Merge tag 'linux-kselftest-next-6.6-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
395cb57e 9#include <linux/sched/mm.h>
d1310b2e
CM
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
d1310b2e
CM
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
268bb0ce 15#include <linux/prefetch.h>
14605409 16#include <linux/fsverity.h>
cea62800 17#include "misc.h"
d1310b2e 18#include "extent_io.h"
9c7d3a54 19#include "extent-io-tree.h"
d1310b2e 20#include "extent_map.h"
902b22f3
DW
21#include "ctree.h"
22#include "btrfs_inode.h"
103c1972 23#include "bio.h"
21adbd5c 24#include "check-integrity.h"
0b32f4bb 25#include "locking.h"
606686ee 26#include "rcu-string.h"
fe09e16c 27#include "backref.h"
6af49dbd 28#include "disk-io.h"
760f991f 29#include "subpage.h"
d3575156 30#include "zoned.h"
0bc09ca1 31#include "block-group.h"
2a5232a8 32#include "compression.h"
ec8eb376 33#include "fs.h"
07e81dc9 34#include "accessors.h"
7c8ede16 35#include "file-item.h"
af142b6f 36#include "file.h"
77407dc0 37#include "dev-replace.h"
7f0add25 38#include "super.h"
98c8d683 39#include "transaction.h"
d1310b2e 40
d1310b2e
CM
41static struct kmem_cache *extent_buffer_cache;
42
6d49ba1b 43#ifdef CONFIG_BTRFS_DEBUG
a40246e8
JB
44static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
45{
46 struct btrfs_fs_info *fs_info = eb->fs_info;
47 unsigned long flags;
48
49 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
50 list_add(&eb->leak_list, &fs_info->allocated_ebs);
51 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
52}
53
a40246e8
JB
54static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
55{
56 struct btrfs_fs_info *fs_info = eb->fs_info;
57 unsigned long flags;
58
59 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
60 list_del(&eb->leak_list);
61 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
6d49ba1b
ES
62}
63
3fd63727 64void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 65{
6d49ba1b 66 struct extent_buffer *eb;
3fd63727 67 unsigned long flags;
6d49ba1b 68
8c38938c
JB
69 /*
70 * If we didn't get into open_ctree our allocated_ebs will not be
71 * initialized, so just skip this.
72 */
73 if (!fs_info->allocated_ebs.next)
74 return;
75
b95b78e6 76 WARN_ON(!list_empty(&fs_info->allocated_ebs));
3fd63727
JB
77 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
78 while (!list_empty(&fs_info->allocated_ebs)) {
79 eb = list_first_entry(&fs_info->allocated_ebs,
80 struct extent_buffer, leak_list);
8c38938c
JB
81 pr_err(
82 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
83 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
84 btrfs_header_owner(eb));
33ca832f
JB
85 list_del(&eb->leak_list);
86 kmem_cache_free(extent_buffer_cache, eb);
87 }
3fd63727 88 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f 89}
6d49ba1b 90#else
a40246e8 91#define btrfs_leak_debug_add_eb(eb) do {} while (0)
a40246e8 92#define btrfs_leak_debug_del_eb(eb) do {} while (0)
4bef0848 93#endif
d1310b2e 94
7aab8b32
CH
95/*
96 * Structure to record info about the bio being assembled, and other info like
97 * how many bytes are there before stripe/ordered extent boundary.
98 */
99struct btrfs_bio_ctrl {
9dfde1b4 100 struct btrfs_bio *bbio;
0f07003b 101 enum btrfs_compression_type compress_type;
7aab8b32 102 u32 len_to_oe_boundary;
c000bc04 103 blk_opf_t opf;
5467abba 104 btrfs_bio_end_io_t end_io_func;
72b505dc 105 struct writeback_control *wbc;
d1310b2e
CM
106};
107
722c82ac 108static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
bb58eb9e 109{
9dfde1b4 110 struct btrfs_bio *bbio = bio_ctrl->bbio;
722c82ac 111
9dfde1b4 112 if (!bbio)
722c82ac 113 return;
bb58eb9e 114
e0eefe07 115 /* Caller should ensure the bio has at least some range added */
9dfde1b4 116 ASSERT(bbio->bio.bi_iter.bi_size);
c9583ada 117
9dfde1b4 118 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
35a8d7da 119 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
e1949310 120 btrfs_submit_compressed_read(bbio);
35a8d7da 121 else
b78b98e0 122 btrfs_submit_bio(bbio, 0);
35a8d7da 123
9dfde1b4
CH
124 /* The bbio is owned by the end_io handler now */
125 bio_ctrl->bbio = NULL;
3065976b
QW
126}
127
f4340622 128/*
ee5f017d 129 * Submit or fail the current bio in the bio_ctrl structure.
f4340622 130 */
ee5f017d 131static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
bb58eb9e 132{
9dfde1b4 133 struct btrfs_bio *bbio = bio_ctrl->bbio;
bb58eb9e 134
9dfde1b4 135 if (!bbio)
9845e5dd
CH
136 return;
137
138 if (ret) {
139 ASSERT(ret < 0);
9dfde1b4 140 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
917f32a2 141 /* The bio is owned by the end_io handler now */
9dfde1b4 142 bio_ctrl->bbio = NULL;
9845e5dd 143 } else {
ee5f017d 144 submit_one_bio(bio_ctrl);
bb58eb9e
QW
145 }
146}
e2932ee0 147
a62a3bd9
JB
148int __init extent_buffer_init_cachep(void)
149{
837e1972 150 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 151 sizeof(struct extent_buffer), 0,
fba4b697 152 SLAB_MEM_SPREAD, NULL);
a62a3bd9 153 if (!extent_buffer_cache)
6f0d04f8 154 return -ENOMEM;
b208c2f7 155
d1310b2e 156 return 0;
d1310b2e
CM
157}
158
a62a3bd9 159void __cold extent_buffer_free_cachep(void)
d1310b2e 160{
8c0a8537
KS
161 /*
162 * Make sure all delayed rcu free are flushed before we
163 * destroy caches.
164 */
165 rcu_barrier();
5598e900 166 kmem_cache_destroy(extent_buffer_cache);
d1310b2e
CM
167}
168
bd1fa4f0 169void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 170{
09cbfeaf
KS
171 unsigned long index = start >> PAGE_SHIFT;
172 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
173 struct page *page;
174
175 while (index <= end_index) {
176 page = find_get_page(inode->i_mapping, index);
177 BUG_ON(!page); /* Pages should be in the extent_io_tree */
178 clear_page_dirty_for_io(page);
09cbfeaf 179 put_page(page);
4adaa611
CM
180 index++;
181 }
4adaa611
CM
182}
183
ef4e88e6
CH
184static void process_one_page(struct btrfs_fs_info *fs_info,
185 struct page *page, struct page *locked_page,
186 unsigned long page_ops, u64 start, u64 end)
ed8f13bf 187{
e38992be
QW
188 u32 len;
189
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
192
ed8f13bf 193 if (page_ops & PAGE_SET_ORDERED)
b945a463 194 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
ed8f13bf 195 if (page_ops & PAGE_START_WRITEBACK) {
e38992be
QW
196 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
197 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
ed8f13bf
QW
198 }
199 if (page_ops & PAGE_END_WRITEBACK)
e38992be 200 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
a33a8e9a 201
ef4e88e6 202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
1e1de387 203 btrfs_page_end_writer_lock(fs_info, page, start, len);
ed8f13bf
QW
204}
205
ef4e88e6
CH
206static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
ed8f13bf 209{
e38992be 210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
ed8f13bf
QW
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
04c6b79a 214 struct folio_batch fbatch;
ed8f13bf
QW
215 int i;
216
04c6b79a
VMO
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
219 int found_folios;
220
221 found_folios = filemap_get_folios_contig(mapping, &index,
222 end_index, &fbatch);
04c6b79a 223 for (i = 0; i < found_folios; i++) {
04c6b79a 224 struct folio *folio = fbatch.folios[i];
ef4e88e6
CH
225
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
ed8f13bf 228 }
04c6b79a 229 folio_batch_release(&fbatch);
ed8f13bf
QW
230 cond_resched();
231 }
ed8f13bf 232}
da2c7009 233
143bede5
JM
234static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
236 u64 start, u64 end)
c8b97818 237{
09cbfeaf
KS
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 240
76c0021d 241 ASSERT(locked_page);
c8b97818 242 if (index == locked_page->index && end_index == index)
143bede5 243 return;
c8b97818 244
98af9ab1 245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
ef4e88e6 246 PAGE_UNLOCK);
c8b97818
CM
247}
248
249static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
ef4e88e6
CH
251 u64 start,
252 u64 end)
c8b97818 253{
ef4e88e6
CH
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
c8b97818 261
c8b97818
CM
262 if (index == locked_page->index && index == end_index)
263 return 0;
264
ef4e88e6
CH
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct page *page = &fbatch.folios[i]->page;
276 u32 len = end + 1 - start;
277
278 if (page == locked_page)
279 continue;
280
281 if (btrfs_page_start_writer_lock(fs_info, page, start,
282 len))
283 goto out;
284
285 if (!PageDirty(page) || page->mapping != mapping) {
286 btrfs_page_end_writer_lock(fs_info, page, start,
287 len);
288 goto out;
289 }
290
291 processed_end = page_offset(page) + PAGE_SIZE - 1;
292 }
293 folio_batch_release(&fbatch);
294 cond_resched();
295 }
296
297 return 0;
298out:
299 folio_batch_release(&fbatch);
300 if (processed_end > start)
301 __unlock_for_delalloc(inode, locked_page, start, processed_end);
302 return -EAGAIN;
c8b97818
CM
303}
304
305/*
3522e903 306 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
2749f7ef 307 * more than @max_bytes.
c8b97818 308 *
2749f7ef
QW
309 * @start: The original start bytenr to search.
310 * Will store the extent range start bytenr.
311 * @end: The original end bytenr of the search range
312 * Will store the extent range end bytenr.
313 *
314 * Return true if we find a delalloc range which starts inside the original
315 * range, and @start/@end will store the delalloc range start/end.
316 *
317 * Return false if we can't find any delalloc range which starts inside the
318 * original range, and @start/@end will be the non-delalloc range start/end.
c8b97818 319 */
ce9f967f 320EXPORT_FOR_TESTS
3522e903 321noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 322 struct page *locked_page, u64 *start,
917aacec 323 u64 *end)
c8b97818 324{
f7b12a62 325 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9978059b 326 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2749f7ef
QW
327 const u64 orig_start = *start;
328 const u64 orig_end = *end;
f7b12a62
NA
329 /* The sanity tests may not set a valid fs_info. */
330 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
331 u64 delalloc_start;
332 u64 delalloc_end;
3522e903 333 bool found;
9655d298 334 struct extent_state *cached_state = NULL;
c8b97818
CM
335 int ret;
336 int loops = 0;
337
2749f7ef
QW
338 /* Caller should pass a valid @end to indicate the search range end */
339 ASSERT(orig_end > orig_start);
340
341 /* The range should at least cover part of the page */
342 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
343 orig_end <= page_offset(locked_page)));
c8b97818
CM
344again:
345 /* step one, find a bunch of delalloc bytes starting at start */
346 delalloc_start = *start;
347 delalloc_end = 0;
083e75e7
JB
348 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
349 max_bytes, &cached_state);
2749f7ef 350 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
c8b97818 351 *start = delalloc_start;
2749f7ef
QW
352
353 /* @delalloc_end can be -1, never go beyond @orig_end */
354 *end = min(delalloc_end, orig_end);
c2a128d2 355 free_extent_state(cached_state);
3522e903 356 return false;
c8b97818
CM
357 }
358
70b99e69
CM
359 /*
360 * start comes from the offset of locked_page. We have to lock
361 * pages in order, so we can't process delalloc bytes before
362 * locked_page
363 */
d397712b 364 if (delalloc_start < *start)
70b99e69 365 delalloc_start = *start;
70b99e69 366
c8b97818
CM
367 /*
368 * make sure to limit the number of pages we try to lock down
c8b97818 369 */
7bf811a5
JB
370 if (delalloc_end + 1 - delalloc_start > max_bytes)
371 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 372
c8b97818
CM
373 /* step two, lock all the pages after the page that has start */
374 ret = lock_delalloc_pages(inode, locked_page,
375 delalloc_start, delalloc_end);
9bfd61d9 376 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
377 if (ret == -EAGAIN) {
378 /* some of the pages are gone, lets avoid looping by
379 * shortening the size of the delalloc range we're searching
380 */
9655d298 381 free_extent_state(cached_state);
7d788742 382 cached_state = NULL;
c8b97818 383 if (!loops) {
09cbfeaf 384 max_bytes = PAGE_SIZE;
c8b97818
CM
385 loops = 1;
386 goto again;
387 } else {
3522e903 388 found = false;
c8b97818
CM
389 goto out_failed;
390 }
391 }
c8b97818
CM
392
393 /* step three, lock the state bits for the whole range */
570eb97b 394 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
395
396 /* then test to make sure it is all still delalloc */
397 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 398 EXTENT_DELALLOC, 1, cached_state);
c8b97818 399 if (!ret) {
570eb97b
JB
400 unlock_extent(tree, delalloc_start, delalloc_end,
401 &cached_state);
c8b97818
CM
402 __unlock_for_delalloc(inode, locked_page,
403 delalloc_start, delalloc_end);
404 cond_resched();
405 goto again;
406 }
9655d298 407 free_extent_state(cached_state);
c8b97818
CM
408 *start = delalloc_start;
409 *end = delalloc_end;
410out_failed:
411 return found;
412}
413
ad7ff17b 414void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a 415 struct page *locked_page,
f97e27e9 416 u32 clear_bits, unsigned long page_ops)
873695b3 417{
bd015294 418 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
873695b3 419
ad7ff17b 420 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
ef4e88e6 421 start, end, page_ops);
873695b3
LB
422}
423
ed9ee98e
CH
424static bool btrfs_verify_page(struct page *page, u64 start)
425{
426 if (!fsverity_active(page->mapping->host) ||
57201ddd 427 PageUptodate(page) ||
ed9ee98e
CH
428 start >= i_size_read(page->mapping->host))
429 return true;
430 return fsverity_verify_page(page);
431}
432
150e4b05
QW
433static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
434{
435 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
436
437 ASSERT(page_offset(page) <= start &&
438 start + len <= page_offset(page) + PAGE_SIZE);
439
2b2553f1 440 if (uptodate && btrfs_verify_page(page, start))
2c14f0ff 441 btrfs_page_set_uptodate(fs_info, page, start, len);
2b2553f1 442 else
150e4b05 443 btrfs_page_clear_uptodate(fs_info, page, start, len);
150e4b05 444
fbca46eb 445 if (!btrfs_is_subpage(fs_info, page))
150e4b05 446 unlock_page(page);
3d078efa 447 else
150e4b05
QW
448 btrfs_subpage_end_reader(fs_info, page, start, len);
449}
450
d1310b2e
CM
451/*
452 * after a writepage IO is done, we need to:
453 * clear the uptodate bits on error
454 * clear the writeback bits in the extent tree for this IO
455 * end_page_writeback if the page has no more pending IO
456 *
457 * Scheduling is not allowed, so the extent state tree is expected
458 * to have one and only one object corresponding to this IO.
459 */
917f32a2 460static void end_bio_extent_writepage(struct btrfs_bio *bbio)
d1310b2e 461{
917f32a2 462 struct bio *bio = &bbio->bio;
4e4cbee9 463 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 464 struct bio_vec *bvec;
6dc4f100 465 struct bvec_iter_all iter_all;
d1310b2e 466
c09abff8 467 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 468 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 469 struct page *page = bvec->bv_page;
0b246afa
JM
470 struct inode *inode = page->mapping->host;
471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
321a02db 472 const u32 sectorsize = fs_info->sectorsize;
4ba8223d
CH
473 u64 start = page_offset(page) + bvec->bv_offset;
474 u32 len = bvec->bv_len;
321a02db
QW
475
476 /* Our read/write should always be sector aligned. */
477 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
478 btrfs_err(fs_info,
479 "partial page write in btrfs with offset %u and length %u",
480 bvec->bv_offset, bvec->bv_len);
481 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
482 btrfs_info(fs_info,
483 "incomplete page write with offset %u and length %u",
484 bvec->bv_offset, bvec->bv_len);
485
0d394cca 486 btrfs_finish_ordered_extent(bbio->ordered, page, start, len, !error);
4ba8223d
CH
487 if (error) {
488 btrfs_page_clear_uptodate(fs_info, page, start, len);
489 mapping_set_error(page->mapping, error);
490 }
491 btrfs_page_clear_writeback(fs_info, page, start, len);
2c30c71b 492 }
2b1f55b0 493
d1310b2e 494 bio_put(bio);
d1310b2e
CM
495}
496
94e8c95c
QW
497/*
498 * Record previously processed extent range
499 *
500 * For endio_readpage_release_extent() to handle a full extent range, reducing
501 * the extent io operations.
502 */
503struct processed_extent {
504 struct btrfs_inode *inode;
505 /* Start of the range in @inode */
506 u64 start;
2e626e56 507 /* End of the range in @inode */
94e8c95c
QW
508 u64 end;
509 bool uptodate;
510};
511
512/*
513 * Try to release processed extent range
514 *
515 * May not release the extent range right now if the current range is
516 * contiguous to processed extent.
517 *
518 * Will release processed extent when any of @inode, @uptodate, the range is
519 * no longer contiguous to the processed range.
520 *
521 * Passing @inode == NULL will force processed extent to be released.
522 */
523static void endio_readpage_release_extent(struct processed_extent *processed,
524 struct btrfs_inode *inode, u64 start, u64 end,
525 bool uptodate)
883d0de4
MX
526{
527 struct extent_state *cached = NULL;
94e8c95c
QW
528 struct extent_io_tree *tree;
529
530 /* The first extent, initialize @processed */
531 if (!processed->inode)
532 goto update;
883d0de4 533
94e8c95c
QW
534 /*
535 * Contiguous to processed extent, just uptodate the end.
536 *
537 * Several things to notice:
538 *
539 * - bio can be merged as long as on-disk bytenr is contiguous
540 * This means we can have page belonging to other inodes, thus need to
541 * check if the inode still matches.
542 * - bvec can contain range beyond current page for multi-page bvec
543 * Thus we need to do processed->end + 1 >= start check
544 */
545 if (processed->inode == inode && processed->uptodate == uptodate &&
546 processed->end + 1 >= start && end >= processed->end) {
547 processed->end = end;
548 return;
549 }
550
551 tree = &processed->inode->io_tree;
552 /*
553 * Now we don't have range contiguous to the processed range, release
554 * the processed range now.
555 */
48acc47d 556 unlock_extent(tree, processed->start, processed->end, &cached);
94e8c95c
QW
557
558update:
559 /* Update processed to current range */
560 processed->inode = inode;
561 processed->start = start;
562 processed->end = end;
563 processed->uptodate = uptodate;
883d0de4
MX
564}
565
92082d40
QW
566static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
567{
568 ASSERT(PageLocked(page));
fbca46eb 569 if (!btrfs_is_subpage(fs_info, page))
92082d40
QW
570 return;
571
572 ASSERT(PagePrivate(page));
573 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
574}
575
d1310b2e
CM
576/*
577 * after a readpage IO is done, we need to:
578 * clear the uptodate bits on error
579 * set the uptodate bits if things worked
580 * set the page up to date if all extents in the tree are uptodate
581 * clear the lock bit in the extent tree
582 * unlock the page if there are no other extents locked for it
583 *
584 * Scheduling is not allowed, so the extent state tree is expected
585 * to have one and only one object corresponding to this IO.
586 */
917f32a2 587static void end_bio_extent_readpage(struct btrfs_bio *bbio)
d1310b2e 588{
917f32a2 589 struct bio *bio = &bbio->bio;
2c30c71b 590 struct bio_vec *bvec;
94e8c95c 591 struct processed_extent processed = { 0 };
7ffd27e3
QW
592 /*
593 * The offset to the beginning of a bio, since one bio can never be
594 * larger than UINT_MAX, u32 here is enough.
595 */
596 u32 bio_offset = 0;
6dc4f100 597 struct bvec_iter_all iter_all;
d1310b2e 598
c09abff8 599 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 600 bio_for_each_segment_all(bvec, bio, iter_all) {
150e4b05 601 bool uptodate = !bio->bi_status;
d1310b2e 602 struct page *page = bvec->bv_page;
a71754fc 603 struct inode *inode = page->mapping->host;
ab8d0fc4 604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7ffd27e3
QW
605 const u32 sectorsize = fs_info->sectorsize;
606 u64 start;
607 u64 end;
608 u32 len;
507903b8 609
ab8d0fc4
JM
610 btrfs_debug(fs_info,
611 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1201b58b 612 bio->bi_iter.bi_sector, bio->bi_status,
c3a3b19b 613 bbio->mirror_num);
902b22f3 614
8b8bbd46
QW
615 /*
616 * We always issue full-sector reads, but if some block in a
617 * page fails to read, blk_update_request() will advance
618 * bv_offset and adjust bv_len to compensate. Print a warning
619 * for unaligned offsets, and an error if they don't add up to
620 * a full sector.
621 */
622 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
623 btrfs_err(fs_info,
624 "partial page read in btrfs with offset %u and length %u",
625 bvec->bv_offset, bvec->bv_len);
626 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
627 sectorsize))
628 btrfs_info(fs_info,
629 "incomplete page read with offset %u and length %u",
630 bvec->bv_offset, bvec->bv_len);
631
632 start = page_offset(page) + bvec->bv_offset;
633 end = start + bvec->bv_len - 1;
facc8a22 634 len = bvec->bv_len;
d1310b2e 635
883d0de4 636 if (likely(uptodate)) {
a71754fc 637 loff_t i_size = i_size_read(inode);
09cbfeaf 638 pgoff_t end_index = i_size >> PAGE_SHIFT;
a71754fc 639
c28ea613
QW
640 /*
641 * Zero out the remaining part if this range straddles
642 * i_size.
643 *
644 * Here we should only zero the range inside the bvec,
645 * not touch anything else.
646 *
647 * NOTE: i_size is exclusive while end is inclusive.
648 */
649 if (page->index == end_index && i_size <= end) {
650 u32 zero_start = max(offset_in_page(i_size),
d2dcc8ed 651 offset_in_page(start));
c28ea613
QW
652
653 zero_user_segment(page, zero_start,
654 offset_in_page(end) + 1);
655 }
70dec807 656 }
97861cd1 657
7609afac
CH
658 /* Update page status and unlock. */
659 end_page_read(page, uptodate, start, len);
660 endio_readpage_release_extent(&processed, BTRFS_I(inode),
31dd8c81 661 start, end, uptodate);
97861cd1 662
7ffd27e3
QW
663 ASSERT(bio_offset + len > bio_offset);
664 bio_offset += len;
883d0de4 665
2c30c71b 666 }
94e8c95c
QW
667 /* Release the last extent */
668 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
d1310b2e 669 bio_put(bio);
d1310b2e
CM
670}
671
43dd529a 672/*
dd137dd1
STD
673 * Populate every free slot in a provided array with pages.
674 *
675 * @nr_pages: number of pages to allocate
676 * @page_array: the array to fill with pages; any existing non-null entries in
677 * the array will be skipped
678 *
679 * Return: 0 if all pages were able to be allocated;
680 * -ENOMEM otherwise, and the caller is responsible for freeing all
681 * non-null page pointers in the array.
682 */
683int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
684{
91d6ac1d 685 unsigned int allocated;
dd137dd1 686
91d6ac1d
STD
687 for (allocated = 0; allocated < nr_pages;) {
688 unsigned int last = allocated;
dd137dd1 689
91d6ac1d
STD
690 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
691
395cb57e
STD
692 if (allocated == nr_pages)
693 return 0;
694
91d6ac1d
STD
695 /*
696 * During this iteration, no page could be allocated, even
697 * though alloc_pages_bulk_array() falls back to alloc_page()
698 * if it could not bulk-allocate. So we must be out of memory.
699 */
700 if (allocated == last)
dd137dd1 701 return -ENOMEM;
395cb57e
STD
702
703 memalloc_retry_wait(GFP_NOFS);
dd137dd1
STD
704 }
705 return 0;
706}
707
78a2ef1b
CH
708static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
709 struct page *page, u64 disk_bytenr,
710 unsigned int pg_offset)
711{
9dfde1b4 712 struct bio *bio = &bio_ctrl->bbio->bio;
78a2ef1b
CH
713 struct bio_vec *bvec = bio_last_bvec_all(bio);
714 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
715
716 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
717 /*
718 * For compression, all IO should have its logical bytenr set
719 * to the starting bytenr of the compressed extent.
720 */
721 return bio->bi_iter.bi_sector == sector;
722 }
723
724 /*
725 * The contig check requires the following conditions to be met:
726 *
727 * 1) The pages are belonging to the same inode
728 * This is implied by the call chain.
729 *
730 * 2) The range has adjacent logical bytenr
731 *
732 * 3) The range has adjacent file offset
733 * This is required for the usage of btrfs_bio->file_offset.
734 */
735 return bio_end_sector(bio) == sector &&
736 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
737 page_offset(page) + pg_offset;
738}
739
198bd49e
JT
740static void alloc_new_bio(struct btrfs_inode *inode,
741 struct btrfs_bio_ctrl *bio_ctrl,
742 u64 disk_bytenr, u64 file_offset)
390ed29b 743{
198bd49e 744 struct btrfs_fs_info *fs_info = inode->root->fs_info;
b41bbd29 745 struct btrfs_bio *bbio;
198bd49e 746
4317ff00 747 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
b41bbd29
CH
748 bio_ctrl->end_io_func, NULL);
749 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
4317ff00 750 bbio->inode = inode;
b41bbd29
CH
751 bbio->file_offset = file_offset;
752 bio_ctrl->bbio = bbio;
198bd49e 753 bio_ctrl->len_to_oe_boundary = U32_MAX;
390ed29b 754
a39da514
CH
755 /* Limit data write bios to the ordered boundary. */
756 if (bio_ctrl->wbc) {
198bd49e
JT
757 struct btrfs_ordered_extent *ordered;
758
2380220e
QW
759 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
760 if (ordered) {
761 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
72fcf1a4
CH
762 ordered->file_offset +
763 ordered->disk_num_bytes - file_offset);
ec63b84d 764 bbio->ordered = ordered;
2380220e 765 }
390ed29b 766
50f1cff3 767 /*
d5e4377d
CH
768 * Pick the last added device to support cgroup writeback. For
769 * multi-device file systems this means blk-cgroup policies have
770 * to always be set on the last added/replaced device.
771 * This is a bit odd but has been like that for a long time.
50f1cff3 772 */
b41bbd29
CH
773 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
774 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
e0eefe07 775 }
e0eefe07
QW
776}
777
4b81ba48 778/*
0c64c33c 779 * @disk_bytenr: logical bytenr where the write will be
209ecde5 780 * @page: page to add to the bio
0c64c33c 781 * @size: portion of page that we want to write to
b8b3d625
DS
782 * @pg_offset: offset of the new bio or to check whether we are adding
783 * a contiguous page to the previous one
814b6f91 784 *
9dfde1b4
CH
785 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
786 * new one in @bio_ctrl->bbio.
814b6f91
QW
787 * The mirror number for this IO should already be initizlied in
788 * @bio_ctrl->mirror_num.
4b81ba48 789 */
55173337
CH
790static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
791 u64 disk_bytenr, struct page *page,
792 size_t size, unsigned long pg_offset)
d1310b2e 793{
e1326f03 794 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
5467abba 795
24e6c808 796 ASSERT(pg_offset + size <= PAGE_SIZE);
5467abba
QW
797 ASSERT(bio_ctrl->end_io_func);
798
9dfde1b4 799 if (bio_ctrl->bbio &&
78a2ef1b
CH
800 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
801 submit_one_bio(bio_ctrl);
802
24e6c808
CH
803 do {
804 u32 len = size;
e0eefe07
QW
805
806 /* Allocate new bio if needed */
9dfde1b4 807 if (!bio_ctrl->bbio) {
72b505dc 808 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
24e6c808 809 page_offset(page) + pg_offset);
e0eefe07 810 }
24e6c808
CH
811
812 /* Cap to the current ordered extent boundary if there is one. */
813 if (len > bio_ctrl->len_to_oe_boundary) {
814 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
815 ASSERT(is_data_inode(&inode->vfs_inode));
816 len = bio_ctrl->len_to_oe_boundary;
817 }
818
9dfde1b4 819 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
24e6c808 820 /* bio full: move on to a new one */
722c82ac 821 submit_one_bio(bio_ctrl);
24e6c808 822 continue;
d1310b2e 823 }
24e6c808
CH
824
825 if (bio_ctrl->wbc)
826 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
827
828 size -= len;
829 pg_offset += len;
830 disk_bytenr += len;
09c3717c
CM
831
832 /*
833 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
834 * sector aligned. alloc_new_bio() then sets it to the end of
835 * our ordered extent for writes into zoned devices.
836 *
837 * When len_to_oe_boundary is tracking an ordered extent, we
838 * trust the ordered extent code to align things properly, and
839 * the check above to cap our write to the ordered extent
840 * boundary is correct.
841 *
842 * When len_to_oe_boundary is U32_MAX, the cap above would
843 * result in a 4095 byte IO for the last page right before
844 * we hit the bio limit of UINT_MAX. bio_add_page() has all
845 * the checks required to make sure we don't overflow the bio,
846 * and we should just ignore len_to_oe_boundary completely
847 * unless we're using it to track an ordered extent.
848 *
849 * It's pretty hard to make a bio sized U32_MAX, but it can
850 * happen when the page cache is able to feed us contiguous
851 * pages for large extents.
852 */
853 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
854 bio_ctrl->len_to_oe_boundary -= len;
24e6c808
CH
855
856 /* Ordered extent boundary: move on to a new bio. */
857 if (bio_ctrl->len_to_oe_boundary == 0)
858 submit_one_bio(bio_ctrl);
859 } while (size);
d1310b2e
CM
860}
861
760f991f
QW
862static int attach_extent_buffer_page(struct extent_buffer *eb,
863 struct page *page,
864 struct btrfs_subpage *prealloc)
d1310b2e 865{
760f991f
QW
866 struct btrfs_fs_info *fs_info = eb->fs_info;
867 int ret = 0;
868
0d01e247
QW
869 /*
870 * If the page is mapped to btree inode, we should hold the private
871 * lock to prevent race.
872 * For cloned or dummy extent buffers, their pages are not mapped and
873 * will not race with any other ebs.
874 */
875 if (page->mapping)
876 lockdep_assert_held(&page->mapping->private_lock);
877
fbca46eb 878 if (fs_info->nodesize >= PAGE_SIZE) {
760f991f
QW
879 if (!PagePrivate(page))
880 attach_page_private(page, eb);
881 else
882 WARN_ON(page->private != (unsigned long)eb);
883 return 0;
884 }
885
886 /* Already mapped, just free prealloc */
887 if (PagePrivate(page)) {
888 btrfs_free_subpage(prealloc);
889 return 0;
890 }
891
892 if (prealloc)
893 /* Has preallocated memory for subpage */
894 attach_page_private(page, prealloc);
d1b89bc0 895 else
760f991f
QW
896 /* Do new allocation to attach subpage */
897 ret = btrfs_attach_subpage(fs_info, page,
898 BTRFS_SUBPAGE_METADATA);
899 return ret;
d1310b2e
CM
900}
901
32443de3 902int set_page_extent_mapped(struct page *page)
d1310b2e 903{
32443de3
QW
904 struct btrfs_fs_info *fs_info;
905
906 ASSERT(page->mapping);
907
908 if (PagePrivate(page))
909 return 0;
910
911 fs_info = btrfs_sb(page->mapping->host->i_sb);
912
fbca46eb 913 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
914 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
915
916 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
917 return 0;
918}
919
920void clear_page_extent_mapped(struct page *page)
921{
922 struct btrfs_fs_info *fs_info;
923
924 ASSERT(page->mapping);
925
d1b89bc0 926 if (!PagePrivate(page))
32443de3
QW
927 return;
928
929 fs_info = btrfs_sb(page->mapping->host->i_sb);
fbca46eb 930 if (btrfs_is_subpage(fs_info, page))
32443de3
QW
931 return btrfs_detach_subpage(fs_info, page);
932
933 detach_page_private(page);
d1310b2e
CM
934}
935
125bac01
MX
936static struct extent_map *
937__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1a5ee1e6 938 u64 start, u64 len, struct extent_map **em_cached)
125bac01
MX
939{
940 struct extent_map *em;
941
942 if (em_cached && *em_cached) {
943 em = *em_cached;
cbc0e928 944 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 945 start < extent_map_end(em)) {
490b54d6 946 refcount_inc(&em->refs);
125bac01
MX
947 return em;
948 }
949
950 free_extent_map(em);
951 *em_cached = NULL;
952 }
953
1a5ee1e6 954 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
c0347550 955 if (em_cached && !IS_ERR(em)) {
125bac01 956 BUG_ON(*em_cached);
490b54d6 957 refcount_inc(&em->refs);
125bac01
MX
958 *em_cached = em;
959 }
960 return em;
961}
d1310b2e
CM
962/*
963 * basic readpage implementation. Locked extent state structs are inserted
964 * into the tree that are removed when the IO is done (by the end_io
965 * handlers)
79787eaa 966 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 967 * return 0 on success, otherwise return error
d1310b2e 968 */
7aab8b32 969static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
c000bc04 970 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
d1310b2e
CM
971{
972 struct inode *inode = page->mapping->host;
92082d40 973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4eee4fa4 974 u64 start = page_offset(page);
8eec8296 975 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
976 u64 cur = start;
977 u64 extent_offset;
978 u64 last_byte = i_size_read(inode);
979 u64 block_start;
d1310b2e 980 struct extent_map *em;
baf863b9 981 int ret = 0;
306e16ce 982 size_t pg_offset = 0;
d1310b2e
CM
983 size_t iosize;
984 size_t blocksize = inode->i_sb->s_blocksize;
f657a31c 985 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 986
32443de3
QW
987 ret = set_page_extent_mapped(page);
988 if (ret < 0) {
570eb97b 989 unlock_extent(tree, start, end, NULL);
92082d40 990 unlock_page(page);
55173337 991 return ret;
32443de3 992 }
d1310b2e 993
09cbfeaf 994 if (page->index == last_byte >> PAGE_SHIFT) {
7073017a 995 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
996
997 if (zero_offset) {
09cbfeaf 998 iosize = PAGE_SIZE - zero_offset;
d048b9c2 999 memzero_page(page, zero_offset, iosize);
c8b97818
CM
1000 }
1001 }
5467abba 1002 bio_ctrl->end_io_func = end_bio_extent_readpage;
92082d40 1003 begin_page_read(fs_info, page);
d1310b2e 1004 while (cur <= end) {
a140453b 1005 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
005efedf 1006 bool force_bio_submit = false;
0c64c33c 1007 u64 disk_bytenr;
c8f2f24b 1008
6a404910 1009 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
d1310b2e 1010 if (cur >= last_byte) {
09cbfeaf 1011 iosize = PAGE_SIZE - pg_offset;
d048b9c2 1012 memzero_page(page, pg_offset, iosize);
2c8f5e8c 1013 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1014 end_page_read(page, true, cur, iosize);
d1310b2e
CM
1015 break;
1016 }
125bac01 1017 em = __get_extent_map(inode, page, pg_offset, cur,
1a5ee1e6 1018 end - cur + 1, em_cached);
c0347550 1019 if (IS_ERR(em)) {
570eb97b 1020 unlock_extent(tree, cur, end, NULL);
92082d40 1021 end_page_read(page, false, cur, end + 1 - cur);
55173337 1022 return PTR_ERR(em);
d1310b2e 1023 }
d1310b2e
CM
1024 extent_offset = cur - em->start;
1025 BUG_ON(extent_map_end(em) <= cur);
1026 BUG_ON(end < cur);
1027
7f6ca7f2 1028 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
a140453b 1029 compress_type = em->compress_type;
c8b97818 1030
d1310b2e 1031 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 1032 iosize = ALIGN(iosize, blocksize);
a140453b 1033 if (compress_type != BTRFS_COMPRESS_NONE)
0c64c33c 1034 disk_bytenr = em->block_start;
949b3273 1035 else
0c64c33c 1036 disk_bytenr = em->block_start + extent_offset;
d1310b2e 1037 block_start = em->block_start;
d899e052
YZ
1038 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1039 block_start = EXTENT_MAP_HOLE;
005efedf
FM
1040
1041 /*
1042 * If we have a file range that points to a compressed extent
260db43c 1043 * and it's followed by a consecutive file range that points
005efedf
FM
1044 * to the same compressed extent (possibly with a different
1045 * offset and/or length, so it either points to the whole extent
1046 * or only part of it), we must make sure we do not submit a
1047 * single bio to populate the pages for the 2 ranges because
1048 * this makes the compressed extent read zero out the pages
1049 * belonging to the 2nd range. Imagine the following scenario:
1050 *
1051 * File layout
1052 * [0 - 8K] [8K - 24K]
1053 * | |
1054 * | |
1055 * points to extent X, points to extent X,
1056 * offset 4K, length of 8K offset 0, length 16K
1057 *
1058 * [extent X, compressed length = 4K uncompressed length = 16K]
1059 *
1060 * If the bio to read the compressed extent covers both ranges,
1061 * it will decompress extent X into the pages belonging to the
1062 * first range and then it will stop, zeroing out the remaining
1063 * pages that belong to the other range that points to extent X.
1064 * So here we make sure we submit 2 bios, one for the first
1065 * range and another one for the third range. Both will target
1066 * the same physical extent from disk, but we can't currently
1067 * make the compressed bio endio callback populate the pages
1068 * for both ranges because each compressed bio is tightly
1069 * coupled with a single extent map, and each range can have
1070 * an extent map with a different offset value relative to the
1071 * uncompressed data of our extent and different lengths. This
1072 * is a corner case so we prioritize correctness over
1073 * non-optimal behavior (submitting 2 bios for the same extent).
1074 */
1075 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1076 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 1077 *prev_em_start != em->start)
005efedf
FM
1078 force_bio_submit = true;
1079
1080 if (prev_em_start)
8e928218 1081 *prev_em_start = em->start;
005efedf 1082
d1310b2e
CM
1083 free_extent_map(em);
1084 em = NULL;
1085
1086 /* we've found a hole, just zero and go on */
1087 if (block_start == EXTENT_MAP_HOLE) {
d048b9c2 1088 memzero_page(page, pg_offset, iosize);
d1310b2e 1089
2c8f5e8c 1090 unlock_extent(tree, cur, cur + iosize - 1, NULL);
92082d40 1091 end_page_read(page, true, cur, iosize);
d1310b2e 1092 cur = cur + iosize;
306e16ce 1093 pg_offset += iosize;
d1310b2e
CM
1094 continue;
1095 }
1096 /* the get_extent function already copied into the page */
70dec807 1097 if (block_start == EXTENT_MAP_INLINE) {
570eb97b 1098 unlock_extent(tree, cur, cur + iosize - 1, NULL);
52b029f4 1099 end_page_read(page, true, cur, iosize);
70dec807 1100 cur = cur + iosize;
306e16ce 1101 pg_offset += iosize;
70dec807
CM
1102 continue;
1103 }
d1310b2e 1104
f8ed4852 1105 if (bio_ctrl->compress_type != compress_type) {
c9bc621f 1106 submit_one_bio(bio_ctrl);
f8ed4852
CH
1107 bio_ctrl->compress_type = compress_type;
1108 }
c9bc621f 1109
eb8d0c6d
CH
1110 if (force_bio_submit)
1111 submit_one_bio(bio_ctrl);
55173337
CH
1112 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1113 pg_offset);
d1310b2e 1114 cur = cur + iosize;
306e16ce 1115 pg_offset += iosize;
d1310b2e 1116 }
55173337
CH
1117
1118 return 0;
d1310b2e
CM
1119}
1120
fdaf9a58 1121int btrfs_read_folio(struct file *file, struct folio *folio)
7aab8b32 1122{
fdaf9a58 1123 struct page *page = &folio->page;
7aab8b32
CH
1124 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1125 u64 start = page_offset(page);
1126 u64 end = start + PAGE_SIZE - 1;
c000bc04 1127 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
7aab8b32
CH
1128 int ret;
1129
1130 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1131
c000bc04 1132 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
7aab8b32
CH
1133 /*
1134 * If btrfs_do_readpage() failed we will want to submit the assembled
1135 * bio to do the cleanup.
1136 */
722c82ac 1137 submit_one_bio(&bio_ctrl);
7aab8b32
CH
1138 return ret;
1139}
1140
b6660e80 1141static inline void contiguous_readpages(struct page *pages[], int nr_pages,
390ed29b
QW
1142 u64 start, u64 end,
1143 struct extent_map **em_cached,
1144 struct btrfs_bio_ctrl *bio_ctrl,
1145 u64 *prev_em_start)
9974090b 1146{
23d31bd4 1147 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
1148 int index;
1149
b272ae22 1150 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
1151
1152 for (index = 0; index < nr_pages; index++) {
390ed29b 1153 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
c000bc04 1154 prev_em_start);
09cbfeaf 1155 put_page(pages[index]);
9974090b
MX
1156 }
1157}
1158
d1310b2e 1159/*
40f76580
CM
1160 * helper for __extent_writepage, doing all of the delayed allocation setup.
1161 *
5eaad97a 1162 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
1163 * to write the page (copy into inline extent). In this case the IO has
1164 * been started and the page is already unlocked.
1165 *
1166 * This returns 0 if all went well (page still locked)
1167 * This returns < 0 if there were errors (page still locked)
d1310b2e 1168 */
cd4c0bf9 1169static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
83f1b680 1170 struct page *page, struct writeback_control *wbc)
40f76580 1171{
2c73162d
CH
1172 const u64 page_start = page_offset(page);
1173 const u64 page_end = page_start + PAGE_SIZE - 1;
1174 u64 delalloc_start = page_start;
1175 u64 delalloc_end = page_end;
40f76580 1176 u64 delalloc_to_write = 0;
c56cbe90 1177 int ret = 0;
40f76580 1178
2749f7ef 1179 while (delalloc_start < page_end) {
2c73162d
CH
1180 delalloc_end = page_end;
1181 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1182 &delalloc_start, &delalloc_end)) {
40f76580
CM
1183 delalloc_start = delalloc_end + 1;
1184 continue;
1185 }
c56cbe90 1186
cd4c0bf9 1187 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
c56cbe90
CH
1188 delalloc_end, wbc);
1189 if (ret < 0)
7361b4ae 1190 return ret;
2b2553f1 1191
40f76580
CM
1192 delalloc_start = delalloc_end + 1;
1193 }
2c73162d
CH
1194
1195 /*
1196 * delalloc_end is already one less than the total length, so
1197 * we don't subtract one from PAGE_SIZE
1198 */
1199 delalloc_to_write +=
1200 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
c56cbe90
CH
1201
1202 /*
1203 * If btrfs_run_dealloc_range() already started I/O and unlocked
1204 * the pages, we just need to account for them here.
1205 */
1206 if (ret == 1) {
1207 wbc->nr_to_write -= delalloc_to_write;
1208 return 1;
1209 }
1210
40f76580
CM
1211 if (wbc->nr_to_write < delalloc_to_write) {
1212 int thresh = 8192;
1213
1214 if (delalloc_to_write < thresh * 2)
1215 thresh = delalloc_to_write;
1216 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1217 thresh);
1218 }
1219
b69d1ee9 1220 return 0;
40f76580
CM
1221}
1222
c5ef5c6c
QW
1223/*
1224 * Find the first byte we need to write.
1225 *
1226 * For subpage, one page can contain several sectors, and
1227 * __extent_writepage_io() will just grab all extent maps in the page
1228 * range and try to submit all non-inline/non-compressed extents.
1229 *
1230 * This is a big problem for subpage, we shouldn't re-submit already written
1231 * data at all.
1232 * This function will lookup subpage dirty bit to find which range we really
1233 * need to submit.
1234 *
1235 * Return the next dirty range in [@start, @end).
1236 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1237 */
1238static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1239 struct page *page, u64 *start, u64 *end)
1240{
1241 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
72a69cd0 1242 struct btrfs_subpage_info *spi = fs_info->subpage_info;
c5ef5c6c
QW
1243 u64 orig_start = *start;
1244 /* Declare as unsigned long so we can use bitmap ops */
c5ef5c6c 1245 unsigned long flags;
72a69cd0 1246 int range_start_bit;
c5ef5c6c
QW
1247 int range_end_bit;
1248
1249 /*
1250 * For regular sector size == page size case, since one page only
1251 * contains one sector, we return the page offset directly.
1252 */
fbca46eb 1253 if (!btrfs_is_subpage(fs_info, page)) {
c5ef5c6c
QW
1254 *start = page_offset(page);
1255 *end = page_offset(page) + PAGE_SIZE;
1256 return;
1257 }
1258
72a69cd0
QW
1259 range_start_bit = spi->dirty_offset +
1260 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1261
c5ef5c6c
QW
1262 /* We should have the page locked, but just in case */
1263 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1264 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1265 spi->dirty_offset + spi->bitmap_nr_bits);
c5ef5c6c
QW
1266 spin_unlock_irqrestore(&subpage->lock, flags);
1267
72a69cd0
QW
1268 range_start_bit -= spi->dirty_offset;
1269 range_end_bit -= spi->dirty_offset;
1270
c5ef5c6c
QW
1271 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1272 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1273}
1274
40f76580
CM
1275/*
1276 * helper for __extent_writepage. This calls the writepage start hooks,
1277 * and does the loop to map the page into extents and bios.
1278 *
1279 * We return 1 if the IO is started and the page is unlocked,
1280 * 0 if all went well (page still locked)
1281 * < 0 if there were errors (page still locked)
1282 */
d4580fe2 1283static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580 1284 struct page *page,
ee5f017d 1285 struct btrfs_bio_ctrl *bio_ctrl,
40f76580 1286 loff_t i_size,
57e5ffeb 1287 int *nr_ret)
d1310b2e 1288{
6bc5636a 1289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a129ffb8
QW
1290 u64 cur = page_offset(page);
1291 u64 end = cur + PAGE_SIZE - 1;
d1310b2e 1292 u64 extent_offset;
d1310b2e 1293 u64 block_start;
d1310b2e 1294 struct extent_map *em;
40f76580
CM
1295 int ret = 0;
1296 int nr = 0;
c8b97818 1297
a129ffb8 1298 ret = btrfs_writepage_cow_fixup(page);
d75855b4
NB
1299 if (ret) {
1300 /* Fixup worker will requeue */
72b505dc 1301 redirty_page_for_writepage(bio_ctrl->wbc, page);
d75855b4
NB
1302 unlock_page(page);
1303 return 1;
247e743c
CM
1304 }
1305
ee5f017d 1306 bio_ctrl->end_io_func = end_bio_extent_writepage;
d1310b2e 1307 while (cur <= end) {
6648cedd 1308 u32 len = end - cur + 1;
0c64c33c 1309 u64 disk_bytenr;
40f76580 1310 u64 em_end;
c5ef5c6c
QW
1311 u64 dirty_range_start = cur;
1312 u64 dirty_range_end;
6bc5636a 1313 u32 iosize;
58409edd 1314
40f76580 1315 if (cur >= i_size) {
6648cedd
CH
1316 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1317 true);
cc1d0d93
QW
1318 /*
1319 * This range is beyond i_size, thus we don't need to
1320 * bother writing back.
1321 * But we still need to clear the dirty subpage bit, or
1322 * the next time the page gets dirtied, we will try to
1323 * writeback the sectors with subpage dirty bits,
1324 * causing writeback without ordered extent.
1325 */
6648cedd 1326 btrfs_page_clear_dirty(fs_info, page, cur, len);
d1310b2e
CM
1327 break;
1328 }
c5ef5c6c
QW
1329
1330 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1331 &dirty_range_end);
1332 if (cur < dirty_range_start) {
1333 cur = dirty_range_start;
1334 continue;
1335 }
1336
6648cedd 1337 em = btrfs_get_extent(inode, NULL, 0, cur, len);
c0347550 1338 if (IS_ERR(em)) {
61391d56 1339 ret = PTR_ERR_OR_ZERO(em);
5380311f 1340 goto out_error;
d1310b2e
CM
1341 }
1342
1343 extent_offset = cur - em->start;
40f76580 1344 em_end = extent_map_end(em);
6bc5636a
QW
1345 ASSERT(cur <= em_end);
1346 ASSERT(cur < end);
1347 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1348 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
f22b5dcb 1349
d1310b2e 1350 block_start = em->block_start;
6bc5636a
QW
1351 disk_bytenr = em->block_start + extent_offset;
1352
f22b5dcb
CH
1353 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
1354 ASSERT(block_start != EXTENT_MAP_HOLE);
1355 ASSERT(block_start != EXTENT_MAP_INLINE);
1356
c5ef5c6c
QW
1357 /*
1358 * Note that em_end from extent_map_end() and dirty_range_end from
1359 * find_next_dirty_byte() are all exclusive
1360 */
1361 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
d1310b2e
CM
1362 free_extent_map(em);
1363 em = NULL;
1364
d2a91064 1365 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
58409edd 1366 if (!PageWriteback(page)) {
d4580fe2 1367 btrfs_err(inode->root->fs_info,
58409edd
DS
1368 "page %lu not writeback, cur %llu end %llu",
1369 page->index, cur, end);
d1310b2e 1370 }
7f3c74fb 1371
c5ef5c6c
QW
1372 /*
1373 * Although the PageDirty bit is cleared before entering this
1374 * function, subpage dirty bit is not cleared.
1375 * So clear subpage dirty bit here so next time we won't submit
1376 * page for range already written to disk.
1377 */
1378 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
1379
55173337
CH
1380 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1381 cur - page_offset(page));
6bc5636a 1382 cur += iosize;
d1310b2e
CM
1383 nr++;
1384 }
5380311f
CH
1385
1386 btrfs_page_assert_not_dirty(fs_info, page);
1387 *nr_ret = nr;
1388 return 0;
1389
1390out_error:
cc1d0d93
QW
1391 /*
1392 * If we finish without problem, we should not only clear page dirty,
1393 * but also empty subpage dirty bits
1394 */
40f76580 1395 *nr_ret = nr;
40f76580
CM
1396 return ret;
1397}
1398
1399/*
1400 * the writepage semantics are similar to regular writepage. extent
1401 * records are inserted to lock ranges in the tree, and as dirty areas
1402 * are found, they are marked writeback. Then the lock bits are removed
1403 * and the end_io handler clears the writeback ranges
3065976b
QW
1404 *
1405 * Return 0 if everything goes well.
1406 * Return <0 for error.
40f76580 1407 */
72b505dc 1408static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
40f76580 1409{
8e1dec8e 1410 struct folio *folio = page_folio(page);
40f76580 1411 struct inode *inode = page->mapping->host;
cf3075fb 1412 const u64 page_start = page_offset(page);
40f76580
CM
1413 int ret;
1414 int nr = 0;
eb70d222 1415 size_t pg_offset;
40f76580 1416 loff_t i_size = i_size_read(inode);
09cbfeaf 1417 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580 1418
72b505dc 1419 trace___extent_writepage(page, inode, bio_ctrl->wbc);
40f76580
CM
1420
1421 WARN_ON(!PageLocked(page));
1422
7073017a 1423 pg_offset = offset_in_page(i_size);
40f76580
CM
1424 if (page->index > end_index ||
1425 (page->index == end_index && !pg_offset)) {
8e1dec8e
MWO
1426 folio_invalidate(folio, 0, folio_size(folio));
1427 folio_unlock(folio);
40f76580
CM
1428 return 0;
1429 }
1430
21a8935e 1431 if (page->index == end_index)
d048b9c2 1432 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
40f76580 1433
32443de3 1434 ret = set_page_extent_mapped(page);
2b2553f1 1435 if (ret < 0)
32443de3 1436 goto done;
40f76580 1437
eb34dcea
CH
1438 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1439 if (ret == 1)
1440 return 0;
1441 if (ret)
1442 goto done;
40f76580 1443
72b505dc 1444 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
40f76580 1445 if (ret == 1)
169d2c87 1446 return 0;
40f76580 1447
9ecdbee8
CH
1448 bio_ctrl->wbc->nr_to_write--;
1449
d1310b2e
CM
1450done:
1451 if (nr == 0) {
1452 /* make sure the mapping tag for page dirty gets cleared */
1453 set_page_writeback(page);
1454 end_page_writeback(page);
1455 }
9783e4de
CH
1456 if (ret) {
1457 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1458 PAGE_SIZE, !ret);
1459 btrfs_page_clear_uptodate(btrfs_sb(inode->i_sb), page,
1460 page_start, PAGE_SIZE);
1461 mapping_set_error(page->mapping, ret);
1462 }
eb34dcea 1463 unlock_page(page);
3065976b 1464 ASSERT(ret <= 0);
40f76580 1465 return ret;
d1310b2e
CM
1466}
1467
fd8b2b61 1468void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 1469{
74316201
N
1470 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1471 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
1472}
1473
2e3c2513 1474/*
a3efb2f0 1475 * Lock extent buffer status and pages for writeback.
2e3c2513 1476 *
9fdd1601
CH
1477 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1478 * extent buffer is not dirty)
1479 * Return %true is the extent buffer is submitted to bio.
2e3c2513 1480 */
9fdd1601 1481static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
50b21d7a 1482 struct writeback_control *wbc)
0b32f4bb 1483{
9df76fb5 1484 struct btrfs_fs_info *fs_info = eb->fs_info;
9fdd1601 1485 bool ret = false;
0b32f4bb 1486
50b21d7a
CH
1487 btrfs_tree_lock(eb);
1488 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
0b32f4bb 1489 btrfs_tree_unlock(eb);
50b21d7a 1490 if (wbc->sync_mode != WB_SYNC_ALL)
9fdd1601 1491 return false;
50b21d7a
CH
1492 wait_on_extent_buffer_writeback(eb);
1493 btrfs_tree_lock(eb);
0b32f4bb
JB
1494 }
1495
51561ffe
JB
1496 /*
1497 * We need to do this to prevent races in people who check if the eb is
1498 * under IO since we can end up having no IO bits set for a short period
1499 * of time.
1500 */
1501 spin_lock(&eb->refs_lock);
0b32f4bb
JB
1502 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1503 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 1504 spin_unlock(&eb->refs_lock);
0b32f4bb 1505 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
1506 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1507 -eb->len,
1508 fs_info->dirty_metadata_batch);
9fdd1601 1509 ret = true;
51561ffe
JB
1510 } else {
1511 spin_unlock(&eb->refs_lock);
0b32f4bb 1512 }
0b32f4bb 1513 btrfs_tree_unlock(eb);
2e3c2513 1514 return ret;
0b32f4bb
JB
1515}
1516
cd88a4fd 1517static void set_btree_ioerr(struct extent_buffer *eb)
656f30db 1518{
5a2c6075 1519 struct btrfs_fs_info *fs_info = eb->fs_info;
656f30db 1520
cd88a4fd 1521 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
656f30db 1522
c2e39305
JB
1523 /*
1524 * A read may stumble upon this buffer later, make sure that it gets an
1525 * error and knows there was an error.
1526 */
1527 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1528
68b85589
JB
1529 /*
1530 * We need to set the mapping with the io error as well because a write
1531 * error will flip the file system readonly, and then syncfs() will
1532 * return a 0 because we are readonly if we don't modify the err seq for
1533 * the superblock.
1534 */
cd88a4fd 1535 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
68b85589 1536
656f30db
FM
1537 /*
1538 * If writeback for a btree extent that doesn't belong to a log tree
1539 * failed, increment the counter transaction->eb_write_errors.
1540 * We do this because while the transaction is running and before it's
1541 * committing (when we call filemap_fdata[write|wait]_range against
1542 * the btree inode), we might have
1543 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1544 * returns an error or an error happens during writeback, when we're
1545 * committing the transaction we wouldn't know about it, since the pages
1546 * can be no longer dirty nor marked anymore for writeback (if a
1547 * subsequent modification to the extent buffer didn't happen before the
1548 * transaction commit), which makes filemap_fdata[write|wait]_range not
1549 * able to find the pages tagged with SetPageError at transaction
1550 * commit time. So if this happens we must abort the transaction,
1551 * otherwise we commit a super block with btree roots that point to
1552 * btree nodes/leafs whose content on disk is invalid - either garbage
1553 * or the content of some node/leaf from a past generation that got
1554 * cowed or deleted and is no longer valid.
1555 *
1556 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1557 * not be enough - we need to distinguish between log tree extents vs
1558 * non-log tree extents, and the next filemap_fdatawait_range() call
1559 * will catch and clear such errors in the mapping - and that call might
1560 * be from a log sync and not from a transaction commit. Also, checking
1561 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1562 * not done and would not be reliable - the eb might have been released
1563 * from memory and reading it back again means that flag would not be
1564 * set (since it's a runtime flag, not persisted on disk).
1565 *
1566 * Using the flags below in the btree inode also makes us achieve the
1567 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1568 * writeback for all dirty pages and before filemap_fdatawait_range()
1569 * is called, the writeback for all dirty pages had already finished
1570 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1571 * filemap_fdatawait_range() would return success, as it could not know
1572 * that writeback errors happened (the pages were no longer tagged for
1573 * writeback).
1574 */
1575 switch (eb->log_index) {
1576 case -1:
5a2c6075 1577 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
656f30db
FM
1578 break;
1579 case 0:
5a2c6075 1580 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
656f30db
FM
1581 break;
1582 case 1:
5a2c6075 1583 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db
FM
1584 break;
1585 default:
1586 BUG(); /* unexpected, logic error */
1587 }
1588}
1589
2f3186d8
QW
1590/*
1591 * The endio specific version which won't touch any unsafe spinlock in endio
1592 * context.
1593 */
1594static struct extent_buffer *find_extent_buffer_nolock(
1595 struct btrfs_fs_info *fs_info, u64 start)
1596{
1597 struct extent_buffer *eb;
1598
1599 rcu_read_lock();
01cd3909
DS
1600 eb = radix_tree_lookup(&fs_info->buffer_radix,
1601 start >> fs_info->sectorsize_bits);
2f3186d8
QW
1602 if (eb && atomic_inc_not_zero(&eb->refs)) {
1603 rcu_read_unlock();
1604 return eb;
1605 }
1606 rcu_read_unlock();
1607 return NULL;
1608}
1609
cd88a4fd 1610static void extent_buffer_write_end_io(struct btrfs_bio *bbio)
2f3186d8 1611{
cd88a4fd
CH
1612 struct extent_buffer *eb = bbio->private;
1613 struct btrfs_fs_info *fs_info = eb->fs_info;
1614 bool uptodate = !bbio->bio.bi_status;
2f3186d8 1615 struct bvec_iter_all iter_all;
cd88a4fd
CH
1616 struct bio_vec *bvec;
1617 u32 bio_offset = 0;
2f3186d8 1618
cd88a4fd
CH
1619 if (!uptodate)
1620 set_btree_ioerr(eb);
fa04c165 1621
cd88a4fd
CH
1622 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
1623 u64 start = eb->start + bio_offset;
2f3186d8 1624 struct page *page = bvec->bv_page;
cd88a4fd 1625 u32 len = bvec->bv_len;
2f3186d8 1626
011134f4 1627 if (!uptodate)
cd88a4fd 1628 btrfs_page_clear_uptodate(fs_info, page, start, len);
cd88a4fd
CH
1629 btrfs_page_clear_writeback(fs_info, page, start, len);
1630 bio_offset += len;
2f3186d8 1631 }
0b32f4bb 1632
cd88a4fd
CH
1633 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1634 smp_mb__after_atomic();
1635 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
0b32f4bb 1636
cd88a4fd 1637 bio_put(&bbio->bio);
0b32f4bb
JB
1638}
1639
fa04c165
QW
1640static void prepare_eb_write(struct extent_buffer *eb)
1641{
1642 u32 nritems;
1643 unsigned long start;
1644 unsigned long end;
1645
1646 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
fa04c165
QW
1647
1648 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1649 nritems = btrfs_header_nritems(eb);
1650 if (btrfs_header_level(eb) > 0) {
e23efd8e 1651 end = btrfs_node_key_ptr_offset(eb, nritems);
fa04c165
QW
1652 memzero_extent_buffer(eb, end, eb->len - end);
1653 } else {
1654 /*
1655 * Leaf:
1656 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1657 */
42c9419a 1658 start = btrfs_item_nr_offset(eb, nritems);
8009adf3 1659 end = btrfs_item_nr_offset(eb, 0);
3a3178c7
JB
1660 if (nritems == 0)
1661 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1662 else
1663 end += btrfs_item_offset(eb, nritems - 1);
fa04c165
QW
1664 memzero_extent_buffer(eb, start, end - start);
1665 }
1666}
1667
55173337 1668static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
50b21d7a 1669 struct writeback_control *wbc)
0b32f4bb 1670{
46672a44 1671 struct btrfs_fs_info *fs_info = eb->fs_info;
b51e6b4b 1672 struct btrfs_bio *bbio;
0b32f4bb 1673
fa04c165 1674 prepare_eb_write(eb);
35b6ddfa 1675
b51e6b4b
CH
1676 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1677 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
cd88a4fd 1678 eb->fs_info, extent_buffer_write_end_io, eb);
b51e6b4b 1679 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
46672a44 1680 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
b51e6b4b
CH
1681 wbc_init_bio(wbc, &bbio->bio);
1682 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1683 bbio->file_offset = eb->start;
46672a44
CH
1684 if (fs_info->nodesize < PAGE_SIZE) {
1685 struct page *p = eb->pages[0];
0b32f4bb 1686
81a79b6a 1687 lock_page(p);
46672a44
CH
1688 btrfs_subpage_set_writeback(fs_info, p, eb->start, eb->len);
1689 if (btrfs_subpage_clear_and_test_dirty(fs_info, p, eb->start,
1690 eb->len)) {
1691 clear_page_dirty_for_io(p);
1692 wbc->nr_to_write--;
1693 }
1694 __bio_add_page(&bbio->bio, p, eb->len, eb->start - page_offset(p));
1695 wbc_account_cgroup_owner(wbc, p, eb->len);
0b32f4bb 1696 unlock_page(p);
46672a44
CH
1697 } else {
1698 for (int i = 0; i < num_extent_pages(eb); i++) {
1699 struct page *p = eb->pages[i];
1700
1701 lock_page(p);
1702 clear_page_dirty_for_io(p);
1703 set_page_writeback(p);
1704 __bio_add_page(&bbio->bio, p, PAGE_SIZE, 0);
1705 wbc_account_cgroup_owner(wbc, p, PAGE_SIZE);
1706 wbc->nr_to_write--;
1707 unlock_page(p);
1708 }
0b32f4bb 1709 }
b51e6b4b 1710 btrfs_submit_bio(bbio, 0);
0b32f4bb
JB
1711}
1712
c4aec299
QW
1713/*
1714 * Submit one subpage btree page.
1715 *
1716 * The main difference to submit_eb_page() is:
1717 * - Page locking
1718 * For subpage, we don't rely on page locking at all.
1719 *
1720 * - Flush write bio
1721 * We only flush bio if we may be unable to fit current extent buffers into
1722 * current bio.
1723 *
1724 * Return >=0 for the number of submitted extent buffers.
1725 * Return <0 for fatal error.
1726 */
50b21d7a 1727static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
c4aec299
QW
1728{
1729 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1730 int submitted = 0;
1731 u64 page_start = page_offset(page);
1732 int bit_start = 0;
c4aec299 1733 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
c4aec299
QW
1734
1735 /* Lock and write each dirty extent buffers in the range */
72a69cd0 1736 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
c4aec299
QW
1737 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
1738 struct extent_buffer *eb;
1739 unsigned long flags;
1740 u64 start;
1741
1742 /*
1743 * Take private lock to ensure the subpage won't be detached
1744 * in the meantime.
1745 */
1746 spin_lock(&page->mapping->private_lock);
1747 if (!PagePrivate(page)) {
1748 spin_unlock(&page->mapping->private_lock);
1749 break;
1750 }
1751 spin_lock_irqsave(&subpage->lock, flags);
72a69cd0
QW
1752 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1753 subpage->bitmaps)) {
c4aec299
QW
1754 spin_unlock_irqrestore(&subpage->lock, flags);
1755 spin_unlock(&page->mapping->private_lock);
1756 bit_start++;
1757 continue;
1758 }
1759
1760 start = page_start + bit_start * fs_info->sectorsize;
1761 bit_start += sectors_per_node;
1762
1763 /*
1764 * Here we just want to grab the eb without touching extra
1765 * spin locks, so call find_extent_buffer_nolock().
1766 */
1767 eb = find_extent_buffer_nolock(fs_info, start);
1768 spin_unlock_irqrestore(&subpage->lock, flags);
1769 spin_unlock(&page->mapping->private_lock);
1770
1771 /*
1772 * The eb has already reached 0 refs thus find_extent_buffer()
1773 * doesn't return it. We don't need to write back such eb
1774 * anyway.
1775 */
1776 if (!eb)
1777 continue;
1778
50b21d7a 1779 if (lock_extent_buffer_for_io(eb, wbc)) {
46672a44 1780 write_one_eb(eb, wbc);
9fdd1601 1781 submitted++;
c4aec299 1782 }
c4aec299 1783 free_extent_buffer(eb);
c4aec299
QW
1784 }
1785 return submitted;
c4aec299
QW
1786}
1787
f91e0d0c
QW
1788/*
1789 * Submit all page(s) of one extent buffer.
1790 *
1791 * @page: the page of one extent buffer
1792 * @eb_context: to determine if we need to submit this page, if current page
1793 * belongs to this eb, we don't need to submit
1794 *
1795 * The caller should pass each page in their bytenr order, and here we use
1796 * @eb_context to determine if we have submitted pages of one extent buffer.
1797 *
1798 * If we have, we just skip until we hit a new page that doesn't belong to
1799 * current @eb_context.
1800 *
1801 * If not, we submit all the page(s) of the extent buffer.
1802 *
1803 * Return >0 if we have submitted the extent buffer successfully.
1804 * Return 0 if we don't need to submit the page, as it's already submitted by
1805 * previous call.
1806 * Return <0 for fatal error.
1807 */
861093ef 1808static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
f91e0d0c 1809{
861093ef 1810 struct writeback_control *wbc = ctx->wbc;
f91e0d0c
QW
1811 struct address_space *mapping = page->mapping;
1812 struct extent_buffer *eb;
1813 int ret;
1814
1815 if (!PagePrivate(page))
1816 return 0;
1817
fbca46eb 1818 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
50b21d7a 1819 return submit_eb_subpage(page, wbc);
c4aec299 1820
f91e0d0c
QW
1821 spin_lock(&mapping->private_lock);
1822 if (!PagePrivate(page)) {
1823 spin_unlock(&mapping->private_lock);
1824 return 0;
1825 }
1826
1827 eb = (struct extent_buffer *)page->private;
1828
1829 /*
1830 * Shouldn't happen and normally this would be a BUG_ON but no point
1831 * crashing the machine for something we can survive anyway.
1832 */
1833 if (WARN_ON(!eb)) {
1834 spin_unlock(&mapping->private_lock);
1835 return 0;
1836 }
1837
861093ef 1838 if (eb == ctx->eb) {
f91e0d0c
QW
1839 spin_unlock(&mapping->private_lock);
1840 return 0;
1841 }
1842 ret = atomic_inc_not_zero(&eb->refs);
1843 spin_unlock(&mapping->private_lock);
1844 if (!ret)
1845 return 0;
1846
861093ef
NA
1847 ctx->eb = eb;
1848
2ad8c051
NA
1849 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1850 if (ret) {
1851 if (ret == -EBUSY)
0bc09ca1
NA
1852 ret = 0;
1853 free_extent_buffer(eb);
1854 return ret;
1855 }
1856
50b21d7a 1857 if (!lock_extent_buffer_for_io(eb, wbc)) {
f91e0d0c 1858 free_extent_buffer(eb);
50b21d7a 1859 return 0;
f91e0d0c 1860 }
0356ad41 1861 /* Implies write in zoned mode. */
7db94301 1862 if (ctx->zoned_bg) {
0356ad41 1863 /* Mark the last eb in the block group. */
7db94301 1864 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
0356ad41 1865 ctx->zoned_bg->meta_write_pointer += eb->len;
be1a1d7a 1866 }
50b21d7a 1867 write_one_eb(eb, wbc);
f91e0d0c 1868 free_extent_buffer(eb);
f91e0d0c
QW
1869 return 1;
1870}
1871
0b32f4bb
JB
1872int btree_write_cache_pages(struct address_space *mapping,
1873 struct writeback_control *wbc)
1874{
861093ef 1875 struct btrfs_eb_write_context ctx = { .wbc = wbc };
b3ff8f1d 1876 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
1877 int ret = 0;
1878 int done = 0;
1879 int nr_to_write_done = 0;
51c5cd3b
VMO
1880 struct folio_batch fbatch;
1881 unsigned int nr_folios;
0b32f4bb
JB
1882 pgoff_t index;
1883 pgoff_t end; /* Inclusive */
1884 int scanned = 0;
10bbd235 1885 xa_mark_t tag;
0b32f4bb 1886
51c5cd3b 1887 folio_batch_init(&fbatch);
0b32f4bb
JB
1888 if (wbc->range_cyclic) {
1889 index = mapping->writeback_index; /* Start from prev offset */
1890 end = -1;
556755a8
JB
1891 /*
1892 * Start from the beginning does not need to cycle over the
1893 * range, mark it as scanned.
1894 */
1895 scanned = (index == 0);
0b32f4bb 1896 } else {
09cbfeaf
KS
1897 index = wbc->range_start >> PAGE_SHIFT;
1898 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
1899 scanned = 1;
1900 }
1901 if (wbc->sync_mode == WB_SYNC_ALL)
1902 tag = PAGECACHE_TAG_TOWRITE;
1903 else
1904 tag = PAGECACHE_TAG_DIRTY;
0bc09ca1 1905 btrfs_zoned_meta_io_lock(fs_info);
0b32f4bb
JB
1906retry:
1907 if (wbc->sync_mode == WB_SYNC_ALL)
1908 tag_pages_for_writeback(mapping, index, end);
1909 while (!done && !nr_to_write_done && (index <= end) &&
51c5cd3b
VMO
1910 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1911 tag, &fbatch))) {
0b32f4bb
JB
1912 unsigned i;
1913
51c5cd3b
VMO
1914 for (i = 0; i < nr_folios; i++) {
1915 struct folio *folio = fbatch.folios[i];
0b32f4bb 1916
861093ef 1917 ret = submit_eb_page(&folio->page, &ctx);
f91e0d0c 1918 if (ret == 0)
0b32f4bb 1919 continue;
f91e0d0c 1920 if (ret < 0) {
0b32f4bb 1921 done = 1;
0b32f4bb
JB
1922 break;
1923 }
0b32f4bb
JB
1924
1925 /*
1926 * the filesystem may choose to bump up nr_to_write.
1927 * We have to make sure to honor the new nr_to_write
1928 * at any time
1929 */
1930 nr_to_write_done = wbc->nr_to_write <= 0;
1931 }
51c5cd3b 1932 folio_batch_release(&fbatch);
0b32f4bb
JB
1933 cond_resched();
1934 }
1935 if (!scanned && !done) {
1936 /*
1937 * We hit the last page and there is more work to be done: wrap
1938 * back to the start of the file
1939 */
1940 scanned = 1;
1941 index = 0;
1942 goto retry;
1943 }
b3ff8f1d
QW
1944 /*
1945 * If something went wrong, don't allow any metadata write bio to be
1946 * submitted.
1947 *
1948 * This would prevent use-after-free if we had dirty pages not
1949 * cleaned up, which can still happen by fuzzed images.
1950 *
1951 * - Bad extent tree
1952 * Allowing existing tree block to be allocated for other trees.
1953 *
1954 * - Log tree operations
1955 * Exiting tree blocks get allocated to log tree, bumps its
1956 * generation, then get cleaned in tree re-balance.
1957 * Such tree block will not be written back, since it's clean,
1958 * thus no WRITTEN flag set.
1959 * And after log writes back, this tree block is not traced by
1960 * any dirty extent_io_tree.
1961 *
1962 * - Offending tree block gets re-dirtied from its original owner
1963 * Since it has bumped generation, no WRITTEN flag, it can be
1964 * reused without COWing. This tree block will not be traced
1965 * by btrfs_transaction::dirty_pages.
1966 *
1967 * Now such dirty tree block will not be cleaned by any dirty
1968 * extent io tree. Thus we don't want to submit such wild eb
1969 * if the fs already has error.
9845e5dd 1970 *
c9583ada
QW
1971 * We can get ret > 0 from submit_extent_page() indicating how many ebs
1972 * were submitted. Reset it to 0 to avoid false alerts for the caller.
1973 */
1974 if (ret > 0)
1975 ret = 0;
9845e5dd
CH
1976 if (!ret && BTRFS_FS_ERROR(fs_info))
1977 ret = -EROFS;
7db94301
NA
1978
1979 if (ctx.zoned_bg)
1980 btrfs_put_block_group(ctx.zoned_bg);
9845e5dd 1981 btrfs_zoned_meta_io_unlock(fs_info);
0b32f4bb
JB
1982 return ret;
1983}
1984
43dd529a 1985/*
3bed2da1
NB
1986 * Walk the list of dirty pages of the given address space and write all of them.
1987 *
ee5f017d
DS
1988 * @mapping: address space structure to write
1989 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1990 * @bio_ctrl: holds context for the write, namely the bio
d1310b2e
CM
1991 *
1992 * If a page is already under I/O, write_cache_pages() skips it, even
1993 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1994 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1995 * and msync() need to guarantee that all the data which was dirty at the time
1996 * the call was made get new I/O started against them. If wbc->sync_mode is
1997 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1998 * existing IO to complete.
1999 */
4242b64a 2000static int extent_write_cache_pages(struct address_space *mapping,
ee5f017d 2001 struct btrfs_bio_ctrl *bio_ctrl)
d1310b2e 2002{
72b505dc 2003 struct writeback_control *wbc = bio_ctrl->wbc;
7fd1a3f7 2004 struct inode *inode = mapping->host;
d1310b2e
CM
2005 int ret = 0;
2006 int done = 0;
f85d7d6c 2007 int nr_to_write_done = 0;
9f50fd2e
VMO
2008 struct folio_batch fbatch;
2009 unsigned int nr_folios;
d1310b2e
CM
2010 pgoff_t index;
2011 pgoff_t end; /* Inclusive */
a9132667
LB
2012 pgoff_t done_index;
2013 int range_whole = 0;
d1310b2e 2014 int scanned = 0;
10bbd235 2015 xa_mark_t tag;
d1310b2e 2016
7fd1a3f7
JB
2017 /*
2018 * We have to hold onto the inode so that ordered extents can do their
2019 * work when the IO finishes. The alternative to this is failing to add
2020 * an ordered extent if the igrab() fails there and that is a huge pain
2021 * to deal with, so instead just hold onto the inode throughout the
2022 * writepages operation. If it fails here we are freeing up the inode
2023 * anyway and we'd rather not waste our time writing out stuff that is
2024 * going to be truncated anyway.
2025 */
2026 if (!igrab(inode))
2027 return 0;
2028
9f50fd2e 2029 folio_batch_init(&fbatch);
d1310b2e
CM
2030 if (wbc->range_cyclic) {
2031 index = mapping->writeback_index; /* Start from prev offset */
2032 end = -1;
556755a8
JB
2033 /*
2034 * Start from the beginning does not need to cycle over the
2035 * range, mark it as scanned.
2036 */
2037 scanned = (index == 0);
d1310b2e 2038 } else {
09cbfeaf
KS
2039 index = wbc->range_start >> PAGE_SHIFT;
2040 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
2041 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2042 range_whole = 1;
d1310b2e
CM
2043 scanned = 1;
2044 }
3cd24c69
EL
2045
2046 /*
2047 * We do the tagged writepage as long as the snapshot flush bit is set
2048 * and we are the first one who do the filemap_flush() on this inode.
2049 *
2050 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2051 * not race in and drop the bit.
2052 */
2053 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2054 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2055 &BTRFS_I(inode)->runtime_flags))
2056 wbc->tagged_writepages = 1;
2057
2058 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
2059 tag = PAGECACHE_TAG_TOWRITE;
2060 else
2061 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 2062retry:
3cd24c69 2063 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 2064 tag_pages_for_writeback(mapping, index, end);
a9132667 2065 done_index = index;
f85d7d6c 2066 while (!done && !nr_to_write_done && (index <= end) &&
9f50fd2e
VMO
2067 (nr_folios = filemap_get_folios_tag(mapping, &index,
2068 end, tag, &fbatch))) {
d1310b2e
CM
2069 unsigned i;
2070
9f50fd2e
VMO
2071 for (i = 0; i < nr_folios; i++) {
2072 struct folio *folio = fbatch.folios[i];
d1310b2e 2073
7b365a2a 2074 done_index = folio_next_index(folio);
d1310b2e 2075 /*
b93b0163
MW
2076 * At this point we hold neither the i_pages lock nor
2077 * the page lock: the page may be truncated or
2078 * invalidated (changing page->mapping to NULL),
2079 * or even swizzled back from swapper_space to
2080 * tmpfs file mapping
d1310b2e 2081 */
9f50fd2e 2082 if (!folio_trylock(folio)) {
ee5f017d 2083 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2084 folio_lock(folio);
01d658f2 2085 }
d1310b2e 2086
9f50fd2e
VMO
2087 if (unlikely(folio->mapping != mapping)) {
2088 folio_unlock(folio);
d1310b2e
CM
2089 continue;
2090 }
2091
5c256998
CH
2092 if (!folio_test_dirty(folio)) {
2093 /* Someone wrote it for us. */
2094 folio_unlock(folio);
2095 continue;
2096 }
2097
d2c3f4f6 2098 if (wbc->sync_mode != WB_SYNC_NONE) {
9f50fd2e 2099 if (folio_test_writeback(folio))
ee5f017d 2100 submit_write_bio(bio_ctrl, 0);
9f50fd2e 2101 folio_wait_writeback(folio);
d2c3f4f6 2102 }
d1310b2e 2103
9f50fd2e
VMO
2104 if (folio_test_writeback(folio) ||
2105 !folio_clear_dirty_for_io(folio)) {
2106 folio_unlock(folio);
d1310b2e
CM
2107 continue;
2108 }
2109
72b505dc 2110 ret = __extent_writepage(&folio->page, bio_ctrl);
a9132667 2111 if (ret < 0) {
a9132667
LB
2112 done = 1;
2113 break;
2114 }
f85d7d6c
CM
2115
2116 /*
effa24f6 2117 * The filesystem may choose to bump up nr_to_write.
f85d7d6c 2118 * We have to make sure to honor the new nr_to_write
effa24f6 2119 * at any time.
f85d7d6c 2120 */
effa24f6
CH
2121 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2122 wbc->nr_to_write <= 0);
d1310b2e 2123 }
9f50fd2e 2124 folio_batch_release(&fbatch);
d1310b2e
CM
2125 cond_resched();
2126 }
894b36e3 2127 if (!scanned && !done) {
d1310b2e
CM
2128 /*
2129 * We hit the last page and there is more work to be done: wrap
2130 * back to the start of the file
2131 */
2132 scanned = 1;
2133 index = 0;
42ffb0bf
JB
2134
2135 /*
2136 * If we're looping we could run into a page that is locked by a
2137 * writer and that writer could be waiting on writeback for a
2138 * page in our current bio, and thus deadlock, so flush the
2139 * write bio here.
2140 */
ee5f017d 2141 submit_write_bio(bio_ctrl, 0);
c9583ada 2142 goto retry;
d1310b2e 2143 }
a9132667
LB
2144
2145 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2146 mapping->writeback_index = done_index;
2147
e55cf7ca 2148 btrfs_add_delayed_iput(BTRFS_I(inode));
894b36e3 2149 return ret;
d1310b2e 2150}
d1310b2e 2151
2bd0fc93
QW
2152/*
2153 * Submit the pages in the range to bio for call sites which delalloc range has
2154 * already been ran (aka, ordered extent inserted) and all pages are still
2155 * locked.
2156 */
778b8785
CH
2157void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2158 u64 start, u64 end, struct writeback_control *wbc,
2159 bool pages_dirty)
771ed689 2160{
2bd0fc93 2161 bool found_error = false;
771ed689
CM
2162 int ret = 0;
2163 struct address_space *mapping = inode->i_mapping;
eb34dcea
CH
2164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2165 const u32 sectorsize = fs_info->sectorsize;
2166 loff_t i_size = i_size_read(inode);
2bd0fc93 2167 u64 cur = start;
c000bc04 2168 struct btrfs_bio_ctrl bio_ctrl = {
7027f871
CH
2169 .wbc = wbc,
2170 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
c000bc04 2171 };
771ed689 2172
7027f871
CH
2173 if (wbc->no_cgroup_owner)
2174 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2175
66448b9d 2176 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
66448b9d 2177
2bd0fc93 2178 while (cur <= end) {
66448b9d 2179 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
9783e4de 2180 u32 cur_len = cur_end + 1 - cur;
eb34dcea
CH
2181 struct page *page;
2182 int nr = 0;
66448b9d 2183
2bd0fc93 2184 page = find_get_page(mapping, cur >> PAGE_SHIFT);
66448b9d 2185 ASSERT(PageLocked(page));
778b8785 2186 if (pages_dirty && page != locked_page) {
44962ca3
CH
2187 ASSERT(PageDirty(page));
2188 clear_page_dirty_for_io(page);
2189 }
eb34dcea
CH
2190
2191 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2192 i_size, &nr);
2193 if (ret == 1)
2194 goto next_page;
2195
2196 /* Make sure the mapping tag for page dirty gets cleared. */
2197 if (nr == 0) {
2198 set_page_writeback(page);
2199 end_page_writeback(page);
2200 }
9783e4de
CH
2201 if (ret) {
2202 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2203 cur, cur_len, !ret);
2204 btrfs_page_clear_uptodate(fs_info, page, cur, cur_len);
2205 mapping_set_error(page->mapping, ret);
2206 }
2207 btrfs_page_unlock_writer(fs_info, page, cur, cur_len);
0835d1e6 2208 if (ret < 0)
2bd0fc93 2209 found_error = true;
eb34dcea 2210next_page:
09cbfeaf 2211 put_page(page);
66448b9d 2212 cur = cur_end + 1;
771ed689
CM
2213 }
2214
ee5f017d 2215 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
771ed689 2216}
d1310b2e 2217
8ae225a8 2218int extent_writepages(struct address_space *mapping,
d1310b2e
CM
2219 struct writeback_control *wbc)
2220{
35156d85 2221 struct inode *inode = mapping->host;
d1310b2e 2222 int ret = 0;
ee5f017d 2223 struct btrfs_bio_ctrl bio_ctrl = {
72b505dc 2224 .wbc = wbc,
c000bc04 2225 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
d1310b2e
CM
2226 };
2227
35156d85
JT
2228 /*
2229 * Allow only a single thread to do the reloc work in zoned mode to
2230 * protect the write pointer updates.
2231 */
869f4cdc 2232 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
72b505dc 2233 ret = extent_write_cache_pages(mapping, &bio_ctrl);
ee5f017d 2234 submit_write_bio(&bio_ctrl, ret);
19ab78ca 2235 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
d1310b2e
CM
2236 return ret;
2237}
d1310b2e 2238
ba206a02 2239void extent_readahead(struct readahead_control *rac)
d1310b2e 2240{
c000bc04 2241 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
67c9684f 2242 struct page *pagepool[16];
125bac01 2243 struct extent_map *em_cached = NULL;
808f80b4 2244 u64 prev_em_start = (u64)-1;
ba206a02 2245 int nr;
d1310b2e 2246
ba206a02 2247 while ((nr = readahead_page_batch(rac, pagepool))) {
32c0a6bc
MWO
2248 u64 contig_start = readahead_pos(rac);
2249 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
e65ef21e 2250
ba206a02 2251 contiguous_readpages(pagepool, nr, contig_start, contig_end,
390ed29b 2252 &em_cached, &bio_ctrl, &prev_em_start);
d1310b2e 2253 }
67c9684f 2254
125bac01
MX
2255 if (em_cached)
2256 free_extent_map(em_cached);
722c82ac 2257 submit_one_bio(&bio_ctrl);
d1310b2e 2258}
d1310b2e
CM
2259
2260/*
895586eb
MWO
2261 * basic invalidate_folio code, this waits on any locked or writeback
2262 * ranges corresponding to the folio, and then deletes any extent state
d1310b2e
CM
2263 * records from the tree
2264 */
895586eb
MWO
2265int extent_invalidate_folio(struct extent_io_tree *tree,
2266 struct folio *folio, size_t offset)
d1310b2e 2267{
2ac55d41 2268 struct extent_state *cached_state = NULL;
895586eb
MWO
2269 u64 start = folio_pos(folio);
2270 u64 end = start + folio_size(folio) - 1;
2271 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
d1310b2e 2272
829ddec9
QW
2273 /* This function is only called for the btree inode */
2274 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2275
fda2832f 2276 start += ALIGN(offset, blocksize);
d1310b2e
CM
2277 if (start > end)
2278 return 0;
2279
570eb97b 2280 lock_extent(tree, start, end, &cached_state);
895586eb 2281 folio_wait_writeback(folio);
829ddec9
QW
2282
2283 /*
2284 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2285 * so here we only need to unlock the extent range to free any
2286 * existing extent state.
2287 */
570eb97b 2288 unlock_extent(tree, start, end, &cached_state);
d1310b2e
CM
2289 return 0;
2290}
d1310b2e 2291
7b13b7b1 2292/*
f913cff3 2293 * a helper for release_folio, this tests for areas of the page that
7b13b7b1
CM
2294 * are locked or under IO and drops the related state bits if it is safe
2295 * to drop the page.
2296 */
29c68b2d 2297static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 2298 struct page *page, gfp_t mask)
7b13b7b1 2299{
4eee4fa4 2300 u64 start = page_offset(page);
09cbfeaf 2301 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
2302 int ret = 1;
2303
8882679e 2304 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 2305 ret = 0;
8882679e 2306 } else {
b71fb16b
JB
2307 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2308 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
2309
11ef160f 2310 /*
2766ff61
FM
2311 * At this point we can safely clear everything except the
2312 * locked bit, the nodatasum bit and the delalloc new bit.
2313 * The delalloc new bit will be cleared by ordered extent
2314 * completion.
11ef160f 2315 */
1d126800 2316 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
e3f24cc5
CM
2317
2318 /* if clear_extent_bit failed for enomem reasons,
2319 * we can't allow the release to continue.
2320 */
2321 if (ret < 0)
2322 ret = 0;
2323 else
2324 ret = 1;
7b13b7b1
CM
2325 }
2326 return ret;
2327}
7b13b7b1 2328
d1310b2e 2329/*
f913cff3 2330 * a helper for release_folio. As long as there are no locked extents
d1310b2e
CM
2331 * in the range corresponding to the page, both state records and extent
2332 * map records are removed
2333 */
477a30ba 2334int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
2335{
2336 struct extent_map *em;
4eee4fa4 2337 u64 start = page_offset(page);
09cbfeaf 2338 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
2339 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2340 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2341 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 2342
d0164adc 2343 if (gfpflags_allow_blocking(mask) &&
ee22184b 2344 page->mapping->host->i_size > SZ_16M) {
39b5637f 2345 u64 len;
70dec807 2346 while (start <= end) {
fbc2bd7e
FM
2347 struct btrfs_fs_info *fs_info;
2348 u64 cur_gen;
2349
39b5637f 2350 len = end - start + 1;
890871be 2351 write_lock(&map->lock);
39b5637f 2352 em = lookup_extent_mapping(map, start, len);
285190d9 2353 if (!em) {
890871be 2354 write_unlock(&map->lock);
70dec807
CM
2355 break;
2356 }
7f3c74fb
CM
2357 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2358 em->start != start) {
890871be 2359 write_unlock(&map->lock);
70dec807
CM
2360 free_extent_map(em);
2361 break;
2362 }
3d6448e6
FM
2363 if (test_range_bit(tree, em->start,
2364 extent_map_end(em) - 1,
2365 EXTENT_LOCKED, 0, NULL))
2366 goto next;
2367 /*
2368 * If it's not in the list of modified extents, used
2369 * by a fast fsync, we can remove it. If it's being
2370 * logged we can safely remove it since fsync took an
2371 * extra reference on the em.
2372 */
2373 if (list_empty(&em->list) ||
fbc2bd7e
FM
2374 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
2375 goto remove_em;
2376 /*
2377 * If it's in the list of modified extents, remove it
2378 * only if its generation is older then the current one,
2379 * in which case we don't need it for a fast fsync.
2380 * Otherwise don't remove it, we could be racing with an
2381 * ongoing fast fsync that could miss the new extent.
2382 */
2383 fs_info = btrfs_inode->root->fs_info;
2384 spin_lock(&fs_info->trans_lock);
2385 cur_gen = fs_info->generation;
2386 spin_unlock(&fs_info->trans_lock);
2387 if (em->generation >= cur_gen)
2388 goto next;
2389remove_em:
5e548b32
FM
2390 /*
2391 * We only remove extent maps that are not in the list of
2392 * modified extents or that are in the list but with a
2393 * generation lower then the current generation, so there
2394 * is no need to set the full fsync flag on the inode (it
2395 * hurts the fsync performance for workloads with a data
2396 * size that exceeds or is close to the system's memory).
2397 */
fbc2bd7e
FM
2398 remove_extent_mapping(map, em);
2399 /* once for the rb tree */
2400 free_extent_map(em);
3d6448e6 2401next:
70dec807 2402 start = extent_map_end(em);
890871be 2403 write_unlock(&map->lock);
70dec807
CM
2404
2405 /* once for us */
d1310b2e 2406 free_extent_map(em);
9f47eb54
PM
2407
2408 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 2409 }
d1310b2e 2410 }
29c68b2d 2411 return try_release_extent_state(tree, page, mask);
d1310b2e 2412}
d1310b2e 2413
4751832d
QW
2414/*
2415 * To cache previous fiemap extent
2416 *
2417 * Will be used for merging fiemap extent
2418 */
2419struct fiemap_cache {
2420 u64 offset;
2421 u64 phys;
2422 u64 len;
2423 u32 flags;
2424 bool cached;
2425};
2426
2427/*
2428 * Helper to submit fiemap extent.
2429 *
2430 * Will try to merge current fiemap extent specified by @offset, @phys,
2431 * @len and @flags with cached one.
2432 * And only when we fails to merge, cached one will be submitted as
2433 * fiemap extent.
2434 *
2435 * Return value is the same as fiemap_fill_next_extent().
2436 */
2437static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2438 struct fiemap_cache *cache,
2439 u64 offset, u64 phys, u64 len, u32 flags)
2440{
2441 int ret = 0;
2442
ac3c0d36
FM
2443 /* Set at the end of extent_fiemap(). */
2444 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2445
4751832d
QW
2446 if (!cache->cached)
2447 goto assign;
2448
2449 /*
2450 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 2451 * fiemap extent won't overlap with cached one.
4751832d
QW
2452 * Not recoverable.
2453 *
2454 * NOTE: Physical address can overlap, due to compression
2455 */
2456 if (cache->offset + cache->len > offset) {
2457 WARN_ON(1);
2458 return -EINVAL;
2459 }
2460
2461 /*
2462 * Only merges fiemap extents if
2463 * 1) Their logical addresses are continuous
2464 *
2465 * 2) Their physical addresses are continuous
2466 * So truly compressed (physical size smaller than logical size)
2467 * extents won't get merged with each other
2468 *
ac3c0d36 2469 * 3) Share same flags
4751832d
QW
2470 */
2471 if (cache->offset + cache->len == offset &&
2472 cache->phys + cache->len == phys &&
ac3c0d36 2473 cache->flags == flags) {
4751832d 2474 cache->len += len;
ac3c0d36 2475 return 0;
4751832d
QW
2476 }
2477
2478 /* Not mergeable, need to submit cached one */
2479 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2480 cache->len, cache->flags);
2481 cache->cached = false;
2482 if (ret)
2483 return ret;
2484assign:
2485 cache->cached = true;
2486 cache->offset = offset;
2487 cache->phys = phys;
2488 cache->len = len;
2489 cache->flags = flags;
ac3c0d36
FM
2490
2491 return 0;
4751832d
QW
2492}
2493
2494/*
848c23b7 2495 * Emit last fiemap cache
4751832d 2496 *
848c23b7
QW
2497 * The last fiemap cache may still be cached in the following case:
2498 * 0 4k 8k
2499 * |<- Fiemap range ->|
2500 * |<------------ First extent ----------->|
2501 *
2502 * In this case, the first extent range will be cached but not emitted.
2503 * So we must emit it before ending extent_fiemap().
4751832d 2504 */
5c5aff98 2505static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 2506 struct fiemap_cache *cache)
4751832d
QW
2507{
2508 int ret;
2509
2510 if (!cache->cached)
2511 return 0;
2512
4751832d
QW
2513 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2514 cache->len, cache->flags);
2515 cache->cached = false;
2516 if (ret > 0)
2517 ret = 0;
2518 return ret;
2519}
2520
ac3c0d36 2521static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
1506fcc8 2522{
ac3c0d36
FM
2523 struct extent_buffer *clone;
2524 struct btrfs_key key;
2525 int slot;
2526 int ret;
2527
2528 path->slots[0]++;
2529 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2530 return 0;
2531
2532 ret = btrfs_next_leaf(inode->root, path);
2533 if (ret != 0)
2534 return ret;
2535
2536 /*
2537 * Don't bother with cloning if there are no more file extent items for
2538 * our inode.
2539 */
2540 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2541 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2542 return 1;
2543
2544 /* See the comment at fiemap_search_slot() about why we clone. */
2545 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2546 if (!clone)
2547 return -ENOMEM;
2548
2549 slot = path->slots[0];
2550 btrfs_release_path(path);
2551 path->nodes[0] = clone;
2552 path->slots[0] = slot;
2553
2554 return 0;
2555}
2556
2557/*
2558 * Search for the first file extent item that starts at a given file offset or
2559 * the one that starts immediately before that offset.
2560 * Returns: 0 on success, < 0 on error, 1 if not found.
2561 */
2562static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2563 u64 file_offset)
2564{
2565 const u64 ino = btrfs_ino(inode);
facee0a0 2566 struct btrfs_root *root = inode->root;
ac3c0d36
FM
2567 struct extent_buffer *clone;
2568 struct btrfs_key key;
2569 int slot;
2570 int ret;
1506fcc8 2571
ac3c0d36
FM
2572 key.objectid = ino;
2573 key.type = BTRFS_EXTENT_DATA_KEY;
2574 key.offset = file_offset;
2575
2576 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2577 if (ret < 0)
2578 return ret;
2579
2580 if (ret > 0 && path->slots[0] > 0) {
2581 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2582 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2583 path->slots[0]--;
2584 }
2585
2586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2587 ret = btrfs_next_leaf(root, path);
2588 if (ret != 0)
2589 return ret;
2590
2591 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2592 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2593 return 1;
5911c8fe
DS
2594 }
2595
15c7745c 2596 /*
ac3c0d36
FM
2597 * We clone the leaf and use it during fiemap. This is because while
2598 * using the leaf we do expensive things like checking if an extent is
2599 * shared, which can take a long time. In order to prevent blocking
2600 * other tasks for too long, we use a clone of the leaf. We have locked
2601 * the file range in the inode's io tree, so we know none of our file
2602 * extent items can change. This way we avoid blocking other tasks that
2603 * want to insert items for other inodes in the same leaf or b+tree
2604 * rebalance operations (triggered for example when someone is trying
2605 * to push items into this leaf when trying to insert an item in a
2606 * neighbour leaf).
2607 * We also need the private clone because holding a read lock on an
2608 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2609 * when we call fiemap_fill_next_extent(), because that may cause a page
2610 * fault when filling the user space buffer with fiemap data.
15c7745c 2611 */
ac3c0d36
FM
2612 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2613 if (!clone)
2614 return -ENOMEM;
2615
2616 slot = path->slots[0];
2617 btrfs_release_path(path);
2618 path->nodes[0] = clone;
2619 path->slots[0] = slot;
2620
2621 return 0;
2622}
2623
2624/*
2625 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2626 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2627 * extent. The end offset (@end) is inclusive.
2628 */
2629static int fiemap_process_hole(struct btrfs_inode *inode,
2630 struct fiemap_extent_info *fieinfo,
2631 struct fiemap_cache *cache,
b3e744fe 2632 struct extent_state **delalloc_cached_state,
61dbb952 2633 struct btrfs_backref_share_check_ctx *backref_ctx,
ac3c0d36
FM
2634 u64 disk_bytenr, u64 extent_offset,
2635 u64 extent_gen,
ac3c0d36
FM
2636 u64 start, u64 end)
2637{
2638 const u64 i_size = i_size_read(&inode->vfs_inode);
ac3c0d36
FM
2639 u64 cur_offset = start;
2640 u64 last_delalloc_end = 0;
2641 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2642 bool checked_extent_shared = false;
2643 int ret;
4d479cf0 2644
ec29ed5b 2645 /*
ac3c0d36
FM
2646 * There can be no delalloc past i_size, so don't waste time looking for
2647 * it beyond i_size.
ec29ed5b 2648 */
ac3c0d36
FM
2649 while (cur_offset < end && cur_offset < i_size) {
2650 u64 delalloc_start;
2651 u64 delalloc_end;
2652 u64 prealloc_start;
2653 u64 prealloc_len = 0;
2654 bool delalloc;
2655
2656 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
b3e744fe 2657 delalloc_cached_state,
ac3c0d36
FM
2658 &delalloc_start,
2659 &delalloc_end);
2660 if (!delalloc)
2661 break;
2d324f59 2662
ec29ed5b 2663 /*
ac3c0d36
FM
2664 * If this is a prealloc extent we have to report every section
2665 * of it that has no delalloc.
ec29ed5b 2666 */
ac3c0d36
FM
2667 if (disk_bytenr != 0) {
2668 if (last_delalloc_end == 0) {
2669 prealloc_start = start;
2670 prealloc_len = delalloc_start - start;
2671 } else {
2672 prealloc_start = last_delalloc_end + 1;
2673 prealloc_len = delalloc_start - prealloc_start;
2674 }
2675 }
2676
2677 if (prealloc_len > 0) {
2678 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da 2679 ret = btrfs_is_data_extent_shared(inode,
84a7949d
FM
2680 disk_bytenr,
2681 extent_gen,
2682 backref_ctx);
ac3c0d36
FM
2683 if (ret < 0)
2684 return ret;
2685 else if (ret > 0)
2686 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2687
2688 checked_extent_shared = true;
2689 }
2690 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2691 disk_bytenr + extent_offset,
2692 prealloc_len, prealloc_flags);
2693 if (ret)
2694 return ret;
2695 extent_offset += prealloc_len;
2696 }
2697
2698 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2699 delalloc_end + 1 - delalloc_start,
2700 FIEMAP_EXTENT_DELALLOC |
2701 FIEMAP_EXTENT_UNKNOWN);
2702 if (ret)
2703 return ret;
2704
2705 last_delalloc_end = delalloc_end;
2706 cur_offset = delalloc_end + 1;
2707 extent_offset += cur_offset - delalloc_start;
2708 cond_resched();
2709 }
2710
2711 /*
2712 * Either we found no delalloc for the whole prealloc extent or we have
2713 * a prealloc extent that spans i_size or starts at or after i_size.
2714 */
2715 if (disk_bytenr != 0 && last_delalloc_end < end) {
2716 u64 prealloc_start;
2717 u64 prealloc_len;
2718
2719 if (last_delalloc_end == 0) {
2720 prealloc_start = start;
2721 prealloc_len = end + 1 - start;
2722 } else {
2723 prealloc_start = last_delalloc_end + 1;
2724 prealloc_len = end + 1 - prealloc_start;
2725 }
2726
2727 if (!checked_extent_shared && fieinfo->fi_extents_max) {
ceb707da
FM
2728 ret = btrfs_is_data_extent_shared(inode,
2729 disk_bytenr,
84a7949d 2730 extent_gen,
61dbb952 2731 backref_ctx);
ac3c0d36
FM
2732 if (ret < 0)
2733 return ret;
2734 else if (ret > 0)
2735 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2736 }
2737 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2738 disk_bytenr + extent_offset,
2739 prealloc_len, prealloc_flags);
2740 if (ret)
2741 return ret;
2742 }
2743
2744 return 0;
2745}
2746
2747static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2748 struct btrfs_path *path,
2749 u64 *last_extent_end_ret)
2750{
2751 const u64 ino = btrfs_ino(inode);
2752 struct btrfs_root *root = inode->root;
2753 struct extent_buffer *leaf;
2754 struct btrfs_file_extent_item *ei;
2755 struct btrfs_key key;
2756 u64 disk_bytenr;
2757 int ret;
2758
2759 /*
2760 * Lookup the last file extent. We're not using i_size here because
2761 * there might be preallocation past i_size.
2762 */
2763 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2764 /* There can't be a file extent item at offset (u64)-1 */
2765 ASSERT(ret != 0);
2766 if (ret < 0)
2767 return ret;
2768
2769 /*
2770 * For a non-existing key, btrfs_search_slot() always leaves us at a
2771 * slot > 0, except if the btree is empty, which is impossible because
2772 * at least it has the inode item for this inode and all the items for
2773 * the root inode 256.
2774 */
2775 ASSERT(path->slots[0] > 0);
2776 path->slots[0]--;
2777 leaf = path->nodes[0];
2778 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2779 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2780 /* No file extent items in the subvolume tree. */
2781 *last_extent_end_ret = 0;
2782 return 0;
975f84fe 2783 }
975f84fe 2784
ec29ed5b 2785 /*
ac3c0d36
FM
2786 * For an inline extent, the disk_bytenr is where inline data starts at,
2787 * so first check if we have an inline extent item before checking if we
2788 * have an implicit hole (disk_bytenr == 0).
ec29ed5b 2789 */
ac3c0d36
FM
2790 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2791 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2792 *last_extent_end_ret = btrfs_file_extent_end(path);
2793 return 0;
ec29ed5b
CM
2794 }
2795
ac3c0d36
FM
2796 /*
2797 * Find the last file extent item that is not a hole (when NO_HOLES is
2798 * not enabled). This should take at most 2 iterations in the worst
2799 * case: we have one hole file extent item at slot 0 of a leaf and
2800 * another hole file extent item as the last item in the previous leaf.
2801 * This is because we merge file extent items that represent holes.
2802 */
2803 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2804 while (disk_bytenr == 0) {
2805 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2806 if (ret < 0) {
2807 return ret;
2808 } else if (ret > 0) {
2809 /* No file extent items that are not holes. */
2810 *last_extent_end_ret = 0;
2811 return 0;
2812 }
2813 leaf = path->nodes[0];
2814 ei = btrfs_item_ptr(leaf, path->slots[0],
2815 struct btrfs_file_extent_item);
2816 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2817 }
ec29ed5b 2818
ac3c0d36
FM
2819 *last_extent_end_ret = btrfs_file_extent_end(path);
2820 return 0;
2821}
2822
2823int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2824 u64 start, u64 len)
2825{
2826 const u64 ino = btrfs_ino(inode);
2827 struct extent_state *cached_state = NULL;
b3e744fe 2828 struct extent_state *delalloc_cached_state = NULL;
ac3c0d36 2829 struct btrfs_path *path;
ac3c0d36 2830 struct fiemap_cache cache = { 0 };
61dbb952 2831 struct btrfs_backref_share_check_ctx *backref_ctx;
ac3c0d36
FM
2832 u64 last_extent_end;
2833 u64 prev_extent_end;
2834 u64 lockstart;
2835 u64 lockend;
2836 bool stopped = false;
2837 int ret;
2838
84a7949d 2839 backref_ctx = btrfs_alloc_backref_share_check_ctx();
ac3c0d36 2840 path = btrfs_alloc_path();
84a7949d 2841 if (!backref_ctx || !path) {
ac3c0d36 2842 ret = -ENOMEM;
1506fcc8
YS
2843 goto out;
2844 }
975f84fe 2845
ceb707da
FM
2846 lockstart = round_down(start, inode->root->fs_info->sectorsize);
2847 lockend = round_up(start + len, inode->root->fs_info->sectorsize);
ac3c0d36 2848 prev_extent_end = lockstart;
ea8efc74 2849
519b7e13 2850 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
570eb97b 2851 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
ea8efc74 2852
ac3c0d36
FM
2853 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2854 if (ret < 0)
2855 goto out_unlock;
2856 btrfs_release_path(path);
1506fcc8 2857
ac3c0d36
FM
2858 path->reada = READA_FORWARD;
2859 ret = fiemap_search_slot(inode, path, lockstart);
2860 if (ret < 0) {
2861 goto out_unlock;
2862 } else if (ret > 0) {
ea8efc74 2863 /*
ac3c0d36
FM
2864 * No file extent item found, but we may have delalloc between
2865 * the current offset and i_size. So check for that.
ea8efc74 2866 */
ac3c0d36
FM
2867 ret = 0;
2868 goto check_eof_delalloc;
2869 }
2870
2871 while (prev_extent_end < lockend) {
2872 struct extent_buffer *leaf = path->nodes[0];
2873 struct btrfs_file_extent_item *ei;
2874 struct btrfs_key key;
2875 u64 extent_end;
2876 u64 extent_len;
2877 u64 extent_offset = 0;
2878 u64 extent_gen;
2879 u64 disk_bytenr = 0;
2880 u64 flags = 0;
2881 int extent_type;
2882 u8 compression;
2883
2884 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2885 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2886 break;
2887
2888 extent_end = btrfs_file_extent_end(path);
1506fcc8 2889
ea8efc74 2890 /*
ac3c0d36
FM
2891 * The first iteration can leave us at an extent item that ends
2892 * before our range's start. Move to the next item.
ea8efc74 2893 */
ac3c0d36
FM
2894 if (extent_end <= lockstart)
2895 goto next_item;
fe09e16c 2896
877c1476
FM
2897 backref_ctx->curr_leaf_bytenr = leaf->start;
2898
ac3c0d36
FM
2899 /* We have in implicit hole (NO_HOLES feature enabled). */
2900 if (prev_extent_end < key.offset) {
2901 const u64 range_end = min(key.offset, lockend) - 1;
b8f164e3 2902
ac3c0d36 2903 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2904 &delalloc_cached_state,
61dbb952 2905 backref_ctx, 0, 0, 0,
ac3c0d36
FM
2906 prev_extent_end, range_end);
2907 if (ret < 0) {
2908 goto out_unlock;
2909 } else if (ret > 0) {
2910 /* fiemap_fill_next_extent() told us to stop. */
2911 stopped = true;
2912 break;
2913 }
1506fcc8 2914
ac3c0d36
FM
2915 /* We've reached the end of the fiemap range, stop. */
2916 if (key.offset >= lockend) {
2917 stopped = true;
2918 break;
2919 }
1506fcc8
YS
2920 }
2921
ac3c0d36
FM
2922 extent_len = extent_end - key.offset;
2923 ei = btrfs_item_ptr(leaf, path->slots[0],
2924 struct btrfs_file_extent_item);
2925 compression = btrfs_file_extent_compression(leaf, ei);
2926 extent_type = btrfs_file_extent_type(leaf, ei);
2927 extent_gen = btrfs_file_extent_generation(leaf, ei);
2928
2929 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2930 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2931 if (compression == BTRFS_COMPRESS_NONE)
2932 extent_offset = btrfs_file_extent_offset(leaf, ei);
ec29ed5b 2933 }
ac3c0d36
FM
2934
2935 if (compression != BTRFS_COMPRESS_NONE)
2936 flags |= FIEMAP_EXTENT_ENCODED;
2937
2938 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2939 flags |= FIEMAP_EXTENT_DATA_INLINE;
2940 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
2941 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
2942 extent_len, flags);
2943 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2944 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2945 &delalloc_cached_state,
61dbb952 2946 backref_ctx,
ac3c0d36 2947 disk_bytenr, extent_offset,
84a7949d
FM
2948 extent_gen, key.offset,
2949 extent_end - 1);
ac3c0d36
FM
2950 } else if (disk_bytenr == 0) {
2951 /* We have an explicit hole. */
2952 ret = fiemap_process_hole(inode, fieinfo, &cache,
b3e744fe 2953 &delalloc_cached_state,
61dbb952 2954 backref_ctx, 0, 0, 0,
ac3c0d36
FM
2955 key.offset, extent_end - 1);
2956 } else {
2957 /* We have a regular extent. */
2958 if (fieinfo->fi_extents_max) {
ceb707da 2959 ret = btrfs_is_data_extent_shared(inode,
ac3c0d36
FM
2960 disk_bytenr,
2961 extent_gen,
61dbb952 2962 backref_ctx);
ac3c0d36
FM
2963 if (ret < 0)
2964 goto out_unlock;
2965 else if (ret > 0)
2966 flags |= FIEMAP_EXTENT_SHARED;
2967 }
2968
2969 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
2970 disk_bytenr + extent_offset,
2971 extent_len, flags);
975f84fe 2972 }
ac3c0d36
FM
2973
2974 if (ret < 0) {
2975 goto out_unlock;
2976 } else if (ret > 0) {
2977 /* fiemap_fill_next_extent() told us to stop. */
2978 stopped = true;
2979 break;
26e726af 2980 }
09fbc1c8 2981
ac3c0d36
FM
2982 prev_extent_end = extent_end;
2983next_item:
09fbc1c8
FM
2984 if (fatal_signal_pending(current)) {
2985 ret = -EINTR;
ac3c0d36 2986 goto out_unlock;
09fbc1c8 2987 }
ac3c0d36
FM
2988
2989 ret = fiemap_next_leaf_item(inode, path);
2990 if (ret < 0) {
2991 goto out_unlock;
2992 } else if (ret > 0) {
2993 /* No more file extent items for this inode. */
2994 break;
2995 }
2996 cond_resched();
1506fcc8 2997 }
5911c8fe 2998
ac3c0d36
FM
2999check_eof_delalloc:
3000 /*
3001 * Release (and free) the path before emitting any final entries to
3002 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3003 * once we find no more file extent items exist, we may have a
3004 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3005 * faults when copying data to the user space buffer.
3006 */
3007 btrfs_free_path(path);
3008 path = NULL;
3009
3010 if (!stopped && prev_extent_end < lockend) {
b3e744fe
FM
3011 ret = fiemap_process_hole(inode, fieinfo, &cache,
3012 &delalloc_cached_state, backref_ctx,
84a7949d 3013 0, 0, 0, prev_extent_end, lockend - 1);
ac3c0d36
FM
3014 if (ret < 0)
3015 goto out_unlock;
3016 prev_extent_end = lockend;
3017 }
3018
3019 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3020 const u64 i_size = i_size_read(&inode->vfs_inode);
3021
3022 if (prev_extent_end < i_size) {
3023 u64 delalloc_start;
3024 u64 delalloc_end;
3025 bool delalloc;
3026
3027 delalloc = btrfs_find_delalloc_in_range(inode,
3028 prev_extent_end,
3029 i_size - 1,
b3e744fe 3030 &delalloc_cached_state,
ac3c0d36
FM
3031 &delalloc_start,
3032 &delalloc_end);
3033 if (!delalloc)
3034 cache.flags |= FIEMAP_EXTENT_LAST;
3035 } else {
3036 cache.flags |= FIEMAP_EXTENT_LAST;
3037 }
3038 }
3039
3040 ret = emit_last_fiemap_cache(fieinfo, &cache);
3041
3042out_unlock:
570eb97b 3043 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
519b7e13 3044 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
ac3c0d36 3045out:
b3e744fe 3046 free_extent_state(delalloc_cached_state);
84a7949d 3047 btrfs_free_backref_share_ctx(backref_ctx);
e02d48ea 3048 btrfs_free_path(path);
1506fcc8
YS
3049 return ret;
3050}
3051
727011e0
CM
3052static void __free_extent_buffer(struct extent_buffer *eb)
3053{
727011e0
CM
3054 kmem_cache_free(extent_buffer_cache, eb);
3055}
3056
7f26fb1c 3057static int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436 3058{
113fa05c 3059 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
db7f3436
JB
3060 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3061}
3062
8ff8466d 3063static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
db7f3436 3064{
8ff8466d 3065 struct btrfs_subpage *subpage;
db7f3436 3066
8ff8466d 3067 lockdep_assert_held(&page->mapping->private_lock);
db7f3436 3068
8ff8466d
QW
3069 if (PagePrivate(page)) {
3070 subpage = (struct btrfs_subpage *)page->private;
3071 if (atomic_read(&subpage->eb_refs))
3072 return true;
3d078efa
QW
3073 /*
3074 * Even there is no eb refs here, we may still have
3075 * end_page_read() call relying on page::private.
3076 */
3077 if (atomic_read(&subpage->readers))
3078 return true;
8ff8466d
QW
3079 }
3080 return false;
3081}
db7f3436 3082
8ff8466d
QW
3083static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
3084{
3085 struct btrfs_fs_info *fs_info = eb->fs_info;
3086 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3087
3088 /*
3089 * For mapped eb, we're going to change the page private, which should
3090 * be done under the private_lock.
3091 */
3092 if (mapped)
3093 spin_lock(&page->mapping->private_lock);
3094
3095 if (!PagePrivate(page)) {
5d2361db 3096 if (mapped)
8ff8466d
QW
3097 spin_unlock(&page->mapping->private_lock);
3098 return;
3099 }
3100
fbca46eb 3101 if (fs_info->nodesize >= PAGE_SIZE) {
5d2361db
FL
3102 /*
3103 * We do this since we'll remove the pages after we've
3104 * removed the eb from the radix tree, so we could race
3105 * and have this page now attached to the new eb. So
3106 * only clear page_private if it's still connected to
3107 * this eb.
3108 */
3109 if (PagePrivate(page) &&
3110 page->private == (unsigned long)eb) {
3111 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3112 BUG_ON(PageDirty(page));
3113 BUG_ON(PageWriteback(page));
db7f3436 3114 /*
5d2361db
FL
3115 * We need to make sure we haven't be attached
3116 * to a new eb.
db7f3436 3117 */
d1b89bc0 3118 detach_page_private(page);
db7f3436 3119 }
5d2361db
FL
3120 if (mapped)
3121 spin_unlock(&page->mapping->private_lock);
8ff8466d
QW
3122 return;
3123 }
3124
3125 /*
3126 * For subpage, we can have dummy eb with page private. In this case,
3127 * we can directly detach the private as such page is only attached to
3128 * one dummy eb, no sharing.
3129 */
3130 if (!mapped) {
3131 btrfs_detach_subpage(fs_info, page);
3132 return;
3133 }
3134
3135 btrfs_page_dec_eb_refs(fs_info, page);
3136
3137 /*
3138 * We can only detach the page private if there are no other ebs in the
3d078efa 3139 * page range and no unfinished IO.
8ff8466d
QW
3140 */
3141 if (!page_range_has_eb(fs_info, page))
3142 btrfs_detach_subpage(fs_info, page);
3143
3144 spin_unlock(&page->mapping->private_lock);
3145}
3146
3147/* Release all pages attached to the extent buffer */
3148static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3149{
3150 int i;
3151 int num_pages;
3152
3153 ASSERT(!extent_buffer_under_io(eb));
3154
3155 num_pages = num_extent_pages(eb);
3156 for (i = 0; i < num_pages; i++) {
3157 struct page *page = eb->pages[i];
3158
3159 if (!page)
3160 continue;
3161
3162 detach_extent_buffer_page(eb, page);
5d2361db 3163
01327610 3164 /* One for when we allocated the page */
09cbfeaf 3165 put_page(page);
d64766fd 3166 }
db7f3436
JB
3167}
3168
3169/*
3170 * Helper for releasing the extent buffer.
3171 */
3172static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3173{
55ac0139 3174 btrfs_release_extent_buffer_pages(eb);
a40246e8 3175 btrfs_leak_debug_del_eb(eb);
db7f3436
JB
3176 __free_extent_buffer(eb);
3177}
3178
f28491e0
JB
3179static struct extent_buffer *
3180__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 3181 unsigned long len)
d1310b2e
CM
3182{
3183 struct extent_buffer *eb = NULL;
3184
d1b5c567 3185 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
3186 eb->start = start;
3187 eb->len = len;
f28491e0 3188 eb->fs_info = fs_info;
196d59ab 3189 init_rwsem(&eb->lock);
b4ce94de 3190
a40246e8 3191 btrfs_leak_debug_add_eb(eb);
6d49ba1b 3192
3083ee2e 3193 spin_lock_init(&eb->refs_lock);
d1310b2e 3194 atomic_set(&eb->refs, 1);
727011e0 3195
deb67895 3196 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
d1310b2e
CM
3197
3198 return eb;
3199}
3200
2b48966a 3201struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 3202{
cc5e31a4 3203 int i;
815a51c7 3204 struct extent_buffer *new;
cc5e31a4 3205 int num_pages = num_extent_pages(src);
dd137dd1 3206 int ret;
815a51c7 3207
3f556f78 3208 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
3209 if (new == NULL)
3210 return NULL;
3211
62c053fb
QW
3212 /*
3213 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3214 * btrfs_release_extent_buffer() have different behavior for
3215 * UNMAPPED subpage extent buffer.
3216 */
3217 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3218
dd137dd1
STD
3219 ret = btrfs_alloc_page_array(num_pages, new->pages);
3220 if (ret) {
3221 btrfs_release_extent_buffer(new);
3222 return NULL;
3223 }
3224
815a51c7 3225 for (i = 0; i < num_pages; i++) {
760f991f 3226 int ret;
dd137dd1 3227 struct page *p = new->pages[i];
760f991f 3228
760f991f
QW
3229 ret = attach_extent_buffer_page(new, p, NULL);
3230 if (ret < 0) {
760f991f
QW
3231 btrfs_release_extent_buffer(new);
3232 return NULL;
3233 }
815a51c7 3234 WARN_ON(PageDirty(p));
815a51c7 3235 }
682a0bc5 3236 copy_extent_buffer_full(new, src);
92d83e94 3237 set_extent_buffer_uptodate(new);
815a51c7
JS
3238
3239 return new;
3240}
3241
0f331229
OS
3242struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3243 u64 start, unsigned long len)
815a51c7
JS
3244{
3245 struct extent_buffer *eb;
cc5e31a4
DS
3246 int num_pages;
3247 int i;
dd137dd1 3248 int ret;
815a51c7 3249
3f556f78 3250 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
3251 if (!eb)
3252 return NULL;
3253
65ad0104 3254 num_pages = num_extent_pages(eb);
dd137dd1
STD
3255 ret = btrfs_alloc_page_array(num_pages, eb->pages);
3256 if (ret)
3257 goto err;
3258
815a51c7 3259 for (i = 0; i < num_pages; i++) {
dd137dd1 3260 struct page *p = eb->pages[i];
09bc1f0f 3261
dd137dd1 3262 ret = attach_extent_buffer_page(eb, p, NULL);
09bc1f0f
QW
3263 if (ret < 0)
3264 goto err;
815a51c7 3265 }
dd137dd1 3266
815a51c7
JS
3267 set_extent_buffer_uptodate(eb);
3268 btrfs_set_header_nritems(eb, 0);
b0132a3b 3269 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
3270
3271 return eb;
3272err:
dd137dd1
STD
3273 for (i = 0; i < num_pages; i++) {
3274 if (eb->pages[i]) {
3275 detach_extent_buffer_page(eb, eb->pages[i]);
3276 __free_page(eb->pages[i]);
3277 }
09bc1f0f 3278 }
815a51c7
JS
3279 __free_extent_buffer(eb);
3280 return NULL;
3281}
3282
0f331229 3283struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3284 u64 start)
0f331229 3285{
da17066c 3286 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
3287}
3288
0b32f4bb
JB
3289static void check_buffer_tree_ref(struct extent_buffer *eb)
3290{
242e18c7 3291 int refs;
6bf9cd2e
BB
3292 /*
3293 * The TREE_REF bit is first set when the extent_buffer is added
3294 * to the radix tree. It is also reset, if unset, when a new reference
3295 * is created by find_extent_buffer.
0b32f4bb 3296 *
6bf9cd2e
BB
3297 * It is only cleared in two cases: freeing the last non-tree
3298 * reference to the extent_buffer when its STALE bit is set or
f913cff3 3299 * calling release_folio when the tree reference is the only reference.
0b32f4bb 3300 *
6bf9cd2e 3301 * In both cases, care is taken to ensure that the extent_buffer's
f913cff3 3302 * pages are not under io. However, release_folio can be concurrently
6bf9cd2e
BB
3303 * called with creating new references, which is prone to race
3304 * conditions between the calls to check_buffer_tree_ref in those
3305 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 3306 *
6bf9cd2e
BB
3307 * The actual lifetime of the extent_buffer in the radix tree is
3308 * adequately protected by the refcount, but the TREE_REF bit and
3309 * its corresponding reference are not. To protect against this
3310 * class of races, we call check_buffer_tree_ref from the codepaths
113fa05c
CH
3311 * which trigger io. Note that once io is initiated, TREE_REF can no
3312 * longer be cleared, so that is the moment at which any such race is
3313 * best fixed.
0b32f4bb 3314 */
242e18c7
CM
3315 refs = atomic_read(&eb->refs);
3316 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3317 return;
3318
594831c4
JB
3319 spin_lock(&eb->refs_lock);
3320 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 3321 atomic_inc(&eb->refs);
594831c4 3322 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3323}
3324
2457aec6
MG
3325static void mark_extent_buffer_accessed(struct extent_buffer *eb,
3326 struct page *accessed)
5df4235e 3327{
cc5e31a4 3328 int num_pages, i;
5df4235e 3329
0b32f4bb
JB
3330 check_buffer_tree_ref(eb);
3331
65ad0104 3332 num_pages = num_extent_pages(eb);
5df4235e 3333 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
3334 struct page *p = eb->pages[i];
3335
2457aec6
MG
3336 if (p != accessed)
3337 mark_page_accessed(p);
5df4235e
JB
3338 }
3339}
3340
f28491e0
JB
3341struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3342 u64 start)
452c75c3
CS
3343{
3344 struct extent_buffer *eb;
3345
2f3186d8
QW
3346 eb = find_extent_buffer_nolock(fs_info, start);
3347 if (!eb)
3348 return NULL;
3349 /*
3350 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3351 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3352 * another task running free_extent_buffer() might have seen that flag
3353 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3354 * writeback flags not set) and it's still in the tree (flag
3355 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3356 * decrementing the extent buffer's reference count twice. So here we
3357 * could race and increment the eb's reference count, clear its stale
3358 * flag, mark it as dirty and drop our reference before the other task
3359 * finishes executing free_extent_buffer, which would later result in
3360 * an attempt to free an extent buffer that is dirty.
3361 */
3362 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3363 spin_lock(&eb->refs_lock);
3364 spin_unlock(&eb->refs_lock);
452c75c3 3365 }
2f3186d8
QW
3366 mark_extent_buffer_accessed(eb, NULL);
3367 return eb;
452c75c3
CS
3368}
3369
faa2dbf0
JB
3370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3371struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 3372 u64 start)
faa2dbf0
JB
3373{
3374 struct extent_buffer *eb, *exists = NULL;
3375 int ret;
3376
3377 eb = find_extent_buffer(fs_info, start);
3378 if (eb)
3379 return eb;
da17066c 3380 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 3381 if (!eb)
b6293c82 3382 return ERR_PTR(-ENOMEM);
faa2dbf0 3383 eb->fs_info = fs_info;
01cd3909
DS
3384again:
3385 ret = radix_tree_preload(GFP_NOFS);
3386 if (ret) {
3387 exists = ERR_PTR(ret);
3388 goto free_eb;
3389 }
3390 spin_lock(&fs_info->buffer_lock);
3391 ret = radix_tree_insert(&fs_info->buffer_radix,
3392 start >> fs_info->sectorsize_bits, eb);
3393 spin_unlock(&fs_info->buffer_lock);
3394 radix_tree_preload_end();
3395 if (ret == -EEXIST) {
3396 exists = find_extent_buffer(fs_info, start);
3397 if (exists)
faa2dbf0 3398 goto free_eb;
01cd3909
DS
3399 else
3400 goto again;
3401 }
faa2dbf0
JB
3402 check_buffer_tree_ref(eb);
3403 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3404
faa2dbf0
JB
3405 return eb;
3406free_eb:
3407 btrfs_release_extent_buffer(eb);
3408 return exists;
3409}
3410#endif
3411
81982210
QW
3412static struct extent_buffer *grab_extent_buffer(
3413 struct btrfs_fs_info *fs_info, struct page *page)
c0f0a9e7
QW
3414{
3415 struct extent_buffer *exists;
3416
81982210
QW
3417 /*
3418 * For subpage case, we completely rely on radix tree to ensure we
3419 * don't try to insert two ebs for the same bytenr. So here we always
3420 * return NULL and just continue.
3421 */
fbca46eb 3422 if (fs_info->nodesize < PAGE_SIZE)
81982210
QW
3423 return NULL;
3424
c0f0a9e7
QW
3425 /* Page not yet attached to an extent buffer */
3426 if (!PagePrivate(page))
3427 return NULL;
3428
3429 /*
3430 * We could have already allocated an eb for this page and attached one
3431 * so lets see if we can get a ref on the existing eb, and if we can we
3432 * know it's good and we can just return that one, else we know we can
3433 * just overwrite page->private.
3434 */
3435 exists = (struct extent_buffer *)page->private;
3436 if (atomic_inc_not_zero(&exists->refs))
3437 return exists;
3438
3439 WARN_ON(PageDirty(page));
3440 detach_page_private(page);
3441 return NULL;
3442}
3443
fbca46eb
QW
3444static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3445{
3446 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3447 btrfs_err(fs_info, "bad tree block start %llu", start);
3448 return -EINVAL;
3449 }
3450
3451 if (fs_info->nodesize < PAGE_SIZE &&
3452 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3453 btrfs_err(fs_info,
3454 "tree block crosses page boundary, start %llu nodesize %u",
3455 start, fs_info->nodesize);
3456 return -EINVAL;
3457 }
3458 if (fs_info->nodesize >= PAGE_SIZE &&
1280d2d1 3459 !PAGE_ALIGNED(start)) {
fbca46eb
QW
3460 btrfs_err(fs_info,
3461 "tree block is not page aligned, start %llu nodesize %u",
3462 start, fs_info->nodesize);
3463 return -EINVAL;
3464 }
3465 return 0;
3466}
3467
f28491e0 3468struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3fbaf258 3469 u64 start, u64 owner_root, int level)
d1310b2e 3470{
da17066c 3471 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
3472 int num_pages;
3473 int i;
09cbfeaf 3474 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 3475 struct extent_buffer *eb;
6af118ce 3476 struct extent_buffer *exists = NULL;
d1310b2e 3477 struct page *p;
f28491e0 3478 struct address_space *mapping = fs_info->btree_inode->i_mapping;
52ea5bfb 3479 struct btrfs_subpage *prealloc = NULL;
b40130b2 3480 u64 lockdep_owner = owner_root;
d1310b2e 3481 int uptodate = 1;
19fe0a8b 3482 int ret;
d1310b2e 3483
fbca46eb 3484 if (check_eb_alignment(fs_info, start))
c871b0f2 3485 return ERR_PTR(-EINVAL);
c871b0f2 3486
e9306ad4
QW
3487#if BITS_PER_LONG == 32
3488 if (start >= MAX_LFS_FILESIZE) {
3489 btrfs_err_rl(fs_info,
3490 "extent buffer %llu is beyond 32bit page cache limit", start);
3491 btrfs_err_32bit_limit(fs_info);
3492 return ERR_PTR(-EOVERFLOW);
3493 }
3494 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3495 btrfs_warn_32bit_limit(fs_info);
3496#endif
3497
f28491e0 3498 eb = find_extent_buffer(fs_info, start);
452c75c3 3499 if (eb)
6af118ce 3500 return eb;
6af118ce 3501
23d79d81 3502 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 3503 if (!eb)
c871b0f2 3504 return ERR_PTR(-ENOMEM);
b40130b2
JB
3505
3506 /*
3507 * The reloc trees are just snapshots, so we need them to appear to be
3508 * just like any other fs tree WRT lockdep.
3509 */
3510 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3511 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3512
3513 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
d1310b2e 3514
65ad0104 3515 num_pages = num_extent_pages(eb);
760f991f 3516
52ea5bfb
QW
3517 /*
3518 * Preallocate page->private for subpage case, so that we won't
3519 * allocate memory with private_lock nor page lock hold.
3520 *
3521 * The memory will be freed by attach_extent_buffer_page() or freed
3522 * manually if we exit earlier.
3523 */
3524 if (fs_info->nodesize < PAGE_SIZE) {
3525 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3526 if (IS_ERR(prealloc)) {
3527 exists = ERR_CAST(prealloc);
3528 goto free_eb;
3529 }
3530 }
3531
3532 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 3533 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
3534 if (!p) {
3535 exists = ERR_PTR(-ENOMEM);
52ea5bfb 3536 btrfs_free_subpage(prealloc);
6af118ce 3537 goto free_eb;
c871b0f2 3538 }
4f2de97a
JB
3539
3540 spin_lock(&mapping->private_lock);
81982210 3541 exists = grab_extent_buffer(fs_info, p);
c0f0a9e7
QW
3542 if (exists) {
3543 spin_unlock(&mapping->private_lock);
3544 unlock_page(p);
3545 put_page(p);
3546 mark_extent_buffer_accessed(exists, p);
760f991f 3547 btrfs_free_subpage(prealloc);
c0f0a9e7 3548 goto free_eb;
d1310b2e 3549 }
760f991f
QW
3550 /* Should not fail, as we have preallocated the memory */
3551 ret = attach_extent_buffer_page(eb, p, prealloc);
3552 ASSERT(!ret);
8ff8466d
QW
3553 /*
3554 * To inform we have extra eb under allocation, so that
3555 * detach_extent_buffer_page() won't release the page private
3556 * when the eb hasn't yet been inserted into radix tree.
3557 *
3558 * The ref will be decreased when the eb released the page, in
3559 * detach_extent_buffer_page().
3560 * Thus needs no special handling in error path.
3561 */
3562 btrfs_page_inc_eb_refs(fs_info, p);
4f2de97a 3563 spin_unlock(&mapping->private_lock);
760f991f 3564
1e5eb3d6 3565 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
727011e0 3566 eb->pages[i] = p;
5a963419 3567 if (!btrfs_page_test_uptodate(fs_info, p, eb->start, eb->len))
d1310b2e 3568 uptodate = 0;
eb14ab8e
CM
3569
3570 /*
b16d011e
NB
3571 * We can't unlock the pages just yet since the extent buffer
3572 * hasn't been properly inserted in the radix tree, this
f913cff3 3573 * opens a race with btree_release_folio which can free a page
b16d011e
NB
3574 * while we are still filling in all pages for the buffer and
3575 * we could crash.
eb14ab8e 3576 */
d1310b2e
CM
3577 }
3578 if (uptodate)
b4ce94de 3579 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
01cd3909
DS
3580again:
3581 ret = radix_tree_preload(GFP_NOFS);
3582 if (ret) {
3583 exists = ERR_PTR(ret);
3584 goto free_eb;
3585 }
3586
3587 spin_lock(&fs_info->buffer_lock);
3588 ret = radix_tree_insert(&fs_info->buffer_radix,
3589 start >> fs_info->sectorsize_bits, eb);
3590 spin_unlock(&fs_info->buffer_lock);
3591 radix_tree_preload_end();
3592 if (ret == -EEXIST) {
3593 exists = find_extent_buffer(fs_info, start);
3594 if (exists)
452c75c3 3595 goto free_eb;
01cd3909
DS
3596 else
3597 goto again;
3598 }
6af118ce 3599 /* add one reference for the tree */
0b32f4bb 3600 check_buffer_tree_ref(eb);
34b41ace 3601 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
3602
3603 /*
b16d011e 3604 * Now it's safe to unlock the pages because any calls to
f913cff3 3605 * btree_release_folio will correctly detect that a page belongs to a
b16d011e 3606 * live buffer and won't free them prematurely.
eb14ab8e 3607 */
28187ae5
NB
3608 for (i = 0; i < num_pages; i++)
3609 unlock_page(eb->pages[i]);
d1310b2e
CM
3610 return eb;
3611
6af118ce 3612free_eb:
5ca64f45 3613 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
3614 for (i = 0; i < num_pages; i++) {
3615 if (eb->pages[i])
3616 unlock_page(eb->pages[i]);
3617 }
eb14ab8e 3618
897ca6e9 3619 btrfs_release_extent_buffer(eb);
6af118ce 3620 return exists;
d1310b2e 3621}
d1310b2e 3622
3083ee2e
JB
3623static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3624{
3625 struct extent_buffer *eb =
3626 container_of(head, struct extent_buffer, rcu_head);
3627
3628 __free_extent_buffer(eb);
3629}
3630
f7a52a40 3631static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 3632 __releases(&eb->refs_lock)
3083ee2e 3633{
07e21c4d
NB
3634 lockdep_assert_held(&eb->refs_lock);
3635
3083ee2e
JB
3636 WARN_ON(atomic_read(&eb->refs) == 0);
3637 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 3638 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 3639 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 3640
815a51c7 3641 spin_unlock(&eb->refs_lock);
3083ee2e 3642
01cd3909
DS
3643 spin_lock(&fs_info->buffer_lock);
3644 radix_tree_delete(&fs_info->buffer_radix,
3645 eb->start >> fs_info->sectorsize_bits);
3646 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
3647 } else {
3648 spin_unlock(&eb->refs_lock);
815a51c7 3649 }
3083ee2e 3650
a40246e8 3651 btrfs_leak_debug_del_eb(eb);
3083ee2e 3652 /* Should be safe to release our pages at this point */
55ac0139 3653 btrfs_release_extent_buffer_pages(eb);
bcb7e449 3654#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 3655 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
3656 __free_extent_buffer(eb);
3657 return 1;
3658 }
3659#endif
3083ee2e 3660 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 3661 return 1;
3083ee2e
JB
3662 }
3663 spin_unlock(&eb->refs_lock);
e64860aa
JB
3664
3665 return 0;
3083ee2e
JB
3666}
3667
d1310b2e
CM
3668void free_extent_buffer(struct extent_buffer *eb)
3669{
242e18c7 3670 int refs;
d1310b2e
CM
3671 if (!eb)
3672 return;
3673
e5677f05 3674 refs = atomic_read(&eb->refs);
242e18c7 3675 while (1) {
46cc775e
NB
3676 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3677 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3678 refs == 1))
242e18c7 3679 break;
e5677f05 3680 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
242e18c7
CM
3681 return;
3682 }
3683
3083ee2e
JB
3684 spin_lock(&eb->refs_lock);
3685 if (atomic_read(&eb->refs) == 2 &&
3686 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 3687 !extent_buffer_under_io(eb) &&
3083ee2e
JB
3688 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3689 atomic_dec(&eb->refs);
3690
3691 /*
3692 * I know this is terrible, but it's temporary until we stop tracking
3693 * the uptodate bits and such for the extent buffers.
3694 */
f7a52a40 3695 release_extent_buffer(eb);
3083ee2e
JB
3696}
3697
3698void free_extent_buffer_stale(struct extent_buffer *eb)
3699{
3700 if (!eb)
d1310b2e
CM
3701 return;
3702
3083ee2e
JB
3703 spin_lock(&eb->refs_lock);
3704 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3705
0b32f4bb 3706 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
3707 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3708 atomic_dec(&eb->refs);
f7a52a40 3709 release_extent_buffer(eb);
d1310b2e 3710}
d1310b2e 3711
0d27797e
QW
3712static void btree_clear_page_dirty(struct page *page)
3713{
3714 ASSERT(PageDirty(page));
3715 ASSERT(PageLocked(page));
3716 clear_page_dirty_for_io(page);
3717 xa_lock_irq(&page->mapping->i_pages);
3718 if (!PageDirty(page))
3719 __xa_clear_mark(&page->mapping->i_pages,
3720 page_index(page), PAGECACHE_TAG_DIRTY);
3721 xa_unlock_irq(&page->mapping->i_pages);
3722}
3723
3724static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3725{
3726 struct btrfs_fs_info *fs_info = eb->fs_info;
3727 struct page *page = eb->pages[0];
3728 bool last;
3729
3730 /* btree_clear_page_dirty() needs page locked */
3731 lock_page(page);
3732 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
3733 eb->len);
3734 if (last)
3735 btree_clear_page_dirty(page);
3736 unlock_page(page);
3737 WARN_ON(atomic_read(&eb->refs) == 0);
3738}
3739
98c8d683
JB
3740void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3741 struct extent_buffer *eb)
d1310b2e 3742{
98c8d683 3743 struct btrfs_fs_info *fs_info = eb->fs_info;
cc5e31a4
DS
3744 int i;
3745 int num_pages;
d1310b2e
CM
3746 struct page *page;
3747
98c8d683
JB
3748 btrfs_assert_tree_write_locked(eb);
3749
3750 if (trans && btrfs_header_generation(eb) != trans->transid)
3751 return;
3752
3753 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3754 return;
3755
3756 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3757 fs_info->dirty_metadata_batch);
3758
fbca46eb 3759 if (eb->fs_info->nodesize < PAGE_SIZE)
0d27797e
QW
3760 return clear_subpage_extent_buffer_dirty(eb);
3761
65ad0104 3762 num_pages = num_extent_pages(eb);
d1310b2e
CM
3763
3764 for (i = 0; i < num_pages; i++) {
fb85fc9a 3765 page = eb->pages[i];
b9473439 3766 if (!PageDirty(page))
d2c3f4f6 3767 continue;
a61e6f29 3768 lock_page(page);
0d27797e 3769 btree_clear_page_dirty(page);
a61e6f29 3770 unlock_page(page);
d1310b2e 3771 }
0b32f4bb 3772 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 3773}
d1310b2e 3774
f18cc978 3775void set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 3776{
cc5e31a4
DS
3777 int i;
3778 int num_pages;
abb57ef3 3779 bool was_dirty;
d1310b2e 3780
0b32f4bb
JB
3781 check_buffer_tree_ref(eb);
3782
b9473439 3783 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 3784
65ad0104 3785 num_pages = num_extent_pages(eb);
3083ee2e 3786 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
3787 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3788
0d27797e 3789 if (!was_dirty) {
fbca46eb 3790 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
51995c39 3791
0d27797e
QW
3792 /*
3793 * For subpage case, we can have other extent buffers in the
3794 * same page, and in clear_subpage_extent_buffer_dirty() we
3795 * have to clear page dirty without subpage lock held.
3796 * This can cause race where our page gets dirty cleared after
3797 * we just set it.
3798 *
3799 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3800 * its page for other reasons, we can use page lock to prevent
3801 * the above race.
3802 */
3803 if (subpage)
3804 lock_page(eb->pages[0]);
3805 for (i = 0; i < num_pages; i++)
3806 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
3807 eb->start, eb->len);
3808 if (subpage)
3809 unlock_page(eb->pages[0]);
f18cc978
CH
3810 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3811 eb->len,
3812 eb->fs_info->dirty_metadata_batch);
0d27797e 3813 }
51995c39
LB
3814#ifdef CONFIG_BTRFS_DEBUG
3815 for (i = 0; i < num_pages; i++)
3816 ASSERT(PageDirty(eb->pages[i]));
3817#endif
d1310b2e 3818}
d1310b2e 3819
69ba3927 3820void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 3821{
251f2acc 3822 struct btrfs_fs_info *fs_info = eb->fs_info;
1259ab75 3823 struct page *page;
cc5e31a4 3824 int num_pages;
251f2acc 3825 int i;
1259ab75 3826
b4ce94de 3827 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 3828 num_pages = num_extent_pages(eb);
1259ab75 3829 for (i = 0; i < num_pages; i++) {
fb85fc9a 3830 page = eb->pages[i];
fbca46eb
QW
3831 if (!page)
3832 continue;
3833
3834 /*
3835 * This is special handling for metadata subpage, as regular
3836 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3837 */
3838 if (fs_info->nodesize >= PAGE_SIZE)
3839 ClearPageUptodate(page);
3840 else
3841 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
3842 eb->len);
1259ab75 3843 }
1259ab75
CM
3844}
3845
09c25a8c 3846void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 3847{
251f2acc 3848 struct btrfs_fs_info *fs_info = eb->fs_info;
d1310b2e 3849 struct page *page;
cc5e31a4 3850 int num_pages;
251f2acc 3851 int i;
d1310b2e 3852
0b32f4bb 3853 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 3854 num_pages = num_extent_pages(eb);
d1310b2e 3855 for (i = 0; i < num_pages; i++) {
fb85fc9a 3856 page = eb->pages[i];
fbca46eb
QW
3857
3858 /*
3859 * This is special handling for metadata subpage, as regular
3860 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3861 */
3862 if (fs_info->nodesize >= PAGE_SIZE)
3863 SetPageUptodate(page);
3864 else
3865 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
3866 eb->len);
d1310b2e 3867 }
d1310b2e 3868}
d1310b2e 3869
046b562b
CH
3870static void extent_buffer_read_end_io(struct btrfs_bio *bbio)
3871{
3872 struct extent_buffer *eb = bbio->private;
d7172f52 3873 struct btrfs_fs_info *fs_info = eb->fs_info;
046b562b
CH
3874 bool uptodate = !bbio->bio.bi_status;
3875 struct bvec_iter_all iter_all;
3876 struct bio_vec *bvec;
3877 u32 bio_offset = 0;
3878
046b562b
CH
3879 eb->read_mirror = bbio->mirror_num;
3880
3881 if (uptodate &&
3882 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3883 uptodate = false;
3884
3885 if (uptodate) {
3886 set_extent_buffer_uptodate(eb);
3887 } else {
3888 clear_extent_buffer_uptodate(eb);
3889 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3890 }
3891
3892 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
d7172f52
CH
3893 u64 start = eb->start + bio_offset;
3894 struct page *page = bvec->bv_page;
3895 u32 len = bvec->bv_len;
046b562b 3896
d7172f52
CH
3897 if (uptodate)
3898 btrfs_page_set_uptodate(fs_info, page, start, len);
3899 else
3900 btrfs_page_clear_uptodate(fs_info, page, start, len);
3901
3902 bio_offset += len;
3d66b4b2 3903 }
d7172f52
CH
3904
3905 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3906 smp_mb__after_atomic();
3907 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
046b562b
CH
3908 free_extent_buffer(eb);
3909
3910 bio_put(&bbio->bio);
3911}
3912
d7172f52
CH
3913int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3914 struct btrfs_tree_parent_check *check)
b78b98e0
CH
3915{
3916 int num_pages = num_extent_pages(eb), i;
3917 struct btrfs_bio *bbio;
3918
d7172f52
CH
3919 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3920 return 0;
3921
3922 /*
3923 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3924 * operation, which could potentially still be in flight. In this case
3925 * we simply want to return an error.
3926 */
3927 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3928 return -EIO;
3929
3930 /* Someone else is already reading the buffer, just wait for it. */
3931 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3932 goto done;
3933
b78b98e0
CH
3934 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3935 eb->read_mirror = 0;
b78b98e0 3936 check_buffer_tree_ref(eb);
113fa05c 3937 atomic_inc(&eb->refs);
b78b98e0
CH
3938
3939 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3940 REQ_OP_READ | REQ_META, eb->fs_info,
046b562b 3941 extent_buffer_read_end_io, eb);
b78b98e0
CH
3942 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3943 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3944 bbio->file_offset = eb->start;
3945 memcpy(&bbio->parent_check, check, sizeof(*check));
3946 if (eb->fs_info->nodesize < PAGE_SIZE) {
3947 __bio_add_page(&bbio->bio, eb->pages[0], eb->len,
3948 eb->start - page_offset(eb->pages[0]));
3949 } else {
011134f4 3950 for (i = 0; i < num_pages; i++)
b78b98e0 3951 __bio_add_page(&bbio->bio, eb->pages[i], PAGE_SIZE, 0);
b78b98e0
CH
3952 }
3953 btrfs_submit_bio(bbio, mirror_num);
b78b98e0 3954
d7172f52
CH
3955done:
3956 if (wait == WAIT_COMPLETE) {
3957 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3958 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
55173337 3959 return -EIO;
d1310b2e 3960 }
d397712b 3961
55173337 3962 return 0;
d1310b2e 3963}
d1310b2e 3964
f98b6215
QW
3965static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3966 unsigned long len)
3967{
3968 btrfs_warn(eb->fs_info,
3969 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
3970 eb->start, eb->len, start, len);
3971 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3972
3973 return true;
3974}
3975
3976/*
3977 * Check if the [start, start + len) range is valid before reading/writing
3978 * the eb.
3979 * NOTE: @start and @len are offset inside the eb, not logical address.
3980 *
3981 * Caller should not touch the dst/src memory if this function returns error.
3982 */
3983static inline int check_eb_range(const struct extent_buffer *eb,
3984 unsigned long start, unsigned long len)
3985{
3986 unsigned long offset;
3987
3988 /* start, start + len should not go beyond eb->len nor overflow */
3989 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3990 return report_eb_range(eb, start, len);
3991
3992 return false;
3993}
3994
1cbb1f45
JM
3995void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3996 unsigned long start, unsigned long len)
d1310b2e
CM
3997{
3998 size_t cur;
3999 size_t offset;
4000 struct page *page;
4001 char *kaddr;
4002 char *dst = (char *)dstv;
884b07d0 4003 unsigned long i = get_eb_page_index(start);
d1310b2e 4004
f98b6215 4005 if (check_eb_range(eb, start, len))
f716abd5 4006 return;
d1310b2e 4007
884b07d0 4008 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4009
d397712b 4010 while (len > 0) {
fb85fc9a 4011 page = eb->pages[i];
d1310b2e 4012
09cbfeaf 4013 cur = min(len, (PAGE_SIZE - offset));
a6591715 4014 kaddr = page_address(page);
d1310b2e 4015 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4016
4017 dst += cur;
4018 len -= cur;
4019 offset = 0;
4020 i++;
4021 }
4022}
d1310b2e 4023
a48b73ec
JB
4024int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4025 void __user *dstv,
4026 unsigned long start, unsigned long len)
550ac1d8
GH
4027{
4028 size_t cur;
4029 size_t offset;
4030 struct page *page;
4031 char *kaddr;
4032 char __user *dst = (char __user *)dstv;
884b07d0 4033 unsigned long i = get_eb_page_index(start);
550ac1d8
GH
4034 int ret = 0;
4035
4036 WARN_ON(start > eb->len);
4037 WARN_ON(start + len > eb->start + eb->len);
4038
884b07d0 4039 offset = get_eb_offset_in_page(eb, start);
550ac1d8
GH
4040
4041 while (len > 0) {
fb85fc9a 4042 page = eb->pages[i];
550ac1d8 4043
09cbfeaf 4044 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 4045 kaddr = page_address(page);
a48b73ec 4046 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
4047 ret = -EFAULT;
4048 break;
4049 }
4050
4051 dst += cur;
4052 len -= cur;
4053 offset = 0;
4054 i++;
4055 }
4056
4057 return ret;
4058}
4059
1cbb1f45
JM
4060int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4061 unsigned long start, unsigned long len)
d1310b2e
CM
4062{
4063 size_t cur;
4064 size_t offset;
4065 struct page *page;
4066 char *kaddr;
4067 char *ptr = (char *)ptrv;
884b07d0 4068 unsigned long i = get_eb_page_index(start);
d1310b2e
CM
4069 int ret = 0;
4070
f98b6215
QW
4071 if (check_eb_range(eb, start, len))
4072 return -EINVAL;
d1310b2e 4073
884b07d0 4074 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4075
d397712b 4076 while (len > 0) {
fb85fc9a 4077 page = eb->pages[i];
d1310b2e 4078
09cbfeaf 4079 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 4080
a6591715 4081 kaddr = page_address(page);
d1310b2e 4082 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4083 if (ret)
4084 break;
4085
4086 ptr += cur;
4087 len -= cur;
4088 offset = 0;
4089 i++;
4090 }
4091 return ret;
4092}
d1310b2e 4093
b8f95771
QW
4094/*
4095 * Check that the extent buffer is uptodate.
4096 *
4097 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4098 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4099 */
4100static void assert_eb_page_uptodate(const struct extent_buffer *eb,
4101 struct page *page)
4102{
4103 struct btrfs_fs_info *fs_info = eb->fs_info;
4104
a50e1fcb
JB
4105 /*
4106 * If we are using the commit root we could potentially clear a page
4107 * Uptodate while we're using the extent buffer that we've previously
4108 * looked up. We don't want to complain in this case, as the page was
4109 * valid before, we just didn't write it out. Instead we want to catch
4110 * the case where we didn't actually read the block properly, which
011134f4 4111 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
a50e1fcb 4112 */
011134f4
CH
4113 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4114 return;
b8f95771 4115
011134f4 4116 if (fs_info->nodesize < PAGE_SIZE) {
75258f20
QW
4117 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, page,
4118 eb->start, eb->len)))
4119 btrfs_subpage_dump_bitmap(fs_info, page, eb->start, eb->len);
b8f95771 4120 } else {
011134f4 4121 WARN_ON(!PageUptodate(page));
b8f95771
QW
4122 }
4123}
4124
13840f3f
QW
4125static void __write_extent_buffer(const struct extent_buffer *eb,
4126 const void *srcv, unsigned long start,
4127 unsigned long len, bool use_memmove)
d1310b2e
CM
4128{
4129 size_t cur;
4130 size_t offset;
4131 struct page *page;
4132 char *kaddr;
4133 char *src = (char *)srcv;
884b07d0 4134 unsigned long i = get_eb_page_index(start);
13840f3f
QW
4135 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4136 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
d1310b2e 4137
d3575156
NA
4138 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
4139
f98b6215
QW
4140 if (check_eb_range(eb, start, len))
4141 return;
d1310b2e 4142
884b07d0 4143 offset = get_eb_offset_in_page(eb, start);
d1310b2e 4144
d397712b 4145 while (len > 0) {
fb85fc9a 4146 page = eb->pages[i];
13840f3f
QW
4147 if (check_uptodate)
4148 assert_eb_page_uptodate(eb, page);
d1310b2e 4149
09cbfeaf 4150 cur = min(len, PAGE_SIZE - offset);
a6591715 4151 kaddr = page_address(page);
13840f3f
QW
4152 if (use_memmove)
4153 memmove(kaddr + offset, src, cur);
4154 else
4155 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4156
4157 src += cur;
4158 len -= cur;
4159 offset = 0;
4160 i++;
4161 }
4162}
d1310b2e 4163
13840f3f
QW
4164void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4165 unsigned long start, unsigned long len)
4166{
4167 return __write_extent_buffer(eb, srcv, start, len, false);
4168}
4169
cb22964f
QW
4170static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4171 unsigned long start, unsigned long len)
d1310b2e 4172{
cb22964f 4173 unsigned long cur = start;
d1310b2e 4174
cb22964f
QW
4175 while (cur < start + len) {
4176 unsigned long index = get_eb_page_index(cur);
4177 unsigned int offset = get_eb_offset_in_page(eb, cur);
4178 unsigned int cur_len = min(start + len - cur, PAGE_SIZE - offset);
4179 struct page *page = eb->pages[index];
d1310b2e 4180
b8f95771 4181 assert_eb_page_uptodate(eb, page);
cb22964f 4182 memset(page_address(page) + offset, c, cur_len);
d1310b2e 4183
cb22964f 4184 cur += cur_len;
d1310b2e
CM
4185 }
4186}
d1310b2e 4187
cb22964f
QW
4188void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4189 unsigned long len)
4190{
4191 if (check_eb_range(eb, start, len))
4192 return;
4193 return memset_extent_buffer(eb, 0, start, len);
4194}
4195
2b48966a
DS
4196void copy_extent_buffer_full(const struct extent_buffer *dst,
4197 const struct extent_buffer *src)
58e8012c 4198{
54948681 4199 unsigned long cur = 0;
58e8012c
DS
4200
4201 ASSERT(dst->len == src->len);
4202
54948681
QW
4203 while (cur < src->len) {
4204 unsigned long index = get_eb_page_index(cur);
4205 unsigned long offset = get_eb_offset_in_page(src, cur);
4206 unsigned long cur_len = min(src->len, PAGE_SIZE - offset);
4207 void *addr = page_address(src->pages[index]) + offset;
4208
4209 write_extent_buffer(dst, addr, cur, cur_len);
884b07d0 4210
54948681 4211 cur += cur_len;
884b07d0 4212 }
58e8012c
DS
4213}
4214
2b48966a
DS
4215void copy_extent_buffer(const struct extent_buffer *dst,
4216 const struct extent_buffer *src,
d1310b2e
CM
4217 unsigned long dst_offset, unsigned long src_offset,
4218 unsigned long len)
4219{
4220 u64 dst_len = dst->len;
4221 size_t cur;
4222 size_t offset;
4223 struct page *page;
4224 char *kaddr;
884b07d0 4225 unsigned long i = get_eb_page_index(dst_offset);
d1310b2e 4226
f98b6215
QW
4227 if (check_eb_range(dst, dst_offset, len) ||
4228 check_eb_range(src, src_offset, len))
4229 return;
4230
d1310b2e
CM
4231 WARN_ON(src->len != dst_len);
4232
884b07d0 4233 offset = get_eb_offset_in_page(dst, dst_offset);
d1310b2e 4234
d397712b 4235 while (len > 0) {
fb85fc9a 4236 page = dst->pages[i];
b8f95771 4237 assert_eb_page_uptodate(dst, page);
d1310b2e 4238
09cbfeaf 4239 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 4240
a6591715 4241 kaddr = page_address(page);
d1310b2e 4242 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4243
4244 src_offset += cur;
4245 len -= cur;
4246 offset = 0;
4247 i++;
4248 }
4249}
d1310b2e 4250
3e1e8bb7
OS
4251/*
4252 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
4253 * given bit number
4254 * @eb: the extent buffer
4255 * @start: offset of the bitmap item in the extent buffer
4256 * @nr: bit number
4257 * @page_index: return index of the page in the extent buffer that contains the
4258 * given bit number
4259 * @page_offset: return offset into the page given by page_index
4260 *
4261 * This helper hides the ugliness of finding the byte in an extent buffer which
4262 * contains a given bit.
4263 */
2b48966a 4264static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
4265 unsigned long start, unsigned long nr,
4266 unsigned long *page_index,
4267 size_t *page_offset)
4268{
3e1e8bb7
OS
4269 size_t byte_offset = BIT_BYTE(nr);
4270 size_t offset;
4271
4272 /*
4273 * The byte we want is the offset of the extent buffer + the offset of
4274 * the bitmap item in the extent buffer + the offset of the byte in the
4275 * bitmap item.
4276 */
884b07d0 4277 offset = start + offset_in_page(eb->start) + byte_offset;
3e1e8bb7 4278
09cbfeaf 4279 *page_index = offset >> PAGE_SHIFT;
7073017a 4280 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
4281}
4282
43dd529a
DS
4283/*
4284 * Determine whether a bit in a bitmap item is set.
4285 *
4286 * @eb: the extent buffer
4287 * @start: offset of the bitmap item in the extent buffer
4288 * @nr: bit number to test
3e1e8bb7 4289 */
2b48966a 4290int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4291 unsigned long nr)
4292{
2fe1d551 4293 u8 *kaddr;
3e1e8bb7
OS
4294 struct page *page;
4295 unsigned long i;
4296 size_t offset;
4297
4298 eb_bitmap_offset(eb, start, nr, &i, &offset);
4299 page = eb->pages[i];
b8f95771 4300 assert_eb_page_uptodate(eb, page);
3e1e8bb7
OS
4301 kaddr = page_address(page);
4302 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4303}
4304
cb22964f
QW
4305static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4306{
4307 unsigned long index = get_eb_page_index(bytenr);
4308
4309 if (check_eb_range(eb, bytenr, 1))
4310 return NULL;
4311 return page_address(eb->pages[index]) + get_eb_offset_in_page(eb, bytenr);
4312}
4313
43dd529a
DS
4314/*
4315 * Set an area of a bitmap to 1.
4316 *
4317 * @eb: the extent buffer
4318 * @start: offset of the bitmap item in the extent buffer
4319 * @pos: bit number of the first bit
4320 * @len: number of bits to set
3e1e8bb7 4321 */
2b48966a 4322void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
4323 unsigned long pos, unsigned long len)
4324{
cb22964f
QW
4325 unsigned int first_byte = start + BIT_BYTE(pos);
4326 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4327 const bool same_byte = (first_byte == last_byte);
4328 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
2fe1d551 4329 u8 *kaddr;
3e1e8bb7 4330
cb22964f
QW
4331 if (same_byte)
4332 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7 4333
cb22964f
QW
4334 /* Handle the first byte. */
4335 kaddr = extent_buffer_get_byte(eb, first_byte);
4336 *kaddr |= mask;
4337 if (same_byte)
4338 return;
4339
4340 /* Handle the byte aligned part. */
4341 ASSERT(first_byte + 1 <= last_byte);
4342 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4343
4344 /* Handle the last byte. */
4345 kaddr = extent_buffer_get_byte(eb, last_byte);
4346 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7
OS
4347}
4348
4349
43dd529a
DS
4350/*
4351 * Clear an area of a bitmap.
4352 *
4353 * @eb: the extent buffer
4354 * @start: offset of the bitmap item in the extent buffer
4355 * @pos: bit number of the first bit
4356 * @len: number of bits to clear
3e1e8bb7 4357 */
2b48966a
DS
4358void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4359 unsigned long start, unsigned long pos,
4360 unsigned long len)
3e1e8bb7 4361{
cb22964f
QW
4362 unsigned int first_byte = start + BIT_BYTE(pos);
4363 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4364 const bool same_byte = (first_byte == last_byte);
4365 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
2fe1d551 4366 u8 *kaddr;
3e1e8bb7 4367
cb22964f
QW
4368 if (same_byte)
4369 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7 4370
cb22964f
QW
4371 /* Handle the first byte. */
4372 kaddr = extent_buffer_get_byte(eb, first_byte);
4373 *kaddr &= ~mask;
4374 if (same_byte)
4375 return;
4376
4377 /* Handle the byte aligned part. */
4378 ASSERT(first_byte + 1 <= last_byte);
4379 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4380
4381 /* Handle the last byte. */
4382 kaddr = extent_buffer_get_byte(eb, last_byte);
4383 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
3e1e8bb7
OS
4384}
4385
3387206f
ST
4386static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4387{
4388 unsigned long distance = (src > dst) ? src - dst : dst - src;
4389 return distance < len;
4390}
4391
2b48966a
DS
4392void memcpy_extent_buffer(const struct extent_buffer *dst,
4393 unsigned long dst_offset, unsigned long src_offset,
4394 unsigned long len)
d1310b2e 4395{
13840f3f 4396 unsigned long cur_off = 0;
d1310b2e 4397
f98b6215
QW
4398 if (check_eb_range(dst, dst_offset, len) ||
4399 check_eb_range(dst, src_offset, len))
4400 return;
d1310b2e 4401
13840f3f
QW
4402 while (cur_off < len) {
4403 unsigned long cur_src = cur_off + src_offset;
4404 unsigned long pg_index = get_eb_page_index(cur_src);
4405 unsigned long pg_off = get_eb_offset_in_page(dst, cur_src);
4406 unsigned long cur_len = min(src_offset + len - cur_src,
4407 PAGE_SIZE - pg_off);
4408 void *src_addr = page_address(dst->pages[pg_index]) + pg_off;
4409 const bool use_memmove = areas_overlap(src_offset + cur_off,
4410 dst_offset + cur_off, cur_len);
4411
4412 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4413 use_memmove);
4414 cur_off += cur_len;
d1310b2e
CM
4415 }
4416}
d1310b2e 4417
2b48966a
DS
4418void memmove_extent_buffer(const struct extent_buffer *dst,
4419 unsigned long dst_offset, unsigned long src_offset,
4420 unsigned long len)
d1310b2e 4421{
d1310b2e
CM
4422 unsigned long dst_end = dst_offset + len - 1;
4423 unsigned long src_end = src_offset + len - 1;
d1310b2e 4424
f98b6215
QW
4425 if (check_eb_range(dst, dst_offset, len) ||
4426 check_eb_range(dst, src_offset, len))
4427 return;
096d2301 4428
727011e0 4429 if (dst_offset < src_offset) {
d1310b2e
CM
4430 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4431 return;
4432 }
096d2301 4433
d397712b 4434 while (len > 0) {
096d2301
QW
4435 unsigned long src_i;
4436 size_t cur;
4437 size_t dst_off_in_page;
4438 size_t src_off_in_page;
4439 void *src_addr;
4440 bool use_memmove;
4441
884b07d0 4442 src_i = get_eb_page_index(src_end);
d1310b2e 4443
884b07d0
QW
4444 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
4445 src_off_in_page = get_eb_offset_in_page(dst, src_end);
d1310b2e
CM
4446
4447 cur = min_t(unsigned long, len, src_off_in_page + 1);
4448 cur = min(cur, dst_off_in_page + 1);
096d2301
QW
4449
4450 src_addr = page_address(dst->pages[src_i]) + src_off_in_page -
4451 cur + 1;
4452 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4453 cur);
4454
4455 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4456 use_memmove);
d1310b2e
CM
4457
4458 dst_end -= cur;
4459 src_end -= cur;
4460 len -= cur;
4461 }
4462}
6af118ce 4463
01cd3909 4464#define GANG_LOOKUP_SIZE 16
d1e86e3f
QW
4465static struct extent_buffer *get_next_extent_buffer(
4466 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4467{
01cd3909
DS
4468 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4469 struct extent_buffer *found = NULL;
d1e86e3f 4470 u64 page_start = page_offset(page);
01cd3909 4471 u64 cur = page_start;
d1e86e3f
QW
4472
4473 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
d1e86e3f
QW
4474 lockdep_assert_held(&fs_info->buffer_lock);
4475
01cd3909
DS
4476 while (cur < page_start + PAGE_SIZE) {
4477 int ret;
4478 int i;
4479
4480 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4481 (void **)gang, cur >> fs_info->sectorsize_bits,
4482 min_t(unsigned int, GANG_LOOKUP_SIZE,
4483 PAGE_SIZE / fs_info->nodesize));
4484 if (ret == 0)
4485 goto out;
4486 for (i = 0; i < ret; i++) {
4487 /* Already beyond page end */
4488 if (gang[i]->start >= page_start + PAGE_SIZE)
4489 goto out;
4490 /* Found one */
4491 if (gang[i]->start >= bytenr) {
4492 found = gang[i];
4493 goto out;
4494 }
4495 }
4496 cur = gang[ret - 1]->start + gang[ret - 1]->len;
d1e86e3f 4497 }
01cd3909
DS
4498out:
4499 return found;
d1e86e3f
QW
4500}
4501
4502static int try_release_subpage_extent_buffer(struct page *page)
4503{
4504 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4505 u64 cur = page_offset(page);
4506 const u64 end = page_offset(page) + PAGE_SIZE;
4507 int ret;
4508
4509 while (cur < end) {
4510 struct extent_buffer *eb = NULL;
4511
4512 /*
4513 * Unlike try_release_extent_buffer() which uses page->private
4514 * to grab buffer, for subpage case we rely on radix tree, thus
4515 * we need to ensure radix tree consistency.
4516 *
4517 * We also want an atomic snapshot of the radix tree, thus go
4518 * with spinlock rather than RCU.
4519 */
4520 spin_lock(&fs_info->buffer_lock);
4521 eb = get_next_extent_buffer(fs_info, page, cur);
4522 if (!eb) {
4523 /* No more eb in the page range after or at cur */
4524 spin_unlock(&fs_info->buffer_lock);
4525 break;
4526 }
4527 cur = eb->start + eb->len;
4528
4529 /*
4530 * The same as try_release_extent_buffer(), to ensure the eb
4531 * won't disappear out from under us.
4532 */
4533 spin_lock(&eb->refs_lock);
4534 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4535 spin_unlock(&eb->refs_lock);
4536 spin_unlock(&fs_info->buffer_lock);
4537 break;
4538 }
4539 spin_unlock(&fs_info->buffer_lock);
4540
4541 /*
4542 * If tree ref isn't set then we know the ref on this eb is a
4543 * real ref, so just return, this eb will likely be freed soon
4544 * anyway.
4545 */
4546 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4547 spin_unlock(&eb->refs_lock);
4548 break;
4549 }
4550
4551 /*
4552 * Here we don't care about the return value, we will always
4553 * check the page private at the end. And
4554 * release_extent_buffer() will release the refs_lock.
4555 */
4556 release_extent_buffer(eb);
4557 }
4558 /*
4559 * Finally to check if we have cleared page private, as if we have
4560 * released all ebs in the page, the page private should be cleared now.
4561 */
4562 spin_lock(&page->mapping->private_lock);
4563 if (!PagePrivate(page))
4564 ret = 1;
4565 else
4566 ret = 0;
4567 spin_unlock(&page->mapping->private_lock);
4568 return ret;
4569
4570}
4571
f7a52a40 4572int try_release_extent_buffer(struct page *page)
19fe0a8b 4573{
6af118ce 4574 struct extent_buffer *eb;
6af118ce 4575
fbca46eb 4576 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
d1e86e3f
QW
4577 return try_release_subpage_extent_buffer(page);
4578
3083ee2e 4579 /*
d1e86e3f
QW
4580 * We need to make sure nobody is changing page->private, as we rely on
4581 * page->private as the pointer to extent buffer.
3083ee2e
JB
4582 */
4583 spin_lock(&page->mapping->private_lock);
4584 if (!PagePrivate(page)) {
4585 spin_unlock(&page->mapping->private_lock);
4f2de97a 4586 return 1;
45f49bce 4587 }
6af118ce 4588
3083ee2e
JB
4589 eb = (struct extent_buffer *)page->private;
4590 BUG_ON(!eb);
19fe0a8b
MX
4591
4592 /*
3083ee2e
JB
4593 * This is a little awful but should be ok, we need to make sure that
4594 * the eb doesn't disappear out from under us while we're looking at
4595 * this page.
19fe0a8b 4596 */
3083ee2e 4597 spin_lock(&eb->refs_lock);
0b32f4bb 4598 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4599 spin_unlock(&eb->refs_lock);
4600 spin_unlock(&page->mapping->private_lock);
4601 return 0;
b9473439 4602 }
3083ee2e 4603 spin_unlock(&page->mapping->private_lock);
897ca6e9 4604
19fe0a8b 4605 /*
3083ee2e
JB
4606 * If tree ref isn't set then we know the ref on this eb is a real ref,
4607 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4608 */
3083ee2e
JB
4609 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4610 spin_unlock(&eb->refs_lock);
4611 return 0;
b9473439 4612 }
19fe0a8b 4613
f7a52a40 4614 return release_extent_buffer(eb);
6af118ce 4615}
bfb484d9
JB
4616
4617/*
4618 * btrfs_readahead_tree_block - attempt to readahead a child block
4619 * @fs_info: the fs_info
4620 * @bytenr: bytenr to read
3fbaf258 4621 * @owner_root: objectid of the root that owns this eb
bfb484d9 4622 * @gen: generation for the uptodate check, can be 0
3fbaf258 4623 * @level: level for the eb
bfb484d9
JB
4624 *
4625 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4626 * normal uptodate check of the eb, without checking the generation. If we have
4627 * to read the block we will not block on anything.
4628 */
4629void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
3fbaf258 4630 u64 bytenr, u64 owner_root, u64 gen, int level)
bfb484d9 4631{
947a6299
QW
4632 struct btrfs_tree_parent_check check = {
4633 .has_first_key = 0,
4634 .level = level,
4635 .transid = gen
4636 };
bfb484d9
JB
4637 struct extent_buffer *eb;
4638 int ret;
4639
3fbaf258 4640 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
bfb484d9
JB
4641 if (IS_ERR(eb))
4642 return;
4643
4644 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4645 free_extent_buffer(eb);
4646 return;
4647 }
4648
947a6299 4649 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
bfb484d9
JB
4650 if (ret < 0)
4651 free_extent_buffer_stale(eb);
4652 else
4653 free_extent_buffer(eb);
4654}
4655
4656/*
4657 * btrfs_readahead_node_child - readahead a node's child block
4658 * @node: parent node we're reading from
4659 * @slot: slot in the parent node for the child we want to read
4660 *
4661 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4662 * the slot in the node provided.
4663 */
4664void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4665{
4666 btrfs_readahead_tree_block(node->fs_info,
4667 btrfs_node_blockptr(node, slot),
3fbaf258
JB
4668 btrfs_header_owner(node),
4669 btrfs_node_ptr_generation(node, slot),
4670 btrfs_header_level(node) - 1);
bfb484d9 4671}