btrfs: qgroup: Move half of the qgroup accounting time out of commit trans
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
ce93ec54 63static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 64 struct btrfs_fs_info *fs_info, u64 bytenr,
ce93ec54 65 u64 num_bytes, int alloc);
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
4824f1f4 93static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 94 u64 ram_bytes, u64 num_bytes, int delalloc);
4824f1f4
WX
95static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
5d80366e
JB
97static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
957780eb
JB
99static int __reserve_metadata_bytes(struct btrfs_root *root,
100 struct btrfs_space_info *space_info,
101 u64 orig_bytes,
102 enum btrfs_reserve_flush_enum flush);
103static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
104 struct btrfs_space_info *space_info,
105 u64 num_bytes);
106static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
107 struct btrfs_space_info *space_info,
108 u64 num_bytes);
6a63209f 109
817d52f8
JB
110static noinline int
111block_group_cache_done(struct btrfs_block_group_cache *cache)
112{
113 smp_mb();
36cce922
JB
114 return cache->cached == BTRFS_CACHE_FINISHED ||
115 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
116}
117
0f9dd46c
JB
118static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
119{
120 return (cache->flags & bits) == bits;
121}
122
758f2dfc 123void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
124{
125 atomic_inc(&cache->count);
126}
127
128void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129{
f0486c68
YZ
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
34d52cb6 133 kfree(cache->free_space_ctl);
11dfe35a 134 kfree(cache);
f0486c68 135 }
11dfe35a
JB
136}
137
0f9dd46c
JB
138/*
139 * this adds the block group to the fs_info rb tree for the block group
140 * cache
141 */
b2950863 142static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
143 struct btrfs_block_group_cache *block_group)
144{
145 struct rb_node **p;
146 struct rb_node *parent = NULL;
147 struct btrfs_block_group_cache *cache;
148
149 spin_lock(&info->block_group_cache_lock);
150 p = &info->block_group_cache_tree.rb_node;
151
152 while (*p) {
153 parent = *p;
154 cache = rb_entry(parent, struct btrfs_block_group_cache,
155 cache_node);
156 if (block_group->key.objectid < cache->key.objectid) {
157 p = &(*p)->rb_left;
158 } else if (block_group->key.objectid > cache->key.objectid) {
159 p = &(*p)->rb_right;
160 } else {
161 spin_unlock(&info->block_group_cache_lock);
162 return -EEXIST;
163 }
164 }
165
166 rb_link_node(&block_group->cache_node, parent, p);
167 rb_insert_color(&block_group->cache_node,
168 &info->block_group_cache_tree);
a1897fdd
LB
169
170 if (info->first_logical_byte > block_group->key.objectid)
171 info->first_logical_byte = block_group->key.objectid;
172
0f9dd46c
JB
173 spin_unlock(&info->block_group_cache_lock);
174
175 return 0;
176}
177
178/*
179 * This will return the block group at or after bytenr if contains is 0, else
180 * it will return the block group that contains the bytenr
181 */
182static struct btrfs_block_group_cache *
183block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
184 int contains)
185{
186 struct btrfs_block_group_cache *cache, *ret = NULL;
187 struct rb_node *n;
188 u64 end, start;
189
190 spin_lock(&info->block_group_cache_lock);
191 n = info->block_group_cache_tree.rb_node;
192
193 while (n) {
194 cache = rb_entry(n, struct btrfs_block_group_cache,
195 cache_node);
196 end = cache->key.objectid + cache->key.offset - 1;
197 start = cache->key.objectid;
198
199 if (bytenr < start) {
200 if (!contains && (!ret || start < ret->key.objectid))
201 ret = cache;
202 n = n->rb_left;
203 } else if (bytenr > start) {
204 if (contains && bytenr <= end) {
205 ret = cache;
206 break;
207 }
208 n = n->rb_right;
209 } else {
210 ret = cache;
211 break;
212 }
213 }
a1897fdd 214 if (ret) {
11dfe35a 215 btrfs_get_block_group(ret);
a1897fdd
LB
216 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
217 info->first_logical_byte = ret->key.objectid;
218 }
0f9dd46c
JB
219 spin_unlock(&info->block_group_cache_lock);
220
221 return ret;
222}
223
2ff7e61e 224static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 225 u64 start, u64 num_bytes)
817d52f8 226{
11833d66 227 u64 end = start + num_bytes - 1;
0b246afa 228 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 229 start, end, EXTENT_UPTODATE);
0b246afa 230 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
11833d66
YZ
232 return 0;
233}
817d52f8 234
2ff7e61e 235static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
236 struct btrfs_block_group_cache *cache)
237{
238 u64 start, end;
817d52f8 239
11833d66
YZ
240 start = cache->key.objectid;
241 end = start + cache->key.offset - 1;
242
0b246afa 243 clear_extent_bits(&fs_info->freed_extents[0],
91166212 244 start, end, EXTENT_UPTODATE);
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[1],
91166212 246 start, end, EXTENT_UPTODATE);
817d52f8
JB
247}
248
2ff7e61e 249static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 250 struct btrfs_block_group_cache *cache)
817d52f8 251{
817d52f8
JB
252 u64 bytenr;
253 u64 *logical;
254 int stripe_len;
255 int i, nr, ret;
256
06b2331f
YZ
257 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
258 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
259 cache->bytes_super += stripe_len;
2ff7e61e 260 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 261 stripe_len);
835d974f
JB
262 if (ret)
263 return ret;
06b2331f
YZ
264 }
265
817d52f8
JB
266 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
267 bytenr = btrfs_sb_offset(i);
0b246afa 268 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 269 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
270 if (ret)
271 return ret;
11833d66 272
817d52f8 273 while (nr--) {
51bf5f0b
JB
274 u64 start, len;
275
276 if (logical[nr] > cache->key.objectid +
277 cache->key.offset)
278 continue;
279
280 if (logical[nr] + stripe_len <= cache->key.objectid)
281 continue;
282
283 start = logical[nr];
284 if (start < cache->key.objectid) {
285 start = cache->key.objectid;
286 len = (logical[nr] + stripe_len) - start;
287 } else {
288 len = min_t(u64, stripe_len,
289 cache->key.objectid +
290 cache->key.offset - start);
291 }
292
293 cache->bytes_super += len;
2ff7e61e 294 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
295 if (ret) {
296 kfree(logical);
297 return ret;
298 }
817d52f8 299 }
11833d66 300
817d52f8
JB
301 kfree(logical);
302 }
817d52f8
JB
303 return 0;
304}
305
11833d66
YZ
306static struct btrfs_caching_control *
307get_caching_control(struct btrfs_block_group_cache *cache)
308{
309 struct btrfs_caching_control *ctl;
310
311 spin_lock(&cache->lock);
dde5abee
JB
312 if (!cache->caching_ctl) {
313 spin_unlock(&cache->lock);
11833d66
YZ
314 return NULL;
315 }
316
317 ctl = cache->caching_ctl;
318 atomic_inc(&ctl->count);
319 spin_unlock(&cache->lock);
320 return ctl;
321}
322
323static void put_caching_control(struct btrfs_caching_control *ctl)
324{
325 if (atomic_dec_and_test(&ctl->count))
326 kfree(ctl);
327}
328
d0bd4560 329#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 330static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 331{
2ff7e61e 332 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
333 u64 start = block_group->key.objectid;
334 u64 len = block_group->key.offset;
335 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 336 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
337 u64 step = chunk << 1;
338
339 while (len > chunk) {
340 btrfs_remove_free_space(block_group, start, chunk);
341 start += step;
342 if (len < step)
343 len = 0;
344 else
345 len -= step;
346 }
347}
348#endif
349
0f9dd46c
JB
350/*
351 * this is only called by cache_block_group, since we could have freed extents
352 * we need to check the pinned_extents for any extents that can't be used yet
353 * since their free space will be released as soon as the transaction commits.
354 */
a5ed9182
OS
355u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
356 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 357{
817d52f8 358 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
359 int ret;
360
361 while (start < end) {
11833d66 362 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 363 &extent_start, &extent_end,
e6138876
JB
364 EXTENT_DIRTY | EXTENT_UPTODATE,
365 NULL);
0f9dd46c
JB
366 if (ret)
367 break;
368
06b2331f 369 if (extent_start <= start) {
0f9dd46c
JB
370 start = extent_end + 1;
371 } else if (extent_start > start && extent_start < end) {
372 size = extent_start - start;
817d52f8 373 total_added += size;
ea6a478e
JB
374 ret = btrfs_add_free_space(block_group, start,
375 size);
79787eaa 376 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
377 start = extent_end + 1;
378 } else {
379 break;
380 }
381 }
382
383 if (start < end) {
384 size = end - start;
817d52f8 385 total_added += size;
ea6a478e 386 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 387 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
388 }
389
817d52f8 390 return total_added;
0f9dd46c
JB
391}
392
73fa48b6 393static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 394{
0b246afa
JM
395 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
396 struct btrfs_fs_info *fs_info = block_group->fs_info;
397 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 398 struct btrfs_path *path;
5f39d397 399 struct extent_buffer *leaf;
11833d66 400 struct btrfs_key key;
817d52f8 401 u64 total_found = 0;
11833d66
YZ
402 u64 last = 0;
403 u32 nritems;
73fa48b6 404 int ret;
d0bd4560 405 bool wakeup = true;
f510cfec 406
e37c9e69
CM
407 path = btrfs_alloc_path();
408 if (!path)
73fa48b6 409 return -ENOMEM;
7d7d6068 410
817d52f8 411 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 412
d0bd4560
JB
413#ifdef CONFIG_BTRFS_DEBUG
414 /*
415 * If we're fragmenting we don't want to make anybody think we can
416 * allocate from this block group until we've had a chance to fragment
417 * the free space.
418 */
2ff7e61e 419 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
420 wakeup = false;
421#endif
5cd57b2c 422 /*
817d52f8
JB
423 * We don't want to deadlock with somebody trying to allocate a new
424 * extent for the extent root while also trying to search the extent
425 * root to add free space. So we skip locking and search the commit
426 * root, since its read-only
5cd57b2c
CM
427 */
428 path->skip_locking = 1;
817d52f8 429 path->search_commit_root = 1;
e4058b54 430 path->reada = READA_FORWARD;
817d52f8 431
e4404d6e 432 key.objectid = last;
e37c9e69 433 key.offset = 0;
11833d66 434 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 435
52ee28d2 436next:
11833d66 437 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 438 if (ret < 0)
73fa48b6 439 goto out;
a512bbf8 440
11833d66
YZ
441 leaf = path->nodes[0];
442 nritems = btrfs_header_nritems(leaf);
443
d397712b 444 while (1) {
7841cb28 445 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 446 last = (u64)-1;
817d52f8 447 break;
f25784b3 448 }
817d52f8 449
11833d66
YZ
450 if (path->slots[0] < nritems) {
451 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
452 } else {
453 ret = find_next_key(path, 0, &key);
454 if (ret)
e37c9e69 455 break;
817d52f8 456
c9ea7b24 457 if (need_resched() ||
9e351cc8 458 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
459 if (wakeup)
460 caching_ctl->progress = last;
ff5714cc 461 btrfs_release_path(path);
9e351cc8 462 up_read(&fs_info->commit_root_sem);
589d8ade 463 mutex_unlock(&caching_ctl->mutex);
11833d66 464 cond_resched();
73fa48b6
OS
465 mutex_lock(&caching_ctl->mutex);
466 down_read(&fs_info->commit_root_sem);
467 goto next;
589d8ade 468 }
0a3896d0
JB
469
470 ret = btrfs_next_leaf(extent_root, path);
471 if (ret < 0)
73fa48b6 472 goto out;
0a3896d0
JB
473 if (ret)
474 break;
589d8ade
JB
475 leaf = path->nodes[0];
476 nritems = btrfs_header_nritems(leaf);
477 continue;
11833d66 478 }
817d52f8 479
52ee28d2
LB
480 if (key.objectid < last) {
481 key.objectid = last;
482 key.offset = 0;
483 key.type = BTRFS_EXTENT_ITEM_KEY;
484
d0bd4560
JB
485 if (wakeup)
486 caching_ctl->progress = last;
52ee28d2
LB
487 btrfs_release_path(path);
488 goto next;
489 }
490
11833d66
YZ
491 if (key.objectid < block_group->key.objectid) {
492 path->slots[0]++;
817d52f8 493 continue;
e37c9e69 494 }
0f9dd46c 495
e37c9e69 496 if (key.objectid >= block_group->key.objectid +
0f9dd46c 497 block_group->key.offset)
e37c9e69 498 break;
7d7d6068 499
3173a18f
JB
500 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
501 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
502 total_found += add_new_free_space(block_group,
503 fs_info, last,
504 key.objectid);
3173a18f
JB
505 if (key.type == BTRFS_METADATA_ITEM_KEY)
506 last = key.objectid +
da17066c 507 fs_info->nodesize;
3173a18f
JB
508 else
509 last = key.objectid + key.offset;
817d52f8 510
73fa48b6 511 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 512 total_found = 0;
d0bd4560
JB
513 if (wakeup)
514 wake_up(&caching_ctl->wait);
11833d66 515 }
817d52f8 516 }
e37c9e69
CM
517 path->slots[0]++;
518 }
817d52f8 519 ret = 0;
e37c9e69 520
817d52f8
JB
521 total_found += add_new_free_space(block_group, fs_info, last,
522 block_group->key.objectid +
523 block_group->key.offset);
11833d66 524 caching_ctl->progress = (u64)-1;
817d52f8 525
73fa48b6
OS
526out:
527 btrfs_free_path(path);
528 return ret;
529}
530
531static noinline void caching_thread(struct btrfs_work *work)
532{
533 struct btrfs_block_group_cache *block_group;
534 struct btrfs_fs_info *fs_info;
535 struct btrfs_caching_control *caching_ctl;
b4570aa9 536 struct btrfs_root *extent_root;
73fa48b6
OS
537 int ret;
538
539 caching_ctl = container_of(work, struct btrfs_caching_control, work);
540 block_group = caching_ctl->block_group;
541 fs_info = block_group->fs_info;
b4570aa9 542 extent_root = fs_info->extent_root;
73fa48b6
OS
543
544 mutex_lock(&caching_ctl->mutex);
545 down_read(&fs_info->commit_root_sem);
546
1e144fb8
OS
547 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
548 ret = load_free_space_tree(caching_ctl);
549 else
550 ret = load_extent_tree_free(caching_ctl);
73fa48b6 551
817d52f8 552 spin_lock(&block_group->lock);
11833d66 553 block_group->caching_ctl = NULL;
73fa48b6 554 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 555 spin_unlock(&block_group->lock);
0f9dd46c 556
d0bd4560 557#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 558 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
559 u64 bytes_used;
560
561 spin_lock(&block_group->space_info->lock);
562 spin_lock(&block_group->lock);
563 bytes_used = block_group->key.offset -
564 btrfs_block_group_used(&block_group->item);
565 block_group->space_info->bytes_used += bytes_used >> 1;
566 spin_unlock(&block_group->lock);
567 spin_unlock(&block_group->space_info->lock);
2ff7e61e 568 fragment_free_space(block_group);
d0bd4560
JB
569 }
570#endif
571
572 caching_ctl->progress = (u64)-1;
11833d66 573
9e351cc8 574 up_read(&fs_info->commit_root_sem);
2ff7e61e 575 free_excluded_extents(fs_info, block_group);
11833d66 576 mutex_unlock(&caching_ctl->mutex);
73fa48b6 577
11833d66
YZ
578 wake_up(&caching_ctl->wait);
579
580 put_caching_control(caching_ctl);
11dfe35a 581 btrfs_put_block_group(block_group);
817d52f8
JB
582}
583
9d66e233 584static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 585 int load_cache_only)
817d52f8 586{
291c7d2f 587 DEFINE_WAIT(wait);
11833d66
YZ
588 struct btrfs_fs_info *fs_info = cache->fs_info;
589 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
590 int ret = 0;
591
291c7d2f 592 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
593 if (!caching_ctl)
594 return -ENOMEM;
291c7d2f
JB
595
596 INIT_LIST_HEAD(&caching_ctl->list);
597 mutex_init(&caching_ctl->mutex);
598 init_waitqueue_head(&caching_ctl->wait);
599 caching_ctl->block_group = cache;
600 caching_ctl->progress = cache->key.objectid;
601 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
602 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
603 caching_thread, NULL, NULL);
291c7d2f
JB
604
605 spin_lock(&cache->lock);
606 /*
607 * This should be a rare occasion, but this could happen I think in the
608 * case where one thread starts to load the space cache info, and then
609 * some other thread starts a transaction commit which tries to do an
610 * allocation while the other thread is still loading the space cache
611 * info. The previous loop should have kept us from choosing this block
612 * group, but if we've moved to the state where we will wait on caching
613 * block groups we need to first check if we're doing a fast load here,
614 * so we can wait for it to finish, otherwise we could end up allocating
615 * from a block group who's cache gets evicted for one reason or
616 * another.
617 */
618 while (cache->cached == BTRFS_CACHE_FAST) {
619 struct btrfs_caching_control *ctl;
620
621 ctl = cache->caching_ctl;
622 atomic_inc(&ctl->count);
623 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
624 spin_unlock(&cache->lock);
625
626 schedule();
627
628 finish_wait(&ctl->wait, &wait);
629 put_caching_control(ctl);
630 spin_lock(&cache->lock);
631 }
632
633 if (cache->cached != BTRFS_CACHE_NO) {
634 spin_unlock(&cache->lock);
635 kfree(caching_ctl);
11833d66 636 return 0;
291c7d2f
JB
637 }
638 WARN_ON(cache->caching_ctl);
639 cache->caching_ctl = caching_ctl;
640 cache->cached = BTRFS_CACHE_FAST;
641 spin_unlock(&cache->lock);
11833d66 642
d53ba474 643 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 644 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
645 ret = load_free_space_cache(fs_info, cache);
646
647 spin_lock(&cache->lock);
648 if (ret == 1) {
291c7d2f 649 cache->caching_ctl = NULL;
9d66e233
JB
650 cache->cached = BTRFS_CACHE_FINISHED;
651 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 652 caching_ctl->progress = (u64)-1;
9d66e233 653 } else {
291c7d2f
JB
654 if (load_cache_only) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_NO;
657 } else {
658 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 659 cache->has_caching_ctl = 1;
291c7d2f 660 }
9d66e233
JB
661 }
662 spin_unlock(&cache->lock);
d0bd4560
JB
663#ifdef CONFIG_BTRFS_DEBUG
664 if (ret == 1 &&
2ff7e61e 665 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
666 u64 bytes_used;
667
668 spin_lock(&cache->space_info->lock);
669 spin_lock(&cache->lock);
670 bytes_used = cache->key.offset -
671 btrfs_block_group_used(&cache->item);
672 cache->space_info->bytes_used += bytes_used >> 1;
673 spin_unlock(&cache->lock);
674 spin_unlock(&cache->space_info->lock);
2ff7e61e 675 fragment_free_space(cache);
d0bd4560
JB
676 }
677#endif
cb83b7b8
JB
678 mutex_unlock(&caching_ctl->mutex);
679
291c7d2f 680 wake_up(&caching_ctl->wait);
3c14874a 681 if (ret == 1) {
291c7d2f 682 put_caching_control(caching_ctl);
2ff7e61e 683 free_excluded_extents(fs_info, cache);
9d66e233 684 return 0;
3c14874a 685 }
291c7d2f
JB
686 } else {
687 /*
1e144fb8
OS
688 * We're either using the free space tree or no caching at all.
689 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
690 */
691 spin_lock(&cache->lock);
692 if (load_cache_only) {
693 cache->caching_ctl = NULL;
694 cache->cached = BTRFS_CACHE_NO;
695 } else {
696 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 697 cache->has_caching_ctl = 1;
291c7d2f
JB
698 }
699 spin_unlock(&cache->lock);
700 wake_up(&caching_ctl->wait);
9d66e233
JB
701 }
702
291c7d2f
JB
703 if (load_cache_only) {
704 put_caching_control(caching_ctl);
11833d66 705 return 0;
817d52f8 706 }
817d52f8 707
9e351cc8 708 down_write(&fs_info->commit_root_sem);
291c7d2f 709 atomic_inc(&caching_ctl->count);
11833d66 710 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 711 up_write(&fs_info->commit_root_sem);
11833d66 712
11dfe35a 713 btrfs_get_block_group(cache);
11833d66 714
e66f0bb1 715 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 716
ef8bbdfe 717 return ret;
e37c9e69
CM
718}
719
0f9dd46c
JB
720/*
721 * return the block group that starts at or after bytenr
722 */
d397712b
CM
723static struct btrfs_block_group_cache *
724btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 725{
e2c89907 726 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
727}
728
0f9dd46c 729/*
9f55684c 730 * return the block group that contains the given bytenr
0f9dd46c 731 */
d397712b
CM
732struct btrfs_block_group_cache *btrfs_lookup_block_group(
733 struct btrfs_fs_info *info,
734 u64 bytenr)
be744175 735{
e2c89907 736 return block_group_cache_tree_search(info, bytenr, 1);
be744175 737}
0b86a832 738
0f9dd46c
JB
739static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
740 u64 flags)
6324fbf3 741{
0f9dd46c 742 struct list_head *head = &info->space_info;
0f9dd46c 743 struct btrfs_space_info *found;
4184ea7f 744
52ba6929 745 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 746
4184ea7f
CM
747 rcu_read_lock();
748 list_for_each_entry_rcu(found, head, list) {
67377734 749 if (found->flags & flags) {
4184ea7f 750 rcu_read_unlock();
0f9dd46c 751 return found;
4184ea7f 752 }
0f9dd46c 753 }
4184ea7f 754 rcu_read_unlock();
0f9dd46c 755 return NULL;
6324fbf3
CM
756}
757
4184ea7f
CM
758/*
759 * after adding space to the filesystem, we need to clear the full flags
760 * on all the space infos.
761 */
762void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
763{
764 struct list_head *head = &info->space_info;
765 struct btrfs_space_info *found;
766
767 rcu_read_lock();
768 list_for_each_entry_rcu(found, head, list)
769 found->full = 0;
770 rcu_read_unlock();
771}
772
1a4ed8fd 773/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 774int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
775{
776 int ret;
777 struct btrfs_key key;
31840ae1 778 struct btrfs_path *path;
e02119d5 779
31840ae1 780 path = btrfs_alloc_path();
d8926bb3
MF
781 if (!path)
782 return -ENOMEM;
783
e02119d5
CM
784 key.objectid = start;
785 key.offset = len;
3173a18f 786 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 787 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 788 btrfs_free_path(path);
7bb86316
CM
789 return ret;
790}
791
a22285a6 792/*
3173a18f 793 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
794 *
795 * the head node for delayed ref is used to store the sum of all the
796 * reference count modifications queued up in the rbtree. the head
797 * node may also store the extent flags to set. This way you can check
798 * to see what the reference count and extent flags would be if all of
799 * the delayed refs are not processed.
800 */
801int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 802 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 803 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
804{
805 struct btrfs_delayed_ref_head *head;
806 struct btrfs_delayed_ref_root *delayed_refs;
807 struct btrfs_path *path;
808 struct btrfs_extent_item *ei;
809 struct extent_buffer *leaf;
810 struct btrfs_key key;
811 u32 item_size;
812 u64 num_refs;
813 u64 extent_flags;
814 int ret;
815
3173a18f
JB
816 /*
817 * If we don't have skinny metadata, don't bother doing anything
818 * different
819 */
0b246afa
JM
820 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
821 offset = fs_info->nodesize;
3173a18f
JB
822 metadata = 0;
823 }
824
a22285a6
YZ
825 path = btrfs_alloc_path();
826 if (!path)
827 return -ENOMEM;
828
a22285a6
YZ
829 if (!trans) {
830 path->skip_locking = 1;
831 path->search_commit_root = 1;
832 }
639eefc8
FDBM
833
834search_again:
835 key.objectid = bytenr;
836 key.offset = offset;
837 if (metadata)
838 key.type = BTRFS_METADATA_ITEM_KEY;
839 else
840 key.type = BTRFS_EXTENT_ITEM_KEY;
841
0b246afa 842 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
843 if (ret < 0)
844 goto out_free;
845
3173a18f 846 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
847 if (path->slots[0]) {
848 path->slots[0]--;
849 btrfs_item_key_to_cpu(path->nodes[0], &key,
850 path->slots[0]);
851 if (key.objectid == bytenr &&
852 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 853 key.offset == fs_info->nodesize)
74be9510
FDBM
854 ret = 0;
855 }
3173a18f
JB
856 }
857
a22285a6
YZ
858 if (ret == 0) {
859 leaf = path->nodes[0];
860 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
861 if (item_size >= sizeof(*ei)) {
862 ei = btrfs_item_ptr(leaf, path->slots[0],
863 struct btrfs_extent_item);
864 num_refs = btrfs_extent_refs(leaf, ei);
865 extent_flags = btrfs_extent_flags(leaf, ei);
866 } else {
867#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
868 struct btrfs_extent_item_v0 *ei0;
869 BUG_ON(item_size != sizeof(*ei0));
870 ei0 = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item_v0);
872 num_refs = btrfs_extent_refs_v0(leaf, ei0);
873 /* FIXME: this isn't correct for data */
874 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
875#else
876 BUG();
877#endif
878 }
879 BUG_ON(num_refs == 0);
880 } else {
881 num_refs = 0;
882 extent_flags = 0;
883 ret = 0;
884 }
885
886 if (!trans)
887 goto out;
888
889 delayed_refs = &trans->transaction->delayed_refs;
890 spin_lock(&delayed_refs->lock);
f72ad18e 891 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
892 if (head) {
893 if (!mutex_trylock(&head->mutex)) {
894 atomic_inc(&head->node.refs);
895 spin_unlock(&delayed_refs->lock);
896
b3b4aa74 897 btrfs_release_path(path);
a22285a6 898
8cc33e5c
DS
899 /*
900 * Mutex was contended, block until it's released and try
901 * again
902 */
a22285a6
YZ
903 mutex_lock(&head->mutex);
904 mutex_unlock(&head->mutex);
905 btrfs_put_delayed_ref(&head->node);
639eefc8 906 goto search_again;
a22285a6 907 }
d7df2c79 908 spin_lock(&head->lock);
a22285a6
YZ
909 if (head->extent_op && head->extent_op->update_flags)
910 extent_flags |= head->extent_op->flags_to_set;
911 else
912 BUG_ON(num_refs == 0);
913
914 num_refs += head->node.ref_mod;
d7df2c79 915 spin_unlock(&head->lock);
a22285a6
YZ
916 mutex_unlock(&head->mutex);
917 }
918 spin_unlock(&delayed_refs->lock);
919out:
920 WARN_ON(num_refs == 0);
921 if (refs)
922 *refs = num_refs;
923 if (flags)
924 *flags = extent_flags;
925out_free:
926 btrfs_free_path(path);
927 return ret;
928}
929
d8d5f3e1
CM
930/*
931 * Back reference rules. Back refs have three main goals:
932 *
933 * 1) differentiate between all holders of references to an extent so that
934 * when a reference is dropped we can make sure it was a valid reference
935 * before freeing the extent.
936 *
937 * 2) Provide enough information to quickly find the holders of an extent
938 * if we notice a given block is corrupted or bad.
939 *
940 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
941 * maintenance. This is actually the same as #2, but with a slightly
942 * different use case.
943 *
5d4f98a2
YZ
944 * There are two kinds of back refs. The implicit back refs is optimized
945 * for pointers in non-shared tree blocks. For a given pointer in a block,
946 * back refs of this kind provide information about the block's owner tree
947 * and the pointer's key. These information allow us to find the block by
948 * b-tree searching. The full back refs is for pointers in tree blocks not
949 * referenced by their owner trees. The location of tree block is recorded
950 * in the back refs. Actually the full back refs is generic, and can be
951 * used in all cases the implicit back refs is used. The major shortcoming
952 * of the full back refs is its overhead. Every time a tree block gets
953 * COWed, we have to update back refs entry for all pointers in it.
954 *
955 * For a newly allocated tree block, we use implicit back refs for
956 * pointers in it. This means most tree related operations only involve
957 * implicit back refs. For a tree block created in old transaction, the
958 * only way to drop a reference to it is COW it. So we can detect the
959 * event that tree block loses its owner tree's reference and do the
960 * back refs conversion.
961 *
01327610 962 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
963 *
964 * The reference count of the block is one and the tree is the block's
965 * owner tree. Nothing to do in this case.
966 *
967 * The reference count of the block is one and the tree is not the
968 * block's owner tree. In this case, full back refs is used for pointers
969 * in the block. Remove these full back refs, add implicit back refs for
970 * every pointers in the new block.
971 *
972 * The reference count of the block is greater than one and the tree is
973 * the block's owner tree. In this case, implicit back refs is used for
974 * pointers in the block. Add full back refs for every pointers in the
975 * block, increase lower level extents' reference counts. The original
976 * implicit back refs are entailed to the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * not the block's owner tree. Add implicit back refs for every pointer in
980 * the new block, increase lower level extents' reference count.
981 *
982 * Back Reference Key composing:
983 *
984 * The key objectid corresponds to the first byte in the extent,
985 * The key type is used to differentiate between types of back refs.
986 * There are different meanings of the key offset for different types
987 * of back refs.
988 *
d8d5f3e1
CM
989 * File extents can be referenced by:
990 *
991 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 992 * - different files inside a single subvolume
d8d5f3e1
CM
993 * - different offsets inside a file (bookend extents in file.c)
994 *
5d4f98a2 995 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
996 *
997 * - Objectid of the subvolume root
d8d5f3e1 998 * - objectid of the file holding the reference
5d4f98a2
YZ
999 * - original offset in the file
1000 * - how many bookend extents
d8d5f3e1 1001 *
5d4f98a2
YZ
1002 * The key offset for the implicit back refs is hash of the first
1003 * three fields.
d8d5f3e1 1004 *
5d4f98a2 1005 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1006 *
5d4f98a2 1007 * - number of pointers in the tree leaf
d8d5f3e1 1008 *
5d4f98a2
YZ
1009 * The key offset for the implicit back refs is the first byte of
1010 * the tree leaf
d8d5f3e1 1011 *
5d4f98a2
YZ
1012 * When a file extent is allocated, The implicit back refs is used.
1013 * the fields are filled in:
d8d5f3e1 1014 *
5d4f98a2 1015 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1016 *
5d4f98a2
YZ
1017 * When a file extent is removed file truncation, we find the
1018 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1019 *
5d4f98a2 1020 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1021 *
5d4f98a2 1022 * Btree extents can be referenced by:
d8d5f3e1 1023 *
5d4f98a2 1024 * - Different subvolumes
d8d5f3e1 1025 *
5d4f98a2
YZ
1026 * Both the implicit back refs and the full back refs for tree blocks
1027 * only consist of key. The key offset for the implicit back refs is
1028 * objectid of block's owner tree. The key offset for the full back refs
1029 * is the first byte of parent block.
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * When implicit back refs is used, information about the lowest key and
1032 * level of the tree block are required. These information are stored in
1033 * tree block info structure.
d8d5f3e1 1034 */
31840ae1 1035
5d4f98a2
YZ
1036#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1037static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1038 struct btrfs_root *root,
1039 struct btrfs_path *path,
1040 u64 owner, u32 extra_size)
7bb86316 1041{
5d4f98a2
YZ
1042 struct btrfs_extent_item *item;
1043 struct btrfs_extent_item_v0 *ei0;
1044 struct btrfs_extent_ref_v0 *ref0;
1045 struct btrfs_tree_block_info *bi;
1046 struct extent_buffer *leaf;
7bb86316 1047 struct btrfs_key key;
5d4f98a2
YZ
1048 struct btrfs_key found_key;
1049 u32 new_size = sizeof(*item);
1050 u64 refs;
1051 int ret;
1052
1053 leaf = path->nodes[0];
1054 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1055
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_extent_item_v0);
1059 refs = btrfs_extent_refs_v0(leaf, ei0);
1060
1061 if (owner == (u64)-1) {
1062 while (1) {
1063 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1064 ret = btrfs_next_leaf(root, path);
1065 if (ret < 0)
1066 return ret;
79787eaa 1067 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1068 leaf = path->nodes[0];
1069 }
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0]);
1072 BUG_ON(key.objectid != found_key.objectid);
1073 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1074 path->slots[0]++;
1075 continue;
1076 }
1077 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1078 struct btrfs_extent_ref_v0);
1079 owner = btrfs_ref_objectid_v0(leaf, ref0);
1080 break;
1081 }
1082 }
b3b4aa74 1083 btrfs_release_path(path);
5d4f98a2
YZ
1084
1085 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1086 new_size += sizeof(*bi);
1087
1088 new_size -= sizeof(*ei0);
1089 ret = btrfs_search_slot(trans, root, &key, path,
1090 new_size + extra_size, 1);
1091 if (ret < 0)
1092 return ret;
79787eaa 1093 BUG_ON(ret); /* Corruption */
5d4f98a2 1094
2ff7e61e 1095 btrfs_extend_item(root->fs_info, path, new_size);
5d4f98a2
YZ
1096
1097 leaf = path->nodes[0];
1098 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1099 btrfs_set_extent_refs(leaf, item, refs);
1100 /* FIXME: get real generation */
1101 btrfs_set_extent_generation(leaf, item, 0);
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1103 btrfs_set_extent_flags(leaf, item,
1104 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1105 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1106 bi = (struct btrfs_tree_block_info *)(item + 1);
1107 /* FIXME: get first key of the block */
b159fa28 1108 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1109 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1110 } else {
1111 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1112 }
1113 btrfs_mark_buffer_dirty(leaf);
1114 return 0;
1115}
1116#endif
1117
1118static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1119{
1120 u32 high_crc = ~(u32)0;
1121 u32 low_crc = ~(u32)0;
1122 __le64 lenum;
1123
1124 lenum = cpu_to_le64(root_objectid);
14a958e6 1125 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1126 lenum = cpu_to_le64(owner);
14a958e6 1127 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1128 lenum = cpu_to_le64(offset);
14a958e6 1129 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1130
1131 return ((u64)high_crc << 31) ^ (u64)low_crc;
1132}
1133
1134static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1135 struct btrfs_extent_data_ref *ref)
1136{
1137 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1138 btrfs_extent_data_ref_objectid(leaf, ref),
1139 btrfs_extent_data_ref_offset(leaf, ref));
1140}
1141
1142static int match_extent_data_ref(struct extent_buffer *leaf,
1143 struct btrfs_extent_data_ref *ref,
1144 u64 root_objectid, u64 owner, u64 offset)
1145{
1146 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1147 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1148 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1149 return 0;
1150 return 1;
1151}
1152
1153static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1154 struct btrfs_root *root,
1155 struct btrfs_path *path,
1156 u64 bytenr, u64 parent,
1157 u64 root_objectid,
1158 u64 owner, u64 offset)
1159{
1160 struct btrfs_key key;
1161 struct btrfs_extent_data_ref *ref;
31840ae1 1162 struct extent_buffer *leaf;
5d4f98a2 1163 u32 nritems;
74493f7a 1164 int ret;
5d4f98a2
YZ
1165 int recow;
1166 int err = -ENOENT;
74493f7a 1167
31840ae1 1168 key.objectid = bytenr;
5d4f98a2
YZ
1169 if (parent) {
1170 key.type = BTRFS_SHARED_DATA_REF_KEY;
1171 key.offset = parent;
1172 } else {
1173 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1174 key.offset = hash_extent_data_ref(root_objectid,
1175 owner, offset);
1176 }
1177again:
1178 recow = 0;
1179 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1180 if (ret < 0) {
1181 err = ret;
1182 goto fail;
1183 }
31840ae1 1184
5d4f98a2
YZ
1185 if (parent) {
1186 if (!ret)
1187 return 0;
1188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1189 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1190 btrfs_release_path(path);
5d4f98a2
YZ
1191 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1192 if (ret < 0) {
1193 err = ret;
1194 goto fail;
1195 }
1196 if (!ret)
1197 return 0;
1198#endif
1199 goto fail;
31840ae1
ZY
1200 }
1201
1202 leaf = path->nodes[0];
5d4f98a2
YZ
1203 nritems = btrfs_header_nritems(leaf);
1204 while (1) {
1205 if (path->slots[0] >= nritems) {
1206 ret = btrfs_next_leaf(root, path);
1207 if (ret < 0)
1208 err = ret;
1209 if (ret)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 nritems = btrfs_header_nritems(leaf);
1214 recow = 1;
1215 }
1216
1217 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1218 if (key.objectid != bytenr ||
1219 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1220 goto fail;
1221
1222 ref = btrfs_item_ptr(leaf, path->slots[0],
1223 struct btrfs_extent_data_ref);
1224
1225 if (match_extent_data_ref(leaf, ref, root_objectid,
1226 owner, offset)) {
1227 if (recow) {
b3b4aa74 1228 btrfs_release_path(path);
5d4f98a2
YZ
1229 goto again;
1230 }
1231 err = 0;
1232 break;
1233 }
1234 path->slots[0]++;
31840ae1 1235 }
5d4f98a2
YZ
1236fail:
1237 return err;
31840ae1
ZY
1238}
1239
5d4f98a2
YZ
1240static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1241 struct btrfs_root *root,
1242 struct btrfs_path *path,
1243 u64 bytenr, u64 parent,
1244 u64 root_objectid, u64 owner,
1245 u64 offset, int refs_to_add)
31840ae1
ZY
1246{
1247 struct btrfs_key key;
1248 struct extent_buffer *leaf;
5d4f98a2 1249 u32 size;
31840ae1
ZY
1250 u32 num_refs;
1251 int ret;
74493f7a 1252
74493f7a 1253 key.objectid = bytenr;
5d4f98a2
YZ
1254 if (parent) {
1255 key.type = BTRFS_SHARED_DATA_REF_KEY;
1256 key.offset = parent;
1257 size = sizeof(struct btrfs_shared_data_ref);
1258 } else {
1259 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1260 key.offset = hash_extent_data_ref(root_objectid,
1261 owner, offset);
1262 size = sizeof(struct btrfs_extent_data_ref);
1263 }
74493f7a 1264
5d4f98a2
YZ
1265 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1266 if (ret && ret != -EEXIST)
1267 goto fail;
1268
1269 leaf = path->nodes[0];
1270 if (parent) {
1271 struct btrfs_shared_data_ref *ref;
31840ae1 1272 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1273 struct btrfs_shared_data_ref);
1274 if (ret == 0) {
1275 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1276 } else {
1277 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1278 num_refs += refs_to_add;
1279 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1280 }
5d4f98a2
YZ
1281 } else {
1282 struct btrfs_extent_data_ref *ref;
1283 while (ret == -EEXIST) {
1284 ref = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_data_ref);
1286 if (match_extent_data_ref(leaf, ref, root_objectid,
1287 owner, offset))
1288 break;
b3b4aa74 1289 btrfs_release_path(path);
5d4f98a2
YZ
1290 key.offset++;
1291 ret = btrfs_insert_empty_item(trans, root, path, &key,
1292 size);
1293 if (ret && ret != -EEXIST)
1294 goto fail;
31840ae1 1295
5d4f98a2
YZ
1296 leaf = path->nodes[0];
1297 }
1298 ref = btrfs_item_ptr(leaf, path->slots[0],
1299 struct btrfs_extent_data_ref);
1300 if (ret == 0) {
1301 btrfs_set_extent_data_ref_root(leaf, ref,
1302 root_objectid);
1303 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1304 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1305 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1306 } else {
1307 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1308 num_refs += refs_to_add;
1309 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1310 }
31840ae1 1311 }
5d4f98a2
YZ
1312 btrfs_mark_buffer_dirty(leaf);
1313 ret = 0;
1314fail:
b3b4aa74 1315 btrfs_release_path(path);
7bb86316 1316 return ret;
74493f7a
CM
1317}
1318
5d4f98a2
YZ
1319static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct btrfs_path *path,
fcebe456 1322 int refs_to_drop, int *last_ref)
31840ae1 1323{
5d4f98a2
YZ
1324 struct btrfs_key key;
1325 struct btrfs_extent_data_ref *ref1 = NULL;
1326 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1327 struct extent_buffer *leaf;
5d4f98a2 1328 u32 num_refs = 0;
31840ae1
ZY
1329 int ret = 0;
1330
1331 leaf = path->nodes[0];
5d4f98a2
YZ
1332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1333
1334 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_extent_data_ref);
1337 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1338 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1339 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1340 struct btrfs_shared_data_ref);
1341 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1342#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1343 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1344 struct btrfs_extent_ref_v0 *ref0;
1345 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_extent_ref_v0);
1347 num_refs = btrfs_ref_count_v0(leaf, ref0);
1348#endif
1349 } else {
1350 BUG();
1351 }
1352
56bec294
CM
1353 BUG_ON(num_refs < refs_to_drop);
1354 num_refs -= refs_to_drop;
5d4f98a2 1355
31840ae1
ZY
1356 if (num_refs == 0) {
1357 ret = btrfs_del_item(trans, root, path);
fcebe456 1358 *last_ref = 1;
31840ae1 1359 } else {
5d4f98a2
YZ
1360 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1361 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1362 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1363 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1364#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1365 else {
1366 struct btrfs_extent_ref_v0 *ref0;
1367 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_ref_v0);
1369 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1370 }
1371#endif
31840ae1
ZY
1372 btrfs_mark_buffer_dirty(leaf);
1373 }
31840ae1
ZY
1374 return ret;
1375}
1376
9ed0dea0 1377static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1378 struct btrfs_extent_inline_ref *iref)
15916de8 1379{
5d4f98a2
YZ
1380 struct btrfs_key key;
1381 struct extent_buffer *leaf;
1382 struct btrfs_extent_data_ref *ref1;
1383 struct btrfs_shared_data_ref *ref2;
1384 u32 num_refs = 0;
1385
1386 leaf = path->nodes[0];
1387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1388 if (iref) {
1389 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1390 BTRFS_EXTENT_DATA_REF_KEY) {
1391 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1392 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1393 } else {
1394 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1395 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1396 }
1397 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1398 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_extent_data_ref);
1400 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1401 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1402 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1403 struct btrfs_shared_data_ref);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1407 struct btrfs_extent_ref_v0 *ref0;
1408 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_extent_ref_v0);
1410 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1411#endif
5d4f98a2
YZ
1412 } else {
1413 WARN_ON(1);
1414 }
1415 return num_refs;
1416}
15916de8 1417
5d4f98a2
YZ
1418static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1419 struct btrfs_root *root,
1420 struct btrfs_path *path,
1421 u64 bytenr, u64 parent,
1422 u64 root_objectid)
1f3c79a2 1423{
5d4f98a2 1424 struct btrfs_key key;
1f3c79a2 1425 int ret;
1f3c79a2 1426
5d4f98a2
YZ
1427 key.objectid = bytenr;
1428 if (parent) {
1429 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1430 key.offset = parent;
1431 } else {
1432 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1433 key.offset = root_objectid;
1f3c79a2
LH
1434 }
1435
5d4f98a2
YZ
1436 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1437 if (ret > 0)
1438 ret = -ENOENT;
1439#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1440 if (ret == -ENOENT && parent) {
b3b4aa74 1441 btrfs_release_path(path);
5d4f98a2
YZ
1442 key.type = BTRFS_EXTENT_REF_V0_KEY;
1443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1444 if (ret > 0)
1445 ret = -ENOENT;
1446 }
1f3c79a2 1447#endif
5d4f98a2 1448 return ret;
1f3c79a2
LH
1449}
1450
5d4f98a2
YZ
1451static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root,
1453 struct btrfs_path *path,
1454 u64 bytenr, u64 parent,
1455 u64 root_objectid)
31840ae1 1456{
5d4f98a2 1457 struct btrfs_key key;
31840ae1 1458 int ret;
31840ae1 1459
5d4f98a2
YZ
1460 key.objectid = bytenr;
1461 if (parent) {
1462 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1463 key.offset = parent;
1464 } else {
1465 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1466 key.offset = root_objectid;
1467 }
1468
1469 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1470 btrfs_release_path(path);
31840ae1
ZY
1471 return ret;
1472}
1473
5d4f98a2 1474static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1475{
5d4f98a2
YZ
1476 int type;
1477 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1478 if (parent > 0)
1479 type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 else
1481 type = BTRFS_TREE_BLOCK_REF_KEY;
1482 } else {
1483 if (parent > 0)
1484 type = BTRFS_SHARED_DATA_REF_KEY;
1485 else
1486 type = BTRFS_EXTENT_DATA_REF_KEY;
1487 }
1488 return type;
31840ae1 1489}
56bec294 1490
2c47e605
YZ
1491static int find_next_key(struct btrfs_path *path, int level,
1492 struct btrfs_key *key)
56bec294 1493
02217ed2 1494{
2c47e605 1495 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1496 if (!path->nodes[level])
1497 break;
5d4f98a2
YZ
1498 if (path->slots[level] + 1 >=
1499 btrfs_header_nritems(path->nodes[level]))
1500 continue;
1501 if (level == 0)
1502 btrfs_item_key_to_cpu(path->nodes[level], key,
1503 path->slots[level] + 1);
1504 else
1505 btrfs_node_key_to_cpu(path->nodes[level], key,
1506 path->slots[level] + 1);
1507 return 0;
1508 }
1509 return 1;
1510}
037e6390 1511
5d4f98a2
YZ
1512/*
1513 * look for inline back ref. if back ref is found, *ref_ret is set
1514 * to the address of inline back ref, and 0 is returned.
1515 *
1516 * if back ref isn't found, *ref_ret is set to the address where it
1517 * should be inserted, and -ENOENT is returned.
1518 *
1519 * if insert is true and there are too many inline back refs, the path
1520 * points to the extent item, and -EAGAIN is returned.
1521 *
1522 * NOTE: inline back refs are ordered in the same way that back ref
1523 * items in the tree are ordered.
1524 */
1525static noinline_for_stack
1526int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1527 struct btrfs_root *root,
1528 struct btrfs_path *path,
1529 struct btrfs_extent_inline_ref **ref_ret,
1530 u64 bytenr, u64 num_bytes,
1531 u64 parent, u64 root_objectid,
1532 u64 owner, u64 offset, int insert)
1533{
0b246afa 1534 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1535 struct btrfs_key key;
1536 struct extent_buffer *leaf;
1537 struct btrfs_extent_item *ei;
1538 struct btrfs_extent_inline_ref *iref;
1539 u64 flags;
1540 u64 item_size;
1541 unsigned long ptr;
1542 unsigned long end;
1543 int extra_size;
1544 int type;
1545 int want;
1546 int ret;
1547 int err = 0;
0b246afa 1548 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
26b8003f 1549
db94535d 1550 key.objectid = bytenr;
31840ae1 1551 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1552 key.offset = num_bytes;
31840ae1 1553
5d4f98a2
YZ
1554 want = extent_ref_type(parent, owner);
1555 if (insert) {
1556 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1557 path->keep_locks = 1;
5d4f98a2
YZ
1558 } else
1559 extra_size = -1;
3173a18f
JB
1560
1561 /*
1562 * Owner is our parent level, so we can just add one to get the level
1563 * for the block we are interested in.
1564 */
1565 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1566 key.type = BTRFS_METADATA_ITEM_KEY;
1567 key.offset = owner;
1568 }
1569
1570again:
5d4f98a2 1571 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1572 if (ret < 0) {
5d4f98a2
YZ
1573 err = ret;
1574 goto out;
1575 }
3173a18f
JB
1576
1577 /*
1578 * We may be a newly converted file system which still has the old fat
1579 * extent entries for metadata, so try and see if we have one of those.
1580 */
1581 if (ret > 0 && skinny_metadata) {
1582 skinny_metadata = false;
1583 if (path->slots[0]) {
1584 path->slots[0]--;
1585 btrfs_item_key_to_cpu(path->nodes[0], &key,
1586 path->slots[0]);
1587 if (key.objectid == bytenr &&
1588 key.type == BTRFS_EXTENT_ITEM_KEY &&
1589 key.offset == num_bytes)
1590 ret = 0;
1591 }
1592 if (ret) {
9ce49a0b 1593 key.objectid = bytenr;
3173a18f
JB
1594 key.type = BTRFS_EXTENT_ITEM_KEY;
1595 key.offset = num_bytes;
1596 btrfs_release_path(path);
1597 goto again;
1598 }
1599 }
1600
79787eaa
JM
1601 if (ret && !insert) {
1602 err = -ENOENT;
1603 goto out;
fae7f21c 1604 } else if (WARN_ON(ret)) {
492104c8 1605 err = -EIO;
492104c8 1606 goto out;
79787eaa 1607 }
5d4f98a2
YZ
1608
1609 leaf = path->nodes[0];
1610 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1611#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1612 if (item_size < sizeof(*ei)) {
1613 if (!insert) {
1614 err = -ENOENT;
1615 goto out;
1616 }
1617 ret = convert_extent_item_v0(trans, root, path, owner,
1618 extra_size);
1619 if (ret < 0) {
1620 err = ret;
1621 goto out;
1622 }
1623 leaf = path->nodes[0];
1624 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1625 }
1626#endif
1627 BUG_ON(item_size < sizeof(*ei));
1628
5d4f98a2
YZ
1629 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1630 flags = btrfs_extent_flags(leaf, ei);
1631
1632 ptr = (unsigned long)(ei + 1);
1633 end = (unsigned long)ei + item_size;
1634
3173a18f 1635 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1636 ptr += sizeof(struct btrfs_tree_block_info);
1637 BUG_ON(ptr > end);
5d4f98a2
YZ
1638 }
1639
1640 err = -ENOENT;
1641 while (1) {
1642 if (ptr >= end) {
1643 WARN_ON(ptr > end);
1644 break;
1645 }
1646 iref = (struct btrfs_extent_inline_ref *)ptr;
1647 type = btrfs_extent_inline_ref_type(leaf, iref);
1648 if (want < type)
1649 break;
1650 if (want > type) {
1651 ptr += btrfs_extent_inline_ref_size(type);
1652 continue;
1653 }
1654
1655 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1656 struct btrfs_extent_data_ref *dref;
1657 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1658 if (match_extent_data_ref(leaf, dref, root_objectid,
1659 owner, offset)) {
1660 err = 0;
1661 break;
1662 }
1663 if (hash_extent_data_ref_item(leaf, dref) <
1664 hash_extent_data_ref(root_objectid, owner, offset))
1665 break;
1666 } else {
1667 u64 ref_offset;
1668 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1669 if (parent > 0) {
1670 if (parent == ref_offset) {
1671 err = 0;
1672 break;
1673 }
1674 if (ref_offset < parent)
1675 break;
1676 } else {
1677 if (root_objectid == ref_offset) {
1678 err = 0;
1679 break;
1680 }
1681 if (ref_offset < root_objectid)
1682 break;
1683 }
1684 }
1685 ptr += btrfs_extent_inline_ref_size(type);
1686 }
1687 if (err == -ENOENT && insert) {
1688 if (item_size + extra_size >=
1689 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1690 err = -EAGAIN;
1691 goto out;
1692 }
1693 /*
1694 * To add new inline back ref, we have to make sure
1695 * there is no corresponding back ref item.
1696 * For simplicity, we just do not add new inline back
1697 * ref if there is any kind of item for this block
1698 */
2c47e605
YZ
1699 if (find_next_key(path, 0, &key) == 0 &&
1700 key.objectid == bytenr &&
85d4198e 1701 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1702 err = -EAGAIN;
1703 goto out;
1704 }
1705 }
1706 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1707out:
85d4198e 1708 if (insert) {
5d4f98a2
YZ
1709 path->keep_locks = 0;
1710 btrfs_unlock_up_safe(path, 1);
1711 }
1712 return err;
1713}
1714
1715/*
1716 * helper to add new inline back ref
1717 */
1718static noinline_for_stack
fd279fae 1719void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1720 struct btrfs_path *path,
1721 struct btrfs_extent_inline_ref *iref,
1722 u64 parent, u64 root_objectid,
1723 u64 owner, u64 offset, int refs_to_add,
1724 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1725{
1726 struct extent_buffer *leaf;
1727 struct btrfs_extent_item *ei;
1728 unsigned long ptr;
1729 unsigned long end;
1730 unsigned long item_offset;
1731 u64 refs;
1732 int size;
1733 int type;
5d4f98a2
YZ
1734
1735 leaf = path->nodes[0];
1736 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1737 item_offset = (unsigned long)iref - (unsigned long)ei;
1738
1739 type = extent_ref_type(parent, owner);
1740 size = btrfs_extent_inline_ref_size(type);
1741
2ff7e61e 1742 btrfs_extend_item(root->fs_info, path, size);
5d4f98a2
YZ
1743
1744 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1745 refs = btrfs_extent_refs(leaf, ei);
1746 refs += refs_to_add;
1747 btrfs_set_extent_refs(leaf, ei, refs);
1748 if (extent_op)
1749 __run_delayed_extent_op(extent_op, leaf, ei);
1750
1751 ptr = (unsigned long)ei + item_offset;
1752 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1753 if (ptr < end - size)
1754 memmove_extent_buffer(leaf, ptr + size, ptr,
1755 end - size - ptr);
1756
1757 iref = (struct btrfs_extent_inline_ref *)ptr;
1758 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1759 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1760 struct btrfs_extent_data_ref *dref;
1761 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1762 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1763 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1764 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1765 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1766 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1767 struct btrfs_shared_data_ref *sref;
1768 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1769 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1770 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1771 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1772 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1773 } else {
1774 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1775 }
1776 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1777}
1778
1779static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1780 struct btrfs_root *root,
1781 struct btrfs_path *path,
1782 struct btrfs_extent_inline_ref **ref_ret,
1783 u64 bytenr, u64 num_bytes, u64 parent,
1784 u64 root_objectid, u64 owner, u64 offset)
1785{
1786 int ret;
1787
1788 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1789 bytenr, num_bytes, parent,
1790 root_objectid, owner, offset, 0);
1791 if (ret != -ENOENT)
54aa1f4d 1792 return ret;
5d4f98a2 1793
b3b4aa74 1794 btrfs_release_path(path);
5d4f98a2
YZ
1795 *ref_ret = NULL;
1796
1797 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1798 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1799 root_objectid);
1800 } else {
1801 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1802 root_objectid, owner, offset);
b9473439 1803 }
5d4f98a2
YZ
1804 return ret;
1805}
31840ae1 1806
5d4f98a2
YZ
1807/*
1808 * helper to update/remove inline back ref
1809 */
1810static noinline_for_stack
afe5fea7 1811void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1812 struct btrfs_path *path,
1813 struct btrfs_extent_inline_ref *iref,
1814 int refs_to_mod,
fcebe456
JB
1815 struct btrfs_delayed_extent_op *extent_op,
1816 int *last_ref)
5d4f98a2
YZ
1817{
1818 struct extent_buffer *leaf;
1819 struct btrfs_extent_item *ei;
1820 struct btrfs_extent_data_ref *dref = NULL;
1821 struct btrfs_shared_data_ref *sref = NULL;
1822 unsigned long ptr;
1823 unsigned long end;
1824 u32 item_size;
1825 int size;
1826 int type;
5d4f98a2
YZ
1827 u64 refs;
1828
1829 leaf = path->nodes[0];
1830 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1831 refs = btrfs_extent_refs(leaf, ei);
1832 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1833 refs += refs_to_mod;
1834 btrfs_set_extent_refs(leaf, ei, refs);
1835 if (extent_op)
1836 __run_delayed_extent_op(extent_op, leaf, ei);
1837
1838 type = btrfs_extent_inline_ref_type(leaf, iref);
1839
1840 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1841 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1842 refs = btrfs_extent_data_ref_count(leaf, dref);
1843 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1844 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1845 refs = btrfs_shared_data_ref_count(leaf, sref);
1846 } else {
1847 refs = 1;
1848 BUG_ON(refs_to_mod != -1);
56bec294 1849 }
31840ae1 1850
5d4f98a2
YZ
1851 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1852 refs += refs_to_mod;
1853
1854 if (refs > 0) {
1855 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1856 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1857 else
1858 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1859 } else {
fcebe456 1860 *last_ref = 1;
5d4f98a2
YZ
1861 size = btrfs_extent_inline_ref_size(type);
1862 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1863 ptr = (unsigned long)iref;
1864 end = (unsigned long)ei + item_size;
1865 if (ptr + size < end)
1866 memmove_extent_buffer(leaf, ptr, ptr + size,
1867 end - ptr - size);
1868 item_size -= size;
2ff7e61e 1869 btrfs_truncate_item(root->fs_info, path, item_size, 1);
5d4f98a2
YZ
1870 }
1871 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1872}
1873
1874static noinline_for_stack
1875int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1876 struct btrfs_root *root,
1877 struct btrfs_path *path,
1878 u64 bytenr, u64 num_bytes, u64 parent,
1879 u64 root_objectid, u64 owner,
1880 u64 offset, int refs_to_add,
1881 struct btrfs_delayed_extent_op *extent_op)
1882{
1883 struct btrfs_extent_inline_ref *iref;
1884 int ret;
1885
1886 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1887 bytenr, num_bytes, parent,
1888 root_objectid, owner, offset, 1);
1889 if (ret == 0) {
1890 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1891 update_inline_extent_backref(root, path, iref,
fcebe456 1892 refs_to_add, extent_op, NULL);
5d4f98a2 1893 } else if (ret == -ENOENT) {
fd279fae 1894 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1895 root_objectid, owner, offset,
1896 refs_to_add, extent_op);
1897 ret = 0;
771ed689 1898 }
5d4f98a2
YZ
1899 return ret;
1900}
31840ae1 1901
5d4f98a2
YZ
1902static int insert_extent_backref(struct btrfs_trans_handle *trans,
1903 struct btrfs_root *root,
1904 struct btrfs_path *path,
1905 u64 bytenr, u64 parent, u64 root_objectid,
1906 u64 owner, u64 offset, int refs_to_add)
1907{
1908 int ret;
1909 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1910 BUG_ON(refs_to_add != 1);
1911 ret = insert_tree_block_ref(trans, root, path, bytenr,
1912 parent, root_objectid);
1913 } else {
1914 ret = insert_extent_data_ref(trans, root, path, bytenr,
1915 parent, root_objectid,
1916 owner, offset, refs_to_add);
1917 }
1918 return ret;
1919}
56bec294 1920
5d4f98a2
YZ
1921static int remove_extent_backref(struct btrfs_trans_handle *trans,
1922 struct btrfs_root *root,
1923 struct btrfs_path *path,
1924 struct btrfs_extent_inline_ref *iref,
fcebe456 1925 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1926{
143bede5 1927 int ret = 0;
b9473439 1928
5d4f98a2
YZ
1929 BUG_ON(!is_data && refs_to_drop != 1);
1930 if (iref) {
afe5fea7 1931 update_inline_extent_backref(root, path, iref,
fcebe456 1932 -refs_to_drop, NULL, last_ref);
5d4f98a2 1933 } else if (is_data) {
fcebe456
JB
1934 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1935 last_ref);
5d4f98a2 1936 } else {
fcebe456 1937 *last_ref = 1;
5d4f98a2
YZ
1938 ret = btrfs_del_item(trans, root, path);
1939 }
1940 return ret;
1941}
1942
86557861 1943#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1944static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1945 u64 *discarded_bytes)
5d4f98a2 1946{
86557861
JM
1947 int j, ret = 0;
1948 u64 bytes_left, end;
4d89d377 1949 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1950
4d89d377
JM
1951 if (WARN_ON(start != aligned_start)) {
1952 len -= aligned_start - start;
1953 len = round_down(len, 1 << 9);
1954 start = aligned_start;
1955 }
d04c6b88 1956
4d89d377 1957 *discarded_bytes = 0;
86557861
JM
1958
1959 if (!len)
1960 return 0;
1961
1962 end = start + len;
1963 bytes_left = len;
1964
1965 /* Skip any superblocks on this device. */
1966 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1967 u64 sb_start = btrfs_sb_offset(j);
1968 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1969 u64 size = sb_start - start;
1970
1971 if (!in_range(sb_start, start, bytes_left) &&
1972 !in_range(sb_end, start, bytes_left) &&
1973 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1974 continue;
1975
1976 /*
1977 * Superblock spans beginning of range. Adjust start and
1978 * try again.
1979 */
1980 if (sb_start <= start) {
1981 start += sb_end - start;
1982 if (start > end) {
1983 bytes_left = 0;
1984 break;
1985 }
1986 bytes_left = end - start;
1987 continue;
1988 }
1989
1990 if (size) {
1991 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1992 GFP_NOFS, 0);
1993 if (!ret)
1994 *discarded_bytes += size;
1995 else if (ret != -EOPNOTSUPP)
1996 return ret;
1997 }
1998
1999 start = sb_end;
2000 if (start > end) {
2001 bytes_left = 0;
2002 break;
2003 }
2004 bytes_left = end - start;
2005 }
2006
2007 if (bytes_left) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2009 GFP_NOFS, 0);
2010 if (!ret)
86557861 2011 *discarded_bytes += bytes_left;
4d89d377 2012 }
d04c6b88 2013 return ret;
5d4f98a2 2014}
5d4f98a2 2015
2ff7e61e 2016int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2017 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2018{
5d4f98a2 2019 int ret;
5378e607 2020 u64 discarded_bytes = 0;
a1d3c478 2021 struct btrfs_bio *bbio = NULL;
5d4f98a2 2022
e244a0ae 2023
2999241d
FM
2024 /*
2025 * Avoid races with device replace and make sure our bbio has devices
2026 * associated to its stripes that don't go away while we are discarding.
2027 */
0b246afa 2028 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2029 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2030 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2031 &bbio, 0);
79787eaa 2032 /* Error condition is -ENOMEM */
5d4f98a2 2033 if (!ret) {
a1d3c478 2034 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2035 int i;
2036
5d4f98a2 2037
a1d3c478 2038 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2039 u64 bytes;
d5e2003c
JB
2040 if (!stripe->dev->can_discard)
2041 continue;
2042
5378e607
LD
2043 ret = btrfs_issue_discard(stripe->dev->bdev,
2044 stripe->physical,
d04c6b88
JM
2045 stripe->length,
2046 &bytes);
5378e607 2047 if (!ret)
d04c6b88 2048 discarded_bytes += bytes;
5378e607 2049 else if (ret != -EOPNOTSUPP)
79787eaa 2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2051
2052 /*
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2056 */
2057 ret = 0;
5d4f98a2 2058 }
6e9606d2 2059 btrfs_put_bbio(bbio);
5d4f98a2 2060 }
0b246afa 2061 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2062
2063 if (actual_bytes)
2064 *actual_bytes = discarded_bytes;
2065
5d4f98a2 2066
53b381b3
DW
2067 if (ret == -EOPNOTSUPP)
2068 ret = 0;
5d4f98a2 2069 return ret;
5d4f98a2
YZ
2070}
2071
79787eaa 2072/* Can return -ENOMEM */
5d4f98a2 2073int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2074 struct btrfs_fs_info *fs_info,
5d4f98a2 2075 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2076 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2077{
2078 int ret;
66d7e7f0 2079
5d4f98a2
YZ
2080 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2081 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2082
2083 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2084 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2085 num_bytes,
5d4f98a2 2086 parent, root_objectid, (int)owner,
b06c4bf5 2087 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2088 } else {
66d7e7f0 2089 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2090 num_bytes, parent, root_objectid,
2091 owner, offset, 0,
fef394f7 2092 BTRFS_ADD_DELAYED_REF);
5d4f98a2
YZ
2093 }
2094 return ret;
2095}
2096
2097static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2098 struct btrfs_fs_info *fs_info,
c682f9b3 2099 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2100 u64 parent, u64 root_objectid,
2101 u64 owner, u64 offset, int refs_to_add,
2102 struct btrfs_delayed_extent_op *extent_op)
2103{
2104 struct btrfs_path *path;
2105 struct extent_buffer *leaf;
2106 struct btrfs_extent_item *item;
fcebe456 2107 struct btrfs_key key;
c682f9b3
QW
2108 u64 bytenr = node->bytenr;
2109 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2110 u64 refs;
2111 int ret;
5d4f98a2
YZ
2112
2113 path = btrfs_alloc_path();
2114 if (!path)
2115 return -ENOMEM;
2116
e4058b54 2117 path->reada = READA_FORWARD;
5d4f98a2
YZ
2118 path->leave_spinning = 1;
2119 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2120 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2121 bytenr, num_bytes, parent,
5d4f98a2
YZ
2122 root_objectid, owner, offset,
2123 refs_to_add, extent_op);
0ed4792a 2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2125 goto out;
fcebe456
JB
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
5d4f98a2 2132 leaf = path->nodes[0];
fcebe456 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2139
5d4f98a2 2140 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2141 btrfs_release_path(path);
56bec294 2142
e4058b54 2143 path->reada = READA_FORWARD;
b9473439 2144 path->leave_spinning = 1;
56bec294 2145 /* now insert the actual backref */
0b246afa 2146 ret = insert_extent_backref(trans, fs_info->extent_root,
5d4f98a2
YZ
2147 path, bytenr, parent, root_objectid,
2148 owner, offset, refs_to_add);
79787eaa 2149 if (ret)
66642832 2150 btrfs_abort_transaction(trans, ret);
5d4f98a2 2151out:
56bec294 2152 btrfs_free_path(path);
30d133fc 2153 return ret;
56bec294
CM
2154}
2155
5d4f98a2 2156static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2157 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2158 struct btrfs_delayed_ref_node *node,
2159 struct btrfs_delayed_extent_op *extent_op,
2160 int insert_reserved)
56bec294 2161{
5d4f98a2
YZ
2162 int ret = 0;
2163 struct btrfs_delayed_data_ref *ref;
2164 struct btrfs_key ins;
2165 u64 parent = 0;
2166 u64 ref_root = 0;
2167 u64 flags = 0;
2168
2169 ins.objectid = node->bytenr;
2170 ins.offset = node->num_bytes;
2171 ins.type = BTRFS_EXTENT_ITEM_KEY;
2172
2173 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2174 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2175
5d4f98a2
YZ
2176 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2177 parent = ref->parent;
fcebe456 2178 ref_root = ref->root;
5d4f98a2
YZ
2179
2180 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2181 if (extent_op)
5d4f98a2 2182 flags |= extent_op->flags_to_set;
2ff7e61e 2183 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2184 parent, ref_root, flags,
2185 ref->objectid, ref->offset,
2186 &ins, node->ref_mod);
5d4f98a2 2187 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2188 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2189 ref_root, ref->objectid,
2190 ref->offset, node->ref_mod,
c682f9b3 2191 extent_op);
5d4f98a2 2192 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2193 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2194 ref_root, ref->objectid,
2195 ref->offset, node->ref_mod,
c682f9b3 2196 extent_op);
5d4f98a2
YZ
2197 } else {
2198 BUG();
2199 }
2200 return ret;
2201}
2202
2203static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2204 struct extent_buffer *leaf,
2205 struct btrfs_extent_item *ei)
2206{
2207 u64 flags = btrfs_extent_flags(leaf, ei);
2208 if (extent_op->update_flags) {
2209 flags |= extent_op->flags_to_set;
2210 btrfs_set_extent_flags(leaf, ei, flags);
2211 }
2212
2213 if (extent_op->update_key) {
2214 struct btrfs_tree_block_info *bi;
2215 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2216 bi = (struct btrfs_tree_block_info *)(ei + 1);
2217 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2218 }
2219}
2220
2221static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2222 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2223 struct btrfs_delayed_ref_node *node,
2224 struct btrfs_delayed_extent_op *extent_op)
2225{
2226 struct btrfs_key key;
2227 struct btrfs_path *path;
2228 struct btrfs_extent_item *ei;
2229 struct extent_buffer *leaf;
2230 u32 item_size;
56bec294 2231 int ret;
5d4f98a2 2232 int err = 0;
b1c79e09 2233 int metadata = !extent_op->is_data;
5d4f98a2 2234
79787eaa
JM
2235 if (trans->aborted)
2236 return 0;
2237
0b246afa 2238 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2239 metadata = 0;
2240
5d4f98a2
YZ
2241 path = btrfs_alloc_path();
2242 if (!path)
2243 return -ENOMEM;
2244
2245 key.objectid = node->bytenr;
5d4f98a2 2246
3173a18f 2247 if (metadata) {
3173a18f 2248 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2249 key.offset = extent_op->level;
3173a18f
JB
2250 } else {
2251 key.type = BTRFS_EXTENT_ITEM_KEY;
2252 key.offset = node->num_bytes;
2253 }
2254
2255again:
e4058b54 2256 path->reada = READA_FORWARD;
5d4f98a2 2257 path->leave_spinning = 1;
0b246afa 2258 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2259 if (ret < 0) {
2260 err = ret;
2261 goto out;
2262 }
2263 if (ret > 0) {
3173a18f 2264 if (metadata) {
55994887
FDBM
2265 if (path->slots[0] > 0) {
2266 path->slots[0]--;
2267 btrfs_item_key_to_cpu(path->nodes[0], &key,
2268 path->slots[0]);
2269 if (key.objectid == node->bytenr &&
2270 key.type == BTRFS_EXTENT_ITEM_KEY &&
2271 key.offset == node->num_bytes)
2272 ret = 0;
2273 }
2274 if (ret > 0) {
2275 btrfs_release_path(path);
2276 metadata = 0;
3173a18f 2277
55994887
FDBM
2278 key.objectid = node->bytenr;
2279 key.offset = node->num_bytes;
2280 key.type = BTRFS_EXTENT_ITEM_KEY;
2281 goto again;
2282 }
2283 } else {
2284 err = -EIO;
2285 goto out;
3173a18f 2286 }
5d4f98a2
YZ
2287 }
2288
2289 leaf = path->nodes[0];
2290 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2291#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2292 if (item_size < sizeof(*ei)) {
0b246afa 2293 ret = convert_extent_item_v0(trans, fs_info->extent_root,
5d4f98a2
YZ
2294 path, (u64)-1, 0);
2295 if (ret < 0) {
2296 err = ret;
2297 goto out;
2298 }
2299 leaf = path->nodes[0];
2300 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2301 }
2302#endif
2303 BUG_ON(item_size < sizeof(*ei));
2304 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2305 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2306
5d4f98a2
YZ
2307 btrfs_mark_buffer_dirty(leaf);
2308out:
2309 btrfs_free_path(path);
2310 return err;
56bec294
CM
2311}
2312
5d4f98a2 2313static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2314 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2315 struct btrfs_delayed_ref_node *node,
2316 struct btrfs_delayed_extent_op *extent_op,
2317 int insert_reserved)
56bec294
CM
2318{
2319 int ret = 0;
5d4f98a2
YZ
2320 struct btrfs_delayed_tree_ref *ref;
2321 struct btrfs_key ins;
2322 u64 parent = 0;
2323 u64 ref_root = 0;
0b246afa 2324 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2325
5d4f98a2 2326 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2327 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2328
5d4f98a2
YZ
2329 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2330 parent = ref->parent;
fcebe456 2331 ref_root = ref->root;
5d4f98a2 2332
3173a18f
JB
2333 ins.objectid = node->bytenr;
2334 if (skinny_metadata) {
2335 ins.offset = ref->level;
2336 ins.type = BTRFS_METADATA_ITEM_KEY;
2337 } else {
2338 ins.offset = node->num_bytes;
2339 ins.type = BTRFS_EXTENT_ITEM_KEY;
2340 }
2341
02794222 2342 if (node->ref_mod != 1) {
2ff7e61e 2343 btrfs_err(fs_info,
02794222
LB
2344 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2345 node->bytenr, node->ref_mod, node->action, ref_root,
2346 parent);
2347 return -EIO;
2348 }
5d4f98a2 2349 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2350 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2351 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2352 parent, ref_root,
2353 extent_op->flags_to_set,
2354 &extent_op->key,
b06c4bf5 2355 ref->level, &ins);
5d4f98a2 2356 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2357 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2358 parent, ref_root,
2359 ref->level, 0, 1,
fcebe456 2360 extent_op);
5d4f98a2 2361 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2362 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2363 parent, ref_root,
2364 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2365 } else {
2366 BUG();
2367 }
56bec294
CM
2368 return ret;
2369}
2370
2371/* helper function to actually process a single delayed ref entry */
5d4f98a2 2372static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2373 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2374 struct btrfs_delayed_ref_node *node,
2375 struct btrfs_delayed_extent_op *extent_op,
2376 int insert_reserved)
56bec294 2377{
79787eaa
JM
2378 int ret = 0;
2379
857cc2fc
JB
2380 if (trans->aborted) {
2381 if (insert_reserved)
2ff7e61e 2382 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2383 node->num_bytes, 1);
79787eaa 2384 return 0;
857cc2fc 2385 }
79787eaa 2386
5d4f98a2 2387 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2388 struct btrfs_delayed_ref_head *head;
2389 /*
2390 * we've hit the end of the chain and we were supposed
2391 * to insert this extent into the tree. But, it got
2392 * deleted before we ever needed to insert it, so all
2393 * we have to do is clean up the accounting
2394 */
5d4f98a2
YZ
2395 BUG_ON(extent_op);
2396 head = btrfs_delayed_node_to_head(node);
0b246afa 2397 trace_run_delayed_ref_head(fs_info, node, head, node->action);
599c75ec 2398
56bec294 2399 if (insert_reserved) {
2ff7e61e 2400 btrfs_pin_extent(fs_info, node->bytenr,
f0486c68 2401 node->num_bytes, 1);
5d4f98a2 2402 if (head->is_data) {
0b246afa 2403 ret = btrfs_del_csums(trans, fs_info,
5d4f98a2
YZ
2404 node->bytenr,
2405 node->num_bytes);
5d4f98a2 2406 }
56bec294 2407 }
297d750b
QW
2408
2409 /* Also free its reserved qgroup space */
0b246afa 2410 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
297d750b 2411 head->qgroup_reserved);
79787eaa 2412 return ret;
56bec294
CM
2413 }
2414
5d4f98a2
YZ
2415 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2416 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2417 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2418 insert_reserved);
2419 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2420 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2421 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2422 insert_reserved);
2423 else
2424 BUG();
2425 return ret;
56bec294
CM
2426}
2427
c6fc2454 2428static inline struct btrfs_delayed_ref_node *
56bec294
CM
2429select_delayed_ref(struct btrfs_delayed_ref_head *head)
2430{
cffc3374
FM
2431 struct btrfs_delayed_ref_node *ref;
2432
c6fc2454
QW
2433 if (list_empty(&head->ref_list))
2434 return NULL;
d7df2c79 2435
cffc3374
FM
2436 /*
2437 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2438 * This is to prevent a ref count from going down to zero, which deletes
2439 * the extent item from the extent tree, when there still are references
2440 * to add, which would fail because they would not find the extent item.
2441 */
1d57ee94
WX
2442 if (!list_empty(&head->ref_add_list))
2443 return list_first_entry(&head->ref_add_list,
2444 struct btrfs_delayed_ref_node, add_list);
2445
2446 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2447 list);
2448 ASSERT(list_empty(&ref->add_list));
2449 return ref;
56bec294
CM
2450}
2451
79787eaa
JM
2452/*
2453 * Returns 0 on success or if called with an already aborted transaction.
2454 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2455 */
d7df2c79 2456static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2457 struct btrfs_fs_info *fs_info,
d7df2c79 2458 unsigned long nr)
56bec294 2459{
56bec294
CM
2460 struct btrfs_delayed_ref_root *delayed_refs;
2461 struct btrfs_delayed_ref_node *ref;
2462 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2463 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2464 ktime_t start = ktime_get();
56bec294 2465 int ret;
d7df2c79 2466 unsigned long count = 0;
0a2b2a84 2467 unsigned long actual_count = 0;
56bec294 2468 int must_insert_reserved = 0;
56bec294
CM
2469
2470 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2471 while (1) {
2472 if (!locked_ref) {
d7df2c79 2473 if (count >= nr)
56bec294 2474 break;
56bec294 2475
d7df2c79
JB
2476 spin_lock(&delayed_refs->lock);
2477 locked_ref = btrfs_select_ref_head(trans);
2478 if (!locked_ref) {
2479 spin_unlock(&delayed_refs->lock);
2480 break;
2481 }
c3e69d58
CM
2482
2483 /* grab the lock that says we are going to process
2484 * all the refs for this head */
2485 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2486 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2487 /*
2488 * we may have dropped the spin lock to get the head
2489 * mutex lock, and that might have given someone else
2490 * time to free the head. If that's true, it has been
2491 * removed from our list and we can move on.
2492 */
2493 if (ret == -EAGAIN) {
2494 locked_ref = NULL;
2495 count++;
2496 continue;
56bec294
CM
2497 }
2498 }
a28ec197 2499
2c3cf7d5
FM
2500 /*
2501 * We need to try and merge add/drops of the same ref since we
2502 * can run into issues with relocate dropping the implicit ref
2503 * and then it being added back again before the drop can
2504 * finish. If we merged anything we need to re-loop so we can
2505 * get a good ref.
2506 * Or we can get node references of the same type that weren't
2507 * merged when created due to bumps in the tree mod seq, and
2508 * we need to merge them to prevent adding an inline extent
2509 * backref before dropping it (triggering a BUG_ON at
2510 * insert_inline_extent_backref()).
2511 */
d7df2c79 2512 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2513 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2514 locked_ref);
ae1e206b 2515
d1270cd9
AJ
2516 /*
2517 * locked_ref is the head node, so we have to go one
2518 * node back for any delayed ref updates
2519 */
2520 ref = select_delayed_ref(locked_ref);
2521
2522 if (ref && ref->seq &&
097b8a7c 2523 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2524 spin_unlock(&locked_ref->lock);
d7df2c79
JB
2525 spin_lock(&delayed_refs->lock);
2526 locked_ref->processing = 0;
d1270cd9
AJ
2527 delayed_refs->num_heads_ready++;
2528 spin_unlock(&delayed_refs->lock);
d0280996 2529 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79 2530 locked_ref = NULL;
d1270cd9 2531 cond_resched();
27a377db 2532 count++;
d1270cd9
AJ
2533 continue;
2534 }
2535
56bec294
CM
2536 /*
2537 * record the must insert reserved flag before we
2538 * drop the spin lock.
2539 */
2540 must_insert_reserved = locked_ref->must_insert_reserved;
2541 locked_ref->must_insert_reserved = 0;
7bb86316 2542
5d4f98a2
YZ
2543 extent_op = locked_ref->extent_op;
2544 locked_ref->extent_op = NULL;
2545
56bec294 2546 if (!ref) {
d7df2c79
JB
2547
2548
56bec294
CM
2549 /* All delayed refs have been processed, Go ahead
2550 * and send the head node to run_one_delayed_ref,
2551 * so that any accounting fixes can happen
2552 */
2553 ref = &locked_ref->node;
5d4f98a2
YZ
2554
2555 if (extent_op && must_insert_reserved) {
78a6184a 2556 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2557 extent_op = NULL;
2558 }
2559
2560 if (extent_op) {
d7df2c79 2561 spin_unlock(&locked_ref->lock);
2ff7e61e 2562 ret = run_delayed_extent_op(trans, fs_info,
5d4f98a2 2563 ref, extent_op);
78a6184a 2564 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2565
79787eaa 2566 if (ret) {
857cc2fc
JB
2567 /*
2568 * Need to reset must_insert_reserved if
2569 * there was an error so the abort stuff
2570 * can cleanup the reserved space
2571 * properly.
2572 */
2573 if (must_insert_reserved)
2574 locked_ref->must_insert_reserved = 1;
aa7c8da3 2575 spin_lock(&delayed_refs->lock);
d7df2c79 2576 locked_ref->processing = 0;
aa7c8da3
JM
2577 delayed_refs->num_heads_ready++;
2578 spin_unlock(&delayed_refs->lock);
5d163e0e
JM
2579 btrfs_debug(fs_info,
2580 "run_delayed_extent_op returned %d",
2581 ret);
093486c4 2582 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2583 return ret;
2584 }
d7df2c79 2585 continue;
5d4f98a2 2586 }
02217ed2 2587
d7df2c79 2588 /*
01327610 2589 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2590 * delayed ref lock and then re-check to make sure
2591 * nobody got added.
2592 */
2593 spin_unlock(&locked_ref->lock);
2594 spin_lock(&delayed_refs->lock);
2595 spin_lock(&locked_ref->lock);
c6fc2454 2596 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2597 locked_ref->extent_op) {
d7df2c79
JB
2598 spin_unlock(&locked_ref->lock);
2599 spin_unlock(&delayed_refs->lock);
2600 continue;
2601 }
2602 ref->in_tree = 0;
2603 delayed_refs->num_heads--;
c46effa6
LB
2604 rb_erase(&locked_ref->href_node,
2605 &delayed_refs->href_root);
d7df2c79
JB
2606 spin_unlock(&delayed_refs->lock);
2607 } else {
0a2b2a84 2608 actual_count++;
d7df2c79 2609 ref->in_tree = 0;
c6fc2454 2610 list_del(&ref->list);
1d57ee94
WX
2611 if (!list_empty(&ref->add_list))
2612 list_del(&ref->add_list);
c46effa6 2613 }
d7df2c79
JB
2614 atomic_dec(&delayed_refs->num_entries);
2615
093486c4 2616 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2617 /*
2618 * when we play the delayed ref, also correct the
2619 * ref_mod on head
2620 */
2621 switch (ref->action) {
2622 case BTRFS_ADD_DELAYED_REF:
2623 case BTRFS_ADD_DELAYED_EXTENT:
2624 locked_ref->node.ref_mod -= ref->ref_mod;
2625 break;
2626 case BTRFS_DROP_DELAYED_REF:
2627 locked_ref->node.ref_mod += ref->ref_mod;
2628 break;
2629 default:
2630 WARN_ON(1);
2631 }
2632 }
d7df2c79 2633 spin_unlock(&locked_ref->lock);
925baedd 2634
2ff7e61e 2635 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2636 must_insert_reserved);
eb099670 2637
78a6184a 2638 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2639 if (ret) {
9d1032cc 2640 spin_lock(&delayed_refs->lock);
d7df2c79 2641 locked_ref->processing = 0;
9d1032cc
WX
2642 delayed_refs->num_heads_ready++;
2643 spin_unlock(&delayed_refs->lock);
093486c4
MX
2644 btrfs_delayed_ref_unlock(locked_ref);
2645 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2646 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2647 ret);
79787eaa
JM
2648 return ret;
2649 }
2650
093486c4
MX
2651 /*
2652 * If this node is a head, that means all the refs in this head
2653 * have been dealt with, and we will pick the next head to deal
2654 * with, so we must unlock the head and drop it from the cluster
2655 * list before we release it.
2656 */
2657 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2658 if (locked_ref->is_data &&
2659 locked_ref->total_ref_mod < 0) {
2660 spin_lock(&delayed_refs->lock);
2661 delayed_refs->pending_csums -= ref->num_bytes;
2662 spin_unlock(&delayed_refs->lock);
2663 }
093486c4
MX
2664 btrfs_delayed_ref_unlock(locked_ref);
2665 locked_ref = NULL;
2666 }
2667 btrfs_put_delayed_ref(ref);
2668 count++;
c3e69d58 2669 cond_resched();
c3e69d58 2670 }
0a2b2a84
JB
2671
2672 /*
2673 * We don't want to include ref heads since we can have empty ref heads
2674 * and those will drastically skew our runtime down since we just do
2675 * accounting, no actual extent tree updates.
2676 */
2677 if (actual_count > 0) {
2678 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2679 u64 avg;
2680
2681 /*
2682 * We weigh the current average higher than our current runtime
2683 * to avoid large swings in the average.
2684 */
2685 spin_lock(&delayed_refs->lock);
2686 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2687 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2688 spin_unlock(&delayed_refs->lock);
2689 }
d7df2c79 2690 return 0;
c3e69d58
CM
2691}
2692
709c0486
AJ
2693#ifdef SCRAMBLE_DELAYED_REFS
2694/*
2695 * Normally delayed refs get processed in ascending bytenr order. This
2696 * correlates in most cases to the order added. To expose dependencies on this
2697 * order, we start to process the tree in the middle instead of the beginning
2698 */
2699static u64 find_middle(struct rb_root *root)
2700{
2701 struct rb_node *n = root->rb_node;
2702 struct btrfs_delayed_ref_node *entry;
2703 int alt = 1;
2704 u64 middle;
2705 u64 first = 0, last = 0;
2706
2707 n = rb_first(root);
2708 if (n) {
2709 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2710 first = entry->bytenr;
2711 }
2712 n = rb_last(root);
2713 if (n) {
2714 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2715 last = entry->bytenr;
2716 }
2717 n = root->rb_node;
2718
2719 while (n) {
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 WARN_ON(!entry->in_tree);
2722
2723 middle = entry->bytenr;
2724
2725 if (alt)
2726 n = n->rb_left;
2727 else
2728 n = n->rb_right;
2729
2730 alt = 1 - alt;
2731 }
2732 return middle;
2733}
2734#endif
2735
2ff7e61e 2736static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2737{
2738 u64 num_bytes;
2739
2740 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2741 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2742 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2743 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2744
2745 /*
2746 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2747 * closer to what we're really going to want to use.
1be41b78 2748 */
0b246afa 2749 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2750}
2751
1262133b
JB
2752/*
2753 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2754 * would require to store the csums for that many bytes.
2755 */
2ff7e61e 2756u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2757{
2758 u64 csum_size;
2759 u64 num_csums_per_leaf;
2760 u64 num_csums;
2761
0b246afa 2762 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2763 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2764 (u64)btrfs_super_csum_size(fs_info->super_copy));
2765 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2766 num_csums += num_csums_per_leaf - 1;
2767 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2768 return num_csums;
2769}
2770
0a2b2a84 2771int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2772 struct btrfs_fs_info *fs_info)
1be41b78
JB
2773{
2774 struct btrfs_block_rsv *global_rsv;
2775 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2776 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2777 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2778 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2779 int ret = 0;
2780
0b246afa 2781 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2782 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2783 if (num_heads > 1)
0b246afa 2784 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2785 num_bytes <<= 1;
2ff7e61e
JM
2786 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2787 fs_info->nodesize;
0b246afa 2788 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2789 num_dirty_bgs);
0b246afa 2790 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2791
2792 /*
2793 * If we can't allocate any more chunks lets make sure we have _lots_ of
2794 * wiggle room since running delayed refs can create more delayed refs.
2795 */
cb723e49
JB
2796 if (global_rsv->space_info->full) {
2797 num_dirty_bgs_bytes <<= 1;
1be41b78 2798 num_bytes <<= 1;
cb723e49 2799 }
1be41b78
JB
2800
2801 spin_lock(&global_rsv->lock);
cb723e49 2802 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2803 ret = 1;
2804 spin_unlock(&global_rsv->lock);
2805 return ret;
2806}
2807
0a2b2a84 2808int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2809 struct btrfs_fs_info *fs_info)
0a2b2a84 2810{
0a2b2a84
JB
2811 u64 num_entries =
2812 atomic_read(&trans->transaction->delayed_refs.num_entries);
2813 u64 avg_runtime;
a79b7d4b 2814 u64 val;
0a2b2a84
JB
2815
2816 smp_mb();
2817 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2818 val = num_entries * avg_runtime;
dc1a90c6 2819 if (val >= NSEC_PER_SEC)
0a2b2a84 2820 return 1;
a79b7d4b
CM
2821 if (val >= NSEC_PER_SEC / 2)
2822 return 2;
0a2b2a84 2823
2ff7e61e 2824 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2825}
2826
a79b7d4b
CM
2827struct async_delayed_refs {
2828 struct btrfs_root *root;
31b9655f 2829 u64 transid;
a79b7d4b
CM
2830 int count;
2831 int error;
2832 int sync;
2833 struct completion wait;
2834 struct btrfs_work work;
2835};
2836
2ff7e61e
JM
2837static inline struct async_delayed_refs *
2838to_async_delayed_refs(struct btrfs_work *work)
2839{
2840 return container_of(work, struct async_delayed_refs, work);
2841}
2842
a79b7d4b
CM
2843static void delayed_ref_async_start(struct btrfs_work *work)
2844{
2ff7e61e 2845 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2846 struct btrfs_trans_handle *trans;
2ff7e61e 2847 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2848 int ret;
2849
0f873eca 2850 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2851 if (btrfs_transaction_blocked(fs_info))
31b9655f 2852 goto done;
31b9655f 2853
0f873eca
CM
2854 trans = btrfs_join_transaction(async->root);
2855 if (IS_ERR(trans)) {
2856 async->error = PTR_ERR(trans);
a79b7d4b
CM
2857 goto done;
2858 }
2859
2860 /*
01327610 2861 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2862 * wait on delayed refs
2863 */
2864 trans->sync = true;
0f873eca
CM
2865
2866 /* Don't bother flushing if we got into a different transaction */
2867 if (trans->transid > async->transid)
2868 goto end;
2869
2ff7e61e 2870 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2871 if (ret)
2872 async->error = ret;
0f873eca 2873end:
3a45bb20 2874 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2875 if (ret && !async->error)
2876 async->error = ret;
2877done:
2878 if (async->sync)
2879 complete(&async->wait);
2880 else
2881 kfree(async);
2882}
2883
2ff7e61e 2884int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2885 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2886{
2887 struct async_delayed_refs *async;
2888 int ret;
2889
2890 async = kmalloc(sizeof(*async), GFP_NOFS);
2891 if (!async)
2892 return -ENOMEM;
2893
0b246afa 2894 async->root = fs_info->tree_root;
a79b7d4b
CM
2895 async->count = count;
2896 async->error = 0;
31b9655f 2897 async->transid = transid;
a79b7d4b
CM
2898 if (wait)
2899 async->sync = 1;
2900 else
2901 async->sync = 0;
2902 init_completion(&async->wait);
2903
9e0af237
LB
2904 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2905 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2906
0b246afa 2907 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2908
2909 if (wait) {
2910 wait_for_completion(&async->wait);
2911 ret = async->error;
2912 kfree(async);
2913 return ret;
2914 }
2915 return 0;
2916}
2917
c3e69d58
CM
2918/*
2919 * this starts processing the delayed reference count updates and
2920 * extent insertions we have queued up so far. count can be
2921 * 0, which means to process everything in the tree at the start
2922 * of the run (but not newly added entries), or it can be some target
2923 * number you'd like to process.
79787eaa
JM
2924 *
2925 * Returns 0 on success or if called with an aborted transaction
2926 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2927 */
2928int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2929 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
2930{
2931 struct rb_node *node;
2932 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2933 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2934 int ret;
2935 int run_all = count == (unsigned long)-1;
d9a0540a 2936 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2937
79787eaa
JM
2938 /* We'll clean this up in btrfs_cleanup_transaction */
2939 if (trans->aborted)
2940 return 0;
2941
0b246afa 2942 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2943 return 0;
2944
c3e69d58 2945 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2946 if (count == 0)
d7df2c79 2947 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2948
c3e69d58 2949again:
709c0486
AJ
2950#ifdef SCRAMBLE_DELAYED_REFS
2951 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2952#endif
d9a0540a 2953 trans->can_flush_pending_bgs = false;
2ff7e61e 2954 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 2955 if (ret < 0) {
66642832 2956 btrfs_abort_transaction(trans, ret);
d7df2c79 2957 return ret;
eb099670 2958 }
c3e69d58 2959
56bec294 2960 if (run_all) {
d7df2c79 2961 if (!list_empty(&trans->new_bgs))
2ff7e61e 2962 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 2963
d7df2c79 2964 spin_lock(&delayed_refs->lock);
c46effa6 2965 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2966 if (!node) {
2967 spin_unlock(&delayed_refs->lock);
56bec294 2968 goto out;
d7df2c79 2969 }
e9d0b13b 2970
56bec294 2971 while (node) {
c46effa6
LB
2972 head = rb_entry(node, struct btrfs_delayed_ref_head,
2973 href_node);
2974 if (btrfs_delayed_ref_is_head(&head->node)) {
2975 struct btrfs_delayed_ref_node *ref;
5caf2a00 2976
c46effa6 2977 ref = &head->node;
56bec294
CM
2978 atomic_inc(&ref->refs);
2979
2980 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2981 /*
2982 * Mutex was contended, block until it's
2983 * released and try again
2984 */
56bec294
CM
2985 mutex_lock(&head->mutex);
2986 mutex_unlock(&head->mutex);
2987
2988 btrfs_put_delayed_ref(ref);
1887be66 2989 cond_resched();
56bec294 2990 goto again;
c46effa6
LB
2991 } else {
2992 WARN_ON(1);
56bec294
CM
2993 }
2994 node = rb_next(node);
2995 }
2996 spin_unlock(&delayed_refs->lock);
d7df2c79 2997 cond_resched();
56bec294 2998 goto again;
5f39d397 2999 }
54aa1f4d 3000out:
edf39272 3001 assert_qgroups_uptodate(trans);
d9a0540a 3002 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3003 return 0;
3004}
3005
5d4f98a2 3006int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3007 struct btrfs_fs_info *fs_info,
5d4f98a2 3008 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3009 int level, int is_data)
5d4f98a2
YZ
3010{
3011 struct btrfs_delayed_extent_op *extent_op;
3012 int ret;
3013
78a6184a 3014 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3015 if (!extent_op)
3016 return -ENOMEM;
3017
3018 extent_op->flags_to_set = flags;
35b3ad50
DS
3019 extent_op->update_flags = true;
3020 extent_op->update_key = false;
3021 extent_op->is_data = is_data ? true : false;
b1c79e09 3022 extent_op->level = level;
5d4f98a2 3023
0b246afa 3024 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3025 num_bytes, extent_op);
5d4f98a2 3026 if (ret)
78a6184a 3027 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3028 return ret;
3029}
3030
e4c3b2dc 3031static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3032 struct btrfs_path *path,
3033 u64 objectid, u64 offset, u64 bytenr)
3034{
3035 struct btrfs_delayed_ref_head *head;
3036 struct btrfs_delayed_ref_node *ref;
3037 struct btrfs_delayed_data_ref *data_ref;
3038 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3039 struct btrfs_transaction *cur_trans;
5d4f98a2
YZ
3040 int ret = 0;
3041
e4c3b2dc
LB
3042 cur_trans = root->fs_info->running_transaction;
3043 if (!cur_trans)
3044 return 0;
3045
3046 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3047 spin_lock(&delayed_refs->lock);
f72ad18e 3048 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3049 if (!head) {
3050 spin_unlock(&delayed_refs->lock);
3051 return 0;
3052 }
5d4f98a2
YZ
3053
3054 if (!mutex_trylock(&head->mutex)) {
3055 atomic_inc(&head->node.refs);
3056 spin_unlock(&delayed_refs->lock);
3057
b3b4aa74 3058 btrfs_release_path(path);
5d4f98a2 3059
8cc33e5c
DS
3060 /*
3061 * Mutex was contended, block until it's released and let
3062 * caller try again
3063 */
5d4f98a2
YZ
3064 mutex_lock(&head->mutex);
3065 mutex_unlock(&head->mutex);
3066 btrfs_put_delayed_ref(&head->node);
3067 return -EAGAIN;
3068 }
d7df2c79 3069 spin_unlock(&delayed_refs->lock);
5d4f98a2 3070
d7df2c79 3071 spin_lock(&head->lock);
c6fc2454 3072 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3073 /* If it's a shared ref we know a cross reference exists */
3074 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3075 ret = 1;
3076 break;
3077 }
5d4f98a2 3078
d7df2c79 3079 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3080
d7df2c79
JB
3081 /*
3082 * If our ref doesn't match the one we're currently looking at
3083 * then we have a cross reference.
3084 */
3085 if (data_ref->root != root->root_key.objectid ||
3086 data_ref->objectid != objectid ||
3087 data_ref->offset != offset) {
3088 ret = 1;
3089 break;
3090 }
5d4f98a2 3091 }
d7df2c79 3092 spin_unlock(&head->lock);
5d4f98a2 3093 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3094 return ret;
3095}
3096
e4c3b2dc 3097static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3098 struct btrfs_path *path,
3099 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3100{
0b246afa
JM
3101 struct btrfs_fs_info *fs_info = root->fs_info;
3102 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3103 struct extent_buffer *leaf;
5d4f98a2
YZ
3104 struct btrfs_extent_data_ref *ref;
3105 struct btrfs_extent_inline_ref *iref;
3106 struct btrfs_extent_item *ei;
f321e491 3107 struct btrfs_key key;
5d4f98a2 3108 u32 item_size;
be20aa9d 3109 int ret;
925baedd 3110
be20aa9d 3111 key.objectid = bytenr;
31840ae1 3112 key.offset = (u64)-1;
f321e491 3113 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3114
be20aa9d
CM
3115 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3116 if (ret < 0)
3117 goto out;
79787eaa 3118 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3119
3120 ret = -ENOENT;
3121 if (path->slots[0] == 0)
31840ae1 3122 goto out;
be20aa9d 3123
31840ae1 3124 path->slots[0]--;
f321e491 3125 leaf = path->nodes[0];
5d4f98a2 3126 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3127
5d4f98a2 3128 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3129 goto out;
f321e491 3130
5d4f98a2
YZ
3131 ret = 1;
3132 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3133#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3134 if (item_size < sizeof(*ei)) {
3135 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3136 goto out;
3137 }
3138#endif
3139 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3140
5d4f98a2
YZ
3141 if (item_size != sizeof(*ei) +
3142 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3143 goto out;
be20aa9d 3144
5d4f98a2
YZ
3145 if (btrfs_extent_generation(leaf, ei) <=
3146 btrfs_root_last_snapshot(&root->root_item))
3147 goto out;
3148
3149 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3150 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3151 BTRFS_EXTENT_DATA_REF_KEY)
3152 goto out;
3153
3154 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3155 if (btrfs_extent_refs(leaf, ei) !=
3156 btrfs_extent_data_ref_count(leaf, ref) ||
3157 btrfs_extent_data_ref_root(leaf, ref) !=
3158 root->root_key.objectid ||
3159 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3160 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3161 goto out;
3162
3163 ret = 0;
3164out:
3165 return ret;
3166}
3167
e4c3b2dc
LB
3168int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3169 u64 bytenr)
5d4f98a2
YZ
3170{
3171 struct btrfs_path *path;
3172 int ret;
3173 int ret2;
3174
3175 path = btrfs_alloc_path();
3176 if (!path)
3177 return -ENOENT;
3178
3179 do {
e4c3b2dc 3180 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3181 offset, bytenr);
3182 if (ret && ret != -ENOENT)
f321e491 3183 goto out;
80ff3856 3184
e4c3b2dc 3185 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3186 offset, bytenr);
3187 } while (ret2 == -EAGAIN);
3188
3189 if (ret2 && ret2 != -ENOENT) {
3190 ret = ret2;
3191 goto out;
f321e491 3192 }
5d4f98a2
YZ
3193
3194 if (ret != -ENOENT || ret2 != -ENOENT)
3195 ret = 0;
be20aa9d 3196out:
80ff3856 3197 btrfs_free_path(path);
f0486c68
YZ
3198 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3199 WARN_ON(ret > 0);
f321e491 3200 return ret;
be20aa9d 3201}
c5739bba 3202
5d4f98a2 3203static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3204 struct btrfs_root *root,
5d4f98a2 3205 struct extent_buffer *buf,
e339a6b0 3206 int full_backref, int inc)
31840ae1 3207{
0b246afa 3208 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3209 u64 bytenr;
5d4f98a2
YZ
3210 u64 num_bytes;
3211 u64 parent;
31840ae1 3212 u64 ref_root;
31840ae1 3213 u32 nritems;
31840ae1
ZY
3214 struct btrfs_key key;
3215 struct btrfs_file_extent_item *fi;
3216 int i;
3217 int level;
3218 int ret = 0;
2ff7e61e
JM
3219 int (*process_func)(struct btrfs_trans_handle *,
3220 struct btrfs_fs_info *,
b06c4bf5 3221 u64, u64, u64, u64, u64, u64);
31840ae1 3222
fccb84c9 3223
0b246afa 3224 if (btrfs_is_testing(fs_info))
faa2dbf0 3225 return 0;
fccb84c9 3226
31840ae1 3227 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3228 nritems = btrfs_header_nritems(buf);
3229 level = btrfs_header_level(buf);
3230
27cdeb70 3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3232 return 0;
31840ae1 3233
5d4f98a2
YZ
3234 if (inc)
3235 process_func = btrfs_inc_extent_ref;
3236 else
3237 process_func = btrfs_free_extent;
31840ae1 3238
5d4f98a2
YZ
3239 if (full_backref)
3240 parent = buf->start;
3241 else
3242 parent = 0;
3243
3244 for (i = 0; i < nritems; i++) {
31840ae1 3245 if (level == 0) {
5d4f98a2 3246 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3247 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3248 continue;
5d4f98a2 3249 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3250 struct btrfs_file_extent_item);
3251 if (btrfs_file_extent_type(buf, fi) ==
3252 BTRFS_FILE_EXTENT_INLINE)
3253 continue;
3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3255 if (bytenr == 0)
3256 continue;
5d4f98a2
YZ
3257
3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 key.offset -= btrfs_file_extent_offset(buf, fi);
2ff7e61e 3260 ret = process_func(trans, fs_info, bytenr, num_bytes,
5d4f98a2 3261 parent, ref_root, key.objectid,
b06c4bf5 3262 key.offset);
31840ae1
ZY
3263 if (ret)
3264 goto fail;
3265 } else {
5d4f98a2 3266 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3267 num_bytes = fs_info->nodesize;
2ff7e61e 3268 ret = process_func(trans, fs_info, bytenr, num_bytes,
b06c4bf5 3269 parent, ref_root, level - 1, 0);
31840ae1
ZY
3270 if (ret)
3271 goto fail;
3272 }
3273 }
3274 return 0;
3275fail:
5d4f98a2
YZ
3276 return ret;
3277}
3278
3279int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3280 struct extent_buffer *buf, int full_backref)
5d4f98a2 3281{
e339a6b0 3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3283}
3284
3285int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3286 struct extent_buffer *buf, int full_backref)
5d4f98a2 3287{
e339a6b0 3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3289}
3290
9078a3e1 3291static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3292 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3293 struct btrfs_path *path,
3294 struct btrfs_block_group_cache *cache)
3295{
3296 int ret;
0b246afa 3297 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3298 unsigned long bi;
3299 struct extent_buffer *leaf;
9078a3e1 3300
9078a3e1 3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3302 if (ret) {
3303 if (ret > 0)
3304 ret = -ENOENT;
54aa1f4d 3305 goto fail;
df95e7f0 3306 }
5f39d397
CM
3307
3308 leaf = path->nodes[0];
3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3312fail:
24b89d08 3313 btrfs_release_path(path);
df95e7f0 3314 return ret;
9078a3e1
CM
3315
3316}
3317
4a8c9a62 3318static struct btrfs_block_group_cache *
2ff7e61e 3319next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3320 struct btrfs_block_group_cache *cache)
3321{
3322 struct rb_node *node;
292cbd51 3323
0b246afa 3324 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3325
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3329
0b246afa 3330 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3331 btrfs_put_block_group(cache);
0b246afa 3332 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3333 }
4a8c9a62
YZ
3334 node = rb_next(&cache->cache_node);
3335 btrfs_put_block_group(cache);
3336 if (node) {
3337 cache = rb_entry(node, struct btrfs_block_group_cache,
3338 cache_node);
11dfe35a 3339 btrfs_get_block_group(cache);
4a8c9a62
YZ
3340 } else
3341 cache = NULL;
0b246afa 3342 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3343 return cache;
3344}
3345
0af3d00b
JB
3346static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3347 struct btrfs_trans_handle *trans,
3348 struct btrfs_path *path)
3349{
0b246afa
JM
3350 struct btrfs_fs_info *fs_info = block_group->fs_info;
3351 struct btrfs_root *root = fs_info->tree_root;
0af3d00b
JB
3352 struct inode *inode = NULL;
3353 u64 alloc_hint = 0;
2b20982e 3354 int dcs = BTRFS_DC_ERROR;
f8c269d7 3355 u64 num_pages = 0;
0af3d00b
JB
3356 int retries = 0;
3357 int ret = 0;
3358
3359 /*
3360 * If this block group is smaller than 100 megs don't bother caching the
3361 * block group.
3362 */
ee22184b 3363 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3364 spin_lock(&block_group->lock);
3365 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3366 spin_unlock(&block_group->lock);
3367 return 0;
3368 }
3369
0c0ef4bc
JB
3370 if (trans->aborted)
3371 return 0;
0af3d00b
JB
3372again:
3373 inode = lookup_free_space_inode(root, block_group, path);
3374 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3375 ret = PTR_ERR(inode);
b3b4aa74 3376 btrfs_release_path(path);
0af3d00b
JB
3377 goto out;
3378 }
3379
3380 if (IS_ERR(inode)) {
3381 BUG_ON(retries);
3382 retries++;
3383
3384 if (block_group->ro)
3385 goto out_free;
3386
3387 ret = create_free_space_inode(root, trans, block_group, path);
3388 if (ret)
3389 goto out_free;
3390 goto again;
3391 }
3392
5b0e95bf
JB
3393 /* We've already setup this transaction, go ahead and exit */
3394 if (block_group->cache_generation == trans->transid &&
3395 i_size_read(inode)) {
3396 dcs = BTRFS_DC_SETUP;
3397 goto out_put;
3398 }
3399
0af3d00b
JB
3400 /*
3401 * We want to set the generation to 0, that way if anything goes wrong
3402 * from here on out we know not to trust this cache when we load up next
3403 * time.
3404 */
3405 BTRFS_I(inode)->generation = 0;
3406 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3407 if (ret) {
3408 /*
3409 * So theoretically we could recover from this, simply set the
3410 * super cache generation to 0 so we know to invalidate the
3411 * cache, but then we'd have to keep track of the block groups
3412 * that fail this way so we know we _have_ to reset this cache
3413 * before the next commit or risk reading stale cache. So to
3414 * limit our exposure to horrible edge cases lets just abort the
3415 * transaction, this only happens in really bad situations
3416 * anyway.
3417 */
66642832 3418 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3419 goto out_put;
3420 }
0af3d00b
JB
3421 WARN_ON(ret);
3422
3423 if (i_size_read(inode) > 0) {
2ff7e61e 3424 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3425 &fs_info->global_block_rsv);
7b61cd92
MX
3426 if (ret)
3427 goto out_put;
3428
1bbc621e 3429 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3430 if (ret)
3431 goto out_put;
3432 }
3433
3434 spin_lock(&block_group->lock);
cf7c1ef6 3435 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3436 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3437 /*
3438 * don't bother trying to write stuff out _if_
3439 * a) we're not cached,
3440 * b) we're with nospace_cache mount option.
3441 */
2b20982e 3442 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3443 spin_unlock(&block_group->lock);
3444 goto out_put;
3445 }
3446 spin_unlock(&block_group->lock);
3447
2968b1f4
JB
3448 /*
3449 * We hit an ENOSPC when setting up the cache in this transaction, just
3450 * skip doing the setup, we've already cleared the cache so we're safe.
3451 */
3452 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3453 ret = -ENOSPC;
3454 goto out_put;
3455 }
3456
6fc823b1
JB
3457 /*
3458 * Try to preallocate enough space based on how big the block group is.
3459 * Keep in mind this has to include any pinned space which could end up
3460 * taking up quite a bit since it's not folded into the other space
3461 * cache.
3462 */
ee22184b 3463 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3464 if (!num_pages)
3465 num_pages = 1;
3466
0af3d00b 3467 num_pages *= 16;
09cbfeaf 3468 num_pages *= PAGE_SIZE;
0af3d00b 3469
7cf5b976 3470 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3471 if (ret)
3472 goto out_put;
3473
3474 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3475 num_pages, num_pages,
3476 &alloc_hint);
2968b1f4
JB
3477 /*
3478 * Our cache requires contiguous chunks so that we don't modify a bunch
3479 * of metadata or split extents when writing the cache out, which means
3480 * we can enospc if we are heavily fragmented in addition to just normal
3481 * out of space conditions. So if we hit this just skip setting up any
3482 * other block groups for this transaction, maybe we'll unpin enough
3483 * space the next time around.
3484 */
2b20982e
JB
3485 if (!ret)
3486 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3487 else if (ret == -ENOSPC)
3488 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3489
0af3d00b
JB
3490out_put:
3491 iput(inode);
3492out_free:
b3b4aa74 3493 btrfs_release_path(path);
0af3d00b
JB
3494out:
3495 spin_lock(&block_group->lock);
e65cbb94 3496 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3497 block_group->cache_generation = trans->transid;
2b20982e 3498 block_group->disk_cache_state = dcs;
0af3d00b
JB
3499 spin_unlock(&block_group->lock);
3500
3501 return ret;
3502}
3503
dcdf7f6d 3504int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3505 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3506{
3507 struct btrfs_block_group_cache *cache, *tmp;
3508 struct btrfs_transaction *cur_trans = trans->transaction;
3509 struct btrfs_path *path;
3510
3511 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3512 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3513 return 0;
3514
3515 path = btrfs_alloc_path();
3516 if (!path)
3517 return -ENOMEM;
3518
3519 /* Could add new block groups, use _safe just in case */
3520 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3521 dirty_list) {
3522 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3523 cache_save_setup(cache, trans, path);
3524 }
3525
3526 btrfs_free_path(path);
3527 return 0;
3528}
3529
1bbc621e
CM
3530/*
3531 * transaction commit does final block group cache writeback during a
3532 * critical section where nothing is allowed to change the FS. This is
3533 * required in order for the cache to actually match the block group,
3534 * but can introduce a lot of latency into the commit.
3535 *
3536 * So, btrfs_start_dirty_block_groups is here to kick off block group
3537 * cache IO. There's a chance we'll have to redo some of it if the
3538 * block group changes again during the commit, but it greatly reduces
3539 * the commit latency by getting rid of the easy block groups while
3540 * we're still allowing others to join the commit.
3541 */
3542int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3543 struct btrfs_fs_info *fs_info)
9078a3e1 3544{
4a8c9a62 3545 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3546 struct btrfs_transaction *cur_trans = trans->transaction;
3547 int ret = 0;
c9dc4c65 3548 int should_put;
1bbc621e
CM
3549 struct btrfs_path *path = NULL;
3550 LIST_HEAD(dirty);
3551 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3552 int num_started = 0;
1bbc621e
CM
3553 int loops = 0;
3554
3555 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3556 if (list_empty(&cur_trans->dirty_bgs)) {
3557 spin_unlock(&cur_trans->dirty_bgs_lock);
3558 return 0;
1bbc621e 3559 }
b58d1a9e 3560 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3561 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3562
1bbc621e 3563again:
1bbc621e
CM
3564 /*
3565 * make sure all the block groups on our dirty list actually
3566 * exist
3567 */
2ff7e61e 3568 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3569
3570 if (!path) {
3571 path = btrfs_alloc_path();
3572 if (!path)
3573 return -ENOMEM;
3574 }
3575
b58d1a9e
FM
3576 /*
3577 * cache_write_mutex is here only to save us from balance or automatic
3578 * removal of empty block groups deleting this block group while we are
3579 * writing out the cache
3580 */
3581 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3582 while (!list_empty(&dirty)) {
3583 cache = list_first_entry(&dirty,
3584 struct btrfs_block_group_cache,
3585 dirty_list);
1bbc621e
CM
3586 /*
3587 * this can happen if something re-dirties a block
3588 * group that is already under IO. Just wait for it to
3589 * finish and then do it all again
3590 */
3591 if (!list_empty(&cache->io_list)) {
3592 list_del_init(&cache->io_list);
afdb5718 3593 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3594 btrfs_put_block_group(cache);
3595 }
3596
3597
3598 /*
3599 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3600 * if it should update the cache_state. Don't delete
3601 * until after we wait.
3602 *
3603 * Since we're not running in the commit critical section
3604 * we need the dirty_bgs_lock to protect from update_block_group
3605 */
3606 spin_lock(&cur_trans->dirty_bgs_lock);
3607 list_del_init(&cache->dirty_list);
3608 spin_unlock(&cur_trans->dirty_bgs_lock);
3609
3610 should_put = 1;
3611
3612 cache_save_setup(cache, trans, path);
3613
3614 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3615 cache->io_ctl.inode = NULL;
0b246afa 3616 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3617 cache, path);
1bbc621e
CM
3618 if (ret == 0 && cache->io_ctl.inode) {
3619 num_started++;
3620 should_put = 0;
3621
3622 /*
3623 * the cache_write_mutex is protecting
3624 * the io_list
3625 */
3626 list_add_tail(&cache->io_list, io);
3627 } else {
3628 /*
3629 * if we failed to write the cache, the
3630 * generation will be bad and life goes on
3631 */
3632 ret = 0;
3633 }
3634 }
ff1f8250 3635 if (!ret) {
2ff7e61e
JM
3636 ret = write_one_cache_group(trans, fs_info,
3637 path, cache);
ff1f8250
FM
3638 /*
3639 * Our block group might still be attached to the list
3640 * of new block groups in the transaction handle of some
3641 * other task (struct btrfs_trans_handle->new_bgs). This
3642 * means its block group item isn't yet in the extent
3643 * tree. If this happens ignore the error, as we will
3644 * try again later in the critical section of the
3645 * transaction commit.
3646 */
3647 if (ret == -ENOENT) {
3648 ret = 0;
3649 spin_lock(&cur_trans->dirty_bgs_lock);
3650 if (list_empty(&cache->dirty_list)) {
3651 list_add_tail(&cache->dirty_list,
3652 &cur_trans->dirty_bgs);
3653 btrfs_get_block_group(cache);
3654 }
3655 spin_unlock(&cur_trans->dirty_bgs_lock);
3656 } else if (ret) {
66642832 3657 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3658 }
3659 }
1bbc621e
CM
3660
3661 /* if its not on the io list, we need to put the block group */
3662 if (should_put)
3663 btrfs_put_block_group(cache);
3664
3665 if (ret)
3666 break;
b58d1a9e
FM
3667
3668 /*
3669 * Avoid blocking other tasks for too long. It might even save
3670 * us from writing caches for block groups that are going to be
3671 * removed.
3672 */
3673 mutex_unlock(&trans->transaction->cache_write_mutex);
3674 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3675 }
b58d1a9e 3676 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3677
3678 /*
3679 * go through delayed refs for all the stuff we've just kicked off
3680 * and then loop back (just once)
3681 */
2ff7e61e 3682 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3683 if (!ret && loops == 0) {
3684 loops++;
3685 spin_lock(&cur_trans->dirty_bgs_lock);
3686 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3687 /*
3688 * dirty_bgs_lock protects us from concurrent block group
3689 * deletes too (not just cache_write_mutex).
3690 */
3691 if (!list_empty(&dirty)) {
3692 spin_unlock(&cur_trans->dirty_bgs_lock);
3693 goto again;
3694 }
1bbc621e 3695 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3696 } else if (ret < 0) {
2ff7e61e 3697 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3698 }
3699
3700 btrfs_free_path(path);
3701 return ret;
3702}
3703
3704int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3705 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3706{
3707 struct btrfs_block_group_cache *cache;
3708 struct btrfs_transaction *cur_trans = trans->transaction;
3709 int ret = 0;
3710 int should_put;
3711 struct btrfs_path *path;
3712 struct list_head *io = &cur_trans->io_bgs;
3713 int num_started = 0;
9078a3e1
CM
3714
3715 path = btrfs_alloc_path();
3716 if (!path)
3717 return -ENOMEM;
3718
ce93ec54 3719 /*
e44081ef
FM
3720 * Even though we are in the critical section of the transaction commit,
3721 * we can still have concurrent tasks adding elements to this
3722 * transaction's list of dirty block groups. These tasks correspond to
3723 * endio free space workers started when writeback finishes for a
3724 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3725 * allocate new block groups as a result of COWing nodes of the root
3726 * tree when updating the free space inode. The writeback for the space
3727 * caches is triggered by an earlier call to
3728 * btrfs_start_dirty_block_groups() and iterations of the following
3729 * loop.
3730 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3731 * delayed refs to make sure we have the best chance at doing this all
3732 * in one shot.
3733 */
e44081ef 3734 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3735 while (!list_empty(&cur_trans->dirty_bgs)) {
3736 cache = list_first_entry(&cur_trans->dirty_bgs,
3737 struct btrfs_block_group_cache,
3738 dirty_list);
c9dc4c65
CM
3739
3740 /*
3741 * this can happen if cache_save_setup re-dirties a block
3742 * group that is already under IO. Just wait for it to
3743 * finish and then do it all again
3744 */
3745 if (!list_empty(&cache->io_list)) {
e44081ef 3746 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3747 list_del_init(&cache->io_list);
afdb5718 3748 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3749 btrfs_put_block_group(cache);
e44081ef 3750 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3751 }
3752
1bbc621e
CM
3753 /*
3754 * don't remove from the dirty list until after we've waited
3755 * on any pending IO
3756 */
ce93ec54 3757 list_del_init(&cache->dirty_list);
e44081ef 3758 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3759 should_put = 1;
3760
1bbc621e 3761 cache_save_setup(cache, trans, path);
c9dc4c65 3762
ce93ec54 3763 if (!ret)
2ff7e61e
JM
3764 ret = btrfs_run_delayed_refs(trans, fs_info,
3765 (unsigned long) -1);
c9dc4c65
CM
3766
3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3768 cache->io_ctl.inode = NULL;
0b246afa 3769 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3770 cache, path);
c9dc4c65
CM
3771 if (ret == 0 && cache->io_ctl.inode) {
3772 num_started++;
3773 should_put = 0;
1bbc621e 3774 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3775 } else {
3776 /*
3777 * if we failed to write the cache, the
3778 * generation will be bad and life goes on
3779 */
3780 ret = 0;
3781 }
3782 }
ff1f8250 3783 if (!ret) {
2ff7e61e
JM
3784 ret = write_one_cache_group(trans, fs_info,
3785 path, cache);
2bc0bb5f
FM
3786 /*
3787 * One of the free space endio workers might have
3788 * created a new block group while updating a free space
3789 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3790 * and hasn't released its transaction handle yet, in
3791 * which case the new block group is still attached to
3792 * its transaction handle and its creation has not
3793 * finished yet (no block group item in the extent tree
3794 * yet, etc). If this is the case, wait for all free
3795 * space endio workers to finish and retry. This is a
3796 * a very rare case so no need for a more efficient and
3797 * complex approach.
3798 */
3799 if (ret == -ENOENT) {
3800 wait_event(cur_trans->writer_wait,
3801 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3802 ret = write_one_cache_group(trans, fs_info,
3803 path, cache);
2bc0bb5f 3804 }
ff1f8250 3805 if (ret)
66642832 3806 btrfs_abort_transaction(trans, ret);
ff1f8250 3807 }
c9dc4c65
CM
3808
3809 /* if its not on the io list, we need to put the block group */
3810 if (should_put)
3811 btrfs_put_block_group(cache);
e44081ef 3812 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3813 }
e44081ef 3814 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3815
1bbc621e
CM
3816 while (!list_empty(io)) {
3817 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3818 io_list);
3819 list_del_init(&cache->io_list);
afdb5718 3820 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3821 btrfs_put_block_group(cache);
3822 }
3823
9078a3e1 3824 btrfs_free_path(path);
ce93ec54 3825 return ret;
9078a3e1
CM
3826}
3827
2ff7e61e 3828int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3829{
3830 struct btrfs_block_group_cache *block_group;
3831 int readonly = 0;
3832
0b246afa 3833 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3834 if (!block_group || block_group->ro)
3835 readonly = 1;
3836 if (block_group)
fa9c0d79 3837 btrfs_put_block_group(block_group);
d2fb3437
YZ
3838 return readonly;
3839}
3840
f78c436c
FM
3841bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3842{
3843 struct btrfs_block_group_cache *bg;
3844 bool ret = true;
3845
3846 bg = btrfs_lookup_block_group(fs_info, bytenr);
3847 if (!bg)
3848 return false;
3849
3850 spin_lock(&bg->lock);
3851 if (bg->ro)
3852 ret = false;
3853 else
3854 atomic_inc(&bg->nocow_writers);
3855 spin_unlock(&bg->lock);
3856
3857 /* no put on block group, done by btrfs_dec_nocow_writers */
3858 if (!ret)
3859 btrfs_put_block_group(bg);
3860
3861 return ret;
3862
3863}
3864
3865void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3866{
3867 struct btrfs_block_group_cache *bg;
3868
3869 bg = btrfs_lookup_block_group(fs_info, bytenr);
3870 ASSERT(bg);
3871 if (atomic_dec_and_test(&bg->nocow_writers))
3872 wake_up_atomic_t(&bg->nocow_writers);
3873 /*
3874 * Once for our lookup and once for the lookup done by a previous call
3875 * to btrfs_inc_nocow_writers()
3876 */
3877 btrfs_put_block_group(bg);
3878 btrfs_put_block_group(bg);
3879}
3880
3881static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3882{
3883 schedule();
3884 return 0;
3885}
3886
3887void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3888{
3889 wait_on_atomic_t(&bg->nocow_writers,
3890 btrfs_wait_nocow_writers_atomic_t,
3891 TASK_UNINTERRUPTIBLE);
3892}
3893
6ab0a202
JM
3894static const char *alloc_name(u64 flags)
3895{
3896 switch (flags) {
3897 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3898 return "mixed";
3899 case BTRFS_BLOCK_GROUP_METADATA:
3900 return "metadata";
3901 case BTRFS_BLOCK_GROUP_DATA:
3902 return "data";
3903 case BTRFS_BLOCK_GROUP_SYSTEM:
3904 return "system";
3905 default:
3906 WARN_ON(1);
3907 return "invalid-combination";
3908 };
3909}
3910
593060d7
CM
3911static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3912 u64 total_bytes, u64 bytes_used,
e40edf2d 3913 u64 bytes_readonly,
593060d7
CM
3914 struct btrfs_space_info **space_info)
3915{
3916 struct btrfs_space_info *found;
b742bb82
YZ
3917 int i;
3918 int factor;
b150a4f1 3919 int ret;
b742bb82
YZ
3920
3921 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3922 BTRFS_BLOCK_GROUP_RAID10))
3923 factor = 2;
3924 else
3925 factor = 1;
593060d7
CM
3926
3927 found = __find_space_info(info, flags);
3928 if (found) {
25179201 3929 spin_lock(&found->lock);
593060d7 3930 found->total_bytes += total_bytes;
89a55897 3931 found->disk_total += total_bytes * factor;
593060d7 3932 found->bytes_used += bytes_used;
b742bb82 3933 found->disk_used += bytes_used * factor;
e40edf2d 3934 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3935 if (total_bytes > 0)
3936 found->full = 0;
957780eb
JB
3937 space_info_add_new_bytes(info, found, total_bytes -
3938 bytes_used - bytes_readonly);
25179201 3939 spin_unlock(&found->lock);
593060d7
CM
3940 *space_info = found;
3941 return 0;
3942 }
c146afad 3943 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3944 if (!found)
3945 return -ENOMEM;
3946
908c7f19 3947 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3948 if (ret) {
3949 kfree(found);
3950 return ret;
3951 }
3952
c1895442 3953 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3954 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3955 init_rwsem(&found->groups_sem);
0f9dd46c 3956 spin_lock_init(&found->lock);
52ba6929 3957 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3958 found->total_bytes = total_bytes;
89a55897 3959 found->disk_total = total_bytes * factor;
593060d7 3960 found->bytes_used = bytes_used;
b742bb82 3961 found->disk_used = bytes_used * factor;
593060d7 3962 found->bytes_pinned = 0;
e8569813 3963 found->bytes_reserved = 0;
e40edf2d 3964 found->bytes_readonly = bytes_readonly;
f0486c68 3965 found->bytes_may_use = 0;
6af3e3ad 3966 found->full = 0;
4f4db217 3967 found->max_extent_size = 0;
0e4f8f88 3968 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3969 found->chunk_alloc = 0;
fdb5effd
JB
3970 found->flush = 0;
3971 init_waitqueue_head(&found->wait);
633c0aad 3972 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3973 INIT_LIST_HEAD(&found->tickets);
3974 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3975
3976 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3977 info->space_info_kobj, "%s",
3978 alloc_name(found->flags));
3979 if (ret) {
3980 kfree(found);
3981 return ret;
3982 }
3983
593060d7 3984 *space_info = found;
4184ea7f 3985 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3986 if (flags & BTRFS_BLOCK_GROUP_DATA)
3987 info->data_sinfo = found;
6ab0a202
JM
3988
3989 return ret;
593060d7
CM
3990}
3991
8790d502
CM
3992static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3993{
899c81ea
ID
3994 u64 extra_flags = chunk_to_extended(flags) &
3995 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3996
de98ced9 3997 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3998 if (flags & BTRFS_BLOCK_GROUP_DATA)
3999 fs_info->avail_data_alloc_bits |= extra_flags;
4000 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4001 fs_info->avail_metadata_alloc_bits |= extra_flags;
4002 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4003 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4004 write_sequnlock(&fs_info->profiles_lock);
8790d502 4005}
593060d7 4006
fc67c450
ID
4007/*
4008 * returns target flags in extended format or 0 if restripe for this
4009 * chunk_type is not in progress
c6664b42
ID
4010 *
4011 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4012 */
4013static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4014{
4015 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4016 u64 target = 0;
4017
fc67c450
ID
4018 if (!bctl)
4019 return 0;
4020
4021 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4022 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4023 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4024 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4025 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4026 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4027 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4028 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4029 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4030 }
4031
4032 return target;
4033}
4034
a46d11a8
ID
4035/*
4036 * @flags: available profiles in extended format (see ctree.h)
4037 *
e4d8ec0f
ID
4038 * Returns reduced profile in chunk format. If profile changing is in
4039 * progress (either running or paused) picks the target profile (if it's
4040 * already available), otherwise falls back to plain reducing.
a46d11a8 4041 */
2ff7e61e 4042static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4043{
0b246afa 4044 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4045 u64 target;
9c170b26
ZL
4046 u64 raid_type;
4047 u64 allowed = 0;
a061fc8d 4048
fc67c450
ID
4049 /*
4050 * see if restripe for this chunk_type is in progress, if so
4051 * try to reduce to the target profile
4052 */
0b246afa
JM
4053 spin_lock(&fs_info->balance_lock);
4054 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4055 if (target) {
4056 /* pick target profile only if it's already available */
4057 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4058 spin_unlock(&fs_info->balance_lock);
fc67c450 4059 return extended_to_chunk(target);
e4d8ec0f
ID
4060 }
4061 }
0b246afa 4062 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4063
53b381b3 4064 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4065 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4066 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4067 allowed |= btrfs_raid_group[raid_type];
4068 }
4069 allowed &= flags;
4070
4071 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4072 allowed = BTRFS_BLOCK_GROUP_RAID6;
4073 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4074 allowed = BTRFS_BLOCK_GROUP_RAID5;
4075 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4076 allowed = BTRFS_BLOCK_GROUP_RAID10;
4077 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4078 allowed = BTRFS_BLOCK_GROUP_RAID1;
4079 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4080 allowed = BTRFS_BLOCK_GROUP_RAID0;
4081
4082 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4083
4084 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4085}
4086
2ff7e61e 4087static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4088{
de98ced9 4089 unsigned seq;
f8213bdc 4090 u64 flags;
de98ced9
MX
4091
4092 do {
f8213bdc 4093 flags = orig_flags;
0b246afa 4094 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4095
4096 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4097 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4098 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4099 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4100 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4101 flags |= fs_info->avail_metadata_alloc_bits;
4102 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4103
2ff7e61e 4104 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4105}
4106
6d07bcec 4107u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4108{
0b246afa 4109 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4110 u64 flags;
53b381b3 4111 u64 ret;
9ed74f2d 4112
b742bb82
YZ
4113 if (data)
4114 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4115 else if (root == fs_info->chunk_root)
b742bb82 4116 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4117 else
b742bb82 4118 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4119
2ff7e61e 4120 ret = get_alloc_profile(fs_info, flags);
53b381b3 4121 return ret;
6a63209f 4122}
9ed74f2d 4123
4136135b
LB
4124static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4125 bool may_use_included)
4126{
4127 ASSERT(s_info);
4128 return s_info->bytes_used + s_info->bytes_reserved +
4129 s_info->bytes_pinned + s_info->bytes_readonly +
4130 (may_use_included ? s_info->bytes_may_use : 0);
4131}
4132
4ceff079 4133int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4134{
6a63209f 4135 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4136 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4137 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4138 u64 used;
94b947b2 4139 int ret = 0;
c99f1b0c
ZL
4140 int need_commit = 2;
4141 int have_pinned_space;
6a63209f 4142
6a63209f 4143 /* make sure bytes are sectorsize aligned */
0b246afa 4144 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4145
9dced186 4146 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4147 need_commit = 0;
9dced186 4148 ASSERT(current->journal_info);
0af3d00b
JB
4149 }
4150
b4d7c3c9 4151 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4152 if (!data_sinfo)
4153 goto alloc;
9ed74f2d 4154
6a63209f
JB
4155again:
4156 /* make sure we have enough space to handle the data first */
4157 spin_lock(&data_sinfo->lock);
4136135b 4158 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4159
4160 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4161 struct btrfs_trans_handle *trans;
9ed74f2d 4162
6a63209f
JB
4163 /*
4164 * if we don't have enough free bytes in this space then we need
4165 * to alloc a new chunk.
4166 */
b9fd47cd 4167 if (!data_sinfo->full) {
6a63209f 4168 u64 alloc_target;
9ed74f2d 4169
0e4f8f88 4170 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4171 spin_unlock(&data_sinfo->lock);
33b4d47f 4172alloc:
6a63209f 4173 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4174 /*
4175 * It is ugly that we don't call nolock join
4176 * transaction for the free space inode case here.
4177 * But it is safe because we only do the data space
4178 * reservation for the free space cache in the
4179 * transaction context, the common join transaction
4180 * just increase the counter of the current transaction
4181 * handler, doesn't try to acquire the trans_lock of
4182 * the fs.
4183 */
7a7eaa40 4184 trans = btrfs_join_transaction(root);
a22285a6
YZ
4185 if (IS_ERR(trans))
4186 return PTR_ERR(trans);
9ed74f2d 4187
2ff7e61e 4188 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4189 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4190 btrfs_end_transaction(trans);
d52a5b5f
MX
4191 if (ret < 0) {
4192 if (ret != -ENOSPC)
4193 return ret;
c99f1b0c
ZL
4194 else {
4195 have_pinned_space = 1;
d52a5b5f 4196 goto commit_trans;
c99f1b0c 4197 }
d52a5b5f 4198 }
9ed74f2d 4199
b4d7c3c9
LZ
4200 if (!data_sinfo)
4201 data_sinfo = fs_info->data_sinfo;
4202
6a63209f
JB
4203 goto again;
4204 }
f2bb8f5c
JB
4205
4206 /*
b150a4f1 4207 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4208 * allocation, and no removed chunk in current transaction,
4209 * don't bother committing the transaction.
f2bb8f5c 4210 */
c99f1b0c
ZL
4211 have_pinned_space = percpu_counter_compare(
4212 &data_sinfo->total_bytes_pinned,
4213 used + bytes - data_sinfo->total_bytes);
6a63209f 4214 spin_unlock(&data_sinfo->lock);
6a63209f 4215
4e06bdd6 4216 /* commit the current transaction and try again */
d52a5b5f 4217commit_trans:
c99f1b0c 4218 if (need_commit &&
0b246afa 4219 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4220 need_commit--;
b150a4f1 4221
e1746e83
ZL
4222 if (need_commit > 0) {
4223 btrfs_start_delalloc_roots(fs_info, 0, -1);
0b246afa
JM
4224 btrfs_wait_ordered_roots(fs_info, -1, 0,
4225 (u64)-1);
e1746e83 4226 }
9a4e7276 4227
7a7eaa40 4228 trans = btrfs_join_transaction(root);
a22285a6
YZ
4229 if (IS_ERR(trans))
4230 return PTR_ERR(trans);
c99f1b0c 4231 if (have_pinned_space >= 0 ||
3204d33c
JB
4232 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4233 &trans->transaction->flags) ||
c99f1b0c 4234 need_commit > 0) {
3a45bb20 4235 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4236 if (ret)
4237 return ret;
d7c15171 4238 /*
c2d6cb16
FM
4239 * The cleaner kthread might still be doing iput
4240 * operations. Wait for it to finish so that
4241 * more space is released.
d7c15171 4242 */
0b246afa
JM
4243 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4244 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4245 goto again;
4246 } else {
3a45bb20 4247 btrfs_end_transaction(trans);
94b947b2 4248 }
4e06bdd6 4249 }
9ed74f2d 4250
0b246afa 4251 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4252 "space_info:enospc",
4253 data_sinfo->flags, bytes, 1);
6a63209f
JB
4254 return -ENOSPC;
4255 }
4256 data_sinfo->bytes_may_use += bytes;
0b246afa 4257 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4258 data_sinfo->flags, bytes, 1);
6a63209f 4259 spin_unlock(&data_sinfo->lock);
6a63209f 4260
237c0e9f 4261 return ret;
9ed74f2d 4262}
6a63209f 4263
4ceff079
QW
4264/*
4265 * New check_data_free_space() with ability for precious data reservation
4266 * Will replace old btrfs_check_data_free_space(), but for patch split,
4267 * add a new function first and then replace it.
4268 */
7cf5b976 4269int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079 4270{
0b246afa 4271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4272 int ret;
4273
4274 /* align the range */
0b246afa
JM
4275 len = round_up(start + len, fs_info->sectorsize) -
4276 round_down(start, fs_info->sectorsize);
4277 start = round_down(start, fs_info->sectorsize);
4ceff079
QW
4278
4279 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4280 if (ret < 0)
4281 return ret;
4282
1e5ec2e7 4283 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4ceff079 4284 ret = btrfs_qgroup_reserve_data(inode, start, len);
1e5ec2e7
JB
4285 if (ret)
4286 btrfs_free_reserved_data_space_noquota(inode, start, len);
4ceff079
QW
4287 return ret;
4288}
4289
4ceff079
QW
4290/*
4291 * Called if we need to clear a data reservation for this inode
4292 * Normally in a error case.
4293 *
51773bec
QW
4294 * This one will *NOT* use accurate qgroup reserved space API, just for case
4295 * which we can't sleep and is sure it won't affect qgroup reserved space.
4296 * Like clear_bit_hook().
4ceff079 4297 */
51773bec
QW
4298void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4299 u64 len)
4ceff079 4300{
0b246afa 4301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4302 struct btrfs_space_info *data_sinfo;
4303
4304 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4305 len = round_up(start + len, fs_info->sectorsize) -
4306 round_down(start, fs_info->sectorsize);
4307 start = round_down(start, fs_info->sectorsize);
4ceff079 4308
0b246afa 4309 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4310 spin_lock(&data_sinfo->lock);
4311 if (WARN_ON(data_sinfo->bytes_may_use < len))
4312 data_sinfo->bytes_may_use = 0;
4313 else
4314 data_sinfo->bytes_may_use -= len;
0b246afa 4315 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4316 data_sinfo->flags, len, 0);
4317 spin_unlock(&data_sinfo->lock);
4318}
4319
51773bec
QW
4320/*
4321 * Called if we need to clear a data reservation for this inode
4322 * Normally in a error case.
4323 *
01327610 4324 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4325 * space framework.
4326 */
4327void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4328{
0c476a5d
JM
4329 struct btrfs_root *root = BTRFS_I(inode)->root;
4330
4331 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4332 len = round_up(start + len, root->fs_info->sectorsize) -
4333 round_down(start, root->fs_info->sectorsize);
4334 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4335
51773bec
QW
4336 btrfs_free_reserved_data_space_noquota(inode, start, len);
4337 btrfs_qgroup_free_data(inode, start, len);
4338}
4339
97e728d4 4340static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4341{
97e728d4
JB
4342 struct list_head *head = &info->space_info;
4343 struct btrfs_space_info *found;
e3ccfa98 4344
97e728d4
JB
4345 rcu_read_lock();
4346 list_for_each_entry_rcu(found, head, list) {
4347 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4348 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4349 }
97e728d4 4350 rcu_read_unlock();
e3ccfa98
JB
4351}
4352
3c76cd84
MX
4353static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4354{
4355 return (global->size << 1);
4356}
4357
2ff7e61e 4358static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4359 struct btrfs_space_info *sinfo, int force)
32c00aff 4360{
0b246afa 4361 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
424499db 4362 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4363 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4364 u64 thresh;
e3ccfa98 4365
0e4f8f88
CM
4366 if (force == CHUNK_ALLOC_FORCE)
4367 return 1;
4368
fb25e914
JB
4369 /*
4370 * We need to take into account the global rsv because for all intents
4371 * and purposes it's used space. Don't worry about locking the
4372 * global_rsv, it doesn't change except when the transaction commits.
4373 */
54338b5c 4374 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4375 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4376
0e4f8f88
CM
4377 /*
4378 * in limited mode, we want to have some free space up to
4379 * about 1% of the FS size.
4380 */
4381 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4382 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4383 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4384
4385 if (num_bytes - num_allocated < thresh)
4386 return 1;
4387 }
0e4f8f88 4388
ee22184b 4389 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4390 return 0;
424499db 4391 return 1;
32c00aff
JB
4392}
4393
2ff7e61e 4394static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4395{
4396 u64 num_dev;
4397
53b381b3
DW
4398 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4399 BTRFS_BLOCK_GROUP_RAID0 |
4400 BTRFS_BLOCK_GROUP_RAID5 |
4401 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4402 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4403 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4404 num_dev = 2;
4405 else
4406 num_dev = 1; /* DUP or single */
4407
39c2d7fa 4408 return num_dev;
15d1ff81
LB
4409}
4410
39c2d7fa
FM
4411/*
4412 * If @is_allocation is true, reserve space in the system space info necessary
4413 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4414 * removing a chunk.
4415 */
4416void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4417 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4418{
4419 struct btrfs_space_info *info;
4420 u64 left;
4421 u64 thresh;
4fbcdf66 4422 int ret = 0;
39c2d7fa 4423 u64 num_devs;
4fbcdf66
FM
4424
4425 /*
4426 * Needed because we can end up allocating a system chunk and for an
4427 * atomic and race free space reservation in the chunk block reserve.
4428 */
0b246afa 4429 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4430
0b246afa 4431 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4432 spin_lock(&info->lock);
4136135b 4433 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4434 spin_unlock(&info->lock);
4435
2ff7e61e 4436 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4437
4438 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4439 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4440 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4441
0b246afa
JM
4442 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4443 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4444 left, thresh, type);
4445 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4446 }
4447
4448 if (left < thresh) {
4449 u64 flags;
4450
0b246afa 4451 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4fbcdf66
FM
4452 /*
4453 * Ignore failure to create system chunk. We might end up not
4454 * needing it, as we might not need to COW all nodes/leafs from
4455 * the paths we visit in the chunk tree (they were already COWed
4456 * or created in the current transaction for example).
4457 */
2ff7e61e 4458 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4459 }
4460
4461 if (!ret) {
0b246afa
JM
4462 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4463 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4464 thresh, BTRFS_RESERVE_NO_FLUSH);
4465 if (!ret)
4466 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4467 }
4468}
4469
28b737f6
LB
4470/*
4471 * If force is CHUNK_ALLOC_FORCE:
4472 * - return 1 if it successfully allocates a chunk,
4473 * - return errors including -ENOSPC otherwise.
4474 * If force is NOT CHUNK_ALLOC_FORCE:
4475 * - return 0 if it doesn't need to allocate a new chunk,
4476 * - return 1 if it successfully allocates a chunk,
4477 * - return errors including -ENOSPC otherwise.
4478 */
6324fbf3 4479static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4480 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4481{
6324fbf3 4482 struct btrfs_space_info *space_info;
6d74119f 4483 int wait_for_alloc = 0;
9ed74f2d 4484 int ret = 0;
9ed74f2d 4485
c6b305a8
JB
4486 /* Don't re-enter if we're already allocating a chunk */
4487 if (trans->allocating_chunk)
4488 return -ENOSPC;
4489
0b246afa 4490 space_info = __find_space_info(fs_info, flags);
593060d7 4491 if (!space_info) {
0b246afa 4492 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
79787eaa 4493 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4494 }
79787eaa 4495 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4496
6d74119f 4497again:
25179201 4498 spin_lock(&space_info->lock);
9e622d6b 4499 if (force < space_info->force_alloc)
0e4f8f88 4500 force = space_info->force_alloc;
25179201 4501 if (space_info->full) {
2ff7e61e 4502 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4503 ret = -ENOSPC;
4504 else
4505 ret = 0;
25179201 4506 spin_unlock(&space_info->lock);
09fb99a6 4507 return ret;
9ed74f2d
JB
4508 }
4509
2ff7e61e 4510 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4511 spin_unlock(&space_info->lock);
6d74119f
JB
4512 return 0;
4513 } else if (space_info->chunk_alloc) {
4514 wait_for_alloc = 1;
4515 } else {
4516 space_info->chunk_alloc = 1;
9ed74f2d 4517 }
0e4f8f88 4518
25179201 4519 spin_unlock(&space_info->lock);
9ed74f2d 4520
6d74119f
JB
4521 mutex_lock(&fs_info->chunk_mutex);
4522
4523 /*
4524 * The chunk_mutex is held throughout the entirety of a chunk
4525 * allocation, so once we've acquired the chunk_mutex we know that the
4526 * other guy is done and we need to recheck and see if we should
4527 * allocate.
4528 */
4529 if (wait_for_alloc) {
4530 mutex_unlock(&fs_info->chunk_mutex);
4531 wait_for_alloc = 0;
4532 goto again;
4533 }
4534
c6b305a8
JB
4535 trans->allocating_chunk = true;
4536
67377734
JB
4537 /*
4538 * If we have mixed data/metadata chunks we want to make sure we keep
4539 * allocating mixed chunks instead of individual chunks.
4540 */
4541 if (btrfs_mixed_space_info(space_info))
4542 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4543
97e728d4
JB
4544 /*
4545 * if we're doing a data chunk, go ahead and make sure that
4546 * we keep a reasonable number of metadata chunks allocated in the
4547 * FS as well.
4548 */
9ed74f2d 4549 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4550 fs_info->data_chunk_allocations++;
4551 if (!(fs_info->data_chunk_allocations %
4552 fs_info->metadata_ratio))
4553 force_metadata_allocation(fs_info);
9ed74f2d
JB
4554 }
4555
15d1ff81
LB
4556 /*
4557 * Check if we have enough space in SYSTEM chunk because we may need
4558 * to update devices.
4559 */
2ff7e61e 4560 check_system_chunk(trans, fs_info, flags);
15d1ff81 4561
2ff7e61e 4562 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4563 trans->allocating_chunk = false;
92b8e897 4564
9ed74f2d 4565 spin_lock(&space_info->lock);
a81cb9a2
AO
4566 if (ret < 0 && ret != -ENOSPC)
4567 goto out;
9ed74f2d 4568 if (ret)
6324fbf3 4569 space_info->full = 1;
424499db
YZ
4570 else
4571 ret = 1;
6d74119f 4572
0e4f8f88 4573 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4574out:
6d74119f 4575 space_info->chunk_alloc = 0;
9ed74f2d 4576 spin_unlock(&space_info->lock);
a25c75d5 4577 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4578 /*
4579 * When we allocate a new chunk we reserve space in the chunk block
4580 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4581 * add new nodes/leafs to it if we end up needing to do it when
4582 * inserting the chunk item and updating device items as part of the
4583 * second phase of chunk allocation, performed by
4584 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4585 * large number of new block groups to create in our transaction
4586 * handle's new_bgs list to avoid exhausting the chunk block reserve
4587 * in extreme cases - like having a single transaction create many new
4588 * block groups when starting to write out the free space caches of all
4589 * the block groups that were made dirty during the lifetime of the
4590 * transaction.
4591 */
d9a0540a 4592 if (trans->can_flush_pending_bgs &&
ee22184b 4593 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4594 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4595 btrfs_trans_release_chunk_metadata(trans);
4596 }
0f9dd46c 4597 return ret;
6324fbf3 4598}
9ed74f2d 4599
a80c8dcf
JB
4600static int can_overcommit(struct btrfs_root *root,
4601 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4602 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4603{
0b246afa
JM
4604 struct btrfs_fs_info *fs_info = root->fs_info;
4605 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4606 u64 profile;
3c76cd84 4607 u64 space_size;
a80c8dcf
JB
4608 u64 avail;
4609 u64 used;
4610
957780eb
JB
4611 /* Don't overcommit when in mixed mode. */
4612 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4613 return 0;
4614
957780eb 4615 profile = btrfs_get_alloc_profile(root, 0);
4136135b 4616 used = btrfs_space_info_used(space_info, false);
96f1bb57 4617
96f1bb57
JB
4618 /*
4619 * We only want to allow over committing if we have lots of actual space
4620 * free, but if we don't have enough space to handle the global reserve
4621 * space then we could end up having a real enospc problem when trying
4622 * to allocate a chunk or some other such important allocation.
4623 */
3c76cd84
MX
4624 spin_lock(&global_rsv->lock);
4625 space_size = calc_global_rsv_need_space(global_rsv);
4626 spin_unlock(&global_rsv->lock);
4627 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4628 return 0;
4629
4630 used += space_info->bytes_may_use;
a80c8dcf 4631
0b246afa
JM
4632 spin_lock(&fs_info->free_chunk_lock);
4633 avail = fs_info->free_chunk_space;
4634 spin_unlock(&fs_info->free_chunk_lock);
a80c8dcf
JB
4635
4636 /*
4637 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4638 * space is actually useable. For raid56, the space info used
4639 * doesn't include the parity drive, so we don't have to
4640 * change the math
a80c8dcf
JB
4641 */
4642 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4643 BTRFS_BLOCK_GROUP_RAID1 |
4644 BTRFS_BLOCK_GROUP_RAID10))
4645 avail >>= 1;
4646
4647 /*
561c294d
MX
4648 * If we aren't flushing all things, let us overcommit up to
4649 * 1/2th of the space. If we can flush, don't let us overcommit
4650 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4651 */
08e007d2 4652 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4653 avail >>= 3;
a80c8dcf 4654 else
14575aef 4655 avail >>= 1;
a80c8dcf 4656
14575aef 4657 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4658 return 1;
4659 return 0;
4660}
4661
2ff7e61e 4662static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4663 unsigned long nr_pages, int nr_items)
da633a42 4664{
0b246afa 4665 struct super_block *sb = fs_info->sb;
da633a42 4666
925a6efb
JB
4667 if (down_read_trylock(&sb->s_umount)) {
4668 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 up_read(&sb->s_umount);
4670 } else {
da633a42
MX
4671 /*
4672 * We needn't worry the filesystem going from r/w to r/o though
4673 * we don't acquire ->s_umount mutex, because the filesystem
4674 * should guarantee the delalloc inodes list be empty after
4675 * the filesystem is readonly(all dirty pages are written to
4676 * the disk).
4677 */
0b246afa 4678 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4679 if (!current->journal_info)
0b246afa 4680 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4681 }
4682}
4683
2ff7e61e
JM
4684static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4685 u64 to_reclaim)
18cd8ea6
MX
4686{
4687 u64 bytes;
4688 int nr;
4689
2ff7e61e 4690 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
18cd8ea6
MX
4691 nr = (int)div64_u64(to_reclaim, bytes);
4692 if (!nr)
4693 nr = 1;
4694 return nr;
4695}
4696
ee22184b 4697#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4698
9ed74f2d 4699/*
5da9d01b 4700 * shrink metadata reservation for delalloc
9ed74f2d 4701 */
f4c738c2
JB
4702static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4703 bool wait_ordered)
5da9d01b 4704{
0b246afa 4705 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 4706 struct btrfs_block_rsv *block_rsv;
0019f10d 4707 struct btrfs_space_info *space_info;
663350ac 4708 struct btrfs_trans_handle *trans;
f4c738c2 4709 u64 delalloc_bytes;
5da9d01b 4710 u64 max_reclaim;
b1953bce 4711 long time_left;
d3ee29e3
MX
4712 unsigned long nr_pages;
4713 int loops;
b0244199 4714 int items;
08e007d2 4715 enum btrfs_reserve_flush_enum flush;
5da9d01b 4716
c61a16a7 4717 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4718 items = calc_reclaim_items_nr(fs_info, to_reclaim);
8eb0dfdb 4719 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4720
663350ac 4721 trans = (struct btrfs_trans_handle *)current->journal_info;
0b246afa 4722 block_rsv = &fs_info->delalloc_block_rsv;
0019f10d 4723 space_info = block_rsv->space_info;
bf9022e0 4724
963d678b 4725 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4726 &fs_info->delalloc_bytes);
f4c738c2 4727 if (delalloc_bytes == 0) {
fdb5effd 4728 if (trans)
f4c738c2 4729 return;
38c135af 4730 if (wait_ordered)
0b246afa 4731 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4732 return;
fdb5effd
JB
4733 }
4734
d3ee29e3 4735 loops = 0;
f4c738c2
JB
4736 while (delalloc_bytes && loops < 3) {
4737 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4738 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4739 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4740 /*
4741 * We need to wait for the async pages to actually start before
4742 * we do anything.
4743 */
0b246afa 4744 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4745 if (!max_reclaim)
4746 goto skip_async;
4747
4748 if (max_reclaim <= nr_pages)
4749 max_reclaim = 0;
4750 else
4751 max_reclaim -= nr_pages;
dea31f52 4752
0b246afa
JM
4753 wait_event(fs_info->async_submit_wait,
4754 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4755 (int)max_reclaim);
4756skip_async:
08e007d2
MX
4757 if (!trans)
4758 flush = BTRFS_RESERVE_FLUSH_ALL;
4759 else
4760 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4761 spin_lock(&space_info->lock);
08e007d2 4762 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4763 spin_unlock(&space_info->lock);
4764 break;
4765 }
957780eb
JB
4766 if (list_empty(&space_info->tickets) &&
4767 list_empty(&space_info->priority_tickets)) {
4768 spin_unlock(&space_info->lock);
4769 break;
4770 }
0019f10d 4771 spin_unlock(&space_info->lock);
5da9d01b 4772
36e39c40 4773 loops++;
f104d044 4774 if (wait_ordered && !trans) {
0b246afa 4775 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4776 } else {
f4c738c2 4777 time_left = schedule_timeout_killable(1);
f104d044
JB
4778 if (time_left)
4779 break;
4780 }
963d678b 4781 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4782 &fs_info->delalloc_bytes);
5da9d01b 4783 }
5da9d01b
YZ
4784}
4785
663350ac
JB
4786/**
4787 * maybe_commit_transaction - possibly commit the transaction if its ok to
4788 * @root - the root we're allocating for
4789 * @bytes - the number of bytes we want to reserve
4790 * @force - force the commit
8bb8ab2e 4791 *
663350ac
JB
4792 * This will check to make sure that committing the transaction will actually
4793 * get us somewhere and then commit the transaction if it does. Otherwise it
4794 * will return -ENOSPC.
8bb8ab2e 4795 */
663350ac
JB
4796static int may_commit_transaction(struct btrfs_root *root,
4797 struct btrfs_space_info *space_info,
4798 u64 bytes, int force)
4799{
0b246afa
JM
4800 struct btrfs_fs_info *fs_info = root->fs_info;
4801 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac
JB
4802 struct btrfs_trans_handle *trans;
4803
4804 trans = (struct btrfs_trans_handle *)current->journal_info;
4805 if (trans)
4806 return -EAGAIN;
4807
4808 if (force)
4809 goto commit;
4810
4811 /* See if there is enough pinned space to make this reservation */
b150a4f1 4812 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4813 bytes) >= 0)
663350ac 4814 goto commit;
663350ac
JB
4815
4816 /*
4817 * See if there is some space in the delayed insertion reservation for
4818 * this reservation.
4819 */
4820 if (space_info != delayed_rsv->space_info)
4821 return -ENOSPC;
4822
4823 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4824 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4825 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4826 spin_unlock(&delayed_rsv->lock);
4827 return -ENOSPC;
4828 }
4829 spin_unlock(&delayed_rsv->lock);
4830
4831commit:
4832 trans = btrfs_join_transaction(root);
4833 if (IS_ERR(trans))
4834 return -ENOSPC;
4835
3a45bb20 4836 return btrfs_commit_transaction(trans);
663350ac
JB
4837}
4838
957780eb
JB
4839struct reserve_ticket {
4840 u64 bytes;
4841 int error;
4842 struct list_head list;
4843 wait_queue_head_t wait;
96c3f433
JB
4844};
4845
4846static int flush_space(struct btrfs_root *root,
4847 struct btrfs_space_info *space_info, u64 num_bytes,
4848 u64 orig_bytes, int state)
4849{
0b246afa 4850 struct btrfs_fs_info *fs_info = root->fs_info;
96c3f433
JB
4851 struct btrfs_trans_handle *trans;
4852 int nr;
f4c738c2 4853 int ret = 0;
96c3f433
JB
4854
4855 switch (state) {
96c3f433
JB
4856 case FLUSH_DELAYED_ITEMS_NR:
4857 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4858 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4859 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4860 else
96c3f433 4861 nr = -1;
18cd8ea6 4862
96c3f433
JB
4863 trans = btrfs_join_transaction(root);
4864 if (IS_ERR(trans)) {
4865 ret = PTR_ERR(trans);
4866 break;
4867 }
2ff7e61e 4868 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4869 btrfs_end_transaction(trans);
96c3f433 4870 break;
67b0fd63
JB
4871 case FLUSH_DELALLOC:
4872 case FLUSH_DELALLOC_WAIT:
24af7dd1 4873 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4874 state == FLUSH_DELALLOC_WAIT);
4875 break;
ea658bad
JB
4876 case ALLOC_CHUNK:
4877 trans = btrfs_join_transaction(root);
4878 if (IS_ERR(trans)) {
4879 ret = PTR_ERR(trans);
4880 break;
4881 }
2ff7e61e 4882 ret = do_chunk_alloc(trans, fs_info,
ea658bad
JB
4883 btrfs_get_alloc_profile(root, 0),
4884 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4885 btrfs_end_transaction(trans);
eecba891 4886 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4887 ret = 0;
4888 break;
96c3f433
JB
4889 case COMMIT_TRANS:
4890 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4891 break;
4892 default:
4893 ret = -ENOSPC;
4894 break;
4895 }
4896
0b246afa 4897 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
f376df2b 4898 orig_bytes, state, ret);
96c3f433
JB
4899 return ret;
4900}
21c7e756
MX
4901
4902static inline u64
4903btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4904 struct btrfs_space_info *space_info)
4905{
957780eb 4906 struct reserve_ticket *ticket;
21c7e756
MX
4907 u64 used;
4908 u64 expected;
957780eb 4909 u64 to_reclaim = 0;
21c7e756 4910
957780eb
JB
4911 list_for_each_entry(ticket, &space_info->tickets, list)
4912 to_reclaim += ticket->bytes;
4913 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4914 to_reclaim += ticket->bytes;
4915 if (to_reclaim)
4916 return to_reclaim;
21c7e756 4917
e0af2484
WX
4918 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4919 if (can_overcommit(root, space_info, to_reclaim,
4920 BTRFS_RESERVE_FLUSH_ALL))
4921 return 0;
4922
21c7e756
MX
4923 used = space_info->bytes_used + space_info->bytes_reserved +
4924 space_info->bytes_pinned + space_info->bytes_readonly +
4925 space_info->bytes_may_use;
ee22184b 4926 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4927 expected = div_factor_fine(space_info->total_bytes, 95);
4928 else
4929 expected = div_factor_fine(space_info->total_bytes, 90);
4930
4931 if (used > expected)
4932 to_reclaim = used - expected;
4933 else
4934 to_reclaim = 0;
4935 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4936 space_info->bytes_reserved);
21c7e756
MX
4937 return to_reclaim;
4938}
4939
4940static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4941 struct btrfs_root *root, u64 used)
21c7e756 4942{
0b246afa 4943 struct btrfs_fs_info *fs_info = root->fs_info;
365c5313
JB
4944 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4945
4946 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4947 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4948 return 0;
4949
87241c2e 4950 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4951 return 0;
4952
0b246afa
JM
4953 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4954 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4955}
4956
957780eb 4957static void wake_all_tickets(struct list_head *head)
21c7e756 4958{
957780eb 4959 struct reserve_ticket *ticket;
25ce459c 4960
957780eb
JB
4961 while (!list_empty(head)) {
4962 ticket = list_first_entry(head, struct reserve_ticket, list);
4963 list_del_init(&ticket->list);
4964 ticket->error = -ENOSPC;
4965 wake_up(&ticket->wait);
21c7e756 4966 }
21c7e756
MX
4967}
4968
957780eb
JB
4969/*
4970 * This is for normal flushers, we can wait all goddamned day if we want to. We
4971 * will loop and continuously try to flush as long as we are making progress.
4972 * We count progress as clearing off tickets each time we have to loop.
4973 */
21c7e756
MX
4974static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4975{
4976 struct btrfs_fs_info *fs_info;
4977 struct btrfs_space_info *space_info;
4978 u64 to_reclaim;
4979 int flush_state;
957780eb 4980 int commit_cycles = 0;
ce129655 4981 u64 last_tickets_id;
21c7e756
MX
4982
4983 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4984 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4985
957780eb 4986 spin_lock(&space_info->lock);
21c7e756
MX
4987 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4988 space_info);
957780eb
JB
4989 if (!to_reclaim) {
4990 space_info->flush = 0;
4991 spin_unlock(&space_info->lock);
21c7e756 4992 return;
957780eb 4993 }
ce129655 4994 last_tickets_id = space_info->tickets_id;
957780eb 4995 spin_unlock(&space_info->lock);
21c7e756
MX
4996
4997 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
4998 do {
4999 struct reserve_ticket *ticket;
5000 int ret;
5001
5002 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5003 to_reclaim, flush_state);
5004 spin_lock(&space_info->lock);
5005 if (list_empty(&space_info->tickets)) {
5006 space_info->flush = 0;
5007 spin_unlock(&space_info->lock);
5008 return;
5009 }
5010 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5011 space_info);
5012 ticket = list_first_entry(&space_info->tickets,
5013 struct reserve_ticket, list);
ce129655 5014 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5015 flush_state++;
5016 } else {
ce129655 5017 last_tickets_id = space_info->tickets_id;
957780eb
JB
5018 flush_state = FLUSH_DELAYED_ITEMS_NR;
5019 if (commit_cycles)
5020 commit_cycles--;
5021 }
5022
5023 if (flush_state > COMMIT_TRANS) {
5024 commit_cycles++;
5025 if (commit_cycles > 2) {
5026 wake_all_tickets(&space_info->tickets);
5027 space_info->flush = 0;
5028 } else {
5029 flush_state = FLUSH_DELAYED_ITEMS_NR;
5030 }
5031 }
5032 spin_unlock(&space_info->lock);
5033 } while (flush_state <= COMMIT_TRANS);
5034}
5035
5036void btrfs_init_async_reclaim_work(struct work_struct *work)
5037{
5038 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5039}
5040
5041static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5042 struct btrfs_space_info *space_info,
5043 struct reserve_ticket *ticket)
5044{
5045 u64 to_reclaim;
5046 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5047
5048 spin_lock(&space_info->lock);
5049 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5050 space_info);
5051 if (!to_reclaim) {
5052 spin_unlock(&space_info->lock);
5053 return;
5054 }
5055 spin_unlock(&space_info->lock);
5056
21c7e756
MX
5057 do {
5058 flush_space(fs_info->fs_root, space_info, to_reclaim,
5059 to_reclaim, flush_state);
5060 flush_state++;
957780eb
JB
5061 spin_lock(&space_info->lock);
5062 if (ticket->bytes == 0) {
5063 spin_unlock(&space_info->lock);
21c7e756 5064 return;
957780eb
JB
5065 }
5066 spin_unlock(&space_info->lock);
5067
5068 /*
5069 * Priority flushers can't wait on delalloc without
5070 * deadlocking.
5071 */
5072 if (flush_state == FLUSH_DELALLOC ||
5073 flush_state == FLUSH_DELALLOC_WAIT)
5074 flush_state = ALLOC_CHUNK;
365c5313 5075 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5076}
5077
957780eb
JB
5078static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5079 struct btrfs_space_info *space_info,
5080 struct reserve_ticket *ticket, u64 orig_bytes)
5081
21c7e756 5082{
957780eb
JB
5083 DEFINE_WAIT(wait);
5084 int ret = 0;
5085
5086 spin_lock(&space_info->lock);
5087 while (ticket->bytes > 0 && ticket->error == 0) {
5088 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5089 if (ret) {
5090 ret = -EINTR;
5091 break;
5092 }
5093 spin_unlock(&space_info->lock);
5094
5095 schedule();
5096
5097 finish_wait(&ticket->wait, &wait);
5098 spin_lock(&space_info->lock);
5099 }
5100 if (!ret)
5101 ret = ticket->error;
5102 if (!list_empty(&ticket->list))
5103 list_del_init(&ticket->list);
5104 if (ticket->bytes && ticket->bytes < orig_bytes) {
5105 u64 num_bytes = orig_bytes - ticket->bytes;
5106 space_info->bytes_may_use -= num_bytes;
5107 trace_btrfs_space_reservation(fs_info, "space_info",
5108 space_info->flags, num_bytes, 0);
5109 }
5110 spin_unlock(&space_info->lock);
5111
5112 return ret;
21c7e756
MX
5113}
5114
4a92b1b8
JB
5115/**
5116 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5117 * @root - the root we're allocating for
957780eb 5118 * @space_info - the space info we want to allocate from
4a92b1b8 5119 * @orig_bytes - the number of bytes we want
48fc7f7e 5120 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5121 *
01327610 5122 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5123 * with the block_rsv. If there is not enough space it will make an attempt to
5124 * flush out space to make room. It will do this by flushing delalloc if
5125 * possible or committing the transaction. If flush is 0 then no attempts to
5126 * regain reservations will be made and this will fail if there is not enough
5127 * space already.
8bb8ab2e 5128 */
957780eb
JB
5129static int __reserve_metadata_bytes(struct btrfs_root *root,
5130 struct btrfs_space_info *space_info,
5131 u64 orig_bytes,
5132 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5133{
0b246afa 5134 struct btrfs_fs_info *fs_info = root->fs_info;
957780eb 5135 struct reserve_ticket ticket;
2bf64758 5136 u64 used;
8bb8ab2e 5137 int ret = 0;
9ed74f2d 5138
957780eb 5139 ASSERT(orig_bytes);
8ca17f0f 5140 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5141
8bb8ab2e 5142 spin_lock(&space_info->lock);
fdb5effd 5143 ret = -ENOSPC;
4136135b 5144 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5145
8bb8ab2e 5146 /*
957780eb
JB
5147 * If we have enough space then hooray, make our reservation and carry
5148 * on. If not see if we can overcommit, and if we can, hooray carry on.
5149 * If not things get more complicated.
8bb8ab2e 5150 */
957780eb
JB
5151 if (used + orig_bytes <= space_info->total_bytes) {
5152 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5153 trace_btrfs_space_reservation(fs_info, "space_info",
5154 space_info->flags, orig_bytes, 1);
957780eb
JB
5155 ret = 0;
5156 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1 5157 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5158 trace_btrfs_space_reservation(fs_info, "space_info",
5159 space_info->flags, orig_bytes, 1);
44734ed1 5160 ret = 0;
2bf64758
JB
5161 }
5162
8bb8ab2e 5163 /*
957780eb
JB
5164 * If we couldn't make a reservation then setup our reservation ticket
5165 * and kick the async worker if it's not already running.
08e007d2 5166 *
957780eb
JB
5167 * If we are a priority flusher then we just need to add our ticket to
5168 * the list and we will do our own flushing further down.
8bb8ab2e 5169 */
72bcd99d 5170 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5171 ticket.bytes = orig_bytes;
5172 ticket.error = 0;
5173 init_waitqueue_head(&ticket.wait);
5174 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5175 list_add_tail(&ticket.list, &space_info->tickets);
5176 if (!space_info->flush) {
5177 space_info->flush = 1;
0b246afa 5178 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5179 space_info->flags,
5180 orig_bytes, flush,
5181 "enospc");
957780eb
JB
5182 queue_work(system_unbound_wq,
5183 &root->fs_info->async_reclaim_work);
5184 }
5185 } else {
5186 list_add_tail(&ticket.list,
5187 &space_info->priority_tickets);
5188 }
21c7e756
MX
5189 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5190 used += orig_bytes;
f6acfd50
JB
5191 /*
5192 * We will do the space reservation dance during log replay,
5193 * which means we won't have fs_info->fs_root set, so don't do
5194 * the async reclaim as we will panic.
5195 */
0b246afa 5196 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
87241c2e 5197 need_do_async_reclaim(space_info, root, used) &&
0b246afa
JM
5198 !work_busy(&fs_info->async_reclaim_work)) {
5199 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5200 orig_bytes, flush, "preempt");
21c7e756 5201 queue_work(system_unbound_wq,
0b246afa 5202 &fs_info->async_reclaim_work);
f376df2b 5203 }
8bb8ab2e 5204 }
f0486c68 5205 spin_unlock(&space_info->lock);
08e007d2 5206 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5207 return ret;
f0486c68 5208
957780eb 5209 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5210 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5211 orig_bytes);
08e007d2 5212
957780eb 5213 ret = 0;
0b246afa 5214 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5215 spin_lock(&space_info->lock);
5216 if (ticket.bytes) {
5217 if (ticket.bytes < orig_bytes) {
5218 u64 num_bytes = orig_bytes - ticket.bytes;
5219 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5220 trace_btrfs_space_reservation(fs_info, "space_info",
5221 space_info->flags,
5222 num_bytes, 0);
08e007d2 5223
957780eb
JB
5224 }
5225 list_del_init(&ticket.list);
5226 ret = -ENOSPC;
5227 }
5228 spin_unlock(&space_info->lock);
5229 ASSERT(list_empty(&ticket.list));
5230 return ret;
5231}
8bb8ab2e 5232
957780eb
JB
5233/**
5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235 * @root - the root we're allocating for
5236 * @block_rsv - the block_rsv we're allocating for
5237 * @orig_bytes - the number of bytes we want
5238 * @flush - whether or not we can flush to make our reservation
5239 *
5240 * This will reserve orgi_bytes number of bytes from the space info associated
5241 * with the block_rsv. If there is not enough space it will make an attempt to
5242 * flush out space to make room. It will do this by flushing delalloc if
5243 * possible or committing the transaction. If flush is 0 then no attempts to
5244 * regain reservations will be made and this will fail if there is not enough
5245 * space already.
5246 */
5247static int reserve_metadata_bytes(struct btrfs_root *root,
5248 struct btrfs_block_rsv *block_rsv,
5249 u64 orig_bytes,
5250 enum btrfs_reserve_flush_enum flush)
5251{
0b246afa
JM
5252 struct btrfs_fs_info *fs_info = root->fs_info;
5253 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb
JB
5254 int ret;
5255
5256 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5257 flush);
5d80366e
JB
5258 if (ret == -ENOSPC &&
5259 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5260 if (block_rsv != global_rsv &&
5261 !block_rsv_use_bytes(global_rsv, orig_bytes))
5262 ret = 0;
5263 }
cab45e22 5264 if (ret == -ENOSPC)
0b246afa 5265 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5266 block_rsv->space_info->flags,
5267 orig_bytes, 1);
f0486c68
YZ
5268 return ret;
5269}
5270
79787eaa
JM
5271static struct btrfs_block_rsv *get_block_rsv(
5272 const struct btrfs_trans_handle *trans,
5273 const struct btrfs_root *root)
f0486c68 5274{
0b246afa 5275 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5276 struct btrfs_block_rsv *block_rsv = NULL;
5277
e9cf439f 5278 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5279 (root == fs_info->csum_root && trans->adding_csums) ||
5280 (root == fs_info->uuid_root))
f7a81ea4
SB
5281 block_rsv = trans->block_rsv;
5282
4c13d758 5283 if (!block_rsv)
f0486c68
YZ
5284 block_rsv = root->block_rsv;
5285
5286 if (!block_rsv)
0b246afa 5287 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5288
5289 return block_rsv;
5290}
5291
5292static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5293 u64 num_bytes)
5294{
5295 int ret = -ENOSPC;
5296 spin_lock(&block_rsv->lock);
5297 if (block_rsv->reserved >= num_bytes) {
5298 block_rsv->reserved -= num_bytes;
5299 if (block_rsv->reserved < block_rsv->size)
5300 block_rsv->full = 0;
5301 ret = 0;
5302 }
5303 spin_unlock(&block_rsv->lock);
5304 return ret;
5305}
5306
5307static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5308 u64 num_bytes, int update_size)
5309{
5310 spin_lock(&block_rsv->lock);
5311 block_rsv->reserved += num_bytes;
5312 if (update_size)
5313 block_rsv->size += num_bytes;
5314 else if (block_rsv->reserved >= block_rsv->size)
5315 block_rsv->full = 1;
5316 spin_unlock(&block_rsv->lock);
5317}
5318
d52be818
JB
5319int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5320 struct btrfs_block_rsv *dest, u64 num_bytes,
5321 int min_factor)
5322{
5323 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5324 u64 min_bytes;
5325
5326 if (global_rsv->space_info != dest->space_info)
5327 return -ENOSPC;
5328
5329 spin_lock(&global_rsv->lock);
5330 min_bytes = div_factor(global_rsv->size, min_factor);
5331 if (global_rsv->reserved < min_bytes + num_bytes) {
5332 spin_unlock(&global_rsv->lock);
5333 return -ENOSPC;
5334 }
5335 global_rsv->reserved -= num_bytes;
5336 if (global_rsv->reserved < global_rsv->size)
5337 global_rsv->full = 0;
5338 spin_unlock(&global_rsv->lock);
5339
5340 block_rsv_add_bytes(dest, num_bytes, 1);
5341 return 0;
5342}
5343
957780eb
JB
5344/*
5345 * This is for space we already have accounted in space_info->bytes_may_use, so
5346 * basically when we're returning space from block_rsv's.
5347 */
5348static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5349 struct btrfs_space_info *space_info,
5350 u64 num_bytes)
5351{
5352 struct reserve_ticket *ticket;
5353 struct list_head *head;
5354 u64 used;
5355 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5356 bool check_overcommit = false;
5357
5358 spin_lock(&space_info->lock);
5359 head = &space_info->priority_tickets;
5360
5361 /*
5362 * If we are over our limit then we need to check and see if we can
5363 * overcommit, and if we can't then we just need to free up our space
5364 * and not satisfy any requests.
5365 */
5366 used = space_info->bytes_used + space_info->bytes_reserved +
5367 space_info->bytes_pinned + space_info->bytes_readonly +
5368 space_info->bytes_may_use;
5369 if (used - num_bytes >= space_info->total_bytes)
5370 check_overcommit = true;
5371again:
5372 while (!list_empty(head) && num_bytes) {
5373 ticket = list_first_entry(head, struct reserve_ticket,
5374 list);
5375 /*
5376 * We use 0 bytes because this space is already reserved, so
5377 * adding the ticket space would be a double count.
5378 */
5379 if (check_overcommit &&
5380 !can_overcommit(fs_info->extent_root, space_info, 0,
5381 flush))
5382 break;
5383 if (num_bytes >= ticket->bytes) {
5384 list_del_init(&ticket->list);
5385 num_bytes -= ticket->bytes;
5386 ticket->bytes = 0;
ce129655 5387 space_info->tickets_id++;
957780eb
JB
5388 wake_up(&ticket->wait);
5389 } else {
5390 ticket->bytes -= num_bytes;
5391 num_bytes = 0;
5392 }
5393 }
5394
5395 if (num_bytes && head == &space_info->priority_tickets) {
5396 head = &space_info->tickets;
5397 flush = BTRFS_RESERVE_FLUSH_ALL;
5398 goto again;
5399 }
5400 space_info->bytes_may_use -= num_bytes;
5401 trace_btrfs_space_reservation(fs_info, "space_info",
5402 space_info->flags, num_bytes, 0);
5403 spin_unlock(&space_info->lock);
5404}
5405
5406/*
5407 * This is for newly allocated space that isn't accounted in
5408 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5409 * we use this helper.
5410 */
5411static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5412 struct btrfs_space_info *space_info,
5413 u64 num_bytes)
5414{
5415 struct reserve_ticket *ticket;
5416 struct list_head *head = &space_info->priority_tickets;
5417
5418again:
5419 while (!list_empty(head) && num_bytes) {
5420 ticket = list_first_entry(head, struct reserve_ticket,
5421 list);
5422 if (num_bytes >= ticket->bytes) {
5423 trace_btrfs_space_reservation(fs_info, "space_info",
5424 space_info->flags,
5425 ticket->bytes, 1);
5426 list_del_init(&ticket->list);
5427 num_bytes -= ticket->bytes;
5428 space_info->bytes_may_use += ticket->bytes;
5429 ticket->bytes = 0;
ce129655 5430 space_info->tickets_id++;
957780eb
JB
5431 wake_up(&ticket->wait);
5432 } else {
5433 trace_btrfs_space_reservation(fs_info, "space_info",
5434 space_info->flags,
5435 num_bytes, 1);
5436 space_info->bytes_may_use += num_bytes;
5437 ticket->bytes -= num_bytes;
5438 num_bytes = 0;
5439 }
5440 }
5441
5442 if (num_bytes && head == &space_info->priority_tickets) {
5443 head = &space_info->tickets;
5444 goto again;
5445 }
5446}
5447
8c2a3ca2
JB
5448static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5449 struct btrfs_block_rsv *block_rsv,
62a45b60 5450 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5451{
5452 struct btrfs_space_info *space_info = block_rsv->space_info;
5453
5454 spin_lock(&block_rsv->lock);
5455 if (num_bytes == (u64)-1)
5456 num_bytes = block_rsv->size;
5457 block_rsv->size -= num_bytes;
5458 if (block_rsv->reserved >= block_rsv->size) {
5459 num_bytes = block_rsv->reserved - block_rsv->size;
5460 block_rsv->reserved = block_rsv->size;
5461 block_rsv->full = 1;
5462 } else {
5463 num_bytes = 0;
5464 }
5465 spin_unlock(&block_rsv->lock);
5466
5467 if (num_bytes > 0) {
5468 if (dest) {
e9e22899
JB
5469 spin_lock(&dest->lock);
5470 if (!dest->full) {
5471 u64 bytes_to_add;
5472
5473 bytes_to_add = dest->size - dest->reserved;
5474 bytes_to_add = min(num_bytes, bytes_to_add);
5475 dest->reserved += bytes_to_add;
5476 if (dest->reserved >= dest->size)
5477 dest->full = 1;
5478 num_bytes -= bytes_to_add;
5479 }
5480 spin_unlock(&dest->lock);
5481 }
957780eb
JB
5482 if (num_bytes)
5483 space_info_add_old_bytes(fs_info, space_info,
5484 num_bytes);
9ed74f2d 5485 }
f0486c68 5486}
4e06bdd6 5487
25d609f8
JB
5488int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5489 struct btrfs_block_rsv *dst, u64 num_bytes,
5490 int update_size)
f0486c68
YZ
5491{
5492 int ret;
9ed74f2d 5493
f0486c68
YZ
5494 ret = block_rsv_use_bytes(src, num_bytes);
5495 if (ret)
5496 return ret;
9ed74f2d 5497
25d609f8 5498 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5499 return 0;
5500}
5501
66d8f3dd 5502void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5503{
f0486c68
YZ
5504 memset(rsv, 0, sizeof(*rsv));
5505 spin_lock_init(&rsv->lock);
66d8f3dd 5506 rsv->type = type;
f0486c68
YZ
5507}
5508
2ff7e61e 5509struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5510 unsigned short type)
f0486c68
YZ
5511{
5512 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5513
f0486c68
YZ
5514 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5515 if (!block_rsv)
5516 return NULL;
9ed74f2d 5517
66d8f3dd 5518 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5519 block_rsv->space_info = __find_space_info(fs_info,
5520 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5521 return block_rsv;
5522}
9ed74f2d 5523
2ff7e61e 5524void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5525 struct btrfs_block_rsv *rsv)
5526{
2aaa6655
JB
5527 if (!rsv)
5528 return;
2ff7e61e 5529 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5530 kfree(rsv);
9ed74f2d
JB
5531}
5532
cdfb080e
CM
5533void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5534{
5535 kfree(rsv);
5536}
5537
08e007d2
MX
5538int btrfs_block_rsv_add(struct btrfs_root *root,
5539 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5540 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5541{
f0486c68 5542 int ret;
9ed74f2d 5543
f0486c68
YZ
5544 if (num_bytes == 0)
5545 return 0;
8bb8ab2e 5546
61b520a9 5547 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5548 if (!ret) {
5549 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5550 return 0;
5551 }
9ed74f2d 5552
f0486c68 5553 return ret;
f0486c68 5554}
9ed74f2d 5555
2ff7e61e 5556int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5557{
5558 u64 num_bytes = 0;
f0486c68 5559 int ret = -ENOSPC;
9ed74f2d 5560
f0486c68
YZ
5561 if (!block_rsv)
5562 return 0;
9ed74f2d 5563
f0486c68 5564 spin_lock(&block_rsv->lock);
36ba022a
JB
5565 num_bytes = div_factor(block_rsv->size, min_factor);
5566 if (block_rsv->reserved >= num_bytes)
5567 ret = 0;
5568 spin_unlock(&block_rsv->lock);
9ed74f2d 5569
36ba022a
JB
5570 return ret;
5571}
5572
08e007d2
MX
5573int btrfs_block_rsv_refill(struct btrfs_root *root,
5574 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5575 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5576{
5577 u64 num_bytes = 0;
5578 int ret = -ENOSPC;
5579
5580 if (!block_rsv)
5581 return 0;
5582
5583 spin_lock(&block_rsv->lock);
5584 num_bytes = min_reserved;
13553e52 5585 if (block_rsv->reserved >= num_bytes)
f0486c68 5586 ret = 0;
13553e52 5587 else
f0486c68 5588 num_bytes -= block_rsv->reserved;
f0486c68 5589 spin_unlock(&block_rsv->lock);
13553e52 5590
f0486c68
YZ
5591 if (!ret)
5592 return 0;
5593
aa38a711 5594 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5595 if (!ret) {
5596 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5597 return 0;
6a63209f 5598 }
9ed74f2d 5599
13553e52 5600 return ret;
f0486c68
YZ
5601}
5602
2ff7e61e 5603void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5604 struct btrfs_block_rsv *block_rsv,
5605 u64 num_bytes)
5606{
0b246afa
JM
5607 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5608
17504584 5609 if (global_rsv == block_rsv ||
f0486c68
YZ
5610 block_rsv->space_info != global_rsv->space_info)
5611 global_rsv = NULL;
0b246afa 5612 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5613}
5614
8929ecfa
YZ
5615static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5616{
5617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5618 struct btrfs_space_info *sinfo = block_rsv->space_info;
5619 u64 num_bytes;
6a63209f 5620
ae2e4728
JB
5621 /*
5622 * The global block rsv is based on the size of the extent tree, the
5623 * checksum tree and the root tree. If the fs is empty we want to set
5624 * it to a minimal amount for safety.
5625 */
5626 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5627 btrfs_root_used(&fs_info->csum_root->root_item) +
5628 btrfs_root_used(&fs_info->tree_root->root_item);
5629 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5630
8929ecfa 5631 spin_lock(&sinfo->lock);
1f699d38 5632 spin_lock(&block_rsv->lock);
4e06bdd6 5633
ee22184b 5634 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5635
fb4b10e5 5636 if (block_rsv->reserved < block_rsv->size) {
4136135b 5637 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5638 if (sinfo->total_bytes > num_bytes) {
5639 num_bytes = sinfo->total_bytes - num_bytes;
5640 num_bytes = min(num_bytes,
5641 block_rsv->size - block_rsv->reserved);
5642 block_rsv->reserved += num_bytes;
5643 sinfo->bytes_may_use += num_bytes;
5644 trace_btrfs_space_reservation(fs_info, "space_info",
5645 sinfo->flags, num_bytes,
5646 1);
5647 }
5648 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5649 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5650 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5651 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5652 sinfo->flags, num_bytes, 0);
8929ecfa 5653 block_rsv->reserved = block_rsv->size;
8929ecfa 5654 }
182608c8 5655
fb4b10e5
JB
5656 if (block_rsv->reserved == block_rsv->size)
5657 block_rsv->full = 1;
5658 else
5659 block_rsv->full = 0;
5660
8929ecfa 5661 spin_unlock(&block_rsv->lock);
1f699d38 5662 spin_unlock(&sinfo->lock);
6a63209f
JB
5663}
5664
f0486c68 5665static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5666{
f0486c68 5667 struct btrfs_space_info *space_info;
6a63209f 5668
f0486c68
YZ
5669 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5670 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5671
f0486c68 5672 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5673 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5674 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5675 fs_info->trans_block_rsv.space_info = space_info;
5676 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5677 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5678
8929ecfa
YZ
5679 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5680 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5681 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5682 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5683 if (fs_info->quota_root)
5684 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5685 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5686
8929ecfa 5687 update_global_block_rsv(fs_info);
6a63209f
JB
5688}
5689
8929ecfa 5690static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5691{
8c2a3ca2
JB
5692 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5693 (u64)-1);
8929ecfa
YZ
5694 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5695 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5696 WARN_ON(fs_info->trans_block_rsv.size > 0);
5697 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5698 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5699 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5700 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5701 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5702}
5703
a22285a6 5704void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2ff7e61e 5705 struct btrfs_fs_info *fs_info)
6a63209f 5706{
0e721106
JB
5707 if (!trans->block_rsv)
5708 return;
5709
a22285a6
YZ
5710 if (!trans->bytes_reserved)
5711 return;
6a63209f 5712
0b246afa 5713 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 5714 trans->transid, trans->bytes_reserved, 0);
2ff7e61e
JM
5715 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5716 trans->bytes_reserved);
a22285a6
YZ
5717 trans->bytes_reserved = 0;
5718}
6a63209f 5719
4fbcdf66
FM
5720/*
5721 * To be called after all the new block groups attached to the transaction
5722 * handle have been created (btrfs_create_pending_block_groups()).
5723 */
5724void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5725{
64b63580 5726 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5727
5728 if (!trans->chunk_bytes_reserved)
5729 return;
5730
5731 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5732
5733 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5734 trans->chunk_bytes_reserved);
5735 trans->chunk_bytes_reserved = 0;
5736}
5737
79787eaa 5738/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5739int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5740 struct inode *inode)
5741{
0b246afa 5742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d68fc57b 5743 struct btrfs_root *root = BTRFS_I(inode)->root;
40acc3ee
JB
5744 /*
5745 * We always use trans->block_rsv here as we will have reserved space
5746 * for our orphan when starting the transaction, using get_block_rsv()
5747 * here will sometimes make us choose the wrong block rsv as we could be
5748 * doing a reloc inode for a non refcounted root.
5749 */
5750 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5751 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5752
5753 /*
fcb80c2a
JB
5754 * We need to hold space in order to delete our orphan item once we've
5755 * added it, so this takes the reservation so we can release it later
5756 * when we are truly done with the orphan item.
d68fc57b 5757 */
0b246afa
JM
5758 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5759
5760 trace_btrfs_space_reservation(fs_info, "orphan",
4a0cc7ca 5761 btrfs_ino(BTRFS_I(inode)), num_bytes, 1);
25d609f8 5762 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5763}
5764
d68fc57b 5765void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5766{
0b246afa 5767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d68fc57b 5768 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa
JM
5769 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5770
5771 trace_btrfs_space_reservation(fs_info, "orphan",
4a0cc7ca 5772 btrfs_ino(BTRFS_I(inode)), num_bytes, 0);
2ff7e61e 5773 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5774}
97e728d4 5775
d5c12070
MX
5776/*
5777 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5778 * root: the root of the parent directory
5779 * rsv: block reservation
5780 * items: the number of items that we need do reservation
5781 * qgroup_reserved: used to return the reserved size in qgroup
5782 *
5783 * This function is used to reserve the space for snapshot/subvolume
5784 * creation and deletion. Those operations are different with the
5785 * common file/directory operations, they change two fs/file trees
5786 * and root tree, the number of items that the qgroup reserves is
5787 * different with the free space reservation. So we can not use
01327610 5788 * the space reservation mechanism in start_transaction().
d5c12070
MX
5789 */
5790int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5791 struct btrfs_block_rsv *rsv,
5792 int items,
ee3441b4
JM
5793 u64 *qgroup_reserved,
5794 bool use_global_rsv)
a22285a6 5795{
d5c12070
MX
5796 u64 num_bytes;
5797 int ret;
0b246afa
JM
5798 struct btrfs_fs_info *fs_info = root->fs_info;
5799 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5800
0b246afa 5801 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5802 /* One for parent inode, two for dir entries */
0b246afa 5803 num_bytes = 3 * fs_info->nodesize;
003d7c59 5804 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5805 if (ret)
5806 return ret;
5807 } else {
5808 num_bytes = 0;
5809 }
5810
5811 *qgroup_reserved = num_bytes;
5812
0b246afa
JM
5813 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5814 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5815 BTRFS_BLOCK_GROUP_METADATA);
5816 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5817 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5818
5819 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5820 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5821
7174109c
QW
5822 if (ret && *qgroup_reserved)
5823 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5824
5825 return ret;
5826}
5827
2ff7e61e 5828void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5829 struct btrfs_block_rsv *rsv)
d5c12070 5830{
2ff7e61e 5831 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5832}
5833
7709cde3
JB
5834/**
5835 * drop_outstanding_extent - drop an outstanding extent
5836 * @inode: the inode we're dropping the extent for
01327610 5837 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5838 *
5839 * This is called when we are freeing up an outstanding extent, either called
5840 * after an error or after an extent is written. This will return the number of
5841 * reserved extents that need to be freed. This must be called with
5842 * BTRFS_I(inode)->lock held.
5843 */
dcab6a3b 5844static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5845{
7fd2ae21 5846 unsigned drop_inode_space = 0;
9e0baf60 5847 unsigned dropped_extents = 0;
823bb20a 5848 unsigned num_extents;
9e0baf60 5849
823bb20a 5850 num_extents = count_max_extents(num_bytes);
dcab6a3b
JB
5851 ASSERT(num_extents);
5852 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5853 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5854
7fd2ae21 5855 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5856 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5857 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5858 drop_inode_space = 1;
7fd2ae21 5859
9e0baf60 5860 /*
01327610 5861 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5862 * reserved then we need to leave the reserved extents count alone.
5863 */
5864 if (BTRFS_I(inode)->outstanding_extents >=
5865 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5866 return drop_inode_space;
9e0baf60
JB
5867
5868 dropped_extents = BTRFS_I(inode)->reserved_extents -
5869 BTRFS_I(inode)->outstanding_extents;
5870 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5871 return dropped_extents + drop_inode_space;
9e0baf60
JB
5872}
5873
7709cde3 5874/**
01327610
NS
5875 * calc_csum_metadata_size - return the amount of metadata space that must be
5876 * reserved/freed for the given bytes.
7709cde3
JB
5877 * @inode: the inode we're manipulating
5878 * @num_bytes: the number of bytes in question
5879 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5880 *
5881 * This adjusts the number of csum_bytes in the inode and then returns the
5882 * correct amount of metadata that must either be reserved or freed. We
5883 * calculate how many checksums we can fit into one leaf and then divide the
5884 * number of bytes that will need to be checksumed by this value to figure out
5885 * how many checksums will be required. If we are adding bytes then the number
5886 * may go up and we will return the number of additional bytes that must be
5887 * reserved. If it is going down we will return the number of bytes that must
5888 * be freed.
5889 *
5890 * This must be called with BTRFS_I(inode)->lock held.
5891 */
5892static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5893 int reserve)
6324fbf3 5894{
0b246afa 5895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1262133b 5896 u64 old_csums, num_csums;
7709cde3
JB
5897
5898 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5899 BTRFS_I(inode)->csum_bytes == 0)
5900 return 0;
5901
2ff7e61e
JM
5902 old_csums = btrfs_csum_bytes_to_leaves(fs_info,
5903 BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5904 if (reserve)
5905 BTRFS_I(inode)->csum_bytes += num_bytes;
5906 else
5907 BTRFS_I(inode)->csum_bytes -= num_bytes;
2ff7e61e
JM
5908 num_csums = btrfs_csum_bytes_to_leaves(fs_info,
5909 BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5910
5911 /* No change, no need to reserve more */
5912 if (old_csums == num_csums)
5913 return 0;
5914
5915 if (reserve)
0b246afa 5916 return btrfs_calc_trans_metadata_size(fs_info,
7709cde3
JB
5917 num_csums - old_csums);
5918
0b246afa 5919 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
0ca1f7ce 5920}
c146afad 5921
0ca1f7ce
YZ
5922int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5923{
0b246afa 5924 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0ca1f7ce 5925 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 5926 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
9e0baf60 5927 u64 to_reserve = 0;
660d3f6c 5928 u64 csum_bytes;
823bb20a 5929 unsigned nr_extents;
08e007d2 5930 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5931 int ret = 0;
c64c2bd8 5932 bool delalloc_lock = true;
88e081bf
WS
5933 u64 to_free = 0;
5934 unsigned dropped;
48c3d480 5935 bool release_extra = false;
6324fbf3 5936
c64c2bd8
JB
5937 /* If we are a free space inode we need to not flush since we will be in
5938 * the middle of a transaction commit. We also don't need the delalloc
5939 * mutex since we won't race with anybody. We need this mostly to make
5940 * lockdep shut its filthy mouth.
bac357dc
JB
5941 *
5942 * If we have a transaction open (can happen if we call truncate_block
5943 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5944 */
5945 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5946 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5947 delalloc_lock = false;
bac357dc
JB
5948 } else if (current->journal_info) {
5949 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 5950 }
c09544e0 5951
08e007d2 5952 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 5953 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 5954 schedule_timeout(1);
ec44a35c 5955
c64c2bd8
JB
5956 if (delalloc_lock)
5957 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5958
0b246afa 5959 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
8bb8ab2e 5960
9e0baf60 5961 spin_lock(&BTRFS_I(inode)->lock);
823bb20a 5962 nr_extents = count_max_extents(num_bytes);
6a41dd09 5963 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5964
48c3d480 5965 nr_extents = 0;
9e0baf60 5966 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5967 BTRFS_I(inode)->reserved_extents)
48c3d480 5968 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5969 BTRFS_I(inode)->reserved_extents;
57a45ced 5970
48c3d480 5971 /* We always want to reserve a slot for updating the inode. */
0b246afa 5972 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
7709cde3 5973 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5974 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5975 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5976
0b246afa 5977 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 5978 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 5979 nr_extents * fs_info->nodesize, true);
88e081bf
WS
5980 if (ret)
5981 goto out_fail;
5982 }
c5567237 5983
48c3d480 5984 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5985 if (unlikely(ret)) {
da17066c 5986 btrfs_qgroup_free_meta(root,
0b246afa 5987 nr_extents * fs_info->nodesize);
88e081bf 5988 goto out_fail;
9e0baf60 5989 }
25179201 5990
660d3f6c 5991 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5992 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee 5993 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 5994 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
48c3d480 5995 release_extra = true;
660d3f6c
JB
5996 }
5997 BTRFS_I(inode)->reserved_extents += nr_extents;
5998 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5999
6000 if (delalloc_lock)
6001 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 6002
8c2a3ca2 6003 if (to_reserve)
0b246afa 6004 trace_btrfs_space_reservation(fs_info, "delalloc",
f85b7379 6005 btrfs_ino(BTRFS_I(inode)), to_reserve, 1);
48c3d480 6006 if (release_extra)
2ff7e61e 6007 btrfs_block_rsv_release(fs_info, block_rsv,
0b246afa 6008 btrfs_calc_trans_metadata_size(fs_info, 1));
0ca1f7ce 6009 return 0;
88e081bf
WS
6010
6011out_fail:
6012 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6013 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6014 /*
6015 * If the inodes csum_bytes is the same as the original
6016 * csum_bytes then we know we haven't raced with any free()ers
6017 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6018 */
f4881bc7 6019 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6020 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6021 } else {
6022 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6023 u64 bytes;
6024
6025 /*
6026 * This is tricky, but first we need to figure out how much we
01327610 6027 * freed from any free-ers that occurred during this
f4881bc7
JB
6028 * reservation, so we reset ->csum_bytes to the csum_bytes
6029 * before we dropped our lock, and then call the free for the
6030 * number of bytes that were freed while we were trying our
6031 * reservation.
6032 */
6033 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6034 BTRFS_I(inode)->csum_bytes = csum_bytes;
6035 to_free = calc_csum_metadata_size(inode, bytes, 0);
6036
6037
6038 /*
6039 * Now we need to see how much we would have freed had we not
6040 * been making this reservation and our ->csum_bytes were not
6041 * artificially inflated.
6042 */
6043 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6044 bytes = csum_bytes - orig_csum_bytes;
6045 bytes = calc_csum_metadata_size(inode, bytes, 0);
6046
6047 /*
6048 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6049 * more than to_free then we would have freed more space had we
f4881bc7
JB
6050 * not had an artificially high ->csum_bytes, so we need to free
6051 * the remainder. If bytes is the same or less then we don't
6052 * need to do anything, the other free-ers did the correct
6053 * thing.
6054 */
6055 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6056 if (bytes > to_free)
6057 to_free = bytes - to_free;
6058 else
6059 to_free = 0;
6060 }
88e081bf 6061 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6062 if (dropped)
0b246afa 6063 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
88e081bf
WS
6064
6065 if (to_free) {
2ff7e61e 6066 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
0b246afa 6067 trace_btrfs_space_reservation(fs_info, "delalloc",
f85b7379 6068 btrfs_ino(BTRFS_I(inode)), to_free, 0);
88e081bf
WS
6069 }
6070 if (delalloc_lock)
6071 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6072 return ret;
0ca1f7ce
YZ
6073}
6074
7709cde3
JB
6075/**
6076 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6077 * @inode: the inode to release the reservation for
6078 * @num_bytes: the number of bytes we're releasing
6079 *
6080 * This will release the metadata reservation for an inode. This can be called
6081 * once we complete IO for a given set of bytes to release their metadata
6082 * reservations.
6083 */
0ca1f7ce
YZ
6084void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6085{
0b246afa 6086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9e0baf60
JB
6087 u64 to_free = 0;
6088 unsigned dropped;
0ca1f7ce 6089
0b246afa 6090 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
7709cde3 6091 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6092 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6093
0934856d
MX
6094 if (num_bytes)
6095 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6096 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60 6097 if (dropped > 0)
0b246afa 6098 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
0ca1f7ce 6099
0b246afa 6100 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6101 return;
6102
0b246afa 6103 trace_btrfs_space_reservation(fs_info, "delalloc",
4a0cc7ca 6104 btrfs_ino(BTRFS_I(inode)), to_free, 0);
c5567237 6105
2ff7e61e 6106 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
0ca1f7ce
YZ
6107}
6108
1ada3a62 6109/**
7cf5b976 6110 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6111 * delalloc
6112 * @inode: inode we're writing to
6113 * @start: start range we are writing to
6114 * @len: how long the range we are writing to
6115 *
1ada3a62
QW
6116 * This will do the following things
6117 *
6118 * o reserve space in data space info for num bytes
6119 * and reserve precious corresponding qgroup space
6120 * (Done in check_data_free_space)
6121 *
6122 * o reserve space for metadata space, based on the number of outstanding
6123 * extents and how much csums will be needed
6124 * also reserve metadata space in a per root over-reserve method.
6125 * o add to the inodes->delalloc_bytes
6126 * o add it to the fs_info's delalloc inodes list.
6127 * (Above 3 all done in delalloc_reserve_metadata)
6128 *
6129 * Return 0 for success
6130 * Return <0 for error(-ENOSPC or -EQUOT)
6131 */
7cf5b976 6132int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6133{
6134 int ret;
6135
7cf5b976 6136 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6137 if (ret < 0)
6138 return ret;
6139 ret = btrfs_delalloc_reserve_metadata(inode, len);
6140 if (ret < 0)
7cf5b976 6141 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6142 return ret;
6143}
6144
7709cde3 6145/**
7cf5b976 6146 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6147 * @inode: inode we're releasing space for
6148 * @start: start position of the space already reserved
6149 * @len: the len of the space already reserved
6150 *
6151 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6152 * called in the case that we don't need the metadata AND data reservations
6153 * anymore. So if there is an error or we insert an inline extent.
6154 *
6155 * This function will release the metadata space that was not used and will
6156 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6157 * list if there are no delalloc bytes left.
6158 * Also it will handle the qgroup reserved space.
6159 */
7cf5b976 6160void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6161{
6162 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6163 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6164}
6165
ce93ec54 6166static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6167 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6168 u64 num_bytes, int alloc)
9078a3e1 6169{
0af3d00b 6170 struct btrfs_block_group_cache *cache = NULL;
db94535d 6171 u64 total = num_bytes;
9078a3e1 6172 u64 old_val;
db94535d 6173 u64 byte_in_group;
0af3d00b 6174 int factor;
3e1ad54f 6175
5d4f98a2 6176 /* block accounting for super block */
eb73c1b7 6177 spin_lock(&info->delalloc_root_lock);
6c41761f 6178 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6179 if (alloc)
6180 old_val += num_bytes;
6181 else
6182 old_val -= num_bytes;
6c41761f 6183 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6184 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6185
d397712b 6186 while (total) {
db94535d 6187 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6188 if (!cache)
79787eaa 6189 return -ENOENT;
b742bb82
YZ
6190 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6191 BTRFS_BLOCK_GROUP_RAID1 |
6192 BTRFS_BLOCK_GROUP_RAID10))
6193 factor = 2;
6194 else
6195 factor = 1;
9d66e233
JB
6196 /*
6197 * If this block group has free space cache written out, we
6198 * need to make sure to load it if we are removing space. This
6199 * is because we need the unpinning stage to actually add the
6200 * space back to the block group, otherwise we will leak space.
6201 */
6202 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6203 cache_block_group(cache, 1);
0af3d00b 6204
db94535d
CM
6205 byte_in_group = bytenr - cache->key.objectid;
6206 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6207
25179201 6208 spin_lock(&cache->space_info->lock);
c286ac48 6209 spin_lock(&cache->lock);
0af3d00b 6210
6202df69 6211 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6212 cache->disk_cache_state < BTRFS_DC_CLEAR)
6213 cache->disk_cache_state = BTRFS_DC_CLEAR;
6214
9078a3e1 6215 old_val = btrfs_block_group_used(&cache->item);
db94535d 6216 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6217 if (alloc) {
db94535d 6218 old_val += num_bytes;
11833d66
YZ
6219 btrfs_set_block_group_used(&cache->item, old_val);
6220 cache->reserved -= num_bytes;
11833d66 6221 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6222 cache->space_info->bytes_used += num_bytes;
6223 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6224 spin_unlock(&cache->lock);
25179201 6225 spin_unlock(&cache->space_info->lock);
cd1bc465 6226 } else {
db94535d 6227 old_val -= num_bytes;
ae0ab003
FM
6228 btrfs_set_block_group_used(&cache->item, old_val);
6229 cache->pinned += num_bytes;
6230 cache->space_info->bytes_pinned += num_bytes;
6231 cache->space_info->bytes_used -= num_bytes;
6232 cache->space_info->disk_used -= num_bytes * factor;
6233 spin_unlock(&cache->lock);
6234 spin_unlock(&cache->space_info->lock);
47ab2a6c 6235
0b246afa 6236 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6237 cache->space_info->flags,
6238 num_bytes, 1);
ae0ab003
FM
6239 set_extent_dirty(info->pinned_extents,
6240 bytenr, bytenr + num_bytes - 1,
6241 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6242 }
1bbc621e
CM
6243
6244 spin_lock(&trans->transaction->dirty_bgs_lock);
6245 if (list_empty(&cache->dirty_list)) {
6246 list_add_tail(&cache->dirty_list,
6247 &trans->transaction->dirty_bgs);
6248 trans->transaction->num_dirty_bgs++;
6249 btrfs_get_block_group(cache);
6250 }
6251 spin_unlock(&trans->transaction->dirty_bgs_lock);
6252
036a9348
FM
6253 /*
6254 * No longer have used bytes in this block group, queue it for
6255 * deletion. We do this after adding the block group to the
6256 * dirty list to avoid races between cleaner kthread and space
6257 * cache writeout.
6258 */
6259 if (!alloc && old_val == 0) {
6260 spin_lock(&info->unused_bgs_lock);
6261 if (list_empty(&cache->bg_list)) {
6262 btrfs_get_block_group(cache);
6263 list_add_tail(&cache->bg_list,
6264 &info->unused_bgs);
6265 }
6266 spin_unlock(&info->unused_bgs_lock);
6267 }
6268
fa9c0d79 6269 btrfs_put_block_group(cache);
db94535d
CM
6270 total -= num_bytes;
6271 bytenr += num_bytes;
9078a3e1
CM
6272 }
6273 return 0;
6274}
6324fbf3 6275
2ff7e61e 6276static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6277{
0f9dd46c 6278 struct btrfs_block_group_cache *cache;
d2fb3437 6279 u64 bytenr;
0f9dd46c 6280
0b246afa
JM
6281 spin_lock(&fs_info->block_group_cache_lock);
6282 bytenr = fs_info->first_logical_byte;
6283 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6284
6285 if (bytenr < (u64)-1)
6286 return bytenr;
6287
0b246afa 6288 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6289 if (!cache)
a061fc8d 6290 return 0;
0f9dd46c 6291
d2fb3437 6292 bytenr = cache->key.objectid;
fa9c0d79 6293 btrfs_put_block_group(cache);
d2fb3437
YZ
6294
6295 return bytenr;
a061fc8d
CM
6296}
6297
2ff7e61e 6298static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6299 struct btrfs_block_group_cache *cache,
6300 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6301{
11833d66
YZ
6302 spin_lock(&cache->space_info->lock);
6303 spin_lock(&cache->lock);
6304 cache->pinned += num_bytes;
6305 cache->space_info->bytes_pinned += num_bytes;
6306 if (reserved) {
6307 cache->reserved -= num_bytes;
6308 cache->space_info->bytes_reserved -= num_bytes;
6309 }
6310 spin_unlock(&cache->lock);
6311 spin_unlock(&cache->space_info->lock);
68b38550 6312
0b246afa 6313 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6314 cache->space_info->flags, num_bytes, 1);
0b246afa 6315 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6316 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6317 return 0;
6318}
68b38550 6319
f0486c68
YZ
6320/*
6321 * this function must be called within transaction
6322 */
2ff7e61e 6323int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6324 u64 bytenr, u64 num_bytes, int reserved)
6325{
6326 struct btrfs_block_group_cache *cache;
68b38550 6327
0b246afa 6328 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6329 BUG_ON(!cache); /* Logic error */
f0486c68 6330
2ff7e61e 6331 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6332
6333 btrfs_put_block_group(cache);
11833d66
YZ
6334 return 0;
6335}
6336
f0486c68 6337/*
e688b725
CM
6338 * this function must be called within transaction
6339 */
2ff7e61e 6340int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6341 u64 bytenr, u64 num_bytes)
6342{
6343 struct btrfs_block_group_cache *cache;
b50c6e25 6344 int ret;
e688b725 6345
0b246afa 6346 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6347 if (!cache)
6348 return -EINVAL;
e688b725
CM
6349
6350 /*
6351 * pull in the free space cache (if any) so that our pin
6352 * removes the free space from the cache. We have load_only set
6353 * to one because the slow code to read in the free extents does check
6354 * the pinned extents.
6355 */
f6373bf3 6356 cache_block_group(cache, 1);
e688b725 6357
2ff7e61e 6358 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6359
6360 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6361 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6362 btrfs_put_block_group(cache);
b50c6e25 6363 return ret;
e688b725
CM
6364}
6365
2ff7e61e
JM
6366static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6367 u64 start, u64 num_bytes)
8c2a1a30
JB
6368{
6369 int ret;
6370 struct btrfs_block_group_cache *block_group;
6371 struct btrfs_caching_control *caching_ctl;
6372
0b246afa 6373 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6374 if (!block_group)
6375 return -EINVAL;
6376
6377 cache_block_group(block_group, 0);
6378 caching_ctl = get_caching_control(block_group);
6379
6380 if (!caching_ctl) {
6381 /* Logic error */
6382 BUG_ON(!block_group_cache_done(block_group));
6383 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6384 } else {
6385 mutex_lock(&caching_ctl->mutex);
6386
6387 if (start >= caching_ctl->progress) {
2ff7e61e 6388 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6389 } else if (start + num_bytes <= caching_ctl->progress) {
6390 ret = btrfs_remove_free_space(block_group,
6391 start, num_bytes);
6392 } else {
6393 num_bytes = caching_ctl->progress - start;
6394 ret = btrfs_remove_free_space(block_group,
6395 start, num_bytes);
6396 if (ret)
6397 goto out_lock;
6398
6399 num_bytes = (start + num_bytes) -
6400 caching_ctl->progress;
6401 start = caching_ctl->progress;
2ff7e61e 6402 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6403 }
6404out_lock:
6405 mutex_unlock(&caching_ctl->mutex);
6406 put_caching_control(caching_ctl);
6407 }
6408 btrfs_put_block_group(block_group);
6409 return ret;
6410}
6411
2ff7e61e 6412int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6413 struct extent_buffer *eb)
6414{
6415 struct btrfs_file_extent_item *item;
6416 struct btrfs_key key;
6417 int found_type;
6418 int i;
6419
2ff7e61e 6420 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6421 return 0;
6422
6423 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6424 btrfs_item_key_to_cpu(eb, &key, i);
6425 if (key.type != BTRFS_EXTENT_DATA_KEY)
6426 continue;
6427 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6428 found_type = btrfs_file_extent_type(eb, item);
6429 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6430 continue;
6431 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6432 continue;
6433 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6434 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6435 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6436 }
6437
6438 return 0;
6439}
6440
9cfa3e34
FM
6441static void
6442btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6443{
6444 atomic_inc(&bg->reservations);
6445}
6446
6447void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6448 const u64 start)
6449{
6450 struct btrfs_block_group_cache *bg;
6451
6452 bg = btrfs_lookup_block_group(fs_info, start);
6453 ASSERT(bg);
6454 if (atomic_dec_and_test(&bg->reservations))
6455 wake_up_atomic_t(&bg->reservations);
6456 btrfs_put_block_group(bg);
6457}
6458
6459static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6460{
6461 schedule();
6462 return 0;
6463}
6464
6465void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6466{
6467 struct btrfs_space_info *space_info = bg->space_info;
6468
6469 ASSERT(bg->ro);
6470
6471 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6472 return;
6473
6474 /*
6475 * Our block group is read only but before we set it to read only,
6476 * some task might have had allocated an extent from it already, but it
6477 * has not yet created a respective ordered extent (and added it to a
6478 * root's list of ordered extents).
6479 * Therefore wait for any task currently allocating extents, since the
6480 * block group's reservations counter is incremented while a read lock
6481 * on the groups' semaphore is held and decremented after releasing
6482 * the read access on that semaphore and creating the ordered extent.
6483 */
6484 down_write(&space_info->groups_sem);
6485 up_write(&space_info->groups_sem);
6486
6487 wait_on_atomic_t(&bg->reservations,
6488 btrfs_wait_bg_reservations_atomic_t,
6489 TASK_UNINTERRUPTIBLE);
6490}
6491
fb25e914 6492/**
4824f1f4 6493 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6494 * @cache: The cache we are manipulating
18513091
WX
6495 * @ram_bytes: The number of bytes of file content, and will be same to
6496 * @num_bytes except for the compress path.
fb25e914 6497 * @num_bytes: The number of bytes in question
e570fd27 6498 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6499 *
745699ef
XW
6500 * This is called by the allocator when it reserves space. If this is a
6501 * reservation and the block group has become read only we cannot make the
6502 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6503 */
4824f1f4 6504static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6505 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6506{
fb25e914 6507 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6508 int ret = 0;
79787eaa 6509
fb25e914
JB
6510 spin_lock(&space_info->lock);
6511 spin_lock(&cache->lock);
4824f1f4
WX
6512 if (cache->ro) {
6513 ret = -EAGAIN;
fb25e914 6514 } else {
4824f1f4
WX
6515 cache->reserved += num_bytes;
6516 space_info->bytes_reserved += num_bytes;
e570fd27 6517
18513091
WX
6518 trace_btrfs_space_reservation(cache->fs_info,
6519 "space_info", space_info->flags,
6520 ram_bytes, 0);
6521 space_info->bytes_may_use -= ram_bytes;
e570fd27 6522 if (delalloc)
4824f1f4 6523 cache->delalloc_bytes += num_bytes;
324ae4df 6524 }
fb25e914
JB
6525 spin_unlock(&cache->lock);
6526 spin_unlock(&space_info->lock);
f0486c68 6527 return ret;
324ae4df 6528}
9078a3e1 6529
4824f1f4
WX
6530/**
6531 * btrfs_free_reserved_bytes - update the block_group and space info counters
6532 * @cache: The cache we are manipulating
6533 * @num_bytes: The number of bytes in question
6534 * @delalloc: The blocks are allocated for the delalloc write
6535 *
6536 * This is called by somebody who is freeing space that was never actually used
6537 * on disk. For example if you reserve some space for a new leaf in transaction
6538 * A and before transaction A commits you free that leaf, you call this with
6539 * reserve set to 0 in order to clear the reservation.
6540 */
6541
6542static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6543 u64 num_bytes, int delalloc)
6544{
6545 struct btrfs_space_info *space_info = cache->space_info;
6546 int ret = 0;
6547
6548 spin_lock(&space_info->lock);
6549 spin_lock(&cache->lock);
6550 if (cache->ro)
6551 space_info->bytes_readonly += num_bytes;
6552 cache->reserved -= num_bytes;
6553 space_info->bytes_reserved -= num_bytes;
6554
6555 if (delalloc)
6556 cache->delalloc_bytes -= num_bytes;
6557 spin_unlock(&cache->lock);
6558 spin_unlock(&space_info->lock);
6559 return ret;
6560}
8b74c03e 6561void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6562{
11833d66
YZ
6563 struct btrfs_caching_control *next;
6564 struct btrfs_caching_control *caching_ctl;
6565 struct btrfs_block_group_cache *cache;
e8569813 6566
9e351cc8 6567 down_write(&fs_info->commit_root_sem);
25179201 6568
11833d66
YZ
6569 list_for_each_entry_safe(caching_ctl, next,
6570 &fs_info->caching_block_groups, list) {
6571 cache = caching_ctl->block_group;
6572 if (block_group_cache_done(cache)) {
6573 cache->last_byte_to_unpin = (u64)-1;
6574 list_del_init(&caching_ctl->list);
6575 put_caching_control(caching_ctl);
e8569813 6576 } else {
11833d66 6577 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6578 }
e8569813 6579 }
11833d66
YZ
6580
6581 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6582 fs_info->pinned_extents = &fs_info->freed_extents[1];
6583 else
6584 fs_info->pinned_extents = &fs_info->freed_extents[0];
6585
9e351cc8 6586 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6587
6588 update_global_block_rsv(fs_info);
e8569813
ZY
6589}
6590
c759c4e1
JB
6591/*
6592 * Returns the free cluster for the given space info and sets empty_cluster to
6593 * what it should be based on the mount options.
6594 */
6595static struct btrfs_free_cluster *
2ff7e61e
JM
6596fetch_cluster_info(struct btrfs_fs_info *fs_info,
6597 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6598{
6599 struct btrfs_free_cluster *ret = NULL;
0b246afa 6600 bool ssd = btrfs_test_opt(fs_info, SSD);
c759c4e1
JB
6601
6602 *empty_cluster = 0;
6603 if (btrfs_mixed_space_info(space_info))
6604 return ret;
6605
6606 if (ssd)
ee22184b 6607 *empty_cluster = SZ_2M;
c759c4e1 6608 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6609 ret = &fs_info->meta_alloc_cluster;
c759c4e1 6610 if (!ssd)
ee22184b 6611 *empty_cluster = SZ_64K;
c759c4e1 6612 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
0b246afa 6613 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6614 }
6615
6616 return ret;
6617}
6618
2ff7e61e
JM
6619static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6620 u64 start, u64 end,
678886bd 6621 const bool return_free_space)
ccd467d6 6622{
11833d66 6623 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6624 struct btrfs_space_info *space_info;
6625 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6626 struct btrfs_free_cluster *cluster = NULL;
11833d66 6627 u64 len;
c759c4e1
JB
6628 u64 total_unpinned = 0;
6629 u64 empty_cluster = 0;
7b398f8e 6630 bool readonly;
ccd467d6 6631
11833d66 6632 while (start <= end) {
7b398f8e 6633 readonly = false;
11833d66
YZ
6634 if (!cache ||
6635 start >= cache->key.objectid + cache->key.offset) {
6636 if (cache)
6637 btrfs_put_block_group(cache);
c759c4e1 6638 total_unpinned = 0;
11833d66 6639 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6640 BUG_ON(!cache); /* Logic error */
c759c4e1 6641
2ff7e61e 6642 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6643 cache->space_info,
6644 &empty_cluster);
6645 empty_cluster <<= 1;
11833d66
YZ
6646 }
6647
6648 len = cache->key.objectid + cache->key.offset - start;
6649 len = min(len, end + 1 - start);
6650
6651 if (start < cache->last_byte_to_unpin) {
6652 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6653 if (return_free_space)
6654 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6655 }
6656
f0486c68 6657 start += len;
c759c4e1 6658 total_unpinned += len;
7b398f8e 6659 space_info = cache->space_info;
f0486c68 6660
c759c4e1
JB
6661 /*
6662 * If this space cluster has been marked as fragmented and we've
6663 * unpinned enough in this block group to potentially allow a
6664 * cluster to be created inside of it go ahead and clear the
6665 * fragmented check.
6666 */
6667 if (cluster && cluster->fragmented &&
6668 total_unpinned > empty_cluster) {
6669 spin_lock(&cluster->lock);
6670 cluster->fragmented = 0;
6671 spin_unlock(&cluster->lock);
6672 }
6673
7b398f8e 6674 spin_lock(&space_info->lock);
11833d66
YZ
6675 spin_lock(&cache->lock);
6676 cache->pinned -= len;
7b398f8e 6677 space_info->bytes_pinned -= len;
c51e7bb1
JB
6678
6679 trace_btrfs_space_reservation(fs_info, "pinned",
6680 space_info->flags, len, 0);
4f4db217 6681 space_info->max_extent_size = 0;
d288db5d 6682 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6683 if (cache->ro) {
6684 space_info->bytes_readonly += len;
6685 readonly = true;
6686 }
11833d66 6687 spin_unlock(&cache->lock);
957780eb
JB
6688 if (!readonly && return_free_space &&
6689 global_rsv->space_info == space_info) {
6690 u64 to_add = len;
6691 WARN_ON(!return_free_space);
7b398f8e
JB
6692 spin_lock(&global_rsv->lock);
6693 if (!global_rsv->full) {
957780eb
JB
6694 to_add = min(len, global_rsv->size -
6695 global_rsv->reserved);
6696 global_rsv->reserved += to_add;
6697 space_info->bytes_may_use += to_add;
7b398f8e
JB
6698 if (global_rsv->reserved >= global_rsv->size)
6699 global_rsv->full = 1;
957780eb
JB
6700 trace_btrfs_space_reservation(fs_info,
6701 "space_info",
6702 space_info->flags,
6703 to_add, 1);
6704 len -= to_add;
7b398f8e
JB
6705 }
6706 spin_unlock(&global_rsv->lock);
957780eb
JB
6707 /* Add to any tickets we may have */
6708 if (len)
6709 space_info_add_new_bytes(fs_info, space_info,
6710 len);
7b398f8e
JB
6711 }
6712 spin_unlock(&space_info->lock);
ccd467d6 6713 }
11833d66
YZ
6714
6715 if (cache)
6716 btrfs_put_block_group(cache);
ccd467d6
CM
6717 return 0;
6718}
6719
6720int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6721 struct btrfs_fs_info *fs_info)
a28ec197 6722{
e33e17ee
JM
6723 struct btrfs_block_group_cache *block_group, *tmp;
6724 struct list_head *deleted_bgs;
11833d66 6725 struct extent_io_tree *unpin;
1a5bc167
CM
6726 u64 start;
6727 u64 end;
a28ec197 6728 int ret;
a28ec197 6729
11833d66
YZ
6730 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6731 unpin = &fs_info->freed_extents[1];
6732 else
6733 unpin = &fs_info->freed_extents[0];
6734
e33e17ee 6735 while (!trans->aborted) {
d4b450cd 6736 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6737 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6738 EXTENT_DIRTY, NULL);
d4b450cd
FM
6739 if (ret) {
6740 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6741 break;
d4b450cd 6742 }
1f3c79a2 6743
0b246afa 6744 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6745 ret = btrfs_discard_extent(fs_info, start,
5378e607 6746 end + 1 - start, NULL);
1f3c79a2 6747
af6f8f60 6748 clear_extent_dirty(unpin, start, end);
2ff7e61e 6749 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6750 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6751 cond_resched();
a28ec197 6752 }
817d52f8 6753
e33e17ee
JM
6754 /*
6755 * Transaction is finished. We don't need the lock anymore. We
6756 * do need to clean up the block groups in case of a transaction
6757 * abort.
6758 */
6759 deleted_bgs = &trans->transaction->deleted_bgs;
6760 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6761 u64 trimmed = 0;
6762
6763 ret = -EROFS;
6764 if (!trans->aborted)
2ff7e61e 6765 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6766 block_group->key.objectid,
6767 block_group->key.offset,
6768 &trimmed);
6769
6770 list_del_init(&block_group->bg_list);
6771 btrfs_put_block_group_trimming(block_group);
6772 btrfs_put_block_group(block_group);
6773
6774 if (ret) {
6775 const char *errstr = btrfs_decode_error(ret);
6776 btrfs_warn(fs_info,
6777 "Discard failed while removing blockgroup: errno=%d %s\n",
6778 ret, errstr);
6779 }
6780 }
6781
e20d96d6
CM
6782 return 0;
6783}
6784
b150a4f1
JB
6785static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6786 u64 owner, u64 root_objectid)
6787{
6788 struct btrfs_space_info *space_info;
6789 u64 flags;
6790
6791 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6792 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6793 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6794 else
6795 flags = BTRFS_BLOCK_GROUP_METADATA;
6796 } else {
6797 flags = BTRFS_BLOCK_GROUP_DATA;
6798 }
6799
6800 space_info = __find_space_info(fs_info, flags);
6801 BUG_ON(!space_info); /* Logic bug */
6802 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6803}
6804
6805
5d4f98a2 6806static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6807 struct btrfs_fs_info *info,
c682f9b3 6808 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6809 u64 root_objectid, u64 owner_objectid,
6810 u64 owner_offset, int refs_to_drop,
c682f9b3 6811 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6812{
e2fa7227 6813 struct btrfs_key key;
5d4f98a2 6814 struct btrfs_path *path;
1261ec42 6815 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6816 struct extent_buffer *leaf;
5d4f98a2
YZ
6817 struct btrfs_extent_item *ei;
6818 struct btrfs_extent_inline_ref *iref;
a28ec197 6819 int ret;
5d4f98a2 6820 int is_data;
952fccac
CM
6821 int extent_slot = 0;
6822 int found_extent = 0;
6823 int num_to_del = 1;
5d4f98a2
YZ
6824 u32 item_size;
6825 u64 refs;
c682f9b3
QW
6826 u64 bytenr = node->bytenr;
6827 u64 num_bytes = node->num_bytes;
fcebe456 6828 int last_ref = 0;
0b246afa 6829 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6830
5caf2a00 6831 path = btrfs_alloc_path();
54aa1f4d
CM
6832 if (!path)
6833 return -ENOMEM;
5f26f772 6834
e4058b54 6835 path->reada = READA_FORWARD;
b9473439 6836 path->leave_spinning = 1;
5d4f98a2
YZ
6837
6838 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6839 BUG_ON(!is_data && refs_to_drop != 1);
6840
3173a18f
JB
6841 if (is_data)
6842 skinny_metadata = 0;
6843
5d4f98a2
YZ
6844 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6845 bytenr, num_bytes, parent,
6846 root_objectid, owner_objectid,
6847 owner_offset);
7bb86316 6848 if (ret == 0) {
952fccac 6849 extent_slot = path->slots[0];
5d4f98a2
YZ
6850 while (extent_slot >= 0) {
6851 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6852 extent_slot);
5d4f98a2 6853 if (key.objectid != bytenr)
952fccac 6854 break;
5d4f98a2
YZ
6855 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6856 key.offset == num_bytes) {
952fccac
CM
6857 found_extent = 1;
6858 break;
6859 }
3173a18f
JB
6860 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6861 key.offset == owner_objectid) {
6862 found_extent = 1;
6863 break;
6864 }
952fccac
CM
6865 if (path->slots[0] - extent_slot > 5)
6866 break;
5d4f98a2 6867 extent_slot--;
952fccac 6868 }
5d4f98a2
YZ
6869#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6870 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6871 if (found_extent && item_size < sizeof(*ei))
6872 found_extent = 0;
6873#endif
31840ae1 6874 if (!found_extent) {
5d4f98a2 6875 BUG_ON(iref);
56bec294 6876 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6877 NULL, refs_to_drop,
fcebe456 6878 is_data, &last_ref);
005d6427 6879 if (ret) {
66642832 6880 btrfs_abort_transaction(trans, ret);
005d6427
DS
6881 goto out;
6882 }
b3b4aa74 6883 btrfs_release_path(path);
b9473439 6884 path->leave_spinning = 1;
5d4f98a2
YZ
6885
6886 key.objectid = bytenr;
6887 key.type = BTRFS_EXTENT_ITEM_KEY;
6888 key.offset = num_bytes;
6889
3173a18f
JB
6890 if (!is_data && skinny_metadata) {
6891 key.type = BTRFS_METADATA_ITEM_KEY;
6892 key.offset = owner_objectid;
6893 }
6894
31840ae1
ZY
6895 ret = btrfs_search_slot(trans, extent_root,
6896 &key, path, -1, 1);
3173a18f
JB
6897 if (ret > 0 && skinny_metadata && path->slots[0]) {
6898 /*
6899 * Couldn't find our skinny metadata item,
6900 * see if we have ye olde extent item.
6901 */
6902 path->slots[0]--;
6903 btrfs_item_key_to_cpu(path->nodes[0], &key,
6904 path->slots[0]);
6905 if (key.objectid == bytenr &&
6906 key.type == BTRFS_EXTENT_ITEM_KEY &&
6907 key.offset == num_bytes)
6908 ret = 0;
6909 }
6910
6911 if (ret > 0 && skinny_metadata) {
6912 skinny_metadata = false;
9ce49a0b 6913 key.objectid = bytenr;
3173a18f
JB
6914 key.type = BTRFS_EXTENT_ITEM_KEY;
6915 key.offset = num_bytes;
6916 btrfs_release_path(path);
6917 ret = btrfs_search_slot(trans, extent_root,
6918 &key, path, -1, 1);
6919 }
6920
f3465ca4 6921 if (ret) {
5d163e0e
JM
6922 btrfs_err(info,
6923 "umm, got %d back from search, was looking for %llu",
6924 ret, bytenr);
b783e62d 6925 if (ret > 0)
2ff7e61e 6926 btrfs_print_leaf(info, path->nodes[0]);
f3465ca4 6927 }
005d6427 6928 if (ret < 0) {
66642832 6929 btrfs_abort_transaction(trans, ret);
005d6427
DS
6930 goto out;
6931 }
31840ae1
ZY
6932 extent_slot = path->slots[0];
6933 }
fae7f21c 6934 } else if (WARN_ON(ret == -ENOENT)) {
2ff7e61e 6935 btrfs_print_leaf(info, path->nodes[0]);
c2cf52eb
SK
6936 btrfs_err(info,
6937 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6938 bytenr, parent, root_objectid, owner_objectid,
6939 owner_offset);
66642832 6940 btrfs_abort_transaction(trans, ret);
c4a050bb 6941 goto out;
79787eaa 6942 } else {
66642832 6943 btrfs_abort_transaction(trans, ret);
005d6427 6944 goto out;
7bb86316 6945 }
5f39d397
CM
6946
6947 leaf = path->nodes[0];
5d4f98a2
YZ
6948 item_size = btrfs_item_size_nr(leaf, extent_slot);
6949#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6950 if (item_size < sizeof(*ei)) {
6951 BUG_ON(found_extent || extent_slot != path->slots[0]);
6952 ret = convert_extent_item_v0(trans, extent_root, path,
6953 owner_objectid, 0);
005d6427 6954 if (ret < 0) {
66642832 6955 btrfs_abort_transaction(trans, ret);
005d6427
DS
6956 goto out;
6957 }
5d4f98a2 6958
b3b4aa74 6959 btrfs_release_path(path);
5d4f98a2
YZ
6960 path->leave_spinning = 1;
6961
6962 key.objectid = bytenr;
6963 key.type = BTRFS_EXTENT_ITEM_KEY;
6964 key.offset = num_bytes;
6965
6966 ret = btrfs_search_slot(trans, extent_root, &key, path,
6967 -1, 1);
6968 if (ret) {
5d163e0e
JM
6969 btrfs_err(info,
6970 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6971 ret, bytenr);
2ff7e61e 6972 btrfs_print_leaf(info, path->nodes[0]);
5d4f98a2 6973 }
005d6427 6974 if (ret < 0) {
66642832 6975 btrfs_abort_transaction(trans, ret);
005d6427
DS
6976 goto out;
6977 }
6978
5d4f98a2
YZ
6979 extent_slot = path->slots[0];
6980 leaf = path->nodes[0];
6981 item_size = btrfs_item_size_nr(leaf, extent_slot);
6982 }
6983#endif
6984 BUG_ON(item_size < sizeof(*ei));
952fccac 6985 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6986 struct btrfs_extent_item);
3173a18f
JB
6987 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6988 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6989 struct btrfs_tree_block_info *bi;
6990 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6991 bi = (struct btrfs_tree_block_info *)(ei + 1);
6992 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6993 }
56bec294 6994
5d4f98a2 6995 refs = btrfs_extent_refs(leaf, ei);
32b02538 6996 if (refs < refs_to_drop) {
5d163e0e
JM
6997 btrfs_err(info,
6998 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6999 refs_to_drop, refs, bytenr);
32b02538 7000 ret = -EINVAL;
66642832 7001 btrfs_abort_transaction(trans, ret);
32b02538
JB
7002 goto out;
7003 }
56bec294 7004 refs -= refs_to_drop;
5f39d397 7005
5d4f98a2
YZ
7006 if (refs > 0) {
7007 if (extent_op)
7008 __run_delayed_extent_op(extent_op, leaf, ei);
7009 /*
7010 * In the case of inline back ref, reference count will
7011 * be updated by remove_extent_backref
952fccac 7012 */
5d4f98a2
YZ
7013 if (iref) {
7014 BUG_ON(!found_extent);
7015 } else {
7016 btrfs_set_extent_refs(leaf, ei, refs);
7017 btrfs_mark_buffer_dirty(leaf);
7018 }
7019 if (found_extent) {
7020 ret = remove_extent_backref(trans, extent_root, path,
7021 iref, refs_to_drop,
fcebe456 7022 is_data, &last_ref);
005d6427 7023 if (ret) {
66642832 7024 btrfs_abort_transaction(trans, ret);
005d6427
DS
7025 goto out;
7026 }
952fccac 7027 }
0b246afa 7028 add_pinned_bytes(info, -num_bytes, owner_objectid,
b150a4f1 7029 root_objectid);
5d4f98a2 7030 } else {
5d4f98a2
YZ
7031 if (found_extent) {
7032 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7033 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7034 if (iref) {
7035 BUG_ON(path->slots[0] != extent_slot);
7036 } else {
7037 BUG_ON(path->slots[0] != extent_slot + 1);
7038 path->slots[0] = extent_slot;
7039 num_to_del = 2;
7040 }
78fae27e 7041 }
b9473439 7042
fcebe456 7043 last_ref = 1;
952fccac
CM
7044 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7045 num_to_del);
005d6427 7046 if (ret) {
66642832 7047 btrfs_abort_transaction(trans, ret);
005d6427
DS
7048 goto out;
7049 }
b3b4aa74 7050 btrfs_release_path(path);
21af804c 7051
5d4f98a2 7052 if (is_data) {
5b4aacef 7053 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7054 if (ret) {
66642832 7055 btrfs_abort_transaction(trans, ret);
005d6427
DS
7056 goto out;
7057 }
459931ec
CM
7058 }
7059
0b246afa 7060 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7061 if (ret) {
66642832 7062 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7063 goto out;
7064 }
7065
0b246afa 7066 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7067 if (ret) {
66642832 7068 btrfs_abort_transaction(trans, ret);
005d6427
DS
7069 goto out;
7070 }
a28ec197 7071 }
fcebe456
JB
7072 btrfs_release_path(path);
7073
79787eaa 7074out:
5caf2a00 7075 btrfs_free_path(path);
a28ec197
CM
7076 return ret;
7077}
7078
1887be66 7079/*
f0486c68 7080 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7081 * delayed ref for that extent as well. This searches the delayed ref tree for
7082 * a given extent, and if there are no other delayed refs to be processed, it
7083 * removes it from the tree.
7084 */
7085static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7086 u64 bytenr)
1887be66
CM
7087{
7088 struct btrfs_delayed_ref_head *head;
7089 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7090 int ret = 0;
1887be66
CM
7091
7092 delayed_refs = &trans->transaction->delayed_refs;
7093 spin_lock(&delayed_refs->lock);
f72ad18e 7094 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7095 if (!head)
cf93da7b 7096 goto out_delayed_unlock;
1887be66 7097
d7df2c79 7098 spin_lock(&head->lock);
c6fc2454 7099 if (!list_empty(&head->ref_list))
1887be66
CM
7100 goto out;
7101
5d4f98a2
YZ
7102 if (head->extent_op) {
7103 if (!head->must_insert_reserved)
7104 goto out;
78a6184a 7105 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7106 head->extent_op = NULL;
7107 }
7108
1887be66
CM
7109 /*
7110 * waiting for the lock here would deadlock. If someone else has it
7111 * locked they are already in the process of dropping it anyway
7112 */
7113 if (!mutex_trylock(&head->mutex))
7114 goto out;
7115
7116 /*
7117 * at this point we have a head with no other entries. Go
7118 * ahead and process it.
7119 */
7120 head->node.in_tree = 0;
c46effa6 7121 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7122
d7df2c79 7123 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7124
7125 /*
7126 * we don't take a ref on the node because we're removing it from the
7127 * tree, so we just steal the ref the tree was holding.
7128 */
c3e69d58 7129 delayed_refs->num_heads--;
d7df2c79 7130 if (head->processing == 0)
c3e69d58 7131 delayed_refs->num_heads_ready--;
d7df2c79
JB
7132 head->processing = 0;
7133 spin_unlock(&head->lock);
1887be66
CM
7134 spin_unlock(&delayed_refs->lock);
7135
f0486c68
YZ
7136 BUG_ON(head->extent_op);
7137 if (head->must_insert_reserved)
7138 ret = 1;
7139
7140 mutex_unlock(&head->mutex);
1887be66 7141 btrfs_put_delayed_ref(&head->node);
f0486c68 7142 return ret;
1887be66 7143out:
d7df2c79 7144 spin_unlock(&head->lock);
cf93da7b
CM
7145
7146out_delayed_unlock:
1887be66
CM
7147 spin_unlock(&delayed_refs->lock);
7148 return 0;
7149}
7150
f0486c68
YZ
7151void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7152 struct btrfs_root *root,
7153 struct extent_buffer *buf,
5581a51a 7154 u64 parent, int last_ref)
f0486c68 7155{
0b246afa 7156 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7157 int pin = 1;
f0486c68
YZ
7158 int ret;
7159
7160 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
0b246afa
JM
7161 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7162 buf->start, buf->len,
7163 parent,
7164 root->root_key.objectid,
7165 btrfs_header_level(buf),
7166 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7167 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7168 }
7169
7170 if (!last_ref)
7171 return;
7172
f0486c68 7173 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7174 struct btrfs_block_group_cache *cache;
7175
f0486c68 7176 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7177 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7178 if (!ret)
37be25bc 7179 goto out;
f0486c68
YZ
7180 }
7181
0b246afa 7182 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7183
f0486c68 7184 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7185 pin_down_extent(fs_info, cache, buf->start,
7186 buf->len, 1);
6219872d 7187 btrfs_put_block_group(cache);
37be25bc 7188 goto out;
f0486c68
YZ
7189 }
7190
7191 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7192
7193 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7194 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7195 btrfs_put_block_group(cache);
71ff6437 7196 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
b150a4f1 7197 pin = 0;
f0486c68
YZ
7198 }
7199out:
b150a4f1 7200 if (pin)
0b246afa 7201 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7202 root->root_key.objectid);
7203
a826d6dc
JB
7204 /*
7205 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7206 * anymore.
7207 */
7208 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7209}
7210
79787eaa 7211/* Can return -ENOMEM */
2ff7e61e
JM
7212int btrfs_free_extent(struct btrfs_trans_handle *trans,
7213 struct btrfs_fs_info *fs_info,
66d7e7f0 7214 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7215 u64 owner, u64 offset)
925baedd
CM
7216{
7217 int ret;
7218
f5ee5c9a 7219 if (btrfs_is_testing(fs_info))
faa2dbf0 7220 return 0;
fccb84c9 7221
0b246afa 7222 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
b150a4f1 7223
56bec294
CM
7224 /*
7225 * tree log blocks never actually go into the extent allocation
7226 * tree, just update pinning info and exit early.
56bec294 7227 */
5d4f98a2
YZ
7228 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7229 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7230 /* unlocks the pinned mutex */
2ff7e61e 7231 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
56bec294 7232 ret = 0;
5d4f98a2 7233 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7234 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7235 num_bytes,
5d4f98a2 7236 parent, root_objectid, (int)owner,
b06c4bf5 7237 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7238 } else {
66d7e7f0
AJ
7239 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7240 num_bytes,
7241 parent, root_objectid, owner,
5846a3c2 7242 offset, 0,
fef394f7 7243 BTRFS_DROP_DELAYED_REF);
56bec294 7244 }
925baedd
CM
7245 return ret;
7246}
7247
817d52f8
JB
7248/*
7249 * when we wait for progress in the block group caching, its because
7250 * our allocation attempt failed at least once. So, we must sleep
7251 * and let some progress happen before we try again.
7252 *
7253 * This function will sleep at least once waiting for new free space to
7254 * show up, and then it will check the block group free space numbers
7255 * for our min num_bytes. Another option is to have it go ahead
7256 * and look in the rbtree for a free extent of a given size, but this
7257 * is a good start.
36cce922
JB
7258 *
7259 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7260 * any of the information in this block group.
817d52f8 7261 */
36cce922 7262static noinline void
817d52f8
JB
7263wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7264 u64 num_bytes)
7265{
11833d66 7266 struct btrfs_caching_control *caching_ctl;
817d52f8 7267
11833d66
YZ
7268 caching_ctl = get_caching_control(cache);
7269 if (!caching_ctl)
36cce922 7270 return;
817d52f8 7271
11833d66 7272 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7273 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7274
7275 put_caching_control(caching_ctl);
11833d66
YZ
7276}
7277
7278static noinline int
7279wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7280{
7281 struct btrfs_caching_control *caching_ctl;
36cce922 7282 int ret = 0;
11833d66
YZ
7283
7284 caching_ctl = get_caching_control(cache);
7285 if (!caching_ctl)
36cce922 7286 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7287
7288 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7289 if (cache->cached == BTRFS_CACHE_ERROR)
7290 ret = -EIO;
11833d66 7291 put_caching_control(caching_ctl);
36cce922 7292 return ret;
817d52f8
JB
7293}
7294
31e50229 7295int __get_raid_index(u64 flags)
b742bb82 7296{
7738a53a 7297 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7298 return BTRFS_RAID_RAID10;
7738a53a 7299 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7300 return BTRFS_RAID_RAID1;
7738a53a 7301 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7302 return BTRFS_RAID_DUP;
7738a53a 7303 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7304 return BTRFS_RAID_RAID0;
53b381b3 7305 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7306 return BTRFS_RAID_RAID5;
53b381b3 7307 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7308 return BTRFS_RAID_RAID6;
7738a53a 7309
e942f883 7310 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7311}
7312
6ab0a202 7313int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7314{
31e50229 7315 return __get_raid_index(cache->flags);
7738a53a
ID
7316}
7317
6ab0a202
JM
7318static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7319 [BTRFS_RAID_RAID10] = "raid10",
7320 [BTRFS_RAID_RAID1] = "raid1",
7321 [BTRFS_RAID_DUP] = "dup",
7322 [BTRFS_RAID_RAID0] = "raid0",
7323 [BTRFS_RAID_SINGLE] = "single",
7324 [BTRFS_RAID_RAID5] = "raid5",
7325 [BTRFS_RAID_RAID6] = "raid6",
7326};
7327
1b8e5df6 7328static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7329{
7330 if (type >= BTRFS_NR_RAID_TYPES)
7331 return NULL;
7332
7333 return btrfs_raid_type_names[type];
7334}
7335
817d52f8 7336enum btrfs_loop_type {
285ff5af
JB
7337 LOOP_CACHING_NOWAIT = 0,
7338 LOOP_CACHING_WAIT = 1,
7339 LOOP_ALLOC_CHUNK = 2,
7340 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7341};
7342
e570fd27
MX
7343static inline void
7344btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7345 int delalloc)
7346{
7347 if (delalloc)
7348 down_read(&cache->data_rwsem);
7349}
7350
7351static inline void
7352btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7353 int delalloc)
7354{
7355 btrfs_get_block_group(cache);
7356 if (delalloc)
7357 down_read(&cache->data_rwsem);
7358}
7359
7360static struct btrfs_block_group_cache *
7361btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7362 struct btrfs_free_cluster *cluster,
7363 int delalloc)
7364{
89771cc9 7365 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7366
e570fd27 7367 spin_lock(&cluster->refill_lock);
6719afdc
GU
7368 while (1) {
7369 used_bg = cluster->block_group;
7370 if (!used_bg)
7371 return NULL;
7372
7373 if (used_bg == block_group)
e570fd27
MX
7374 return used_bg;
7375
6719afdc 7376 btrfs_get_block_group(used_bg);
e570fd27 7377
6719afdc
GU
7378 if (!delalloc)
7379 return used_bg;
e570fd27 7380
6719afdc
GU
7381 if (down_read_trylock(&used_bg->data_rwsem))
7382 return used_bg;
e570fd27 7383
6719afdc 7384 spin_unlock(&cluster->refill_lock);
e570fd27 7385
e321f8a8
LB
7386 /* We should only have one-level nested. */
7387 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7388
6719afdc
GU
7389 spin_lock(&cluster->refill_lock);
7390 if (used_bg == cluster->block_group)
7391 return used_bg;
e570fd27 7392
6719afdc
GU
7393 up_read(&used_bg->data_rwsem);
7394 btrfs_put_block_group(used_bg);
7395 }
e570fd27
MX
7396}
7397
7398static inline void
7399btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7400 int delalloc)
7401{
7402 if (delalloc)
7403 up_read(&cache->data_rwsem);
7404 btrfs_put_block_group(cache);
7405}
7406
fec577fb
CM
7407/*
7408 * walks the btree of allocated extents and find a hole of a given size.
7409 * The key ins is changed to record the hole:
a4820398 7410 * ins->objectid == start position
62e2749e 7411 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7412 * ins->offset == the size of the hole.
fec577fb 7413 * Any available blocks before search_start are skipped.
a4820398
MX
7414 *
7415 * If there is no suitable free space, we will record the max size of
7416 * the free space extent currently.
fec577fb 7417 */
00361589 7418static noinline int find_free_extent(struct btrfs_root *orig_root,
18513091
WX
7419 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7420 u64 hint_byte, struct btrfs_key *ins,
7421 u64 flags, int delalloc)
fec577fb 7422{
0b246afa 7423 struct btrfs_fs_info *fs_info = orig_root->fs_info;
80eb234a 7424 int ret = 0;
0b246afa 7425 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7426 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7427 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7428 u64 search_start = 0;
a4820398 7429 u64 max_extent_size = 0;
c759c4e1 7430 u64 empty_cluster = 0;
80eb234a 7431 struct btrfs_space_info *space_info;
fa9c0d79 7432 int loop = 0;
b6919a58 7433 int index = __get_raid_index(flags);
0a24325e 7434 bool failed_cluster_refill = false;
1cdda9b8 7435 bool failed_alloc = false;
67377734 7436 bool use_cluster = true;
60d2adbb 7437 bool have_caching_bg = false;
13a0db5a 7438 bool orig_have_caching_bg = false;
a5e681d9 7439 bool full_search = false;
fec577fb 7440
0b246afa 7441 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7442 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7443 ins->objectid = 0;
7444 ins->offset = 0;
b1a4d965 7445
71ff6437 7446 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7447
0b246afa 7448 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7449 if (!space_info) {
0b246afa 7450 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7451 return -ENOSPC;
7452 }
2552d17e 7453
67377734 7454 /*
4f4db217
JB
7455 * If our free space is heavily fragmented we may not be able to make
7456 * big contiguous allocations, so instead of doing the expensive search
7457 * for free space, simply return ENOSPC with our max_extent_size so we
7458 * can go ahead and search for a more manageable chunk.
7459 *
7460 * If our max_extent_size is large enough for our allocation simply
7461 * disable clustering since we will likely not be able to find enough
7462 * space to create a cluster and induce latency trying.
67377734 7463 */
4f4db217
JB
7464 if (unlikely(space_info->max_extent_size)) {
7465 spin_lock(&space_info->lock);
7466 if (space_info->max_extent_size &&
7467 num_bytes > space_info->max_extent_size) {
7468 ins->offset = space_info->max_extent_size;
7469 spin_unlock(&space_info->lock);
7470 return -ENOSPC;
7471 } else if (space_info->max_extent_size) {
7472 use_cluster = false;
7473 }
7474 spin_unlock(&space_info->lock);
fa9c0d79 7475 }
0f9dd46c 7476
2ff7e61e 7477 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7478 if (last_ptr) {
fa9c0d79
CM
7479 spin_lock(&last_ptr->lock);
7480 if (last_ptr->block_group)
7481 hint_byte = last_ptr->window_start;
c759c4e1
JB
7482 if (last_ptr->fragmented) {
7483 /*
7484 * We still set window_start so we can keep track of the
7485 * last place we found an allocation to try and save
7486 * some time.
7487 */
7488 hint_byte = last_ptr->window_start;
7489 use_cluster = false;
7490 }
fa9c0d79 7491 spin_unlock(&last_ptr->lock);
239b14b3 7492 }
fa9c0d79 7493
2ff7e61e 7494 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7495 search_start = max(search_start, hint_byte);
2552d17e 7496 if (search_start == hint_byte) {
0b246afa 7497 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7498 /*
7499 * we don't want to use the block group if it doesn't match our
7500 * allocation bits, or if its not cached.
ccf0e725
JB
7501 *
7502 * However if we are re-searching with an ideal block group
7503 * picked out then we don't care that the block group is cached.
817d52f8 7504 */
b6919a58 7505 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7506 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7507 down_read(&space_info->groups_sem);
44fb5511
CM
7508 if (list_empty(&block_group->list) ||
7509 block_group->ro) {
7510 /*
7511 * someone is removing this block group,
7512 * we can't jump into the have_block_group
7513 * target because our list pointers are not
7514 * valid
7515 */
7516 btrfs_put_block_group(block_group);
7517 up_read(&space_info->groups_sem);
ccf0e725 7518 } else {
b742bb82 7519 index = get_block_group_index(block_group);
e570fd27 7520 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7521 goto have_block_group;
ccf0e725 7522 }
2552d17e 7523 } else if (block_group) {
fa9c0d79 7524 btrfs_put_block_group(block_group);
2552d17e 7525 }
42e70e7a 7526 }
2552d17e 7527search:
60d2adbb 7528 have_caching_bg = false;
a5e681d9
JB
7529 if (index == 0 || index == __get_raid_index(flags))
7530 full_search = true;
80eb234a 7531 down_read(&space_info->groups_sem);
b742bb82
YZ
7532 list_for_each_entry(block_group, &space_info->block_groups[index],
7533 list) {
6226cb0a 7534 u64 offset;
817d52f8 7535 int cached;
8a1413a2 7536
e570fd27 7537 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7538 search_start = block_group->key.objectid;
42e70e7a 7539
83a50de9
CM
7540 /*
7541 * this can happen if we end up cycling through all the
7542 * raid types, but we want to make sure we only allocate
7543 * for the proper type.
7544 */
b6919a58 7545 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7546 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7547 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7548 BTRFS_BLOCK_GROUP_RAID5 |
7549 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7550 BTRFS_BLOCK_GROUP_RAID10;
7551
7552 /*
7553 * if they asked for extra copies and this block group
7554 * doesn't provide them, bail. This does allow us to
7555 * fill raid0 from raid1.
7556 */
b6919a58 7557 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7558 goto loop;
7559 }
7560
2552d17e 7561have_block_group:
291c7d2f
JB
7562 cached = block_group_cache_done(block_group);
7563 if (unlikely(!cached)) {
a5e681d9 7564 have_caching_bg = true;
f6373bf3 7565 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7566 BUG_ON(ret < 0);
7567 ret = 0;
817d52f8
JB
7568 }
7569
36cce922
JB
7570 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7571 goto loop;
ea6a478e 7572 if (unlikely(block_group->ro))
2552d17e 7573 goto loop;
0f9dd46c 7574
0a24325e 7575 /*
062c05c4
AO
7576 * Ok we want to try and use the cluster allocator, so
7577 * lets look there
0a24325e 7578 */
c759c4e1 7579 if (last_ptr && use_cluster) {
215a63d1 7580 struct btrfs_block_group_cache *used_block_group;
8de972b4 7581 unsigned long aligned_cluster;
fa9c0d79
CM
7582 /*
7583 * the refill lock keeps out other
7584 * people trying to start a new cluster
7585 */
e570fd27
MX
7586 used_block_group = btrfs_lock_cluster(block_group,
7587 last_ptr,
7588 delalloc);
7589 if (!used_block_group)
44fb5511 7590 goto refill_cluster;
274bd4fb 7591
e570fd27
MX
7592 if (used_block_group != block_group &&
7593 (used_block_group->ro ||
7594 !block_group_bits(used_block_group, flags)))
7595 goto release_cluster;
44fb5511 7596
274bd4fb 7597 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7598 last_ptr,
7599 num_bytes,
7600 used_block_group->key.objectid,
7601 &max_extent_size);
fa9c0d79
CM
7602 if (offset) {
7603 /* we have a block, we're done */
7604 spin_unlock(&last_ptr->refill_lock);
71ff6437 7605 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7606 used_block_group,
7607 search_start, num_bytes);
215a63d1 7608 if (used_block_group != block_group) {
e570fd27
MX
7609 btrfs_release_block_group(block_group,
7610 delalloc);
215a63d1
MX
7611 block_group = used_block_group;
7612 }
fa9c0d79
CM
7613 goto checks;
7614 }
7615
274bd4fb 7616 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7617release_cluster:
062c05c4
AO
7618 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7619 * set up a new clusters, so lets just skip it
7620 * and let the allocator find whatever block
7621 * it can find. If we reach this point, we
7622 * will have tried the cluster allocator
7623 * plenty of times and not have found
7624 * anything, so we are likely way too
7625 * fragmented for the clustering stuff to find
a5f6f719
AO
7626 * anything.
7627 *
7628 * However, if the cluster is taken from the
7629 * current block group, release the cluster
7630 * first, so that we stand a better chance of
7631 * succeeding in the unclustered
7632 * allocation. */
7633 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7634 used_block_group != block_group) {
062c05c4 7635 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7636 btrfs_release_block_group(used_block_group,
7637 delalloc);
062c05c4
AO
7638 goto unclustered_alloc;
7639 }
7640
fa9c0d79
CM
7641 /*
7642 * this cluster didn't work out, free it and
7643 * start over
7644 */
7645 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7646
e570fd27
MX
7647 if (used_block_group != block_group)
7648 btrfs_release_block_group(used_block_group,
7649 delalloc);
7650refill_cluster:
a5f6f719
AO
7651 if (loop >= LOOP_NO_EMPTY_SIZE) {
7652 spin_unlock(&last_ptr->refill_lock);
7653 goto unclustered_alloc;
7654 }
7655
8de972b4
CM
7656 aligned_cluster = max_t(unsigned long,
7657 empty_cluster + empty_size,
7658 block_group->full_stripe_len);
7659
fa9c0d79 7660 /* allocate a cluster in this block group */
2ff7e61e 7661 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7662 last_ptr, search_start,
7663 num_bytes,
7664 aligned_cluster);
fa9c0d79
CM
7665 if (ret == 0) {
7666 /*
7667 * now pull our allocation out of this
7668 * cluster
7669 */
7670 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7671 last_ptr,
7672 num_bytes,
7673 search_start,
7674 &max_extent_size);
fa9c0d79
CM
7675 if (offset) {
7676 /* we found one, proceed */
7677 spin_unlock(&last_ptr->refill_lock);
71ff6437 7678 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7679 block_group, search_start,
7680 num_bytes);
fa9c0d79
CM
7681 goto checks;
7682 }
0a24325e
JB
7683 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7684 && !failed_cluster_refill) {
817d52f8
JB
7685 spin_unlock(&last_ptr->refill_lock);
7686
0a24325e 7687 failed_cluster_refill = true;
817d52f8
JB
7688 wait_block_group_cache_progress(block_group,
7689 num_bytes + empty_cluster + empty_size);
7690 goto have_block_group;
fa9c0d79 7691 }
817d52f8 7692
fa9c0d79
CM
7693 /*
7694 * at this point we either didn't find a cluster
7695 * or we weren't able to allocate a block from our
7696 * cluster. Free the cluster we've been trying
7697 * to use, and go to the next block group
7698 */
0a24325e 7699 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7700 spin_unlock(&last_ptr->refill_lock);
0a24325e 7701 goto loop;
fa9c0d79
CM
7702 }
7703
062c05c4 7704unclustered_alloc:
c759c4e1
JB
7705 /*
7706 * We are doing an unclustered alloc, set the fragmented flag so
7707 * we don't bother trying to setup a cluster again until we get
7708 * more space.
7709 */
7710 if (unlikely(last_ptr)) {
7711 spin_lock(&last_ptr->lock);
7712 last_ptr->fragmented = 1;
7713 spin_unlock(&last_ptr->lock);
7714 }
0c9b36e0
LB
7715 if (cached) {
7716 struct btrfs_free_space_ctl *ctl =
7717 block_group->free_space_ctl;
7718
7719 spin_lock(&ctl->tree_lock);
7720 if (ctl->free_space <
7721 num_bytes + empty_cluster + empty_size) {
7722 if (ctl->free_space > max_extent_size)
7723 max_extent_size = ctl->free_space;
7724 spin_unlock(&ctl->tree_lock);
7725 goto loop;
7726 }
7727 spin_unlock(&ctl->tree_lock);
a5f6f719 7728 }
a5f6f719 7729
6226cb0a 7730 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7731 num_bytes, empty_size,
7732 &max_extent_size);
1cdda9b8
JB
7733 /*
7734 * If we didn't find a chunk, and we haven't failed on this
7735 * block group before, and this block group is in the middle of
7736 * caching and we are ok with waiting, then go ahead and wait
7737 * for progress to be made, and set failed_alloc to true.
7738 *
7739 * If failed_alloc is true then we've already waited on this
7740 * block group once and should move on to the next block group.
7741 */
7742 if (!offset && !failed_alloc && !cached &&
7743 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7744 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7745 num_bytes + empty_size);
7746 failed_alloc = true;
817d52f8 7747 goto have_block_group;
1cdda9b8
JB
7748 } else if (!offset) {
7749 goto loop;
817d52f8 7750 }
fa9c0d79 7751checks:
0b246afa 7752 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7753
2552d17e
JB
7754 /* move on to the next group */
7755 if (search_start + num_bytes >
215a63d1
MX
7756 block_group->key.objectid + block_group->key.offset) {
7757 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7758 goto loop;
6226cb0a 7759 }
f5a31e16 7760
f0486c68 7761 if (offset < search_start)
215a63d1 7762 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7763 search_start - offset);
7764 BUG_ON(offset > search_start);
2552d17e 7765
18513091
WX
7766 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7767 num_bytes, delalloc);
f0486c68 7768 if (ret == -EAGAIN) {
215a63d1 7769 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7770 goto loop;
0f9dd46c 7771 }
9cfa3e34 7772 btrfs_inc_block_group_reservations(block_group);
0b86a832 7773
f0486c68 7774 /* we are all good, lets return */
2552d17e
JB
7775 ins->objectid = search_start;
7776 ins->offset = num_bytes;
d2fb3437 7777
71ff6437 7778 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7779 search_start, num_bytes);
e570fd27 7780 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7781 break;
7782loop:
0a24325e 7783 failed_cluster_refill = false;
1cdda9b8 7784 failed_alloc = false;
b742bb82 7785 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7786 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7787 }
7788 up_read(&space_info->groups_sem);
7789
13a0db5a 7790 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 && !orig_have_caching_bg)
7792 orig_have_caching_bg = true;
7793
60d2adbb
MX
7794 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 goto search;
7796
b742bb82
YZ
7797 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 goto search;
7799
285ff5af 7800 /*
ccf0e725
JB
7801 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 * caching kthreads as we move along
817d52f8
JB
7803 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 * again
fa9c0d79 7807 */
723bda20 7808 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7809 index = 0;
a5e681d9
JB
7810 if (loop == LOOP_CACHING_NOWAIT) {
7811 /*
7812 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7813 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7814 * full search through.
7815 */
13a0db5a 7816 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7817 loop = LOOP_CACHING_WAIT;
7818 else
7819 loop = LOOP_ALLOC_CHUNK;
7820 } else {
7821 loop++;
7822 }
7823
817d52f8 7824 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7825 struct btrfs_trans_handle *trans;
f017f15f
WS
7826 int exist = 0;
7827
7828 trans = current->journal_info;
7829 if (trans)
7830 exist = 1;
7831 else
7832 trans = btrfs_join_transaction(root);
00361589 7833
00361589
JB
7834 if (IS_ERR(trans)) {
7835 ret = PTR_ERR(trans);
7836 goto out;
7837 }
7838
2ff7e61e 7839 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7840 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7841
7842 /*
7843 * If we can't allocate a new chunk we've already looped
7844 * through at least once, move on to the NO_EMPTY_SIZE
7845 * case.
7846 */
7847 if (ret == -ENOSPC)
7848 loop = LOOP_NO_EMPTY_SIZE;
7849
ea658bad
JB
7850 /*
7851 * Do not bail out on ENOSPC since we
7852 * can do more things.
7853 */
00361589 7854 if (ret < 0 && ret != -ENOSPC)
66642832 7855 btrfs_abort_transaction(trans, ret);
00361589
JB
7856 else
7857 ret = 0;
f017f15f 7858 if (!exist)
3a45bb20 7859 btrfs_end_transaction(trans);
00361589 7860 if (ret)
ea658bad 7861 goto out;
2552d17e
JB
7862 }
7863
723bda20 7864 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7865 /*
7866 * Don't loop again if we already have no empty_size and
7867 * no empty_cluster.
7868 */
7869 if (empty_size == 0 &&
7870 empty_cluster == 0) {
7871 ret = -ENOSPC;
7872 goto out;
7873 }
723bda20
JB
7874 empty_size = 0;
7875 empty_cluster = 0;
fa9c0d79 7876 }
723bda20
JB
7877
7878 goto search;
2552d17e
JB
7879 } else if (!ins->objectid) {
7880 ret = -ENOSPC;
d82a6f1d 7881 } else if (ins->objectid) {
c759c4e1
JB
7882 if (!use_cluster && last_ptr) {
7883 spin_lock(&last_ptr->lock);
7884 last_ptr->window_start = ins->objectid;
7885 spin_unlock(&last_ptr->lock);
7886 }
80eb234a 7887 ret = 0;
be744175 7888 }
79787eaa 7889out:
4f4db217
JB
7890 if (ret == -ENOSPC) {
7891 spin_lock(&space_info->lock);
7892 space_info->max_extent_size = max_extent_size;
7893 spin_unlock(&space_info->lock);
a4820398 7894 ins->offset = max_extent_size;
4f4db217 7895 }
0f70abe2 7896 return ret;
fec577fb 7897}
ec44a35c 7898
ab8d0fc4
JM
7899static void dump_space_info(struct btrfs_fs_info *fs_info,
7900 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7901 int dump_block_groups)
0f9dd46c
JB
7902{
7903 struct btrfs_block_group_cache *cache;
b742bb82 7904 int index = 0;
0f9dd46c 7905
9ed74f2d 7906 spin_lock(&info->lock);
ab8d0fc4
JM
7907 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7908 info->flags,
4136135b
LB
7909 info->total_bytes - btrfs_space_info_used(info, true),
7910 info->full ? "" : "not ");
ab8d0fc4
JM
7911 btrfs_info(fs_info,
7912 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7913 info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 info->bytes_reserved, info->bytes_may_use,
7915 info->bytes_readonly);
9ed74f2d
JB
7916 spin_unlock(&info->lock);
7917
7918 if (!dump_block_groups)
7919 return;
0f9dd46c 7920
80eb234a 7921 down_read(&info->groups_sem);
b742bb82
YZ
7922again:
7923 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7924 spin_lock(&cache->lock);
ab8d0fc4
JM
7925 btrfs_info(fs_info,
7926 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7927 cache->key.objectid, cache->key.offset,
7928 btrfs_block_group_used(&cache->item), cache->pinned,
7929 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7930 btrfs_dump_free_space(cache, bytes);
7931 spin_unlock(&cache->lock);
7932 }
b742bb82
YZ
7933 if (++index < BTRFS_NR_RAID_TYPES)
7934 goto again;
80eb234a 7935 up_read(&info->groups_sem);
0f9dd46c 7936}
e8569813 7937
18513091 7938int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7939 u64 num_bytes, u64 min_alloc_size,
7940 u64 empty_size, u64 hint_byte,
e570fd27 7941 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7942{
ab8d0fc4 7943 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7944 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7945 u64 flags;
fec577fb 7946 int ret;
925baedd 7947
b6919a58 7948 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7949again:
0b246afa 7950 WARN_ON(num_bytes < fs_info->sectorsize);
18513091
WX
7951 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7952 hint_byte, ins, flags, delalloc);
9cfa3e34 7953 if (!ret && !is_data) {
ab8d0fc4 7954 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7955 } else if (ret == -ENOSPC) {
a4820398
MX
7956 if (!final_tried && ins->offset) {
7957 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7958 num_bytes = round_down(num_bytes,
0b246afa 7959 fs_info->sectorsize);
9e622d6b 7960 num_bytes = max(num_bytes, min_alloc_size);
18513091 7961 ram_bytes = num_bytes;
9e622d6b
MX
7962 if (num_bytes == min_alloc_size)
7963 final_tried = true;
7964 goto again;
ab8d0fc4 7965 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7966 struct btrfs_space_info *sinfo;
7967
ab8d0fc4 7968 sinfo = __find_space_info(fs_info, flags);
0b246afa 7969 btrfs_err(fs_info,
5d163e0e
JM
7970 "allocation failed flags %llu, wanted %llu",
7971 flags, num_bytes);
53804280 7972 if (sinfo)
ab8d0fc4 7973 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7974 }
925baedd 7975 }
0f9dd46c
JB
7976
7977 return ret;
e6dcd2dc
CM
7978}
7979
2ff7e61e 7980static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7981 u64 start, u64 len,
7982 int pin, int delalloc)
65b51a00 7983{
0f9dd46c 7984 struct btrfs_block_group_cache *cache;
1f3c79a2 7985 int ret = 0;
0f9dd46c 7986
0b246afa 7987 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7988 if (!cache) {
0b246afa
JM
7989 btrfs_err(fs_info, "Unable to find block group for %llu",
7990 start);
0f9dd46c
JB
7991 return -ENOSPC;
7992 }
1f3c79a2 7993
e688b725 7994 if (pin)
2ff7e61e 7995 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7996 else {
0b246afa 7997 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7998 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7999 btrfs_add_free_space(cache, start, len);
4824f1f4 8000 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8001 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8002 }
31193213 8003
fa9c0d79 8004 btrfs_put_block_group(cache);
e6dcd2dc
CM
8005 return ret;
8006}
8007
2ff7e61e 8008int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8009 u64 start, u64 len, int delalloc)
e688b725 8010{
2ff7e61e 8011 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8012}
8013
2ff7e61e 8014int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8015 u64 start, u64 len)
8016{
2ff7e61e 8017 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8018}
8019
5d4f98a2 8020static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8021 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8022 u64 parent, u64 root_objectid,
8023 u64 flags, u64 owner, u64 offset,
8024 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8025{
8026 int ret;
e6dcd2dc 8027 struct btrfs_extent_item *extent_item;
5d4f98a2 8028 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8029 struct btrfs_path *path;
5d4f98a2
YZ
8030 struct extent_buffer *leaf;
8031 int type;
8032 u32 size;
26b8003f 8033
5d4f98a2
YZ
8034 if (parent > 0)
8035 type = BTRFS_SHARED_DATA_REF_KEY;
8036 else
8037 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8038
5d4f98a2 8039 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8040
8041 path = btrfs_alloc_path();
db5b493a
TI
8042 if (!path)
8043 return -ENOMEM;
47e4bb98 8044
b9473439 8045 path->leave_spinning = 1;
5d4f98a2
YZ
8046 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8047 ins, size);
79787eaa
JM
8048 if (ret) {
8049 btrfs_free_path(path);
8050 return ret;
8051 }
0f9dd46c 8052
5d4f98a2
YZ
8053 leaf = path->nodes[0];
8054 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8055 struct btrfs_extent_item);
5d4f98a2
YZ
8056 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8057 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8058 btrfs_set_extent_flags(leaf, extent_item,
8059 flags | BTRFS_EXTENT_FLAG_DATA);
8060
8061 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8062 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8063 if (parent > 0) {
8064 struct btrfs_shared_data_ref *ref;
8065 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8066 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8067 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8068 } else {
8069 struct btrfs_extent_data_ref *ref;
8070 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8071 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8072 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8073 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8074 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8075 }
47e4bb98
CM
8076
8077 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8078 btrfs_free_path(path);
f510cfec 8079
1e144fb8
OS
8080 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8081 ins->offset);
8082 if (ret)
8083 return ret;
8084
6202df69 8085 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8086 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8087 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8088 ins->objectid, ins->offset);
f5947066
CM
8089 BUG();
8090 }
71ff6437 8091 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8092 return ret;
8093}
8094
5d4f98a2 8095static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8096 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8097 u64 parent, u64 root_objectid,
8098 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8099 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8100{
8101 int ret;
5d4f98a2
YZ
8102 struct btrfs_extent_item *extent_item;
8103 struct btrfs_tree_block_info *block_info;
8104 struct btrfs_extent_inline_ref *iref;
8105 struct btrfs_path *path;
8106 struct extent_buffer *leaf;
3173a18f 8107 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8108 u64 num_bytes = ins->offset;
0b246afa 8109 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8110
8111 if (!skinny_metadata)
8112 size += sizeof(*block_info);
1c2308f8 8113
5d4f98a2 8114 path = btrfs_alloc_path();
857cc2fc 8115 if (!path) {
2ff7e61e 8116 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8117 fs_info->nodesize);
d8926bb3 8118 return -ENOMEM;
857cc2fc 8119 }
56bec294 8120
5d4f98a2
YZ
8121 path->leave_spinning = 1;
8122 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8123 ins, size);
79787eaa 8124 if (ret) {
dd825259 8125 btrfs_free_path(path);
2ff7e61e 8126 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8127 fs_info->nodesize);
79787eaa
JM
8128 return ret;
8129 }
5d4f98a2
YZ
8130
8131 leaf = path->nodes[0];
8132 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8133 struct btrfs_extent_item);
8134 btrfs_set_extent_refs(leaf, extent_item, 1);
8135 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8136 btrfs_set_extent_flags(leaf, extent_item,
8137 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8138
3173a18f
JB
8139 if (skinny_metadata) {
8140 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8141 num_bytes = fs_info->nodesize;
3173a18f
JB
8142 } else {
8143 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8144 btrfs_set_tree_block_key(leaf, block_info, key);
8145 btrfs_set_tree_block_level(leaf, block_info, level);
8146 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8147 }
5d4f98a2 8148
5d4f98a2
YZ
8149 if (parent > 0) {
8150 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8151 btrfs_set_extent_inline_ref_type(leaf, iref,
8152 BTRFS_SHARED_BLOCK_REF_KEY);
8153 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8154 } else {
8155 btrfs_set_extent_inline_ref_type(leaf, iref,
8156 BTRFS_TREE_BLOCK_REF_KEY);
8157 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8158 }
8159
8160 btrfs_mark_buffer_dirty(leaf);
8161 btrfs_free_path(path);
8162
1e144fb8
OS
8163 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8164 num_bytes);
8165 if (ret)
8166 return ret;
8167
6202df69
JM
8168 ret = update_block_group(trans, fs_info, ins->objectid,
8169 fs_info->nodesize, 1);
79787eaa 8170 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8171 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8172 ins->objectid, ins->offset);
5d4f98a2
YZ
8173 BUG();
8174 }
0be5dc67 8175
71ff6437 8176 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8177 fs_info->nodesize);
5d4f98a2
YZ
8178 return ret;
8179}
8180
8181int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2 8182 u64 root_objectid, u64 owner,
5846a3c2
QW
8183 u64 offset, u64 ram_bytes,
8184 struct btrfs_key *ins)
5d4f98a2 8185{
2ff7e61e 8186 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
8187 int ret;
8188
8189 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190
0b246afa 8191 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
66d7e7f0
AJ
8192 ins->offset, 0,
8193 root_objectid, owner, offset,
fef394f7 8194 ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
e6dcd2dc
CM
8195 return ret;
8196}
e02119d5
CM
8197
8198/*
8199 * this is used by the tree logging recovery code. It records that
8200 * an extent has been allocated and makes sure to clear the free
8201 * space cache bits as well
8202 */
5d4f98a2 8203int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8204 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8205 u64 root_objectid, u64 owner, u64 offset,
8206 struct btrfs_key *ins)
e02119d5
CM
8207{
8208 int ret;
8209 struct btrfs_block_group_cache *block_group;
ed7a6948 8210 struct btrfs_space_info *space_info;
11833d66 8211
8c2a1a30
JB
8212 /*
8213 * Mixed block groups will exclude before processing the log so we only
01327610 8214 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8215 */
0b246afa 8216 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8217 ret = __exclude_logged_extent(fs_info, ins->objectid,
8218 ins->offset);
b50c6e25 8219 if (ret)
8c2a1a30 8220 return ret;
11833d66
YZ
8221 }
8222
0b246afa 8223 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8224 if (!block_group)
8225 return -EINVAL;
8226
ed7a6948
WX
8227 space_info = block_group->space_info;
8228 spin_lock(&space_info->lock);
8229 spin_lock(&block_group->lock);
8230 space_info->bytes_reserved += ins->offset;
8231 block_group->reserved += ins->offset;
8232 spin_unlock(&block_group->lock);
8233 spin_unlock(&space_info->lock);
8234
2ff7e61e 8235 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8236 0, owner, offset, ins, 1);
b50c6e25 8237 btrfs_put_block_group(block_group);
e02119d5
CM
8238 return ret;
8239}
8240
48a3b636
ES
8241static struct extent_buffer *
8242btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8243 u64 bytenr, int level)
65b51a00 8244{
0b246afa 8245 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8246 struct extent_buffer *buf;
8247
2ff7e61e 8248 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8249 if (IS_ERR(buf))
8250 return buf;
8251
65b51a00 8252 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8253 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8254 btrfs_tree_lock(buf);
7c302b49 8255 clean_tree_block(fs_info, buf);
3083ee2e 8256 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8257
8258 btrfs_set_lock_blocking(buf);
4db8c528 8259 set_extent_buffer_uptodate(buf);
b4ce94de 8260
d0c803c4 8261 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8262 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8263 /*
8264 * we allow two log transactions at a time, use different
8265 * EXENT bit to differentiate dirty pages.
8266 */
656f30db 8267 if (buf->log_index == 0)
8cef4e16
YZ
8268 set_extent_dirty(&root->dirty_log_pages, buf->start,
8269 buf->start + buf->len - 1, GFP_NOFS);
8270 else
8271 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8272 buf->start + buf->len - 1);
d0c803c4 8273 } else {
656f30db 8274 buf->log_index = -1;
d0c803c4 8275 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8276 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8277 }
64c12921 8278 trans->dirty = true;
b4ce94de 8279 /* this returns a buffer locked for blocking */
65b51a00
CM
8280 return buf;
8281}
8282
f0486c68
YZ
8283static struct btrfs_block_rsv *
8284use_block_rsv(struct btrfs_trans_handle *trans,
8285 struct btrfs_root *root, u32 blocksize)
8286{
0b246afa 8287 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8288 struct btrfs_block_rsv *block_rsv;
0b246afa 8289 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8290 int ret;
d88033db 8291 bool global_updated = false;
f0486c68
YZ
8292
8293 block_rsv = get_block_rsv(trans, root);
8294
b586b323
MX
8295 if (unlikely(block_rsv->size == 0))
8296 goto try_reserve;
d88033db 8297again:
f0486c68
YZ
8298 ret = block_rsv_use_bytes(block_rsv, blocksize);
8299 if (!ret)
8300 return block_rsv;
8301
b586b323
MX
8302 if (block_rsv->failfast)
8303 return ERR_PTR(ret);
8304
d88033db
MX
8305 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8306 global_updated = true;
0b246afa 8307 update_global_block_rsv(fs_info);
d88033db
MX
8308 goto again;
8309 }
8310
0b246afa 8311 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8312 static DEFINE_RATELIMIT_STATE(_rs,
8313 DEFAULT_RATELIMIT_INTERVAL * 10,
8314 /*DEFAULT_RATELIMIT_BURST*/ 1);
8315 if (__ratelimit(&_rs))
8316 WARN(1, KERN_DEBUG
efe120a0 8317 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8318 }
8319try_reserve:
8320 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8321 BTRFS_RESERVE_NO_FLUSH);
8322 if (!ret)
8323 return block_rsv;
8324 /*
8325 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8326 * the global reserve if its space type is the same as the global
8327 * reservation.
b586b323 8328 */
5881cfc9
MX
8329 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8330 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8331 ret = block_rsv_use_bytes(global_rsv, blocksize);
8332 if (!ret)
8333 return global_rsv;
8334 }
8335 return ERR_PTR(ret);
f0486c68
YZ
8336}
8337
8c2a3ca2
JB
8338static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8339 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8340{
8341 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8342 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8343}
8344
fec577fb 8345/*
f0486c68 8346 * finds a free extent and does all the dirty work required for allocation
67b7859e 8347 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8348 */
4d75f8a9 8349struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8350 struct btrfs_root *root,
8351 u64 parent, u64 root_objectid,
8352 const struct btrfs_disk_key *key,
8353 int level, u64 hint,
8354 u64 empty_size)
fec577fb 8355{
0b246afa 8356 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8357 struct btrfs_key ins;
f0486c68 8358 struct btrfs_block_rsv *block_rsv;
5f39d397 8359 struct extent_buffer *buf;
67b7859e 8360 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8361 u64 flags = 0;
8362 int ret;
0b246afa
JM
8363 u32 blocksize = fs_info->nodesize;
8364 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8365
05653ef3 8366#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8367 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8368 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8369 level);
faa2dbf0
JB
8370 if (!IS_ERR(buf))
8371 root->alloc_bytenr += blocksize;
8372 return buf;
8373 }
05653ef3 8374#endif
fccb84c9 8375
f0486c68
YZ
8376 block_rsv = use_block_rsv(trans, root, blocksize);
8377 if (IS_ERR(block_rsv))
8378 return ERR_CAST(block_rsv);
8379
18513091 8380 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8381 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8382 if (ret)
8383 goto out_unuse;
55c69072 8384
fe864576 8385 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8386 if (IS_ERR(buf)) {
8387 ret = PTR_ERR(buf);
8388 goto out_free_reserved;
8389 }
f0486c68
YZ
8390
8391 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8392 if (parent == 0)
8393 parent = ins.objectid;
8394 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8395 } else
8396 BUG_ON(parent > 0);
8397
8398 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8399 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8400 if (!extent_op) {
8401 ret = -ENOMEM;
8402 goto out_free_buf;
8403 }
f0486c68
YZ
8404 if (key)
8405 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8406 else
8407 memset(&extent_op->key, 0, sizeof(extent_op->key));
8408 extent_op->flags_to_set = flags;
35b3ad50
DS
8409 extent_op->update_key = skinny_metadata ? false : true;
8410 extent_op->update_flags = true;
8411 extent_op->is_data = false;
b1c79e09 8412 extent_op->level = level;
f0486c68 8413
0b246afa 8414 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
67b7859e
OS
8415 ins.objectid, ins.offset,
8416 parent, root_objectid, level,
8417 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8418 extent_op);
67b7859e
OS
8419 if (ret)
8420 goto out_free_delayed;
f0486c68 8421 }
fec577fb 8422 return buf;
67b7859e
OS
8423
8424out_free_delayed:
8425 btrfs_free_delayed_extent_op(extent_op);
8426out_free_buf:
8427 free_extent_buffer(buf);
8428out_free_reserved:
2ff7e61e 8429 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8430out_unuse:
0b246afa 8431 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8432 return ERR_PTR(ret);
fec577fb 8433}
a28ec197 8434
2c47e605
YZ
8435struct walk_control {
8436 u64 refs[BTRFS_MAX_LEVEL];
8437 u64 flags[BTRFS_MAX_LEVEL];
8438 struct btrfs_key update_progress;
8439 int stage;
8440 int level;
8441 int shared_level;
8442 int update_ref;
8443 int keep_locks;
1c4850e2
YZ
8444 int reada_slot;
8445 int reada_count;
66d7e7f0 8446 int for_reloc;
2c47e605
YZ
8447};
8448
8449#define DROP_REFERENCE 1
8450#define UPDATE_BACKREF 2
8451
1c4850e2
YZ
8452static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8453 struct btrfs_root *root,
8454 struct walk_control *wc,
8455 struct btrfs_path *path)
6407bf6d 8456{
0b246afa 8457 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8458 u64 bytenr;
8459 u64 generation;
8460 u64 refs;
94fcca9f 8461 u64 flags;
5d4f98a2 8462 u32 nritems;
1c4850e2
YZ
8463 struct btrfs_key key;
8464 struct extent_buffer *eb;
6407bf6d 8465 int ret;
1c4850e2
YZ
8466 int slot;
8467 int nread = 0;
6407bf6d 8468
1c4850e2
YZ
8469 if (path->slots[wc->level] < wc->reada_slot) {
8470 wc->reada_count = wc->reada_count * 2 / 3;
8471 wc->reada_count = max(wc->reada_count, 2);
8472 } else {
8473 wc->reada_count = wc->reada_count * 3 / 2;
8474 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8475 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8476 }
7bb86316 8477
1c4850e2
YZ
8478 eb = path->nodes[wc->level];
8479 nritems = btrfs_header_nritems(eb);
bd56b302 8480
1c4850e2
YZ
8481 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8482 if (nread >= wc->reada_count)
8483 break;
bd56b302 8484
2dd3e67b 8485 cond_resched();
1c4850e2
YZ
8486 bytenr = btrfs_node_blockptr(eb, slot);
8487 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8488
1c4850e2
YZ
8489 if (slot == path->slots[wc->level])
8490 goto reada;
5d4f98a2 8491
1c4850e2
YZ
8492 if (wc->stage == UPDATE_BACKREF &&
8493 generation <= root->root_key.offset)
bd56b302
CM
8494 continue;
8495
94fcca9f 8496 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8497 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8498 wc->level - 1, 1, &refs,
8499 &flags);
79787eaa
JM
8500 /* We don't care about errors in readahead. */
8501 if (ret < 0)
8502 continue;
94fcca9f
YZ
8503 BUG_ON(refs == 0);
8504
1c4850e2 8505 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8506 if (refs == 1)
8507 goto reada;
bd56b302 8508
94fcca9f
YZ
8509 if (wc->level == 1 &&
8510 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8511 continue;
1c4850e2
YZ
8512 if (!wc->update_ref ||
8513 generation <= root->root_key.offset)
8514 continue;
8515 btrfs_node_key_to_cpu(eb, &key, slot);
8516 ret = btrfs_comp_cpu_keys(&key,
8517 &wc->update_progress);
8518 if (ret < 0)
8519 continue;
94fcca9f
YZ
8520 } else {
8521 if (wc->level == 1 &&
8522 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8523 continue;
6407bf6d 8524 }
1c4850e2 8525reada:
2ff7e61e 8526 readahead_tree_block(fs_info, bytenr);
1c4850e2 8527 nread++;
20524f02 8528 }
1c4850e2 8529 wc->reada_slot = slot;
20524f02 8530}
2c47e605 8531
f82d02d9 8532/*
2c016dc2 8533 * helper to process tree block while walking down the tree.
2c47e605 8534 *
2c47e605
YZ
8535 * when wc->stage == UPDATE_BACKREF, this function updates
8536 * back refs for pointers in the block.
8537 *
8538 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8539 */
2c47e605 8540static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8541 struct btrfs_root *root,
2c47e605 8542 struct btrfs_path *path,
94fcca9f 8543 struct walk_control *wc, int lookup_info)
f82d02d9 8544{
2ff7e61e 8545 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8546 int level = wc->level;
8547 struct extent_buffer *eb = path->nodes[level];
2c47e605 8548 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8549 int ret;
8550
2c47e605
YZ
8551 if (wc->stage == UPDATE_BACKREF &&
8552 btrfs_header_owner(eb) != root->root_key.objectid)
8553 return 1;
f82d02d9 8554
2c47e605
YZ
8555 /*
8556 * when reference count of tree block is 1, it won't increase
8557 * again. once full backref flag is set, we never clear it.
8558 */
94fcca9f
YZ
8559 if (lookup_info &&
8560 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8561 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8562 BUG_ON(!path->locks[level]);
2ff7e61e 8563 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8564 eb->start, level, 1,
2c47e605
YZ
8565 &wc->refs[level],
8566 &wc->flags[level]);
79787eaa
JM
8567 BUG_ON(ret == -ENOMEM);
8568 if (ret)
8569 return ret;
2c47e605
YZ
8570 BUG_ON(wc->refs[level] == 0);
8571 }
5d4f98a2 8572
2c47e605
YZ
8573 if (wc->stage == DROP_REFERENCE) {
8574 if (wc->refs[level] > 1)
8575 return 1;
f82d02d9 8576
2c47e605 8577 if (path->locks[level] && !wc->keep_locks) {
bd681513 8578 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8579 path->locks[level] = 0;
8580 }
8581 return 0;
8582 }
f82d02d9 8583
2c47e605
YZ
8584 /* wc->stage == UPDATE_BACKREF */
8585 if (!(wc->flags[level] & flag)) {
8586 BUG_ON(!path->locks[level]);
e339a6b0 8587 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8588 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8589 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8590 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8591 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8592 eb->len, flag,
8593 btrfs_header_level(eb), 0);
79787eaa 8594 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8595 wc->flags[level] |= flag;
8596 }
8597
8598 /*
8599 * the block is shared by multiple trees, so it's not good to
8600 * keep the tree lock
8601 */
8602 if (path->locks[level] && level > 0) {
bd681513 8603 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8604 path->locks[level] = 0;
8605 }
8606 return 0;
8607}
8608
1c4850e2 8609/*
2c016dc2 8610 * helper to process tree block pointer.
1c4850e2
YZ
8611 *
8612 * when wc->stage == DROP_REFERENCE, this function checks
8613 * reference count of the block pointed to. if the block
8614 * is shared and we need update back refs for the subtree
8615 * rooted at the block, this function changes wc->stage to
8616 * UPDATE_BACKREF. if the block is shared and there is no
8617 * need to update back, this function drops the reference
8618 * to the block.
8619 *
8620 * NOTE: return value 1 means we should stop walking down.
8621 */
8622static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8623 struct btrfs_root *root,
8624 struct btrfs_path *path,
94fcca9f 8625 struct walk_control *wc, int *lookup_info)
1c4850e2 8626{
0b246afa 8627 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8628 u64 bytenr;
8629 u64 generation;
8630 u64 parent;
8631 u32 blocksize;
8632 struct btrfs_key key;
8633 struct extent_buffer *next;
8634 int level = wc->level;
8635 int reada = 0;
8636 int ret = 0;
1152651a 8637 bool need_account = false;
1c4850e2
YZ
8638
8639 generation = btrfs_node_ptr_generation(path->nodes[level],
8640 path->slots[level]);
8641 /*
8642 * if the lower level block was created before the snapshot
8643 * was created, we know there is no need to update back refs
8644 * for the subtree
8645 */
8646 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8647 generation <= root->root_key.offset) {
8648 *lookup_info = 1;
1c4850e2 8649 return 1;
94fcca9f 8650 }
1c4850e2
YZ
8651
8652 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8653 blocksize = fs_info->nodesize;
1c4850e2 8654
0b246afa 8655 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8656 if (!next) {
2ff7e61e 8657 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8658 if (IS_ERR(next))
8659 return PTR_ERR(next);
8660
b2aaaa3b
JB
8661 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8662 level - 1);
1c4850e2
YZ
8663 reada = 1;
8664 }
8665 btrfs_tree_lock(next);
8666 btrfs_set_lock_blocking(next);
8667
2ff7e61e 8668 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8669 &wc->refs[level - 1],
8670 &wc->flags[level - 1]);
4867268c
JB
8671 if (ret < 0)
8672 goto out_unlock;
79787eaa 8673
c2cf52eb 8674 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8675 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8676 ret = -EIO;
8677 goto out_unlock;
c2cf52eb 8678 }
94fcca9f 8679 *lookup_info = 0;
1c4850e2 8680
94fcca9f 8681 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8682 if (wc->refs[level - 1] > 1) {
1152651a 8683 need_account = true;
94fcca9f
YZ
8684 if (level == 1 &&
8685 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8686 goto skip;
8687
1c4850e2
YZ
8688 if (!wc->update_ref ||
8689 generation <= root->root_key.offset)
8690 goto skip;
8691
8692 btrfs_node_key_to_cpu(path->nodes[level], &key,
8693 path->slots[level]);
8694 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8695 if (ret < 0)
8696 goto skip;
8697
8698 wc->stage = UPDATE_BACKREF;
8699 wc->shared_level = level - 1;
8700 }
94fcca9f
YZ
8701 } else {
8702 if (level == 1 &&
8703 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8704 goto skip;
1c4850e2
YZ
8705 }
8706
b9fab919 8707 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8708 btrfs_tree_unlock(next);
8709 free_extent_buffer(next);
8710 next = NULL;
94fcca9f 8711 *lookup_info = 1;
1c4850e2
YZ
8712 }
8713
8714 if (!next) {
8715 if (reada && level == 1)
8716 reada_walk_down(trans, root, wc, path);
2ff7e61e 8717 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8718 if (IS_ERR(next)) {
8719 return PTR_ERR(next);
8720 } else if (!extent_buffer_uptodate(next)) {
416bc658 8721 free_extent_buffer(next);
97d9a8a4 8722 return -EIO;
416bc658 8723 }
1c4850e2
YZ
8724 btrfs_tree_lock(next);
8725 btrfs_set_lock_blocking(next);
8726 }
8727
8728 level--;
4867268c
JB
8729 ASSERT(level == btrfs_header_level(next));
8730 if (level != btrfs_header_level(next)) {
8731 btrfs_err(root->fs_info, "mismatched level");
8732 ret = -EIO;
8733 goto out_unlock;
8734 }
1c4850e2
YZ
8735 path->nodes[level] = next;
8736 path->slots[level] = 0;
bd681513 8737 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8738 wc->level = level;
8739 if (wc->level == 1)
8740 wc->reada_slot = 0;
8741 return 0;
8742skip:
8743 wc->refs[level - 1] = 0;
8744 wc->flags[level - 1] = 0;
94fcca9f
YZ
8745 if (wc->stage == DROP_REFERENCE) {
8746 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8747 parent = path->nodes[level]->start;
8748 } else {
4867268c 8749 ASSERT(root->root_key.objectid ==
94fcca9f 8750 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8751 if (root->root_key.objectid !=
8752 btrfs_header_owner(path->nodes[level])) {
8753 btrfs_err(root->fs_info,
8754 "mismatched block owner");
8755 ret = -EIO;
8756 goto out_unlock;
8757 }
94fcca9f
YZ
8758 parent = 0;
8759 }
1c4850e2 8760
1152651a 8761 if (need_account) {
33d1f05c
QW
8762 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8763 generation, level - 1);
1152651a 8764 if (ret) {
0b246afa 8765 btrfs_err_rl(fs_info,
5d163e0e
JM
8766 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8767 ret);
1152651a
MF
8768 }
8769 }
2ff7e61e
JM
8770 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8771 parent, root->root_key.objectid,
8772 level - 1, 0);
4867268c
JB
8773 if (ret)
8774 goto out_unlock;
1c4850e2 8775 }
4867268c
JB
8776
8777 *lookup_info = 1;
8778 ret = 1;
8779
8780out_unlock:
1c4850e2
YZ
8781 btrfs_tree_unlock(next);
8782 free_extent_buffer(next);
4867268c
JB
8783
8784 return ret;
1c4850e2
YZ
8785}
8786
2c47e605 8787/*
2c016dc2 8788 * helper to process tree block while walking up the tree.
2c47e605
YZ
8789 *
8790 * when wc->stage == DROP_REFERENCE, this function drops
8791 * reference count on the block.
8792 *
8793 * when wc->stage == UPDATE_BACKREF, this function changes
8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795 * to UPDATE_BACKREF previously while processing the block.
8796 *
8797 * NOTE: return value 1 means we should stop walking up.
8798 */
8799static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800 struct btrfs_root *root,
8801 struct btrfs_path *path,
8802 struct walk_control *wc)
8803{
0b246afa 8804 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8805 int ret;
2c47e605
YZ
8806 int level = wc->level;
8807 struct extent_buffer *eb = path->nodes[level];
8808 u64 parent = 0;
8809
8810 if (wc->stage == UPDATE_BACKREF) {
8811 BUG_ON(wc->shared_level < level);
8812 if (level < wc->shared_level)
8813 goto out;
8814
2c47e605
YZ
8815 ret = find_next_key(path, level + 1, &wc->update_progress);
8816 if (ret > 0)
8817 wc->update_ref = 0;
8818
8819 wc->stage = DROP_REFERENCE;
8820 wc->shared_level = -1;
8821 path->slots[level] = 0;
8822
8823 /*
8824 * check reference count again if the block isn't locked.
8825 * we should start walking down the tree again if reference
8826 * count is one.
8827 */
8828 if (!path->locks[level]) {
8829 BUG_ON(level == 0);
8830 btrfs_tree_lock(eb);
8831 btrfs_set_lock_blocking(eb);
bd681513 8832 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8833
2ff7e61e 8834 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8835 eb->start, level, 1,
2c47e605
YZ
8836 &wc->refs[level],
8837 &wc->flags[level]);
79787eaa
JM
8838 if (ret < 0) {
8839 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8840 path->locks[level] = 0;
79787eaa
JM
8841 return ret;
8842 }
2c47e605
YZ
8843 BUG_ON(wc->refs[level] == 0);
8844 if (wc->refs[level] == 1) {
bd681513 8845 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8846 path->locks[level] = 0;
2c47e605
YZ
8847 return 1;
8848 }
f82d02d9 8849 }
2c47e605 8850 }
f82d02d9 8851
2c47e605
YZ
8852 /* wc->stage == DROP_REFERENCE */
8853 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8854
2c47e605
YZ
8855 if (wc->refs[level] == 1) {
8856 if (level == 0) {
8857 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8858 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8859 else
e339a6b0 8860 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8861 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8862 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8863 if (ret) {
0b246afa 8864 btrfs_err_rl(fs_info,
5d163e0e
JM
8865 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8866 ret);
1152651a 8867 }
2c47e605
YZ
8868 }
8869 /* make block locked assertion in clean_tree_block happy */
8870 if (!path->locks[level] &&
8871 btrfs_header_generation(eb) == trans->transid) {
8872 btrfs_tree_lock(eb);
8873 btrfs_set_lock_blocking(eb);
bd681513 8874 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8875 }
7c302b49 8876 clean_tree_block(fs_info, eb);
2c47e605
YZ
8877 }
8878
8879 if (eb == root->node) {
8880 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8881 parent = eb->start;
8882 else
8883 BUG_ON(root->root_key.objectid !=
8884 btrfs_header_owner(eb));
8885 } else {
8886 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8887 parent = path->nodes[level + 1]->start;
8888 else
8889 BUG_ON(root->root_key.objectid !=
8890 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8891 }
f82d02d9 8892
5581a51a 8893 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8894out:
8895 wc->refs[level] = 0;
8896 wc->flags[level] = 0;
f0486c68 8897 return 0;
2c47e605
YZ
8898}
8899
8900static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8901 struct btrfs_root *root,
8902 struct btrfs_path *path,
8903 struct walk_control *wc)
8904{
2c47e605 8905 int level = wc->level;
94fcca9f 8906 int lookup_info = 1;
2c47e605
YZ
8907 int ret;
8908
8909 while (level >= 0) {
94fcca9f 8910 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8911 if (ret > 0)
8912 break;
8913
8914 if (level == 0)
8915 break;
8916
7a7965f8
YZ
8917 if (path->slots[level] >=
8918 btrfs_header_nritems(path->nodes[level]))
8919 break;
8920
94fcca9f 8921 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8922 if (ret > 0) {
8923 path->slots[level]++;
8924 continue;
90d2c51d
MX
8925 } else if (ret < 0)
8926 return ret;
1c4850e2 8927 level = wc->level;
f82d02d9 8928 }
f82d02d9
YZ
8929 return 0;
8930}
8931
d397712b 8932static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8933 struct btrfs_root *root,
f82d02d9 8934 struct btrfs_path *path,
2c47e605 8935 struct walk_control *wc, int max_level)
20524f02 8936{
2c47e605 8937 int level = wc->level;
20524f02 8938 int ret;
9f3a7427 8939
2c47e605
YZ
8940 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8941 while (level < max_level && path->nodes[level]) {
8942 wc->level = level;
8943 if (path->slots[level] + 1 <
8944 btrfs_header_nritems(path->nodes[level])) {
8945 path->slots[level]++;
20524f02
CM
8946 return 0;
8947 } else {
2c47e605
YZ
8948 ret = walk_up_proc(trans, root, path, wc);
8949 if (ret > 0)
8950 return 0;
bd56b302 8951
2c47e605 8952 if (path->locks[level]) {
bd681513
CM
8953 btrfs_tree_unlock_rw(path->nodes[level],
8954 path->locks[level]);
2c47e605 8955 path->locks[level] = 0;
f82d02d9 8956 }
2c47e605
YZ
8957 free_extent_buffer(path->nodes[level]);
8958 path->nodes[level] = NULL;
8959 level++;
20524f02
CM
8960 }
8961 }
8962 return 1;
8963}
8964
9aca1d51 8965/*
2c47e605
YZ
8966 * drop a subvolume tree.
8967 *
8968 * this function traverses the tree freeing any blocks that only
8969 * referenced by the tree.
8970 *
8971 * when a shared tree block is found. this function decreases its
8972 * reference count by one. if update_ref is true, this function
8973 * also make sure backrefs for the shared block and all lower level
8974 * blocks are properly updated.
9d1a2a3a
DS
8975 *
8976 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8977 */
2c536799 8978int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8979 struct btrfs_block_rsv *block_rsv, int update_ref,
8980 int for_reloc)
20524f02 8981{
ab8d0fc4 8982 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8983 struct btrfs_path *path;
2c47e605 8984 struct btrfs_trans_handle *trans;
ab8d0fc4 8985 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8986 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8987 struct walk_control *wc;
8988 struct btrfs_key key;
8989 int err = 0;
8990 int ret;
8991 int level;
d29a9f62 8992 bool root_dropped = false;
20524f02 8993
ab8d0fc4 8994 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 8995
5caf2a00 8996 path = btrfs_alloc_path();
cb1b69f4
TI
8997 if (!path) {
8998 err = -ENOMEM;
8999 goto out;
9000 }
20524f02 9001
2c47e605 9002 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9003 if (!wc) {
9004 btrfs_free_path(path);
cb1b69f4
TI
9005 err = -ENOMEM;
9006 goto out;
38a1a919 9007 }
2c47e605 9008
a22285a6 9009 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9010 if (IS_ERR(trans)) {
9011 err = PTR_ERR(trans);
9012 goto out_free;
9013 }
98d5dc13 9014
3fd0a558
YZ
9015 if (block_rsv)
9016 trans->block_rsv = block_rsv;
2c47e605 9017
9f3a7427 9018 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9019 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9020 path->nodes[level] = btrfs_lock_root_node(root);
9021 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9022 path->slots[level] = 0;
bd681513 9023 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9024 memset(&wc->update_progress, 0,
9025 sizeof(wc->update_progress));
9f3a7427 9026 } else {
9f3a7427 9027 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9028 memcpy(&wc->update_progress, &key,
9029 sizeof(wc->update_progress));
9030
6702ed49 9031 level = root_item->drop_level;
2c47e605 9032 BUG_ON(level == 0);
6702ed49 9033 path->lowest_level = level;
2c47e605
YZ
9034 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035 path->lowest_level = 0;
9036 if (ret < 0) {
9037 err = ret;
79787eaa 9038 goto out_end_trans;
9f3a7427 9039 }
1c4850e2 9040 WARN_ON(ret > 0);
2c47e605 9041
7d9eb12c
CM
9042 /*
9043 * unlock our path, this is safe because only this
9044 * function is allowed to delete this snapshot
9045 */
5d4f98a2 9046 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9047
9048 level = btrfs_header_level(root->node);
9049 while (1) {
9050 btrfs_tree_lock(path->nodes[level]);
9051 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9053
2ff7e61e 9054 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9055 path->nodes[level]->start,
3173a18f 9056 level, 1, &wc->refs[level],
2c47e605 9057 &wc->flags[level]);
79787eaa
JM
9058 if (ret < 0) {
9059 err = ret;
9060 goto out_end_trans;
9061 }
2c47e605
YZ
9062 BUG_ON(wc->refs[level] == 0);
9063
9064 if (level == root_item->drop_level)
9065 break;
9066
9067 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9068 path->locks[level] = 0;
2c47e605
YZ
9069 WARN_ON(wc->refs[level] != 1);
9070 level--;
9071 }
9f3a7427 9072 }
2c47e605
YZ
9073
9074 wc->level = level;
9075 wc->shared_level = -1;
9076 wc->stage = DROP_REFERENCE;
9077 wc->update_ref = update_ref;
9078 wc->keep_locks = 0;
66d7e7f0 9079 wc->for_reloc = for_reloc;
0b246afa 9080 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9081
d397712b 9082 while (1) {
9d1a2a3a 9083
2c47e605
YZ
9084 ret = walk_down_tree(trans, root, path, wc);
9085 if (ret < 0) {
9086 err = ret;
20524f02 9087 break;
2c47e605 9088 }
9aca1d51 9089
2c47e605
YZ
9090 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091 if (ret < 0) {
9092 err = ret;
20524f02 9093 break;
2c47e605
YZ
9094 }
9095
9096 if (ret > 0) {
9097 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9098 break;
9099 }
2c47e605
YZ
9100
9101 if (wc->stage == DROP_REFERENCE) {
9102 level = wc->level;
9103 btrfs_node_key(path->nodes[level],
9104 &root_item->drop_progress,
9105 path->slots[level]);
9106 root_item->drop_level = level;
9107 }
9108
9109 BUG_ON(wc->level == 0);
3a45bb20 9110 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9111 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9112 ret = btrfs_update_root(trans, tree_root,
9113 &root->root_key,
9114 root_item);
79787eaa 9115 if (ret) {
66642832 9116 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9117 err = ret;
9118 goto out_end_trans;
9119 }
2c47e605 9120
3a45bb20 9121 btrfs_end_transaction_throttle(trans);
2ff7e61e 9122 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9123 btrfs_debug(fs_info,
9124 "drop snapshot early exit");
3c8f2422
JB
9125 err = -EAGAIN;
9126 goto out_free;
9127 }
9128
a22285a6 9129 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9130 if (IS_ERR(trans)) {
9131 err = PTR_ERR(trans);
9132 goto out_free;
9133 }
3fd0a558
YZ
9134 if (block_rsv)
9135 trans->block_rsv = block_rsv;
c3e69d58 9136 }
20524f02 9137 }
b3b4aa74 9138 btrfs_release_path(path);
79787eaa
JM
9139 if (err)
9140 goto out_end_trans;
2c47e605
YZ
9141
9142 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa 9143 if (ret) {
66642832 9144 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9145 goto out_end_trans;
9146 }
2c47e605 9147
76dda93c 9148 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9149 ret = btrfs_find_root(tree_root, &root->root_key, path,
9150 NULL, NULL);
79787eaa 9151 if (ret < 0) {
66642832 9152 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9153 err = ret;
9154 goto out_end_trans;
9155 } else if (ret > 0) {
84cd948c
JB
9156 /* if we fail to delete the orphan item this time
9157 * around, it'll get picked up the next time.
9158 *
9159 * The most common failure here is just -ENOENT.
9160 */
9161 btrfs_del_orphan_item(trans, tree_root,
9162 root->root_key.objectid);
76dda93c
YZ
9163 }
9164 }
9165
27cdeb70 9166 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9167 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9168 } else {
9169 free_extent_buffer(root->node);
9170 free_extent_buffer(root->commit_root);
b0feb9d9 9171 btrfs_put_fs_root(root);
76dda93c 9172 }
d29a9f62 9173 root_dropped = true;
79787eaa 9174out_end_trans:
3a45bb20 9175 btrfs_end_transaction_throttle(trans);
79787eaa 9176out_free:
2c47e605 9177 kfree(wc);
5caf2a00 9178 btrfs_free_path(path);
cb1b69f4 9179out:
d29a9f62
JB
9180 /*
9181 * So if we need to stop dropping the snapshot for whatever reason we
9182 * need to make sure to add it back to the dead root list so that we
9183 * keep trying to do the work later. This also cleans up roots if we
9184 * don't have it in the radix (like when we recover after a power fail
9185 * or unmount) so we don't leak memory.
9186 */
b37b39cd 9187 if (!for_reloc && root_dropped == false)
d29a9f62 9188 btrfs_add_dead_root(root);
90515e7f 9189 if (err && err != -EAGAIN)
ab8d0fc4 9190 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9191 return err;
20524f02 9192}
9078a3e1 9193
2c47e605
YZ
9194/*
9195 * drop subtree rooted at tree block 'node'.
9196 *
9197 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9198 * only used by relocation code
2c47e605 9199 */
f82d02d9
YZ
9200int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9201 struct btrfs_root *root,
9202 struct extent_buffer *node,
9203 struct extent_buffer *parent)
9204{
0b246afa 9205 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9206 struct btrfs_path *path;
2c47e605 9207 struct walk_control *wc;
f82d02d9
YZ
9208 int level;
9209 int parent_level;
9210 int ret = 0;
9211 int wret;
9212
2c47e605
YZ
9213 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9214
f82d02d9 9215 path = btrfs_alloc_path();
db5b493a
TI
9216 if (!path)
9217 return -ENOMEM;
f82d02d9 9218
2c47e605 9219 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9220 if (!wc) {
9221 btrfs_free_path(path);
9222 return -ENOMEM;
9223 }
2c47e605 9224
b9447ef8 9225 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9226 parent_level = btrfs_header_level(parent);
9227 extent_buffer_get(parent);
9228 path->nodes[parent_level] = parent;
9229 path->slots[parent_level] = btrfs_header_nritems(parent);
9230
b9447ef8 9231 btrfs_assert_tree_locked(node);
f82d02d9 9232 level = btrfs_header_level(node);
f82d02d9
YZ
9233 path->nodes[level] = node;
9234 path->slots[level] = 0;
bd681513 9235 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9236
9237 wc->refs[parent_level] = 1;
9238 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9239 wc->level = level;
9240 wc->shared_level = -1;
9241 wc->stage = DROP_REFERENCE;
9242 wc->update_ref = 0;
9243 wc->keep_locks = 1;
66d7e7f0 9244 wc->for_reloc = 1;
0b246afa 9245 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9246
9247 while (1) {
2c47e605
YZ
9248 wret = walk_down_tree(trans, root, path, wc);
9249 if (wret < 0) {
f82d02d9 9250 ret = wret;
f82d02d9 9251 break;
2c47e605 9252 }
f82d02d9 9253
2c47e605 9254 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9255 if (wret < 0)
9256 ret = wret;
9257 if (wret != 0)
9258 break;
9259 }
9260
2c47e605 9261 kfree(wc);
f82d02d9
YZ
9262 btrfs_free_path(path);
9263 return ret;
9264}
9265
6202df69 9266static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9267{
9268 u64 num_devices;
fc67c450 9269 u64 stripped;
e4d8ec0f 9270
fc67c450
ID
9271 /*
9272 * if restripe for this chunk_type is on pick target profile and
9273 * return, otherwise do the usual balance
9274 */
6202df69 9275 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9276 if (stripped)
9277 return extended_to_chunk(stripped);
e4d8ec0f 9278
6202df69 9279 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9280
fc67c450 9281 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9282 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9283 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9284
ec44a35c
CM
9285 if (num_devices == 1) {
9286 stripped |= BTRFS_BLOCK_GROUP_DUP;
9287 stripped = flags & ~stripped;
9288
9289 /* turn raid0 into single device chunks */
9290 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9291 return stripped;
9292
9293 /* turn mirroring into duplication */
9294 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9295 BTRFS_BLOCK_GROUP_RAID10))
9296 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9297 } else {
9298 /* they already had raid on here, just return */
ec44a35c
CM
9299 if (flags & stripped)
9300 return flags;
9301
9302 stripped |= BTRFS_BLOCK_GROUP_DUP;
9303 stripped = flags & ~stripped;
9304
9305 /* switch duplicated blocks with raid1 */
9306 if (flags & BTRFS_BLOCK_GROUP_DUP)
9307 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9308
e3176ca2 9309 /* this is drive concat, leave it alone */
ec44a35c 9310 }
e3176ca2 9311
ec44a35c
CM
9312 return flags;
9313}
9314
868f401a 9315static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9316{
f0486c68
YZ
9317 struct btrfs_space_info *sinfo = cache->space_info;
9318 u64 num_bytes;
199c36ea 9319 u64 min_allocable_bytes;
f0486c68 9320 int ret = -ENOSPC;
0ef3e66b 9321
199c36ea
MX
9322 /*
9323 * We need some metadata space and system metadata space for
9324 * allocating chunks in some corner cases until we force to set
9325 * it to be readonly.
9326 */
9327 if ((sinfo->flags &
9328 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9329 !force)
ee22184b 9330 min_allocable_bytes = SZ_1M;
199c36ea
MX
9331 else
9332 min_allocable_bytes = 0;
9333
f0486c68
YZ
9334 spin_lock(&sinfo->lock);
9335 spin_lock(&cache->lock);
61cfea9b
W
9336
9337 if (cache->ro) {
868f401a 9338 cache->ro++;
61cfea9b
W
9339 ret = 0;
9340 goto out;
9341 }
9342
f0486c68
YZ
9343 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9344 cache->bytes_super - btrfs_block_group_used(&cache->item);
9345
4136135b 9346 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9347 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9348 sinfo->bytes_readonly += num_bytes;
868f401a 9349 cache->ro++;
633c0aad 9350 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9351 ret = 0;
9352 }
61cfea9b 9353out:
f0486c68
YZ
9354 spin_unlock(&cache->lock);
9355 spin_unlock(&sinfo->lock);
9356 return ret;
9357}
7d9eb12c 9358
868f401a 9359int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9360 struct btrfs_block_group_cache *cache)
c286ac48 9361
f0486c68 9362{
0b246afa 9363 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68
YZ
9364 struct btrfs_trans_handle *trans;
9365 u64 alloc_flags;
9366 int ret;
7d9eb12c 9367
1bbc621e 9368again:
ff5714cc 9369 trans = btrfs_join_transaction(root);
79787eaa
JM
9370 if (IS_ERR(trans))
9371 return PTR_ERR(trans);
5d4f98a2 9372
1bbc621e
CM
9373 /*
9374 * we're not allowed to set block groups readonly after the dirty
9375 * block groups cache has started writing. If it already started,
9376 * back off and let this transaction commit
9377 */
0b246afa 9378 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9379 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9380 u64 transid = trans->transid;
9381
0b246afa 9382 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9383 btrfs_end_transaction(trans);
1bbc621e 9384
2ff7e61e 9385 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9386 if (ret)
9387 return ret;
9388 goto again;
9389 }
9390
153c35b6
CM
9391 /*
9392 * if we are changing raid levels, try to allocate a corresponding
9393 * block group with the new raid level.
9394 */
0b246afa 9395 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9396 if (alloc_flags != cache->flags) {
2ff7e61e 9397 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9398 CHUNK_ALLOC_FORCE);
9399 /*
9400 * ENOSPC is allowed here, we may have enough space
9401 * already allocated at the new raid level to
9402 * carry on
9403 */
9404 if (ret == -ENOSPC)
9405 ret = 0;
9406 if (ret < 0)
9407 goto out;
9408 }
1bbc621e 9409
868f401a 9410 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9411 if (!ret)
9412 goto out;
2ff7e61e
JM
9413 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9414 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9415 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9416 if (ret < 0)
9417 goto out;
868f401a 9418 ret = inc_block_group_ro(cache, 0);
f0486c68 9419out:
2f081088 9420 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9421 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9422 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9423 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9424 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9425 }
0b246afa 9426 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9427
3a45bb20 9428 btrfs_end_transaction(trans);
f0486c68
YZ
9429 return ret;
9430}
5d4f98a2 9431
c87f08ca 9432int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9433 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9434{
2ff7e61e
JM
9435 u64 alloc_flags = get_alloc_profile(fs_info, type);
9436
9437 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9438}
9439
6d07bcec
MX
9440/*
9441 * helper to account the unused space of all the readonly block group in the
633c0aad 9442 * space_info. takes mirrors into account.
6d07bcec 9443 */
633c0aad 9444u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9445{
9446 struct btrfs_block_group_cache *block_group;
9447 u64 free_bytes = 0;
9448 int factor;
9449
01327610 9450 /* It's df, we don't care if it's racy */
633c0aad
JB
9451 if (list_empty(&sinfo->ro_bgs))
9452 return 0;
9453
9454 spin_lock(&sinfo->lock);
9455 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9456 spin_lock(&block_group->lock);
9457
9458 if (!block_group->ro) {
9459 spin_unlock(&block_group->lock);
9460 continue;
9461 }
9462
9463 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9464 BTRFS_BLOCK_GROUP_RAID10 |
9465 BTRFS_BLOCK_GROUP_DUP))
9466 factor = 2;
9467 else
9468 factor = 1;
9469
9470 free_bytes += (block_group->key.offset -
9471 btrfs_block_group_used(&block_group->item)) *
9472 factor;
9473
9474 spin_unlock(&block_group->lock);
9475 }
6d07bcec
MX
9476 spin_unlock(&sinfo->lock);
9477
9478 return free_bytes;
9479}
9480
2ff7e61e 9481void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9482{
f0486c68
YZ
9483 struct btrfs_space_info *sinfo = cache->space_info;
9484 u64 num_bytes;
9485
9486 BUG_ON(!cache->ro);
9487
9488 spin_lock(&sinfo->lock);
9489 spin_lock(&cache->lock);
868f401a
Z
9490 if (!--cache->ro) {
9491 num_bytes = cache->key.offset - cache->reserved -
9492 cache->pinned - cache->bytes_super -
9493 btrfs_block_group_used(&cache->item);
9494 sinfo->bytes_readonly -= num_bytes;
9495 list_del_init(&cache->ro_list);
9496 }
f0486c68
YZ
9497 spin_unlock(&cache->lock);
9498 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9499}
9500
ba1bf481
JB
9501/*
9502 * checks to see if its even possible to relocate this block group.
9503 *
9504 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9505 * ok to go ahead and try.
9506 */
6bccf3ab 9507int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9508{
6bccf3ab 9509 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9510 struct btrfs_block_group_cache *block_group;
9511 struct btrfs_space_info *space_info;
0b246afa 9512 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9513 struct btrfs_device *device;
6df9a95e 9514 struct btrfs_trans_handle *trans;
cdcb725c 9515 u64 min_free;
6719db6a
JB
9516 u64 dev_min = 1;
9517 u64 dev_nr = 0;
4a5e98f5 9518 u64 target;
0305bc27 9519 int debug;
cdcb725c 9520 int index;
ba1bf481
JB
9521 int full = 0;
9522 int ret = 0;
1a40e23b 9523
0b246afa 9524 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9525
0b246afa 9526 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9527
ba1bf481 9528 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9529 if (!block_group) {
9530 if (debug)
0b246afa 9531 btrfs_warn(fs_info,
0305bc27
QW
9532 "can't find block group for bytenr %llu",
9533 bytenr);
ba1bf481 9534 return -1;
0305bc27 9535 }
1a40e23b 9536
cdcb725c 9537 min_free = btrfs_block_group_used(&block_group->item);
9538
ba1bf481 9539 /* no bytes used, we're good */
cdcb725c 9540 if (!min_free)
1a40e23b
ZY
9541 goto out;
9542
ba1bf481
JB
9543 space_info = block_group->space_info;
9544 spin_lock(&space_info->lock);
17d217fe 9545
ba1bf481 9546 full = space_info->full;
17d217fe 9547
ba1bf481
JB
9548 /*
9549 * if this is the last block group we have in this space, we can't
7ce618db
CM
9550 * relocate it unless we're able to allocate a new chunk below.
9551 *
9552 * Otherwise, we need to make sure we have room in the space to handle
9553 * all of the extents from this block group. If we can, we're good
ba1bf481 9554 */
7ce618db 9555 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9556 (btrfs_space_info_used(space_info, false) + min_free <
9557 space_info->total_bytes)) {
ba1bf481
JB
9558 spin_unlock(&space_info->lock);
9559 goto out;
17d217fe 9560 }
ba1bf481 9561 spin_unlock(&space_info->lock);
ea8c2819 9562
ba1bf481
JB
9563 /*
9564 * ok we don't have enough space, but maybe we have free space on our
9565 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9566 * alloc devices and guess if we have enough space. if this block
9567 * group is going to be restriped, run checks against the target
9568 * profile instead of the current one.
ba1bf481
JB
9569 */
9570 ret = -1;
ea8c2819 9571
cdcb725c 9572 /*
9573 * index:
9574 * 0: raid10
9575 * 1: raid1
9576 * 2: dup
9577 * 3: raid0
9578 * 4: single
9579 */
0b246afa 9580 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9581 if (target) {
31e50229 9582 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9583 } else {
9584 /*
9585 * this is just a balance, so if we were marked as full
9586 * we know there is no space for a new chunk
9587 */
0305bc27
QW
9588 if (full) {
9589 if (debug)
0b246afa
JM
9590 btrfs_warn(fs_info,
9591 "no space to alloc new chunk for block group %llu",
9592 block_group->key.objectid);
4a5e98f5 9593 goto out;
0305bc27 9594 }
4a5e98f5
ID
9595
9596 index = get_block_group_index(block_group);
9597 }
9598
e6ec716f 9599 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9600 dev_min = 4;
6719db6a
JB
9601 /* Divide by 2 */
9602 min_free >>= 1;
e6ec716f 9603 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9604 dev_min = 2;
e6ec716f 9605 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9606 /* Multiply by 2 */
9607 min_free <<= 1;
e6ec716f 9608 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9609 dev_min = fs_devices->rw_devices;
47c5713f 9610 min_free = div64_u64(min_free, dev_min);
cdcb725c 9611 }
9612
6df9a95e
JB
9613 /* We need to do this so that we can look at pending chunks */
9614 trans = btrfs_join_transaction(root);
9615 if (IS_ERR(trans)) {
9616 ret = PTR_ERR(trans);
9617 goto out;
9618 }
9619
0b246afa 9620 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9621 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9622 u64 dev_offset;
56bec294 9623
ba1bf481
JB
9624 /*
9625 * check to make sure we can actually find a chunk with enough
9626 * space to fit our block group in.
9627 */
63a212ab
SB
9628 if (device->total_bytes > device->bytes_used + min_free &&
9629 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9630 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9631 &dev_offset, NULL);
ba1bf481 9632 if (!ret)
cdcb725c 9633 dev_nr++;
9634
9635 if (dev_nr >= dev_min)
73e48b27 9636 break;
cdcb725c 9637
ba1bf481 9638 ret = -1;
725c8463 9639 }
edbd8d4e 9640 }
0305bc27 9641 if (debug && ret == -1)
0b246afa
JM
9642 btrfs_warn(fs_info,
9643 "no space to allocate a new chunk for block group %llu",
9644 block_group->key.objectid);
9645 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9646 btrfs_end_transaction(trans);
edbd8d4e 9647out:
ba1bf481 9648 btrfs_put_block_group(block_group);
edbd8d4e
CM
9649 return ret;
9650}
9651
6bccf3ab
JM
9652static int find_first_block_group(struct btrfs_fs_info *fs_info,
9653 struct btrfs_path *path,
9654 struct btrfs_key *key)
0b86a832 9655{
6bccf3ab 9656 struct btrfs_root *root = fs_info->extent_root;
925baedd 9657 int ret = 0;
0b86a832
CM
9658 struct btrfs_key found_key;
9659 struct extent_buffer *leaf;
9660 int slot;
edbd8d4e 9661
0b86a832
CM
9662 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9663 if (ret < 0)
925baedd
CM
9664 goto out;
9665
d397712b 9666 while (1) {
0b86a832 9667 slot = path->slots[0];
edbd8d4e 9668 leaf = path->nodes[0];
0b86a832
CM
9669 if (slot >= btrfs_header_nritems(leaf)) {
9670 ret = btrfs_next_leaf(root, path);
9671 if (ret == 0)
9672 continue;
9673 if (ret < 0)
925baedd 9674 goto out;
0b86a832 9675 break;
edbd8d4e 9676 }
0b86a832 9677 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9678
0b86a832 9679 if (found_key.objectid >= key->objectid &&
925baedd 9680 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9681 struct extent_map_tree *em_tree;
9682 struct extent_map *em;
9683
9684 em_tree = &root->fs_info->mapping_tree.map_tree;
9685 read_lock(&em_tree->lock);
9686 em = lookup_extent_mapping(em_tree, found_key.objectid,
9687 found_key.offset);
9688 read_unlock(&em_tree->lock);
9689 if (!em) {
0b246afa 9690 btrfs_err(fs_info,
6fb37b75
LB
9691 "logical %llu len %llu found bg but no related chunk",
9692 found_key.objectid, found_key.offset);
9693 ret = -ENOENT;
9694 } else {
9695 ret = 0;
9696 }
187ee58c 9697 free_extent_map(em);
925baedd
CM
9698 goto out;
9699 }
0b86a832 9700 path->slots[0]++;
edbd8d4e 9701 }
925baedd 9702out:
0b86a832 9703 return ret;
edbd8d4e
CM
9704}
9705
0af3d00b
JB
9706void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9707{
9708 struct btrfs_block_group_cache *block_group;
9709 u64 last = 0;
9710
9711 while (1) {
9712 struct inode *inode;
9713
9714 block_group = btrfs_lookup_first_block_group(info, last);
9715 while (block_group) {
9716 spin_lock(&block_group->lock);
9717 if (block_group->iref)
9718 break;
9719 spin_unlock(&block_group->lock);
2ff7e61e 9720 block_group = next_block_group(info, block_group);
0af3d00b
JB
9721 }
9722 if (!block_group) {
9723 if (last == 0)
9724 break;
9725 last = 0;
9726 continue;
9727 }
9728
9729 inode = block_group->inode;
9730 block_group->iref = 0;
9731 block_group->inode = NULL;
9732 spin_unlock(&block_group->lock);
f3bca802 9733 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9734 iput(inode);
9735 last = block_group->key.objectid + block_group->key.offset;
9736 btrfs_put_block_group(block_group);
9737 }
9738}
9739
1a40e23b
ZY
9740int btrfs_free_block_groups(struct btrfs_fs_info *info)
9741{
9742 struct btrfs_block_group_cache *block_group;
4184ea7f 9743 struct btrfs_space_info *space_info;
11833d66 9744 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9745 struct rb_node *n;
9746
9e351cc8 9747 down_write(&info->commit_root_sem);
11833d66
YZ
9748 while (!list_empty(&info->caching_block_groups)) {
9749 caching_ctl = list_entry(info->caching_block_groups.next,
9750 struct btrfs_caching_control, list);
9751 list_del(&caching_ctl->list);
9752 put_caching_control(caching_ctl);
9753 }
9e351cc8 9754 up_write(&info->commit_root_sem);
11833d66 9755
47ab2a6c
JB
9756 spin_lock(&info->unused_bgs_lock);
9757 while (!list_empty(&info->unused_bgs)) {
9758 block_group = list_first_entry(&info->unused_bgs,
9759 struct btrfs_block_group_cache,
9760 bg_list);
9761 list_del_init(&block_group->bg_list);
9762 btrfs_put_block_group(block_group);
9763 }
9764 spin_unlock(&info->unused_bgs_lock);
9765
1a40e23b
ZY
9766 spin_lock(&info->block_group_cache_lock);
9767 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9768 block_group = rb_entry(n, struct btrfs_block_group_cache,
9769 cache_node);
1a40e23b
ZY
9770 rb_erase(&block_group->cache_node,
9771 &info->block_group_cache_tree);
01eacb27 9772 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9773 spin_unlock(&info->block_group_cache_lock);
9774
80eb234a 9775 down_write(&block_group->space_info->groups_sem);
1a40e23b 9776 list_del(&block_group->list);
80eb234a 9777 up_write(&block_group->space_info->groups_sem);
d2fb3437 9778
817d52f8 9779 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9780 wait_block_group_cache_done(block_group);
817d52f8 9781
3c14874a
JB
9782 /*
9783 * We haven't cached this block group, which means we could
9784 * possibly have excluded extents on this block group.
9785 */
36cce922
JB
9786 if (block_group->cached == BTRFS_CACHE_NO ||
9787 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9788 free_excluded_extents(info, block_group);
3c14874a 9789
817d52f8 9790 btrfs_remove_free_space_cache(block_group);
f3bca802
LB
9791 ASSERT(list_empty(&block_group->dirty_list));
9792 ASSERT(list_empty(&block_group->io_list));
9793 ASSERT(list_empty(&block_group->bg_list));
9794 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9795 btrfs_put_block_group(block_group);
d899e052
YZ
9796
9797 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9798 }
9799 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9800
9801 /* now that all the block groups are freed, go through and
9802 * free all the space_info structs. This is only called during
9803 * the final stages of unmount, and so we know nobody is
9804 * using them. We call synchronize_rcu() once before we start,
9805 * just to be on the safe side.
9806 */
9807 synchronize_rcu();
9808
8929ecfa
YZ
9809 release_global_block_rsv(info);
9810
67871254 9811 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9812 int i;
9813
4184ea7f
CM
9814 space_info = list_entry(info->space_info.next,
9815 struct btrfs_space_info,
9816 list);
d555b6c3
JB
9817
9818 /*
9819 * Do not hide this behind enospc_debug, this is actually
9820 * important and indicates a real bug if this happens.
9821 */
9822 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9823 space_info->bytes_reserved > 0 ||
d555b6c3 9824 space_info->bytes_may_use > 0))
ab8d0fc4 9825 dump_space_info(info, space_info, 0, 0);
4184ea7f 9826 list_del(&space_info->list);
6ab0a202
JM
9827 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9828 struct kobject *kobj;
c1895442
JM
9829 kobj = space_info->block_group_kobjs[i];
9830 space_info->block_group_kobjs[i] = NULL;
9831 if (kobj) {
6ab0a202
JM
9832 kobject_del(kobj);
9833 kobject_put(kobj);
9834 }
9835 }
9836 kobject_del(&space_info->kobj);
9837 kobject_put(&space_info->kobj);
4184ea7f 9838 }
1a40e23b
ZY
9839 return 0;
9840}
9841
b742bb82
YZ
9842static void __link_block_group(struct btrfs_space_info *space_info,
9843 struct btrfs_block_group_cache *cache)
9844{
9845 int index = get_block_group_index(cache);
ed55b6ac 9846 bool first = false;
b742bb82
YZ
9847
9848 down_write(&space_info->groups_sem);
ed55b6ac
JM
9849 if (list_empty(&space_info->block_groups[index]))
9850 first = true;
9851 list_add_tail(&cache->list, &space_info->block_groups[index]);
9852 up_write(&space_info->groups_sem);
9853
9854 if (first) {
c1895442 9855 struct raid_kobject *rkobj;
6ab0a202
JM
9856 int ret;
9857
c1895442
JM
9858 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9859 if (!rkobj)
9860 goto out_err;
9861 rkobj->raid_type = index;
9862 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9863 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9864 "%s", get_raid_name(index));
6ab0a202 9865 if (ret) {
c1895442
JM
9866 kobject_put(&rkobj->kobj);
9867 goto out_err;
6ab0a202 9868 }
c1895442 9869 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9870 }
c1895442
JM
9871
9872 return;
9873out_err:
ab8d0fc4
JM
9874 btrfs_warn(cache->fs_info,
9875 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9876}
9877
920e4a58 9878static struct btrfs_block_group_cache *
2ff7e61e
JM
9879btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9880 u64 start, u64 size)
920e4a58
MX
9881{
9882 struct btrfs_block_group_cache *cache;
9883
9884 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9885 if (!cache)
9886 return NULL;
9887
9888 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9889 GFP_NOFS);
9890 if (!cache->free_space_ctl) {
9891 kfree(cache);
9892 return NULL;
9893 }
9894
9895 cache->key.objectid = start;
9896 cache->key.offset = size;
9897 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9898
0b246afa
JM
9899 cache->sectorsize = fs_info->sectorsize;
9900 cache->fs_info = fs_info;
2ff7e61e
JM
9901 cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9902 &fs_info->mapping_tree,
9903 start);
1e144fb8
OS
9904 set_free_space_tree_thresholds(cache);
9905
920e4a58
MX
9906 atomic_set(&cache->count, 1);
9907 spin_lock_init(&cache->lock);
e570fd27 9908 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9909 INIT_LIST_HEAD(&cache->list);
9910 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9911 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9912 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9913 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9914 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9915 btrfs_init_free_space_ctl(cache);
04216820 9916 atomic_set(&cache->trimming, 0);
a5ed9182 9917 mutex_init(&cache->free_space_lock);
920e4a58
MX
9918
9919 return cache;
9920}
9921
5b4aacef 9922int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9923{
9924 struct btrfs_path *path;
9925 int ret;
9078a3e1 9926 struct btrfs_block_group_cache *cache;
6324fbf3 9927 struct btrfs_space_info *space_info;
9078a3e1
CM
9928 struct btrfs_key key;
9929 struct btrfs_key found_key;
5f39d397 9930 struct extent_buffer *leaf;
0af3d00b
JB
9931 int need_clear = 0;
9932 u64 cache_gen;
49303381
LB
9933 u64 feature;
9934 int mixed;
9935
9936 feature = btrfs_super_incompat_flags(info->super_copy);
9937 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9938
9078a3e1 9939 key.objectid = 0;
0b86a832 9940 key.offset = 0;
962a298f 9941 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9942 path = btrfs_alloc_path();
9943 if (!path)
9944 return -ENOMEM;
e4058b54 9945 path->reada = READA_FORWARD;
9078a3e1 9946
0b246afa
JM
9947 cache_gen = btrfs_super_cache_generation(info->super_copy);
9948 if (btrfs_test_opt(info, SPACE_CACHE) &&
9949 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9950 need_clear = 1;
0b246afa 9951 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9952 need_clear = 1;
0af3d00b 9953
d397712b 9954 while (1) {
6bccf3ab 9955 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9956 if (ret > 0)
9957 break;
0b86a832
CM
9958 if (ret != 0)
9959 goto error;
920e4a58 9960
5f39d397
CM
9961 leaf = path->nodes[0];
9962 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9963
2ff7e61e 9964 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9965 found_key.offset);
9078a3e1 9966 if (!cache) {
0b86a832 9967 ret = -ENOMEM;
f0486c68 9968 goto error;
9078a3e1 9969 }
96303081 9970
cf7c1ef6
LB
9971 if (need_clear) {
9972 /*
9973 * When we mount with old space cache, we need to
9974 * set BTRFS_DC_CLEAR and set dirty flag.
9975 *
9976 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9977 * truncate the old free space cache inode and
9978 * setup a new one.
9979 * b) Setting 'dirty flag' makes sure that we flush
9980 * the new space cache info onto disk.
9981 */
0b246afa 9982 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9983 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9984 }
0af3d00b 9985
5f39d397
CM
9986 read_extent_buffer(leaf, &cache->item,
9987 btrfs_item_ptr_offset(leaf, path->slots[0]),
9988 sizeof(cache->item));
920e4a58 9989 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9990 if (!mixed &&
9991 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9992 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9993 btrfs_err(info,
9994"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9995 cache->key.objectid);
9996 ret = -EINVAL;
9997 goto error;
9998 }
0b86a832 9999
9078a3e1 10000 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10001 btrfs_release_path(path);
34d52cb6 10002
3c14874a
JB
10003 /*
10004 * We need to exclude the super stripes now so that the space
10005 * info has super bytes accounted for, otherwise we'll think
10006 * we have more space than we actually do.
10007 */
2ff7e61e 10008 ret = exclude_super_stripes(info, cache);
835d974f
JB
10009 if (ret) {
10010 /*
10011 * We may have excluded something, so call this just in
10012 * case.
10013 */
2ff7e61e 10014 free_excluded_extents(info, cache);
920e4a58 10015 btrfs_put_block_group(cache);
835d974f
JB
10016 goto error;
10017 }
3c14874a 10018
817d52f8
JB
10019 /*
10020 * check for two cases, either we are full, and therefore
10021 * don't need to bother with the caching work since we won't
10022 * find any space, or we are empty, and we can just add all
10023 * the space in and be done with it. This saves us _alot_ of
10024 * time, particularly in the full case.
10025 */
10026 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10027 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10028 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10029 free_excluded_extents(info, cache);
817d52f8 10030 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10031 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10032 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10033 add_new_free_space(cache, info,
817d52f8
JB
10034 found_key.objectid,
10035 found_key.objectid +
10036 found_key.offset);
2ff7e61e 10037 free_excluded_extents(info, cache);
817d52f8 10038 }
96b5179d 10039
0b246afa 10040 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10041 if (ret) {
10042 btrfs_remove_free_space_cache(cache);
10043 btrfs_put_block_group(cache);
10044 goto error;
10045 }
10046
0b246afa 10047 trace_btrfs_add_block_group(info, cache, 0);
6324fbf3
CM
10048 ret = update_space_info(info, cache->flags, found_key.offset,
10049 btrfs_block_group_used(&cache->item),
e40edf2d 10050 cache->bytes_super, &space_info);
8c579fe7
JB
10051 if (ret) {
10052 btrfs_remove_free_space_cache(cache);
10053 spin_lock(&info->block_group_cache_lock);
10054 rb_erase(&cache->cache_node,
10055 &info->block_group_cache_tree);
01eacb27 10056 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10057 spin_unlock(&info->block_group_cache_lock);
10058 btrfs_put_block_group(cache);
10059 goto error;
10060 }
10061
6324fbf3 10062 cache->space_info = space_info;
1b2da372 10063
b742bb82 10064 __link_block_group(space_info, cache);
0f9dd46c 10065
0b246afa 10066 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10067 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10068 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10069 } else if (btrfs_block_group_used(&cache->item) == 0) {
10070 spin_lock(&info->unused_bgs_lock);
10071 /* Should always be true but just in case. */
10072 if (list_empty(&cache->bg_list)) {
10073 btrfs_get_block_group(cache);
10074 list_add_tail(&cache->bg_list,
10075 &info->unused_bgs);
10076 }
10077 spin_unlock(&info->unused_bgs_lock);
10078 }
9078a3e1 10079 }
b742bb82 10080
0b246afa 10081 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10082 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10083 (BTRFS_BLOCK_GROUP_RAID10 |
10084 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10085 BTRFS_BLOCK_GROUP_RAID5 |
10086 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10087 BTRFS_BLOCK_GROUP_DUP)))
10088 continue;
10089 /*
10090 * avoid allocating from un-mirrored block group if there are
10091 * mirrored block groups.
10092 */
1095cc0d 10093 list_for_each_entry(cache,
10094 &space_info->block_groups[BTRFS_RAID_RAID0],
10095 list)
868f401a 10096 inc_block_group_ro(cache, 1);
1095cc0d 10097 list_for_each_entry(cache,
10098 &space_info->block_groups[BTRFS_RAID_SINGLE],
10099 list)
868f401a 10100 inc_block_group_ro(cache, 1);
9078a3e1 10101 }
f0486c68
YZ
10102
10103 init_global_block_rsv(info);
0b86a832
CM
10104 ret = 0;
10105error:
9078a3e1 10106 btrfs_free_path(path);
0b86a832 10107 return ret;
9078a3e1 10108}
6324fbf3 10109
ea658bad 10110void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10111 struct btrfs_fs_info *fs_info)
ea658bad
JB
10112{
10113 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10114 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10115 struct btrfs_block_group_item item;
10116 struct btrfs_key key;
10117 int ret = 0;
d9a0540a 10118 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10119
d9a0540a 10120 trans->can_flush_pending_bgs = false;
47ab2a6c 10121 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10122 if (ret)
c92f6be3 10123 goto next;
ea658bad
JB
10124
10125 spin_lock(&block_group->lock);
10126 memcpy(&item, &block_group->item, sizeof(item));
10127 memcpy(&key, &block_group->key, sizeof(key));
10128 spin_unlock(&block_group->lock);
10129
10130 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10131 sizeof(item));
10132 if (ret)
66642832 10133 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10134 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10135 key.offset);
6df9a95e 10136 if (ret)
66642832 10137 btrfs_abort_transaction(trans, ret);
0b246afa 10138 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10139 /* already aborted the transaction if it failed. */
c92f6be3
FM
10140next:
10141 list_del_init(&block_group->bg_list);
ea658bad 10142 }
d9a0540a 10143 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10144}
10145
6324fbf3 10146int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10147 struct btrfs_fs_info *fs_info, u64 bytes_used,
e17cade2 10148 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10149 u64 size)
10150{
6324fbf3 10151 struct btrfs_block_group_cache *cache;
0b246afa 10152 int ret;
6324fbf3 10153
0b246afa 10154 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10155
2ff7e61e 10156 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10157 if (!cache)
10158 return -ENOMEM;
34d52cb6 10159
6324fbf3 10160 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10161 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10162 btrfs_set_block_group_flags(&cache->item, type);
10163
920e4a58 10164 cache->flags = type;
11833d66 10165 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10166 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10167 cache->needs_free_space = 1;
2ff7e61e 10168 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10169 if (ret) {
10170 /*
10171 * We may have excluded something, so call this just in
10172 * case.
10173 */
2ff7e61e 10174 free_excluded_extents(fs_info, cache);
920e4a58 10175 btrfs_put_block_group(cache);
835d974f
JB
10176 return ret;
10177 }
96303081 10178
0b246afa 10179 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10180
2ff7e61e 10181 free_excluded_extents(fs_info, cache);
11833d66 10182
d0bd4560 10183#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10184 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10185 u64 new_bytes_used = size - bytes_used;
10186
10187 bytes_used += new_bytes_used >> 1;
2ff7e61e 10188 fragment_free_space(cache);
d0bd4560
JB
10189 }
10190#endif
2e6e5183
FM
10191 /*
10192 * Call to ensure the corresponding space_info object is created and
10193 * assigned to our block group, but don't update its counters just yet.
10194 * We want our bg to be added to the rbtree with its ->space_info set.
10195 */
0b246afa 10196 ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10197 &cache->space_info);
10198 if (ret) {
10199 btrfs_remove_free_space_cache(cache);
10200 btrfs_put_block_group(cache);
10201 return ret;
10202 }
10203
0b246afa 10204 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10205 if (ret) {
10206 btrfs_remove_free_space_cache(cache);
10207 btrfs_put_block_group(cache);
10208 return ret;
10209 }
10210
2e6e5183
FM
10211 /*
10212 * Now that our block group has its ->space_info set and is inserted in
10213 * the rbtree, update the space info's counters.
10214 */
0b246afa
JM
10215 trace_btrfs_add_block_group(fs_info, cache, 1);
10216 ret = update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10217 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10218 if (ret) {
10219 btrfs_remove_free_space_cache(cache);
0b246afa 10220 spin_lock(&fs_info->block_group_cache_lock);
8c579fe7 10221 rb_erase(&cache->cache_node,
0b246afa 10222 &fs_info->block_group_cache_tree);
01eacb27 10223 RB_CLEAR_NODE(&cache->cache_node);
0b246afa 10224 spin_unlock(&fs_info->block_group_cache_lock);
8c579fe7
JB
10225 btrfs_put_block_group(cache);
10226 return ret;
10227 }
0b246afa 10228 update_global_block_rsv(fs_info);
1b2da372 10229
b742bb82 10230 __link_block_group(cache->space_info, cache);
6324fbf3 10231
47ab2a6c 10232 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10233
0b246afa 10234 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10235 return 0;
10236}
1a40e23b 10237
10ea00f5
ID
10238static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10239{
899c81ea
ID
10240 u64 extra_flags = chunk_to_extended(flags) &
10241 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10242
de98ced9 10243 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10244 if (flags & BTRFS_BLOCK_GROUP_DATA)
10245 fs_info->avail_data_alloc_bits &= ~extra_flags;
10246 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10247 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10248 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10249 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10250 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10251}
10252
1a40e23b 10253int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10254 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10255 struct extent_map *em)
1a40e23b 10256{
6bccf3ab 10257 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10258 struct btrfs_path *path;
10259 struct btrfs_block_group_cache *block_group;
44fb5511 10260 struct btrfs_free_cluster *cluster;
0b246afa 10261 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10262 struct btrfs_key key;
0af3d00b 10263 struct inode *inode;
c1895442 10264 struct kobject *kobj = NULL;
1a40e23b 10265 int ret;
10ea00f5 10266 int index;
89a55897 10267 int factor;
4f69cb98 10268 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10269 bool remove_em;
1a40e23b 10270
6bccf3ab 10271 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10272 BUG_ON(!block_group);
c146afad 10273 BUG_ON(!block_group->ro);
1a40e23b 10274
9f7c43c9 10275 /*
10276 * Free the reserved super bytes from this block group before
10277 * remove it.
10278 */
2ff7e61e 10279 free_excluded_extents(fs_info, block_group);
9f7c43c9 10280
1a40e23b 10281 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10282 index = get_block_group_index(block_group);
89a55897
JB
10283 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10284 BTRFS_BLOCK_GROUP_RAID1 |
10285 BTRFS_BLOCK_GROUP_RAID10))
10286 factor = 2;
10287 else
10288 factor = 1;
1a40e23b 10289
44fb5511 10290 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10291 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10292 spin_lock(&cluster->refill_lock);
10293 btrfs_return_cluster_to_free_space(block_group, cluster);
10294 spin_unlock(&cluster->refill_lock);
10295
10296 /*
10297 * make sure this block group isn't part of a metadata
10298 * allocation cluster
10299 */
0b246afa 10300 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10301 spin_lock(&cluster->refill_lock);
10302 btrfs_return_cluster_to_free_space(block_group, cluster);
10303 spin_unlock(&cluster->refill_lock);
10304
1a40e23b 10305 path = btrfs_alloc_path();
d8926bb3
MF
10306 if (!path) {
10307 ret = -ENOMEM;
10308 goto out;
10309 }
1a40e23b 10310
1bbc621e
CM
10311 /*
10312 * get the inode first so any iput calls done for the io_list
10313 * aren't the final iput (no unlinks allowed now)
10314 */
10b2f34d 10315 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10316
10317 mutex_lock(&trans->transaction->cache_write_mutex);
10318 /*
10319 * make sure our free spache cache IO is done before remove the
10320 * free space inode
10321 */
10322 spin_lock(&trans->transaction->dirty_bgs_lock);
10323 if (!list_empty(&block_group->io_list)) {
10324 list_del_init(&block_group->io_list);
10325
10326 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10327
10328 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10329 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10330 btrfs_put_block_group(block_group);
10331 spin_lock(&trans->transaction->dirty_bgs_lock);
10332 }
10333
10334 if (!list_empty(&block_group->dirty_list)) {
10335 list_del_init(&block_group->dirty_list);
10336 btrfs_put_block_group(block_group);
10337 }
10338 spin_unlock(&trans->transaction->dirty_bgs_lock);
10339 mutex_unlock(&trans->transaction->cache_write_mutex);
10340
0af3d00b 10341 if (!IS_ERR(inode)) {
b532402e 10342 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10343 if (ret) {
10344 btrfs_add_delayed_iput(inode);
10345 goto out;
10346 }
0af3d00b
JB
10347 clear_nlink(inode);
10348 /* One for the block groups ref */
10349 spin_lock(&block_group->lock);
10350 if (block_group->iref) {
10351 block_group->iref = 0;
10352 block_group->inode = NULL;
10353 spin_unlock(&block_group->lock);
10354 iput(inode);
10355 } else {
10356 spin_unlock(&block_group->lock);
10357 }
10358 /* One for our lookup ref */
455757c3 10359 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10360 }
10361
10362 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10363 key.offset = block_group->key.objectid;
10364 key.type = 0;
10365
10366 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10367 if (ret < 0)
10368 goto out;
10369 if (ret > 0)
b3b4aa74 10370 btrfs_release_path(path);
0af3d00b
JB
10371 if (ret == 0) {
10372 ret = btrfs_del_item(trans, tree_root, path);
10373 if (ret)
10374 goto out;
b3b4aa74 10375 btrfs_release_path(path);
0af3d00b
JB
10376 }
10377
0b246afa 10378 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10379 rb_erase(&block_group->cache_node,
0b246afa 10380 &fs_info->block_group_cache_tree);
292cbd51 10381 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10382
0b246afa
JM
10383 if (fs_info->first_logical_byte == block_group->key.objectid)
10384 fs_info->first_logical_byte = (u64)-1;
10385 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10386
80eb234a 10387 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10388 /*
10389 * we must use list_del_init so people can check to see if they
10390 * are still on the list after taking the semaphore
10391 */
10392 list_del_init(&block_group->list);
6ab0a202 10393 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10394 kobj = block_group->space_info->block_group_kobjs[index];
10395 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10396 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10397 }
80eb234a 10398 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10399 if (kobj) {
10400 kobject_del(kobj);
10401 kobject_put(kobj);
10402 }
1a40e23b 10403
4f69cb98
FM
10404 if (block_group->has_caching_ctl)
10405 caching_ctl = get_caching_control(block_group);
817d52f8 10406 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10407 wait_block_group_cache_done(block_group);
4f69cb98 10408 if (block_group->has_caching_ctl) {
0b246afa 10409 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10410 if (!caching_ctl) {
10411 struct btrfs_caching_control *ctl;
10412
10413 list_for_each_entry(ctl,
0b246afa 10414 &fs_info->caching_block_groups, list)
4f69cb98
FM
10415 if (ctl->block_group == block_group) {
10416 caching_ctl = ctl;
10417 atomic_inc(&caching_ctl->count);
10418 break;
10419 }
10420 }
10421 if (caching_ctl)
10422 list_del_init(&caching_ctl->list);
0b246afa 10423 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10424 if (caching_ctl) {
10425 /* Once for the caching bgs list and once for us. */
10426 put_caching_control(caching_ctl);
10427 put_caching_control(caching_ctl);
10428 }
10429 }
817d52f8 10430
ce93ec54
JB
10431 spin_lock(&trans->transaction->dirty_bgs_lock);
10432 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10433 WARN_ON(1);
10434 }
10435 if (!list_empty(&block_group->io_list)) {
10436 WARN_ON(1);
ce93ec54
JB
10437 }
10438 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10439 btrfs_remove_free_space_cache(block_group);
10440
c146afad 10441 spin_lock(&block_group->space_info->lock);
75c68e9f 10442 list_del_init(&block_group->ro_list);
18d018ad 10443
0b246afa 10444 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10445 WARN_ON(block_group->space_info->total_bytes
10446 < block_group->key.offset);
10447 WARN_ON(block_group->space_info->bytes_readonly
10448 < block_group->key.offset);
10449 WARN_ON(block_group->space_info->disk_total
10450 < block_group->key.offset * factor);
10451 }
c146afad
YZ
10452 block_group->space_info->total_bytes -= block_group->key.offset;
10453 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10454 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10455
c146afad 10456 spin_unlock(&block_group->space_info->lock);
283bb197 10457
0af3d00b
JB
10458 memcpy(&key, &block_group->key, sizeof(key));
10459
34441361 10460 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10461 if (!list_empty(&em->list)) {
10462 /* We're in the transaction->pending_chunks list. */
10463 free_extent_map(em);
10464 }
04216820
FM
10465 spin_lock(&block_group->lock);
10466 block_group->removed = 1;
10467 /*
10468 * At this point trimming can't start on this block group, because we
10469 * removed the block group from the tree fs_info->block_group_cache_tree
10470 * so no one can't find it anymore and even if someone already got this
10471 * block group before we removed it from the rbtree, they have already
10472 * incremented block_group->trimming - if they didn't, they won't find
10473 * any free space entries because we already removed them all when we
10474 * called btrfs_remove_free_space_cache().
10475 *
10476 * And we must not remove the extent map from the fs_info->mapping_tree
10477 * to prevent the same logical address range and physical device space
10478 * ranges from being reused for a new block group. This is because our
10479 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10480 * completely transactionless, so while it is trimming a range the
10481 * currently running transaction might finish and a new one start,
10482 * allowing for new block groups to be created that can reuse the same
10483 * physical device locations unless we take this special care.
e33e17ee
JM
10484 *
10485 * There may also be an implicit trim operation if the file system
10486 * is mounted with -odiscard. The same protections must remain
10487 * in place until the extents have been discarded completely when
10488 * the transaction commit has completed.
04216820
FM
10489 */
10490 remove_em = (atomic_read(&block_group->trimming) == 0);
10491 /*
10492 * Make sure a trimmer task always sees the em in the pinned_chunks list
10493 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10494 * before checking block_group->removed).
10495 */
10496 if (!remove_em) {
10497 /*
10498 * Our em might be in trans->transaction->pending_chunks which
10499 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10500 * and so is the fs_info->pinned_chunks list.
10501 *
10502 * So at this point we must be holding the chunk_mutex to avoid
10503 * any races with chunk allocation (more specifically at
10504 * volumes.c:contains_pending_extent()), to ensure it always
10505 * sees the em, either in the pending_chunks list or in the
10506 * pinned_chunks list.
10507 */
0b246afa 10508 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10509 }
10510 spin_unlock(&block_group->lock);
04216820
FM
10511
10512 if (remove_em) {
10513 struct extent_map_tree *em_tree;
10514
0b246afa 10515 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10516 write_lock(&em_tree->lock);
8dbcd10f
FM
10517 /*
10518 * The em might be in the pending_chunks list, so make sure the
10519 * chunk mutex is locked, since remove_extent_mapping() will
10520 * delete us from that list.
10521 */
04216820
FM
10522 remove_extent_mapping(em_tree, em);
10523 write_unlock(&em_tree->lock);
10524 /* once for the tree */
10525 free_extent_map(em);
10526 }
10527
34441361 10528 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10529
0b246afa 10530 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10531 if (ret)
10532 goto out;
10533
fa9c0d79
CM
10534 btrfs_put_block_group(block_group);
10535 btrfs_put_block_group(block_group);
1a40e23b
ZY
10536
10537 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10538 if (ret > 0)
10539 ret = -EIO;
10540 if (ret < 0)
10541 goto out;
10542
10543 ret = btrfs_del_item(trans, root, path);
10544out:
10545 btrfs_free_path(path);
10546 return ret;
10547}
acce952b 10548
8eab77ff 10549struct btrfs_trans_handle *
7fd01182
FM
10550btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10551 const u64 chunk_offset)
8eab77ff 10552{
7fd01182
FM
10553 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10554 struct extent_map *em;
10555 struct map_lookup *map;
10556 unsigned int num_items;
10557
10558 read_lock(&em_tree->lock);
10559 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10560 read_unlock(&em_tree->lock);
10561 ASSERT(em && em->start == chunk_offset);
10562
8eab77ff 10563 /*
7fd01182
FM
10564 * We need to reserve 3 + N units from the metadata space info in order
10565 * to remove a block group (done at btrfs_remove_chunk() and at
10566 * btrfs_remove_block_group()), which are used for:
10567 *
8eab77ff
FM
10568 * 1 unit for adding the free space inode's orphan (located in the tree
10569 * of tree roots).
7fd01182
FM
10570 * 1 unit for deleting the block group item (located in the extent
10571 * tree).
10572 * 1 unit for deleting the free space item (located in tree of tree
10573 * roots).
10574 * N units for deleting N device extent items corresponding to each
10575 * stripe (located in the device tree).
10576 *
10577 * In order to remove a block group we also need to reserve units in the
10578 * system space info in order to update the chunk tree (update one or
10579 * more device items and remove one chunk item), but this is done at
10580 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10581 */
95617d69 10582 map = em->map_lookup;
7fd01182
FM
10583 num_items = 3 + map->num_stripes;
10584 free_extent_map(em);
10585
8eab77ff 10586 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10587 num_items, 1);
8eab77ff
FM
10588}
10589
47ab2a6c
JB
10590/*
10591 * Process the unused_bgs list and remove any that don't have any allocated
10592 * space inside of them.
10593 */
10594void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10595{
10596 struct btrfs_block_group_cache *block_group;
10597 struct btrfs_space_info *space_info;
47ab2a6c
JB
10598 struct btrfs_trans_handle *trans;
10599 int ret = 0;
10600
afcdd129 10601 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10602 return;
10603
10604 spin_lock(&fs_info->unused_bgs_lock);
10605 while (!list_empty(&fs_info->unused_bgs)) {
10606 u64 start, end;
e33e17ee 10607 int trimming;
47ab2a6c
JB
10608
10609 block_group = list_first_entry(&fs_info->unused_bgs,
10610 struct btrfs_block_group_cache,
10611 bg_list);
47ab2a6c 10612 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10613
10614 space_info = block_group->space_info;
10615
47ab2a6c
JB
10616 if (ret || btrfs_mixed_space_info(space_info)) {
10617 btrfs_put_block_group(block_group);
10618 continue;
10619 }
10620 spin_unlock(&fs_info->unused_bgs_lock);
10621
d5f2e33b 10622 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10623
47ab2a6c
JB
10624 /* Don't want to race with allocators so take the groups_sem */
10625 down_write(&space_info->groups_sem);
10626 spin_lock(&block_group->lock);
10627 if (block_group->reserved ||
10628 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10629 block_group->ro ||
aefbe9a6 10630 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10631 /*
10632 * We want to bail if we made new allocations or have
10633 * outstanding allocations in this block group. We do
10634 * the ro check in case balance is currently acting on
10635 * this block group.
10636 */
10637 spin_unlock(&block_group->lock);
10638 up_write(&space_info->groups_sem);
10639 goto next;
10640 }
10641 spin_unlock(&block_group->lock);
10642
10643 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10644 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10645 up_write(&space_info->groups_sem);
10646 if (ret < 0) {
10647 ret = 0;
10648 goto next;
10649 }
10650
10651 /*
10652 * Want to do this before we do anything else so we can recover
10653 * properly if we fail to join the transaction.
10654 */
7fd01182
FM
10655 trans = btrfs_start_trans_remove_block_group(fs_info,
10656 block_group->key.objectid);
47ab2a6c 10657 if (IS_ERR(trans)) {
2ff7e61e 10658 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10659 ret = PTR_ERR(trans);
10660 goto next;
10661 }
10662
10663 /*
10664 * We could have pending pinned extents for this block group,
10665 * just delete them, we don't care about them anymore.
10666 */
10667 start = block_group->key.objectid;
10668 end = start + block_group->key.offset - 1;
d4b450cd
FM
10669 /*
10670 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10671 * btrfs_finish_extent_commit(). If we are at transaction N,
10672 * another task might be running finish_extent_commit() for the
10673 * previous transaction N - 1, and have seen a range belonging
10674 * to the block group in freed_extents[] before we were able to
10675 * clear the whole block group range from freed_extents[]. This
10676 * means that task can lookup for the block group after we
10677 * unpinned it from freed_extents[] and removed it, leading to
10678 * a BUG_ON() at btrfs_unpin_extent_range().
10679 */
10680 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10681 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10682 EXTENT_DIRTY);
758eb51e 10683 if (ret) {
d4b450cd 10684 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10685 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10686 goto end_trans;
10687 }
10688 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10689 EXTENT_DIRTY);
758eb51e 10690 if (ret) {
d4b450cd 10691 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10692 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10693 goto end_trans;
10694 }
d4b450cd 10695 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10696
10697 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10698 spin_lock(&space_info->lock);
10699 spin_lock(&block_group->lock);
10700
10701 space_info->bytes_pinned -= block_group->pinned;
10702 space_info->bytes_readonly += block_group->pinned;
10703 percpu_counter_add(&space_info->total_bytes_pinned,
10704 -block_group->pinned);
47ab2a6c
JB
10705 block_group->pinned = 0;
10706
c30666d4
ZL
10707 spin_unlock(&block_group->lock);
10708 spin_unlock(&space_info->lock);
10709
e33e17ee 10710 /* DISCARD can flip during remount */
0b246afa 10711 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10712
10713 /* Implicit trim during transaction commit. */
10714 if (trimming)
10715 btrfs_get_block_group_trimming(block_group);
10716
47ab2a6c
JB
10717 /*
10718 * Btrfs_remove_chunk will abort the transaction if things go
10719 * horribly wrong.
10720 */
5b4aacef 10721 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10722 block_group->key.objectid);
e33e17ee
JM
10723
10724 if (ret) {
10725 if (trimming)
10726 btrfs_put_block_group_trimming(block_group);
10727 goto end_trans;
10728 }
10729
10730 /*
10731 * If we're not mounted with -odiscard, we can just forget
10732 * about this block group. Otherwise we'll need to wait
10733 * until transaction commit to do the actual discard.
10734 */
10735 if (trimming) {
348a0013
FM
10736 spin_lock(&fs_info->unused_bgs_lock);
10737 /*
10738 * A concurrent scrub might have added us to the list
10739 * fs_info->unused_bgs, so use a list_move operation
10740 * to add the block group to the deleted_bgs list.
10741 */
e33e17ee
JM
10742 list_move(&block_group->bg_list,
10743 &trans->transaction->deleted_bgs);
348a0013 10744 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10745 btrfs_get_block_group(block_group);
10746 }
758eb51e 10747end_trans:
3a45bb20 10748 btrfs_end_transaction(trans);
47ab2a6c 10749next:
d5f2e33b 10750 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10751 btrfs_put_block_group(block_group);
10752 spin_lock(&fs_info->unused_bgs_lock);
10753 }
10754 spin_unlock(&fs_info->unused_bgs_lock);
10755}
10756
c59021f8 10757int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10758{
10759 struct btrfs_space_info *space_info;
1aba86d6 10760 struct btrfs_super_block *disk_super;
10761 u64 features;
10762 u64 flags;
10763 int mixed = 0;
c59021f8 10764 int ret;
10765
6c41761f 10766 disk_super = fs_info->super_copy;
1aba86d6 10767 if (!btrfs_super_root(disk_super))
0dc924c5 10768 return -EINVAL;
c59021f8 10769
1aba86d6 10770 features = btrfs_super_incompat_flags(disk_super);
10771 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10772 mixed = 1;
c59021f8 10773
1aba86d6 10774 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10775 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10776 if (ret)
1aba86d6 10777 goto out;
c59021f8 10778
1aba86d6 10779 if (mixed) {
10780 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10781 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10782 } else {
10783 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10784 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10785 if (ret)
10786 goto out;
10787
10788 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10789 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10790 }
10791out:
c59021f8 10792 return ret;
10793}
10794
2ff7e61e
JM
10795int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10796 u64 start, u64 end)
acce952b 10797{
2ff7e61e 10798 return unpin_extent_range(fs_info, start, end, false);
acce952b 10799}
10800
499f377f
JM
10801/*
10802 * It used to be that old block groups would be left around forever.
10803 * Iterating over them would be enough to trim unused space. Since we
10804 * now automatically remove them, we also need to iterate over unallocated
10805 * space.
10806 *
10807 * We don't want a transaction for this since the discard may take a
10808 * substantial amount of time. We don't require that a transaction be
10809 * running, but we do need to take a running transaction into account
10810 * to ensure that we're not discarding chunks that were released in
10811 * the current transaction.
10812 *
10813 * Holding the chunks lock will prevent other threads from allocating
10814 * or releasing chunks, but it won't prevent a running transaction
10815 * from committing and releasing the memory that the pending chunks
10816 * list head uses. For that, we need to take a reference to the
10817 * transaction.
10818 */
10819static int btrfs_trim_free_extents(struct btrfs_device *device,
10820 u64 minlen, u64 *trimmed)
10821{
10822 u64 start = 0, len = 0;
10823 int ret;
10824
10825 *trimmed = 0;
10826
10827 /* Not writeable = nothing to do. */
10828 if (!device->writeable)
10829 return 0;
10830
10831 /* No free space = nothing to do. */
10832 if (device->total_bytes <= device->bytes_used)
10833 return 0;
10834
10835 ret = 0;
10836
10837 while (1) {
fb456252 10838 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10839 struct btrfs_transaction *trans;
10840 u64 bytes;
10841
10842 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10843 if (ret)
10844 return ret;
10845
10846 down_read(&fs_info->commit_root_sem);
10847
10848 spin_lock(&fs_info->trans_lock);
10849 trans = fs_info->running_transaction;
10850 if (trans)
10851 atomic_inc(&trans->use_count);
10852 spin_unlock(&fs_info->trans_lock);
10853
10854 ret = find_free_dev_extent_start(trans, device, minlen, start,
10855 &start, &len);
10856 if (trans)
10857 btrfs_put_transaction(trans);
10858
10859 if (ret) {
10860 up_read(&fs_info->commit_root_sem);
10861 mutex_unlock(&fs_info->chunk_mutex);
10862 if (ret == -ENOSPC)
10863 ret = 0;
10864 break;
10865 }
10866
10867 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10868 up_read(&fs_info->commit_root_sem);
10869 mutex_unlock(&fs_info->chunk_mutex);
10870
10871 if (ret)
10872 break;
10873
10874 start += len;
10875 *trimmed += bytes;
10876
10877 if (fatal_signal_pending(current)) {
10878 ret = -ERESTARTSYS;
10879 break;
10880 }
10881
10882 cond_resched();
10883 }
10884
10885 return ret;
10886}
10887
2ff7e61e 10888int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10889{
f7039b1d 10890 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10891 struct btrfs_device *device;
10892 struct list_head *devices;
f7039b1d
LD
10893 u64 group_trimmed;
10894 u64 start;
10895 u64 end;
10896 u64 trimmed = 0;
2cac13e4 10897 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10898 int ret = 0;
10899
2cac13e4
LB
10900 /*
10901 * try to trim all FS space, our block group may start from non-zero.
10902 */
10903 if (range->len == total_bytes)
10904 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10905 else
10906 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10907
10908 while (cache) {
10909 if (cache->key.objectid >= (range->start + range->len)) {
10910 btrfs_put_block_group(cache);
10911 break;
10912 }
10913
10914 start = max(range->start, cache->key.objectid);
10915 end = min(range->start + range->len,
10916 cache->key.objectid + cache->key.offset);
10917
10918 if (end - start >= range->minlen) {
10919 if (!block_group_cache_done(cache)) {
f6373bf3 10920 ret = cache_block_group(cache, 0);
1be41b78
JB
10921 if (ret) {
10922 btrfs_put_block_group(cache);
10923 break;
10924 }
10925 ret = wait_block_group_cache_done(cache);
10926 if (ret) {
10927 btrfs_put_block_group(cache);
10928 break;
10929 }
f7039b1d
LD
10930 }
10931 ret = btrfs_trim_block_group(cache,
10932 &group_trimmed,
10933 start,
10934 end,
10935 range->minlen);
10936
10937 trimmed += group_trimmed;
10938 if (ret) {
10939 btrfs_put_block_group(cache);
10940 break;
10941 }
10942 }
10943
2ff7e61e 10944 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10945 }
10946
0b246afa
JM
10947 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10948 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10949 list_for_each_entry(device, devices, dev_alloc_list) {
10950 ret = btrfs_trim_free_extents(device, range->minlen,
10951 &group_trimmed);
10952 if (ret)
10953 break;
10954
10955 trimmed += group_trimmed;
10956 }
0b246afa 10957 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10958
f7039b1d
LD
10959 range->len = trimmed;
10960 return ret;
10961}
8257b2dc
MX
10962
10963/*
9ea24bbe
FM
10964 * btrfs_{start,end}_write_no_snapshoting() are similar to
10965 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10966 * data into the page cache through nocow before the subvolume is snapshoted,
10967 * but flush the data into disk after the snapshot creation, or to prevent
10968 * operations while snapshoting is ongoing and that cause the snapshot to be
10969 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10970 */
9ea24bbe 10971void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10972{
10973 percpu_counter_dec(&root->subv_writers->counter);
10974 /*
a83342aa 10975 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
10976 */
10977 smp_mb();
10978 if (waitqueue_active(&root->subv_writers->wait))
10979 wake_up(&root->subv_writers->wait);
10980}
10981
9ea24bbe 10982int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10983{
ee39b432 10984 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10985 return 0;
10986
10987 percpu_counter_inc(&root->subv_writers->counter);
10988 /*
10989 * Make sure counter is updated before we check for snapshot creation.
10990 */
10991 smp_mb();
ee39b432 10992 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10993 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10994 return 0;
10995 }
10996 return 1;
10997}
0bc19f90
ZL
10998
10999static int wait_snapshoting_atomic_t(atomic_t *a)
11000{
11001 schedule();
11002 return 0;
11003}
11004
11005void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11006{
11007 while (true) {
11008 int ret;
11009
11010 ret = btrfs_start_write_no_snapshoting(root);
11011 if (ret)
11012 break;
11013 wait_on_atomic_t(&root->will_be_snapshoted,
11014 wait_snapshoting_atomic_t,
11015 TASK_UNINTERRUPTIBLE);
11016 }
11017}