btrfs: Remove fs_info argument from btrfs_trans_release_metadata
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
74493f7a 30#include "hash.h"
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
b4570aa9 538 struct btrfs_root *extent_root;
73fa48b6
OS
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
b4570aa9 544 extent_root = fs_info->extent_root;
73fa48b6
OS
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
1e144fb8
OS
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
73fa48b6 553
817d52f8 554 spin_lock(&block_group->lock);
11833d66 555 block_group->caching_ctl = NULL;
73fa48b6 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 557 spin_unlock(&block_group->lock);
0f9dd46c 558
d0bd4560 559#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 560 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
2ff7e61e 570 fragment_free_space(block_group);
d0bd4560
JB
571 }
572#endif
573
574 caching_ctl->progress = (u64)-1;
11833d66 575
9e351cc8 576 up_read(&fs_info->commit_root_sem);
2ff7e61e 577 free_excluded_extents(fs_info, block_group);
11833d66 578 mutex_unlock(&caching_ctl->mutex);
73fa48b6 579
11833d66
YZ
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
11dfe35a 583 btrfs_put_block_group(block_group);
817d52f8
JB
584}
585
9d66e233 586static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 587 int load_cache_only)
817d52f8 588{
291c7d2f 589 DEFINE_WAIT(wait);
11833d66
YZ
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
592 int ret = 0;
593
291c7d2f 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
595 if (!caching_ctl)
596 return -ENOMEM;
291c7d2f
JB
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
1e4f4714 603 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
291c7d2f
JB
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
1e4f4714 624 refcount_inc(&ctl->count);
291c7d2f
JB
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
11833d66 638 return 0;
291c7d2f
JB
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
11833d66 644
d8953d69 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 646 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
291c7d2f 651 cache->caching_ctl = NULL;
9d66e233
JB
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 654 caching_ctl->progress = (u64)-1;
9d66e233 655 } else {
291c7d2f
JB
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 661 cache->has_caching_ctl = 1;
291c7d2f 662 }
9d66e233
JB
663 }
664 spin_unlock(&cache->lock);
d0bd4560
JB
665#ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
2ff7e61e 667 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
2ff7e61e 677 fragment_free_space(cache);
d0bd4560
JB
678 }
679#endif
cb83b7b8
JB
680 mutex_unlock(&caching_ctl->mutex);
681
291c7d2f 682 wake_up(&caching_ctl->wait);
3c14874a 683 if (ret == 1) {
291c7d2f 684 put_caching_control(caching_ctl);
2ff7e61e 685 free_excluded_extents(fs_info, cache);
9d66e233 686 return 0;
3c14874a 687 }
291c7d2f
JB
688 } else {
689 /*
1e144fb8
OS
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 699 cache->has_caching_ctl = 1;
291c7d2f
JB
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
9d66e233
JB
703 }
704
291c7d2f
JB
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
11833d66 707 return 0;
817d52f8 708 }
817d52f8 709
9e351cc8 710 down_write(&fs_info->commit_root_sem);
1e4f4714 711 refcount_inc(&caching_ctl->count);
11833d66 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 713 up_write(&fs_info->commit_root_sem);
11833d66 714
11dfe35a 715 btrfs_get_block_group(cache);
11833d66 716
e66f0bb1 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 718
ef8bbdfe 719 return ret;
e37c9e69
CM
720}
721
0f9dd46c
JB
722/*
723 * return the block group that starts at or after bytenr
724 */
d397712b
CM
725static struct btrfs_block_group_cache *
726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 727{
e2c89907 728 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
729}
730
0f9dd46c 731/*
9f55684c 732 * return the block group that contains the given bytenr
0f9dd46c 733 */
d397712b
CM
734struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
be744175 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 1);
be744175 739}
0b86a832 740
0f9dd46c
JB
741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
6324fbf3 743{
0f9dd46c 744 struct list_head *head = &info->space_info;
0f9dd46c 745 struct btrfs_space_info *found;
4184ea7f 746
52ba6929 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 748
4184ea7f
CM
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
67377734 751 if (found->flags & flags) {
4184ea7f 752 rcu_read_unlock();
0f9dd46c 753 return found;
4184ea7f 754 }
0f9dd46c 755 }
4184ea7f 756 rcu_read_unlock();
0f9dd46c 757 return NULL;
6324fbf3
CM
758}
759
0d9f824d
OS
760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762{
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
0d9f824d
OS
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897#else
898 BUG();
899#endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
f72ad18e 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
d278850e 916 refcount_inc(&head->refs);
a22285a6
YZ
917 spin_unlock(&delayed_refs->lock);
918
b3b4aa74 919 btrfs_release_path(path);
a22285a6 920
8cc33e5c
DS
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
a22285a6
YZ
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
d278850e 927 btrfs_put_delayed_ref_head(head);
639eefc8 928 goto search_again;
a22285a6 929 }
d7df2c79 930 spin_lock(&head->lock);
a22285a6
YZ
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
d278850e 936 num_refs += head->ref_mod;
d7df2c79 937 spin_unlock(&head->lock);
a22285a6
YZ
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947out_free:
948 btrfs_free_path(path);
949 return ret;
950}
951
d8d5f3e1
CM
952/*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
5d4f98a2
YZ
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
01327610 984 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
d8d5f3e1
CM
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1014 * - different files inside a single subvolume
d8d5f3e1
CM
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
5d4f98a2 1017 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1018 *
1019 * - Objectid of the subvolume root
d8d5f3e1 1020 * - objectid of the file holding the reference
5d4f98a2
YZ
1021 * - original offset in the file
1022 * - how many bookend extents
d8d5f3e1 1023 *
5d4f98a2
YZ
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
d8d5f3e1 1026 *
5d4f98a2 1027 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1028 *
5d4f98a2 1029 * - number of pointers in the tree leaf
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
d8d5f3e1 1036 *
5d4f98a2 1037 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1041 *
5d4f98a2 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1043 *
5d4f98a2 1044 * Btree extents can be referenced by:
d8d5f3e1 1045 *
5d4f98a2 1046 * - Different subvolumes
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
d8d5f3e1 1052 *
5d4f98a2
YZ
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
d8d5f3e1 1056 */
31840ae1 1057
5d4f98a2
YZ
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
7bb86316 1063{
87bde3cd 1064 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
7bb86316 1070 struct btrfs_key key;
5d4f98a2
YZ
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
79787eaa 1090 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
b3b4aa74 1106 btrfs_release_path(path);
5d4f98a2
YZ
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
79787eaa 1116 BUG_ON(ret); /* Corruption */
5d4f98a2 1117
87bde3cd 1118 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
b159fa28 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138}
1139#endif
1140
167ce953
LB
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149{
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1173 return type;
64ecdb64
LB
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
167ce953
LB
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197}
1198
5d4f98a2
YZ
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
14a958e6 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(owner);
14a958e6 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1209 lenum = cpu_to_le64(offset);
14a958e6 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217{
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226{
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1235 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240{
87bde3cd 1241 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
31840ae1 1244 struct extent_buffer *leaf;
5d4f98a2 1245 u32 nritems;
74493f7a 1246 int ret;
5d4f98a2
YZ
1247 int recow;
1248 int err = -ENOENT;
74493f7a 1249
31840ae1 1250 key.objectid = bytenr;
5d4f98a2
YZ
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
31840ae1 1266
5d4f98a2
YZ
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1272 btrfs_release_path(path);
5d4f98a2
YZ
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280#endif
1281 goto fail;
31840ae1
ZY
1282 }
1283
1284 leaf = path->nodes[0];
5d4f98a2
YZ
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
31840ae1 1317 }
5d4f98a2
YZ
1318fail:
1319 return err;
31840ae1
ZY
1320}
1321
5d4f98a2 1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
31840ae1 1328{
87bde3cd 1329 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 size;
31840ae1
ZY
1333 u32 num_refs;
1334 int ret;
74493f7a 1335
74493f7a 1336 key.objectid = bytenr;
5d4f98a2
YZ
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
74493f7a 1347
5d4f98a2
YZ
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
31840ae1 1355 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1363 }
5d4f98a2
YZ
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
b3b4aa74 1372 btrfs_release_path(path);
5d4f98a2
YZ
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
31840ae1 1378
5d4f98a2
YZ
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1393 }
31840ae1 1394 }
5d4f98a2
YZ
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397fail:
b3b4aa74 1398 btrfs_release_path(path);
7bb86316 1399 return ret;
74493f7a
CM
1400}
1401
5d4f98a2 1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1403 struct btrfs_fs_info *fs_info,
5d4f98a2 1404 struct btrfs_path *path,
fcebe456 1405 int refs_to_drop, int *last_ref)
31840ae1 1406{
5d4f98a2
YZ
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1410 struct extent_buffer *leaf;
5d4f98a2 1411 u32 num_refs = 0;
31840ae1
ZY
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
5d4f98a2
YZ
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432 } else {
1433 BUG();
1434 }
1435
56bec294
CM
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
5d4f98a2 1438
31840ae1 1439 if (num_refs == 0) {
87bde3cd 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1441 *last_ref = 1;
31840ae1 1442 } else {
5d4f98a2
YZ
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454#endif
31840ae1
ZY
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
31840ae1
ZY
1457 return ret;
1458}
1459
9ed0dea0 1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1461 struct btrfs_extent_inline_ref *iref)
15916de8 1462{
5d4f98a2
YZ
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
3de28d57 1468 int type;
5d4f98a2
YZ
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
3de28d57
LB
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1500#endif
5d4f98a2
YZ
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505}
15916de8 1506
5d4f98a2 1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1508 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1f3c79a2 1512{
87bde3cd 1513 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1514 struct btrfs_key key;
1f3c79a2 1515 int ret;
1f3c79a2 1516
5d4f98a2
YZ
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1f3c79a2
LH
1524 }
1525
5d4f98a2
YZ
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
b3b4aa74 1531 btrfs_release_path(path);
5d4f98a2
YZ
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1f3c79a2 1537#endif
5d4f98a2 1538 return ret;
1f3c79a2
LH
1539}
1540
5d4f98a2 1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1542 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
31840ae1 1546{
5d4f98a2 1547 struct btrfs_key key;
31840ae1 1548 int ret;
31840ae1 1549
5d4f98a2
YZ
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
87bde3cd
JM
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
b3b4aa74 1561 btrfs_release_path(path);
31840ae1
ZY
1562 return ret;
1563}
1564
5d4f98a2 1565static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1566{
5d4f98a2
YZ
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
31840ae1 1580}
56bec294 1581
2c47e605
YZ
1582static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
56bec294 1584
02217ed2 1585{
2c47e605 1586 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1587 if (!path->nodes[level])
1588 break;
5d4f98a2
YZ
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601}
037e6390 1602
5d4f98a2
YZ
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1618 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624{
87bde3cd 1625 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
0b246afa 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1640 int needed;
26b8003f 1641
db94535d 1642 key.objectid = bytenr;
31840ae1 1643 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1644 key.offset = num_bytes;
31840ae1 1645
5d4f98a2
YZ
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1649 path->keep_locks = 1;
5d4f98a2
YZ
1650 } else
1651 extra_size = -1;
3173a18f
JB
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662again:
5d4f98a2 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1664 if (ret < 0) {
5d4f98a2
YZ
1665 err = ret;
1666 goto out;
1667 }
3173a18f
JB
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
9ce49a0b 1685 key.objectid = bytenr;
3173a18f
JB
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
79787eaa
JM
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
fae7f21c 1696 } else if (WARN_ON(ret)) {
492104c8 1697 err = -EIO;
492104c8 1698 goto out;
79787eaa 1699 }
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
87bde3cd 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718#endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
5d4f98a2
YZ
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
3173a18f 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
5d4f98a2
YZ
1730 }
1731
3de28d57
LB
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
5d4f98a2
YZ
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
5d4f98a2
YZ
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
2c47e605
YZ
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
85d4198e 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
85d4198e 1810 if (insert) {
5d4f98a2
YZ
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
87bde3cd 1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1827{
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
87bde3cd 1844 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887{
1888 int ret;
1889
87bde3cd 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
54aa1f4d 1894 return ret;
5d4f98a2 1895
b3b4aa74 1896 btrfs_release_path(path);
5d4f98a2
YZ
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
5d4f98a2 1902 } else {
87bde3cd
JM
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
b9473439 1906 }
5d4f98a2
YZ
1907 return ret;
1908}
31840ae1 1909
5d4f98a2
YZ
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
87bde3cd 1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
fcebe456
JB
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
5d4f98a2
YZ
1920{
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
5d4f98a2
YZ
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
3de28d57
LB
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
56bec294 1957 }
31840ae1 1958
5d4f98a2
YZ
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
87bde3cd 1977 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1984 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990{
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
87bde3cd 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1999 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2000 refs_to_add, extent_op, NULL);
5d4f98a2 2001 } else if (ret == -ENOENT) {
87bde3cd 2002 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
771ed689 2006 }
5d4f98a2
YZ
2007 return ret;
2008}
31840ae1 2009
5d4f98a2 2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2011 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015{
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
87bde3cd 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2020 parent, root_objectid);
2021 } else {
87bde3cd 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027}
56bec294 2028
5d4f98a2 2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2030 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
fcebe456 2033 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2034{
143bede5 2035 int ret = 0;
b9473439 2036
5d4f98a2
YZ
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
87bde3cd 2039 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2040 -refs_to_drop, NULL, last_ref);
5d4f98a2 2041 } else if (is_data) {
87bde3cd 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2043 last_ref);
5d4f98a2 2044 } else {
fcebe456 2045 *last_ref = 1;
87bde3cd 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2047 }
2048 return ret;
2049}
2050
86557861 2051#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
5d4f98a2 2054{
86557861
JM
2055 int j, ret = 0;
2056 u64 bytes_left, end;
4d89d377 2057 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2058
4d89d377
JM
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
d04c6b88 2064
4d89d377 2065 *discarded_bytes = 0;
86557861
JM
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2117 GFP_NOFS, 0);
2118 if (!ret)
86557861 2119 *discarded_bytes += bytes_left;
4d89d377 2120 }
d04c6b88 2121 return ret;
5d4f98a2 2122}
5d4f98a2 2123
2ff7e61e 2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2125 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2126{
5d4f98a2 2127 int ret;
5378e607 2128 u64 discarded_bytes = 0;
a1d3c478 2129 struct btrfs_bio *bbio = NULL;
5d4f98a2 2130
e244a0ae 2131
2999241d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
0b246afa 2136 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2137 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
79787eaa 2140 /* Error condition is -ENOMEM */
5d4f98a2 2141 if (!ret) {
a1d3c478 2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2143 int i;
2144
5d4f98a2 2145
a1d3c478 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2147 u64 bytes;
38b5f68e
AJ
2148 struct request_queue *req_q;
2149
627e0873
FM
2150 if (!stripe->dev->bdev) {
2151 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152 continue;
2153 }
38b5f68e
AJ
2154 req_q = bdev_get_queue(stripe->dev->bdev);
2155 if (!blk_queue_discard(req_q))
d5e2003c
JB
2156 continue;
2157
5378e607
LD
2158 ret = btrfs_issue_discard(stripe->dev->bdev,
2159 stripe->physical,
d04c6b88
JM
2160 stripe->length,
2161 &bytes);
5378e607 2162 if (!ret)
d04c6b88 2163 discarded_bytes += bytes;
5378e607 2164 else if (ret != -EOPNOTSUPP)
79787eaa 2165 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2166
2167 /*
2168 * Just in case we get back EOPNOTSUPP for some reason,
2169 * just ignore the return value so we don't screw up
2170 * people calling discard_extent.
2171 */
2172 ret = 0;
5d4f98a2 2173 }
6e9606d2 2174 btrfs_put_bbio(bbio);
5d4f98a2 2175 }
0b246afa 2176 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2177
2178 if (actual_bytes)
2179 *actual_bytes = discarded_bytes;
2180
5d4f98a2 2181
53b381b3
DW
2182 if (ret == -EOPNOTSUPP)
2183 ret = 0;
5d4f98a2 2184 return ret;
5d4f98a2
YZ
2185}
2186
79787eaa 2187/* Can return -ENOMEM */
5d4f98a2 2188int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2189 struct btrfs_root *root,
5d4f98a2 2190 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2191 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2192{
84f7d8e6 2193 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2194 int old_ref_mod, new_ref_mod;
5d4f98a2 2195 int ret;
66d7e7f0 2196
5d4f98a2
YZ
2197 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199
fd708b81
JB
2200 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201 owner, offset, BTRFS_ADD_DELAYED_REF);
2202
5d4f98a2 2203 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2205 num_bytes, parent,
2206 root_objectid, (int)owner,
2207 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2208 &old_ref_mod, &new_ref_mod);
5d4f98a2 2209 } else {
66d7e7f0 2210 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2211 num_bytes, parent,
2212 root_objectid, owner, offset,
d7eae340
OS
2213 0, BTRFS_ADD_DELAYED_REF,
2214 &old_ref_mod, &new_ref_mod);
5d4f98a2 2215 }
d7eae340
OS
2216
2217 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219
5d4f98a2
YZ
2220 return ret;
2221}
2222
2223static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2224 struct btrfs_fs_info *fs_info,
c682f9b3 2225 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2226 u64 parent, u64 root_objectid,
2227 u64 owner, u64 offset, int refs_to_add,
2228 struct btrfs_delayed_extent_op *extent_op)
2229{
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 struct btrfs_extent_item *item;
fcebe456 2233 struct btrfs_key key;
c682f9b3
QW
2234 u64 bytenr = node->bytenr;
2235 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2236 u64 refs;
2237 int ret;
5d4f98a2
YZ
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242
e4058b54 2243 path->reada = READA_FORWARD;
5d4f98a2
YZ
2244 path->leave_spinning = 1;
2245 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2246 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247 num_bytes, parent, root_objectid,
2248 owner, offset,
5d4f98a2 2249 refs_to_add, extent_op);
0ed4792a 2250 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2251 goto out;
fcebe456
JB
2252
2253 /*
2254 * Ok we had -EAGAIN which means we didn't have space to insert and
2255 * inline extent ref, so just update the reference count and add a
2256 * normal backref.
2257 */
5d4f98a2 2258 leaf = path->nodes[0];
fcebe456 2259 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2260 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261 refs = btrfs_extent_refs(leaf, item);
2262 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263 if (extent_op)
2264 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2265
5d4f98a2 2266 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2267 btrfs_release_path(path);
56bec294 2268
e4058b54 2269 path->reada = READA_FORWARD;
b9473439 2270 path->leave_spinning = 1;
56bec294 2271 /* now insert the actual backref */
87bde3cd
JM
2272 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273 root_objectid, owner, offset, refs_to_add);
79787eaa 2274 if (ret)
66642832 2275 btrfs_abort_transaction(trans, ret);
5d4f98a2 2276out:
56bec294 2277 btrfs_free_path(path);
30d133fc 2278 return ret;
56bec294
CM
2279}
2280
5d4f98a2 2281static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2282 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2283 struct btrfs_delayed_ref_node *node,
2284 struct btrfs_delayed_extent_op *extent_op,
2285 int insert_reserved)
56bec294 2286{
5d4f98a2
YZ
2287 int ret = 0;
2288 struct btrfs_delayed_data_ref *ref;
2289 struct btrfs_key ins;
2290 u64 parent = 0;
2291 u64 ref_root = 0;
2292 u64 flags = 0;
2293
2294 ins.objectid = node->bytenr;
2295 ins.offset = node->num_bytes;
2296 ins.type = BTRFS_EXTENT_ITEM_KEY;
2297
2298 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2299 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2300
5d4f98a2
YZ
2301 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302 parent = ref->parent;
fcebe456 2303 ref_root = ref->root;
5d4f98a2
YZ
2304
2305 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2306 if (extent_op)
5d4f98a2 2307 flags |= extent_op->flags_to_set;
2ff7e61e 2308 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2309 parent, ref_root, flags,
2310 ref->objectid, ref->offset,
2311 &ins, node->ref_mod);
5d4f98a2 2312 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2313 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2314 ref_root, ref->objectid,
2315 ref->offset, node->ref_mod,
c682f9b3 2316 extent_op);
5d4f98a2 2317 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2318 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2319 ref_root, ref->objectid,
2320 ref->offset, node->ref_mod,
c682f9b3 2321 extent_op);
5d4f98a2
YZ
2322 } else {
2323 BUG();
2324 }
2325 return ret;
2326}
2327
2328static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329 struct extent_buffer *leaf,
2330 struct btrfs_extent_item *ei)
2331{
2332 u64 flags = btrfs_extent_flags(leaf, ei);
2333 if (extent_op->update_flags) {
2334 flags |= extent_op->flags_to_set;
2335 btrfs_set_extent_flags(leaf, ei, flags);
2336 }
2337
2338 if (extent_op->update_key) {
2339 struct btrfs_tree_block_info *bi;
2340 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343 }
2344}
2345
2346static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2347 struct btrfs_fs_info *fs_info,
d278850e 2348 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2349 struct btrfs_delayed_extent_op *extent_op)
2350{
2351 struct btrfs_key key;
2352 struct btrfs_path *path;
2353 struct btrfs_extent_item *ei;
2354 struct extent_buffer *leaf;
2355 u32 item_size;
56bec294 2356 int ret;
5d4f98a2 2357 int err = 0;
b1c79e09 2358 int metadata = !extent_op->is_data;
5d4f98a2 2359
79787eaa
JM
2360 if (trans->aborted)
2361 return 0;
2362
0b246afa 2363 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2364 metadata = 0;
2365
5d4f98a2
YZ
2366 path = btrfs_alloc_path();
2367 if (!path)
2368 return -ENOMEM;
2369
d278850e 2370 key.objectid = head->bytenr;
5d4f98a2 2371
3173a18f 2372 if (metadata) {
3173a18f 2373 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2374 key.offset = extent_op->level;
3173a18f
JB
2375 } else {
2376 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2377 key.offset = head->num_bytes;
3173a18f
JB
2378 }
2379
2380again:
e4058b54 2381 path->reada = READA_FORWARD;
5d4f98a2 2382 path->leave_spinning = 1;
0b246afa 2383 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2384 if (ret < 0) {
2385 err = ret;
2386 goto out;
2387 }
2388 if (ret > 0) {
3173a18f 2389 if (metadata) {
55994887
FDBM
2390 if (path->slots[0] > 0) {
2391 path->slots[0]--;
2392 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393 path->slots[0]);
d278850e 2394 if (key.objectid == head->bytenr &&
55994887 2395 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2396 key.offset == head->num_bytes)
55994887
FDBM
2397 ret = 0;
2398 }
2399 if (ret > 0) {
2400 btrfs_release_path(path);
2401 metadata = 0;
3173a18f 2402
d278850e
JB
2403 key.objectid = head->bytenr;
2404 key.offset = head->num_bytes;
55994887
FDBM
2405 key.type = BTRFS_EXTENT_ITEM_KEY;
2406 goto again;
2407 }
2408 } else {
2409 err = -EIO;
2410 goto out;
3173a18f 2411 }
5d4f98a2
YZ
2412 }
2413
2414 leaf = path->nodes[0];
2415 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417 if (item_size < sizeof(*ei)) {
87bde3cd 2418 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2419 if (ret < 0) {
2420 err = ret;
2421 goto out;
2422 }
2423 leaf = path->nodes[0];
2424 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425 }
2426#endif
2427 BUG_ON(item_size < sizeof(*ei));
2428 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2430
5d4f98a2
YZ
2431 btrfs_mark_buffer_dirty(leaf);
2432out:
2433 btrfs_free_path(path);
2434 return err;
56bec294
CM
2435}
2436
5d4f98a2 2437static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2438 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2439 struct btrfs_delayed_ref_node *node,
2440 struct btrfs_delayed_extent_op *extent_op,
2441 int insert_reserved)
56bec294
CM
2442{
2443 int ret = 0;
5d4f98a2
YZ
2444 struct btrfs_delayed_tree_ref *ref;
2445 struct btrfs_key ins;
2446 u64 parent = 0;
2447 u64 ref_root = 0;
0b246afa 2448 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2449
5d4f98a2 2450 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2451 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2452
5d4f98a2
YZ
2453 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454 parent = ref->parent;
fcebe456 2455 ref_root = ref->root;
5d4f98a2 2456
3173a18f
JB
2457 ins.objectid = node->bytenr;
2458 if (skinny_metadata) {
2459 ins.offset = ref->level;
2460 ins.type = BTRFS_METADATA_ITEM_KEY;
2461 } else {
2462 ins.offset = node->num_bytes;
2463 ins.type = BTRFS_EXTENT_ITEM_KEY;
2464 }
2465
02794222 2466 if (node->ref_mod != 1) {
2ff7e61e 2467 btrfs_err(fs_info,
02794222
LB
2468 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469 node->bytenr, node->ref_mod, node->action, ref_root,
2470 parent);
2471 return -EIO;
2472 }
5d4f98a2 2473 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2474 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2475 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2476 parent, ref_root,
2477 extent_op->flags_to_set,
2478 &extent_op->key,
b06c4bf5 2479 ref->level, &ins);
5d4f98a2 2480 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2481 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2482 parent, ref_root,
2483 ref->level, 0, 1,
fcebe456 2484 extent_op);
5d4f98a2 2485 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2486 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2487 parent, ref_root,
2488 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2489 } else {
2490 BUG();
2491 }
56bec294
CM
2492 return ret;
2493}
2494
2495/* helper function to actually process a single delayed ref entry */
5d4f98a2 2496static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2497 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2498 struct btrfs_delayed_ref_node *node,
2499 struct btrfs_delayed_extent_op *extent_op,
2500 int insert_reserved)
56bec294 2501{
79787eaa
JM
2502 int ret = 0;
2503
857cc2fc
JB
2504 if (trans->aborted) {
2505 if (insert_reserved)
2ff7e61e 2506 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2507 node->num_bytes, 1);
79787eaa 2508 return 0;
857cc2fc 2509 }
79787eaa 2510
5d4f98a2
YZ
2511 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2513 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2514 insert_reserved);
2515 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2517 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2518 insert_reserved);
2519 else
2520 BUG();
2521 return ret;
56bec294
CM
2522}
2523
c6fc2454 2524static inline struct btrfs_delayed_ref_node *
56bec294
CM
2525select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526{
cffc3374
FM
2527 struct btrfs_delayed_ref_node *ref;
2528
0e0adbcf 2529 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2530 return NULL;
d7df2c79 2531
cffc3374
FM
2532 /*
2533 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534 * This is to prevent a ref count from going down to zero, which deletes
2535 * the extent item from the extent tree, when there still are references
2536 * to add, which would fail because they would not find the extent item.
2537 */
1d57ee94
WX
2538 if (!list_empty(&head->ref_add_list))
2539 return list_first_entry(&head->ref_add_list,
2540 struct btrfs_delayed_ref_node, add_list);
2541
0e0adbcf
JB
2542 ref = rb_entry(rb_first(&head->ref_tree),
2543 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2544 ASSERT(list_empty(&ref->add_list));
2545 return ref;
56bec294
CM
2546}
2547
2eadaa22
JB
2548static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549 struct btrfs_delayed_ref_head *head)
2550{
2551 spin_lock(&delayed_refs->lock);
2552 head->processing = 0;
2553 delayed_refs->num_heads_ready++;
2554 spin_unlock(&delayed_refs->lock);
2555 btrfs_delayed_ref_unlock(head);
2556}
2557
b00e6250
JB
2558static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559 struct btrfs_fs_info *fs_info,
2560 struct btrfs_delayed_ref_head *head)
2561{
2562 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563 int ret;
2564
2565 if (!extent_op)
2566 return 0;
2567 head->extent_op = NULL;
2568 if (head->must_insert_reserved) {
2569 btrfs_free_delayed_extent_op(extent_op);
2570 return 0;
2571 }
2572 spin_unlock(&head->lock);
d278850e 2573 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2574 btrfs_free_delayed_extent_op(extent_op);
2575 return ret ? ret : 1;
2576}
2577
194ab0bc
JB
2578static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579 struct btrfs_fs_info *fs_info,
2580 struct btrfs_delayed_ref_head *head)
2581{
2582 struct btrfs_delayed_ref_root *delayed_refs;
2583 int ret;
2584
2585 delayed_refs = &trans->transaction->delayed_refs;
2586
2587 ret = cleanup_extent_op(trans, fs_info, head);
2588 if (ret < 0) {
2589 unselect_delayed_ref_head(delayed_refs, head);
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 return ret;
2592 } else if (ret) {
2593 return ret;
2594 }
2595
2596 /*
2597 * Need to drop our head ref lock and re-acquire the delayed ref lock
2598 * and then re-check to make sure nobody got added.
2599 */
2600 spin_unlock(&head->lock);
2601 spin_lock(&delayed_refs->lock);
2602 spin_lock(&head->lock);
0e0adbcf 2603 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2604 spin_unlock(&head->lock);
2605 spin_unlock(&delayed_refs->lock);
2606 return 1;
2607 }
194ab0bc
JB
2608 delayed_refs->num_heads--;
2609 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2610 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2611 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2612 spin_unlock(&head->lock);
2613 atomic_dec(&delayed_refs->num_entries);
2614
d278850e 2615 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2616
2617 if (head->total_ref_mod < 0) {
2618 struct btrfs_block_group_cache *cache;
2619
d278850e 2620 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
c1103f7a
JB
2621 ASSERT(cache);
2622 percpu_counter_add(&cache->space_info->total_bytes_pinned,
d278850e 2623 -head->num_bytes);
c1103f7a
JB
2624 btrfs_put_block_group(cache);
2625
2626 if (head->is_data) {
2627 spin_lock(&delayed_refs->lock);
d278850e 2628 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2629 spin_unlock(&delayed_refs->lock);
2630 }
2631 }
2632
2633 if (head->must_insert_reserved) {
d278850e
JB
2634 btrfs_pin_extent(fs_info, head->bytenr,
2635 head->num_bytes, 1);
c1103f7a 2636 if (head->is_data) {
d278850e
JB
2637 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638 head->num_bytes);
c1103f7a
JB
2639 }
2640 }
2641
2642 /* Also free its reserved qgroup space */
2643 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644 head->qgroup_reserved);
2645 btrfs_delayed_ref_unlock(head);
d278850e 2646 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2647 return 0;
2648}
2649
79787eaa
JM
2650/*
2651 * Returns 0 on success or if called with an already aborted transaction.
2652 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653 */
d7df2c79 2654static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2655 struct btrfs_fs_info *fs_info,
d7df2c79 2656 unsigned long nr)
56bec294 2657{
56bec294
CM
2658 struct btrfs_delayed_ref_root *delayed_refs;
2659 struct btrfs_delayed_ref_node *ref;
2660 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2661 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2662 ktime_t start = ktime_get();
56bec294 2663 int ret;
d7df2c79 2664 unsigned long count = 0;
0a2b2a84 2665 unsigned long actual_count = 0;
56bec294 2666 int must_insert_reserved = 0;
56bec294
CM
2667
2668 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2669 while (1) {
2670 if (!locked_ref) {
d7df2c79 2671 if (count >= nr)
56bec294 2672 break;
56bec294 2673
d7df2c79
JB
2674 spin_lock(&delayed_refs->lock);
2675 locked_ref = btrfs_select_ref_head(trans);
2676 if (!locked_ref) {
2677 spin_unlock(&delayed_refs->lock);
2678 break;
2679 }
c3e69d58
CM
2680
2681 /* grab the lock that says we are going to process
2682 * all the refs for this head */
2683 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2684 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2685 /*
2686 * we may have dropped the spin lock to get the head
2687 * mutex lock, and that might have given someone else
2688 * time to free the head. If that's true, it has been
2689 * removed from our list and we can move on.
2690 */
2691 if (ret == -EAGAIN) {
2692 locked_ref = NULL;
2693 count++;
2694 continue;
56bec294
CM
2695 }
2696 }
a28ec197 2697
2c3cf7d5
FM
2698 /*
2699 * We need to try and merge add/drops of the same ref since we
2700 * can run into issues with relocate dropping the implicit ref
2701 * and then it being added back again before the drop can
2702 * finish. If we merged anything we need to re-loop so we can
2703 * get a good ref.
2704 * Or we can get node references of the same type that weren't
2705 * merged when created due to bumps in the tree mod seq, and
2706 * we need to merge them to prevent adding an inline extent
2707 * backref before dropping it (triggering a BUG_ON at
2708 * insert_inline_extent_backref()).
2709 */
d7df2c79 2710 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2711 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712 locked_ref);
ae1e206b 2713
d1270cd9
AJ
2714 /*
2715 * locked_ref is the head node, so we have to go one
2716 * node back for any delayed ref updates
2717 */
2718 ref = select_delayed_ref(locked_ref);
2719
2720 if (ref && ref->seq &&
097b8a7c 2721 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2722 spin_unlock(&locked_ref->lock);
2eadaa22 2723 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2724 locked_ref = NULL;
d1270cd9 2725 cond_resched();
27a377db 2726 count++;
d1270cd9
AJ
2727 continue;
2728 }
2729
c1103f7a
JB
2730 /*
2731 * We're done processing refs in this ref_head, clean everything
2732 * up and move on to the next ref_head.
2733 */
56bec294 2734 if (!ref) {
194ab0bc
JB
2735 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736 if (ret > 0 ) {
b00e6250
JB
2737 /* We dropped our lock, we need to loop. */
2738 ret = 0;
d7df2c79 2739 continue;
194ab0bc
JB
2740 } else if (ret) {
2741 return ret;
5d4f98a2 2742 }
c1103f7a
JB
2743 locked_ref = NULL;
2744 count++;
2745 continue;
2746 }
02217ed2 2747
c1103f7a
JB
2748 actual_count++;
2749 ref->in_tree = 0;
0e0adbcf
JB
2750 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2752 if (!list_empty(&ref->add_list))
2753 list_del(&ref->add_list);
2754 /*
2755 * When we play the delayed ref, also correct the ref_mod on
2756 * head
2757 */
2758 switch (ref->action) {
2759 case BTRFS_ADD_DELAYED_REF:
2760 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2761 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2762 break;
2763 case BTRFS_DROP_DELAYED_REF:
d278850e 2764 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2765 break;
2766 default:
2767 WARN_ON(1);
22cd2e7d 2768 }
1ce7a5ec
JB
2769 atomic_dec(&delayed_refs->num_entries);
2770
b00e6250
JB
2771 /*
2772 * Record the must-insert_reserved flag before we drop the spin
2773 * lock.
2774 */
2775 must_insert_reserved = locked_ref->must_insert_reserved;
2776 locked_ref->must_insert_reserved = 0;
2777
2778 extent_op = locked_ref->extent_op;
2779 locked_ref->extent_op = NULL;
d7df2c79 2780 spin_unlock(&locked_ref->lock);
925baedd 2781
2ff7e61e 2782 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2783 must_insert_reserved);
eb099670 2784
78a6184a 2785 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2786 if (ret) {
2eadaa22 2787 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2788 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2789 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790 ret);
79787eaa
JM
2791 return ret;
2792 }
2793
093486c4
MX
2794 btrfs_put_delayed_ref(ref);
2795 count++;
c3e69d58 2796 cond_resched();
c3e69d58 2797 }
0a2b2a84
JB
2798
2799 /*
2800 * We don't want to include ref heads since we can have empty ref heads
2801 * and those will drastically skew our runtime down since we just do
2802 * accounting, no actual extent tree updates.
2803 */
2804 if (actual_count > 0) {
2805 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806 u64 avg;
2807
2808 /*
2809 * We weigh the current average higher than our current runtime
2810 * to avoid large swings in the average.
2811 */
2812 spin_lock(&delayed_refs->lock);
2813 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2814 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2815 spin_unlock(&delayed_refs->lock);
2816 }
d7df2c79 2817 return 0;
c3e69d58
CM
2818}
2819
709c0486
AJ
2820#ifdef SCRAMBLE_DELAYED_REFS
2821/*
2822 * Normally delayed refs get processed in ascending bytenr order. This
2823 * correlates in most cases to the order added. To expose dependencies on this
2824 * order, we start to process the tree in the middle instead of the beginning
2825 */
2826static u64 find_middle(struct rb_root *root)
2827{
2828 struct rb_node *n = root->rb_node;
2829 struct btrfs_delayed_ref_node *entry;
2830 int alt = 1;
2831 u64 middle;
2832 u64 first = 0, last = 0;
2833
2834 n = rb_first(root);
2835 if (n) {
2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 first = entry->bytenr;
2838 }
2839 n = rb_last(root);
2840 if (n) {
2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 last = entry->bytenr;
2843 }
2844 n = root->rb_node;
2845
2846 while (n) {
2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 WARN_ON(!entry->in_tree);
2849
2850 middle = entry->bytenr;
2851
2852 if (alt)
2853 n = n->rb_left;
2854 else
2855 n = n->rb_right;
2856
2857 alt = 1 - alt;
2858 }
2859 return middle;
2860}
2861#endif
2862
2ff7e61e 2863static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2864{
2865 u64 num_bytes;
2866
2867 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2869 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2870 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871
2872 /*
2873 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2874 * closer to what we're really going to want to use.
1be41b78 2875 */
0b246afa 2876 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2877}
2878
1262133b
JB
2879/*
2880 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881 * would require to store the csums for that many bytes.
2882 */
2ff7e61e 2883u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2884{
2885 u64 csum_size;
2886 u64 num_csums_per_leaf;
2887 u64 num_csums;
2888
0b246afa 2889 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2890 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2891 (u64)btrfs_super_csum_size(fs_info->super_copy));
2892 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2893 num_csums += num_csums_per_leaf - 1;
2894 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895 return num_csums;
2896}
2897
0a2b2a84 2898int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2899 struct btrfs_fs_info *fs_info)
1be41b78
JB
2900{
2901 struct btrfs_block_rsv *global_rsv;
2902 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2903 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2904 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2905 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2906 int ret = 0;
2907
0b246afa 2908 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2909 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2910 if (num_heads > 1)
0b246afa 2911 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2912 num_bytes <<= 1;
2ff7e61e
JM
2913 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914 fs_info->nodesize;
0b246afa 2915 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2916 num_dirty_bgs);
0b246afa 2917 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2918
2919 /*
2920 * If we can't allocate any more chunks lets make sure we have _lots_ of
2921 * wiggle room since running delayed refs can create more delayed refs.
2922 */
cb723e49
JB
2923 if (global_rsv->space_info->full) {
2924 num_dirty_bgs_bytes <<= 1;
1be41b78 2925 num_bytes <<= 1;
cb723e49 2926 }
1be41b78
JB
2927
2928 spin_lock(&global_rsv->lock);
cb723e49 2929 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2930 ret = 1;
2931 spin_unlock(&global_rsv->lock);
2932 return ret;
2933}
2934
0a2b2a84 2935int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2936 struct btrfs_fs_info *fs_info)
0a2b2a84 2937{
0a2b2a84
JB
2938 u64 num_entries =
2939 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940 u64 avg_runtime;
a79b7d4b 2941 u64 val;
0a2b2a84
JB
2942
2943 smp_mb();
2944 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2945 val = num_entries * avg_runtime;
dc1a90c6 2946 if (val >= NSEC_PER_SEC)
0a2b2a84 2947 return 1;
a79b7d4b
CM
2948 if (val >= NSEC_PER_SEC / 2)
2949 return 2;
0a2b2a84 2950
2ff7e61e 2951 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2952}
2953
a79b7d4b
CM
2954struct async_delayed_refs {
2955 struct btrfs_root *root;
31b9655f 2956 u64 transid;
a79b7d4b
CM
2957 int count;
2958 int error;
2959 int sync;
2960 struct completion wait;
2961 struct btrfs_work work;
2962};
2963
2ff7e61e
JM
2964static inline struct async_delayed_refs *
2965to_async_delayed_refs(struct btrfs_work *work)
2966{
2967 return container_of(work, struct async_delayed_refs, work);
2968}
2969
a79b7d4b
CM
2970static void delayed_ref_async_start(struct btrfs_work *work)
2971{
2ff7e61e 2972 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2973 struct btrfs_trans_handle *trans;
2ff7e61e 2974 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2975 int ret;
2976
0f873eca 2977 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2978 if (btrfs_transaction_blocked(fs_info))
31b9655f 2979 goto done;
31b9655f 2980
0f873eca
CM
2981 trans = btrfs_join_transaction(async->root);
2982 if (IS_ERR(trans)) {
2983 async->error = PTR_ERR(trans);
a79b7d4b
CM
2984 goto done;
2985 }
2986
2987 /*
01327610 2988 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2989 * wait on delayed refs
2990 */
2991 trans->sync = true;
0f873eca
CM
2992
2993 /* Don't bother flushing if we got into a different transaction */
2994 if (trans->transid > async->transid)
2995 goto end;
2996
2ff7e61e 2997 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2998 if (ret)
2999 async->error = ret;
0f873eca 3000end:
3a45bb20 3001 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
3002 if (ret && !async->error)
3003 async->error = ret;
3004done:
3005 if (async->sync)
3006 complete(&async->wait);
3007 else
3008 kfree(async);
3009}
3010
2ff7e61e 3011int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3012 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3013{
3014 struct async_delayed_refs *async;
3015 int ret;
3016
3017 async = kmalloc(sizeof(*async), GFP_NOFS);
3018 if (!async)
3019 return -ENOMEM;
3020
0b246afa 3021 async->root = fs_info->tree_root;
a79b7d4b
CM
3022 async->count = count;
3023 async->error = 0;
31b9655f 3024 async->transid = transid;
a79b7d4b
CM
3025 if (wait)
3026 async->sync = 1;
3027 else
3028 async->sync = 0;
3029 init_completion(&async->wait);
3030
9e0af237
LB
3031 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3033
0b246afa 3034 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3035
3036 if (wait) {
3037 wait_for_completion(&async->wait);
3038 ret = async->error;
3039 kfree(async);
3040 return ret;
3041 }
3042 return 0;
3043}
3044
c3e69d58
CM
3045/*
3046 * this starts processing the delayed reference count updates and
3047 * extent insertions we have queued up so far. count can be
3048 * 0, which means to process everything in the tree at the start
3049 * of the run (but not newly added entries), or it can be some target
3050 * number you'd like to process.
79787eaa
JM
3051 *
3052 * Returns 0 on success or if called with an aborted transaction
3053 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3054 */
3055int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 3056 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
3057{
3058 struct rb_node *node;
3059 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3060 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3061 int ret;
3062 int run_all = count == (unsigned long)-1;
d9a0540a 3063 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3064
79787eaa
JM
3065 /* We'll clean this up in btrfs_cleanup_transaction */
3066 if (trans->aborted)
3067 return 0;
3068
0b246afa 3069 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3070 return 0;
3071
c3e69d58 3072 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3073 if (count == 0)
d7df2c79 3074 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3075
c3e69d58 3076again:
709c0486
AJ
3077#ifdef SCRAMBLE_DELAYED_REFS
3078 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079#endif
d9a0540a 3080 trans->can_flush_pending_bgs = false;
2ff7e61e 3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3082 if (ret < 0) {
66642832 3083 btrfs_abort_transaction(trans, ret);
d7df2c79 3084 return ret;
eb099670 3085 }
c3e69d58 3086
56bec294 3087 if (run_all) {
d7df2c79 3088 if (!list_empty(&trans->new_bgs))
2ff7e61e 3089 btrfs_create_pending_block_groups(trans, fs_info);
ea658bad 3090
d7df2c79 3091 spin_lock(&delayed_refs->lock);
c46effa6 3092 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3093 if (!node) {
3094 spin_unlock(&delayed_refs->lock);
56bec294 3095 goto out;
d7df2c79 3096 }
d278850e
JB
3097 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 href_node);
3099 refcount_inc(&head->refs);
3100 spin_unlock(&delayed_refs->lock);
e9d0b13b 3101
d278850e
JB
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head->mutex);
3104 mutex_unlock(&head->mutex);
56bec294 3105
d278850e 3106 btrfs_put_delayed_ref_head(head);
d7df2c79 3107 cond_resched();
56bec294 3108 goto again;
5f39d397 3109 }
54aa1f4d 3110out:
d9a0540a 3111 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3112 return 0;
3113}
3114
5d4f98a2 3115int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3116 struct btrfs_fs_info *fs_info,
5d4f98a2 3117 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3118 int level, int is_data)
5d4f98a2
YZ
3119{
3120 struct btrfs_delayed_extent_op *extent_op;
3121 int ret;
3122
78a6184a 3123 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3124 if (!extent_op)
3125 return -ENOMEM;
3126
3127 extent_op->flags_to_set = flags;
35b3ad50
DS
3128 extent_op->update_flags = true;
3129 extent_op->update_key = false;
3130 extent_op->is_data = is_data ? true : false;
b1c79e09 3131 extent_op->level = level;
5d4f98a2 3132
0b246afa 3133 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3134 num_bytes, extent_op);
5d4f98a2 3135 if (ret)
78a6184a 3136 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3137 return ret;
3138}
3139
e4c3b2dc 3140static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3141 struct btrfs_path *path,
3142 u64 objectid, u64 offset, u64 bytenr)
3143{
3144 struct btrfs_delayed_ref_head *head;
3145 struct btrfs_delayed_ref_node *ref;
3146 struct btrfs_delayed_data_ref *data_ref;
3147 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3148 struct btrfs_transaction *cur_trans;
0e0adbcf 3149 struct rb_node *node;
5d4f98a2
YZ
3150 int ret = 0;
3151
e4c3b2dc
LB
3152 cur_trans = root->fs_info->running_transaction;
3153 if (!cur_trans)
3154 return 0;
3155
3156 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3157 spin_lock(&delayed_refs->lock);
f72ad18e 3158 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3159 if (!head) {
3160 spin_unlock(&delayed_refs->lock);
3161 return 0;
3162 }
5d4f98a2
YZ
3163
3164 if (!mutex_trylock(&head->mutex)) {
d278850e 3165 refcount_inc(&head->refs);
5d4f98a2
YZ
3166 spin_unlock(&delayed_refs->lock);
3167
b3b4aa74 3168 btrfs_release_path(path);
5d4f98a2 3169
8cc33e5c
DS
3170 /*
3171 * Mutex was contended, block until it's released and let
3172 * caller try again
3173 */
5d4f98a2
YZ
3174 mutex_lock(&head->mutex);
3175 mutex_unlock(&head->mutex);
d278850e 3176 btrfs_put_delayed_ref_head(head);
5d4f98a2
YZ
3177 return -EAGAIN;
3178 }
d7df2c79 3179 spin_unlock(&delayed_refs->lock);
5d4f98a2 3180
d7df2c79 3181 spin_lock(&head->lock);
0e0adbcf
JB
3182 /*
3183 * XXX: We should replace this with a proper search function in the
3184 * future.
3185 */
3186 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3188 /* If it's a shared ref we know a cross reference exists */
3189 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190 ret = 1;
3191 break;
3192 }
5d4f98a2 3193
d7df2c79 3194 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3195
d7df2c79
JB
3196 /*
3197 * If our ref doesn't match the one we're currently looking at
3198 * then we have a cross reference.
3199 */
3200 if (data_ref->root != root->root_key.objectid ||
3201 data_ref->objectid != objectid ||
3202 data_ref->offset != offset) {
3203 ret = 1;
3204 break;
3205 }
5d4f98a2 3206 }
d7df2c79 3207 spin_unlock(&head->lock);
5d4f98a2 3208 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3209 return ret;
3210}
3211
e4c3b2dc 3212static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3213 struct btrfs_path *path,
3214 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3215{
0b246afa
JM
3216 struct btrfs_fs_info *fs_info = root->fs_info;
3217 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3218 struct extent_buffer *leaf;
5d4f98a2
YZ
3219 struct btrfs_extent_data_ref *ref;
3220 struct btrfs_extent_inline_ref *iref;
3221 struct btrfs_extent_item *ei;
f321e491 3222 struct btrfs_key key;
5d4f98a2 3223 u32 item_size;
3de28d57 3224 int type;
be20aa9d 3225 int ret;
925baedd 3226
be20aa9d 3227 key.objectid = bytenr;
31840ae1 3228 key.offset = (u64)-1;
f321e491 3229 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3230
be20aa9d
CM
3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 if (ret < 0)
3233 goto out;
79787eaa 3234 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3235
3236 ret = -ENOENT;
3237 if (path->slots[0] == 0)
31840ae1 3238 goto out;
be20aa9d 3239
31840ae1 3240 path->slots[0]--;
f321e491 3241 leaf = path->nodes[0];
5d4f98a2 3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3243
5d4f98a2 3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3245 goto out;
f321e491 3246
5d4f98a2
YZ
3247 ret = 1;
3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size < sizeof(*ei)) {
3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 goto out;
3253 }
3254#endif
3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3256
5d4f98a2
YZ
3257 if (item_size != sizeof(*ei) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 goto out;
be20aa9d 3260
5d4f98a2
YZ
3261 if (btrfs_extent_generation(leaf, ei) <=
3262 btrfs_root_last_snapshot(&root->root_item))
3263 goto out;
3264
3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3266
3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3269 goto out;
3270
3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 if (btrfs_extent_refs(leaf, ei) !=
3273 btrfs_extent_data_ref_count(leaf, ref) ||
3274 btrfs_extent_data_ref_root(leaf, ref) !=
3275 root->root_key.objectid ||
3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 goto out;
3279
3280 ret = 0;
3281out:
3282 return ret;
3283}
3284
e4c3b2dc
LB
3285int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 u64 bytenr)
5d4f98a2
YZ
3287{
3288 struct btrfs_path *path;
3289 int ret;
3290 int ret2;
3291
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOENT;
3295
3296 do {
e4c3b2dc 3297 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3298 offset, bytenr);
3299 if (ret && ret != -ENOENT)
f321e491 3300 goto out;
80ff3856 3301
e4c3b2dc 3302 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3303 offset, bytenr);
3304 } while (ret2 == -EAGAIN);
3305
3306 if (ret2 && ret2 != -ENOENT) {
3307 ret = ret2;
3308 goto out;
f321e491 3309 }
5d4f98a2
YZ
3310
3311 if (ret != -ENOENT || ret2 != -ENOENT)
3312 ret = 0;
be20aa9d 3313out:
80ff3856 3314 btrfs_free_path(path);
f0486c68
YZ
3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 WARN_ON(ret > 0);
f321e491 3317 return ret;
be20aa9d 3318}
c5739bba 3319
5d4f98a2 3320static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3321 struct btrfs_root *root,
5d4f98a2 3322 struct extent_buffer *buf,
e339a6b0 3323 int full_backref, int inc)
31840ae1 3324{
0b246afa 3325 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3326 u64 bytenr;
5d4f98a2
YZ
3327 u64 num_bytes;
3328 u64 parent;
31840ae1 3329 u64 ref_root;
31840ae1 3330 u32 nritems;
31840ae1
ZY
3331 struct btrfs_key key;
3332 struct btrfs_file_extent_item *fi;
3333 int i;
3334 int level;
3335 int ret = 0;
2ff7e61e 3336 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3337 struct btrfs_root *,
b06c4bf5 3338 u64, u64, u64, u64, u64, u64);
31840ae1 3339
fccb84c9 3340
0b246afa 3341 if (btrfs_is_testing(fs_info))
faa2dbf0 3342 return 0;
fccb84c9 3343
31840ae1 3344 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3345 nritems = btrfs_header_nritems(buf);
3346 level = btrfs_header_level(buf);
3347
27cdeb70 3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3349 return 0;
31840ae1 3350
5d4f98a2
YZ
3351 if (inc)
3352 process_func = btrfs_inc_extent_ref;
3353 else
3354 process_func = btrfs_free_extent;
31840ae1 3355
5d4f98a2
YZ
3356 if (full_backref)
3357 parent = buf->start;
3358 else
3359 parent = 0;
3360
3361 for (i = 0; i < nritems; i++) {
31840ae1 3362 if (level == 0) {
5d4f98a2 3363 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3365 continue;
5d4f98a2 3366 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(buf, fi) ==
3369 BTRFS_FILE_EXTENT_INLINE)
3370 continue;
3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 if (bytenr == 0)
3373 continue;
5d4f98a2
YZ
3374
3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3377 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3378 parent, ref_root, key.objectid,
b06c4bf5 3379 key.offset);
31840ae1
ZY
3380 if (ret)
3381 goto fail;
3382 } else {
5d4f98a2 3383 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3384 num_bytes = fs_info->nodesize;
84f7d8e6 3385 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3386 parent, ref_root, level - 1, 0);
31840ae1
ZY
3387 if (ret)
3388 goto fail;
3389 }
3390 }
3391 return 0;
3392fail:
5d4f98a2
YZ
3393 return ret;
3394}
3395
3396int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3397 struct extent_buffer *buf, int full_backref)
5d4f98a2 3398{
e339a6b0 3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3400}
3401
3402int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3403 struct extent_buffer *buf, int full_backref)
5d4f98a2 3404{
e339a6b0 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3406}
3407
9078a3e1 3408static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3409 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3410 struct btrfs_path *path,
3411 struct btrfs_block_group_cache *cache)
3412{
3413 int ret;
0b246afa 3414 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3415 unsigned long bi;
3416 struct extent_buffer *leaf;
9078a3e1 3417
9078a3e1 3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3419 if (ret) {
3420 if (ret > 0)
3421 ret = -ENOENT;
54aa1f4d 3422 goto fail;
df95e7f0 3423 }
5f39d397
CM
3424
3425 leaf = path->nodes[0];
3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3429fail:
24b89d08 3430 btrfs_release_path(path);
df95e7f0 3431 return ret;
9078a3e1
CM
3432
3433}
3434
4a8c9a62 3435static struct btrfs_block_group_cache *
2ff7e61e 3436next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3437 struct btrfs_block_group_cache *cache)
3438{
3439 struct rb_node *node;
292cbd51 3440
0b246afa 3441 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3442
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
0b246afa 3447 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3448 btrfs_put_block_group(cache);
0b246afa 3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3450 }
4a8c9a62
YZ
3451 node = rb_next(&cache->cache_node);
3452 btrfs_put_block_group(cache);
3453 if (node) {
3454 cache = rb_entry(node, struct btrfs_block_group_cache,
3455 cache_node);
11dfe35a 3456 btrfs_get_block_group(cache);
4a8c9a62
YZ
3457 } else
3458 cache = NULL;
0b246afa 3459 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3460 return cache;
3461}
3462
0af3d00b
JB
3463static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 struct btrfs_trans_handle *trans,
3465 struct btrfs_path *path)
3466{
0b246afa
JM
3467 struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3469 struct inode *inode = NULL;
364ecf36 3470 struct extent_changeset *data_reserved = NULL;
0af3d00b 3471 u64 alloc_hint = 0;
2b20982e 3472 int dcs = BTRFS_DC_ERROR;
f8c269d7 3473 u64 num_pages = 0;
0af3d00b
JB
3474 int retries = 0;
3475 int ret = 0;
3476
3477 /*
3478 * If this block group is smaller than 100 megs don't bother caching the
3479 * block group.
3480 */
ee22184b 3481 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3482 spin_lock(&block_group->lock);
3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 spin_unlock(&block_group->lock);
3485 return 0;
3486 }
3487
0c0ef4bc
JB
3488 if (trans->aborted)
3489 return 0;
0af3d00b 3490again:
77ab86bf 3491 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 ret = PTR_ERR(inode);
b3b4aa74 3494 btrfs_release_path(path);
0af3d00b
JB
3495 goto out;
3496 }
3497
3498 if (IS_ERR(inode)) {
3499 BUG_ON(retries);
3500 retries++;
3501
3502 if (block_group->ro)
3503 goto out_free;
3504
77ab86bf
JM
3505 ret = create_free_space_inode(fs_info, trans, block_group,
3506 path);
0af3d00b
JB
3507 if (ret)
3508 goto out_free;
3509 goto again;
3510 }
3511
3512 /*
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3515 * time.
3516 */
3517 BTRFS_I(inode)->generation = 0;
3518 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3519 if (ret) {
3520 /*
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3528 * anyway.
3529 */
66642832 3530 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3531 goto out_put;
3532 }
0af3d00b
JB
3533 WARN_ON(ret);
3534
8e138e0d
JB
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group->cache_generation == trans->transid &&
3537 i_size_read(inode)) {
3538 dcs = BTRFS_DC_SETUP;
3539 goto out_put;
3540 }
3541
0af3d00b 3542 if (i_size_read(inode) > 0) {
2ff7e61e 3543 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3544 &fs_info->global_block_rsv);
7b61cd92
MX
3545 if (ret)
3546 goto out_put;
3547
77ab86bf 3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3549 if (ret)
3550 goto out_put;
3551 }
3552
3553 spin_lock(&block_group->lock);
cf7c1ef6 3554 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3556 /*
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
1a79c1f2
LB
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3561 */
2b20982e 3562 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3563 spin_unlock(&block_group->lock);
3564 goto out_put;
3565 }
3566 spin_unlock(&block_group->lock);
3567
2968b1f4
JB
3568 /*
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3571 */
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 ret = -ENOSPC;
3574 goto out_put;
3575 }
3576
6fc823b1
JB
3577 /*
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3581 * cache.
3582 */
ee22184b 3583 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3584 if (!num_pages)
3585 num_pages = 1;
3586
0af3d00b 3587 num_pages *= 16;
09cbfeaf 3588 num_pages *= PAGE_SIZE;
0af3d00b 3589
364ecf36 3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3591 if (ret)
3592 goto out_put;
3593
3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 num_pages, num_pages,
3596 &alloc_hint);
2968b1f4
JB
3597 /*
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3604 */
2b20982e
JB
3605 if (!ret)
3606 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3607 else if (ret == -ENOSPC)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3609
0af3d00b
JB
3610out_put:
3611 iput(inode);
3612out_free:
b3b4aa74 3613 btrfs_release_path(path);
0af3d00b
JB
3614out:
3615 spin_lock(&block_group->lock);
e65cbb94 3616 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3617 block_group->cache_generation = trans->transid;
2b20982e 3618 block_group->disk_cache_state = dcs;
0af3d00b
JB
3619 spin_unlock(&block_group->lock);
3620
364ecf36 3621 extent_changeset_free(data_reserved);
0af3d00b
JB
3622 return ret;
3623}
3624
dcdf7f6d 3625int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3626 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3627{
3628 struct btrfs_block_group_cache *cache, *tmp;
3629 struct btrfs_transaction *cur_trans = trans->transaction;
3630 struct btrfs_path *path;
3631
3632 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3633 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3634 return 0;
3635
3636 path = btrfs_alloc_path();
3637 if (!path)
3638 return -ENOMEM;
3639
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 dirty_list) {
3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 cache_save_setup(cache, trans, path);
3645 }
3646
3647 btrfs_free_path(path);
3648 return 0;
3649}
3650
1bbc621e
CM
3651/*
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3656 *
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3662 */
3663int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3664 struct btrfs_fs_info *fs_info)
9078a3e1 3665{
4a8c9a62 3666 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3667 struct btrfs_transaction *cur_trans = trans->transaction;
3668 int ret = 0;
c9dc4c65 3669 int should_put;
1bbc621e
CM
3670 struct btrfs_path *path = NULL;
3671 LIST_HEAD(dirty);
3672 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3673 int num_started = 0;
1bbc621e
CM
3674 int loops = 0;
3675
3676 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3677 if (list_empty(&cur_trans->dirty_bgs)) {
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3679 return 0;
1bbc621e 3680 }
b58d1a9e 3681 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3682 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3683
1bbc621e 3684again:
1bbc621e
CM
3685 /*
3686 * make sure all the block groups on our dirty list actually
3687 * exist
3688 */
2ff7e61e 3689 btrfs_create_pending_block_groups(trans, fs_info);
1bbc621e
CM
3690
3691 if (!path) {
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695 }
3696
b58d1a9e
FM
3697 /*
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3701 */
3702 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3703 while (!list_empty(&dirty)) {
3704 cache = list_first_entry(&dirty,
3705 struct btrfs_block_group_cache,
3706 dirty_list);
1bbc621e
CM
3707 /*
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3711 */
3712 if (!list_empty(&cache->io_list)) {
3713 list_del_init(&cache->io_list);
afdb5718 3714 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3715 btrfs_put_block_group(cache);
3716 }
3717
3718
3719 /*
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3723 *
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3726 */
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3728 list_del_init(&cache->dirty_list);
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731 should_put = 1;
3732
3733 cache_save_setup(cache, trans, path);
3734
3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
0b246afa 3737 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3738 cache, path);
1bbc621e
CM
3739 if (ret == 0 && cache->io_ctl.inode) {
3740 num_started++;
3741 should_put = 0;
3742
3743 /*
3744 * the cache_write_mutex is protecting
3745 * the io_list
3746 */
3747 list_add_tail(&cache->io_list, io);
3748 } else {
3749 /*
3750 * if we failed to write the cache, the
3751 * generation will be bad and life goes on
3752 */
3753 ret = 0;
3754 }
3755 }
ff1f8250 3756 if (!ret) {
2ff7e61e
JM
3757 ret = write_one_cache_group(trans, fs_info,
3758 path, cache);
ff1f8250
FM
3759 /*
3760 * Our block group might still be attached to the list
3761 * of new block groups in the transaction handle of some
3762 * other task (struct btrfs_trans_handle->new_bgs). This
3763 * means its block group item isn't yet in the extent
3764 * tree. If this happens ignore the error, as we will
3765 * try again later in the critical section of the
3766 * transaction commit.
3767 */
3768 if (ret == -ENOENT) {
3769 ret = 0;
3770 spin_lock(&cur_trans->dirty_bgs_lock);
3771 if (list_empty(&cache->dirty_list)) {
3772 list_add_tail(&cache->dirty_list,
3773 &cur_trans->dirty_bgs);
3774 btrfs_get_block_group(cache);
3775 }
3776 spin_unlock(&cur_trans->dirty_bgs_lock);
3777 } else if (ret) {
66642832 3778 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3779 }
3780 }
1bbc621e
CM
3781
3782 /* if its not on the io list, we need to put the block group */
3783 if (should_put)
3784 btrfs_put_block_group(cache);
3785
3786 if (ret)
3787 break;
b58d1a9e
FM
3788
3789 /*
3790 * Avoid blocking other tasks for too long. It might even save
3791 * us from writing caches for block groups that are going to be
3792 * removed.
3793 */
3794 mutex_unlock(&trans->transaction->cache_write_mutex);
3795 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3796 }
b58d1a9e 3797 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3798
3799 /*
3800 * go through delayed refs for all the stuff we've just kicked off
3801 * and then loop back (just once)
3802 */
2ff7e61e 3803 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3804 if (!ret && loops == 0) {
3805 loops++;
3806 spin_lock(&cur_trans->dirty_bgs_lock);
3807 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3808 /*
3809 * dirty_bgs_lock protects us from concurrent block group
3810 * deletes too (not just cache_write_mutex).
3811 */
3812 if (!list_empty(&dirty)) {
3813 spin_unlock(&cur_trans->dirty_bgs_lock);
3814 goto again;
3815 }
1bbc621e 3816 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3817 } else if (ret < 0) {
2ff7e61e 3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3819 }
3820
3821 btrfs_free_path(path);
3822 return ret;
3823}
3824
3825int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3826 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3827{
3828 struct btrfs_block_group_cache *cache;
3829 struct btrfs_transaction *cur_trans = trans->transaction;
3830 int ret = 0;
3831 int should_put;
3832 struct btrfs_path *path;
3833 struct list_head *io = &cur_trans->io_bgs;
3834 int num_started = 0;
9078a3e1
CM
3835
3836 path = btrfs_alloc_path();
3837 if (!path)
3838 return -ENOMEM;
3839
ce93ec54 3840 /*
e44081ef
FM
3841 * Even though we are in the critical section of the transaction commit,
3842 * we can still have concurrent tasks adding elements to this
3843 * transaction's list of dirty block groups. These tasks correspond to
3844 * endio free space workers started when writeback finishes for a
3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 * allocate new block groups as a result of COWing nodes of the root
3847 * tree when updating the free space inode. The writeback for the space
3848 * caches is triggered by an earlier call to
3849 * btrfs_start_dirty_block_groups() and iterations of the following
3850 * loop.
3851 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3852 * delayed refs to make sure we have the best chance at doing this all
3853 * in one shot.
3854 */
e44081ef 3855 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3856 while (!list_empty(&cur_trans->dirty_bgs)) {
3857 cache = list_first_entry(&cur_trans->dirty_bgs,
3858 struct btrfs_block_group_cache,
3859 dirty_list);
c9dc4c65
CM
3860
3861 /*
3862 * this can happen if cache_save_setup re-dirties a block
3863 * group that is already under IO. Just wait for it to
3864 * finish and then do it all again
3865 */
3866 if (!list_empty(&cache->io_list)) {
e44081ef 3867 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3868 list_del_init(&cache->io_list);
afdb5718 3869 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3870 btrfs_put_block_group(cache);
e44081ef 3871 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3872 }
3873
1bbc621e
CM
3874 /*
3875 * don't remove from the dirty list until after we've waited
3876 * on any pending IO
3877 */
ce93ec54 3878 list_del_init(&cache->dirty_list);
e44081ef 3879 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3880 should_put = 1;
3881
1bbc621e 3882 cache_save_setup(cache, trans, path);
c9dc4c65 3883
ce93ec54 3884 if (!ret)
2ff7e61e
JM
3885 ret = btrfs_run_delayed_refs(trans, fs_info,
3886 (unsigned long) -1);
c9dc4c65
CM
3887
3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 cache->io_ctl.inode = NULL;
0b246afa 3890 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3891 cache, path);
c9dc4c65
CM
3892 if (ret == 0 && cache->io_ctl.inode) {
3893 num_started++;
3894 should_put = 0;
1bbc621e 3895 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3896 } else {
3897 /*
3898 * if we failed to write the cache, the
3899 * generation will be bad and life goes on
3900 */
3901 ret = 0;
3902 }
3903 }
ff1f8250 3904 if (!ret) {
2ff7e61e
JM
3905 ret = write_one_cache_group(trans, fs_info,
3906 path, cache);
2bc0bb5f
FM
3907 /*
3908 * One of the free space endio workers might have
3909 * created a new block group while updating a free space
3910 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 * and hasn't released its transaction handle yet, in
3912 * which case the new block group is still attached to
3913 * its transaction handle and its creation has not
3914 * finished yet (no block group item in the extent tree
3915 * yet, etc). If this is the case, wait for all free
3916 * space endio workers to finish and retry. This is a
3917 * a very rare case so no need for a more efficient and
3918 * complex approach.
3919 */
3920 if (ret == -ENOENT) {
3921 wait_event(cur_trans->writer_wait,
3922 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3923 ret = write_one_cache_group(trans, fs_info,
3924 path, cache);
2bc0bb5f 3925 }
ff1f8250 3926 if (ret)
66642832 3927 btrfs_abort_transaction(trans, ret);
ff1f8250 3928 }
c9dc4c65
CM
3929
3930 /* if its not on the io list, we need to put the block group */
3931 if (should_put)
3932 btrfs_put_block_group(cache);
e44081ef 3933 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3934 }
e44081ef 3935 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3936
1bbc621e
CM
3937 while (!list_empty(io)) {
3938 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3939 io_list);
3940 list_del_init(&cache->io_list);
afdb5718 3941 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3942 btrfs_put_block_group(cache);
3943 }
3944
9078a3e1 3945 btrfs_free_path(path);
ce93ec54 3946 return ret;
9078a3e1
CM
3947}
3948
2ff7e61e 3949int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3950{
3951 struct btrfs_block_group_cache *block_group;
3952 int readonly = 0;
3953
0b246afa 3954 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3955 if (!block_group || block_group->ro)
3956 readonly = 1;
3957 if (block_group)
fa9c0d79 3958 btrfs_put_block_group(block_group);
d2fb3437
YZ
3959 return readonly;
3960}
3961
f78c436c
FM
3962bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3963{
3964 struct btrfs_block_group_cache *bg;
3965 bool ret = true;
3966
3967 bg = btrfs_lookup_block_group(fs_info, bytenr);
3968 if (!bg)
3969 return false;
3970
3971 spin_lock(&bg->lock);
3972 if (bg->ro)
3973 ret = false;
3974 else
3975 atomic_inc(&bg->nocow_writers);
3976 spin_unlock(&bg->lock);
3977
3978 /* no put on block group, done by btrfs_dec_nocow_writers */
3979 if (!ret)
3980 btrfs_put_block_group(bg);
3981
3982 return ret;
3983
3984}
3985
3986void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3987{
3988 struct btrfs_block_group_cache *bg;
3989
3990 bg = btrfs_lookup_block_group(fs_info, bytenr);
3991 ASSERT(bg);
3992 if (atomic_dec_and_test(&bg->nocow_writers))
3993 wake_up_atomic_t(&bg->nocow_writers);
3994 /*
3995 * Once for our lookup and once for the lookup done by a previous call
3996 * to btrfs_inc_nocow_writers()
3997 */
3998 btrfs_put_block_group(bg);
3999 btrfs_put_block_group(bg);
4000}
4001
f78c436c
FM
4002void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4003{
5e4def20 4004 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
f78c436c
FM
4005 TASK_UNINTERRUPTIBLE);
4006}
4007
6ab0a202
JM
4008static const char *alloc_name(u64 flags)
4009{
4010 switch (flags) {
4011 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4012 return "mixed";
4013 case BTRFS_BLOCK_GROUP_METADATA:
4014 return "metadata";
4015 case BTRFS_BLOCK_GROUP_DATA:
4016 return "data";
4017 case BTRFS_BLOCK_GROUP_SYSTEM:
4018 return "system";
4019 default:
4020 WARN_ON(1);
4021 return "invalid-combination";
4022 };
4023}
4024
2be12ef7
NB
4025static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4026 struct btrfs_space_info **new)
4027{
4028
4029 struct btrfs_space_info *space_info;
4030 int i;
4031 int ret;
4032
4033 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4034 if (!space_info)
4035 return -ENOMEM;
4036
4037 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4038 GFP_KERNEL);
4039 if (ret) {
4040 kfree(space_info);
4041 return ret;
4042 }
4043
4044 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4045 INIT_LIST_HEAD(&space_info->block_groups[i]);
4046 init_rwsem(&space_info->groups_sem);
4047 spin_lock_init(&space_info->lock);
4048 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4049 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4050 init_waitqueue_head(&space_info->wait);
4051 INIT_LIST_HEAD(&space_info->ro_bgs);
4052 INIT_LIST_HEAD(&space_info->tickets);
4053 INIT_LIST_HEAD(&space_info->priority_tickets);
4054
4055 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4056 info->space_info_kobj, "%s",
4057 alloc_name(space_info->flags));
4058 if (ret) {
4059 percpu_counter_destroy(&space_info->total_bytes_pinned);
4060 kfree(space_info);
4061 return ret;
4062 }
4063
4064 *new = space_info;
4065 list_add_rcu(&space_info->list, &info->space_info);
4066 if (flags & BTRFS_BLOCK_GROUP_DATA)
4067 info->data_sinfo = space_info;
4068
4069 return ret;
4070}
4071
d2006e6d 4072static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4073 u64 total_bytes, u64 bytes_used,
e40edf2d 4074 u64 bytes_readonly,
593060d7
CM
4075 struct btrfs_space_info **space_info)
4076{
4077 struct btrfs_space_info *found;
b742bb82
YZ
4078 int factor;
4079
4080 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4081 BTRFS_BLOCK_GROUP_RAID10))
4082 factor = 2;
4083 else
4084 factor = 1;
593060d7
CM
4085
4086 found = __find_space_info(info, flags);
d2006e6d
NB
4087 ASSERT(found);
4088 spin_lock(&found->lock);
4089 found->total_bytes += total_bytes;
4090 found->disk_total += total_bytes * factor;
4091 found->bytes_used += bytes_used;
4092 found->disk_used += bytes_used * factor;
4093 found->bytes_readonly += bytes_readonly;
4094 if (total_bytes > 0)
4095 found->full = 0;
4096 space_info_add_new_bytes(info, found, total_bytes -
4097 bytes_used - bytes_readonly);
4098 spin_unlock(&found->lock);
4099 *space_info = found;
593060d7
CM
4100}
4101
8790d502
CM
4102static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4103{
899c81ea
ID
4104 u64 extra_flags = chunk_to_extended(flags) &
4105 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4106
de98ced9 4107 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4108 if (flags & BTRFS_BLOCK_GROUP_DATA)
4109 fs_info->avail_data_alloc_bits |= extra_flags;
4110 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4111 fs_info->avail_metadata_alloc_bits |= extra_flags;
4112 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4114 write_sequnlock(&fs_info->profiles_lock);
8790d502 4115}
593060d7 4116
fc67c450
ID
4117/*
4118 * returns target flags in extended format or 0 if restripe for this
4119 * chunk_type is not in progress
c6664b42
ID
4120 *
4121 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4122 */
4123static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4124{
4125 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4126 u64 target = 0;
4127
fc67c450
ID
4128 if (!bctl)
4129 return 0;
4130
4131 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4132 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4134 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4135 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4137 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4138 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4140 }
4141
4142 return target;
4143}
4144
a46d11a8
ID
4145/*
4146 * @flags: available profiles in extended format (see ctree.h)
4147 *
e4d8ec0f
ID
4148 * Returns reduced profile in chunk format. If profile changing is in
4149 * progress (either running or paused) picks the target profile (if it's
4150 * already available), otherwise falls back to plain reducing.
a46d11a8 4151 */
2ff7e61e 4152static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4153{
0b246afa 4154 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4155 u64 target;
9c170b26
ZL
4156 u64 raid_type;
4157 u64 allowed = 0;
a061fc8d 4158
fc67c450
ID
4159 /*
4160 * see if restripe for this chunk_type is in progress, if so
4161 * try to reduce to the target profile
4162 */
0b246afa
JM
4163 spin_lock(&fs_info->balance_lock);
4164 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4165 if (target) {
4166 /* pick target profile only if it's already available */
4167 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4168 spin_unlock(&fs_info->balance_lock);
fc67c450 4169 return extended_to_chunk(target);
e4d8ec0f
ID
4170 }
4171 }
0b246afa 4172 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4173
53b381b3 4174 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4175 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4176 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4177 allowed |= btrfs_raid_group[raid_type];
4178 }
4179 allowed &= flags;
4180
4181 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4182 allowed = BTRFS_BLOCK_GROUP_RAID6;
4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4184 allowed = BTRFS_BLOCK_GROUP_RAID5;
4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4186 allowed = BTRFS_BLOCK_GROUP_RAID10;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4188 allowed = BTRFS_BLOCK_GROUP_RAID1;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4190 allowed = BTRFS_BLOCK_GROUP_RAID0;
4191
4192 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4193
4194 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4195}
4196
2ff7e61e 4197static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4198{
de98ced9 4199 unsigned seq;
f8213bdc 4200 u64 flags;
de98ced9
MX
4201
4202 do {
f8213bdc 4203 flags = orig_flags;
0b246afa 4204 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4205
4206 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4207 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4208 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4209 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4210 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4211 flags |= fs_info->avail_metadata_alloc_bits;
4212 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4213
2ff7e61e 4214 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4215}
4216
1b86826d 4217static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4218{
0b246afa 4219 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4220 u64 flags;
53b381b3 4221 u64 ret;
9ed74f2d 4222
b742bb82
YZ
4223 if (data)
4224 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4225 else if (root == fs_info->chunk_root)
b742bb82 4226 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4227 else
b742bb82 4228 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4229
2ff7e61e 4230 ret = get_alloc_profile(fs_info, flags);
53b381b3 4231 return ret;
6a63209f 4232}
9ed74f2d 4233
1b86826d
JM
4234u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4235{
4236 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4237}
4238
4239u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4240{
4241 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4242}
4243
4244u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4245{
4246 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4247}
4248
4136135b
LB
4249static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4250 bool may_use_included)
4251{
4252 ASSERT(s_info);
4253 return s_info->bytes_used + s_info->bytes_reserved +
4254 s_info->bytes_pinned + s_info->bytes_readonly +
4255 (may_use_included ? s_info->bytes_may_use : 0);
4256}
4257
04f4f916 4258int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4259{
04f4f916 4260 struct btrfs_root *root = inode->root;
b4d7c3c9 4261 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4262 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4263 u64 used;
94b947b2 4264 int ret = 0;
c99f1b0c
ZL
4265 int need_commit = 2;
4266 int have_pinned_space;
6a63209f 4267
6a63209f 4268 /* make sure bytes are sectorsize aligned */
0b246afa 4269 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4270
9dced186 4271 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4272 need_commit = 0;
9dced186 4273 ASSERT(current->journal_info);
0af3d00b
JB
4274 }
4275
6a63209f
JB
4276again:
4277 /* make sure we have enough space to handle the data first */
4278 spin_lock(&data_sinfo->lock);
4136135b 4279 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4280
4281 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4282 struct btrfs_trans_handle *trans;
9ed74f2d 4283
6a63209f
JB
4284 /*
4285 * if we don't have enough free bytes in this space then we need
4286 * to alloc a new chunk.
4287 */
b9fd47cd 4288 if (!data_sinfo->full) {
6a63209f 4289 u64 alloc_target;
9ed74f2d 4290
0e4f8f88 4291 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4292 spin_unlock(&data_sinfo->lock);
1174cade 4293
1b86826d 4294 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4295 /*
4296 * It is ugly that we don't call nolock join
4297 * transaction for the free space inode case here.
4298 * But it is safe because we only do the data space
4299 * reservation for the free space cache in the
4300 * transaction context, the common join transaction
4301 * just increase the counter of the current transaction
4302 * handler, doesn't try to acquire the trans_lock of
4303 * the fs.
4304 */
7a7eaa40 4305 trans = btrfs_join_transaction(root);
a22285a6
YZ
4306 if (IS_ERR(trans))
4307 return PTR_ERR(trans);
9ed74f2d 4308
2ff7e61e 4309 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4310 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4311 btrfs_end_transaction(trans);
d52a5b5f
MX
4312 if (ret < 0) {
4313 if (ret != -ENOSPC)
4314 return ret;
c99f1b0c
ZL
4315 else {
4316 have_pinned_space = 1;
d52a5b5f 4317 goto commit_trans;
c99f1b0c 4318 }
d52a5b5f 4319 }
9ed74f2d 4320
6a63209f
JB
4321 goto again;
4322 }
f2bb8f5c
JB
4323
4324 /*
b150a4f1 4325 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4326 * allocation, and no removed chunk in current transaction,
4327 * don't bother committing the transaction.
f2bb8f5c 4328 */
c99f1b0c
ZL
4329 have_pinned_space = percpu_counter_compare(
4330 &data_sinfo->total_bytes_pinned,
4331 used + bytes - data_sinfo->total_bytes);
6a63209f 4332 spin_unlock(&data_sinfo->lock);
6a63209f 4333
4e06bdd6 4334 /* commit the current transaction and try again */
d52a5b5f 4335commit_trans:
c99f1b0c 4336 if (need_commit &&
0b246afa 4337 !atomic_read(&fs_info->open_ioctl_trans)) {
c99f1b0c 4338 need_commit--;
b150a4f1 4339
e1746e83
ZL
4340 if (need_commit > 0) {
4341 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4342 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4343 (u64)-1);
e1746e83 4344 }
9a4e7276 4345
7a7eaa40 4346 trans = btrfs_join_transaction(root);
a22285a6
YZ
4347 if (IS_ERR(trans))
4348 return PTR_ERR(trans);
c99f1b0c 4349 if (have_pinned_space >= 0 ||
3204d33c
JB
4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351 &trans->transaction->flags) ||
c99f1b0c 4352 need_commit > 0) {
3a45bb20 4353 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4354 if (ret)
4355 return ret;
d7c15171 4356 /*
c2d6cb16
FM
4357 * The cleaner kthread might still be doing iput
4358 * operations. Wait for it to finish so that
4359 * more space is released.
d7c15171 4360 */
0b246afa
JM
4361 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4363 goto again;
4364 } else {
3a45bb20 4365 btrfs_end_transaction(trans);
94b947b2 4366 }
4e06bdd6 4367 }
9ed74f2d 4368
0b246afa 4369 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4370 "space_info:enospc",
4371 data_sinfo->flags, bytes, 1);
6a63209f
JB
4372 return -ENOSPC;
4373 }
4374 data_sinfo->bytes_may_use += bytes;
0b246afa 4375 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4376 data_sinfo->flags, bytes, 1);
6a63209f 4377 spin_unlock(&data_sinfo->lock);
6a63209f 4378
237c0e9f 4379 return ret;
9ed74f2d 4380}
6a63209f 4381
364ecf36
QW
4382int btrfs_check_data_free_space(struct inode *inode,
4383 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4384{
0b246afa 4385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4386 int ret;
4387
4388 /* align the range */
0b246afa
JM
4389 len = round_up(start + len, fs_info->sectorsize) -
4390 round_down(start, fs_info->sectorsize);
4391 start = round_down(start, fs_info->sectorsize);
4ceff079 4392
04f4f916 4393 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4394 if (ret < 0)
4395 return ret;
4396
1e5ec2e7 4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4398 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4399 if (ret < 0)
1e5ec2e7 4400 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4401 else
4402 ret = 0;
4ceff079
QW
4403 return ret;
4404}
4405
4ceff079
QW
4406/*
4407 * Called if we need to clear a data reservation for this inode
4408 * Normally in a error case.
4409 *
51773bec
QW
4410 * This one will *NOT* use accurate qgroup reserved space API, just for case
4411 * which we can't sleep and is sure it won't affect qgroup reserved space.
4412 * Like clear_bit_hook().
4ceff079 4413 */
51773bec
QW
4414void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415 u64 len)
4ceff079 4416{
0b246afa 4417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4418 struct btrfs_space_info *data_sinfo;
4419
4420 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4421 len = round_up(start + len, fs_info->sectorsize) -
4422 round_down(start, fs_info->sectorsize);
4423 start = round_down(start, fs_info->sectorsize);
4ceff079 4424
0b246afa 4425 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4426 spin_lock(&data_sinfo->lock);
4427 if (WARN_ON(data_sinfo->bytes_may_use < len))
4428 data_sinfo->bytes_may_use = 0;
4429 else
4430 data_sinfo->bytes_may_use -= len;
0b246afa 4431 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4432 data_sinfo->flags, len, 0);
4433 spin_unlock(&data_sinfo->lock);
4434}
4435
51773bec
QW
4436/*
4437 * Called if we need to clear a data reservation for this inode
4438 * Normally in a error case.
4439 *
01327610 4440 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4441 * space framework.
4442 */
bc42bda2
QW
4443void btrfs_free_reserved_data_space(struct inode *inode,
4444 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4445{
0c476a5d
JM
4446 struct btrfs_root *root = BTRFS_I(inode)->root;
4447
4448 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4449 len = round_up(start + len, root->fs_info->sectorsize) -
4450 round_down(start, root->fs_info->sectorsize);
4451 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4452
51773bec 4453 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4454 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4455}
4456
97e728d4 4457static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4458{
97e728d4
JB
4459 struct list_head *head = &info->space_info;
4460 struct btrfs_space_info *found;
e3ccfa98 4461
97e728d4
JB
4462 rcu_read_lock();
4463 list_for_each_entry_rcu(found, head, list) {
4464 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4465 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4466 }
97e728d4 4467 rcu_read_unlock();
e3ccfa98
JB
4468}
4469
3c76cd84
MX
4470static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4471{
4472 return (global->size << 1);
4473}
4474
2ff7e61e 4475static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4476 struct btrfs_space_info *sinfo, int force)
32c00aff 4477{
0b246afa 4478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4479 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4480 u64 thresh;
e3ccfa98 4481
0e4f8f88
CM
4482 if (force == CHUNK_ALLOC_FORCE)
4483 return 1;
4484
fb25e914
JB
4485 /*
4486 * We need to take into account the global rsv because for all intents
4487 * and purposes it's used space. Don't worry about locking the
4488 * global_rsv, it doesn't change except when the transaction commits.
4489 */
54338b5c 4490 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4491 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4492
0e4f8f88
CM
4493 /*
4494 * in limited mode, we want to have some free space up to
4495 * about 1% of the FS size.
4496 */
4497 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4498 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4499 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4500
8d8aafee 4501 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4502 return 1;
4503 }
0e4f8f88 4504
8d8aafee 4505 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4506 return 0;
424499db 4507 return 1;
32c00aff
JB
4508}
4509
2ff7e61e 4510static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4511{
4512 u64 num_dev;
4513
53b381b3
DW
4514 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515 BTRFS_BLOCK_GROUP_RAID0 |
4516 BTRFS_BLOCK_GROUP_RAID5 |
4517 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4518 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4519 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520 num_dev = 2;
4521 else
4522 num_dev = 1; /* DUP or single */
4523
39c2d7fa 4524 return num_dev;
15d1ff81
LB
4525}
4526
39c2d7fa
FM
4527/*
4528 * If @is_allocation is true, reserve space in the system space info necessary
4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530 * removing a chunk.
4531 */
4532void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4533 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4534{
4535 struct btrfs_space_info *info;
4536 u64 left;
4537 u64 thresh;
4fbcdf66 4538 int ret = 0;
39c2d7fa 4539 u64 num_devs;
4fbcdf66
FM
4540
4541 /*
4542 * Needed because we can end up allocating a system chunk and for an
4543 * atomic and race free space reservation in the chunk block reserve.
4544 */
0b246afa 4545 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4546
0b246afa 4547 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4548 spin_lock(&info->lock);
4136135b 4549 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4550 spin_unlock(&info->lock);
4551
2ff7e61e 4552 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4553
4554 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4555 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4557
0b246afa
JM
4558 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560 left, thresh, type);
4561 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4562 }
4563
4564 if (left < thresh) {
1b86826d 4565 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4566
4fbcdf66
FM
4567 /*
4568 * Ignore failure to create system chunk. We might end up not
4569 * needing it, as we might not need to COW all nodes/leafs from
4570 * the paths we visit in the chunk tree (they were already COWed
4571 * or created in the current transaction for example).
4572 */
2ff7e61e 4573 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4574 }
4575
4576 if (!ret) {
0b246afa
JM
4577 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4579 thresh, BTRFS_RESERVE_NO_FLUSH);
4580 if (!ret)
4581 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4582 }
4583}
4584
28b737f6
LB
4585/*
4586 * If force is CHUNK_ALLOC_FORCE:
4587 * - return 1 if it successfully allocates a chunk,
4588 * - return errors including -ENOSPC otherwise.
4589 * If force is NOT CHUNK_ALLOC_FORCE:
4590 * - return 0 if it doesn't need to allocate a new chunk,
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4593 */
6324fbf3 4594static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4595 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4596{
6324fbf3 4597 struct btrfs_space_info *space_info;
6d74119f 4598 int wait_for_alloc = 0;
9ed74f2d 4599 int ret = 0;
9ed74f2d 4600
c6b305a8
JB
4601 /* Don't re-enter if we're already allocating a chunk */
4602 if (trans->allocating_chunk)
4603 return -ENOSPC;
4604
0b246afa 4605 space_info = __find_space_info(fs_info, flags);
593060d7 4606 if (!space_info) {
2be12ef7
NB
4607 ret = create_space_info(fs_info, flags, &space_info);
4608 if (ret)
4609 return ret;
9ed74f2d
JB
4610 }
4611
6d74119f 4612again:
25179201 4613 spin_lock(&space_info->lock);
9e622d6b 4614 if (force < space_info->force_alloc)
0e4f8f88 4615 force = space_info->force_alloc;
25179201 4616 if (space_info->full) {
2ff7e61e 4617 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4618 ret = -ENOSPC;
4619 else
4620 ret = 0;
25179201 4621 spin_unlock(&space_info->lock);
09fb99a6 4622 return ret;
9ed74f2d
JB
4623 }
4624
2ff7e61e 4625 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4626 spin_unlock(&space_info->lock);
6d74119f
JB
4627 return 0;
4628 } else if (space_info->chunk_alloc) {
4629 wait_for_alloc = 1;
4630 } else {
4631 space_info->chunk_alloc = 1;
9ed74f2d 4632 }
0e4f8f88 4633
25179201 4634 spin_unlock(&space_info->lock);
9ed74f2d 4635
6d74119f
JB
4636 mutex_lock(&fs_info->chunk_mutex);
4637
4638 /*
4639 * The chunk_mutex is held throughout the entirety of a chunk
4640 * allocation, so once we've acquired the chunk_mutex we know that the
4641 * other guy is done and we need to recheck and see if we should
4642 * allocate.
4643 */
4644 if (wait_for_alloc) {
4645 mutex_unlock(&fs_info->chunk_mutex);
4646 wait_for_alloc = 0;
4647 goto again;
4648 }
4649
c6b305a8
JB
4650 trans->allocating_chunk = true;
4651
67377734
JB
4652 /*
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4655 */
4656 if (btrfs_mixed_space_info(space_info))
4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658
97e728d4
JB
4659 /*
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4662 * FS as well.
4663 */
9ed74f2d 4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4665 fs_info->data_chunk_allocations++;
4666 if (!(fs_info->data_chunk_allocations %
4667 fs_info->metadata_ratio))
4668 force_metadata_allocation(fs_info);
9ed74f2d
JB
4669 }
4670
15d1ff81
LB
4671 /*
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4674 */
2ff7e61e 4675 check_system_chunk(trans, fs_info, flags);
15d1ff81 4676
2ff7e61e 4677 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4678 trans->allocating_chunk = false;
92b8e897 4679
9ed74f2d 4680 spin_lock(&space_info->lock);
a81cb9a2
AO
4681 if (ret < 0 && ret != -ENOSPC)
4682 goto out;
9ed74f2d 4683 if (ret)
6324fbf3 4684 space_info->full = 1;
424499db
YZ
4685 else
4686 ret = 1;
6d74119f 4687
0e4f8f88 4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4689out:
6d74119f 4690 space_info->chunk_alloc = 0;
9ed74f2d 4691 spin_unlock(&space_info->lock);
a25c75d5 4692 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4693 /*
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4705 * transaction.
4706 */
d9a0540a 4707 if (trans->can_flush_pending_bgs &&
ee22184b 4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
2ff7e61e 4709 btrfs_create_pending_block_groups(trans, fs_info);
00d80e34
FM
4710 btrfs_trans_release_chunk_metadata(trans);
4711 }
0f9dd46c 4712 return ret;
6324fbf3 4713}
9ed74f2d 4714
c1c4919b 4715static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4716 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4717 enum btrfs_reserve_flush_enum flush,
4718 bool system_chunk)
a80c8dcf 4719{
0b246afa 4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4721 u64 profile;
3c76cd84 4722 u64 space_size;
a80c8dcf
JB
4723 u64 avail;
4724 u64 used;
4725
957780eb
JB
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 return 0;
4729
c1c4919b
JM
4730 if (system_chunk)
4731 profile = btrfs_system_alloc_profile(fs_info);
4732 else
4733 profile = btrfs_metadata_alloc_profile(fs_info);
4734
4136135b 4735 used = btrfs_space_info_used(space_info, false);
96f1bb57 4736
96f1bb57
JB
4737 /*
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4742 */
3c76cd84
MX
4743 spin_lock(&global_rsv->lock);
4744 space_size = calc_global_rsv_need_space(global_rsv);
4745 spin_unlock(&global_rsv->lock);
4746 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4747 return 0;
4748
4749 used += space_info->bytes_may_use;
a80c8dcf 4750
a5ed45f8 4751 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4752
4753 /*
4754 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4757 * change the math
a80c8dcf
JB
4758 */
4759 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 BTRFS_BLOCK_GROUP_RAID1 |
4761 BTRFS_BLOCK_GROUP_RAID10))
4762 avail >>= 1;
4763
4764 /*
561c294d
MX
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4768 */
08e007d2 4769 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4770 avail >>= 3;
a80c8dcf 4771 else
14575aef 4772 avail >>= 1;
a80c8dcf 4773
14575aef 4774 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4775 return 1;
4776 return 0;
4777}
4778
2ff7e61e 4779static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4780 unsigned long nr_pages, int nr_items)
da633a42 4781{
0b246afa 4782 struct super_block *sb = fs_info->sb;
da633a42 4783
925a6efb
JB
4784 if (down_read_trylock(&sb->s_umount)) {
4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 up_read(&sb->s_umount);
4787 } else {
da633a42
MX
4788 /*
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4793 * the disk).
4794 */
0b246afa 4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4796 if (!current->journal_info)
0b246afa 4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4798 }
4799}
4800
6374e57a 4801static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4802 u64 to_reclaim)
18cd8ea6
MX
4803{
4804 u64 bytes;
6374e57a 4805 u64 nr;
18cd8ea6 4806
2ff7e61e 4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4808 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4809 if (!nr)
4810 nr = 1;
4811 return nr;
4812}
4813
ee22184b 4814#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4815
9ed74f2d 4816/*
5da9d01b 4817 * shrink metadata reservation for delalloc
9ed74f2d 4818 */
c1c4919b
JM
4819static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 u64 orig, bool wait_ordered)
5da9d01b 4821{
0019f10d 4822 struct btrfs_space_info *space_info;
663350ac 4823 struct btrfs_trans_handle *trans;
f4c738c2 4824 u64 delalloc_bytes;
5da9d01b 4825 u64 max_reclaim;
6374e57a 4826 u64 items;
b1953bce 4827 long time_left;
d3ee29e3
MX
4828 unsigned long nr_pages;
4829 int loops;
08e007d2 4830 enum btrfs_reserve_flush_enum flush;
5da9d01b 4831
c61a16a7 4832 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4833 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4834 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4835
663350ac 4836 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4837 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4838
963d678b 4839 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4840 &fs_info->delalloc_bytes);
f4c738c2 4841 if (delalloc_bytes == 0) {
fdb5effd 4842 if (trans)
f4c738c2 4843 return;
38c135af 4844 if (wait_ordered)
0b246afa 4845 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4846 return;
fdb5effd
JB
4847 }
4848
d3ee29e3 4849 loops = 0;
f4c738c2
JB
4850 while (delalloc_bytes && loops < 3) {
4851 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4852 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4853 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4854 /*
4855 * We need to wait for the async pages to actually start before
4856 * we do anything.
4857 */
0b246afa 4858 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4859 if (!max_reclaim)
4860 goto skip_async;
4861
4862 if (max_reclaim <= nr_pages)
4863 max_reclaim = 0;
4864 else
4865 max_reclaim -= nr_pages;
dea31f52 4866
0b246afa
JM
4867 wait_event(fs_info->async_submit_wait,
4868 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4869 (int)max_reclaim);
4870skip_async:
08e007d2
MX
4871 if (!trans)
4872 flush = BTRFS_RESERVE_FLUSH_ALL;
4873 else
4874 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4875 spin_lock(&space_info->lock);
957780eb
JB
4876 if (list_empty(&space_info->tickets) &&
4877 list_empty(&space_info->priority_tickets)) {
4878 spin_unlock(&space_info->lock);
4879 break;
4880 }
0019f10d 4881 spin_unlock(&space_info->lock);
5da9d01b 4882
36e39c40 4883 loops++;
f104d044 4884 if (wait_ordered && !trans) {
0b246afa 4885 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4886 } else {
f4c738c2 4887 time_left = schedule_timeout_killable(1);
f104d044
JB
4888 if (time_left)
4889 break;
4890 }
963d678b 4891 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4892 &fs_info->delalloc_bytes);
5da9d01b 4893 }
5da9d01b
YZ
4894}
4895
996478ca
JB
4896struct reserve_ticket {
4897 u64 bytes;
4898 int error;
4899 struct list_head list;
4900 wait_queue_head_t wait;
4901};
4902
663350ac
JB
4903/**
4904 * maybe_commit_transaction - possibly commit the transaction if its ok to
4905 * @root - the root we're allocating for
4906 * @bytes - the number of bytes we want to reserve
4907 * @force - force the commit
8bb8ab2e 4908 *
663350ac
JB
4909 * This will check to make sure that committing the transaction will actually
4910 * get us somewhere and then commit the transaction if it does. Otherwise it
4911 * will return -ENOSPC.
8bb8ab2e 4912 */
0c9ab349 4913static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4914 struct btrfs_space_info *space_info)
663350ac 4915{
996478ca 4916 struct reserve_ticket *ticket = NULL;
0b246afa 4917 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4918 struct btrfs_trans_handle *trans;
996478ca 4919 u64 bytes;
663350ac
JB
4920
4921 trans = (struct btrfs_trans_handle *)current->journal_info;
4922 if (trans)
4923 return -EAGAIN;
4924
996478ca
JB
4925 spin_lock(&space_info->lock);
4926 if (!list_empty(&space_info->priority_tickets))
4927 ticket = list_first_entry(&space_info->priority_tickets,
4928 struct reserve_ticket, list);
4929 else if (!list_empty(&space_info->tickets))
4930 ticket = list_first_entry(&space_info->tickets,
4931 struct reserve_ticket, list);
4932 bytes = (ticket) ? ticket->bytes : 0;
4933 spin_unlock(&space_info->lock);
4934
4935 if (!bytes)
4936 return 0;
663350ac
JB
4937
4938 /* See if there is enough pinned space to make this reservation */
b150a4f1 4939 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4940 bytes) >= 0)
663350ac 4941 goto commit;
663350ac
JB
4942
4943 /*
4944 * See if there is some space in the delayed insertion reservation for
4945 * this reservation.
4946 */
4947 if (space_info != delayed_rsv->space_info)
4948 return -ENOSPC;
4949
4950 spin_lock(&delayed_rsv->lock);
996478ca
JB
4951 if (delayed_rsv->size > bytes)
4952 bytes = 0;
4953 else
4954 bytes -= delayed_rsv->size;
057aac3e
NB
4955 spin_unlock(&delayed_rsv->lock);
4956
b150a4f1 4957 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4958 bytes) < 0) {
663350ac
JB
4959 return -ENOSPC;
4960 }
663350ac
JB
4961
4962commit:
a9b3311e 4963 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4964 if (IS_ERR(trans))
4965 return -ENOSPC;
4966
3a45bb20 4967 return btrfs_commit_transaction(trans);
663350ac
JB
4968}
4969
e38ae7a0
NB
4970/*
4971 * Try to flush some data based on policy set by @state. This is only advisory
4972 * and may fail for various reasons. The caller is supposed to examine the
4973 * state of @space_info to detect the outcome.
4974 */
4975static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4976 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4977 int state)
96c3f433 4978{
a9b3311e 4979 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4980 struct btrfs_trans_handle *trans;
4981 int nr;
f4c738c2 4982 int ret = 0;
96c3f433
JB
4983
4984 switch (state) {
96c3f433
JB
4985 case FLUSH_DELAYED_ITEMS_NR:
4986 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4987 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4988 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4989 else
96c3f433 4990 nr = -1;
18cd8ea6 4991
96c3f433
JB
4992 trans = btrfs_join_transaction(root);
4993 if (IS_ERR(trans)) {
4994 ret = PTR_ERR(trans);
4995 break;
4996 }
2ff7e61e 4997 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
3a45bb20 4998 btrfs_end_transaction(trans);
96c3f433 4999 break;
67b0fd63
JB
5000 case FLUSH_DELALLOC:
5001 case FLUSH_DELALLOC_WAIT:
7bdd6277 5002 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5003 state == FLUSH_DELALLOC_WAIT);
5004 break;
ea658bad
JB
5005 case ALLOC_CHUNK:
5006 trans = btrfs_join_transaction(root);
5007 if (IS_ERR(trans)) {
5008 ret = PTR_ERR(trans);
5009 break;
5010 }
2ff7e61e 5011 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5012 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5013 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5014 btrfs_end_transaction(trans);
eecba891 5015 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5016 ret = 0;
5017 break;
96c3f433 5018 case COMMIT_TRANS:
996478ca 5019 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5020 break;
5021 default:
5022 ret = -ENOSPC;
5023 break;
5024 }
5025
7bdd6277
NB
5026 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027 ret);
e38ae7a0 5028 return;
96c3f433 5029}
21c7e756
MX
5030
5031static inline u64
c1c4919b
JM
5032btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033 struct btrfs_space_info *space_info,
5034 bool system_chunk)
21c7e756 5035{
957780eb 5036 struct reserve_ticket *ticket;
21c7e756
MX
5037 u64 used;
5038 u64 expected;
957780eb 5039 u64 to_reclaim = 0;
21c7e756 5040
957780eb
JB
5041 list_for_each_entry(ticket, &space_info->tickets, list)
5042 to_reclaim += ticket->bytes;
5043 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044 to_reclaim += ticket->bytes;
5045 if (to_reclaim)
5046 return to_reclaim;
21c7e756 5047
e0af2484 5048 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5049 if (can_overcommit(fs_info, space_info, to_reclaim,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5051 return 0;
5052
0eee8a49
NB
5053 used = btrfs_space_info_used(space_info, true);
5054
c1c4919b
JM
5055 if (can_overcommit(fs_info, space_info, SZ_1M,
5056 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5057 expected = div_factor_fine(space_info->total_bytes, 95);
5058 else
5059 expected = div_factor_fine(space_info->total_bytes, 90);
5060
5061 if (used > expected)
5062 to_reclaim = used - expected;
5063 else
5064 to_reclaim = 0;
5065 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066 space_info->bytes_reserved);
21c7e756
MX
5067 return to_reclaim;
5068}
5069
c1c4919b
JM
5070static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071 struct btrfs_space_info *space_info,
5072 u64 used, bool system_chunk)
21c7e756 5073{
365c5313
JB
5074 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5075
5076 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5077 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5078 return 0;
5079
c1c4919b
JM
5080 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 system_chunk))
d38b349c
JB
5082 return 0;
5083
0b246afa
JM
5084 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5086}
5087
957780eb 5088static void wake_all_tickets(struct list_head *head)
21c7e756 5089{
957780eb 5090 struct reserve_ticket *ticket;
25ce459c 5091
957780eb
JB
5092 while (!list_empty(head)) {
5093 ticket = list_first_entry(head, struct reserve_ticket, list);
5094 list_del_init(&ticket->list);
5095 ticket->error = -ENOSPC;
5096 wake_up(&ticket->wait);
21c7e756 5097 }
21c7e756
MX
5098}
5099
957780eb
JB
5100/*
5101 * This is for normal flushers, we can wait all goddamned day if we want to. We
5102 * will loop and continuously try to flush as long as we are making progress.
5103 * We count progress as clearing off tickets each time we have to loop.
5104 */
21c7e756
MX
5105static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5106{
5107 struct btrfs_fs_info *fs_info;
5108 struct btrfs_space_info *space_info;
5109 u64 to_reclaim;
5110 int flush_state;
957780eb 5111 int commit_cycles = 0;
ce129655 5112 u64 last_tickets_id;
21c7e756
MX
5113
5114 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5116
957780eb 5117 spin_lock(&space_info->lock);
c1c4919b
JM
5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 false);
957780eb
JB
5120 if (!to_reclaim) {
5121 space_info->flush = 0;
5122 spin_unlock(&space_info->lock);
21c7e756 5123 return;
957780eb 5124 }
ce129655 5125 last_tickets_id = space_info->tickets_id;
957780eb 5126 spin_unlock(&space_info->lock);
21c7e756
MX
5127
5128 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5129 do {
e38ae7a0 5130 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5131 spin_lock(&space_info->lock);
5132 if (list_empty(&space_info->tickets)) {
5133 space_info->flush = 0;
5134 spin_unlock(&space_info->lock);
5135 return;
5136 }
c1c4919b
JM
5137 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138 space_info,
5139 false);
ce129655 5140 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5141 flush_state++;
5142 } else {
ce129655 5143 last_tickets_id = space_info->tickets_id;
957780eb
JB
5144 flush_state = FLUSH_DELAYED_ITEMS_NR;
5145 if (commit_cycles)
5146 commit_cycles--;
5147 }
5148
5149 if (flush_state > COMMIT_TRANS) {
5150 commit_cycles++;
5151 if (commit_cycles > 2) {
5152 wake_all_tickets(&space_info->tickets);
5153 space_info->flush = 0;
5154 } else {
5155 flush_state = FLUSH_DELAYED_ITEMS_NR;
5156 }
5157 }
5158 spin_unlock(&space_info->lock);
5159 } while (flush_state <= COMMIT_TRANS);
5160}
5161
5162void btrfs_init_async_reclaim_work(struct work_struct *work)
5163{
5164 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5165}
5166
5167static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168 struct btrfs_space_info *space_info,
5169 struct reserve_ticket *ticket)
5170{
5171 u64 to_reclaim;
5172 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5173
5174 spin_lock(&space_info->lock);
c1c4919b
JM
5175 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176 false);
957780eb
JB
5177 if (!to_reclaim) {
5178 spin_unlock(&space_info->lock);
5179 return;
5180 }
5181 spin_unlock(&space_info->lock);
5182
21c7e756 5183 do {
7bdd6277 5184 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5185 flush_state++;
957780eb
JB
5186 spin_lock(&space_info->lock);
5187 if (ticket->bytes == 0) {
5188 spin_unlock(&space_info->lock);
21c7e756 5189 return;
957780eb
JB
5190 }
5191 spin_unlock(&space_info->lock);
5192
5193 /*
5194 * Priority flushers can't wait on delalloc without
5195 * deadlocking.
5196 */
5197 if (flush_state == FLUSH_DELALLOC ||
5198 flush_state == FLUSH_DELALLOC_WAIT)
5199 flush_state = ALLOC_CHUNK;
365c5313 5200 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5201}
5202
957780eb
JB
5203static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204 struct btrfs_space_info *space_info,
5205 struct reserve_ticket *ticket, u64 orig_bytes)
5206
21c7e756 5207{
957780eb
JB
5208 DEFINE_WAIT(wait);
5209 int ret = 0;
5210
5211 spin_lock(&space_info->lock);
5212 while (ticket->bytes > 0 && ticket->error == 0) {
5213 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214 if (ret) {
5215 ret = -EINTR;
5216 break;
5217 }
5218 spin_unlock(&space_info->lock);
5219
5220 schedule();
5221
5222 finish_wait(&ticket->wait, &wait);
5223 spin_lock(&space_info->lock);
5224 }
5225 if (!ret)
5226 ret = ticket->error;
5227 if (!list_empty(&ticket->list))
5228 list_del_init(&ticket->list);
5229 if (ticket->bytes && ticket->bytes < orig_bytes) {
5230 u64 num_bytes = orig_bytes - ticket->bytes;
5231 space_info->bytes_may_use -= num_bytes;
5232 trace_btrfs_space_reservation(fs_info, "space_info",
5233 space_info->flags, num_bytes, 0);
5234 }
5235 spin_unlock(&space_info->lock);
5236
5237 return ret;
21c7e756
MX
5238}
5239
4a92b1b8
JB
5240/**
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
957780eb 5243 * @space_info - the space info we want to allocate from
4a92b1b8 5244 * @orig_bytes - the number of bytes we want
48fc7f7e 5245 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5246 *
01327610 5247 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5252 * space already.
8bb8ab2e 5253 */
c1c4919b 5254static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5255 struct btrfs_space_info *space_info,
5256 u64 orig_bytes,
c1c4919b
JM
5257 enum btrfs_reserve_flush_enum flush,
5258 bool system_chunk)
9ed74f2d 5259{
957780eb 5260 struct reserve_ticket ticket;
2bf64758 5261 u64 used;
8bb8ab2e 5262 int ret = 0;
9ed74f2d 5263
957780eb 5264 ASSERT(orig_bytes);
8ca17f0f 5265 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5266
8bb8ab2e 5267 spin_lock(&space_info->lock);
fdb5effd 5268 ret = -ENOSPC;
4136135b 5269 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5270
8bb8ab2e 5271 /*
957780eb
JB
5272 * If we have enough space then hooray, make our reservation and carry
5273 * on. If not see if we can overcommit, and if we can, hooray carry on.
5274 * If not things get more complicated.
8bb8ab2e 5275 */
957780eb
JB
5276 if (used + orig_bytes <= space_info->total_bytes) {
5277 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
957780eb 5280 ret = 0;
c1c4919b
JM
5281 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282 system_chunk)) {
44734ed1 5283 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5284 trace_btrfs_space_reservation(fs_info, "space_info",
5285 space_info->flags, orig_bytes, 1);
44734ed1 5286 ret = 0;
2bf64758
JB
5287 }
5288
8bb8ab2e 5289 /*
957780eb
JB
5290 * If we couldn't make a reservation then setup our reservation ticket
5291 * and kick the async worker if it's not already running.
08e007d2 5292 *
957780eb
JB
5293 * If we are a priority flusher then we just need to add our ticket to
5294 * the list and we will do our own flushing further down.
8bb8ab2e 5295 */
72bcd99d 5296 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5297 ticket.bytes = orig_bytes;
5298 ticket.error = 0;
5299 init_waitqueue_head(&ticket.wait);
5300 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301 list_add_tail(&ticket.list, &space_info->tickets);
5302 if (!space_info->flush) {
5303 space_info->flush = 1;
0b246afa 5304 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5305 space_info->flags,
5306 orig_bytes, flush,
5307 "enospc");
957780eb 5308 queue_work(system_unbound_wq,
c1c4919b 5309 &fs_info->async_reclaim_work);
957780eb
JB
5310 }
5311 } else {
5312 list_add_tail(&ticket.list,
5313 &space_info->priority_tickets);
5314 }
21c7e756
MX
5315 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316 used += orig_bytes;
f6acfd50
JB
5317 /*
5318 * We will do the space reservation dance during log replay,
5319 * which means we won't have fs_info->fs_root set, so don't do
5320 * the async reclaim as we will panic.
5321 */
0b246afa 5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5323 need_do_async_reclaim(fs_info, space_info,
5324 used, system_chunk) &&
0b246afa
JM
5325 !work_busy(&fs_info->async_reclaim_work)) {
5326 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327 orig_bytes, flush, "preempt");
21c7e756 5328 queue_work(system_unbound_wq,
0b246afa 5329 &fs_info->async_reclaim_work);
f376df2b 5330 }
8bb8ab2e 5331 }
f0486c68 5332 spin_unlock(&space_info->lock);
08e007d2 5333 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5334 return ret;
f0486c68 5335
957780eb 5336 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5337 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5338 orig_bytes);
08e007d2 5339
957780eb 5340 ret = 0;
0b246afa 5341 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5342 spin_lock(&space_info->lock);
5343 if (ticket.bytes) {
5344 if (ticket.bytes < orig_bytes) {
5345 u64 num_bytes = orig_bytes - ticket.bytes;
5346 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5347 trace_btrfs_space_reservation(fs_info, "space_info",
5348 space_info->flags,
5349 num_bytes, 0);
08e007d2 5350
957780eb
JB
5351 }
5352 list_del_init(&ticket.list);
5353 ret = -ENOSPC;
5354 }
5355 spin_unlock(&space_info->lock);
5356 ASSERT(list_empty(&ticket.list));
5357 return ret;
5358}
8bb8ab2e 5359
957780eb
JB
5360/**
5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362 * @root - the root we're allocating for
5363 * @block_rsv - the block_rsv we're allocating for
5364 * @orig_bytes - the number of bytes we want
5365 * @flush - whether or not we can flush to make our reservation
5366 *
5367 * This will reserve orgi_bytes number of bytes from the space info associated
5368 * with the block_rsv. If there is not enough space it will make an attempt to
5369 * flush out space to make room. It will do this by flushing delalloc if
5370 * possible or committing the transaction. If flush is 0 then no attempts to
5371 * regain reservations will be made and this will fail if there is not enough
5372 * space already.
5373 */
5374static int reserve_metadata_bytes(struct btrfs_root *root,
5375 struct btrfs_block_rsv *block_rsv,
5376 u64 orig_bytes,
5377 enum btrfs_reserve_flush_enum flush)
5378{
0b246afa
JM
5379 struct btrfs_fs_info *fs_info = root->fs_info;
5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5381 int ret;
c1c4919b 5382 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5383
c1c4919b
JM
5384 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385 orig_bytes, flush, system_chunk);
5d80366e
JB
5386 if (ret == -ENOSPC &&
5387 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5388 if (block_rsv != global_rsv &&
5389 !block_rsv_use_bytes(global_rsv, orig_bytes))
5390 ret = 0;
5391 }
cab45e22 5392 if (ret == -ENOSPC)
0b246afa 5393 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5394 block_rsv->space_info->flags,
5395 orig_bytes, 1);
f0486c68
YZ
5396 return ret;
5397}
5398
79787eaa
JM
5399static struct btrfs_block_rsv *get_block_rsv(
5400 const struct btrfs_trans_handle *trans,
5401 const struct btrfs_root *root)
f0486c68 5402{
0b246afa 5403 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5404 struct btrfs_block_rsv *block_rsv = NULL;
5405
e9cf439f 5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5407 (root == fs_info->csum_root && trans->adding_csums) ||
5408 (root == fs_info->uuid_root))
f7a81ea4
SB
5409 block_rsv = trans->block_rsv;
5410
4c13d758 5411 if (!block_rsv)
f0486c68
YZ
5412 block_rsv = root->block_rsv;
5413
5414 if (!block_rsv)
0b246afa 5415 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5416
5417 return block_rsv;
5418}
5419
5420static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes)
5422{
5423 int ret = -ENOSPC;
5424 spin_lock(&block_rsv->lock);
5425 if (block_rsv->reserved >= num_bytes) {
5426 block_rsv->reserved -= num_bytes;
5427 if (block_rsv->reserved < block_rsv->size)
5428 block_rsv->full = 0;
5429 ret = 0;
5430 }
5431 spin_unlock(&block_rsv->lock);
5432 return ret;
5433}
5434
5435static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 u64 num_bytes, int update_size)
5437{
5438 spin_lock(&block_rsv->lock);
5439 block_rsv->reserved += num_bytes;
5440 if (update_size)
5441 block_rsv->size += num_bytes;
5442 else if (block_rsv->reserved >= block_rsv->size)
5443 block_rsv->full = 1;
5444 spin_unlock(&block_rsv->lock);
5445}
5446
d52be818
JB
5447int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 struct btrfs_block_rsv *dest, u64 num_bytes,
5449 int min_factor)
5450{
5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 u64 min_bytes;
5453
5454 if (global_rsv->space_info != dest->space_info)
5455 return -ENOSPC;
5456
5457 spin_lock(&global_rsv->lock);
5458 min_bytes = div_factor(global_rsv->size, min_factor);
5459 if (global_rsv->reserved < min_bytes + num_bytes) {
5460 spin_unlock(&global_rsv->lock);
5461 return -ENOSPC;
5462 }
5463 global_rsv->reserved -= num_bytes;
5464 if (global_rsv->reserved < global_rsv->size)
5465 global_rsv->full = 0;
5466 spin_unlock(&global_rsv->lock);
5467
5468 block_rsv_add_bytes(dest, num_bytes, 1);
5469 return 0;
5470}
5471
957780eb
JB
5472/*
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5475 */
5476static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5479{
5480 struct reserve_ticket *ticket;
5481 struct list_head *head;
5482 u64 used;
5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 bool check_overcommit = false;
5485
5486 spin_lock(&space_info->lock);
5487 head = &space_info->priority_tickets;
5488
5489 /*
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5493 */
0eee8a49 5494 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5495 if (used - num_bytes >= space_info->total_bytes)
5496 check_overcommit = true;
5497again:
5498 while (!list_empty(head) && num_bytes) {
5499 ticket = list_first_entry(head, struct reserve_ticket,
5500 list);
5501 /*
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5504 */
5505 if (check_overcommit &&
c1c4919b 5506 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5507 break;
5508 if (num_bytes >= ticket->bytes) {
5509 list_del_init(&ticket->list);
5510 num_bytes -= ticket->bytes;
5511 ticket->bytes = 0;
ce129655 5512 space_info->tickets_id++;
957780eb
JB
5513 wake_up(&ticket->wait);
5514 } else {
5515 ticket->bytes -= num_bytes;
5516 num_bytes = 0;
5517 }
5518 }
5519
5520 if (num_bytes && head == &space_info->priority_tickets) {
5521 head = &space_info->tickets;
5522 flush = BTRFS_RESERVE_FLUSH_ALL;
5523 goto again;
5524 }
5525 space_info->bytes_may_use -= num_bytes;
5526 trace_btrfs_space_reservation(fs_info, "space_info",
5527 space_info->flags, num_bytes, 0);
5528 spin_unlock(&space_info->lock);
5529}
5530
5531/*
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5535 */
5536static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 struct btrfs_space_info *space_info,
5538 u64 num_bytes)
5539{
5540 struct reserve_ticket *ticket;
5541 struct list_head *head = &space_info->priority_tickets;
5542
5543again:
5544 while (!list_empty(head) && num_bytes) {
5545 ticket = list_first_entry(head, struct reserve_ticket,
5546 list);
5547 if (num_bytes >= ticket->bytes) {
5548 trace_btrfs_space_reservation(fs_info, "space_info",
5549 space_info->flags,
5550 ticket->bytes, 1);
5551 list_del_init(&ticket->list);
5552 num_bytes -= ticket->bytes;
5553 space_info->bytes_may_use += ticket->bytes;
5554 ticket->bytes = 0;
ce129655 5555 space_info->tickets_id++;
957780eb
JB
5556 wake_up(&ticket->wait);
5557 } else {
5558 trace_btrfs_space_reservation(fs_info, "space_info",
5559 space_info->flags,
5560 num_bytes, 1);
5561 space_info->bytes_may_use += num_bytes;
5562 ticket->bytes -= num_bytes;
5563 num_bytes = 0;
5564 }
5565 }
5566
5567 if (num_bytes && head == &space_info->priority_tickets) {
5568 head = &space_info->tickets;
5569 goto again;
5570 }
5571}
5572
69fe2d75 5573static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5574 struct btrfs_block_rsv *block_rsv,
62a45b60 5575 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5576{
5577 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5578 u64 ret;
f0486c68
YZ
5579
5580 spin_lock(&block_rsv->lock);
5581 if (num_bytes == (u64)-1)
5582 num_bytes = block_rsv->size;
5583 block_rsv->size -= num_bytes;
5584 if (block_rsv->reserved >= block_rsv->size) {
5585 num_bytes = block_rsv->reserved - block_rsv->size;
5586 block_rsv->reserved = block_rsv->size;
5587 block_rsv->full = 1;
5588 } else {
5589 num_bytes = 0;
5590 }
5591 spin_unlock(&block_rsv->lock);
5592
69fe2d75 5593 ret = num_bytes;
f0486c68
YZ
5594 if (num_bytes > 0) {
5595 if (dest) {
e9e22899
JB
5596 spin_lock(&dest->lock);
5597 if (!dest->full) {
5598 u64 bytes_to_add;
5599
5600 bytes_to_add = dest->size - dest->reserved;
5601 bytes_to_add = min(num_bytes, bytes_to_add);
5602 dest->reserved += bytes_to_add;
5603 if (dest->reserved >= dest->size)
5604 dest->full = 1;
5605 num_bytes -= bytes_to_add;
5606 }
5607 spin_unlock(&dest->lock);
5608 }
957780eb
JB
5609 if (num_bytes)
5610 space_info_add_old_bytes(fs_info, space_info,
5611 num_bytes);
9ed74f2d 5612 }
69fe2d75 5613 return ret;
f0486c68 5614}
4e06bdd6 5615
25d609f8
JB
5616int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5617 struct btrfs_block_rsv *dst, u64 num_bytes,
5618 int update_size)
f0486c68
YZ
5619{
5620 int ret;
9ed74f2d 5621
f0486c68
YZ
5622 ret = block_rsv_use_bytes(src, num_bytes);
5623 if (ret)
5624 return ret;
9ed74f2d 5625
25d609f8 5626 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5627 return 0;
5628}
5629
66d8f3dd 5630void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5631{
f0486c68
YZ
5632 memset(rsv, 0, sizeof(*rsv));
5633 spin_lock_init(&rsv->lock);
66d8f3dd 5634 rsv->type = type;
f0486c68
YZ
5635}
5636
69fe2d75
JB
5637void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5638 struct btrfs_block_rsv *rsv,
5639 unsigned short type)
5640{
5641 btrfs_init_block_rsv(rsv, type);
5642 rsv->space_info = __find_space_info(fs_info,
5643 BTRFS_BLOCK_GROUP_METADATA);
5644}
5645
2ff7e61e 5646struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5647 unsigned short type)
f0486c68
YZ
5648{
5649 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5650
f0486c68
YZ
5651 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5652 if (!block_rsv)
5653 return NULL;
9ed74f2d 5654
69fe2d75 5655 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5656 return block_rsv;
5657}
9ed74f2d 5658
2ff7e61e 5659void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5660 struct btrfs_block_rsv *rsv)
5661{
2aaa6655
JB
5662 if (!rsv)
5663 return;
2ff7e61e 5664 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5665 kfree(rsv);
9ed74f2d
JB
5666}
5667
cdfb080e
CM
5668void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5669{
5670 kfree(rsv);
5671}
5672
08e007d2
MX
5673int btrfs_block_rsv_add(struct btrfs_root *root,
5674 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5675 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5676{
f0486c68 5677 int ret;
9ed74f2d 5678
f0486c68
YZ
5679 if (num_bytes == 0)
5680 return 0;
8bb8ab2e 5681
61b520a9 5682 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5683 if (!ret) {
5684 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5685 return 0;
5686 }
9ed74f2d 5687
f0486c68 5688 return ret;
f0486c68 5689}
9ed74f2d 5690
2ff7e61e 5691int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5692{
5693 u64 num_bytes = 0;
f0486c68 5694 int ret = -ENOSPC;
9ed74f2d 5695
f0486c68
YZ
5696 if (!block_rsv)
5697 return 0;
9ed74f2d 5698
f0486c68 5699 spin_lock(&block_rsv->lock);
36ba022a
JB
5700 num_bytes = div_factor(block_rsv->size, min_factor);
5701 if (block_rsv->reserved >= num_bytes)
5702 ret = 0;
5703 spin_unlock(&block_rsv->lock);
9ed74f2d 5704
36ba022a
JB
5705 return ret;
5706}
5707
08e007d2
MX
5708int btrfs_block_rsv_refill(struct btrfs_root *root,
5709 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5710 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5711{
5712 u64 num_bytes = 0;
5713 int ret = -ENOSPC;
5714
5715 if (!block_rsv)
5716 return 0;
5717
5718 spin_lock(&block_rsv->lock);
5719 num_bytes = min_reserved;
13553e52 5720 if (block_rsv->reserved >= num_bytes)
f0486c68 5721 ret = 0;
13553e52 5722 else
f0486c68 5723 num_bytes -= block_rsv->reserved;
f0486c68 5724 spin_unlock(&block_rsv->lock);
13553e52 5725
f0486c68
YZ
5726 if (!ret)
5727 return 0;
5728
aa38a711 5729 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5730 if (!ret) {
5731 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5732 return 0;
6a63209f 5733 }
9ed74f2d 5734
13553e52 5735 return ret;
f0486c68
YZ
5736}
5737
69fe2d75
JB
5738/**
5739 * btrfs_inode_rsv_refill - refill the inode block rsv.
5740 * @inode - the inode we are refilling.
5741 * @flush - the flusing restriction.
5742 *
5743 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744 * block_rsv->size as the minimum size. We'll either refill the missing amount
5745 * or return if we already have enough space. This will also handle the resreve
5746 * tracepoint for the reserved amount.
5747 */
3f2dd7a0
QW
5748static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5749 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5750{
5751 struct btrfs_root *root = inode->root;
5752 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5753 u64 num_bytes = 0;
5754 int ret = -ENOSPC;
5755
5756 spin_lock(&block_rsv->lock);
5757 if (block_rsv->reserved < block_rsv->size)
5758 num_bytes = block_rsv->size - block_rsv->reserved;
5759 spin_unlock(&block_rsv->lock);
5760
5761 if (num_bytes == 0)
5762 return 0;
5763
5764 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5765 if (!ret) {
5766 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5767 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5768 btrfs_ino(inode), num_bytes, 1);
5769 }
5770 return ret;
5771}
5772
5773/**
5774 * btrfs_inode_rsv_release - release any excessive reservation.
5775 * @inode - the inode we need to release from.
5776 *
5777 * This is the same as btrfs_block_rsv_release, except that it handles the
5778 * tracepoint for the reservation.
5779 */
d2560ebd 5780static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
69fe2d75
JB
5781{
5782 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5783 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5784 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5785 u64 released = 0;
5786
5787 /*
5788 * Since we statically set the block_rsv->size we just want to say we
5789 * are releasing 0 bytes, and then we'll just get the reservation over
5790 * the size free'd.
5791 */
5792 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5793 if (released > 0)
5794 trace_btrfs_space_reservation(fs_info, "delalloc",
5795 btrfs_ino(inode), released, 0);
5796}
5797
2ff7e61e 5798void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5799 struct btrfs_block_rsv *block_rsv,
5800 u64 num_bytes)
5801{
0b246afa
JM
5802 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5803
17504584 5804 if (global_rsv == block_rsv ||
f0486c68
YZ
5805 block_rsv->space_info != global_rsv->space_info)
5806 global_rsv = NULL;
0b246afa 5807 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5808}
5809
8929ecfa
YZ
5810static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5811{
5812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5813 struct btrfs_space_info *sinfo = block_rsv->space_info;
5814 u64 num_bytes;
6a63209f 5815
ae2e4728
JB
5816 /*
5817 * The global block rsv is based on the size of the extent tree, the
5818 * checksum tree and the root tree. If the fs is empty we want to set
5819 * it to a minimal amount for safety.
5820 */
5821 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5822 btrfs_root_used(&fs_info->csum_root->root_item) +
5823 btrfs_root_used(&fs_info->tree_root->root_item);
5824 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5825
8929ecfa 5826 spin_lock(&sinfo->lock);
1f699d38 5827 spin_lock(&block_rsv->lock);
4e06bdd6 5828
ee22184b 5829 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5830
fb4b10e5 5831 if (block_rsv->reserved < block_rsv->size) {
4136135b 5832 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5833 if (sinfo->total_bytes > num_bytes) {
5834 num_bytes = sinfo->total_bytes - num_bytes;
5835 num_bytes = min(num_bytes,
5836 block_rsv->size - block_rsv->reserved);
5837 block_rsv->reserved += num_bytes;
5838 sinfo->bytes_may_use += num_bytes;
5839 trace_btrfs_space_reservation(fs_info, "space_info",
5840 sinfo->flags, num_bytes,
5841 1);
5842 }
5843 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5844 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5845 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5846 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5847 sinfo->flags, num_bytes, 0);
8929ecfa 5848 block_rsv->reserved = block_rsv->size;
8929ecfa 5849 }
182608c8 5850
fb4b10e5
JB
5851 if (block_rsv->reserved == block_rsv->size)
5852 block_rsv->full = 1;
5853 else
5854 block_rsv->full = 0;
5855
8929ecfa 5856 spin_unlock(&block_rsv->lock);
1f699d38 5857 spin_unlock(&sinfo->lock);
6a63209f
JB
5858}
5859
f0486c68 5860static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5861{
f0486c68 5862 struct btrfs_space_info *space_info;
6a63209f 5863
f0486c68
YZ
5864 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5865 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5866
f0486c68 5867 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5868 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5869 fs_info->trans_block_rsv.space_info = space_info;
5870 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5871 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5872
8929ecfa
YZ
5873 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5874 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5875 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5876 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5877 if (fs_info->quota_root)
5878 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5879 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5880
8929ecfa 5881 update_global_block_rsv(fs_info);
6a63209f
JB
5882}
5883
8929ecfa 5884static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5885{
8c2a3ca2
JB
5886 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5887 (u64)-1);
8929ecfa
YZ
5888 WARN_ON(fs_info->trans_block_rsv.size > 0);
5889 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5890 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5891 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5892 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5893 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5894}
5895
6a63209f 5896
4fbcdf66
FM
5897/*
5898 * To be called after all the new block groups attached to the transaction
5899 * handle have been created (btrfs_create_pending_block_groups()).
5900 */
5901void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5902{
64b63580 5903 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5904
5905 if (!trans->chunk_bytes_reserved)
5906 return;
5907
5908 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5909
5910 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5911 trans->chunk_bytes_reserved);
5912 trans->chunk_bytes_reserved = 0;
5913}
5914
79787eaa 5915/* Can only return 0 or -ENOSPC */
d68fc57b 5916int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5917 struct btrfs_inode *inode)
d68fc57b 5918{
8ed7a2a0
NB
5919 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5920 struct btrfs_root *root = inode->root;
40acc3ee
JB
5921 /*
5922 * We always use trans->block_rsv here as we will have reserved space
5923 * for our orphan when starting the transaction, using get_block_rsv()
5924 * here will sometimes make us choose the wrong block rsv as we could be
5925 * doing a reloc inode for a non refcounted root.
5926 */
5927 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5928 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5929
5930 /*
fcb80c2a
JB
5931 * We need to hold space in order to delete our orphan item once we've
5932 * added it, so this takes the reservation so we can release it later
5933 * when we are truly done with the orphan item.
d68fc57b 5934 */
0b246afa
JM
5935 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5936
8ed7a2a0
NB
5937 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5938 num_bytes, 1);
25d609f8 5939 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5940}
5941
703b391a 5942void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5943{
703b391a
NB
5944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5945 struct btrfs_root *root = inode->root;
0b246afa
JM
5946 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5947
703b391a
NB
5948 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5949 num_bytes, 0);
2ff7e61e 5950 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5951}
97e728d4 5952
d5c12070
MX
5953/*
5954 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5955 * root: the root of the parent directory
5956 * rsv: block reservation
5957 * items: the number of items that we need do reservation
5958 * qgroup_reserved: used to return the reserved size in qgroup
5959 *
5960 * This function is used to reserve the space for snapshot/subvolume
5961 * creation and deletion. Those operations are different with the
5962 * common file/directory operations, they change two fs/file trees
5963 * and root tree, the number of items that the qgroup reserves is
5964 * different with the free space reservation. So we can not use
01327610 5965 * the space reservation mechanism in start_transaction().
d5c12070
MX
5966 */
5967int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5968 struct btrfs_block_rsv *rsv,
5969 int items,
ee3441b4
JM
5970 u64 *qgroup_reserved,
5971 bool use_global_rsv)
a22285a6 5972{
d5c12070
MX
5973 u64 num_bytes;
5974 int ret;
0b246afa
JM
5975 struct btrfs_fs_info *fs_info = root->fs_info;
5976 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5977
0b246afa 5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5979 /* One for parent inode, two for dir entries */
0b246afa 5980 num_bytes = 3 * fs_info->nodesize;
003d7c59 5981 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5982 if (ret)
5983 return ret;
5984 } else {
5985 num_bytes = 0;
5986 }
5987
5988 *qgroup_reserved = num_bytes;
5989
0b246afa
JM
5990 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5991 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5992 BTRFS_BLOCK_GROUP_METADATA);
5993 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5994 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5995
5996 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5997 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5998
7174109c
QW
5999 if (ret && *qgroup_reserved)
6000 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
6001
6002 return ret;
6003}
6004
2ff7e61e 6005void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6006 struct btrfs_block_rsv *rsv)
d5c12070 6007{
2ff7e61e 6008 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6009}
6010
69fe2d75
JB
6011static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6012 struct btrfs_inode *inode)
9e0baf60 6013{
69fe2d75
JB
6014 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6015 u64 reserve_size = 0;
6016 u64 csum_leaves;
6017 unsigned outstanding_extents;
9e0baf60 6018
69fe2d75
JB
6019 lockdep_assert_held(&inode->lock);
6020 outstanding_extents = inode->outstanding_extents;
6021 if (outstanding_extents)
6022 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6023 outstanding_extents + 1);
6024 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6025 inode->csum_bytes);
6026 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6027 csum_leaves);
9e0baf60 6028
69fe2d75
JB
6029 spin_lock(&block_rsv->lock);
6030 block_rsv->size = reserve_size;
6031 spin_unlock(&block_rsv->lock);
0ca1f7ce 6032}
c146afad 6033
9f3db423 6034int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6035{
9f3db423
NB
6036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6037 struct btrfs_root *root = inode->root;
69fe2d75 6038 unsigned nr_extents;
08e007d2 6039 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6040 int ret = 0;
c64c2bd8 6041 bool delalloc_lock = true;
6324fbf3 6042
c64c2bd8
JB
6043 /* If we are a free space inode we need to not flush since we will be in
6044 * the middle of a transaction commit. We also don't need the delalloc
6045 * mutex since we won't race with anybody. We need this mostly to make
6046 * lockdep shut its filthy mouth.
bac357dc
JB
6047 *
6048 * If we have a transaction open (can happen if we call truncate_block
6049 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6050 */
6051 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6052 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6053 delalloc_lock = false;
bac357dc
JB
6054 } else if (current->journal_info) {
6055 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c64c2bd8 6056 }
c09544e0 6057
08e007d2 6058 if (flush != BTRFS_RESERVE_NO_FLUSH &&
0b246afa 6059 btrfs_transaction_in_commit(fs_info))
0ca1f7ce 6060 schedule_timeout(1);
ec44a35c 6061
c64c2bd8 6062 if (delalloc_lock)
9f3db423 6063 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6064
0b246afa 6065 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6066
6067 /* Add our new extents and calculate the new rsv size. */
9f3db423 6068 spin_lock(&inode->lock);
69fe2d75 6069 nr_extents = count_max_extents(num_bytes);
8b62f87b 6070 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6071 inode->csum_bytes += num_bytes;
6072 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6073 spin_unlock(&inode->lock);
57a45ced 6074
0b246afa 6075 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6076 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6077 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6078 if (ret)
6079 goto out_fail;
6080 }
c5567237 6081
69fe2d75 6082 ret = btrfs_inode_rsv_refill(inode, flush);
88e081bf 6083 if (unlikely(ret)) {
da17066c 6084 btrfs_qgroup_free_meta(root,
0b246afa 6085 nr_extents * fs_info->nodesize);
88e081bf 6086 goto out_fail;
9e0baf60 6087 }
25179201 6088
c64c2bd8 6089 if (delalloc_lock)
9f3db423 6090 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6091 return 0;
88e081bf
WS
6092
6093out_fail:
9f3db423 6094 spin_lock(&inode->lock);
8b62f87b
JB
6095 nr_extents = count_max_extents(num_bytes);
6096 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6097 inode->csum_bytes -= num_bytes;
6098 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6099 spin_unlock(&inode->lock);
88e081bf 6100
69fe2d75 6101 btrfs_inode_rsv_release(inode);
88e081bf 6102 if (delalloc_lock)
9f3db423 6103 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6104 return ret;
0ca1f7ce
YZ
6105}
6106
7709cde3
JB
6107/**
6108 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6109 * @inode: the inode to release the reservation for.
6110 * @num_bytes: the number of bytes we are releasing.
7709cde3
JB
6111 *
6112 * This will release the metadata reservation for an inode. This can be called
6113 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6114 * reservations, or on error for the same reason.
7709cde3 6115 */
691fa059 6116void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6117{
691fa059 6118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6119
0b246afa 6120 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6121 spin_lock(&inode->lock);
69fe2d75
JB
6122 inode->csum_bytes -= num_bytes;
6123 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6124 spin_unlock(&inode->lock);
0ca1f7ce 6125
0b246afa 6126 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6127 return;
6128
69fe2d75 6129 btrfs_inode_rsv_release(inode);
0ca1f7ce
YZ
6130}
6131
8b62f87b
JB
6132/**
6133 * btrfs_delalloc_release_extents - release our outstanding_extents
6134 * @inode: the inode to balance the reservation for.
6135 * @num_bytes: the number of bytes we originally reserved with
6136 *
6137 * When we reserve space we increase outstanding_extents for the extents we may
6138 * add. Once we've set the range as delalloc or created our ordered extents we
6139 * have outstanding_extents to track the real usage, so we use this to free our
6140 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6141 * with btrfs_delalloc_reserve_metadata.
6142 */
6143void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6144{
6145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6146 unsigned num_extents;
8b62f87b
JB
6147
6148 spin_lock(&inode->lock);
6149 num_extents = count_max_extents(num_bytes);
6150 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6151 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6152 spin_unlock(&inode->lock);
6153
8b62f87b
JB
6154 if (btrfs_is_testing(fs_info))
6155 return;
6156
69fe2d75 6157 btrfs_inode_rsv_release(inode);
8b62f87b
JB
6158}
6159
1ada3a62 6160/**
7cf5b976 6161 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6162 * delalloc
6163 * @inode: inode we're writing to
6164 * @start: start range we are writing to
6165 * @len: how long the range we are writing to
364ecf36
QW
6166 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6167 * current reservation.
1ada3a62 6168 *
1ada3a62
QW
6169 * This will do the following things
6170 *
6171 * o reserve space in data space info for num bytes
6172 * and reserve precious corresponding qgroup space
6173 * (Done in check_data_free_space)
6174 *
6175 * o reserve space for metadata space, based on the number of outstanding
6176 * extents and how much csums will be needed
6177 * also reserve metadata space in a per root over-reserve method.
6178 * o add to the inodes->delalloc_bytes
6179 * o add it to the fs_info's delalloc inodes list.
6180 * (Above 3 all done in delalloc_reserve_metadata)
6181 *
6182 * Return 0 for success
6183 * Return <0 for error(-ENOSPC or -EQUOT)
6184 */
364ecf36
QW
6185int btrfs_delalloc_reserve_space(struct inode *inode,
6186 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6187{
6188 int ret;
6189
364ecf36 6190 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6191 if (ret < 0)
6192 return ret;
9f3db423 6193 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6194 if (ret < 0)
bc42bda2 6195 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6196 return ret;
6197}
6198
7709cde3 6199/**
7cf5b976 6200 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6201 * @inode: inode we're releasing space for
6202 * @start: start position of the space already reserved
6203 * @len: the len of the space already reserved
8b62f87b 6204 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6205 *
6206 * This function will release the metadata space that was not used and will
6207 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6208 * list if there are no delalloc bytes left.
6209 * Also it will handle the qgroup reserved space.
6210 */
bc42bda2 6211void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b
JB
6212 struct extent_changeset *reserved,
6213 u64 start, u64 len)
1ada3a62 6214{
691fa059 6215 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6216 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6217}
6218
ce93ec54 6219static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6220 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6221 u64 num_bytes, int alloc)
9078a3e1 6222{
0af3d00b 6223 struct btrfs_block_group_cache *cache = NULL;
db94535d 6224 u64 total = num_bytes;
9078a3e1 6225 u64 old_val;
db94535d 6226 u64 byte_in_group;
0af3d00b 6227 int factor;
3e1ad54f 6228
5d4f98a2 6229 /* block accounting for super block */
eb73c1b7 6230 spin_lock(&info->delalloc_root_lock);
6c41761f 6231 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6232 if (alloc)
6233 old_val += num_bytes;
6234 else
6235 old_val -= num_bytes;
6c41761f 6236 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6237 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6238
d397712b 6239 while (total) {
db94535d 6240 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6241 if (!cache)
79787eaa 6242 return -ENOENT;
b742bb82
YZ
6243 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6244 BTRFS_BLOCK_GROUP_RAID1 |
6245 BTRFS_BLOCK_GROUP_RAID10))
6246 factor = 2;
6247 else
6248 factor = 1;
9d66e233
JB
6249 /*
6250 * If this block group has free space cache written out, we
6251 * need to make sure to load it if we are removing space. This
6252 * is because we need the unpinning stage to actually add the
6253 * space back to the block group, otherwise we will leak space.
6254 */
6255 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6256 cache_block_group(cache, 1);
0af3d00b 6257
db94535d
CM
6258 byte_in_group = bytenr - cache->key.objectid;
6259 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6260
25179201 6261 spin_lock(&cache->space_info->lock);
c286ac48 6262 spin_lock(&cache->lock);
0af3d00b 6263
6202df69 6264 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6265 cache->disk_cache_state < BTRFS_DC_CLEAR)
6266 cache->disk_cache_state = BTRFS_DC_CLEAR;
6267
9078a3e1 6268 old_val = btrfs_block_group_used(&cache->item);
db94535d 6269 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6270 if (alloc) {
db94535d 6271 old_val += num_bytes;
11833d66
YZ
6272 btrfs_set_block_group_used(&cache->item, old_val);
6273 cache->reserved -= num_bytes;
11833d66 6274 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6275 cache->space_info->bytes_used += num_bytes;
6276 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6277 spin_unlock(&cache->lock);
25179201 6278 spin_unlock(&cache->space_info->lock);
cd1bc465 6279 } else {
db94535d 6280 old_val -= num_bytes;
ae0ab003
FM
6281 btrfs_set_block_group_used(&cache->item, old_val);
6282 cache->pinned += num_bytes;
6283 cache->space_info->bytes_pinned += num_bytes;
6284 cache->space_info->bytes_used -= num_bytes;
6285 cache->space_info->disk_used -= num_bytes * factor;
6286 spin_unlock(&cache->lock);
6287 spin_unlock(&cache->space_info->lock);
47ab2a6c 6288
0b246afa 6289 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6290 cache->space_info->flags,
6291 num_bytes, 1);
d7eae340
OS
6292 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6293 num_bytes);
ae0ab003
FM
6294 set_extent_dirty(info->pinned_extents,
6295 bytenr, bytenr + num_bytes - 1,
6296 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6297 }
1bbc621e
CM
6298
6299 spin_lock(&trans->transaction->dirty_bgs_lock);
6300 if (list_empty(&cache->dirty_list)) {
6301 list_add_tail(&cache->dirty_list,
6302 &trans->transaction->dirty_bgs);
6303 trans->transaction->num_dirty_bgs++;
6304 btrfs_get_block_group(cache);
6305 }
6306 spin_unlock(&trans->transaction->dirty_bgs_lock);
6307
036a9348
FM
6308 /*
6309 * No longer have used bytes in this block group, queue it for
6310 * deletion. We do this after adding the block group to the
6311 * dirty list to avoid races between cleaner kthread and space
6312 * cache writeout.
6313 */
6314 if (!alloc && old_val == 0) {
6315 spin_lock(&info->unused_bgs_lock);
6316 if (list_empty(&cache->bg_list)) {
6317 btrfs_get_block_group(cache);
6318 list_add_tail(&cache->bg_list,
6319 &info->unused_bgs);
6320 }
6321 spin_unlock(&info->unused_bgs_lock);
6322 }
6323
fa9c0d79 6324 btrfs_put_block_group(cache);
db94535d
CM
6325 total -= num_bytes;
6326 bytenr += num_bytes;
9078a3e1
CM
6327 }
6328 return 0;
6329}
6324fbf3 6330
2ff7e61e 6331static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6332{
0f9dd46c 6333 struct btrfs_block_group_cache *cache;
d2fb3437 6334 u64 bytenr;
0f9dd46c 6335
0b246afa
JM
6336 spin_lock(&fs_info->block_group_cache_lock);
6337 bytenr = fs_info->first_logical_byte;
6338 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6339
6340 if (bytenr < (u64)-1)
6341 return bytenr;
6342
0b246afa 6343 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6344 if (!cache)
a061fc8d 6345 return 0;
0f9dd46c 6346
d2fb3437 6347 bytenr = cache->key.objectid;
fa9c0d79 6348 btrfs_put_block_group(cache);
d2fb3437
YZ
6349
6350 return bytenr;
a061fc8d
CM
6351}
6352
2ff7e61e 6353static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6354 struct btrfs_block_group_cache *cache,
6355 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6356{
11833d66
YZ
6357 spin_lock(&cache->space_info->lock);
6358 spin_lock(&cache->lock);
6359 cache->pinned += num_bytes;
6360 cache->space_info->bytes_pinned += num_bytes;
6361 if (reserved) {
6362 cache->reserved -= num_bytes;
6363 cache->space_info->bytes_reserved -= num_bytes;
6364 }
6365 spin_unlock(&cache->lock);
6366 spin_unlock(&cache->space_info->lock);
68b38550 6367
0b246afa 6368 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6369 cache->space_info->flags, num_bytes, 1);
4da8b76d 6370 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6371 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6372 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6373 return 0;
6374}
68b38550 6375
f0486c68
YZ
6376/*
6377 * this function must be called within transaction
6378 */
2ff7e61e 6379int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6380 u64 bytenr, u64 num_bytes, int reserved)
6381{
6382 struct btrfs_block_group_cache *cache;
68b38550 6383
0b246afa 6384 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6385 BUG_ON(!cache); /* Logic error */
f0486c68 6386
2ff7e61e 6387 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6388
6389 btrfs_put_block_group(cache);
11833d66
YZ
6390 return 0;
6391}
6392
f0486c68 6393/*
e688b725
CM
6394 * this function must be called within transaction
6395 */
2ff7e61e 6396int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6397 u64 bytenr, u64 num_bytes)
6398{
6399 struct btrfs_block_group_cache *cache;
b50c6e25 6400 int ret;
e688b725 6401
0b246afa 6402 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6403 if (!cache)
6404 return -EINVAL;
e688b725
CM
6405
6406 /*
6407 * pull in the free space cache (if any) so that our pin
6408 * removes the free space from the cache. We have load_only set
6409 * to one because the slow code to read in the free extents does check
6410 * the pinned extents.
6411 */
f6373bf3 6412 cache_block_group(cache, 1);
e688b725 6413
2ff7e61e 6414 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6415
6416 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6417 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6418 btrfs_put_block_group(cache);
b50c6e25 6419 return ret;
e688b725
CM
6420}
6421
2ff7e61e
JM
6422static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6423 u64 start, u64 num_bytes)
8c2a1a30
JB
6424{
6425 int ret;
6426 struct btrfs_block_group_cache *block_group;
6427 struct btrfs_caching_control *caching_ctl;
6428
0b246afa 6429 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6430 if (!block_group)
6431 return -EINVAL;
6432
6433 cache_block_group(block_group, 0);
6434 caching_ctl = get_caching_control(block_group);
6435
6436 if (!caching_ctl) {
6437 /* Logic error */
6438 BUG_ON(!block_group_cache_done(block_group));
6439 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6440 } else {
6441 mutex_lock(&caching_ctl->mutex);
6442
6443 if (start >= caching_ctl->progress) {
2ff7e61e 6444 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6445 } else if (start + num_bytes <= caching_ctl->progress) {
6446 ret = btrfs_remove_free_space(block_group,
6447 start, num_bytes);
6448 } else {
6449 num_bytes = caching_ctl->progress - start;
6450 ret = btrfs_remove_free_space(block_group,
6451 start, num_bytes);
6452 if (ret)
6453 goto out_lock;
6454
6455 num_bytes = (start + num_bytes) -
6456 caching_ctl->progress;
6457 start = caching_ctl->progress;
2ff7e61e 6458 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6459 }
6460out_lock:
6461 mutex_unlock(&caching_ctl->mutex);
6462 put_caching_control(caching_ctl);
6463 }
6464 btrfs_put_block_group(block_group);
6465 return ret;
6466}
6467
2ff7e61e 6468int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6469 struct extent_buffer *eb)
6470{
6471 struct btrfs_file_extent_item *item;
6472 struct btrfs_key key;
6473 int found_type;
6474 int i;
6475
2ff7e61e 6476 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6477 return 0;
6478
6479 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6480 btrfs_item_key_to_cpu(eb, &key, i);
6481 if (key.type != BTRFS_EXTENT_DATA_KEY)
6482 continue;
6483 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6484 found_type = btrfs_file_extent_type(eb, item);
6485 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6486 continue;
6487 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6488 continue;
6489 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6490 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6491 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6492 }
6493
6494 return 0;
6495}
6496
9cfa3e34
FM
6497static void
6498btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6499{
6500 atomic_inc(&bg->reservations);
6501}
6502
6503void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6504 const u64 start)
6505{
6506 struct btrfs_block_group_cache *bg;
6507
6508 bg = btrfs_lookup_block_group(fs_info, start);
6509 ASSERT(bg);
6510 if (atomic_dec_and_test(&bg->reservations))
6511 wake_up_atomic_t(&bg->reservations);
6512 btrfs_put_block_group(bg);
6513}
6514
9cfa3e34
FM
6515void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6516{
6517 struct btrfs_space_info *space_info = bg->space_info;
6518
6519 ASSERT(bg->ro);
6520
6521 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6522 return;
6523
6524 /*
6525 * Our block group is read only but before we set it to read only,
6526 * some task might have had allocated an extent from it already, but it
6527 * has not yet created a respective ordered extent (and added it to a
6528 * root's list of ordered extents).
6529 * Therefore wait for any task currently allocating extents, since the
6530 * block group's reservations counter is incremented while a read lock
6531 * on the groups' semaphore is held and decremented after releasing
6532 * the read access on that semaphore and creating the ordered extent.
6533 */
6534 down_write(&space_info->groups_sem);
6535 up_write(&space_info->groups_sem);
6536
5e4def20 6537 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
9cfa3e34
FM
6538 TASK_UNINTERRUPTIBLE);
6539}
6540
fb25e914 6541/**
4824f1f4 6542 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6543 * @cache: The cache we are manipulating
18513091
WX
6544 * @ram_bytes: The number of bytes of file content, and will be same to
6545 * @num_bytes except for the compress path.
fb25e914 6546 * @num_bytes: The number of bytes in question
e570fd27 6547 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6548 *
745699ef
XW
6549 * This is called by the allocator when it reserves space. If this is a
6550 * reservation and the block group has become read only we cannot make the
6551 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6552 */
4824f1f4 6553static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6554 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6555{
fb25e914 6556 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6557 int ret = 0;
79787eaa 6558
fb25e914
JB
6559 spin_lock(&space_info->lock);
6560 spin_lock(&cache->lock);
4824f1f4
WX
6561 if (cache->ro) {
6562 ret = -EAGAIN;
fb25e914 6563 } else {
4824f1f4
WX
6564 cache->reserved += num_bytes;
6565 space_info->bytes_reserved += num_bytes;
e570fd27 6566
18513091
WX
6567 trace_btrfs_space_reservation(cache->fs_info,
6568 "space_info", space_info->flags,
6569 ram_bytes, 0);
6570 space_info->bytes_may_use -= ram_bytes;
e570fd27 6571 if (delalloc)
4824f1f4 6572 cache->delalloc_bytes += num_bytes;
324ae4df 6573 }
fb25e914
JB
6574 spin_unlock(&cache->lock);
6575 spin_unlock(&space_info->lock);
f0486c68 6576 return ret;
324ae4df 6577}
9078a3e1 6578
4824f1f4
WX
6579/**
6580 * btrfs_free_reserved_bytes - update the block_group and space info counters
6581 * @cache: The cache we are manipulating
6582 * @num_bytes: The number of bytes in question
6583 * @delalloc: The blocks are allocated for the delalloc write
6584 *
6585 * This is called by somebody who is freeing space that was never actually used
6586 * on disk. For example if you reserve some space for a new leaf in transaction
6587 * A and before transaction A commits you free that leaf, you call this with
6588 * reserve set to 0 in order to clear the reservation.
6589 */
6590
6591static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6592 u64 num_bytes, int delalloc)
6593{
6594 struct btrfs_space_info *space_info = cache->space_info;
6595 int ret = 0;
6596
6597 spin_lock(&space_info->lock);
6598 spin_lock(&cache->lock);
6599 if (cache->ro)
6600 space_info->bytes_readonly += num_bytes;
6601 cache->reserved -= num_bytes;
6602 space_info->bytes_reserved -= num_bytes;
6603
6604 if (delalloc)
6605 cache->delalloc_bytes -= num_bytes;
6606 spin_unlock(&cache->lock);
6607 spin_unlock(&space_info->lock);
6608 return ret;
6609}
8b74c03e 6610void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6611{
11833d66
YZ
6612 struct btrfs_caching_control *next;
6613 struct btrfs_caching_control *caching_ctl;
6614 struct btrfs_block_group_cache *cache;
e8569813 6615
9e351cc8 6616 down_write(&fs_info->commit_root_sem);
25179201 6617
11833d66
YZ
6618 list_for_each_entry_safe(caching_ctl, next,
6619 &fs_info->caching_block_groups, list) {
6620 cache = caching_ctl->block_group;
6621 if (block_group_cache_done(cache)) {
6622 cache->last_byte_to_unpin = (u64)-1;
6623 list_del_init(&caching_ctl->list);
6624 put_caching_control(caching_ctl);
e8569813 6625 } else {
11833d66 6626 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6627 }
e8569813 6628 }
11833d66
YZ
6629
6630 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6631 fs_info->pinned_extents = &fs_info->freed_extents[1];
6632 else
6633 fs_info->pinned_extents = &fs_info->freed_extents[0];
6634
9e351cc8 6635 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6636
6637 update_global_block_rsv(fs_info);
e8569813
ZY
6638}
6639
c759c4e1
JB
6640/*
6641 * Returns the free cluster for the given space info and sets empty_cluster to
6642 * what it should be based on the mount options.
6643 */
6644static struct btrfs_free_cluster *
2ff7e61e
JM
6645fetch_cluster_info(struct btrfs_fs_info *fs_info,
6646 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6647{
6648 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6649
6650 *empty_cluster = 0;
6651 if (btrfs_mixed_space_info(space_info))
6652 return ret;
6653
c759c4e1 6654 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6655 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6656 if (btrfs_test_opt(fs_info, SSD))
6657 *empty_cluster = SZ_2M;
6658 else
ee22184b 6659 *empty_cluster = SZ_64K;
583b7231
HK
6660 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6661 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6662 *empty_cluster = SZ_2M;
0b246afa 6663 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6664 }
6665
6666 return ret;
6667}
6668
2ff7e61e
JM
6669static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6670 u64 start, u64 end,
678886bd 6671 const bool return_free_space)
ccd467d6 6672{
11833d66 6673 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6674 struct btrfs_space_info *space_info;
6675 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6676 struct btrfs_free_cluster *cluster = NULL;
11833d66 6677 u64 len;
c759c4e1
JB
6678 u64 total_unpinned = 0;
6679 u64 empty_cluster = 0;
7b398f8e 6680 bool readonly;
ccd467d6 6681
11833d66 6682 while (start <= end) {
7b398f8e 6683 readonly = false;
11833d66
YZ
6684 if (!cache ||
6685 start >= cache->key.objectid + cache->key.offset) {
6686 if (cache)
6687 btrfs_put_block_group(cache);
c759c4e1 6688 total_unpinned = 0;
11833d66 6689 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6690 BUG_ON(!cache); /* Logic error */
c759c4e1 6691
2ff7e61e 6692 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6693 cache->space_info,
6694 &empty_cluster);
6695 empty_cluster <<= 1;
11833d66
YZ
6696 }
6697
6698 len = cache->key.objectid + cache->key.offset - start;
6699 len = min(len, end + 1 - start);
6700
6701 if (start < cache->last_byte_to_unpin) {
6702 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6703 if (return_free_space)
6704 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6705 }
6706
f0486c68 6707 start += len;
c759c4e1 6708 total_unpinned += len;
7b398f8e 6709 space_info = cache->space_info;
f0486c68 6710
c759c4e1
JB
6711 /*
6712 * If this space cluster has been marked as fragmented and we've
6713 * unpinned enough in this block group to potentially allow a
6714 * cluster to be created inside of it go ahead and clear the
6715 * fragmented check.
6716 */
6717 if (cluster && cluster->fragmented &&
6718 total_unpinned > empty_cluster) {
6719 spin_lock(&cluster->lock);
6720 cluster->fragmented = 0;
6721 spin_unlock(&cluster->lock);
6722 }
6723
7b398f8e 6724 spin_lock(&space_info->lock);
11833d66
YZ
6725 spin_lock(&cache->lock);
6726 cache->pinned -= len;
7b398f8e 6727 space_info->bytes_pinned -= len;
c51e7bb1
JB
6728
6729 trace_btrfs_space_reservation(fs_info, "pinned",
6730 space_info->flags, len, 0);
4f4db217 6731 space_info->max_extent_size = 0;
d288db5d 6732 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6733 if (cache->ro) {
6734 space_info->bytes_readonly += len;
6735 readonly = true;
6736 }
11833d66 6737 spin_unlock(&cache->lock);
957780eb
JB
6738 if (!readonly && return_free_space &&
6739 global_rsv->space_info == space_info) {
6740 u64 to_add = len;
92ac58ec 6741
7b398f8e
JB
6742 spin_lock(&global_rsv->lock);
6743 if (!global_rsv->full) {
957780eb
JB
6744 to_add = min(len, global_rsv->size -
6745 global_rsv->reserved);
6746 global_rsv->reserved += to_add;
6747 space_info->bytes_may_use += to_add;
7b398f8e
JB
6748 if (global_rsv->reserved >= global_rsv->size)
6749 global_rsv->full = 1;
957780eb
JB
6750 trace_btrfs_space_reservation(fs_info,
6751 "space_info",
6752 space_info->flags,
6753 to_add, 1);
6754 len -= to_add;
7b398f8e
JB
6755 }
6756 spin_unlock(&global_rsv->lock);
957780eb
JB
6757 /* Add to any tickets we may have */
6758 if (len)
6759 space_info_add_new_bytes(fs_info, space_info,
6760 len);
7b398f8e
JB
6761 }
6762 spin_unlock(&space_info->lock);
ccd467d6 6763 }
11833d66
YZ
6764
6765 if (cache)
6766 btrfs_put_block_group(cache);
ccd467d6
CM
6767 return 0;
6768}
6769
6770int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6771 struct btrfs_fs_info *fs_info)
a28ec197 6772{
e33e17ee
JM
6773 struct btrfs_block_group_cache *block_group, *tmp;
6774 struct list_head *deleted_bgs;
11833d66 6775 struct extent_io_tree *unpin;
1a5bc167
CM
6776 u64 start;
6777 u64 end;
a28ec197 6778 int ret;
a28ec197 6779
11833d66
YZ
6780 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6781 unpin = &fs_info->freed_extents[1];
6782 else
6783 unpin = &fs_info->freed_extents[0];
6784
e33e17ee 6785 while (!trans->aborted) {
d4b450cd 6786 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6787 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6788 EXTENT_DIRTY, NULL);
d4b450cd
FM
6789 if (ret) {
6790 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6791 break;
d4b450cd 6792 }
1f3c79a2 6793
0b246afa 6794 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6795 ret = btrfs_discard_extent(fs_info, start,
5378e607 6796 end + 1 - start, NULL);
1f3c79a2 6797
af6f8f60 6798 clear_extent_dirty(unpin, start, end);
2ff7e61e 6799 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6800 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6801 cond_resched();
a28ec197 6802 }
817d52f8 6803
e33e17ee
JM
6804 /*
6805 * Transaction is finished. We don't need the lock anymore. We
6806 * do need to clean up the block groups in case of a transaction
6807 * abort.
6808 */
6809 deleted_bgs = &trans->transaction->deleted_bgs;
6810 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6811 u64 trimmed = 0;
6812
6813 ret = -EROFS;
6814 if (!trans->aborted)
2ff7e61e 6815 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6816 block_group->key.objectid,
6817 block_group->key.offset,
6818 &trimmed);
6819
6820 list_del_init(&block_group->bg_list);
6821 btrfs_put_block_group_trimming(block_group);
6822 btrfs_put_block_group(block_group);
6823
6824 if (ret) {
6825 const char *errstr = btrfs_decode_error(ret);
6826 btrfs_warn(fs_info,
913e1535 6827 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6828 ret, errstr);
6829 }
6830 }
6831
e20d96d6
CM
6832 return 0;
6833}
6834
5d4f98a2 6835static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6836 struct btrfs_fs_info *info,
c682f9b3 6837 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6838 u64 root_objectid, u64 owner_objectid,
6839 u64 owner_offset, int refs_to_drop,
c682f9b3 6840 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6841{
e2fa7227 6842 struct btrfs_key key;
5d4f98a2 6843 struct btrfs_path *path;
1261ec42 6844 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6845 struct extent_buffer *leaf;
5d4f98a2
YZ
6846 struct btrfs_extent_item *ei;
6847 struct btrfs_extent_inline_ref *iref;
a28ec197 6848 int ret;
5d4f98a2 6849 int is_data;
952fccac
CM
6850 int extent_slot = 0;
6851 int found_extent = 0;
6852 int num_to_del = 1;
5d4f98a2
YZ
6853 u32 item_size;
6854 u64 refs;
c682f9b3
QW
6855 u64 bytenr = node->bytenr;
6856 u64 num_bytes = node->num_bytes;
fcebe456 6857 int last_ref = 0;
0b246afa 6858 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6859
5caf2a00 6860 path = btrfs_alloc_path();
54aa1f4d
CM
6861 if (!path)
6862 return -ENOMEM;
5f26f772 6863
e4058b54 6864 path->reada = READA_FORWARD;
b9473439 6865 path->leave_spinning = 1;
5d4f98a2
YZ
6866
6867 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6868 BUG_ON(!is_data && refs_to_drop != 1);
6869
3173a18f 6870 if (is_data)
897ca819 6871 skinny_metadata = false;
3173a18f 6872
87bde3cd 6873 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6874 bytenr, num_bytes, parent,
6875 root_objectid, owner_objectid,
6876 owner_offset);
7bb86316 6877 if (ret == 0) {
952fccac 6878 extent_slot = path->slots[0];
5d4f98a2
YZ
6879 while (extent_slot >= 0) {
6880 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6881 extent_slot);
5d4f98a2 6882 if (key.objectid != bytenr)
952fccac 6883 break;
5d4f98a2
YZ
6884 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6885 key.offset == num_bytes) {
952fccac
CM
6886 found_extent = 1;
6887 break;
6888 }
3173a18f
JB
6889 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6890 key.offset == owner_objectid) {
6891 found_extent = 1;
6892 break;
6893 }
952fccac
CM
6894 if (path->slots[0] - extent_slot > 5)
6895 break;
5d4f98a2 6896 extent_slot--;
952fccac 6897 }
5d4f98a2
YZ
6898#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6899 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6900 if (found_extent && item_size < sizeof(*ei))
6901 found_extent = 0;
6902#endif
31840ae1 6903 if (!found_extent) {
5d4f98a2 6904 BUG_ON(iref);
87bde3cd
JM
6905 ret = remove_extent_backref(trans, info, path, NULL,
6906 refs_to_drop,
fcebe456 6907 is_data, &last_ref);
005d6427 6908 if (ret) {
66642832 6909 btrfs_abort_transaction(trans, ret);
005d6427
DS
6910 goto out;
6911 }
b3b4aa74 6912 btrfs_release_path(path);
b9473439 6913 path->leave_spinning = 1;
5d4f98a2
YZ
6914
6915 key.objectid = bytenr;
6916 key.type = BTRFS_EXTENT_ITEM_KEY;
6917 key.offset = num_bytes;
6918
3173a18f
JB
6919 if (!is_data && skinny_metadata) {
6920 key.type = BTRFS_METADATA_ITEM_KEY;
6921 key.offset = owner_objectid;
6922 }
6923
31840ae1
ZY
6924 ret = btrfs_search_slot(trans, extent_root,
6925 &key, path, -1, 1);
3173a18f
JB
6926 if (ret > 0 && skinny_metadata && path->slots[0]) {
6927 /*
6928 * Couldn't find our skinny metadata item,
6929 * see if we have ye olde extent item.
6930 */
6931 path->slots[0]--;
6932 btrfs_item_key_to_cpu(path->nodes[0], &key,
6933 path->slots[0]);
6934 if (key.objectid == bytenr &&
6935 key.type == BTRFS_EXTENT_ITEM_KEY &&
6936 key.offset == num_bytes)
6937 ret = 0;
6938 }
6939
6940 if (ret > 0 && skinny_metadata) {
6941 skinny_metadata = false;
9ce49a0b 6942 key.objectid = bytenr;
3173a18f
JB
6943 key.type = BTRFS_EXTENT_ITEM_KEY;
6944 key.offset = num_bytes;
6945 btrfs_release_path(path);
6946 ret = btrfs_search_slot(trans, extent_root,
6947 &key, path, -1, 1);
6948 }
6949
f3465ca4 6950 if (ret) {
5d163e0e
JM
6951 btrfs_err(info,
6952 "umm, got %d back from search, was looking for %llu",
6953 ret, bytenr);
b783e62d 6954 if (ret > 0)
a4f78750 6955 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6956 }
005d6427 6957 if (ret < 0) {
66642832 6958 btrfs_abort_transaction(trans, ret);
005d6427
DS
6959 goto out;
6960 }
31840ae1
ZY
6961 extent_slot = path->slots[0];
6962 }
fae7f21c 6963 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6964 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6965 btrfs_err(info,
6966 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6967 bytenr, parent, root_objectid, owner_objectid,
6968 owner_offset);
66642832 6969 btrfs_abort_transaction(trans, ret);
c4a050bb 6970 goto out;
79787eaa 6971 } else {
66642832 6972 btrfs_abort_transaction(trans, ret);
005d6427 6973 goto out;
7bb86316 6974 }
5f39d397
CM
6975
6976 leaf = path->nodes[0];
5d4f98a2
YZ
6977 item_size = btrfs_item_size_nr(leaf, extent_slot);
6978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6979 if (item_size < sizeof(*ei)) {
6980 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6981 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6982 0);
005d6427 6983 if (ret < 0) {
66642832 6984 btrfs_abort_transaction(trans, ret);
005d6427
DS
6985 goto out;
6986 }
5d4f98a2 6987
b3b4aa74 6988 btrfs_release_path(path);
5d4f98a2
YZ
6989 path->leave_spinning = 1;
6990
6991 key.objectid = bytenr;
6992 key.type = BTRFS_EXTENT_ITEM_KEY;
6993 key.offset = num_bytes;
6994
6995 ret = btrfs_search_slot(trans, extent_root, &key, path,
6996 -1, 1);
6997 if (ret) {
5d163e0e
JM
6998 btrfs_err(info,
6999 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7000 ret, bytenr);
a4f78750 7001 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7002 }
005d6427 7003 if (ret < 0) {
66642832 7004 btrfs_abort_transaction(trans, ret);
005d6427
DS
7005 goto out;
7006 }
7007
5d4f98a2
YZ
7008 extent_slot = path->slots[0];
7009 leaf = path->nodes[0];
7010 item_size = btrfs_item_size_nr(leaf, extent_slot);
7011 }
7012#endif
7013 BUG_ON(item_size < sizeof(*ei));
952fccac 7014 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7015 struct btrfs_extent_item);
3173a18f
JB
7016 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7017 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7018 struct btrfs_tree_block_info *bi;
7019 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7020 bi = (struct btrfs_tree_block_info *)(ei + 1);
7021 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7022 }
56bec294 7023
5d4f98a2 7024 refs = btrfs_extent_refs(leaf, ei);
32b02538 7025 if (refs < refs_to_drop) {
5d163e0e
JM
7026 btrfs_err(info,
7027 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7028 refs_to_drop, refs, bytenr);
32b02538 7029 ret = -EINVAL;
66642832 7030 btrfs_abort_transaction(trans, ret);
32b02538
JB
7031 goto out;
7032 }
56bec294 7033 refs -= refs_to_drop;
5f39d397 7034
5d4f98a2
YZ
7035 if (refs > 0) {
7036 if (extent_op)
7037 __run_delayed_extent_op(extent_op, leaf, ei);
7038 /*
7039 * In the case of inline back ref, reference count will
7040 * be updated by remove_extent_backref
952fccac 7041 */
5d4f98a2
YZ
7042 if (iref) {
7043 BUG_ON(!found_extent);
7044 } else {
7045 btrfs_set_extent_refs(leaf, ei, refs);
7046 btrfs_mark_buffer_dirty(leaf);
7047 }
7048 if (found_extent) {
87bde3cd 7049 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7050 iref, refs_to_drop,
fcebe456 7051 is_data, &last_ref);
005d6427 7052 if (ret) {
66642832 7053 btrfs_abort_transaction(trans, ret);
005d6427
DS
7054 goto out;
7055 }
952fccac 7056 }
5d4f98a2 7057 } else {
5d4f98a2
YZ
7058 if (found_extent) {
7059 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7060 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7061 if (iref) {
7062 BUG_ON(path->slots[0] != extent_slot);
7063 } else {
7064 BUG_ON(path->slots[0] != extent_slot + 1);
7065 path->slots[0] = extent_slot;
7066 num_to_del = 2;
7067 }
78fae27e 7068 }
b9473439 7069
fcebe456 7070 last_ref = 1;
952fccac
CM
7071 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7072 num_to_del);
005d6427 7073 if (ret) {
66642832 7074 btrfs_abort_transaction(trans, ret);
005d6427
DS
7075 goto out;
7076 }
b3b4aa74 7077 btrfs_release_path(path);
21af804c 7078
5d4f98a2 7079 if (is_data) {
5b4aacef 7080 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7081 if (ret) {
66642832 7082 btrfs_abort_transaction(trans, ret);
005d6427
DS
7083 goto out;
7084 }
459931ec
CM
7085 }
7086
0b246afa 7087 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7088 if (ret) {
66642832 7089 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7090 goto out;
7091 }
7092
0b246afa 7093 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7094 if (ret) {
66642832 7095 btrfs_abort_transaction(trans, ret);
005d6427
DS
7096 goto out;
7097 }
a28ec197 7098 }
fcebe456
JB
7099 btrfs_release_path(path);
7100
79787eaa 7101out:
5caf2a00 7102 btrfs_free_path(path);
a28ec197
CM
7103 return ret;
7104}
7105
1887be66 7106/*
f0486c68 7107 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7108 * delayed ref for that extent as well. This searches the delayed ref tree for
7109 * a given extent, and if there are no other delayed refs to be processed, it
7110 * removes it from the tree.
7111 */
7112static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7113 u64 bytenr)
1887be66
CM
7114{
7115 struct btrfs_delayed_ref_head *head;
7116 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7117 int ret = 0;
1887be66
CM
7118
7119 delayed_refs = &trans->transaction->delayed_refs;
7120 spin_lock(&delayed_refs->lock);
f72ad18e 7121 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7122 if (!head)
cf93da7b 7123 goto out_delayed_unlock;
1887be66 7124
d7df2c79 7125 spin_lock(&head->lock);
0e0adbcf 7126 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7127 goto out;
7128
5d4f98a2
YZ
7129 if (head->extent_op) {
7130 if (!head->must_insert_reserved)
7131 goto out;
78a6184a 7132 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7133 head->extent_op = NULL;
7134 }
7135
1887be66
CM
7136 /*
7137 * waiting for the lock here would deadlock. If someone else has it
7138 * locked they are already in the process of dropping it anyway
7139 */
7140 if (!mutex_trylock(&head->mutex))
7141 goto out;
7142
7143 /*
7144 * at this point we have a head with no other entries. Go
7145 * ahead and process it.
7146 */
c46effa6 7147 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7148 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7149 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7150
7151 /*
7152 * we don't take a ref on the node because we're removing it from the
7153 * tree, so we just steal the ref the tree was holding.
7154 */
c3e69d58 7155 delayed_refs->num_heads--;
d7df2c79 7156 if (head->processing == 0)
c3e69d58 7157 delayed_refs->num_heads_ready--;
d7df2c79
JB
7158 head->processing = 0;
7159 spin_unlock(&head->lock);
1887be66
CM
7160 spin_unlock(&delayed_refs->lock);
7161
f0486c68
YZ
7162 BUG_ON(head->extent_op);
7163 if (head->must_insert_reserved)
7164 ret = 1;
7165
7166 mutex_unlock(&head->mutex);
d278850e 7167 btrfs_put_delayed_ref_head(head);
f0486c68 7168 return ret;
1887be66 7169out:
d7df2c79 7170 spin_unlock(&head->lock);
cf93da7b
CM
7171
7172out_delayed_unlock:
1887be66
CM
7173 spin_unlock(&delayed_refs->lock);
7174 return 0;
7175}
7176
f0486c68
YZ
7177void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7178 struct btrfs_root *root,
7179 struct extent_buffer *buf,
5581a51a 7180 u64 parent, int last_ref)
f0486c68 7181{
0b246afa 7182 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7183 int pin = 1;
f0486c68
YZ
7184 int ret;
7185
7186 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7187 int old_ref_mod, new_ref_mod;
7188
fd708b81
JB
7189 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7190 root->root_key.objectid,
7191 btrfs_header_level(buf), 0,
7192 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7193 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7194 buf->len, parent,
0b246afa
JM
7195 root->root_key.objectid,
7196 btrfs_header_level(buf),
7be07912 7197 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7198 &old_ref_mod, &new_ref_mod);
79787eaa 7199 BUG_ON(ret); /* -ENOMEM */
d7eae340 7200 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7201 }
7202
0a16c7d7 7203 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7204 struct btrfs_block_group_cache *cache;
7205
f0486c68 7206 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7207 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7208 if (!ret)
37be25bc 7209 goto out;
f0486c68
YZ
7210 }
7211
4da8b76d 7212 pin = 0;
0b246afa 7213 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7214
f0486c68 7215 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7216 pin_down_extent(fs_info, cache, buf->start,
7217 buf->len, 1);
6219872d 7218 btrfs_put_block_group(cache);
37be25bc 7219 goto out;
f0486c68
YZ
7220 }
7221
7222 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7223
7224 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7225 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7226 btrfs_put_block_group(cache);
71ff6437 7227 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7228 }
7229out:
b150a4f1 7230 if (pin)
0b246afa 7231 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7232 root->root_key.objectid);
7233
0a16c7d7
OS
7234 if (last_ref) {
7235 /*
7236 * Deleting the buffer, clear the corrupt flag since it doesn't
7237 * matter anymore.
7238 */
7239 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7240 }
f0486c68
YZ
7241}
7242
79787eaa 7243/* Can return -ENOMEM */
2ff7e61e 7244int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7245 struct btrfs_root *root,
66d7e7f0 7246 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7247 u64 owner, u64 offset)
925baedd 7248{
84f7d8e6 7249 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7250 int old_ref_mod, new_ref_mod;
925baedd
CM
7251 int ret;
7252
f5ee5c9a 7253 if (btrfs_is_testing(fs_info))
faa2dbf0 7254 return 0;
fccb84c9 7255
fd708b81
JB
7256 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7257 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7258 root_objectid, owner, offset,
7259 BTRFS_DROP_DELAYED_REF);
7260
56bec294
CM
7261 /*
7262 * tree log blocks never actually go into the extent allocation
7263 * tree, just update pinning info and exit early.
56bec294 7264 */
5d4f98a2
YZ
7265 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7266 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7267 /* unlocks the pinned mutex */
2ff7e61e 7268 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7269 old_ref_mod = new_ref_mod = 0;
56bec294 7270 ret = 0;
5d4f98a2 7271 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7272 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7273 num_bytes, parent,
7274 root_objectid, (int)owner,
7275 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7276 &old_ref_mod, &new_ref_mod);
5d4f98a2 7277 } else {
66d7e7f0 7278 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7279 num_bytes, parent,
7280 root_objectid, owner, offset,
7281 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7282 &old_ref_mod, &new_ref_mod);
56bec294 7283 }
d7eae340
OS
7284
7285 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7286 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7287
925baedd
CM
7288 return ret;
7289}
7290
817d52f8
JB
7291/*
7292 * when we wait for progress in the block group caching, its because
7293 * our allocation attempt failed at least once. So, we must sleep
7294 * and let some progress happen before we try again.
7295 *
7296 * This function will sleep at least once waiting for new free space to
7297 * show up, and then it will check the block group free space numbers
7298 * for our min num_bytes. Another option is to have it go ahead
7299 * and look in the rbtree for a free extent of a given size, but this
7300 * is a good start.
36cce922
JB
7301 *
7302 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7303 * any of the information in this block group.
817d52f8 7304 */
36cce922 7305static noinline void
817d52f8
JB
7306wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7307 u64 num_bytes)
7308{
11833d66 7309 struct btrfs_caching_control *caching_ctl;
817d52f8 7310
11833d66
YZ
7311 caching_ctl = get_caching_control(cache);
7312 if (!caching_ctl)
36cce922 7313 return;
817d52f8 7314
11833d66 7315 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7316 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7317
7318 put_caching_control(caching_ctl);
11833d66
YZ
7319}
7320
7321static noinline int
7322wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7323{
7324 struct btrfs_caching_control *caching_ctl;
36cce922 7325 int ret = 0;
11833d66
YZ
7326
7327 caching_ctl = get_caching_control(cache);
7328 if (!caching_ctl)
36cce922 7329 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7330
7331 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7332 if (cache->cached == BTRFS_CACHE_ERROR)
7333 ret = -EIO;
11833d66 7334 put_caching_control(caching_ctl);
36cce922 7335 return ret;
817d52f8
JB
7336}
7337
31e50229 7338int __get_raid_index(u64 flags)
b742bb82 7339{
7738a53a 7340 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7341 return BTRFS_RAID_RAID10;
7738a53a 7342 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7343 return BTRFS_RAID_RAID1;
7738a53a 7344 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7345 return BTRFS_RAID_DUP;
7738a53a 7346 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7347 return BTRFS_RAID_RAID0;
53b381b3 7348 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7349 return BTRFS_RAID_RAID5;
53b381b3 7350 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7351 return BTRFS_RAID_RAID6;
7738a53a 7352
e942f883 7353 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7354}
7355
6ab0a202 7356int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7357{
31e50229 7358 return __get_raid_index(cache->flags);
7738a53a
ID
7359}
7360
6ab0a202
JM
7361static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7362 [BTRFS_RAID_RAID10] = "raid10",
7363 [BTRFS_RAID_RAID1] = "raid1",
7364 [BTRFS_RAID_DUP] = "dup",
7365 [BTRFS_RAID_RAID0] = "raid0",
7366 [BTRFS_RAID_SINGLE] = "single",
7367 [BTRFS_RAID_RAID5] = "raid5",
7368 [BTRFS_RAID_RAID6] = "raid6",
7369};
7370
1b8e5df6 7371static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7372{
7373 if (type >= BTRFS_NR_RAID_TYPES)
7374 return NULL;
7375
7376 return btrfs_raid_type_names[type];
7377}
7378
817d52f8 7379enum btrfs_loop_type {
285ff5af
JB
7380 LOOP_CACHING_NOWAIT = 0,
7381 LOOP_CACHING_WAIT = 1,
7382 LOOP_ALLOC_CHUNK = 2,
7383 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7384};
7385
e570fd27
MX
7386static inline void
7387btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7388 int delalloc)
7389{
7390 if (delalloc)
7391 down_read(&cache->data_rwsem);
7392}
7393
7394static inline void
7395btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7396 int delalloc)
7397{
7398 btrfs_get_block_group(cache);
7399 if (delalloc)
7400 down_read(&cache->data_rwsem);
7401}
7402
7403static struct btrfs_block_group_cache *
7404btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7405 struct btrfs_free_cluster *cluster,
7406 int delalloc)
7407{
89771cc9 7408 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7409
e570fd27 7410 spin_lock(&cluster->refill_lock);
6719afdc
GU
7411 while (1) {
7412 used_bg = cluster->block_group;
7413 if (!used_bg)
7414 return NULL;
7415
7416 if (used_bg == block_group)
e570fd27
MX
7417 return used_bg;
7418
6719afdc 7419 btrfs_get_block_group(used_bg);
e570fd27 7420
6719afdc
GU
7421 if (!delalloc)
7422 return used_bg;
e570fd27 7423
6719afdc
GU
7424 if (down_read_trylock(&used_bg->data_rwsem))
7425 return used_bg;
e570fd27 7426
6719afdc 7427 spin_unlock(&cluster->refill_lock);
e570fd27 7428
e321f8a8
LB
7429 /* We should only have one-level nested. */
7430 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7431
6719afdc
GU
7432 spin_lock(&cluster->refill_lock);
7433 if (used_bg == cluster->block_group)
7434 return used_bg;
e570fd27 7435
6719afdc
GU
7436 up_read(&used_bg->data_rwsem);
7437 btrfs_put_block_group(used_bg);
7438 }
e570fd27
MX
7439}
7440
7441static inline void
7442btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7443 int delalloc)
7444{
7445 if (delalloc)
7446 up_read(&cache->data_rwsem);
7447 btrfs_put_block_group(cache);
7448}
7449
fec577fb
CM
7450/*
7451 * walks the btree of allocated extents and find a hole of a given size.
7452 * The key ins is changed to record the hole:
a4820398 7453 * ins->objectid == start position
62e2749e 7454 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7455 * ins->offset == the size of the hole.
fec577fb 7456 * Any available blocks before search_start are skipped.
a4820398
MX
7457 *
7458 * If there is no suitable free space, we will record the max size of
7459 * the free space extent currently.
fec577fb 7460 */
87bde3cd 7461static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7462 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7463 u64 hint_byte, struct btrfs_key *ins,
7464 u64 flags, int delalloc)
fec577fb 7465{
80eb234a 7466 int ret = 0;
0b246afa 7467 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7468 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7469 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7470 u64 search_start = 0;
a4820398 7471 u64 max_extent_size = 0;
c759c4e1 7472 u64 empty_cluster = 0;
80eb234a 7473 struct btrfs_space_info *space_info;
fa9c0d79 7474 int loop = 0;
b6919a58 7475 int index = __get_raid_index(flags);
0a24325e 7476 bool failed_cluster_refill = false;
1cdda9b8 7477 bool failed_alloc = false;
67377734 7478 bool use_cluster = true;
60d2adbb 7479 bool have_caching_bg = false;
13a0db5a 7480 bool orig_have_caching_bg = false;
a5e681d9 7481 bool full_search = false;
fec577fb 7482
0b246afa 7483 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7484 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7485 ins->objectid = 0;
7486 ins->offset = 0;
b1a4d965 7487
71ff6437 7488 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7489
0b246afa 7490 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7491 if (!space_info) {
0b246afa 7492 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7493 return -ENOSPC;
7494 }
2552d17e 7495
67377734 7496 /*
4f4db217
JB
7497 * If our free space is heavily fragmented we may not be able to make
7498 * big contiguous allocations, so instead of doing the expensive search
7499 * for free space, simply return ENOSPC with our max_extent_size so we
7500 * can go ahead and search for a more manageable chunk.
7501 *
7502 * If our max_extent_size is large enough for our allocation simply
7503 * disable clustering since we will likely not be able to find enough
7504 * space to create a cluster and induce latency trying.
67377734 7505 */
4f4db217
JB
7506 if (unlikely(space_info->max_extent_size)) {
7507 spin_lock(&space_info->lock);
7508 if (space_info->max_extent_size &&
7509 num_bytes > space_info->max_extent_size) {
7510 ins->offset = space_info->max_extent_size;
7511 spin_unlock(&space_info->lock);
7512 return -ENOSPC;
7513 } else if (space_info->max_extent_size) {
7514 use_cluster = false;
7515 }
7516 spin_unlock(&space_info->lock);
fa9c0d79 7517 }
0f9dd46c 7518
2ff7e61e 7519 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7520 if (last_ptr) {
fa9c0d79
CM
7521 spin_lock(&last_ptr->lock);
7522 if (last_ptr->block_group)
7523 hint_byte = last_ptr->window_start;
c759c4e1
JB
7524 if (last_ptr->fragmented) {
7525 /*
7526 * We still set window_start so we can keep track of the
7527 * last place we found an allocation to try and save
7528 * some time.
7529 */
7530 hint_byte = last_ptr->window_start;
7531 use_cluster = false;
7532 }
fa9c0d79 7533 spin_unlock(&last_ptr->lock);
239b14b3 7534 }
fa9c0d79 7535
2ff7e61e 7536 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7537 search_start = max(search_start, hint_byte);
2552d17e 7538 if (search_start == hint_byte) {
0b246afa 7539 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7540 /*
7541 * we don't want to use the block group if it doesn't match our
7542 * allocation bits, or if its not cached.
ccf0e725
JB
7543 *
7544 * However if we are re-searching with an ideal block group
7545 * picked out then we don't care that the block group is cached.
817d52f8 7546 */
b6919a58 7547 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7548 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7549 down_read(&space_info->groups_sem);
44fb5511
CM
7550 if (list_empty(&block_group->list) ||
7551 block_group->ro) {
7552 /*
7553 * someone is removing this block group,
7554 * we can't jump into the have_block_group
7555 * target because our list pointers are not
7556 * valid
7557 */
7558 btrfs_put_block_group(block_group);
7559 up_read(&space_info->groups_sem);
ccf0e725 7560 } else {
b742bb82 7561 index = get_block_group_index(block_group);
e570fd27 7562 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7563 goto have_block_group;
ccf0e725 7564 }
2552d17e 7565 } else if (block_group) {
fa9c0d79 7566 btrfs_put_block_group(block_group);
2552d17e 7567 }
42e70e7a 7568 }
2552d17e 7569search:
60d2adbb 7570 have_caching_bg = false;
a5e681d9
JB
7571 if (index == 0 || index == __get_raid_index(flags))
7572 full_search = true;
80eb234a 7573 down_read(&space_info->groups_sem);
b742bb82
YZ
7574 list_for_each_entry(block_group, &space_info->block_groups[index],
7575 list) {
6226cb0a 7576 u64 offset;
817d52f8 7577 int cached;
8a1413a2 7578
14443937
JM
7579 /* If the block group is read-only, we can skip it entirely. */
7580 if (unlikely(block_group->ro))
7581 continue;
7582
e570fd27 7583 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7584 search_start = block_group->key.objectid;
42e70e7a 7585
83a50de9
CM
7586 /*
7587 * this can happen if we end up cycling through all the
7588 * raid types, but we want to make sure we only allocate
7589 * for the proper type.
7590 */
b6919a58 7591 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7592 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7593 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7594 BTRFS_BLOCK_GROUP_RAID5 |
7595 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7596 BTRFS_BLOCK_GROUP_RAID10;
7597
7598 /*
7599 * if they asked for extra copies and this block group
7600 * doesn't provide them, bail. This does allow us to
7601 * fill raid0 from raid1.
7602 */
b6919a58 7603 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7604 goto loop;
7605 }
7606
2552d17e 7607have_block_group:
291c7d2f
JB
7608 cached = block_group_cache_done(block_group);
7609 if (unlikely(!cached)) {
a5e681d9 7610 have_caching_bg = true;
f6373bf3 7611 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7612 BUG_ON(ret < 0);
7613 ret = 0;
817d52f8
JB
7614 }
7615
36cce922
JB
7616 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7617 goto loop;
0f9dd46c 7618
0a24325e 7619 /*
062c05c4
AO
7620 * Ok we want to try and use the cluster allocator, so
7621 * lets look there
0a24325e 7622 */
c759c4e1 7623 if (last_ptr && use_cluster) {
215a63d1 7624 struct btrfs_block_group_cache *used_block_group;
8de972b4 7625 unsigned long aligned_cluster;
fa9c0d79
CM
7626 /*
7627 * the refill lock keeps out other
7628 * people trying to start a new cluster
7629 */
e570fd27
MX
7630 used_block_group = btrfs_lock_cluster(block_group,
7631 last_ptr,
7632 delalloc);
7633 if (!used_block_group)
44fb5511 7634 goto refill_cluster;
274bd4fb 7635
e570fd27
MX
7636 if (used_block_group != block_group &&
7637 (used_block_group->ro ||
7638 !block_group_bits(used_block_group, flags)))
7639 goto release_cluster;
44fb5511 7640
274bd4fb 7641 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7642 last_ptr,
7643 num_bytes,
7644 used_block_group->key.objectid,
7645 &max_extent_size);
fa9c0d79
CM
7646 if (offset) {
7647 /* we have a block, we're done */
7648 spin_unlock(&last_ptr->refill_lock);
71ff6437 7649 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7650 used_block_group,
7651 search_start, num_bytes);
215a63d1 7652 if (used_block_group != block_group) {
e570fd27
MX
7653 btrfs_release_block_group(block_group,
7654 delalloc);
215a63d1
MX
7655 block_group = used_block_group;
7656 }
fa9c0d79
CM
7657 goto checks;
7658 }
7659
274bd4fb 7660 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7661release_cluster:
062c05c4
AO
7662 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7663 * set up a new clusters, so lets just skip it
7664 * and let the allocator find whatever block
7665 * it can find. If we reach this point, we
7666 * will have tried the cluster allocator
7667 * plenty of times and not have found
7668 * anything, so we are likely way too
7669 * fragmented for the clustering stuff to find
a5f6f719
AO
7670 * anything.
7671 *
7672 * However, if the cluster is taken from the
7673 * current block group, release the cluster
7674 * first, so that we stand a better chance of
7675 * succeeding in the unclustered
7676 * allocation. */
7677 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7678 used_block_group != block_group) {
062c05c4 7679 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7680 btrfs_release_block_group(used_block_group,
7681 delalloc);
062c05c4
AO
7682 goto unclustered_alloc;
7683 }
7684
fa9c0d79
CM
7685 /*
7686 * this cluster didn't work out, free it and
7687 * start over
7688 */
7689 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7690
e570fd27
MX
7691 if (used_block_group != block_group)
7692 btrfs_release_block_group(used_block_group,
7693 delalloc);
7694refill_cluster:
a5f6f719
AO
7695 if (loop >= LOOP_NO_EMPTY_SIZE) {
7696 spin_unlock(&last_ptr->refill_lock);
7697 goto unclustered_alloc;
7698 }
7699
8de972b4
CM
7700 aligned_cluster = max_t(unsigned long,
7701 empty_cluster + empty_size,
7702 block_group->full_stripe_len);
7703
fa9c0d79 7704 /* allocate a cluster in this block group */
2ff7e61e 7705 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7706 last_ptr, search_start,
7707 num_bytes,
7708 aligned_cluster);
fa9c0d79
CM
7709 if (ret == 0) {
7710 /*
7711 * now pull our allocation out of this
7712 * cluster
7713 */
7714 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7715 last_ptr,
7716 num_bytes,
7717 search_start,
7718 &max_extent_size);
fa9c0d79
CM
7719 if (offset) {
7720 /* we found one, proceed */
7721 spin_unlock(&last_ptr->refill_lock);
71ff6437 7722 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7723 block_group, search_start,
7724 num_bytes);
fa9c0d79
CM
7725 goto checks;
7726 }
0a24325e
JB
7727 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7728 && !failed_cluster_refill) {
817d52f8
JB
7729 spin_unlock(&last_ptr->refill_lock);
7730
0a24325e 7731 failed_cluster_refill = true;
817d52f8
JB
7732 wait_block_group_cache_progress(block_group,
7733 num_bytes + empty_cluster + empty_size);
7734 goto have_block_group;
fa9c0d79 7735 }
817d52f8 7736
fa9c0d79
CM
7737 /*
7738 * at this point we either didn't find a cluster
7739 * or we weren't able to allocate a block from our
7740 * cluster. Free the cluster we've been trying
7741 * to use, and go to the next block group
7742 */
0a24325e 7743 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7744 spin_unlock(&last_ptr->refill_lock);
0a24325e 7745 goto loop;
fa9c0d79
CM
7746 }
7747
062c05c4 7748unclustered_alloc:
c759c4e1
JB
7749 /*
7750 * We are doing an unclustered alloc, set the fragmented flag so
7751 * we don't bother trying to setup a cluster again until we get
7752 * more space.
7753 */
7754 if (unlikely(last_ptr)) {
7755 spin_lock(&last_ptr->lock);
7756 last_ptr->fragmented = 1;
7757 spin_unlock(&last_ptr->lock);
7758 }
0c9b36e0
LB
7759 if (cached) {
7760 struct btrfs_free_space_ctl *ctl =
7761 block_group->free_space_ctl;
7762
7763 spin_lock(&ctl->tree_lock);
7764 if (ctl->free_space <
7765 num_bytes + empty_cluster + empty_size) {
7766 if (ctl->free_space > max_extent_size)
7767 max_extent_size = ctl->free_space;
7768 spin_unlock(&ctl->tree_lock);
7769 goto loop;
7770 }
7771 spin_unlock(&ctl->tree_lock);
a5f6f719 7772 }
a5f6f719 7773
6226cb0a 7774 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7775 num_bytes, empty_size,
7776 &max_extent_size);
1cdda9b8
JB
7777 /*
7778 * If we didn't find a chunk, and we haven't failed on this
7779 * block group before, and this block group is in the middle of
7780 * caching and we are ok with waiting, then go ahead and wait
7781 * for progress to be made, and set failed_alloc to true.
7782 *
7783 * If failed_alloc is true then we've already waited on this
7784 * block group once and should move on to the next block group.
7785 */
7786 if (!offset && !failed_alloc && !cached &&
7787 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7788 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7789 num_bytes + empty_size);
7790 failed_alloc = true;
817d52f8 7791 goto have_block_group;
1cdda9b8
JB
7792 } else if (!offset) {
7793 goto loop;
817d52f8 7794 }
fa9c0d79 7795checks:
0b246afa 7796 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7797
2552d17e
JB
7798 /* move on to the next group */
7799 if (search_start + num_bytes >
215a63d1
MX
7800 block_group->key.objectid + block_group->key.offset) {
7801 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7802 goto loop;
6226cb0a 7803 }
f5a31e16 7804
f0486c68 7805 if (offset < search_start)
215a63d1 7806 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7807 search_start - offset);
7808 BUG_ON(offset > search_start);
2552d17e 7809
18513091
WX
7810 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7811 num_bytes, delalloc);
f0486c68 7812 if (ret == -EAGAIN) {
215a63d1 7813 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7814 goto loop;
0f9dd46c 7815 }
9cfa3e34 7816 btrfs_inc_block_group_reservations(block_group);
0b86a832 7817
f0486c68 7818 /* we are all good, lets return */
2552d17e
JB
7819 ins->objectid = search_start;
7820 ins->offset = num_bytes;
d2fb3437 7821
71ff6437 7822 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7823 search_start, num_bytes);
e570fd27 7824 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7825 break;
7826loop:
0a24325e 7827 failed_cluster_refill = false;
1cdda9b8 7828 failed_alloc = false;
b742bb82 7829 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7830 btrfs_release_block_group(block_group, delalloc);
14443937 7831 cond_resched();
2552d17e
JB
7832 }
7833 up_read(&space_info->groups_sem);
7834
13a0db5a 7835 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7836 && !orig_have_caching_bg)
7837 orig_have_caching_bg = true;
7838
60d2adbb
MX
7839 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7840 goto search;
7841
b742bb82
YZ
7842 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7843 goto search;
7844
285ff5af 7845 /*
ccf0e725
JB
7846 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7847 * caching kthreads as we move along
817d52f8
JB
7848 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7849 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7850 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7851 * again
fa9c0d79 7852 */
723bda20 7853 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7854 index = 0;
a5e681d9
JB
7855 if (loop == LOOP_CACHING_NOWAIT) {
7856 /*
7857 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7858 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7859 * full search through.
7860 */
13a0db5a 7861 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7862 loop = LOOP_CACHING_WAIT;
7863 else
7864 loop = LOOP_ALLOC_CHUNK;
7865 } else {
7866 loop++;
7867 }
7868
817d52f8 7869 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7870 struct btrfs_trans_handle *trans;
f017f15f
WS
7871 int exist = 0;
7872
7873 trans = current->journal_info;
7874 if (trans)
7875 exist = 1;
7876 else
7877 trans = btrfs_join_transaction(root);
00361589 7878
00361589
JB
7879 if (IS_ERR(trans)) {
7880 ret = PTR_ERR(trans);
7881 goto out;
7882 }
7883
2ff7e61e 7884 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7885 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7886
7887 /*
7888 * If we can't allocate a new chunk we've already looped
7889 * through at least once, move on to the NO_EMPTY_SIZE
7890 * case.
7891 */
7892 if (ret == -ENOSPC)
7893 loop = LOOP_NO_EMPTY_SIZE;
7894
ea658bad
JB
7895 /*
7896 * Do not bail out on ENOSPC since we
7897 * can do more things.
7898 */
00361589 7899 if (ret < 0 && ret != -ENOSPC)
66642832 7900 btrfs_abort_transaction(trans, ret);
00361589
JB
7901 else
7902 ret = 0;
f017f15f 7903 if (!exist)
3a45bb20 7904 btrfs_end_transaction(trans);
00361589 7905 if (ret)
ea658bad 7906 goto out;
2552d17e
JB
7907 }
7908
723bda20 7909 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7910 /*
7911 * Don't loop again if we already have no empty_size and
7912 * no empty_cluster.
7913 */
7914 if (empty_size == 0 &&
7915 empty_cluster == 0) {
7916 ret = -ENOSPC;
7917 goto out;
7918 }
723bda20
JB
7919 empty_size = 0;
7920 empty_cluster = 0;
fa9c0d79 7921 }
723bda20
JB
7922
7923 goto search;
2552d17e
JB
7924 } else if (!ins->objectid) {
7925 ret = -ENOSPC;
d82a6f1d 7926 } else if (ins->objectid) {
c759c4e1
JB
7927 if (!use_cluster && last_ptr) {
7928 spin_lock(&last_ptr->lock);
7929 last_ptr->window_start = ins->objectid;
7930 spin_unlock(&last_ptr->lock);
7931 }
80eb234a 7932 ret = 0;
be744175 7933 }
79787eaa 7934out:
4f4db217
JB
7935 if (ret == -ENOSPC) {
7936 spin_lock(&space_info->lock);
7937 space_info->max_extent_size = max_extent_size;
7938 spin_unlock(&space_info->lock);
a4820398 7939 ins->offset = max_extent_size;
4f4db217 7940 }
0f70abe2 7941 return ret;
fec577fb 7942}
ec44a35c 7943
ab8d0fc4
JM
7944static void dump_space_info(struct btrfs_fs_info *fs_info,
7945 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7946 int dump_block_groups)
0f9dd46c
JB
7947{
7948 struct btrfs_block_group_cache *cache;
b742bb82 7949 int index = 0;
0f9dd46c 7950
9ed74f2d 7951 spin_lock(&info->lock);
ab8d0fc4
JM
7952 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7953 info->flags,
4136135b
LB
7954 info->total_bytes - btrfs_space_info_used(info, true),
7955 info->full ? "" : "not ");
ab8d0fc4
JM
7956 btrfs_info(fs_info,
7957 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7958 info->total_bytes, info->bytes_used, info->bytes_pinned,
7959 info->bytes_reserved, info->bytes_may_use,
7960 info->bytes_readonly);
9ed74f2d
JB
7961 spin_unlock(&info->lock);
7962
7963 if (!dump_block_groups)
7964 return;
0f9dd46c 7965
80eb234a 7966 down_read(&info->groups_sem);
b742bb82
YZ
7967again:
7968 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7969 spin_lock(&cache->lock);
ab8d0fc4
JM
7970 btrfs_info(fs_info,
7971 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7972 cache->key.objectid, cache->key.offset,
7973 btrfs_block_group_used(&cache->item), cache->pinned,
7974 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7975 btrfs_dump_free_space(cache, bytes);
7976 spin_unlock(&cache->lock);
7977 }
b742bb82
YZ
7978 if (++index < BTRFS_NR_RAID_TYPES)
7979 goto again;
80eb234a 7980 up_read(&info->groups_sem);
0f9dd46c 7981}
e8569813 7982
18513091 7983int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7984 u64 num_bytes, u64 min_alloc_size,
7985 u64 empty_size, u64 hint_byte,
e570fd27 7986 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7987{
ab8d0fc4 7988 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7989 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7990 u64 flags;
fec577fb 7991 int ret;
925baedd 7992
1b86826d 7993 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7994again:
0b246afa 7995 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7996 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7997 hint_byte, ins, flags, delalloc);
9cfa3e34 7998 if (!ret && !is_data) {
ab8d0fc4 7999 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8000 } else if (ret == -ENOSPC) {
a4820398
MX
8001 if (!final_tried && ins->offset) {
8002 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8003 num_bytes = round_down(num_bytes,
0b246afa 8004 fs_info->sectorsize);
9e622d6b 8005 num_bytes = max(num_bytes, min_alloc_size);
18513091 8006 ram_bytes = num_bytes;
9e622d6b
MX
8007 if (num_bytes == min_alloc_size)
8008 final_tried = true;
8009 goto again;
ab8d0fc4 8010 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8011 struct btrfs_space_info *sinfo;
8012
ab8d0fc4 8013 sinfo = __find_space_info(fs_info, flags);
0b246afa 8014 btrfs_err(fs_info,
5d163e0e
JM
8015 "allocation failed flags %llu, wanted %llu",
8016 flags, num_bytes);
53804280 8017 if (sinfo)
ab8d0fc4 8018 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8019 }
925baedd 8020 }
0f9dd46c
JB
8021
8022 return ret;
e6dcd2dc
CM
8023}
8024
2ff7e61e 8025static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8026 u64 start, u64 len,
8027 int pin, int delalloc)
65b51a00 8028{
0f9dd46c 8029 struct btrfs_block_group_cache *cache;
1f3c79a2 8030 int ret = 0;
0f9dd46c 8031
0b246afa 8032 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8033 if (!cache) {
0b246afa
JM
8034 btrfs_err(fs_info, "Unable to find block group for %llu",
8035 start);
0f9dd46c
JB
8036 return -ENOSPC;
8037 }
1f3c79a2 8038
e688b725 8039 if (pin)
2ff7e61e 8040 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8041 else {
0b246afa 8042 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8043 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8044 btrfs_add_free_space(cache, start, len);
4824f1f4 8045 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8046 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8047 }
31193213 8048
fa9c0d79 8049 btrfs_put_block_group(cache);
e6dcd2dc
CM
8050 return ret;
8051}
8052
2ff7e61e 8053int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8054 u64 start, u64 len, int delalloc)
e688b725 8055{
2ff7e61e 8056 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8057}
8058
2ff7e61e 8059int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8060 u64 start, u64 len)
8061{
2ff7e61e 8062 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8063}
8064
5d4f98a2 8065static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8066 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8067 u64 parent, u64 root_objectid,
8068 u64 flags, u64 owner, u64 offset,
8069 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8070{
8071 int ret;
e6dcd2dc 8072 struct btrfs_extent_item *extent_item;
5d4f98a2 8073 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8074 struct btrfs_path *path;
5d4f98a2
YZ
8075 struct extent_buffer *leaf;
8076 int type;
8077 u32 size;
26b8003f 8078
5d4f98a2
YZ
8079 if (parent > 0)
8080 type = BTRFS_SHARED_DATA_REF_KEY;
8081 else
8082 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8083
5d4f98a2 8084 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8085
8086 path = btrfs_alloc_path();
db5b493a
TI
8087 if (!path)
8088 return -ENOMEM;
47e4bb98 8089
b9473439 8090 path->leave_spinning = 1;
5d4f98a2
YZ
8091 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8092 ins, size);
79787eaa
JM
8093 if (ret) {
8094 btrfs_free_path(path);
8095 return ret;
8096 }
0f9dd46c 8097
5d4f98a2
YZ
8098 leaf = path->nodes[0];
8099 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8100 struct btrfs_extent_item);
5d4f98a2
YZ
8101 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8102 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8103 btrfs_set_extent_flags(leaf, extent_item,
8104 flags | BTRFS_EXTENT_FLAG_DATA);
8105
8106 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8107 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8108 if (parent > 0) {
8109 struct btrfs_shared_data_ref *ref;
8110 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8111 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8112 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8113 } else {
8114 struct btrfs_extent_data_ref *ref;
8115 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8116 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8117 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8118 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8119 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8120 }
47e4bb98
CM
8121
8122 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8123 btrfs_free_path(path);
f510cfec 8124
1e144fb8
OS
8125 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8126 ins->offset);
8127 if (ret)
8128 return ret;
8129
6202df69 8130 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8131 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8132 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8133 ins->objectid, ins->offset);
f5947066
CM
8134 BUG();
8135 }
71ff6437 8136 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8137 return ret;
8138}
8139
5d4f98a2 8140static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8141 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8142 u64 parent, u64 root_objectid,
8143 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8144 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8145{
8146 int ret;
5d4f98a2
YZ
8147 struct btrfs_extent_item *extent_item;
8148 struct btrfs_tree_block_info *block_info;
8149 struct btrfs_extent_inline_ref *iref;
8150 struct btrfs_path *path;
8151 struct extent_buffer *leaf;
3173a18f 8152 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8153 u64 num_bytes = ins->offset;
0b246afa 8154 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8155
8156 if (!skinny_metadata)
8157 size += sizeof(*block_info);
1c2308f8 8158
5d4f98a2 8159 path = btrfs_alloc_path();
857cc2fc 8160 if (!path) {
2ff7e61e 8161 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8162 fs_info->nodesize);
d8926bb3 8163 return -ENOMEM;
857cc2fc 8164 }
56bec294 8165
5d4f98a2
YZ
8166 path->leave_spinning = 1;
8167 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8168 ins, size);
79787eaa 8169 if (ret) {
dd825259 8170 btrfs_free_path(path);
2ff7e61e 8171 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8172 fs_info->nodesize);
79787eaa
JM
8173 return ret;
8174 }
5d4f98a2
YZ
8175
8176 leaf = path->nodes[0];
8177 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8178 struct btrfs_extent_item);
8179 btrfs_set_extent_refs(leaf, extent_item, 1);
8180 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8181 btrfs_set_extent_flags(leaf, extent_item,
8182 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8183
3173a18f
JB
8184 if (skinny_metadata) {
8185 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8186 num_bytes = fs_info->nodesize;
3173a18f
JB
8187 } else {
8188 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8189 btrfs_set_tree_block_key(leaf, block_info, key);
8190 btrfs_set_tree_block_level(leaf, block_info, level);
8191 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8192 }
5d4f98a2 8193
5d4f98a2
YZ
8194 if (parent > 0) {
8195 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8196 btrfs_set_extent_inline_ref_type(leaf, iref,
8197 BTRFS_SHARED_BLOCK_REF_KEY);
8198 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8199 } else {
8200 btrfs_set_extent_inline_ref_type(leaf, iref,
8201 BTRFS_TREE_BLOCK_REF_KEY);
8202 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8203 }
8204
8205 btrfs_mark_buffer_dirty(leaf);
8206 btrfs_free_path(path);
8207
1e144fb8
OS
8208 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8209 num_bytes);
8210 if (ret)
8211 return ret;
8212
6202df69
JM
8213 ret = update_block_group(trans, fs_info, ins->objectid,
8214 fs_info->nodesize, 1);
79787eaa 8215 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8216 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8217 ins->objectid, ins->offset);
5d4f98a2
YZ
8218 BUG();
8219 }
0be5dc67 8220
71ff6437 8221 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8222 fs_info->nodesize);
5d4f98a2
YZ
8223 return ret;
8224}
8225
8226int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8227 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8228 u64 offset, u64 ram_bytes,
8229 struct btrfs_key *ins)
5d4f98a2 8230{
84f7d8e6 8231 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8232 int ret;
8233
84f7d8e6 8234 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8235
fd708b81
JB
8236 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8237 root->root_key.objectid, owner, offset,
8238 BTRFS_ADD_DELAYED_EXTENT);
8239
0b246afa 8240 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8241 ins->offset, 0,
8242 root->root_key.objectid, owner,
7be07912
OS
8243 offset, ram_bytes,
8244 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8245 return ret;
8246}
e02119d5
CM
8247
8248/*
8249 * this is used by the tree logging recovery code. It records that
8250 * an extent has been allocated and makes sure to clear the free
8251 * space cache bits as well
8252 */
5d4f98a2 8253int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8254 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8255 u64 root_objectid, u64 owner, u64 offset,
8256 struct btrfs_key *ins)
e02119d5
CM
8257{
8258 int ret;
8259 struct btrfs_block_group_cache *block_group;
ed7a6948 8260 struct btrfs_space_info *space_info;
11833d66 8261
8c2a1a30
JB
8262 /*
8263 * Mixed block groups will exclude before processing the log so we only
01327610 8264 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8265 */
0b246afa 8266 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8267 ret = __exclude_logged_extent(fs_info, ins->objectid,
8268 ins->offset);
b50c6e25 8269 if (ret)
8c2a1a30 8270 return ret;
11833d66
YZ
8271 }
8272
0b246afa 8273 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8274 if (!block_group)
8275 return -EINVAL;
8276
ed7a6948
WX
8277 space_info = block_group->space_info;
8278 spin_lock(&space_info->lock);
8279 spin_lock(&block_group->lock);
8280 space_info->bytes_reserved += ins->offset;
8281 block_group->reserved += ins->offset;
8282 spin_unlock(&block_group->lock);
8283 spin_unlock(&space_info->lock);
8284
2ff7e61e 8285 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8286 0, owner, offset, ins, 1);
b50c6e25 8287 btrfs_put_block_group(block_group);
e02119d5
CM
8288 return ret;
8289}
8290
48a3b636
ES
8291static struct extent_buffer *
8292btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8293 u64 bytenr, int level)
65b51a00 8294{
0b246afa 8295 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8296 struct extent_buffer *buf;
8297
2ff7e61e 8298 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8299 if (IS_ERR(buf))
8300 return buf;
8301
65b51a00 8302 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8303 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8304 btrfs_tree_lock(buf);
7c302b49 8305 clean_tree_block(fs_info, buf);
3083ee2e 8306 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8307
8308 btrfs_set_lock_blocking(buf);
4db8c528 8309 set_extent_buffer_uptodate(buf);
b4ce94de 8310
d0c803c4 8311 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8312 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8313 /*
8314 * we allow two log transactions at a time, use different
8315 * EXENT bit to differentiate dirty pages.
8316 */
656f30db 8317 if (buf->log_index == 0)
8cef4e16
YZ
8318 set_extent_dirty(&root->dirty_log_pages, buf->start,
8319 buf->start + buf->len - 1, GFP_NOFS);
8320 else
8321 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8322 buf->start + buf->len - 1);
d0c803c4 8323 } else {
656f30db 8324 buf->log_index = -1;
d0c803c4 8325 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8326 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8327 }
64c12921 8328 trans->dirty = true;
b4ce94de 8329 /* this returns a buffer locked for blocking */
65b51a00
CM
8330 return buf;
8331}
8332
f0486c68
YZ
8333static struct btrfs_block_rsv *
8334use_block_rsv(struct btrfs_trans_handle *trans,
8335 struct btrfs_root *root, u32 blocksize)
8336{
0b246afa 8337 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8338 struct btrfs_block_rsv *block_rsv;
0b246afa 8339 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8340 int ret;
d88033db 8341 bool global_updated = false;
f0486c68
YZ
8342
8343 block_rsv = get_block_rsv(trans, root);
8344
b586b323
MX
8345 if (unlikely(block_rsv->size == 0))
8346 goto try_reserve;
d88033db 8347again:
f0486c68
YZ
8348 ret = block_rsv_use_bytes(block_rsv, blocksize);
8349 if (!ret)
8350 return block_rsv;
8351
b586b323
MX
8352 if (block_rsv->failfast)
8353 return ERR_PTR(ret);
8354
d88033db
MX
8355 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8356 global_updated = true;
0b246afa 8357 update_global_block_rsv(fs_info);
d88033db
MX
8358 goto again;
8359 }
8360
0b246afa 8361 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8362 static DEFINE_RATELIMIT_STATE(_rs,
8363 DEFAULT_RATELIMIT_INTERVAL * 10,
8364 /*DEFAULT_RATELIMIT_BURST*/ 1);
8365 if (__ratelimit(&_rs))
8366 WARN(1, KERN_DEBUG
efe120a0 8367 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8368 }
8369try_reserve:
8370 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8371 BTRFS_RESERVE_NO_FLUSH);
8372 if (!ret)
8373 return block_rsv;
8374 /*
8375 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8376 * the global reserve if its space type is the same as the global
8377 * reservation.
b586b323 8378 */
5881cfc9
MX
8379 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8380 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8381 ret = block_rsv_use_bytes(global_rsv, blocksize);
8382 if (!ret)
8383 return global_rsv;
8384 }
8385 return ERR_PTR(ret);
f0486c68
YZ
8386}
8387
8c2a3ca2
JB
8388static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8389 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8390{
8391 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8392 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8393}
8394
fec577fb 8395/*
f0486c68 8396 * finds a free extent and does all the dirty work required for allocation
67b7859e 8397 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8398 */
4d75f8a9 8399struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8400 struct btrfs_root *root,
8401 u64 parent, u64 root_objectid,
8402 const struct btrfs_disk_key *key,
8403 int level, u64 hint,
8404 u64 empty_size)
fec577fb 8405{
0b246afa 8406 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8407 struct btrfs_key ins;
f0486c68 8408 struct btrfs_block_rsv *block_rsv;
5f39d397 8409 struct extent_buffer *buf;
67b7859e 8410 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8411 u64 flags = 0;
8412 int ret;
0b246afa
JM
8413 u32 blocksize = fs_info->nodesize;
8414 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8415
05653ef3 8416#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8417 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8418 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8419 level);
faa2dbf0
JB
8420 if (!IS_ERR(buf))
8421 root->alloc_bytenr += blocksize;
8422 return buf;
8423 }
05653ef3 8424#endif
fccb84c9 8425
f0486c68
YZ
8426 block_rsv = use_block_rsv(trans, root, blocksize);
8427 if (IS_ERR(block_rsv))
8428 return ERR_CAST(block_rsv);
8429
18513091 8430 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8431 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8432 if (ret)
8433 goto out_unuse;
55c69072 8434
fe864576 8435 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8436 if (IS_ERR(buf)) {
8437 ret = PTR_ERR(buf);
8438 goto out_free_reserved;
8439 }
f0486c68
YZ
8440
8441 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8442 if (parent == 0)
8443 parent = ins.objectid;
8444 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8445 } else
8446 BUG_ON(parent > 0);
8447
8448 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8449 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8450 if (!extent_op) {
8451 ret = -ENOMEM;
8452 goto out_free_buf;
8453 }
f0486c68
YZ
8454 if (key)
8455 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8456 else
8457 memset(&extent_op->key, 0, sizeof(extent_op->key));
8458 extent_op->flags_to_set = flags;
35b3ad50
DS
8459 extent_op->update_key = skinny_metadata ? false : true;
8460 extent_op->update_flags = true;
8461 extent_op->is_data = false;
b1c79e09 8462 extent_op->level = level;
f0486c68 8463
fd708b81
JB
8464 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8465 root_objectid, level, 0,
8466 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8467 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8468 ins.offset, parent,
8469 root_objectid, level,
67b7859e 8470 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8471 extent_op, NULL, NULL);
67b7859e
OS
8472 if (ret)
8473 goto out_free_delayed;
f0486c68 8474 }
fec577fb 8475 return buf;
67b7859e
OS
8476
8477out_free_delayed:
8478 btrfs_free_delayed_extent_op(extent_op);
8479out_free_buf:
8480 free_extent_buffer(buf);
8481out_free_reserved:
2ff7e61e 8482 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8483out_unuse:
0b246afa 8484 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8485 return ERR_PTR(ret);
fec577fb 8486}
a28ec197 8487
2c47e605
YZ
8488struct walk_control {
8489 u64 refs[BTRFS_MAX_LEVEL];
8490 u64 flags[BTRFS_MAX_LEVEL];
8491 struct btrfs_key update_progress;
8492 int stage;
8493 int level;
8494 int shared_level;
8495 int update_ref;
8496 int keep_locks;
1c4850e2
YZ
8497 int reada_slot;
8498 int reada_count;
66d7e7f0 8499 int for_reloc;
2c47e605
YZ
8500};
8501
8502#define DROP_REFERENCE 1
8503#define UPDATE_BACKREF 2
8504
1c4850e2
YZ
8505static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8506 struct btrfs_root *root,
8507 struct walk_control *wc,
8508 struct btrfs_path *path)
6407bf6d 8509{
0b246afa 8510 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8511 u64 bytenr;
8512 u64 generation;
8513 u64 refs;
94fcca9f 8514 u64 flags;
5d4f98a2 8515 u32 nritems;
1c4850e2
YZ
8516 struct btrfs_key key;
8517 struct extent_buffer *eb;
6407bf6d 8518 int ret;
1c4850e2
YZ
8519 int slot;
8520 int nread = 0;
6407bf6d 8521
1c4850e2
YZ
8522 if (path->slots[wc->level] < wc->reada_slot) {
8523 wc->reada_count = wc->reada_count * 2 / 3;
8524 wc->reada_count = max(wc->reada_count, 2);
8525 } else {
8526 wc->reada_count = wc->reada_count * 3 / 2;
8527 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8528 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8529 }
7bb86316 8530
1c4850e2
YZ
8531 eb = path->nodes[wc->level];
8532 nritems = btrfs_header_nritems(eb);
bd56b302 8533
1c4850e2
YZ
8534 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8535 if (nread >= wc->reada_count)
8536 break;
bd56b302 8537
2dd3e67b 8538 cond_resched();
1c4850e2
YZ
8539 bytenr = btrfs_node_blockptr(eb, slot);
8540 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8541
1c4850e2
YZ
8542 if (slot == path->slots[wc->level])
8543 goto reada;
5d4f98a2 8544
1c4850e2
YZ
8545 if (wc->stage == UPDATE_BACKREF &&
8546 generation <= root->root_key.offset)
bd56b302
CM
8547 continue;
8548
94fcca9f 8549 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8550 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8551 wc->level - 1, 1, &refs,
8552 &flags);
79787eaa
JM
8553 /* We don't care about errors in readahead. */
8554 if (ret < 0)
8555 continue;
94fcca9f
YZ
8556 BUG_ON(refs == 0);
8557
1c4850e2 8558 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8559 if (refs == 1)
8560 goto reada;
bd56b302 8561
94fcca9f
YZ
8562 if (wc->level == 1 &&
8563 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8564 continue;
1c4850e2
YZ
8565 if (!wc->update_ref ||
8566 generation <= root->root_key.offset)
8567 continue;
8568 btrfs_node_key_to_cpu(eb, &key, slot);
8569 ret = btrfs_comp_cpu_keys(&key,
8570 &wc->update_progress);
8571 if (ret < 0)
8572 continue;
94fcca9f
YZ
8573 } else {
8574 if (wc->level == 1 &&
8575 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8576 continue;
6407bf6d 8577 }
1c4850e2 8578reada:
2ff7e61e 8579 readahead_tree_block(fs_info, bytenr);
1c4850e2 8580 nread++;
20524f02 8581 }
1c4850e2 8582 wc->reada_slot = slot;
20524f02 8583}
2c47e605 8584
f82d02d9 8585/*
2c016dc2 8586 * helper to process tree block while walking down the tree.
2c47e605 8587 *
2c47e605
YZ
8588 * when wc->stage == UPDATE_BACKREF, this function updates
8589 * back refs for pointers in the block.
8590 *
8591 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8592 */
2c47e605 8593static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8594 struct btrfs_root *root,
2c47e605 8595 struct btrfs_path *path,
94fcca9f 8596 struct walk_control *wc, int lookup_info)
f82d02d9 8597{
2ff7e61e 8598 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8599 int level = wc->level;
8600 struct extent_buffer *eb = path->nodes[level];
2c47e605 8601 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8602 int ret;
8603
2c47e605
YZ
8604 if (wc->stage == UPDATE_BACKREF &&
8605 btrfs_header_owner(eb) != root->root_key.objectid)
8606 return 1;
f82d02d9 8607
2c47e605
YZ
8608 /*
8609 * when reference count of tree block is 1, it won't increase
8610 * again. once full backref flag is set, we never clear it.
8611 */
94fcca9f
YZ
8612 if (lookup_info &&
8613 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8614 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8615 BUG_ON(!path->locks[level]);
2ff7e61e 8616 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8617 eb->start, level, 1,
2c47e605
YZ
8618 &wc->refs[level],
8619 &wc->flags[level]);
79787eaa
JM
8620 BUG_ON(ret == -ENOMEM);
8621 if (ret)
8622 return ret;
2c47e605
YZ
8623 BUG_ON(wc->refs[level] == 0);
8624 }
5d4f98a2 8625
2c47e605
YZ
8626 if (wc->stage == DROP_REFERENCE) {
8627 if (wc->refs[level] > 1)
8628 return 1;
f82d02d9 8629
2c47e605 8630 if (path->locks[level] && !wc->keep_locks) {
bd681513 8631 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8632 path->locks[level] = 0;
8633 }
8634 return 0;
8635 }
f82d02d9 8636
2c47e605
YZ
8637 /* wc->stage == UPDATE_BACKREF */
8638 if (!(wc->flags[level] & flag)) {
8639 BUG_ON(!path->locks[level]);
e339a6b0 8640 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8641 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8642 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8643 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8644 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8645 eb->len, flag,
8646 btrfs_header_level(eb), 0);
79787eaa 8647 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8648 wc->flags[level] |= flag;
8649 }
8650
8651 /*
8652 * the block is shared by multiple trees, so it's not good to
8653 * keep the tree lock
8654 */
8655 if (path->locks[level] && level > 0) {
bd681513 8656 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8657 path->locks[level] = 0;
8658 }
8659 return 0;
8660}
8661
1c4850e2 8662/*
2c016dc2 8663 * helper to process tree block pointer.
1c4850e2
YZ
8664 *
8665 * when wc->stage == DROP_REFERENCE, this function checks
8666 * reference count of the block pointed to. if the block
8667 * is shared and we need update back refs for the subtree
8668 * rooted at the block, this function changes wc->stage to
8669 * UPDATE_BACKREF. if the block is shared and there is no
8670 * need to update back, this function drops the reference
8671 * to the block.
8672 *
8673 * NOTE: return value 1 means we should stop walking down.
8674 */
8675static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8676 struct btrfs_root *root,
8677 struct btrfs_path *path,
94fcca9f 8678 struct walk_control *wc, int *lookup_info)
1c4850e2 8679{
0b246afa 8680 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8681 u64 bytenr;
8682 u64 generation;
8683 u64 parent;
8684 u32 blocksize;
8685 struct btrfs_key key;
8686 struct extent_buffer *next;
8687 int level = wc->level;
8688 int reada = 0;
8689 int ret = 0;
1152651a 8690 bool need_account = false;
1c4850e2
YZ
8691
8692 generation = btrfs_node_ptr_generation(path->nodes[level],
8693 path->slots[level]);
8694 /*
8695 * if the lower level block was created before the snapshot
8696 * was created, we know there is no need to update back refs
8697 * for the subtree
8698 */
8699 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8700 generation <= root->root_key.offset) {
8701 *lookup_info = 1;
1c4850e2 8702 return 1;
94fcca9f 8703 }
1c4850e2
YZ
8704
8705 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8706 blocksize = fs_info->nodesize;
1c4850e2 8707
0b246afa 8708 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8709 if (!next) {
2ff7e61e 8710 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8711 if (IS_ERR(next))
8712 return PTR_ERR(next);
8713
b2aaaa3b
JB
8714 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8715 level - 1);
1c4850e2
YZ
8716 reada = 1;
8717 }
8718 btrfs_tree_lock(next);
8719 btrfs_set_lock_blocking(next);
8720
2ff7e61e 8721 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8722 &wc->refs[level - 1],
8723 &wc->flags[level - 1]);
4867268c
JB
8724 if (ret < 0)
8725 goto out_unlock;
79787eaa 8726
c2cf52eb 8727 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8728 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8729 ret = -EIO;
8730 goto out_unlock;
c2cf52eb 8731 }
94fcca9f 8732 *lookup_info = 0;
1c4850e2 8733
94fcca9f 8734 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8735 if (wc->refs[level - 1] > 1) {
1152651a 8736 need_account = true;
94fcca9f
YZ
8737 if (level == 1 &&
8738 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8739 goto skip;
8740
1c4850e2
YZ
8741 if (!wc->update_ref ||
8742 generation <= root->root_key.offset)
8743 goto skip;
8744
8745 btrfs_node_key_to_cpu(path->nodes[level], &key,
8746 path->slots[level]);
8747 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8748 if (ret < 0)
8749 goto skip;
8750
8751 wc->stage = UPDATE_BACKREF;
8752 wc->shared_level = level - 1;
8753 }
94fcca9f
YZ
8754 } else {
8755 if (level == 1 &&
8756 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8757 goto skip;
1c4850e2
YZ
8758 }
8759
b9fab919 8760 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8761 btrfs_tree_unlock(next);
8762 free_extent_buffer(next);
8763 next = NULL;
94fcca9f 8764 *lookup_info = 1;
1c4850e2
YZ
8765 }
8766
8767 if (!next) {
8768 if (reada && level == 1)
8769 reada_walk_down(trans, root, wc, path);
2ff7e61e 8770 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8771 if (IS_ERR(next)) {
8772 return PTR_ERR(next);
8773 } else if (!extent_buffer_uptodate(next)) {
416bc658 8774 free_extent_buffer(next);
97d9a8a4 8775 return -EIO;
416bc658 8776 }
1c4850e2
YZ
8777 btrfs_tree_lock(next);
8778 btrfs_set_lock_blocking(next);
8779 }
8780
8781 level--;
4867268c
JB
8782 ASSERT(level == btrfs_header_level(next));
8783 if (level != btrfs_header_level(next)) {
8784 btrfs_err(root->fs_info, "mismatched level");
8785 ret = -EIO;
8786 goto out_unlock;
8787 }
1c4850e2
YZ
8788 path->nodes[level] = next;
8789 path->slots[level] = 0;
bd681513 8790 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8791 wc->level = level;
8792 if (wc->level == 1)
8793 wc->reada_slot = 0;
8794 return 0;
8795skip:
8796 wc->refs[level - 1] = 0;
8797 wc->flags[level - 1] = 0;
94fcca9f
YZ
8798 if (wc->stage == DROP_REFERENCE) {
8799 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8800 parent = path->nodes[level]->start;
8801 } else {
4867268c 8802 ASSERT(root->root_key.objectid ==
94fcca9f 8803 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8804 if (root->root_key.objectid !=
8805 btrfs_header_owner(path->nodes[level])) {
8806 btrfs_err(root->fs_info,
8807 "mismatched block owner");
8808 ret = -EIO;
8809 goto out_unlock;
8810 }
94fcca9f
YZ
8811 parent = 0;
8812 }
1c4850e2 8813
1152651a 8814 if (need_account) {
33d1f05c
QW
8815 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8816 generation, level - 1);
1152651a 8817 if (ret) {
0b246afa 8818 btrfs_err_rl(fs_info,
5d163e0e
JM
8819 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8820 ret);
1152651a
MF
8821 }
8822 }
84f7d8e6 8823 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8824 parent, root->root_key.objectid,
8825 level - 1, 0);
4867268c
JB
8826 if (ret)
8827 goto out_unlock;
1c4850e2 8828 }
4867268c
JB
8829
8830 *lookup_info = 1;
8831 ret = 1;
8832
8833out_unlock:
1c4850e2
YZ
8834 btrfs_tree_unlock(next);
8835 free_extent_buffer(next);
4867268c
JB
8836
8837 return ret;
1c4850e2
YZ
8838}
8839
2c47e605 8840/*
2c016dc2 8841 * helper to process tree block while walking up the tree.
2c47e605
YZ
8842 *
8843 * when wc->stage == DROP_REFERENCE, this function drops
8844 * reference count on the block.
8845 *
8846 * when wc->stage == UPDATE_BACKREF, this function changes
8847 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8848 * to UPDATE_BACKREF previously while processing the block.
8849 *
8850 * NOTE: return value 1 means we should stop walking up.
8851 */
8852static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8853 struct btrfs_root *root,
8854 struct btrfs_path *path,
8855 struct walk_control *wc)
8856{
0b246afa 8857 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8858 int ret;
2c47e605
YZ
8859 int level = wc->level;
8860 struct extent_buffer *eb = path->nodes[level];
8861 u64 parent = 0;
8862
8863 if (wc->stage == UPDATE_BACKREF) {
8864 BUG_ON(wc->shared_level < level);
8865 if (level < wc->shared_level)
8866 goto out;
8867
2c47e605
YZ
8868 ret = find_next_key(path, level + 1, &wc->update_progress);
8869 if (ret > 0)
8870 wc->update_ref = 0;
8871
8872 wc->stage = DROP_REFERENCE;
8873 wc->shared_level = -1;
8874 path->slots[level] = 0;
8875
8876 /*
8877 * check reference count again if the block isn't locked.
8878 * we should start walking down the tree again if reference
8879 * count is one.
8880 */
8881 if (!path->locks[level]) {
8882 BUG_ON(level == 0);
8883 btrfs_tree_lock(eb);
8884 btrfs_set_lock_blocking(eb);
bd681513 8885 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8886
2ff7e61e 8887 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8888 eb->start, level, 1,
2c47e605
YZ
8889 &wc->refs[level],
8890 &wc->flags[level]);
79787eaa
JM
8891 if (ret < 0) {
8892 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8893 path->locks[level] = 0;
79787eaa
JM
8894 return ret;
8895 }
2c47e605
YZ
8896 BUG_ON(wc->refs[level] == 0);
8897 if (wc->refs[level] == 1) {
bd681513 8898 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8899 path->locks[level] = 0;
2c47e605
YZ
8900 return 1;
8901 }
f82d02d9 8902 }
2c47e605 8903 }
f82d02d9 8904
2c47e605
YZ
8905 /* wc->stage == DROP_REFERENCE */
8906 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8907
2c47e605
YZ
8908 if (wc->refs[level] == 1) {
8909 if (level == 0) {
8910 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8911 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8912 else
e339a6b0 8913 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8914 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8915 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8916 if (ret) {
0b246afa 8917 btrfs_err_rl(fs_info,
5d163e0e
JM
8918 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8919 ret);
1152651a 8920 }
2c47e605
YZ
8921 }
8922 /* make block locked assertion in clean_tree_block happy */
8923 if (!path->locks[level] &&
8924 btrfs_header_generation(eb) == trans->transid) {
8925 btrfs_tree_lock(eb);
8926 btrfs_set_lock_blocking(eb);
bd681513 8927 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8928 }
7c302b49 8929 clean_tree_block(fs_info, eb);
2c47e605
YZ
8930 }
8931
8932 if (eb == root->node) {
8933 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8934 parent = eb->start;
8935 else
8936 BUG_ON(root->root_key.objectid !=
8937 btrfs_header_owner(eb));
8938 } else {
8939 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8940 parent = path->nodes[level + 1]->start;
8941 else
8942 BUG_ON(root->root_key.objectid !=
8943 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8944 }
f82d02d9 8945
5581a51a 8946 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8947out:
8948 wc->refs[level] = 0;
8949 wc->flags[level] = 0;
f0486c68 8950 return 0;
2c47e605
YZ
8951}
8952
8953static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8954 struct btrfs_root *root,
8955 struct btrfs_path *path,
8956 struct walk_control *wc)
8957{
2c47e605 8958 int level = wc->level;
94fcca9f 8959 int lookup_info = 1;
2c47e605
YZ
8960 int ret;
8961
8962 while (level >= 0) {
94fcca9f 8963 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8964 if (ret > 0)
8965 break;
8966
8967 if (level == 0)
8968 break;
8969
7a7965f8
YZ
8970 if (path->slots[level] >=
8971 btrfs_header_nritems(path->nodes[level]))
8972 break;
8973
94fcca9f 8974 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8975 if (ret > 0) {
8976 path->slots[level]++;
8977 continue;
90d2c51d
MX
8978 } else if (ret < 0)
8979 return ret;
1c4850e2 8980 level = wc->level;
f82d02d9 8981 }
f82d02d9
YZ
8982 return 0;
8983}
8984
d397712b 8985static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8986 struct btrfs_root *root,
f82d02d9 8987 struct btrfs_path *path,
2c47e605 8988 struct walk_control *wc, int max_level)
20524f02 8989{
2c47e605 8990 int level = wc->level;
20524f02 8991 int ret;
9f3a7427 8992
2c47e605
YZ
8993 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8994 while (level < max_level && path->nodes[level]) {
8995 wc->level = level;
8996 if (path->slots[level] + 1 <
8997 btrfs_header_nritems(path->nodes[level])) {
8998 path->slots[level]++;
20524f02
CM
8999 return 0;
9000 } else {
2c47e605
YZ
9001 ret = walk_up_proc(trans, root, path, wc);
9002 if (ret > 0)
9003 return 0;
bd56b302 9004
2c47e605 9005 if (path->locks[level]) {
bd681513
CM
9006 btrfs_tree_unlock_rw(path->nodes[level],
9007 path->locks[level]);
2c47e605 9008 path->locks[level] = 0;
f82d02d9 9009 }
2c47e605
YZ
9010 free_extent_buffer(path->nodes[level]);
9011 path->nodes[level] = NULL;
9012 level++;
20524f02
CM
9013 }
9014 }
9015 return 1;
9016}
9017
9aca1d51 9018/*
2c47e605
YZ
9019 * drop a subvolume tree.
9020 *
9021 * this function traverses the tree freeing any blocks that only
9022 * referenced by the tree.
9023 *
9024 * when a shared tree block is found. this function decreases its
9025 * reference count by one. if update_ref is true, this function
9026 * also make sure backrefs for the shared block and all lower level
9027 * blocks are properly updated.
9d1a2a3a
DS
9028 *
9029 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9030 */
2c536799 9031int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9032 struct btrfs_block_rsv *block_rsv, int update_ref,
9033 int for_reloc)
20524f02 9034{
ab8d0fc4 9035 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9036 struct btrfs_path *path;
2c47e605 9037 struct btrfs_trans_handle *trans;
ab8d0fc4 9038 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9039 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9040 struct walk_control *wc;
9041 struct btrfs_key key;
9042 int err = 0;
9043 int ret;
9044 int level;
d29a9f62 9045 bool root_dropped = false;
20524f02 9046
ab8d0fc4 9047 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9048
5caf2a00 9049 path = btrfs_alloc_path();
cb1b69f4
TI
9050 if (!path) {
9051 err = -ENOMEM;
9052 goto out;
9053 }
20524f02 9054
2c47e605 9055 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9056 if (!wc) {
9057 btrfs_free_path(path);
cb1b69f4
TI
9058 err = -ENOMEM;
9059 goto out;
38a1a919 9060 }
2c47e605 9061
a22285a6 9062 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9063 if (IS_ERR(trans)) {
9064 err = PTR_ERR(trans);
9065 goto out_free;
9066 }
98d5dc13 9067
3fd0a558
YZ
9068 if (block_rsv)
9069 trans->block_rsv = block_rsv;
2c47e605 9070
9f3a7427 9071 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9072 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9073 path->nodes[level] = btrfs_lock_root_node(root);
9074 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9075 path->slots[level] = 0;
bd681513 9076 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9077 memset(&wc->update_progress, 0,
9078 sizeof(wc->update_progress));
9f3a7427 9079 } else {
9f3a7427 9080 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9081 memcpy(&wc->update_progress, &key,
9082 sizeof(wc->update_progress));
9083
6702ed49 9084 level = root_item->drop_level;
2c47e605 9085 BUG_ON(level == 0);
6702ed49 9086 path->lowest_level = level;
2c47e605
YZ
9087 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9088 path->lowest_level = 0;
9089 if (ret < 0) {
9090 err = ret;
79787eaa 9091 goto out_end_trans;
9f3a7427 9092 }
1c4850e2 9093 WARN_ON(ret > 0);
2c47e605 9094
7d9eb12c
CM
9095 /*
9096 * unlock our path, this is safe because only this
9097 * function is allowed to delete this snapshot
9098 */
5d4f98a2 9099 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9100
9101 level = btrfs_header_level(root->node);
9102 while (1) {
9103 btrfs_tree_lock(path->nodes[level]);
9104 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9105 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9106
2ff7e61e 9107 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9108 path->nodes[level]->start,
3173a18f 9109 level, 1, &wc->refs[level],
2c47e605 9110 &wc->flags[level]);
79787eaa
JM
9111 if (ret < 0) {
9112 err = ret;
9113 goto out_end_trans;
9114 }
2c47e605
YZ
9115 BUG_ON(wc->refs[level] == 0);
9116
9117 if (level == root_item->drop_level)
9118 break;
9119
9120 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9121 path->locks[level] = 0;
2c47e605
YZ
9122 WARN_ON(wc->refs[level] != 1);
9123 level--;
9124 }
9f3a7427 9125 }
2c47e605
YZ
9126
9127 wc->level = level;
9128 wc->shared_level = -1;
9129 wc->stage = DROP_REFERENCE;
9130 wc->update_ref = update_ref;
9131 wc->keep_locks = 0;
66d7e7f0 9132 wc->for_reloc = for_reloc;
0b246afa 9133 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9134
d397712b 9135 while (1) {
9d1a2a3a 9136
2c47e605
YZ
9137 ret = walk_down_tree(trans, root, path, wc);
9138 if (ret < 0) {
9139 err = ret;
20524f02 9140 break;
2c47e605 9141 }
9aca1d51 9142
2c47e605
YZ
9143 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9144 if (ret < 0) {
9145 err = ret;
20524f02 9146 break;
2c47e605
YZ
9147 }
9148
9149 if (ret > 0) {
9150 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9151 break;
9152 }
2c47e605
YZ
9153
9154 if (wc->stage == DROP_REFERENCE) {
9155 level = wc->level;
9156 btrfs_node_key(path->nodes[level],
9157 &root_item->drop_progress,
9158 path->slots[level]);
9159 root_item->drop_level = level;
9160 }
9161
9162 BUG_ON(wc->level == 0);
3a45bb20 9163 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9164 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9165 ret = btrfs_update_root(trans, tree_root,
9166 &root->root_key,
9167 root_item);
79787eaa 9168 if (ret) {
66642832 9169 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9170 err = ret;
9171 goto out_end_trans;
9172 }
2c47e605 9173
3a45bb20 9174 btrfs_end_transaction_throttle(trans);
2ff7e61e 9175 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9176 btrfs_debug(fs_info,
9177 "drop snapshot early exit");
3c8f2422
JB
9178 err = -EAGAIN;
9179 goto out_free;
9180 }
9181
a22285a6 9182 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9183 if (IS_ERR(trans)) {
9184 err = PTR_ERR(trans);
9185 goto out_free;
9186 }
3fd0a558
YZ
9187 if (block_rsv)
9188 trans->block_rsv = block_rsv;
c3e69d58 9189 }
20524f02 9190 }
b3b4aa74 9191 btrfs_release_path(path);
79787eaa
JM
9192 if (err)
9193 goto out_end_trans;
2c47e605 9194
1cd5447e 9195 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9196 if (ret) {
66642832 9197 btrfs_abort_transaction(trans, ret);
e19182c0 9198 err = ret;
79787eaa
JM
9199 goto out_end_trans;
9200 }
2c47e605 9201
76dda93c 9202 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9203 ret = btrfs_find_root(tree_root, &root->root_key, path,
9204 NULL, NULL);
79787eaa 9205 if (ret < 0) {
66642832 9206 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9207 err = ret;
9208 goto out_end_trans;
9209 } else if (ret > 0) {
84cd948c
JB
9210 /* if we fail to delete the orphan item this time
9211 * around, it'll get picked up the next time.
9212 *
9213 * The most common failure here is just -ENOENT.
9214 */
9215 btrfs_del_orphan_item(trans, tree_root,
9216 root->root_key.objectid);
76dda93c
YZ
9217 }
9218 }
9219
27cdeb70 9220 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9221 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9222 } else {
9223 free_extent_buffer(root->node);
9224 free_extent_buffer(root->commit_root);
b0feb9d9 9225 btrfs_put_fs_root(root);
76dda93c 9226 }
d29a9f62 9227 root_dropped = true;
79787eaa 9228out_end_trans:
3a45bb20 9229 btrfs_end_transaction_throttle(trans);
79787eaa 9230out_free:
2c47e605 9231 kfree(wc);
5caf2a00 9232 btrfs_free_path(path);
cb1b69f4 9233out:
d29a9f62
JB
9234 /*
9235 * So if we need to stop dropping the snapshot for whatever reason we
9236 * need to make sure to add it back to the dead root list so that we
9237 * keep trying to do the work later. This also cleans up roots if we
9238 * don't have it in the radix (like when we recover after a power fail
9239 * or unmount) so we don't leak memory.
9240 */
897ca819 9241 if (!for_reloc && !root_dropped)
d29a9f62 9242 btrfs_add_dead_root(root);
90515e7f 9243 if (err && err != -EAGAIN)
ab8d0fc4 9244 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9245 return err;
20524f02 9246}
9078a3e1 9247
2c47e605
YZ
9248/*
9249 * drop subtree rooted at tree block 'node'.
9250 *
9251 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9252 * only used by relocation code
2c47e605 9253 */
f82d02d9
YZ
9254int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9255 struct btrfs_root *root,
9256 struct extent_buffer *node,
9257 struct extent_buffer *parent)
9258{
0b246afa 9259 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9260 struct btrfs_path *path;
2c47e605 9261 struct walk_control *wc;
f82d02d9
YZ
9262 int level;
9263 int parent_level;
9264 int ret = 0;
9265 int wret;
9266
2c47e605
YZ
9267 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9268
f82d02d9 9269 path = btrfs_alloc_path();
db5b493a
TI
9270 if (!path)
9271 return -ENOMEM;
f82d02d9 9272
2c47e605 9273 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9274 if (!wc) {
9275 btrfs_free_path(path);
9276 return -ENOMEM;
9277 }
2c47e605 9278
b9447ef8 9279 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9280 parent_level = btrfs_header_level(parent);
9281 extent_buffer_get(parent);
9282 path->nodes[parent_level] = parent;
9283 path->slots[parent_level] = btrfs_header_nritems(parent);
9284
b9447ef8 9285 btrfs_assert_tree_locked(node);
f82d02d9 9286 level = btrfs_header_level(node);
f82d02d9
YZ
9287 path->nodes[level] = node;
9288 path->slots[level] = 0;
bd681513 9289 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9290
9291 wc->refs[parent_level] = 1;
9292 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9293 wc->level = level;
9294 wc->shared_level = -1;
9295 wc->stage = DROP_REFERENCE;
9296 wc->update_ref = 0;
9297 wc->keep_locks = 1;
66d7e7f0 9298 wc->for_reloc = 1;
0b246afa 9299 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9300
9301 while (1) {
2c47e605
YZ
9302 wret = walk_down_tree(trans, root, path, wc);
9303 if (wret < 0) {
f82d02d9 9304 ret = wret;
f82d02d9 9305 break;
2c47e605 9306 }
f82d02d9 9307
2c47e605 9308 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9309 if (wret < 0)
9310 ret = wret;
9311 if (wret != 0)
9312 break;
9313 }
9314
2c47e605 9315 kfree(wc);
f82d02d9
YZ
9316 btrfs_free_path(path);
9317 return ret;
9318}
9319
6202df69 9320static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9321{
9322 u64 num_devices;
fc67c450 9323 u64 stripped;
e4d8ec0f 9324
fc67c450
ID
9325 /*
9326 * if restripe for this chunk_type is on pick target profile and
9327 * return, otherwise do the usual balance
9328 */
6202df69 9329 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9330 if (stripped)
9331 return extended_to_chunk(stripped);
e4d8ec0f 9332
6202df69 9333 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9334
fc67c450 9335 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9336 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9337 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9338
ec44a35c
CM
9339 if (num_devices == 1) {
9340 stripped |= BTRFS_BLOCK_GROUP_DUP;
9341 stripped = flags & ~stripped;
9342
9343 /* turn raid0 into single device chunks */
9344 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9345 return stripped;
9346
9347 /* turn mirroring into duplication */
9348 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9349 BTRFS_BLOCK_GROUP_RAID10))
9350 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9351 } else {
9352 /* they already had raid on here, just return */
ec44a35c
CM
9353 if (flags & stripped)
9354 return flags;
9355
9356 stripped |= BTRFS_BLOCK_GROUP_DUP;
9357 stripped = flags & ~stripped;
9358
9359 /* switch duplicated blocks with raid1 */
9360 if (flags & BTRFS_BLOCK_GROUP_DUP)
9361 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9362
e3176ca2 9363 /* this is drive concat, leave it alone */
ec44a35c 9364 }
e3176ca2 9365
ec44a35c
CM
9366 return flags;
9367}
9368
868f401a 9369static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9370{
f0486c68
YZ
9371 struct btrfs_space_info *sinfo = cache->space_info;
9372 u64 num_bytes;
199c36ea 9373 u64 min_allocable_bytes;
f0486c68 9374 int ret = -ENOSPC;
0ef3e66b 9375
199c36ea
MX
9376 /*
9377 * We need some metadata space and system metadata space for
9378 * allocating chunks in some corner cases until we force to set
9379 * it to be readonly.
9380 */
9381 if ((sinfo->flags &
9382 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9383 !force)
ee22184b 9384 min_allocable_bytes = SZ_1M;
199c36ea
MX
9385 else
9386 min_allocable_bytes = 0;
9387
f0486c68
YZ
9388 spin_lock(&sinfo->lock);
9389 spin_lock(&cache->lock);
61cfea9b
W
9390
9391 if (cache->ro) {
868f401a 9392 cache->ro++;
61cfea9b
W
9393 ret = 0;
9394 goto out;
9395 }
9396
f0486c68
YZ
9397 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9398 cache->bytes_super - btrfs_block_group_used(&cache->item);
9399
4136135b 9400 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9401 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9402 sinfo->bytes_readonly += num_bytes;
868f401a 9403 cache->ro++;
633c0aad 9404 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9405 ret = 0;
9406 }
61cfea9b 9407out:
f0486c68
YZ
9408 spin_unlock(&cache->lock);
9409 spin_unlock(&sinfo->lock);
9410 return ret;
9411}
7d9eb12c 9412
5e00f193 9413int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9414 struct btrfs_block_group_cache *cache)
c286ac48 9415
f0486c68
YZ
9416{
9417 struct btrfs_trans_handle *trans;
9418 u64 alloc_flags;
9419 int ret;
7d9eb12c 9420
1bbc621e 9421again:
5e00f193 9422 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9423 if (IS_ERR(trans))
9424 return PTR_ERR(trans);
5d4f98a2 9425
1bbc621e
CM
9426 /*
9427 * we're not allowed to set block groups readonly after the dirty
9428 * block groups cache has started writing. If it already started,
9429 * back off and let this transaction commit
9430 */
0b246afa 9431 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9432 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9433 u64 transid = trans->transid;
9434
0b246afa 9435 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9436 btrfs_end_transaction(trans);
1bbc621e 9437
2ff7e61e 9438 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9439 if (ret)
9440 return ret;
9441 goto again;
9442 }
9443
153c35b6
CM
9444 /*
9445 * if we are changing raid levels, try to allocate a corresponding
9446 * block group with the new raid level.
9447 */
0b246afa 9448 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9449 if (alloc_flags != cache->flags) {
2ff7e61e 9450 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9451 CHUNK_ALLOC_FORCE);
9452 /*
9453 * ENOSPC is allowed here, we may have enough space
9454 * already allocated at the new raid level to
9455 * carry on
9456 */
9457 if (ret == -ENOSPC)
9458 ret = 0;
9459 if (ret < 0)
9460 goto out;
9461 }
1bbc621e 9462
868f401a 9463 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9464 if (!ret)
9465 goto out;
2ff7e61e
JM
9466 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9467 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9468 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9469 if (ret < 0)
9470 goto out;
868f401a 9471 ret = inc_block_group_ro(cache, 0);
f0486c68 9472out:
2f081088 9473 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9474 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9475 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9476 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9477 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9478 }
0b246afa 9479 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9480
3a45bb20 9481 btrfs_end_transaction(trans);
f0486c68
YZ
9482 return ret;
9483}
5d4f98a2 9484
c87f08ca 9485int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9486 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9487{
2ff7e61e
JM
9488 u64 alloc_flags = get_alloc_profile(fs_info, type);
9489
9490 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9491}
9492
6d07bcec
MX
9493/*
9494 * helper to account the unused space of all the readonly block group in the
633c0aad 9495 * space_info. takes mirrors into account.
6d07bcec 9496 */
633c0aad 9497u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9498{
9499 struct btrfs_block_group_cache *block_group;
9500 u64 free_bytes = 0;
9501 int factor;
9502
01327610 9503 /* It's df, we don't care if it's racy */
633c0aad
JB
9504 if (list_empty(&sinfo->ro_bgs))
9505 return 0;
9506
9507 spin_lock(&sinfo->lock);
9508 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9509 spin_lock(&block_group->lock);
9510
9511 if (!block_group->ro) {
9512 spin_unlock(&block_group->lock);
9513 continue;
9514 }
9515
9516 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9517 BTRFS_BLOCK_GROUP_RAID10 |
9518 BTRFS_BLOCK_GROUP_DUP))
9519 factor = 2;
9520 else
9521 factor = 1;
9522
9523 free_bytes += (block_group->key.offset -
9524 btrfs_block_group_used(&block_group->item)) *
9525 factor;
9526
9527 spin_unlock(&block_group->lock);
9528 }
6d07bcec
MX
9529 spin_unlock(&sinfo->lock);
9530
9531 return free_bytes;
9532}
9533
2ff7e61e 9534void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9535{
f0486c68
YZ
9536 struct btrfs_space_info *sinfo = cache->space_info;
9537 u64 num_bytes;
9538
9539 BUG_ON(!cache->ro);
9540
9541 spin_lock(&sinfo->lock);
9542 spin_lock(&cache->lock);
868f401a
Z
9543 if (!--cache->ro) {
9544 num_bytes = cache->key.offset - cache->reserved -
9545 cache->pinned - cache->bytes_super -
9546 btrfs_block_group_used(&cache->item);
9547 sinfo->bytes_readonly -= num_bytes;
9548 list_del_init(&cache->ro_list);
9549 }
f0486c68
YZ
9550 spin_unlock(&cache->lock);
9551 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9552}
9553
ba1bf481
JB
9554/*
9555 * checks to see if its even possible to relocate this block group.
9556 *
9557 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9558 * ok to go ahead and try.
9559 */
6bccf3ab 9560int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9561{
6bccf3ab 9562 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9563 struct btrfs_block_group_cache *block_group;
9564 struct btrfs_space_info *space_info;
0b246afa 9565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9566 struct btrfs_device *device;
6df9a95e 9567 struct btrfs_trans_handle *trans;
cdcb725c 9568 u64 min_free;
6719db6a
JB
9569 u64 dev_min = 1;
9570 u64 dev_nr = 0;
4a5e98f5 9571 u64 target;
0305bc27 9572 int debug;
cdcb725c 9573 int index;
ba1bf481
JB
9574 int full = 0;
9575 int ret = 0;
1a40e23b 9576
0b246afa 9577 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9578
0b246afa 9579 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9580
ba1bf481 9581 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9582 if (!block_group) {
9583 if (debug)
0b246afa 9584 btrfs_warn(fs_info,
0305bc27
QW
9585 "can't find block group for bytenr %llu",
9586 bytenr);
ba1bf481 9587 return -1;
0305bc27 9588 }
1a40e23b 9589
cdcb725c 9590 min_free = btrfs_block_group_used(&block_group->item);
9591
ba1bf481 9592 /* no bytes used, we're good */
cdcb725c 9593 if (!min_free)
1a40e23b
ZY
9594 goto out;
9595
ba1bf481
JB
9596 space_info = block_group->space_info;
9597 spin_lock(&space_info->lock);
17d217fe 9598
ba1bf481 9599 full = space_info->full;
17d217fe 9600
ba1bf481
JB
9601 /*
9602 * if this is the last block group we have in this space, we can't
7ce618db
CM
9603 * relocate it unless we're able to allocate a new chunk below.
9604 *
9605 * Otherwise, we need to make sure we have room in the space to handle
9606 * all of the extents from this block group. If we can, we're good
ba1bf481 9607 */
7ce618db 9608 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9609 (btrfs_space_info_used(space_info, false) + min_free <
9610 space_info->total_bytes)) {
ba1bf481
JB
9611 spin_unlock(&space_info->lock);
9612 goto out;
17d217fe 9613 }
ba1bf481 9614 spin_unlock(&space_info->lock);
ea8c2819 9615
ba1bf481
JB
9616 /*
9617 * ok we don't have enough space, but maybe we have free space on our
9618 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9619 * alloc devices and guess if we have enough space. if this block
9620 * group is going to be restriped, run checks against the target
9621 * profile instead of the current one.
ba1bf481
JB
9622 */
9623 ret = -1;
ea8c2819 9624
cdcb725c 9625 /*
9626 * index:
9627 * 0: raid10
9628 * 1: raid1
9629 * 2: dup
9630 * 3: raid0
9631 * 4: single
9632 */
0b246afa 9633 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9634 if (target) {
31e50229 9635 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9636 } else {
9637 /*
9638 * this is just a balance, so if we were marked as full
9639 * we know there is no space for a new chunk
9640 */
0305bc27
QW
9641 if (full) {
9642 if (debug)
0b246afa
JM
9643 btrfs_warn(fs_info,
9644 "no space to alloc new chunk for block group %llu",
9645 block_group->key.objectid);
4a5e98f5 9646 goto out;
0305bc27 9647 }
4a5e98f5
ID
9648
9649 index = get_block_group_index(block_group);
9650 }
9651
e6ec716f 9652 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9653 dev_min = 4;
6719db6a
JB
9654 /* Divide by 2 */
9655 min_free >>= 1;
e6ec716f 9656 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9657 dev_min = 2;
e6ec716f 9658 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9659 /* Multiply by 2 */
9660 min_free <<= 1;
e6ec716f 9661 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9662 dev_min = fs_devices->rw_devices;
47c5713f 9663 min_free = div64_u64(min_free, dev_min);
cdcb725c 9664 }
9665
6df9a95e
JB
9666 /* We need to do this so that we can look at pending chunks */
9667 trans = btrfs_join_transaction(root);
9668 if (IS_ERR(trans)) {
9669 ret = PTR_ERR(trans);
9670 goto out;
9671 }
9672
0b246afa 9673 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9674 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9675 u64 dev_offset;
56bec294 9676
ba1bf481
JB
9677 /*
9678 * check to make sure we can actually find a chunk with enough
9679 * space to fit our block group in.
9680 */
63a212ab 9681 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9682 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9683 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9684 &dev_offset, NULL);
ba1bf481 9685 if (!ret)
cdcb725c 9686 dev_nr++;
9687
9688 if (dev_nr >= dev_min)
73e48b27 9689 break;
cdcb725c 9690
ba1bf481 9691 ret = -1;
725c8463 9692 }
edbd8d4e 9693 }
0305bc27 9694 if (debug && ret == -1)
0b246afa
JM
9695 btrfs_warn(fs_info,
9696 "no space to allocate a new chunk for block group %llu",
9697 block_group->key.objectid);
9698 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9699 btrfs_end_transaction(trans);
edbd8d4e 9700out:
ba1bf481 9701 btrfs_put_block_group(block_group);
edbd8d4e
CM
9702 return ret;
9703}
9704
6bccf3ab
JM
9705static int find_first_block_group(struct btrfs_fs_info *fs_info,
9706 struct btrfs_path *path,
9707 struct btrfs_key *key)
0b86a832 9708{
6bccf3ab 9709 struct btrfs_root *root = fs_info->extent_root;
925baedd 9710 int ret = 0;
0b86a832
CM
9711 struct btrfs_key found_key;
9712 struct extent_buffer *leaf;
9713 int slot;
edbd8d4e 9714
0b86a832
CM
9715 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9716 if (ret < 0)
925baedd
CM
9717 goto out;
9718
d397712b 9719 while (1) {
0b86a832 9720 slot = path->slots[0];
edbd8d4e 9721 leaf = path->nodes[0];
0b86a832
CM
9722 if (slot >= btrfs_header_nritems(leaf)) {
9723 ret = btrfs_next_leaf(root, path);
9724 if (ret == 0)
9725 continue;
9726 if (ret < 0)
925baedd 9727 goto out;
0b86a832 9728 break;
edbd8d4e 9729 }
0b86a832 9730 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9731
0b86a832 9732 if (found_key.objectid >= key->objectid &&
925baedd 9733 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9734 struct extent_map_tree *em_tree;
9735 struct extent_map *em;
9736
9737 em_tree = &root->fs_info->mapping_tree.map_tree;
9738 read_lock(&em_tree->lock);
9739 em = lookup_extent_mapping(em_tree, found_key.objectid,
9740 found_key.offset);
9741 read_unlock(&em_tree->lock);
9742 if (!em) {
0b246afa 9743 btrfs_err(fs_info,
6fb37b75
LB
9744 "logical %llu len %llu found bg but no related chunk",
9745 found_key.objectid, found_key.offset);
9746 ret = -ENOENT;
9747 } else {
9748 ret = 0;
9749 }
187ee58c 9750 free_extent_map(em);
925baedd
CM
9751 goto out;
9752 }
0b86a832 9753 path->slots[0]++;
edbd8d4e 9754 }
925baedd 9755out:
0b86a832 9756 return ret;
edbd8d4e
CM
9757}
9758
0af3d00b
JB
9759void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9760{
9761 struct btrfs_block_group_cache *block_group;
9762 u64 last = 0;
9763
9764 while (1) {
9765 struct inode *inode;
9766
9767 block_group = btrfs_lookup_first_block_group(info, last);
9768 while (block_group) {
9769 spin_lock(&block_group->lock);
9770 if (block_group->iref)
9771 break;
9772 spin_unlock(&block_group->lock);
2ff7e61e 9773 block_group = next_block_group(info, block_group);
0af3d00b
JB
9774 }
9775 if (!block_group) {
9776 if (last == 0)
9777 break;
9778 last = 0;
9779 continue;
9780 }
9781
9782 inode = block_group->inode;
9783 block_group->iref = 0;
9784 block_group->inode = NULL;
9785 spin_unlock(&block_group->lock);
f3bca802 9786 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9787 iput(inode);
9788 last = block_group->key.objectid + block_group->key.offset;
9789 btrfs_put_block_group(block_group);
9790 }
9791}
9792
5cdd7db6
FM
9793/*
9794 * Must be called only after stopping all workers, since we could have block
9795 * group caching kthreads running, and therefore they could race with us if we
9796 * freed the block groups before stopping them.
9797 */
1a40e23b
ZY
9798int btrfs_free_block_groups(struct btrfs_fs_info *info)
9799{
9800 struct btrfs_block_group_cache *block_group;
4184ea7f 9801 struct btrfs_space_info *space_info;
11833d66 9802 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9803 struct rb_node *n;
9804
9e351cc8 9805 down_write(&info->commit_root_sem);
11833d66
YZ
9806 while (!list_empty(&info->caching_block_groups)) {
9807 caching_ctl = list_entry(info->caching_block_groups.next,
9808 struct btrfs_caching_control, list);
9809 list_del(&caching_ctl->list);
9810 put_caching_control(caching_ctl);
9811 }
9e351cc8 9812 up_write(&info->commit_root_sem);
11833d66 9813
47ab2a6c
JB
9814 spin_lock(&info->unused_bgs_lock);
9815 while (!list_empty(&info->unused_bgs)) {
9816 block_group = list_first_entry(&info->unused_bgs,
9817 struct btrfs_block_group_cache,
9818 bg_list);
9819 list_del_init(&block_group->bg_list);
9820 btrfs_put_block_group(block_group);
9821 }
9822 spin_unlock(&info->unused_bgs_lock);
9823
1a40e23b
ZY
9824 spin_lock(&info->block_group_cache_lock);
9825 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9826 block_group = rb_entry(n, struct btrfs_block_group_cache,
9827 cache_node);
1a40e23b
ZY
9828 rb_erase(&block_group->cache_node,
9829 &info->block_group_cache_tree);
01eacb27 9830 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9831 spin_unlock(&info->block_group_cache_lock);
9832
80eb234a 9833 down_write(&block_group->space_info->groups_sem);
1a40e23b 9834 list_del(&block_group->list);
80eb234a 9835 up_write(&block_group->space_info->groups_sem);
d2fb3437 9836
3c14874a
JB
9837 /*
9838 * We haven't cached this block group, which means we could
9839 * possibly have excluded extents on this block group.
9840 */
36cce922
JB
9841 if (block_group->cached == BTRFS_CACHE_NO ||
9842 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9843 free_excluded_extents(info, block_group);
3c14874a 9844
817d52f8 9845 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9846 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9847 ASSERT(list_empty(&block_group->dirty_list));
9848 ASSERT(list_empty(&block_group->io_list));
9849 ASSERT(list_empty(&block_group->bg_list));
9850 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9851 btrfs_put_block_group(block_group);
d899e052
YZ
9852
9853 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9854 }
9855 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9856
9857 /* now that all the block groups are freed, go through and
9858 * free all the space_info structs. This is only called during
9859 * the final stages of unmount, and so we know nobody is
9860 * using them. We call synchronize_rcu() once before we start,
9861 * just to be on the safe side.
9862 */
9863 synchronize_rcu();
9864
8929ecfa
YZ
9865 release_global_block_rsv(info);
9866
67871254 9867 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9868 int i;
9869
4184ea7f
CM
9870 space_info = list_entry(info->space_info.next,
9871 struct btrfs_space_info,
9872 list);
d555b6c3
JB
9873
9874 /*
9875 * Do not hide this behind enospc_debug, this is actually
9876 * important and indicates a real bug if this happens.
9877 */
9878 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9879 space_info->bytes_reserved > 0 ||
d555b6c3 9880 space_info->bytes_may_use > 0))
ab8d0fc4 9881 dump_space_info(info, space_info, 0, 0);
4184ea7f 9882 list_del(&space_info->list);
6ab0a202
JM
9883 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9884 struct kobject *kobj;
c1895442
JM
9885 kobj = space_info->block_group_kobjs[i];
9886 space_info->block_group_kobjs[i] = NULL;
9887 if (kobj) {
6ab0a202
JM
9888 kobject_del(kobj);
9889 kobject_put(kobj);
9890 }
9891 }
9892 kobject_del(&space_info->kobj);
9893 kobject_put(&space_info->kobj);
4184ea7f 9894 }
1a40e23b
ZY
9895 return 0;
9896}
9897
c434d21c 9898static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9899{
c434d21c 9900 struct btrfs_space_info *space_info = cache->space_info;
b742bb82 9901 int index = get_block_group_index(cache);
ed55b6ac 9902 bool first = false;
b742bb82
YZ
9903
9904 down_write(&space_info->groups_sem);
ed55b6ac
JM
9905 if (list_empty(&space_info->block_groups[index]))
9906 first = true;
9907 list_add_tail(&cache->list, &space_info->block_groups[index]);
9908 up_write(&space_info->groups_sem);
9909
9910 if (first) {
c1895442 9911 struct raid_kobject *rkobj;
6ab0a202
JM
9912 int ret;
9913
c1895442
JM
9914 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9915 if (!rkobj)
9916 goto out_err;
9917 rkobj->raid_type = index;
9918 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9919 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9920 "%s", get_raid_name(index));
6ab0a202 9921 if (ret) {
c1895442
JM
9922 kobject_put(&rkobj->kobj);
9923 goto out_err;
6ab0a202 9924 }
c1895442 9925 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9926 }
c1895442
JM
9927
9928 return;
9929out_err:
ab8d0fc4
JM
9930 btrfs_warn(cache->fs_info,
9931 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9932}
9933
920e4a58 9934static struct btrfs_block_group_cache *
2ff7e61e
JM
9935btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9936 u64 start, u64 size)
920e4a58
MX
9937{
9938 struct btrfs_block_group_cache *cache;
9939
9940 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9941 if (!cache)
9942 return NULL;
9943
9944 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9945 GFP_NOFS);
9946 if (!cache->free_space_ctl) {
9947 kfree(cache);
9948 return NULL;
9949 }
9950
9951 cache->key.objectid = start;
9952 cache->key.offset = size;
9953 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9954
0b246afa 9955 cache->fs_info = fs_info;
e4ff5fb5 9956 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9957 set_free_space_tree_thresholds(cache);
9958
920e4a58
MX
9959 atomic_set(&cache->count, 1);
9960 spin_lock_init(&cache->lock);
e570fd27 9961 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9962 INIT_LIST_HEAD(&cache->list);
9963 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9964 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9965 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9966 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9967 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9968 btrfs_init_free_space_ctl(cache);
04216820 9969 atomic_set(&cache->trimming, 0);
a5ed9182 9970 mutex_init(&cache->free_space_lock);
0966a7b1 9971 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9972
9973 return cache;
9974}
9975
5b4aacef 9976int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9977{
9978 struct btrfs_path *path;
9979 int ret;
9078a3e1 9980 struct btrfs_block_group_cache *cache;
6324fbf3 9981 struct btrfs_space_info *space_info;
9078a3e1
CM
9982 struct btrfs_key key;
9983 struct btrfs_key found_key;
5f39d397 9984 struct extent_buffer *leaf;
0af3d00b
JB
9985 int need_clear = 0;
9986 u64 cache_gen;
49303381
LB
9987 u64 feature;
9988 int mixed;
9989
9990 feature = btrfs_super_incompat_flags(info->super_copy);
9991 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9992
9078a3e1 9993 key.objectid = 0;
0b86a832 9994 key.offset = 0;
962a298f 9995 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9996 path = btrfs_alloc_path();
9997 if (!path)
9998 return -ENOMEM;
e4058b54 9999 path->reada = READA_FORWARD;
9078a3e1 10000
0b246afa
JM
10001 cache_gen = btrfs_super_cache_generation(info->super_copy);
10002 if (btrfs_test_opt(info, SPACE_CACHE) &&
10003 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10004 need_clear = 1;
0b246afa 10005 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10006 need_clear = 1;
0af3d00b 10007
d397712b 10008 while (1) {
6bccf3ab 10009 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10010 if (ret > 0)
10011 break;
0b86a832
CM
10012 if (ret != 0)
10013 goto error;
920e4a58 10014
5f39d397
CM
10015 leaf = path->nodes[0];
10016 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10017
2ff7e61e 10018 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10019 found_key.offset);
9078a3e1 10020 if (!cache) {
0b86a832 10021 ret = -ENOMEM;
f0486c68 10022 goto error;
9078a3e1 10023 }
96303081 10024
cf7c1ef6
LB
10025 if (need_clear) {
10026 /*
10027 * When we mount with old space cache, we need to
10028 * set BTRFS_DC_CLEAR and set dirty flag.
10029 *
10030 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10031 * truncate the old free space cache inode and
10032 * setup a new one.
10033 * b) Setting 'dirty flag' makes sure that we flush
10034 * the new space cache info onto disk.
10035 */
0b246afa 10036 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10037 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10038 }
0af3d00b 10039
5f39d397
CM
10040 read_extent_buffer(leaf, &cache->item,
10041 btrfs_item_ptr_offset(leaf, path->slots[0]),
10042 sizeof(cache->item));
920e4a58 10043 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10044 if (!mixed &&
10045 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10046 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10047 btrfs_err(info,
10048"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10049 cache->key.objectid);
10050 ret = -EINVAL;
10051 goto error;
10052 }
0b86a832 10053
9078a3e1 10054 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10055 btrfs_release_path(path);
34d52cb6 10056
3c14874a
JB
10057 /*
10058 * We need to exclude the super stripes now so that the space
10059 * info has super bytes accounted for, otherwise we'll think
10060 * we have more space than we actually do.
10061 */
2ff7e61e 10062 ret = exclude_super_stripes(info, cache);
835d974f
JB
10063 if (ret) {
10064 /*
10065 * We may have excluded something, so call this just in
10066 * case.
10067 */
2ff7e61e 10068 free_excluded_extents(info, cache);
920e4a58 10069 btrfs_put_block_group(cache);
835d974f
JB
10070 goto error;
10071 }
3c14874a 10072
817d52f8
JB
10073 /*
10074 * check for two cases, either we are full, and therefore
10075 * don't need to bother with the caching work since we won't
10076 * find any space, or we are empty, and we can just add all
10077 * the space in and be done with it. This saves us _alot_ of
10078 * time, particularly in the full case.
10079 */
10080 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10081 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10082 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10083 free_excluded_extents(info, cache);
817d52f8 10084 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10085 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10086 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10087 add_new_free_space(cache, info,
817d52f8
JB
10088 found_key.objectid,
10089 found_key.objectid +
10090 found_key.offset);
2ff7e61e 10091 free_excluded_extents(info, cache);
817d52f8 10092 }
96b5179d 10093
0b246afa 10094 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10095 if (ret) {
10096 btrfs_remove_free_space_cache(cache);
10097 btrfs_put_block_group(cache);
10098 goto error;
10099 }
10100
0b246afa 10101 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10102 update_space_info(info, cache->flags, found_key.offset,
10103 btrfs_block_group_used(&cache->item),
10104 cache->bytes_super, &space_info);
8c579fe7 10105
6324fbf3 10106 cache->space_info = space_info;
1b2da372 10107
c434d21c 10108 link_block_group(cache);
0f9dd46c 10109
0b246afa 10110 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10111 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10112 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10113 } else if (btrfs_block_group_used(&cache->item) == 0) {
10114 spin_lock(&info->unused_bgs_lock);
10115 /* Should always be true but just in case. */
10116 if (list_empty(&cache->bg_list)) {
10117 btrfs_get_block_group(cache);
10118 list_add_tail(&cache->bg_list,
10119 &info->unused_bgs);
10120 }
10121 spin_unlock(&info->unused_bgs_lock);
10122 }
9078a3e1 10123 }
b742bb82 10124
0b246afa 10125 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10126 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10127 (BTRFS_BLOCK_GROUP_RAID10 |
10128 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10129 BTRFS_BLOCK_GROUP_RAID5 |
10130 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10131 BTRFS_BLOCK_GROUP_DUP)))
10132 continue;
10133 /*
10134 * avoid allocating from un-mirrored block group if there are
10135 * mirrored block groups.
10136 */
1095cc0d 10137 list_for_each_entry(cache,
10138 &space_info->block_groups[BTRFS_RAID_RAID0],
10139 list)
868f401a 10140 inc_block_group_ro(cache, 1);
1095cc0d 10141 list_for_each_entry(cache,
10142 &space_info->block_groups[BTRFS_RAID_SINGLE],
10143 list)
868f401a 10144 inc_block_group_ro(cache, 1);
9078a3e1 10145 }
f0486c68
YZ
10146
10147 init_global_block_rsv(info);
0b86a832
CM
10148 ret = 0;
10149error:
9078a3e1 10150 btrfs_free_path(path);
0b86a832 10151 return ret;
9078a3e1 10152}
6324fbf3 10153
ea658bad 10154void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 10155 struct btrfs_fs_info *fs_info)
ea658bad
JB
10156{
10157 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10158 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10159 struct btrfs_block_group_item item;
10160 struct btrfs_key key;
10161 int ret = 0;
d9a0540a 10162 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10163
d9a0540a 10164 trans->can_flush_pending_bgs = false;
47ab2a6c 10165 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10166 if (ret)
c92f6be3 10167 goto next;
ea658bad
JB
10168
10169 spin_lock(&block_group->lock);
10170 memcpy(&item, &block_group->item, sizeof(item));
10171 memcpy(&key, &block_group->key, sizeof(key));
10172 spin_unlock(&block_group->lock);
10173
10174 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10175 sizeof(item));
10176 if (ret)
66642832 10177 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10178 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10179 key.offset);
6df9a95e 10180 if (ret)
66642832 10181 btrfs_abort_transaction(trans, ret);
0b246afa 10182 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10183 /* already aborted the transaction if it failed. */
c92f6be3
FM
10184next:
10185 list_del_init(&block_group->bg_list);
ea658bad 10186 }
d9a0540a 10187 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10188}
10189
6324fbf3 10190int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10191 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10192 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10193{
6324fbf3 10194 struct btrfs_block_group_cache *cache;
0b246afa 10195 int ret;
6324fbf3 10196
0b246afa 10197 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10198
2ff7e61e 10199 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10200 if (!cache)
10201 return -ENOMEM;
34d52cb6 10202
6324fbf3 10203 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10204 btrfs_set_block_group_chunk_objectid(&cache->item,
10205 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10206 btrfs_set_block_group_flags(&cache->item, type);
10207
920e4a58 10208 cache->flags = type;
11833d66 10209 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10210 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10211 cache->needs_free_space = 1;
2ff7e61e 10212 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10213 if (ret) {
10214 /*
10215 * We may have excluded something, so call this just in
10216 * case.
10217 */
2ff7e61e 10218 free_excluded_extents(fs_info, cache);
920e4a58 10219 btrfs_put_block_group(cache);
835d974f
JB
10220 return ret;
10221 }
96303081 10222
0b246afa 10223 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10224
2ff7e61e 10225 free_excluded_extents(fs_info, cache);
11833d66 10226
d0bd4560 10227#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10228 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10229 u64 new_bytes_used = size - bytes_used;
10230
10231 bytes_used += new_bytes_used >> 1;
2ff7e61e 10232 fragment_free_space(cache);
d0bd4560
JB
10233 }
10234#endif
2e6e5183 10235 /*
2be12ef7
NB
10236 * Ensure the corresponding space_info object is created and
10237 * assigned to our block group. We want our bg to be added to the rbtree
10238 * with its ->space_info set.
2e6e5183 10239 */
2be12ef7
NB
10240 cache->space_info = __find_space_info(fs_info, cache->flags);
10241 if (!cache->space_info) {
10242 ret = create_space_info(fs_info, cache->flags,
10243 &cache->space_info);
10244 if (ret) {
10245 btrfs_remove_free_space_cache(cache);
10246 btrfs_put_block_group(cache);
10247 return ret;
10248 }
2e6e5183
FM
10249 }
10250
0b246afa 10251 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10252 if (ret) {
10253 btrfs_remove_free_space_cache(cache);
10254 btrfs_put_block_group(cache);
10255 return ret;
10256 }
10257
2e6e5183
FM
10258 /*
10259 * Now that our block group has its ->space_info set and is inserted in
10260 * the rbtree, update the space info's counters.
10261 */
0b246afa 10262 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10263 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10264 cache->bytes_super, &cache->space_info);
0b246afa 10265 update_global_block_rsv(fs_info);
1b2da372 10266
c434d21c 10267 link_block_group(cache);
6324fbf3 10268
47ab2a6c 10269 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10270
0b246afa 10271 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10272 return 0;
10273}
1a40e23b 10274
10ea00f5
ID
10275static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10276{
899c81ea
ID
10277 u64 extra_flags = chunk_to_extended(flags) &
10278 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10279
de98ced9 10280 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10281 if (flags & BTRFS_BLOCK_GROUP_DATA)
10282 fs_info->avail_data_alloc_bits &= ~extra_flags;
10283 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10284 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10285 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10286 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10287 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10288}
10289
1a40e23b 10290int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10291 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10292 struct extent_map *em)
1a40e23b 10293{
6bccf3ab 10294 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10295 struct btrfs_path *path;
10296 struct btrfs_block_group_cache *block_group;
44fb5511 10297 struct btrfs_free_cluster *cluster;
0b246afa 10298 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10299 struct btrfs_key key;
0af3d00b 10300 struct inode *inode;
c1895442 10301 struct kobject *kobj = NULL;
1a40e23b 10302 int ret;
10ea00f5 10303 int index;
89a55897 10304 int factor;
4f69cb98 10305 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10306 bool remove_em;
1a40e23b 10307
6bccf3ab 10308 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10309 BUG_ON(!block_group);
c146afad 10310 BUG_ON(!block_group->ro);
1a40e23b 10311
9f7c43c9 10312 /*
10313 * Free the reserved super bytes from this block group before
10314 * remove it.
10315 */
2ff7e61e 10316 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10317 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10318 block_group->key.offset);
9f7c43c9 10319
1a40e23b 10320 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10321 index = get_block_group_index(block_group);
89a55897
JB
10322 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10323 BTRFS_BLOCK_GROUP_RAID1 |
10324 BTRFS_BLOCK_GROUP_RAID10))
10325 factor = 2;
10326 else
10327 factor = 1;
1a40e23b 10328
44fb5511 10329 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10330 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10331 spin_lock(&cluster->refill_lock);
10332 btrfs_return_cluster_to_free_space(block_group, cluster);
10333 spin_unlock(&cluster->refill_lock);
10334
10335 /*
10336 * make sure this block group isn't part of a metadata
10337 * allocation cluster
10338 */
0b246afa 10339 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10340 spin_lock(&cluster->refill_lock);
10341 btrfs_return_cluster_to_free_space(block_group, cluster);
10342 spin_unlock(&cluster->refill_lock);
10343
1a40e23b 10344 path = btrfs_alloc_path();
d8926bb3
MF
10345 if (!path) {
10346 ret = -ENOMEM;
10347 goto out;
10348 }
1a40e23b 10349
1bbc621e
CM
10350 /*
10351 * get the inode first so any iput calls done for the io_list
10352 * aren't the final iput (no unlinks allowed now)
10353 */
77ab86bf 10354 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10355
10356 mutex_lock(&trans->transaction->cache_write_mutex);
10357 /*
10358 * make sure our free spache cache IO is done before remove the
10359 * free space inode
10360 */
10361 spin_lock(&trans->transaction->dirty_bgs_lock);
10362 if (!list_empty(&block_group->io_list)) {
10363 list_del_init(&block_group->io_list);
10364
10365 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10366
10367 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10368 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10369 btrfs_put_block_group(block_group);
10370 spin_lock(&trans->transaction->dirty_bgs_lock);
10371 }
10372
10373 if (!list_empty(&block_group->dirty_list)) {
10374 list_del_init(&block_group->dirty_list);
10375 btrfs_put_block_group(block_group);
10376 }
10377 spin_unlock(&trans->transaction->dirty_bgs_lock);
10378 mutex_unlock(&trans->transaction->cache_write_mutex);
10379
0af3d00b 10380 if (!IS_ERR(inode)) {
73f2e545 10381 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10382 if (ret) {
10383 btrfs_add_delayed_iput(inode);
10384 goto out;
10385 }
0af3d00b
JB
10386 clear_nlink(inode);
10387 /* One for the block groups ref */
10388 spin_lock(&block_group->lock);
10389 if (block_group->iref) {
10390 block_group->iref = 0;
10391 block_group->inode = NULL;
10392 spin_unlock(&block_group->lock);
10393 iput(inode);
10394 } else {
10395 spin_unlock(&block_group->lock);
10396 }
10397 /* One for our lookup ref */
455757c3 10398 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10399 }
10400
10401 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10402 key.offset = block_group->key.objectid;
10403 key.type = 0;
10404
10405 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10406 if (ret < 0)
10407 goto out;
10408 if (ret > 0)
b3b4aa74 10409 btrfs_release_path(path);
0af3d00b
JB
10410 if (ret == 0) {
10411 ret = btrfs_del_item(trans, tree_root, path);
10412 if (ret)
10413 goto out;
b3b4aa74 10414 btrfs_release_path(path);
0af3d00b
JB
10415 }
10416
0b246afa 10417 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10418 rb_erase(&block_group->cache_node,
0b246afa 10419 &fs_info->block_group_cache_tree);
292cbd51 10420 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10421
0b246afa
JM
10422 if (fs_info->first_logical_byte == block_group->key.objectid)
10423 fs_info->first_logical_byte = (u64)-1;
10424 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10425
80eb234a 10426 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10427 /*
10428 * we must use list_del_init so people can check to see if they
10429 * are still on the list after taking the semaphore
10430 */
10431 list_del_init(&block_group->list);
6ab0a202 10432 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10433 kobj = block_group->space_info->block_group_kobjs[index];
10434 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10435 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10436 }
80eb234a 10437 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10438 if (kobj) {
10439 kobject_del(kobj);
10440 kobject_put(kobj);
10441 }
1a40e23b 10442
4f69cb98
FM
10443 if (block_group->has_caching_ctl)
10444 caching_ctl = get_caching_control(block_group);
817d52f8 10445 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10446 wait_block_group_cache_done(block_group);
4f69cb98 10447 if (block_group->has_caching_ctl) {
0b246afa 10448 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10449 if (!caching_ctl) {
10450 struct btrfs_caching_control *ctl;
10451
10452 list_for_each_entry(ctl,
0b246afa 10453 &fs_info->caching_block_groups, list)
4f69cb98
FM
10454 if (ctl->block_group == block_group) {
10455 caching_ctl = ctl;
1e4f4714 10456 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10457 break;
10458 }
10459 }
10460 if (caching_ctl)
10461 list_del_init(&caching_ctl->list);
0b246afa 10462 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10463 if (caching_ctl) {
10464 /* Once for the caching bgs list and once for us. */
10465 put_caching_control(caching_ctl);
10466 put_caching_control(caching_ctl);
10467 }
10468 }
817d52f8 10469
ce93ec54
JB
10470 spin_lock(&trans->transaction->dirty_bgs_lock);
10471 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10472 WARN_ON(1);
10473 }
10474 if (!list_empty(&block_group->io_list)) {
10475 WARN_ON(1);
ce93ec54
JB
10476 }
10477 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10478 btrfs_remove_free_space_cache(block_group);
10479
c146afad 10480 spin_lock(&block_group->space_info->lock);
75c68e9f 10481 list_del_init(&block_group->ro_list);
18d018ad 10482
0b246afa 10483 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10484 WARN_ON(block_group->space_info->total_bytes
10485 < block_group->key.offset);
10486 WARN_ON(block_group->space_info->bytes_readonly
10487 < block_group->key.offset);
10488 WARN_ON(block_group->space_info->disk_total
10489 < block_group->key.offset * factor);
10490 }
c146afad
YZ
10491 block_group->space_info->total_bytes -= block_group->key.offset;
10492 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10493 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10494
c146afad 10495 spin_unlock(&block_group->space_info->lock);
283bb197 10496
0af3d00b
JB
10497 memcpy(&key, &block_group->key, sizeof(key));
10498
34441361 10499 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10500 if (!list_empty(&em->list)) {
10501 /* We're in the transaction->pending_chunks list. */
10502 free_extent_map(em);
10503 }
04216820
FM
10504 spin_lock(&block_group->lock);
10505 block_group->removed = 1;
10506 /*
10507 * At this point trimming can't start on this block group, because we
10508 * removed the block group from the tree fs_info->block_group_cache_tree
10509 * so no one can't find it anymore and even if someone already got this
10510 * block group before we removed it from the rbtree, they have already
10511 * incremented block_group->trimming - if they didn't, they won't find
10512 * any free space entries because we already removed them all when we
10513 * called btrfs_remove_free_space_cache().
10514 *
10515 * And we must not remove the extent map from the fs_info->mapping_tree
10516 * to prevent the same logical address range and physical device space
10517 * ranges from being reused for a new block group. This is because our
10518 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10519 * completely transactionless, so while it is trimming a range the
10520 * currently running transaction might finish and a new one start,
10521 * allowing for new block groups to be created that can reuse the same
10522 * physical device locations unless we take this special care.
e33e17ee
JM
10523 *
10524 * There may also be an implicit trim operation if the file system
10525 * is mounted with -odiscard. The same protections must remain
10526 * in place until the extents have been discarded completely when
10527 * the transaction commit has completed.
04216820
FM
10528 */
10529 remove_em = (atomic_read(&block_group->trimming) == 0);
10530 /*
10531 * Make sure a trimmer task always sees the em in the pinned_chunks list
10532 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10533 * before checking block_group->removed).
10534 */
10535 if (!remove_em) {
10536 /*
10537 * Our em might be in trans->transaction->pending_chunks which
10538 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10539 * and so is the fs_info->pinned_chunks list.
10540 *
10541 * So at this point we must be holding the chunk_mutex to avoid
10542 * any races with chunk allocation (more specifically at
10543 * volumes.c:contains_pending_extent()), to ensure it always
10544 * sees the em, either in the pending_chunks list or in the
10545 * pinned_chunks list.
10546 */
0b246afa 10547 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10548 }
10549 spin_unlock(&block_group->lock);
04216820
FM
10550
10551 if (remove_em) {
10552 struct extent_map_tree *em_tree;
10553
0b246afa 10554 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10555 write_lock(&em_tree->lock);
8dbcd10f
FM
10556 /*
10557 * The em might be in the pending_chunks list, so make sure the
10558 * chunk mutex is locked, since remove_extent_mapping() will
10559 * delete us from that list.
10560 */
04216820
FM
10561 remove_extent_mapping(em_tree, em);
10562 write_unlock(&em_tree->lock);
10563 /* once for the tree */
10564 free_extent_map(em);
10565 }
10566
34441361 10567 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10568
0b246afa 10569 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10570 if (ret)
10571 goto out;
10572
fa9c0d79
CM
10573 btrfs_put_block_group(block_group);
10574 btrfs_put_block_group(block_group);
1a40e23b
ZY
10575
10576 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10577 if (ret > 0)
10578 ret = -EIO;
10579 if (ret < 0)
10580 goto out;
10581
10582 ret = btrfs_del_item(trans, root, path);
10583out:
10584 btrfs_free_path(path);
10585 return ret;
10586}
acce952b 10587
8eab77ff 10588struct btrfs_trans_handle *
7fd01182
FM
10589btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10590 const u64 chunk_offset)
8eab77ff 10591{
7fd01182
FM
10592 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10593 struct extent_map *em;
10594 struct map_lookup *map;
10595 unsigned int num_items;
10596
10597 read_lock(&em_tree->lock);
10598 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10599 read_unlock(&em_tree->lock);
10600 ASSERT(em && em->start == chunk_offset);
10601
8eab77ff 10602 /*
7fd01182
FM
10603 * We need to reserve 3 + N units from the metadata space info in order
10604 * to remove a block group (done at btrfs_remove_chunk() and at
10605 * btrfs_remove_block_group()), which are used for:
10606 *
8eab77ff
FM
10607 * 1 unit for adding the free space inode's orphan (located in the tree
10608 * of tree roots).
7fd01182
FM
10609 * 1 unit for deleting the block group item (located in the extent
10610 * tree).
10611 * 1 unit for deleting the free space item (located in tree of tree
10612 * roots).
10613 * N units for deleting N device extent items corresponding to each
10614 * stripe (located in the device tree).
10615 *
10616 * In order to remove a block group we also need to reserve units in the
10617 * system space info in order to update the chunk tree (update one or
10618 * more device items and remove one chunk item), but this is done at
10619 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10620 */
95617d69 10621 map = em->map_lookup;
7fd01182
FM
10622 num_items = 3 + map->num_stripes;
10623 free_extent_map(em);
10624
8eab77ff 10625 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10626 num_items, 1);
8eab77ff
FM
10627}
10628
47ab2a6c
JB
10629/*
10630 * Process the unused_bgs list and remove any that don't have any allocated
10631 * space inside of them.
10632 */
10633void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10634{
10635 struct btrfs_block_group_cache *block_group;
10636 struct btrfs_space_info *space_info;
47ab2a6c
JB
10637 struct btrfs_trans_handle *trans;
10638 int ret = 0;
10639
afcdd129 10640 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10641 return;
10642
10643 spin_lock(&fs_info->unused_bgs_lock);
10644 while (!list_empty(&fs_info->unused_bgs)) {
10645 u64 start, end;
e33e17ee 10646 int trimming;
47ab2a6c
JB
10647
10648 block_group = list_first_entry(&fs_info->unused_bgs,
10649 struct btrfs_block_group_cache,
10650 bg_list);
47ab2a6c 10651 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10652
10653 space_info = block_group->space_info;
10654
47ab2a6c
JB
10655 if (ret || btrfs_mixed_space_info(space_info)) {
10656 btrfs_put_block_group(block_group);
10657 continue;
10658 }
10659 spin_unlock(&fs_info->unused_bgs_lock);
10660
d5f2e33b 10661 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10662
47ab2a6c
JB
10663 /* Don't want to race with allocators so take the groups_sem */
10664 down_write(&space_info->groups_sem);
10665 spin_lock(&block_group->lock);
10666 if (block_group->reserved ||
10667 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10668 block_group->ro ||
aefbe9a6 10669 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10670 /*
10671 * We want to bail if we made new allocations or have
10672 * outstanding allocations in this block group. We do
10673 * the ro check in case balance is currently acting on
10674 * this block group.
10675 */
10676 spin_unlock(&block_group->lock);
10677 up_write(&space_info->groups_sem);
10678 goto next;
10679 }
10680 spin_unlock(&block_group->lock);
10681
10682 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10683 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10684 up_write(&space_info->groups_sem);
10685 if (ret < 0) {
10686 ret = 0;
10687 goto next;
10688 }
10689
10690 /*
10691 * Want to do this before we do anything else so we can recover
10692 * properly if we fail to join the transaction.
10693 */
7fd01182
FM
10694 trans = btrfs_start_trans_remove_block_group(fs_info,
10695 block_group->key.objectid);
47ab2a6c 10696 if (IS_ERR(trans)) {
2ff7e61e 10697 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10698 ret = PTR_ERR(trans);
10699 goto next;
10700 }
10701
10702 /*
10703 * We could have pending pinned extents for this block group,
10704 * just delete them, we don't care about them anymore.
10705 */
10706 start = block_group->key.objectid;
10707 end = start + block_group->key.offset - 1;
d4b450cd
FM
10708 /*
10709 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10710 * btrfs_finish_extent_commit(). If we are at transaction N,
10711 * another task might be running finish_extent_commit() for the
10712 * previous transaction N - 1, and have seen a range belonging
10713 * to the block group in freed_extents[] before we were able to
10714 * clear the whole block group range from freed_extents[]. This
10715 * means that task can lookup for the block group after we
10716 * unpinned it from freed_extents[] and removed it, leading to
10717 * a BUG_ON() at btrfs_unpin_extent_range().
10718 */
10719 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10720 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10721 EXTENT_DIRTY);
758eb51e 10722 if (ret) {
d4b450cd 10723 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10724 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10725 goto end_trans;
10726 }
10727 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10728 EXTENT_DIRTY);
758eb51e 10729 if (ret) {
d4b450cd 10730 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10731 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10732 goto end_trans;
10733 }
d4b450cd 10734 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10735
10736 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10737 spin_lock(&space_info->lock);
10738 spin_lock(&block_group->lock);
10739
10740 space_info->bytes_pinned -= block_group->pinned;
10741 space_info->bytes_readonly += block_group->pinned;
10742 percpu_counter_add(&space_info->total_bytes_pinned,
10743 -block_group->pinned);
47ab2a6c
JB
10744 block_group->pinned = 0;
10745
c30666d4
ZL
10746 spin_unlock(&block_group->lock);
10747 spin_unlock(&space_info->lock);
10748
e33e17ee 10749 /* DISCARD can flip during remount */
0b246afa 10750 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10751
10752 /* Implicit trim during transaction commit. */
10753 if (trimming)
10754 btrfs_get_block_group_trimming(block_group);
10755
47ab2a6c
JB
10756 /*
10757 * Btrfs_remove_chunk will abort the transaction if things go
10758 * horribly wrong.
10759 */
5b4aacef 10760 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10761 block_group->key.objectid);
e33e17ee
JM
10762
10763 if (ret) {
10764 if (trimming)
10765 btrfs_put_block_group_trimming(block_group);
10766 goto end_trans;
10767 }
10768
10769 /*
10770 * If we're not mounted with -odiscard, we can just forget
10771 * about this block group. Otherwise we'll need to wait
10772 * until transaction commit to do the actual discard.
10773 */
10774 if (trimming) {
348a0013
FM
10775 spin_lock(&fs_info->unused_bgs_lock);
10776 /*
10777 * A concurrent scrub might have added us to the list
10778 * fs_info->unused_bgs, so use a list_move operation
10779 * to add the block group to the deleted_bgs list.
10780 */
e33e17ee
JM
10781 list_move(&block_group->bg_list,
10782 &trans->transaction->deleted_bgs);
348a0013 10783 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10784 btrfs_get_block_group(block_group);
10785 }
758eb51e 10786end_trans:
3a45bb20 10787 btrfs_end_transaction(trans);
47ab2a6c 10788next:
d5f2e33b 10789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10790 btrfs_put_block_group(block_group);
10791 spin_lock(&fs_info->unused_bgs_lock);
10792 }
10793 spin_unlock(&fs_info->unused_bgs_lock);
10794}
10795
c59021f8 10796int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10797{
10798 struct btrfs_space_info *space_info;
1aba86d6 10799 struct btrfs_super_block *disk_super;
10800 u64 features;
10801 u64 flags;
10802 int mixed = 0;
c59021f8 10803 int ret;
10804
6c41761f 10805 disk_super = fs_info->super_copy;
1aba86d6 10806 if (!btrfs_super_root(disk_super))
0dc924c5 10807 return -EINVAL;
c59021f8 10808
1aba86d6 10809 features = btrfs_super_incompat_flags(disk_super);
10810 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10811 mixed = 1;
c59021f8 10812
1aba86d6 10813 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10814 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10815 if (ret)
1aba86d6 10816 goto out;
c59021f8 10817
1aba86d6 10818 if (mixed) {
10819 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10820 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10821 } else {
10822 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10823 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10824 if (ret)
10825 goto out;
10826
10827 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10828 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10829 }
10830out:
c59021f8 10831 return ret;
10832}
10833
2ff7e61e
JM
10834int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10835 u64 start, u64 end)
acce952b 10836{
2ff7e61e 10837 return unpin_extent_range(fs_info, start, end, false);
acce952b 10838}
10839
499f377f
JM
10840/*
10841 * It used to be that old block groups would be left around forever.
10842 * Iterating over them would be enough to trim unused space. Since we
10843 * now automatically remove them, we also need to iterate over unallocated
10844 * space.
10845 *
10846 * We don't want a transaction for this since the discard may take a
10847 * substantial amount of time. We don't require that a transaction be
10848 * running, but we do need to take a running transaction into account
10849 * to ensure that we're not discarding chunks that were released in
10850 * the current transaction.
10851 *
10852 * Holding the chunks lock will prevent other threads from allocating
10853 * or releasing chunks, but it won't prevent a running transaction
10854 * from committing and releasing the memory that the pending chunks
10855 * list head uses. For that, we need to take a reference to the
10856 * transaction.
10857 */
10858static int btrfs_trim_free_extents(struct btrfs_device *device,
10859 u64 minlen, u64 *trimmed)
10860{
10861 u64 start = 0, len = 0;
10862 int ret;
10863
10864 *trimmed = 0;
10865
10866 /* Not writeable = nothing to do. */
ebbede42 10867 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10868 return 0;
10869
10870 /* No free space = nothing to do. */
10871 if (device->total_bytes <= device->bytes_used)
10872 return 0;
10873
10874 ret = 0;
10875
10876 while (1) {
fb456252 10877 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10878 struct btrfs_transaction *trans;
10879 u64 bytes;
10880
10881 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10882 if (ret)
10883 return ret;
10884
10885 down_read(&fs_info->commit_root_sem);
10886
10887 spin_lock(&fs_info->trans_lock);
10888 trans = fs_info->running_transaction;
10889 if (trans)
9b64f57d 10890 refcount_inc(&trans->use_count);
499f377f
JM
10891 spin_unlock(&fs_info->trans_lock);
10892
10893 ret = find_free_dev_extent_start(trans, device, minlen, start,
10894 &start, &len);
10895 if (trans)
10896 btrfs_put_transaction(trans);
10897
10898 if (ret) {
10899 up_read(&fs_info->commit_root_sem);
10900 mutex_unlock(&fs_info->chunk_mutex);
10901 if (ret == -ENOSPC)
10902 ret = 0;
10903 break;
10904 }
10905
10906 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10907 up_read(&fs_info->commit_root_sem);
10908 mutex_unlock(&fs_info->chunk_mutex);
10909
10910 if (ret)
10911 break;
10912
10913 start += len;
10914 *trimmed += bytes;
10915
10916 if (fatal_signal_pending(current)) {
10917 ret = -ERESTARTSYS;
10918 break;
10919 }
10920
10921 cond_resched();
10922 }
10923
10924 return ret;
10925}
10926
2ff7e61e 10927int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10928{
f7039b1d 10929 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10930 struct btrfs_device *device;
10931 struct list_head *devices;
f7039b1d
LD
10932 u64 group_trimmed;
10933 u64 start;
10934 u64 end;
10935 u64 trimmed = 0;
2cac13e4 10936 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10937 int ret = 0;
10938
2cac13e4
LB
10939 /*
10940 * try to trim all FS space, our block group may start from non-zero.
10941 */
10942 if (range->len == total_bytes)
10943 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10944 else
10945 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10946
10947 while (cache) {
10948 if (cache->key.objectid >= (range->start + range->len)) {
10949 btrfs_put_block_group(cache);
10950 break;
10951 }
10952
10953 start = max(range->start, cache->key.objectid);
10954 end = min(range->start + range->len,
10955 cache->key.objectid + cache->key.offset);
10956
10957 if (end - start >= range->minlen) {
10958 if (!block_group_cache_done(cache)) {
f6373bf3 10959 ret = cache_block_group(cache, 0);
1be41b78
JB
10960 if (ret) {
10961 btrfs_put_block_group(cache);
10962 break;
10963 }
10964 ret = wait_block_group_cache_done(cache);
10965 if (ret) {
10966 btrfs_put_block_group(cache);
10967 break;
10968 }
f7039b1d
LD
10969 }
10970 ret = btrfs_trim_block_group(cache,
10971 &group_trimmed,
10972 start,
10973 end,
10974 range->minlen);
10975
10976 trimmed += group_trimmed;
10977 if (ret) {
10978 btrfs_put_block_group(cache);
10979 break;
10980 }
10981 }
10982
2ff7e61e 10983 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10984 }
10985
0b246afa
JM
10986 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10987 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10988 list_for_each_entry(device, devices, dev_alloc_list) {
10989 ret = btrfs_trim_free_extents(device, range->minlen,
10990 &group_trimmed);
10991 if (ret)
10992 break;
10993
10994 trimmed += group_trimmed;
10995 }
0b246afa 10996 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10997
f7039b1d
LD
10998 range->len = trimmed;
10999 return ret;
11000}
8257b2dc
MX
11001
11002/*
ea14b57f 11003 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11004 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11005 * data into the page cache through nocow before the subvolume is snapshoted,
11006 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11007 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11008 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11009 */
ea14b57f 11010void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11011{
11012 percpu_counter_dec(&root->subv_writers->counter);
11013 /*
a83342aa 11014 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11015 */
11016 smp_mb();
11017 if (waitqueue_active(&root->subv_writers->wait))
11018 wake_up(&root->subv_writers->wait);
11019}
11020
ea14b57f 11021int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11022{
ea14b57f 11023 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11024 return 0;
11025
11026 percpu_counter_inc(&root->subv_writers->counter);
11027 /*
11028 * Make sure counter is updated before we check for snapshot creation.
11029 */
11030 smp_mb();
ea14b57f
DS
11031 if (atomic_read(&root->will_be_snapshotted)) {
11032 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11033 return 0;
11034 }
11035 return 1;
11036}
0bc19f90 11037
0bc19f90
ZL
11038void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11039{
11040 while (true) {
11041 int ret;
11042
ea14b57f 11043 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11044 if (ret)
11045 break;
5e4def20 11046 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
0bc19f90
ZL
11047 TASK_UNINTERRUPTIBLE);
11048 }
11049}