btrfs: Refactor clustered extent allocation into find_free_extent_clustered
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
646 ret = load_free_space_cache(fs_info, cache);
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
86557861 1908#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1909static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
5d4f98a2 1911{
86557861
JM
1912 int j, ret = 0;
1913 u64 bytes_left, end;
4d89d377 1914 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1915
4d89d377
JM
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1920 }
d04c6b88 1921
4d89d377 1922 *discarded_bytes = 0;
86557861
JM
1923
1924 if (!len)
1925 return 0;
1926
1927 end = start + len;
1928 bytes_left = len;
1929
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1935
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1939 continue;
1940
1941 /*
1942 * Superblock spans beginning of range. Adjust start and
1943 * try again.
1944 */
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 continue;
1953 }
1954
1955 if (size) {
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1957 GFP_NOFS, 0);
1958 if (!ret)
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1961 return ret;
1962 }
1963
1964 start = sb_end;
1965 if (start > end) {
1966 bytes_left = 0;
1967 break;
1968 }
1969 bytes_left = end - start;
1970 }
1971
1972 if (bytes_left) {
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1974 GFP_NOFS, 0);
1975 if (!ret)
86557861 1976 *discarded_bytes += bytes_left;
4d89d377 1977 }
d04c6b88 1978 return ret;
5d4f98a2 1979}
5d4f98a2 1980
2ff7e61e 1981int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1982 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1983{
5d4f98a2 1984 int ret;
5378e607 1985 u64 discarded_bytes = 0;
a1d3c478 1986 struct btrfs_bio *bbio = NULL;
5d4f98a2 1987
e244a0ae 1988
2999241d
FM
1989 /*
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1992 */
0b246afa 1993 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1994 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1996 &bbio, 0);
79787eaa 1997 /* Error condition is -ENOMEM */
5d4f98a2 1998 if (!ret) {
a1d3c478 1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2000 int i;
2001
5d4f98a2 2002
a1d3c478 2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2004 u64 bytes;
38b5f68e
AJ
2005 struct request_queue *req_q;
2006
627e0873
FM
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2009 continue;
2010 }
38b5f68e
AJ
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
d5e2003c
JB
2013 continue;
2014
5378e607
LD
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2016 stripe->physical,
d04c6b88
JM
2017 stripe->length,
2018 &bytes);
5378e607 2019 if (!ret)
d04c6b88 2020 discarded_bytes += bytes;
5378e607 2021 else if (ret != -EOPNOTSUPP)
79787eaa 2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2023
2024 /*
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2028 */
2029 ret = 0;
5d4f98a2 2030 }
6e9606d2 2031 btrfs_put_bbio(bbio);
5d4f98a2 2032 }
0b246afa 2033 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2034
2035 if (actual_bytes)
2036 *actual_bytes = discarded_bytes;
2037
5d4f98a2 2038
53b381b3
DW
2039 if (ret == -EOPNOTSUPP)
2040 ret = 0;
5d4f98a2 2041 return ret;
5d4f98a2
YZ
2042}
2043
79787eaa 2044/* Can return -ENOMEM */
5d4f98a2 2045int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2046 struct btrfs_root *root,
5d4f98a2 2047 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2048 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2049{
84f7d8e6 2050 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
5d4f98a2 2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2062 num_bytes, parent,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2065 &old_ref_mod, &new_ref_mod);
5d4f98a2 2066 } else {
88a979c6 2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2068 num_bytes, parent,
2069 root_objectid, owner, offset,
d7eae340
OS
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
5d4f98a2 2072 }
d7eae340 2073
29d2b84c
NB
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2076
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2078 }
d7eae340 2079
5d4f98a2
YZ
2080 return ret;
2081}
2082
bd3c685e
NB
2083/*
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2085 *
2086 * @trans: Handle of transaction
2087 *
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2090 *
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2097 * be 0
2098 *
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2102 *
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2106 *
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2110 *
2111 * @refs_to_add Number of references to add
2112 *
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2115 *
2116 */
5d4f98a2 2117static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2118 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2122{
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
fcebe456 2126 struct btrfs_key key;
c682f9b3
QW
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2129 u64 refs;
2130 int ret;
5d4f98a2
YZ
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
e4058b54 2136 path->reada = READA_FORWARD;
5d4f98a2
YZ
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
0ed4792a 2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2143 goto out;
fcebe456
JB
2144
2145 /*
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2148 * normal backref.
2149 */
5d4f98a2 2150 leaf = path->nodes[0];
fcebe456 2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2155 if (extent_op)
2156 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2157
5d4f98a2 2158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2159 btrfs_release_path(path);
56bec294 2160
e4058b54 2161 path->reada = READA_FORWARD;
b9473439 2162 path->leave_spinning = 1;
56bec294 2163 /* now insert the actual backref */
37593410
NB
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
79787eaa 2166 if (ret)
66642832 2167 btrfs_abort_transaction(trans, ret);
5d4f98a2 2168out:
56bec294 2169 btrfs_free_path(path);
30d133fc 2170 return ret;
56bec294
CM
2171}
2172
5d4f98a2 2173static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
56bec294 2177{
5d4f98a2
YZ
2178 int ret = 0;
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2181 u64 parent = 0;
2182 u64 ref_root = 0;
2183 u64 flags = 0;
2184
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2191
5d4f98a2
YZ
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
fcebe456 2194 ref_root = ref->root;
5d4f98a2
YZ
2195
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2197 if (extent_op)
5d4f98a2 2198 flags |= extent_op->flags_to_set;
ef89b824
NB
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2201 ref->offset, &ins,
2202 node->ref_mod);
5d4f98a2 2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
5d4f98a2 2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2208 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
c682f9b3 2211 extent_op);
5d4f98a2
YZ
2212 } else {
2213 BUG();
2214 }
2215 return ret;
2216}
2217
2218static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2221{
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2226 }
2227
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2233 }
2234}
2235
2236static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2237 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2238 struct btrfs_delayed_extent_op *extent_op)
2239{
20b9a2d6 2240 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2245 u32 item_size;
56bec294 2246 int ret;
5d4f98a2 2247 int err = 0;
b1c79e09 2248 int metadata = !extent_op->is_data;
5d4f98a2 2249
79787eaa
JM
2250 if (trans->aborted)
2251 return 0;
2252
0b246afa 2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2254 metadata = 0;
2255
5d4f98a2
YZ
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2259
d278850e 2260 key.objectid = head->bytenr;
5d4f98a2 2261
3173a18f 2262 if (metadata) {
3173a18f 2263 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2264 key.offset = extent_op->level;
3173a18f
JB
2265 } else {
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2267 key.offset = head->num_bytes;
3173a18f
JB
2268 }
2269
2270again:
e4058b54 2271 path->reada = READA_FORWARD;
5d4f98a2 2272 path->leave_spinning = 1;
0b246afa 2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2274 if (ret < 0) {
2275 err = ret;
2276 goto out;
2277 }
2278 if (ret > 0) {
3173a18f 2279 if (metadata) {
55994887
FDBM
2280 if (path->slots[0] > 0) {
2281 path->slots[0]--;
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2283 path->slots[0]);
d278850e 2284 if (key.objectid == head->bytenr &&
55994887 2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2286 key.offset == head->num_bytes)
55994887
FDBM
2287 ret = 0;
2288 }
2289 if (ret > 0) {
2290 btrfs_release_path(path);
2291 metadata = 0;
3173a18f 2292
d278850e
JB
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
55994887
FDBM
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2296 goto again;
2297 }
2298 } else {
2299 err = -EIO;
2300 goto out;
3173a18f 2301 }
5d4f98a2
YZ
2302 }
2303
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2306
6d8ff4e4 2307 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2308 err = -EINVAL;
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2311 goto out;
2312 }
2313
5d4f98a2
YZ
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2316
5d4f98a2
YZ
2317 btrfs_mark_buffer_dirty(leaf);
2318out:
2319 btrfs_free_path(path);
2320 return err;
56bec294
CM
2321}
2322
5d4f98a2 2323static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
56bec294
CM
2327{
2328 int ret = 0;
5d4f98a2 2329 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2330 u64 parent = 0;
2331 u64 ref_root = 0;
56bec294 2332
5d4f98a2 2333 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2335
5d4f98a2
YZ
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
fcebe456 2338 ref_root = ref->root;
5d4f98a2 2339
02794222 2340 if (node->ref_mod != 1) {
f97806f2 2341 btrfs_err(trans->fs_info,
02794222
LB
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2344 parent);
2345 return -EIO;
2346 }
5d4f98a2 2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2348 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
5d4f98a2 2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2355 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2356 } else {
2357 BUG();
2358 }
56bec294
CM
2359 return ret;
2360}
2361
2362/* helper function to actually process a single delayed ref entry */
5d4f98a2 2363static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
56bec294 2367{
79787eaa
JM
2368 int ret = 0;
2369
857cc2fc
JB
2370 if (trans->aborted) {
2371 if (insert_reserved)
5fac7f9e 2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2373 node->num_bytes, 1);
79787eaa 2374 return 0;
857cc2fc 2375 }
79787eaa 2376
5d4f98a2
YZ
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2379 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2380 insert_reserved);
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2383 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2384 insert_reserved);
2385 else
2386 BUG();
80ee54bf
JB
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
5d4f98a2 2390 return ret;
56bec294
CM
2391}
2392
c6fc2454 2393static inline struct btrfs_delayed_ref_node *
56bec294
CM
2394select_delayed_ref(struct btrfs_delayed_ref_head *head)
2395{
cffc3374
FM
2396 struct btrfs_delayed_ref_node *ref;
2397
e3d03965 2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2399 return NULL;
d7df2c79 2400
cffc3374
FM
2401 /*
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2406 */
1d57ee94
WX
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2410
e3d03965 2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2412 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2413 ASSERT(list_empty(&ref->add_list));
2414 return ref;
56bec294
CM
2415}
2416
2eadaa22
JB
2417static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2419{
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2425}
2426
b00e6250 2427static int cleanup_extent_op(struct btrfs_trans_handle *trans,
b00e6250
JB
2428 struct btrfs_delayed_ref_head *head)
2429{
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2431 int ret;
2432
2433 if (!extent_op)
2434 return 0;
2435 head->extent_op = NULL;
2436 if (head->must_insert_reserved) {
2437 btrfs_free_delayed_extent_op(extent_op);
2438 return 0;
2439 }
2440 spin_unlock(&head->lock);
20b9a2d6 2441 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2442 btrfs_free_delayed_extent_op(extent_op);
2443 return ret ? ret : 1;
2444}
2445
194ab0bc 2446static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2447 struct btrfs_delayed_ref_head *head)
2448{
f9871edd
NB
2449
2450 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2451 struct btrfs_delayed_ref_root *delayed_refs;
2452 int ret;
2453
2454 delayed_refs = &trans->transaction->delayed_refs;
2455
c4d56d4a 2456 ret = cleanup_extent_op(trans, head);
194ab0bc
JB
2457 if (ret < 0) {
2458 unselect_delayed_ref_head(delayed_refs, head);
2459 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2460 return ret;
2461 } else if (ret) {
2462 return ret;
2463 }
2464
2465 /*
2466 * Need to drop our head ref lock and re-acquire the delayed ref lock
2467 * and then re-check to make sure nobody got added.
2468 */
2469 spin_unlock(&head->lock);
2470 spin_lock(&delayed_refs->lock);
2471 spin_lock(&head->lock);
e3d03965 2472 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2473 spin_unlock(&head->lock);
2474 spin_unlock(&delayed_refs->lock);
2475 return 1;
2476 }
194ab0bc 2477 delayed_refs->num_heads--;
5c9d028b 2478 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 2479 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2480 spin_unlock(&head->lock);
1e7a1421 2481 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2482 atomic_dec(&delayed_refs->num_entries);
2483
d278850e 2484 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2485
2486 if (head->total_ref_mod < 0) {
5e388e95
NB
2487 struct btrfs_space_info *space_info;
2488 u64 flags;
c1103f7a 2489
5e388e95
NB
2490 if (head->is_data)
2491 flags = BTRFS_BLOCK_GROUP_DATA;
2492 else if (head->is_system)
2493 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2494 else
2495 flags = BTRFS_BLOCK_GROUP_METADATA;
2496 space_info = __find_space_info(fs_info, flags);
2497 ASSERT(space_info);
dec59fa3
EL
2498 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2499 -head->num_bytes,
2500 BTRFS_TOTAL_BYTES_PINNED_BATCH);
c1103f7a
JB
2501
2502 if (head->is_data) {
2503 spin_lock(&delayed_refs->lock);
d278850e 2504 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2505 spin_unlock(&delayed_refs->lock);
2506 }
2507 }
2508
2509 if (head->must_insert_reserved) {
d278850e
JB
2510 btrfs_pin_extent(fs_info, head->bytenr,
2511 head->num_bytes, 1);
c1103f7a 2512 if (head->is_data) {
d278850e
JB
2513 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2514 head->num_bytes);
c1103f7a
JB
2515 }
2516 }
2517
2518 /* Also free its reserved qgroup space */
2519 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2520 head->qgroup_reserved);
2521 btrfs_delayed_ref_unlock(head);
d278850e 2522 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2523 return 0;
2524}
2525
b1cdbcb5
NB
2526static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2527 struct btrfs_trans_handle *trans)
2528{
2529 struct btrfs_delayed_ref_root *delayed_refs =
2530 &trans->transaction->delayed_refs;
2531 struct btrfs_delayed_ref_head *head = NULL;
2532 int ret;
2533
2534 spin_lock(&delayed_refs->lock);
5637c74b 2535 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2536 if (!head) {
2537 spin_unlock(&delayed_refs->lock);
2538 return head;
2539 }
2540
2541 /*
2542 * Grab the lock that says we are going to process all the refs for
2543 * this head
2544 */
9e920a6f 2545 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2546 spin_unlock(&delayed_refs->lock);
2547
2548 /*
2549 * We may have dropped the spin lock to get the head mutex lock, and
2550 * that might have given someone else time to free the head. If that's
2551 * true, it has been removed from our list and we can move on.
2552 */
2553 if (ret == -EAGAIN)
2554 head = ERR_PTR(-EAGAIN);
2555
2556 return head;
2557}
2558
e7261386
NB
2559static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2560 struct btrfs_delayed_ref_head *locked_ref,
2561 unsigned long *run_refs)
2562{
2563 struct btrfs_fs_info *fs_info = trans->fs_info;
2564 struct btrfs_delayed_ref_root *delayed_refs;
2565 struct btrfs_delayed_extent_op *extent_op;
2566 struct btrfs_delayed_ref_node *ref;
2567 int must_insert_reserved = 0;
2568 int ret;
2569
2570 delayed_refs = &trans->transaction->delayed_refs;
2571
0110a4c4
NB
2572 lockdep_assert_held(&locked_ref->mutex);
2573 lockdep_assert_held(&locked_ref->lock);
2574
e7261386
NB
2575 while ((ref = select_delayed_ref(locked_ref))) {
2576 if (ref->seq &&
2577 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2578 spin_unlock(&locked_ref->lock);
2579 unselect_delayed_ref_head(delayed_refs, locked_ref);
2580 return -EAGAIN;
2581 }
2582
2583 (*run_refs)++;
2584 ref->in_tree = 0;
2585 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2586 RB_CLEAR_NODE(&ref->ref_node);
2587 if (!list_empty(&ref->add_list))
2588 list_del(&ref->add_list);
2589 /*
2590 * When we play the delayed ref, also correct the ref_mod on
2591 * head
2592 */
2593 switch (ref->action) {
2594 case BTRFS_ADD_DELAYED_REF:
2595 case BTRFS_ADD_DELAYED_EXTENT:
2596 locked_ref->ref_mod -= ref->ref_mod;
2597 break;
2598 case BTRFS_DROP_DELAYED_REF:
2599 locked_ref->ref_mod += ref->ref_mod;
2600 break;
2601 default:
2602 WARN_ON(1);
2603 }
2604 atomic_dec(&delayed_refs->num_entries);
2605
2606 /*
2607 * Record the must_insert_reserved flag before we drop the
2608 * spin lock.
2609 */
2610 must_insert_reserved = locked_ref->must_insert_reserved;
2611 locked_ref->must_insert_reserved = 0;
2612
2613 extent_op = locked_ref->extent_op;
2614 locked_ref->extent_op = NULL;
2615 spin_unlock(&locked_ref->lock);
2616
2617 ret = run_one_delayed_ref(trans, ref, extent_op,
2618 must_insert_reserved);
2619
2620 btrfs_free_delayed_extent_op(extent_op);
2621 if (ret) {
2622 unselect_delayed_ref_head(delayed_refs, locked_ref);
2623 btrfs_put_delayed_ref(ref);
2624 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2625 ret);
2626 return ret;
2627 }
2628
2629 btrfs_put_delayed_ref(ref);
2630 cond_resched();
2631
2632 spin_lock(&locked_ref->lock);
2633 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2634 }
2635
2636 return 0;
2637}
2638
79787eaa
JM
2639/*
2640 * Returns 0 on success or if called with an already aborted transaction.
2641 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2642 */
d7df2c79 2643static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2644 unsigned long nr)
56bec294 2645{
0a1e458a 2646 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2647 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2648 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2649 ktime_t start = ktime_get();
56bec294 2650 int ret;
d7df2c79 2651 unsigned long count = 0;
0a2b2a84 2652 unsigned long actual_count = 0;
56bec294
CM
2653
2654 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2655 do {
56bec294 2656 if (!locked_ref) {
b1cdbcb5 2657 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2658 if (IS_ERR_OR_NULL(locked_ref)) {
2659 if (PTR_ERR(locked_ref) == -EAGAIN) {
2660 continue;
2661 } else {
2662 break;
2663 }
56bec294 2664 }
0110a4c4 2665 count++;
56bec294 2666 }
2c3cf7d5
FM
2667 /*
2668 * We need to try and merge add/drops of the same ref since we
2669 * can run into issues with relocate dropping the implicit ref
2670 * and then it being added back again before the drop can
2671 * finish. If we merged anything we need to re-loop so we can
2672 * get a good ref.
2673 * Or we can get node references of the same type that weren't
2674 * merged when created due to bumps in the tree mod seq, and
2675 * we need to merge them to prevent adding an inline extent
2676 * backref before dropping it (triggering a BUG_ON at
2677 * insert_inline_extent_backref()).
2678 */
d7df2c79 2679 spin_lock(&locked_ref->lock);
be97f133 2680 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2681
0110a4c4
NB
2682 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2683 &actual_count);
2684 if (ret < 0 && ret != -EAGAIN) {
2685 /*
2686 * Error, btrfs_run_delayed_refs_for_head already
2687 * unlocked everything so just bail out
2688 */
2689 return ret;
2690 } else if (!ret) {
2691 /*
2692 * Success, perform the usual cleanup of a processed
2693 * head
2694 */
f9871edd 2695 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2696 if (ret > 0 ) {
b00e6250
JB
2697 /* We dropped our lock, we need to loop. */
2698 ret = 0;
d7df2c79 2699 continue;
194ab0bc
JB
2700 } else if (ret) {
2701 return ret;
5d4f98a2 2702 }
22cd2e7d 2703 }
1ce7a5ec 2704
b00e6250 2705 /*
0110a4c4
NB
2706 * Either success case or btrfs_run_delayed_refs_for_head
2707 * returned -EAGAIN, meaning we need to select another head
b00e6250 2708 */
b00e6250 2709
0110a4c4 2710 locked_ref = NULL;
c3e69d58 2711 cond_resched();
0110a4c4 2712 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2713
2714 /*
2715 * We don't want to include ref heads since we can have empty ref heads
2716 * and those will drastically skew our runtime down since we just do
2717 * accounting, no actual extent tree updates.
2718 */
2719 if (actual_count > 0) {
2720 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2721 u64 avg;
2722
2723 /*
2724 * We weigh the current average higher than our current runtime
2725 * to avoid large swings in the average.
2726 */
2727 spin_lock(&delayed_refs->lock);
2728 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2729 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2730 spin_unlock(&delayed_refs->lock);
2731 }
d7df2c79 2732 return 0;
c3e69d58
CM
2733}
2734
709c0486
AJ
2735#ifdef SCRAMBLE_DELAYED_REFS
2736/*
2737 * Normally delayed refs get processed in ascending bytenr order. This
2738 * correlates in most cases to the order added. To expose dependencies on this
2739 * order, we start to process the tree in the middle instead of the beginning
2740 */
2741static u64 find_middle(struct rb_root *root)
2742{
2743 struct rb_node *n = root->rb_node;
2744 struct btrfs_delayed_ref_node *entry;
2745 int alt = 1;
2746 u64 middle;
2747 u64 first = 0, last = 0;
2748
2749 n = rb_first(root);
2750 if (n) {
2751 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2752 first = entry->bytenr;
2753 }
2754 n = rb_last(root);
2755 if (n) {
2756 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2757 last = entry->bytenr;
2758 }
2759 n = root->rb_node;
2760
2761 while (n) {
2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 WARN_ON(!entry->in_tree);
2764
2765 middle = entry->bytenr;
2766
2767 if (alt)
2768 n = n->rb_left;
2769 else
2770 n = n->rb_right;
2771
2772 alt = 1 - alt;
2773 }
2774 return middle;
2775}
2776#endif
2777
2ff7e61e 2778static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2779{
2780 u64 num_bytes;
2781
2782 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2783 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2784 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2785 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2786
2787 /*
2788 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2789 * closer to what we're really going to want to use.
1be41b78 2790 */
0b246afa 2791 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2792}
2793
1262133b
JB
2794/*
2795 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2796 * would require to store the csums for that many bytes.
2797 */
2ff7e61e 2798u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2799{
2800 u64 csum_size;
2801 u64 num_csums_per_leaf;
2802 u64 num_csums;
2803
0b246afa 2804 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2805 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2806 (u64)btrfs_super_csum_size(fs_info->super_copy));
2807 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2808 num_csums += num_csums_per_leaf - 1;
2809 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2810 return num_csums;
2811}
2812
af9b8a0e 2813int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans)
1be41b78 2814{
af9b8a0e 2815 struct btrfs_fs_info *fs_info = trans->fs_info;
1be41b78
JB
2816 struct btrfs_block_rsv *global_rsv;
2817 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2818 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2819 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2820 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2821 int ret = 0;
2822
0b246afa 2823 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2824 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2825 if (num_heads > 1)
0b246afa 2826 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2827 num_bytes <<= 1;
2ff7e61e
JM
2828 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2829 fs_info->nodesize;
0b246afa 2830 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2831 num_dirty_bgs);
0b246afa 2832 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2833
2834 /*
2835 * If we can't allocate any more chunks lets make sure we have _lots_ of
2836 * wiggle room since running delayed refs can create more delayed refs.
2837 */
cb723e49
JB
2838 if (global_rsv->space_info->full) {
2839 num_dirty_bgs_bytes <<= 1;
1be41b78 2840 num_bytes <<= 1;
cb723e49 2841 }
1be41b78
JB
2842
2843 spin_lock(&global_rsv->lock);
cb723e49 2844 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2845 ret = 1;
2846 spin_unlock(&global_rsv->lock);
2847 return ret;
2848}
2849
7c861627 2850int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2851{
0a2b2a84
JB
2852 u64 num_entries =
2853 atomic_read(&trans->transaction->delayed_refs.num_entries);
2854 u64 avg_runtime;
a79b7d4b 2855 u64 val;
0a2b2a84
JB
2856
2857 smp_mb();
7c861627 2858 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2859 val = num_entries * avg_runtime;
dc1a90c6 2860 if (val >= NSEC_PER_SEC)
0a2b2a84 2861 return 1;
a79b7d4b
CM
2862 if (val >= NSEC_PER_SEC / 2)
2863 return 2;
0a2b2a84 2864
af9b8a0e 2865 return btrfs_check_space_for_delayed_refs(trans);
0a2b2a84
JB
2866}
2867
a79b7d4b
CM
2868struct async_delayed_refs {
2869 struct btrfs_root *root;
31b9655f 2870 u64 transid;
a79b7d4b
CM
2871 int count;
2872 int error;
2873 int sync;
2874 struct completion wait;
2875 struct btrfs_work work;
2876};
2877
2ff7e61e
JM
2878static inline struct async_delayed_refs *
2879to_async_delayed_refs(struct btrfs_work *work)
2880{
2881 return container_of(work, struct async_delayed_refs, work);
2882}
2883
a79b7d4b
CM
2884static void delayed_ref_async_start(struct btrfs_work *work)
2885{
2ff7e61e 2886 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2887 struct btrfs_trans_handle *trans;
2ff7e61e 2888 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2889 int ret;
2890
0f873eca 2891 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2892 if (btrfs_transaction_blocked(fs_info))
31b9655f 2893 goto done;
31b9655f 2894
0f873eca
CM
2895 trans = btrfs_join_transaction(async->root);
2896 if (IS_ERR(trans)) {
2897 async->error = PTR_ERR(trans);
a79b7d4b
CM
2898 goto done;
2899 }
2900
2901 /*
01327610 2902 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2903 * wait on delayed refs
2904 */
2905 trans->sync = true;
0f873eca
CM
2906
2907 /* Don't bother flushing if we got into a different transaction */
2908 if (trans->transid > async->transid)
2909 goto end;
2910
c79a70b1 2911 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2912 if (ret)
2913 async->error = ret;
0f873eca 2914end:
3a45bb20 2915 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2916 if (ret && !async->error)
2917 async->error = ret;
2918done:
2919 if (async->sync)
2920 complete(&async->wait);
2921 else
2922 kfree(async);
2923}
2924
2ff7e61e 2925int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2926 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2927{
2928 struct async_delayed_refs *async;
2929 int ret;
2930
2931 async = kmalloc(sizeof(*async), GFP_NOFS);
2932 if (!async)
2933 return -ENOMEM;
2934
0b246afa 2935 async->root = fs_info->tree_root;
a79b7d4b
CM
2936 async->count = count;
2937 async->error = 0;
31b9655f 2938 async->transid = transid;
a79b7d4b
CM
2939 if (wait)
2940 async->sync = 1;
2941 else
2942 async->sync = 0;
2943 init_completion(&async->wait);
2944
9e0af237
LB
2945 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2946 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2947
0b246afa 2948 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2949
2950 if (wait) {
2951 wait_for_completion(&async->wait);
2952 ret = async->error;
2953 kfree(async);
2954 return ret;
2955 }
2956 return 0;
2957}
2958
c3e69d58
CM
2959/*
2960 * this starts processing the delayed reference count updates and
2961 * extent insertions we have queued up so far. count can be
2962 * 0, which means to process everything in the tree at the start
2963 * of the run (but not newly added entries), or it can be some target
2964 * number you'd like to process.
79787eaa
JM
2965 *
2966 * Returns 0 on success or if called with an aborted transaction
2967 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2968 */
2969int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2970 unsigned long count)
c3e69d58 2971{
c79a70b1 2972 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2973 struct rb_node *node;
2974 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2975 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2976 int ret;
2977 int run_all = count == (unsigned long)-1;
c3e69d58 2978
79787eaa
JM
2979 /* We'll clean this up in btrfs_cleanup_transaction */
2980 if (trans->aborted)
2981 return 0;
2982
0b246afa 2983 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2984 return 0;
2985
c3e69d58 2986 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2987 if (count == 0)
d7df2c79 2988 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2989
c3e69d58 2990again:
709c0486
AJ
2991#ifdef SCRAMBLE_DELAYED_REFS
2992 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2993#endif
0a1e458a 2994 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2995 if (ret < 0) {
66642832 2996 btrfs_abort_transaction(trans, ret);
d7df2c79 2997 return ret;
eb099670 2998 }
c3e69d58 2999
56bec294 3000 if (run_all) {
d7df2c79 3001 if (!list_empty(&trans->new_bgs))
6c686b35 3002 btrfs_create_pending_block_groups(trans);
ea658bad 3003
d7df2c79 3004 spin_lock(&delayed_refs->lock);
5c9d028b 3005 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
3006 if (!node) {
3007 spin_unlock(&delayed_refs->lock);
56bec294 3008 goto out;
d7df2c79 3009 }
d278850e
JB
3010 head = rb_entry(node, struct btrfs_delayed_ref_head,
3011 href_node);
3012 refcount_inc(&head->refs);
3013 spin_unlock(&delayed_refs->lock);
e9d0b13b 3014
d278850e
JB
3015 /* Mutex was contended, block until it's released and retry. */
3016 mutex_lock(&head->mutex);
3017 mutex_unlock(&head->mutex);
56bec294 3018
d278850e 3019 btrfs_put_delayed_ref_head(head);
d7df2c79 3020 cond_resched();
56bec294 3021 goto again;
5f39d397 3022 }
54aa1f4d 3023out:
a28ec197
CM
3024 return 0;
3025}
3026
5d4f98a2 3027int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3028 struct btrfs_fs_info *fs_info,
5d4f98a2 3029 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3030 int level, int is_data)
5d4f98a2
YZ
3031{
3032 struct btrfs_delayed_extent_op *extent_op;
3033 int ret;
3034
78a6184a 3035 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3036 if (!extent_op)
3037 return -ENOMEM;
3038
3039 extent_op->flags_to_set = flags;
35b3ad50
DS
3040 extent_op->update_flags = true;
3041 extent_op->update_key = false;
3042 extent_op->is_data = is_data ? true : false;
b1c79e09 3043 extent_op->level = level;
5d4f98a2 3044
0b246afa 3045 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3046 num_bytes, extent_op);
5d4f98a2 3047 if (ret)
78a6184a 3048 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3049 return ret;
3050}
3051
e4c3b2dc 3052static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3053 struct btrfs_path *path,
3054 u64 objectid, u64 offset, u64 bytenr)
3055{
3056 struct btrfs_delayed_ref_head *head;
3057 struct btrfs_delayed_ref_node *ref;
3058 struct btrfs_delayed_data_ref *data_ref;
3059 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3060 struct btrfs_transaction *cur_trans;
0e0adbcf 3061 struct rb_node *node;
5d4f98a2
YZ
3062 int ret = 0;
3063
998ac6d2 3064 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3065 cur_trans = root->fs_info->running_transaction;
998ac6d2 3066 if (cur_trans)
3067 refcount_inc(&cur_trans->use_count);
3068 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3069 if (!cur_trans)
3070 return 0;
3071
3072 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3073 spin_lock(&delayed_refs->lock);
f72ad18e 3074 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3075 if (!head) {
3076 spin_unlock(&delayed_refs->lock);
998ac6d2 3077 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3078 return 0;
3079 }
5d4f98a2
YZ
3080
3081 if (!mutex_trylock(&head->mutex)) {
d278850e 3082 refcount_inc(&head->refs);
5d4f98a2
YZ
3083 spin_unlock(&delayed_refs->lock);
3084
b3b4aa74 3085 btrfs_release_path(path);
5d4f98a2 3086
8cc33e5c
DS
3087 /*
3088 * Mutex was contended, block until it's released and let
3089 * caller try again
3090 */
5d4f98a2
YZ
3091 mutex_lock(&head->mutex);
3092 mutex_unlock(&head->mutex);
d278850e 3093 btrfs_put_delayed_ref_head(head);
998ac6d2 3094 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3095 return -EAGAIN;
3096 }
d7df2c79 3097 spin_unlock(&delayed_refs->lock);
5d4f98a2 3098
d7df2c79 3099 spin_lock(&head->lock);
0e0adbcf
JB
3100 /*
3101 * XXX: We should replace this with a proper search function in the
3102 * future.
3103 */
e3d03965
LB
3104 for (node = rb_first_cached(&head->ref_tree); node;
3105 node = rb_next(node)) {
0e0adbcf 3106 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3107 /* If it's a shared ref we know a cross reference exists */
3108 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3109 ret = 1;
3110 break;
3111 }
5d4f98a2 3112
d7df2c79 3113 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3114
d7df2c79
JB
3115 /*
3116 * If our ref doesn't match the one we're currently looking at
3117 * then we have a cross reference.
3118 */
3119 if (data_ref->root != root->root_key.objectid ||
3120 data_ref->objectid != objectid ||
3121 data_ref->offset != offset) {
3122 ret = 1;
3123 break;
3124 }
5d4f98a2 3125 }
d7df2c79 3126 spin_unlock(&head->lock);
5d4f98a2 3127 mutex_unlock(&head->mutex);
998ac6d2 3128 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3129 return ret;
3130}
3131
e4c3b2dc 3132static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3133 struct btrfs_path *path,
3134 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3135{
0b246afa
JM
3136 struct btrfs_fs_info *fs_info = root->fs_info;
3137 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3138 struct extent_buffer *leaf;
5d4f98a2
YZ
3139 struct btrfs_extent_data_ref *ref;
3140 struct btrfs_extent_inline_ref *iref;
3141 struct btrfs_extent_item *ei;
f321e491 3142 struct btrfs_key key;
5d4f98a2 3143 u32 item_size;
3de28d57 3144 int type;
be20aa9d 3145 int ret;
925baedd 3146
be20aa9d 3147 key.objectid = bytenr;
31840ae1 3148 key.offset = (u64)-1;
f321e491 3149 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3150
be20aa9d
CM
3151 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3152 if (ret < 0)
3153 goto out;
79787eaa 3154 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3155
3156 ret = -ENOENT;
3157 if (path->slots[0] == 0)
31840ae1 3158 goto out;
be20aa9d 3159
31840ae1 3160 path->slots[0]--;
f321e491 3161 leaf = path->nodes[0];
5d4f98a2 3162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3163
5d4f98a2 3164 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3165 goto out;
f321e491 3166
5d4f98a2
YZ
3167 ret = 1;
3168 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3169 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3170
5d4f98a2
YZ
3171 if (item_size != sizeof(*ei) +
3172 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3173 goto out;
be20aa9d 3174
5d4f98a2
YZ
3175 if (btrfs_extent_generation(leaf, ei) <=
3176 btrfs_root_last_snapshot(&root->root_item))
3177 goto out;
3178
3179 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3180
3181 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3182 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3183 goto out;
3184
3185 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3186 if (btrfs_extent_refs(leaf, ei) !=
3187 btrfs_extent_data_ref_count(leaf, ref) ||
3188 btrfs_extent_data_ref_root(leaf, ref) !=
3189 root->root_key.objectid ||
3190 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3191 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3192 goto out;
3193
3194 ret = 0;
3195out:
3196 return ret;
3197}
3198
e4c3b2dc
LB
3199int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3200 u64 bytenr)
5d4f98a2
YZ
3201{
3202 struct btrfs_path *path;
3203 int ret;
5d4f98a2
YZ
3204
3205 path = btrfs_alloc_path();
3206 if (!path)
9132c4ff 3207 return -ENOMEM;
5d4f98a2
YZ
3208
3209 do {
e4c3b2dc 3210 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3211 offset, bytenr);
3212 if (ret && ret != -ENOENT)
f321e491 3213 goto out;
80ff3856 3214
380fd066
MT
3215 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3216 } while (ret == -EAGAIN);
5d4f98a2 3217
be20aa9d 3218out:
80ff3856 3219 btrfs_free_path(path);
f0486c68
YZ
3220 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3221 WARN_ON(ret > 0);
f321e491 3222 return ret;
be20aa9d 3223}
c5739bba 3224
5d4f98a2 3225static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3226 struct btrfs_root *root,
5d4f98a2 3227 struct extent_buffer *buf,
e339a6b0 3228 int full_backref, int inc)
31840ae1 3229{
0b246afa 3230 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3231 u64 bytenr;
5d4f98a2
YZ
3232 u64 num_bytes;
3233 u64 parent;
31840ae1 3234 u64 ref_root;
31840ae1 3235 u32 nritems;
31840ae1
ZY
3236 struct btrfs_key key;
3237 struct btrfs_file_extent_item *fi;
3238 int i;
3239 int level;
3240 int ret = 0;
2ff7e61e 3241 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3242 struct btrfs_root *,
b06c4bf5 3243 u64, u64, u64, u64, u64, u64);
31840ae1 3244
fccb84c9 3245
0b246afa 3246 if (btrfs_is_testing(fs_info))
faa2dbf0 3247 return 0;
fccb84c9 3248
31840ae1 3249 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3250 nritems = btrfs_header_nritems(buf);
3251 level = btrfs_header_level(buf);
3252
27cdeb70 3253 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3254 return 0;
31840ae1 3255
5d4f98a2
YZ
3256 if (inc)
3257 process_func = btrfs_inc_extent_ref;
3258 else
3259 process_func = btrfs_free_extent;
31840ae1 3260
5d4f98a2
YZ
3261 if (full_backref)
3262 parent = buf->start;
3263 else
3264 parent = 0;
3265
3266 for (i = 0; i < nritems; i++) {
31840ae1 3267 if (level == 0) {
5d4f98a2 3268 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3269 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3270 continue;
5d4f98a2 3271 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3272 struct btrfs_file_extent_item);
3273 if (btrfs_file_extent_type(buf, fi) ==
3274 BTRFS_FILE_EXTENT_INLINE)
3275 continue;
3276 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3277 if (bytenr == 0)
3278 continue;
5d4f98a2
YZ
3279
3280 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3281 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3282 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3283 parent, ref_root, key.objectid,
b06c4bf5 3284 key.offset);
31840ae1
ZY
3285 if (ret)
3286 goto fail;
3287 } else {
5d4f98a2 3288 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3289 num_bytes = fs_info->nodesize;
84f7d8e6 3290 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3291 parent, ref_root, level - 1, 0);
31840ae1
ZY
3292 if (ret)
3293 goto fail;
3294 }
3295 }
3296 return 0;
3297fail:
5d4f98a2
YZ
3298 return ret;
3299}
3300
3301int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3302 struct extent_buffer *buf, int full_backref)
5d4f98a2 3303{
e339a6b0 3304 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3305}
3306
3307int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3308 struct extent_buffer *buf, int full_backref)
5d4f98a2 3309{
e339a6b0 3310 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3311}
3312
9078a3e1 3313static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3314 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3315 struct btrfs_path *path,
3316 struct btrfs_block_group_cache *cache)
3317{
3318 int ret;
0b246afa 3319 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3320 unsigned long bi;
3321 struct extent_buffer *leaf;
9078a3e1 3322
9078a3e1 3323 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3324 if (ret) {
3325 if (ret > 0)
3326 ret = -ENOENT;
54aa1f4d 3327 goto fail;
df95e7f0 3328 }
5f39d397
CM
3329
3330 leaf = path->nodes[0];
3331 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3332 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3333 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3334fail:
24b89d08 3335 btrfs_release_path(path);
df95e7f0 3336 return ret;
9078a3e1
CM
3337
3338}
3339
4a8c9a62 3340static struct btrfs_block_group_cache *
2ff7e61e 3341next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3342 struct btrfs_block_group_cache *cache)
3343{
3344 struct rb_node *node;
292cbd51 3345
0b246afa 3346 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3347
3348 /* If our block group was removed, we need a full search. */
3349 if (RB_EMPTY_NODE(&cache->cache_node)) {
3350 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3351
0b246afa 3352 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3353 btrfs_put_block_group(cache);
0b246afa 3354 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3355 }
4a8c9a62
YZ
3356 node = rb_next(&cache->cache_node);
3357 btrfs_put_block_group(cache);
3358 if (node) {
3359 cache = rb_entry(node, struct btrfs_block_group_cache,
3360 cache_node);
11dfe35a 3361 btrfs_get_block_group(cache);
4a8c9a62
YZ
3362 } else
3363 cache = NULL;
0b246afa 3364 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3365 return cache;
3366}
3367
0af3d00b
JB
3368static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3369 struct btrfs_trans_handle *trans,
3370 struct btrfs_path *path)
3371{
0b246afa
JM
3372 struct btrfs_fs_info *fs_info = block_group->fs_info;
3373 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3374 struct inode *inode = NULL;
364ecf36 3375 struct extent_changeset *data_reserved = NULL;
0af3d00b 3376 u64 alloc_hint = 0;
2b20982e 3377 int dcs = BTRFS_DC_ERROR;
f8c269d7 3378 u64 num_pages = 0;
0af3d00b
JB
3379 int retries = 0;
3380 int ret = 0;
3381
3382 /*
3383 * If this block group is smaller than 100 megs don't bother caching the
3384 * block group.
3385 */
ee22184b 3386 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3387 spin_lock(&block_group->lock);
3388 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3389 spin_unlock(&block_group->lock);
3390 return 0;
3391 }
3392
0c0ef4bc
JB
3393 if (trans->aborted)
3394 return 0;
0af3d00b 3395again:
77ab86bf 3396 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3397 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3398 ret = PTR_ERR(inode);
b3b4aa74 3399 btrfs_release_path(path);
0af3d00b
JB
3400 goto out;
3401 }
3402
3403 if (IS_ERR(inode)) {
3404 BUG_ON(retries);
3405 retries++;
3406
3407 if (block_group->ro)
3408 goto out_free;
3409
77ab86bf
JM
3410 ret = create_free_space_inode(fs_info, trans, block_group,
3411 path);
0af3d00b
JB
3412 if (ret)
3413 goto out_free;
3414 goto again;
3415 }
3416
3417 /*
3418 * We want to set the generation to 0, that way if anything goes wrong
3419 * from here on out we know not to trust this cache when we load up next
3420 * time.
3421 */
3422 BTRFS_I(inode)->generation = 0;
3423 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3424 if (ret) {
3425 /*
3426 * So theoretically we could recover from this, simply set the
3427 * super cache generation to 0 so we know to invalidate the
3428 * cache, but then we'd have to keep track of the block groups
3429 * that fail this way so we know we _have_ to reset this cache
3430 * before the next commit or risk reading stale cache. So to
3431 * limit our exposure to horrible edge cases lets just abort the
3432 * transaction, this only happens in really bad situations
3433 * anyway.
3434 */
66642832 3435 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3436 goto out_put;
3437 }
0af3d00b
JB
3438 WARN_ON(ret);
3439
8e138e0d
JB
3440 /* We've already setup this transaction, go ahead and exit */
3441 if (block_group->cache_generation == trans->transid &&
3442 i_size_read(inode)) {
3443 dcs = BTRFS_DC_SETUP;
3444 goto out_put;
3445 }
3446
0af3d00b 3447 if (i_size_read(inode) > 0) {
2ff7e61e 3448 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3449 &fs_info->global_block_rsv);
7b61cd92
MX
3450 if (ret)
3451 goto out_put;
3452
77ab86bf 3453 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3454 if (ret)
3455 goto out_put;
3456 }
3457
3458 spin_lock(&block_group->lock);
cf7c1ef6 3459 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3460 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3461 /*
3462 * don't bother trying to write stuff out _if_
3463 * a) we're not cached,
1a79c1f2
LB
3464 * b) we're with nospace_cache mount option,
3465 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3466 */
2b20982e 3467 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3468 spin_unlock(&block_group->lock);
3469 goto out_put;
3470 }
3471 spin_unlock(&block_group->lock);
3472
2968b1f4
JB
3473 /*
3474 * We hit an ENOSPC when setting up the cache in this transaction, just
3475 * skip doing the setup, we've already cleared the cache so we're safe.
3476 */
3477 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3478 ret = -ENOSPC;
3479 goto out_put;
3480 }
3481
6fc823b1
JB
3482 /*
3483 * Try to preallocate enough space based on how big the block group is.
3484 * Keep in mind this has to include any pinned space which could end up
3485 * taking up quite a bit since it's not folded into the other space
3486 * cache.
3487 */
ee22184b 3488 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3489 if (!num_pages)
3490 num_pages = 1;
3491
0af3d00b 3492 num_pages *= 16;
09cbfeaf 3493 num_pages *= PAGE_SIZE;
0af3d00b 3494
364ecf36 3495 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3496 if (ret)
3497 goto out_put;
3498
3499 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3500 num_pages, num_pages,
3501 &alloc_hint);
2968b1f4
JB
3502 /*
3503 * Our cache requires contiguous chunks so that we don't modify a bunch
3504 * of metadata or split extents when writing the cache out, which means
3505 * we can enospc if we are heavily fragmented in addition to just normal
3506 * out of space conditions. So if we hit this just skip setting up any
3507 * other block groups for this transaction, maybe we'll unpin enough
3508 * space the next time around.
3509 */
2b20982e
JB
3510 if (!ret)
3511 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3512 else if (ret == -ENOSPC)
3513 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3514
0af3d00b
JB
3515out_put:
3516 iput(inode);
3517out_free:
b3b4aa74 3518 btrfs_release_path(path);
0af3d00b
JB
3519out:
3520 spin_lock(&block_group->lock);
e65cbb94 3521 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3522 block_group->cache_generation = trans->transid;
2b20982e 3523 block_group->disk_cache_state = dcs;
0af3d00b
JB
3524 spin_unlock(&block_group->lock);
3525
364ecf36 3526 extent_changeset_free(data_reserved);
0af3d00b
JB
3527 return ret;
3528}
3529
dcdf7f6d 3530int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3531 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3532{
3533 struct btrfs_block_group_cache *cache, *tmp;
3534 struct btrfs_transaction *cur_trans = trans->transaction;
3535 struct btrfs_path *path;
3536
3537 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3538 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3539 return 0;
3540
3541 path = btrfs_alloc_path();
3542 if (!path)
3543 return -ENOMEM;
3544
3545 /* Could add new block groups, use _safe just in case */
3546 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3547 dirty_list) {
3548 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3549 cache_save_setup(cache, trans, path);
3550 }
3551
3552 btrfs_free_path(path);
3553 return 0;
3554}
3555
1bbc621e
CM
3556/*
3557 * transaction commit does final block group cache writeback during a
3558 * critical section where nothing is allowed to change the FS. This is
3559 * required in order for the cache to actually match the block group,
3560 * but can introduce a lot of latency into the commit.
3561 *
3562 * So, btrfs_start_dirty_block_groups is here to kick off block group
3563 * cache IO. There's a chance we'll have to redo some of it if the
3564 * block group changes again during the commit, but it greatly reduces
3565 * the commit latency by getting rid of the easy block groups while
3566 * we're still allowing others to join the commit.
3567 */
21217054 3568int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3569{
21217054 3570 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3571 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3572 struct btrfs_transaction *cur_trans = trans->transaction;
3573 int ret = 0;
c9dc4c65 3574 int should_put;
1bbc621e
CM
3575 struct btrfs_path *path = NULL;
3576 LIST_HEAD(dirty);
3577 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3578 int num_started = 0;
1bbc621e
CM
3579 int loops = 0;
3580
3581 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3582 if (list_empty(&cur_trans->dirty_bgs)) {
3583 spin_unlock(&cur_trans->dirty_bgs_lock);
3584 return 0;
1bbc621e 3585 }
b58d1a9e 3586 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3587 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3588
1bbc621e 3589again:
1bbc621e
CM
3590 /*
3591 * make sure all the block groups on our dirty list actually
3592 * exist
3593 */
6c686b35 3594 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3595
3596 if (!path) {
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600 }
3601
b58d1a9e
FM
3602 /*
3603 * cache_write_mutex is here only to save us from balance or automatic
3604 * removal of empty block groups deleting this block group while we are
3605 * writing out the cache
3606 */
3607 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3608 while (!list_empty(&dirty)) {
3609 cache = list_first_entry(&dirty,
3610 struct btrfs_block_group_cache,
3611 dirty_list);
1bbc621e
CM
3612 /*
3613 * this can happen if something re-dirties a block
3614 * group that is already under IO. Just wait for it to
3615 * finish and then do it all again
3616 */
3617 if (!list_empty(&cache->io_list)) {
3618 list_del_init(&cache->io_list);
afdb5718 3619 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3620 btrfs_put_block_group(cache);
3621 }
3622
3623
3624 /*
3625 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3626 * if it should update the cache_state. Don't delete
3627 * until after we wait.
3628 *
3629 * Since we're not running in the commit critical section
3630 * we need the dirty_bgs_lock to protect from update_block_group
3631 */
3632 spin_lock(&cur_trans->dirty_bgs_lock);
3633 list_del_init(&cache->dirty_list);
3634 spin_unlock(&cur_trans->dirty_bgs_lock);
3635
3636 should_put = 1;
3637
3638 cache_save_setup(cache, trans, path);
3639
3640 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3641 cache->io_ctl.inode = NULL;
0b246afa 3642 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3643 cache, path);
1bbc621e
CM
3644 if (ret == 0 && cache->io_ctl.inode) {
3645 num_started++;
3646 should_put = 0;
3647
3648 /*
45ae2c18
NB
3649 * The cache_write_mutex is protecting the
3650 * io_list, also refer to the definition of
3651 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3652 */
3653 list_add_tail(&cache->io_list, io);
3654 } else {
3655 /*
3656 * if we failed to write the cache, the
3657 * generation will be bad and life goes on
3658 */
3659 ret = 0;
3660 }
3661 }
ff1f8250 3662 if (!ret) {
2ff7e61e
JM
3663 ret = write_one_cache_group(trans, fs_info,
3664 path, cache);
ff1f8250
FM
3665 /*
3666 * Our block group might still be attached to the list
3667 * of new block groups in the transaction handle of some
3668 * other task (struct btrfs_trans_handle->new_bgs). This
3669 * means its block group item isn't yet in the extent
3670 * tree. If this happens ignore the error, as we will
3671 * try again later in the critical section of the
3672 * transaction commit.
3673 */
3674 if (ret == -ENOENT) {
3675 ret = 0;
3676 spin_lock(&cur_trans->dirty_bgs_lock);
3677 if (list_empty(&cache->dirty_list)) {
3678 list_add_tail(&cache->dirty_list,
3679 &cur_trans->dirty_bgs);
3680 btrfs_get_block_group(cache);
3681 }
3682 spin_unlock(&cur_trans->dirty_bgs_lock);
3683 } else if (ret) {
66642832 3684 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3685 }
3686 }
1bbc621e
CM
3687
3688 /* if its not on the io list, we need to put the block group */
3689 if (should_put)
3690 btrfs_put_block_group(cache);
3691
3692 if (ret)
3693 break;
b58d1a9e
FM
3694
3695 /*
3696 * Avoid blocking other tasks for too long. It might even save
3697 * us from writing caches for block groups that are going to be
3698 * removed.
3699 */
3700 mutex_unlock(&trans->transaction->cache_write_mutex);
3701 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3702 }
b58d1a9e 3703 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3704
3705 /*
3706 * go through delayed refs for all the stuff we've just kicked off
3707 * and then loop back (just once)
3708 */
c79a70b1 3709 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3710 if (!ret && loops == 0) {
3711 loops++;
3712 spin_lock(&cur_trans->dirty_bgs_lock);
3713 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3714 /*
3715 * dirty_bgs_lock protects us from concurrent block group
3716 * deletes too (not just cache_write_mutex).
3717 */
3718 if (!list_empty(&dirty)) {
3719 spin_unlock(&cur_trans->dirty_bgs_lock);
3720 goto again;
3721 }
1bbc621e 3722 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3723 } else if (ret < 0) {
2ff7e61e 3724 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3725 }
3726
3727 btrfs_free_path(path);
3728 return ret;
3729}
3730
3731int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3732 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3733{
3734 struct btrfs_block_group_cache *cache;
3735 struct btrfs_transaction *cur_trans = trans->transaction;
3736 int ret = 0;
3737 int should_put;
3738 struct btrfs_path *path;
3739 struct list_head *io = &cur_trans->io_bgs;
3740 int num_started = 0;
9078a3e1
CM
3741
3742 path = btrfs_alloc_path();
3743 if (!path)
3744 return -ENOMEM;
3745
ce93ec54 3746 /*
e44081ef
FM
3747 * Even though we are in the critical section of the transaction commit,
3748 * we can still have concurrent tasks adding elements to this
3749 * transaction's list of dirty block groups. These tasks correspond to
3750 * endio free space workers started when writeback finishes for a
3751 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3752 * allocate new block groups as a result of COWing nodes of the root
3753 * tree when updating the free space inode. The writeback for the space
3754 * caches is triggered by an earlier call to
3755 * btrfs_start_dirty_block_groups() and iterations of the following
3756 * loop.
3757 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3758 * delayed refs to make sure we have the best chance at doing this all
3759 * in one shot.
3760 */
e44081ef 3761 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3762 while (!list_empty(&cur_trans->dirty_bgs)) {
3763 cache = list_first_entry(&cur_trans->dirty_bgs,
3764 struct btrfs_block_group_cache,
3765 dirty_list);
c9dc4c65
CM
3766
3767 /*
3768 * this can happen if cache_save_setup re-dirties a block
3769 * group that is already under IO. Just wait for it to
3770 * finish and then do it all again
3771 */
3772 if (!list_empty(&cache->io_list)) {
e44081ef 3773 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3774 list_del_init(&cache->io_list);
afdb5718 3775 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3776 btrfs_put_block_group(cache);
e44081ef 3777 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3778 }
3779
1bbc621e
CM
3780 /*
3781 * don't remove from the dirty list until after we've waited
3782 * on any pending IO
3783 */
ce93ec54 3784 list_del_init(&cache->dirty_list);
e44081ef 3785 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3786 should_put = 1;
3787
1bbc621e 3788 cache_save_setup(cache, trans, path);
c9dc4c65 3789
ce93ec54 3790 if (!ret)
c79a70b1 3791 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3792 (unsigned long) -1);
c9dc4c65
CM
3793
3794 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3795 cache->io_ctl.inode = NULL;
0b246afa 3796 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3797 cache, path);
c9dc4c65
CM
3798 if (ret == 0 && cache->io_ctl.inode) {
3799 num_started++;
3800 should_put = 0;
1bbc621e 3801 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3802 } else {
3803 /*
3804 * if we failed to write the cache, the
3805 * generation will be bad and life goes on
3806 */
3807 ret = 0;
3808 }
3809 }
ff1f8250 3810 if (!ret) {
2ff7e61e
JM
3811 ret = write_one_cache_group(trans, fs_info,
3812 path, cache);
2bc0bb5f
FM
3813 /*
3814 * One of the free space endio workers might have
3815 * created a new block group while updating a free space
3816 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3817 * and hasn't released its transaction handle yet, in
3818 * which case the new block group is still attached to
3819 * its transaction handle and its creation has not
3820 * finished yet (no block group item in the extent tree
3821 * yet, etc). If this is the case, wait for all free
3822 * space endio workers to finish and retry. This is a
3823 * a very rare case so no need for a more efficient and
3824 * complex approach.
3825 */
3826 if (ret == -ENOENT) {
3827 wait_event(cur_trans->writer_wait,
3828 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3829 ret = write_one_cache_group(trans, fs_info,
3830 path, cache);
2bc0bb5f 3831 }
ff1f8250 3832 if (ret)
66642832 3833 btrfs_abort_transaction(trans, ret);
ff1f8250 3834 }
c9dc4c65
CM
3835
3836 /* if its not on the io list, we need to put the block group */
3837 if (should_put)
3838 btrfs_put_block_group(cache);
e44081ef 3839 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3840 }
e44081ef 3841 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3842
45ae2c18
NB
3843 /*
3844 * Refer to the definition of io_bgs member for details why it's safe
3845 * to use it without any locking
3846 */
1bbc621e
CM
3847 while (!list_empty(io)) {
3848 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3849 io_list);
3850 list_del_init(&cache->io_list);
afdb5718 3851 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3852 btrfs_put_block_group(cache);
3853 }
3854
9078a3e1 3855 btrfs_free_path(path);
ce93ec54 3856 return ret;
9078a3e1
CM
3857}
3858
2ff7e61e 3859int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3860{
3861 struct btrfs_block_group_cache *block_group;
3862 int readonly = 0;
3863
0b246afa 3864 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3865 if (!block_group || block_group->ro)
3866 readonly = 1;
3867 if (block_group)
fa9c0d79 3868 btrfs_put_block_group(block_group);
d2fb3437
YZ
3869 return readonly;
3870}
3871
f78c436c
FM
3872bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3873{
3874 struct btrfs_block_group_cache *bg;
3875 bool ret = true;
3876
3877 bg = btrfs_lookup_block_group(fs_info, bytenr);
3878 if (!bg)
3879 return false;
3880
3881 spin_lock(&bg->lock);
3882 if (bg->ro)
3883 ret = false;
3884 else
3885 atomic_inc(&bg->nocow_writers);
3886 spin_unlock(&bg->lock);
3887
3888 /* no put on block group, done by btrfs_dec_nocow_writers */
3889 if (!ret)
3890 btrfs_put_block_group(bg);
3891
3892 return ret;
3893
3894}
3895
3896void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3897{
3898 struct btrfs_block_group_cache *bg;
3899
3900 bg = btrfs_lookup_block_group(fs_info, bytenr);
3901 ASSERT(bg);
3902 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3903 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3904 /*
3905 * Once for our lookup and once for the lookup done by a previous call
3906 * to btrfs_inc_nocow_writers()
3907 */
3908 btrfs_put_block_group(bg);
3909 btrfs_put_block_group(bg);
3910}
3911
f78c436c
FM
3912void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3913{
4625956a 3914 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3915}
3916
6ab0a202
JM
3917static const char *alloc_name(u64 flags)
3918{
3919 switch (flags) {
3920 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3921 return "mixed";
3922 case BTRFS_BLOCK_GROUP_METADATA:
3923 return "metadata";
3924 case BTRFS_BLOCK_GROUP_DATA:
3925 return "data";
3926 case BTRFS_BLOCK_GROUP_SYSTEM:
3927 return "system";
3928 default:
3929 WARN_ON(1);
3930 return "invalid-combination";
3931 };
3932}
3933
4ca61683 3934static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3935{
3936
3937 struct btrfs_space_info *space_info;
3938 int i;
3939 int ret;
3940
3941 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3942 if (!space_info)
3943 return -ENOMEM;
3944
3945 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3946 GFP_KERNEL);
3947 if (ret) {
3948 kfree(space_info);
3949 return ret;
3950 }
3951
3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 INIT_LIST_HEAD(&space_info->block_groups[i]);
3954 init_rwsem(&space_info->groups_sem);
3955 spin_lock_init(&space_info->lock);
3956 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3958 init_waitqueue_head(&space_info->wait);
3959 INIT_LIST_HEAD(&space_info->ro_bgs);
3960 INIT_LIST_HEAD(&space_info->tickets);
3961 INIT_LIST_HEAD(&space_info->priority_tickets);
3962
3963 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3964 info->space_info_kobj, "%s",
3965 alloc_name(space_info->flags));
3966 if (ret) {
3967 percpu_counter_destroy(&space_info->total_bytes_pinned);
3968 kfree(space_info);
3969 return ret;
3970 }
3971
2be12ef7
NB
3972 list_add_rcu(&space_info->list, &info->space_info);
3973 if (flags & BTRFS_BLOCK_GROUP_DATA)
3974 info->data_sinfo = space_info;
3975
3976 return ret;
3977}
3978
d2006e6d 3979static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3980 u64 total_bytes, u64 bytes_used,
e40edf2d 3981 u64 bytes_readonly,
593060d7
CM
3982 struct btrfs_space_info **space_info)
3983{
3984 struct btrfs_space_info *found;
b742bb82
YZ
3985 int factor;
3986
46df06b8 3987 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3988
3989 found = __find_space_info(info, flags);
d2006e6d
NB
3990 ASSERT(found);
3991 spin_lock(&found->lock);
3992 found->total_bytes += total_bytes;
3993 found->disk_total += total_bytes * factor;
3994 found->bytes_used += bytes_used;
3995 found->disk_used += bytes_used * factor;
3996 found->bytes_readonly += bytes_readonly;
3997 if (total_bytes > 0)
3998 found->full = 0;
3999 space_info_add_new_bytes(info, found, total_bytes -
4000 bytes_used - bytes_readonly);
4001 spin_unlock(&found->lock);
4002 *space_info = found;
593060d7
CM
4003}
4004
8790d502
CM
4005static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4006{
899c81ea
ID
4007 u64 extra_flags = chunk_to_extended(flags) &
4008 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4009
de98ced9 4010 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4011 if (flags & BTRFS_BLOCK_GROUP_DATA)
4012 fs_info->avail_data_alloc_bits |= extra_flags;
4013 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4014 fs_info->avail_metadata_alloc_bits |= extra_flags;
4015 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4016 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4017 write_sequnlock(&fs_info->profiles_lock);
8790d502 4018}
593060d7 4019
fc67c450
ID
4020/*
4021 * returns target flags in extended format or 0 if restripe for this
4022 * chunk_type is not in progress
c6664b42 4023 *
dccdb07b 4024 * should be called with balance_lock held
fc67c450
ID
4025 */
4026static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4027{
4028 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4029 u64 target = 0;
4030
fc67c450
ID
4031 if (!bctl)
4032 return 0;
4033
4034 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4035 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4036 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4037 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4038 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4039 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4040 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4041 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4042 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4043 }
4044
4045 return target;
4046}
4047
a46d11a8
ID
4048/*
4049 * @flags: available profiles in extended format (see ctree.h)
4050 *
e4d8ec0f
ID
4051 * Returns reduced profile in chunk format. If profile changing is in
4052 * progress (either running or paused) picks the target profile (if it's
4053 * already available), otherwise falls back to plain reducing.
a46d11a8 4054 */
2ff7e61e 4055static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4056{
0b246afa 4057 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4058 u64 target;
9c170b26
ZL
4059 u64 raid_type;
4060 u64 allowed = 0;
a061fc8d 4061
fc67c450
ID
4062 /*
4063 * see if restripe for this chunk_type is in progress, if so
4064 * try to reduce to the target profile
4065 */
0b246afa
JM
4066 spin_lock(&fs_info->balance_lock);
4067 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4068 if (target) {
4069 /* pick target profile only if it's already available */
4070 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4071 spin_unlock(&fs_info->balance_lock);
fc67c450 4072 return extended_to_chunk(target);
e4d8ec0f
ID
4073 }
4074 }
0b246afa 4075 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4076
53b381b3 4077 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4078 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4079 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4080 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4081 }
4082 allowed &= flags;
4083
4084 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4085 allowed = BTRFS_BLOCK_GROUP_RAID6;
4086 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4087 allowed = BTRFS_BLOCK_GROUP_RAID5;
4088 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4089 allowed = BTRFS_BLOCK_GROUP_RAID10;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4091 allowed = BTRFS_BLOCK_GROUP_RAID1;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4093 allowed = BTRFS_BLOCK_GROUP_RAID0;
4094
4095 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4096
4097 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4098}
4099
2ff7e61e 4100static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4101{
de98ced9 4102 unsigned seq;
f8213bdc 4103 u64 flags;
de98ced9
MX
4104
4105 do {
f8213bdc 4106 flags = orig_flags;
0b246afa 4107 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4108
4109 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4110 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4112 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4113 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4114 flags |= fs_info->avail_metadata_alloc_bits;
4115 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4116
2ff7e61e 4117 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4118}
4119
1b86826d 4120static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4121{
0b246afa 4122 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4123 u64 flags;
53b381b3 4124 u64 ret;
9ed74f2d 4125
b742bb82
YZ
4126 if (data)
4127 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4128 else if (root == fs_info->chunk_root)
b742bb82 4129 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4130 else
b742bb82 4131 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4132
2ff7e61e 4133 ret = get_alloc_profile(fs_info, flags);
53b381b3 4134 return ret;
6a63209f 4135}
9ed74f2d 4136
1b86826d
JM
4137u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4138{
4139 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4140}
4141
4142u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4143{
4144 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4145}
4146
4147u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4148{
4149 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4150}
4151
4136135b
LB
4152static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4153 bool may_use_included)
4154{
4155 ASSERT(s_info);
4156 return s_info->bytes_used + s_info->bytes_reserved +
4157 s_info->bytes_pinned + s_info->bytes_readonly +
4158 (may_use_included ? s_info->bytes_may_use : 0);
4159}
4160
04f4f916 4161int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4162{
04f4f916 4163 struct btrfs_root *root = inode->root;
b4d7c3c9 4164 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4165 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4166 u64 used;
94b947b2 4167 int ret = 0;
c99f1b0c
ZL
4168 int need_commit = 2;
4169 int have_pinned_space;
6a63209f 4170
6a63209f 4171 /* make sure bytes are sectorsize aligned */
0b246afa 4172 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4173
9dced186 4174 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4175 need_commit = 0;
9dced186 4176 ASSERT(current->journal_info);
0af3d00b
JB
4177 }
4178
6a63209f
JB
4179again:
4180 /* make sure we have enough space to handle the data first */
4181 spin_lock(&data_sinfo->lock);
4136135b 4182 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4183
4184 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4185 struct btrfs_trans_handle *trans;
9ed74f2d 4186
6a63209f
JB
4187 /*
4188 * if we don't have enough free bytes in this space then we need
4189 * to alloc a new chunk.
4190 */
b9fd47cd 4191 if (!data_sinfo->full) {
6a63209f 4192 u64 alloc_target;
9ed74f2d 4193
0e4f8f88 4194 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4195 spin_unlock(&data_sinfo->lock);
1174cade 4196
1b86826d 4197 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4198 /*
4199 * It is ugly that we don't call nolock join
4200 * transaction for the free space inode case here.
4201 * But it is safe because we only do the data space
4202 * reservation for the free space cache in the
4203 * transaction context, the common join transaction
4204 * just increase the counter of the current transaction
4205 * handler, doesn't try to acquire the trans_lock of
4206 * the fs.
4207 */
7a7eaa40 4208 trans = btrfs_join_transaction(root);
a22285a6
YZ
4209 if (IS_ERR(trans))
4210 return PTR_ERR(trans);
9ed74f2d 4211
01458828 4212 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4213 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4214 btrfs_end_transaction(trans);
d52a5b5f
MX
4215 if (ret < 0) {
4216 if (ret != -ENOSPC)
4217 return ret;
c99f1b0c
ZL
4218 else {
4219 have_pinned_space = 1;
d52a5b5f 4220 goto commit_trans;
c99f1b0c 4221 }
d52a5b5f 4222 }
9ed74f2d 4223
6a63209f
JB
4224 goto again;
4225 }
f2bb8f5c
JB
4226
4227 /*
b150a4f1 4228 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4229 * allocation, and no removed chunk in current transaction,
4230 * don't bother committing the transaction.
f2bb8f5c 4231 */
dec59fa3 4232 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4233 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4234 used + bytes - data_sinfo->total_bytes,
4235 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4236 spin_unlock(&data_sinfo->lock);
6a63209f 4237
4e06bdd6 4238 /* commit the current transaction and try again */
d52a5b5f 4239commit_trans:
92e2f7e3 4240 if (need_commit) {
c99f1b0c 4241 need_commit--;
b150a4f1 4242
e1746e83 4243 if (need_commit > 0) {
82b3e53b 4244 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4245 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4246 (u64)-1);
e1746e83 4247 }
9a4e7276 4248
7a7eaa40 4249 trans = btrfs_join_transaction(root);
a22285a6
YZ
4250 if (IS_ERR(trans))
4251 return PTR_ERR(trans);
c99f1b0c 4252 if (have_pinned_space >= 0 ||
3204d33c
JB
4253 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4254 &trans->transaction->flags) ||
c99f1b0c 4255 need_commit > 0) {
3a45bb20 4256 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4257 if (ret)
4258 return ret;
d7c15171 4259 /*
c2d6cb16
FM
4260 * The cleaner kthread might still be doing iput
4261 * operations. Wait for it to finish so that
4262 * more space is released.
d7c15171 4263 */
0b246afa
JM
4264 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4265 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4266 goto again;
4267 } else {
3a45bb20 4268 btrfs_end_transaction(trans);
94b947b2 4269 }
4e06bdd6 4270 }
9ed74f2d 4271
0b246afa 4272 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4273 "space_info:enospc",
4274 data_sinfo->flags, bytes, 1);
6a63209f
JB
4275 return -ENOSPC;
4276 }
9f9b8e8d 4277 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4278 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4279 data_sinfo->flags, bytes, 1);
6a63209f 4280 spin_unlock(&data_sinfo->lock);
6a63209f 4281
4559b0a7 4282 return 0;
9ed74f2d 4283}
6a63209f 4284
364ecf36
QW
4285int btrfs_check_data_free_space(struct inode *inode,
4286 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4287{
0b246afa 4288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4289 int ret;
4290
4291 /* align the range */
0b246afa
JM
4292 len = round_up(start + len, fs_info->sectorsize) -
4293 round_down(start, fs_info->sectorsize);
4294 start = round_down(start, fs_info->sectorsize);
4ceff079 4295
04f4f916 4296 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4297 if (ret < 0)
4298 return ret;
4299
1e5ec2e7 4300 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4301 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4302 if (ret < 0)
1e5ec2e7 4303 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4304 else
4305 ret = 0;
4ceff079
QW
4306 return ret;
4307}
4308
4ceff079
QW
4309/*
4310 * Called if we need to clear a data reservation for this inode
4311 * Normally in a error case.
4312 *
51773bec
QW
4313 * This one will *NOT* use accurate qgroup reserved space API, just for case
4314 * which we can't sleep and is sure it won't affect qgroup reserved space.
4315 * Like clear_bit_hook().
4ceff079 4316 */
51773bec
QW
4317void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4318 u64 len)
4ceff079 4319{
0b246afa 4320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4321 struct btrfs_space_info *data_sinfo;
4322
4323 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4324 len = round_up(start + len, fs_info->sectorsize) -
4325 round_down(start, fs_info->sectorsize);
4326 start = round_down(start, fs_info->sectorsize);
4ceff079 4327
0b246afa 4328 data_sinfo = fs_info->data_sinfo;
4ceff079 4329 spin_lock(&data_sinfo->lock);
9f9b8e8d 4330 update_bytes_may_use(data_sinfo, -len);
0b246afa 4331 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4332 data_sinfo->flags, len, 0);
4333 spin_unlock(&data_sinfo->lock);
4334}
4335
51773bec
QW
4336/*
4337 * Called if we need to clear a data reservation for this inode
4338 * Normally in a error case.
4339 *
01327610 4340 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4341 * space framework.
4342 */
bc42bda2
QW
4343void btrfs_free_reserved_data_space(struct inode *inode,
4344 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4345{
0c476a5d
JM
4346 struct btrfs_root *root = BTRFS_I(inode)->root;
4347
4348 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4349 len = round_up(start + len, root->fs_info->sectorsize) -
4350 round_down(start, root->fs_info->sectorsize);
4351 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4352
51773bec 4353 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4354 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4355}
4356
97e728d4 4357static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4358{
97e728d4
JB
4359 struct list_head *head = &info->space_info;
4360 struct btrfs_space_info *found;
e3ccfa98 4361
97e728d4
JB
4362 rcu_read_lock();
4363 list_for_each_entry_rcu(found, head, list) {
4364 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4365 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4366 }
97e728d4 4367 rcu_read_unlock();
e3ccfa98
JB
4368}
4369
3c76cd84
MX
4370static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4371{
4372 return (global->size << 1);
4373}
4374
2ff7e61e 4375static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4376 struct btrfs_space_info *sinfo, int force)
32c00aff 4377{
0b246afa 4378 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4379 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4380 u64 thresh;
e3ccfa98 4381
0e4f8f88
CM
4382 if (force == CHUNK_ALLOC_FORCE)
4383 return 1;
4384
fb25e914
JB
4385 /*
4386 * We need to take into account the global rsv because for all intents
4387 * and purposes it's used space. Don't worry about locking the
4388 * global_rsv, it doesn't change except when the transaction commits.
4389 */
54338b5c 4390 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4391 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4392
0e4f8f88
CM
4393 /*
4394 * in limited mode, we want to have some free space up to
4395 * about 1% of the FS size.
4396 */
4397 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4398 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4399 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4400
8d8aafee 4401 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4402 return 1;
4403 }
0e4f8f88 4404
8d8aafee 4405 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4406 return 0;
424499db 4407 return 1;
32c00aff
JB
4408}
4409
2ff7e61e 4410static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4411{
4412 u64 num_dev;
4413
53b381b3
DW
4414 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4415 BTRFS_BLOCK_GROUP_RAID0 |
4416 BTRFS_BLOCK_GROUP_RAID5 |
4417 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4418 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4419 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4420 num_dev = 2;
4421 else
4422 num_dev = 1; /* DUP or single */
4423
39c2d7fa 4424 return num_dev;
15d1ff81
LB
4425}
4426
39c2d7fa
FM
4427/*
4428 * If @is_allocation is true, reserve space in the system space info necessary
4429 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4430 * removing a chunk.
4431 */
451a2c13 4432void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4433{
451a2c13 4434 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4435 struct btrfs_space_info *info;
4436 u64 left;
4437 u64 thresh;
4fbcdf66 4438 int ret = 0;
39c2d7fa 4439 u64 num_devs;
4fbcdf66
FM
4440
4441 /*
4442 * Needed because we can end up allocating a system chunk and for an
4443 * atomic and race free space reservation in the chunk block reserve.
4444 */
a32bf9a3 4445 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4446
0b246afa 4447 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4448 spin_lock(&info->lock);
4136135b 4449 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4450 spin_unlock(&info->lock);
4451
2ff7e61e 4452 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4453
4454 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4455 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4456 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4457
0b246afa
JM
4458 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4459 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4460 left, thresh, type);
4461 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4462 }
4463
4464 if (left < thresh) {
1b86826d 4465 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4466
4fbcdf66
FM
4467 /*
4468 * Ignore failure to create system chunk. We might end up not
4469 * needing it, as we might not need to COW all nodes/leafs from
4470 * the paths we visit in the chunk tree (they were already COWed
4471 * or created in the current transaction for example).
4472 */
c216b203 4473 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4474 }
4475
4476 if (!ret) {
0b246afa
JM
4477 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4478 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4479 thresh, BTRFS_RESERVE_NO_FLUSH);
4480 if (!ret)
4481 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4482 }
4483}
4484
28b737f6
LB
4485/*
4486 * If force is CHUNK_ALLOC_FORCE:
4487 * - return 1 if it successfully allocates a chunk,
4488 * - return errors including -ENOSPC otherwise.
4489 * If force is NOT CHUNK_ALLOC_FORCE:
4490 * - return 0 if it doesn't need to allocate a new chunk,
4491 * - return 1 if it successfully allocates a chunk,
4492 * - return errors including -ENOSPC otherwise.
4493 */
01458828
NB
4494static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4495 int force)
9ed74f2d 4496{
01458828 4497 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4498 struct btrfs_space_info *space_info;
2556fbb0
NB
4499 bool wait_for_alloc = false;
4500 bool should_alloc = false;
9ed74f2d 4501 int ret = 0;
9ed74f2d 4502
c6b305a8
JB
4503 /* Don't re-enter if we're already allocating a chunk */
4504 if (trans->allocating_chunk)
4505 return -ENOSPC;
4506
0b246afa 4507 space_info = __find_space_info(fs_info, flags);
dc2d3005 4508 ASSERT(space_info);
9ed74f2d 4509
2556fbb0
NB
4510 do {
4511 spin_lock(&space_info->lock);
4512 if (force < space_info->force_alloc)
4513 force = space_info->force_alloc;
4514 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4515 if (space_info->full) {
4516 /* No more free physical space */
4517 if (should_alloc)
4518 ret = -ENOSPC;
4519 else
4520 ret = 0;
4521 spin_unlock(&space_info->lock);
4522 return ret;
4523 } else if (!should_alloc) {
4524 spin_unlock(&space_info->lock);
4525 return 0;
4526 } else if (space_info->chunk_alloc) {
4527 /*
4528 * Someone is already allocating, so we need to block
4529 * until this someone is finished and then loop to
4530 * recheck if we should continue with our allocation
4531 * attempt.
4532 */
4533 wait_for_alloc = true;
4534 spin_unlock(&space_info->lock);
4535 mutex_lock(&fs_info->chunk_mutex);
4536 mutex_unlock(&fs_info->chunk_mutex);
4537 } else {
4538 /* Proceed with allocation */
4539 space_info->chunk_alloc = 1;
4540 wait_for_alloc = false;
4541 spin_unlock(&space_info->lock);
4542 }
6d74119f 4543
1e1c50a9 4544 cond_resched();
2556fbb0 4545 } while (wait_for_alloc);
6d74119f 4546
2556fbb0 4547 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4548 trans->allocating_chunk = true;
4549
67377734
JB
4550 /*
4551 * If we have mixed data/metadata chunks we want to make sure we keep
4552 * allocating mixed chunks instead of individual chunks.
4553 */
4554 if (btrfs_mixed_space_info(space_info))
4555 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4556
97e728d4
JB
4557 /*
4558 * if we're doing a data chunk, go ahead and make sure that
4559 * we keep a reasonable number of metadata chunks allocated in the
4560 * FS as well.
4561 */
9ed74f2d 4562 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4563 fs_info->data_chunk_allocations++;
4564 if (!(fs_info->data_chunk_allocations %
4565 fs_info->metadata_ratio))
4566 force_metadata_allocation(fs_info);
9ed74f2d
JB
4567 }
4568
15d1ff81
LB
4569 /*
4570 * Check if we have enough space in SYSTEM chunk because we may need
4571 * to update devices.
4572 */
451a2c13 4573 check_system_chunk(trans, flags);
15d1ff81 4574
c216b203 4575 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4576 trans->allocating_chunk = false;
92b8e897 4577
9ed74f2d 4578 spin_lock(&space_info->lock);
57f1642e
NB
4579 if (ret < 0) {
4580 if (ret == -ENOSPC)
4581 space_info->full = 1;
4582 else
4583 goto out;
4584 } else {
424499db 4585 ret = 1;
21a94f7a 4586 space_info->max_extent_size = 0;
57f1642e 4587 }
6d74119f 4588
0e4f8f88 4589 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4590out:
6d74119f 4591 space_info->chunk_alloc = 0;
9ed74f2d 4592 spin_unlock(&space_info->lock);
a25c75d5 4593 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4594 /*
4595 * When we allocate a new chunk we reserve space in the chunk block
4596 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4597 * add new nodes/leafs to it if we end up needing to do it when
4598 * inserting the chunk item and updating device items as part of the
4599 * second phase of chunk allocation, performed by
4600 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4601 * large number of new block groups to create in our transaction
4602 * handle's new_bgs list to avoid exhausting the chunk block reserve
4603 * in extreme cases - like having a single transaction create many new
4604 * block groups when starting to write out the free space caches of all
4605 * the block groups that were made dirty during the lifetime of the
4606 * transaction.
4607 */
5ce55557 4608 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4609 btrfs_create_pending_block_groups(trans);
5ce55557 4610
0f9dd46c 4611 return ret;
6324fbf3 4612}
9ed74f2d 4613
c1c4919b 4614static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4615 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4616 enum btrfs_reserve_flush_enum flush,
4617 bool system_chunk)
a80c8dcf 4618{
0b246afa 4619 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4620 u64 profile;
3c76cd84 4621 u64 space_size;
a80c8dcf
JB
4622 u64 avail;
4623 u64 used;
46df06b8 4624 int factor;
a80c8dcf 4625
957780eb
JB
4626 /* Don't overcommit when in mixed mode. */
4627 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4628 return 0;
4629
c1c4919b
JM
4630 if (system_chunk)
4631 profile = btrfs_system_alloc_profile(fs_info);
4632 else
4633 profile = btrfs_metadata_alloc_profile(fs_info);
4634
4136135b 4635 used = btrfs_space_info_used(space_info, false);
96f1bb57 4636
96f1bb57
JB
4637 /*
4638 * We only want to allow over committing if we have lots of actual space
4639 * free, but if we don't have enough space to handle the global reserve
4640 * space then we could end up having a real enospc problem when trying
4641 * to allocate a chunk or some other such important allocation.
4642 */
3c76cd84
MX
4643 spin_lock(&global_rsv->lock);
4644 space_size = calc_global_rsv_need_space(global_rsv);
4645 spin_unlock(&global_rsv->lock);
4646 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4647 return 0;
4648
4649 used += space_info->bytes_may_use;
a80c8dcf 4650
a5ed45f8 4651 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4652
4653 /*
4654 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4655 * space is actually useable. For raid56, the space info used
4656 * doesn't include the parity drive, so we don't have to
4657 * change the math
a80c8dcf 4658 */
46df06b8
DS
4659 factor = btrfs_bg_type_to_factor(profile);
4660 avail = div_u64(avail, factor);
a80c8dcf
JB
4661
4662 /*
561c294d
MX
4663 * If we aren't flushing all things, let us overcommit up to
4664 * 1/2th of the space. If we can flush, don't let us overcommit
4665 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4666 */
08e007d2 4667 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4668 avail >>= 3;
a80c8dcf 4669 else
14575aef 4670 avail >>= 1;
a80c8dcf 4671
14575aef 4672 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4673 return 1;
4674 return 0;
4675}
4676
2ff7e61e 4677static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4678 unsigned long nr_pages, int nr_items)
da633a42 4679{
0b246afa 4680 struct super_block *sb = fs_info->sb;
da633a42 4681
925a6efb
JB
4682 if (down_read_trylock(&sb->s_umount)) {
4683 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4684 up_read(&sb->s_umount);
4685 } else {
da633a42
MX
4686 /*
4687 * We needn't worry the filesystem going from r/w to r/o though
4688 * we don't acquire ->s_umount mutex, because the filesystem
4689 * should guarantee the delalloc inodes list be empty after
4690 * the filesystem is readonly(all dirty pages are written to
4691 * the disk).
4692 */
82b3e53b 4693 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4694 if (!current->journal_info)
0b246afa 4695 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4696 }
4697}
4698
6374e57a 4699static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4700 u64 to_reclaim)
18cd8ea6
MX
4701{
4702 u64 bytes;
6374e57a 4703 u64 nr;
18cd8ea6 4704
2ff7e61e 4705 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4706 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4707 if (!nr)
4708 nr = 1;
4709 return nr;
4710}
4711
ee22184b 4712#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4713
9ed74f2d 4714/*
5da9d01b 4715 * shrink metadata reservation for delalloc
9ed74f2d 4716 */
c1c4919b
JM
4717static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4718 u64 orig, bool wait_ordered)
5da9d01b 4719{
0019f10d 4720 struct btrfs_space_info *space_info;
663350ac 4721 struct btrfs_trans_handle *trans;
f4c738c2 4722 u64 delalloc_bytes;
5da9d01b 4723 u64 max_reclaim;
6374e57a 4724 u64 items;
b1953bce 4725 long time_left;
d3ee29e3
MX
4726 unsigned long nr_pages;
4727 int loops;
5da9d01b 4728
c61a16a7 4729 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4730 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4731 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4732
663350ac 4733 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4734 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4735
963d678b 4736 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4737 &fs_info->delalloc_bytes);
f4c738c2 4738 if (delalloc_bytes == 0) {
fdb5effd 4739 if (trans)
f4c738c2 4740 return;
38c135af 4741 if (wait_ordered)
0b246afa 4742 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4743 return;
fdb5effd
JB
4744 }
4745
d3ee29e3 4746 loops = 0;
f4c738c2
JB
4747 while (delalloc_bytes && loops < 3) {
4748 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4749 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4750 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4751 /*
4752 * We need to wait for the async pages to actually start before
4753 * we do anything.
4754 */
0b246afa 4755 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4756 if (!max_reclaim)
4757 goto skip_async;
4758
4759 if (max_reclaim <= nr_pages)
4760 max_reclaim = 0;
4761 else
4762 max_reclaim -= nr_pages;
dea31f52 4763
0b246afa
JM
4764 wait_event(fs_info->async_submit_wait,
4765 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4766 (int)max_reclaim);
4767skip_async:
0019f10d 4768 spin_lock(&space_info->lock);
957780eb
JB
4769 if (list_empty(&space_info->tickets) &&
4770 list_empty(&space_info->priority_tickets)) {
4771 spin_unlock(&space_info->lock);
4772 break;
4773 }
0019f10d 4774 spin_unlock(&space_info->lock);
5da9d01b 4775
36e39c40 4776 loops++;
f104d044 4777 if (wait_ordered && !trans) {
0b246afa 4778 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4779 } else {
f4c738c2 4780 time_left = schedule_timeout_killable(1);
f104d044
JB
4781 if (time_left)
4782 break;
4783 }
963d678b 4784 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4785 &fs_info->delalloc_bytes);
5da9d01b 4786 }
5da9d01b
YZ
4787}
4788
996478ca
JB
4789struct reserve_ticket {
4790 u64 bytes;
4791 int error;
4792 struct list_head list;
4793 wait_queue_head_t wait;
4794};
4795
663350ac
JB
4796/**
4797 * maybe_commit_transaction - possibly commit the transaction if its ok to
4798 * @root - the root we're allocating for
4799 * @bytes - the number of bytes we want to reserve
4800 * @force - force the commit
8bb8ab2e 4801 *
663350ac
JB
4802 * This will check to make sure that committing the transaction will actually
4803 * get us somewhere and then commit the transaction if it does. Otherwise it
4804 * will return -ENOSPC.
8bb8ab2e 4805 */
0c9ab349 4806static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4807 struct btrfs_space_info *space_info)
663350ac 4808{
996478ca 4809 struct reserve_ticket *ticket = NULL;
0b246afa 4810 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4811 struct btrfs_trans_handle *trans;
996478ca 4812 u64 bytes;
663350ac
JB
4813
4814 trans = (struct btrfs_trans_handle *)current->journal_info;
4815 if (trans)
4816 return -EAGAIN;
4817
996478ca
JB
4818 spin_lock(&space_info->lock);
4819 if (!list_empty(&space_info->priority_tickets))
4820 ticket = list_first_entry(&space_info->priority_tickets,
4821 struct reserve_ticket, list);
4822 else if (!list_empty(&space_info->tickets))
4823 ticket = list_first_entry(&space_info->tickets,
4824 struct reserve_ticket, list);
4825 bytes = (ticket) ? ticket->bytes : 0;
4826 spin_unlock(&space_info->lock);
4827
4828 if (!bytes)
4829 return 0;
663350ac
JB
4830
4831 /* See if there is enough pinned space to make this reservation */
dec59fa3
EL
4832 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4833 bytes,
4834 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4835 goto commit;
663350ac
JB
4836
4837 /*
4838 * See if there is some space in the delayed insertion reservation for
4839 * this reservation.
4840 */
4841 if (space_info != delayed_rsv->space_info)
4842 return -ENOSPC;
4843
4844 spin_lock(&delayed_rsv->lock);
996478ca
JB
4845 if (delayed_rsv->size > bytes)
4846 bytes = 0;
4847 else
4848 bytes -= delayed_rsv->size;
057aac3e
NB
4849 spin_unlock(&delayed_rsv->lock);
4850
dec59fa3
EL
4851 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4852 bytes,
4853 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4854 return -ENOSPC;
4855 }
663350ac
JB
4856
4857commit:
a9b3311e 4858 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4859 if (IS_ERR(trans))
4860 return -ENOSPC;
4861
3a45bb20 4862 return btrfs_commit_transaction(trans);
663350ac
JB
4863}
4864
e38ae7a0
NB
4865/*
4866 * Try to flush some data based on policy set by @state. This is only advisory
4867 * and may fail for various reasons. The caller is supposed to examine the
4868 * state of @space_info to detect the outcome.
4869 */
4870static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4871 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4872 int state)
96c3f433 4873{
a9b3311e 4874 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4875 struct btrfs_trans_handle *trans;
4876 int nr;
f4c738c2 4877 int ret = 0;
96c3f433
JB
4878
4879 switch (state) {
96c3f433
JB
4880 case FLUSH_DELAYED_ITEMS_NR:
4881 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4882 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4883 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4884 else
96c3f433 4885 nr = -1;
18cd8ea6 4886
96c3f433
JB
4887 trans = btrfs_join_transaction(root);
4888 if (IS_ERR(trans)) {
4889 ret = PTR_ERR(trans);
4890 break;
4891 }
e5c304e6 4892 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4893 btrfs_end_transaction(trans);
96c3f433 4894 break;
67b0fd63
JB
4895 case FLUSH_DELALLOC:
4896 case FLUSH_DELALLOC_WAIT:
7bdd6277 4897 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4898 state == FLUSH_DELALLOC_WAIT);
4899 break;
ea658bad
JB
4900 case ALLOC_CHUNK:
4901 trans = btrfs_join_transaction(root);
4902 if (IS_ERR(trans)) {
4903 ret = PTR_ERR(trans);
4904 break;
4905 }
01458828 4906 ret = do_chunk_alloc(trans,
1b86826d 4907 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4908 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4909 btrfs_end_transaction(trans);
eecba891 4910 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4911 ret = 0;
4912 break;
96c3f433 4913 case COMMIT_TRANS:
996478ca 4914 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4915 break;
4916 default:
4917 ret = -ENOSPC;
4918 break;
4919 }
4920
7bdd6277
NB
4921 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4922 ret);
e38ae7a0 4923 return;
96c3f433 4924}
21c7e756
MX
4925
4926static inline u64
c1c4919b
JM
4927btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4928 struct btrfs_space_info *space_info,
4929 bool system_chunk)
21c7e756 4930{
957780eb 4931 struct reserve_ticket *ticket;
21c7e756
MX
4932 u64 used;
4933 u64 expected;
957780eb 4934 u64 to_reclaim = 0;
21c7e756 4935
957780eb
JB
4936 list_for_each_entry(ticket, &space_info->tickets, list)
4937 to_reclaim += ticket->bytes;
4938 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4939 to_reclaim += ticket->bytes;
4940 if (to_reclaim)
4941 return to_reclaim;
21c7e756 4942
e0af2484 4943 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4944 if (can_overcommit(fs_info, space_info, to_reclaim,
4945 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4946 return 0;
4947
0eee8a49
NB
4948 used = btrfs_space_info_used(space_info, true);
4949
c1c4919b
JM
4950 if (can_overcommit(fs_info, space_info, SZ_1M,
4951 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4952 expected = div_factor_fine(space_info->total_bytes, 95);
4953 else
4954 expected = div_factor_fine(space_info->total_bytes, 90);
4955
4956 if (used > expected)
4957 to_reclaim = used - expected;
4958 else
4959 to_reclaim = 0;
4960 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4961 space_info->bytes_reserved);
21c7e756
MX
4962 return to_reclaim;
4963}
4964
c1c4919b
JM
4965static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4966 struct btrfs_space_info *space_info,
4967 u64 used, bool system_chunk)
21c7e756 4968{
365c5313
JB
4969 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4970
4971 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4972 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4973 return 0;
4974
c1c4919b
JM
4975 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4976 system_chunk))
d38b349c
JB
4977 return 0;
4978
0b246afa
JM
4979 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4980 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4981}
4982
957780eb 4983static void wake_all_tickets(struct list_head *head)
21c7e756 4984{
957780eb 4985 struct reserve_ticket *ticket;
25ce459c 4986
957780eb
JB
4987 while (!list_empty(head)) {
4988 ticket = list_first_entry(head, struct reserve_ticket, list);
4989 list_del_init(&ticket->list);
4990 ticket->error = -ENOSPC;
4991 wake_up(&ticket->wait);
21c7e756 4992 }
21c7e756
MX
4993}
4994
957780eb
JB
4995/*
4996 * This is for normal flushers, we can wait all goddamned day if we want to. We
4997 * will loop and continuously try to flush as long as we are making progress.
4998 * We count progress as clearing off tickets each time we have to loop.
4999 */
21c7e756
MX
5000static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5001{
5002 struct btrfs_fs_info *fs_info;
5003 struct btrfs_space_info *space_info;
5004 u64 to_reclaim;
5005 int flush_state;
957780eb 5006 int commit_cycles = 0;
ce129655 5007 u64 last_tickets_id;
21c7e756
MX
5008
5009 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5010 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5011
957780eb 5012 spin_lock(&space_info->lock);
c1c4919b
JM
5013 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5014 false);
957780eb
JB
5015 if (!to_reclaim) {
5016 space_info->flush = 0;
5017 spin_unlock(&space_info->lock);
21c7e756 5018 return;
957780eb 5019 }
ce129655 5020 last_tickets_id = space_info->tickets_id;
957780eb 5021 spin_unlock(&space_info->lock);
21c7e756
MX
5022
5023 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5024 do {
e38ae7a0 5025 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5026 spin_lock(&space_info->lock);
5027 if (list_empty(&space_info->tickets)) {
5028 space_info->flush = 0;
5029 spin_unlock(&space_info->lock);
5030 return;
5031 }
c1c4919b
JM
5032 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5033 space_info,
5034 false);
ce129655 5035 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5036 flush_state++;
5037 } else {
ce129655 5038 last_tickets_id = space_info->tickets_id;
957780eb
JB
5039 flush_state = FLUSH_DELAYED_ITEMS_NR;
5040 if (commit_cycles)
5041 commit_cycles--;
5042 }
5043
5044 if (flush_state > COMMIT_TRANS) {
5045 commit_cycles++;
5046 if (commit_cycles > 2) {
5047 wake_all_tickets(&space_info->tickets);
5048 space_info->flush = 0;
5049 } else {
5050 flush_state = FLUSH_DELAYED_ITEMS_NR;
5051 }
5052 }
5053 spin_unlock(&space_info->lock);
5054 } while (flush_state <= COMMIT_TRANS);
5055}
5056
5057void btrfs_init_async_reclaim_work(struct work_struct *work)
5058{
5059 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5060}
5061
5062static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5063 struct btrfs_space_info *space_info,
5064 struct reserve_ticket *ticket)
5065{
5066 u64 to_reclaim;
5067 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5068
5069 spin_lock(&space_info->lock);
c1c4919b
JM
5070 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5071 false);
957780eb
JB
5072 if (!to_reclaim) {
5073 spin_unlock(&space_info->lock);
5074 return;
5075 }
5076 spin_unlock(&space_info->lock);
5077
21c7e756 5078 do {
7bdd6277 5079 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5080 flush_state++;
957780eb
JB
5081 spin_lock(&space_info->lock);
5082 if (ticket->bytes == 0) {
5083 spin_unlock(&space_info->lock);
21c7e756 5084 return;
957780eb
JB
5085 }
5086 spin_unlock(&space_info->lock);
5087
5088 /*
5089 * Priority flushers can't wait on delalloc without
5090 * deadlocking.
5091 */
5092 if (flush_state == FLUSH_DELALLOC ||
5093 flush_state == FLUSH_DELALLOC_WAIT)
5094 flush_state = ALLOC_CHUNK;
365c5313 5095 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5096}
5097
957780eb
JB
5098static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5099 struct btrfs_space_info *space_info,
5100 struct reserve_ticket *ticket, u64 orig_bytes)
5101
21c7e756 5102{
957780eb
JB
5103 DEFINE_WAIT(wait);
5104 int ret = 0;
5105
5106 spin_lock(&space_info->lock);
5107 while (ticket->bytes > 0 && ticket->error == 0) {
5108 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5109 if (ret) {
5110 ret = -EINTR;
5111 break;
5112 }
5113 spin_unlock(&space_info->lock);
5114
5115 schedule();
5116
5117 finish_wait(&ticket->wait, &wait);
5118 spin_lock(&space_info->lock);
5119 }
5120 if (!ret)
5121 ret = ticket->error;
5122 if (!list_empty(&ticket->list))
5123 list_del_init(&ticket->list);
5124 if (ticket->bytes && ticket->bytes < orig_bytes) {
5125 u64 num_bytes = orig_bytes - ticket->bytes;
9f9b8e8d 5126 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5127 trace_btrfs_space_reservation(fs_info, "space_info",
5128 space_info->flags, num_bytes, 0);
5129 }
5130 spin_unlock(&space_info->lock);
5131
5132 return ret;
21c7e756
MX
5133}
5134
4a92b1b8
JB
5135/**
5136 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5137 * @root - the root we're allocating for
957780eb 5138 * @space_info - the space info we want to allocate from
4a92b1b8 5139 * @orig_bytes - the number of bytes we want
48fc7f7e 5140 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5141 *
01327610 5142 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5143 * with the block_rsv. If there is not enough space it will make an attempt to
5144 * flush out space to make room. It will do this by flushing delalloc if
5145 * possible or committing the transaction. If flush is 0 then no attempts to
5146 * regain reservations will be made and this will fail if there is not enough
5147 * space already.
8bb8ab2e 5148 */
c1c4919b 5149static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5150 struct btrfs_space_info *space_info,
5151 u64 orig_bytes,
c1c4919b
JM
5152 enum btrfs_reserve_flush_enum flush,
5153 bool system_chunk)
9ed74f2d 5154{
957780eb 5155 struct reserve_ticket ticket;
2bf64758 5156 u64 used;
8bb8ab2e 5157 int ret = 0;
9ed74f2d 5158
957780eb 5159 ASSERT(orig_bytes);
8ca17f0f 5160 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5161
8bb8ab2e 5162 spin_lock(&space_info->lock);
fdb5effd 5163 ret = -ENOSPC;
4136135b 5164 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5165
8bb8ab2e 5166 /*
957780eb
JB
5167 * If we have enough space then hooray, make our reservation and carry
5168 * on. If not see if we can overcommit, and if we can, hooray carry on.
5169 * If not things get more complicated.
8bb8ab2e 5170 */
957780eb 5171 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5172 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5173 trace_btrfs_space_reservation(fs_info, "space_info",
5174 space_info->flags, orig_bytes, 1);
957780eb 5175 ret = 0;
c1c4919b
JM
5176 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5177 system_chunk)) {
9f9b8e8d 5178 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5179 trace_btrfs_space_reservation(fs_info, "space_info",
5180 space_info->flags, orig_bytes, 1);
44734ed1 5181 ret = 0;
2bf64758
JB
5182 }
5183
8bb8ab2e 5184 /*
957780eb
JB
5185 * If we couldn't make a reservation then setup our reservation ticket
5186 * and kick the async worker if it's not already running.
08e007d2 5187 *
957780eb
JB
5188 * If we are a priority flusher then we just need to add our ticket to
5189 * the list and we will do our own flushing further down.
8bb8ab2e 5190 */
72bcd99d 5191 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5192 ticket.bytes = orig_bytes;
5193 ticket.error = 0;
5194 init_waitqueue_head(&ticket.wait);
5195 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5196 list_add_tail(&ticket.list, &space_info->tickets);
5197 if (!space_info->flush) {
5198 space_info->flush = 1;
0b246afa 5199 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5200 space_info->flags,
5201 orig_bytes, flush,
5202 "enospc");
957780eb 5203 queue_work(system_unbound_wq,
c1c4919b 5204 &fs_info->async_reclaim_work);
957780eb
JB
5205 }
5206 } else {
5207 list_add_tail(&ticket.list,
5208 &space_info->priority_tickets);
5209 }
21c7e756
MX
5210 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5211 used += orig_bytes;
f6acfd50
JB
5212 /*
5213 * We will do the space reservation dance during log replay,
5214 * which means we won't have fs_info->fs_root set, so don't do
5215 * the async reclaim as we will panic.
5216 */
0b246afa 5217 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5218 need_do_async_reclaim(fs_info, space_info,
5219 used, system_chunk) &&
0b246afa
JM
5220 !work_busy(&fs_info->async_reclaim_work)) {
5221 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5222 orig_bytes, flush, "preempt");
21c7e756 5223 queue_work(system_unbound_wq,
0b246afa 5224 &fs_info->async_reclaim_work);
f376df2b 5225 }
8bb8ab2e 5226 }
f0486c68 5227 spin_unlock(&space_info->lock);
08e007d2 5228 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5229 return ret;
f0486c68 5230
957780eb 5231 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5232 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5233 orig_bytes);
08e007d2 5234
957780eb 5235 ret = 0;
0b246afa 5236 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5237 spin_lock(&space_info->lock);
5238 if (ticket.bytes) {
5239 if (ticket.bytes < orig_bytes) {
5240 u64 num_bytes = orig_bytes - ticket.bytes;
9f9b8e8d 5241 update_bytes_may_use(space_info, -num_bytes);
0b246afa
JM
5242 trace_btrfs_space_reservation(fs_info, "space_info",
5243 space_info->flags,
5244 num_bytes, 0);
08e007d2 5245
957780eb
JB
5246 }
5247 list_del_init(&ticket.list);
5248 ret = -ENOSPC;
5249 }
5250 spin_unlock(&space_info->lock);
5251 ASSERT(list_empty(&ticket.list));
5252 return ret;
5253}
8bb8ab2e 5254
957780eb
JB
5255/**
5256 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5257 * @root - the root we're allocating for
5258 * @block_rsv - the block_rsv we're allocating for
5259 * @orig_bytes - the number of bytes we want
5260 * @flush - whether or not we can flush to make our reservation
5261 *
5262 * This will reserve orgi_bytes number of bytes from the space info associated
5263 * with the block_rsv. If there is not enough space it will make an attempt to
5264 * flush out space to make room. It will do this by flushing delalloc if
5265 * possible or committing the transaction. If flush is 0 then no attempts to
5266 * regain reservations will be made and this will fail if there is not enough
5267 * space already.
5268 */
5269static int reserve_metadata_bytes(struct btrfs_root *root,
5270 struct btrfs_block_rsv *block_rsv,
5271 u64 orig_bytes,
5272 enum btrfs_reserve_flush_enum flush)
5273{
0b246afa
JM
5274 struct btrfs_fs_info *fs_info = root->fs_info;
5275 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5276 int ret;
c1c4919b 5277 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5278
c1c4919b
JM
5279 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5280 orig_bytes, flush, system_chunk);
5d80366e
JB
5281 if (ret == -ENOSPC &&
5282 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5283 if (block_rsv != global_rsv &&
5284 !block_rsv_use_bytes(global_rsv, orig_bytes))
5285 ret = 0;
5286 }
9a3daff3 5287 if (ret == -ENOSPC) {
0b246afa 5288 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5289 block_rsv->space_info->flags,
5290 orig_bytes, 1);
9a3daff3
NB
5291
5292 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5293 dump_space_info(fs_info, block_rsv->space_info,
5294 orig_bytes, 0);
5295 }
f0486c68
YZ
5296 return ret;
5297}
5298
79787eaa
JM
5299static struct btrfs_block_rsv *get_block_rsv(
5300 const struct btrfs_trans_handle *trans,
5301 const struct btrfs_root *root)
f0486c68 5302{
0b246afa 5303 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5304 struct btrfs_block_rsv *block_rsv = NULL;
5305
e9cf439f 5306 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5307 (root == fs_info->csum_root && trans->adding_csums) ||
5308 (root == fs_info->uuid_root))
f7a81ea4
SB
5309 block_rsv = trans->block_rsv;
5310
4c13d758 5311 if (!block_rsv)
f0486c68
YZ
5312 block_rsv = root->block_rsv;
5313
5314 if (!block_rsv)
0b246afa 5315 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5316
5317 return block_rsv;
5318}
5319
5320static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5321 u64 num_bytes)
5322{
5323 int ret = -ENOSPC;
5324 spin_lock(&block_rsv->lock);
5325 if (block_rsv->reserved >= num_bytes) {
5326 block_rsv->reserved -= num_bytes;
5327 if (block_rsv->reserved < block_rsv->size)
5328 block_rsv->full = 0;
5329 ret = 0;
5330 }
5331 spin_unlock(&block_rsv->lock);
5332 return ret;
5333}
5334
5335static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5336 u64 num_bytes, bool update_size)
f0486c68
YZ
5337{
5338 spin_lock(&block_rsv->lock);
5339 block_rsv->reserved += num_bytes;
5340 if (update_size)
5341 block_rsv->size += num_bytes;
5342 else if (block_rsv->reserved >= block_rsv->size)
5343 block_rsv->full = 1;
5344 spin_unlock(&block_rsv->lock);
5345}
5346
d52be818
JB
5347int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5348 struct btrfs_block_rsv *dest, u64 num_bytes,
5349 int min_factor)
5350{
5351 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5352 u64 min_bytes;
5353
5354 if (global_rsv->space_info != dest->space_info)
5355 return -ENOSPC;
5356
5357 spin_lock(&global_rsv->lock);
5358 min_bytes = div_factor(global_rsv->size, min_factor);
5359 if (global_rsv->reserved < min_bytes + num_bytes) {
5360 spin_unlock(&global_rsv->lock);
5361 return -ENOSPC;
5362 }
5363 global_rsv->reserved -= num_bytes;
5364 if (global_rsv->reserved < global_rsv->size)
5365 global_rsv->full = 0;
5366 spin_unlock(&global_rsv->lock);
5367
3a584174 5368 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5369 return 0;
5370}
5371
957780eb
JB
5372/*
5373 * This is for space we already have accounted in space_info->bytes_may_use, so
5374 * basically when we're returning space from block_rsv's.
5375 */
5376static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5377 struct btrfs_space_info *space_info,
5378 u64 num_bytes)
5379{
5380 struct reserve_ticket *ticket;
5381 struct list_head *head;
5382 u64 used;
5383 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5384 bool check_overcommit = false;
5385
5386 spin_lock(&space_info->lock);
5387 head = &space_info->priority_tickets;
5388
5389 /*
5390 * If we are over our limit then we need to check and see if we can
5391 * overcommit, and if we can't then we just need to free up our space
5392 * and not satisfy any requests.
5393 */
0eee8a49 5394 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5395 if (used - num_bytes >= space_info->total_bytes)
5396 check_overcommit = true;
5397again:
5398 while (!list_empty(head) && num_bytes) {
5399 ticket = list_first_entry(head, struct reserve_ticket,
5400 list);
5401 /*
5402 * We use 0 bytes because this space is already reserved, so
5403 * adding the ticket space would be a double count.
5404 */
5405 if (check_overcommit &&
c1c4919b 5406 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5407 break;
5408 if (num_bytes >= ticket->bytes) {
5409 list_del_init(&ticket->list);
5410 num_bytes -= ticket->bytes;
5411 ticket->bytes = 0;
ce129655 5412 space_info->tickets_id++;
957780eb
JB
5413 wake_up(&ticket->wait);
5414 } else {
5415 ticket->bytes -= num_bytes;
5416 num_bytes = 0;
5417 }
5418 }
5419
5420 if (num_bytes && head == &space_info->priority_tickets) {
5421 head = &space_info->tickets;
5422 flush = BTRFS_RESERVE_FLUSH_ALL;
5423 goto again;
5424 }
9f9b8e8d 5425 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5426 trace_btrfs_space_reservation(fs_info, "space_info",
5427 space_info->flags, num_bytes, 0);
5428 spin_unlock(&space_info->lock);
5429}
5430
5431/*
5432 * This is for newly allocated space that isn't accounted in
5433 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5434 * we use this helper.
5435 */
5436static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5437 struct btrfs_space_info *space_info,
5438 u64 num_bytes)
5439{
5440 struct reserve_ticket *ticket;
5441 struct list_head *head = &space_info->priority_tickets;
5442
5443again:
5444 while (!list_empty(head) && num_bytes) {
5445 ticket = list_first_entry(head, struct reserve_ticket,
5446 list);
5447 if (num_bytes >= ticket->bytes) {
5448 trace_btrfs_space_reservation(fs_info, "space_info",
5449 space_info->flags,
5450 ticket->bytes, 1);
5451 list_del_init(&ticket->list);
5452 num_bytes -= ticket->bytes;
9f9b8e8d 5453 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5454 ticket->bytes = 0;
ce129655 5455 space_info->tickets_id++;
957780eb
JB
5456 wake_up(&ticket->wait);
5457 } else {
5458 trace_btrfs_space_reservation(fs_info, "space_info",
5459 space_info->flags,
5460 num_bytes, 1);
9f9b8e8d 5461 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5462 ticket->bytes -= num_bytes;
5463 num_bytes = 0;
5464 }
5465 }
5466
5467 if (num_bytes && head == &space_info->priority_tickets) {
5468 head = &space_info->tickets;
5469 goto again;
5470 }
5471}
5472
69fe2d75 5473static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5474 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5475 struct btrfs_block_rsv *dest, u64 num_bytes,
5476 u64 *qgroup_to_release_ret)
f0486c68
YZ
5477{
5478 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5479 u64 qgroup_to_release = 0;
69fe2d75 5480 u64 ret;
f0486c68
YZ
5481
5482 spin_lock(&block_rsv->lock);
ff6bc37e 5483 if (num_bytes == (u64)-1) {
f0486c68 5484 num_bytes = block_rsv->size;
ff6bc37e
QW
5485 qgroup_to_release = block_rsv->qgroup_rsv_size;
5486 }
f0486c68
YZ
5487 block_rsv->size -= num_bytes;
5488 if (block_rsv->reserved >= block_rsv->size) {
5489 num_bytes = block_rsv->reserved - block_rsv->size;
5490 block_rsv->reserved = block_rsv->size;
5491 block_rsv->full = 1;
5492 } else {
5493 num_bytes = 0;
5494 }
ff6bc37e
QW
5495 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5496 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5497 block_rsv->qgroup_rsv_size;
5498 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5499 } else {
5500 qgroup_to_release = 0;
5501 }
f0486c68
YZ
5502 spin_unlock(&block_rsv->lock);
5503
69fe2d75 5504 ret = num_bytes;
f0486c68
YZ
5505 if (num_bytes > 0) {
5506 if (dest) {
e9e22899
JB
5507 spin_lock(&dest->lock);
5508 if (!dest->full) {
5509 u64 bytes_to_add;
5510
5511 bytes_to_add = dest->size - dest->reserved;
5512 bytes_to_add = min(num_bytes, bytes_to_add);
5513 dest->reserved += bytes_to_add;
5514 if (dest->reserved >= dest->size)
5515 dest->full = 1;
5516 num_bytes -= bytes_to_add;
5517 }
5518 spin_unlock(&dest->lock);
5519 }
957780eb
JB
5520 if (num_bytes)
5521 space_info_add_old_bytes(fs_info, space_info,
5522 num_bytes);
9ed74f2d 5523 }
ff6bc37e
QW
5524 if (qgroup_to_release_ret)
5525 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5526 return ret;
f0486c68 5527}
4e06bdd6 5528
25d609f8
JB
5529int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5530 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5531 bool update_size)
f0486c68
YZ
5532{
5533 int ret;
9ed74f2d 5534
f0486c68
YZ
5535 ret = block_rsv_use_bytes(src, num_bytes);
5536 if (ret)
5537 return ret;
9ed74f2d 5538
25d609f8 5539 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5540 return 0;
5541}
5542
66d8f3dd 5543void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5544{
f0486c68
YZ
5545 memset(rsv, 0, sizeof(*rsv));
5546 spin_lock_init(&rsv->lock);
66d8f3dd 5547 rsv->type = type;
f0486c68
YZ
5548}
5549
69fe2d75
JB
5550void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5551 struct btrfs_block_rsv *rsv,
5552 unsigned short type)
5553{
5554 btrfs_init_block_rsv(rsv, type);
5555 rsv->space_info = __find_space_info(fs_info,
5556 BTRFS_BLOCK_GROUP_METADATA);
5557}
5558
2ff7e61e 5559struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5560 unsigned short type)
f0486c68
YZ
5561{
5562 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5563
f0486c68
YZ
5564 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5565 if (!block_rsv)
5566 return NULL;
9ed74f2d 5567
69fe2d75 5568 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5569 return block_rsv;
5570}
9ed74f2d 5571
2ff7e61e 5572void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5573 struct btrfs_block_rsv *rsv)
5574{
2aaa6655
JB
5575 if (!rsv)
5576 return;
2ff7e61e 5577 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5578 kfree(rsv);
9ed74f2d
JB
5579}
5580
08e007d2
MX
5581int btrfs_block_rsv_add(struct btrfs_root *root,
5582 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5583 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5584{
f0486c68 5585 int ret;
9ed74f2d 5586
f0486c68
YZ
5587 if (num_bytes == 0)
5588 return 0;
8bb8ab2e 5589
61b520a9 5590 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5591 if (!ret)
3a584174 5592 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5593
f0486c68 5594 return ret;
f0486c68 5595}
9ed74f2d 5596
2ff7e61e 5597int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5598{
5599 u64 num_bytes = 0;
f0486c68 5600 int ret = -ENOSPC;
9ed74f2d 5601
f0486c68
YZ
5602 if (!block_rsv)
5603 return 0;
9ed74f2d 5604
f0486c68 5605 spin_lock(&block_rsv->lock);
36ba022a
JB
5606 num_bytes = div_factor(block_rsv->size, min_factor);
5607 if (block_rsv->reserved >= num_bytes)
5608 ret = 0;
5609 spin_unlock(&block_rsv->lock);
9ed74f2d 5610
36ba022a
JB
5611 return ret;
5612}
5613
08e007d2
MX
5614int btrfs_block_rsv_refill(struct btrfs_root *root,
5615 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5616 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5617{
5618 u64 num_bytes = 0;
5619 int ret = -ENOSPC;
5620
5621 if (!block_rsv)
5622 return 0;
5623
5624 spin_lock(&block_rsv->lock);
5625 num_bytes = min_reserved;
13553e52 5626 if (block_rsv->reserved >= num_bytes)
f0486c68 5627 ret = 0;
13553e52 5628 else
f0486c68 5629 num_bytes -= block_rsv->reserved;
f0486c68 5630 spin_unlock(&block_rsv->lock);
13553e52 5631
f0486c68
YZ
5632 if (!ret)
5633 return 0;
5634
aa38a711 5635 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5636 if (!ret) {
3a584174 5637 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5638 return 0;
6a63209f 5639 }
9ed74f2d 5640
13553e52 5641 return ret;
f0486c68
YZ
5642}
5643
69fe2d75
JB
5644/**
5645 * btrfs_inode_rsv_refill - refill the inode block rsv.
5646 * @inode - the inode we are refilling.
5647 * @flush - the flusing restriction.
5648 *
5649 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5650 * block_rsv->size as the minimum size. We'll either refill the missing amount
5651 * or return if we already have enough space. This will also handle the resreve
5652 * tracepoint for the reserved amount.
5653 */
3f2dd7a0
QW
5654static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5655 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5656{
5657 struct btrfs_root *root = inode->root;
5658 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5659 u64 num_bytes = 0;
ff6bc37e 5660 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5661 int ret = -ENOSPC;
5662
5663 spin_lock(&block_rsv->lock);
5664 if (block_rsv->reserved < block_rsv->size)
5665 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5666 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5667 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5668 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5669 spin_unlock(&block_rsv->lock);
5670
5671 if (num_bytes == 0)
5672 return 0;
5673
ff6bc37e 5674 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5675 if (ret)
5676 return ret;
69fe2d75
JB
5677 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5678 if (!ret) {
3a584174 5679 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5680 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5681 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5682
5683 /* Don't forget to increase qgroup_rsv_reserved */
5684 spin_lock(&block_rsv->lock);
5685 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5686 spin_unlock(&block_rsv->lock);
5687 } else
5688 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5689 return ret;
5690}
5691
5692/**
5693 * btrfs_inode_rsv_release - release any excessive reservation.
5694 * @inode - the inode we need to release from.
43b18595
QW
5695 * @qgroup_free - free or convert qgroup meta.
5696 * Unlike normal operation, qgroup meta reservation needs to know if we are
5697 * freeing qgroup reservation or just converting it into per-trans. Normally
5698 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5699 *
5700 * This is the same as btrfs_block_rsv_release, except that it handles the
5701 * tracepoint for the reservation.
5702 */
43b18595 5703static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5704{
5705 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5706 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5707 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5708 u64 released = 0;
ff6bc37e 5709 u64 qgroup_to_release = 0;
69fe2d75
JB
5710
5711 /*
5712 * Since we statically set the block_rsv->size we just want to say we
5713 * are releasing 0 bytes, and then we'll just get the reservation over
5714 * the size free'd.
5715 */
ff6bc37e
QW
5716 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5717 &qgroup_to_release);
69fe2d75
JB
5718 if (released > 0)
5719 trace_btrfs_space_reservation(fs_info, "delalloc",
5720 btrfs_ino(inode), released, 0);
43b18595 5721 if (qgroup_free)
ff6bc37e 5722 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5723 else
ff6bc37e
QW
5724 btrfs_qgroup_convert_reserved_meta(inode->root,
5725 qgroup_to_release);
69fe2d75
JB
5726}
5727
2ff7e61e 5728void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5729 struct btrfs_block_rsv *block_rsv,
5730 u64 num_bytes)
5731{
0b246afa
JM
5732 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5733
17504584 5734 if (global_rsv == block_rsv ||
f0486c68
YZ
5735 block_rsv->space_info != global_rsv->space_info)
5736 global_rsv = NULL;
ff6bc37e 5737 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5738}
5739
8929ecfa
YZ
5740static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5741{
5742 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5743 struct btrfs_space_info *sinfo = block_rsv->space_info;
5744 u64 num_bytes;
6a63209f 5745
ae2e4728
JB
5746 /*
5747 * The global block rsv is based on the size of the extent tree, the
5748 * checksum tree and the root tree. If the fs is empty we want to set
5749 * it to a minimal amount for safety.
5750 */
5751 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5752 btrfs_root_used(&fs_info->csum_root->root_item) +
5753 btrfs_root_used(&fs_info->tree_root->root_item);
5754 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5755
8929ecfa 5756 spin_lock(&sinfo->lock);
1f699d38 5757 spin_lock(&block_rsv->lock);
4e06bdd6 5758
ee22184b 5759 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5760
fb4b10e5 5761 if (block_rsv->reserved < block_rsv->size) {
4136135b 5762 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5763 if (sinfo->total_bytes > num_bytes) {
5764 num_bytes = sinfo->total_bytes - num_bytes;
5765 num_bytes = min(num_bytes,
5766 block_rsv->size - block_rsv->reserved);
5767 block_rsv->reserved += num_bytes;
9f9b8e8d 5768 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5769 trace_btrfs_space_reservation(fs_info, "space_info",
5770 sinfo->flags, num_bytes,
5771 1);
5772 }
5773 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5774 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5775 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5776 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5777 sinfo->flags, num_bytes, 0);
8929ecfa 5778 block_rsv->reserved = block_rsv->size;
8929ecfa 5779 }
182608c8 5780
fb4b10e5
JB
5781 if (block_rsv->reserved == block_rsv->size)
5782 block_rsv->full = 1;
5783 else
5784 block_rsv->full = 0;
5785
8929ecfa 5786 spin_unlock(&block_rsv->lock);
1f699d38 5787 spin_unlock(&sinfo->lock);
6a63209f
JB
5788}
5789
f0486c68 5790static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5791{
f0486c68 5792 struct btrfs_space_info *space_info;
6a63209f 5793
f0486c68
YZ
5794 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5795 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5796
f0486c68 5797 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5798 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5799 fs_info->trans_block_rsv.space_info = space_info;
5800 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5801 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5802
8929ecfa
YZ
5803 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5804 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5805 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5806 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5807 if (fs_info->quota_root)
5808 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5809 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5810
8929ecfa 5811 update_global_block_rsv(fs_info);
6a63209f
JB
5812}
5813
8929ecfa 5814static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5815{
8c2a3ca2 5816 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5817 (u64)-1, NULL);
8929ecfa
YZ
5818 WARN_ON(fs_info->trans_block_rsv.size > 0);
5819 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5820 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5821 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5822 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5823 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5824}
5825
6a63209f 5826
4fbcdf66
FM
5827/*
5828 * To be called after all the new block groups attached to the transaction
5829 * handle have been created (btrfs_create_pending_block_groups()).
5830 */
5831void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5832{
64b63580 5833 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5834
5835 if (!trans->chunk_bytes_reserved)
5836 return;
5837
5838 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5839
5840 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5841 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5842 trans->chunk_bytes_reserved = 0;
5843}
5844
d5c12070
MX
5845/*
5846 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5847 * root: the root of the parent directory
5848 * rsv: block reservation
5849 * items: the number of items that we need do reservation
a5b7f429 5850 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
5851 *
5852 * This function is used to reserve the space for snapshot/subvolume
5853 * creation and deletion. Those operations are different with the
5854 * common file/directory operations, they change two fs/file trees
5855 * and root tree, the number of items that the qgroup reserves is
5856 * different with the free space reservation. So we can not use
01327610 5857 * the space reservation mechanism in start_transaction().
d5c12070
MX
5858 */
5859int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 5860 struct btrfs_block_rsv *rsv, int items,
ee3441b4 5861 bool use_global_rsv)
a22285a6 5862{
a5b7f429 5863 u64 qgroup_num_bytes = 0;
d5c12070
MX
5864 u64 num_bytes;
5865 int ret;
0b246afa
JM
5866 struct btrfs_fs_info *fs_info = root->fs_info;
5867 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5868
0b246afa 5869 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5870 /* One for parent inode, two for dir entries */
a5b7f429
LF
5871 qgroup_num_bytes = 3 * fs_info->nodesize;
5872 ret = btrfs_qgroup_reserve_meta_prealloc(root,
5873 qgroup_num_bytes, true);
d5c12070
MX
5874 if (ret)
5875 return ret;
d5c12070
MX
5876 }
5877
0b246afa
JM
5878 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5879 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5880 BTRFS_BLOCK_GROUP_METADATA);
5881 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5882 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5883
5884 if (ret == -ENOSPC && use_global_rsv)
3a584174 5885 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 5886
a5b7f429
LF
5887 if (ret && qgroup_num_bytes)
5888 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
5889
5890 return ret;
5891}
5892
2ff7e61e 5893void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5894 struct btrfs_block_rsv *rsv)
d5c12070 5895{
2ff7e61e 5896 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5897}
5898
69fe2d75
JB
5899static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5900 struct btrfs_inode *inode)
9e0baf60 5901{
69fe2d75
JB
5902 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5903 u64 reserve_size = 0;
ff6bc37e 5904 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5905 u64 csum_leaves;
5906 unsigned outstanding_extents;
9e0baf60 5907
69fe2d75
JB
5908 lockdep_assert_held(&inode->lock);
5909 outstanding_extents = inode->outstanding_extents;
5910 if (outstanding_extents)
5911 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5912 outstanding_extents + 1);
5913 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5914 inode->csum_bytes);
5915 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5916 csum_leaves);
ff6bc37e
QW
5917 /*
5918 * For qgroup rsv, the calculation is very simple:
5919 * account one nodesize for each outstanding extent
5920 *
5921 * This is overestimating in most cases.
5922 */
5923 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 5924
69fe2d75
JB
5925 spin_lock(&block_rsv->lock);
5926 block_rsv->size = reserve_size;
ff6bc37e 5927 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 5928 spin_unlock(&block_rsv->lock);
0ca1f7ce 5929}
c146afad 5930
9f3db423 5931int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5932{
3ffbd68c 5933 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 5934 unsigned nr_extents;
08e007d2 5935 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5936 int ret = 0;
c64c2bd8 5937 bool delalloc_lock = true;
6324fbf3 5938
c64c2bd8
JB
5939 /* If we are a free space inode we need to not flush since we will be in
5940 * the middle of a transaction commit. We also don't need the delalloc
5941 * mutex since we won't race with anybody. We need this mostly to make
5942 * lockdep shut its filthy mouth.
bac357dc
JB
5943 *
5944 * If we have a transaction open (can happen if we call truncate_block
5945 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5946 */
5947 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5948 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5949 delalloc_lock = false;
da07d4ab
NB
5950 } else {
5951 if (current->journal_info)
5952 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 5953
da07d4ab
NB
5954 if (btrfs_transaction_in_commit(fs_info))
5955 schedule_timeout(1);
5956 }
ec44a35c 5957
c64c2bd8 5958 if (delalloc_lock)
9f3db423 5959 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5960
0b246afa 5961 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
5962
5963 /* Add our new extents and calculate the new rsv size. */
9f3db423 5964 spin_lock(&inode->lock);
69fe2d75 5965 nr_extents = count_max_extents(num_bytes);
8b62f87b 5966 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
5967 inode->csum_bytes += num_bytes;
5968 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5969 spin_unlock(&inode->lock);
57a45ced 5970
69fe2d75 5971 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 5972 if (unlikely(ret))
88e081bf 5973 goto out_fail;
25179201 5974
c64c2bd8 5975 if (delalloc_lock)
9f3db423 5976 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 5977 return 0;
88e081bf
WS
5978
5979out_fail:
9f3db423 5980 spin_lock(&inode->lock);
8b62f87b
JB
5981 nr_extents = count_max_extents(num_bytes);
5982 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
5983 inode->csum_bytes -= num_bytes;
5984 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5985 spin_unlock(&inode->lock);
88e081bf 5986
43b18595 5987 btrfs_inode_rsv_release(inode, true);
88e081bf 5988 if (delalloc_lock)
9f3db423 5989 mutex_unlock(&inode->delalloc_mutex);
88e081bf 5990 return ret;
0ca1f7ce
YZ
5991}
5992
7709cde3
JB
5993/**
5994 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
5995 * @inode: the inode to release the reservation for.
5996 * @num_bytes: the number of bytes we are releasing.
43b18595 5997 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
5998 *
5999 * This will release the metadata reservation for an inode. This can be called
6000 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6001 * reservations, or on error for the same reason.
7709cde3 6002 */
43b18595
QW
6003void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6004 bool qgroup_free)
0ca1f7ce 6005{
3ffbd68c 6006 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6007
0b246afa 6008 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6009 spin_lock(&inode->lock);
69fe2d75
JB
6010 inode->csum_bytes -= num_bytes;
6011 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6012 spin_unlock(&inode->lock);
0ca1f7ce 6013
0b246afa 6014 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6015 return;
6016
43b18595 6017 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6018}
6019
8b62f87b
JB
6020/**
6021 * btrfs_delalloc_release_extents - release our outstanding_extents
6022 * @inode: the inode to balance the reservation for.
6023 * @num_bytes: the number of bytes we originally reserved with
43b18595 6024 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6025 *
6026 * When we reserve space we increase outstanding_extents for the extents we may
6027 * add. Once we've set the range as delalloc or created our ordered extents we
6028 * have outstanding_extents to track the real usage, so we use this to free our
6029 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6030 * with btrfs_delalloc_reserve_metadata.
6031 */
43b18595
QW
6032void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6033 bool qgroup_free)
8b62f87b 6034{
3ffbd68c 6035 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6036 unsigned num_extents;
8b62f87b
JB
6037
6038 spin_lock(&inode->lock);
6039 num_extents = count_max_extents(num_bytes);
6040 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6041 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6042 spin_unlock(&inode->lock);
6043
8b62f87b
JB
6044 if (btrfs_is_testing(fs_info))
6045 return;
6046
43b18595 6047 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6048}
6049
1ada3a62 6050/**
7cf5b976 6051 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6052 * delalloc
6053 * @inode: inode we're writing to
6054 * @start: start range we are writing to
6055 * @len: how long the range we are writing to
364ecf36
QW
6056 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6057 * current reservation.
1ada3a62 6058 *
1ada3a62
QW
6059 * This will do the following things
6060 *
6061 * o reserve space in data space info for num bytes
6062 * and reserve precious corresponding qgroup space
6063 * (Done in check_data_free_space)
6064 *
6065 * o reserve space for metadata space, based on the number of outstanding
6066 * extents and how much csums will be needed
6067 * also reserve metadata space in a per root over-reserve method.
6068 * o add to the inodes->delalloc_bytes
6069 * o add it to the fs_info's delalloc inodes list.
6070 * (Above 3 all done in delalloc_reserve_metadata)
6071 *
6072 * Return 0 for success
6073 * Return <0 for error(-ENOSPC or -EQUOT)
6074 */
364ecf36
QW
6075int btrfs_delalloc_reserve_space(struct inode *inode,
6076 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6077{
6078 int ret;
6079
364ecf36 6080 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6081 if (ret < 0)
6082 return ret;
9f3db423 6083 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6084 if (ret < 0)
bc42bda2 6085 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6086 return ret;
6087}
6088
7709cde3 6089/**
7cf5b976 6090 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6091 * @inode: inode we're releasing space for
6092 * @start: start position of the space already reserved
6093 * @len: the len of the space already reserved
8b62f87b 6094 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6095 *
6096 * This function will release the metadata space that was not used and will
6097 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6098 * list if there are no delalloc bytes left.
6099 * Also it will handle the qgroup reserved space.
6100 */
bc42bda2 6101void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6102 struct extent_changeset *reserved,
43b18595 6103 u64 start, u64 len, bool qgroup_free)
1ada3a62 6104{
43b18595 6105 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6106 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6107}
6108
ce93ec54 6109static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6110 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6111 u64 num_bytes, int alloc)
9078a3e1 6112{
0af3d00b 6113 struct btrfs_block_group_cache *cache = NULL;
db94535d 6114 u64 total = num_bytes;
9078a3e1 6115 u64 old_val;
db94535d 6116 u64 byte_in_group;
0af3d00b 6117 int factor;
3e1ad54f 6118
5d4f98a2 6119 /* block accounting for super block */
eb73c1b7 6120 spin_lock(&info->delalloc_root_lock);
6c41761f 6121 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6122 if (alloc)
6123 old_val += num_bytes;
6124 else
6125 old_val -= num_bytes;
6c41761f 6126 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6127 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6128
d397712b 6129 while (total) {
db94535d 6130 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6131 if (!cache)
79787eaa 6132 return -ENOENT;
46df06b8
DS
6133 factor = btrfs_bg_type_to_factor(cache->flags);
6134
9d66e233
JB
6135 /*
6136 * If this block group has free space cache written out, we
6137 * need to make sure to load it if we are removing space. This
6138 * is because we need the unpinning stage to actually add the
6139 * space back to the block group, otherwise we will leak space.
6140 */
6141 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6142 cache_block_group(cache, 1);
0af3d00b 6143
db94535d
CM
6144 byte_in_group = bytenr - cache->key.objectid;
6145 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6146
25179201 6147 spin_lock(&cache->space_info->lock);
c286ac48 6148 spin_lock(&cache->lock);
0af3d00b 6149
6202df69 6150 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6151 cache->disk_cache_state < BTRFS_DC_CLEAR)
6152 cache->disk_cache_state = BTRFS_DC_CLEAR;
6153
9078a3e1 6154 old_val = btrfs_block_group_used(&cache->item);
db94535d 6155 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6156 if (alloc) {
db94535d 6157 old_val += num_bytes;
11833d66
YZ
6158 btrfs_set_block_group_used(&cache->item, old_val);
6159 cache->reserved -= num_bytes;
11833d66 6160 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6161 cache->space_info->bytes_used += num_bytes;
6162 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6163 spin_unlock(&cache->lock);
25179201 6164 spin_unlock(&cache->space_info->lock);
cd1bc465 6165 } else {
db94535d 6166 old_val -= num_bytes;
ae0ab003
FM
6167 btrfs_set_block_group_used(&cache->item, old_val);
6168 cache->pinned += num_bytes;
e2907c1a 6169 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6170 cache->space_info->bytes_used -= num_bytes;
6171 cache->space_info->disk_used -= num_bytes * factor;
6172 spin_unlock(&cache->lock);
6173 spin_unlock(&cache->space_info->lock);
47ab2a6c 6174
0b246afa 6175 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6176 cache->space_info->flags,
6177 num_bytes, 1);
dec59fa3
EL
6178 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6179 num_bytes,
6180 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6181 set_extent_dirty(info->pinned_extents,
6182 bytenr, bytenr + num_bytes - 1,
6183 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6184 }
1bbc621e
CM
6185
6186 spin_lock(&trans->transaction->dirty_bgs_lock);
6187 if (list_empty(&cache->dirty_list)) {
6188 list_add_tail(&cache->dirty_list,
6189 &trans->transaction->dirty_bgs);
bece2e82 6190 trans->transaction->num_dirty_bgs++;
1bbc621e
CM
6191 btrfs_get_block_group(cache);
6192 }
6193 spin_unlock(&trans->transaction->dirty_bgs_lock);
6194
036a9348
FM
6195 /*
6196 * No longer have used bytes in this block group, queue it for
6197 * deletion. We do this after adding the block group to the
6198 * dirty list to avoid races between cleaner kthread and space
6199 * cache writeout.
6200 */
031f24da
QW
6201 if (!alloc && old_val == 0)
6202 btrfs_mark_bg_unused(cache);
036a9348 6203
fa9c0d79 6204 btrfs_put_block_group(cache);
db94535d
CM
6205 total -= num_bytes;
6206 bytenr += num_bytes;
9078a3e1
CM
6207 }
6208 return 0;
6209}
6324fbf3 6210
2ff7e61e 6211static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6212{
0f9dd46c 6213 struct btrfs_block_group_cache *cache;
d2fb3437 6214 u64 bytenr;
0f9dd46c 6215
0b246afa
JM
6216 spin_lock(&fs_info->block_group_cache_lock);
6217 bytenr = fs_info->first_logical_byte;
6218 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6219
6220 if (bytenr < (u64)-1)
6221 return bytenr;
6222
0b246afa 6223 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6224 if (!cache)
a061fc8d 6225 return 0;
0f9dd46c 6226
d2fb3437 6227 bytenr = cache->key.objectid;
fa9c0d79 6228 btrfs_put_block_group(cache);
d2fb3437
YZ
6229
6230 return bytenr;
a061fc8d
CM
6231}
6232
2ff7e61e 6233static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6234 struct btrfs_block_group_cache *cache,
6235 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6236{
11833d66
YZ
6237 spin_lock(&cache->space_info->lock);
6238 spin_lock(&cache->lock);
6239 cache->pinned += num_bytes;
e2907c1a 6240 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6241 if (reserved) {
6242 cache->reserved -= num_bytes;
6243 cache->space_info->bytes_reserved -= num_bytes;
6244 }
6245 spin_unlock(&cache->lock);
6246 spin_unlock(&cache->space_info->lock);
68b38550 6247
0b246afa 6248 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6249 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6250 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6251 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6252 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6253 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6254 return 0;
6255}
68b38550 6256
f0486c68
YZ
6257/*
6258 * this function must be called within transaction
6259 */
2ff7e61e 6260int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6261 u64 bytenr, u64 num_bytes, int reserved)
6262{
6263 struct btrfs_block_group_cache *cache;
68b38550 6264
0b246afa 6265 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6266 BUG_ON(!cache); /* Logic error */
f0486c68 6267
2ff7e61e 6268 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6269
6270 btrfs_put_block_group(cache);
11833d66
YZ
6271 return 0;
6272}
6273
f0486c68 6274/*
e688b725
CM
6275 * this function must be called within transaction
6276 */
2ff7e61e 6277int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6278 u64 bytenr, u64 num_bytes)
6279{
6280 struct btrfs_block_group_cache *cache;
b50c6e25 6281 int ret;
e688b725 6282
0b246afa 6283 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6284 if (!cache)
6285 return -EINVAL;
e688b725
CM
6286
6287 /*
6288 * pull in the free space cache (if any) so that our pin
6289 * removes the free space from the cache. We have load_only set
6290 * to one because the slow code to read in the free extents does check
6291 * the pinned extents.
6292 */
f6373bf3 6293 cache_block_group(cache, 1);
e688b725 6294
2ff7e61e 6295 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6296
6297 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6298 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6299 btrfs_put_block_group(cache);
b50c6e25 6300 return ret;
e688b725
CM
6301}
6302
2ff7e61e
JM
6303static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6304 u64 start, u64 num_bytes)
8c2a1a30
JB
6305{
6306 int ret;
6307 struct btrfs_block_group_cache *block_group;
6308 struct btrfs_caching_control *caching_ctl;
6309
0b246afa 6310 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6311 if (!block_group)
6312 return -EINVAL;
6313
6314 cache_block_group(block_group, 0);
6315 caching_ctl = get_caching_control(block_group);
6316
6317 if (!caching_ctl) {
6318 /* Logic error */
6319 BUG_ON(!block_group_cache_done(block_group));
6320 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6321 } else {
6322 mutex_lock(&caching_ctl->mutex);
6323
6324 if (start >= caching_ctl->progress) {
2ff7e61e 6325 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6326 } else if (start + num_bytes <= caching_ctl->progress) {
6327 ret = btrfs_remove_free_space(block_group,
6328 start, num_bytes);
6329 } else {
6330 num_bytes = caching_ctl->progress - start;
6331 ret = btrfs_remove_free_space(block_group,
6332 start, num_bytes);
6333 if (ret)
6334 goto out_lock;
6335
6336 num_bytes = (start + num_bytes) -
6337 caching_ctl->progress;
6338 start = caching_ctl->progress;
2ff7e61e 6339 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6340 }
6341out_lock:
6342 mutex_unlock(&caching_ctl->mutex);
6343 put_caching_control(caching_ctl);
6344 }
6345 btrfs_put_block_group(block_group);
6346 return ret;
6347}
6348
2ff7e61e 6349int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6350 struct extent_buffer *eb)
6351{
6352 struct btrfs_file_extent_item *item;
6353 struct btrfs_key key;
6354 int found_type;
6355 int i;
b89311ef 6356 int ret = 0;
8c2a1a30 6357
2ff7e61e 6358 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6359 return 0;
6360
6361 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6362 btrfs_item_key_to_cpu(eb, &key, i);
6363 if (key.type != BTRFS_EXTENT_DATA_KEY)
6364 continue;
6365 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6366 found_type = btrfs_file_extent_type(eb, item);
6367 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6368 continue;
6369 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6370 continue;
6371 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6372 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6373 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6374 if (ret)
6375 break;
8c2a1a30
JB
6376 }
6377
b89311ef 6378 return ret;
8c2a1a30
JB
6379}
6380
9cfa3e34
FM
6381static void
6382btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6383{
6384 atomic_inc(&bg->reservations);
6385}
6386
6387void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6388 const u64 start)
6389{
6390 struct btrfs_block_group_cache *bg;
6391
6392 bg = btrfs_lookup_block_group(fs_info, start);
6393 ASSERT(bg);
6394 if (atomic_dec_and_test(&bg->reservations))
4625956a 6395 wake_up_var(&bg->reservations);
9cfa3e34
FM
6396 btrfs_put_block_group(bg);
6397}
6398
9cfa3e34
FM
6399void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6400{
6401 struct btrfs_space_info *space_info = bg->space_info;
6402
6403 ASSERT(bg->ro);
6404
6405 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6406 return;
6407
6408 /*
6409 * Our block group is read only but before we set it to read only,
6410 * some task might have had allocated an extent from it already, but it
6411 * has not yet created a respective ordered extent (and added it to a
6412 * root's list of ordered extents).
6413 * Therefore wait for any task currently allocating extents, since the
6414 * block group's reservations counter is incremented while a read lock
6415 * on the groups' semaphore is held and decremented after releasing
6416 * the read access on that semaphore and creating the ordered extent.
6417 */
6418 down_write(&space_info->groups_sem);
6419 up_write(&space_info->groups_sem);
6420
4625956a 6421 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6422}
6423
fb25e914 6424/**
4824f1f4 6425 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6426 * @cache: The cache we are manipulating
18513091
WX
6427 * @ram_bytes: The number of bytes of file content, and will be same to
6428 * @num_bytes except for the compress path.
fb25e914 6429 * @num_bytes: The number of bytes in question
e570fd27 6430 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6431 *
745699ef
XW
6432 * This is called by the allocator when it reserves space. If this is a
6433 * reservation and the block group has become read only we cannot make the
6434 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6435 */
4824f1f4 6436static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6437 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6438{
fb25e914 6439 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6440 int ret = 0;
79787eaa 6441
fb25e914
JB
6442 spin_lock(&space_info->lock);
6443 spin_lock(&cache->lock);
4824f1f4
WX
6444 if (cache->ro) {
6445 ret = -EAGAIN;
fb25e914 6446 } else {
4824f1f4
WX
6447 cache->reserved += num_bytes;
6448 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6449 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6450 if (delalloc)
4824f1f4 6451 cache->delalloc_bytes += num_bytes;
324ae4df 6452 }
fb25e914
JB
6453 spin_unlock(&cache->lock);
6454 spin_unlock(&space_info->lock);
f0486c68 6455 return ret;
324ae4df 6456}
9078a3e1 6457
4824f1f4
WX
6458/**
6459 * btrfs_free_reserved_bytes - update the block_group and space info counters
6460 * @cache: The cache we are manipulating
6461 * @num_bytes: The number of bytes in question
6462 * @delalloc: The blocks are allocated for the delalloc write
6463 *
6464 * This is called by somebody who is freeing space that was never actually used
6465 * on disk. For example if you reserve some space for a new leaf in transaction
6466 * A and before transaction A commits you free that leaf, you call this with
6467 * reserve set to 0 in order to clear the reservation.
6468 */
6469
556f3ca8 6470static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6471 u64 num_bytes, int delalloc)
4824f1f4
WX
6472{
6473 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6474
6475 spin_lock(&space_info->lock);
6476 spin_lock(&cache->lock);
6477 if (cache->ro)
6478 space_info->bytes_readonly += num_bytes;
6479 cache->reserved -= num_bytes;
6480 space_info->bytes_reserved -= num_bytes;
21a94f7a 6481 space_info->max_extent_size = 0;
4824f1f4
WX
6482
6483 if (delalloc)
6484 cache->delalloc_bytes -= num_bytes;
6485 spin_unlock(&cache->lock);
6486 spin_unlock(&space_info->lock);
4824f1f4 6487}
8b74c03e 6488void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6489{
11833d66
YZ
6490 struct btrfs_caching_control *next;
6491 struct btrfs_caching_control *caching_ctl;
6492 struct btrfs_block_group_cache *cache;
e8569813 6493
9e351cc8 6494 down_write(&fs_info->commit_root_sem);
25179201 6495
11833d66
YZ
6496 list_for_each_entry_safe(caching_ctl, next,
6497 &fs_info->caching_block_groups, list) {
6498 cache = caching_ctl->block_group;
6499 if (block_group_cache_done(cache)) {
6500 cache->last_byte_to_unpin = (u64)-1;
6501 list_del_init(&caching_ctl->list);
6502 put_caching_control(caching_ctl);
e8569813 6503 } else {
11833d66 6504 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6505 }
e8569813 6506 }
11833d66
YZ
6507
6508 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6509 fs_info->pinned_extents = &fs_info->freed_extents[1];
6510 else
6511 fs_info->pinned_extents = &fs_info->freed_extents[0];
6512
9e351cc8 6513 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6514
6515 update_global_block_rsv(fs_info);
e8569813
ZY
6516}
6517
c759c4e1
JB
6518/*
6519 * Returns the free cluster for the given space info and sets empty_cluster to
6520 * what it should be based on the mount options.
6521 */
6522static struct btrfs_free_cluster *
2ff7e61e
JM
6523fetch_cluster_info(struct btrfs_fs_info *fs_info,
6524 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6525{
6526 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6527
6528 *empty_cluster = 0;
6529 if (btrfs_mixed_space_info(space_info))
6530 return ret;
6531
c759c4e1 6532 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6533 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6534 if (btrfs_test_opt(fs_info, SSD))
6535 *empty_cluster = SZ_2M;
6536 else
ee22184b 6537 *empty_cluster = SZ_64K;
583b7231
HK
6538 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6539 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6540 *empty_cluster = SZ_2M;
0b246afa 6541 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6542 }
6543
6544 return ret;
6545}
6546
2ff7e61e
JM
6547static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6548 u64 start, u64 end,
678886bd 6549 const bool return_free_space)
ccd467d6 6550{
11833d66 6551 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6552 struct btrfs_space_info *space_info;
6553 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6554 struct btrfs_free_cluster *cluster = NULL;
11833d66 6555 u64 len;
c759c4e1
JB
6556 u64 total_unpinned = 0;
6557 u64 empty_cluster = 0;
7b398f8e 6558 bool readonly;
ccd467d6 6559
11833d66 6560 while (start <= end) {
7b398f8e 6561 readonly = false;
11833d66
YZ
6562 if (!cache ||
6563 start >= cache->key.objectid + cache->key.offset) {
6564 if (cache)
6565 btrfs_put_block_group(cache);
c759c4e1 6566 total_unpinned = 0;
11833d66 6567 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6568 BUG_ON(!cache); /* Logic error */
c759c4e1 6569
2ff7e61e 6570 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6571 cache->space_info,
6572 &empty_cluster);
6573 empty_cluster <<= 1;
11833d66
YZ
6574 }
6575
6576 len = cache->key.objectid + cache->key.offset - start;
6577 len = min(len, end + 1 - start);
6578
6579 if (start < cache->last_byte_to_unpin) {
6580 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6581 if (return_free_space)
6582 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6583 }
6584
f0486c68 6585 start += len;
c759c4e1 6586 total_unpinned += len;
7b398f8e 6587 space_info = cache->space_info;
f0486c68 6588
c759c4e1
JB
6589 /*
6590 * If this space cluster has been marked as fragmented and we've
6591 * unpinned enough in this block group to potentially allow a
6592 * cluster to be created inside of it go ahead and clear the
6593 * fragmented check.
6594 */
6595 if (cluster && cluster->fragmented &&
6596 total_unpinned > empty_cluster) {
6597 spin_lock(&cluster->lock);
6598 cluster->fragmented = 0;
6599 spin_unlock(&cluster->lock);
6600 }
6601
7b398f8e 6602 spin_lock(&space_info->lock);
11833d66
YZ
6603 spin_lock(&cache->lock);
6604 cache->pinned -= len;
e2907c1a 6605 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6606
6607 trace_btrfs_space_reservation(fs_info, "pinned",
6608 space_info->flags, len, 0);
4f4db217 6609 space_info->max_extent_size = 0;
dec59fa3
EL
6610 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6611 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6612 if (cache->ro) {
6613 space_info->bytes_readonly += len;
6614 readonly = true;
6615 }
11833d66 6616 spin_unlock(&cache->lock);
957780eb
JB
6617 if (!readonly && return_free_space &&
6618 global_rsv->space_info == space_info) {
6619 u64 to_add = len;
92ac58ec 6620
7b398f8e
JB
6621 spin_lock(&global_rsv->lock);
6622 if (!global_rsv->full) {
957780eb
JB
6623 to_add = min(len, global_rsv->size -
6624 global_rsv->reserved);
6625 global_rsv->reserved += to_add;
9f9b8e8d 6626 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6627 if (global_rsv->reserved >= global_rsv->size)
6628 global_rsv->full = 1;
957780eb
JB
6629 trace_btrfs_space_reservation(fs_info,
6630 "space_info",
6631 space_info->flags,
6632 to_add, 1);
6633 len -= to_add;
7b398f8e
JB
6634 }
6635 spin_unlock(&global_rsv->lock);
957780eb
JB
6636 /* Add to any tickets we may have */
6637 if (len)
6638 space_info_add_new_bytes(fs_info, space_info,
6639 len);
7b398f8e
JB
6640 }
6641 spin_unlock(&space_info->lock);
ccd467d6 6642 }
11833d66
YZ
6643
6644 if (cache)
6645 btrfs_put_block_group(cache);
ccd467d6
CM
6646 return 0;
6647}
6648
5ead2dd0 6649int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6650{
5ead2dd0 6651 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6652 struct btrfs_block_group_cache *block_group, *tmp;
6653 struct list_head *deleted_bgs;
11833d66 6654 struct extent_io_tree *unpin;
1a5bc167
CM
6655 u64 start;
6656 u64 end;
a28ec197 6657 int ret;
a28ec197 6658
11833d66
YZ
6659 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6660 unpin = &fs_info->freed_extents[1];
6661 else
6662 unpin = &fs_info->freed_extents[0];
6663
e33e17ee 6664 while (!trans->aborted) {
d4b450cd 6665 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6666 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6667 EXTENT_DIRTY, NULL);
d4b450cd
FM
6668 if (ret) {
6669 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6670 break;
d4b450cd 6671 }
1f3c79a2 6672
0b246afa 6673 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6674 ret = btrfs_discard_extent(fs_info, start,
5378e607 6675 end + 1 - start, NULL);
1f3c79a2 6676
af6f8f60 6677 clear_extent_dirty(unpin, start, end);
2ff7e61e 6678 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6679 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6680 cond_resched();
a28ec197 6681 }
817d52f8 6682
e33e17ee
JM
6683 /*
6684 * Transaction is finished. We don't need the lock anymore. We
6685 * do need to clean up the block groups in case of a transaction
6686 * abort.
6687 */
6688 deleted_bgs = &trans->transaction->deleted_bgs;
6689 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6690 u64 trimmed = 0;
6691
6692 ret = -EROFS;
6693 if (!trans->aborted)
2ff7e61e 6694 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6695 block_group->key.objectid,
6696 block_group->key.offset,
6697 &trimmed);
6698
6699 list_del_init(&block_group->bg_list);
6700 btrfs_put_block_group_trimming(block_group);
6701 btrfs_put_block_group(block_group);
6702
6703 if (ret) {
6704 const char *errstr = btrfs_decode_error(ret);
6705 btrfs_warn(fs_info,
913e1535 6706 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6707 ret, errstr);
6708 }
6709 }
6710
e20d96d6
CM
6711 return 0;
6712}
6713
5d4f98a2 6714static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6715 struct btrfs_delayed_ref_node *node, u64 parent,
6716 u64 root_objectid, u64 owner_objectid,
6717 u64 owner_offset, int refs_to_drop,
6718 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6719{
e72cb923 6720 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6721 struct btrfs_key key;
5d4f98a2 6722 struct btrfs_path *path;
1261ec42 6723 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6724 struct extent_buffer *leaf;
5d4f98a2
YZ
6725 struct btrfs_extent_item *ei;
6726 struct btrfs_extent_inline_ref *iref;
a28ec197 6727 int ret;
5d4f98a2 6728 int is_data;
952fccac
CM
6729 int extent_slot = 0;
6730 int found_extent = 0;
6731 int num_to_del = 1;
5d4f98a2
YZ
6732 u32 item_size;
6733 u64 refs;
c682f9b3
QW
6734 u64 bytenr = node->bytenr;
6735 u64 num_bytes = node->num_bytes;
fcebe456 6736 int last_ref = 0;
0b246afa 6737 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6738
5caf2a00 6739 path = btrfs_alloc_path();
54aa1f4d
CM
6740 if (!path)
6741 return -ENOMEM;
5f26f772 6742
e4058b54 6743 path->reada = READA_FORWARD;
b9473439 6744 path->leave_spinning = 1;
5d4f98a2
YZ
6745
6746 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6747 BUG_ON(!is_data && refs_to_drop != 1);
6748
3173a18f 6749 if (is_data)
897ca819 6750 skinny_metadata = false;
3173a18f 6751
fbe4801b
NB
6752 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6753 parent, root_objectid, owner_objectid,
5d4f98a2 6754 owner_offset);
7bb86316 6755 if (ret == 0) {
952fccac 6756 extent_slot = path->slots[0];
5d4f98a2
YZ
6757 while (extent_slot >= 0) {
6758 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6759 extent_slot);
5d4f98a2 6760 if (key.objectid != bytenr)
952fccac 6761 break;
5d4f98a2
YZ
6762 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6763 key.offset == num_bytes) {
952fccac
CM
6764 found_extent = 1;
6765 break;
6766 }
3173a18f
JB
6767 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6768 key.offset == owner_objectid) {
6769 found_extent = 1;
6770 break;
6771 }
952fccac
CM
6772 if (path->slots[0] - extent_slot > 5)
6773 break;
5d4f98a2 6774 extent_slot--;
952fccac 6775 }
a79865c6 6776
31840ae1 6777 if (!found_extent) {
5d4f98a2 6778 BUG_ON(iref);
87cc7a8a 6779 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6780 refs_to_drop,
fcebe456 6781 is_data, &last_ref);
005d6427 6782 if (ret) {
66642832 6783 btrfs_abort_transaction(trans, ret);
005d6427
DS
6784 goto out;
6785 }
b3b4aa74 6786 btrfs_release_path(path);
b9473439 6787 path->leave_spinning = 1;
5d4f98a2
YZ
6788
6789 key.objectid = bytenr;
6790 key.type = BTRFS_EXTENT_ITEM_KEY;
6791 key.offset = num_bytes;
6792
3173a18f
JB
6793 if (!is_data && skinny_metadata) {
6794 key.type = BTRFS_METADATA_ITEM_KEY;
6795 key.offset = owner_objectid;
6796 }
6797
31840ae1
ZY
6798 ret = btrfs_search_slot(trans, extent_root,
6799 &key, path, -1, 1);
3173a18f
JB
6800 if (ret > 0 && skinny_metadata && path->slots[0]) {
6801 /*
6802 * Couldn't find our skinny metadata item,
6803 * see if we have ye olde extent item.
6804 */
6805 path->slots[0]--;
6806 btrfs_item_key_to_cpu(path->nodes[0], &key,
6807 path->slots[0]);
6808 if (key.objectid == bytenr &&
6809 key.type == BTRFS_EXTENT_ITEM_KEY &&
6810 key.offset == num_bytes)
6811 ret = 0;
6812 }
6813
6814 if (ret > 0 && skinny_metadata) {
6815 skinny_metadata = false;
9ce49a0b 6816 key.objectid = bytenr;
3173a18f
JB
6817 key.type = BTRFS_EXTENT_ITEM_KEY;
6818 key.offset = num_bytes;
6819 btrfs_release_path(path);
6820 ret = btrfs_search_slot(trans, extent_root,
6821 &key, path, -1, 1);
6822 }
6823
f3465ca4 6824 if (ret) {
5d163e0e
JM
6825 btrfs_err(info,
6826 "umm, got %d back from search, was looking for %llu",
6827 ret, bytenr);
b783e62d 6828 if (ret > 0)
a4f78750 6829 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6830 }
005d6427 6831 if (ret < 0) {
66642832 6832 btrfs_abort_transaction(trans, ret);
005d6427
DS
6833 goto out;
6834 }
31840ae1
ZY
6835 extent_slot = path->slots[0];
6836 }
fae7f21c 6837 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6838 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6839 btrfs_err(info,
6840 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6841 bytenr, parent, root_objectid, owner_objectid,
6842 owner_offset);
66642832 6843 btrfs_abort_transaction(trans, ret);
c4a050bb 6844 goto out;
79787eaa 6845 } else {
66642832 6846 btrfs_abort_transaction(trans, ret);
005d6427 6847 goto out;
7bb86316 6848 }
5f39d397
CM
6849
6850 leaf = path->nodes[0];
5d4f98a2 6851 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 6852 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
6853 ret = -EINVAL;
6854 btrfs_print_v0_err(info);
6855 btrfs_abort_transaction(trans, ret);
6856 goto out;
6857 }
952fccac 6858 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6859 struct btrfs_extent_item);
3173a18f
JB
6860 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6861 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6862 struct btrfs_tree_block_info *bi;
6863 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6864 bi = (struct btrfs_tree_block_info *)(ei + 1);
6865 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6866 }
56bec294 6867
5d4f98a2 6868 refs = btrfs_extent_refs(leaf, ei);
32b02538 6869 if (refs < refs_to_drop) {
5d163e0e
JM
6870 btrfs_err(info,
6871 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6872 refs_to_drop, refs, bytenr);
32b02538 6873 ret = -EINVAL;
66642832 6874 btrfs_abort_transaction(trans, ret);
32b02538
JB
6875 goto out;
6876 }
56bec294 6877 refs -= refs_to_drop;
5f39d397 6878
5d4f98a2
YZ
6879 if (refs > 0) {
6880 if (extent_op)
6881 __run_delayed_extent_op(extent_op, leaf, ei);
6882 /*
6883 * In the case of inline back ref, reference count will
6884 * be updated by remove_extent_backref
952fccac 6885 */
5d4f98a2
YZ
6886 if (iref) {
6887 BUG_ON(!found_extent);
6888 } else {
6889 btrfs_set_extent_refs(leaf, ei, refs);
6890 btrfs_mark_buffer_dirty(leaf);
6891 }
6892 if (found_extent) {
87cc7a8a
NB
6893 ret = remove_extent_backref(trans, path, iref,
6894 refs_to_drop, is_data,
6895 &last_ref);
005d6427 6896 if (ret) {
66642832 6897 btrfs_abort_transaction(trans, ret);
005d6427
DS
6898 goto out;
6899 }
952fccac 6900 }
5d4f98a2 6901 } else {
5d4f98a2
YZ
6902 if (found_extent) {
6903 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6904 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6905 if (iref) {
6906 BUG_ON(path->slots[0] != extent_slot);
6907 } else {
6908 BUG_ON(path->slots[0] != extent_slot + 1);
6909 path->slots[0] = extent_slot;
6910 num_to_del = 2;
6911 }
78fae27e 6912 }
b9473439 6913
fcebe456 6914 last_ref = 1;
952fccac
CM
6915 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6916 num_to_del);
005d6427 6917 if (ret) {
66642832 6918 btrfs_abort_transaction(trans, ret);
005d6427
DS
6919 goto out;
6920 }
b3b4aa74 6921 btrfs_release_path(path);
21af804c 6922
5d4f98a2 6923 if (is_data) {
5b4aacef 6924 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 6925 if (ret) {
66642832 6926 btrfs_abort_transaction(trans, ret);
005d6427
DS
6927 goto out;
6928 }
459931ec
CM
6929 }
6930
e7355e50 6931 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 6932 if (ret) {
66642832 6933 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
6934 goto out;
6935 }
6936
0b246afa 6937 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 6938 if (ret) {
66642832 6939 btrfs_abort_transaction(trans, ret);
005d6427
DS
6940 goto out;
6941 }
a28ec197 6942 }
fcebe456
JB
6943 btrfs_release_path(path);
6944
79787eaa 6945out:
5caf2a00 6946 btrfs_free_path(path);
a28ec197
CM
6947 return ret;
6948}
6949
1887be66 6950/*
f0486c68 6951 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6952 * delayed ref for that extent as well. This searches the delayed ref tree for
6953 * a given extent, and if there are no other delayed refs to be processed, it
6954 * removes it from the tree.
6955 */
6956static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 6957 u64 bytenr)
1887be66
CM
6958{
6959 struct btrfs_delayed_ref_head *head;
6960 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6961 int ret = 0;
1887be66
CM
6962
6963 delayed_refs = &trans->transaction->delayed_refs;
6964 spin_lock(&delayed_refs->lock);
f72ad18e 6965 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 6966 if (!head)
cf93da7b 6967 goto out_delayed_unlock;
1887be66 6968
d7df2c79 6969 spin_lock(&head->lock);
e3d03965 6970 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
6971 goto out;
6972
5d4f98a2
YZ
6973 if (head->extent_op) {
6974 if (!head->must_insert_reserved)
6975 goto out;
78a6184a 6976 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6977 head->extent_op = NULL;
6978 }
6979
1887be66
CM
6980 /*
6981 * waiting for the lock here would deadlock. If someone else has it
6982 * locked they are already in the process of dropping it anyway
6983 */
6984 if (!mutex_trylock(&head->mutex))
6985 goto out;
6986
6987 /*
6988 * at this point we have a head with no other entries. Go
6989 * ahead and process it.
6990 */
5c9d028b 6991 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
d278850e 6992 RB_CLEAR_NODE(&head->href_node);
d7df2c79 6993 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6994
6995 /*
6996 * we don't take a ref on the node because we're removing it from the
6997 * tree, so we just steal the ref the tree was holding.
6998 */
c3e69d58 6999 delayed_refs->num_heads--;
d7df2c79 7000 if (head->processing == 0)
c3e69d58 7001 delayed_refs->num_heads_ready--;
d7df2c79
JB
7002 head->processing = 0;
7003 spin_unlock(&head->lock);
1887be66
CM
7004 spin_unlock(&delayed_refs->lock);
7005
f0486c68
YZ
7006 BUG_ON(head->extent_op);
7007 if (head->must_insert_reserved)
7008 ret = 1;
7009
7010 mutex_unlock(&head->mutex);
d278850e 7011 btrfs_put_delayed_ref_head(head);
f0486c68 7012 return ret;
1887be66 7013out:
d7df2c79 7014 spin_unlock(&head->lock);
cf93da7b
CM
7015
7016out_delayed_unlock:
1887be66
CM
7017 spin_unlock(&delayed_refs->lock);
7018 return 0;
7019}
7020
f0486c68
YZ
7021void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7022 struct btrfs_root *root,
7023 struct extent_buffer *buf,
5581a51a 7024 u64 parent, int last_ref)
f0486c68 7025{
0b246afa 7026 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7027 int pin = 1;
f0486c68
YZ
7028 int ret;
7029
7030 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7031 int old_ref_mod, new_ref_mod;
7032
fd708b81
JB
7033 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7034 root->root_key.objectid,
7035 btrfs_header_level(buf), 0,
7036 BTRFS_DROP_DELAYED_REF);
44e1c47d 7037 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7038 buf->len, parent,
0b246afa
JM
7039 root->root_key.objectid,
7040 btrfs_header_level(buf),
7be07912 7041 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7042 &old_ref_mod, &new_ref_mod);
79787eaa 7043 BUG_ON(ret); /* -ENOMEM */
d7eae340 7044 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7045 }
7046
0a16c7d7 7047 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7048 struct btrfs_block_group_cache *cache;
7049
f0486c68 7050 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7051 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7052 if (!ret)
37be25bc 7053 goto out;
f0486c68
YZ
7054 }
7055
4da8b76d 7056 pin = 0;
0b246afa 7057 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7058
f0486c68 7059 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7060 pin_down_extent(fs_info, cache, buf->start,
7061 buf->len, 1);
6219872d 7062 btrfs_put_block_group(cache);
37be25bc 7063 goto out;
f0486c68
YZ
7064 }
7065
7066 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7067
7068 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7069 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7070 btrfs_put_block_group(cache);
71ff6437 7071 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7072 }
7073out:
b150a4f1 7074 if (pin)
29d2b84c 7075 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7076 root->root_key.objectid);
7077
0a16c7d7
OS
7078 if (last_ref) {
7079 /*
7080 * Deleting the buffer, clear the corrupt flag since it doesn't
7081 * matter anymore.
7082 */
7083 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7084 }
f0486c68
YZ
7085}
7086
79787eaa 7087/* Can return -ENOMEM */
2ff7e61e 7088int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7089 struct btrfs_root *root,
66d7e7f0 7090 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7091 u64 owner, u64 offset)
925baedd 7092{
84f7d8e6 7093 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7094 int old_ref_mod, new_ref_mod;
925baedd
CM
7095 int ret;
7096
f5ee5c9a 7097 if (btrfs_is_testing(fs_info))
faa2dbf0 7098 return 0;
fccb84c9 7099
fd708b81
JB
7100 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7101 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7102 root_objectid, owner, offset,
7103 BTRFS_DROP_DELAYED_REF);
7104
56bec294
CM
7105 /*
7106 * tree log blocks never actually go into the extent allocation
7107 * tree, just update pinning info and exit early.
56bec294 7108 */
5d4f98a2
YZ
7109 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7110 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7111 /* unlocks the pinned mutex */
2ff7e61e 7112 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7113 old_ref_mod = new_ref_mod = 0;
56bec294 7114 ret = 0;
5d4f98a2 7115 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7116 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7117 num_bytes, parent,
7118 root_objectid, (int)owner,
7119 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7120 &old_ref_mod, &new_ref_mod);
5d4f98a2 7121 } else {
88a979c6 7122 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7123 num_bytes, parent,
7124 root_objectid, owner, offset,
7125 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7126 &old_ref_mod, &new_ref_mod);
56bec294 7127 }
d7eae340 7128
29d2b84c
NB
7129 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7130 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7131
7132 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7133 }
d7eae340 7134
925baedd
CM
7135 return ret;
7136}
7137
817d52f8
JB
7138/*
7139 * when we wait for progress in the block group caching, its because
7140 * our allocation attempt failed at least once. So, we must sleep
7141 * and let some progress happen before we try again.
7142 *
7143 * This function will sleep at least once waiting for new free space to
7144 * show up, and then it will check the block group free space numbers
7145 * for our min num_bytes. Another option is to have it go ahead
7146 * and look in the rbtree for a free extent of a given size, but this
7147 * is a good start.
36cce922
JB
7148 *
7149 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7150 * any of the information in this block group.
817d52f8 7151 */
36cce922 7152static noinline void
817d52f8
JB
7153wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7154 u64 num_bytes)
7155{
11833d66 7156 struct btrfs_caching_control *caching_ctl;
817d52f8 7157
11833d66
YZ
7158 caching_ctl = get_caching_control(cache);
7159 if (!caching_ctl)
36cce922 7160 return;
817d52f8 7161
11833d66 7162 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7163 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7164
7165 put_caching_control(caching_ctl);
11833d66
YZ
7166}
7167
7168static noinline int
7169wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7170{
7171 struct btrfs_caching_control *caching_ctl;
36cce922 7172 int ret = 0;
11833d66
YZ
7173
7174 caching_ctl = get_caching_control(cache);
7175 if (!caching_ctl)
36cce922 7176 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7177
7178 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7179 if (cache->cached == BTRFS_CACHE_ERROR)
7180 ret = -EIO;
11833d66 7181 put_caching_control(caching_ctl);
36cce922 7182 return ret;
817d52f8
JB
7183}
7184
7185enum btrfs_loop_type {
285ff5af
JB
7186 LOOP_CACHING_NOWAIT = 0,
7187 LOOP_CACHING_WAIT = 1,
7188 LOOP_ALLOC_CHUNK = 2,
7189 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7190};
7191
e570fd27
MX
7192static inline void
7193btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7194 int delalloc)
7195{
7196 if (delalloc)
7197 down_read(&cache->data_rwsem);
7198}
7199
7200static inline void
7201btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7202 int delalloc)
7203{
7204 btrfs_get_block_group(cache);
7205 if (delalloc)
7206 down_read(&cache->data_rwsem);
7207}
7208
7209static struct btrfs_block_group_cache *
7210btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7211 struct btrfs_free_cluster *cluster,
7212 int delalloc)
7213{
89771cc9 7214 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7215
e570fd27 7216 spin_lock(&cluster->refill_lock);
6719afdc
GU
7217 while (1) {
7218 used_bg = cluster->block_group;
7219 if (!used_bg)
7220 return NULL;
7221
7222 if (used_bg == block_group)
e570fd27
MX
7223 return used_bg;
7224
6719afdc 7225 btrfs_get_block_group(used_bg);
e570fd27 7226
6719afdc
GU
7227 if (!delalloc)
7228 return used_bg;
e570fd27 7229
6719afdc
GU
7230 if (down_read_trylock(&used_bg->data_rwsem))
7231 return used_bg;
e570fd27 7232
6719afdc 7233 spin_unlock(&cluster->refill_lock);
e570fd27 7234
e321f8a8
LB
7235 /* We should only have one-level nested. */
7236 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7237
6719afdc
GU
7238 spin_lock(&cluster->refill_lock);
7239 if (used_bg == cluster->block_group)
7240 return used_bg;
e570fd27 7241
6719afdc
GU
7242 up_read(&used_bg->data_rwsem);
7243 btrfs_put_block_group(used_bg);
7244 }
e570fd27
MX
7245}
7246
7247static inline void
7248btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7249 int delalloc)
7250{
7251 if (delalloc)
7252 up_read(&cache->data_rwsem);
7253 btrfs_put_block_group(cache);
7254}
7255
b4bd745d
QW
7256/*
7257 * Structure used internally for find_free_extent() function. Wraps needed
7258 * parameters.
7259 */
7260struct find_free_extent_ctl {
7261 /* Basic allocation info */
7262 u64 ram_bytes;
7263 u64 num_bytes;
7264 u64 empty_size;
7265 u64 flags;
7266 int delalloc;
7267
7268 /* Where to start the search inside the bg */
7269 u64 search_start;
7270
7271 /* For clustered allocation */
7272 u64 empty_cluster;
7273
7274 bool have_caching_bg;
7275 bool orig_have_caching_bg;
7276
7277 /* RAID index, converted from flags */
7278 int index;
7279
7280 /* Current loop number */
7281 int loop;
7282
7283 /*
7284 * Whether we're refilling a cluster, if true we need to re-search
7285 * current block group but don't try to refill the cluster again.
7286 */
7287 bool retry_clustered;
7288
7289 /*
7290 * Whether we're updating free space cache, if true we need to re-search
7291 * current block group but don't try updating free space cache again.
7292 */
7293 bool retry_unclustered;
7294
7295 /* If current block group is cached */
7296 int cached;
7297
7298 /* Max contiguous hole found */
7299 u64 max_extent_size;
7300
7301 /* Total free space from free space cache, not always contiguous */
7302 u64 total_free_space;
7303
7304 /* Found result */
7305 u64 found_offset;
7306};
7307
d06e3bb6
QW
7308
7309/*
7310 * Helper function for find_free_extent().
7311 *
7312 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7313 * Return -EAGAIN to inform caller that we need to re-search this block group
7314 * Return >0 to inform caller that we find nothing
7315 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7316 */
7317static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7318 struct btrfs_free_cluster *last_ptr,
7319 struct find_free_extent_ctl *ffe_ctl,
7320 struct btrfs_block_group_cache **cluster_bg_ret)
7321{
7322 struct btrfs_fs_info *fs_info = bg->fs_info;
7323 struct btrfs_block_group_cache *cluster_bg;
7324 u64 aligned_cluster;
7325 u64 offset;
7326 int ret;
7327
7328 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7329 if (!cluster_bg)
7330 goto refill_cluster;
7331 if (cluster_bg != bg && (cluster_bg->ro ||
7332 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7333 goto release_cluster;
7334
7335 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7336 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7337 &ffe_ctl->max_extent_size);
7338 if (offset) {
7339 /* We have a block, we're done */
7340 spin_unlock(&last_ptr->refill_lock);
7341 trace_btrfs_reserve_extent_cluster(cluster_bg,
7342 ffe_ctl->search_start, ffe_ctl->num_bytes);
7343 *cluster_bg_ret = cluster_bg;
7344 ffe_ctl->found_offset = offset;
7345 return 0;
7346 }
7347 WARN_ON(last_ptr->block_group != cluster_bg);
7348
7349release_cluster:
7350 /*
7351 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7352 * lets just skip it and let the allocator find whatever block it can
7353 * find. If we reach this point, we will have tried the cluster
7354 * allocator plenty of times and not have found anything, so we are
7355 * likely way too fragmented for the clustering stuff to find anything.
7356 *
7357 * However, if the cluster is taken from the current block group,
7358 * release the cluster first, so that we stand a better chance of
7359 * succeeding in the unclustered allocation.
7360 */
7361 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7362 spin_unlock(&last_ptr->refill_lock);
7363 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7364 return -ENOENT;
7365 }
7366
7367 /* This cluster didn't work out, free it and start over */
7368 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7369
7370 if (cluster_bg != bg)
7371 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7372
7373refill_cluster:
7374 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7375 spin_unlock(&last_ptr->refill_lock);
7376 return -ENOENT;
7377 }
7378
7379 aligned_cluster = max_t(u64,
7380 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7381 bg->full_stripe_len);
7382 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7383 ffe_ctl->search_start, ffe_ctl->num_bytes,
7384 aligned_cluster);
7385 if (ret == 0) {
7386 /* Now pull our allocation out of this cluster */
7387 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7388 ffe_ctl->num_bytes, ffe_ctl->search_start,
7389 &ffe_ctl->max_extent_size);
7390 if (offset) {
7391 /* We found one, proceed */
7392 spin_unlock(&last_ptr->refill_lock);
7393 trace_btrfs_reserve_extent_cluster(bg,
7394 ffe_ctl->search_start,
7395 ffe_ctl->num_bytes);
7396 ffe_ctl->found_offset = offset;
7397 return 0;
7398 }
7399 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7400 !ffe_ctl->retry_clustered) {
7401 spin_unlock(&last_ptr->refill_lock);
7402
7403 ffe_ctl->retry_clustered = true;
7404 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7405 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7406 return -EAGAIN;
7407 }
7408 /*
7409 * At this point we either didn't find a cluster or we weren't able to
7410 * allocate a block from our cluster. Free the cluster we've been
7411 * trying to use, and go to the next block group.
7412 */
7413 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7414 spin_unlock(&last_ptr->refill_lock);
7415 return 1;
7416}
7417
fec577fb
CM
7418/*
7419 * walks the btree of allocated extents and find a hole of a given size.
7420 * The key ins is changed to record the hole:
a4820398 7421 * ins->objectid == start position
62e2749e 7422 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7423 * ins->offset == the size of the hole.
fec577fb 7424 * Any available blocks before search_start are skipped.
a4820398
MX
7425 *
7426 * If there is no suitable free space, we will record the max size of
7427 * the free space extent currently.
fec577fb 7428 */
87bde3cd 7429static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7430 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7431 u64 hint_byte, struct btrfs_key *ins,
7432 u64 flags, int delalloc)
fec577fb 7433{
80eb234a 7434 int ret = 0;
0b246afa 7435 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7436 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7437 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7438 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7439 struct btrfs_space_info *space_info;
67377734 7440 bool use_cluster = true;
a5e681d9 7441 bool full_search = false;
fec577fb 7442
0b246afa 7443 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7444
7445 ffe_ctl.ram_bytes = ram_bytes;
7446 ffe_ctl.num_bytes = num_bytes;
7447 ffe_ctl.empty_size = empty_size;
7448 ffe_ctl.flags = flags;
7449 ffe_ctl.search_start = 0;
7450 ffe_ctl.retry_clustered = false;
7451 ffe_ctl.retry_unclustered = false;
7452 ffe_ctl.delalloc = delalloc;
7453 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7454 ffe_ctl.have_caching_bg = false;
7455 ffe_ctl.orig_have_caching_bg = false;
7456 ffe_ctl.found_offset = 0;
7457
962a298f 7458 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7459 ins->objectid = 0;
7460 ins->offset = 0;
b1a4d965 7461
71ff6437 7462 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7463
0b246afa 7464 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7465 if (!space_info) {
0b246afa 7466 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7467 return -ENOSPC;
7468 }
2552d17e 7469
67377734 7470 /*
4f4db217
JB
7471 * If our free space is heavily fragmented we may not be able to make
7472 * big contiguous allocations, so instead of doing the expensive search
7473 * for free space, simply return ENOSPC with our max_extent_size so we
7474 * can go ahead and search for a more manageable chunk.
7475 *
7476 * If our max_extent_size is large enough for our allocation simply
7477 * disable clustering since we will likely not be able to find enough
7478 * space to create a cluster and induce latency trying.
67377734 7479 */
4f4db217
JB
7480 if (unlikely(space_info->max_extent_size)) {
7481 spin_lock(&space_info->lock);
7482 if (space_info->max_extent_size &&
7483 num_bytes > space_info->max_extent_size) {
7484 ins->offset = space_info->max_extent_size;
7485 spin_unlock(&space_info->lock);
7486 return -ENOSPC;
7487 } else if (space_info->max_extent_size) {
7488 use_cluster = false;
7489 }
7490 spin_unlock(&space_info->lock);
fa9c0d79 7491 }
0f9dd46c 7492
b4bd745d
QW
7493 last_ptr = fetch_cluster_info(fs_info, space_info,
7494 &ffe_ctl.empty_cluster);
239b14b3 7495 if (last_ptr) {
fa9c0d79
CM
7496 spin_lock(&last_ptr->lock);
7497 if (last_ptr->block_group)
7498 hint_byte = last_ptr->window_start;
c759c4e1
JB
7499 if (last_ptr->fragmented) {
7500 /*
7501 * We still set window_start so we can keep track of the
7502 * last place we found an allocation to try and save
7503 * some time.
7504 */
7505 hint_byte = last_ptr->window_start;
7506 use_cluster = false;
7507 }
fa9c0d79 7508 spin_unlock(&last_ptr->lock);
239b14b3 7509 }
fa9c0d79 7510
b4bd745d
QW
7511 ffe_ctl.search_start = max(ffe_ctl.search_start,
7512 first_logical_byte(fs_info, 0));
7513 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7514 if (ffe_ctl.search_start == hint_byte) {
7515 block_group = btrfs_lookup_block_group(fs_info,
7516 ffe_ctl.search_start);
817d52f8
JB
7517 /*
7518 * we don't want to use the block group if it doesn't match our
7519 * allocation bits, or if its not cached.
ccf0e725
JB
7520 *
7521 * However if we are re-searching with an ideal block group
7522 * picked out then we don't care that the block group is cached.
817d52f8 7523 */
b6919a58 7524 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7525 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7526 down_read(&space_info->groups_sem);
44fb5511
CM
7527 if (list_empty(&block_group->list) ||
7528 block_group->ro) {
7529 /*
7530 * someone is removing this block group,
7531 * we can't jump into the have_block_group
7532 * target because our list pointers are not
7533 * valid
7534 */
7535 btrfs_put_block_group(block_group);
7536 up_read(&space_info->groups_sem);
ccf0e725 7537 } else {
b4bd745d 7538 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7539 block_group->flags);
e570fd27 7540 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7541 goto have_block_group;
ccf0e725 7542 }
2552d17e 7543 } else if (block_group) {
fa9c0d79 7544 btrfs_put_block_group(block_group);
2552d17e 7545 }
42e70e7a 7546 }
2552d17e 7547search:
b4bd745d
QW
7548 ffe_ctl.have_caching_bg = false;
7549 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7550 ffe_ctl.index == 0)
a5e681d9 7551 full_search = true;
80eb234a 7552 down_read(&space_info->groups_sem);
b4bd745d
QW
7553 list_for_each_entry(block_group,
7554 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7555 /* If the block group is read-only, we can skip it entirely. */
7556 if (unlikely(block_group->ro))
7557 continue;
7558
e570fd27 7559 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7560 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7561
83a50de9
CM
7562 /*
7563 * this can happen if we end up cycling through all the
7564 * raid types, but we want to make sure we only allocate
7565 * for the proper type.
7566 */
b6919a58 7567 if (!block_group_bits(block_group, flags)) {
bece2e82 7568 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7569 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7570 BTRFS_BLOCK_GROUP_RAID5 |
7571 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7572 BTRFS_BLOCK_GROUP_RAID10;
7573
7574 /*
7575 * if they asked for extra copies and this block group
7576 * doesn't provide them, bail. This does allow us to
7577 * fill raid0 from raid1.
7578 */
b6919a58 7579 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7580 goto loop;
7581 }
7582
2552d17e 7583have_block_group:
b4bd745d
QW
7584 ffe_ctl.cached = block_group_cache_done(block_group);
7585 if (unlikely(!ffe_ctl.cached)) {
7586 ffe_ctl.have_caching_bg = true;
f6373bf3 7587 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7588 BUG_ON(ret < 0);
7589 ret = 0;
817d52f8
JB
7590 }
7591
36cce922
JB
7592 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7593 goto loop;
0f9dd46c 7594
0a24325e 7595 /*
062c05c4
AO
7596 * Ok we want to try and use the cluster allocator, so
7597 * lets look there
0a24325e 7598 */
c759c4e1 7599 if (last_ptr && use_cluster) {
d06e3bb6 7600 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7601
d06e3bb6
QW
7602 ret = find_free_extent_clustered(block_group, last_ptr,
7603 &ffe_ctl, &cluster_bg);
062c05c4 7604
fa9c0d79 7605 if (ret == 0) {
d06e3bb6
QW
7606 if (cluster_bg && cluster_bg != block_group) {
7607 btrfs_release_block_group(block_group,
7608 delalloc);
7609 block_group = cluster_bg;
fa9c0d79 7610 }
d06e3bb6
QW
7611 goto checks;
7612 } else if (ret == -EAGAIN) {
817d52f8 7613 goto have_block_group;
d06e3bb6
QW
7614 } else if (ret > 0) {
7615 goto loop;
fa9c0d79 7616 }
d06e3bb6 7617 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7618 }
7619
c759c4e1
JB
7620 /*
7621 * We are doing an unclustered alloc, set the fragmented flag so
7622 * we don't bother trying to setup a cluster again until we get
7623 * more space.
7624 */
7625 if (unlikely(last_ptr)) {
7626 spin_lock(&last_ptr->lock);
7627 last_ptr->fragmented = 1;
7628 spin_unlock(&last_ptr->lock);
7629 }
b4bd745d 7630 if (ffe_ctl.cached) {
0c9b36e0
LB
7631 struct btrfs_free_space_ctl *ctl =
7632 block_group->free_space_ctl;
7633
7634 spin_lock(&ctl->tree_lock);
7635 if (ctl->free_space <
b4bd745d
QW
7636 num_bytes + ffe_ctl.empty_cluster + empty_size) {
7637 ffe_ctl.total_free_space = max(ctl->free_space,
7638 ffe_ctl.total_free_space);
0c9b36e0
LB
7639 spin_unlock(&ctl->tree_lock);
7640 goto loop;
7641 }
7642 spin_unlock(&ctl->tree_lock);
a5f6f719 7643 }
a5f6f719 7644
b4bd745d
QW
7645 ffe_ctl.found_offset = btrfs_find_space_for_alloc(block_group,
7646 ffe_ctl.search_start, num_bytes, empty_size,
7647 &ffe_ctl.max_extent_size);
1cdda9b8
JB
7648 /*
7649 * If we didn't find a chunk, and we haven't failed on this
7650 * block group before, and this block group is in the middle of
7651 * caching and we are ok with waiting, then go ahead and wait
b4bd745d
QW
7652 * for progress to be made, and set ffe_ctl.retry_unclustered to
7653 * true.
1cdda9b8 7654 *
b4bd745d
QW
7655 * If ffe_ctl.retry_unclustered is true then we've already
7656 * waited on this block group once and should move on to the
7657 * next block group.
1cdda9b8 7658 */
b4bd745d
QW
7659 if (!ffe_ctl.found_offset && !ffe_ctl.retry_unclustered &&
7660 !ffe_ctl.cached && ffe_ctl.loop > LOOP_CACHING_NOWAIT) {
817d52f8 7661 wait_block_group_cache_progress(block_group,
1cdda9b8 7662 num_bytes + empty_size);
b4bd745d 7663 ffe_ctl.retry_unclustered = true;
817d52f8 7664 goto have_block_group;
b4bd745d 7665 } else if (!ffe_ctl.found_offset) {
1cdda9b8 7666 goto loop;
817d52f8 7667 }
fa9c0d79 7668checks:
b4bd745d
QW
7669 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7670 fs_info->stripesize);
25179201 7671
2552d17e 7672 /* move on to the next group */
b4bd745d 7673 if (ffe_ctl.search_start + num_bytes >
215a63d1 7674 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
7675 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7676 num_bytes);
2552d17e 7677 goto loop;
6226cb0a 7678 }
f5a31e16 7679
b4bd745d
QW
7680 if (ffe_ctl.found_offset < ffe_ctl.search_start)
7681 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7682 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 7683
18513091
WX
7684 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7685 num_bytes, delalloc);
f0486c68 7686 if (ret == -EAGAIN) {
b4bd745d
QW
7687 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7688 num_bytes);
2552d17e 7689 goto loop;
0f9dd46c 7690 }
9cfa3e34 7691 btrfs_inc_block_group_reservations(block_group);
0b86a832 7692
f0486c68 7693 /* we are all good, lets return */
b4bd745d 7694 ins->objectid = ffe_ctl.search_start;
2552d17e 7695 ins->offset = num_bytes;
d2fb3437 7696
b4bd745d
QW
7697 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7698 num_bytes);
e570fd27 7699 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7700 break;
7701loop:
b4bd745d
QW
7702 ffe_ctl.retry_clustered = false;
7703 ffe_ctl.retry_unclustered = false;
3e72ee88 7704 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 7705 ffe_ctl.index);
e570fd27 7706 btrfs_release_block_group(block_group, delalloc);
14443937 7707 cond_resched();
2552d17e
JB
7708 }
7709 up_read(&space_info->groups_sem);
7710
b4bd745d
QW
7711 if ((ffe_ctl.loop == LOOP_CACHING_NOWAIT) && ffe_ctl.have_caching_bg
7712 && !ffe_ctl.orig_have_caching_bg)
7713 ffe_ctl.orig_have_caching_bg = true;
13a0db5a 7714
b4bd745d
QW
7715 if (!ins->objectid && ffe_ctl.loop >= LOOP_CACHING_WAIT &&
7716 ffe_ctl.have_caching_bg)
60d2adbb
MX
7717 goto search;
7718
b4bd745d 7719 if (!ins->objectid && ++ffe_ctl.index < BTRFS_NR_RAID_TYPES)
b742bb82
YZ
7720 goto search;
7721
285ff5af 7722 /*
ccf0e725
JB
7723 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7724 * caching kthreads as we move along
817d52f8
JB
7725 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7726 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7727 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7728 * again
fa9c0d79 7729 */
b4bd745d
QW
7730 if (!ins->objectid && ffe_ctl.loop < LOOP_NO_EMPTY_SIZE) {
7731 ffe_ctl.index = 0;
7732 if (ffe_ctl.loop == LOOP_CACHING_NOWAIT) {
a5e681d9
JB
7733 /*
7734 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7735 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7736 * full search through.
7737 */
b4bd745d
QW
7738 if (ffe_ctl.orig_have_caching_bg || !full_search)
7739 ffe_ctl.loop = LOOP_CACHING_WAIT;
a5e681d9 7740 else
b4bd745d 7741 ffe_ctl.loop = LOOP_ALLOC_CHUNK;
a5e681d9 7742 } else {
b4bd745d 7743 ffe_ctl.loop++;
a5e681d9
JB
7744 }
7745
b4bd745d 7746 if (ffe_ctl.loop == LOOP_ALLOC_CHUNK) {
00361589 7747 struct btrfs_trans_handle *trans;
f017f15f
WS
7748 int exist = 0;
7749
7750 trans = current->journal_info;
7751 if (trans)
7752 exist = 1;
7753 else
7754 trans = btrfs_join_transaction(root);
00361589 7755
00361589
JB
7756 if (IS_ERR(trans)) {
7757 ret = PTR_ERR(trans);
7758 goto out;
7759 }
7760
01458828 7761 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
a5e681d9
JB
7762
7763 /*
7764 * If we can't allocate a new chunk we've already looped
7765 * through at least once, move on to the NO_EMPTY_SIZE
7766 * case.
7767 */
7768 if (ret == -ENOSPC)
b4bd745d 7769 ffe_ctl.loop = LOOP_NO_EMPTY_SIZE;
a5e681d9 7770
ea658bad
JB
7771 /*
7772 * Do not bail out on ENOSPC since we
7773 * can do more things.
7774 */
00361589 7775 if (ret < 0 && ret != -ENOSPC)
66642832 7776 btrfs_abort_transaction(trans, ret);
00361589
JB
7777 else
7778 ret = 0;
f017f15f 7779 if (!exist)
3a45bb20 7780 btrfs_end_transaction(trans);
00361589 7781 if (ret)
ea658bad 7782 goto out;
2552d17e
JB
7783 }
7784
b4bd745d 7785 if (ffe_ctl.loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7786 /*
7787 * Don't loop again if we already have no empty_size and
7788 * no empty_cluster.
7789 */
7790 if (empty_size == 0 &&
b4bd745d 7791 ffe_ctl.empty_cluster == 0) {
a5e681d9
JB
7792 ret = -ENOSPC;
7793 goto out;
7794 }
723bda20 7795 empty_size = 0;
b4bd745d 7796 ffe_ctl.empty_cluster = 0;
fa9c0d79 7797 }
723bda20
JB
7798
7799 goto search;
2552d17e
JB
7800 } else if (!ins->objectid) {
7801 ret = -ENOSPC;
d82a6f1d 7802 } else if (ins->objectid) {
c759c4e1
JB
7803 if (!use_cluster && last_ptr) {
7804 spin_lock(&last_ptr->lock);
7805 last_ptr->window_start = ins->objectid;
7806 spin_unlock(&last_ptr->lock);
7807 }
80eb234a 7808 ret = 0;
be744175 7809 }
79787eaa 7810out:
4f4db217 7811 if (ret == -ENOSPC) {
b4bd745d
QW
7812 /*
7813 * Use ffe_ctl->total_free_space as fallback if we can't find
7814 * any contiguous hole.
7815 */
7816 if (!ffe_ctl.max_extent_size)
7817 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 7818 spin_lock(&space_info->lock);
b4bd745d 7819 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 7820 spin_unlock(&space_info->lock);
b4bd745d 7821 ins->offset = ffe_ctl.max_extent_size;
4f4db217 7822 }
0f70abe2 7823 return ret;
fec577fb 7824}
ec44a35c 7825
ab8d0fc4
JM
7826static void dump_space_info(struct btrfs_fs_info *fs_info,
7827 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7828 int dump_block_groups)
0f9dd46c
JB
7829{
7830 struct btrfs_block_group_cache *cache;
b742bb82 7831 int index = 0;
0f9dd46c 7832
9ed74f2d 7833 spin_lock(&info->lock);
ab8d0fc4
JM
7834 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7835 info->flags,
4136135b
LB
7836 info->total_bytes - btrfs_space_info_used(info, true),
7837 info->full ? "" : "not ");
ab8d0fc4
JM
7838 btrfs_info(fs_info,
7839 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7840 info->total_bytes, info->bytes_used, info->bytes_pinned,
7841 info->bytes_reserved, info->bytes_may_use,
7842 info->bytes_readonly);
9ed74f2d
JB
7843 spin_unlock(&info->lock);
7844
7845 if (!dump_block_groups)
7846 return;
0f9dd46c 7847
80eb234a 7848 down_read(&info->groups_sem);
b742bb82
YZ
7849again:
7850 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7851 spin_lock(&cache->lock);
ab8d0fc4
JM
7852 btrfs_info(fs_info,
7853 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7854 cache->key.objectid, cache->key.offset,
7855 btrfs_block_group_used(&cache->item), cache->pinned,
7856 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7857 btrfs_dump_free_space(cache, bytes);
7858 spin_unlock(&cache->lock);
7859 }
b742bb82
YZ
7860 if (++index < BTRFS_NR_RAID_TYPES)
7861 goto again;
80eb234a 7862 up_read(&info->groups_sem);
0f9dd46c 7863}
e8569813 7864
6f47c706
NB
7865/*
7866 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7867 * hole that is at least as big as @num_bytes.
7868 *
7869 * @root - The root that will contain this extent
7870 *
7871 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7872 * is used for accounting purposes. This value differs
7873 * from @num_bytes only in the case of compressed extents.
7874 *
7875 * @num_bytes - Number of bytes to allocate on-disk.
7876 *
7877 * @min_alloc_size - Indicates the minimum amount of space that the
7878 * allocator should try to satisfy. In some cases
7879 * @num_bytes may be larger than what is required and if
7880 * the filesystem is fragmented then allocation fails.
7881 * However, the presence of @min_alloc_size gives a
7882 * chance to try and satisfy the smaller allocation.
7883 *
7884 * @empty_size - A hint that you plan on doing more COW. This is the
7885 * size in bytes the allocator should try to find free
7886 * next to the block it returns. This is just a hint and
7887 * may be ignored by the allocator.
7888 *
7889 * @hint_byte - Hint to the allocator to start searching above the byte
7890 * address passed. It might be ignored.
7891 *
7892 * @ins - This key is modified to record the found hole. It will
7893 * have the following values:
7894 * ins->objectid == start position
7895 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7896 * ins->offset == the size of the hole.
7897 *
7898 * @is_data - Boolean flag indicating whether an extent is
7899 * allocated for data (true) or metadata (false)
7900 *
7901 * @delalloc - Boolean flag indicating whether this allocation is for
7902 * delalloc or not. If 'true' data_rwsem of block groups
7903 * is going to be acquired.
7904 *
7905 *
7906 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7907 * case -ENOSPC is returned then @ins->offset will contain the size of the
7908 * largest available hole the allocator managed to find.
7909 */
18513091 7910int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7911 u64 num_bytes, u64 min_alloc_size,
7912 u64 empty_size, u64 hint_byte,
e570fd27 7913 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7914{
ab8d0fc4 7915 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7916 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7917 u64 flags;
fec577fb 7918 int ret;
925baedd 7919
1b86826d 7920 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7921again:
0b246afa 7922 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7923 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7924 hint_byte, ins, flags, delalloc);
9cfa3e34 7925 if (!ret && !is_data) {
ab8d0fc4 7926 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7927 } else if (ret == -ENOSPC) {
a4820398
MX
7928 if (!final_tried && ins->offset) {
7929 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7930 num_bytes = round_down(num_bytes,
0b246afa 7931 fs_info->sectorsize);
9e622d6b 7932 num_bytes = max(num_bytes, min_alloc_size);
18513091 7933 ram_bytes = num_bytes;
9e622d6b
MX
7934 if (num_bytes == min_alloc_size)
7935 final_tried = true;
7936 goto again;
ab8d0fc4 7937 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7938 struct btrfs_space_info *sinfo;
7939
ab8d0fc4 7940 sinfo = __find_space_info(fs_info, flags);
0b246afa 7941 btrfs_err(fs_info,
5d163e0e
JM
7942 "allocation failed flags %llu, wanted %llu",
7943 flags, num_bytes);
53804280 7944 if (sinfo)
ab8d0fc4 7945 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7946 }
925baedd 7947 }
0f9dd46c
JB
7948
7949 return ret;
e6dcd2dc
CM
7950}
7951
2ff7e61e 7952static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7953 u64 start, u64 len,
7954 int pin, int delalloc)
65b51a00 7955{
0f9dd46c 7956 struct btrfs_block_group_cache *cache;
1f3c79a2 7957 int ret = 0;
0f9dd46c 7958
0b246afa 7959 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7960 if (!cache) {
0b246afa
JM
7961 btrfs_err(fs_info, "Unable to find block group for %llu",
7962 start);
0f9dd46c
JB
7963 return -ENOSPC;
7964 }
1f3c79a2 7965
e688b725 7966 if (pin)
2ff7e61e 7967 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7968 else {
0b246afa 7969 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7970 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7971 btrfs_add_free_space(cache, start, len);
4824f1f4 7972 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 7973 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 7974 }
31193213 7975
fa9c0d79 7976 btrfs_put_block_group(cache);
e6dcd2dc
CM
7977 return ret;
7978}
7979
2ff7e61e 7980int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 7981 u64 start, u64 len, int delalloc)
e688b725 7982{
2ff7e61e 7983 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
7984}
7985
2ff7e61e 7986int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
7987 u64 start, u64 len)
7988{
2ff7e61e 7989 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
7990}
7991
5d4f98a2 7992static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
7993 u64 parent, u64 root_objectid,
7994 u64 flags, u64 owner, u64 offset,
7995 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 7996{
ef89b824 7997 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7998 int ret;
e6dcd2dc 7999 struct btrfs_extent_item *extent_item;
5d4f98a2 8000 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8001 struct btrfs_path *path;
5d4f98a2
YZ
8002 struct extent_buffer *leaf;
8003 int type;
8004 u32 size;
26b8003f 8005
5d4f98a2
YZ
8006 if (parent > 0)
8007 type = BTRFS_SHARED_DATA_REF_KEY;
8008 else
8009 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8010
5d4f98a2 8011 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8012
8013 path = btrfs_alloc_path();
db5b493a
TI
8014 if (!path)
8015 return -ENOMEM;
47e4bb98 8016
b9473439 8017 path->leave_spinning = 1;
5d4f98a2
YZ
8018 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8019 ins, size);
79787eaa
JM
8020 if (ret) {
8021 btrfs_free_path(path);
8022 return ret;
8023 }
0f9dd46c 8024
5d4f98a2
YZ
8025 leaf = path->nodes[0];
8026 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8027 struct btrfs_extent_item);
5d4f98a2
YZ
8028 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8029 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8030 btrfs_set_extent_flags(leaf, extent_item,
8031 flags | BTRFS_EXTENT_FLAG_DATA);
8032
8033 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8034 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8035 if (parent > 0) {
8036 struct btrfs_shared_data_ref *ref;
8037 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8038 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8039 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8040 } else {
8041 struct btrfs_extent_data_ref *ref;
8042 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8043 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8044 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8045 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8046 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8047 }
47e4bb98
CM
8048
8049 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8050 btrfs_free_path(path);
f510cfec 8051
25a356d3 8052 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8053 if (ret)
8054 return ret;
8055
6202df69 8056 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8057 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8058 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8059 ins->objectid, ins->offset);
f5947066
CM
8060 BUG();
8061 }
71ff6437 8062 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8063 return ret;
8064}
8065
5d4f98a2 8066static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8067 struct btrfs_delayed_ref_node *node,
21ebfbe7 8068 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8069{
9dcdbe01 8070 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8071 int ret;
5d4f98a2 8072 struct btrfs_extent_item *extent_item;
4e6bd4e0 8073 struct btrfs_key extent_key;
5d4f98a2
YZ
8074 struct btrfs_tree_block_info *block_info;
8075 struct btrfs_extent_inline_ref *iref;
8076 struct btrfs_path *path;
8077 struct extent_buffer *leaf;
4e6bd4e0 8078 struct btrfs_delayed_tree_ref *ref;
3173a18f 8079 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8080 u64 num_bytes;
21ebfbe7 8081 u64 flags = extent_op->flags_to_set;
0b246afa 8082 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8083
4e6bd4e0
NB
8084 ref = btrfs_delayed_node_to_tree_ref(node);
8085
4e6bd4e0
NB
8086 extent_key.objectid = node->bytenr;
8087 if (skinny_metadata) {
8088 extent_key.offset = ref->level;
8089 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8090 num_bytes = fs_info->nodesize;
8091 } else {
8092 extent_key.offset = node->num_bytes;
8093 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8094 size += sizeof(*block_info);
4e6bd4e0
NB
8095 num_bytes = node->num_bytes;
8096 }
1c2308f8 8097
5d4f98a2 8098 path = btrfs_alloc_path();
80ee54bf 8099 if (!path)
d8926bb3 8100 return -ENOMEM;
56bec294 8101
5d4f98a2
YZ
8102 path->leave_spinning = 1;
8103 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8104 &extent_key, size);
79787eaa 8105 if (ret) {
dd825259 8106 btrfs_free_path(path);
79787eaa
JM
8107 return ret;
8108 }
5d4f98a2
YZ
8109
8110 leaf = path->nodes[0];
8111 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8112 struct btrfs_extent_item);
8113 btrfs_set_extent_refs(leaf, extent_item, 1);
8114 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8115 btrfs_set_extent_flags(leaf, extent_item,
8116 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8117
3173a18f
JB
8118 if (skinny_metadata) {
8119 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8120 } else {
8121 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8122 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8123 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8124 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8125 }
5d4f98a2 8126
d4b20733 8127 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8128 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8129 btrfs_set_extent_inline_ref_type(leaf, iref,
8130 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8131 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8132 } else {
8133 btrfs_set_extent_inline_ref_type(leaf, iref,
8134 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8135 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8136 }
8137
8138 btrfs_mark_buffer_dirty(leaf);
8139 btrfs_free_path(path);
8140
4e6bd4e0
NB
8141 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8142 num_bytes);
1e144fb8
OS
8143 if (ret)
8144 return ret;
8145
4e6bd4e0 8146 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8147 fs_info->nodesize, 1);
79787eaa 8148 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8149 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8150 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8151 BUG();
8152 }
0be5dc67 8153
4e6bd4e0 8154 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8155 fs_info->nodesize);
5d4f98a2
YZ
8156 return ret;
8157}
8158
8159int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8160 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8161 u64 offset, u64 ram_bytes,
8162 struct btrfs_key *ins)
5d4f98a2
YZ
8163{
8164 int ret;
8165
84f7d8e6 8166 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8167
fd708b81
JB
8168 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8169 root->root_key.objectid, owner, offset,
8170 BTRFS_ADD_DELAYED_EXTENT);
8171
88a979c6 8172 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8173 ins->offset, 0,
8174 root->root_key.objectid, owner,
7be07912
OS
8175 offset, ram_bytes,
8176 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8177 return ret;
8178}
e02119d5
CM
8179
8180/*
8181 * this is used by the tree logging recovery code. It records that
8182 * an extent has been allocated and makes sure to clear the free
8183 * space cache bits as well
8184 */
5d4f98a2 8185int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8186 u64 root_objectid, u64 owner, u64 offset,
8187 struct btrfs_key *ins)
e02119d5 8188{
61da2abf 8189 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8190 int ret;
8191 struct btrfs_block_group_cache *block_group;
ed7a6948 8192 struct btrfs_space_info *space_info;
11833d66 8193
8c2a1a30
JB
8194 /*
8195 * Mixed block groups will exclude before processing the log so we only
01327610 8196 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8197 */
0b246afa 8198 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8199 ret = __exclude_logged_extent(fs_info, ins->objectid,
8200 ins->offset);
b50c6e25 8201 if (ret)
8c2a1a30 8202 return ret;
11833d66
YZ
8203 }
8204
0b246afa 8205 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8206 if (!block_group)
8207 return -EINVAL;
8208
ed7a6948
WX
8209 space_info = block_group->space_info;
8210 spin_lock(&space_info->lock);
8211 spin_lock(&block_group->lock);
8212 space_info->bytes_reserved += ins->offset;
8213 block_group->reserved += ins->offset;
8214 spin_unlock(&block_group->lock);
8215 spin_unlock(&space_info->lock);
8216
ef89b824
NB
8217 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8218 offset, ins, 1);
b50c6e25 8219 btrfs_put_block_group(block_group);
e02119d5
CM
8220 return ret;
8221}
8222
48a3b636
ES
8223static struct extent_buffer *
8224btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8225 u64 bytenr, int level, u64 owner)
65b51a00 8226{
0b246afa 8227 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8228 struct extent_buffer *buf;
8229
2ff7e61e 8230 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8231 if (IS_ERR(buf))
8232 return buf;
8233
b72c3aba
QW
8234 /*
8235 * Extra safety check in case the extent tree is corrupted and extent
8236 * allocator chooses to use a tree block which is already used and
8237 * locked.
8238 */
8239 if (buf->lock_owner == current->pid) {
8240 btrfs_err_rl(fs_info,
8241"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8242 buf->start, btrfs_header_owner(buf), current->pid);
8243 free_extent_buffer(buf);
8244 return ERR_PTR(-EUCLEAN);
8245 }
8246
85d4e461 8247 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8248 btrfs_tree_lock(buf);
7c302b49 8249 clean_tree_block(fs_info, buf);
3083ee2e 8250 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8251
8252 btrfs_set_lock_blocking(buf);
4db8c528 8253 set_extent_buffer_uptodate(buf);
b4ce94de 8254
bc877d28
NB
8255 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8256 btrfs_set_header_level(buf, level);
8257 btrfs_set_header_bytenr(buf, buf->start);
8258 btrfs_set_header_generation(buf, trans->transid);
8259 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8260 btrfs_set_header_owner(buf, owner);
8261 write_extent_buffer_fsid(buf, fs_info->fsid);
8262 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8263 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8264 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8265 /*
8266 * we allow two log transactions at a time, use different
8267 * EXENT bit to differentiate dirty pages.
8268 */
656f30db 8269 if (buf->log_index == 0)
8cef4e16
YZ
8270 set_extent_dirty(&root->dirty_log_pages, buf->start,
8271 buf->start + buf->len - 1, GFP_NOFS);
8272 else
8273 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8274 buf->start + buf->len - 1);
d0c803c4 8275 } else {
656f30db 8276 buf->log_index = -1;
d0c803c4 8277 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8278 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8279 }
64c12921 8280 trans->dirty = true;
b4ce94de 8281 /* this returns a buffer locked for blocking */
65b51a00
CM
8282 return buf;
8283}
8284
f0486c68
YZ
8285static struct btrfs_block_rsv *
8286use_block_rsv(struct btrfs_trans_handle *trans,
8287 struct btrfs_root *root, u32 blocksize)
8288{
0b246afa 8289 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8290 struct btrfs_block_rsv *block_rsv;
0b246afa 8291 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8292 int ret;
d88033db 8293 bool global_updated = false;
f0486c68
YZ
8294
8295 block_rsv = get_block_rsv(trans, root);
8296
b586b323
MX
8297 if (unlikely(block_rsv->size == 0))
8298 goto try_reserve;
d88033db 8299again:
f0486c68
YZ
8300 ret = block_rsv_use_bytes(block_rsv, blocksize);
8301 if (!ret)
8302 return block_rsv;
8303
b586b323
MX
8304 if (block_rsv->failfast)
8305 return ERR_PTR(ret);
8306
d88033db
MX
8307 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8308 global_updated = true;
0b246afa 8309 update_global_block_rsv(fs_info);
d88033db
MX
8310 goto again;
8311 }
8312
0b246afa 8313 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8314 static DEFINE_RATELIMIT_STATE(_rs,
8315 DEFAULT_RATELIMIT_INTERVAL * 10,
8316 /*DEFAULT_RATELIMIT_BURST*/ 1);
8317 if (__ratelimit(&_rs))
8318 WARN(1, KERN_DEBUG
efe120a0 8319 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8320 }
8321try_reserve:
8322 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8323 BTRFS_RESERVE_NO_FLUSH);
8324 if (!ret)
8325 return block_rsv;
8326 /*
8327 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8328 * the global reserve if its space type is the same as the global
8329 * reservation.
b586b323 8330 */
5881cfc9
MX
8331 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8332 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8333 ret = block_rsv_use_bytes(global_rsv, blocksize);
8334 if (!ret)
8335 return global_rsv;
8336 }
8337 return ERR_PTR(ret);
f0486c68
YZ
8338}
8339
8c2a3ca2
JB
8340static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8341 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8342{
3a584174 8343 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8344 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8345}
8346
fec577fb 8347/*
f0486c68 8348 * finds a free extent and does all the dirty work required for allocation
67b7859e 8349 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8350 */
4d75f8a9 8351struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8352 struct btrfs_root *root,
8353 u64 parent, u64 root_objectid,
8354 const struct btrfs_disk_key *key,
8355 int level, u64 hint,
8356 u64 empty_size)
fec577fb 8357{
0b246afa 8358 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8359 struct btrfs_key ins;
f0486c68 8360 struct btrfs_block_rsv *block_rsv;
5f39d397 8361 struct extent_buffer *buf;
67b7859e 8362 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8363 u64 flags = 0;
8364 int ret;
0b246afa
JM
8365 u32 blocksize = fs_info->nodesize;
8366 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8367
05653ef3 8368#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8369 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8370 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8371 level, root_objectid);
faa2dbf0
JB
8372 if (!IS_ERR(buf))
8373 root->alloc_bytenr += blocksize;
8374 return buf;
8375 }
05653ef3 8376#endif
fccb84c9 8377
f0486c68
YZ
8378 block_rsv = use_block_rsv(trans, root, blocksize);
8379 if (IS_ERR(block_rsv))
8380 return ERR_CAST(block_rsv);
8381
18513091 8382 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8383 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8384 if (ret)
8385 goto out_unuse;
55c69072 8386
bc877d28
NB
8387 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8388 root_objectid);
67b7859e
OS
8389 if (IS_ERR(buf)) {
8390 ret = PTR_ERR(buf);
8391 goto out_free_reserved;
8392 }
f0486c68
YZ
8393
8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8395 if (parent == 0)
8396 parent = ins.objectid;
8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8398 } else
8399 BUG_ON(parent > 0);
8400
8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8402 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8403 if (!extent_op) {
8404 ret = -ENOMEM;
8405 goto out_free_buf;
8406 }
f0486c68
YZ
8407 if (key)
8408 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8409 else
8410 memset(&extent_op->key, 0, sizeof(extent_op->key));
8411 extent_op->flags_to_set = flags;
35b3ad50
DS
8412 extent_op->update_key = skinny_metadata ? false : true;
8413 extent_op->update_flags = true;
8414 extent_op->is_data = false;
b1c79e09 8415 extent_op->level = level;
f0486c68 8416
fd708b81
JB
8417 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8418 root_objectid, level, 0,
8419 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8420 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8421 ins.offset, parent,
8422 root_objectid, level,
67b7859e 8423 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8424 extent_op, NULL, NULL);
67b7859e
OS
8425 if (ret)
8426 goto out_free_delayed;
f0486c68 8427 }
fec577fb 8428 return buf;
67b7859e
OS
8429
8430out_free_delayed:
8431 btrfs_free_delayed_extent_op(extent_op);
8432out_free_buf:
8433 free_extent_buffer(buf);
8434out_free_reserved:
2ff7e61e 8435 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8436out_unuse:
0b246afa 8437 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8438 return ERR_PTR(ret);
fec577fb 8439}
a28ec197 8440
2c47e605
YZ
8441struct walk_control {
8442 u64 refs[BTRFS_MAX_LEVEL];
8443 u64 flags[BTRFS_MAX_LEVEL];
8444 struct btrfs_key update_progress;
8445 int stage;
8446 int level;
8447 int shared_level;
8448 int update_ref;
8449 int keep_locks;
1c4850e2
YZ
8450 int reada_slot;
8451 int reada_count;
2c47e605
YZ
8452};
8453
8454#define DROP_REFERENCE 1
8455#define UPDATE_BACKREF 2
8456
1c4850e2
YZ
8457static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8458 struct btrfs_root *root,
8459 struct walk_control *wc,
8460 struct btrfs_path *path)
6407bf6d 8461{
0b246afa 8462 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8463 u64 bytenr;
8464 u64 generation;
8465 u64 refs;
94fcca9f 8466 u64 flags;
5d4f98a2 8467 u32 nritems;
1c4850e2
YZ
8468 struct btrfs_key key;
8469 struct extent_buffer *eb;
6407bf6d 8470 int ret;
1c4850e2
YZ
8471 int slot;
8472 int nread = 0;
6407bf6d 8473
1c4850e2
YZ
8474 if (path->slots[wc->level] < wc->reada_slot) {
8475 wc->reada_count = wc->reada_count * 2 / 3;
8476 wc->reada_count = max(wc->reada_count, 2);
8477 } else {
8478 wc->reada_count = wc->reada_count * 3 / 2;
8479 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8480 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8481 }
7bb86316 8482
1c4850e2
YZ
8483 eb = path->nodes[wc->level];
8484 nritems = btrfs_header_nritems(eb);
bd56b302 8485
1c4850e2
YZ
8486 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8487 if (nread >= wc->reada_count)
8488 break;
bd56b302 8489
2dd3e67b 8490 cond_resched();
1c4850e2
YZ
8491 bytenr = btrfs_node_blockptr(eb, slot);
8492 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8493
1c4850e2
YZ
8494 if (slot == path->slots[wc->level])
8495 goto reada;
5d4f98a2 8496
1c4850e2
YZ
8497 if (wc->stage == UPDATE_BACKREF &&
8498 generation <= root->root_key.offset)
bd56b302
CM
8499 continue;
8500
94fcca9f 8501 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8502 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8503 wc->level - 1, 1, &refs,
8504 &flags);
79787eaa
JM
8505 /* We don't care about errors in readahead. */
8506 if (ret < 0)
8507 continue;
94fcca9f
YZ
8508 BUG_ON(refs == 0);
8509
1c4850e2 8510 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8511 if (refs == 1)
8512 goto reada;
bd56b302 8513
94fcca9f
YZ
8514 if (wc->level == 1 &&
8515 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8516 continue;
1c4850e2
YZ
8517 if (!wc->update_ref ||
8518 generation <= root->root_key.offset)
8519 continue;
8520 btrfs_node_key_to_cpu(eb, &key, slot);
8521 ret = btrfs_comp_cpu_keys(&key,
8522 &wc->update_progress);
8523 if (ret < 0)
8524 continue;
94fcca9f
YZ
8525 } else {
8526 if (wc->level == 1 &&
8527 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8528 continue;
6407bf6d 8529 }
1c4850e2 8530reada:
2ff7e61e 8531 readahead_tree_block(fs_info, bytenr);
1c4850e2 8532 nread++;
20524f02 8533 }
1c4850e2 8534 wc->reada_slot = slot;
20524f02 8535}
2c47e605 8536
f82d02d9 8537/*
2c016dc2 8538 * helper to process tree block while walking down the tree.
2c47e605 8539 *
2c47e605
YZ
8540 * when wc->stage == UPDATE_BACKREF, this function updates
8541 * back refs for pointers in the block.
8542 *
8543 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8544 */
2c47e605 8545static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8546 struct btrfs_root *root,
2c47e605 8547 struct btrfs_path *path,
94fcca9f 8548 struct walk_control *wc, int lookup_info)
f82d02d9 8549{
2ff7e61e 8550 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8551 int level = wc->level;
8552 struct extent_buffer *eb = path->nodes[level];
2c47e605 8553 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8554 int ret;
8555
2c47e605
YZ
8556 if (wc->stage == UPDATE_BACKREF &&
8557 btrfs_header_owner(eb) != root->root_key.objectid)
8558 return 1;
f82d02d9 8559
2c47e605
YZ
8560 /*
8561 * when reference count of tree block is 1, it won't increase
8562 * again. once full backref flag is set, we never clear it.
8563 */
94fcca9f
YZ
8564 if (lookup_info &&
8565 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8566 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8567 BUG_ON(!path->locks[level]);
2ff7e61e 8568 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8569 eb->start, level, 1,
2c47e605
YZ
8570 &wc->refs[level],
8571 &wc->flags[level]);
79787eaa
JM
8572 BUG_ON(ret == -ENOMEM);
8573 if (ret)
8574 return ret;
2c47e605
YZ
8575 BUG_ON(wc->refs[level] == 0);
8576 }
5d4f98a2 8577
2c47e605
YZ
8578 if (wc->stage == DROP_REFERENCE) {
8579 if (wc->refs[level] > 1)
8580 return 1;
f82d02d9 8581
2c47e605 8582 if (path->locks[level] && !wc->keep_locks) {
bd681513 8583 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8584 path->locks[level] = 0;
8585 }
8586 return 0;
8587 }
f82d02d9 8588
2c47e605
YZ
8589 /* wc->stage == UPDATE_BACKREF */
8590 if (!(wc->flags[level] & flag)) {
8591 BUG_ON(!path->locks[level]);
e339a6b0 8592 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8593 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8594 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8595 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8596 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8597 eb->len, flag,
8598 btrfs_header_level(eb), 0);
79787eaa 8599 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8600 wc->flags[level] |= flag;
8601 }
8602
8603 /*
8604 * the block is shared by multiple trees, so it's not good to
8605 * keep the tree lock
8606 */
8607 if (path->locks[level] && level > 0) {
bd681513 8608 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8609 path->locks[level] = 0;
8610 }
8611 return 0;
8612}
8613
1c4850e2 8614/*
2c016dc2 8615 * helper to process tree block pointer.
1c4850e2
YZ
8616 *
8617 * when wc->stage == DROP_REFERENCE, this function checks
8618 * reference count of the block pointed to. if the block
8619 * is shared and we need update back refs for the subtree
8620 * rooted at the block, this function changes wc->stage to
8621 * UPDATE_BACKREF. if the block is shared and there is no
8622 * need to update back, this function drops the reference
8623 * to the block.
8624 *
8625 * NOTE: return value 1 means we should stop walking down.
8626 */
8627static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8628 struct btrfs_root *root,
8629 struct btrfs_path *path,
94fcca9f 8630 struct walk_control *wc, int *lookup_info)
1c4850e2 8631{
0b246afa 8632 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8633 u64 bytenr;
8634 u64 generation;
8635 u64 parent;
8636 u32 blocksize;
8637 struct btrfs_key key;
581c1760 8638 struct btrfs_key first_key;
1c4850e2
YZ
8639 struct extent_buffer *next;
8640 int level = wc->level;
8641 int reada = 0;
8642 int ret = 0;
1152651a 8643 bool need_account = false;
1c4850e2
YZ
8644
8645 generation = btrfs_node_ptr_generation(path->nodes[level],
8646 path->slots[level]);
8647 /*
8648 * if the lower level block was created before the snapshot
8649 * was created, we know there is no need to update back refs
8650 * for the subtree
8651 */
8652 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8653 generation <= root->root_key.offset) {
8654 *lookup_info = 1;
1c4850e2 8655 return 1;
94fcca9f 8656 }
1c4850e2
YZ
8657
8658 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8659 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8660 path->slots[level]);
0b246afa 8661 blocksize = fs_info->nodesize;
1c4850e2 8662
0b246afa 8663 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8664 if (!next) {
2ff7e61e 8665 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8666 if (IS_ERR(next))
8667 return PTR_ERR(next);
8668
b2aaaa3b
JB
8669 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8670 level - 1);
1c4850e2
YZ
8671 reada = 1;
8672 }
8673 btrfs_tree_lock(next);
8674 btrfs_set_lock_blocking(next);
8675
2ff7e61e 8676 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8677 &wc->refs[level - 1],
8678 &wc->flags[level - 1]);
4867268c
JB
8679 if (ret < 0)
8680 goto out_unlock;
79787eaa 8681
c2cf52eb 8682 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8683 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8684 ret = -EIO;
8685 goto out_unlock;
c2cf52eb 8686 }
94fcca9f 8687 *lookup_info = 0;
1c4850e2 8688
94fcca9f 8689 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8690 if (wc->refs[level - 1] > 1) {
1152651a 8691 need_account = true;
94fcca9f
YZ
8692 if (level == 1 &&
8693 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8694 goto skip;
8695
1c4850e2
YZ
8696 if (!wc->update_ref ||
8697 generation <= root->root_key.offset)
8698 goto skip;
8699
8700 btrfs_node_key_to_cpu(path->nodes[level], &key,
8701 path->slots[level]);
8702 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8703 if (ret < 0)
8704 goto skip;
8705
8706 wc->stage = UPDATE_BACKREF;
8707 wc->shared_level = level - 1;
8708 }
94fcca9f
YZ
8709 } else {
8710 if (level == 1 &&
8711 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8712 goto skip;
1c4850e2
YZ
8713 }
8714
b9fab919 8715 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8716 btrfs_tree_unlock(next);
8717 free_extent_buffer(next);
8718 next = NULL;
94fcca9f 8719 *lookup_info = 1;
1c4850e2
YZ
8720 }
8721
8722 if (!next) {
8723 if (reada && level == 1)
8724 reada_walk_down(trans, root, wc, path);
581c1760
QW
8725 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8726 &first_key);
64c043de
LB
8727 if (IS_ERR(next)) {
8728 return PTR_ERR(next);
8729 } else if (!extent_buffer_uptodate(next)) {
416bc658 8730 free_extent_buffer(next);
97d9a8a4 8731 return -EIO;
416bc658 8732 }
1c4850e2
YZ
8733 btrfs_tree_lock(next);
8734 btrfs_set_lock_blocking(next);
8735 }
8736
8737 level--;
4867268c
JB
8738 ASSERT(level == btrfs_header_level(next));
8739 if (level != btrfs_header_level(next)) {
8740 btrfs_err(root->fs_info, "mismatched level");
8741 ret = -EIO;
8742 goto out_unlock;
8743 }
1c4850e2
YZ
8744 path->nodes[level] = next;
8745 path->slots[level] = 0;
bd681513 8746 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8747 wc->level = level;
8748 if (wc->level == 1)
8749 wc->reada_slot = 0;
8750 return 0;
8751skip:
8752 wc->refs[level - 1] = 0;
8753 wc->flags[level - 1] = 0;
94fcca9f
YZ
8754 if (wc->stage == DROP_REFERENCE) {
8755 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8756 parent = path->nodes[level]->start;
8757 } else {
4867268c 8758 ASSERT(root->root_key.objectid ==
94fcca9f 8759 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8760 if (root->root_key.objectid !=
8761 btrfs_header_owner(path->nodes[level])) {
8762 btrfs_err(root->fs_info,
8763 "mismatched block owner");
8764 ret = -EIO;
8765 goto out_unlock;
8766 }
94fcca9f
YZ
8767 parent = 0;
8768 }
1c4850e2 8769
2cd86d30
QW
8770 /*
8771 * Reloc tree doesn't contribute to qgroup numbers, and we have
8772 * already accounted them at merge time (replace_path),
8773 * thus we could skip expensive subtree trace here.
8774 */
8775 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
8776 need_account) {
deb40627 8777 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 8778 generation, level - 1);
1152651a 8779 if (ret) {
0b246afa 8780 btrfs_err_rl(fs_info,
5d163e0e
JM
8781 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8782 ret);
1152651a
MF
8783 }
8784 }
84f7d8e6 8785 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8786 parent, root->root_key.objectid,
8787 level - 1, 0);
4867268c
JB
8788 if (ret)
8789 goto out_unlock;
1c4850e2 8790 }
4867268c
JB
8791
8792 *lookup_info = 1;
8793 ret = 1;
8794
8795out_unlock:
1c4850e2
YZ
8796 btrfs_tree_unlock(next);
8797 free_extent_buffer(next);
4867268c
JB
8798
8799 return ret;
1c4850e2
YZ
8800}
8801
2c47e605 8802/*
2c016dc2 8803 * helper to process tree block while walking up the tree.
2c47e605
YZ
8804 *
8805 * when wc->stage == DROP_REFERENCE, this function drops
8806 * reference count on the block.
8807 *
8808 * when wc->stage == UPDATE_BACKREF, this function changes
8809 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8810 * to UPDATE_BACKREF previously while processing the block.
8811 *
8812 * NOTE: return value 1 means we should stop walking up.
8813 */
8814static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8815 struct btrfs_root *root,
8816 struct btrfs_path *path,
8817 struct walk_control *wc)
8818{
0b246afa 8819 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8820 int ret;
2c47e605
YZ
8821 int level = wc->level;
8822 struct extent_buffer *eb = path->nodes[level];
8823 u64 parent = 0;
8824
8825 if (wc->stage == UPDATE_BACKREF) {
8826 BUG_ON(wc->shared_level < level);
8827 if (level < wc->shared_level)
8828 goto out;
8829
2c47e605
YZ
8830 ret = find_next_key(path, level + 1, &wc->update_progress);
8831 if (ret > 0)
8832 wc->update_ref = 0;
8833
8834 wc->stage = DROP_REFERENCE;
8835 wc->shared_level = -1;
8836 path->slots[level] = 0;
8837
8838 /*
8839 * check reference count again if the block isn't locked.
8840 * we should start walking down the tree again if reference
8841 * count is one.
8842 */
8843 if (!path->locks[level]) {
8844 BUG_ON(level == 0);
8845 btrfs_tree_lock(eb);
8846 btrfs_set_lock_blocking(eb);
bd681513 8847 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8848
2ff7e61e 8849 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8850 eb->start, level, 1,
2c47e605
YZ
8851 &wc->refs[level],
8852 &wc->flags[level]);
79787eaa
JM
8853 if (ret < 0) {
8854 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8855 path->locks[level] = 0;
79787eaa
JM
8856 return ret;
8857 }
2c47e605
YZ
8858 BUG_ON(wc->refs[level] == 0);
8859 if (wc->refs[level] == 1) {
bd681513 8860 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8861 path->locks[level] = 0;
2c47e605
YZ
8862 return 1;
8863 }
f82d02d9 8864 }
2c47e605 8865 }
f82d02d9 8866
2c47e605
YZ
8867 /* wc->stage == DROP_REFERENCE */
8868 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8869
2c47e605
YZ
8870 if (wc->refs[level] == 1) {
8871 if (level == 0) {
8872 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8873 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8874 else
e339a6b0 8875 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8876 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 8877 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 8878 if (ret) {
0b246afa 8879 btrfs_err_rl(fs_info,
5d163e0e
JM
8880 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8881 ret);
1152651a 8882 }
2c47e605
YZ
8883 }
8884 /* make block locked assertion in clean_tree_block happy */
8885 if (!path->locks[level] &&
8886 btrfs_header_generation(eb) == trans->transid) {
8887 btrfs_tree_lock(eb);
8888 btrfs_set_lock_blocking(eb);
bd681513 8889 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8890 }
7c302b49 8891 clean_tree_block(fs_info, eb);
2c47e605
YZ
8892 }
8893
8894 if (eb == root->node) {
8895 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8896 parent = eb->start;
65c6e82b
QW
8897 else if (root->root_key.objectid != btrfs_header_owner(eb))
8898 goto owner_mismatch;
2c47e605
YZ
8899 } else {
8900 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8901 parent = path->nodes[level + 1]->start;
65c6e82b
QW
8902 else if (root->root_key.objectid !=
8903 btrfs_header_owner(path->nodes[level + 1]))
8904 goto owner_mismatch;
f82d02d9 8905 }
f82d02d9 8906
5581a51a 8907 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8908out:
8909 wc->refs[level] = 0;
8910 wc->flags[level] = 0;
f0486c68 8911 return 0;
65c6e82b
QW
8912
8913owner_mismatch:
8914 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
8915 btrfs_header_owner(eb), root->root_key.objectid);
8916 return -EUCLEAN;
2c47e605
YZ
8917}
8918
8919static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8920 struct btrfs_root *root,
8921 struct btrfs_path *path,
8922 struct walk_control *wc)
8923{
2c47e605 8924 int level = wc->level;
94fcca9f 8925 int lookup_info = 1;
2c47e605
YZ
8926 int ret;
8927
8928 while (level >= 0) {
94fcca9f 8929 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8930 if (ret > 0)
8931 break;
8932
8933 if (level == 0)
8934 break;
8935
7a7965f8
YZ
8936 if (path->slots[level] >=
8937 btrfs_header_nritems(path->nodes[level]))
8938 break;
8939
94fcca9f 8940 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8941 if (ret > 0) {
8942 path->slots[level]++;
8943 continue;
90d2c51d
MX
8944 } else if (ret < 0)
8945 return ret;
1c4850e2 8946 level = wc->level;
f82d02d9 8947 }
f82d02d9
YZ
8948 return 0;
8949}
8950
d397712b 8951static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8952 struct btrfs_root *root,
f82d02d9 8953 struct btrfs_path *path,
2c47e605 8954 struct walk_control *wc, int max_level)
20524f02 8955{
2c47e605 8956 int level = wc->level;
20524f02 8957 int ret;
9f3a7427 8958
2c47e605
YZ
8959 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8960 while (level < max_level && path->nodes[level]) {
8961 wc->level = level;
8962 if (path->slots[level] + 1 <
8963 btrfs_header_nritems(path->nodes[level])) {
8964 path->slots[level]++;
20524f02
CM
8965 return 0;
8966 } else {
2c47e605
YZ
8967 ret = walk_up_proc(trans, root, path, wc);
8968 if (ret > 0)
8969 return 0;
65c6e82b
QW
8970 if (ret < 0)
8971 return ret;
bd56b302 8972
2c47e605 8973 if (path->locks[level]) {
bd681513
CM
8974 btrfs_tree_unlock_rw(path->nodes[level],
8975 path->locks[level]);
2c47e605 8976 path->locks[level] = 0;
f82d02d9 8977 }
2c47e605
YZ
8978 free_extent_buffer(path->nodes[level]);
8979 path->nodes[level] = NULL;
8980 level++;
20524f02
CM
8981 }
8982 }
8983 return 1;
8984}
8985
9aca1d51 8986/*
2c47e605
YZ
8987 * drop a subvolume tree.
8988 *
8989 * this function traverses the tree freeing any blocks that only
8990 * referenced by the tree.
8991 *
8992 * when a shared tree block is found. this function decreases its
8993 * reference count by one. if update_ref is true, this function
8994 * also make sure backrefs for the shared block and all lower level
8995 * blocks are properly updated.
9d1a2a3a
DS
8996 *
8997 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8998 */
2c536799 8999int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9000 struct btrfs_block_rsv *block_rsv, int update_ref,
9001 int for_reloc)
20524f02 9002{
ab8d0fc4 9003 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9004 struct btrfs_path *path;
2c47e605 9005 struct btrfs_trans_handle *trans;
ab8d0fc4 9006 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9007 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9008 struct walk_control *wc;
9009 struct btrfs_key key;
9010 int err = 0;
9011 int ret;
9012 int level;
d29a9f62 9013 bool root_dropped = false;
20524f02 9014
4fd786e6 9015 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9016
5caf2a00 9017 path = btrfs_alloc_path();
cb1b69f4
TI
9018 if (!path) {
9019 err = -ENOMEM;
9020 goto out;
9021 }
20524f02 9022
2c47e605 9023 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9024 if (!wc) {
9025 btrfs_free_path(path);
cb1b69f4
TI
9026 err = -ENOMEM;
9027 goto out;
38a1a919 9028 }
2c47e605 9029
a22285a6 9030 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9031 if (IS_ERR(trans)) {
9032 err = PTR_ERR(trans);
9033 goto out_free;
9034 }
98d5dc13 9035
3fd0a558
YZ
9036 if (block_rsv)
9037 trans->block_rsv = block_rsv;
2c47e605 9038
9f3a7427 9039 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9040 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9041 path->nodes[level] = btrfs_lock_root_node(root);
9042 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9043 path->slots[level] = 0;
bd681513 9044 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9045 memset(&wc->update_progress, 0,
9046 sizeof(wc->update_progress));
9f3a7427 9047 } else {
9f3a7427 9048 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9049 memcpy(&wc->update_progress, &key,
9050 sizeof(wc->update_progress));
9051
6702ed49 9052 level = root_item->drop_level;
2c47e605 9053 BUG_ON(level == 0);
6702ed49 9054 path->lowest_level = level;
2c47e605
YZ
9055 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9056 path->lowest_level = 0;
9057 if (ret < 0) {
9058 err = ret;
79787eaa 9059 goto out_end_trans;
9f3a7427 9060 }
1c4850e2 9061 WARN_ON(ret > 0);
2c47e605 9062
7d9eb12c
CM
9063 /*
9064 * unlock our path, this is safe because only this
9065 * function is allowed to delete this snapshot
9066 */
5d4f98a2 9067 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9068
9069 level = btrfs_header_level(root->node);
9070 while (1) {
9071 btrfs_tree_lock(path->nodes[level]);
9072 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9073 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9074
2ff7e61e 9075 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9076 path->nodes[level]->start,
3173a18f 9077 level, 1, &wc->refs[level],
2c47e605 9078 &wc->flags[level]);
79787eaa
JM
9079 if (ret < 0) {
9080 err = ret;
9081 goto out_end_trans;
9082 }
2c47e605
YZ
9083 BUG_ON(wc->refs[level] == 0);
9084
9085 if (level == root_item->drop_level)
9086 break;
9087
9088 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9089 path->locks[level] = 0;
2c47e605
YZ
9090 WARN_ON(wc->refs[level] != 1);
9091 level--;
9092 }
9f3a7427 9093 }
2c47e605
YZ
9094
9095 wc->level = level;
9096 wc->shared_level = -1;
9097 wc->stage = DROP_REFERENCE;
9098 wc->update_ref = update_ref;
9099 wc->keep_locks = 0;
0b246afa 9100 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9101
d397712b 9102 while (1) {
9d1a2a3a 9103
2c47e605
YZ
9104 ret = walk_down_tree(trans, root, path, wc);
9105 if (ret < 0) {
9106 err = ret;
20524f02 9107 break;
2c47e605 9108 }
9aca1d51 9109
2c47e605
YZ
9110 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9111 if (ret < 0) {
9112 err = ret;
20524f02 9113 break;
2c47e605
YZ
9114 }
9115
9116 if (ret > 0) {
9117 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9118 break;
9119 }
2c47e605
YZ
9120
9121 if (wc->stage == DROP_REFERENCE) {
9122 level = wc->level;
9123 btrfs_node_key(path->nodes[level],
9124 &root_item->drop_progress,
9125 path->slots[level]);
9126 root_item->drop_level = level;
9127 }
9128
9129 BUG_ON(wc->level == 0);
3a45bb20 9130 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9131 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9132 ret = btrfs_update_root(trans, tree_root,
9133 &root->root_key,
9134 root_item);
79787eaa 9135 if (ret) {
66642832 9136 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9137 err = ret;
9138 goto out_end_trans;
9139 }
2c47e605 9140
3a45bb20 9141 btrfs_end_transaction_throttle(trans);
2ff7e61e 9142 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9143 btrfs_debug(fs_info,
9144 "drop snapshot early exit");
3c8f2422
JB
9145 err = -EAGAIN;
9146 goto out_free;
9147 }
9148
a22285a6 9149 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9150 if (IS_ERR(trans)) {
9151 err = PTR_ERR(trans);
9152 goto out_free;
9153 }
3fd0a558
YZ
9154 if (block_rsv)
9155 trans->block_rsv = block_rsv;
c3e69d58 9156 }
20524f02 9157 }
b3b4aa74 9158 btrfs_release_path(path);
79787eaa
JM
9159 if (err)
9160 goto out_end_trans;
2c47e605 9161
ab9ce7d4 9162 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9163 if (ret) {
66642832 9164 btrfs_abort_transaction(trans, ret);
e19182c0 9165 err = ret;
79787eaa
JM
9166 goto out_end_trans;
9167 }
2c47e605 9168
76dda93c 9169 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9170 ret = btrfs_find_root(tree_root, &root->root_key, path,
9171 NULL, NULL);
79787eaa 9172 if (ret < 0) {
66642832 9173 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9174 err = ret;
9175 goto out_end_trans;
9176 } else if (ret > 0) {
84cd948c
JB
9177 /* if we fail to delete the orphan item this time
9178 * around, it'll get picked up the next time.
9179 *
9180 * The most common failure here is just -ENOENT.
9181 */
9182 btrfs_del_orphan_item(trans, tree_root,
9183 root->root_key.objectid);
76dda93c
YZ
9184 }
9185 }
9186
27cdeb70 9187 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9188 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9189 } else {
9190 free_extent_buffer(root->node);
9191 free_extent_buffer(root->commit_root);
b0feb9d9 9192 btrfs_put_fs_root(root);
76dda93c 9193 }
d29a9f62 9194 root_dropped = true;
79787eaa 9195out_end_trans:
3a45bb20 9196 btrfs_end_transaction_throttle(trans);
79787eaa 9197out_free:
2c47e605 9198 kfree(wc);
5caf2a00 9199 btrfs_free_path(path);
cb1b69f4 9200out:
d29a9f62
JB
9201 /*
9202 * So if we need to stop dropping the snapshot for whatever reason we
9203 * need to make sure to add it back to the dead root list so that we
9204 * keep trying to do the work later. This also cleans up roots if we
9205 * don't have it in the radix (like when we recover after a power fail
9206 * or unmount) so we don't leak memory.
9207 */
897ca819 9208 if (!for_reloc && !root_dropped)
d29a9f62 9209 btrfs_add_dead_root(root);
90515e7f 9210 if (err && err != -EAGAIN)
ab8d0fc4 9211 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9212 return err;
20524f02 9213}
9078a3e1 9214
2c47e605
YZ
9215/*
9216 * drop subtree rooted at tree block 'node'.
9217 *
9218 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9219 * only used by relocation code
2c47e605 9220 */
f82d02d9
YZ
9221int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9222 struct btrfs_root *root,
9223 struct extent_buffer *node,
9224 struct extent_buffer *parent)
9225{
0b246afa 9226 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9227 struct btrfs_path *path;
2c47e605 9228 struct walk_control *wc;
f82d02d9
YZ
9229 int level;
9230 int parent_level;
9231 int ret = 0;
9232 int wret;
9233
2c47e605
YZ
9234 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9235
f82d02d9 9236 path = btrfs_alloc_path();
db5b493a
TI
9237 if (!path)
9238 return -ENOMEM;
f82d02d9 9239
2c47e605 9240 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9241 if (!wc) {
9242 btrfs_free_path(path);
9243 return -ENOMEM;
9244 }
2c47e605 9245
b9447ef8 9246 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9247 parent_level = btrfs_header_level(parent);
9248 extent_buffer_get(parent);
9249 path->nodes[parent_level] = parent;
9250 path->slots[parent_level] = btrfs_header_nritems(parent);
9251
b9447ef8 9252 btrfs_assert_tree_locked(node);
f82d02d9 9253 level = btrfs_header_level(node);
f82d02d9
YZ
9254 path->nodes[level] = node;
9255 path->slots[level] = 0;
bd681513 9256 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9257
9258 wc->refs[parent_level] = 1;
9259 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9260 wc->level = level;
9261 wc->shared_level = -1;
9262 wc->stage = DROP_REFERENCE;
9263 wc->update_ref = 0;
9264 wc->keep_locks = 1;
0b246afa 9265 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9266
9267 while (1) {
2c47e605
YZ
9268 wret = walk_down_tree(trans, root, path, wc);
9269 if (wret < 0) {
f82d02d9 9270 ret = wret;
f82d02d9 9271 break;
2c47e605 9272 }
f82d02d9 9273
2c47e605 9274 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9275 if (wret < 0)
9276 ret = wret;
9277 if (wret != 0)
9278 break;
9279 }
9280
2c47e605 9281 kfree(wc);
f82d02d9
YZ
9282 btrfs_free_path(path);
9283 return ret;
9284}
9285
6202df69 9286static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9287{
9288 u64 num_devices;
fc67c450 9289 u64 stripped;
e4d8ec0f 9290
fc67c450
ID
9291 /*
9292 * if restripe for this chunk_type is on pick target profile and
9293 * return, otherwise do the usual balance
9294 */
6202df69 9295 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9296 if (stripped)
9297 return extended_to_chunk(stripped);
e4d8ec0f 9298
6202df69 9299 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9300
fc67c450 9301 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9302 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9303 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9304
ec44a35c
CM
9305 if (num_devices == 1) {
9306 stripped |= BTRFS_BLOCK_GROUP_DUP;
9307 stripped = flags & ~stripped;
9308
9309 /* turn raid0 into single device chunks */
9310 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9311 return stripped;
9312
9313 /* turn mirroring into duplication */
9314 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9315 BTRFS_BLOCK_GROUP_RAID10))
9316 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9317 } else {
9318 /* they already had raid on here, just return */
ec44a35c
CM
9319 if (flags & stripped)
9320 return flags;
9321
9322 stripped |= BTRFS_BLOCK_GROUP_DUP;
9323 stripped = flags & ~stripped;
9324
9325 /* switch duplicated blocks with raid1 */
9326 if (flags & BTRFS_BLOCK_GROUP_DUP)
9327 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9328
e3176ca2 9329 /* this is drive concat, leave it alone */
ec44a35c 9330 }
e3176ca2 9331
ec44a35c
CM
9332 return flags;
9333}
9334
868f401a 9335static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9336{
f0486c68
YZ
9337 struct btrfs_space_info *sinfo = cache->space_info;
9338 u64 num_bytes;
199c36ea 9339 u64 min_allocable_bytes;
f0486c68 9340 int ret = -ENOSPC;
0ef3e66b 9341
199c36ea
MX
9342 /*
9343 * We need some metadata space and system metadata space for
9344 * allocating chunks in some corner cases until we force to set
9345 * it to be readonly.
9346 */
9347 if ((sinfo->flags &
9348 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9349 !force)
ee22184b 9350 min_allocable_bytes = SZ_1M;
199c36ea
MX
9351 else
9352 min_allocable_bytes = 0;
9353
f0486c68
YZ
9354 spin_lock(&sinfo->lock);
9355 spin_lock(&cache->lock);
61cfea9b
W
9356
9357 if (cache->ro) {
868f401a 9358 cache->ro++;
61cfea9b
W
9359 ret = 0;
9360 goto out;
9361 }
9362
f0486c68
YZ
9363 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9364 cache->bytes_super - btrfs_block_group_used(&cache->item);
9365
4136135b 9366 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9367 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9368 sinfo->bytes_readonly += num_bytes;
868f401a 9369 cache->ro++;
633c0aad 9370 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9371 ret = 0;
9372 }
61cfea9b 9373out:
f0486c68
YZ
9374 spin_unlock(&cache->lock);
9375 spin_unlock(&sinfo->lock);
9376 return ret;
9377}
7d9eb12c 9378
c83488af 9379int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9380
f0486c68 9381{
c83488af 9382 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9383 struct btrfs_trans_handle *trans;
9384 u64 alloc_flags;
9385 int ret;
7d9eb12c 9386
1bbc621e 9387again:
5e00f193 9388 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9389 if (IS_ERR(trans))
9390 return PTR_ERR(trans);
5d4f98a2 9391
1bbc621e
CM
9392 /*
9393 * we're not allowed to set block groups readonly after the dirty
9394 * block groups cache has started writing. If it already started,
9395 * back off and let this transaction commit
9396 */
0b246afa 9397 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9398 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9399 u64 transid = trans->transid;
9400
0b246afa 9401 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9402 btrfs_end_transaction(trans);
1bbc621e 9403
2ff7e61e 9404 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9405 if (ret)
9406 return ret;
9407 goto again;
9408 }
9409
153c35b6
CM
9410 /*
9411 * if we are changing raid levels, try to allocate a corresponding
9412 * block group with the new raid level.
9413 */
0b246afa 9414 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9415 if (alloc_flags != cache->flags) {
01458828 9416 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9417 CHUNK_ALLOC_FORCE);
9418 /*
9419 * ENOSPC is allowed here, we may have enough space
9420 * already allocated at the new raid level to
9421 * carry on
9422 */
9423 if (ret == -ENOSPC)
9424 ret = 0;
9425 if (ret < 0)
9426 goto out;
9427 }
1bbc621e 9428
868f401a 9429 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9430 if (!ret)
9431 goto out;
2ff7e61e 9432 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9433 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9434 if (ret < 0)
9435 goto out;
868f401a 9436 ret = inc_block_group_ro(cache, 0);
f0486c68 9437out:
2f081088 9438 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9439 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9440 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9441 check_system_chunk(trans, alloc_flags);
34441361 9442 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9443 }
0b246afa 9444 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9445
3a45bb20 9446 btrfs_end_transaction(trans);
f0486c68
YZ
9447 return ret;
9448}
5d4f98a2 9449
43a7e99d 9450int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9451{
43a7e99d 9452 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9453
01458828 9454 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9455}
9456
6d07bcec
MX
9457/*
9458 * helper to account the unused space of all the readonly block group in the
633c0aad 9459 * space_info. takes mirrors into account.
6d07bcec 9460 */
633c0aad 9461u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9462{
9463 struct btrfs_block_group_cache *block_group;
9464 u64 free_bytes = 0;
9465 int factor;
9466
01327610 9467 /* It's df, we don't care if it's racy */
633c0aad
JB
9468 if (list_empty(&sinfo->ro_bgs))
9469 return 0;
9470
9471 spin_lock(&sinfo->lock);
9472 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9473 spin_lock(&block_group->lock);
9474
9475 if (!block_group->ro) {
9476 spin_unlock(&block_group->lock);
9477 continue;
9478 }
9479
46df06b8 9480 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9481 free_bytes += (block_group->key.offset -
9482 btrfs_block_group_used(&block_group->item)) *
9483 factor;
9484
9485 spin_unlock(&block_group->lock);
9486 }
6d07bcec
MX
9487 spin_unlock(&sinfo->lock);
9488
9489 return free_bytes;
9490}
9491
2ff7e61e 9492void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9493{
f0486c68
YZ
9494 struct btrfs_space_info *sinfo = cache->space_info;
9495 u64 num_bytes;
9496
9497 BUG_ON(!cache->ro);
9498
9499 spin_lock(&sinfo->lock);
9500 spin_lock(&cache->lock);
868f401a
Z
9501 if (!--cache->ro) {
9502 num_bytes = cache->key.offset - cache->reserved -
9503 cache->pinned - cache->bytes_super -
9504 btrfs_block_group_used(&cache->item);
9505 sinfo->bytes_readonly -= num_bytes;
9506 list_del_init(&cache->ro_list);
9507 }
f0486c68
YZ
9508 spin_unlock(&cache->lock);
9509 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9510}
9511
ba1bf481
JB
9512/*
9513 * checks to see if its even possible to relocate this block group.
9514 *
9515 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9516 * ok to go ahead and try.
9517 */
6bccf3ab 9518int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9519{
6bccf3ab 9520 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9521 struct btrfs_block_group_cache *block_group;
9522 struct btrfs_space_info *space_info;
0b246afa 9523 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9524 struct btrfs_device *device;
6df9a95e 9525 struct btrfs_trans_handle *trans;
cdcb725c 9526 u64 min_free;
6719db6a
JB
9527 u64 dev_min = 1;
9528 u64 dev_nr = 0;
4a5e98f5 9529 u64 target;
0305bc27 9530 int debug;
cdcb725c 9531 int index;
ba1bf481
JB
9532 int full = 0;
9533 int ret = 0;
1a40e23b 9534
0b246afa 9535 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9536
0b246afa 9537 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9538
ba1bf481 9539 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9540 if (!block_group) {
9541 if (debug)
0b246afa 9542 btrfs_warn(fs_info,
0305bc27
QW
9543 "can't find block group for bytenr %llu",
9544 bytenr);
ba1bf481 9545 return -1;
0305bc27 9546 }
1a40e23b 9547
cdcb725c 9548 min_free = btrfs_block_group_used(&block_group->item);
9549
ba1bf481 9550 /* no bytes used, we're good */
cdcb725c 9551 if (!min_free)
1a40e23b
ZY
9552 goto out;
9553
ba1bf481
JB
9554 space_info = block_group->space_info;
9555 spin_lock(&space_info->lock);
17d217fe 9556
ba1bf481 9557 full = space_info->full;
17d217fe 9558
ba1bf481
JB
9559 /*
9560 * if this is the last block group we have in this space, we can't
7ce618db
CM
9561 * relocate it unless we're able to allocate a new chunk below.
9562 *
9563 * Otherwise, we need to make sure we have room in the space to handle
9564 * all of the extents from this block group. If we can, we're good
ba1bf481 9565 */
7ce618db 9566 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9567 (btrfs_space_info_used(space_info, false) + min_free <
9568 space_info->total_bytes)) {
ba1bf481
JB
9569 spin_unlock(&space_info->lock);
9570 goto out;
17d217fe 9571 }
ba1bf481 9572 spin_unlock(&space_info->lock);
ea8c2819 9573
ba1bf481
JB
9574 /*
9575 * ok we don't have enough space, but maybe we have free space on our
9576 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9577 * alloc devices and guess if we have enough space. if this block
9578 * group is going to be restriped, run checks against the target
9579 * profile instead of the current one.
ba1bf481
JB
9580 */
9581 ret = -1;
ea8c2819 9582
cdcb725c 9583 /*
9584 * index:
9585 * 0: raid10
9586 * 1: raid1
9587 * 2: dup
9588 * 3: raid0
9589 * 4: single
9590 */
0b246afa 9591 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9592 if (target) {
3e72ee88 9593 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9594 } else {
9595 /*
9596 * this is just a balance, so if we were marked as full
9597 * we know there is no space for a new chunk
9598 */
0305bc27
QW
9599 if (full) {
9600 if (debug)
0b246afa
JM
9601 btrfs_warn(fs_info,
9602 "no space to alloc new chunk for block group %llu",
9603 block_group->key.objectid);
4a5e98f5 9604 goto out;
0305bc27 9605 }
4a5e98f5 9606
3e72ee88 9607 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9608 }
9609
e6ec716f 9610 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9611 dev_min = 4;
6719db6a
JB
9612 /* Divide by 2 */
9613 min_free >>= 1;
e6ec716f 9614 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9615 dev_min = 2;
e6ec716f 9616 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9617 /* Multiply by 2 */
9618 min_free <<= 1;
e6ec716f 9619 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9620 dev_min = fs_devices->rw_devices;
47c5713f 9621 min_free = div64_u64(min_free, dev_min);
cdcb725c 9622 }
9623
6df9a95e
JB
9624 /* We need to do this so that we can look at pending chunks */
9625 trans = btrfs_join_transaction(root);
9626 if (IS_ERR(trans)) {
9627 ret = PTR_ERR(trans);
9628 goto out;
9629 }
9630
0b246afa 9631 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9632 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9633 u64 dev_offset;
56bec294 9634
ba1bf481
JB
9635 /*
9636 * check to make sure we can actually find a chunk with enough
9637 * space to fit our block group in.
9638 */
63a212ab 9639 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9640 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9641 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9642 &dev_offset, NULL);
ba1bf481 9643 if (!ret)
cdcb725c 9644 dev_nr++;
9645
9646 if (dev_nr >= dev_min)
73e48b27 9647 break;
cdcb725c 9648
ba1bf481 9649 ret = -1;
725c8463 9650 }
edbd8d4e 9651 }
0305bc27 9652 if (debug && ret == -1)
0b246afa
JM
9653 btrfs_warn(fs_info,
9654 "no space to allocate a new chunk for block group %llu",
9655 block_group->key.objectid);
9656 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9657 btrfs_end_transaction(trans);
edbd8d4e 9658out:
ba1bf481 9659 btrfs_put_block_group(block_group);
edbd8d4e
CM
9660 return ret;
9661}
9662
6bccf3ab
JM
9663static int find_first_block_group(struct btrfs_fs_info *fs_info,
9664 struct btrfs_path *path,
9665 struct btrfs_key *key)
0b86a832 9666{
6bccf3ab 9667 struct btrfs_root *root = fs_info->extent_root;
925baedd 9668 int ret = 0;
0b86a832
CM
9669 struct btrfs_key found_key;
9670 struct extent_buffer *leaf;
514c7dca
QW
9671 struct btrfs_block_group_item bg;
9672 u64 flags;
0b86a832 9673 int slot;
edbd8d4e 9674
0b86a832
CM
9675 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9676 if (ret < 0)
925baedd
CM
9677 goto out;
9678
d397712b 9679 while (1) {
0b86a832 9680 slot = path->slots[0];
edbd8d4e 9681 leaf = path->nodes[0];
0b86a832
CM
9682 if (slot >= btrfs_header_nritems(leaf)) {
9683 ret = btrfs_next_leaf(root, path);
9684 if (ret == 0)
9685 continue;
9686 if (ret < 0)
925baedd 9687 goto out;
0b86a832 9688 break;
edbd8d4e 9689 }
0b86a832 9690 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9691
0b86a832 9692 if (found_key.objectid >= key->objectid &&
925baedd 9693 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9694 struct extent_map_tree *em_tree;
9695 struct extent_map *em;
9696
9697 em_tree = &root->fs_info->mapping_tree.map_tree;
9698 read_lock(&em_tree->lock);
9699 em = lookup_extent_mapping(em_tree, found_key.objectid,
9700 found_key.offset);
9701 read_unlock(&em_tree->lock);
9702 if (!em) {
0b246afa 9703 btrfs_err(fs_info,
6fb37b75
LB
9704 "logical %llu len %llu found bg but no related chunk",
9705 found_key.objectid, found_key.offset);
9706 ret = -ENOENT;
514c7dca
QW
9707 } else if (em->start != found_key.objectid ||
9708 em->len != found_key.offset) {
9709 btrfs_err(fs_info,
9710 "block group %llu len %llu mismatch with chunk %llu len %llu",
9711 found_key.objectid, found_key.offset,
9712 em->start, em->len);
9713 ret = -EUCLEAN;
6fb37b75 9714 } else {
514c7dca
QW
9715 read_extent_buffer(leaf, &bg,
9716 btrfs_item_ptr_offset(leaf, slot),
9717 sizeof(bg));
9718 flags = btrfs_block_group_flags(&bg) &
9719 BTRFS_BLOCK_GROUP_TYPE_MASK;
9720
9721 if (flags != (em->map_lookup->type &
9722 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9723 btrfs_err(fs_info,
9724"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9725 found_key.objectid,
9726 found_key.offset, flags,
9727 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9728 em->map_lookup->type));
9729 ret = -EUCLEAN;
9730 } else {
9731 ret = 0;
9732 }
6fb37b75 9733 }
187ee58c 9734 free_extent_map(em);
925baedd
CM
9735 goto out;
9736 }
0b86a832 9737 path->slots[0]++;
edbd8d4e 9738 }
925baedd 9739out:
0b86a832 9740 return ret;
edbd8d4e
CM
9741}
9742
0af3d00b
JB
9743void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9744{
9745 struct btrfs_block_group_cache *block_group;
9746 u64 last = 0;
9747
9748 while (1) {
9749 struct inode *inode;
9750
9751 block_group = btrfs_lookup_first_block_group(info, last);
9752 while (block_group) {
3aa7c7a3 9753 wait_block_group_cache_done(block_group);
0af3d00b
JB
9754 spin_lock(&block_group->lock);
9755 if (block_group->iref)
9756 break;
9757 spin_unlock(&block_group->lock);
2ff7e61e 9758 block_group = next_block_group(info, block_group);
0af3d00b
JB
9759 }
9760 if (!block_group) {
9761 if (last == 0)
9762 break;
9763 last = 0;
9764 continue;
9765 }
9766
9767 inode = block_group->inode;
9768 block_group->iref = 0;
9769 block_group->inode = NULL;
9770 spin_unlock(&block_group->lock);
f3bca802 9771 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9772 iput(inode);
9773 last = block_group->key.objectid + block_group->key.offset;
9774 btrfs_put_block_group(block_group);
9775 }
9776}
9777
5cdd7db6
FM
9778/*
9779 * Must be called only after stopping all workers, since we could have block
9780 * group caching kthreads running, and therefore they could race with us if we
9781 * freed the block groups before stopping them.
9782 */
1a40e23b
ZY
9783int btrfs_free_block_groups(struct btrfs_fs_info *info)
9784{
9785 struct btrfs_block_group_cache *block_group;
4184ea7f 9786 struct btrfs_space_info *space_info;
11833d66 9787 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9788 struct rb_node *n;
9789
9e351cc8 9790 down_write(&info->commit_root_sem);
11833d66
YZ
9791 while (!list_empty(&info->caching_block_groups)) {
9792 caching_ctl = list_entry(info->caching_block_groups.next,
9793 struct btrfs_caching_control, list);
9794 list_del(&caching_ctl->list);
9795 put_caching_control(caching_ctl);
9796 }
9e351cc8 9797 up_write(&info->commit_root_sem);
11833d66 9798
47ab2a6c
JB
9799 spin_lock(&info->unused_bgs_lock);
9800 while (!list_empty(&info->unused_bgs)) {
9801 block_group = list_first_entry(&info->unused_bgs,
9802 struct btrfs_block_group_cache,
9803 bg_list);
9804 list_del_init(&block_group->bg_list);
9805 btrfs_put_block_group(block_group);
9806 }
9807 spin_unlock(&info->unused_bgs_lock);
9808
1a40e23b
ZY
9809 spin_lock(&info->block_group_cache_lock);
9810 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9811 block_group = rb_entry(n, struct btrfs_block_group_cache,
9812 cache_node);
1a40e23b
ZY
9813 rb_erase(&block_group->cache_node,
9814 &info->block_group_cache_tree);
01eacb27 9815 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9816 spin_unlock(&info->block_group_cache_lock);
9817
80eb234a 9818 down_write(&block_group->space_info->groups_sem);
1a40e23b 9819 list_del(&block_group->list);
80eb234a 9820 up_write(&block_group->space_info->groups_sem);
d2fb3437 9821
3c14874a
JB
9822 /*
9823 * We haven't cached this block group, which means we could
9824 * possibly have excluded extents on this block group.
9825 */
36cce922
JB
9826 if (block_group->cached == BTRFS_CACHE_NO ||
9827 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 9828 free_excluded_extents(block_group);
3c14874a 9829
817d52f8 9830 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9831 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9832 ASSERT(list_empty(&block_group->dirty_list));
9833 ASSERT(list_empty(&block_group->io_list));
9834 ASSERT(list_empty(&block_group->bg_list));
9835 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9836 btrfs_put_block_group(block_group);
d899e052
YZ
9837
9838 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9839 }
9840 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9841
9842 /* now that all the block groups are freed, go through and
9843 * free all the space_info structs. This is only called during
9844 * the final stages of unmount, and so we know nobody is
9845 * using them. We call synchronize_rcu() once before we start,
9846 * just to be on the safe side.
9847 */
9848 synchronize_rcu();
9849
8929ecfa
YZ
9850 release_global_block_rsv(info);
9851
67871254 9852 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9853 int i;
9854
4184ea7f
CM
9855 space_info = list_entry(info->space_info.next,
9856 struct btrfs_space_info,
9857 list);
d555b6c3
JB
9858
9859 /*
9860 * Do not hide this behind enospc_debug, this is actually
9861 * important and indicates a real bug if this happens.
9862 */
9863 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9864 space_info->bytes_reserved > 0 ||
d555b6c3 9865 space_info->bytes_may_use > 0))
ab8d0fc4 9866 dump_space_info(info, space_info, 0, 0);
4184ea7f 9867 list_del(&space_info->list);
6ab0a202
JM
9868 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9869 struct kobject *kobj;
c1895442
JM
9870 kobj = space_info->block_group_kobjs[i];
9871 space_info->block_group_kobjs[i] = NULL;
9872 if (kobj) {
6ab0a202
JM
9873 kobject_del(kobj);
9874 kobject_put(kobj);
9875 }
9876 }
9877 kobject_del(&space_info->kobj);
9878 kobject_put(&space_info->kobj);
4184ea7f 9879 }
1a40e23b
ZY
9880 return 0;
9881}
9882
75cb379d
JM
9883/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9884void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9885{
9886 struct btrfs_space_info *space_info;
9887 struct raid_kobject *rkobj;
9888 LIST_HEAD(list);
9889 int index;
9890 int ret = 0;
9891
9892 spin_lock(&fs_info->pending_raid_kobjs_lock);
9893 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9894 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9895
9896 list_for_each_entry(rkobj, &list, list) {
9897 space_info = __find_space_info(fs_info, rkobj->flags);
9898 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9899
9900 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9901 "%s", get_raid_name(index));
9902 if (ret) {
9903 kobject_put(&rkobj->kobj);
9904 break;
9905 }
9906 }
9907 if (ret)
9908 btrfs_warn(fs_info,
9909 "failed to add kobject for block cache, ignoring");
9910}
9911
c434d21c 9912static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9913{
c434d21c 9914 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9915 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9916 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9917 bool first = false;
b742bb82
YZ
9918
9919 down_write(&space_info->groups_sem);
ed55b6ac
JM
9920 if (list_empty(&space_info->block_groups[index]))
9921 first = true;
9922 list_add_tail(&cache->list, &space_info->block_groups[index]);
9923 up_write(&space_info->groups_sem);
9924
9925 if (first) {
75cb379d
JM
9926 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9927 if (!rkobj) {
9928 btrfs_warn(cache->fs_info,
9929 "couldn't alloc memory for raid level kobject");
9930 return;
6ab0a202 9931 }
75cb379d
JM
9932 rkobj->flags = cache->flags;
9933 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9934
9935 spin_lock(&fs_info->pending_raid_kobjs_lock);
9936 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9937 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9938 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9939 }
b742bb82
YZ
9940}
9941
920e4a58 9942static struct btrfs_block_group_cache *
2ff7e61e
JM
9943btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9944 u64 start, u64 size)
920e4a58
MX
9945{
9946 struct btrfs_block_group_cache *cache;
9947
9948 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9949 if (!cache)
9950 return NULL;
9951
9952 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9953 GFP_NOFS);
9954 if (!cache->free_space_ctl) {
9955 kfree(cache);
9956 return NULL;
9957 }
9958
9959 cache->key.objectid = start;
9960 cache->key.offset = size;
9961 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9962
0b246afa 9963 cache->fs_info = fs_info;
e4ff5fb5 9964 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9965 set_free_space_tree_thresholds(cache);
9966
920e4a58
MX
9967 atomic_set(&cache->count, 1);
9968 spin_lock_init(&cache->lock);
e570fd27 9969 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9970 INIT_LIST_HEAD(&cache->list);
9971 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9972 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9973 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9974 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9975 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9976 btrfs_init_free_space_ctl(cache);
04216820 9977 atomic_set(&cache->trimming, 0);
a5ed9182 9978 mutex_init(&cache->free_space_lock);
0966a7b1 9979 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9980
9981 return cache;
9982}
9983
7ef49515
QW
9984
9985/*
9986 * Iterate all chunks and verify that each of them has the corresponding block
9987 * group
9988 */
9989static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
9990{
9991 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
9992 struct extent_map *em;
9993 struct btrfs_block_group_cache *bg;
9994 u64 start = 0;
9995 int ret = 0;
9996
9997 while (1) {
9998 read_lock(&map_tree->map_tree.lock);
9999 /*
10000 * lookup_extent_mapping will return the first extent map
10001 * intersecting the range, so setting @len to 1 is enough to
10002 * get the first chunk.
10003 */
10004 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10005 read_unlock(&map_tree->map_tree.lock);
10006 if (!em)
10007 break;
10008
10009 bg = btrfs_lookup_block_group(fs_info, em->start);
10010 if (!bg) {
10011 btrfs_err(fs_info,
10012 "chunk start=%llu len=%llu doesn't have corresponding block group",
10013 em->start, em->len);
10014 ret = -EUCLEAN;
10015 free_extent_map(em);
10016 break;
10017 }
10018 if (bg->key.objectid != em->start ||
10019 bg->key.offset != em->len ||
10020 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10021 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10022 btrfs_err(fs_info,
10023"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10024 em->start, em->len,
10025 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10026 bg->key.objectid, bg->key.offset,
10027 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10028 ret = -EUCLEAN;
10029 free_extent_map(em);
10030 btrfs_put_block_group(bg);
10031 break;
10032 }
10033 start = em->start + em->len;
10034 free_extent_map(em);
10035 btrfs_put_block_group(bg);
10036 }
10037 return ret;
10038}
10039
5b4aacef 10040int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10041{
10042 struct btrfs_path *path;
10043 int ret;
9078a3e1 10044 struct btrfs_block_group_cache *cache;
6324fbf3 10045 struct btrfs_space_info *space_info;
9078a3e1
CM
10046 struct btrfs_key key;
10047 struct btrfs_key found_key;
5f39d397 10048 struct extent_buffer *leaf;
0af3d00b
JB
10049 int need_clear = 0;
10050 u64 cache_gen;
49303381
LB
10051 u64 feature;
10052 int mixed;
10053
10054 feature = btrfs_super_incompat_flags(info->super_copy);
10055 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10056
9078a3e1 10057 key.objectid = 0;
0b86a832 10058 key.offset = 0;
962a298f 10059 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10060 path = btrfs_alloc_path();
10061 if (!path)
10062 return -ENOMEM;
e4058b54 10063 path->reada = READA_FORWARD;
9078a3e1 10064
0b246afa
JM
10065 cache_gen = btrfs_super_cache_generation(info->super_copy);
10066 if (btrfs_test_opt(info, SPACE_CACHE) &&
10067 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10068 need_clear = 1;
0b246afa 10069 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10070 need_clear = 1;
0af3d00b 10071
d397712b 10072 while (1) {
6bccf3ab 10073 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10074 if (ret > 0)
10075 break;
0b86a832
CM
10076 if (ret != 0)
10077 goto error;
920e4a58 10078
5f39d397
CM
10079 leaf = path->nodes[0];
10080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10081
2ff7e61e 10082 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10083 found_key.offset);
9078a3e1 10084 if (!cache) {
0b86a832 10085 ret = -ENOMEM;
f0486c68 10086 goto error;
9078a3e1 10087 }
96303081 10088
cf7c1ef6
LB
10089 if (need_clear) {
10090 /*
10091 * When we mount with old space cache, we need to
10092 * set BTRFS_DC_CLEAR and set dirty flag.
10093 *
10094 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10095 * truncate the old free space cache inode and
10096 * setup a new one.
10097 * b) Setting 'dirty flag' makes sure that we flush
10098 * the new space cache info onto disk.
10099 */
0b246afa 10100 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10101 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10102 }
0af3d00b 10103
5f39d397
CM
10104 read_extent_buffer(leaf, &cache->item,
10105 btrfs_item_ptr_offset(leaf, path->slots[0]),
10106 sizeof(cache->item));
920e4a58 10107 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10108 if (!mixed &&
10109 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10110 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10111 btrfs_err(info,
10112"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10113 cache->key.objectid);
10114 ret = -EINVAL;
10115 goto error;
10116 }
0b86a832 10117
9078a3e1 10118 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10119 btrfs_release_path(path);
34d52cb6 10120
3c14874a
JB
10121 /*
10122 * We need to exclude the super stripes now so that the space
10123 * info has super bytes accounted for, otherwise we'll think
10124 * we have more space than we actually do.
10125 */
3c4da657 10126 ret = exclude_super_stripes(cache);
835d974f
JB
10127 if (ret) {
10128 /*
10129 * We may have excluded something, so call this just in
10130 * case.
10131 */
9e715da8 10132 free_excluded_extents(cache);
920e4a58 10133 btrfs_put_block_group(cache);
835d974f
JB
10134 goto error;
10135 }
3c14874a 10136
817d52f8
JB
10137 /*
10138 * check for two cases, either we are full, and therefore
10139 * don't need to bother with the caching work since we won't
10140 * find any space, or we are empty, and we can just add all
10141 * the space in and be done with it. This saves us _alot_ of
10142 * time, particularly in the full case.
10143 */
10144 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10145 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10146 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10147 free_excluded_extents(cache);
817d52f8 10148 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10149 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10150 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10151 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10152 found_key.objectid +
10153 found_key.offset);
9e715da8 10154 free_excluded_extents(cache);
817d52f8 10155 }
96b5179d 10156
0b246afa 10157 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10158 if (ret) {
10159 btrfs_remove_free_space_cache(cache);
10160 btrfs_put_block_group(cache);
10161 goto error;
10162 }
10163
0b246afa 10164 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10165 update_space_info(info, cache->flags, found_key.offset,
10166 btrfs_block_group_used(&cache->item),
10167 cache->bytes_super, &space_info);
8c579fe7 10168
6324fbf3 10169 cache->space_info = space_info;
1b2da372 10170
c434d21c 10171 link_block_group(cache);
0f9dd46c 10172
0b246afa 10173 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10174 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10175 inc_block_group_ro(cache, 1);
47ab2a6c 10176 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10177 ASSERT(list_empty(&cache->bg_list));
10178 btrfs_mark_bg_unused(cache);
47ab2a6c 10179 }
9078a3e1 10180 }
b742bb82 10181
0b246afa 10182 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10183 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10184 (BTRFS_BLOCK_GROUP_RAID10 |
10185 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10186 BTRFS_BLOCK_GROUP_RAID5 |
10187 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10188 BTRFS_BLOCK_GROUP_DUP)))
10189 continue;
10190 /*
10191 * avoid allocating from un-mirrored block group if there are
10192 * mirrored block groups.
10193 */
1095cc0d 10194 list_for_each_entry(cache,
10195 &space_info->block_groups[BTRFS_RAID_RAID0],
10196 list)
868f401a 10197 inc_block_group_ro(cache, 1);
1095cc0d 10198 list_for_each_entry(cache,
10199 &space_info->block_groups[BTRFS_RAID_SINGLE],
10200 list)
868f401a 10201 inc_block_group_ro(cache, 1);
9078a3e1 10202 }
f0486c68 10203
75cb379d 10204 btrfs_add_raid_kobjects(info);
f0486c68 10205 init_global_block_rsv(info);
7ef49515 10206 ret = check_chunk_block_group_mappings(info);
0b86a832 10207error:
9078a3e1 10208 btrfs_free_path(path);
0b86a832 10209 return ret;
9078a3e1 10210}
6324fbf3 10211
6c686b35 10212void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10213{
6c686b35 10214 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10215 struct btrfs_block_group_cache *block_group;
0b246afa 10216 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10217 struct btrfs_block_group_item item;
10218 struct btrfs_key key;
10219 int ret = 0;
10220
5ce55557
FM
10221 if (!trans->can_flush_pending_bgs)
10222 return;
10223
545e3366
JB
10224 while (!list_empty(&trans->new_bgs)) {
10225 block_group = list_first_entry(&trans->new_bgs,
10226 struct btrfs_block_group_cache,
10227 bg_list);
ea658bad 10228 if (ret)
c92f6be3 10229 goto next;
ea658bad
JB
10230
10231 spin_lock(&block_group->lock);
10232 memcpy(&item, &block_group->item, sizeof(item));
10233 memcpy(&key, &block_group->key, sizeof(key));
10234 spin_unlock(&block_group->lock);
10235
10236 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10237 sizeof(item));
10238 if (ret)
66642832 10239 btrfs_abort_transaction(trans, ret);
97aff912 10240 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10241 if (ret)
66642832 10242 btrfs_abort_transaction(trans, ret);
e4e0711c 10243 add_block_group_free_space(trans, block_group);
1e144fb8 10244 /* already aborted the transaction if it failed. */
c92f6be3
FM
10245next:
10246 list_del_init(&block_group->bg_list);
ea658bad 10247 }
5ce55557 10248 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10249}
10250
e7e02096 10251int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10252 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10253{
e7e02096 10254 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10255 struct btrfs_block_group_cache *cache;
0b246afa 10256 int ret;
6324fbf3 10257
0b246afa 10258 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10259
2ff7e61e 10260 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10261 if (!cache)
10262 return -ENOMEM;
34d52cb6 10263
6324fbf3 10264 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10265 btrfs_set_block_group_chunk_objectid(&cache->item,
10266 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10267 btrfs_set_block_group_flags(&cache->item, type);
10268
920e4a58 10269 cache->flags = type;
11833d66 10270 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10271 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10272 cache->needs_free_space = 1;
3c4da657 10273 ret = exclude_super_stripes(cache);
835d974f
JB
10274 if (ret) {
10275 /*
10276 * We may have excluded something, so call this just in
10277 * case.
10278 */
9e715da8 10279 free_excluded_extents(cache);
920e4a58 10280 btrfs_put_block_group(cache);
835d974f
JB
10281 return ret;
10282 }
96303081 10283
4457c1c7 10284 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10285
9e715da8 10286 free_excluded_extents(cache);
11833d66 10287
d0bd4560 10288#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10289 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10290 u64 new_bytes_used = size - bytes_used;
10291
10292 bytes_used += new_bytes_used >> 1;
2ff7e61e 10293 fragment_free_space(cache);
d0bd4560
JB
10294 }
10295#endif
2e6e5183 10296 /*
2be12ef7
NB
10297 * Ensure the corresponding space_info object is created and
10298 * assigned to our block group. We want our bg to be added to the rbtree
10299 * with its ->space_info set.
2e6e5183 10300 */
2be12ef7 10301 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10302 ASSERT(cache->space_info);
2e6e5183 10303
0b246afa 10304 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10305 if (ret) {
10306 btrfs_remove_free_space_cache(cache);
10307 btrfs_put_block_group(cache);
10308 return ret;
10309 }
10310
2e6e5183
FM
10311 /*
10312 * Now that our block group has its ->space_info set and is inserted in
10313 * the rbtree, update the space info's counters.
10314 */
0b246afa 10315 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10316 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10317 cache->bytes_super, &cache->space_info);
0b246afa 10318 update_global_block_rsv(fs_info);
1b2da372 10319
c434d21c 10320 link_block_group(cache);
6324fbf3 10321
47ab2a6c 10322 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10323
0b246afa 10324 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10325 return 0;
10326}
1a40e23b 10327
10ea00f5
ID
10328static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10329{
899c81ea
ID
10330 u64 extra_flags = chunk_to_extended(flags) &
10331 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10332
de98ced9 10333 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10334 if (flags & BTRFS_BLOCK_GROUP_DATA)
10335 fs_info->avail_data_alloc_bits &= ~extra_flags;
10336 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10337 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10338 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10339 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10340 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10341}
10342
1a40e23b 10343int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10344 u64 group_start, struct extent_map *em)
1a40e23b 10345{
5a98ec01 10346 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10347 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10348 struct btrfs_path *path;
10349 struct btrfs_block_group_cache *block_group;
44fb5511 10350 struct btrfs_free_cluster *cluster;
0b246afa 10351 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10352 struct btrfs_key key;
0af3d00b 10353 struct inode *inode;
c1895442 10354 struct kobject *kobj = NULL;
1a40e23b 10355 int ret;
10ea00f5 10356 int index;
89a55897 10357 int factor;
4f69cb98 10358 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10359 bool remove_em;
1a40e23b 10360
6bccf3ab 10361 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10362 BUG_ON(!block_group);
c146afad 10363 BUG_ON(!block_group->ro);
1a40e23b 10364
4ed0a7a3 10365 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10366 /*
10367 * Free the reserved super bytes from this block group before
10368 * remove it.
10369 */
9e715da8 10370 free_excluded_extents(block_group);
fd708b81
JB
10371 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10372 block_group->key.offset);
9f7c43c9 10373
1a40e23b 10374 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10375 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10376 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10377
44fb5511 10378 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10379 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10380 spin_lock(&cluster->refill_lock);
10381 btrfs_return_cluster_to_free_space(block_group, cluster);
10382 spin_unlock(&cluster->refill_lock);
10383
10384 /*
10385 * make sure this block group isn't part of a metadata
10386 * allocation cluster
10387 */
0b246afa 10388 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10389 spin_lock(&cluster->refill_lock);
10390 btrfs_return_cluster_to_free_space(block_group, cluster);
10391 spin_unlock(&cluster->refill_lock);
10392
1a40e23b 10393 path = btrfs_alloc_path();
d8926bb3
MF
10394 if (!path) {
10395 ret = -ENOMEM;
10396 goto out;
10397 }
1a40e23b 10398
1bbc621e
CM
10399 /*
10400 * get the inode first so any iput calls done for the io_list
10401 * aren't the final iput (no unlinks allowed now)
10402 */
77ab86bf 10403 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10404
10405 mutex_lock(&trans->transaction->cache_write_mutex);
10406 /*
10407 * make sure our free spache cache IO is done before remove the
10408 * free space inode
10409 */
10410 spin_lock(&trans->transaction->dirty_bgs_lock);
10411 if (!list_empty(&block_group->io_list)) {
10412 list_del_init(&block_group->io_list);
10413
10414 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10415
10416 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10417 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10418 btrfs_put_block_group(block_group);
10419 spin_lock(&trans->transaction->dirty_bgs_lock);
10420 }
10421
10422 if (!list_empty(&block_group->dirty_list)) {
10423 list_del_init(&block_group->dirty_list);
10424 btrfs_put_block_group(block_group);
10425 }
10426 spin_unlock(&trans->transaction->dirty_bgs_lock);
10427 mutex_unlock(&trans->transaction->cache_write_mutex);
10428
0af3d00b 10429 if (!IS_ERR(inode)) {
73f2e545 10430 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10431 if (ret) {
10432 btrfs_add_delayed_iput(inode);
10433 goto out;
10434 }
0af3d00b
JB
10435 clear_nlink(inode);
10436 /* One for the block groups ref */
10437 spin_lock(&block_group->lock);
10438 if (block_group->iref) {
10439 block_group->iref = 0;
10440 block_group->inode = NULL;
10441 spin_unlock(&block_group->lock);
10442 iput(inode);
10443 } else {
10444 spin_unlock(&block_group->lock);
10445 }
10446 /* One for our lookup ref */
455757c3 10447 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10448 }
10449
10450 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10451 key.offset = block_group->key.objectid;
10452 key.type = 0;
10453
10454 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10455 if (ret < 0)
10456 goto out;
10457 if (ret > 0)
b3b4aa74 10458 btrfs_release_path(path);
0af3d00b
JB
10459 if (ret == 0) {
10460 ret = btrfs_del_item(trans, tree_root, path);
10461 if (ret)
10462 goto out;
b3b4aa74 10463 btrfs_release_path(path);
0af3d00b
JB
10464 }
10465
0b246afa 10466 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10467 rb_erase(&block_group->cache_node,
0b246afa 10468 &fs_info->block_group_cache_tree);
292cbd51 10469 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10470
0b246afa
JM
10471 if (fs_info->first_logical_byte == block_group->key.objectid)
10472 fs_info->first_logical_byte = (u64)-1;
10473 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10474
80eb234a 10475 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10476 /*
10477 * we must use list_del_init so people can check to see if they
10478 * are still on the list after taking the semaphore
10479 */
10480 list_del_init(&block_group->list);
6ab0a202 10481 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10482 kobj = block_group->space_info->block_group_kobjs[index];
10483 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10484 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10485 }
80eb234a 10486 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10487 if (kobj) {
10488 kobject_del(kobj);
10489 kobject_put(kobj);
10490 }
1a40e23b 10491
4f69cb98
FM
10492 if (block_group->has_caching_ctl)
10493 caching_ctl = get_caching_control(block_group);
817d52f8 10494 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10495 wait_block_group_cache_done(block_group);
4f69cb98 10496 if (block_group->has_caching_ctl) {
0b246afa 10497 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10498 if (!caching_ctl) {
10499 struct btrfs_caching_control *ctl;
10500
10501 list_for_each_entry(ctl,
0b246afa 10502 &fs_info->caching_block_groups, list)
4f69cb98
FM
10503 if (ctl->block_group == block_group) {
10504 caching_ctl = ctl;
1e4f4714 10505 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10506 break;
10507 }
10508 }
10509 if (caching_ctl)
10510 list_del_init(&caching_ctl->list);
0b246afa 10511 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10512 if (caching_ctl) {
10513 /* Once for the caching bgs list and once for us. */
10514 put_caching_control(caching_ctl);
10515 put_caching_control(caching_ctl);
10516 }
10517 }
817d52f8 10518
ce93ec54
JB
10519 spin_lock(&trans->transaction->dirty_bgs_lock);
10520 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10521 WARN_ON(1);
10522 }
10523 if (!list_empty(&block_group->io_list)) {
10524 WARN_ON(1);
ce93ec54
JB
10525 }
10526 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10527 btrfs_remove_free_space_cache(block_group);
10528
c146afad 10529 spin_lock(&block_group->space_info->lock);
75c68e9f 10530 list_del_init(&block_group->ro_list);
18d018ad 10531
0b246afa 10532 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10533 WARN_ON(block_group->space_info->total_bytes
10534 < block_group->key.offset);
10535 WARN_ON(block_group->space_info->bytes_readonly
10536 < block_group->key.offset);
10537 WARN_ON(block_group->space_info->disk_total
10538 < block_group->key.offset * factor);
10539 }
c146afad
YZ
10540 block_group->space_info->total_bytes -= block_group->key.offset;
10541 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10542 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10543
c146afad 10544 spin_unlock(&block_group->space_info->lock);
283bb197 10545
0af3d00b
JB
10546 memcpy(&key, &block_group->key, sizeof(key));
10547
34441361 10548 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10549 if (!list_empty(&em->list)) {
10550 /* We're in the transaction->pending_chunks list. */
10551 free_extent_map(em);
10552 }
04216820
FM
10553 spin_lock(&block_group->lock);
10554 block_group->removed = 1;
10555 /*
10556 * At this point trimming can't start on this block group, because we
10557 * removed the block group from the tree fs_info->block_group_cache_tree
10558 * so no one can't find it anymore and even if someone already got this
10559 * block group before we removed it from the rbtree, they have already
10560 * incremented block_group->trimming - if they didn't, they won't find
10561 * any free space entries because we already removed them all when we
10562 * called btrfs_remove_free_space_cache().
10563 *
10564 * And we must not remove the extent map from the fs_info->mapping_tree
10565 * to prevent the same logical address range and physical device space
10566 * ranges from being reused for a new block group. This is because our
10567 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10568 * completely transactionless, so while it is trimming a range the
10569 * currently running transaction might finish and a new one start,
10570 * allowing for new block groups to be created that can reuse the same
10571 * physical device locations unless we take this special care.
e33e17ee
JM
10572 *
10573 * There may also be an implicit trim operation if the file system
10574 * is mounted with -odiscard. The same protections must remain
10575 * in place until the extents have been discarded completely when
10576 * the transaction commit has completed.
04216820
FM
10577 */
10578 remove_em = (atomic_read(&block_group->trimming) == 0);
10579 /*
10580 * Make sure a trimmer task always sees the em in the pinned_chunks list
10581 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10582 * before checking block_group->removed).
10583 */
10584 if (!remove_em) {
10585 /*
10586 * Our em might be in trans->transaction->pending_chunks which
10587 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10588 * and so is the fs_info->pinned_chunks list.
10589 *
10590 * So at this point we must be holding the chunk_mutex to avoid
10591 * any races with chunk allocation (more specifically at
10592 * volumes.c:contains_pending_extent()), to ensure it always
10593 * sees the em, either in the pending_chunks list or in the
10594 * pinned_chunks list.
10595 */
0b246afa 10596 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10597 }
10598 spin_unlock(&block_group->lock);
04216820
FM
10599
10600 if (remove_em) {
10601 struct extent_map_tree *em_tree;
10602
0b246afa 10603 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10604 write_lock(&em_tree->lock);
8dbcd10f
FM
10605 /*
10606 * The em might be in the pending_chunks list, so make sure the
10607 * chunk mutex is locked, since remove_extent_mapping() will
10608 * delete us from that list.
10609 */
04216820
FM
10610 remove_extent_mapping(em_tree, em);
10611 write_unlock(&em_tree->lock);
10612 /* once for the tree */
10613 free_extent_map(em);
10614 }
10615
34441361 10616 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10617
f3f72779 10618 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10619 if (ret)
10620 goto out;
10621
fa9c0d79
CM
10622 btrfs_put_block_group(block_group);
10623 btrfs_put_block_group(block_group);
1a40e23b
ZY
10624
10625 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10626 if (ret > 0)
10627 ret = -EIO;
10628 if (ret < 0)
10629 goto out;
10630
10631 ret = btrfs_del_item(trans, root, path);
10632out:
10633 btrfs_free_path(path);
10634 return ret;
10635}
acce952b 10636
8eab77ff 10637struct btrfs_trans_handle *
7fd01182
FM
10638btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10639 const u64 chunk_offset)
8eab77ff 10640{
7fd01182
FM
10641 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10642 struct extent_map *em;
10643 struct map_lookup *map;
10644 unsigned int num_items;
10645
10646 read_lock(&em_tree->lock);
10647 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10648 read_unlock(&em_tree->lock);
10649 ASSERT(em && em->start == chunk_offset);
10650
8eab77ff 10651 /*
7fd01182
FM
10652 * We need to reserve 3 + N units from the metadata space info in order
10653 * to remove a block group (done at btrfs_remove_chunk() and at
10654 * btrfs_remove_block_group()), which are used for:
10655 *
8eab77ff
FM
10656 * 1 unit for adding the free space inode's orphan (located in the tree
10657 * of tree roots).
7fd01182
FM
10658 * 1 unit for deleting the block group item (located in the extent
10659 * tree).
10660 * 1 unit for deleting the free space item (located in tree of tree
10661 * roots).
10662 * N units for deleting N device extent items corresponding to each
10663 * stripe (located in the device tree).
10664 *
10665 * In order to remove a block group we also need to reserve units in the
10666 * system space info in order to update the chunk tree (update one or
10667 * more device items and remove one chunk item), but this is done at
10668 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10669 */
95617d69 10670 map = em->map_lookup;
7fd01182
FM
10671 num_items = 3 + map->num_stripes;
10672 free_extent_map(em);
10673
8eab77ff 10674 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10675 num_items, 1);
8eab77ff
FM
10676}
10677
47ab2a6c
JB
10678/*
10679 * Process the unused_bgs list and remove any that don't have any allocated
10680 * space inside of them.
10681 */
10682void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10683{
10684 struct btrfs_block_group_cache *block_group;
10685 struct btrfs_space_info *space_info;
47ab2a6c
JB
10686 struct btrfs_trans_handle *trans;
10687 int ret = 0;
10688
afcdd129 10689 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10690 return;
10691
10692 spin_lock(&fs_info->unused_bgs_lock);
10693 while (!list_empty(&fs_info->unused_bgs)) {
10694 u64 start, end;
e33e17ee 10695 int trimming;
47ab2a6c
JB
10696
10697 block_group = list_first_entry(&fs_info->unused_bgs,
10698 struct btrfs_block_group_cache,
10699 bg_list);
47ab2a6c 10700 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10701
10702 space_info = block_group->space_info;
10703
47ab2a6c
JB
10704 if (ret || btrfs_mixed_space_info(space_info)) {
10705 btrfs_put_block_group(block_group);
10706 continue;
10707 }
10708 spin_unlock(&fs_info->unused_bgs_lock);
10709
d5f2e33b 10710 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10711
47ab2a6c
JB
10712 /* Don't want to race with allocators so take the groups_sem */
10713 down_write(&space_info->groups_sem);
10714 spin_lock(&block_group->lock);
43794446 10715 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10716 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10717 block_group->ro ||
aefbe9a6 10718 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10719 /*
10720 * We want to bail if we made new allocations or have
10721 * outstanding allocations in this block group. We do
10722 * the ro check in case balance is currently acting on
10723 * this block group.
10724 */
4ed0a7a3 10725 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10726 spin_unlock(&block_group->lock);
10727 up_write(&space_info->groups_sem);
10728 goto next;
10729 }
10730 spin_unlock(&block_group->lock);
10731
10732 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10733 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10734 up_write(&space_info->groups_sem);
10735 if (ret < 0) {
10736 ret = 0;
10737 goto next;
10738 }
10739
10740 /*
10741 * Want to do this before we do anything else so we can recover
10742 * properly if we fail to join the transaction.
10743 */
7fd01182
FM
10744 trans = btrfs_start_trans_remove_block_group(fs_info,
10745 block_group->key.objectid);
47ab2a6c 10746 if (IS_ERR(trans)) {
2ff7e61e 10747 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10748 ret = PTR_ERR(trans);
10749 goto next;
10750 }
10751
10752 /*
10753 * We could have pending pinned extents for this block group,
10754 * just delete them, we don't care about them anymore.
10755 */
10756 start = block_group->key.objectid;
10757 end = start + block_group->key.offset - 1;
d4b450cd
FM
10758 /*
10759 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10760 * btrfs_finish_extent_commit(). If we are at transaction N,
10761 * another task might be running finish_extent_commit() for the
10762 * previous transaction N - 1, and have seen a range belonging
10763 * to the block group in freed_extents[] before we were able to
10764 * clear the whole block group range from freed_extents[]. This
10765 * means that task can lookup for the block group after we
10766 * unpinned it from freed_extents[] and removed it, leading to
10767 * a BUG_ON() at btrfs_unpin_extent_range().
10768 */
10769 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10770 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10771 EXTENT_DIRTY);
758eb51e 10772 if (ret) {
d4b450cd 10773 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10774 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10775 goto end_trans;
10776 }
10777 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10778 EXTENT_DIRTY);
758eb51e 10779 if (ret) {
d4b450cd 10780 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10781 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10782 goto end_trans;
10783 }
d4b450cd 10784 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10785
10786 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10787 spin_lock(&space_info->lock);
10788 spin_lock(&block_group->lock);
10789
e2907c1a 10790 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 10791 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
10792 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10793 -block_group->pinned,
10794 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
10795 block_group->pinned = 0;
10796
c30666d4
ZL
10797 spin_unlock(&block_group->lock);
10798 spin_unlock(&space_info->lock);
10799
e33e17ee 10800 /* DISCARD can flip during remount */
0b246afa 10801 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10802
10803 /* Implicit trim during transaction commit. */
10804 if (trimming)
10805 btrfs_get_block_group_trimming(block_group);
10806
47ab2a6c
JB
10807 /*
10808 * Btrfs_remove_chunk will abort the transaction if things go
10809 * horribly wrong.
10810 */
97aff912 10811 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
10812
10813 if (ret) {
10814 if (trimming)
10815 btrfs_put_block_group_trimming(block_group);
10816 goto end_trans;
10817 }
10818
10819 /*
10820 * If we're not mounted with -odiscard, we can just forget
10821 * about this block group. Otherwise we'll need to wait
10822 * until transaction commit to do the actual discard.
10823 */
10824 if (trimming) {
348a0013
FM
10825 spin_lock(&fs_info->unused_bgs_lock);
10826 /*
10827 * A concurrent scrub might have added us to the list
10828 * fs_info->unused_bgs, so use a list_move operation
10829 * to add the block group to the deleted_bgs list.
10830 */
e33e17ee
JM
10831 list_move(&block_group->bg_list,
10832 &trans->transaction->deleted_bgs);
348a0013 10833 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10834 btrfs_get_block_group(block_group);
10835 }
758eb51e 10836end_trans:
3a45bb20 10837 btrfs_end_transaction(trans);
47ab2a6c 10838next:
d5f2e33b 10839 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10840 btrfs_put_block_group(block_group);
10841 spin_lock(&fs_info->unused_bgs_lock);
10842 }
10843 spin_unlock(&fs_info->unused_bgs_lock);
10844}
10845
c59021f8 10846int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10847{
1aba86d6 10848 struct btrfs_super_block *disk_super;
10849 u64 features;
10850 u64 flags;
10851 int mixed = 0;
c59021f8 10852 int ret;
10853
6c41761f 10854 disk_super = fs_info->super_copy;
1aba86d6 10855 if (!btrfs_super_root(disk_super))
0dc924c5 10856 return -EINVAL;
c59021f8 10857
1aba86d6 10858 features = btrfs_super_incompat_flags(disk_super);
10859 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10860 mixed = 1;
c59021f8 10861
1aba86d6 10862 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10863 ret = create_space_info(fs_info, flags);
c59021f8 10864 if (ret)
1aba86d6 10865 goto out;
c59021f8 10866
1aba86d6 10867 if (mixed) {
10868 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10869 ret = create_space_info(fs_info, flags);
1aba86d6 10870 } else {
10871 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10872 ret = create_space_info(fs_info, flags);
1aba86d6 10873 if (ret)
10874 goto out;
10875
10876 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10877 ret = create_space_info(fs_info, flags);
1aba86d6 10878 }
10879out:
c59021f8 10880 return ret;
10881}
10882
2ff7e61e
JM
10883int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10884 u64 start, u64 end)
acce952b 10885{
2ff7e61e 10886 return unpin_extent_range(fs_info, start, end, false);
acce952b 10887}
10888
499f377f
JM
10889/*
10890 * It used to be that old block groups would be left around forever.
10891 * Iterating over them would be enough to trim unused space. Since we
10892 * now automatically remove them, we also need to iterate over unallocated
10893 * space.
10894 *
10895 * We don't want a transaction for this since the discard may take a
10896 * substantial amount of time. We don't require that a transaction be
10897 * running, but we do need to take a running transaction into account
fee7acc3
JM
10898 * to ensure that we're not discarding chunks that were released or
10899 * allocated in the current transaction.
499f377f
JM
10900 *
10901 * Holding the chunks lock will prevent other threads from allocating
10902 * or releasing chunks, but it won't prevent a running transaction
10903 * from committing and releasing the memory that the pending chunks
10904 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
10905 * transaction and hold the commit root sem. We only need to hold
10906 * it while performing the free space search since we have already
10907 * held back allocations.
499f377f
JM
10908 */
10909static int btrfs_trim_free_extents(struct btrfs_device *device,
10910 u64 minlen, u64 *trimmed)
10911{
10912 u64 start = 0, len = 0;
10913 int ret;
10914
10915 *trimmed = 0;
10916
0be88e36
JM
10917 /* Discard not supported = nothing to do. */
10918 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
10919 return 0;
10920
499f377f 10921 /* Not writeable = nothing to do. */
ebbede42 10922 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10923 return 0;
10924
10925 /* No free space = nothing to do. */
10926 if (device->total_bytes <= device->bytes_used)
10927 return 0;
10928
10929 ret = 0;
10930
10931 while (1) {
fb456252 10932 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10933 struct btrfs_transaction *trans;
10934 u64 bytes;
10935
10936 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10937 if (ret)
fee7acc3 10938 break;
499f377f 10939
fee7acc3
JM
10940 ret = down_read_killable(&fs_info->commit_root_sem);
10941 if (ret) {
10942 mutex_unlock(&fs_info->chunk_mutex);
10943 break;
10944 }
499f377f
JM
10945
10946 spin_lock(&fs_info->trans_lock);
10947 trans = fs_info->running_transaction;
10948 if (trans)
9b64f57d 10949 refcount_inc(&trans->use_count);
499f377f
JM
10950 spin_unlock(&fs_info->trans_lock);
10951
fee7acc3
JM
10952 if (!trans)
10953 up_read(&fs_info->commit_root_sem);
10954
499f377f
JM
10955 ret = find_free_dev_extent_start(trans, device, minlen, start,
10956 &start, &len);
fee7acc3
JM
10957 if (trans) {
10958 up_read(&fs_info->commit_root_sem);
499f377f 10959 btrfs_put_transaction(trans);
fee7acc3 10960 }
499f377f
JM
10961
10962 if (ret) {
499f377f
JM
10963 mutex_unlock(&fs_info->chunk_mutex);
10964 if (ret == -ENOSPC)
10965 ret = 0;
10966 break;
10967 }
10968
10969 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
499f377f
JM
10970 mutex_unlock(&fs_info->chunk_mutex);
10971
10972 if (ret)
10973 break;
10974
10975 start += len;
10976 *trimmed += bytes;
10977
10978 if (fatal_signal_pending(current)) {
10979 ret = -ERESTARTSYS;
10980 break;
10981 }
10982
10983 cond_resched();
10984 }
10985
10986 return ret;
10987}
10988
93bba24d
QW
10989/*
10990 * Trim the whole filesystem by:
10991 * 1) trimming the free space in each block group
10992 * 2) trimming the unallocated space on each device
10993 *
10994 * This will also continue trimming even if a block group or device encounters
10995 * an error. The return value will be the last error, or 0 if nothing bad
10996 * happens.
10997 */
2ff7e61e 10998int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10999{
f7039b1d 11000 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11001 struct btrfs_device *device;
11002 struct list_head *devices;
f7039b1d
LD
11003 u64 group_trimmed;
11004 u64 start;
11005 u64 end;
11006 u64 trimmed = 0;
93bba24d
QW
11007 u64 bg_failed = 0;
11008 u64 dev_failed = 0;
11009 int bg_ret = 0;
11010 int dev_ret = 0;
f7039b1d
LD
11011 int ret = 0;
11012
6ba9fc8e 11013 cache = btrfs_lookup_first_block_group(fs_info, range->start);
93bba24d 11014 for (; cache; cache = next_block_group(fs_info, cache)) {
f7039b1d
LD
11015 if (cache->key.objectid >= (range->start + range->len)) {
11016 btrfs_put_block_group(cache);
11017 break;
11018 }
11019
11020 start = max(range->start, cache->key.objectid);
11021 end = min(range->start + range->len,
11022 cache->key.objectid + cache->key.offset);
11023
11024 if (end - start >= range->minlen) {
11025 if (!block_group_cache_done(cache)) {
f6373bf3 11026 ret = cache_block_group(cache, 0);
1be41b78 11027 if (ret) {
93bba24d
QW
11028 bg_failed++;
11029 bg_ret = ret;
11030 continue;
1be41b78
JB
11031 }
11032 ret = wait_block_group_cache_done(cache);
11033 if (ret) {
93bba24d
QW
11034 bg_failed++;
11035 bg_ret = ret;
11036 continue;
1be41b78 11037 }
f7039b1d
LD
11038 }
11039 ret = btrfs_trim_block_group(cache,
11040 &group_trimmed,
11041 start,
11042 end,
11043 range->minlen);
11044
11045 trimmed += group_trimmed;
11046 if (ret) {
93bba24d
QW
11047 bg_failed++;
11048 bg_ret = ret;
11049 continue;
f7039b1d
LD
11050 }
11051 }
f7039b1d
LD
11052 }
11053
93bba24d
QW
11054 if (bg_failed)
11055 btrfs_warn(fs_info,
11056 "failed to trim %llu block group(s), last error %d",
11057 bg_failed, bg_ret);
0b246afa 11058 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11059 devices = &fs_info->fs_devices->devices;
11060 list_for_each_entry(device, devices, dev_list) {
499f377f
JM
11061 ret = btrfs_trim_free_extents(device, range->minlen,
11062 &group_trimmed);
93bba24d
QW
11063 if (ret) {
11064 dev_failed++;
11065 dev_ret = ret;
499f377f 11066 break;
93bba24d 11067 }
499f377f
JM
11068
11069 trimmed += group_trimmed;
11070 }
0b246afa 11071 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11072
93bba24d
QW
11073 if (dev_failed)
11074 btrfs_warn(fs_info,
11075 "failed to trim %llu device(s), last error %d",
11076 dev_failed, dev_ret);
f7039b1d 11077 range->len = trimmed;
93bba24d
QW
11078 if (bg_ret)
11079 return bg_ret;
11080 return dev_ret;
f7039b1d 11081}
8257b2dc
MX
11082
11083/*
ea14b57f 11084 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11085 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11086 * data into the page cache through nocow before the subvolume is snapshoted,
11087 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11088 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11089 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11090 */
ea14b57f 11091void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11092{
11093 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11094 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11095}
11096
ea14b57f 11097int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11098{
ea14b57f 11099 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11100 return 0;
11101
11102 percpu_counter_inc(&root->subv_writers->counter);
11103 /*
11104 * Make sure counter is updated before we check for snapshot creation.
11105 */
11106 smp_mb();
ea14b57f
DS
11107 if (atomic_read(&root->will_be_snapshotted)) {
11108 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11109 return 0;
11110 }
11111 return 1;
11112}
0bc19f90 11113
0bc19f90
ZL
11114void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11115{
11116 while (true) {
11117 int ret;
11118
ea14b57f 11119 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11120 if (ret)
11121 break;
4625956a
PZ
11122 wait_var_event(&root->will_be_snapshotted,
11123 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11124 }
11125}
031f24da
QW
11126
11127void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11128{
11129 struct btrfs_fs_info *fs_info = bg->fs_info;
11130
11131 spin_lock(&fs_info->unused_bgs_lock);
11132 if (list_empty(&bg->bg_list)) {
11133 btrfs_get_block_group(bg);
11134 trace_btrfs_add_unused_block_group(bg);
11135 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11136 }
11137 spin_unlock(&fs_info->unused_bgs_lock);
11138}