Btrfs: fix selftests failure due to uninitialized i_mode in test inodes
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112struct tree_entry {
113 u64 start;
114 u64 end;
d1310b2e
CM
115 struct rb_node rb_node;
116};
117
118struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
771ed689
CM
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
ffbd517d
CM
124 unsigned int extent_locked:1;
125
70fd7614 126 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 127 unsigned int sync_io:1;
d1310b2e
CM
128};
129
57599c7e 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
131 struct extent_changeset *changeset,
132 int set)
133{
134 int ret;
135
136 if (!changeset)
57599c7e 137 return 0;
d38ed27f 138 if (set && (state->state & bits) == bits)
57599c7e 139 return 0;
fefdc557 140 if (!set && (state->state & bits) == 0)
57599c7e 141 return 0;
d38ed27f 142 changeset->bytes_changed += state->end - state->start + 1;
53d32359 143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 144 GFP_ATOMIC);
57599c7e 145 return ret;
d38ed27f
QW
146}
147
bb58eb9e
QW
148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150{
151 blk_status_t ret = 0;
bb58eb9e 152 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
153
154 bio->bi_private = NULL;
155
156 if (tree->ops)
157 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 158 mirror_num, bio_flags);
bb58eb9e
QW
159 else
160 btrfsic_submit_bio(bio);
161
162 return blk_status_to_errno(ret);
163}
164
3065976b
QW
165/* Cleanup unsubmitted bios */
166static void end_write_bio(struct extent_page_data *epd, int ret)
167{
168 if (epd->bio) {
169 epd->bio->bi_status = errno_to_blk_status(ret);
170 bio_endio(epd->bio);
171 epd->bio = NULL;
172 }
173}
174
f4340622
QW
175/*
176 * Submit bio from extent page data via submit_one_bio
177 *
178 * Return 0 if everything is OK.
179 * Return <0 for error.
180 */
181static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 182{
f4340622 183 int ret = 0;
bb58eb9e 184
f4340622 185 if (epd->bio) {
bb58eb9e 186 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
187 /*
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
193 */
bb58eb9e
QW
194 epd->bio = NULL;
195 }
f4340622 196 return ret;
bb58eb9e 197}
e2932ee0 198
d1310b2e
CM
199int __init extent_io_init(void)
200{
837e1972 201 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 202 sizeof(struct extent_state), 0,
fba4b697 203 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
204 if (!extent_state_cache)
205 return -ENOMEM;
206
837e1972 207 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 208 sizeof(struct extent_buffer), 0,
fba4b697 209 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
210 if (!extent_buffer_cache)
211 goto free_state_cache;
9be3395b 212
8ac9f7c1
KO
213 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 offsetof(struct btrfs_io_bio, bio),
215 BIOSET_NEED_BVECS))
9be3395b 216 goto free_buffer_cache;
b208c2f7 217
8ac9f7c1 218 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
219 goto free_bioset;
220
d1310b2e
CM
221 return 0;
222
b208c2f7 223free_bioset:
8ac9f7c1 224 bioset_exit(&btrfs_bioset);
b208c2f7 225
9be3395b
CM
226free_buffer_cache:
227 kmem_cache_destroy(extent_buffer_cache);
228 extent_buffer_cache = NULL;
229
d1310b2e
CM
230free_state_cache:
231 kmem_cache_destroy(extent_state_cache);
9be3395b 232 extent_state_cache = NULL;
d1310b2e
CM
233 return -ENOMEM;
234}
235
e67c718b 236void __cold extent_io_exit(void)
d1310b2e 237{
6d49ba1b 238 btrfs_leak_debug_check();
8c0a8537
KS
239
240 /*
241 * Make sure all delayed rcu free are flushed before we
242 * destroy caches.
243 */
244 rcu_barrier();
5598e900
KM
245 kmem_cache_destroy(extent_state_cache);
246 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 247 bioset_exit(&btrfs_bioset);
d1310b2e
CM
248}
249
c258d6e3 250void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
251 struct extent_io_tree *tree, unsigned int owner,
252 void *private_data)
d1310b2e 253{
c258d6e3 254 tree->fs_info = fs_info;
6bef4d31 255 tree->state = RB_ROOT;
d1310b2e
CM
256 tree->ops = NULL;
257 tree->dirty_bytes = 0;
70dec807 258 spin_lock_init(&tree->lock);
c6100a4b 259 tree->private_data = private_data;
43eb5f29 260 tree->owner = owner;
d1310b2e 261}
d1310b2e 262
41e7acd3
NB
263void extent_io_tree_release(struct extent_io_tree *tree)
264{
265 spin_lock(&tree->lock);
266 /*
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
269 * called.
270 */
271 smp_mb();
272 while (!RB_EMPTY_ROOT(&tree->state)) {
273 struct rb_node *node;
274 struct extent_state *state;
275
276 node = rb_first(&tree->state);
277 state = rb_entry(node, struct extent_state, rb_node);
278 rb_erase(&state->rb_node, &tree->state);
279 RB_CLEAR_NODE(&state->rb_node);
280 /*
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
283 */
284 ASSERT(!waitqueue_active(&state->wq));
285 free_extent_state(state);
286
287 cond_resched_lock(&tree->lock);
288 }
289 spin_unlock(&tree->lock);
290}
291
b2950863 292static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
293{
294 struct extent_state *state;
d1310b2e 295
3ba7ab22
MH
296 /*
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
299 */
300 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 301 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 302 if (!state)
d1310b2e
CM
303 return state;
304 state->state = 0;
47dc196a 305 state->failrec = NULL;
27a3507d 306 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 307 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 308 refcount_set(&state->refs, 1);
d1310b2e 309 init_waitqueue_head(&state->wq);
143bede5 310 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
311 return state;
312}
d1310b2e 313
4845e44f 314void free_extent_state(struct extent_state *state)
d1310b2e 315{
d1310b2e
CM
316 if (!state)
317 return;
b7ac31b7 318 if (refcount_dec_and_test(&state->refs)) {
27a3507d 319 WARN_ON(extent_state_in_tree(state));
6d49ba1b 320 btrfs_leak_debug_del(&state->leak_list);
143bede5 321 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
322 kmem_cache_free(extent_state_cache, state);
323 }
324}
d1310b2e 325
f2071b21
FM
326static struct rb_node *tree_insert(struct rb_root *root,
327 struct rb_node *search_start,
328 u64 offset,
12cfbad9
FDBM
329 struct rb_node *node,
330 struct rb_node ***p_in,
331 struct rb_node **parent_in)
d1310b2e 332{
f2071b21 333 struct rb_node **p;
d397712b 334 struct rb_node *parent = NULL;
d1310b2e
CM
335 struct tree_entry *entry;
336
12cfbad9
FDBM
337 if (p_in && parent_in) {
338 p = *p_in;
339 parent = *parent_in;
340 goto do_insert;
341 }
342
f2071b21 343 p = search_start ? &search_start : &root->rb_node;
d397712b 344 while (*p) {
d1310b2e
CM
345 parent = *p;
346 entry = rb_entry(parent, struct tree_entry, rb_node);
347
348 if (offset < entry->start)
349 p = &(*p)->rb_left;
350 else if (offset > entry->end)
351 p = &(*p)->rb_right;
352 else
353 return parent;
354 }
355
12cfbad9 356do_insert:
d1310b2e
CM
357 rb_link_node(node, parent, p);
358 rb_insert_color(node, root);
359 return NULL;
360}
361
8666e638
NB
362/**
363 * __etree_search - searche @tree for an entry that contains @offset. Such
364 * entry would have entry->start <= offset && entry->end >= offset.
365 *
366 * @tree - the tree to search
367 * @offset - offset that should fall within an entry in @tree
368 * @next_ret - pointer to the first entry whose range ends after @offset
369 * @prev - pointer to the first entry whose range begins before @offset
370 * @p_ret - pointer where new node should be anchored (used when inserting an
371 * entry in the tree)
372 * @parent_ret - points to entry which would have been the parent of the entry,
373 * containing @offset
374 *
375 * This function returns a pointer to the entry that contains @offset byte
376 * address. If no such entry exists, then NULL is returned and the other
377 * pointer arguments to the function are filled, otherwise the found entry is
378 * returned and other pointers are left untouched.
379 */
80ea96b1 380static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 381 struct rb_node **next_ret,
352646c7 382 struct rb_node **prev_ret,
12cfbad9
FDBM
383 struct rb_node ***p_ret,
384 struct rb_node **parent_ret)
d1310b2e 385{
80ea96b1 386 struct rb_root *root = &tree->state;
12cfbad9 387 struct rb_node **n = &root->rb_node;
d1310b2e
CM
388 struct rb_node *prev = NULL;
389 struct rb_node *orig_prev = NULL;
390 struct tree_entry *entry;
391 struct tree_entry *prev_entry = NULL;
392
12cfbad9
FDBM
393 while (*n) {
394 prev = *n;
395 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
396 prev_entry = entry;
397
398 if (offset < entry->start)
12cfbad9 399 n = &(*n)->rb_left;
d1310b2e 400 else if (offset > entry->end)
12cfbad9 401 n = &(*n)->rb_right;
d397712b 402 else
12cfbad9 403 return *n;
d1310b2e
CM
404 }
405
12cfbad9
FDBM
406 if (p_ret)
407 *p_ret = n;
408 if (parent_ret)
409 *parent_ret = prev;
410
352646c7 411 if (next_ret) {
d1310b2e 412 orig_prev = prev;
d397712b 413 while (prev && offset > prev_entry->end) {
d1310b2e
CM
414 prev = rb_next(prev);
415 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 }
352646c7 417 *next_ret = prev;
d1310b2e
CM
418 prev = orig_prev;
419 }
420
352646c7 421 if (prev_ret) {
d1310b2e 422 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 423 while (prev && offset < prev_entry->start) {
d1310b2e
CM
424 prev = rb_prev(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
352646c7 427 *prev_ret = prev;
d1310b2e
CM
428 }
429 return NULL;
430}
431
12cfbad9
FDBM
432static inline struct rb_node *
433tree_search_for_insert(struct extent_io_tree *tree,
434 u64 offset,
435 struct rb_node ***p_ret,
436 struct rb_node **parent_ret)
d1310b2e 437{
352646c7 438 struct rb_node *next= NULL;
d1310b2e 439 struct rb_node *ret;
70dec807 440
352646c7 441 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 442 if (!ret)
352646c7 443 return next;
d1310b2e
CM
444 return ret;
445}
446
12cfbad9
FDBM
447static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 u64 offset)
449{
450 return tree_search_for_insert(tree, offset, NULL, NULL);
451}
452
d1310b2e
CM
453/*
454 * utility function to look for merge candidates inside a given range.
455 * Any extents with matching state are merged together into a single
456 * extent in the tree. Extents with EXTENT_IO in their state field
457 * are not merged because the end_io handlers need to be able to do
458 * operations on them without sleeping (or doing allocations/splits).
459 *
460 * This should be called with the tree lock held.
461 */
1bf85046
JM
462static void merge_state(struct extent_io_tree *tree,
463 struct extent_state *state)
d1310b2e
CM
464{
465 struct extent_state *other;
466 struct rb_node *other_node;
467
8882679e 468 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 469 return;
d1310b2e
CM
470
471 other_node = rb_prev(&state->rb_node);
472 if (other_node) {
473 other = rb_entry(other_node, struct extent_state, rb_node);
474 if (other->end == state->start - 1 &&
475 other->state == state->state) {
5c848198
NB
476 if (tree->private_data &&
477 is_data_inode(tree->private_data))
478 btrfs_merge_delalloc_extent(tree->private_data,
479 state, other);
d1310b2e 480 state->start = other->start;
d1310b2e 481 rb_erase(&other->rb_node, &tree->state);
27a3507d 482 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
483 free_extent_state(other);
484 }
485 }
486 other_node = rb_next(&state->rb_node);
487 if (other_node) {
488 other = rb_entry(other_node, struct extent_state, rb_node);
489 if (other->start == state->end + 1 &&
490 other->state == state->state) {
5c848198
NB
491 if (tree->private_data &&
492 is_data_inode(tree->private_data))
493 btrfs_merge_delalloc_extent(tree->private_data,
494 state, other);
df98b6e2 495 state->end = other->end;
df98b6e2 496 rb_erase(&other->rb_node, &tree->state);
27a3507d 497 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 498 free_extent_state(other);
d1310b2e
CM
499 }
500 }
d1310b2e
CM
501}
502
3150b699 503static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
504 struct extent_state *state, unsigned *bits,
505 struct extent_changeset *changeset);
3150b699 506
d1310b2e
CM
507/*
508 * insert an extent_state struct into the tree. 'bits' are set on the
509 * struct before it is inserted.
510 *
511 * This may return -EEXIST if the extent is already there, in which case the
512 * state struct is freed.
513 *
514 * The tree lock is not taken internally. This is a utility function and
515 * probably isn't what you want to call (see set/clear_extent_bit).
516 */
517static int insert_state(struct extent_io_tree *tree,
518 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
519 struct rb_node ***p,
520 struct rb_node **parent,
d38ed27f 521 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
522{
523 struct rb_node *node;
524
2792237d
DS
525 if (end < start) {
526 btrfs_err(tree->fs_info,
527 "insert state: end < start %llu %llu", end, start);
528 WARN_ON(1);
529 }
d1310b2e
CM
530 state->start = start;
531 state->end = end;
9ed74f2d 532
d38ed27f 533 set_state_bits(tree, state, bits, changeset);
3150b699 534
f2071b21 535 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
536 if (node) {
537 struct extent_state *found;
538 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
539 btrfs_err(tree->fs_info,
540 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 541 found->start, found->end, start, end);
d1310b2e
CM
542 return -EEXIST;
543 }
544 merge_state(tree, state);
545 return 0;
546}
547
548/*
549 * split a given extent state struct in two, inserting the preallocated
550 * struct 'prealloc' as the newly created second half. 'split' indicates an
551 * offset inside 'orig' where it should be split.
552 *
553 * Before calling,
554 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
555 * are two extent state structs in the tree:
556 * prealloc: [orig->start, split - 1]
557 * orig: [ split, orig->end ]
558 *
559 * The tree locks are not taken by this function. They need to be held
560 * by the caller.
561 */
562static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 struct extent_state *prealloc, u64 split)
564{
565 struct rb_node *node;
9ed74f2d 566
abbb55f4
NB
567 if (tree->private_data && is_data_inode(tree->private_data))
568 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 569
d1310b2e
CM
570 prealloc->start = orig->start;
571 prealloc->end = split - 1;
572 prealloc->state = orig->state;
573 orig->start = split;
574
f2071b21
FM
575 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 &prealloc->rb_node, NULL, NULL);
d1310b2e 577 if (node) {
d1310b2e
CM
578 free_extent_state(prealloc);
579 return -EEXIST;
580 }
581 return 0;
582}
583
cdc6a395
LZ
584static struct extent_state *next_state(struct extent_state *state)
585{
586 struct rb_node *next = rb_next(&state->rb_node);
587 if (next)
588 return rb_entry(next, struct extent_state, rb_node);
589 else
590 return NULL;
591}
592
d1310b2e
CM
593/*
594 * utility function to clear some bits in an extent state struct.
52042d8e 595 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
596 *
597 * If no bits are set on the state struct after clearing things, the
598 * struct is freed and removed from the tree
599 */
cdc6a395
LZ
600static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 struct extent_state *state,
fefdc557
QW
602 unsigned *bits, int wake,
603 struct extent_changeset *changeset)
d1310b2e 604{
cdc6a395 605 struct extent_state *next;
9ee49a04 606 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 607 int ret;
d1310b2e 608
0ca1f7ce 609 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
610 u64 range = state->end - state->start + 1;
611 WARN_ON(range > tree->dirty_bytes);
612 tree->dirty_bytes -= range;
613 }
a36bb5f9
NB
614
615 if (tree->private_data && is_data_inode(tree->private_data))
616 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617
57599c7e
DS
618 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 BUG_ON(ret < 0);
32c00aff 620 state->state &= ~bits_to_clear;
d1310b2e
CM
621 if (wake)
622 wake_up(&state->wq);
0ca1f7ce 623 if (state->state == 0) {
cdc6a395 624 next = next_state(state);
27a3507d 625 if (extent_state_in_tree(state)) {
d1310b2e 626 rb_erase(&state->rb_node, &tree->state);
27a3507d 627 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
628 free_extent_state(state);
629 } else {
630 WARN_ON(1);
631 }
632 } else {
633 merge_state(tree, state);
cdc6a395 634 next = next_state(state);
d1310b2e 635 }
cdc6a395 636 return next;
d1310b2e
CM
637}
638
8233767a
XG
639static struct extent_state *
640alloc_extent_state_atomic(struct extent_state *prealloc)
641{
642 if (!prealloc)
643 prealloc = alloc_extent_state(GFP_ATOMIC);
644
645 return prealloc;
646}
647
48a3b636 648static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 649{
05912a3c
DS
650 struct inode *inode = tree->private_data;
651
652 btrfs_panic(btrfs_sb(inode->i_sb), err,
653 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
654}
655
d1310b2e
CM
656/*
657 * clear some bits on a range in the tree. This may require splitting
658 * or inserting elements in the tree, so the gfp mask is used to
659 * indicate which allocations or sleeping are allowed.
660 *
661 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
662 * the given range from the tree regardless of state (ie for truncate).
663 *
664 * the range [start, end] is inclusive.
665 *
6763af84 666 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 667 */
66b0c887 668int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
669 unsigned bits, int wake, int delete,
670 struct extent_state **cached_state,
671 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
672{
673 struct extent_state *state;
2c64c53d 674 struct extent_state *cached;
d1310b2e
CM
675 struct extent_state *prealloc = NULL;
676 struct rb_node *node;
5c939df5 677 u64 last_end;
d1310b2e 678 int err;
2ac55d41 679 int clear = 0;
d1310b2e 680
a5dee37d 681 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 682 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 683
7ee9e440
JB
684 if (bits & EXTENT_DELALLOC)
685 bits |= EXTENT_NORESERVE;
686
0ca1f7ce
YZ
687 if (delete)
688 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 689
8882679e 690 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 691 clear = 1;
d1310b2e 692again:
d0164adc 693 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
694 /*
695 * Don't care for allocation failure here because we might end
696 * up not needing the pre-allocated extent state at all, which
697 * is the case if we only have in the tree extent states that
698 * cover our input range and don't cover too any other range.
699 * If we end up needing a new extent state we allocate it later.
700 */
d1310b2e 701 prealloc = alloc_extent_state(mask);
d1310b2e
CM
702 }
703
cad321ad 704 spin_lock(&tree->lock);
2c64c53d
CM
705 if (cached_state) {
706 cached = *cached_state;
2ac55d41
JB
707
708 if (clear) {
709 *cached_state = NULL;
710 cached_state = NULL;
711 }
712
27a3507d
FM
713 if (cached && extent_state_in_tree(cached) &&
714 cached->start <= start && cached->end > start) {
2ac55d41 715 if (clear)
b7ac31b7 716 refcount_dec(&cached->refs);
2c64c53d 717 state = cached;
42daec29 718 goto hit_next;
2c64c53d 719 }
2ac55d41
JB
720 if (clear)
721 free_extent_state(cached);
2c64c53d 722 }
d1310b2e
CM
723 /*
724 * this search will find the extents that end after
725 * our range starts
726 */
80ea96b1 727 node = tree_search(tree, start);
d1310b2e
CM
728 if (!node)
729 goto out;
730 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 731hit_next:
d1310b2e
CM
732 if (state->start > end)
733 goto out;
734 WARN_ON(state->end < start);
5c939df5 735 last_end = state->end;
d1310b2e 736
0449314a 737 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
738 if (!(state->state & bits)) {
739 state = next_state(state);
0449314a 740 goto next;
cdc6a395 741 }
0449314a 742
d1310b2e
CM
743 /*
744 * | ---- desired range ---- |
745 * | state | or
746 * | ------------- state -------------- |
747 *
748 * We need to split the extent we found, and may flip
749 * bits on second half.
750 *
751 * If the extent we found extends past our range, we
752 * just split and search again. It'll get split again
753 * the next time though.
754 *
755 * If the extent we found is inside our range, we clear
756 * the desired bit on it.
757 */
758
759 if (state->start < start) {
8233767a
XG
760 prealloc = alloc_extent_state_atomic(prealloc);
761 BUG_ON(!prealloc);
d1310b2e 762 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
763 if (err)
764 extent_io_tree_panic(tree, err);
765
d1310b2e
CM
766 prealloc = NULL;
767 if (err)
768 goto out;
769 if (state->end <= end) {
fefdc557
QW
770 state = clear_state_bit(tree, state, &bits, wake,
771 changeset);
d1ac6e41 772 goto next;
d1310b2e
CM
773 }
774 goto search_again;
775 }
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 * We need to split the extent, and clear the bit
780 * on the first half
781 */
782 if (state->start <= end && state->end > end) {
8233767a
XG
783 prealloc = alloc_extent_state_atomic(prealloc);
784 BUG_ON(!prealloc);
d1310b2e 785 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
786 if (err)
787 extent_io_tree_panic(tree, err);
788
d1310b2e
CM
789 if (wake)
790 wake_up(&state->wq);
42daec29 791
fefdc557 792 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 793
d1310b2e
CM
794 prealloc = NULL;
795 goto out;
796 }
42daec29 797
fefdc557 798 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 799next:
5c939df5
YZ
800 if (last_end == (u64)-1)
801 goto out;
802 start = last_end + 1;
cdc6a395 803 if (start <= end && state && !need_resched())
692e5759 804 goto hit_next;
d1310b2e
CM
805
806search_again:
807 if (start > end)
808 goto out;
cad321ad 809 spin_unlock(&tree->lock);
d0164adc 810 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
811 cond_resched();
812 goto again;
7ab5cb2a
DS
813
814out:
815 spin_unlock(&tree->lock);
816 if (prealloc)
817 free_extent_state(prealloc);
818
819 return 0;
820
d1310b2e 821}
d1310b2e 822
143bede5
JM
823static void wait_on_state(struct extent_io_tree *tree,
824 struct extent_state *state)
641f5219
CH
825 __releases(tree->lock)
826 __acquires(tree->lock)
d1310b2e
CM
827{
828 DEFINE_WAIT(wait);
829 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 830 spin_unlock(&tree->lock);
d1310b2e 831 schedule();
cad321ad 832 spin_lock(&tree->lock);
d1310b2e 833 finish_wait(&state->wq, &wait);
d1310b2e
CM
834}
835
836/*
837 * waits for one or more bits to clear on a range in the state tree.
838 * The range [start, end] is inclusive.
839 * The tree lock is taken by this function
840 */
41074888
DS
841static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
842 unsigned long bits)
d1310b2e
CM
843{
844 struct extent_state *state;
845 struct rb_node *node;
846
a5dee37d 847 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 848
cad321ad 849 spin_lock(&tree->lock);
d1310b2e
CM
850again:
851 while (1) {
852 /*
853 * this search will find all the extents that end after
854 * our range starts
855 */
80ea96b1 856 node = tree_search(tree, start);
c50d3e71 857process_node:
d1310b2e
CM
858 if (!node)
859 break;
860
861 state = rb_entry(node, struct extent_state, rb_node);
862
863 if (state->start > end)
864 goto out;
865
866 if (state->state & bits) {
867 start = state->start;
b7ac31b7 868 refcount_inc(&state->refs);
d1310b2e
CM
869 wait_on_state(tree, state);
870 free_extent_state(state);
871 goto again;
872 }
873 start = state->end + 1;
874
875 if (start > end)
876 break;
877
c50d3e71
FM
878 if (!cond_resched_lock(&tree->lock)) {
879 node = rb_next(node);
880 goto process_node;
881 }
d1310b2e
CM
882 }
883out:
cad321ad 884 spin_unlock(&tree->lock);
d1310b2e 885}
d1310b2e 886
1bf85046 887static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 888 struct extent_state *state,
d38ed27f 889 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 890{
9ee49a04 891 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 892 int ret;
9ed74f2d 893
e06a1fc9
NB
894 if (tree->private_data && is_data_inode(tree->private_data))
895 btrfs_set_delalloc_extent(tree->private_data, state, bits);
896
0ca1f7ce 897 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
898 u64 range = state->end - state->start + 1;
899 tree->dirty_bytes += range;
900 }
57599c7e
DS
901 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
902 BUG_ON(ret < 0);
0ca1f7ce 903 state->state |= bits_to_set;
d1310b2e
CM
904}
905
e38e2ed7
FM
906static void cache_state_if_flags(struct extent_state *state,
907 struct extent_state **cached_ptr,
9ee49a04 908 unsigned flags)
2c64c53d
CM
909{
910 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 911 if (!flags || (state->state & flags)) {
2c64c53d 912 *cached_ptr = state;
b7ac31b7 913 refcount_inc(&state->refs);
2c64c53d
CM
914 }
915 }
916}
917
e38e2ed7
FM
918static void cache_state(struct extent_state *state,
919 struct extent_state **cached_ptr)
920{
921 return cache_state_if_flags(state, cached_ptr,
8882679e 922 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
923}
924
d1310b2e 925/*
1edbb734
CM
926 * set some bits on a range in the tree. This may require allocations or
927 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 928 *
1edbb734
CM
929 * If any of the exclusive bits are set, this will fail with -EEXIST if some
930 * part of the range already has the desired bits set. The start of the
931 * existing range is returned in failed_start in this case.
d1310b2e 932 *
1edbb734 933 * [start, end] is inclusive This takes the tree lock.
d1310b2e 934 */
1edbb734 935
3fbe5c02
JM
936static int __must_check
937__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 938 unsigned bits, unsigned exclusive_bits,
41074888 939 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 940 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
941{
942 struct extent_state *state;
943 struct extent_state *prealloc = NULL;
944 struct rb_node *node;
12cfbad9
FDBM
945 struct rb_node **p;
946 struct rb_node *parent;
d1310b2e 947 int err = 0;
d1310b2e
CM
948 u64 last_start;
949 u64 last_end;
42daec29 950
a5dee37d 951 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 952 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 953
d1310b2e 954again:
d0164adc 955 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
956 /*
957 * Don't care for allocation failure here because we might end
958 * up not needing the pre-allocated extent state at all, which
959 * is the case if we only have in the tree extent states that
960 * cover our input range and don't cover too any other range.
961 * If we end up needing a new extent state we allocate it later.
962 */
d1310b2e 963 prealloc = alloc_extent_state(mask);
d1310b2e
CM
964 }
965
cad321ad 966 spin_lock(&tree->lock);
9655d298
CM
967 if (cached_state && *cached_state) {
968 state = *cached_state;
df98b6e2 969 if (state->start <= start && state->end > start &&
27a3507d 970 extent_state_in_tree(state)) {
9655d298
CM
971 node = &state->rb_node;
972 goto hit_next;
973 }
974 }
d1310b2e
CM
975 /*
976 * this search will find all the extents that end after
977 * our range starts.
978 */
12cfbad9 979 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 980 if (!node) {
8233767a
XG
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
12cfbad9 983 err = insert_state(tree, prealloc, start, end,
d38ed27f 984 &p, &parent, &bits, changeset);
c2d904e0
JM
985 if (err)
986 extent_io_tree_panic(tree, err);
987
c42ac0bc 988 cache_state(prealloc, cached_state);
d1310b2e 989 prealloc = NULL;
d1310b2e
CM
990 goto out;
991 }
d1310b2e 992 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 993hit_next:
d1310b2e
CM
994 last_start = state->start;
995 last_end = state->end;
996
997 /*
998 * | ---- desired range ---- |
999 * | state |
1000 *
1001 * Just lock what we found and keep going
1002 */
1003 if (state->start == start && state->end <= end) {
1edbb734 1004 if (state->state & exclusive_bits) {
d1310b2e
CM
1005 *failed_start = state->start;
1006 err = -EEXIST;
1007 goto out;
1008 }
42daec29 1009
d38ed27f 1010 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1011 cache_state(state, cached_state);
d1310b2e 1012 merge_state(tree, state);
5c939df5
YZ
1013 if (last_end == (u64)-1)
1014 goto out;
1015 start = last_end + 1;
d1ac6e41
LB
1016 state = next_state(state);
1017 if (start < end && state && state->start == start &&
1018 !need_resched())
1019 goto hit_next;
d1310b2e
CM
1020 goto search_again;
1021 }
1022
1023 /*
1024 * | ---- desired range ---- |
1025 * | state |
1026 * or
1027 * | ------------- state -------------- |
1028 *
1029 * We need to split the extent we found, and may flip bits on
1030 * second half.
1031 *
1032 * If the extent we found extends past our
1033 * range, we just split and search again. It'll get split
1034 * again the next time though.
1035 *
1036 * If the extent we found is inside our range, we set the
1037 * desired bit on it.
1038 */
1039 if (state->start < start) {
1edbb734 1040 if (state->state & exclusive_bits) {
d1310b2e
CM
1041 *failed_start = start;
1042 err = -EEXIST;
1043 goto out;
1044 }
8233767a
XG
1045
1046 prealloc = alloc_extent_state_atomic(prealloc);
1047 BUG_ON(!prealloc);
d1310b2e 1048 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1049 if (err)
1050 extent_io_tree_panic(tree, err);
1051
d1310b2e
CM
1052 prealloc = NULL;
1053 if (err)
1054 goto out;
1055 if (state->end <= end) {
d38ed27f 1056 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1057 cache_state(state, cached_state);
d1310b2e 1058 merge_state(tree, state);
5c939df5
YZ
1059 if (last_end == (u64)-1)
1060 goto out;
1061 start = last_end + 1;
d1ac6e41
LB
1062 state = next_state(state);
1063 if (start < end && state && state->start == start &&
1064 !need_resched())
1065 goto hit_next;
d1310b2e
CM
1066 }
1067 goto search_again;
1068 }
1069 /*
1070 * | ---- desired range ---- |
1071 * | state | or | state |
1072 *
1073 * There's a hole, we need to insert something in it and
1074 * ignore the extent we found.
1075 */
1076 if (state->start > start) {
1077 u64 this_end;
1078 if (end < last_start)
1079 this_end = end;
1080 else
d397712b 1081 this_end = last_start - 1;
8233767a
XG
1082
1083 prealloc = alloc_extent_state_atomic(prealloc);
1084 BUG_ON(!prealloc);
c7f895a2
XG
1085
1086 /*
1087 * Avoid to free 'prealloc' if it can be merged with
1088 * the later extent.
1089 */
d1310b2e 1090 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1091 NULL, NULL, &bits, changeset);
c2d904e0
JM
1092 if (err)
1093 extent_io_tree_panic(tree, err);
1094
9ed74f2d
JB
1095 cache_state(prealloc, cached_state);
1096 prealloc = NULL;
d1310b2e
CM
1097 start = this_end + 1;
1098 goto search_again;
1099 }
1100 /*
1101 * | ---- desired range ---- |
1102 * | state |
1103 * We need to split the extent, and set the bit
1104 * on the first half
1105 */
1106 if (state->start <= end && state->end > end) {
1edbb734 1107 if (state->state & exclusive_bits) {
d1310b2e
CM
1108 *failed_start = start;
1109 err = -EEXIST;
1110 goto out;
1111 }
8233767a
XG
1112
1113 prealloc = alloc_extent_state_atomic(prealloc);
1114 BUG_ON(!prealloc);
d1310b2e 1115 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1116 if (err)
1117 extent_io_tree_panic(tree, err);
d1310b2e 1118
d38ed27f 1119 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1120 cache_state(prealloc, cached_state);
d1310b2e
CM
1121 merge_state(tree, prealloc);
1122 prealloc = NULL;
1123 goto out;
1124 }
1125
b5a4ba14
DS
1126search_again:
1127 if (start > end)
1128 goto out;
1129 spin_unlock(&tree->lock);
1130 if (gfpflags_allow_blocking(mask))
1131 cond_resched();
1132 goto again;
d1310b2e
CM
1133
1134out:
cad321ad 1135 spin_unlock(&tree->lock);
d1310b2e
CM
1136 if (prealloc)
1137 free_extent_state(prealloc);
1138
1139 return err;
1140
d1310b2e 1141}
d1310b2e 1142
41074888 1143int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1144 unsigned bits, u64 * failed_start,
41074888 1145 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1146{
1147 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1148 cached_state, mask, NULL);
3fbe5c02
JM
1149}
1150
1151
462d6fac 1152/**
10983f2e
LB
1153 * convert_extent_bit - convert all bits in a given range from one bit to
1154 * another
462d6fac
JB
1155 * @tree: the io tree to search
1156 * @start: the start offset in bytes
1157 * @end: the end offset in bytes (inclusive)
1158 * @bits: the bits to set in this range
1159 * @clear_bits: the bits to clear in this range
e6138876 1160 * @cached_state: state that we're going to cache
462d6fac
JB
1161 *
1162 * This will go through and set bits for the given range. If any states exist
1163 * already in this range they are set with the given bit and cleared of the
1164 * clear_bits. This is only meant to be used by things that are mergeable, ie
1165 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1166 * boundary bits like LOCK.
210aa277
DS
1167 *
1168 * All allocations are done with GFP_NOFS.
462d6fac
JB
1169 */
1170int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1171 unsigned bits, unsigned clear_bits,
210aa277 1172 struct extent_state **cached_state)
462d6fac
JB
1173{
1174 struct extent_state *state;
1175 struct extent_state *prealloc = NULL;
1176 struct rb_node *node;
12cfbad9
FDBM
1177 struct rb_node **p;
1178 struct rb_node *parent;
462d6fac
JB
1179 int err = 0;
1180 u64 last_start;
1181 u64 last_end;
c8fd3de7 1182 bool first_iteration = true;
462d6fac 1183
a5dee37d 1184 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1185 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1186 clear_bits);
8d599ae1 1187
462d6fac 1188again:
210aa277 1189 if (!prealloc) {
c8fd3de7
FM
1190 /*
1191 * Best effort, don't worry if extent state allocation fails
1192 * here for the first iteration. We might have a cached state
1193 * that matches exactly the target range, in which case no
1194 * extent state allocations are needed. We'll only know this
1195 * after locking the tree.
1196 */
210aa277 1197 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1198 if (!prealloc && !first_iteration)
462d6fac
JB
1199 return -ENOMEM;
1200 }
1201
1202 spin_lock(&tree->lock);
e6138876
JB
1203 if (cached_state && *cached_state) {
1204 state = *cached_state;
1205 if (state->start <= start && state->end > start &&
27a3507d 1206 extent_state_in_tree(state)) {
e6138876
JB
1207 node = &state->rb_node;
1208 goto hit_next;
1209 }
1210 }
1211
462d6fac
JB
1212 /*
1213 * this search will find all the extents that end after
1214 * our range starts.
1215 */
12cfbad9 1216 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1217 if (!node) {
1218 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1219 if (!prealloc) {
1220 err = -ENOMEM;
1221 goto out;
1222 }
12cfbad9 1223 err = insert_state(tree, prealloc, start, end,
d38ed27f 1224 &p, &parent, &bits, NULL);
c2d904e0
JM
1225 if (err)
1226 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1227 cache_state(prealloc, cached_state);
1228 prealloc = NULL;
462d6fac
JB
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232hit_next:
1233 last_start = state->start;
1234 last_end = state->end;
1235
1236 /*
1237 * | ---- desired range ---- |
1238 * | state |
1239 *
1240 * Just lock what we found and keep going
1241 */
1242 if (state->start == start && state->end <= end) {
d38ed27f 1243 set_state_bits(tree, state, &bits, NULL);
e6138876 1244 cache_state(state, cached_state);
fefdc557 1245 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1246 if (last_end == (u64)-1)
1247 goto out;
462d6fac 1248 start = last_end + 1;
d1ac6e41
LB
1249 if (start < end && state && state->start == start &&
1250 !need_resched())
1251 goto hit_next;
462d6fac
JB
1252 goto search_again;
1253 }
1254
1255 /*
1256 * | ---- desired range ---- |
1257 * | state |
1258 * or
1259 * | ------------- state -------------- |
1260 *
1261 * We need to split the extent we found, and may flip bits on
1262 * second half.
1263 *
1264 * If the extent we found extends past our
1265 * range, we just split and search again. It'll get split
1266 * again the next time though.
1267 *
1268 * If the extent we found is inside our range, we set the
1269 * desired bit on it.
1270 */
1271 if (state->start < start) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
462d6fac 1277 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1278 if (err)
1279 extent_io_tree_panic(tree, err);
462d6fac
JB
1280 prealloc = NULL;
1281 if (err)
1282 goto out;
1283 if (state->end <= end) {
d38ed27f 1284 set_state_bits(tree, state, &bits, NULL);
e6138876 1285 cache_state(state, cached_state);
fefdc557
QW
1286 state = clear_state_bit(tree, state, &clear_bits, 0,
1287 NULL);
462d6fac
JB
1288 if (last_end == (u64)-1)
1289 goto out;
1290 start = last_end + 1;
d1ac6e41
LB
1291 if (start < end && state && state->start == start &&
1292 !need_resched())
1293 goto hit_next;
462d6fac
JB
1294 }
1295 goto search_again;
1296 }
1297 /*
1298 * | ---- desired range ---- |
1299 * | state | or | state |
1300 *
1301 * There's a hole, we need to insert something in it and
1302 * ignore the extent we found.
1303 */
1304 if (state->start > start) {
1305 u64 this_end;
1306 if (end < last_start)
1307 this_end = end;
1308 else
1309 this_end = last_start - 1;
1310
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac
JB
1316
1317 /*
1318 * Avoid to free 'prealloc' if it can be merged with
1319 * the later extent.
1320 */
1321 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1322 NULL, NULL, &bits, NULL);
c2d904e0
JM
1323 if (err)
1324 extent_io_tree_panic(tree, err);
e6138876 1325 cache_state(prealloc, cached_state);
462d6fac
JB
1326 prealloc = NULL;
1327 start = this_end + 1;
1328 goto search_again;
1329 }
1330 /*
1331 * | ---- desired range ---- |
1332 * | state |
1333 * We need to split the extent, and set the bit
1334 * on the first half
1335 */
1336 if (state->start <= end && state->end > end) {
1337 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1338 if (!prealloc) {
1339 err = -ENOMEM;
1340 goto out;
1341 }
462d6fac
JB
1342
1343 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1344 if (err)
1345 extent_io_tree_panic(tree, err);
462d6fac 1346
d38ed27f 1347 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1348 cache_state(prealloc, cached_state);
fefdc557 1349 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1350 prealloc = NULL;
1351 goto out;
1352 }
1353
462d6fac
JB
1354search_again:
1355 if (start > end)
1356 goto out;
1357 spin_unlock(&tree->lock);
210aa277 1358 cond_resched();
c8fd3de7 1359 first_iteration = false;
462d6fac 1360 goto again;
462d6fac
JB
1361
1362out:
1363 spin_unlock(&tree->lock);
1364 if (prealloc)
1365 free_extent_state(prealloc);
1366
1367 return err;
462d6fac
JB
1368}
1369
d1310b2e 1370/* wrappers around set/clear extent bit */
d38ed27f 1371int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1372 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1373{
1374 /*
1375 * We don't support EXTENT_LOCKED yet, as current changeset will
1376 * record any bits changed, so for EXTENT_LOCKED case, it will
1377 * either fail with -EEXIST or changeset will record the whole
1378 * range.
1379 */
1380 BUG_ON(bits & EXTENT_LOCKED);
1381
2c53b912 1382 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1383 changeset);
1384}
1385
4ca73656
NB
1386int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1387 unsigned bits)
1388{
1389 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1390 GFP_NOWAIT, NULL);
1391}
1392
fefdc557
QW
1393int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1394 unsigned bits, int wake, int delete,
ae0f1625 1395 struct extent_state **cached)
fefdc557
QW
1396{
1397 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1398 cached, GFP_NOFS, NULL);
fefdc557
QW
1399}
1400
fefdc557 1401int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1402 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1403{
1404 /*
1405 * Don't support EXTENT_LOCKED case, same reason as
1406 * set_record_extent_bits().
1407 */
1408 BUG_ON(bits & EXTENT_LOCKED);
1409
f734c44a 1410 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1411 changeset);
1412}
1413
d352ac68
CM
1414/*
1415 * either insert or lock state struct between start and end use mask to tell
1416 * us if waiting is desired.
1417 */
1edbb734 1418int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1419 struct extent_state **cached_state)
d1310b2e
CM
1420{
1421 int err;
1422 u64 failed_start;
9ee49a04 1423
d1310b2e 1424 while (1) {
ff13db41 1425 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1426 EXTENT_LOCKED, &failed_start,
d38ed27f 1427 cached_state, GFP_NOFS, NULL);
d0082371 1428 if (err == -EEXIST) {
d1310b2e
CM
1429 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1430 start = failed_start;
d0082371 1431 } else
d1310b2e 1432 break;
d1310b2e
CM
1433 WARN_ON(start > end);
1434 }
1435 return err;
1436}
d1310b2e 1437
d0082371 1438int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1439{
1440 int err;
1441 u64 failed_start;
1442
3fbe5c02 1443 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1444 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1445 if (err == -EEXIST) {
1446 if (failed_start > start)
1447 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1448 EXTENT_LOCKED, 1, 0, NULL);
25179201 1449 return 0;
6643558d 1450 }
25179201
JB
1451 return 1;
1452}
25179201 1453
bd1fa4f0 1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1455{
09cbfeaf
KS
1456 unsigned long index = start >> PAGE_SHIFT;
1457 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
09cbfeaf 1464 put_page(page);
4adaa611
CM
1465 index++;
1466 }
4adaa611
CM
1467}
1468
f6311572 1469void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1470{
09cbfeaf
KS
1471 unsigned long index = start >> PAGE_SHIFT;
1472 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1478 __set_page_dirty_nobuffers(page);
8d38633c 1479 account_page_redirty(page);
09cbfeaf 1480 put_page(page);
4adaa611
CM
1481 index++;
1482 }
4adaa611
CM
1483}
1484
d352ac68
CM
1485/* find the first state struct with 'bits' set after 'start', and
1486 * return it. tree->lock must be held. NULL will returned if
1487 * nothing was found after 'start'
1488 */
48a3b636
ES
1489static struct extent_state *
1490find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1491 u64 start, unsigned bits)
d7fc640e
CM
1492{
1493 struct rb_node *node;
1494 struct extent_state *state;
1495
1496 /*
1497 * this search will find all the extents that end after
1498 * our range starts.
1499 */
1500 node = tree_search(tree, start);
d397712b 1501 if (!node)
d7fc640e 1502 goto out;
d7fc640e 1503
d397712b 1504 while (1) {
d7fc640e 1505 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1506 if (state->end >= start && (state->state & bits))
d7fc640e 1507 return state;
d397712b 1508
d7fc640e
CM
1509 node = rb_next(node);
1510 if (!node)
1511 break;
1512 }
1513out:
1514 return NULL;
1515}
d7fc640e 1516
69261c4b
XG
1517/*
1518 * find the first offset in the io tree with 'bits' set. zero is
1519 * returned if we find something, and *start_ret and *end_ret are
1520 * set to reflect the state struct that was found.
1521 *
477d7eaf 1522 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1523 */
1524int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1525 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1526 struct extent_state **cached_state)
69261c4b
XG
1527{
1528 struct extent_state *state;
1529 int ret = 1;
1530
1531 spin_lock(&tree->lock);
e6138876
JB
1532 if (cached_state && *cached_state) {
1533 state = *cached_state;
27a3507d 1534 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1535 while ((state = next_state(state)) != NULL) {
e6138876
JB
1536 if (state->state & bits)
1537 goto got_it;
e6138876
JB
1538 }
1539 free_extent_state(*cached_state);
1540 *cached_state = NULL;
1541 goto out;
1542 }
1543 free_extent_state(*cached_state);
1544 *cached_state = NULL;
1545 }
1546
69261c4b 1547 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1548got_it:
69261c4b 1549 if (state) {
e38e2ed7 1550 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1551 *start_ret = state->start;
1552 *end_ret = state->end;
1553 ret = 0;
1554 }
e6138876 1555out:
69261c4b
XG
1556 spin_unlock(&tree->lock);
1557 return ret;
1558}
1559
45bfcfc1 1560/**
1eaebb34
NB
1561 * find_first_clear_extent_bit - find the first range that has @bits not set.
1562 * This range could start before @start.
45bfcfc1
NB
1563 *
1564 * @tree - the tree to search
1565 * @start - the offset at/after which the found extent should start
1566 * @start_ret - records the beginning of the range
1567 * @end_ret - records the end of the range (inclusive)
1568 * @bits - the set of bits which must be unset
1569 *
1570 * Since unallocated range is also considered one which doesn't have the bits
1571 * set it's possible that @end_ret contains -1, this happens in case the range
1572 * spans (last_range_end, end of device]. In this case it's up to the caller to
1573 * trim @end_ret to the appropriate size.
1574 */
1575void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1576 u64 *start_ret, u64 *end_ret, unsigned bits)
1577{
1578 struct extent_state *state;
1579 struct rb_node *node, *prev = NULL, *next;
1580
1581 spin_lock(&tree->lock);
1582
1583 /* Find first extent with bits cleared */
1584 while (1) {
1585 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1586 if (!node) {
1587 node = next;
1588 if (!node) {
1589 /*
1590 * We are past the last allocated chunk,
1591 * set start at the end of the last extent. The
1592 * device alloc tree should never be empty so
1593 * prev is always set.
1594 */
1595 ASSERT(prev);
1596 state = rb_entry(prev, struct extent_state, rb_node);
1597 *start_ret = state->end + 1;
1598 *end_ret = -1;
1599 goto out;
1600 }
1601 }
1eaebb34
NB
1602 /*
1603 * At this point 'node' either contains 'start' or start is
1604 * before 'node'
1605 */
45bfcfc1 1606 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1607
1608 if (in_range(start, state->start, state->end - state->start + 1)) {
1609 if (state->state & bits) {
1610 /*
1611 * |--range with bits sets--|
1612 * |
1613 * start
1614 */
1615 start = state->end + 1;
1616 } else {
1617 /*
1618 * 'start' falls within a range that doesn't
1619 * have the bits set, so take its start as
1620 * the beginning of the desired range
1621 *
1622 * |--range with bits cleared----|
1623 * |
1624 * start
1625 */
1626 *start_ret = state->start;
1627 break;
1628 }
45bfcfc1 1629 } else {
1eaebb34
NB
1630 /*
1631 * |---prev range---|---hole/unset---|---node range---|
1632 * |
1633 * start
1634 *
1635 * or
1636 *
1637 * |---hole/unset--||--first node--|
1638 * 0 |
1639 * start
1640 */
1641 if (prev) {
1642 state = rb_entry(prev, struct extent_state,
1643 rb_node);
1644 *start_ret = state->end + 1;
1645 } else {
1646 *start_ret = 0;
1647 }
45bfcfc1
NB
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * Find the longest stretch from start until an entry which has the
1654 * bits set
1655 */
1656 while (1) {
1657 state = rb_entry(node, struct extent_state, rb_node);
1658 if (state->end >= start && !(state->state & bits)) {
1659 *end_ret = state->end;
1660 } else {
1661 *end_ret = state->start - 1;
1662 break;
1663 }
1664
1665 node = rb_next(node);
1666 if (!node)
1667 break;
1668 }
1669out:
1670 spin_unlock(&tree->lock);
1671}
1672
d352ac68
CM
1673/*
1674 * find a contiguous range of bytes in the file marked as delalloc, not
1675 * more than 'max_bytes'. start and end are used to return the range,
1676 *
3522e903 1677 * true is returned if we find something, false if nothing was in the tree
d352ac68 1678 */
3522e903 1679static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1680 u64 *start, u64 *end, u64 max_bytes,
1681 struct extent_state **cached_state)
d1310b2e
CM
1682{
1683 struct rb_node *node;
1684 struct extent_state *state;
1685 u64 cur_start = *start;
3522e903 1686 bool found = false;
d1310b2e
CM
1687 u64 total_bytes = 0;
1688
cad321ad 1689 spin_lock(&tree->lock);
c8b97818 1690
d1310b2e
CM
1691 /*
1692 * this search will find all the extents that end after
1693 * our range starts.
1694 */
80ea96b1 1695 node = tree_search(tree, cur_start);
2b114d1d 1696 if (!node) {
3522e903 1697 *end = (u64)-1;
d1310b2e
CM
1698 goto out;
1699 }
1700
d397712b 1701 while (1) {
d1310b2e 1702 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1703 if (found && (state->start != cur_start ||
1704 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1705 goto out;
1706 }
1707 if (!(state->state & EXTENT_DELALLOC)) {
1708 if (!found)
1709 *end = state->end;
1710 goto out;
1711 }
c2a128d2 1712 if (!found) {
d1310b2e 1713 *start = state->start;
c2a128d2 1714 *cached_state = state;
b7ac31b7 1715 refcount_inc(&state->refs);
c2a128d2 1716 }
3522e903 1717 found = true;
d1310b2e
CM
1718 *end = state->end;
1719 cur_start = state->end + 1;
1720 node = rb_next(node);
d1310b2e 1721 total_bytes += state->end - state->start + 1;
7bf811a5 1722 if (total_bytes >= max_bytes)
573aecaf 1723 break;
573aecaf 1724 if (!node)
d1310b2e
CM
1725 break;
1726 }
1727out:
cad321ad 1728 spin_unlock(&tree->lock);
d1310b2e
CM
1729 return found;
1730}
1731
da2c7009
LB
1732static int __process_pages_contig(struct address_space *mapping,
1733 struct page *locked_page,
1734 pgoff_t start_index, pgoff_t end_index,
1735 unsigned long page_ops, pgoff_t *index_ret);
1736
143bede5
JM
1737static noinline void __unlock_for_delalloc(struct inode *inode,
1738 struct page *locked_page,
1739 u64 start, u64 end)
c8b97818 1740{
09cbfeaf
KS
1741 unsigned long index = start >> PAGE_SHIFT;
1742 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1743
76c0021d 1744 ASSERT(locked_page);
c8b97818 1745 if (index == locked_page->index && end_index == index)
143bede5 1746 return;
c8b97818 1747
76c0021d
LB
1748 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1749 PAGE_UNLOCK, NULL);
c8b97818
CM
1750}
1751
1752static noinline int lock_delalloc_pages(struct inode *inode,
1753 struct page *locked_page,
1754 u64 delalloc_start,
1755 u64 delalloc_end)
1756{
09cbfeaf 1757 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1758 unsigned long index_ret = index;
09cbfeaf 1759 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1760 int ret;
c8b97818 1761
76c0021d 1762 ASSERT(locked_page);
c8b97818
CM
1763 if (index == locked_page->index && index == end_index)
1764 return 0;
1765
76c0021d
LB
1766 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1767 end_index, PAGE_LOCK, &index_ret);
1768 if (ret == -EAGAIN)
1769 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1770 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1771 return ret;
1772}
1773
1774/*
3522e903
LF
1775 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1776 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1777 *
3522e903
LF
1778 * Return: true if we find something
1779 * false if nothing was in the tree
c8b97818 1780 */
ce9f967f 1781EXPORT_FOR_TESTS
3522e903 1782noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1783 struct page *locked_page, u64 *start,
917aacec 1784 u64 *end)
c8b97818 1785{
9978059b 1786 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1787 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1788 u64 delalloc_start;
1789 u64 delalloc_end;
3522e903 1790 bool found;
9655d298 1791 struct extent_state *cached_state = NULL;
c8b97818
CM
1792 int ret;
1793 int loops = 0;
1794
1795again:
1796 /* step one, find a bunch of delalloc bytes starting at start */
1797 delalloc_start = *start;
1798 delalloc_end = 0;
1799 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1800 max_bytes, &cached_state);
70b99e69 1801 if (!found || delalloc_end <= *start) {
c8b97818
CM
1802 *start = delalloc_start;
1803 *end = delalloc_end;
c2a128d2 1804 free_extent_state(cached_state);
3522e903 1805 return false;
c8b97818
CM
1806 }
1807
70b99e69
CM
1808 /*
1809 * start comes from the offset of locked_page. We have to lock
1810 * pages in order, so we can't process delalloc bytes before
1811 * locked_page
1812 */
d397712b 1813 if (delalloc_start < *start)
70b99e69 1814 delalloc_start = *start;
70b99e69 1815
c8b97818
CM
1816 /*
1817 * make sure to limit the number of pages we try to lock down
c8b97818 1818 */
7bf811a5
JB
1819 if (delalloc_end + 1 - delalloc_start > max_bytes)
1820 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1821
c8b97818
CM
1822 /* step two, lock all the pages after the page that has start */
1823 ret = lock_delalloc_pages(inode, locked_page,
1824 delalloc_start, delalloc_end);
9bfd61d9 1825 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1826 if (ret == -EAGAIN) {
1827 /* some of the pages are gone, lets avoid looping by
1828 * shortening the size of the delalloc range we're searching
1829 */
9655d298 1830 free_extent_state(cached_state);
7d788742 1831 cached_state = NULL;
c8b97818 1832 if (!loops) {
09cbfeaf 1833 max_bytes = PAGE_SIZE;
c8b97818
CM
1834 loops = 1;
1835 goto again;
1836 } else {
3522e903 1837 found = false;
c8b97818
CM
1838 goto out_failed;
1839 }
1840 }
c8b97818
CM
1841
1842 /* step three, lock the state bits for the whole range */
ff13db41 1843 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1844
1845 /* then test to make sure it is all still delalloc */
1846 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1847 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1848 if (!ret) {
9655d298 1849 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1850 &cached_state);
c8b97818
CM
1851 __unlock_for_delalloc(inode, locked_page,
1852 delalloc_start, delalloc_end);
1853 cond_resched();
1854 goto again;
1855 }
9655d298 1856 free_extent_state(cached_state);
c8b97818
CM
1857 *start = delalloc_start;
1858 *end = delalloc_end;
1859out_failed:
1860 return found;
1861}
1862
da2c7009
LB
1863static int __process_pages_contig(struct address_space *mapping,
1864 struct page *locked_page,
1865 pgoff_t start_index, pgoff_t end_index,
1866 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1867{
873695b3 1868 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1869 unsigned long pages_locked = 0;
873695b3 1870 pgoff_t index = start_index;
c8b97818 1871 struct page *pages[16];
873695b3 1872 unsigned ret;
da2c7009 1873 int err = 0;
c8b97818 1874 int i;
771ed689 1875
da2c7009
LB
1876 if (page_ops & PAGE_LOCK) {
1877 ASSERT(page_ops == PAGE_LOCK);
1878 ASSERT(index_ret && *index_ret == start_index);
1879 }
1880
704de49d 1881 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1882 mapping_set_error(mapping, -EIO);
704de49d 1883
d397712b 1884 while (nr_pages > 0) {
873695b3 1885 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1886 min_t(unsigned long,
1887 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1888 if (ret == 0) {
1889 /*
1890 * Only if we're going to lock these pages,
1891 * can we find nothing at @index.
1892 */
1893 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1894 err = -EAGAIN;
1895 goto out;
da2c7009 1896 }
8b62b72b 1897
da2c7009 1898 for (i = 0; i < ret; i++) {
c2790a2e 1899 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1900 SetPagePrivate2(pages[i]);
1901
c8b97818 1902 if (pages[i] == locked_page) {
09cbfeaf 1903 put_page(pages[i]);
da2c7009 1904 pages_locked++;
c8b97818
CM
1905 continue;
1906 }
c2790a2e 1907 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1908 clear_page_dirty_for_io(pages[i]);
c2790a2e 1909 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1910 set_page_writeback(pages[i]);
704de49d
FM
1911 if (page_ops & PAGE_SET_ERROR)
1912 SetPageError(pages[i]);
c2790a2e 1913 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1914 end_page_writeback(pages[i]);
c2790a2e 1915 if (page_ops & PAGE_UNLOCK)
771ed689 1916 unlock_page(pages[i]);
da2c7009
LB
1917 if (page_ops & PAGE_LOCK) {
1918 lock_page(pages[i]);
1919 if (!PageDirty(pages[i]) ||
1920 pages[i]->mapping != mapping) {
1921 unlock_page(pages[i]);
1922 put_page(pages[i]);
1923 err = -EAGAIN;
1924 goto out;
1925 }
1926 }
09cbfeaf 1927 put_page(pages[i]);
da2c7009 1928 pages_locked++;
c8b97818
CM
1929 }
1930 nr_pages -= ret;
1931 index += ret;
1932 cond_resched();
1933 }
da2c7009
LB
1934out:
1935 if (err && index_ret)
1936 *index_ret = start_index + pages_locked - 1;
1937 return err;
c8b97818 1938}
c8b97818 1939
873695b3 1940void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
74e9194a
NB
1941 struct page *locked_page,
1942 unsigned clear_bits,
1943 unsigned long page_ops)
873695b3
LB
1944{
1945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1946 NULL);
873695b3
LB
1947
1948 __process_pages_contig(inode->i_mapping, locked_page,
1949 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1950 page_ops, NULL);
873695b3
LB
1951}
1952
d352ac68
CM
1953/*
1954 * count the number of bytes in the tree that have a given bit(s)
1955 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1956 * cached. The total number found is returned.
1957 */
d1310b2e
CM
1958u64 count_range_bits(struct extent_io_tree *tree,
1959 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1960 unsigned bits, int contig)
d1310b2e
CM
1961{
1962 struct rb_node *node;
1963 struct extent_state *state;
1964 u64 cur_start = *start;
1965 u64 total_bytes = 0;
ec29ed5b 1966 u64 last = 0;
d1310b2e
CM
1967 int found = 0;
1968
fae7f21c 1969 if (WARN_ON(search_end <= cur_start))
d1310b2e 1970 return 0;
d1310b2e 1971
cad321ad 1972 spin_lock(&tree->lock);
d1310b2e
CM
1973 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1974 total_bytes = tree->dirty_bytes;
1975 goto out;
1976 }
1977 /*
1978 * this search will find all the extents that end after
1979 * our range starts.
1980 */
80ea96b1 1981 node = tree_search(tree, cur_start);
d397712b 1982 if (!node)
d1310b2e 1983 goto out;
d1310b2e 1984
d397712b 1985 while (1) {
d1310b2e
CM
1986 state = rb_entry(node, struct extent_state, rb_node);
1987 if (state->start > search_end)
1988 break;
ec29ed5b
CM
1989 if (contig && found && state->start > last + 1)
1990 break;
1991 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1992 total_bytes += min(search_end, state->end) + 1 -
1993 max(cur_start, state->start);
1994 if (total_bytes >= max_bytes)
1995 break;
1996 if (!found) {
af60bed2 1997 *start = max(cur_start, state->start);
d1310b2e
CM
1998 found = 1;
1999 }
ec29ed5b
CM
2000 last = state->end;
2001 } else if (contig && found) {
2002 break;
d1310b2e
CM
2003 }
2004 node = rb_next(node);
2005 if (!node)
2006 break;
2007 }
2008out:
cad321ad 2009 spin_unlock(&tree->lock);
d1310b2e
CM
2010 return total_bytes;
2011}
b2950863 2012
d352ac68
CM
2013/*
2014 * set the private field for a given byte offset in the tree. If there isn't
2015 * an extent_state there already, this does nothing.
2016 */
f827ba9a 2017static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 2018 struct io_failure_record *failrec)
d1310b2e
CM
2019{
2020 struct rb_node *node;
2021 struct extent_state *state;
2022 int ret = 0;
2023
cad321ad 2024 spin_lock(&tree->lock);
d1310b2e
CM
2025 /*
2026 * this search will find all the extents that end after
2027 * our range starts.
2028 */
80ea96b1 2029 node = tree_search(tree, start);
2b114d1d 2030 if (!node) {
d1310b2e
CM
2031 ret = -ENOENT;
2032 goto out;
2033 }
2034 state = rb_entry(node, struct extent_state, rb_node);
2035 if (state->start != start) {
2036 ret = -ENOENT;
2037 goto out;
2038 }
47dc196a 2039 state->failrec = failrec;
d1310b2e 2040out:
cad321ad 2041 spin_unlock(&tree->lock);
d1310b2e
CM
2042 return ret;
2043}
2044
f827ba9a 2045static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 2046 struct io_failure_record **failrec)
d1310b2e
CM
2047{
2048 struct rb_node *node;
2049 struct extent_state *state;
2050 int ret = 0;
2051
cad321ad 2052 spin_lock(&tree->lock);
d1310b2e
CM
2053 /*
2054 * this search will find all the extents that end after
2055 * our range starts.
2056 */
80ea96b1 2057 node = tree_search(tree, start);
2b114d1d 2058 if (!node) {
d1310b2e
CM
2059 ret = -ENOENT;
2060 goto out;
2061 }
2062 state = rb_entry(node, struct extent_state, rb_node);
2063 if (state->start != start) {
2064 ret = -ENOENT;
2065 goto out;
2066 }
47dc196a 2067 *failrec = state->failrec;
d1310b2e 2068out:
cad321ad 2069 spin_unlock(&tree->lock);
d1310b2e
CM
2070 return ret;
2071}
2072
2073/*
2074 * searches a range in the state tree for a given mask.
70dec807 2075 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2076 * has the bits set. Otherwise, 1 is returned if any bit in the
2077 * range is found set.
2078 */
2079int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2080 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2081{
2082 struct extent_state *state = NULL;
2083 struct rb_node *node;
2084 int bitset = 0;
d1310b2e 2085
cad321ad 2086 spin_lock(&tree->lock);
27a3507d 2087 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2088 cached->end > start)
9655d298
CM
2089 node = &cached->rb_node;
2090 else
2091 node = tree_search(tree, start);
d1310b2e
CM
2092 while (node && start <= end) {
2093 state = rb_entry(node, struct extent_state, rb_node);
2094
2095 if (filled && state->start > start) {
2096 bitset = 0;
2097 break;
2098 }
2099
2100 if (state->start > end)
2101 break;
2102
2103 if (state->state & bits) {
2104 bitset = 1;
2105 if (!filled)
2106 break;
2107 } else if (filled) {
2108 bitset = 0;
2109 break;
2110 }
46562cec
CM
2111
2112 if (state->end == (u64)-1)
2113 break;
2114
d1310b2e
CM
2115 start = state->end + 1;
2116 if (start > end)
2117 break;
2118 node = rb_next(node);
2119 if (!node) {
2120 if (filled)
2121 bitset = 0;
2122 break;
2123 }
2124 }
cad321ad 2125 spin_unlock(&tree->lock);
d1310b2e
CM
2126 return bitset;
2127}
d1310b2e
CM
2128
2129/*
2130 * helper function to set a given page up to date if all the
2131 * extents in the tree for that page are up to date
2132 */
143bede5 2133static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2134{
4eee4fa4 2135 u64 start = page_offset(page);
09cbfeaf 2136 u64 end = start + PAGE_SIZE - 1;
9655d298 2137 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2138 SetPageUptodate(page);
d1310b2e
CM
2139}
2140
7870d082
JB
2141int free_io_failure(struct extent_io_tree *failure_tree,
2142 struct extent_io_tree *io_tree,
2143 struct io_failure_record *rec)
4a54c8c1
JS
2144{
2145 int ret;
2146 int err = 0;
4a54c8c1 2147
47dc196a 2148 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2149 ret = clear_extent_bits(failure_tree, rec->start,
2150 rec->start + rec->len - 1,
91166212 2151 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2152 if (ret)
2153 err = ret;
2154
7870d082 2155 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2156 rec->start + rec->len - 1,
91166212 2157 EXTENT_DAMAGED);
53b381b3
DW
2158 if (ret && !err)
2159 err = ret;
4a54c8c1
JS
2160
2161 kfree(rec);
2162 return err;
2163}
2164
4a54c8c1
JS
2165/*
2166 * this bypasses the standard btrfs submit functions deliberately, as
2167 * the standard behavior is to write all copies in a raid setup. here we only
2168 * want to write the one bad copy. so we do the mapping for ourselves and issue
2169 * submit_bio directly.
3ec706c8 2170 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2171 * actually prevents the read that triggered the error from finishing.
2172 * currently, there can be no more than two copies of every data bit. thus,
2173 * exactly one rewrite is required.
2174 */
6ec656bc
JB
2175int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2176 u64 length, u64 logical, struct page *page,
2177 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2178{
2179 struct bio *bio;
2180 struct btrfs_device *dev;
4a54c8c1
JS
2181 u64 map_length = 0;
2182 u64 sector;
2183 struct btrfs_bio *bbio = NULL;
2184 int ret;
2185
1751e8a6 2186 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2187 BUG_ON(!mirror_num);
2188
c5e4c3d7 2189 bio = btrfs_io_bio_alloc(1);
4f024f37 2190 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2191 map_length = length;
2192
b5de8d0d
FM
2193 /*
2194 * Avoid races with device replace and make sure our bbio has devices
2195 * associated to its stripes that don't go away while we are doing the
2196 * read repair operation.
2197 */
2198 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2199 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2200 /*
2201 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2202 * to update all raid stripes, but here we just want to correct
2203 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2204 * stripe's dev and sector.
2205 */
2206 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2207 &map_length, &bbio, 0);
2208 if (ret) {
2209 btrfs_bio_counter_dec(fs_info);
2210 bio_put(bio);
2211 return -EIO;
2212 }
2213 ASSERT(bbio->mirror_num == 1);
2214 } else {
2215 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2216 &map_length, &bbio, mirror_num);
2217 if (ret) {
2218 btrfs_bio_counter_dec(fs_info);
2219 bio_put(bio);
2220 return -EIO;
2221 }
2222 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2223 }
c725328c
LB
2224
2225 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2226 bio->bi_iter.bi_sector = sector;
c725328c 2227 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2228 btrfs_put_bbio(bbio);
ebbede42
AJ
2229 if (!dev || !dev->bdev ||
2230 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2231 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2232 bio_put(bio);
2233 return -EIO;
2234 }
74d46992 2235 bio_set_dev(bio, dev->bdev);
70fd7614 2236 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2237 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2238
4e49ea4a 2239 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2240 /* try to remap that extent elsewhere? */
b5de8d0d 2241 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2242 bio_put(bio);
442a4f63 2243 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2244 return -EIO;
2245 }
2246
b14af3b4
DS
2247 btrfs_info_rl_in_rcu(fs_info,
2248 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2249 ino, start,
1203b681 2250 rcu_str_deref(dev->name), sector);
b5de8d0d 2251 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2252 bio_put(bio);
2253 return 0;
2254}
2255
20a1fbf9 2256int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2257{
20a1fbf9 2258 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2259 u64 start = eb->start;
cc5e31a4 2260 int i, num_pages = num_extent_pages(eb);
d95603b2 2261 int ret = 0;
ea466794 2262
bc98a42c 2263 if (sb_rdonly(fs_info->sb))
908960c6
ID
2264 return -EROFS;
2265
ea466794 2266 for (i = 0; i < num_pages; i++) {
fb85fc9a 2267 struct page *p = eb->pages[i];
1203b681 2268
6ec656bc 2269 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2270 start - page_offset(p), mirror_num);
ea466794
JB
2271 if (ret)
2272 break;
09cbfeaf 2273 start += PAGE_SIZE;
ea466794
JB
2274 }
2275
2276 return ret;
2277}
2278
4a54c8c1
JS
2279/*
2280 * each time an IO finishes, we do a fast check in the IO failure tree
2281 * to see if we need to process or clean up an io_failure_record
2282 */
7870d082
JB
2283int clean_io_failure(struct btrfs_fs_info *fs_info,
2284 struct extent_io_tree *failure_tree,
2285 struct extent_io_tree *io_tree, u64 start,
2286 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2287{
2288 u64 private;
4a54c8c1 2289 struct io_failure_record *failrec;
4a54c8c1
JS
2290 struct extent_state *state;
2291 int num_copies;
4a54c8c1 2292 int ret;
4a54c8c1
JS
2293
2294 private = 0;
7870d082
JB
2295 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2296 EXTENT_DIRTY, 0);
4a54c8c1
JS
2297 if (!ret)
2298 return 0;
2299
7870d082 2300 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2301 if (ret)
2302 return 0;
2303
4a54c8c1
JS
2304 BUG_ON(!failrec->this_mirror);
2305
2306 if (failrec->in_validation) {
2307 /* there was no real error, just free the record */
ab8d0fc4
JM
2308 btrfs_debug(fs_info,
2309 "clean_io_failure: freeing dummy error at %llu",
2310 failrec->start);
4a54c8c1
JS
2311 goto out;
2312 }
bc98a42c 2313 if (sb_rdonly(fs_info->sb))
908960c6 2314 goto out;
4a54c8c1 2315
7870d082
JB
2316 spin_lock(&io_tree->lock);
2317 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2318 failrec->start,
2319 EXTENT_LOCKED);
7870d082 2320 spin_unlock(&io_tree->lock);
4a54c8c1 2321
883d0de4
MX
2322 if (state && state->start <= failrec->start &&
2323 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2324 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2325 failrec->len);
4a54c8c1 2326 if (num_copies > 1) {
7870d082
JB
2327 repair_io_failure(fs_info, ino, start, failrec->len,
2328 failrec->logical, page, pg_offset,
2329 failrec->failed_mirror);
4a54c8c1
JS
2330 }
2331 }
2332
2333out:
7870d082 2334 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2335
454ff3de 2336 return 0;
4a54c8c1
JS
2337}
2338
f612496b
MX
2339/*
2340 * Can be called when
2341 * - hold extent lock
2342 * - under ordered extent
2343 * - the inode is freeing
2344 */
7ab7956e 2345void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2346{
7ab7956e 2347 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2348 struct io_failure_record *failrec;
2349 struct extent_state *state, *next;
2350
2351 if (RB_EMPTY_ROOT(&failure_tree->state))
2352 return;
2353
2354 spin_lock(&failure_tree->lock);
2355 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2356 while (state) {
2357 if (state->start > end)
2358 break;
2359
2360 ASSERT(state->end <= end);
2361
2362 next = next_state(state);
2363
47dc196a 2364 failrec = state->failrec;
f612496b
MX
2365 free_extent_state(state);
2366 kfree(failrec);
2367
2368 state = next;
2369 }
2370 spin_unlock(&failure_tree->lock);
2371}
2372
2fe6303e 2373int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2374 struct io_failure_record **failrec_ret)
4a54c8c1 2375{
ab8d0fc4 2376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2377 struct io_failure_record *failrec;
4a54c8c1 2378 struct extent_map *em;
4a54c8c1
JS
2379 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2380 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2381 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2382 int ret;
4a54c8c1
JS
2383 u64 logical;
2384
47dc196a 2385 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2386 if (ret) {
2387 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2388 if (!failrec)
2389 return -ENOMEM;
2fe6303e 2390
4a54c8c1
JS
2391 failrec->start = start;
2392 failrec->len = end - start + 1;
2393 failrec->this_mirror = 0;
2394 failrec->bio_flags = 0;
2395 failrec->in_validation = 0;
2396
2397 read_lock(&em_tree->lock);
2398 em = lookup_extent_mapping(em_tree, start, failrec->len);
2399 if (!em) {
2400 read_unlock(&em_tree->lock);
2401 kfree(failrec);
2402 return -EIO;
2403 }
2404
68ba990f 2405 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2406 free_extent_map(em);
2407 em = NULL;
2408 }
2409 read_unlock(&em_tree->lock);
7a2d6a64 2410 if (!em) {
4a54c8c1
JS
2411 kfree(failrec);
2412 return -EIO;
2413 }
2fe6303e 2414
4a54c8c1
JS
2415 logical = start - em->start;
2416 logical = em->block_start + logical;
2417 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2418 logical = em->block_start;
2419 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2420 extent_set_compress_type(&failrec->bio_flags,
2421 em->compress_type);
2422 }
2fe6303e 2423
ab8d0fc4
JM
2424 btrfs_debug(fs_info,
2425 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2426 logical, start, failrec->len);
2fe6303e 2427
4a54c8c1
JS
2428 failrec->logical = logical;
2429 free_extent_map(em);
2430
2431 /* set the bits in the private failure tree */
2432 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2433 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2434 if (ret >= 0)
47dc196a 2435 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2436 /* set the bits in the inode's tree */
2437 if (ret >= 0)
ceeb0ae7 2438 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2439 if (ret < 0) {
2440 kfree(failrec);
2441 return ret;
2442 }
2443 } else {
ab8d0fc4
JM
2444 btrfs_debug(fs_info,
2445 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2446 failrec->logical, failrec->start, failrec->len,
2447 failrec->in_validation);
4a54c8c1
JS
2448 /*
2449 * when data can be on disk more than twice, add to failrec here
2450 * (e.g. with a list for failed_mirror) to make
2451 * clean_io_failure() clean all those errors at once.
2452 */
2453 }
2fe6303e
MX
2454
2455 *failrec_ret = failrec;
2456
2457 return 0;
2458}
2459
a0b60d72 2460bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2461 struct io_failure_record *failrec, int failed_mirror)
2462{
ab8d0fc4 2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2464 int num_copies;
2465
ab8d0fc4 2466 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2467 if (num_copies == 1) {
2468 /*
2469 * we only have a single copy of the data, so don't bother with
2470 * all the retry and error correction code that follows. no
2471 * matter what the error is, it is very likely to persist.
2472 */
ab8d0fc4
JM
2473 btrfs_debug(fs_info,
2474 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2475 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2476 return false;
4a54c8c1
JS
2477 }
2478
4a54c8c1
JS
2479 /*
2480 * there are two premises:
2481 * a) deliver good data to the caller
2482 * b) correct the bad sectors on disk
2483 */
a0b60d72 2484 if (failed_bio_pages > 1) {
4a54c8c1
JS
2485 /*
2486 * to fulfill b), we need to know the exact failing sectors, as
2487 * we don't want to rewrite any more than the failed ones. thus,
2488 * we need separate read requests for the failed bio
2489 *
2490 * if the following BUG_ON triggers, our validation request got
2491 * merged. we need separate requests for our algorithm to work.
2492 */
2493 BUG_ON(failrec->in_validation);
2494 failrec->in_validation = 1;
2495 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2496 } else {
2497 /*
2498 * we're ready to fulfill a) and b) alongside. get a good copy
2499 * of the failed sector and if we succeed, we have setup
2500 * everything for repair_io_failure to do the rest for us.
2501 */
2502 if (failrec->in_validation) {
2503 BUG_ON(failrec->this_mirror != failed_mirror);
2504 failrec->in_validation = 0;
2505 failrec->this_mirror = 0;
2506 }
2507 failrec->failed_mirror = failed_mirror;
2508 failrec->this_mirror++;
2509 if (failrec->this_mirror == failed_mirror)
2510 failrec->this_mirror++;
4a54c8c1
JS
2511 }
2512
facc8a22 2513 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2514 btrfs_debug(fs_info,
2515 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2516 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2517 return false;
4a54c8c1
JS
2518 }
2519
c3cfb656 2520 return true;
2fe6303e
MX
2521}
2522
2523
2524struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2525 struct io_failure_record *failrec,
2526 struct page *page, int pg_offset, int icsum,
8b110e39 2527 bio_end_io_t *endio_func, void *data)
2fe6303e 2528{
0b246afa 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2530 struct bio *bio;
2531 struct btrfs_io_bio *btrfs_failed_bio;
2532 struct btrfs_io_bio *btrfs_bio;
2533
c5e4c3d7 2534 bio = btrfs_io_bio_alloc(1);
2fe6303e 2535 bio->bi_end_io = endio_func;
4f024f37 2536 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2537 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2538 bio->bi_iter.bi_size = 0;
8b110e39 2539 bio->bi_private = data;
4a54c8c1 2540
facc8a22
MX
2541 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2542 if (btrfs_failed_bio->csum) {
facc8a22
MX
2543 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2544
2545 btrfs_bio = btrfs_io_bio(bio);
2546 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2547 icsum *= csum_size;
2548 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2549 csum_size);
2550 }
2551
2fe6303e
MX
2552 bio_add_page(bio, page, failrec->len, pg_offset);
2553
2554 return bio;
2555}
2556
2557/*
78e62c02
NB
2558 * This is a generic handler for readpage errors. If other copies exist, read
2559 * those and write back good data to the failed position. Does not investigate
2560 * in remapping the failed extent elsewhere, hoping the device will be smart
2561 * enough to do this as needed
2fe6303e 2562 */
2fe6303e
MX
2563static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2564 struct page *page, u64 start, u64 end,
2565 int failed_mirror)
2566{
2567 struct io_failure_record *failrec;
2568 struct inode *inode = page->mapping->host;
2569 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2570 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2571 struct bio *bio;
70fd7614 2572 int read_mode = 0;
4e4cbee9 2573 blk_status_t status;
2fe6303e 2574 int ret;
8a2ee44a 2575 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2576
1f7ad75b 2577 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2578
2579 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2580 if (ret)
2581 return ret;
2582
a0b60d72 2583 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2584 failed_mirror)) {
7870d082 2585 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2586 return -EIO;
2587 }
2588
a0b60d72 2589 if (failed_bio_pages > 1)
70fd7614 2590 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2591
2592 phy_offset >>= inode->i_sb->s_blocksize_bits;
2593 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2594 start - page_offset(page),
8b110e39
MX
2595 (int)phy_offset, failed_bio->bi_end_io,
2596 NULL);
ebcc3263 2597 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2598
ab8d0fc4
JM
2599 btrfs_debug(btrfs_sb(inode->i_sb),
2600 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2601 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2602
8c27cb35 2603 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2604 failrec->bio_flags);
4e4cbee9 2605 if (status) {
7870d082 2606 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2607 bio_put(bio);
4e4cbee9 2608 ret = blk_status_to_errno(status);
6c387ab2
MX
2609 }
2610
013bd4c3 2611 return ret;
4a54c8c1
JS
2612}
2613
d1310b2e
CM
2614/* lots and lots of room for performance fixes in the end_bio funcs */
2615
b5227c07 2616void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2617{
2618 int uptodate = (err == 0);
3e2426bd 2619 int ret = 0;
87826df0 2620
c629732d 2621 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2622
87826df0 2623 if (!uptodate) {
87826df0
JM
2624 ClearPageUptodate(page);
2625 SetPageError(page);
bff5baf8 2626 ret = err < 0 ? err : -EIO;
5dca6eea 2627 mapping_set_error(page->mapping, ret);
87826df0 2628 }
87826df0
JM
2629}
2630
d1310b2e
CM
2631/*
2632 * after a writepage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * clear the writeback bits in the extent tree for this IO
2635 * end_page_writeback if the page has no more pending IO
2636 *
2637 * Scheduling is not allowed, so the extent state tree is expected
2638 * to have one and only one object corresponding to this IO.
2639 */
4246a0b6 2640static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2641{
4e4cbee9 2642 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2643 struct bio_vec *bvec;
d1310b2e
CM
2644 u64 start;
2645 u64 end;
6dc4f100 2646 struct bvec_iter_all iter_all;
d1310b2e 2647
c09abff8 2648 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2649 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2650 struct page *page = bvec->bv_page;
0b246afa
JM
2651 struct inode *inode = page->mapping->host;
2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2653
17a5adcc
AO
2654 /* We always issue full-page reads, but if some block
2655 * in a page fails to read, blk_update_request() will
2656 * advance bv_offset and adjust bv_len to compensate.
2657 * Print a warning for nonzero offsets, and an error
2658 * if they don't add up to a full page. */
09cbfeaf
KS
2659 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2660 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2661 btrfs_err(fs_info,
efe120a0
FH
2662 "partial page write in btrfs with offset %u and length %u",
2663 bvec->bv_offset, bvec->bv_len);
2664 else
0b246afa 2665 btrfs_info(fs_info,
5d163e0e 2666 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2667 bvec->bv_offset, bvec->bv_len);
2668 }
d1310b2e 2669
17a5adcc
AO
2670 start = page_offset(page);
2671 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2672
4e4cbee9 2673 end_extent_writepage(page, error, start, end);
17a5adcc 2674 end_page_writeback(page);
2c30c71b 2675 }
2b1f55b0 2676
d1310b2e 2677 bio_put(bio);
d1310b2e
CM
2678}
2679
883d0de4
MX
2680static void
2681endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2682 int uptodate)
2683{
2684 struct extent_state *cached = NULL;
2685 u64 end = start + len - 1;
2686
2687 if (uptodate && tree->track_uptodate)
2688 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2689 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2690}
2691
d1310b2e
CM
2692/*
2693 * after a readpage IO is done, we need to:
2694 * clear the uptodate bits on error
2695 * set the uptodate bits if things worked
2696 * set the page up to date if all extents in the tree are uptodate
2697 * clear the lock bit in the extent tree
2698 * unlock the page if there are no other extents locked for it
2699 *
2700 * Scheduling is not allowed, so the extent state tree is expected
2701 * to have one and only one object corresponding to this IO.
2702 */
4246a0b6 2703static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2704{
2c30c71b 2705 struct bio_vec *bvec;
4e4cbee9 2706 int uptodate = !bio->bi_status;
facc8a22 2707 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2708 struct extent_io_tree *tree, *failure_tree;
facc8a22 2709 u64 offset = 0;
d1310b2e
CM
2710 u64 start;
2711 u64 end;
facc8a22 2712 u64 len;
883d0de4
MX
2713 u64 extent_start = 0;
2714 u64 extent_len = 0;
5cf1ab56 2715 int mirror;
d1310b2e 2716 int ret;
6dc4f100 2717 struct bvec_iter_all iter_all;
d1310b2e 2718
c09abff8 2719 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2720 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2721 struct page *page = bvec->bv_page;
a71754fc 2722 struct inode *inode = page->mapping->host;
ab8d0fc4 2723 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2724 bool data_inode = btrfs_ino(BTRFS_I(inode))
2725 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2726
ab8d0fc4
JM
2727 btrfs_debug(fs_info,
2728 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2729 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2730 io_bio->mirror_num);
a71754fc 2731 tree = &BTRFS_I(inode)->io_tree;
7870d082 2732 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2733
17a5adcc
AO
2734 /* We always issue full-page reads, but if some block
2735 * in a page fails to read, blk_update_request() will
2736 * advance bv_offset and adjust bv_len to compensate.
2737 * Print a warning for nonzero offsets, and an error
2738 * if they don't add up to a full page. */
09cbfeaf
KS
2739 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2740 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2741 btrfs_err(fs_info,
2742 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2743 bvec->bv_offset, bvec->bv_len);
2744 else
ab8d0fc4
JM
2745 btrfs_info(fs_info,
2746 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2747 bvec->bv_offset, bvec->bv_len);
2748 }
d1310b2e 2749
17a5adcc
AO
2750 start = page_offset(page);
2751 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2752 len = bvec->bv_len;
d1310b2e 2753
9be3395b 2754 mirror = io_bio->mirror_num;
78e62c02 2755 if (likely(uptodate)) {
facc8a22
MX
2756 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2757 page, start, end,
2758 mirror);
5ee0844d 2759 if (ret)
d1310b2e 2760 uptodate = 0;
5ee0844d 2761 else
7870d082
JB
2762 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2763 failure_tree, tree, start,
2764 page,
2765 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2766 }
ea466794 2767
f2a09da9
MX
2768 if (likely(uptodate))
2769 goto readpage_ok;
2770
78e62c02 2771 if (data_inode) {
9d0d1c8b 2772
f4a8e656 2773 /*
78e62c02
NB
2774 * The generic bio_readpage_error handles errors the
2775 * following way: If possible, new read requests are
2776 * created and submitted and will end up in
2777 * end_bio_extent_readpage as well (if we're lucky,
2778 * not in the !uptodate case). In that case it returns
2779 * 0 and we just go on with the next page in our bio.
2780 * If it can't handle the error it will return -EIO and
2781 * we remain responsible for that page.
f4a8e656 2782 */
78e62c02
NB
2783 ret = bio_readpage_error(bio, offset, page, start, end,
2784 mirror);
2785 if (ret == 0) {
2786 uptodate = !bio->bi_status;
2787 offset += len;
2788 continue;
2789 }
2790 } else {
2791 struct extent_buffer *eb;
2792
2793 eb = (struct extent_buffer *)page->private;
2794 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2795 eb->read_mirror = mirror;
2796 atomic_dec(&eb->io_pages);
2797 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2798 &eb->bflags))
2799 btree_readahead_hook(eb, -EIO);
7e38326f 2800 }
f2a09da9 2801readpage_ok:
883d0de4 2802 if (likely(uptodate)) {
a71754fc 2803 loff_t i_size = i_size_read(inode);
09cbfeaf 2804 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2805 unsigned off;
a71754fc
JB
2806
2807 /* Zero out the end if this page straddles i_size */
7073017a 2808 off = offset_in_page(i_size);
a583c026 2809 if (page->index == end_index && off)
09cbfeaf 2810 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2811 SetPageUptodate(page);
70dec807 2812 } else {
17a5adcc
AO
2813 ClearPageUptodate(page);
2814 SetPageError(page);
70dec807 2815 }
17a5adcc 2816 unlock_page(page);
facc8a22 2817 offset += len;
883d0de4
MX
2818
2819 if (unlikely(!uptodate)) {
2820 if (extent_len) {
2821 endio_readpage_release_extent(tree,
2822 extent_start,
2823 extent_len, 1);
2824 extent_start = 0;
2825 extent_len = 0;
2826 }
2827 endio_readpage_release_extent(tree, start,
2828 end - start + 1, 0);
2829 } else if (!extent_len) {
2830 extent_start = start;
2831 extent_len = end + 1 - start;
2832 } else if (extent_start + extent_len == start) {
2833 extent_len += end + 1 - start;
2834 } else {
2835 endio_readpage_release_extent(tree, extent_start,
2836 extent_len, uptodate);
2837 extent_start = start;
2838 extent_len = end + 1 - start;
2839 }
2c30c71b 2840 }
d1310b2e 2841
883d0de4
MX
2842 if (extent_len)
2843 endio_readpage_release_extent(tree, extent_start, extent_len,
2844 uptodate);
b3a0dd50 2845 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2846 bio_put(bio);
d1310b2e
CM
2847}
2848
9be3395b 2849/*
184f999e
DS
2850 * Initialize the members up to but not including 'bio'. Use after allocating a
2851 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2852 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2853 */
184f999e 2854static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2855{
184f999e
DS
2856 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2857}
d1310b2e 2858
9be3395b 2859/*
6e707bcd
DS
2860 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2861 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2862 * for the appropriate container_of magic
9be3395b 2863 */
e749af44 2864struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2865{
2866 struct bio *bio;
d1310b2e 2867
8ac9f7c1 2868 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2869 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2870 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2871 return bio;
2872}
2873
8b6c1d56 2874struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2875{
23ea8e5a
MX
2876 struct btrfs_io_bio *btrfs_bio;
2877 struct bio *new;
9be3395b 2878
6e707bcd 2879 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2880 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2881 btrfs_bio = btrfs_io_bio(new);
184f999e 2882 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2883 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2884 return new;
2885}
9be3395b 2886
c5e4c3d7 2887struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2888{
facc8a22
MX
2889 struct bio *bio;
2890
6e707bcd 2891 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2892 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2893 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2894 return bio;
9be3395b
CM
2895}
2896
e477094f 2897struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2898{
2899 struct bio *bio;
2900 struct btrfs_io_bio *btrfs_bio;
2901
2902 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2903 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2904 ASSERT(bio);
2905
2906 btrfs_bio = btrfs_io_bio(bio);
184f999e 2907 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2908
2909 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2910 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2911 return bio;
2912}
9be3395b 2913
4b81ba48
DS
2914/*
2915 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2916 * @tree: tree so we can call our merge_bio hook
2917 * @wbc: optional writeback control for io accounting
2918 * @page: page to add to the bio
2919 * @pg_offset: offset of the new bio or to check whether we are adding
2920 * a contiguous page to the previous one
2921 * @size: portion of page that we want to write
2922 * @offset: starting offset in the page
2923 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2924 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2925 * @end_io_func: end_io callback for new bio
2926 * @mirror_num: desired mirror to read/write
2927 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2928 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2929 */
2930static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2931 struct writeback_control *wbc,
6273b7f8 2932 struct page *page, u64 offset,
6c5a4e2c 2933 size_t size, unsigned long pg_offset,
d1310b2e
CM
2934 struct block_device *bdev,
2935 struct bio **bio_ret,
f188591e 2936 bio_end_io_t end_io_func,
c8b97818
CM
2937 int mirror_num,
2938 unsigned long prev_bio_flags,
005efedf
FM
2939 unsigned long bio_flags,
2940 bool force_bio_submit)
d1310b2e
CM
2941{
2942 int ret = 0;
2943 struct bio *bio;
09cbfeaf 2944 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2945 sector_t sector = offset >> 9;
d1310b2e 2946
5c2b1fd7
DS
2947 ASSERT(bio_ret);
2948
2949 if (*bio_ret) {
0c8508a6
DS
2950 bool contig;
2951 bool can_merge = true;
2952
d1310b2e 2953 bio = *bio_ret;
0c8508a6 2954 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2955 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2956 else
f73a1c7d 2957 contig = bio_end_sector(bio) == sector;
c8b97818 2958
da12fe54
NB
2959 ASSERT(tree->ops);
2960 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2961 can_merge = false;
2962
2963 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2964 force_bio_submit ||
6c5a4e2c 2965 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2966 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2967 if (ret < 0) {
2968 *bio_ret = NULL;
79787eaa 2969 return ret;
289454ad 2970 }
d1310b2e
CM
2971 bio = NULL;
2972 } else {
da2f0f74 2973 if (wbc)
34e51a5e 2974 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
2975 return 0;
2976 }
2977 }
c8b97818 2978
e749af44
DS
2979 bio = btrfs_bio_alloc(offset);
2980 bio_set_dev(bio, bdev);
6c5a4e2c 2981 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2982 bio->bi_end_io = end_io_func;
2983 bio->bi_private = tree;
e6959b93 2984 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2985 bio->bi_opf = opf;
da2f0f74
CM
2986 if (wbc) {
2987 wbc_init_bio(wbc, bio);
34e51a5e 2988 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 2989 }
70dec807 2990
5c2b1fd7 2991 *bio_ret = bio;
d1310b2e
CM
2992
2993 return ret;
2994}
2995
48a3b636
ES
2996static void attach_extent_buffer_page(struct extent_buffer *eb,
2997 struct page *page)
d1310b2e
CM
2998{
2999 if (!PagePrivate(page)) {
3000 SetPagePrivate(page);
09cbfeaf 3001 get_page(page);
4f2de97a
JB
3002 set_page_private(page, (unsigned long)eb);
3003 } else {
3004 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3005 }
3006}
3007
4f2de97a 3008void set_page_extent_mapped(struct page *page)
d1310b2e 3009{
4f2de97a
JB
3010 if (!PagePrivate(page)) {
3011 SetPagePrivate(page);
09cbfeaf 3012 get_page(page);
4f2de97a
JB
3013 set_page_private(page, EXTENT_PAGE_PRIVATE);
3014 }
d1310b2e
CM
3015}
3016
125bac01
MX
3017static struct extent_map *
3018__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3019 u64 start, u64 len, get_extent_t *get_extent,
3020 struct extent_map **em_cached)
3021{
3022 struct extent_map *em;
3023
3024 if (em_cached && *em_cached) {
3025 em = *em_cached;
cbc0e928 3026 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3027 start < extent_map_end(em)) {
490b54d6 3028 refcount_inc(&em->refs);
125bac01
MX
3029 return em;
3030 }
3031
3032 free_extent_map(em);
3033 *em_cached = NULL;
3034 }
3035
fc4f21b1 3036 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
3037 if (em_cached && !IS_ERR_OR_NULL(em)) {
3038 BUG_ON(*em_cached);
490b54d6 3039 refcount_inc(&em->refs);
125bac01
MX
3040 *em_cached = em;
3041 }
3042 return em;
3043}
d1310b2e
CM
3044/*
3045 * basic readpage implementation. Locked extent state structs are inserted
3046 * into the tree that are removed when the IO is done (by the end_io
3047 * handlers)
79787eaa 3048 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3049 * return 0 on success, otherwise return error
d1310b2e 3050 */
9974090b
MX
3051static int __do_readpage(struct extent_io_tree *tree,
3052 struct page *page,
3053 get_extent_t *get_extent,
125bac01 3054 struct extent_map **em_cached,
9974090b 3055 struct bio **bio, int mirror_num,
f1c77c55 3056 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3057 u64 *prev_em_start)
d1310b2e
CM
3058{
3059 struct inode *inode = page->mapping->host;
4eee4fa4 3060 u64 start = page_offset(page);
8eec8296 3061 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3062 u64 cur = start;
3063 u64 extent_offset;
3064 u64 last_byte = i_size_read(inode);
3065 u64 block_start;
3066 u64 cur_end;
d1310b2e
CM
3067 struct extent_map *em;
3068 struct block_device *bdev;
baf863b9 3069 int ret = 0;
d1310b2e 3070 int nr = 0;
306e16ce 3071 size_t pg_offset = 0;
d1310b2e 3072 size_t iosize;
c8b97818 3073 size_t disk_io_size;
d1310b2e 3074 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3075 unsigned long this_bio_flag = 0;
d1310b2e
CM
3076
3077 set_page_extent_mapped(page);
3078
90a887c9
DM
3079 if (!PageUptodate(page)) {
3080 if (cleancache_get_page(page) == 0) {
3081 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3082 unlock_extent(tree, start, end);
90a887c9
DM
3083 goto out;
3084 }
3085 }
3086
09cbfeaf 3087 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3088 char *userpage;
7073017a 3089 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3090
3091 if (zero_offset) {
09cbfeaf 3092 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3093 userpage = kmap_atomic(page);
c8b97818
CM
3094 memset(userpage + zero_offset, 0, iosize);
3095 flush_dcache_page(page);
7ac687d9 3096 kunmap_atomic(userpage);
c8b97818
CM
3097 }
3098 }
d1310b2e 3099 while (cur <= end) {
005efedf 3100 bool force_bio_submit = false;
6273b7f8 3101 u64 offset;
c8f2f24b 3102
d1310b2e
CM
3103 if (cur >= last_byte) {
3104 char *userpage;
507903b8
AJ
3105 struct extent_state *cached = NULL;
3106
09cbfeaf 3107 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3108 userpage = kmap_atomic(page);
306e16ce 3109 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3110 flush_dcache_page(page);
7ac687d9 3111 kunmap_atomic(userpage);
d1310b2e 3112 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3113 &cached, GFP_NOFS);
7f042a83 3114 unlock_extent_cached(tree, cur,
e43bbe5e 3115 cur + iosize - 1, &cached);
d1310b2e
CM
3116 break;
3117 }
125bac01
MX
3118 em = __get_extent_map(inode, page, pg_offset, cur,
3119 end - cur + 1, get_extent, em_cached);
c704005d 3120 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3121 SetPageError(page);
7f042a83 3122 unlock_extent(tree, cur, end);
d1310b2e
CM
3123 break;
3124 }
d1310b2e
CM
3125 extent_offset = cur - em->start;
3126 BUG_ON(extent_map_end(em) <= cur);
3127 BUG_ON(end < cur);
3128
261507a0 3129 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3130 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3131 extent_set_compress_type(&this_bio_flag,
3132 em->compress_type);
3133 }
c8b97818 3134
d1310b2e
CM
3135 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3136 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3137 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3138 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3139 disk_io_size = em->block_len;
6273b7f8 3140 offset = em->block_start;
c8b97818 3141 } else {
6273b7f8 3142 offset = em->block_start + extent_offset;
c8b97818
CM
3143 disk_io_size = iosize;
3144 }
d1310b2e
CM
3145 bdev = em->bdev;
3146 block_start = em->block_start;
d899e052
YZ
3147 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3148 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3149
3150 /*
3151 * If we have a file range that points to a compressed extent
3152 * and it's followed by a consecutive file range that points to
3153 * to the same compressed extent (possibly with a different
3154 * offset and/or length, so it either points to the whole extent
3155 * or only part of it), we must make sure we do not submit a
3156 * single bio to populate the pages for the 2 ranges because
3157 * this makes the compressed extent read zero out the pages
3158 * belonging to the 2nd range. Imagine the following scenario:
3159 *
3160 * File layout
3161 * [0 - 8K] [8K - 24K]
3162 * | |
3163 * | |
3164 * points to extent X, points to extent X,
3165 * offset 4K, length of 8K offset 0, length 16K
3166 *
3167 * [extent X, compressed length = 4K uncompressed length = 16K]
3168 *
3169 * If the bio to read the compressed extent covers both ranges,
3170 * it will decompress extent X into the pages belonging to the
3171 * first range and then it will stop, zeroing out the remaining
3172 * pages that belong to the other range that points to extent X.
3173 * So here we make sure we submit 2 bios, one for the first
3174 * range and another one for the third range. Both will target
3175 * the same physical extent from disk, but we can't currently
3176 * make the compressed bio endio callback populate the pages
3177 * for both ranges because each compressed bio is tightly
3178 * coupled with a single extent map, and each range can have
3179 * an extent map with a different offset value relative to the
3180 * uncompressed data of our extent and different lengths. This
3181 * is a corner case so we prioritize correctness over
3182 * non-optimal behavior (submitting 2 bios for the same extent).
3183 */
3184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3185 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3186 *prev_em_start != em->start)
005efedf
FM
3187 force_bio_submit = true;
3188
3189 if (prev_em_start)
8e928218 3190 *prev_em_start = em->start;
005efedf 3191
d1310b2e
CM
3192 free_extent_map(em);
3193 em = NULL;
3194
3195 /* we've found a hole, just zero and go on */
3196 if (block_start == EXTENT_MAP_HOLE) {
3197 char *userpage;
507903b8
AJ
3198 struct extent_state *cached = NULL;
3199
7ac687d9 3200 userpage = kmap_atomic(page);
306e16ce 3201 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3202 flush_dcache_page(page);
7ac687d9 3203 kunmap_atomic(userpage);
d1310b2e
CM
3204
3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3206 &cached, GFP_NOFS);
7f042a83 3207 unlock_extent_cached(tree, cur,
e43bbe5e 3208 cur + iosize - 1, &cached);
d1310b2e 3209 cur = cur + iosize;
306e16ce 3210 pg_offset += iosize;
d1310b2e
CM
3211 continue;
3212 }
3213 /* the get_extent function already copied into the page */
9655d298
CM
3214 if (test_range_bit(tree, cur, cur_end,
3215 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3216 check_page_uptodate(tree, page);
7f042a83 3217 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3218 cur = cur + iosize;
306e16ce 3219 pg_offset += iosize;
d1310b2e
CM
3220 continue;
3221 }
70dec807
CM
3222 /* we have an inline extent but it didn't get marked up
3223 * to date. Error out
3224 */
3225 if (block_start == EXTENT_MAP_INLINE) {
3226 SetPageError(page);
7f042a83 3227 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3228 cur = cur + iosize;
306e16ce 3229 pg_offset += iosize;
70dec807
CM
3230 continue;
3231 }
d1310b2e 3232
4b81ba48 3233 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3234 page, offset, disk_io_size,
3235 pg_offset, bdev, bio,
c8b97818
CM
3236 end_bio_extent_readpage, mirror_num,
3237 *bio_flags,
005efedf
FM
3238 this_bio_flag,
3239 force_bio_submit);
c8f2f24b
JB
3240 if (!ret) {
3241 nr++;
3242 *bio_flags = this_bio_flag;
3243 } else {
d1310b2e 3244 SetPageError(page);
7f042a83 3245 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3246 goto out;
edd33c99 3247 }
d1310b2e 3248 cur = cur + iosize;
306e16ce 3249 pg_offset += iosize;
d1310b2e 3250 }
90a887c9 3251out:
d1310b2e
CM
3252 if (!nr) {
3253 if (!PageError(page))
3254 SetPageUptodate(page);
3255 unlock_page(page);
3256 }
baf863b9 3257 return ret;
d1310b2e
CM
3258}
3259
e65ef21e 3260static inline void contiguous_readpages(struct extent_io_tree *tree,
9974090b
MX
3261 struct page *pages[], int nr_pages,
3262 u64 start, u64 end,
125bac01 3263 struct extent_map **em_cached,
d3fac6ba 3264 struct bio **bio,
1f7ad75b 3265 unsigned long *bio_flags,
808f80b4 3266 u64 *prev_em_start)
9974090b 3267{
23d31bd4 3268 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3269 int index;
3270
23d31bd4 3271 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b
MX
3272
3273 for (index = 0; index < nr_pages; index++) {
4ef77695 3274 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3275 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3276 put_page(pages[index]);
9974090b
MX
3277 }
3278}
3279
9974090b
MX
3280static int __extent_read_full_page(struct extent_io_tree *tree,
3281 struct page *page,
3282 get_extent_t *get_extent,
3283 struct bio **bio, int mirror_num,
f1c77c55
DS
3284 unsigned long *bio_flags,
3285 unsigned int read_flags)
9974090b 3286{
23d31bd4 3287 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3288 u64 start = page_offset(page);
09cbfeaf 3289 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3290 int ret;
3291
23d31bd4 3292 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b 3293
125bac01 3294 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3295 bio_flags, read_flags, NULL);
9974090b
MX
3296 return ret;
3297}
3298
d1310b2e 3299int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3300 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3301{
3302 struct bio *bio = NULL;
c8b97818 3303 unsigned long bio_flags = 0;
d1310b2e
CM
3304 int ret;
3305
8ddc7d9c 3306 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3307 &bio_flags, 0);
d1310b2e 3308 if (bio)
1f7ad75b 3309 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3310 return ret;
3311}
d1310b2e 3312
3d4b9496 3313static void update_nr_written(struct writeback_control *wbc,
a9132667 3314 unsigned long nr_written)
11c8349b
CM
3315{
3316 wbc->nr_to_write -= nr_written;
11c8349b
CM
3317}
3318
d1310b2e 3319/*
40f76580
CM
3320 * helper for __extent_writepage, doing all of the delayed allocation setup.
3321 *
5eaad97a 3322 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3323 * to write the page (copy into inline extent). In this case the IO has
3324 * been started and the page is already unlocked.
3325 *
3326 * This returns 0 if all went well (page still locked)
3327 * This returns < 0 if there were errors (page still locked)
d1310b2e 3328 */
40f76580 3329static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3330 struct page *page, struct writeback_control *wbc,
3331 u64 delalloc_start, unsigned long *nr_written)
40f76580 3332{
09cbfeaf 3333 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3334 bool found;
40f76580
CM
3335 u64 delalloc_to_write = 0;
3336 u64 delalloc_end = 0;
3337 int ret;
3338 int page_started = 0;
3339
40f76580
CM
3340
3341 while (delalloc_end < page_end) {
9978059b 3342 found = find_lock_delalloc_range(inode, page,
40f76580 3343 &delalloc_start,
917aacec 3344 &delalloc_end);
3522e903 3345 if (!found) {
40f76580
CM
3346 delalloc_start = delalloc_end + 1;
3347 continue;
3348 }
5eaad97a
NB
3349 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3350 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3351 if (ret) {
3352 SetPageError(page);
5eaad97a
NB
3353 /*
3354 * btrfs_run_delalloc_range should return < 0 for error
3355 * but just in case, we use > 0 here meaning the IO is
3356 * started, so we don't want to return > 0 unless
3357 * things are going well.
40f76580
CM
3358 */
3359 ret = ret < 0 ? ret : -EIO;
3360 goto done;
3361 }
3362 /*
ea1754a0
KS
3363 * delalloc_end is already one less than the total length, so
3364 * we don't subtract one from PAGE_SIZE
40f76580
CM
3365 */
3366 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3367 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3368 delalloc_start = delalloc_end + 1;
3369 }
3370 if (wbc->nr_to_write < delalloc_to_write) {
3371 int thresh = 8192;
3372
3373 if (delalloc_to_write < thresh * 2)
3374 thresh = delalloc_to_write;
3375 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3376 thresh);
3377 }
3378
3379 /* did the fill delalloc function already unlock and start
3380 * the IO?
3381 */
3382 if (page_started) {
3383 /*
3384 * we've unlocked the page, so we can't update
3385 * the mapping's writeback index, just update
3386 * nr_to_write.
3387 */
3388 wbc->nr_to_write -= *nr_written;
3389 return 1;
3390 }
3391
3392 ret = 0;
3393
3394done:
3395 return ret;
3396}
3397
3398/*
3399 * helper for __extent_writepage. This calls the writepage start hooks,
3400 * and does the loop to map the page into extents and bios.
3401 *
3402 * We return 1 if the IO is started and the page is unlocked,
3403 * 0 if all went well (page still locked)
3404 * < 0 if there were errors (page still locked)
3405 */
3406static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3407 struct page *page,
3408 struct writeback_control *wbc,
3409 struct extent_page_data *epd,
3410 loff_t i_size,
3411 unsigned long nr_written,
f1c77c55 3412 unsigned int write_flags, int *nr_ret)
d1310b2e 3413{
d1310b2e 3414 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3415 u64 start = page_offset(page);
09cbfeaf 3416 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3417 u64 end;
3418 u64 cur = start;
3419 u64 extent_offset;
d1310b2e
CM
3420 u64 block_start;
3421 u64 iosize;
d1310b2e
CM
3422 struct extent_map *em;
3423 struct block_device *bdev;
7f3c74fb 3424 size_t pg_offset = 0;
d1310b2e 3425 size_t blocksize;
40f76580
CM
3426 int ret = 0;
3427 int nr = 0;
3428 bool compressed;
c8b97818 3429
d75855b4
NB
3430 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3431 if (ret) {
3432 /* Fixup worker will requeue */
3433 if (ret == -EBUSY)
3434 wbc->pages_skipped++;
3435 else
3436 redirty_page_for_writepage(wbc, page);
40f76580 3437
d75855b4
NB
3438 update_nr_written(wbc, nr_written);
3439 unlock_page(page);
3440 return 1;
247e743c
CM
3441 }
3442
11c8349b
CM
3443 /*
3444 * we don't want to touch the inode after unlocking the page,
3445 * so we update the mapping writeback index now
3446 */
3d4b9496 3447 update_nr_written(wbc, nr_written + 1);
771ed689 3448
d1310b2e 3449 end = page_end;
40f76580 3450 if (i_size <= start) {
c629732d 3451 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3452 goto done;
3453 }
3454
d1310b2e
CM
3455 blocksize = inode->i_sb->s_blocksize;
3456
3457 while (cur <= end) {
40f76580 3458 u64 em_end;
6273b7f8 3459 u64 offset;
58409edd 3460
40f76580 3461 if (cur >= i_size) {
7087a9d8 3462 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3463 page_end, 1);
d1310b2e
CM
3464 break;
3465 }
3c98c62f 3466 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3467 end - cur + 1, 1);
c704005d 3468 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3469 SetPageError(page);
61391d56 3470 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3471 break;
3472 }
3473
3474 extent_offset = cur - em->start;
40f76580
CM
3475 em_end = extent_map_end(em);
3476 BUG_ON(em_end <= cur);
d1310b2e 3477 BUG_ON(end < cur);
40f76580 3478 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3479 iosize = ALIGN(iosize, blocksize);
6273b7f8 3480 offset = em->block_start + extent_offset;
d1310b2e
CM
3481 bdev = em->bdev;
3482 block_start = em->block_start;
c8b97818 3483 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3484 free_extent_map(em);
3485 em = NULL;
3486
c8b97818
CM
3487 /*
3488 * compressed and inline extents are written through other
3489 * paths in the FS
3490 */
3491 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3492 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3493 /*
3494 * end_io notification does not happen here for
3495 * compressed extents
3496 */
7087a9d8
NB
3497 if (!compressed)
3498 btrfs_writepage_endio_finish_ordered(page, cur,
3499 cur + iosize - 1,
c629732d 3500 1);
c8b97818
CM
3501 else if (compressed) {
3502 /* we don't want to end_page_writeback on
3503 * a compressed extent. this happens
3504 * elsewhere
3505 */
3506 nr++;
3507 }
3508
3509 cur += iosize;
7f3c74fb 3510 pg_offset += iosize;
d1310b2e
CM
3511 continue;
3512 }
c8b97818 3513
5cdc84bf 3514 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3515 if (!PageWriteback(page)) {
3516 btrfs_err(BTRFS_I(inode)->root->fs_info,
3517 "page %lu not writeback, cur %llu end %llu",
3518 page->index, cur, end);
d1310b2e 3519 }
7f3c74fb 3520
4b81ba48 3521 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3522 page, offset, iosize, pg_offset,
c2df8bb4 3523 bdev, &epd->bio,
58409edd
DS
3524 end_bio_extent_writepage,
3525 0, 0, 0, false);
fe01aa65 3526 if (ret) {
58409edd 3527 SetPageError(page);
fe01aa65
TK
3528 if (PageWriteback(page))
3529 end_page_writeback(page);
3530 }
d1310b2e 3531
d1310b2e 3532 cur = cur + iosize;
7f3c74fb 3533 pg_offset += iosize;
d1310b2e
CM
3534 nr++;
3535 }
40f76580
CM
3536done:
3537 *nr_ret = nr;
40f76580
CM
3538 return ret;
3539}
3540
3541/*
3542 * the writepage semantics are similar to regular writepage. extent
3543 * records are inserted to lock ranges in the tree, and as dirty areas
3544 * are found, they are marked writeback. Then the lock bits are removed
3545 * and the end_io handler clears the writeback ranges
3065976b
QW
3546 *
3547 * Return 0 if everything goes well.
3548 * Return <0 for error.
40f76580
CM
3549 */
3550static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3551 struct extent_page_data *epd)
40f76580
CM
3552{
3553 struct inode *inode = page->mapping->host;
40f76580 3554 u64 start = page_offset(page);
09cbfeaf 3555 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3556 int ret;
3557 int nr = 0;
3558 size_t pg_offset = 0;
3559 loff_t i_size = i_size_read(inode);
09cbfeaf 3560 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3561 unsigned int write_flags = 0;
40f76580
CM
3562 unsigned long nr_written = 0;
3563
ff40adf7 3564 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3565
3566 trace___extent_writepage(page, inode, wbc);
3567
3568 WARN_ON(!PageLocked(page));
3569
3570 ClearPageError(page);
3571
7073017a 3572 pg_offset = offset_in_page(i_size);
40f76580
CM
3573 if (page->index > end_index ||
3574 (page->index == end_index && !pg_offset)) {
09cbfeaf 3575 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3576 unlock_page(page);
3577 return 0;
3578 }
3579
3580 if (page->index == end_index) {
3581 char *userpage;
3582
3583 userpage = kmap_atomic(page);
3584 memset(userpage + pg_offset, 0,
09cbfeaf 3585 PAGE_SIZE - pg_offset);
40f76580
CM
3586 kunmap_atomic(userpage);
3587 flush_dcache_page(page);
3588 }
3589
3590 pg_offset = 0;
3591
3592 set_page_extent_mapped(page);
3593
7789a55a 3594 if (!epd->extent_locked) {
8cc0237a 3595 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3596 if (ret == 1)
3597 goto done_unlocked;
3598 if (ret)
3599 goto done;
3600 }
40f76580
CM
3601
3602 ret = __extent_writepage_io(inode, page, wbc, epd,
3603 i_size, nr_written, write_flags, &nr);
3604 if (ret == 1)
3605 goto done_unlocked;
3606
d1310b2e
CM
3607done:
3608 if (nr == 0) {
3609 /* make sure the mapping tag for page dirty gets cleared */
3610 set_page_writeback(page);
3611 end_page_writeback(page);
3612 }
61391d56
FM
3613 if (PageError(page)) {
3614 ret = ret < 0 ? ret : -EIO;
3615 end_extent_writepage(page, ret, start, page_end);
3616 }
d1310b2e 3617 unlock_page(page);
3065976b 3618 ASSERT(ret <= 0);
40f76580 3619 return ret;
771ed689 3620
11c8349b 3621done_unlocked:
d1310b2e
CM
3622 return 0;
3623}
3624
fd8b2b61 3625void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3626{
74316201
N
3627 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3628 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3629}
3630
2e3c2513
QW
3631/*
3632 * Lock eb pages and flush the bio if we can't the locks
3633 *
3634 * Return 0 if nothing went wrong
3635 * Return >0 is same as 0, except bio is not submitted
3636 * Return <0 if something went wrong, no page is locked
3637 */
9df76fb5 3638static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3639 struct extent_page_data *epd)
0b32f4bb 3640{
9df76fb5 3641 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3642 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3643 int flush = 0;
3644 int ret = 0;
3645
3646 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3647 ret = flush_write_bio(epd);
2e3c2513
QW
3648 if (ret < 0)
3649 return ret;
3650 flush = 1;
0b32f4bb
JB
3651 btrfs_tree_lock(eb);
3652 }
3653
3654 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3655 btrfs_tree_unlock(eb);
3656 if (!epd->sync_io)
3657 return 0;
3658 if (!flush) {
f4340622 3659 ret = flush_write_bio(epd);
2e3c2513
QW
3660 if (ret < 0)
3661 return ret;
0b32f4bb
JB
3662 flush = 1;
3663 }
a098d8e8
CM
3664 while (1) {
3665 wait_on_extent_buffer_writeback(eb);
3666 btrfs_tree_lock(eb);
3667 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3668 break;
0b32f4bb 3669 btrfs_tree_unlock(eb);
0b32f4bb
JB
3670 }
3671 }
3672
51561ffe
JB
3673 /*
3674 * We need to do this to prevent races in people who check if the eb is
3675 * under IO since we can end up having no IO bits set for a short period
3676 * of time.
3677 */
3678 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3679 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3680 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3681 spin_unlock(&eb->refs_lock);
0b32f4bb 3682 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3683 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3684 -eb->len,
3685 fs_info->dirty_metadata_batch);
0b32f4bb 3686 ret = 1;
51561ffe
JB
3687 } else {
3688 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3689 }
3690
3691 btrfs_tree_unlock(eb);
3692
3693 if (!ret)
3694 return ret;
3695
65ad0104 3696 num_pages = num_extent_pages(eb);
0b32f4bb 3697 for (i = 0; i < num_pages; i++) {
fb85fc9a 3698 struct page *p = eb->pages[i];
0b32f4bb
JB
3699
3700 if (!trylock_page(p)) {
3701 if (!flush) {
f4340622 3702 ret = flush_write_bio(epd);
2e3c2513
QW
3703 if (ret < 0) {
3704 failed_page_nr = i;
3705 goto err_unlock;
3706 }
0b32f4bb
JB
3707 flush = 1;
3708 }
3709 lock_page(p);
3710 }
3711 }
3712
3713 return ret;
2e3c2513
QW
3714err_unlock:
3715 /* Unlock already locked pages */
3716 for (i = 0; i < failed_page_nr; i++)
3717 unlock_page(eb->pages[i]);
3718 return ret;
0b32f4bb
JB
3719}
3720
3721static void end_extent_buffer_writeback(struct extent_buffer *eb)
3722{
3723 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3724 smp_mb__after_atomic();
0b32f4bb
JB
3725 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3726}
3727
656f30db
FM
3728static void set_btree_ioerr(struct page *page)
3729{
3730 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3731
3732 SetPageError(page);
3733 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3734 return;
3735
3736 /*
3737 * If writeback for a btree extent that doesn't belong to a log tree
3738 * failed, increment the counter transaction->eb_write_errors.
3739 * We do this because while the transaction is running and before it's
3740 * committing (when we call filemap_fdata[write|wait]_range against
3741 * the btree inode), we might have
3742 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3743 * returns an error or an error happens during writeback, when we're
3744 * committing the transaction we wouldn't know about it, since the pages
3745 * can be no longer dirty nor marked anymore for writeback (if a
3746 * subsequent modification to the extent buffer didn't happen before the
3747 * transaction commit), which makes filemap_fdata[write|wait]_range not
3748 * able to find the pages tagged with SetPageError at transaction
3749 * commit time. So if this happens we must abort the transaction,
3750 * otherwise we commit a super block with btree roots that point to
3751 * btree nodes/leafs whose content on disk is invalid - either garbage
3752 * or the content of some node/leaf from a past generation that got
3753 * cowed or deleted and is no longer valid.
3754 *
3755 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3756 * not be enough - we need to distinguish between log tree extents vs
3757 * non-log tree extents, and the next filemap_fdatawait_range() call
3758 * will catch and clear such errors in the mapping - and that call might
3759 * be from a log sync and not from a transaction commit. Also, checking
3760 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3761 * not done and would not be reliable - the eb might have been released
3762 * from memory and reading it back again means that flag would not be
3763 * set (since it's a runtime flag, not persisted on disk).
3764 *
3765 * Using the flags below in the btree inode also makes us achieve the
3766 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3767 * writeback for all dirty pages and before filemap_fdatawait_range()
3768 * is called, the writeback for all dirty pages had already finished
3769 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3770 * filemap_fdatawait_range() would return success, as it could not know
3771 * that writeback errors happened (the pages were no longer tagged for
3772 * writeback).
3773 */
3774 switch (eb->log_index) {
3775 case -1:
afcdd129 3776 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3777 break;
3778 case 0:
afcdd129 3779 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3780 break;
3781 case 1:
afcdd129 3782 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3783 break;
3784 default:
3785 BUG(); /* unexpected, logic error */
3786 }
3787}
3788
4246a0b6 3789static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3790{
2c30c71b 3791 struct bio_vec *bvec;
0b32f4bb 3792 struct extent_buffer *eb;
2b070cfe 3793 int done;
6dc4f100 3794 struct bvec_iter_all iter_all;
0b32f4bb 3795
c09abff8 3796 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3797 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3798 struct page *page = bvec->bv_page;
3799
0b32f4bb
JB
3800 eb = (struct extent_buffer *)page->private;
3801 BUG_ON(!eb);
3802 done = atomic_dec_and_test(&eb->io_pages);
3803
4e4cbee9 3804 if (bio->bi_status ||
4246a0b6 3805 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3806 ClearPageUptodate(page);
656f30db 3807 set_btree_ioerr(page);
0b32f4bb
JB
3808 }
3809
3810 end_page_writeback(page);
3811
3812 if (!done)
3813 continue;
3814
3815 end_extent_buffer_writeback(eb);
2c30c71b 3816 }
0b32f4bb
JB
3817
3818 bio_put(bio);
0b32f4bb
JB
3819}
3820
0e378df1 3821static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3822 struct writeback_control *wbc,
3823 struct extent_page_data *epd)
3824{
0ab02063 3825 struct btrfs_fs_info *fs_info = eb->fs_info;
0b32f4bb 3826 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3827 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3828 u64 offset = eb->start;
851cd173 3829 u32 nritems;
cc5e31a4 3830 int i, num_pages;
851cd173 3831 unsigned long start, end;
ff40adf7 3832 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3833 int ret = 0;
0b32f4bb 3834
656f30db 3835 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3836 num_pages = num_extent_pages(eb);
0b32f4bb 3837 atomic_set(&eb->io_pages, num_pages);
de0022b9 3838
851cd173
LB
3839 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3840 nritems = btrfs_header_nritems(eb);
3eb548ee 3841 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3842 end = btrfs_node_key_ptr_offset(nritems);
3843
b159fa28 3844 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3845 } else {
3846 /*
3847 * leaf:
3848 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3849 */
3850 start = btrfs_item_nr_offset(nritems);
8f881e8c 3851 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3852 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3853 }
3854
0b32f4bb 3855 for (i = 0; i < num_pages; i++) {
fb85fc9a 3856 struct page *p = eb->pages[i];
0b32f4bb
JB
3857
3858 clear_page_dirty_for_io(p);
3859 set_page_writeback(p);
4b81ba48 3860 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3861 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3862 &epd->bio,
1f7ad75b 3863 end_bio_extent_buffer_writepage,
18fdc679 3864 0, 0, 0, false);
0b32f4bb 3865 if (ret) {
656f30db 3866 set_btree_ioerr(p);
fe01aa65
TK
3867 if (PageWriteback(p))
3868 end_page_writeback(p);
0b32f4bb
JB
3869 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3870 end_extent_buffer_writeback(eb);
3871 ret = -EIO;
3872 break;
3873 }
09cbfeaf 3874 offset += PAGE_SIZE;
3d4b9496 3875 update_nr_written(wbc, 1);
0b32f4bb
JB
3876 unlock_page(p);
3877 }
3878
3879 if (unlikely(ret)) {
3880 for (; i < num_pages; i++) {
bbf65cf0 3881 struct page *p = eb->pages[i];
81465028 3882 clear_page_dirty_for_io(p);
0b32f4bb
JB
3883 unlock_page(p);
3884 }
3885 }
3886
3887 return ret;
3888}
3889
3890int btree_write_cache_pages(struct address_space *mapping,
3891 struct writeback_control *wbc)
3892{
3893 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
0b32f4bb
JB
3894 struct extent_buffer *eb, *prev_eb = NULL;
3895 struct extent_page_data epd = {
3896 .bio = NULL,
3897 .tree = tree,
3898 .extent_locked = 0,
3899 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3900 };
3901 int ret = 0;
3902 int done = 0;
3903 int nr_to_write_done = 0;
3904 struct pagevec pvec;
3905 int nr_pages;
3906 pgoff_t index;
3907 pgoff_t end; /* Inclusive */
3908 int scanned = 0;
10bbd235 3909 xa_mark_t tag;
0b32f4bb 3910
86679820 3911 pagevec_init(&pvec);
0b32f4bb
JB
3912 if (wbc->range_cyclic) {
3913 index = mapping->writeback_index; /* Start from prev offset */
3914 end = -1;
3915 } else {
09cbfeaf
KS
3916 index = wbc->range_start >> PAGE_SHIFT;
3917 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3918 scanned = 1;
3919 }
3920 if (wbc->sync_mode == WB_SYNC_ALL)
3921 tag = PAGECACHE_TAG_TOWRITE;
3922 else
3923 tag = PAGECACHE_TAG_DIRTY;
3924retry:
3925 if (wbc->sync_mode == WB_SYNC_ALL)
3926 tag_pages_for_writeback(mapping, index, end);
3927 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3928 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3929 tag))) {
0b32f4bb
JB
3930 unsigned i;
3931
3932 scanned = 1;
3933 for (i = 0; i < nr_pages; i++) {
3934 struct page *page = pvec.pages[i];
3935
3936 if (!PagePrivate(page))
3937 continue;
3938
b5bae261
JB
3939 spin_lock(&mapping->private_lock);
3940 if (!PagePrivate(page)) {
3941 spin_unlock(&mapping->private_lock);
3942 continue;
3943 }
3944
0b32f4bb 3945 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3946
3947 /*
3948 * Shouldn't happen and normally this would be a BUG_ON
3949 * but no sense in crashing the users box for something
3950 * we can survive anyway.
3951 */
fae7f21c 3952 if (WARN_ON(!eb)) {
b5bae261 3953 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3954 continue;
3955 }
3956
b5bae261
JB
3957 if (eb == prev_eb) {
3958 spin_unlock(&mapping->private_lock);
0b32f4bb 3959 continue;
b5bae261 3960 }
0b32f4bb 3961
b5bae261
JB
3962 ret = atomic_inc_not_zero(&eb->refs);
3963 spin_unlock(&mapping->private_lock);
3964 if (!ret)
0b32f4bb 3965 continue;
0b32f4bb
JB
3966
3967 prev_eb = eb;
9df76fb5 3968 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
3969 if (!ret) {
3970 free_extent_buffer(eb);
3971 continue;
3972 }
3973
0ab02063 3974 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
3975 if (ret) {
3976 done = 1;
3977 free_extent_buffer(eb);
3978 break;
3979 }
3980 free_extent_buffer(eb);
3981
3982 /*
3983 * the filesystem may choose to bump up nr_to_write.
3984 * We have to make sure to honor the new nr_to_write
3985 * at any time
3986 */
3987 nr_to_write_done = wbc->nr_to_write <= 0;
3988 }
3989 pagevec_release(&pvec);
3990 cond_resched();
3991 }
3992 if (!scanned && !done) {
3993 /*
3994 * We hit the last page and there is more work to be done: wrap
3995 * back to the start of the file
3996 */
3997 scanned = 1;
3998 index = 0;
3999 goto retry;
4000 }
2b952eea
QW
4001 ASSERT(ret <= 0);
4002 if (ret < 0) {
4003 end_write_bio(&epd, ret);
4004 return ret;
4005 }
4006 ret = flush_write_bio(&epd);
0b32f4bb
JB
4007 return ret;
4008}
4009
d1310b2e 4010/**
4bef0848 4011 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4012 * @mapping: address space structure to write
4013 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4014 * @data: data passed to __extent_writepage function
d1310b2e
CM
4015 *
4016 * If a page is already under I/O, write_cache_pages() skips it, even
4017 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4018 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4019 * and msync() need to guarantee that all the data which was dirty at the time
4020 * the call was made get new I/O started against them. If wbc->sync_mode is
4021 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4022 * existing IO to complete.
4023 */
4242b64a 4024static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4025 struct writeback_control *wbc,
aab6e9ed 4026 struct extent_page_data *epd)
d1310b2e 4027{
7fd1a3f7 4028 struct inode *inode = mapping->host;
d1310b2e
CM
4029 int ret = 0;
4030 int done = 0;
f85d7d6c 4031 int nr_to_write_done = 0;
d1310b2e
CM
4032 struct pagevec pvec;
4033 int nr_pages;
4034 pgoff_t index;
4035 pgoff_t end; /* Inclusive */
a9132667
LB
4036 pgoff_t done_index;
4037 int range_whole = 0;
d1310b2e 4038 int scanned = 0;
10bbd235 4039 xa_mark_t tag;
d1310b2e 4040
7fd1a3f7
JB
4041 /*
4042 * We have to hold onto the inode so that ordered extents can do their
4043 * work when the IO finishes. The alternative to this is failing to add
4044 * an ordered extent if the igrab() fails there and that is a huge pain
4045 * to deal with, so instead just hold onto the inode throughout the
4046 * writepages operation. If it fails here we are freeing up the inode
4047 * anyway and we'd rather not waste our time writing out stuff that is
4048 * going to be truncated anyway.
4049 */
4050 if (!igrab(inode))
4051 return 0;
4052
86679820 4053 pagevec_init(&pvec);
d1310b2e
CM
4054 if (wbc->range_cyclic) {
4055 index = mapping->writeback_index; /* Start from prev offset */
4056 end = -1;
4057 } else {
09cbfeaf
KS
4058 index = wbc->range_start >> PAGE_SHIFT;
4059 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4060 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4061 range_whole = 1;
d1310b2e
CM
4062 scanned = 1;
4063 }
3cd24c69
EL
4064
4065 /*
4066 * We do the tagged writepage as long as the snapshot flush bit is set
4067 * and we are the first one who do the filemap_flush() on this inode.
4068 *
4069 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4070 * not race in and drop the bit.
4071 */
4072 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4073 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4074 &BTRFS_I(inode)->runtime_flags))
4075 wbc->tagged_writepages = 1;
4076
4077 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4078 tag = PAGECACHE_TAG_TOWRITE;
4079 else
4080 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4081retry:
3cd24c69 4082 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4083 tag_pages_for_writeback(mapping, index, end);
a9132667 4084 done_index = index;
f85d7d6c 4085 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4086 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4087 &index, end, tag))) {
d1310b2e
CM
4088 unsigned i;
4089
4090 scanned = 1;
4091 for (i = 0; i < nr_pages; i++) {
4092 struct page *page = pvec.pages[i];
4093
a9132667 4094 done_index = page->index;
d1310b2e 4095 /*
b93b0163
MW
4096 * At this point we hold neither the i_pages lock nor
4097 * the page lock: the page may be truncated or
4098 * invalidated (changing page->mapping to NULL),
4099 * or even swizzled back from swapper_space to
4100 * tmpfs file mapping
d1310b2e 4101 */
c8f2f24b 4102 if (!trylock_page(page)) {
f4340622
QW
4103 ret = flush_write_bio(epd);
4104 BUG_ON(ret < 0);
c8f2f24b 4105 lock_page(page);
01d658f2 4106 }
d1310b2e
CM
4107
4108 if (unlikely(page->mapping != mapping)) {
4109 unlock_page(page);
4110 continue;
4111 }
4112
d2c3f4f6 4113 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4114 if (PageWriteback(page)) {
4115 ret = flush_write_bio(epd);
4116 BUG_ON(ret < 0);
4117 }
d1310b2e 4118 wait_on_page_writeback(page);
d2c3f4f6 4119 }
d1310b2e
CM
4120
4121 if (PageWriteback(page) ||
4122 !clear_page_dirty_for_io(page)) {
4123 unlock_page(page);
4124 continue;
4125 }
4126
aab6e9ed 4127 ret = __extent_writepage(page, wbc, epd);
a9132667
LB
4128 if (ret < 0) {
4129 /*
4130 * done_index is set past this page,
4131 * so media errors will not choke
4132 * background writeout for the entire
4133 * file. This has consequences for
4134 * range_cyclic semantics (ie. it may
4135 * not be suitable for data integrity
4136 * writeout).
4137 */
4138 done_index = page->index + 1;
4139 done = 1;
4140 break;
4141 }
f85d7d6c
CM
4142
4143 /*
4144 * the filesystem may choose to bump up nr_to_write.
4145 * We have to make sure to honor the new nr_to_write
4146 * at any time
4147 */
4148 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4149 }
4150 pagevec_release(&pvec);
4151 cond_resched();
4152 }
894b36e3 4153 if (!scanned && !done) {
d1310b2e
CM
4154 /*
4155 * We hit the last page and there is more work to be done: wrap
4156 * back to the start of the file
4157 */
4158 scanned = 1;
4159 index = 0;
4160 goto retry;
4161 }
a9132667
LB
4162
4163 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4164 mapping->writeback_index = done_index;
4165
7fd1a3f7 4166 btrfs_add_delayed_iput(inode);
894b36e3 4167 return ret;
d1310b2e 4168}
d1310b2e 4169
0a9b0e53 4170int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4171{
4172 int ret;
d1310b2e
CM
4173 struct extent_page_data epd = {
4174 .bio = NULL,
0a9b0e53 4175 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4176 .extent_locked = 0,
ffbd517d 4177 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4178 };
d1310b2e 4179
d1310b2e 4180 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4181 ASSERT(ret <= 0);
4182 if (ret < 0) {
4183 end_write_bio(&epd, ret);
4184 return ret;
4185 }
d1310b2e 4186
3065976b
QW
4187 ret = flush_write_bio(&epd);
4188 ASSERT(ret <= 0);
d1310b2e
CM
4189 return ret;
4190}
d1310b2e 4191
5e3ee236 4192int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4193 int mode)
4194{
4195 int ret = 0;
4196 struct address_space *mapping = inode->i_mapping;
5e3ee236 4197 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4198 struct page *page;
09cbfeaf
KS
4199 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4200 PAGE_SHIFT;
771ed689
CM
4201
4202 struct extent_page_data epd = {
4203 .bio = NULL,
4204 .tree = tree,
771ed689 4205 .extent_locked = 1,
ffbd517d 4206 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4207 };
4208 struct writeback_control wbc_writepages = {
771ed689 4209 .sync_mode = mode,
771ed689
CM
4210 .nr_to_write = nr_pages * 2,
4211 .range_start = start,
4212 .range_end = end + 1,
4213 };
4214
d397712b 4215 while (start <= end) {
09cbfeaf 4216 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4217 if (clear_page_dirty_for_io(page))
4218 ret = __extent_writepage(page, &wbc_writepages, &epd);
4219 else {
7087a9d8 4220 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4221 start + PAGE_SIZE - 1, 1);
771ed689
CM
4222 unlock_page(page);
4223 }
09cbfeaf
KS
4224 put_page(page);
4225 start += PAGE_SIZE;
771ed689
CM
4226 }
4227
02c6db4f
QW
4228 ASSERT(ret <= 0);
4229 if (ret < 0) {
4230 end_write_bio(&epd, ret);
4231 return ret;
4232 }
4233 ret = flush_write_bio(&epd);
771ed689
CM
4234 return ret;
4235}
d1310b2e 4236
8ae225a8 4237int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4238 struct writeback_control *wbc)
4239{
4240 int ret = 0;
4241 struct extent_page_data epd = {
4242 .bio = NULL,
8ae225a8 4243 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4244 .extent_locked = 0,
ffbd517d 4245 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4246 };
4247
935db853 4248 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4249 ASSERT(ret <= 0);
4250 if (ret < 0) {
4251 end_write_bio(&epd, ret);
4252 return ret;
4253 }
4254 ret = flush_write_bio(&epd);
d1310b2e
CM
4255 return ret;
4256}
d1310b2e 4257
2a3ff0ad
NB
4258int extent_readpages(struct address_space *mapping, struct list_head *pages,
4259 unsigned nr_pages)
d1310b2e
CM
4260{
4261 struct bio *bio = NULL;
c8b97818 4262 unsigned long bio_flags = 0;
67c9684f 4263 struct page *pagepool[16];
125bac01 4264 struct extent_map *em_cached = NULL;
2a3ff0ad 4265 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4266 int nr = 0;
808f80b4 4267 u64 prev_em_start = (u64)-1;
d1310b2e 4268
61ed3a14 4269 while (!list_empty(pages)) {
e65ef21e
NB
4270 u64 contig_end = 0;
4271
61ed3a14 4272 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4273 struct page *page = lru_to_page(pages);
d1310b2e 4274
61ed3a14
NB
4275 prefetchw(&page->flags);
4276 list_del(&page->lru);
4277 if (add_to_page_cache_lru(page, mapping, page->index,
4278 readahead_gfp_mask(mapping))) {
4279 put_page(page);
e65ef21e 4280 break;
61ed3a14
NB
4281 }
4282
4283 pagepool[nr++] = page;
e65ef21e 4284 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4285 }
67c9684f 4286
e65ef21e
NB
4287 if (nr) {
4288 u64 contig_start = page_offset(pagepool[0]);
4289
4290 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4291
4292 contiguous_readpages(tree, pagepool, nr, contig_start,
4293 contig_end, &em_cached, &bio, &bio_flags,
4294 &prev_em_start);
4295 }
d1310b2e 4296 }
67c9684f 4297
125bac01
MX
4298 if (em_cached)
4299 free_extent_map(em_cached);
4300
d1310b2e 4301 if (bio)
1f7ad75b 4302 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4303 return 0;
4304}
d1310b2e
CM
4305
4306/*
4307 * basic invalidatepage code, this waits on any locked or writeback
4308 * ranges corresponding to the page, and then deletes any extent state
4309 * records from the tree
4310 */
4311int extent_invalidatepage(struct extent_io_tree *tree,
4312 struct page *page, unsigned long offset)
4313{
2ac55d41 4314 struct extent_state *cached_state = NULL;
4eee4fa4 4315 u64 start = page_offset(page);
09cbfeaf 4316 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4317 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4318
fda2832f 4319 start += ALIGN(offset, blocksize);
d1310b2e
CM
4320 if (start > end)
4321 return 0;
4322
ff13db41 4323 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4324 wait_on_page_writeback(page);
e182163d
OS
4325 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4326 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4327 return 0;
4328}
d1310b2e 4329
7b13b7b1
CM
4330/*
4331 * a helper for releasepage, this tests for areas of the page that
4332 * are locked or under IO and drops the related state bits if it is safe
4333 * to drop the page.
4334 */
29c68b2d 4335static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4336 struct page *page, gfp_t mask)
7b13b7b1 4337{
4eee4fa4 4338 u64 start = page_offset(page);
09cbfeaf 4339 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4340 int ret = 1;
4341
8882679e 4342 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4343 ret = 0;
8882679e 4344 } else {
11ef160f
CM
4345 /*
4346 * at this point we can safely clear everything except the
4347 * locked bit and the nodatasum bit
4348 */
66b0c887 4349 ret = __clear_extent_bit(tree, start, end,
11ef160f 4350 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4351 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4352
4353 /* if clear_extent_bit failed for enomem reasons,
4354 * we can't allow the release to continue.
4355 */
4356 if (ret < 0)
4357 ret = 0;
4358 else
4359 ret = 1;
7b13b7b1
CM
4360 }
4361 return ret;
4362}
7b13b7b1 4363
d1310b2e
CM
4364/*
4365 * a helper for releasepage. As long as there are no locked extents
4366 * in the range corresponding to the page, both state records and extent
4367 * map records are removed
4368 */
477a30ba 4369int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4370{
4371 struct extent_map *em;
4eee4fa4 4372 u64 start = page_offset(page);
09cbfeaf 4373 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4374 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4375 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4376 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4377
d0164adc 4378 if (gfpflags_allow_blocking(mask) &&
ee22184b 4379 page->mapping->host->i_size > SZ_16M) {
39b5637f 4380 u64 len;
70dec807 4381 while (start <= end) {
39b5637f 4382 len = end - start + 1;
890871be 4383 write_lock(&map->lock);
39b5637f 4384 em = lookup_extent_mapping(map, start, len);
285190d9 4385 if (!em) {
890871be 4386 write_unlock(&map->lock);
70dec807
CM
4387 break;
4388 }
7f3c74fb
CM
4389 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4390 em->start != start) {
890871be 4391 write_unlock(&map->lock);
70dec807
CM
4392 free_extent_map(em);
4393 break;
4394 }
4395 if (!test_range_bit(tree, em->start,
4396 extent_map_end(em) - 1,
4e586ca3 4397 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4398 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4399 &btrfs_inode->runtime_flags);
70dec807
CM
4400 remove_extent_mapping(map, em);
4401 /* once for the rb tree */
4402 free_extent_map(em);
4403 }
4404 start = extent_map_end(em);
890871be 4405 write_unlock(&map->lock);
70dec807
CM
4406
4407 /* once for us */
d1310b2e
CM
4408 free_extent_map(em);
4409 }
d1310b2e 4410 }
29c68b2d 4411 return try_release_extent_state(tree, page, mask);
d1310b2e 4412}
d1310b2e 4413
ec29ed5b
CM
4414/*
4415 * helper function for fiemap, which doesn't want to see any holes.
4416 * This maps until we find something past 'last'
4417 */
4418static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4419 u64 offset, u64 last)
ec29ed5b 4420{
da17066c 4421 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4422 struct extent_map *em;
4423 u64 len;
4424
4425 if (offset >= last)
4426 return NULL;
4427
67871254 4428 while (1) {
ec29ed5b
CM
4429 len = last - offset;
4430 if (len == 0)
4431 break;
fda2832f 4432 len = ALIGN(len, sectorsize);
4ab47a8d 4433 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4434 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4435 return em;
4436
4437 /* if this isn't a hole return it */
4a2d25cd 4438 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4439 return em;
ec29ed5b
CM
4440
4441 /* this is a hole, advance to the next extent */
4442 offset = extent_map_end(em);
4443 free_extent_map(em);
4444 if (offset >= last)
4445 break;
4446 }
4447 return NULL;
4448}
4449
4751832d
QW
4450/*
4451 * To cache previous fiemap extent
4452 *
4453 * Will be used for merging fiemap extent
4454 */
4455struct fiemap_cache {
4456 u64 offset;
4457 u64 phys;
4458 u64 len;
4459 u32 flags;
4460 bool cached;
4461};
4462
4463/*
4464 * Helper to submit fiemap extent.
4465 *
4466 * Will try to merge current fiemap extent specified by @offset, @phys,
4467 * @len and @flags with cached one.
4468 * And only when we fails to merge, cached one will be submitted as
4469 * fiemap extent.
4470 *
4471 * Return value is the same as fiemap_fill_next_extent().
4472 */
4473static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4474 struct fiemap_cache *cache,
4475 u64 offset, u64 phys, u64 len, u32 flags)
4476{
4477 int ret = 0;
4478
4479 if (!cache->cached)
4480 goto assign;
4481
4482 /*
4483 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4484 * fiemap extent won't overlap with cached one.
4751832d
QW
4485 * Not recoverable.
4486 *
4487 * NOTE: Physical address can overlap, due to compression
4488 */
4489 if (cache->offset + cache->len > offset) {
4490 WARN_ON(1);
4491 return -EINVAL;
4492 }
4493
4494 /*
4495 * Only merges fiemap extents if
4496 * 1) Their logical addresses are continuous
4497 *
4498 * 2) Their physical addresses are continuous
4499 * So truly compressed (physical size smaller than logical size)
4500 * extents won't get merged with each other
4501 *
4502 * 3) Share same flags except FIEMAP_EXTENT_LAST
4503 * So regular extent won't get merged with prealloc extent
4504 */
4505 if (cache->offset + cache->len == offset &&
4506 cache->phys + cache->len == phys &&
4507 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4508 (flags & ~FIEMAP_EXTENT_LAST)) {
4509 cache->len += len;
4510 cache->flags |= flags;
4511 goto try_submit_last;
4512 }
4513
4514 /* Not mergeable, need to submit cached one */
4515 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4516 cache->len, cache->flags);
4517 cache->cached = false;
4518 if (ret)
4519 return ret;
4520assign:
4521 cache->cached = true;
4522 cache->offset = offset;
4523 cache->phys = phys;
4524 cache->len = len;
4525 cache->flags = flags;
4526try_submit_last:
4527 if (cache->flags & FIEMAP_EXTENT_LAST) {
4528 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4529 cache->phys, cache->len, cache->flags);
4530 cache->cached = false;
4531 }
4532 return ret;
4533}
4534
4535/*
848c23b7 4536 * Emit last fiemap cache
4751832d 4537 *
848c23b7
QW
4538 * The last fiemap cache may still be cached in the following case:
4539 * 0 4k 8k
4540 * |<- Fiemap range ->|
4541 * |<------------ First extent ----------->|
4542 *
4543 * In this case, the first extent range will be cached but not emitted.
4544 * So we must emit it before ending extent_fiemap().
4751832d 4545 */
5c5aff98 4546static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4547 struct fiemap_cache *cache)
4751832d
QW
4548{
4549 int ret;
4550
4551 if (!cache->cached)
4552 return 0;
4553
4751832d
QW
4554 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4555 cache->len, cache->flags);
4556 cache->cached = false;
4557 if (ret > 0)
4558 ret = 0;
4559 return ret;
4560}
4561
1506fcc8 4562int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4563 __u64 start, __u64 len)
1506fcc8 4564{
975f84fe 4565 int ret = 0;
1506fcc8
YS
4566 u64 off = start;
4567 u64 max = start + len;
4568 u32 flags = 0;
975f84fe
JB
4569 u32 found_type;
4570 u64 last;
ec29ed5b 4571 u64 last_for_get_extent = 0;
1506fcc8 4572 u64 disko = 0;
ec29ed5b 4573 u64 isize = i_size_read(inode);
975f84fe 4574 struct btrfs_key found_key;
1506fcc8 4575 struct extent_map *em = NULL;
2ac55d41 4576 struct extent_state *cached_state = NULL;
975f84fe 4577 struct btrfs_path *path;
dc046b10 4578 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4579 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4580 struct ulist *roots;
4581 struct ulist *tmp_ulist;
1506fcc8 4582 int end = 0;
ec29ed5b
CM
4583 u64 em_start = 0;
4584 u64 em_len = 0;
4585 u64 em_end = 0;
1506fcc8
YS
4586
4587 if (len == 0)
4588 return -EINVAL;
4589
975f84fe
JB
4590 path = btrfs_alloc_path();
4591 if (!path)
4592 return -ENOMEM;
4593 path->leave_spinning = 1;
4594
5911c8fe
DS
4595 roots = ulist_alloc(GFP_KERNEL);
4596 tmp_ulist = ulist_alloc(GFP_KERNEL);
4597 if (!roots || !tmp_ulist) {
4598 ret = -ENOMEM;
4599 goto out_free_ulist;
4600 }
4601
da17066c
JM
4602 start = round_down(start, btrfs_inode_sectorsize(inode));
4603 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4604
ec29ed5b
CM
4605 /*
4606 * lookup the last file extent. We're not using i_size here
4607 * because there might be preallocation past i_size
4608 */
f85b7379
DS
4609 ret = btrfs_lookup_file_extent(NULL, root, path,
4610 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4611 if (ret < 0) {
5911c8fe 4612 goto out_free_ulist;
2d324f59
LB
4613 } else {
4614 WARN_ON(!ret);
4615 if (ret == 1)
4616 ret = 0;
975f84fe 4617 }
2d324f59 4618
975f84fe 4619 path->slots[0]--;
975f84fe 4620 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4621 found_type = found_key.type;
975f84fe 4622
ec29ed5b 4623 /* No extents, but there might be delalloc bits */
4a0cc7ca 4624 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4625 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4626 /* have to trust i_size as the end */
4627 last = (u64)-1;
4628 last_for_get_extent = isize;
4629 } else {
4630 /*
4631 * remember the start of the last extent. There are a
4632 * bunch of different factors that go into the length of the
4633 * extent, so its much less complex to remember where it started
4634 */
4635 last = found_key.offset;
4636 last_for_get_extent = last + 1;
975f84fe 4637 }
fe09e16c 4638 btrfs_release_path(path);
975f84fe 4639
ec29ed5b
CM
4640 /*
4641 * we might have some extents allocated but more delalloc past those
4642 * extents. so, we trust isize unless the start of the last extent is
4643 * beyond isize
4644 */
4645 if (last < isize) {
4646 last = (u64)-1;
4647 last_for_get_extent = isize;
4648 }
4649
ff13db41 4650 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4651 &cached_state);
ec29ed5b 4652
e3350e16 4653 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4654 if (!em)
4655 goto out;
4656 if (IS_ERR(em)) {
4657 ret = PTR_ERR(em);
4658 goto out;
4659 }
975f84fe 4660
1506fcc8 4661 while (!end) {
b76bb701 4662 u64 offset_in_extent = 0;
ea8efc74
CM
4663
4664 /* break if the extent we found is outside the range */
4665 if (em->start >= max || extent_map_end(em) < off)
4666 break;
4667
4668 /*
4669 * get_extent may return an extent that starts before our
4670 * requested range. We have to make sure the ranges
4671 * we return to fiemap always move forward and don't
4672 * overlap, so adjust the offsets here
4673 */
4674 em_start = max(em->start, off);
1506fcc8 4675
ea8efc74
CM
4676 /*
4677 * record the offset from the start of the extent
b76bb701
JB
4678 * for adjusting the disk offset below. Only do this if the
4679 * extent isn't compressed since our in ram offset may be past
4680 * what we have actually allocated on disk.
ea8efc74 4681 */
b76bb701
JB
4682 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4683 offset_in_extent = em_start - em->start;
ec29ed5b 4684 em_end = extent_map_end(em);
ea8efc74 4685 em_len = em_end - em_start;
1506fcc8 4686 flags = 0;
f0986318
FM
4687 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4688 disko = em->block_start + offset_in_extent;
4689 else
4690 disko = 0;
1506fcc8 4691
ea8efc74
CM
4692 /*
4693 * bump off for our next call to get_extent
4694 */
4695 off = extent_map_end(em);
4696 if (off >= max)
4697 end = 1;
4698
93dbfad7 4699 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4700 end = 1;
4701 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4702 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4703 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4704 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4705 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4706 flags |= (FIEMAP_EXTENT_DELALLOC |
4707 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4708 } else if (fieinfo->fi_extents_max) {
4709 u64 bytenr = em->block_start -
4710 (em->start - em->orig_start);
fe09e16c 4711
fe09e16c
LB
4712 /*
4713 * As btrfs supports shared space, this information
4714 * can be exported to userspace tools via
dc046b10
JB
4715 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4716 * then we're just getting a count and we can skip the
4717 * lookup stuff.
fe09e16c 4718 */
bb739cf0
EN
4719 ret = btrfs_check_shared(root,
4720 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4721 bytenr, roots, tmp_ulist);
dc046b10 4722 if (ret < 0)
fe09e16c 4723 goto out_free;
dc046b10 4724 if (ret)
fe09e16c 4725 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4726 ret = 0;
1506fcc8
YS
4727 }
4728 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4729 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4730 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4731 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4732
1506fcc8
YS
4733 free_extent_map(em);
4734 em = NULL;
ec29ed5b
CM
4735 if ((em_start >= last) || em_len == (u64)-1 ||
4736 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4737 flags |= FIEMAP_EXTENT_LAST;
4738 end = 1;
4739 }
4740
ec29ed5b 4741 /* now scan forward to see if this is really the last extent. */
e3350e16 4742 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4743 if (IS_ERR(em)) {
4744 ret = PTR_ERR(em);
4745 goto out;
4746 }
4747 if (!em) {
975f84fe
JB
4748 flags |= FIEMAP_EXTENT_LAST;
4749 end = 1;
4750 }
4751832d
QW
4751 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4752 em_len, flags);
26e726af
CS
4753 if (ret) {
4754 if (ret == 1)
4755 ret = 0;
ec29ed5b 4756 goto out_free;
26e726af 4757 }
1506fcc8
YS
4758 }
4759out_free:
4751832d 4760 if (!ret)
5c5aff98 4761 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4762 free_extent_map(em);
4763out:
a52f4cd2 4764 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4765 &cached_state);
5911c8fe
DS
4766
4767out_free_ulist:
e02d48ea 4768 btrfs_free_path(path);
5911c8fe
DS
4769 ulist_free(roots);
4770 ulist_free(tmp_ulist);
1506fcc8
YS
4771 return ret;
4772}
4773
727011e0
CM
4774static void __free_extent_buffer(struct extent_buffer *eb)
4775{
6d49ba1b 4776 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4777 kmem_cache_free(extent_buffer_cache, eb);
4778}
4779
a26e8c9f 4780int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4781{
4782 return (atomic_read(&eb->io_pages) ||
4783 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4784 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4785}
4786
4787/*
55ac0139 4788 * Release all pages attached to the extent buffer.
db7f3436 4789 */
55ac0139 4790static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4791{
d64766fd
NB
4792 int i;
4793 int num_pages;
b0132a3b 4794 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4795
4796 BUG_ON(extent_buffer_under_io(eb));
4797
d64766fd
NB
4798 num_pages = num_extent_pages(eb);
4799 for (i = 0; i < num_pages; i++) {
4800 struct page *page = eb->pages[i];
db7f3436 4801
5d2361db
FL
4802 if (!page)
4803 continue;
4804 if (mapped)
db7f3436 4805 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4806 /*
4807 * We do this since we'll remove the pages after we've
4808 * removed the eb from the radix tree, so we could race
4809 * and have this page now attached to the new eb. So
4810 * only clear page_private if it's still connected to
4811 * this eb.
4812 */
4813 if (PagePrivate(page) &&
4814 page->private == (unsigned long)eb) {
4815 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4816 BUG_ON(PageDirty(page));
4817 BUG_ON(PageWriteback(page));
db7f3436 4818 /*
5d2361db
FL
4819 * We need to make sure we haven't be attached
4820 * to a new eb.
db7f3436 4821 */
5d2361db
FL
4822 ClearPagePrivate(page);
4823 set_page_private(page, 0);
4824 /* One for the page private */
09cbfeaf 4825 put_page(page);
db7f3436 4826 }
5d2361db
FL
4827
4828 if (mapped)
4829 spin_unlock(&page->mapping->private_lock);
4830
01327610 4831 /* One for when we allocated the page */
09cbfeaf 4832 put_page(page);
d64766fd 4833 }
db7f3436
JB
4834}
4835
4836/*
4837 * Helper for releasing the extent buffer.
4838 */
4839static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4840{
55ac0139 4841 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4842 __free_extent_buffer(eb);
4843}
4844
f28491e0
JB
4845static struct extent_buffer *
4846__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4847 unsigned long len)
d1310b2e
CM
4848{
4849 struct extent_buffer *eb = NULL;
4850
d1b5c567 4851 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4852 eb->start = start;
4853 eb->len = len;
f28491e0 4854 eb->fs_info = fs_info;
815a51c7 4855 eb->bflags = 0;
bd681513 4856 rwlock_init(&eb->lock);
bd681513 4857 atomic_set(&eb->blocking_readers, 0);
06297d8c 4858 eb->blocking_writers = 0;
ed1b4ed7 4859 eb->lock_nested = false;
bd681513
CM
4860 init_waitqueue_head(&eb->write_lock_wq);
4861 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4862
6d49ba1b
ES
4863 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4864
3083ee2e 4865 spin_lock_init(&eb->refs_lock);
d1310b2e 4866 atomic_set(&eb->refs, 1);
0b32f4bb 4867 atomic_set(&eb->io_pages, 0);
727011e0 4868
b8dae313
DS
4869 /*
4870 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4871 */
4872 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4873 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4874 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4875
843ccf9f 4876#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 4877 eb->spinning_writers = 0;
afd495a8 4878 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4879 atomic_set(&eb->read_locks, 0);
00801ae4 4880 eb->write_locks = 0;
843ccf9f
DS
4881#endif
4882
d1310b2e
CM
4883 return eb;
4884}
4885
815a51c7
JS
4886struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4887{
cc5e31a4 4888 int i;
815a51c7
JS
4889 struct page *p;
4890 struct extent_buffer *new;
cc5e31a4 4891 int num_pages = num_extent_pages(src);
815a51c7 4892
3f556f78 4893 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4894 if (new == NULL)
4895 return NULL;
4896
4897 for (i = 0; i < num_pages; i++) {
9ec72677 4898 p = alloc_page(GFP_NOFS);
db7f3436
JB
4899 if (!p) {
4900 btrfs_release_extent_buffer(new);
4901 return NULL;
4902 }
815a51c7
JS
4903 attach_extent_buffer_page(new, p);
4904 WARN_ON(PageDirty(p));
4905 SetPageUptodate(p);
4906 new->pages[i] = p;
fba1acf9 4907 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4908 }
4909
815a51c7 4910 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4911 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4912
4913 return new;
4914}
4915
0f331229
OS
4916struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4917 u64 start, unsigned long len)
815a51c7
JS
4918{
4919 struct extent_buffer *eb;
cc5e31a4
DS
4920 int num_pages;
4921 int i;
815a51c7 4922
3f556f78 4923 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4924 if (!eb)
4925 return NULL;
4926
65ad0104 4927 num_pages = num_extent_pages(eb);
815a51c7 4928 for (i = 0; i < num_pages; i++) {
9ec72677 4929 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4930 if (!eb->pages[i])
4931 goto err;
4932 }
4933 set_extent_buffer_uptodate(eb);
4934 btrfs_set_header_nritems(eb, 0);
b0132a3b 4935 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4936
4937 return eb;
4938err:
84167d19
SB
4939 for (; i > 0; i--)
4940 __free_page(eb->pages[i - 1]);
815a51c7
JS
4941 __free_extent_buffer(eb);
4942 return NULL;
4943}
4944
0f331229 4945struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4946 u64 start)
0f331229 4947{
da17066c 4948 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4949}
4950
0b32f4bb
JB
4951static void check_buffer_tree_ref(struct extent_buffer *eb)
4952{
242e18c7 4953 int refs;
0b32f4bb
JB
4954 /* the ref bit is tricky. We have to make sure it is set
4955 * if we have the buffer dirty. Otherwise the
4956 * code to free a buffer can end up dropping a dirty
4957 * page
4958 *
4959 * Once the ref bit is set, it won't go away while the
4960 * buffer is dirty or in writeback, and it also won't
4961 * go away while we have the reference count on the
4962 * eb bumped.
4963 *
4964 * We can't just set the ref bit without bumping the
4965 * ref on the eb because free_extent_buffer might
4966 * see the ref bit and try to clear it. If this happens
4967 * free_extent_buffer might end up dropping our original
4968 * ref by mistake and freeing the page before we are able
4969 * to add one more ref.
4970 *
4971 * So bump the ref count first, then set the bit. If someone
4972 * beat us to it, drop the ref we added.
4973 */
242e18c7
CM
4974 refs = atomic_read(&eb->refs);
4975 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4976 return;
4977
594831c4
JB
4978 spin_lock(&eb->refs_lock);
4979 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4980 atomic_inc(&eb->refs);
594831c4 4981 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4982}
4983
2457aec6
MG
4984static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4985 struct page *accessed)
5df4235e 4986{
cc5e31a4 4987 int num_pages, i;
5df4235e 4988
0b32f4bb
JB
4989 check_buffer_tree_ref(eb);
4990
65ad0104 4991 num_pages = num_extent_pages(eb);
5df4235e 4992 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4993 struct page *p = eb->pages[i];
4994
2457aec6
MG
4995 if (p != accessed)
4996 mark_page_accessed(p);
5df4235e
JB
4997 }
4998}
4999
f28491e0
JB
5000struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5001 u64 start)
452c75c3
CS
5002{
5003 struct extent_buffer *eb;
5004
5005 rcu_read_lock();
f28491e0 5006 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5007 start >> PAGE_SHIFT);
452c75c3
CS
5008 if (eb && atomic_inc_not_zero(&eb->refs)) {
5009 rcu_read_unlock();
062c19e9
FM
5010 /*
5011 * Lock our eb's refs_lock to avoid races with
5012 * free_extent_buffer. When we get our eb it might be flagged
5013 * with EXTENT_BUFFER_STALE and another task running
5014 * free_extent_buffer might have seen that flag set,
5015 * eb->refs == 2, that the buffer isn't under IO (dirty and
5016 * writeback flags not set) and it's still in the tree (flag
5017 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5018 * of decrementing the extent buffer's reference count twice.
5019 * So here we could race and increment the eb's reference count,
5020 * clear its stale flag, mark it as dirty and drop our reference
5021 * before the other task finishes executing free_extent_buffer,
5022 * which would later result in an attempt to free an extent
5023 * buffer that is dirty.
5024 */
5025 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5026 spin_lock(&eb->refs_lock);
5027 spin_unlock(&eb->refs_lock);
5028 }
2457aec6 5029 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5030 return eb;
5031 }
5032 rcu_read_unlock();
5033
5034 return NULL;
5035}
5036
faa2dbf0
JB
5037#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5038struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5039 u64 start)
faa2dbf0
JB
5040{
5041 struct extent_buffer *eb, *exists = NULL;
5042 int ret;
5043
5044 eb = find_extent_buffer(fs_info, start);
5045 if (eb)
5046 return eb;
da17066c 5047 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
5048 if (!eb)
5049 return NULL;
5050 eb->fs_info = fs_info;
5051again:
e1860a77 5052 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
5053 if (ret)
5054 goto free_eb;
5055 spin_lock(&fs_info->buffer_lock);
5056 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5057 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5058 spin_unlock(&fs_info->buffer_lock);
5059 radix_tree_preload_end();
5060 if (ret == -EEXIST) {
5061 exists = find_extent_buffer(fs_info, start);
5062 if (exists)
5063 goto free_eb;
5064 else
5065 goto again;
5066 }
5067 check_buffer_tree_ref(eb);
5068 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5069
faa2dbf0
JB
5070 return eb;
5071free_eb:
5072 btrfs_release_extent_buffer(eb);
5073 return exists;
5074}
5075#endif
5076
f28491e0 5077struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5078 u64 start)
d1310b2e 5079{
da17066c 5080 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5081 int num_pages;
5082 int i;
09cbfeaf 5083 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5084 struct extent_buffer *eb;
6af118ce 5085 struct extent_buffer *exists = NULL;
d1310b2e 5086 struct page *p;
f28491e0 5087 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5088 int uptodate = 1;
19fe0a8b 5089 int ret;
d1310b2e 5090
da17066c 5091 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5092 btrfs_err(fs_info, "bad tree block start %llu", start);
5093 return ERR_PTR(-EINVAL);
5094 }
5095
f28491e0 5096 eb = find_extent_buffer(fs_info, start);
452c75c3 5097 if (eb)
6af118ce 5098 return eb;
6af118ce 5099
23d79d81 5100 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5101 if (!eb)
c871b0f2 5102 return ERR_PTR(-ENOMEM);
d1310b2e 5103
65ad0104 5104 num_pages = num_extent_pages(eb);
727011e0 5105 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5106 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5107 if (!p) {
5108 exists = ERR_PTR(-ENOMEM);
6af118ce 5109 goto free_eb;
c871b0f2 5110 }
4f2de97a
JB
5111
5112 spin_lock(&mapping->private_lock);
5113 if (PagePrivate(p)) {
5114 /*
5115 * We could have already allocated an eb for this page
5116 * and attached one so lets see if we can get a ref on
5117 * the existing eb, and if we can we know it's good and
5118 * we can just return that one, else we know we can just
5119 * overwrite page->private.
5120 */
5121 exists = (struct extent_buffer *)p->private;
5122 if (atomic_inc_not_zero(&exists->refs)) {
5123 spin_unlock(&mapping->private_lock);
5124 unlock_page(p);
09cbfeaf 5125 put_page(p);
2457aec6 5126 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5127 goto free_eb;
5128 }
5ca64f45 5129 exists = NULL;
4f2de97a 5130
0b32f4bb 5131 /*
4f2de97a
JB
5132 * Do this so attach doesn't complain and we need to
5133 * drop the ref the old guy had.
5134 */
5135 ClearPagePrivate(p);
0b32f4bb 5136 WARN_ON(PageDirty(p));
09cbfeaf 5137 put_page(p);
d1310b2e 5138 }
4f2de97a
JB
5139 attach_extent_buffer_page(eb, p);
5140 spin_unlock(&mapping->private_lock);
0b32f4bb 5141 WARN_ON(PageDirty(p));
727011e0 5142 eb->pages[i] = p;
d1310b2e
CM
5143 if (!PageUptodate(p))
5144 uptodate = 0;
eb14ab8e
CM
5145
5146 /*
b16d011e
NB
5147 * We can't unlock the pages just yet since the extent buffer
5148 * hasn't been properly inserted in the radix tree, this
5149 * opens a race with btree_releasepage which can free a page
5150 * while we are still filling in all pages for the buffer and
5151 * we could crash.
eb14ab8e 5152 */
d1310b2e
CM
5153 }
5154 if (uptodate)
b4ce94de 5155 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5156again:
e1860a77 5157 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5158 if (ret) {
5159 exists = ERR_PTR(ret);
19fe0a8b 5160 goto free_eb;
c871b0f2 5161 }
19fe0a8b 5162
f28491e0
JB
5163 spin_lock(&fs_info->buffer_lock);
5164 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5165 start >> PAGE_SHIFT, eb);
f28491e0 5166 spin_unlock(&fs_info->buffer_lock);
452c75c3 5167 radix_tree_preload_end();
19fe0a8b 5168 if (ret == -EEXIST) {
f28491e0 5169 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5170 if (exists)
5171 goto free_eb;
5172 else
115391d2 5173 goto again;
6af118ce 5174 }
6af118ce 5175 /* add one reference for the tree */
0b32f4bb 5176 check_buffer_tree_ref(eb);
34b41ace 5177 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5178
5179 /*
b16d011e
NB
5180 * Now it's safe to unlock the pages because any calls to
5181 * btree_releasepage will correctly detect that a page belongs to a
5182 * live buffer and won't free them prematurely.
eb14ab8e 5183 */
28187ae5
NB
5184 for (i = 0; i < num_pages; i++)
5185 unlock_page(eb->pages[i]);
d1310b2e
CM
5186 return eb;
5187
6af118ce 5188free_eb:
5ca64f45 5189 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5190 for (i = 0; i < num_pages; i++) {
5191 if (eb->pages[i])
5192 unlock_page(eb->pages[i]);
5193 }
eb14ab8e 5194
897ca6e9 5195 btrfs_release_extent_buffer(eb);
6af118ce 5196 return exists;
d1310b2e 5197}
d1310b2e 5198
3083ee2e
JB
5199static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5200{
5201 struct extent_buffer *eb =
5202 container_of(head, struct extent_buffer, rcu_head);
5203
5204 __free_extent_buffer(eb);
5205}
5206
f7a52a40 5207static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5208{
07e21c4d
NB
5209 lockdep_assert_held(&eb->refs_lock);
5210
3083ee2e
JB
5211 WARN_ON(atomic_read(&eb->refs) == 0);
5212 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5213 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5214 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5215
815a51c7 5216 spin_unlock(&eb->refs_lock);
3083ee2e 5217
f28491e0
JB
5218 spin_lock(&fs_info->buffer_lock);
5219 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5220 eb->start >> PAGE_SHIFT);
f28491e0 5221 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5222 } else {
5223 spin_unlock(&eb->refs_lock);
815a51c7 5224 }
3083ee2e
JB
5225
5226 /* Should be safe to release our pages at this point */
55ac0139 5227 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5228#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5229 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5230 __free_extent_buffer(eb);
5231 return 1;
5232 }
5233#endif
3083ee2e 5234 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5235 return 1;
3083ee2e
JB
5236 }
5237 spin_unlock(&eb->refs_lock);
e64860aa
JB
5238
5239 return 0;
3083ee2e
JB
5240}
5241
d1310b2e
CM
5242void free_extent_buffer(struct extent_buffer *eb)
5243{
242e18c7
CM
5244 int refs;
5245 int old;
d1310b2e
CM
5246 if (!eb)
5247 return;
5248
242e18c7
CM
5249 while (1) {
5250 refs = atomic_read(&eb->refs);
46cc775e
NB
5251 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5252 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5253 refs == 1))
242e18c7
CM
5254 break;
5255 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5256 if (old == refs)
5257 return;
5258 }
5259
3083ee2e
JB
5260 spin_lock(&eb->refs_lock);
5261 if (atomic_read(&eb->refs) == 2 &&
5262 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5263 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5264 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5265 atomic_dec(&eb->refs);
5266
5267 /*
5268 * I know this is terrible, but it's temporary until we stop tracking
5269 * the uptodate bits and such for the extent buffers.
5270 */
f7a52a40 5271 release_extent_buffer(eb);
3083ee2e
JB
5272}
5273
5274void free_extent_buffer_stale(struct extent_buffer *eb)
5275{
5276 if (!eb)
d1310b2e
CM
5277 return;
5278
3083ee2e
JB
5279 spin_lock(&eb->refs_lock);
5280 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5281
0b32f4bb 5282 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5283 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5284 atomic_dec(&eb->refs);
f7a52a40 5285 release_extent_buffer(eb);
d1310b2e 5286}
d1310b2e 5287
1d4284bd 5288void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5289{
cc5e31a4
DS
5290 int i;
5291 int num_pages;
d1310b2e
CM
5292 struct page *page;
5293
65ad0104 5294 num_pages = num_extent_pages(eb);
d1310b2e
CM
5295
5296 for (i = 0; i < num_pages; i++) {
fb85fc9a 5297 page = eb->pages[i];
b9473439 5298 if (!PageDirty(page))
d2c3f4f6
CM
5299 continue;
5300
a61e6f29 5301 lock_page(page);
eb14ab8e
CM
5302 WARN_ON(!PagePrivate(page));
5303
d1310b2e 5304 clear_page_dirty_for_io(page);
b93b0163 5305 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5306 if (!PageDirty(page))
5307 __xa_clear_mark(&page->mapping->i_pages,
5308 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5309 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5310 ClearPageError(page);
a61e6f29 5311 unlock_page(page);
d1310b2e 5312 }
0b32f4bb 5313 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5314}
d1310b2e 5315
abb57ef3 5316bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5317{
cc5e31a4
DS
5318 int i;
5319 int num_pages;
abb57ef3 5320 bool was_dirty;
d1310b2e 5321
0b32f4bb
JB
5322 check_buffer_tree_ref(eb);
5323
b9473439 5324 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5325
65ad0104 5326 num_pages = num_extent_pages(eb);
3083ee2e 5327 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5328 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5329
abb57ef3
LB
5330 if (!was_dirty)
5331 for (i = 0; i < num_pages; i++)
5332 set_page_dirty(eb->pages[i]);
51995c39
LB
5333
5334#ifdef CONFIG_BTRFS_DEBUG
5335 for (i = 0; i < num_pages; i++)
5336 ASSERT(PageDirty(eb->pages[i]));
5337#endif
5338
b9473439 5339 return was_dirty;
d1310b2e 5340}
d1310b2e 5341
69ba3927 5342void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5343{
cc5e31a4 5344 int i;
1259ab75 5345 struct page *page;
cc5e31a4 5346 int num_pages;
1259ab75 5347
b4ce94de 5348 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5349 num_pages = num_extent_pages(eb);
1259ab75 5350 for (i = 0; i < num_pages; i++) {
fb85fc9a 5351 page = eb->pages[i];
33958dc6
CM
5352 if (page)
5353 ClearPageUptodate(page);
1259ab75 5354 }
1259ab75
CM
5355}
5356
09c25a8c 5357void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5358{
cc5e31a4 5359 int i;
d1310b2e 5360 struct page *page;
cc5e31a4 5361 int num_pages;
d1310b2e 5362
0b32f4bb 5363 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5364 num_pages = num_extent_pages(eb);
d1310b2e 5365 for (i = 0; i < num_pages; i++) {
fb85fc9a 5366 page = eb->pages[i];
d1310b2e
CM
5367 SetPageUptodate(page);
5368 }
d1310b2e 5369}
d1310b2e 5370
c2ccfbc6 5371int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5372{
cc5e31a4 5373 int i;
d1310b2e
CM
5374 struct page *page;
5375 int err;
5376 int ret = 0;
ce9adaa5
CM
5377 int locked_pages = 0;
5378 int all_uptodate = 1;
cc5e31a4 5379 int num_pages;
727011e0 5380 unsigned long num_reads = 0;
a86c12c7 5381 struct bio *bio = NULL;
c8b97818 5382 unsigned long bio_flags = 0;
c2ccfbc6 5383 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
a86c12c7 5384
b4ce94de 5385 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5386 return 0;
5387
65ad0104 5388 num_pages = num_extent_pages(eb);
8436ea91 5389 for (i = 0; i < num_pages; i++) {
fb85fc9a 5390 page = eb->pages[i];
bb82ab88 5391 if (wait == WAIT_NONE) {
2db04966 5392 if (!trylock_page(page))
ce9adaa5 5393 goto unlock_exit;
d1310b2e
CM
5394 } else {
5395 lock_page(page);
5396 }
ce9adaa5 5397 locked_pages++;
2571e739
LB
5398 }
5399 /*
5400 * We need to firstly lock all pages to make sure that
5401 * the uptodate bit of our pages won't be affected by
5402 * clear_extent_buffer_uptodate().
5403 */
8436ea91 5404 for (i = 0; i < num_pages; i++) {
2571e739 5405 page = eb->pages[i];
727011e0
CM
5406 if (!PageUptodate(page)) {
5407 num_reads++;
ce9adaa5 5408 all_uptodate = 0;
727011e0 5409 }
ce9adaa5 5410 }
2571e739 5411
ce9adaa5 5412 if (all_uptodate) {
8436ea91 5413 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5414 goto unlock_exit;
5415 }
5416
656f30db 5417 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5418 eb->read_mirror = 0;
0b32f4bb 5419 atomic_set(&eb->io_pages, num_reads);
8436ea91 5420 for (i = 0; i < num_pages; i++) {
fb85fc9a 5421 page = eb->pages[i];
baf863b9 5422
ce9adaa5 5423 if (!PageUptodate(page)) {
baf863b9
LB
5424 if (ret) {
5425 atomic_dec(&eb->io_pages);
5426 unlock_page(page);
5427 continue;
5428 }
5429
f188591e 5430 ClearPageError(page);
a86c12c7 5431 err = __extent_read_full_page(tree, page,
6af49dbd 5432 btree_get_extent, &bio,
d4c7ca86 5433 mirror_num, &bio_flags,
1f7ad75b 5434 REQ_META);
baf863b9 5435 if (err) {
d1310b2e 5436 ret = err;
baf863b9
LB
5437 /*
5438 * We use &bio in above __extent_read_full_page,
5439 * so we ensure that if it returns error, the
5440 * current page fails to add itself to bio and
5441 * it's been unlocked.
5442 *
5443 * We must dec io_pages by ourselves.
5444 */
5445 atomic_dec(&eb->io_pages);
5446 }
d1310b2e
CM
5447 } else {
5448 unlock_page(page);
5449 }
5450 }
5451
355808c2 5452 if (bio) {
1f7ad75b 5453 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5454 if (err)
5455 return err;
355808c2 5456 }
a86c12c7 5457
bb82ab88 5458 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5459 return ret;
d397712b 5460
8436ea91 5461 for (i = 0; i < num_pages; i++) {
fb85fc9a 5462 page = eb->pages[i];
d1310b2e 5463 wait_on_page_locked(page);
d397712b 5464 if (!PageUptodate(page))
d1310b2e 5465 ret = -EIO;
d1310b2e 5466 }
d397712b 5467
d1310b2e 5468 return ret;
ce9adaa5
CM
5469
5470unlock_exit:
d397712b 5471 while (locked_pages > 0) {
ce9adaa5 5472 locked_pages--;
8436ea91
JB
5473 page = eb->pages[locked_pages];
5474 unlock_page(page);
ce9adaa5
CM
5475 }
5476 return ret;
d1310b2e 5477}
d1310b2e 5478
1cbb1f45
JM
5479void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5480 unsigned long start, unsigned long len)
d1310b2e
CM
5481{
5482 size_t cur;
5483 size_t offset;
5484 struct page *page;
5485 char *kaddr;
5486 char *dst = (char *)dstv;
7073017a 5487 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5488 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5489
f716abd5
LB
5490 if (start + len > eb->len) {
5491 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5492 eb->start, eb->len, start, len);
5493 memset(dst, 0, len);
5494 return;
5495 }
d1310b2e 5496
7073017a 5497 offset = offset_in_page(start_offset + start);
d1310b2e 5498
d397712b 5499 while (len > 0) {
fb85fc9a 5500 page = eb->pages[i];
d1310b2e 5501
09cbfeaf 5502 cur = min(len, (PAGE_SIZE - offset));
a6591715 5503 kaddr = page_address(page);
d1310b2e 5504 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5505
5506 dst += cur;
5507 len -= cur;
5508 offset = 0;
5509 i++;
5510 }
5511}
d1310b2e 5512
1cbb1f45
JM
5513int read_extent_buffer_to_user(const struct extent_buffer *eb,
5514 void __user *dstv,
5515 unsigned long start, unsigned long len)
550ac1d8
GH
5516{
5517 size_t cur;
5518 size_t offset;
5519 struct page *page;
5520 char *kaddr;
5521 char __user *dst = (char __user *)dstv;
7073017a 5522 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5523 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5524 int ret = 0;
5525
5526 WARN_ON(start > eb->len);
5527 WARN_ON(start + len > eb->start + eb->len);
5528
7073017a 5529 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5530
5531 while (len > 0) {
fb85fc9a 5532 page = eb->pages[i];
550ac1d8 5533
09cbfeaf 5534 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5535 kaddr = page_address(page);
5536 if (copy_to_user(dst, kaddr + offset, cur)) {
5537 ret = -EFAULT;
5538 break;
5539 }
5540
5541 dst += cur;
5542 len -= cur;
5543 offset = 0;
5544 i++;
5545 }
5546
5547 return ret;
5548}
5549
415b35a5
LB
5550/*
5551 * return 0 if the item is found within a page.
5552 * return 1 if the item spans two pages.
5553 * return -EINVAL otherwise.
5554 */
1cbb1f45
JM
5555int map_private_extent_buffer(const struct extent_buffer *eb,
5556 unsigned long start, unsigned long min_len,
5557 char **map, unsigned long *map_start,
5558 unsigned long *map_len)
d1310b2e 5559{
cc2c39d6 5560 size_t offset;
d1310b2e
CM
5561 char *kaddr;
5562 struct page *p;
7073017a 5563 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5564 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5565 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5566 PAGE_SHIFT;
d1310b2e 5567
f716abd5
LB
5568 if (start + min_len > eb->len) {
5569 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5570 eb->start, eb->len, start, min_len);
5571 return -EINVAL;
5572 }
5573
d1310b2e 5574 if (i != end_i)
415b35a5 5575 return 1;
d1310b2e
CM
5576
5577 if (i == 0) {
5578 offset = start_offset;
5579 *map_start = 0;
5580 } else {
5581 offset = 0;
09cbfeaf 5582 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5583 }
d397712b 5584
fb85fc9a 5585 p = eb->pages[i];
a6591715 5586 kaddr = page_address(p);
d1310b2e 5587 *map = kaddr + offset;
09cbfeaf 5588 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5589 return 0;
5590}
d1310b2e 5591
1cbb1f45
JM
5592int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5593 unsigned long start, unsigned long len)
d1310b2e
CM
5594{
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
5599 char *ptr = (char *)ptrv;
7073017a 5600 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5601 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5602 int ret = 0;
5603
5604 WARN_ON(start > eb->len);
5605 WARN_ON(start + len > eb->start + eb->len);
5606
7073017a 5607 offset = offset_in_page(start_offset + start);
d1310b2e 5608
d397712b 5609 while (len > 0) {
fb85fc9a 5610 page = eb->pages[i];
d1310b2e 5611
09cbfeaf 5612 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5613
a6591715 5614 kaddr = page_address(page);
d1310b2e 5615 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5616 if (ret)
5617 break;
5618
5619 ptr += cur;
5620 len -= cur;
5621 offset = 0;
5622 i++;
5623 }
5624 return ret;
5625}
d1310b2e 5626
f157bf76
DS
5627void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5628 const void *srcv)
5629{
5630 char *kaddr;
5631
5632 WARN_ON(!PageUptodate(eb->pages[0]));
5633 kaddr = page_address(eb->pages[0]);
5634 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5635 BTRFS_FSID_SIZE);
5636}
5637
5638void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5639{
5640 char *kaddr;
5641
5642 WARN_ON(!PageUptodate(eb->pages[0]));
5643 kaddr = page_address(eb->pages[0]);
5644 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5645 BTRFS_FSID_SIZE);
5646}
5647
d1310b2e
CM
5648void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5649 unsigned long start, unsigned long len)
5650{
5651 size_t cur;
5652 size_t offset;
5653 struct page *page;
5654 char *kaddr;
5655 char *src = (char *)srcv;
7073017a 5656 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5657 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5658
5659 WARN_ON(start > eb->len);
5660 WARN_ON(start + len > eb->start + eb->len);
5661
7073017a 5662 offset = offset_in_page(start_offset + start);
d1310b2e 5663
d397712b 5664 while (len > 0) {
fb85fc9a 5665 page = eb->pages[i];
d1310b2e
CM
5666 WARN_ON(!PageUptodate(page));
5667
09cbfeaf 5668 cur = min(len, PAGE_SIZE - offset);
a6591715 5669 kaddr = page_address(page);
d1310b2e 5670 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5671
5672 src += cur;
5673 len -= cur;
5674 offset = 0;
5675 i++;
5676 }
5677}
d1310b2e 5678
b159fa28
DS
5679void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5680 unsigned long len)
d1310b2e
CM
5681{
5682 size_t cur;
5683 size_t offset;
5684 struct page *page;
5685 char *kaddr;
7073017a 5686 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5687 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5688
5689 WARN_ON(start > eb->len);
5690 WARN_ON(start + len > eb->start + eb->len);
5691
7073017a 5692 offset = offset_in_page(start_offset + start);
d1310b2e 5693
d397712b 5694 while (len > 0) {
fb85fc9a 5695 page = eb->pages[i];
d1310b2e
CM
5696 WARN_ON(!PageUptodate(page));
5697
09cbfeaf 5698 cur = min(len, PAGE_SIZE - offset);
a6591715 5699 kaddr = page_address(page);
b159fa28 5700 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5701
5702 len -= cur;
5703 offset = 0;
5704 i++;
5705 }
5706}
d1310b2e 5707
58e8012c
DS
5708void copy_extent_buffer_full(struct extent_buffer *dst,
5709 struct extent_buffer *src)
5710{
5711 int i;
cc5e31a4 5712 int num_pages;
58e8012c
DS
5713
5714 ASSERT(dst->len == src->len);
5715
65ad0104 5716 num_pages = num_extent_pages(dst);
58e8012c
DS
5717 for (i = 0; i < num_pages; i++)
5718 copy_page(page_address(dst->pages[i]),
5719 page_address(src->pages[i]));
5720}
5721
d1310b2e
CM
5722void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5723 unsigned long dst_offset, unsigned long src_offset,
5724 unsigned long len)
5725{
5726 u64 dst_len = dst->len;
5727 size_t cur;
5728 size_t offset;
5729 struct page *page;
5730 char *kaddr;
7073017a 5731 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5732 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5733
5734 WARN_ON(src->len != dst_len);
5735
7073017a 5736 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5737
d397712b 5738 while (len > 0) {
fb85fc9a 5739 page = dst->pages[i];
d1310b2e
CM
5740 WARN_ON(!PageUptodate(page));
5741
09cbfeaf 5742 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5743
a6591715 5744 kaddr = page_address(page);
d1310b2e 5745 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5746
5747 src_offset += cur;
5748 len -= cur;
5749 offset = 0;
5750 i++;
5751 }
5752}
d1310b2e 5753
3e1e8bb7
OS
5754/*
5755 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5756 * given bit number
5757 * @eb: the extent buffer
5758 * @start: offset of the bitmap item in the extent buffer
5759 * @nr: bit number
5760 * @page_index: return index of the page in the extent buffer that contains the
5761 * given bit number
5762 * @page_offset: return offset into the page given by page_index
5763 *
5764 * This helper hides the ugliness of finding the byte in an extent buffer which
5765 * contains a given bit.
5766 */
5767static inline void eb_bitmap_offset(struct extent_buffer *eb,
5768 unsigned long start, unsigned long nr,
5769 unsigned long *page_index,
5770 size_t *page_offset)
5771{
7073017a 5772 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5773 size_t byte_offset = BIT_BYTE(nr);
5774 size_t offset;
5775
5776 /*
5777 * The byte we want is the offset of the extent buffer + the offset of
5778 * the bitmap item in the extent buffer + the offset of the byte in the
5779 * bitmap item.
5780 */
5781 offset = start_offset + start + byte_offset;
5782
09cbfeaf 5783 *page_index = offset >> PAGE_SHIFT;
7073017a 5784 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5785}
5786
5787/**
5788 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5789 * @eb: the extent buffer
5790 * @start: offset of the bitmap item in the extent buffer
5791 * @nr: bit number to test
5792 */
5793int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5794 unsigned long nr)
5795{
2fe1d551 5796 u8 *kaddr;
3e1e8bb7
OS
5797 struct page *page;
5798 unsigned long i;
5799 size_t offset;
5800
5801 eb_bitmap_offset(eb, start, nr, &i, &offset);
5802 page = eb->pages[i];
5803 WARN_ON(!PageUptodate(page));
5804 kaddr = page_address(page);
5805 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5806}
5807
5808/**
5809 * extent_buffer_bitmap_set - set an area of a bitmap
5810 * @eb: the extent buffer
5811 * @start: offset of the bitmap item in the extent buffer
5812 * @pos: bit number of the first bit
5813 * @len: number of bits to set
5814 */
5815void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5816 unsigned long pos, unsigned long len)
5817{
2fe1d551 5818 u8 *kaddr;
3e1e8bb7
OS
5819 struct page *page;
5820 unsigned long i;
5821 size_t offset;
5822 const unsigned int size = pos + len;
5823 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5824 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5825
5826 eb_bitmap_offset(eb, start, pos, &i, &offset);
5827 page = eb->pages[i];
5828 WARN_ON(!PageUptodate(page));
5829 kaddr = page_address(page);
5830
5831 while (len >= bits_to_set) {
5832 kaddr[offset] |= mask_to_set;
5833 len -= bits_to_set;
5834 bits_to_set = BITS_PER_BYTE;
9c894696 5835 mask_to_set = ~0;
09cbfeaf 5836 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5837 offset = 0;
5838 page = eb->pages[++i];
5839 WARN_ON(!PageUptodate(page));
5840 kaddr = page_address(page);
5841 }
5842 }
5843 if (len) {
5844 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5845 kaddr[offset] |= mask_to_set;
5846 }
5847}
5848
5849
5850/**
5851 * extent_buffer_bitmap_clear - clear an area of a bitmap
5852 * @eb: the extent buffer
5853 * @start: offset of the bitmap item in the extent buffer
5854 * @pos: bit number of the first bit
5855 * @len: number of bits to clear
5856 */
5857void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5858 unsigned long pos, unsigned long len)
5859{
2fe1d551 5860 u8 *kaddr;
3e1e8bb7
OS
5861 struct page *page;
5862 unsigned long i;
5863 size_t offset;
5864 const unsigned int size = pos + len;
5865 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5866 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5867
5868 eb_bitmap_offset(eb, start, pos, &i, &offset);
5869 page = eb->pages[i];
5870 WARN_ON(!PageUptodate(page));
5871 kaddr = page_address(page);
5872
5873 while (len >= bits_to_clear) {
5874 kaddr[offset] &= ~mask_to_clear;
5875 len -= bits_to_clear;
5876 bits_to_clear = BITS_PER_BYTE;
9c894696 5877 mask_to_clear = ~0;
09cbfeaf 5878 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5879 offset = 0;
5880 page = eb->pages[++i];
5881 WARN_ON(!PageUptodate(page));
5882 kaddr = page_address(page);
5883 }
5884 }
5885 if (len) {
5886 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5887 kaddr[offset] &= ~mask_to_clear;
5888 }
5889}
5890
3387206f
ST
5891static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5892{
5893 unsigned long distance = (src > dst) ? src - dst : dst - src;
5894 return distance < len;
5895}
5896
d1310b2e
CM
5897static void copy_pages(struct page *dst_page, struct page *src_page,
5898 unsigned long dst_off, unsigned long src_off,
5899 unsigned long len)
5900{
a6591715 5901 char *dst_kaddr = page_address(dst_page);
d1310b2e 5902 char *src_kaddr;
727011e0 5903 int must_memmove = 0;
d1310b2e 5904
3387206f 5905 if (dst_page != src_page) {
a6591715 5906 src_kaddr = page_address(src_page);
3387206f 5907 } else {
d1310b2e 5908 src_kaddr = dst_kaddr;
727011e0
CM
5909 if (areas_overlap(src_off, dst_off, len))
5910 must_memmove = 1;
3387206f 5911 }
d1310b2e 5912
727011e0
CM
5913 if (must_memmove)
5914 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5915 else
5916 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5917}
5918
5919void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5920 unsigned long src_offset, unsigned long len)
5921{
0b246afa 5922 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5923 size_t cur;
5924 size_t dst_off_in_page;
5925 size_t src_off_in_page;
7073017a 5926 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5927 unsigned long dst_i;
5928 unsigned long src_i;
5929
5930 if (src_offset + len > dst->len) {
0b246afa 5931 btrfs_err(fs_info,
5d163e0e
JM
5932 "memmove bogus src_offset %lu move len %lu dst len %lu",
5933 src_offset, len, dst->len);
290342f6 5934 BUG();
d1310b2e
CM
5935 }
5936 if (dst_offset + len > dst->len) {
0b246afa 5937 btrfs_err(fs_info,
5d163e0e
JM
5938 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5939 dst_offset, len, dst->len);
290342f6 5940 BUG();
d1310b2e
CM
5941 }
5942
d397712b 5943 while (len > 0) {
7073017a
JT
5944 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5945 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5946
09cbfeaf
KS
5947 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5948 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5949
09cbfeaf 5950 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5951 src_off_in_page));
5952 cur = min_t(unsigned long, cur,
09cbfeaf 5953 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5954
fb85fc9a 5955 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5956 dst_off_in_page, src_off_in_page, cur);
5957
5958 src_offset += cur;
5959 dst_offset += cur;
5960 len -= cur;
5961 }
5962}
d1310b2e
CM
5963
5964void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5965 unsigned long src_offset, unsigned long len)
5966{
0b246afa 5967 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5968 size_t cur;
5969 size_t dst_off_in_page;
5970 size_t src_off_in_page;
5971 unsigned long dst_end = dst_offset + len - 1;
5972 unsigned long src_end = src_offset + len - 1;
7073017a 5973 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5974 unsigned long dst_i;
5975 unsigned long src_i;
5976
5977 if (src_offset + len > dst->len) {
0b246afa 5978 btrfs_err(fs_info,
5d163e0e
JM
5979 "memmove bogus src_offset %lu move len %lu len %lu",
5980 src_offset, len, dst->len);
290342f6 5981 BUG();
d1310b2e
CM
5982 }
5983 if (dst_offset + len > dst->len) {
0b246afa 5984 btrfs_err(fs_info,
5d163e0e
JM
5985 "memmove bogus dst_offset %lu move len %lu len %lu",
5986 dst_offset, len, dst->len);
290342f6 5987 BUG();
d1310b2e 5988 }
727011e0 5989 if (dst_offset < src_offset) {
d1310b2e
CM
5990 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5991 return;
5992 }
d397712b 5993 while (len > 0) {
09cbfeaf
KS
5994 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5995 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5996
7073017a
JT
5997 dst_off_in_page = offset_in_page(start_offset + dst_end);
5998 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5999
6000 cur = min_t(unsigned long, len, src_off_in_page + 1);
6001 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6002 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6003 dst_off_in_page - cur + 1,
6004 src_off_in_page - cur + 1, cur);
6005
6006 dst_end -= cur;
6007 src_end -= cur;
6008 len -= cur;
6009 }
6010}
6af118ce 6011
f7a52a40 6012int try_release_extent_buffer(struct page *page)
19fe0a8b 6013{
6af118ce 6014 struct extent_buffer *eb;
6af118ce 6015
3083ee2e 6016 /*
01327610 6017 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6018 * now.
6019 */
6020 spin_lock(&page->mapping->private_lock);
6021 if (!PagePrivate(page)) {
6022 spin_unlock(&page->mapping->private_lock);
4f2de97a 6023 return 1;
45f49bce 6024 }
6af118ce 6025
3083ee2e
JB
6026 eb = (struct extent_buffer *)page->private;
6027 BUG_ON(!eb);
19fe0a8b
MX
6028
6029 /*
3083ee2e
JB
6030 * This is a little awful but should be ok, we need to make sure that
6031 * the eb doesn't disappear out from under us while we're looking at
6032 * this page.
19fe0a8b 6033 */
3083ee2e 6034 spin_lock(&eb->refs_lock);
0b32f4bb 6035 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6036 spin_unlock(&eb->refs_lock);
6037 spin_unlock(&page->mapping->private_lock);
6038 return 0;
b9473439 6039 }
3083ee2e 6040 spin_unlock(&page->mapping->private_lock);
897ca6e9 6041
19fe0a8b 6042 /*
3083ee2e
JB
6043 * If tree ref isn't set then we know the ref on this eb is a real ref,
6044 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6045 */
3083ee2e
JB
6046 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6047 spin_unlock(&eb->refs_lock);
6048 return 0;
b9473439 6049 }
19fe0a8b 6050
f7a52a40 6051 return release_extent_buffer(eb);
6af118ce 6052}