while (len - bits_to_set >= 0) {
5631 *p |= mask_to_set;
5632 len -= bits_to_set;
5633 bits_to_set = BITS_PER_BYTE;
9c894696 5634 mask_to_set = ~0;
2fe1d551
OS
5635 p++;
5636 }
5637 if (len) {
5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 *p |= mask_to_set;
5640 }
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_clear >= 0) {
5651 *p &= ~mask_to_clear;
5652 len -= bits_to_clear;
5653 bits_to_clear = BITS_PER_BYTE;
9c894696 5654 mask_to_clear = ~0;
2fe1d551
OS
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 *p &= ~mask_to_clear;
5660 }
5661}
3e1e8bb7
OS
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 unsigned long start, unsigned long nr,
5678 unsigned long *page_index,
5679 size_t *page_offset)
5680{
09cbfeaf 5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5682 size_t byte_offset = BIT_BYTE(nr);
5683 size_t offset;
5684
5685 /*
5686 * The byte we want is the offset of the extent buffer + the offset of
5687 * the bitmap item in the extent buffer + the offset of the byte in the
5688 * bitmap item.
5689 */
5690 offset = start_offset + start + byte_offset;
5691
09cbfeaf
KS
5692 *page_index = offset >> PAGE_SHIFT;
5693 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 unsigned long nr)
5704{
2fe1d551 5705 u8 *kaddr;
3e1e8bb7
OS
5706 struct page *page;
5707 unsigned long i;
5708 size_t offset;
5709
5710 eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 page = eb->pages[i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 unsigned long pos, unsigned long len)
5726{
2fe1d551 5727 u8 *kaddr;
3e1e8bb7
OS
5728 struct page *page;
5729 unsigned long i;
5730 size_t offset;
5731 const unsigned int size = pos + len;
5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5734
5735 eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 page = eb->pages[i];
5737 WARN_ON(!PageUptodate(page));
5738 kaddr = page_address(page);
5739
5740 while (len >= bits_to_set) {
5741 kaddr[offset] |= mask_to_set;
5742 len -= bits_to_set;
5743 bits_to_set = BITS_PER_BYTE;
9c894696 5744 mask_to_set = ~0;
09cbfeaf 5745 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5746 offset = 0;
5747 page = eb->pages[++i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 }
5751 }
5752 if (len) {
5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 kaddr[offset] |= mask_to_set;
5755 }
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 unsigned long pos, unsigned long len)
5768{
2fe1d551 5769 u8 *kaddr;
3e1e8bb7
OS
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773 const unsigned int size = pos + len;
5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5776
5777 eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 page = eb->pages[i];
5779 WARN_ON(!PageUptodate(page));
5780 kaddr = page_address(page);
5781
5782 while (len >= bits_to_clear) {
5783 kaddr[offset] &= ~mask_to_clear;
5784 len -= bits_to_clear;
5785 bits_to_clear = BITS_PER_BYTE;
9c894696 5786 mask_to_clear = ~0;
09cbfeaf 5787 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5788 offset = 0;
5789 page = eb->pages[++i];
5790 WARN_ON(!PageUptodate(page));
5791 kaddr = page_address(page);
5792 }
5793 }
5794 if (len) {
5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 kaddr[offset] &= ~mask_to_clear;
5797 }
5798}
5799
3387206f
ST
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802 unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 return distance < len;
5804}
5805
d1310b2e
CM
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807 unsigned long dst_off, unsigned long src_off,
5808 unsigned long len)
5809{
a6591715 5810 char *dst_kaddr = page_address(dst_page);
d1310b2e 5811 char *src_kaddr;
727011e0 5812 int must_memmove = 0;
d1310b2e 5813
3387206f 5814 if (dst_page != src_page) {
a6591715 5815 src_kaddr = page_address(src_page);
3387206f 5816 } else {
d1310b2e 5817 src_kaddr = dst_kaddr;
727011e0
CM
5818 if (areas_overlap(src_off, dst_off, len))
5819 must_memmove = 1;
3387206f 5820 }
d1310b2e 5821
727011e0
CM
5822 if (must_memmove)
5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 else
5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 unsigned long src_offset, unsigned long len)
5830{
0b246afa 5831 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5832 size_t cur;
5833 size_t dst_off_in_page;
5834 size_t src_off_in_page;
09cbfeaf 5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5836 unsigned long dst_i;
5837 unsigned long src_i;
5838
5839 if (src_offset + len > dst->len) {
0b246afa 5840 btrfs_err(fs_info,
5d163e0e
JM
5841 "memmove bogus src_offset %lu move len %lu dst len %lu",
5842 src_offset, len, dst->len);
d1310b2e
CM
5843 BUG_ON(1);
5844 }
5845 if (dst_offset + len > dst->len) {
0b246afa 5846 btrfs_err(fs_info,
5d163e0e
JM
5847 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 dst_offset, len, dst->len);
d1310b2e
CM
5849 BUG_ON(1);
5850 }
5851
d397712b 5852 while (len > 0) {
d1310b2e 5853 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5854 (PAGE_SIZE - 1);
d1310b2e 5855 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5856 (PAGE_SIZE - 1);
d1310b2e 5857
09cbfeaf
KS
5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5860
09cbfeaf 5861 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5862 src_off_in_page));
5863 cur = min_t(unsigned long, cur,
09cbfeaf 5864 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5865
fb85fc9a 5866 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5867 dst_off_in_page, src_off_in_page, cur);
5868
5869 src_offset += cur;
5870 dst_offset += cur;
5871 len -= cur;
5872 }
5873}
d1310b2e
CM
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
0b246afa 5878 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
5882 unsigned long dst_end = dst_offset + len - 1;
5883 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
0b246afa 5889 btrfs_err(fs_info,
5d163e0e
JM
5890 "memmove bogus src_offset %lu move len %lu len %lu",
5891 src_offset, len, dst->len);
d1310b2e
CM
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
0b246afa 5895 btrfs_err(fs_info,
5d163e0e
JM
5896 "memmove bogus dst_offset %lu move len %lu len %lu",
5897 dst_offset, len, dst->len);
d1310b2e
CM
5898 BUG_ON(1);
5899 }
727011e0 5900 if (dst_offset < src_offset) {
d1310b2e
CM
5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 return;
5903 }
d397712b 5904 while (len > 0) {
09cbfeaf
KS
5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5907
5908 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5909 (PAGE_SIZE - 1);
d1310b2e 5910 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5911 (PAGE_SIZE - 1);
d1310b2e
CM
5912
5913 cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5916 dst_off_in_page - cur + 1,
5917 src_off_in_page - cur + 1, cur);
5918
5919 dst_end -= cur;
5920 src_end -= cur;
5921 len -= cur;
5922 }
5923}
6af118ce 5924
f7a52a40 5925int try_release_extent_buffer(struct page *page)
19fe0a8b 5926{
6af118ce 5927 struct extent_buffer *eb;
6af118ce 5928
3083ee2e 5929 /*
01327610 5930 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5931 * now.
5932 */
5933 spin_lock(&page->mapping->private_lock);
5934 if (!PagePrivate(page)) {
5935 spin_unlock(&page->mapping->private_lock);
4f2de97a 5936 return 1;
45f49bce 5937 }
6af118ce 5938
3083ee2e
JB
5939 eb = (struct extent_buffer *)page->private;
5940 BUG_ON(!eb);
19fe0a8b
MX
5941
5942 /*
3083ee2e
JB
5943 * This is a little awful but should be ok, we need to make sure that
5944 * the eb doesn't disappear out from under us while we're looking at
5945 * this page.
19fe0a8b 5946 */
3083ee2e 5947 spin_lock(&eb->refs_lock);
0b32f4bb 5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5949 spin_unlock(&eb->refs_lock);
5950 spin_unlock(&page->mapping->private_lock);
5951 return 0;
b9473439 5952 }
3083ee2e 5953 spin_unlock(&page->mapping->private_lock);
897ca6e9 5954
19fe0a8b 5955 /*
3083ee2e
JB
5956 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5958 */
3083ee2e
JB
5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 spin_unlock(&eb->refs_lock);
5961 return 0;
b9473439 5962 }
19fe0a8b 5963
f7a52a40 5964 return release_extent_buffer(eb);
6af118ce 5965}