btrfs: delayed-ref: Use btrfs_ref to refactor btrfs_add_delayed_data_ref()
[linux-block.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
bb6cb1c5 646 ret = load_free_space_cache(cache);
9d66e233
JB
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
0d9f824d 759static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 760 bool metadata, u64 root_objectid)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
763 u64 flags;
764
29d2b84c 765 if (metadata) {
0d9f824d
OS
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
768 else
769 flags = BTRFS_BLOCK_GROUP_METADATA;
770 } else {
771 flags = BTRFS_BLOCK_GROUP_DATA;
772 }
773
774 space_info = __find_space_info(fs_info, flags);
55e8196a 775 ASSERT(space_info);
dec59fa3
EL
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
ba3c2b19
NB
889 ret = -EINVAL;
890 btrfs_print_v0_err(fs_info);
891 if (trans)
892 btrfs_abort_transaction(trans, ret);
893 else
894 btrfs_handle_fs_error(fs_info, ret, NULL);
895
896 goto out_free;
a22285a6 897 }
ba3c2b19 898
a22285a6
YZ
899 BUG_ON(num_refs == 0);
900 } else {
901 num_refs = 0;
902 extent_flags = 0;
903 ret = 0;
904 }
905
906 if (!trans)
907 goto out;
908
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
f72ad18e 911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
912 if (head) {
913 if (!mutex_trylock(&head->mutex)) {
d278850e 914 refcount_inc(&head->refs);
a22285a6
YZ
915 spin_unlock(&delayed_refs->lock);
916
b3b4aa74 917 btrfs_release_path(path);
a22285a6 918
8cc33e5c
DS
919 /*
920 * Mutex was contended, block until it's released and try
921 * again
922 */
a22285a6
YZ
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
d278850e 925 btrfs_put_delayed_ref_head(head);
639eefc8 926 goto search_again;
a22285a6 927 }
d7df2c79 928 spin_lock(&head->lock);
a22285a6
YZ
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
931 else
932 BUG_ON(num_refs == 0);
933
d278850e 934 num_refs += head->ref_mod;
d7df2c79 935 spin_unlock(&head->lock);
a22285a6
YZ
936 mutex_unlock(&head->mutex);
937 }
938 spin_unlock(&delayed_refs->lock);
939out:
940 WARN_ON(num_refs == 0);
941 if (refs)
942 *refs = num_refs;
943 if (flags)
944 *flags = extent_flags;
945out_free:
946 btrfs_free_path(path);
947 return ret;
948}
949
d8d5f3e1
CM
950/*
951 * Back reference rules. Back refs have three main goals:
952 *
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
956 *
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
959 *
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
963 *
5d4f98a2
YZ
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
974 *
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
981 *
01327610 982 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
983 *
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
986 *
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
991 *
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
997 *
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1001 *
1002 * Back Reference Key composing:
1003 *
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1007 * of back refs.
1008 *
d8d5f3e1
CM
1009 * File extents can be referenced by:
1010 *
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1012 * - different files inside a single subvolume
d8d5f3e1
CM
1013 * - different offsets inside a file (bookend extents in file.c)
1014 *
5d4f98a2 1015 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1016 *
1017 * - Objectid of the subvolume root
d8d5f3e1 1018 * - objectid of the file holding the reference
5d4f98a2
YZ
1019 * - original offset in the file
1020 * - how many bookend extents
d8d5f3e1 1021 *
5d4f98a2
YZ
1022 * The key offset for the implicit back refs is hash of the first
1023 * three fields.
d8d5f3e1 1024 *
5d4f98a2 1025 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1026 *
5d4f98a2 1027 * - number of pointers in the tree leaf
d8d5f3e1 1028 *
5d4f98a2
YZ
1029 * The key offset for the implicit back refs is the first byte of
1030 * the tree leaf
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
d8d5f3e1 1034 *
5d4f98a2 1035 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1039 *
5d4f98a2 1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1041 *
5d4f98a2 1042 * Btree extents can be referenced by:
d8d5f3e1 1043 *
5d4f98a2 1044 * - Different subvolumes
d8d5f3e1 1045 *
5d4f98a2
YZ
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
d8d5f3e1 1050 *
5d4f98a2
YZ
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
d8d5f3e1 1054 */
31840ae1 1055
167ce953
LB
1056/*
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1060 */
1061int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1064{
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1067
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1074 return type;
64ecdb64
LB
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1077 /*
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1080 * nodesize.
1081 */
1082 if (offset &&
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1084 return type;
1085 }
167ce953 1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1088 return type;
64ecdb64
LB
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1091 /*
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1094 * nodesize.
1095 */
1096 if (offset &&
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1098 return type;
1099 }
167ce953
LB
1100 } else {
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1102 return type;
1103 }
1104 }
1105
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1108 eb->start, type);
1109 WARN_ON(1);
1110
1111 return BTRFS_REF_TYPE_INVALID;
1112}
1113
5d4f98a2
YZ
1114static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1115{
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1118 __le64 lenum;
1119
1120 lenum = cpu_to_le64(root_objectid);
9678c543 1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1122 lenum = cpu_to_le64(owner);
9678c543 1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1124 lenum = cpu_to_le64(offset);
9678c543 1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1126
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1128}
1129
1130static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1132{
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1136}
1137
1138static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1141{
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1145 return 0;
1146 return 1;
1147}
1148
1149static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1152 u64 root_objectid,
1153 u64 owner, u64 offset)
1154{
bd1d53ef 1155 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
31840ae1 1158 struct extent_buffer *leaf;
5d4f98a2 1159 u32 nritems;
74493f7a 1160 int ret;
5d4f98a2
YZ
1161 int recow;
1162 int err = -ENOENT;
74493f7a 1163
31840ae1 1164 key.objectid = bytenr;
5d4f98a2
YZ
1165 if (parent) {
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1168 } else {
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1171 owner, offset);
1172 }
1173again:
1174 recow = 0;
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1176 if (ret < 0) {
1177 err = ret;
1178 goto fail;
1179 }
31840ae1 1180
5d4f98a2
YZ
1181 if (parent) {
1182 if (!ret)
1183 return 0;
5d4f98a2 1184 goto fail;
31840ae1
ZY
1185 }
1186
1187 leaf = path->nodes[0];
5d4f98a2
YZ
1188 nritems = btrfs_header_nritems(leaf);
1189 while (1) {
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1192 if (ret < 0)
1193 err = ret;
1194 if (ret)
1195 goto fail;
1196
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1199 recow = 1;
1200 }
1201
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1205 goto fail;
1206
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1209
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1211 owner, offset)) {
1212 if (recow) {
b3b4aa74 1213 btrfs_release_path(path);
5d4f98a2
YZ
1214 goto again;
1215 }
1216 err = 0;
1217 break;
1218 }
1219 path->slots[0]++;
31840ae1 1220 }
5d4f98a2
YZ
1221fail:
1222 return err;
31840ae1
ZY
1223}
1224
5d4f98a2 1225static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
31840ae1 1230{
62b895af 1231 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
5d4f98a2 1234 u32 size;
31840ae1
ZY
1235 u32 num_refs;
1236 int ret;
74493f7a 1237
74493f7a 1238 key.objectid = bytenr;
5d4f98a2
YZ
1239 if (parent) {
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1243 } else {
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1246 owner, offset);
1247 size = sizeof(struct btrfs_extent_data_ref);
1248 }
74493f7a 1249
5d4f98a2
YZ
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1252 goto fail;
1253
1254 leaf = path->nodes[0];
1255 if (parent) {
1256 struct btrfs_shared_data_ref *ref;
31840ae1 1257 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1258 struct btrfs_shared_data_ref);
1259 if (ret == 0) {
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1261 } else {
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1265 }
5d4f98a2
YZ
1266 } else {
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1272 owner, offset))
1273 break;
b3b4aa74 1274 btrfs_release_path(path);
5d4f98a2
YZ
1275 key.offset++;
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1277 size);
1278 if (ret && ret != -EEXIST)
1279 goto fail;
31840ae1 1280
5d4f98a2
YZ
1281 leaf = path->nodes[0];
1282 }
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1285 if (ret == 0) {
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1287 root_objectid);
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1291 } else {
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1295 }
31840ae1 1296 }
5d4f98a2
YZ
1297 btrfs_mark_buffer_dirty(leaf);
1298 ret = 0;
1299fail:
b3b4aa74 1300 btrfs_release_path(path);
7bb86316 1301 return ret;
74493f7a
CM
1302}
1303
5d4f98a2 1304static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1305 struct btrfs_path *path,
fcebe456 1306 int refs_to_drop, int *last_ref)
31840ae1 1307{
5d4f98a2
YZ
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1311 struct extent_buffer *leaf;
5d4f98a2 1312 u32 num_refs = 0;
31840ae1
ZY
1313 int ret = 0;
1314
1315 leaf = path->nodes[0];
5d4f98a2
YZ
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1317
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1329 return -EINVAL;
5d4f98a2
YZ
1330 } else {
1331 BUG();
1332 }
1333
56bec294
CM
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
5d4f98a2 1336
31840ae1 1337 if (num_refs == 0) {
e9f6290d 1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1339 *last_ref = 1;
31840ae1 1340 } else {
5d4f98a2
YZ
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1345 btrfs_mark_buffer_dirty(leaf);
1346 }
31840ae1
ZY
1347 return ret;
1348}
1349
9ed0dea0 1350static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1351 struct btrfs_extent_inline_ref *iref)
15916de8 1352{
5d4f98a2
YZ
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1357 u32 num_refs = 0;
3de28d57 1358 int type;
5d4f98a2
YZ
1359
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1362
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1364 if (iref) {
3de28d57
LB
1365 /*
1366 * If type is invalid, we should have bailed out earlier than
1367 * this call.
1368 */
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1374 } else {
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 }
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1386 } else {
1387 WARN_ON(1);
1388 }
1389 return num_refs;
1390}
15916de8 1391
5d4f98a2 1392static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1395 u64 root_objectid)
1f3c79a2 1396{
b8582eea 1397 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1398 struct btrfs_key key;
1f3c79a2 1399 int ret;
1f3c79a2 1400
5d4f98a2
YZ
1401 key.objectid = bytenr;
1402 if (parent) {
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1405 } else {
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1f3c79a2
LH
1408 }
1409
5d4f98a2
YZ
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1411 if (ret > 0)
1412 ret = -ENOENT;
5d4f98a2 1413 return ret;
1f3c79a2
LH
1414}
1415
5d4f98a2 1416static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1419 u64 root_objectid)
31840ae1 1420{
5d4f98a2 1421 struct btrfs_key key;
31840ae1 1422 int ret;
31840ae1 1423
5d4f98a2
YZ
1424 key.objectid = bytenr;
1425 if (parent) {
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1428 } else {
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1431 }
1432
10728404 1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1434 path, &key, 0);
b3b4aa74 1435 btrfs_release_path(path);
31840ae1
ZY
1436 return ret;
1437}
1438
5d4f98a2 1439static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1440{
5d4f98a2
YZ
1441 int type;
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1443 if (parent > 0)
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1445 else
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1447 } else {
1448 if (parent > 0)
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1450 else
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1452 }
1453 return type;
31840ae1 1454}
56bec294 1455
2c47e605
YZ
1456static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
56bec294 1458
02217ed2 1459{
2c47e605 1460 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1461 if (!path->nodes[level])
1462 break;
5d4f98a2
YZ
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1465 continue;
1466 if (level == 0)
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1469 else
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1472 return 0;
1473 }
1474 return 1;
1475}
037e6390 1476
5d4f98a2
YZ
1477/*
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1480 *
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1483 *
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1486 *
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1489 */
1490static noinline_for_stack
1491int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1497{
867cc1fb 1498 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1504 u64 flags;
1505 u64 item_size;
1506 unsigned long ptr;
1507 unsigned long end;
1508 int extra_size;
1509 int type;
1510 int want;
1511 int ret;
1512 int err = 0;
0b246afa 1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1514 int needed;
26b8003f 1515
db94535d 1516 key.objectid = bytenr;
31840ae1 1517 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1518 key.offset = num_bytes;
31840ae1 1519
5d4f98a2
YZ
1520 want = extent_ref_type(parent, owner);
1521 if (insert) {
1522 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1523 path->keep_locks = 1;
5d4f98a2
YZ
1524 } else
1525 extra_size = -1;
3173a18f
JB
1526
1527 /*
16d1c062
NB
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
3173a18f
JB
1530 */
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1533 key.offset = owner;
1534 }
1535
1536again:
5d4f98a2 1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1538 if (ret < 0) {
5d4f98a2
YZ
1539 err = ret;
1540 goto out;
1541 }
3173a18f
JB
1542
1543 /*
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1546 */
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1550 path->slots[0]--;
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1556 ret = 0;
1557 }
1558 if (ret) {
9ce49a0b 1559 key.objectid = bytenr;
3173a18f
JB
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1563 goto again;
1564 }
1565 }
1566
79787eaa
JM
1567 if (ret && !insert) {
1568 err = -ENOENT;
1569 goto out;
fae7f21c 1570 } else if (WARN_ON(ret)) {
492104c8 1571 err = -EIO;
492104c8 1572 goto out;
79787eaa 1573 }
5d4f98a2
YZ
1574
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1577 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1578 err = -EINVAL;
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1581 goto out;
1582 }
5d4f98a2 1583
5d4f98a2
YZ
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1586
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1589
3173a18f 1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1591 ptr += sizeof(struct btrfs_tree_block_info);
1592 BUG_ON(ptr > end);
5d4f98a2
YZ
1593 }
1594
3de28d57
LB
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1597 else
1598 needed = BTRFS_REF_TYPE_BLOCK;
1599
5d4f98a2
YZ
1600 err = -ENOENT;
1601 while (1) {
1602 if (ptr >= end) {
1603 WARN_ON(ptr > end);
1604 break;
1605 }
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1609 err = -EUCLEAN;
3de28d57
LB
1610 goto out;
1611 }
1612
5d4f98a2
YZ
1613 if (want < type)
1614 break;
1615 if (want > type) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1617 continue;
1618 }
1619
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1624 owner, offset)) {
1625 err = 0;
1626 break;
1627 }
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1630 break;
1631 } else {
1632 u64 ref_offset;
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1634 if (parent > 0) {
1635 if (parent == ref_offset) {
1636 err = 0;
1637 break;
1638 }
1639 if (ref_offset < parent)
1640 break;
1641 } else {
1642 if (root_objectid == ref_offset) {
1643 err = 0;
1644 break;
1645 }
1646 if (ref_offset < root_objectid)
1647 break;
1648 }
1649 }
1650 ptr += btrfs_extent_inline_ref_size(type);
1651 }
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1655 err = -EAGAIN;
1656 goto out;
1657 }
1658 /*
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1663 */
2c47e605
YZ
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
85d4198e 1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1667 err = -EAGAIN;
1668 goto out;
1669 }
1670 }
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1672out:
85d4198e 1673 if (insert) {
5d4f98a2
YZ
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1676 }
1677 return err;
1678}
1679
1680/*
1681 * helper to add new inline back ref
1682 */
1683static noinline_for_stack
87bde3cd 1684void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1690{
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1693 unsigned long ptr;
1694 unsigned long end;
1695 unsigned long item_offset;
1696 u64 refs;
1697 int size;
1698 int type;
5d4f98a2
YZ
1699
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1703
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1706
87bde3cd 1707 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1708
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1713 if (extent_op)
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1715
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1720 end - size - ptr);
1721
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1738 } else {
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1740 }
1741 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1742}
1743
1744static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1749{
1750 int ret;
1751
867cc1fb
NB
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1754 owner, offset, 0);
5d4f98a2 1755 if (ret != -ENOENT)
54aa1f4d 1756 return ret;
5d4f98a2 1757
b3b4aa74 1758 btrfs_release_path(path);
5d4f98a2
YZ
1759 *ref_ret = NULL;
1760
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1763 root_objectid);
5d4f98a2 1764 } else {
bd1d53ef
NB
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
b9473439 1767 }
5d4f98a2
YZ
1768 return ret;
1769}
31840ae1 1770
5d4f98a2
YZ
1771/*
1772 * helper to update/remove inline back ref
1773 */
1774static noinline_for_stack
61a18f1c 1775void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1776 struct btrfs_extent_inline_ref *iref,
1777 int refs_to_mod,
fcebe456
JB
1778 struct btrfs_delayed_extent_op *extent_op,
1779 int *last_ref)
5d4f98a2 1780{
61a18f1c
NB
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
87bde3cd 1837 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
d04c6b88
JM
1908static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1909 u64 *discarded_bytes)
5d4f98a2 1910{
86557861
JM
1911 int j, ret = 0;
1912 u64 bytes_left, end;
4d89d377 1913 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1914
4d89d377
JM
1915 if (WARN_ON(start != aligned_start)) {
1916 len -= aligned_start - start;
1917 len = round_down(len, 1 << 9);
1918 start = aligned_start;
1919 }
d04c6b88 1920
4d89d377 1921 *discarded_bytes = 0;
86557861
JM
1922
1923 if (!len)
1924 return 0;
1925
1926 end = start + len;
1927 bytes_left = len;
1928
1929 /* Skip any superblocks on this device. */
1930 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1931 u64 sb_start = btrfs_sb_offset(j);
1932 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1933 u64 size = sb_start - start;
1934
1935 if (!in_range(sb_start, start, bytes_left) &&
1936 !in_range(sb_end, start, bytes_left) &&
1937 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1938 continue;
1939
1940 /*
1941 * Superblock spans beginning of range. Adjust start and
1942 * try again.
1943 */
1944 if (sb_start <= start) {
1945 start += sb_end - start;
1946 if (start > end) {
1947 bytes_left = 0;
1948 break;
1949 }
1950 bytes_left = end - start;
1951 continue;
1952 }
1953
1954 if (size) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += size;
1959 else if (ret != -EOPNOTSUPP)
1960 return ret;
1961 }
1962
1963 start = sb_end;
1964 if (start > end) {
1965 bytes_left = 0;
1966 break;
1967 }
1968 bytes_left = end - start;
1969 }
1970
1971 if (bytes_left) {
1972 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1973 GFP_NOFS, 0);
1974 if (!ret)
86557861 1975 *discarded_bytes += bytes_left;
4d89d377 1976 }
d04c6b88 1977 return ret;
5d4f98a2 1978}
5d4f98a2 1979
2ff7e61e 1980int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1981 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1982{
5d4f98a2 1983 int ret;
5378e607 1984 u64 discarded_bytes = 0;
a1d3c478 1985 struct btrfs_bio *bbio = NULL;
5d4f98a2 1986
e244a0ae 1987
2999241d
FM
1988 /*
1989 * Avoid races with device replace and make sure our bbio has devices
1990 * associated to its stripes that don't go away while we are discarding.
1991 */
0b246afa 1992 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1993 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1994 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1995 &bbio, 0);
79787eaa 1996 /* Error condition is -ENOMEM */
5d4f98a2 1997 if (!ret) {
a1d3c478 1998 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1999 int i;
2000
5d4f98a2 2001
a1d3c478 2002 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2003 u64 bytes;
38b5f68e
AJ
2004 struct request_queue *req_q;
2005
627e0873
FM
2006 if (!stripe->dev->bdev) {
2007 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2008 continue;
2009 }
38b5f68e
AJ
2010 req_q = bdev_get_queue(stripe->dev->bdev);
2011 if (!blk_queue_discard(req_q))
d5e2003c
JB
2012 continue;
2013
5378e607
LD
2014 ret = btrfs_issue_discard(stripe->dev->bdev,
2015 stripe->physical,
d04c6b88
JM
2016 stripe->length,
2017 &bytes);
5378e607 2018 if (!ret)
d04c6b88 2019 discarded_bytes += bytes;
5378e607 2020 else if (ret != -EOPNOTSUPP)
79787eaa 2021 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2022
2023 /*
2024 * Just in case we get back EOPNOTSUPP for some reason,
2025 * just ignore the return value so we don't screw up
2026 * people calling discard_extent.
2027 */
2028 ret = 0;
5d4f98a2 2029 }
6e9606d2 2030 btrfs_put_bbio(bbio);
5d4f98a2 2031 }
0b246afa 2032 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2033
2034 if (actual_bytes)
2035 *actual_bytes = discarded_bytes;
2036
5d4f98a2 2037
53b381b3
DW
2038 if (ret == -EOPNOTSUPP)
2039 ret = 0;
5d4f98a2 2040 return ret;
5d4f98a2
YZ
2041}
2042
79787eaa 2043/* Can return -ENOMEM */
5d4f98a2 2044int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2045 struct btrfs_root *root,
5d4f98a2 2046 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2047 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2048{
84f7d8e6 2049 struct btrfs_fs_info *fs_info = root->fs_info;
ed4f255b 2050 struct btrfs_ref generic_ref = { 0 };
d7eae340 2051 int old_ref_mod, new_ref_mod;
5d4f98a2 2052 int ret;
66d7e7f0 2053
5d4f98a2
YZ
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2056
fd708b81
JB
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2059
ed4f255b
QW
2060 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_REF, bytenr,
2061 num_bytes, parent);
2062 generic_ref.real_root = root->root_key.objectid;
5d4f98a2 2063 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ed4f255b
QW
2064 btrfs_init_tree_ref(&generic_ref, (int)owner, root_objectid);
2065 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
2066 NULL, &old_ref_mod, &new_ref_mod);
5d4f98a2 2067 } else {
76675593
QW
2068 btrfs_init_data_ref(&generic_ref, root_objectid, owner, offset);
2069 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 0,
d7eae340 2070 &old_ref_mod, &new_ref_mod);
5d4f98a2 2071 }
d7eae340 2072
29d2b84c
NB
2073 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2074 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2075
2076 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2077 }
d7eae340 2078
5d4f98a2
YZ
2079 return ret;
2080}
2081
bd3c685e
NB
2082/*
2083 * __btrfs_inc_extent_ref - insert backreference for a given extent
2084 *
2085 * @trans: Handle of transaction
2086 *
2087 * @node: The delayed ref node used to get the bytenr/length for
2088 * extent whose references are incremented.
2089 *
2090 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2091 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2092 * bytenr of the parent block. Since new extents are always
2093 * created with indirect references, this will only be the case
2094 * when relocating a shared extent. In that case, root_objectid
2095 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2096 * be 0
2097 *
2098 * @root_objectid: The id of the root where this modification has originated,
2099 * this can be either one of the well-known metadata trees or
2100 * the subvolume id which references this extent.
2101 *
2102 * @owner: For data extents it is the inode number of the owning file.
2103 * For metadata extents this parameter holds the level in the
2104 * tree of the extent.
2105 *
2106 * @offset: For metadata extents the offset is ignored and is currently
2107 * always passed as 0. For data extents it is the fileoffset
2108 * this extent belongs to.
2109 *
2110 * @refs_to_add Number of references to add
2111 *
2112 * @extent_op Pointer to a structure, holding information necessary when
2113 * updating a tree block's flags
2114 *
2115 */
5d4f98a2 2116static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2117 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121{
2122 struct btrfs_path *path;
2123 struct extent_buffer *leaf;
2124 struct btrfs_extent_item *item;
fcebe456 2125 struct btrfs_key key;
c682f9b3
QW
2126 u64 bytenr = node->bytenr;
2127 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2128 u64 refs;
2129 int ret;
5d4f98a2
YZ
2130
2131 path = btrfs_alloc_path();
2132 if (!path)
2133 return -ENOMEM;
2134
e4058b54 2135 path->reada = READA_FORWARD;
5d4f98a2
YZ
2136 path->leave_spinning = 1;
2137 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2138 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2139 parent, root_objectid, owner,
2140 offset, refs_to_add, extent_op);
0ed4792a 2141 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2142 goto out;
fcebe456
JB
2143
2144 /*
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2147 * normal backref.
2148 */
5d4f98a2 2149 leaf = path->nodes[0];
fcebe456 2150 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2151 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152 refs = btrfs_extent_refs(leaf, item);
2153 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154 if (extent_op)
2155 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2156
5d4f98a2 2157 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2158 btrfs_release_path(path);
56bec294 2159
e4058b54 2160 path->reada = READA_FORWARD;
b9473439 2161 path->leave_spinning = 1;
56bec294 2162 /* now insert the actual backref */
37593410
NB
2163 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2164 owner, offset, refs_to_add);
79787eaa 2165 if (ret)
66642832 2166 btrfs_abort_transaction(trans, ret);
5d4f98a2 2167out:
56bec294 2168 btrfs_free_path(path);
30d133fc 2169 return ret;
56bec294
CM
2170}
2171
5d4f98a2 2172static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2173 struct btrfs_delayed_ref_node *node,
2174 struct btrfs_delayed_extent_op *extent_op,
2175 int insert_reserved)
56bec294 2176{
5d4f98a2
YZ
2177 int ret = 0;
2178 struct btrfs_delayed_data_ref *ref;
2179 struct btrfs_key ins;
2180 u64 parent = 0;
2181 u64 ref_root = 0;
2182 u64 flags = 0;
2183
2184 ins.objectid = node->bytenr;
2185 ins.offset = node->num_bytes;
2186 ins.type = BTRFS_EXTENT_ITEM_KEY;
2187
2188 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2189 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2190
5d4f98a2
YZ
2191 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2192 parent = ref->parent;
fcebe456 2193 ref_root = ref->root;
5d4f98a2
YZ
2194
2195 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2196 if (extent_op)
5d4f98a2 2197 flags |= extent_op->flags_to_set;
ef89b824
NB
2198 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2199 flags, ref->objectid,
2200 ref->offset, &ins,
2201 node->ref_mod);
5d4f98a2 2202 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2203 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2204 ref->objectid, ref->offset,
2205 node->ref_mod, extent_op);
5d4f98a2 2206 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2207 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
c682f9b3 2210 extent_op);
5d4f98a2
YZ
2211 } else {
2212 BUG();
2213 }
2214 return ret;
2215}
2216
2217static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2218 struct extent_buffer *leaf,
2219 struct btrfs_extent_item *ei)
2220{
2221 u64 flags = btrfs_extent_flags(leaf, ei);
2222 if (extent_op->update_flags) {
2223 flags |= extent_op->flags_to_set;
2224 btrfs_set_extent_flags(leaf, ei, flags);
2225 }
2226
2227 if (extent_op->update_key) {
2228 struct btrfs_tree_block_info *bi;
2229 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2230 bi = (struct btrfs_tree_block_info *)(ei + 1);
2231 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2232 }
2233}
2234
2235static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2236 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2237 struct btrfs_delayed_extent_op *extent_op)
2238{
20b9a2d6 2239 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2240 struct btrfs_key key;
2241 struct btrfs_path *path;
2242 struct btrfs_extent_item *ei;
2243 struct extent_buffer *leaf;
2244 u32 item_size;
56bec294 2245 int ret;
5d4f98a2 2246 int err = 0;
b1c79e09 2247 int metadata = !extent_op->is_data;
5d4f98a2 2248
79787eaa
JM
2249 if (trans->aborted)
2250 return 0;
2251
0b246afa 2252 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2253 metadata = 0;
2254
5d4f98a2
YZ
2255 path = btrfs_alloc_path();
2256 if (!path)
2257 return -ENOMEM;
2258
d278850e 2259 key.objectid = head->bytenr;
5d4f98a2 2260
3173a18f 2261 if (metadata) {
3173a18f 2262 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2263 key.offset = extent_op->level;
3173a18f
JB
2264 } else {
2265 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2266 key.offset = head->num_bytes;
3173a18f
JB
2267 }
2268
2269again:
e4058b54 2270 path->reada = READA_FORWARD;
5d4f98a2 2271 path->leave_spinning = 1;
0b246afa 2272 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2273 if (ret < 0) {
2274 err = ret;
2275 goto out;
2276 }
2277 if (ret > 0) {
3173a18f 2278 if (metadata) {
55994887
FDBM
2279 if (path->slots[0] > 0) {
2280 path->slots[0]--;
2281 btrfs_item_key_to_cpu(path->nodes[0], &key,
2282 path->slots[0]);
d278850e 2283 if (key.objectid == head->bytenr &&
55994887 2284 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2285 key.offset == head->num_bytes)
55994887
FDBM
2286 ret = 0;
2287 }
2288 if (ret > 0) {
2289 btrfs_release_path(path);
2290 metadata = 0;
3173a18f 2291
d278850e
JB
2292 key.objectid = head->bytenr;
2293 key.offset = head->num_bytes;
55994887
FDBM
2294 key.type = BTRFS_EXTENT_ITEM_KEY;
2295 goto again;
2296 }
2297 } else {
2298 err = -EIO;
2299 goto out;
3173a18f 2300 }
5d4f98a2
YZ
2301 }
2302
2303 leaf = path->nodes[0];
2304 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2305
6d8ff4e4 2306 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2307 err = -EINVAL;
2308 btrfs_print_v0_err(fs_info);
2309 btrfs_abort_transaction(trans, err);
2310 goto out;
2311 }
2312
5d4f98a2
YZ
2313 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2314 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2315
5d4f98a2
YZ
2316 btrfs_mark_buffer_dirty(leaf);
2317out:
2318 btrfs_free_path(path);
2319 return err;
56bec294
CM
2320}
2321
5d4f98a2 2322static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2323 struct btrfs_delayed_ref_node *node,
2324 struct btrfs_delayed_extent_op *extent_op,
2325 int insert_reserved)
56bec294
CM
2326{
2327 int ret = 0;
5d4f98a2 2328 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2329 u64 parent = 0;
2330 u64 ref_root = 0;
56bec294 2331
5d4f98a2 2332 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2333 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2334
5d4f98a2
YZ
2335 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2336 parent = ref->parent;
fcebe456 2337 ref_root = ref->root;
5d4f98a2 2338
02794222 2339 if (node->ref_mod != 1) {
f97806f2 2340 btrfs_err(trans->fs_info,
02794222
LB
2341 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2342 node->bytenr, node->ref_mod, node->action, ref_root,
2343 parent);
2344 return -EIO;
2345 }
5d4f98a2 2346 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2347 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2348 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2349 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2350 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2351 ref->level, 0, 1, extent_op);
5d4f98a2 2352 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2353 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2354 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2355 } else {
2356 BUG();
2357 }
56bec294
CM
2358 return ret;
2359}
2360
2361/* helper function to actually process a single delayed ref entry */
5d4f98a2 2362static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2363 struct btrfs_delayed_ref_node *node,
2364 struct btrfs_delayed_extent_op *extent_op,
2365 int insert_reserved)
56bec294 2366{
79787eaa
JM
2367 int ret = 0;
2368
857cc2fc
JB
2369 if (trans->aborted) {
2370 if (insert_reserved)
5fac7f9e 2371 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2372 node->num_bytes, 1);
79787eaa 2373 return 0;
857cc2fc 2374 }
79787eaa 2375
5d4f98a2
YZ
2376 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2377 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2378 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2379 insert_reserved);
2380 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2381 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2382 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2383 insert_reserved);
2384 else
2385 BUG();
80ee54bf
JB
2386 if (ret && insert_reserved)
2387 btrfs_pin_extent(trans->fs_info, node->bytenr,
2388 node->num_bytes, 1);
5d4f98a2 2389 return ret;
56bec294
CM
2390}
2391
c6fc2454 2392static inline struct btrfs_delayed_ref_node *
56bec294
CM
2393select_delayed_ref(struct btrfs_delayed_ref_head *head)
2394{
cffc3374
FM
2395 struct btrfs_delayed_ref_node *ref;
2396
e3d03965 2397 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2398 return NULL;
d7df2c79 2399
cffc3374
FM
2400 /*
2401 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2402 * This is to prevent a ref count from going down to zero, which deletes
2403 * the extent item from the extent tree, when there still are references
2404 * to add, which would fail because they would not find the extent item.
2405 */
1d57ee94
WX
2406 if (!list_empty(&head->ref_add_list))
2407 return list_first_entry(&head->ref_add_list,
2408 struct btrfs_delayed_ref_node, add_list);
2409
e3d03965 2410 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2411 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2412 ASSERT(list_empty(&ref->add_list));
2413 return ref;
56bec294
CM
2414}
2415
2eadaa22
JB
2416static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2417 struct btrfs_delayed_ref_head *head)
2418{
2419 spin_lock(&delayed_refs->lock);
2420 head->processing = 0;
2421 delayed_refs->num_heads_ready++;
2422 spin_unlock(&delayed_refs->lock);
2423 btrfs_delayed_ref_unlock(head);
2424}
2425
bedc6617
JB
2426static struct btrfs_delayed_extent_op *cleanup_extent_op(
2427 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2428{
2429 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2430
2431 if (!extent_op)
bedc6617
JB
2432 return NULL;
2433
b00e6250 2434 if (head->must_insert_reserved) {
bedc6617 2435 head->extent_op = NULL;
b00e6250 2436 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2437 return NULL;
b00e6250 2438 }
bedc6617
JB
2439 return extent_op;
2440}
2441
2442static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2443 struct btrfs_delayed_ref_head *head)
2444{
2445 struct btrfs_delayed_extent_op *extent_op;
2446 int ret;
2447
2448 extent_op = cleanup_extent_op(head);
2449 if (!extent_op)
2450 return 0;
2451 head->extent_op = NULL;
b00e6250 2452 spin_unlock(&head->lock);
20b9a2d6 2453 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2454 btrfs_free_delayed_extent_op(extent_op);
2455 return ret ? ret : 1;
2456}
2457
31890da0
JB
2458void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2459 struct btrfs_delayed_ref_root *delayed_refs,
2460 struct btrfs_delayed_ref_head *head)
07c47775 2461{
ba2c4d4e 2462 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2463
2464 if (head->total_ref_mod < 0) {
2465 struct btrfs_space_info *space_info;
2466 u64 flags;
2467
2468 if (head->is_data)
2469 flags = BTRFS_BLOCK_GROUP_DATA;
2470 else if (head->is_system)
2471 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2472 else
2473 flags = BTRFS_BLOCK_GROUP_METADATA;
2474 space_info = __find_space_info(fs_info, flags);
2475 ASSERT(space_info);
2476 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2477 -head->num_bytes,
2478 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2479
ba2c4d4e
JB
2480 /*
2481 * We had csum deletions accounted for in our delayed refs rsv,
2482 * we need to drop the csum leaves for this update from our
2483 * delayed_refs_rsv.
2484 */
07c47775
JB
2485 if (head->is_data) {
2486 spin_lock(&delayed_refs->lock);
2487 delayed_refs->pending_csums -= head->num_bytes;
2488 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2489 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2490 head->num_bytes);
07c47775
JB
2491 }
2492 }
2493
ba2c4d4e 2494 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2495}
2496
194ab0bc 2497static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2498 struct btrfs_delayed_ref_head *head)
2499{
f9871edd
NB
2500
2501 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2502 struct btrfs_delayed_ref_root *delayed_refs;
2503 int ret;
2504
2505 delayed_refs = &trans->transaction->delayed_refs;
2506
bedc6617 2507 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2508 if (ret < 0) {
2509 unselect_delayed_ref_head(delayed_refs, head);
2510 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2511 return ret;
2512 } else if (ret) {
2513 return ret;
2514 }
2515
2516 /*
2517 * Need to drop our head ref lock and re-acquire the delayed ref lock
2518 * and then re-check to make sure nobody got added.
2519 */
2520 spin_unlock(&head->lock);
2521 spin_lock(&delayed_refs->lock);
2522 spin_lock(&head->lock);
e3d03965 2523 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2524 spin_unlock(&head->lock);
2525 spin_unlock(&delayed_refs->lock);
2526 return 1;
2527 }
d7baffda 2528 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2529 spin_unlock(&head->lock);
1e7a1421 2530 spin_unlock(&delayed_refs->lock);
c1103f7a 2531
c1103f7a 2532 if (head->must_insert_reserved) {
d278850e
JB
2533 btrfs_pin_extent(fs_info, head->bytenr,
2534 head->num_bytes, 1);
c1103f7a 2535 if (head->is_data) {
d278850e
JB
2536 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2537 head->num_bytes);
c1103f7a
JB
2538 }
2539 }
2540
31890da0 2541 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2542
2543 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2544 btrfs_delayed_ref_unlock(head);
d278850e 2545 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2546 return 0;
2547}
2548
b1cdbcb5
NB
2549static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2550 struct btrfs_trans_handle *trans)
2551{
2552 struct btrfs_delayed_ref_root *delayed_refs =
2553 &trans->transaction->delayed_refs;
2554 struct btrfs_delayed_ref_head *head = NULL;
2555 int ret;
2556
2557 spin_lock(&delayed_refs->lock);
5637c74b 2558 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2559 if (!head) {
2560 spin_unlock(&delayed_refs->lock);
2561 return head;
2562 }
2563
2564 /*
2565 * Grab the lock that says we are going to process all the refs for
2566 * this head
2567 */
9e920a6f 2568 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2569 spin_unlock(&delayed_refs->lock);
2570
2571 /*
2572 * We may have dropped the spin lock to get the head mutex lock, and
2573 * that might have given someone else time to free the head. If that's
2574 * true, it has been removed from our list and we can move on.
2575 */
2576 if (ret == -EAGAIN)
2577 head = ERR_PTR(-EAGAIN);
2578
2579 return head;
2580}
2581
e7261386
NB
2582static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2583 struct btrfs_delayed_ref_head *locked_ref,
2584 unsigned long *run_refs)
2585{
2586 struct btrfs_fs_info *fs_info = trans->fs_info;
2587 struct btrfs_delayed_ref_root *delayed_refs;
2588 struct btrfs_delayed_extent_op *extent_op;
2589 struct btrfs_delayed_ref_node *ref;
2590 int must_insert_reserved = 0;
2591 int ret;
2592
2593 delayed_refs = &trans->transaction->delayed_refs;
2594
0110a4c4
NB
2595 lockdep_assert_held(&locked_ref->mutex);
2596 lockdep_assert_held(&locked_ref->lock);
2597
e7261386
NB
2598 while ((ref = select_delayed_ref(locked_ref))) {
2599 if (ref->seq &&
2600 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2601 spin_unlock(&locked_ref->lock);
2602 unselect_delayed_ref_head(delayed_refs, locked_ref);
2603 return -EAGAIN;
2604 }
2605
2606 (*run_refs)++;
2607 ref->in_tree = 0;
2608 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2609 RB_CLEAR_NODE(&ref->ref_node);
2610 if (!list_empty(&ref->add_list))
2611 list_del(&ref->add_list);
2612 /*
2613 * When we play the delayed ref, also correct the ref_mod on
2614 * head
2615 */
2616 switch (ref->action) {
2617 case BTRFS_ADD_DELAYED_REF:
2618 case BTRFS_ADD_DELAYED_EXTENT:
2619 locked_ref->ref_mod -= ref->ref_mod;
2620 break;
2621 case BTRFS_DROP_DELAYED_REF:
2622 locked_ref->ref_mod += ref->ref_mod;
2623 break;
2624 default:
2625 WARN_ON(1);
2626 }
2627 atomic_dec(&delayed_refs->num_entries);
2628
2629 /*
2630 * Record the must_insert_reserved flag before we drop the
2631 * spin lock.
2632 */
2633 must_insert_reserved = locked_ref->must_insert_reserved;
2634 locked_ref->must_insert_reserved = 0;
2635
2636 extent_op = locked_ref->extent_op;
2637 locked_ref->extent_op = NULL;
2638 spin_unlock(&locked_ref->lock);
2639
2640 ret = run_one_delayed_ref(trans, ref, extent_op,
2641 must_insert_reserved);
2642
2643 btrfs_free_delayed_extent_op(extent_op);
2644 if (ret) {
2645 unselect_delayed_ref_head(delayed_refs, locked_ref);
2646 btrfs_put_delayed_ref(ref);
2647 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2648 ret);
2649 return ret;
2650 }
2651
2652 btrfs_put_delayed_ref(ref);
2653 cond_resched();
2654
2655 spin_lock(&locked_ref->lock);
2656 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2657 }
2658
2659 return 0;
2660}
2661
79787eaa
JM
2662/*
2663 * Returns 0 on success or if called with an already aborted transaction.
2664 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2665 */
d7df2c79 2666static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2667 unsigned long nr)
56bec294 2668{
0a1e458a 2669 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2670 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2671 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2672 ktime_t start = ktime_get();
56bec294 2673 int ret;
d7df2c79 2674 unsigned long count = 0;
0a2b2a84 2675 unsigned long actual_count = 0;
56bec294
CM
2676
2677 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2678 do {
56bec294 2679 if (!locked_ref) {
b1cdbcb5 2680 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2681 if (IS_ERR_OR_NULL(locked_ref)) {
2682 if (PTR_ERR(locked_ref) == -EAGAIN) {
2683 continue;
2684 } else {
2685 break;
2686 }
56bec294 2687 }
0110a4c4 2688 count++;
56bec294 2689 }
2c3cf7d5
FM
2690 /*
2691 * We need to try and merge add/drops of the same ref since we
2692 * can run into issues with relocate dropping the implicit ref
2693 * and then it being added back again before the drop can
2694 * finish. If we merged anything we need to re-loop so we can
2695 * get a good ref.
2696 * Or we can get node references of the same type that weren't
2697 * merged when created due to bumps in the tree mod seq, and
2698 * we need to merge them to prevent adding an inline extent
2699 * backref before dropping it (triggering a BUG_ON at
2700 * insert_inline_extent_backref()).
2701 */
d7df2c79 2702 spin_lock(&locked_ref->lock);
be97f133 2703 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2704
0110a4c4
NB
2705 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2706 &actual_count);
2707 if (ret < 0 && ret != -EAGAIN) {
2708 /*
2709 * Error, btrfs_run_delayed_refs_for_head already
2710 * unlocked everything so just bail out
2711 */
2712 return ret;
2713 } else if (!ret) {
2714 /*
2715 * Success, perform the usual cleanup of a processed
2716 * head
2717 */
f9871edd 2718 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2719 if (ret > 0 ) {
b00e6250
JB
2720 /* We dropped our lock, we need to loop. */
2721 ret = 0;
d7df2c79 2722 continue;
194ab0bc
JB
2723 } else if (ret) {
2724 return ret;
5d4f98a2 2725 }
22cd2e7d 2726 }
1ce7a5ec 2727
b00e6250 2728 /*
0110a4c4
NB
2729 * Either success case or btrfs_run_delayed_refs_for_head
2730 * returned -EAGAIN, meaning we need to select another head
b00e6250 2731 */
b00e6250 2732
0110a4c4 2733 locked_ref = NULL;
c3e69d58 2734 cond_resched();
0110a4c4 2735 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2736
2737 /*
2738 * We don't want to include ref heads since we can have empty ref heads
2739 * and those will drastically skew our runtime down since we just do
2740 * accounting, no actual extent tree updates.
2741 */
2742 if (actual_count > 0) {
2743 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2744 u64 avg;
2745
2746 /*
2747 * We weigh the current average higher than our current runtime
2748 * to avoid large swings in the average.
2749 */
2750 spin_lock(&delayed_refs->lock);
2751 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2752 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2753 spin_unlock(&delayed_refs->lock);
2754 }
d7df2c79 2755 return 0;
c3e69d58
CM
2756}
2757
709c0486
AJ
2758#ifdef SCRAMBLE_DELAYED_REFS
2759/*
2760 * Normally delayed refs get processed in ascending bytenr order. This
2761 * correlates in most cases to the order added. To expose dependencies on this
2762 * order, we start to process the tree in the middle instead of the beginning
2763 */
2764static u64 find_middle(struct rb_root *root)
2765{
2766 struct rb_node *n = root->rb_node;
2767 struct btrfs_delayed_ref_node *entry;
2768 int alt = 1;
2769 u64 middle;
2770 u64 first = 0, last = 0;
2771
2772 n = rb_first(root);
2773 if (n) {
2774 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2775 first = entry->bytenr;
2776 }
2777 n = rb_last(root);
2778 if (n) {
2779 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2780 last = entry->bytenr;
2781 }
2782 n = root->rb_node;
2783
2784 while (n) {
2785 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2786 WARN_ON(!entry->in_tree);
2787
2788 middle = entry->bytenr;
2789
2790 if (alt)
2791 n = n->rb_left;
2792 else
2793 n = n->rb_right;
2794
2795 alt = 1 - alt;
2796 }
2797 return middle;
2798}
2799#endif
2800
2ff7e61e 2801static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2802{
2803 u64 num_bytes;
2804
2805 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2806 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2807 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2808 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2809
2810 /*
2811 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2812 * closer to what we're really going to want to use.
1be41b78 2813 */
0b246afa 2814 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2815}
2816
1262133b
JB
2817/*
2818 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2819 * would require to store the csums for that many bytes.
2820 */
2ff7e61e 2821u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2822{
2823 u64 csum_size;
2824 u64 num_csums_per_leaf;
2825 u64 num_csums;
2826
0b246afa 2827 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2828 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2829 (u64)btrfs_super_csum_size(fs_info->super_copy));
2830 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2831 num_csums += num_csums_per_leaf - 1;
2832 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2833 return num_csums;
2834}
2835
64403612 2836bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2837{
64403612
JB
2838 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2839 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2840 bool ret = false;
2841 u64 reserved;
1be41b78 2842
64403612
JB
2843 spin_lock(&global_rsv->lock);
2844 reserved = global_rsv->reserved;
2845 spin_unlock(&global_rsv->lock);
1be41b78
JB
2846
2847 /*
64403612
JB
2848 * Since the global reserve is just kind of magic we don't really want
2849 * to rely on it to save our bacon, so if our size is more than the
2850 * delayed_refs_rsv and the global rsv then it's time to think about
2851 * bailing.
1be41b78 2852 */
64403612
JB
2853 spin_lock(&delayed_refs_rsv->lock);
2854 reserved += delayed_refs_rsv->reserved;
2855 if (delayed_refs_rsv->size >= reserved)
2856 ret = true;
2857 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2858 return ret;
2859}
2860
7c861627 2861int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2862{
0a2b2a84
JB
2863 u64 num_entries =
2864 atomic_read(&trans->transaction->delayed_refs.num_entries);
2865 u64 avg_runtime;
a79b7d4b 2866 u64 val;
0a2b2a84
JB
2867
2868 smp_mb();
7c861627 2869 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2870 val = num_entries * avg_runtime;
dc1a90c6 2871 if (val >= NSEC_PER_SEC)
0a2b2a84 2872 return 1;
a79b7d4b
CM
2873 if (val >= NSEC_PER_SEC / 2)
2874 return 2;
0a2b2a84 2875
64403612 2876 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2877}
2878
c3e69d58
CM
2879/*
2880 * this starts processing the delayed reference count updates and
2881 * extent insertions we have queued up so far. count can be
2882 * 0, which means to process everything in the tree at the start
2883 * of the run (but not newly added entries), or it can be some target
2884 * number you'd like to process.
79787eaa
JM
2885 *
2886 * Returns 0 on success or if called with an aborted transaction
2887 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2888 */
2889int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2890 unsigned long count)
c3e69d58 2891{
c79a70b1 2892 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2893 struct rb_node *node;
2894 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2895 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2896 int ret;
2897 int run_all = count == (unsigned long)-1;
c3e69d58 2898
79787eaa
JM
2899 /* We'll clean this up in btrfs_cleanup_transaction */
2900 if (trans->aborted)
2901 return 0;
2902
0b246afa 2903 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2904 return 0;
2905
c3e69d58 2906 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2907 if (count == 0)
d7df2c79 2908 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2909
c3e69d58 2910again:
709c0486
AJ
2911#ifdef SCRAMBLE_DELAYED_REFS
2912 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2913#endif
0a1e458a 2914 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2915 if (ret < 0) {
66642832 2916 btrfs_abort_transaction(trans, ret);
d7df2c79 2917 return ret;
eb099670 2918 }
c3e69d58 2919
56bec294 2920 if (run_all) {
119e80df 2921 btrfs_create_pending_block_groups(trans);
ea658bad 2922
d7df2c79 2923 spin_lock(&delayed_refs->lock);
5c9d028b 2924 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
2925 if (!node) {
2926 spin_unlock(&delayed_refs->lock);
56bec294 2927 goto out;
d7df2c79 2928 }
d278850e
JB
2929 head = rb_entry(node, struct btrfs_delayed_ref_head,
2930 href_node);
2931 refcount_inc(&head->refs);
2932 spin_unlock(&delayed_refs->lock);
e9d0b13b 2933
d278850e
JB
2934 /* Mutex was contended, block until it's released and retry. */
2935 mutex_lock(&head->mutex);
2936 mutex_unlock(&head->mutex);
56bec294 2937
d278850e 2938 btrfs_put_delayed_ref_head(head);
d7df2c79 2939 cond_resched();
56bec294 2940 goto again;
5f39d397 2941 }
54aa1f4d 2942out:
a28ec197
CM
2943 return 0;
2944}
2945
5d4f98a2 2946int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 2947 struct btrfs_fs_info *fs_info,
5d4f98a2 2948 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2949 int level, int is_data)
5d4f98a2
YZ
2950{
2951 struct btrfs_delayed_extent_op *extent_op;
2952 int ret;
2953
78a6184a 2954 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2955 if (!extent_op)
2956 return -ENOMEM;
2957
2958 extent_op->flags_to_set = flags;
35b3ad50
DS
2959 extent_op->update_flags = true;
2960 extent_op->update_key = false;
2961 extent_op->is_data = is_data ? true : false;
b1c79e09 2962 extent_op->level = level;
5d4f98a2 2963
0b246afa 2964 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 2965 num_bytes, extent_op);
5d4f98a2 2966 if (ret)
78a6184a 2967 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2968 return ret;
2969}
2970
e4c3b2dc 2971static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2972 struct btrfs_path *path,
2973 u64 objectid, u64 offset, u64 bytenr)
2974{
2975 struct btrfs_delayed_ref_head *head;
2976 struct btrfs_delayed_ref_node *ref;
2977 struct btrfs_delayed_data_ref *data_ref;
2978 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2979 struct btrfs_transaction *cur_trans;
0e0adbcf 2980 struct rb_node *node;
5d4f98a2
YZ
2981 int ret = 0;
2982
998ac6d2 2983 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 2984 cur_trans = root->fs_info->running_transaction;
998ac6d2 2985 if (cur_trans)
2986 refcount_inc(&cur_trans->use_count);
2987 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
2988 if (!cur_trans)
2989 return 0;
2990
2991 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 2992 spin_lock(&delayed_refs->lock);
f72ad18e 2993 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
2994 if (!head) {
2995 spin_unlock(&delayed_refs->lock);
998ac6d2 2996 btrfs_put_transaction(cur_trans);
d7df2c79
JB
2997 return 0;
2998 }
5d4f98a2
YZ
2999
3000 if (!mutex_trylock(&head->mutex)) {
d278850e 3001 refcount_inc(&head->refs);
5d4f98a2
YZ
3002 spin_unlock(&delayed_refs->lock);
3003
b3b4aa74 3004 btrfs_release_path(path);
5d4f98a2 3005
8cc33e5c
DS
3006 /*
3007 * Mutex was contended, block until it's released and let
3008 * caller try again
3009 */
5d4f98a2
YZ
3010 mutex_lock(&head->mutex);
3011 mutex_unlock(&head->mutex);
d278850e 3012 btrfs_put_delayed_ref_head(head);
998ac6d2 3013 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3014 return -EAGAIN;
3015 }
d7df2c79 3016 spin_unlock(&delayed_refs->lock);
5d4f98a2 3017
d7df2c79 3018 spin_lock(&head->lock);
0e0adbcf
JB
3019 /*
3020 * XXX: We should replace this with a proper search function in the
3021 * future.
3022 */
e3d03965
LB
3023 for (node = rb_first_cached(&head->ref_tree); node;
3024 node = rb_next(node)) {
0e0adbcf 3025 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3026 /* If it's a shared ref we know a cross reference exists */
3027 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3028 ret = 1;
3029 break;
3030 }
5d4f98a2 3031
d7df2c79 3032 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3033
d7df2c79
JB
3034 /*
3035 * If our ref doesn't match the one we're currently looking at
3036 * then we have a cross reference.
3037 */
3038 if (data_ref->root != root->root_key.objectid ||
3039 data_ref->objectid != objectid ||
3040 data_ref->offset != offset) {
3041 ret = 1;
3042 break;
3043 }
5d4f98a2 3044 }
d7df2c79 3045 spin_unlock(&head->lock);
5d4f98a2 3046 mutex_unlock(&head->mutex);
998ac6d2 3047 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3048 return ret;
3049}
3050
e4c3b2dc 3051static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3052 struct btrfs_path *path,
3053 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3054{
0b246afa
JM
3055 struct btrfs_fs_info *fs_info = root->fs_info;
3056 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3057 struct extent_buffer *leaf;
5d4f98a2
YZ
3058 struct btrfs_extent_data_ref *ref;
3059 struct btrfs_extent_inline_ref *iref;
3060 struct btrfs_extent_item *ei;
f321e491 3061 struct btrfs_key key;
5d4f98a2 3062 u32 item_size;
3de28d57 3063 int type;
be20aa9d 3064 int ret;
925baedd 3065
be20aa9d 3066 key.objectid = bytenr;
31840ae1 3067 key.offset = (u64)-1;
f321e491 3068 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3069
be20aa9d
CM
3070 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3071 if (ret < 0)
3072 goto out;
79787eaa 3073 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3074
3075 ret = -ENOENT;
3076 if (path->slots[0] == 0)
31840ae1 3077 goto out;
be20aa9d 3078
31840ae1 3079 path->slots[0]--;
f321e491 3080 leaf = path->nodes[0];
5d4f98a2 3081 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3082
5d4f98a2 3083 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3084 goto out;
f321e491 3085
5d4f98a2
YZ
3086 ret = 1;
3087 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3088 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3089
5d4f98a2
YZ
3090 if (item_size != sizeof(*ei) +
3091 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3092 goto out;
be20aa9d 3093
5d4f98a2
YZ
3094 if (btrfs_extent_generation(leaf, ei) <=
3095 btrfs_root_last_snapshot(&root->root_item))
3096 goto out;
3097
3098 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3099
3100 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3101 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3102 goto out;
3103
3104 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3105 if (btrfs_extent_refs(leaf, ei) !=
3106 btrfs_extent_data_ref_count(leaf, ref) ||
3107 btrfs_extent_data_ref_root(leaf, ref) !=
3108 root->root_key.objectid ||
3109 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3110 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3111 goto out;
3112
3113 ret = 0;
3114out:
3115 return ret;
3116}
3117
e4c3b2dc
LB
3118int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3119 u64 bytenr)
5d4f98a2
YZ
3120{
3121 struct btrfs_path *path;
3122 int ret;
5d4f98a2
YZ
3123
3124 path = btrfs_alloc_path();
3125 if (!path)
9132c4ff 3126 return -ENOMEM;
5d4f98a2
YZ
3127
3128 do {
e4c3b2dc 3129 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3130 offset, bytenr);
3131 if (ret && ret != -ENOENT)
f321e491 3132 goto out;
80ff3856 3133
380fd066
MT
3134 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3135 } while (ret == -EAGAIN);
5d4f98a2 3136
be20aa9d 3137out:
80ff3856 3138 btrfs_free_path(path);
f0486c68
YZ
3139 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3140 WARN_ON(ret > 0);
f321e491 3141 return ret;
be20aa9d 3142}
c5739bba 3143
5d4f98a2 3144static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3145 struct btrfs_root *root,
5d4f98a2 3146 struct extent_buffer *buf,
e339a6b0 3147 int full_backref, int inc)
31840ae1 3148{
0b246afa 3149 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3150 u64 bytenr;
5d4f98a2
YZ
3151 u64 num_bytes;
3152 u64 parent;
31840ae1 3153 u64 ref_root;
31840ae1 3154 u32 nritems;
31840ae1
ZY
3155 struct btrfs_key key;
3156 struct btrfs_file_extent_item *fi;
3157 int i;
3158 int level;
3159 int ret = 0;
fccb84c9 3160
0b246afa 3161 if (btrfs_is_testing(fs_info))
faa2dbf0 3162 return 0;
fccb84c9 3163
31840ae1 3164 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3165 nritems = btrfs_header_nritems(buf);
3166 level = btrfs_header_level(buf);
3167
27cdeb70 3168 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3169 return 0;
31840ae1 3170
5d4f98a2
YZ
3171 if (full_backref)
3172 parent = buf->start;
3173 else
3174 parent = 0;
3175
3176 for (i = 0; i < nritems; i++) {
31840ae1 3177 if (level == 0) {
5d4f98a2 3178 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3179 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3180 continue;
5d4f98a2 3181 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3182 struct btrfs_file_extent_item);
3183 if (btrfs_file_extent_type(buf, fi) ==
3184 BTRFS_FILE_EXTENT_INLINE)
3185 continue;
3186 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3187 if (bytenr == 0)
3188 continue;
5d4f98a2
YZ
3189
3190 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3191 key.offset -= btrfs_file_extent_offset(buf, fi);
dd28b6a5
QW
3192 if (inc)
3193 ret = btrfs_inc_extent_ref(trans, root, bytenr,
3194 num_bytes, parent, ref_root,
3195 key.objectid, key.offset);
3196 else
3197 ret = btrfs_free_extent(trans, root, bytenr,
3198 num_bytes, parent, ref_root,
3199 key.objectid, key.offset);
31840ae1
ZY
3200 if (ret)
3201 goto fail;
3202 } else {
5d4f98a2 3203 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3204 num_bytes = fs_info->nodesize;
dd28b6a5
QW
3205 if (inc)
3206 ret = btrfs_inc_extent_ref(trans, root, bytenr,
3207 num_bytes, parent, ref_root,
3208 level - 1, 0);
3209 else
3210 ret = btrfs_free_extent(trans, root, bytenr,
3211 num_bytes, parent, ref_root,
3212 level - 1, 0);
31840ae1
ZY
3213 if (ret)
3214 goto fail;
3215 }
3216 }
3217 return 0;
3218fail:
5d4f98a2
YZ
3219 return ret;
3220}
3221
3222int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3223 struct extent_buffer *buf, int full_backref)
5d4f98a2 3224{
e339a6b0 3225 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3226}
3227
3228int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3229 struct extent_buffer *buf, int full_backref)
5d4f98a2 3230{
e339a6b0 3231 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3232}
3233
9078a3e1 3234static int write_one_cache_group(struct btrfs_trans_handle *trans,
9078a3e1
CM
3235 struct btrfs_path *path,
3236 struct btrfs_block_group_cache *cache)
3237{
39db232d 3238 struct btrfs_fs_info *fs_info = trans->fs_info;
9078a3e1 3239 int ret;
0b246afa 3240 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3241 unsigned long bi;
3242 struct extent_buffer *leaf;
9078a3e1 3243
9078a3e1 3244 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3245 if (ret) {
3246 if (ret > 0)
3247 ret = -ENOENT;
54aa1f4d 3248 goto fail;
df95e7f0 3249 }
5f39d397
CM
3250
3251 leaf = path->nodes[0];
3252 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3253 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3254 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3255fail:
24b89d08 3256 btrfs_release_path(path);
df95e7f0 3257 return ret;
9078a3e1
CM
3258
3259}
3260
f87b7eb8
DS
3261static struct btrfs_block_group_cache *next_block_group(
3262 struct btrfs_block_group_cache *cache)
4a8c9a62 3263{
f87b7eb8 3264 struct btrfs_fs_info *fs_info = cache->fs_info;
4a8c9a62 3265 struct rb_node *node;
292cbd51 3266
0b246afa 3267 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3268
3269 /* If our block group was removed, we need a full search. */
3270 if (RB_EMPTY_NODE(&cache->cache_node)) {
3271 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3272
0b246afa 3273 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3274 btrfs_put_block_group(cache);
0b246afa 3275 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3276 }
4a8c9a62
YZ
3277 node = rb_next(&cache->cache_node);
3278 btrfs_put_block_group(cache);
3279 if (node) {
3280 cache = rb_entry(node, struct btrfs_block_group_cache,
3281 cache_node);
11dfe35a 3282 btrfs_get_block_group(cache);
4a8c9a62
YZ
3283 } else
3284 cache = NULL;
0b246afa 3285 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3286 return cache;
3287}
3288
0af3d00b
JB
3289static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3290 struct btrfs_trans_handle *trans,
3291 struct btrfs_path *path)
3292{
0b246afa
JM
3293 struct btrfs_fs_info *fs_info = block_group->fs_info;
3294 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3295 struct inode *inode = NULL;
364ecf36 3296 struct extent_changeset *data_reserved = NULL;
0af3d00b 3297 u64 alloc_hint = 0;
2b20982e 3298 int dcs = BTRFS_DC_ERROR;
f8c269d7 3299 u64 num_pages = 0;
0af3d00b
JB
3300 int retries = 0;
3301 int ret = 0;
3302
3303 /*
3304 * If this block group is smaller than 100 megs don't bother caching the
3305 * block group.
3306 */
ee22184b 3307 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3308 spin_lock(&block_group->lock);
3309 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3310 spin_unlock(&block_group->lock);
3311 return 0;
3312 }
3313
0c0ef4bc
JB
3314 if (trans->aborted)
3315 return 0;
0af3d00b 3316again:
7949f339 3317 inode = lookup_free_space_inode(block_group, path);
0af3d00b
JB
3318 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3319 ret = PTR_ERR(inode);
b3b4aa74 3320 btrfs_release_path(path);
0af3d00b
JB
3321 goto out;
3322 }
3323
3324 if (IS_ERR(inode)) {
3325 BUG_ON(retries);
3326 retries++;
3327
3328 if (block_group->ro)
3329 goto out_free;
3330
4ca75f1b 3331 ret = create_free_space_inode(trans, block_group, path);
0af3d00b
JB
3332 if (ret)
3333 goto out_free;
3334 goto again;
3335 }
3336
3337 /*
3338 * We want to set the generation to 0, that way if anything goes wrong
3339 * from here on out we know not to trust this cache when we load up next
3340 * time.
3341 */
3342 BTRFS_I(inode)->generation = 0;
3343 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3344 if (ret) {
3345 /*
3346 * So theoretically we could recover from this, simply set the
3347 * super cache generation to 0 so we know to invalidate the
3348 * cache, but then we'd have to keep track of the block groups
3349 * that fail this way so we know we _have_ to reset this cache
3350 * before the next commit or risk reading stale cache. So to
3351 * limit our exposure to horrible edge cases lets just abort the
3352 * transaction, this only happens in really bad situations
3353 * anyway.
3354 */
66642832 3355 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3356 goto out_put;
3357 }
0af3d00b
JB
3358 WARN_ON(ret);
3359
8e138e0d
JB
3360 /* We've already setup this transaction, go ahead and exit */
3361 if (block_group->cache_generation == trans->transid &&
3362 i_size_read(inode)) {
3363 dcs = BTRFS_DC_SETUP;
3364 goto out_put;
3365 }
3366
0af3d00b 3367 if (i_size_read(inode) > 0) {
2ff7e61e 3368 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3369 &fs_info->global_block_rsv);
7b61cd92
MX
3370 if (ret)
3371 goto out_put;
3372
77ab86bf 3373 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3374 if (ret)
3375 goto out_put;
3376 }
3377
3378 spin_lock(&block_group->lock);
cf7c1ef6 3379 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3380 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3381 /*
3382 * don't bother trying to write stuff out _if_
3383 * a) we're not cached,
1a79c1f2
LB
3384 * b) we're with nospace_cache mount option,
3385 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3386 */
2b20982e 3387 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3388 spin_unlock(&block_group->lock);
3389 goto out_put;
3390 }
3391 spin_unlock(&block_group->lock);
3392
2968b1f4
JB
3393 /*
3394 * We hit an ENOSPC when setting up the cache in this transaction, just
3395 * skip doing the setup, we've already cleared the cache so we're safe.
3396 */
3397 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3398 ret = -ENOSPC;
3399 goto out_put;
3400 }
3401
6fc823b1
JB
3402 /*
3403 * Try to preallocate enough space based on how big the block group is.
3404 * Keep in mind this has to include any pinned space which could end up
3405 * taking up quite a bit since it's not folded into the other space
3406 * cache.
3407 */
ee22184b 3408 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3409 if (!num_pages)
3410 num_pages = 1;
3411
0af3d00b 3412 num_pages *= 16;
09cbfeaf 3413 num_pages *= PAGE_SIZE;
0af3d00b 3414
364ecf36 3415 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3416 if (ret)
3417 goto out_put;
3418
3419 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3420 num_pages, num_pages,
3421 &alloc_hint);
2968b1f4
JB
3422 /*
3423 * Our cache requires contiguous chunks so that we don't modify a bunch
3424 * of metadata or split extents when writing the cache out, which means
3425 * we can enospc if we are heavily fragmented in addition to just normal
3426 * out of space conditions. So if we hit this just skip setting up any
3427 * other block groups for this transaction, maybe we'll unpin enough
3428 * space the next time around.
3429 */
2b20982e
JB
3430 if (!ret)
3431 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3432 else if (ret == -ENOSPC)
3433 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3434
0af3d00b
JB
3435out_put:
3436 iput(inode);
3437out_free:
b3b4aa74 3438 btrfs_release_path(path);
0af3d00b
JB
3439out:
3440 spin_lock(&block_group->lock);
e65cbb94 3441 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3442 block_group->cache_generation = trans->transid;
2b20982e 3443 block_group->disk_cache_state = dcs;
0af3d00b
JB
3444 spin_unlock(&block_group->lock);
3445
364ecf36 3446 extent_changeset_free(data_reserved);
0af3d00b
JB
3447 return ret;
3448}
3449
bbebb3e0 3450int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
dcdf7f6d 3451{
bbebb3e0 3452 struct btrfs_fs_info *fs_info = trans->fs_info;
dcdf7f6d
JB
3453 struct btrfs_block_group_cache *cache, *tmp;
3454 struct btrfs_transaction *cur_trans = trans->transaction;
3455 struct btrfs_path *path;
3456
3457 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3458 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3459 return 0;
3460
3461 path = btrfs_alloc_path();
3462 if (!path)
3463 return -ENOMEM;
3464
3465 /* Could add new block groups, use _safe just in case */
3466 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3467 dirty_list) {
3468 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3469 cache_save_setup(cache, trans, path);
3470 }
3471
3472 btrfs_free_path(path);
3473 return 0;
3474}
3475
1bbc621e
CM
3476/*
3477 * transaction commit does final block group cache writeback during a
3478 * critical section where nothing is allowed to change the FS. This is
3479 * required in order for the cache to actually match the block group,
3480 * but can introduce a lot of latency into the commit.
3481 *
3482 * So, btrfs_start_dirty_block_groups is here to kick off block group
3483 * cache IO. There's a chance we'll have to redo some of it if the
3484 * block group changes again during the commit, but it greatly reduces
3485 * the commit latency by getting rid of the easy block groups while
3486 * we're still allowing others to join the commit.
3487 */
21217054 3488int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3489{
21217054 3490 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3491 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3492 struct btrfs_transaction *cur_trans = trans->transaction;
3493 int ret = 0;
c9dc4c65 3494 int should_put;
1bbc621e
CM
3495 struct btrfs_path *path = NULL;
3496 LIST_HEAD(dirty);
3497 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3498 int num_started = 0;
1bbc621e
CM
3499 int loops = 0;
3500
3501 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3502 if (list_empty(&cur_trans->dirty_bgs)) {
3503 spin_unlock(&cur_trans->dirty_bgs_lock);
3504 return 0;
1bbc621e 3505 }
b58d1a9e 3506 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3507 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3508
1bbc621e 3509again:
1bbc621e
CM
3510 /*
3511 * make sure all the block groups on our dirty list actually
3512 * exist
3513 */
6c686b35 3514 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3515
3516 if (!path) {
3517 path = btrfs_alloc_path();
3518 if (!path)
3519 return -ENOMEM;
3520 }
3521
b58d1a9e
FM
3522 /*
3523 * cache_write_mutex is here only to save us from balance or automatic
3524 * removal of empty block groups deleting this block group while we are
3525 * writing out the cache
3526 */
3527 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3528 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3529 bool drop_reserve = true;
3530
1bbc621e
CM
3531 cache = list_first_entry(&dirty,
3532 struct btrfs_block_group_cache,
3533 dirty_list);
1bbc621e
CM
3534 /*
3535 * this can happen if something re-dirties a block
3536 * group that is already under IO. Just wait for it to
3537 * finish and then do it all again
3538 */
3539 if (!list_empty(&cache->io_list)) {
3540 list_del_init(&cache->io_list);
afdb5718 3541 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3542 btrfs_put_block_group(cache);
3543 }
3544
3545
3546 /*
3547 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3548 * if it should update the cache_state. Don't delete
3549 * until after we wait.
3550 *
3551 * Since we're not running in the commit critical section
3552 * we need the dirty_bgs_lock to protect from update_block_group
3553 */
3554 spin_lock(&cur_trans->dirty_bgs_lock);
3555 list_del_init(&cache->dirty_list);
3556 spin_unlock(&cur_trans->dirty_bgs_lock);
3557
3558 should_put = 1;
3559
3560 cache_save_setup(cache, trans, path);
3561
3562 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3563 cache->io_ctl.inode = NULL;
fe041534 3564 ret = btrfs_write_out_cache(trans, cache, path);
1bbc621e
CM
3565 if (ret == 0 && cache->io_ctl.inode) {
3566 num_started++;
3567 should_put = 0;
3568
3569 /*
45ae2c18
NB
3570 * The cache_write_mutex is protecting the
3571 * io_list, also refer to the definition of
3572 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3573 */
3574 list_add_tail(&cache->io_list, io);
3575 } else {
3576 /*
3577 * if we failed to write the cache, the
3578 * generation will be bad and life goes on
3579 */
3580 ret = 0;
3581 }
3582 }
ff1f8250 3583 if (!ret) {
39db232d 3584 ret = write_one_cache_group(trans, path, cache);
ff1f8250
FM
3585 /*
3586 * Our block group might still be attached to the list
3587 * of new block groups in the transaction handle of some
3588 * other task (struct btrfs_trans_handle->new_bgs). This
3589 * means its block group item isn't yet in the extent
3590 * tree. If this happens ignore the error, as we will
3591 * try again later in the critical section of the
3592 * transaction commit.
3593 */
3594 if (ret == -ENOENT) {
3595 ret = 0;
3596 spin_lock(&cur_trans->dirty_bgs_lock);
3597 if (list_empty(&cache->dirty_list)) {
3598 list_add_tail(&cache->dirty_list,
3599 &cur_trans->dirty_bgs);
3600 btrfs_get_block_group(cache);
ba2c4d4e 3601 drop_reserve = false;
ff1f8250
FM
3602 }
3603 spin_unlock(&cur_trans->dirty_bgs_lock);
3604 } else if (ret) {
66642832 3605 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3606 }
3607 }
1bbc621e 3608
52042d8e 3609 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3610 if (should_put)
3611 btrfs_put_block_group(cache);
ba2c4d4e
JB
3612 if (drop_reserve)
3613 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3614
3615 if (ret)
3616 break;
b58d1a9e
FM
3617
3618 /*
3619 * Avoid blocking other tasks for too long. It might even save
3620 * us from writing caches for block groups that are going to be
3621 * removed.
3622 */
3623 mutex_unlock(&trans->transaction->cache_write_mutex);
3624 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3625 }
b58d1a9e 3626 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3627
3628 /*
3629 * go through delayed refs for all the stuff we've just kicked off
3630 * and then loop back (just once)
3631 */
c79a70b1 3632 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3633 if (!ret && loops == 0) {
3634 loops++;
3635 spin_lock(&cur_trans->dirty_bgs_lock);
3636 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3637 /*
3638 * dirty_bgs_lock protects us from concurrent block group
3639 * deletes too (not just cache_write_mutex).
3640 */
3641 if (!list_empty(&dirty)) {
3642 spin_unlock(&cur_trans->dirty_bgs_lock);
3643 goto again;
3644 }
1bbc621e 3645 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3646 } else if (ret < 0) {
2ff7e61e 3647 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3648 }
3649
3650 btrfs_free_path(path);
3651 return ret;
3652}
3653
5742d15f 3654int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
1bbc621e 3655{
5742d15f 3656 struct btrfs_fs_info *fs_info = trans->fs_info;
1bbc621e
CM
3657 struct btrfs_block_group_cache *cache;
3658 struct btrfs_transaction *cur_trans = trans->transaction;
3659 int ret = 0;
3660 int should_put;
3661 struct btrfs_path *path;
3662 struct list_head *io = &cur_trans->io_bgs;
3663 int num_started = 0;
9078a3e1
CM
3664
3665 path = btrfs_alloc_path();
3666 if (!path)
3667 return -ENOMEM;
3668
ce93ec54 3669 /*
e44081ef
FM
3670 * Even though we are in the critical section of the transaction commit,
3671 * we can still have concurrent tasks adding elements to this
3672 * transaction's list of dirty block groups. These tasks correspond to
3673 * endio free space workers started when writeback finishes for a
3674 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3675 * allocate new block groups as a result of COWing nodes of the root
3676 * tree when updating the free space inode. The writeback for the space
3677 * caches is triggered by an earlier call to
3678 * btrfs_start_dirty_block_groups() and iterations of the following
3679 * loop.
3680 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3681 * delayed refs to make sure we have the best chance at doing this all
3682 * in one shot.
3683 */
e44081ef 3684 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3685 while (!list_empty(&cur_trans->dirty_bgs)) {
3686 cache = list_first_entry(&cur_trans->dirty_bgs,
3687 struct btrfs_block_group_cache,
3688 dirty_list);
c9dc4c65
CM
3689
3690 /*
3691 * this can happen if cache_save_setup re-dirties a block
3692 * group that is already under IO. Just wait for it to
3693 * finish and then do it all again
3694 */
3695 if (!list_empty(&cache->io_list)) {
e44081ef 3696 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3697 list_del_init(&cache->io_list);
afdb5718 3698 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3699 btrfs_put_block_group(cache);
e44081ef 3700 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3701 }
3702
1bbc621e
CM
3703 /*
3704 * don't remove from the dirty list until after we've waited
3705 * on any pending IO
3706 */
ce93ec54 3707 list_del_init(&cache->dirty_list);
e44081ef 3708 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3709 should_put = 1;
3710
1bbc621e 3711 cache_save_setup(cache, trans, path);
c9dc4c65 3712
ce93ec54 3713 if (!ret)
c79a70b1 3714 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3715 (unsigned long) -1);
c9dc4c65
CM
3716
3717 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3718 cache->io_ctl.inode = NULL;
fe041534 3719 ret = btrfs_write_out_cache(trans, cache, path);
c9dc4c65
CM
3720 if (ret == 0 && cache->io_ctl.inode) {
3721 num_started++;
3722 should_put = 0;
1bbc621e 3723 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3724 } else {
3725 /*
3726 * if we failed to write the cache, the
3727 * generation will be bad and life goes on
3728 */
3729 ret = 0;
3730 }
3731 }
ff1f8250 3732 if (!ret) {
39db232d 3733 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f
FM
3734 /*
3735 * One of the free space endio workers might have
3736 * created a new block group while updating a free space
3737 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3738 * and hasn't released its transaction handle yet, in
3739 * which case the new block group is still attached to
3740 * its transaction handle and its creation has not
3741 * finished yet (no block group item in the extent tree
3742 * yet, etc). If this is the case, wait for all free
3743 * space endio workers to finish and retry. This is a
3744 * a very rare case so no need for a more efficient and
3745 * complex approach.
3746 */
3747 if (ret == -ENOENT) {
3748 wait_event(cur_trans->writer_wait,
3749 atomic_read(&cur_trans->num_writers) == 1);
39db232d 3750 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f 3751 }
ff1f8250 3752 if (ret)
66642832 3753 btrfs_abort_transaction(trans, ret);
ff1f8250 3754 }
c9dc4c65
CM
3755
3756 /* if its not on the io list, we need to put the block group */
3757 if (should_put)
3758 btrfs_put_block_group(cache);
ba2c4d4e 3759 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3760 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3761 }
e44081ef 3762 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3763
45ae2c18
NB
3764 /*
3765 * Refer to the definition of io_bgs member for details why it's safe
3766 * to use it without any locking
3767 */
1bbc621e
CM
3768 while (!list_empty(io)) {
3769 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3770 io_list);
3771 list_del_init(&cache->io_list);
afdb5718 3772 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3773 btrfs_put_block_group(cache);
3774 }
3775
9078a3e1 3776 btrfs_free_path(path);
ce93ec54 3777 return ret;
9078a3e1
CM
3778}
3779
2ff7e61e 3780int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3781{
3782 struct btrfs_block_group_cache *block_group;
3783 int readonly = 0;
3784
0b246afa 3785 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3786 if (!block_group || block_group->ro)
3787 readonly = 1;
3788 if (block_group)
fa9c0d79 3789 btrfs_put_block_group(block_group);
d2fb3437
YZ
3790 return readonly;
3791}
3792
f78c436c
FM
3793bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3794{
3795 struct btrfs_block_group_cache *bg;
3796 bool ret = true;
3797
3798 bg = btrfs_lookup_block_group(fs_info, bytenr);
3799 if (!bg)
3800 return false;
3801
3802 spin_lock(&bg->lock);
3803 if (bg->ro)
3804 ret = false;
3805 else
3806 atomic_inc(&bg->nocow_writers);
3807 spin_unlock(&bg->lock);
3808
3809 /* no put on block group, done by btrfs_dec_nocow_writers */
3810 if (!ret)
3811 btrfs_put_block_group(bg);
3812
3813 return ret;
3814
3815}
3816
3817void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3818{
3819 struct btrfs_block_group_cache *bg;
3820
3821 bg = btrfs_lookup_block_group(fs_info, bytenr);
3822 ASSERT(bg);
3823 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3824 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3825 /*
3826 * Once for our lookup and once for the lookup done by a previous call
3827 * to btrfs_inc_nocow_writers()
3828 */
3829 btrfs_put_block_group(bg);
3830 btrfs_put_block_group(bg);
3831}
3832
f78c436c
FM
3833void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3834{
4625956a 3835 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3836}
3837
6ab0a202
JM
3838static const char *alloc_name(u64 flags)
3839{
3840 switch (flags) {
3841 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3842 return "mixed";
3843 case BTRFS_BLOCK_GROUP_METADATA:
3844 return "metadata";
3845 case BTRFS_BLOCK_GROUP_DATA:
3846 return "data";
3847 case BTRFS_BLOCK_GROUP_SYSTEM:
3848 return "system";
3849 default:
3850 WARN_ON(1);
3851 return "invalid-combination";
3852 };
3853}
3854
4ca61683 3855static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3856{
3857
3858 struct btrfs_space_info *space_info;
3859 int i;
3860 int ret;
3861
3862 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3863 if (!space_info)
3864 return -ENOMEM;
3865
3866 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3867 GFP_KERNEL);
3868 if (ret) {
3869 kfree(space_info);
3870 return ret;
3871 }
3872
3873 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3874 INIT_LIST_HEAD(&space_info->block_groups[i]);
3875 init_rwsem(&space_info->groups_sem);
3876 spin_lock_init(&space_info->lock);
3877 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3878 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3879 init_waitqueue_head(&space_info->wait);
3880 INIT_LIST_HEAD(&space_info->ro_bgs);
3881 INIT_LIST_HEAD(&space_info->tickets);
3882 INIT_LIST_HEAD(&space_info->priority_tickets);
3883
3884 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3885 info->space_info_kobj, "%s",
3886 alloc_name(space_info->flags));
3887 if (ret) {
3888 percpu_counter_destroy(&space_info->total_bytes_pinned);
3889 kfree(space_info);
3890 return ret;
3891 }
3892
2be12ef7
NB
3893 list_add_rcu(&space_info->list, &info->space_info);
3894 if (flags & BTRFS_BLOCK_GROUP_DATA)
3895 info->data_sinfo = space_info;
3896
3897 return ret;
3898}
3899
d2006e6d 3900static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3901 u64 total_bytes, u64 bytes_used,
e40edf2d 3902 u64 bytes_readonly,
593060d7
CM
3903 struct btrfs_space_info **space_info)
3904{
3905 struct btrfs_space_info *found;
b742bb82
YZ
3906 int factor;
3907
46df06b8 3908 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3909
3910 found = __find_space_info(info, flags);
d2006e6d
NB
3911 ASSERT(found);
3912 spin_lock(&found->lock);
3913 found->total_bytes += total_bytes;
3914 found->disk_total += total_bytes * factor;
3915 found->bytes_used += bytes_used;
3916 found->disk_used += bytes_used * factor;
3917 found->bytes_readonly += bytes_readonly;
3918 if (total_bytes > 0)
3919 found->full = 0;
3920 space_info_add_new_bytes(info, found, total_bytes -
3921 bytes_used - bytes_readonly);
3922 spin_unlock(&found->lock);
3923 *space_info = found;
593060d7
CM
3924}
3925
8790d502
CM
3926static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3927{
899c81ea
ID
3928 u64 extra_flags = chunk_to_extended(flags) &
3929 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3930
de98ced9 3931 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3932 if (flags & BTRFS_BLOCK_GROUP_DATA)
3933 fs_info->avail_data_alloc_bits |= extra_flags;
3934 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3935 fs_info->avail_metadata_alloc_bits |= extra_flags;
3936 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3937 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3938 write_sequnlock(&fs_info->profiles_lock);
8790d502 3939}
593060d7 3940
fc67c450
ID
3941/*
3942 * returns target flags in extended format or 0 if restripe for this
3943 * chunk_type is not in progress
c6664b42 3944 *
dccdb07b 3945 * should be called with balance_lock held
fc67c450
ID
3946 */
3947static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3948{
3949 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3950 u64 target = 0;
3951
fc67c450
ID
3952 if (!bctl)
3953 return 0;
3954
3955 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3956 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3957 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3958 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3959 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3960 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3961 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3962 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3963 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3964 }
3965
3966 return target;
3967}
3968
a46d11a8
ID
3969/*
3970 * @flags: available profiles in extended format (see ctree.h)
3971 *
e4d8ec0f
ID
3972 * Returns reduced profile in chunk format. If profile changing is in
3973 * progress (either running or paused) picks the target profile (if it's
3974 * already available), otherwise falls back to plain reducing.
a46d11a8 3975 */
2ff7e61e 3976static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 3977{
0b246afa 3978 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 3979 u64 target;
9c170b26
ZL
3980 u64 raid_type;
3981 u64 allowed = 0;
a061fc8d 3982
fc67c450
ID
3983 /*
3984 * see if restripe for this chunk_type is in progress, if so
3985 * try to reduce to the target profile
3986 */
0b246afa
JM
3987 spin_lock(&fs_info->balance_lock);
3988 target = get_restripe_target(fs_info, flags);
fc67c450
ID
3989 if (target) {
3990 /* pick target profile only if it's already available */
3991 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 3992 spin_unlock(&fs_info->balance_lock);
fc67c450 3993 return extended_to_chunk(target);
e4d8ec0f
ID
3994 }
3995 }
0b246afa 3996 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 3997
53b381b3 3998 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3999 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4000 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4001 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4002 }
4003 allowed &= flags;
4004
4005 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4006 allowed = BTRFS_BLOCK_GROUP_RAID6;
4007 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4008 allowed = BTRFS_BLOCK_GROUP_RAID5;
4009 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4010 allowed = BTRFS_BLOCK_GROUP_RAID10;
4011 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4012 allowed = BTRFS_BLOCK_GROUP_RAID1;
4013 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4014 allowed = BTRFS_BLOCK_GROUP_RAID0;
4015
4016 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4017
4018 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4019}
4020
2ff7e61e 4021static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4022{
de98ced9 4023 unsigned seq;
f8213bdc 4024 u64 flags;
de98ced9
MX
4025
4026 do {
f8213bdc 4027 flags = orig_flags;
0b246afa 4028 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4029
4030 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4031 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4032 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4033 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4034 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4035 flags |= fs_info->avail_metadata_alloc_bits;
4036 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4037
2ff7e61e 4038 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4039}
4040
1b86826d 4041static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4042{
0b246afa 4043 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4044 u64 flags;
53b381b3 4045 u64 ret;
9ed74f2d 4046
b742bb82
YZ
4047 if (data)
4048 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4049 else if (root == fs_info->chunk_root)
b742bb82 4050 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4051 else
b742bb82 4052 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4053
2ff7e61e 4054 ret = get_alloc_profile(fs_info, flags);
53b381b3 4055 return ret;
6a63209f 4056}
9ed74f2d 4057
1b86826d
JM
4058u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4059{
4060 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4061}
4062
4063u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4064{
4065 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4066}
4067
4068u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4069{
4070 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4071}
4072
4136135b
LB
4073static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4074 bool may_use_included)
4075{
4076 ASSERT(s_info);
4077 return s_info->bytes_used + s_info->bytes_reserved +
4078 s_info->bytes_pinned + s_info->bytes_readonly +
4079 (may_use_included ? s_info->bytes_may_use : 0);
4080}
4081
04f4f916 4082int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4083{
04f4f916 4084 struct btrfs_root *root = inode->root;
b4d7c3c9 4085 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4086 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4087 u64 used;
94b947b2 4088 int ret = 0;
c99f1b0c
ZL
4089 int need_commit = 2;
4090 int have_pinned_space;
6a63209f 4091
6a63209f 4092 /* make sure bytes are sectorsize aligned */
0b246afa 4093 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4094
9dced186 4095 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4096 need_commit = 0;
9dced186 4097 ASSERT(current->journal_info);
0af3d00b
JB
4098 }
4099
6a63209f
JB
4100again:
4101 /* make sure we have enough space to handle the data first */
4102 spin_lock(&data_sinfo->lock);
4136135b 4103 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4104
4105 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4106 struct btrfs_trans_handle *trans;
9ed74f2d 4107
6a63209f
JB
4108 /*
4109 * if we don't have enough free bytes in this space then we need
4110 * to alloc a new chunk.
4111 */
b9fd47cd 4112 if (!data_sinfo->full) {
6a63209f 4113 u64 alloc_target;
9ed74f2d 4114
0e4f8f88 4115 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4116 spin_unlock(&data_sinfo->lock);
1174cade 4117
1b86826d 4118 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4119 /*
4120 * It is ugly that we don't call nolock join
4121 * transaction for the free space inode case here.
4122 * But it is safe because we only do the data space
4123 * reservation for the free space cache in the
4124 * transaction context, the common join transaction
4125 * just increase the counter of the current transaction
4126 * handler, doesn't try to acquire the trans_lock of
4127 * the fs.
4128 */
7a7eaa40 4129 trans = btrfs_join_transaction(root);
a22285a6
YZ
4130 if (IS_ERR(trans))
4131 return PTR_ERR(trans);
9ed74f2d 4132
01458828 4133 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4134 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4135 btrfs_end_transaction(trans);
d52a5b5f
MX
4136 if (ret < 0) {
4137 if (ret != -ENOSPC)
4138 return ret;
c99f1b0c
ZL
4139 else {
4140 have_pinned_space = 1;
d52a5b5f 4141 goto commit_trans;
c99f1b0c 4142 }
d52a5b5f 4143 }
9ed74f2d 4144
6a63209f
JB
4145 goto again;
4146 }
f2bb8f5c
JB
4147
4148 /*
b150a4f1 4149 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4150 * allocation, and no removed chunk in current transaction,
4151 * don't bother committing the transaction.
f2bb8f5c 4152 */
dec59fa3 4153 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4154 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4155 used + bytes - data_sinfo->total_bytes,
4156 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4157 spin_unlock(&data_sinfo->lock);
6a63209f 4158
4e06bdd6 4159 /* commit the current transaction and try again */
d52a5b5f 4160commit_trans:
92e2f7e3 4161 if (need_commit) {
c99f1b0c 4162 need_commit--;
b150a4f1 4163
e1746e83 4164 if (need_commit > 0) {
82b3e53b 4165 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4166 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4167 (u64)-1);
e1746e83 4168 }
9a4e7276 4169
7a7eaa40 4170 trans = btrfs_join_transaction(root);
a22285a6
YZ
4171 if (IS_ERR(trans))
4172 return PTR_ERR(trans);
c99f1b0c 4173 if (have_pinned_space >= 0 ||
3204d33c
JB
4174 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4175 &trans->transaction->flags) ||
c99f1b0c 4176 need_commit > 0) {
3a45bb20 4177 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4178 if (ret)
4179 return ret;
d7c15171 4180 /*
c2d6cb16
FM
4181 * The cleaner kthread might still be doing iput
4182 * operations. Wait for it to finish so that
034f784d
JB
4183 * more space is released. We don't need to
4184 * explicitly run the delayed iputs here because
4185 * the commit_transaction would have woken up
4186 * the cleaner.
d7c15171 4187 */
034f784d
JB
4188 ret = btrfs_wait_on_delayed_iputs(fs_info);
4189 if (ret)
4190 return ret;
94b947b2
ZL
4191 goto again;
4192 } else {
3a45bb20 4193 btrfs_end_transaction(trans);
94b947b2 4194 }
4e06bdd6 4195 }
9ed74f2d 4196
0b246afa 4197 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4198 "space_info:enospc",
4199 data_sinfo->flags, bytes, 1);
6a63209f
JB
4200 return -ENOSPC;
4201 }
9f9b8e8d 4202 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4203 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4204 data_sinfo->flags, bytes, 1);
6a63209f 4205 spin_unlock(&data_sinfo->lock);
6a63209f 4206
4559b0a7 4207 return 0;
9ed74f2d 4208}
6a63209f 4209
364ecf36
QW
4210int btrfs_check_data_free_space(struct inode *inode,
4211 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4212{
0b246afa 4213 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4214 int ret;
4215
4216 /* align the range */
0b246afa
JM
4217 len = round_up(start + len, fs_info->sectorsize) -
4218 round_down(start, fs_info->sectorsize);
4219 start = round_down(start, fs_info->sectorsize);
4ceff079 4220
04f4f916 4221 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4222 if (ret < 0)
4223 return ret;
4224
1e5ec2e7 4225 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4226 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4227 if (ret < 0)
1e5ec2e7 4228 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4229 else
4230 ret = 0;
4ceff079
QW
4231 return ret;
4232}
4233
4ceff079
QW
4234/*
4235 * Called if we need to clear a data reservation for this inode
4236 * Normally in a error case.
4237 *
51773bec
QW
4238 * This one will *NOT* use accurate qgroup reserved space API, just for case
4239 * which we can't sleep and is sure it won't affect qgroup reserved space.
4240 * Like clear_bit_hook().
4ceff079 4241 */
51773bec
QW
4242void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4243 u64 len)
4ceff079 4244{
0b246afa 4245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4246 struct btrfs_space_info *data_sinfo;
4247
4248 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4249 len = round_up(start + len, fs_info->sectorsize) -
4250 round_down(start, fs_info->sectorsize);
4251 start = round_down(start, fs_info->sectorsize);
4ceff079 4252
0b246afa 4253 data_sinfo = fs_info->data_sinfo;
4ceff079 4254 spin_lock(&data_sinfo->lock);
9f9b8e8d 4255 update_bytes_may_use(data_sinfo, -len);
0b246afa 4256 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4257 data_sinfo->flags, len, 0);
4258 spin_unlock(&data_sinfo->lock);
4259}
4260
51773bec
QW
4261/*
4262 * Called if we need to clear a data reservation for this inode
4263 * Normally in a error case.
4264 *
01327610 4265 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4266 * space framework.
4267 */
bc42bda2
QW
4268void btrfs_free_reserved_data_space(struct inode *inode,
4269 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4270{
0c476a5d
JM
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272
4273 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4274 len = round_up(start + len, root->fs_info->sectorsize) -
4275 round_down(start, root->fs_info->sectorsize);
4276 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4277
51773bec 4278 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4279 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4280}
4281
97e728d4 4282static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4283{
97e728d4
JB
4284 struct list_head *head = &info->space_info;
4285 struct btrfs_space_info *found;
e3ccfa98 4286
97e728d4
JB
4287 rcu_read_lock();
4288 list_for_each_entry_rcu(found, head, list) {
4289 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4290 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4291 }
97e728d4 4292 rcu_read_unlock();
e3ccfa98
JB
4293}
4294
3c76cd84
MX
4295static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4296{
4297 return (global->size << 1);
4298}
4299
2ff7e61e 4300static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4301 struct btrfs_space_info *sinfo, int force)
32c00aff 4302{
8d8aafee 4303 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4304 u64 thresh;
e3ccfa98 4305
0e4f8f88
CM
4306 if (force == CHUNK_ALLOC_FORCE)
4307 return 1;
4308
4309 /*
4310 * in limited mode, we want to have some free space up to
4311 * about 1% of the FS size.
4312 */
4313 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4314 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4315 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4316
8d8aafee 4317 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4318 return 1;
4319 }
0e4f8f88 4320
8d8aafee 4321 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4322 return 0;
424499db 4323 return 1;
32c00aff
JB
4324}
4325
2ff7e61e 4326static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4327{
4328 u64 num_dev;
4329
53b381b3
DW
4330 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4331 BTRFS_BLOCK_GROUP_RAID0 |
4332 BTRFS_BLOCK_GROUP_RAID5 |
4333 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4334 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4335 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4336 num_dev = 2;
4337 else
4338 num_dev = 1; /* DUP or single */
4339
39c2d7fa 4340 return num_dev;
15d1ff81
LB
4341}
4342
39c2d7fa
FM
4343/*
4344 * If @is_allocation is true, reserve space in the system space info necessary
4345 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4346 * removing a chunk.
4347 */
451a2c13 4348void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4349{
451a2c13 4350 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4351 struct btrfs_space_info *info;
4352 u64 left;
4353 u64 thresh;
4fbcdf66 4354 int ret = 0;
39c2d7fa 4355 u64 num_devs;
4fbcdf66
FM
4356
4357 /*
4358 * Needed because we can end up allocating a system chunk and for an
4359 * atomic and race free space reservation in the chunk block reserve.
4360 */
a32bf9a3 4361 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4362
0b246afa 4363 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4364 spin_lock(&info->lock);
4136135b 4365 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4366 spin_unlock(&info->lock);
4367
2ff7e61e 4368 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4369
4370 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4371 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4372 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4373
0b246afa
JM
4374 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4375 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4376 left, thresh, type);
4377 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4378 }
4379
4380 if (left < thresh) {
1b86826d 4381 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4382
4fbcdf66
FM
4383 /*
4384 * Ignore failure to create system chunk. We might end up not
4385 * needing it, as we might not need to COW all nodes/leafs from
4386 * the paths we visit in the chunk tree (they were already COWed
4387 * or created in the current transaction for example).
4388 */
c216b203 4389 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4390 }
4391
4392 if (!ret) {
0b246afa
JM
4393 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4394 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4395 thresh, BTRFS_RESERVE_NO_FLUSH);
4396 if (!ret)
4397 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4398 }
4399}
4400
28b737f6
LB
4401/*
4402 * If force is CHUNK_ALLOC_FORCE:
4403 * - return 1 if it successfully allocates a chunk,
4404 * - return errors including -ENOSPC otherwise.
4405 * If force is NOT CHUNK_ALLOC_FORCE:
4406 * - return 0 if it doesn't need to allocate a new chunk,
4407 * - return 1 if it successfully allocates a chunk,
4408 * - return errors including -ENOSPC otherwise.
4409 */
01458828
NB
4410static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4411 int force)
9ed74f2d 4412{
01458828 4413 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4414 struct btrfs_space_info *space_info;
2556fbb0
NB
4415 bool wait_for_alloc = false;
4416 bool should_alloc = false;
9ed74f2d 4417 int ret = 0;
9ed74f2d 4418
c6b305a8
JB
4419 /* Don't re-enter if we're already allocating a chunk */
4420 if (trans->allocating_chunk)
4421 return -ENOSPC;
4422
0b246afa 4423 space_info = __find_space_info(fs_info, flags);
dc2d3005 4424 ASSERT(space_info);
9ed74f2d 4425
2556fbb0
NB
4426 do {
4427 spin_lock(&space_info->lock);
4428 if (force < space_info->force_alloc)
4429 force = space_info->force_alloc;
4430 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4431 if (space_info->full) {
4432 /* No more free physical space */
4433 if (should_alloc)
4434 ret = -ENOSPC;
4435 else
4436 ret = 0;
4437 spin_unlock(&space_info->lock);
4438 return ret;
4439 } else if (!should_alloc) {
4440 spin_unlock(&space_info->lock);
4441 return 0;
4442 } else if (space_info->chunk_alloc) {
4443 /*
4444 * Someone is already allocating, so we need to block
4445 * until this someone is finished and then loop to
4446 * recheck if we should continue with our allocation
4447 * attempt.
4448 */
4449 wait_for_alloc = true;
4450 spin_unlock(&space_info->lock);
4451 mutex_lock(&fs_info->chunk_mutex);
4452 mutex_unlock(&fs_info->chunk_mutex);
4453 } else {
4454 /* Proceed with allocation */
4455 space_info->chunk_alloc = 1;
4456 wait_for_alloc = false;
4457 spin_unlock(&space_info->lock);
4458 }
6d74119f 4459
1e1c50a9 4460 cond_resched();
2556fbb0 4461 } while (wait_for_alloc);
6d74119f 4462
2556fbb0 4463 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4464 trans->allocating_chunk = true;
4465
67377734
JB
4466 /*
4467 * If we have mixed data/metadata chunks we want to make sure we keep
4468 * allocating mixed chunks instead of individual chunks.
4469 */
4470 if (btrfs_mixed_space_info(space_info))
4471 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4472
97e728d4
JB
4473 /*
4474 * if we're doing a data chunk, go ahead and make sure that
4475 * we keep a reasonable number of metadata chunks allocated in the
4476 * FS as well.
4477 */
9ed74f2d 4478 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4479 fs_info->data_chunk_allocations++;
4480 if (!(fs_info->data_chunk_allocations %
4481 fs_info->metadata_ratio))
4482 force_metadata_allocation(fs_info);
9ed74f2d
JB
4483 }
4484
15d1ff81
LB
4485 /*
4486 * Check if we have enough space in SYSTEM chunk because we may need
4487 * to update devices.
4488 */
451a2c13 4489 check_system_chunk(trans, flags);
15d1ff81 4490
c216b203 4491 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4492 trans->allocating_chunk = false;
92b8e897 4493
9ed74f2d 4494 spin_lock(&space_info->lock);
57f1642e
NB
4495 if (ret < 0) {
4496 if (ret == -ENOSPC)
4497 space_info->full = 1;
4498 else
4499 goto out;
4500 } else {
424499db 4501 ret = 1;
21a94f7a 4502 space_info->max_extent_size = 0;
57f1642e 4503 }
6d74119f 4504
0e4f8f88 4505 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4506out:
6d74119f 4507 space_info->chunk_alloc = 0;
9ed74f2d 4508 spin_unlock(&space_info->lock);
a25c75d5 4509 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4510 /*
4511 * When we allocate a new chunk we reserve space in the chunk block
4512 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4513 * add new nodes/leafs to it if we end up needing to do it when
4514 * inserting the chunk item and updating device items as part of the
4515 * second phase of chunk allocation, performed by
4516 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4517 * large number of new block groups to create in our transaction
4518 * handle's new_bgs list to avoid exhausting the chunk block reserve
4519 * in extreme cases - like having a single transaction create many new
4520 * block groups when starting to write out the free space caches of all
4521 * the block groups that were made dirty during the lifetime of the
4522 * transaction.
4523 */
5ce55557 4524 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4525 btrfs_create_pending_block_groups(trans);
5ce55557 4526
0f9dd46c 4527 return ret;
6324fbf3 4528}
9ed74f2d 4529
c1c4919b 4530static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4531 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4532 enum btrfs_reserve_flush_enum flush,
4533 bool system_chunk)
a80c8dcf 4534{
0b246afa 4535 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4536 u64 profile;
3c76cd84 4537 u64 space_size;
a80c8dcf
JB
4538 u64 avail;
4539 u64 used;
46df06b8 4540 int factor;
a80c8dcf 4541
957780eb
JB
4542 /* Don't overcommit when in mixed mode. */
4543 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4544 return 0;
4545
c1c4919b
JM
4546 if (system_chunk)
4547 profile = btrfs_system_alloc_profile(fs_info);
4548 else
4549 profile = btrfs_metadata_alloc_profile(fs_info);
4550
4136135b 4551 used = btrfs_space_info_used(space_info, false);
96f1bb57 4552
96f1bb57
JB
4553 /*
4554 * We only want to allow over committing if we have lots of actual space
4555 * free, but if we don't have enough space to handle the global reserve
4556 * space then we could end up having a real enospc problem when trying
4557 * to allocate a chunk or some other such important allocation.
4558 */
3c76cd84
MX
4559 spin_lock(&global_rsv->lock);
4560 space_size = calc_global_rsv_need_space(global_rsv);
4561 spin_unlock(&global_rsv->lock);
4562 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4563 return 0;
4564
4565 used += space_info->bytes_may_use;
a80c8dcf 4566
a5ed45f8 4567 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4568
4569 /*
4570 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4571 * space is actually usable. For raid56, the space info used
53b381b3
DW
4572 * doesn't include the parity drive, so we don't have to
4573 * change the math
a80c8dcf 4574 */
46df06b8
DS
4575 factor = btrfs_bg_type_to_factor(profile);
4576 avail = div_u64(avail, factor);
a80c8dcf
JB
4577
4578 /*
561c294d
MX
4579 * If we aren't flushing all things, let us overcommit up to
4580 * 1/2th of the space. If we can flush, don't let us overcommit
4581 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4582 */
08e007d2 4583 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4584 avail >>= 3;
a80c8dcf 4585 else
14575aef 4586 avail >>= 1;
a80c8dcf 4587
14575aef 4588 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4589 return 1;
4590 return 0;
4591}
4592
2ff7e61e 4593static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4594 unsigned long nr_pages, int nr_items)
da633a42 4595{
0b246afa 4596 struct super_block *sb = fs_info->sb;
da633a42 4597
925a6efb
JB
4598 if (down_read_trylock(&sb->s_umount)) {
4599 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4600 up_read(&sb->s_umount);
4601 } else {
da633a42
MX
4602 /*
4603 * We needn't worry the filesystem going from r/w to r/o though
4604 * we don't acquire ->s_umount mutex, because the filesystem
4605 * should guarantee the delalloc inodes list be empty after
4606 * the filesystem is readonly(all dirty pages are written to
4607 * the disk).
4608 */
82b3e53b 4609 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4610 if (!current->journal_info)
0b246afa 4611 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4612 }
4613}
4614
6374e57a 4615static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4616 u64 to_reclaim)
18cd8ea6
MX
4617{
4618 u64 bytes;
6374e57a 4619 u64 nr;
18cd8ea6 4620
2ff7e61e 4621 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4622 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4623 if (!nr)
4624 nr = 1;
4625 return nr;
4626}
4627
ee22184b 4628#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4629
9ed74f2d 4630/*
5da9d01b 4631 * shrink metadata reservation for delalloc
9ed74f2d 4632 */
c1c4919b
JM
4633static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4634 u64 orig, bool wait_ordered)
5da9d01b 4635{
0019f10d 4636 struct btrfs_space_info *space_info;
663350ac 4637 struct btrfs_trans_handle *trans;
f4c738c2 4638 u64 delalloc_bytes;
420829d8 4639 u64 async_pages;
6374e57a 4640 u64 items;
b1953bce 4641 long time_left;
d3ee29e3
MX
4642 unsigned long nr_pages;
4643 int loops;
5da9d01b 4644
c61a16a7 4645 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4646 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4647 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4648
663350ac 4649 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4650 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4651
963d678b 4652 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4653 &fs_info->delalloc_bytes);
f4c738c2 4654 if (delalloc_bytes == 0) {
fdb5effd 4655 if (trans)
f4c738c2 4656 return;
38c135af 4657 if (wait_ordered)
0b246afa 4658 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4659 return;
fdb5effd
JB
4660 }
4661
d3ee29e3 4662 loops = 0;
f4c738c2 4663 while (delalloc_bytes && loops < 3) {
420829d8
NB
4664 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4665
4666 /*
4667 * Triggers inode writeback for up to nr_pages. This will invoke
4668 * ->writepages callback and trigger delalloc filling
4669 * (btrfs_run_delalloc_range()).
4670 */
2ff7e61e 4671 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
420829d8 4672
dea31f52 4673 /*
420829d8
NB
4674 * We need to wait for the compressed pages to start before
4675 * we continue.
dea31f52 4676 */
420829d8
NB
4677 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4678 if (!async_pages)
9f3a074d
MX
4679 goto skip_async;
4680
420829d8
NB
4681 /*
4682 * Calculate how many compressed pages we want to be written
4683 * before we continue. I.e if there are more async pages than we
4684 * require wait_event will wait until nr_pages are written.
4685 */
4686 if (async_pages <= nr_pages)
4687 async_pages = 0;
9f3a074d 4688 else
420829d8 4689 async_pages -= nr_pages;
dea31f52 4690
0b246afa
JM
4691 wait_event(fs_info->async_submit_wait,
4692 atomic_read(&fs_info->async_delalloc_pages) <=
420829d8 4693 (int)async_pages);
9f3a074d 4694skip_async:
0019f10d 4695 spin_lock(&space_info->lock);
957780eb
JB
4696 if (list_empty(&space_info->tickets) &&
4697 list_empty(&space_info->priority_tickets)) {
4698 spin_unlock(&space_info->lock);
4699 break;
4700 }
0019f10d 4701 spin_unlock(&space_info->lock);
5da9d01b 4702
36e39c40 4703 loops++;
f104d044 4704 if (wait_ordered && !trans) {
0b246afa 4705 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4706 } else {
f4c738c2 4707 time_left = schedule_timeout_killable(1);
f104d044
JB
4708 if (time_left)
4709 break;
4710 }
963d678b 4711 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4712 &fs_info->delalloc_bytes);
5da9d01b 4713 }
5da9d01b
YZ
4714}
4715
996478ca 4716struct reserve_ticket {
f91587e4 4717 u64 orig_bytes;
996478ca
JB
4718 u64 bytes;
4719 int error;
4720 struct list_head list;
4721 wait_queue_head_t wait;
4722};
4723
663350ac
JB
4724/**
4725 * maybe_commit_transaction - possibly commit the transaction if its ok to
4726 * @root - the root we're allocating for
4727 * @bytes - the number of bytes we want to reserve
4728 * @force - force the commit
8bb8ab2e 4729 *
663350ac
JB
4730 * This will check to make sure that committing the transaction will actually
4731 * get us somewhere and then commit the transaction if it does. Otherwise it
4732 * will return -ENOSPC.
8bb8ab2e 4733 */
0c9ab349 4734static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4735 struct btrfs_space_info *space_info)
663350ac 4736{
996478ca 4737 struct reserve_ticket *ticket = NULL;
0b246afa 4738 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4739 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4740 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4741 u64 bytes_needed;
4742 u64 reclaim_bytes = 0;
663350ac
JB
4743
4744 trans = (struct btrfs_trans_handle *)current->journal_info;
4745 if (trans)
4746 return -EAGAIN;
4747
996478ca
JB
4748 spin_lock(&space_info->lock);
4749 if (!list_empty(&space_info->priority_tickets))
4750 ticket = list_first_entry(&space_info->priority_tickets,
4751 struct reserve_ticket, list);
4752 else if (!list_empty(&space_info->tickets))
4753 ticket = list_first_entry(&space_info->tickets,
4754 struct reserve_ticket, list);
4c8edbc7 4755 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4756 spin_unlock(&space_info->lock);
4757
4c8edbc7 4758 if (!bytes_needed)
996478ca 4759 return 0;
663350ac 4760
d89dbefb
JB
4761 trans = btrfs_join_transaction(fs_info->extent_root);
4762 if (IS_ERR(trans))
4763 return PTR_ERR(trans);
4764
4765 /*
4766 * See if there is enough pinned space to make this reservation, or if
4767 * we have block groups that are going to be freed, allowing us to
4768 * possibly do a chunk allocation the next loop through.
4769 */
4770 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4771 __percpu_counter_compare(&space_info->total_bytes_pinned,
4772 bytes_needed,
4773 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4774 goto commit;
663350ac
JB
4775
4776 /*
4777 * See if there is some space in the delayed insertion reservation for
4778 * this reservation.
4779 */
4780 if (space_info != delayed_rsv->space_info)
d89dbefb 4781 goto enospc;
663350ac
JB
4782
4783 spin_lock(&delayed_rsv->lock);
4c8edbc7 4784 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4785 spin_unlock(&delayed_rsv->lock);
4786
4c8edbc7
JB
4787 spin_lock(&delayed_refs_rsv->lock);
4788 reclaim_bytes += delayed_refs_rsv->reserved;
4789 spin_unlock(&delayed_refs_rsv->lock);
4790 if (reclaim_bytes >= bytes_needed)
4791 goto commit;
4792 bytes_needed -= reclaim_bytes;
4793
dec59fa3 4794 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4795 bytes_needed,
d89dbefb
JB
4796 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4797 goto enospc;
663350ac
JB
4798
4799commit:
3a45bb20 4800 return btrfs_commit_transaction(trans);
d89dbefb
JB
4801enospc:
4802 btrfs_end_transaction(trans);
4803 return -ENOSPC;
663350ac
JB
4804}
4805
e38ae7a0
NB
4806/*
4807 * Try to flush some data based on policy set by @state. This is only advisory
4808 * and may fail for various reasons. The caller is supposed to examine the
4809 * state of @space_info to detect the outcome.
4810 */
4811static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4812 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4813 int state)
96c3f433 4814{
a9b3311e 4815 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4816 struct btrfs_trans_handle *trans;
4817 int nr;
f4c738c2 4818 int ret = 0;
96c3f433
JB
4819
4820 switch (state) {
96c3f433
JB
4821 case FLUSH_DELAYED_ITEMS_NR:
4822 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4823 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4824 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4825 else
96c3f433 4826 nr = -1;
18cd8ea6 4827
96c3f433
JB
4828 trans = btrfs_join_transaction(root);
4829 if (IS_ERR(trans)) {
4830 ret = PTR_ERR(trans);
4831 break;
4832 }
e5c304e6 4833 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4834 btrfs_end_transaction(trans);
96c3f433 4835 break;
67b0fd63
JB
4836 case FLUSH_DELALLOC:
4837 case FLUSH_DELALLOC_WAIT:
7bdd6277 4838 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4839 state == FLUSH_DELALLOC_WAIT);
4840 break;
413df725
JB
4841 case FLUSH_DELAYED_REFS_NR:
4842 case FLUSH_DELAYED_REFS:
4843 trans = btrfs_join_transaction(root);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4846 break;
4847 }
4848 if (state == FLUSH_DELAYED_REFS_NR)
4849 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4850 else
4851 nr = 0;
4852 btrfs_run_delayed_refs(trans, nr);
4853 btrfs_end_transaction(trans);
4854 break;
ea658bad 4855 case ALLOC_CHUNK:
450114fc 4856 case ALLOC_CHUNK_FORCE:
ea658bad
JB
4857 trans = btrfs_join_transaction(root);
4858 if (IS_ERR(trans)) {
4859 ret = PTR_ERR(trans);
4860 break;
4861 }
01458828 4862 ret = do_chunk_alloc(trans,
1b86826d 4863 btrfs_metadata_alloc_profile(fs_info),
450114fc
JB
4864 (state == ALLOC_CHUNK) ?
4865 CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
3a45bb20 4866 btrfs_end_transaction(trans);
eecba891 4867 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4868 ret = 0;
4869 break;
96c3f433 4870 case COMMIT_TRANS:
3ec9a4c8
JB
4871 /*
4872 * If we have pending delayed iputs then we could free up a
4873 * bunch of pinned space, so make sure we run the iputs before
4874 * we do our pinned bytes check below.
4875 */
3ec9a4c8 4876 btrfs_run_delayed_iputs(fs_info);
034f784d 4877 btrfs_wait_on_delayed_iputs(fs_info);
3ec9a4c8 4878
996478ca 4879 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4880 break;
4881 default:
4882 ret = -ENOSPC;
4883 break;
4884 }
4885
7bdd6277
NB
4886 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4887 ret);
e38ae7a0 4888 return;
96c3f433 4889}
21c7e756
MX
4890
4891static inline u64
c1c4919b
JM
4892btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4893 struct btrfs_space_info *space_info,
4894 bool system_chunk)
21c7e756 4895{
957780eb 4896 struct reserve_ticket *ticket;
21c7e756
MX
4897 u64 used;
4898 u64 expected;
957780eb 4899 u64 to_reclaim = 0;
21c7e756 4900
957780eb
JB
4901 list_for_each_entry(ticket, &space_info->tickets, list)
4902 to_reclaim += ticket->bytes;
4903 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4904 to_reclaim += ticket->bytes;
4905 if (to_reclaim)
4906 return to_reclaim;
21c7e756 4907
e0af2484 4908 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4909 if (can_overcommit(fs_info, space_info, to_reclaim,
4910 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4911 return 0;
4912
0eee8a49
NB
4913 used = btrfs_space_info_used(space_info, true);
4914
c1c4919b
JM
4915 if (can_overcommit(fs_info, space_info, SZ_1M,
4916 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4917 expected = div_factor_fine(space_info->total_bytes, 95);
4918 else
4919 expected = div_factor_fine(space_info->total_bytes, 90);
4920
4921 if (used > expected)
4922 to_reclaim = used - expected;
4923 else
4924 to_reclaim = 0;
4925 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4926 space_info->bytes_reserved);
21c7e756
MX
4927 return to_reclaim;
4928}
4929
c1c4919b
JM
4930static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4931 struct btrfs_space_info *space_info,
4932 u64 used, bool system_chunk)
21c7e756 4933{
365c5313
JB
4934 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4935
4936 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4937 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4938 return 0;
4939
c1c4919b
JM
4940 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4941 system_chunk))
d38b349c
JB
4942 return 0;
4943
0b246afa
JM
4944 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4945 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4946}
4947
f91587e4 4948static bool wake_all_tickets(struct list_head *head)
21c7e756 4949{
957780eb 4950 struct reserve_ticket *ticket;
25ce459c 4951
957780eb
JB
4952 while (!list_empty(head)) {
4953 ticket = list_first_entry(head, struct reserve_ticket, list);
4954 list_del_init(&ticket->list);
4955 ticket->error = -ENOSPC;
4956 wake_up(&ticket->wait);
f91587e4
JB
4957 if (ticket->bytes != ticket->orig_bytes)
4958 return true;
21c7e756 4959 }
f91587e4 4960 return false;
21c7e756
MX
4961}
4962
957780eb
JB
4963/*
4964 * This is for normal flushers, we can wait all goddamned day if we want to. We
4965 * will loop and continuously try to flush as long as we are making progress.
4966 * We count progress as clearing off tickets each time we have to loop.
4967 */
21c7e756
MX
4968static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4969{
4970 struct btrfs_fs_info *fs_info;
4971 struct btrfs_space_info *space_info;
4972 u64 to_reclaim;
4973 int flush_state;
957780eb 4974 int commit_cycles = 0;
ce129655 4975 u64 last_tickets_id;
21c7e756
MX
4976
4977 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4978 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4979
957780eb 4980 spin_lock(&space_info->lock);
c1c4919b
JM
4981 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4982 false);
957780eb
JB
4983 if (!to_reclaim) {
4984 space_info->flush = 0;
4985 spin_unlock(&space_info->lock);
21c7e756 4986 return;
957780eb 4987 }
ce129655 4988 last_tickets_id = space_info->tickets_id;
957780eb 4989 spin_unlock(&space_info->lock);
21c7e756
MX
4990
4991 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 4992 do {
e38ae7a0 4993 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
4994 spin_lock(&space_info->lock);
4995 if (list_empty(&space_info->tickets)) {
4996 space_info->flush = 0;
4997 spin_unlock(&space_info->lock);
4998 return;
4999 }
c1c4919b
JM
5000 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5001 space_info,
5002 false);
ce129655 5003 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5004 flush_state++;
5005 } else {
ce129655 5006 last_tickets_id = space_info->tickets_id;
957780eb
JB
5007 flush_state = FLUSH_DELAYED_ITEMS_NR;
5008 if (commit_cycles)
5009 commit_cycles--;
5010 }
5011
450114fc
JB
5012 /*
5013 * We don't want to force a chunk allocation until we've tried
5014 * pretty hard to reclaim space. Think of the case where we
5015 * freed up a bunch of space and so have a lot of pinned space
5016 * to reclaim. We would rather use that than possibly create a
5017 * underutilized metadata chunk. So if this is our first run
5018 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5019 * commit the transaction. If nothing has changed the next go
5020 * around then we can force a chunk allocation.
5021 */
5022 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5023 flush_state++;
5024
957780eb
JB
5025 if (flush_state > COMMIT_TRANS) {
5026 commit_cycles++;
5027 if (commit_cycles > 2) {
f91587e4
JB
5028 if (wake_all_tickets(&space_info->tickets)) {
5029 flush_state = FLUSH_DELAYED_ITEMS_NR;
5030 commit_cycles--;
5031 } else {
5032 space_info->flush = 0;
5033 }
957780eb
JB
5034 } else {
5035 flush_state = FLUSH_DELAYED_ITEMS_NR;
5036 }
5037 }
5038 spin_unlock(&space_info->lock);
5039 } while (flush_state <= COMMIT_TRANS);
5040}
5041
5042void btrfs_init_async_reclaim_work(struct work_struct *work)
5043{
5044 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5045}
5046
8a1bbe1d
JB
5047static const enum btrfs_flush_state priority_flush_states[] = {
5048 FLUSH_DELAYED_ITEMS_NR,
5049 FLUSH_DELAYED_ITEMS,
5050 ALLOC_CHUNK,
5051};
5052
957780eb
JB
5053static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5054 struct btrfs_space_info *space_info,
5055 struct reserve_ticket *ticket)
5056{
5057 u64 to_reclaim;
8a1bbe1d 5058 int flush_state;
957780eb
JB
5059
5060 spin_lock(&space_info->lock);
c1c4919b
JM
5061 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5062 false);
957780eb
JB
5063 if (!to_reclaim) {
5064 spin_unlock(&space_info->lock);
5065 return;
5066 }
5067 spin_unlock(&space_info->lock);
5068
8a1bbe1d 5069 flush_state = 0;
21c7e756 5070 do {
8a1bbe1d
JB
5071 flush_space(fs_info, space_info, to_reclaim,
5072 priority_flush_states[flush_state]);
21c7e756 5073 flush_state++;
957780eb
JB
5074 spin_lock(&space_info->lock);
5075 if (ticket->bytes == 0) {
5076 spin_unlock(&space_info->lock);
21c7e756 5077 return;
957780eb
JB
5078 }
5079 spin_unlock(&space_info->lock);
8a1bbe1d 5080 } while (flush_state < ARRAY_SIZE(priority_flush_states));
21c7e756
MX
5081}
5082
957780eb
JB
5083static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5084 struct btrfs_space_info *space_info,
f91587e4 5085 struct reserve_ticket *ticket)
957780eb 5086
21c7e756 5087{
957780eb 5088 DEFINE_WAIT(wait);
f91587e4 5089 u64 reclaim_bytes = 0;
957780eb
JB
5090 int ret = 0;
5091
5092 spin_lock(&space_info->lock);
5093 while (ticket->bytes > 0 && ticket->error == 0) {
5094 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5095 if (ret) {
5096 ret = -EINTR;
5097 break;
5098 }
5099 spin_unlock(&space_info->lock);
5100
5101 schedule();
5102
5103 finish_wait(&ticket->wait, &wait);
5104 spin_lock(&space_info->lock);
5105 }
5106 if (!ret)
5107 ret = ticket->error;
5108 if (!list_empty(&ticket->list))
5109 list_del_init(&ticket->list);
f91587e4
JB
5110 if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5111 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
957780eb
JB
5112 spin_unlock(&space_info->lock);
5113
f91587e4
JB
5114 if (reclaim_bytes)
5115 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb 5116 return ret;
21c7e756
MX
5117}
5118
4a92b1b8
JB
5119/**
5120 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5121 * @root - the root we're allocating for
957780eb 5122 * @space_info - the space info we want to allocate from
4a92b1b8 5123 * @orig_bytes - the number of bytes we want
48fc7f7e 5124 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5125 *
01327610 5126 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5127 * with the block_rsv. If there is not enough space it will make an attempt to
5128 * flush out space to make room. It will do this by flushing delalloc if
5129 * possible or committing the transaction. If flush is 0 then no attempts to
5130 * regain reservations will be made and this will fail if there is not enough
5131 * space already.
8bb8ab2e 5132 */
c1c4919b 5133static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5134 struct btrfs_space_info *space_info,
5135 u64 orig_bytes,
c1c4919b
JM
5136 enum btrfs_reserve_flush_enum flush,
5137 bool system_chunk)
9ed74f2d 5138{
957780eb 5139 struct reserve_ticket ticket;
2bf64758 5140 u64 used;
f91587e4 5141 u64 reclaim_bytes = 0;
8bb8ab2e 5142 int ret = 0;
9ed74f2d 5143
957780eb 5144 ASSERT(orig_bytes);
8ca17f0f 5145 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5146
8bb8ab2e 5147 spin_lock(&space_info->lock);
fdb5effd 5148 ret = -ENOSPC;
4136135b 5149 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5150
8bb8ab2e 5151 /*
957780eb
JB
5152 * If we have enough space then hooray, make our reservation and carry
5153 * on. If not see if we can overcommit, and if we can, hooray carry on.
5154 * If not things get more complicated.
8bb8ab2e 5155 */
957780eb 5156 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5157 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5158 trace_btrfs_space_reservation(fs_info, "space_info",
5159 space_info->flags, orig_bytes, 1);
957780eb 5160 ret = 0;
c1c4919b
JM
5161 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5162 system_chunk)) {
9f9b8e8d 5163 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5164 trace_btrfs_space_reservation(fs_info, "space_info",
5165 space_info->flags, orig_bytes, 1);
44734ed1 5166 ret = 0;
2bf64758
JB
5167 }
5168
8bb8ab2e 5169 /*
957780eb
JB
5170 * If we couldn't make a reservation then setup our reservation ticket
5171 * and kick the async worker if it's not already running.
08e007d2 5172 *
957780eb
JB
5173 * If we are a priority flusher then we just need to add our ticket to
5174 * the list and we will do our own flushing further down.
8bb8ab2e 5175 */
72bcd99d 5176 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
f91587e4 5177 ticket.orig_bytes = orig_bytes;
957780eb
JB
5178 ticket.bytes = orig_bytes;
5179 ticket.error = 0;
5180 init_waitqueue_head(&ticket.wait);
5181 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5182 list_add_tail(&ticket.list, &space_info->tickets);
5183 if (!space_info->flush) {
5184 space_info->flush = 1;
0b246afa 5185 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5186 space_info->flags,
5187 orig_bytes, flush,
5188 "enospc");
957780eb 5189 queue_work(system_unbound_wq,
c1c4919b 5190 &fs_info->async_reclaim_work);
957780eb
JB
5191 }
5192 } else {
5193 list_add_tail(&ticket.list,
5194 &space_info->priority_tickets);
5195 }
21c7e756
MX
5196 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5197 used += orig_bytes;
f6acfd50
JB
5198 /*
5199 * We will do the space reservation dance during log replay,
5200 * which means we won't have fs_info->fs_root set, so don't do
5201 * the async reclaim as we will panic.
5202 */
0b246afa 5203 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5204 need_do_async_reclaim(fs_info, space_info,
5205 used, system_chunk) &&
0b246afa
JM
5206 !work_busy(&fs_info->async_reclaim_work)) {
5207 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5208 orig_bytes, flush, "preempt");
21c7e756 5209 queue_work(system_unbound_wq,
0b246afa 5210 &fs_info->async_reclaim_work);
f376df2b 5211 }
8bb8ab2e 5212 }
f0486c68 5213 spin_unlock(&space_info->lock);
08e007d2 5214 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5215 return ret;
f0486c68 5216
957780eb 5217 if (flush == BTRFS_RESERVE_FLUSH_ALL)
f91587e4 5218 return wait_reserve_ticket(fs_info, space_info, &ticket);
08e007d2 5219
957780eb 5220 ret = 0;
0b246afa 5221 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5222 spin_lock(&space_info->lock);
5223 if (ticket.bytes) {
f91587e4
JB
5224 if (ticket.bytes < orig_bytes)
5225 reclaim_bytes = orig_bytes - ticket.bytes;
957780eb
JB
5226 list_del_init(&ticket.list);
5227 ret = -ENOSPC;
5228 }
5229 spin_unlock(&space_info->lock);
f91587e4
JB
5230
5231 if (reclaim_bytes)
5232 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb
JB
5233 ASSERT(list_empty(&ticket.list));
5234 return ret;
5235}
8bb8ab2e 5236
957780eb
JB
5237/**
5238 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5239 * @root - the root we're allocating for
5240 * @block_rsv - the block_rsv we're allocating for
5241 * @orig_bytes - the number of bytes we want
5242 * @flush - whether or not we can flush to make our reservation
5243 *
52042d8e 5244 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5245 * with the block_rsv. If there is not enough space it will make an attempt to
5246 * flush out space to make room. It will do this by flushing delalloc if
5247 * possible or committing the transaction. If flush is 0 then no attempts to
5248 * regain reservations will be made and this will fail if there is not enough
5249 * space already.
5250 */
5251static int reserve_metadata_bytes(struct btrfs_root *root,
5252 struct btrfs_block_rsv *block_rsv,
5253 u64 orig_bytes,
5254 enum btrfs_reserve_flush_enum flush)
5255{
0b246afa
JM
5256 struct btrfs_fs_info *fs_info = root->fs_info;
5257 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5258 int ret;
c1c4919b 5259 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5260
c1c4919b
JM
5261 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5262 orig_bytes, flush, system_chunk);
5d80366e
JB
5263 if (ret == -ENOSPC &&
5264 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5265 if (block_rsv != global_rsv &&
5266 !block_rsv_use_bytes(global_rsv, orig_bytes))
5267 ret = 0;
5268 }
9a3daff3 5269 if (ret == -ENOSPC) {
0b246afa 5270 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5271 block_rsv->space_info->flags,
5272 orig_bytes, 1);
9a3daff3
NB
5273
5274 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5275 dump_space_info(fs_info, block_rsv->space_info,
5276 orig_bytes, 0);
5277 }
f0486c68
YZ
5278 return ret;
5279}
5280
79787eaa
JM
5281static struct btrfs_block_rsv *get_block_rsv(
5282 const struct btrfs_trans_handle *trans,
5283 const struct btrfs_root *root)
f0486c68 5284{
0b246afa 5285 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5286 struct btrfs_block_rsv *block_rsv = NULL;
5287
e9cf439f 5288 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5289 (root == fs_info->csum_root && trans->adding_csums) ||
5290 (root == fs_info->uuid_root))
f7a81ea4
SB
5291 block_rsv = trans->block_rsv;
5292
4c13d758 5293 if (!block_rsv)
f0486c68
YZ
5294 block_rsv = root->block_rsv;
5295
5296 if (!block_rsv)
0b246afa 5297 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5298
5299 return block_rsv;
5300}
5301
5302static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5303 u64 num_bytes)
5304{
5305 int ret = -ENOSPC;
5306 spin_lock(&block_rsv->lock);
5307 if (block_rsv->reserved >= num_bytes) {
5308 block_rsv->reserved -= num_bytes;
5309 if (block_rsv->reserved < block_rsv->size)
5310 block_rsv->full = 0;
5311 ret = 0;
5312 }
5313 spin_unlock(&block_rsv->lock);
5314 return ret;
5315}
5316
5317static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5318 u64 num_bytes, bool update_size)
f0486c68
YZ
5319{
5320 spin_lock(&block_rsv->lock);
5321 block_rsv->reserved += num_bytes;
5322 if (update_size)
5323 block_rsv->size += num_bytes;
5324 else if (block_rsv->reserved >= block_rsv->size)
5325 block_rsv->full = 1;
5326 spin_unlock(&block_rsv->lock);
5327}
5328
d52be818
JB
5329int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5330 struct btrfs_block_rsv *dest, u64 num_bytes,
5331 int min_factor)
5332{
5333 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5334 u64 min_bytes;
5335
5336 if (global_rsv->space_info != dest->space_info)
5337 return -ENOSPC;
5338
5339 spin_lock(&global_rsv->lock);
5340 min_bytes = div_factor(global_rsv->size, min_factor);
5341 if (global_rsv->reserved < min_bytes + num_bytes) {
5342 spin_unlock(&global_rsv->lock);
5343 return -ENOSPC;
5344 }
5345 global_rsv->reserved -= num_bytes;
5346 if (global_rsv->reserved < global_rsv->size)
5347 global_rsv->full = 0;
5348 spin_unlock(&global_rsv->lock);
5349
3a584174 5350 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5351 return 0;
5352}
5353
ba2c4d4e
JB
5354/**
5355 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5356 * @fs_info - the fs info for our fs.
5357 * @src - the source block rsv to transfer from.
5358 * @num_bytes - the number of bytes to transfer.
5359 *
5360 * This transfers up to the num_bytes amount from the src rsv to the
5361 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5362 */
5363void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5364 struct btrfs_block_rsv *src,
5365 u64 num_bytes)
5366{
5367 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5368 u64 to_free = 0;
5369
5370 spin_lock(&src->lock);
5371 src->reserved -= num_bytes;
5372 src->size -= num_bytes;
5373 spin_unlock(&src->lock);
5374
5375 spin_lock(&delayed_refs_rsv->lock);
5376 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5377 u64 delta = delayed_refs_rsv->size -
5378 delayed_refs_rsv->reserved;
5379 if (num_bytes > delta) {
5380 to_free = num_bytes - delta;
5381 num_bytes = delta;
5382 }
5383 } else {
5384 to_free = num_bytes;
5385 num_bytes = 0;
5386 }
5387
5388 if (num_bytes)
5389 delayed_refs_rsv->reserved += num_bytes;
5390 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5391 delayed_refs_rsv->full = 1;
5392 spin_unlock(&delayed_refs_rsv->lock);
5393
5394 if (num_bytes)
5395 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5396 0, num_bytes, 1);
5397 if (to_free)
5398 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5399 to_free);
5400}
5401
5402/**
5403 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5404 * @fs_info - the fs_info for our fs.
5405 * @flush - control how we can flush for this reservation.
5406 *
5407 * This will refill the delayed block_rsv up to 1 items size worth of space and
5408 * will return -ENOSPC if we can't make the reservation.
5409 */
5410int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5411 enum btrfs_reserve_flush_enum flush)
5412{
5413 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5414 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5415 u64 num_bytes = 0;
5416 int ret = -ENOSPC;
5417
5418 spin_lock(&block_rsv->lock);
5419 if (block_rsv->reserved < block_rsv->size) {
5420 num_bytes = block_rsv->size - block_rsv->reserved;
5421 num_bytes = min(num_bytes, limit);
5422 }
5423 spin_unlock(&block_rsv->lock);
5424
5425 if (!num_bytes)
5426 return 0;
5427
5428 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5429 num_bytes, flush);
5430 if (ret)
5431 return ret;
5432 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5433 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5434 0, num_bytes, 1);
5435 return 0;
5436}
5437
957780eb
JB
5438/*
5439 * This is for space we already have accounted in space_info->bytes_may_use, so
5440 * basically when we're returning space from block_rsv's.
5441 */
5442static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5443 struct btrfs_space_info *space_info,
5444 u64 num_bytes)
5445{
5446 struct reserve_ticket *ticket;
5447 struct list_head *head;
5448 u64 used;
5449 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5450 bool check_overcommit = false;
5451
5452 spin_lock(&space_info->lock);
5453 head = &space_info->priority_tickets;
5454
5455 /*
5456 * If we are over our limit then we need to check and see if we can
5457 * overcommit, and if we can't then we just need to free up our space
5458 * and not satisfy any requests.
5459 */
0eee8a49 5460 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5461 if (used - num_bytes >= space_info->total_bytes)
5462 check_overcommit = true;
5463again:
5464 while (!list_empty(head) && num_bytes) {
5465 ticket = list_first_entry(head, struct reserve_ticket,
5466 list);
5467 /*
5468 * We use 0 bytes because this space is already reserved, so
5469 * adding the ticket space would be a double count.
5470 */
5471 if (check_overcommit &&
c1c4919b 5472 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5473 break;
5474 if (num_bytes >= ticket->bytes) {
5475 list_del_init(&ticket->list);
5476 num_bytes -= ticket->bytes;
5477 ticket->bytes = 0;
ce129655 5478 space_info->tickets_id++;
957780eb
JB
5479 wake_up(&ticket->wait);
5480 } else {
5481 ticket->bytes -= num_bytes;
5482 num_bytes = 0;
5483 }
5484 }
5485
5486 if (num_bytes && head == &space_info->priority_tickets) {
5487 head = &space_info->tickets;
5488 flush = BTRFS_RESERVE_FLUSH_ALL;
5489 goto again;
5490 }
9f9b8e8d 5491 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5492 trace_btrfs_space_reservation(fs_info, "space_info",
5493 space_info->flags, num_bytes, 0);
5494 spin_unlock(&space_info->lock);
5495}
5496
5497/*
5498 * This is for newly allocated space that isn't accounted in
5499 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5500 * we use this helper.
5501 */
5502static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5503 struct btrfs_space_info *space_info,
5504 u64 num_bytes)
5505{
5506 struct reserve_ticket *ticket;
5507 struct list_head *head = &space_info->priority_tickets;
5508
5509again:
5510 while (!list_empty(head) && num_bytes) {
5511 ticket = list_first_entry(head, struct reserve_ticket,
5512 list);
5513 if (num_bytes >= ticket->bytes) {
5514 trace_btrfs_space_reservation(fs_info, "space_info",
5515 space_info->flags,
5516 ticket->bytes, 1);
5517 list_del_init(&ticket->list);
5518 num_bytes -= ticket->bytes;
9f9b8e8d 5519 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5520 ticket->bytes = 0;
ce129655 5521 space_info->tickets_id++;
957780eb
JB
5522 wake_up(&ticket->wait);
5523 } else {
5524 trace_btrfs_space_reservation(fs_info, "space_info",
5525 space_info->flags,
5526 num_bytes, 1);
9f9b8e8d 5527 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5528 ticket->bytes -= num_bytes;
5529 num_bytes = 0;
5530 }
5531 }
5532
5533 if (num_bytes && head == &space_info->priority_tickets) {
5534 head = &space_info->tickets;
5535 goto again;
5536 }
5537}
5538
69fe2d75 5539static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5540 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5541 struct btrfs_block_rsv *dest, u64 num_bytes,
5542 u64 *qgroup_to_release_ret)
f0486c68
YZ
5543{
5544 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5545 u64 qgroup_to_release = 0;
69fe2d75 5546 u64 ret;
f0486c68
YZ
5547
5548 spin_lock(&block_rsv->lock);
ff6bc37e 5549 if (num_bytes == (u64)-1) {
f0486c68 5550 num_bytes = block_rsv->size;
ff6bc37e
QW
5551 qgroup_to_release = block_rsv->qgroup_rsv_size;
5552 }
f0486c68
YZ
5553 block_rsv->size -= num_bytes;
5554 if (block_rsv->reserved >= block_rsv->size) {
5555 num_bytes = block_rsv->reserved - block_rsv->size;
5556 block_rsv->reserved = block_rsv->size;
5557 block_rsv->full = 1;
5558 } else {
5559 num_bytes = 0;
5560 }
ff6bc37e
QW
5561 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5562 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5563 block_rsv->qgroup_rsv_size;
5564 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5565 } else {
5566 qgroup_to_release = 0;
5567 }
f0486c68
YZ
5568 spin_unlock(&block_rsv->lock);
5569
69fe2d75 5570 ret = num_bytes;
f0486c68
YZ
5571 if (num_bytes > 0) {
5572 if (dest) {
e9e22899
JB
5573 spin_lock(&dest->lock);
5574 if (!dest->full) {
5575 u64 bytes_to_add;
5576
5577 bytes_to_add = dest->size - dest->reserved;
5578 bytes_to_add = min(num_bytes, bytes_to_add);
5579 dest->reserved += bytes_to_add;
5580 if (dest->reserved >= dest->size)
5581 dest->full = 1;
5582 num_bytes -= bytes_to_add;
5583 }
5584 spin_unlock(&dest->lock);
5585 }
957780eb
JB
5586 if (num_bytes)
5587 space_info_add_old_bytes(fs_info, space_info,
5588 num_bytes);
9ed74f2d 5589 }
ff6bc37e
QW
5590 if (qgroup_to_release_ret)
5591 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5592 return ret;
f0486c68 5593}
4e06bdd6 5594
25d609f8
JB
5595int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5596 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5597 bool update_size)
f0486c68
YZ
5598{
5599 int ret;
9ed74f2d 5600
f0486c68
YZ
5601 ret = block_rsv_use_bytes(src, num_bytes);
5602 if (ret)
5603 return ret;
9ed74f2d 5604
25d609f8 5605 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5606 return 0;
5607}
5608
66d8f3dd 5609void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5610{
f0486c68
YZ
5611 memset(rsv, 0, sizeof(*rsv));
5612 spin_lock_init(&rsv->lock);
66d8f3dd 5613 rsv->type = type;
f0486c68
YZ
5614}
5615
69fe2d75
JB
5616void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5617 struct btrfs_block_rsv *rsv,
5618 unsigned short type)
5619{
5620 btrfs_init_block_rsv(rsv, type);
5621 rsv->space_info = __find_space_info(fs_info,
5622 BTRFS_BLOCK_GROUP_METADATA);
5623}
5624
2ff7e61e 5625struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5626 unsigned short type)
f0486c68
YZ
5627{
5628 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5629
f0486c68
YZ
5630 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5631 if (!block_rsv)
5632 return NULL;
9ed74f2d 5633
69fe2d75 5634 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5635 return block_rsv;
5636}
9ed74f2d 5637
2ff7e61e 5638void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5639 struct btrfs_block_rsv *rsv)
5640{
2aaa6655
JB
5641 if (!rsv)
5642 return;
2ff7e61e 5643 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5644 kfree(rsv);
9ed74f2d
JB
5645}
5646
08e007d2
MX
5647int btrfs_block_rsv_add(struct btrfs_root *root,
5648 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5649 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5650{
f0486c68 5651 int ret;
9ed74f2d 5652
f0486c68
YZ
5653 if (num_bytes == 0)
5654 return 0;
8bb8ab2e 5655
61b520a9 5656 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5657 if (!ret)
3a584174 5658 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5659
f0486c68 5660 return ret;
f0486c68 5661}
9ed74f2d 5662
2ff7e61e 5663int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5664{
5665 u64 num_bytes = 0;
f0486c68 5666 int ret = -ENOSPC;
9ed74f2d 5667
f0486c68
YZ
5668 if (!block_rsv)
5669 return 0;
9ed74f2d 5670
f0486c68 5671 spin_lock(&block_rsv->lock);
36ba022a
JB
5672 num_bytes = div_factor(block_rsv->size, min_factor);
5673 if (block_rsv->reserved >= num_bytes)
5674 ret = 0;
5675 spin_unlock(&block_rsv->lock);
9ed74f2d 5676
36ba022a
JB
5677 return ret;
5678}
5679
08e007d2
MX
5680int btrfs_block_rsv_refill(struct btrfs_root *root,
5681 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5682 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5683{
5684 u64 num_bytes = 0;
5685 int ret = -ENOSPC;
5686
5687 if (!block_rsv)
5688 return 0;
5689
5690 spin_lock(&block_rsv->lock);
5691 num_bytes = min_reserved;
13553e52 5692 if (block_rsv->reserved >= num_bytes)
f0486c68 5693 ret = 0;
13553e52 5694 else
f0486c68 5695 num_bytes -= block_rsv->reserved;
f0486c68 5696 spin_unlock(&block_rsv->lock);
13553e52 5697
f0486c68
YZ
5698 if (!ret)
5699 return 0;
5700
aa38a711 5701 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5702 if (!ret) {
3a584174 5703 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5704 return 0;
6a63209f 5705 }
9ed74f2d 5706
13553e52 5707 return ret;
f0486c68
YZ
5708}
5709
5df11363
JB
5710static void calc_refill_bytes(struct btrfs_block_rsv *block_rsv,
5711 u64 *metadata_bytes, u64 *qgroup_bytes)
5712{
5713 *metadata_bytes = 0;
5714 *qgroup_bytes = 0;
5715
5716 spin_lock(&block_rsv->lock);
5717 if (block_rsv->reserved < block_rsv->size)
5718 *metadata_bytes = block_rsv->size - block_rsv->reserved;
5719 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5720 *qgroup_bytes = block_rsv->qgroup_rsv_size -
5721 block_rsv->qgroup_rsv_reserved;
5722 spin_unlock(&block_rsv->lock);
5723}
5724
69fe2d75
JB
5725/**
5726 * btrfs_inode_rsv_refill - refill the inode block rsv.
5727 * @inode - the inode we are refilling.
52042d8e 5728 * @flush - the flushing restriction.
69fe2d75
JB
5729 *
5730 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5731 * block_rsv->size as the minimum size. We'll either refill the missing amount
52042d8e 5732 * or return if we already have enough space. This will also handle the reserve
69fe2d75
JB
5733 * tracepoint for the reserved amount.
5734 */
3f2dd7a0
QW
5735static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5736 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5737{
5738 struct btrfs_root *root = inode->root;
5739 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5df11363
JB
5740 u64 num_bytes, last = 0;
5741 u64 qgroup_num_bytes;
69fe2d75
JB
5742 int ret = -ENOSPC;
5743
5df11363 5744 calc_refill_bytes(block_rsv, &num_bytes, &qgroup_num_bytes);
69fe2d75
JB
5745 if (num_bytes == 0)
5746 return 0;
5747
5df11363
JB
5748 do {
5749 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes,
5750 true);
5751 if (ret)
5752 return ret;
5753 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5754 if (ret) {
5755 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5756 last = num_bytes;
5757 /*
5758 * If we are fragmented we can end up with a lot of
5759 * outstanding extents which will make our size be much
5760 * larger than our reserved amount.
5761 *
5762 * If the reservation happens here, it might be very
5763 * big though not needed in the end, if the delalloc
5764 * flushing happens.
5765 *
5766 * If this is the case try and do the reserve again.
5767 */
5768 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5769 calc_refill_bytes(block_rsv, &num_bytes,
5770 &qgroup_num_bytes);
5771 if (num_bytes == 0)
5772 return 0;
5773 }
5774 } while (ret && last != num_bytes);
5775
69fe2d75 5776 if (!ret) {
3a584174 5777 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5778 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5779 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5780
5781 /* Don't forget to increase qgroup_rsv_reserved */
5782 spin_lock(&block_rsv->lock);
5783 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5784 spin_unlock(&block_rsv->lock);
5df11363 5785 }
69fe2d75
JB
5786 return ret;
5787}
5788
ba2c4d4e
JB
5789static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5790 struct btrfs_block_rsv *block_rsv,
5791 u64 num_bytes, u64 *qgroup_to_release)
5792{
5793 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5794 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5795 struct btrfs_block_rsv *target = delayed_rsv;
5796
5797 if (target->full || target == block_rsv)
5798 target = global_rsv;
5799
5800 if (block_rsv->space_info != target->space_info)
5801 target = NULL;
5802
5803 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5804 qgroup_to_release);
5805}
5806
5807void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5808 struct btrfs_block_rsv *block_rsv,
5809 u64 num_bytes)
5810{
5811 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5812}
5813
69fe2d75
JB
5814/**
5815 * btrfs_inode_rsv_release - release any excessive reservation.
5816 * @inode - the inode we need to release from.
43b18595
QW
5817 * @qgroup_free - free or convert qgroup meta.
5818 * Unlike normal operation, qgroup meta reservation needs to know if we are
5819 * freeing qgroup reservation or just converting it into per-trans. Normally
5820 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5821 *
5822 * This is the same as btrfs_block_rsv_release, except that it handles the
5823 * tracepoint for the reservation.
5824 */
43b18595 5825static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5826{
5827 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5828 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5829 u64 released = 0;
ff6bc37e 5830 u64 qgroup_to_release = 0;
69fe2d75
JB
5831
5832 /*
5833 * Since we statically set the block_rsv->size we just want to say we
5834 * are releasing 0 bytes, and then we'll just get the reservation over
5835 * the size free'd.
5836 */
ba2c4d4e
JB
5837 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5838 &qgroup_to_release);
69fe2d75
JB
5839 if (released > 0)
5840 trace_btrfs_space_reservation(fs_info, "delalloc",
5841 btrfs_ino(inode), released, 0);
43b18595 5842 if (qgroup_free)
ff6bc37e 5843 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5844 else
ff6bc37e
QW
5845 btrfs_qgroup_convert_reserved_meta(inode->root,
5846 qgroup_to_release);
69fe2d75
JB
5847}
5848
ba2c4d4e
JB
5849/**
5850 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5851 * @fs_info - the fs_info for our fs.
5852 * @nr - the number of items to drop.
5853 *
5854 * This drops the delayed ref head's count from the delayed refs rsv and frees
5855 * any excess reservation we had.
5856 */
5857void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5858{
ba2c4d4e 5859 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5860 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5861 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5862 u64 released = 0;
0b246afa 5863
ba2c4d4e
JB
5864 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5865 num_bytes, NULL);
5866 if (released)
5867 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5868 0, released, 0);
6a63209f
JB
5869}
5870
8929ecfa
YZ
5871static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5872{
5873 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5874 struct btrfs_space_info *sinfo = block_rsv->space_info;
5875 u64 num_bytes;
6a63209f 5876
ae2e4728
JB
5877 /*
5878 * The global block rsv is based on the size of the extent tree, the
5879 * checksum tree and the root tree. If the fs is empty we want to set
5880 * it to a minimal amount for safety.
5881 */
5882 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5883 btrfs_root_used(&fs_info->csum_root->root_item) +
5884 btrfs_root_used(&fs_info->tree_root->root_item);
5885 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5886
8929ecfa 5887 spin_lock(&sinfo->lock);
1f699d38 5888 spin_lock(&block_rsv->lock);
4e06bdd6 5889
ee22184b 5890 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5891
fb4b10e5 5892 if (block_rsv->reserved < block_rsv->size) {
4136135b 5893 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5894 if (sinfo->total_bytes > num_bytes) {
5895 num_bytes = sinfo->total_bytes - num_bytes;
5896 num_bytes = min(num_bytes,
5897 block_rsv->size - block_rsv->reserved);
5898 block_rsv->reserved += num_bytes;
9f9b8e8d 5899 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5900 trace_btrfs_space_reservation(fs_info, "space_info",
5901 sinfo->flags, num_bytes,
5902 1);
5903 }
5904 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5905 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5906 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5907 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5908 sinfo->flags, num_bytes, 0);
8929ecfa 5909 block_rsv->reserved = block_rsv->size;
8929ecfa 5910 }
182608c8 5911
fb4b10e5
JB
5912 if (block_rsv->reserved == block_rsv->size)
5913 block_rsv->full = 1;
5914 else
5915 block_rsv->full = 0;
5916
8929ecfa 5917 spin_unlock(&block_rsv->lock);
1f699d38 5918 spin_unlock(&sinfo->lock);
6a63209f
JB
5919}
5920
f0486c68 5921static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5922{
f0486c68 5923 struct btrfs_space_info *space_info;
6a63209f 5924
f0486c68
YZ
5925 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5926 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5927
f0486c68 5928 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5929 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5930 fs_info->trans_block_rsv.space_info = space_info;
5931 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5932 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5933 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5934
ba2c4d4e
JB
5935 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5936 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5937 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5938 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5939 if (fs_info->quota_root)
5940 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5941 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5942
8929ecfa 5943 update_global_block_rsv(fs_info);
6a63209f
JB
5944}
5945
8929ecfa 5946static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5947{
8c2a3ca2 5948 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5949 (u64)-1, NULL);
8929ecfa
YZ
5950 WARN_ON(fs_info->trans_block_rsv.size > 0);
5951 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5952 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5953 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5954 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5955 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
5956 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5957 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
5958}
5959
ba2c4d4e
JB
5960/*
5961 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5962 * @trans - the trans that may have generated delayed refs
5963 *
5964 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5965 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5966 */
5967void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5968{
5969 struct btrfs_fs_info *fs_info = trans->fs_info;
5970 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5971 u64 num_bytes;
5972
5973 if (!trans->delayed_ref_updates)
5974 return;
5975
5976 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5977 trans->delayed_ref_updates);
5978 spin_lock(&delayed_rsv->lock);
5979 delayed_rsv->size += num_bytes;
5980 delayed_rsv->full = 0;
5981 spin_unlock(&delayed_rsv->lock);
5982 trans->delayed_ref_updates = 0;
5983}
6a63209f 5984
4fbcdf66
FM
5985/*
5986 * To be called after all the new block groups attached to the transaction
5987 * handle have been created (btrfs_create_pending_block_groups()).
5988 */
5989void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5990{
64b63580 5991 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5992
5993 if (!trans->chunk_bytes_reserved)
5994 return;
5995
5996 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5997
5998 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5999 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
6000 trans->chunk_bytes_reserved = 0;
6001}
6002
d5c12070
MX
6003/*
6004 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6005 * root: the root of the parent directory
6006 * rsv: block reservation
6007 * items: the number of items that we need do reservation
a5b7f429 6008 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6009 *
6010 * This function is used to reserve the space for snapshot/subvolume
6011 * creation and deletion. Those operations are different with the
6012 * common file/directory operations, they change two fs/file trees
6013 * and root tree, the number of items that the qgroup reserves is
6014 * different with the free space reservation. So we can not use
01327610 6015 * the space reservation mechanism in start_transaction().
d5c12070
MX
6016 */
6017int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6018 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6019 bool use_global_rsv)
a22285a6 6020{
a5b7f429 6021 u64 qgroup_num_bytes = 0;
d5c12070
MX
6022 u64 num_bytes;
6023 int ret;
0b246afa
JM
6024 struct btrfs_fs_info *fs_info = root->fs_info;
6025 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6026
0b246afa 6027 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6028 /* One for parent inode, two for dir entries */
a5b7f429
LF
6029 qgroup_num_bytes = 3 * fs_info->nodesize;
6030 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6031 qgroup_num_bytes, true);
d5c12070
MX
6032 if (ret)
6033 return ret;
d5c12070
MX
6034 }
6035
0b246afa
JM
6036 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6037 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6038 BTRFS_BLOCK_GROUP_METADATA);
6039 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6040 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6041
6042 if (ret == -ENOSPC && use_global_rsv)
3a584174 6043 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6044
a5b7f429
LF
6045 if (ret && qgroup_num_bytes)
6046 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6047
6048 return ret;
6049}
6050
2ff7e61e 6051void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6052 struct btrfs_block_rsv *rsv)
d5c12070 6053{
2ff7e61e 6054 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6055}
6056
69fe2d75
JB
6057static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6058 struct btrfs_inode *inode)
9e0baf60 6059{
69fe2d75
JB
6060 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6061 u64 reserve_size = 0;
ff6bc37e 6062 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6063 u64 csum_leaves;
6064 unsigned outstanding_extents;
9e0baf60 6065
69fe2d75
JB
6066 lockdep_assert_held(&inode->lock);
6067 outstanding_extents = inode->outstanding_extents;
6068 if (outstanding_extents)
6069 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6070 outstanding_extents + 1);
6071 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6072 inode->csum_bytes);
6073 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6074 csum_leaves);
ff6bc37e
QW
6075 /*
6076 * For qgroup rsv, the calculation is very simple:
6077 * account one nodesize for each outstanding extent
6078 *
6079 * This is overestimating in most cases.
6080 */
139a5617 6081 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
9e0baf60 6082
69fe2d75
JB
6083 spin_lock(&block_rsv->lock);
6084 block_rsv->size = reserve_size;
ff6bc37e 6085 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6086 spin_unlock(&block_rsv->lock);
0ca1f7ce 6087}
c146afad 6088
9f3db423 6089int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6090{
3ffbd68c 6091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6092 unsigned nr_extents;
08e007d2 6093 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6094 int ret = 0;
c64c2bd8 6095 bool delalloc_lock = true;
6324fbf3 6096
c64c2bd8
JB
6097 /* If we are a free space inode we need to not flush since we will be in
6098 * the middle of a transaction commit. We also don't need the delalloc
6099 * mutex since we won't race with anybody. We need this mostly to make
6100 * lockdep shut its filthy mouth.
bac357dc
JB
6101 *
6102 * If we have a transaction open (can happen if we call truncate_block
6103 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6104 */
6105 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6106 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6107 delalloc_lock = false;
da07d4ab
NB
6108 } else {
6109 if (current->journal_info)
6110 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6111
da07d4ab
NB
6112 if (btrfs_transaction_in_commit(fs_info))
6113 schedule_timeout(1);
6114 }
ec44a35c 6115
c64c2bd8 6116 if (delalloc_lock)
9f3db423 6117 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6118
0b246afa 6119 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6120
6121 /* Add our new extents and calculate the new rsv size. */
9f3db423 6122 spin_lock(&inode->lock);
69fe2d75 6123 nr_extents = count_max_extents(num_bytes);
8b62f87b 6124 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6125 inode->csum_bytes += num_bytes;
6126 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6127 spin_unlock(&inode->lock);
57a45ced 6128
69fe2d75 6129 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6130 if (unlikely(ret))
88e081bf 6131 goto out_fail;
25179201 6132
c64c2bd8 6133 if (delalloc_lock)
9f3db423 6134 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6135 return 0;
88e081bf
WS
6136
6137out_fail:
9f3db423 6138 spin_lock(&inode->lock);
8b62f87b
JB
6139 nr_extents = count_max_extents(num_bytes);
6140 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6141 inode->csum_bytes -= num_bytes;
6142 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6143 spin_unlock(&inode->lock);
88e081bf 6144
43b18595 6145 btrfs_inode_rsv_release(inode, true);
88e081bf 6146 if (delalloc_lock)
9f3db423 6147 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6148 return ret;
0ca1f7ce
YZ
6149}
6150
7709cde3
JB
6151/**
6152 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6153 * @inode: the inode to release the reservation for.
6154 * @num_bytes: the number of bytes we are releasing.
43b18595 6155 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6156 *
6157 * This will release the metadata reservation for an inode. This can be called
6158 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6159 * reservations, or on error for the same reason.
7709cde3 6160 */
43b18595
QW
6161void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6162 bool qgroup_free)
0ca1f7ce 6163{
3ffbd68c 6164 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6165
0b246afa 6166 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6167 spin_lock(&inode->lock);
69fe2d75
JB
6168 inode->csum_bytes -= num_bytes;
6169 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6170 spin_unlock(&inode->lock);
0ca1f7ce 6171
0b246afa 6172 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6173 return;
6174
43b18595 6175 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6176}
6177
8b62f87b
JB
6178/**
6179 * btrfs_delalloc_release_extents - release our outstanding_extents
6180 * @inode: the inode to balance the reservation for.
6181 * @num_bytes: the number of bytes we originally reserved with
43b18595 6182 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6183 *
6184 * When we reserve space we increase outstanding_extents for the extents we may
6185 * add. Once we've set the range as delalloc or created our ordered extents we
6186 * have outstanding_extents to track the real usage, so we use this to free our
6187 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6188 * with btrfs_delalloc_reserve_metadata.
6189 */
43b18595
QW
6190void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6191 bool qgroup_free)
8b62f87b 6192{
3ffbd68c 6193 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6194 unsigned num_extents;
8b62f87b
JB
6195
6196 spin_lock(&inode->lock);
6197 num_extents = count_max_extents(num_bytes);
6198 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6199 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6200 spin_unlock(&inode->lock);
6201
8b62f87b
JB
6202 if (btrfs_is_testing(fs_info))
6203 return;
6204
43b18595 6205 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6206}
6207
1ada3a62 6208/**
7cf5b976 6209 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6210 * delalloc
6211 * @inode: inode we're writing to
6212 * @start: start range we are writing to
6213 * @len: how long the range we are writing to
364ecf36
QW
6214 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6215 * current reservation.
1ada3a62 6216 *
1ada3a62
QW
6217 * This will do the following things
6218 *
6219 * o reserve space in data space info for num bytes
6220 * and reserve precious corresponding qgroup space
6221 * (Done in check_data_free_space)
6222 *
6223 * o reserve space for metadata space, based on the number of outstanding
6224 * extents and how much csums will be needed
6225 * also reserve metadata space in a per root over-reserve method.
6226 * o add to the inodes->delalloc_bytes
6227 * o add it to the fs_info's delalloc inodes list.
6228 * (Above 3 all done in delalloc_reserve_metadata)
6229 *
6230 * Return 0 for success
6231 * Return <0 for error(-ENOSPC or -EQUOT)
6232 */
364ecf36
QW
6233int btrfs_delalloc_reserve_space(struct inode *inode,
6234 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6235{
6236 int ret;
6237
364ecf36 6238 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6239 if (ret < 0)
6240 return ret;
9f3db423 6241 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6242 if (ret < 0)
bc42bda2 6243 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6244 return ret;
6245}
6246
7709cde3 6247/**
7cf5b976 6248 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6249 * @inode: inode we're releasing space for
6250 * @start: start position of the space already reserved
6251 * @len: the len of the space already reserved
8b62f87b 6252 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6253 *
6254 * This function will release the metadata space that was not used and will
6255 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6256 * list if there are no delalloc bytes left.
6257 * Also it will handle the qgroup reserved space.
6258 */
bc42bda2 6259void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6260 struct extent_changeset *reserved,
43b18595 6261 u64 start, u64 len, bool qgroup_free)
1ada3a62 6262{
43b18595 6263 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6264 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6265}
6266
ce93ec54 6267static int update_block_group(struct btrfs_trans_handle *trans,
6b279408 6268 u64 bytenr, u64 num_bytes, int alloc)
9078a3e1 6269{
6b279408 6270 struct btrfs_fs_info *info = trans->fs_info;
0af3d00b 6271 struct btrfs_block_group_cache *cache = NULL;
db94535d 6272 u64 total = num_bytes;
9078a3e1 6273 u64 old_val;
db94535d 6274 u64 byte_in_group;
0af3d00b 6275 int factor;
ba2c4d4e 6276 int ret = 0;
3e1ad54f 6277
5d4f98a2 6278 /* block accounting for super block */
eb73c1b7 6279 spin_lock(&info->delalloc_root_lock);
6c41761f 6280 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6281 if (alloc)
6282 old_val += num_bytes;
6283 else
6284 old_val -= num_bytes;
6c41761f 6285 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6286 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6287
d397712b 6288 while (total) {
db94535d 6289 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6290 if (!cache) {
6291 ret = -ENOENT;
6292 break;
6293 }
46df06b8
DS
6294 factor = btrfs_bg_type_to_factor(cache->flags);
6295
9d66e233
JB
6296 /*
6297 * If this block group has free space cache written out, we
6298 * need to make sure to load it if we are removing space. This
6299 * is because we need the unpinning stage to actually add the
6300 * space back to the block group, otherwise we will leak space.
6301 */
6302 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6303 cache_block_group(cache, 1);
0af3d00b 6304
db94535d
CM
6305 byte_in_group = bytenr - cache->key.objectid;
6306 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6307
25179201 6308 spin_lock(&cache->space_info->lock);
c286ac48 6309 spin_lock(&cache->lock);
0af3d00b 6310
6202df69 6311 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6312 cache->disk_cache_state < BTRFS_DC_CLEAR)
6313 cache->disk_cache_state = BTRFS_DC_CLEAR;
6314
9078a3e1 6315 old_val = btrfs_block_group_used(&cache->item);
db94535d 6316 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6317 if (alloc) {
db94535d 6318 old_val += num_bytes;
11833d66
YZ
6319 btrfs_set_block_group_used(&cache->item, old_val);
6320 cache->reserved -= num_bytes;
11833d66 6321 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6322 cache->space_info->bytes_used += num_bytes;
6323 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6324 spin_unlock(&cache->lock);
25179201 6325 spin_unlock(&cache->space_info->lock);
cd1bc465 6326 } else {
db94535d 6327 old_val -= num_bytes;
ae0ab003
FM
6328 btrfs_set_block_group_used(&cache->item, old_val);
6329 cache->pinned += num_bytes;
e2907c1a 6330 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6331 cache->space_info->bytes_used -= num_bytes;
6332 cache->space_info->disk_used -= num_bytes * factor;
6333 spin_unlock(&cache->lock);
6334 spin_unlock(&cache->space_info->lock);
47ab2a6c 6335
0b246afa 6336 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6337 cache->space_info->flags,
6338 num_bytes, 1);
dec59fa3
EL
6339 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6340 num_bytes,
6341 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6342 set_extent_dirty(info->pinned_extents,
6343 bytenr, bytenr + num_bytes - 1,
6344 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6345 }
1bbc621e
CM
6346
6347 spin_lock(&trans->transaction->dirty_bgs_lock);
6348 if (list_empty(&cache->dirty_list)) {
6349 list_add_tail(&cache->dirty_list,
6350 &trans->transaction->dirty_bgs);
ba2c4d4e 6351 trans->delayed_ref_updates++;
1bbc621e
CM
6352 btrfs_get_block_group(cache);
6353 }
6354 spin_unlock(&trans->transaction->dirty_bgs_lock);
6355
036a9348
FM
6356 /*
6357 * No longer have used bytes in this block group, queue it for
6358 * deletion. We do this after adding the block group to the
6359 * dirty list to avoid races between cleaner kthread and space
6360 * cache writeout.
6361 */
031f24da
QW
6362 if (!alloc && old_val == 0)
6363 btrfs_mark_bg_unused(cache);
036a9348 6364
fa9c0d79 6365 btrfs_put_block_group(cache);
db94535d
CM
6366 total -= num_bytes;
6367 bytenr += num_bytes;
9078a3e1 6368 }
ba2c4d4e
JB
6369
6370 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6371 btrfs_update_delayed_refs_rsv(trans);
6372 return ret;
9078a3e1 6373}
6324fbf3 6374
2ff7e61e 6375static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6376{
0f9dd46c 6377 struct btrfs_block_group_cache *cache;
d2fb3437 6378 u64 bytenr;
0f9dd46c 6379
0b246afa
JM
6380 spin_lock(&fs_info->block_group_cache_lock);
6381 bytenr = fs_info->first_logical_byte;
6382 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6383
6384 if (bytenr < (u64)-1)
6385 return bytenr;
6386
0b246afa 6387 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6388 if (!cache)
a061fc8d 6389 return 0;
0f9dd46c 6390
d2fb3437 6391 bytenr = cache->key.objectid;
fa9c0d79 6392 btrfs_put_block_group(cache);
d2fb3437
YZ
6393
6394 return bytenr;
a061fc8d
CM
6395}
6396
fdf08605 6397static int pin_down_extent(struct btrfs_block_group_cache *cache,
f0486c68 6398 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6399{
fdf08605
DS
6400 struct btrfs_fs_info *fs_info = cache->fs_info;
6401
11833d66
YZ
6402 spin_lock(&cache->space_info->lock);
6403 spin_lock(&cache->lock);
6404 cache->pinned += num_bytes;
e2907c1a 6405 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6406 if (reserved) {
6407 cache->reserved -= num_bytes;
6408 cache->space_info->bytes_reserved -= num_bytes;
6409 }
6410 spin_unlock(&cache->lock);
6411 spin_unlock(&cache->space_info->lock);
68b38550 6412
0b246afa 6413 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6414 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6415 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6416 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6417 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6418 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6419 return 0;
6420}
68b38550 6421
f0486c68
YZ
6422/*
6423 * this function must be called within transaction
6424 */
2ff7e61e 6425int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6426 u64 bytenr, u64 num_bytes, int reserved)
6427{
6428 struct btrfs_block_group_cache *cache;
68b38550 6429
0b246afa 6430 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6431 BUG_ON(!cache); /* Logic error */
f0486c68 6432
fdf08605 6433 pin_down_extent(cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6434
6435 btrfs_put_block_group(cache);
11833d66
YZ
6436 return 0;
6437}
6438
f0486c68 6439/*
e688b725
CM
6440 * this function must be called within transaction
6441 */
2ff7e61e 6442int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6443 u64 bytenr, u64 num_bytes)
6444{
6445 struct btrfs_block_group_cache *cache;
b50c6e25 6446 int ret;
e688b725 6447
0b246afa 6448 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6449 if (!cache)
6450 return -EINVAL;
e688b725
CM
6451
6452 /*
6453 * pull in the free space cache (if any) so that our pin
6454 * removes the free space from the cache. We have load_only set
6455 * to one because the slow code to read in the free extents does check
6456 * the pinned extents.
6457 */
f6373bf3 6458 cache_block_group(cache, 1);
e688b725 6459
fdf08605 6460 pin_down_extent(cache, bytenr, num_bytes, 0);
e688b725
CM
6461
6462 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6463 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6464 btrfs_put_block_group(cache);
b50c6e25 6465 return ret;
e688b725
CM
6466}
6467
2ff7e61e
JM
6468static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6469 u64 start, u64 num_bytes)
8c2a1a30
JB
6470{
6471 int ret;
6472 struct btrfs_block_group_cache *block_group;
6473 struct btrfs_caching_control *caching_ctl;
6474
0b246afa 6475 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6476 if (!block_group)
6477 return -EINVAL;
6478
6479 cache_block_group(block_group, 0);
6480 caching_ctl = get_caching_control(block_group);
6481
6482 if (!caching_ctl) {
6483 /* Logic error */
6484 BUG_ON(!block_group_cache_done(block_group));
6485 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6486 } else {
6487 mutex_lock(&caching_ctl->mutex);
6488
6489 if (start >= caching_ctl->progress) {
2ff7e61e 6490 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6491 } else if (start + num_bytes <= caching_ctl->progress) {
6492 ret = btrfs_remove_free_space(block_group,
6493 start, num_bytes);
6494 } else {
6495 num_bytes = caching_ctl->progress - start;
6496 ret = btrfs_remove_free_space(block_group,
6497 start, num_bytes);
6498 if (ret)
6499 goto out_lock;
6500
6501 num_bytes = (start + num_bytes) -
6502 caching_ctl->progress;
6503 start = caching_ctl->progress;
2ff7e61e 6504 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6505 }
6506out_lock:
6507 mutex_unlock(&caching_ctl->mutex);
6508 put_caching_control(caching_ctl);
6509 }
6510 btrfs_put_block_group(block_group);
6511 return ret;
6512}
6513
bcdc428c 6514int btrfs_exclude_logged_extents(struct extent_buffer *eb)
8c2a1a30 6515{
bcdc428c 6516 struct btrfs_fs_info *fs_info = eb->fs_info;
8c2a1a30
JB
6517 struct btrfs_file_extent_item *item;
6518 struct btrfs_key key;
6519 int found_type;
6520 int i;
b89311ef 6521 int ret = 0;
8c2a1a30 6522
2ff7e61e 6523 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6524 return 0;
6525
6526 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6527 btrfs_item_key_to_cpu(eb, &key, i);
6528 if (key.type != BTRFS_EXTENT_DATA_KEY)
6529 continue;
6530 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6531 found_type = btrfs_file_extent_type(eb, item);
6532 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6533 continue;
6534 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6535 continue;
6536 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6537 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6538 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6539 if (ret)
6540 break;
8c2a1a30
JB
6541 }
6542
b89311ef 6543 return ret;
8c2a1a30
JB
6544}
6545
9cfa3e34
FM
6546static void
6547btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6548{
6549 atomic_inc(&bg->reservations);
6550}
6551
6552void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6553 const u64 start)
6554{
6555 struct btrfs_block_group_cache *bg;
6556
6557 bg = btrfs_lookup_block_group(fs_info, start);
6558 ASSERT(bg);
6559 if (atomic_dec_and_test(&bg->reservations))
4625956a 6560 wake_up_var(&bg->reservations);
9cfa3e34
FM
6561 btrfs_put_block_group(bg);
6562}
6563
9cfa3e34
FM
6564void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6565{
6566 struct btrfs_space_info *space_info = bg->space_info;
6567
6568 ASSERT(bg->ro);
6569
6570 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6571 return;
6572
6573 /*
6574 * Our block group is read only but before we set it to read only,
6575 * some task might have had allocated an extent from it already, but it
6576 * has not yet created a respective ordered extent (and added it to a
6577 * root's list of ordered extents).
6578 * Therefore wait for any task currently allocating extents, since the
6579 * block group's reservations counter is incremented while a read lock
6580 * on the groups' semaphore is held and decremented after releasing
6581 * the read access on that semaphore and creating the ordered extent.
6582 */
6583 down_write(&space_info->groups_sem);
6584 up_write(&space_info->groups_sem);
6585
4625956a 6586 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6587}
6588
fb25e914 6589/**
4824f1f4 6590 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6591 * @cache: The cache we are manipulating
18513091
WX
6592 * @ram_bytes: The number of bytes of file content, and will be same to
6593 * @num_bytes except for the compress path.
fb25e914 6594 * @num_bytes: The number of bytes in question
e570fd27 6595 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6596 *
745699ef
XW
6597 * This is called by the allocator when it reserves space. If this is a
6598 * reservation and the block group has become read only we cannot make the
6599 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6600 */
4824f1f4 6601static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6602 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6603{
fb25e914 6604 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6605 int ret = 0;
79787eaa 6606
fb25e914
JB
6607 spin_lock(&space_info->lock);
6608 spin_lock(&cache->lock);
4824f1f4
WX
6609 if (cache->ro) {
6610 ret = -EAGAIN;
fb25e914 6611 } else {
4824f1f4
WX
6612 cache->reserved += num_bytes;
6613 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6614 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6615 if (delalloc)
4824f1f4 6616 cache->delalloc_bytes += num_bytes;
324ae4df 6617 }
fb25e914
JB
6618 spin_unlock(&cache->lock);
6619 spin_unlock(&space_info->lock);
f0486c68 6620 return ret;
324ae4df 6621}
9078a3e1 6622
4824f1f4
WX
6623/**
6624 * btrfs_free_reserved_bytes - update the block_group and space info counters
6625 * @cache: The cache we are manipulating
6626 * @num_bytes: The number of bytes in question
6627 * @delalloc: The blocks are allocated for the delalloc write
6628 *
6629 * This is called by somebody who is freeing space that was never actually used
6630 * on disk. For example if you reserve some space for a new leaf in transaction
6631 * A and before transaction A commits you free that leaf, you call this with
6632 * reserve set to 0 in order to clear the reservation.
6633 */
6634
556f3ca8 6635static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6636 u64 num_bytes, int delalloc)
4824f1f4
WX
6637{
6638 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6639
6640 spin_lock(&space_info->lock);
6641 spin_lock(&cache->lock);
6642 if (cache->ro)
6643 space_info->bytes_readonly += num_bytes;
6644 cache->reserved -= num_bytes;
6645 space_info->bytes_reserved -= num_bytes;
21a94f7a 6646 space_info->max_extent_size = 0;
4824f1f4
WX
6647
6648 if (delalloc)
6649 cache->delalloc_bytes -= num_bytes;
6650 spin_unlock(&cache->lock);
6651 spin_unlock(&space_info->lock);
4824f1f4 6652}
8b74c03e 6653void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6654{
11833d66
YZ
6655 struct btrfs_caching_control *next;
6656 struct btrfs_caching_control *caching_ctl;
6657 struct btrfs_block_group_cache *cache;
e8569813 6658
9e351cc8 6659 down_write(&fs_info->commit_root_sem);
25179201 6660
11833d66
YZ
6661 list_for_each_entry_safe(caching_ctl, next,
6662 &fs_info->caching_block_groups, list) {
6663 cache = caching_ctl->block_group;
6664 if (block_group_cache_done(cache)) {
6665 cache->last_byte_to_unpin = (u64)-1;
6666 list_del_init(&caching_ctl->list);
6667 put_caching_control(caching_ctl);
e8569813 6668 } else {
11833d66 6669 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6670 }
e8569813 6671 }
11833d66
YZ
6672
6673 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6674 fs_info->pinned_extents = &fs_info->freed_extents[1];
6675 else
6676 fs_info->pinned_extents = &fs_info->freed_extents[0];
6677
9e351cc8 6678 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6679
6680 update_global_block_rsv(fs_info);
e8569813
ZY
6681}
6682
c759c4e1
JB
6683/*
6684 * Returns the free cluster for the given space info and sets empty_cluster to
6685 * what it should be based on the mount options.
6686 */
6687static struct btrfs_free_cluster *
2ff7e61e
JM
6688fetch_cluster_info(struct btrfs_fs_info *fs_info,
6689 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6690{
6691 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6692
6693 *empty_cluster = 0;
6694 if (btrfs_mixed_space_info(space_info))
6695 return ret;
6696
c759c4e1 6697 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6698 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6699 if (btrfs_test_opt(fs_info, SSD))
6700 *empty_cluster = SZ_2M;
6701 else
ee22184b 6702 *empty_cluster = SZ_64K;
583b7231
HK
6703 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6704 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6705 *empty_cluster = SZ_2M;
0b246afa 6706 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6707 }
6708
6709 return ret;
6710}
6711
2ff7e61e
JM
6712static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6713 u64 start, u64 end,
678886bd 6714 const bool return_free_space)
ccd467d6 6715{
11833d66 6716 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6717 struct btrfs_space_info *space_info;
6718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6719 struct btrfs_free_cluster *cluster = NULL;
11833d66 6720 u64 len;
c759c4e1
JB
6721 u64 total_unpinned = 0;
6722 u64 empty_cluster = 0;
7b398f8e 6723 bool readonly;
ccd467d6 6724
11833d66 6725 while (start <= end) {
7b398f8e 6726 readonly = false;
11833d66
YZ
6727 if (!cache ||
6728 start >= cache->key.objectid + cache->key.offset) {
6729 if (cache)
6730 btrfs_put_block_group(cache);
c759c4e1 6731 total_unpinned = 0;
11833d66 6732 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6733 BUG_ON(!cache); /* Logic error */
c759c4e1 6734
2ff7e61e 6735 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6736 cache->space_info,
6737 &empty_cluster);
6738 empty_cluster <<= 1;
11833d66
YZ
6739 }
6740
6741 len = cache->key.objectid + cache->key.offset - start;
6742 len = min(len, end + 1 - start);
6743
6744 if (start < cache->last_byte_to_unpin) {
6745 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6746 if (return_free_space)
6747 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6748 }
6749
f0486c68 6750 start += len;
c759c4e1 6751 total_unpinned += len;
7b398f8e 6752 space_info = cache->space_info;
f0486c68 6753
c759c4e1
JB
6754 /*
6755 * If this space cluster has been marked as fragmented and we've
6756 * unpinned enough in this block group to potentially allow a
6757 * cluster to be created inside of it go ahead and clear the
6758 * fragmented check.
6759 */
6760 if (cluster && cluster->fragmented &&
6761 total_unpinned > empty_cluster) {
6762 spin_lock(&cluster->lock);
6763 cluster->fragmented = 0;
6764 spin_unlock(&cluster->lock);
6765 }
6766
7b398f8e 6767 spin_lock(&space_info->lock);
11833d66
YZ
6768 spin_lock(&cache->lock);
6769 cache->pinned -= len;
e2907c1a 6770 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6771
6772 trace_btrfs_space_reservation(fs_info, "pinned",
6773 space_info->flags, len, 0);
4f4db217 6774 space_info->max_extent_size = 0;
dec59fa3
EL
6775 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6776 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6777 if (cache->ro) {
6778 space_info->bytes_readonly += len;
6779 readonly = true;
6780 }
11833d66 6781 spin_unlock(&cache->lock);
957780eb
JB
6782 if (!readonly && return_free_space &&
6783 global_rsv->space_info == space_info) {
6784 u64 to_add = len;
92ac58ec 6785
7b398f8e
JB
6786 spin_lock(&global_rsv->lock);
6787 if (!global_rsv->full) {
957780eb
JB
6788 to_add = min(len, global_rsv->size -
6789 global_rsv->reserved);
6790 global_rsv->reserved += to_add;
9f9b8e8d 6791 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6792 if (global_rsv->reserved >= global_rsv->size)
6793 global_rsv->full = 1;
957780eb
JB
6794 trace_btrfs_space_reservation(fs_info,
6795 "space_info",
6796 space_info->flags,
6797 to_add, 1);
6798 len -= to_add;
7b398f8e
JB
6799 }
6800 spin_unlock(&global_rsv->lock);
957780eb
JB
6801 /* Add to any tickets we may have */
6802 if (len)
6803 space_info_add_new_bytes(fs_info, space_info,
6804 len);
7b398f8e
JB
6805 }
6806 spin_unlock(&space_info->lock);
ccd467d6 6807 }
11833d66
YZ
6808
6809 if (cache)
6810 btrfs_put_block_group(cache);
ccd467d6
CM
6811 return 0;
6812}
6813
5ead2dd0 6814int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6815{
5ead2dd0 6816 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6817 struct btrfs_block_group_cache *block_group, *tmp;
6818 struct list_head *deleted_bgs;
11833d66 6819 struct extent_io_tree *unpin;
1a5bc167
CM
6820 u64 start;
6821 u64 end;
a28ec197 6822 int ret;
a28ec197 6823
11833d66
YZ
6824 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6825 unpin = &fs_info->freed_extents[1];
6826 else
6827 unpin = &fs_info->freed_extents[0];
6828
e33e17ee 6829 while (!trans->aborted) {
0e6ec385
FM
6830 struct extent_state *cached_state = NULL;
6831
d4b450cd 6832 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6833 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6834 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6835 if (ret) {
6836 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6837 break;
d4b450cd 6838 }
1f3c79a2 6839
0b246afa 6840 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6841 ret = btrfs_discard_extent(fs_info, start,
5378e607 6842 end + 1 - start, NULL);
1f3c79a2 6843
0e6ec385 6844 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6845 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6846 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6847 free_extent_state(cached_state);
b9473439 6848 cond_resched();
a28ec197 6849 }
817d52f8 6850
e33e17ee
JM
6851 /*
6852 * Transaction is finished. We don't need the lock anymore. We
6853 * do need to clean up the block groups in case of a transaction
6854 * abort.
6855 */
6856 deleted_bgs = &trans->transaction->deleted_bgs;
6857 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6858 u64 trimmed = 0;
6859
6860 ret = -EROFS;
6861 if (!trans->aborted)
2ff7e61e 6862 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6863 block_group->key.objectid,
6864 block_group->key.offset,
6865 &trimmed);
6866
6867 list_del_init(&block_group->bg_list);
6868 btrfs_put_block_group_trimming(block_group);
6869 btrfs_put_block_group(block_group);
6870
6871 if (ret) {
6872 const char *errstr = btrfs_decode_error(ret);
6873 btrfs_warn(fs_info,
913e1535 6874 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6875 ret, errstr);
6876 }
6877 }
6878
e20d96d6
CM
6879 return 0;
6880}
6881
5d4f98a2 6882static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6883 struct btrfs_delayed_ref_node *node, u64 parent,
6884 u64 root_objectid, u64 owner_objectid,
6885 u64 owner_offset, int refs_to_drop,
6886 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6887{
e72cb923 6888 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6889 struct btrfs_key key;
5d4f98a2 6890 struct btrfs_path *path;
1261ec42 6891 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6892 struct extent_buffer *leaf;
5d4f98a2
YZ
6893 struct btrfs_extent_item *ei;
6894 struct btrfs_extent_inline_ref *iref;
a28ec197 6895 int ret;
5d4f98a2 6896 int is_data;
952fccac
CM
6897 int extent_slot = 0;
6898 int found_extent = 0;
6899 int num_to_del = 1;
5d4f98a2
YZ
6900 u32 item_size;
6901 u64 refs;
c682f9b3
QW
6902 u64 bytenr = node->bytenr;
6903 u64 num_bytes = node->num_bytes;
fcebe456 6904 int last_ref = 0;
0b246afa 6905 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6906
5caf2a00 6907 path = btrfs_alloc_path();
54aa1f4d
CM
6908 if (!path)
6909 return -ENOMEM;
5f26f772 6910
e4058b54 6911 path->reada = READA_FORWARD;
b9473439 6912 path->leave_spinning = 1;
5d4f98a2
YZ
6913
6914 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6915 BUG_ON(!is_data && refs_to_drop != 1);
6916
3173a18f 6917 if (is_data)
897ca819 6918 skinny_metadata = false;
3173a18f 6919
fbe4801b
NB
6920 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6921 parent, root_objectid, owner_objectid,
5d4f98a2 6922 owner_offset);
7bb86316 6923 if (ret == 0) {
952fccac 6924 extent_slot = path->slots[0];
5d4f98a2
YZ
6925 while (extent_slot >= 0) {
6926 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6927 extent_slot);
5d4f98a2 6928 if (key.objectid != bytenr)
952fccac 6929 break;
5d4f98a2
YZ
6930 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6931 key.offset == num_bytes) {
952fccac
CM
6932 found_extent = 1;
6933 break;
6934 }
3173a18f
JB
6935 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6936 key.offset == owner_objectid) {
6937 found_extent = 1;
6938 break;
6939 }
952fccac
CM
6940 if (path->slots[0] - extent_slot > 5)
6941 break;
5d4f98a2 6942 extent_slot--;
952fccac 6943 }
a79865c6 6944
31840ae1 6945 if (!found_extent) {
5d4f98a2 6946 BUG_ON(iref);
87cc7a8a 6947 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6948 refs_to_drop,
fcebe456 6949 is_data, &last_ref);
005d6427 6950 if (ret) {
66642832 6951 btrfs_abort_transaction(trans, ret);
005d6427
DS
6952 goto out;
6953 }
b3b4aa74 6954 btrfs_release_path(path);
b9473439 6955 path->leave_spinning = 1;
5d4f98a2
YZ
6956
6957 key.objectid = bytenr;
6958 key.type = BTRFS_EXTENT_ITEM_KEY;
6959 key.offset = num_bytes;
6960
3173a18f
JB
6961 if (!is_data && skinny_metadata) {
6962 key.type = BTRFS_METADATA_ITEM_KEY;
6963 key.offset = owner_objectid;
6964 }
6965
31840ae1
ZY
6966 ret = btrfs_search_slot(trans, extent_root,
6967 &key, path, -1, 1);
3173a18f
JB
6968 if (ret > 0 && skinny_metadata && path->slots[0]) {
6969 /*
6970 * Couldn't find our skinny metadata item,
6971 * see if we have ye olde extent item.
6972 */
6973 path->slots[0]--;
6974 btrfs_item_key_to_cpu(path->nodes[0], &key,
6975 path->slots[0]);
6976 if (key.objectid == bytenr &&
6977 key.type == BTRFS_EXTENT_ITEM_KEY &&
6978 key.offset == num_bytes)
6979 ret = 0;
6980 }
6981
6982 if (ret > 0 && skinny_metadata) {
6983 skinny_metadata = false;
9ce49a0b 6984 key.objectid = bytenr;
3173a18f
JB
6985 key.type = BTRFS_EXTENT_ITEM_KEY;
6986 key.offset = num_bytes;
6987 btrfs_release_path(path);
6988 ret = btrfs_search_slot(trans, extent_root,
6989 &key, path, -1, 1);
6990 }
6991
f3465ca4 6992 if (ret) {
5d163e0e
JM
6993 btrfs_err(info,
6994 "umm, got %d back from search, was looking for %llu",
6995 ret, bytenr);
b783e62d 6996 if (ret > 0)
a4f78750 6997 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6998 }
005d6427 6999 if (ret < 0) {
66642832 7000 btrfs_abort_transaction(trans, ret);
005d6427
DS
7001 goto out;
7002 }
31840ae1
ZY
7003 extent_slot = path->slots[0];
7004 }
fae7f21c 7005 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7006 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7007 btrfs_err(info,
7008 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7009 bytenr, parent, root_objectid, owner_objectid,
7010 owner_offset);
66642832 7011 btrfs_abort_transaction(trans, ret);
c4a050bb 7012 goto out;
79787eaa 7013 } else {
66642832 7014 btrfs_abort_transaction(trans, ret);
005d6427 7015 goto out;
7bb86316 7016 }
5f39d397
CM
7017
7018 leaf = path->nodes[0];
5d4f98a2 7019 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7020 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7021 ret = -EINVAL;
7022 btrfs_print_v0_err(info);
7023 btrfs_abort_transaction(trans, ret);
7024 goto out;
7025 }
952fccac 7026 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7027 struct btrfs_extent_item);
3173a18f
JB
7028 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7029 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7030 struct btrfs_tree_block_info *bi;
7031 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7032 bi = (struct btrfs_tree_block_info *)(ei + 1);
7033 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7034 }
56bec294 7035
5d4f98a2 7036 refs = btrfs_extent_refs(leaf, ei);
32b02538 7037 if (refs < refs_to_drop) {
5d163e0e
JM
7038 btrfs_err(info,
7039 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7040 refs_to_drop, refs, bytenr);
32b02538 7041 ret = -EINVAL;
66642832 7042 btrfs_abort_transaction(trans, ret);
32b02538
JB
7043 goto out;
7044 }
56bec294 7045 refs -= refs_to_drop;
5f39d397 7046
5d4f98a2
YZ
7047 if (refs > 0) {
7048 if (extent_op)
7049 __run_delayed_extent_op(extent_op, leaf, ei);
7050 /*
7051 * In the case of inline back ref, reference count will
7052 * be updated by remove_extent_backref
952fccac 7053 */
5d4f98a2
YZ
7054 if (iref) {
7055 BUG_ON(!found_extent);
7056 } else {
7057 btrfs_set_extent_refs(leaf, ei, refs);
7058 btrfs_mark_buffer_dirty(leaf);
7059 }
7060 if (found_extent) {
87cc7a8a
NB
7061 ret = remove_extent_backref(trans, path, iref,
7062 refs_to_drop, is_data,
7063 &last_ref);
005d6427 7064 if (ret) {
66642832 7065 btrfs_abort_transaction(trans, ret);
005d6427
DS
7066 goto out;
7067 }
952fccac 7068 }
5d4f98a2 7069 } else {
5d4f98a2
YZ
7070 if (found_extent) {
7071 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7072 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7073 if (iref) {
7074 BUG_ON(path->slots[0] != extent_slot);
7075 } else {
7076 BUG_ON(path->slots[0] != extent_slot + 1);
7077 path->slots[0] = extent_slot;
7078 num_to_del = 2;
7079 }
78fae27e 7080 }
b9473439 7081
fcebe456 7082 last_ref = 1;
952fccac
CM
7083 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7084 num_to_del);
005d6427 7085 if (ret) {
66642832 7086 btrfs_abort_transaction(trans, ret);
005d6427
DS
7087 goto out;
7088 }
b3b4aa74 7089 btrfs_release_path(path);
21af804c 7090
5d4f98a2 7091 if (is_data) {
5b4aacef 7092 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7093 if (ret) {
66642832 7094 btrfs_abort_transaction(trans, ret);
005d6427
DS
7095 goto out;
7096 }
459931ec
CM
7097 }
7098
e7355e50 7099 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7100 if (ret) {
66642832 7101 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7102 goto out;
7103 }
7104
6b279408 7105 ret = update_block_group(trans, bytenr, num_bytes, 0);
005d6427 7106 if (ret) {
66642832 7107 btrfs_abort_transaction(trans, ret);
005d6427
DS
7108 goto out;
7109 }
a28ec197 7110 }
fcebe456
JB
7111 btrfs_release_path(path);
7112
79787eaa 7113out:
5caf2a00 7114 btrfs_free_path(path);
a28ec197
CM
7115 return ret;
7116}
7117
1887be66 7118/*
f0486c68 7119 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7120 * delayed ref for that extent as well. This searches the delayed ref tree for
7121 * a given extent, and if there are no other delayed refs to be processed, it
7122 * removes it from the tree.
7123 */
7124static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7125 u64 bytenr)
1887be66
CM
7126{
7127 struct btrfs_delayed_ref_head *head;
7128 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7129 int ret = 0;
1887be66
CM
7130
7131 delayed_refs = &trans->transaction->delayed_refs;
7132 spin_lock(&delayed_refs->lock);
f72ad18e 7133 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7134 if (!head)
cf93da7b 7135 goto out_delayed_unlock;
1887be66 7136
d7df2c79 7137 spin_lock(&head->lock);
e3d03965 7138 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7139 goto out;
7140
bedc6617
JB
7141 if (cleanup_extent_op(head) != NULL)
7142 goto out;
5d4f98a2 7143
1887be66
CM
7144 /*
7145 * waiting for the lock here would deadlock. If someone else has it
7146 * locked they are already in the process of dropping it anyway
7147 */
7148 if (!mutex_trylock(&head->mutex))
7149 goto out;
7150
d7baffda 7151 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7152 head->processing = 0;
d7baffda 7153
d7df2c79 7154 spin_unlock(&head->lock);
1887be66
CM
7155 spin_unlock(&delayed_refs->lock);
7156
f0486c68
YZ
7157 BUG_ON(head->extent_op);
7158 if (head->must_insert_reserved)
7159 ret = 1;
7160
31890da0 7161 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7162 mutex_unlock(&head->mutex);
d278850e 7163 btrfs_put_delayed_ref_head(head);
f0486c68 7164 return ret;
1887be66 7165out:
d7df2c79 7166 spin_unlock(&head->lock);
cf93da7b
CM
7167
7168out_delayed_unlock:
1887be66
CM
7169 spin_unlock(&delayed_refs->lock);
7170 return 0;
7171}
7172
f0486c68
YZ
7173void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7174 struct btrfs_root *root,
7175 struct extent_buffer *buf,
5581a51a 7176 u64 parent, int last_ref)
f0486c68 7177{
0b246afa 7178 struct btrfs_fs_info *fs_info = root->fs_info;
ed4f255b 7179 struct btrfs_ref generic_ref = { 0 };
b150a4f1 7180 int pin = 1;
f0486c68
YZ
7181 int ret;
7182
ed4f255b
QW
7183 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7184 buf->start, buf->len, parent);
7185 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7186 root->root_key.objectid);
7187
f0486c68 7188 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7189 int old_ref_mod, new_ref_mod;
7190
fd708b81
JB
7191 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7192 root->root_key.objectid,
7193 btrfs_header_level(buf), 0,
7194 BTRFS_DROP_DELAYED_REF);
ed4f255b 7195 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
d7eae340 7196 &old_ref_mod, &new_ref_mod);
79787eaa 7197 BUG_ON(ret); /* -ENOMEM */
d7eae340 7198 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7199 }
7200
0a16c7d7 7201 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7202 struct btrfs_block_group_cache *cache;
7203
f0486c68 7204 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7205 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7206 if (!ret)
37be25bc 7207 goto out;
f0486c68
YZ
7208 }
7209
4da8b76d 7210 pin = 0;
0b246afa 7211 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7212
f0486c68 7213 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
fdf08605 7214 pin_down_extent(cache, buf->start, buf->len, 1);
6219872d 7215 btrfs_put_block_group(cache);
37be25bc 7216 goto out;
f0486c68
YZ
7217 }
7218
7219 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7220
7221 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7222 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7223 btrfs_put_block_group(cache);
71ff6437 7224 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7225 }
7226out:
b150a4f1 7227 if (pin)
29d2b84c 7228 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7229 root->root_key.objectid);
7230
0a16c7d7
OS
7231 if (last_ref) {
7232 /*
7233 * Deleting the buffer, clear the corrupt flag since it doesn't
7234 * matter anymore.
7235 */
7236 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7237 }
f0486c68
YZ
7238}
7239
79787eaa 7240/* Can return -ENOMEM */
2ff7e61e 7241int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7242 struct btrfs_root *root,
66d7e7f0 7243 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7244 u64 owner, u64 offset)
925baedd 7245{
84f7d8e6 7246 struct btrfs_fs_info *fs_info = root->fs_info;
ed4f255b 7247 struct btrfs_ref generic_ref = { 0 };
d7eae340 7248 int old_ref_mod, new_ref_mod;
925baedd
CM
7249 int ret;
7250
f5ee5c9a 7251 if (btrfs_is_testing(fs_info))
faa2dbf0 7252 return 0;
fccb84c9 7253
fd708b81
JB
7254 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7255 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7256 root_objectid, owner, offset,
7257 BTRFS_DROP_DELAYED_REF);
7258
ed4f255b
QW
7259 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, bytenr,
7260 num_bytes, parent);
7261 generic_ref.real_root = root->root_key.objectid;
56bec294
CM
7262 /*
7263 * tree log blocks never actually go into the extent allocation
7264 * tree, just update pinning info and exit early.
56bec294 7265 */
5d4f98a2
YZ
7266 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7267 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7268 /* unlocks the pinned mutex */
2ff7e61e 7269 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7270 old_ref_mod = new_ref_mod = 0;
56bec294 7271 ret = 0;
5d4f98a2 7272 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
ed4f255b
QW
7273 btrfs_init_tree_ref(&generic_ref, (int)owner, root_objectid);
7274 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
d7eae340 7275 &old_ref_mod, &new_ref_mod);
5d4f98a2 7276 } else {
76675593
QW
7277 btrfs_init_data_ref(&generic_ref, root_objectid, owner, offset);
7278 ret = btrfs_add_delayed_data_ref(trans, &generic_ref, 0,
d7eae340 7279 &old_ref_mod, &new_ref_mod);
56bec294 7280 }
d7eae340 7281
29d2b84c
NB
7282 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7283 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7284
7285 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7286 }
d7eae340 7287
925baedd
CM
7288 return ret;
7289}
7290
817d52f8
JB
7291/*
7292 * when we wait for progress in the block group caching, its because
7293 * our allocation attempt failed at least once. So, we must sleep
7294 * and let some progress happen before we try again.
7295 *
7296 * This function will sleep at least once waiting for new free space to
7297 * show up, and then it will check the block group free space numbers
7298 * for our min num_bytes. Another option is to have it go ahead
7299 * and look in the rbtree for a free extent of a given size, but this
7300 * is a good start.
36cce922
JB
7301 *
7302 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7303 * any of the information in this block group.
817d52f8 7304 */
36cce922 7305static noinline void
817d52f8
JB
7306wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7307 u64 num_bytes)
7308{
11833d66 7309 struct btrfs_caching_control *caching_ctl;
817d52f8 7310
11833d66
YZ
7311 caching_ctl = get_caching_control(cache);
7312 if (!caching_ctl)
36cce922 7313 return;
817d52f8 7314
11833d66 7315 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7316 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7317
7318 put_caching_control(caching_ctl);
11833d66
YZ
7319}
7320
7321static noinline int
7322wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7323{
7324 struct btrfs_caching_control *caching_ctl;
36cce922 7325 int ret = 0;
11833d66
YZ
7326
7327 caching_ctl = get_caching_control(cache);
7328 if (!caching_ctl)
36cce922 7329 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7330
7331 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7332 if (cache->cached == BTRFS_CACHE_ERROR)
7333 ret = -EIO;
11833d66 7334 put_caching_control(caching_ctl);
36cce922 7335 return ret;
817d52f8
JB
7336}
7337
7338enum btrfs_loop_type {
285ff5af
JB
7339 LOOP_CACHING_NOWAIT = 0,
7340 LOOP_CACHING_WAIT = 1,
7341 LOOP_ALLOC_CHUNK = 2,
7342 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7343};
7344
e570fd27
MX
7345static inline void
7346btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7347 int delalloc)
7348{
7349 if (delalloc)
7350 down_read(&cache->data_rwsem);
7351}
7352
7353static inline void
7354btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7355 int delalloc)
7356{
7357 btrfs_get_block_group(cache);
7358 if (delalloc)
7359 down_read(&cache->data_rwsem);
7360}
7361
7362static struct btrfs_block_group_cache *
7363btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7364 struct btrfs_free_cluster *cluster,
7365 int delalloc)
7366{
89771cc9 7367 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7368
e570fd27 7369 spin_lock(&cluster->refill_lock);
6719afdc
GU
7370 while (1) {
7371 used_bg = cluster->block_group;
7372 if (!used_bg)
7373 return NULL;
7374
7375 if (used_bg == block_group)
e570fd27
MX
7376 return used_bg;
7377
6719afdc 7378 btrfs_get_block_group(used_bg);
e570fd27 7379
6719afdc
GU
7380 if (!delalloc)
7381 return used_bg;
e570fd27 7382
6719afdc
GU
7383 if (down_read_trylock(&used_bg->data_rwsem))
7384 return used_bg;
e570fd27 7385
6719afdc 7386 spin_unlock(&cluster->refill_lock);
e570fd27 7387
e321f8a8
LB
7388 /* We should only have one-level nested. */
7389 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7390
6719afdc
GU
7391 spin_lock(&cluster->refill_lock);
7392 if (used_bg == cluster->block_group)
7393 return used_bg;
e570fd27 7394
6719afdc
GU
7395 up_read(&used_bg->data_rwsem);
7396 btrfs_put_block_group(used_bg);
7397 }
e570fd27
MX
7398}
7399
7400static inline void
7401btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7402 int delalloc)
7403{
7404 if (delalloc)
7405 up_read(&cache->data_rwsem);
7406 btrfs_put_block_group(cache);
7407}
7408
b4bd745d
QW
7409/*
7410 * Structure used internally for find_free_extent() function. Wraps needed
7411 * parameters.
7412 */
7413struct find_free_extent_ctl {
7414 /* Basic allocation info */
7415 u64 ram_bytes;
7416 u64 num_bytes;
7417 u64 empty_size;
7418 u64 flags;
7419 int delalloc;
7420
7421 /* Where to start the search inside the bg */
7422 u64 search_start;
7423
7424 /* For clustered allocation */
7425 u64 empty_cluster;
7426
7427 bool have_caching_bg;
7428 bool orig_have_caching_bg;
7429
7430 /* RAID index, converted from flags */
7431 int index;
7432
e72d79d6
QW
7433 /*
7434 * Current loop number, check find_free_extent_update_loop() for details
7435 */
b4bd745d
QW
7436 int loop;
7437
7438 /*
7439 * Whether we're refilling a cluster, if true we need to re-search
7440 * current block group but don't try to refill the cluster again.
7441 */
7442 bool retry_clustered;
7443
7444 /*
7445 * Whether we're updating free space cache, if true we need to re-search
7446 * current block group but don't try updating free space cache again.
7447 */
7448 bool retry_unclustered;
7449
7450 /* If current block group is cached */
7451 int cached;
7452
7453 /* Max contiguous hole found */
7454 u64 max_extent_size;
7455
7456 /* Total free space from free space cache, not always contiguous */
7457 u64 total_free_space;
7458
7459 /* Found result */
7460 u64 found_offset;
7461};
7462
d06e3bb6
QW
7463
7464/*
7465 * Helper function for find_free_extent().
7466 *
7467 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7468 * Return -EAGAIN to inform caller that we need to re-search this block group
7469 * Return >0 to inform caller that we find nothing
7470 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7471 */
7472static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7473 struct btrfs_free_cluster *last_ptr,
7474 struct find_free_extent_ctl *ffe_ctl,
7475 struct btrfs_block_group_cache **cluster_bg_ret)
7476{
d06e3bb6
QW
7477 struct btrfs_block_group_cache *cluster_bg;
7478 u64 aligned_cluster;
7479 u64 offset;
7480 int ret;
7481
7482 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7483 if (!cluster_bg)
7484 goto refill_cluster;
7485 if (cluster_bg != bg && (cluster_bg->ro ||
7486 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7487 goto release_cluster;
7488
7489 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7490 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7491 &ffe_ctl->max_extent_size);
7492 if (offset) {
7493 /* We have a block, we're done */
7494 spin_unlock(&last_ptr->refill_lock);
7495 trace_btrfs_reserve_extent_cluster(cluster_bg,
7496 ffe_ctl->search_start, ffe_ctl->num_bytes);
7497 *cluster_bg_ret = cluster_bg;
7498 ffe_ctl->found_offset = offset;
7499 return 0;
7500 }
7501 WARN_ON(last_ptr->block_group != cluster_bg);
7502
7503release_cluster:
7504 /*
7505 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7506 * lets just skip it and let the allocator find whatever block it can
7507 * find. If we reach this point, we will have tried the cluster
7508 * allocator plenty of times and not have found anything, so we are
7509 * likely way too fragmented for the clustering stuff to find anything.
7510 *
7511 * However, if the cluster is taken from the current block group,
7512 * release the cluster first, so that we stand a better chance of
7513 * succeeding in the unclustered allocation.
7514 */
7515 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7516 spin_unlock(&last_ptr->refill_lock);
7517 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7518 return -ENOENT;
7519 }
7520
7521 /* This cluster didn't work out, free it and start over */
7522 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7523
7524 if (cluster_bg != bg)
7525 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7526
7527refill_cluster:
7528 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7529 spin_unlock(&last_ptr->refill_lock);
7530 return -ENOENT;
7531 }
7532
7533 aligned_cluster = max_t(u64,
7534 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7535 bg->full_stripe_len);
2ceeae2e
DS
7536 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7537 ffe_ctl->num_bytes, aligned_cluster);
d06e3bb6
QW
7538 if (ret == 0) {
7539 /* Now pull our allocation out of this cluster */
7540 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7541 ffe_ctl->num_bytes, ffe_ctl->search_start,
7542 &ffe_ctl->max_extent_size);
7543 if (offset) {
7544 /* We found one, proceed */
7545 spin_unlock(&last_ptr->refill_lock);
7546 trace_btrfs_reserve_extent_cluster(bg,
7547 ffe_ctl->search_start,
7548 ffe_ctl->num_bytes);
7549 ffe_ctl->found_offset = offset;
7550 return 0;
7551 }
7552 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7553 !ffe_ctl->retry_clustered) {
7554 spin_unlock(&last_ptr->refill_lock);
7555
7556 ffe_ctl->retry_clustered = true;
7557 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7558 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7559 return -EAGAIN;
7560 }
7561 /*
7562 * At this point we either didn't find a cluster or we weren't able to
7563 * allocate a block from our cluster. Free the cluster we've been
7564 * trying to use, and go to the next block group.
7565 */
7566 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7567 spin_unlock(&last_ptr->refill_lock);
7568 return 1;
7569}
7570
e1a41848
QW
7571/*
7572 * Return >0 to inform caller that we find nothing
7573 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7574 * Return -EAGAIN to inform caller that we need to re-search this block group
7575 */
7576static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7577 struct btrfs_free_cluster *last_ptr,
7578 struct find_free_extent_ctl *ffe_ctl)
7579{
7580 u64 offset;
7581
7582 /*
7583 * We are doing an unclustered allocation, set the fragmented flag so
7584 * we don't bother trying to setup a cluster again until we get more
7585 * space.
7586 */
7587 if (unlikely(last_ptr)) {
7588 spin_lock(&last_ptr->lock);
7589 last_ptr->fragmented = 1;
7590 spin_unlock(&last_ptr->lock);
7591 }
7592 if (ffe_ctl->cached) {
7593 struct btrfs_free_space_ctl *free_space_ctl;
7594
7595 free_space_ctl = bg->free_space_ctl;
7596 spin_lock(&free_space_ctl->tree_lock);
7597 if (free_space_ctl->free_space <
7598 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7599 ffe_ctl->empty_size) {
7600 ffe_ctl->total_free_space = max_t(u64,
7601 ffe_ctl->total_free_space,
7602 free_space_ctl->free_space);
7603 spin_unlock(&free_space_ctl->tree_lock);
7604 return 1;
7605 }
7606 spin_unlock(&free_space_ctl->tree_lock);
7607 }
7608
7609 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7610 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7611 &ffe_ctl->max_extent_size);
7612
7613 /*
7614 * If we didn't find a chunk, and we haven't failed on this block group
7615 * before, and this block group is in the middle of caching and we are
7616 * ok with waiting, then go ahead and wait for progress to be made, and
7617 * set @retry_unclustered to true.
7618 *
7619 * If @retry_unclustered is true then we've already waited on this
7620 * block group once and should move on to the next block group.
7621 */
7622 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7623 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7624 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7625 ffe_ctl->empty_size);
7626 ffe_ctl->retry_unclustered = true;
7627 return -EAGAIN;
7628 } else if (!offset) {
7629 return 1;
7630 }
7631 ffe_ctl->found_offset = offset;
7632 return 0;
7633}
7634
e72d79d6
QW
7635/*
7636 * Return >0 means caller needs to re-search for free extent
7637 * Return 0 means we have the needed free extent.
7638 * Return <0 means we failed to locate any free extent.
7639 */
7640static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7641 struct btrfs_free_cluster *last_ptr,
7642 struct btrfs_key *ins,
7643 struct find_free_extent_ctl *ffe_ctl,
7644 int full_search, bool use_cluster)
7645{
7646 struct btrfs_root *root = fs_info->extent_root;
7647 int ret;
7648
7649 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7650 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7651 ffe_ctl->orig_have_caching_bg = true;
7652
7653 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7654 ffe_ctl->have_caching_bg)
7655 return 1;
7656
7657 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7658 return 1;
7659
7660 if (ins->objectid) {
7661 if (!use_cluster && last_ptr) {
7662 spin_lock(&last_ptr->lock);
7663 last_ptr->window_start = ins->objectid;
7664 spin_unlock(&last_ptr->lock);
7665 }
7666 return 0;
7667 }
7668
7669 /*
7670 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7671 * caching kthreads as we move along
7672 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7673 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7674 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7675 * again
7676 */
7677 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7678 ffe_ctl->index = 0;
7679 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7680 /*
7681 * We want to skip the LOOP_CACHING_WAIT step if we
7682 * don't have any uncached bgs and we've already done a
7683 * full search through.
7684 */
7685 if (ffe_ctl->orig_have_caching_bg || !full_search)
7686 ffe_ctl->loop = LOOP_CACHING_WAIT;
7687 else
7688 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7689 } else {
7690 ffe_ctl->loop++;
7691 }
7692
7693 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7694 struct btrfs_trans_handle *trans;
7695 int exist = 0;
7696
7697 trans = current->journal_info;
7698 if (trans)
7699 exist = 1;
7700 else
7701 trans = btrfs_join_transaction(root);
7702
7703 if (IS_ERR(trans)) {
7704 ret = PTR_ERR(trans);
7705 return ret;
7706 }
7707
7708 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7709 CHUNK_ALLOC_FORCE);
7710
7711 /*
7712 * If we can't allocate a new chunk we've already looped
7713 * through at least once, move on to the NO_EMPTY_SIZE
7714 * case.
7715 */
7716 if (ret == -ENOSPC)
7717 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7718
7719 /* Do not bail out on ENOSPC since we can do more. */
7720 if (ret < 0 && ret != -ENOSPC)
7721 btrfs_abort_transaction(trans, ret);
7722 else
7723 ret = 0;
7724 if (!exist)
7725 btrfs_end_transaction(trans);
7726 if (ret)
7727 return ret;
7728 }
7729
7730 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7731 /*
7732 * Don't loop again if we already have no empty_size and
7733 * no empty_cluster.
7734 */
7735 if (ffe_ctl->empty_size == 0 &&
7736 ffe_ctl->empty_cluster == 0)
7737 return -ENOSPC;
7738 ffe_ctl->empty_size = 0;
7739 ffe_ctl->empty_cluster = 0;
7740 }
7741 return 1;
7742 }
7743 return -ENOSPC;
7744}
7745
fec577fb
CM
7746/*
7747 * walks the btree of allocated extents and find a hole of a given size.
7748 * The key ins is changed to record the hole:
a4820398 7749 * ins->objectid == start position
62e2749e 7750 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7751 * ins->offset == the size of the hole.
fec577fb 7752 * Any available blocks before search_start are skipped.
a4820398
MX
7753 *
7754 * If there is no suitable free space, we will record the max size of
7755 * the free space extent currently.
e72d79d6
QW
7756 *
7757 * The overall logic and call chain:
7758 *
7759 * find_free_extent()
7760 * |- Iterate through all block groups
7761 * | |- Get a valid block group
7762 * | |- Try to do clustered allocation in that block group
7763 * | |- Try to do unclustered allocation in that block group
7764 * | |- Check if the result is valid
7765 * | | |- If valid, then exit
7766 * | |- Jump to next block group
7767 * |
7768 * |- Push harder to find free extents
7769 * |- If not found, re-iterate all block groups
fec577fb 7770 */
87bde3cd 7771static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7772 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7773 u64 hint_byte, struct btrfs_key *ins,
7774 u64 flags, int delalloc)
fec577fb 7775{
80eb234a 7776 int ret = 0;
fa9c0d79 7777 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7778 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7779 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7780 struct btrfs_space_info *space_info;
67377734 7781 bool use_cluster = true;
a5e681d9 7782 bool full_search = false;
fec577fb 7783
0b246afa 7784 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7785
7786 ffe_ctl.ram_bytes = ram_bytes;
7787 ffe_ctl.num_bytes = num_bytes;
7788 ffe_ctl.empty_size = empty_size;
7789 ffe_ctl.flags = flags;
7790 ffe_ctl.search_start = 0;
7791 ffe_ctl.retry_clustered = false;
7792 ffe_ctl.retry_unclustered = false;
7793 ffe_ctl.delalloc = delalloc;
7794 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7795 ffe_ctl.have_caching_bg = false;
7796 ffe_ctl.orig_have_caching_bg = false;
7797 ffe_ctl.found_offset = 0;
7798
962a298f 7799 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7800 ins->objectid = 0;
7801 ins->offset = 0;
b1a4d965 7802
71ff6437 7803 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7804
0b246afa 7805 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7806 if (!space_info) {
0b246afa 7807 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7808 return -ENOSPC;
7809 }
2552d17e 7810
67377734 7811 /*
4f4db217
JB
7812 * If our free space is heavily fragmented we may not be able to make
7813 * big contiguous allocations, so instead of doing the expensive search
7814 * for free space, simply return ENOSPC with our max_extent_size so we
7815 * can go ahead and search for a more manageable chunk.
7816 *
7817 * If our max_extent_size is large enough for our allocation simply
7818 * disable clustering since we will likely not be able to find enough
7819 * space to create a cluster and induce latency trying.
67377734 7820 */
4f4db217
JB
7821 if (unlikely(space_info->max_extent_size)) {
7822 spin_lock(&space_info->lock);
7823 if (space_info->max_extent_size &&
7824 num_bytes > space_info->max_extent_size) {
7825 ins->offset = space_info->max_extent_size;
7826 spin_unlock(&space_info->lock);
7827 return -ENOSPC;
7828 } else if (space_info->max_extent_size) {
7829 use_cluster = false;
7830 }
7831 spin_unlock(&space_info->lock);
fa9c0d79 7832 }
0f9dd46c 7833
b4bd745d
QW
7834 last_ptr = fetch_cluster_info(fs_info, space_info,
7835 &ffe_ctl.empty_cluster);
239b14b3 7836 if (last_ptr) {
fa9c0d79
CM
7837 spin_lock(&last_ptr->lock);
7838 if (last_ptr->block_group)
7839 hint_byte = last_ptr->window_start;
c759c4e1
JB
7840 if (last_ptr->fragmented) {
7841 /*
7842 * We still set window_start so we can keep track of the
7843 * last place we found an allocation to try and save
7844 * some time.
7845 */
7846 hint_byte = last_ptr->window_start;
7847 use_cluster = false;
7848 }
fa9c0d79 7849 spin_unlock(&last_ptr->lock);
239b14b3 7850 }
fa9c0d79 7851
b4bd745d
QW
7852 ffe_ctl.search_start = max(ffe_ctl.search_start,
7853 first_logical_byte(fs_info, 0));
7854 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7855 if (ffe_ctl.search_start == hint_byte) {
7856 block_group = btrfs_lookup_block_group(fs_info,
7857 ffe_ctl.search_start);
817d52f8
JB
7858 /*
7859 * we don't want to use the block group if it doesn't match our
7860 * allocation bits, or if its not cached.
ccf0e725
JB
7861 *
7862 * However if we are re-searching with an ideal block group
7863 * picked out then we don't care that the block group is cached.
817d52f8 7864 */
b6919a58 7865 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7866 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7867 down_read(&space_info->groups_sem);
44fb5511
CM
7868 if (list_empty(&block_group->list) ||
7869 block_group->ro) {
7870 /*
7871 * someone is removing this block group,
7872 * we can't jump into the have_block_group
7873 * target because our list pointers are not
7874 * valid
7875 */
7876 btrfs_put_block_group(block_group);
7877 up_read(&space_info->groups_sem);
ccf0e725 7878 } else {
b4bd745d 7879 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7880 block_group->flags);
e570fd27 7881 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7882 goto have_block_group;
ccf0e725 7883 }
2552d17e 7884 } else if (block_group) {
fa9c0d79 7885 btrfs_put_block_group(block_group);
2552d17e 7886 }
42e70e7a 7887 }
2552d17e 7888search:
b4bd745d
QW
7889 ffe_ctl.have_caching_bg = false;
7890 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7891 ffe_ctl.index == 0)
a5e681d9 7892 full_search = true;
80eb234a 7893 down_read(&space_info->groups_sem);
b4bd745d
QW
7894 list_for_each_entry(block_group,
7895 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7896 /* If the block group is read-only, we can skip it entirely. */
7897 if (unlikely(block_group->ro))
7898 continue;
7899
e570fd27 7900 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7901 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7902
83a50de9
CM
7903 /*
7904 * this can happen if we end up cycling through all the
7905 * raid types, but we want to make sure we only allocate
7906 * for the proper type.
7907 */
b6919a58 7908 if (!block_group_bits(block_group, flags)) {
bece2e82 7909 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7910 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7911 BTRFS_BLOCK_GROUP_RAID5 |
7912 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7913 BTRFS_BLOCK_GROUP_RAID10;
7914
7915 /*
7916 * if they asked for extra copies and this block group
7917 * doesn't provide them, bail. This does allow us to
7918 * fill raid0 from raid1.
7919 */
b6919a58 7920 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7921 goto loop;
7922 }
7923
2552d17e 7924have_block_group:
b4bd745d
QW
7925 ffe_ctl.cached = block_group_cache_done(block_group);
7926 if (unlikely(!ffe_ctl.cached)) {
7927 ffe_ctl.have_caching_bg = true;
f6373bf3 7928 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7929 BUG_ON(ret < 0);
7930 ret = 0;
817d52f8
JB
7931 }
7932
36cce922
JB
7933 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7934 goto loop;
0f9dd46c 7935
0a24325e 7936 /*
062c05c4
AO
7937 * Ok we want to try and use the cluster allocator, so
7938 * lets look there
0a24325e 7939 */
c759c4e1 7940 if (last_ptr && use_cluster) {
d06e3bb6 7941 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7942
d06e3bb6
QW
7943 ret = find_free_extent_clustered(block_group, last_ptr,
7944 &ffe_ctl, &cluster_bg);
062c05c4 7945
fa9c0d79 7946 if (ret == 0) {
d06e3bb6
QW
7947 if (cluster_bg && cluster_bg != block_group) {
7948 btrfs_release_block_group(block_group,
7949 delalloc);
7950 block_group = cluster_bg;
fa9c0d79 7951 }
d06e3bb6
QW
7952 goto checks;
7953 } else if (ret == -EAGAIN) {
817d52f8 7954 goto have_block_group;
d06e3bb6
QW
7955 } else if (ret > 0) {
7956 goto loop;
fa9c0d79 7957 }
d06e3bb6 7958 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7959 }
7960
e1a41848
QW
7961 ret = find_free_extent_unclustered(block_group, last_ptr,
7962 &ffe_ctl);
7963 if (ret == -EAGAIN)
817d52f8 7964 goto have_block_group;
e1a41848 7965 else if (ret > 0)
1cdda9b8 7966 goto loop;
e1a41848 7967 /* ret == 0 case falls through */
fa9c0d79 7968checks:
b4bd745d
QW
7969 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7970 fs_info->stripesize);
25179201 7971
2552d17e 7972 /* move on to the next group */
b4bd745d 7973 if (ffe_ctl.search_start + num_bytes >
215a63d1 7974 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
7975 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7976 num_bytes);
2552d17e 7977 goto loop;
6226cb0a 7978 }
f5a31e16 7979
b4bd745d
QW
7980 if (ffe_ctl.found_offset < ffe_ctl.search_start)
7981 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7982 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 7983
18513091
WX
7984 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7985 num_bytes, delalloc);
f0486c68 7986 if (ret == -EAGAIN) {
b4bd745d
QW
7987 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7988 num_bytes);
2552d17e 7989 goto loop;
0f9dd46c 7990 }
9cfa3e34 7991 btrfs_inc_block_group_reservations(block_group);
0b86a832 7992
f0486c68 7993 /* we are all good, lets return */
b4bd745d 7994 ins->objectid = ffe_ctl.search_start;
2552d17e 7995 ins->offset = num_bytes;
d2fb3437 7996
b4bd745d
QW
7997 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7998 num_bytes);
e570fd27 7999 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
8000 break;
8001loop:
b4bd745d
QW
8002 ffe_ctl.retry_clustered = false;
8003 ffe_ctl.retry_unclustered = false;
3e72ee88 8004 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 8005 ffe_ctl.index);
e570fd27 8006 btrfs_release_block_group(block_group, delalloc);
14443937 8007 cond_resched();
2552d17e
JB
8008 }
8009 up_read(&space_info->groups_sem);
8010
e72d79d6
QW
8011 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8012 full_search, use_cluster);
8013 if (ret > 0)
b742bb82
YZ
8014 goto search;
8015
4f4db217 8016 if (ret == -ENOSPC) {
b4bd745d
QW
8017 /*
8018 * Use ffe_ctl->total_free_space as fallback if we can't find
8019 * any contiguous hole.
8020 */
8021 if (!ffe_ctl.max_extent_size)
8022 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8023 spin_lock(&space_info->lock);
b4bd745d 8024 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8025 spin_unlock(&space_info->lock);
b4bd745d 8026 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8027 }
0f70abe2 8028 return ret;
fec577fb 8029}
ec44a35c 8030
b78e5616
JB
8031#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
8032do { \
8033 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
8034 spin_lock(&__rsv->lock); \
8035 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
8036 __rsv->size, __rsv->reserved); \
8037 spin_unlock(&__rsv->lock); \
8038} while (0)
8039
ab8d0fc4
JM
8040static void dump_space_info(struct btrfs_fs_info *fs_info,
8041 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8042 int dump_block_groups)
0f9dd46c
JB
8043{
8044 struct btrfs_block_group_cache *cache;
b742bb82 8045 int index = 0;
0f9dd46c 8046
9ed74f2d 8047 spin_lock(&info->lock);
ab8d0fc4
JM
8048 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8049 info->flags,
4136135b
LB
8050 info->total_bytes - btrfs_space_info_used(info, true),
8051 info->full ? "" : "not ");
ab8d0fc4
JM
8052 btrfs_info(fs_info,
8053 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8054 info->total_bytes, info->bytes_used, info->bytes_pinned,
8055 info->bytes_reserved, info->bytes_may_use,
8056 info->bytes_readonly);
9ed74f2d
JB
8057 spin_unlock(&info->lock);
8058
b78e5616
JB
8059 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8060 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8061 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8062 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8063 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8064
9ed74f2d
JB
8065 if (!dump_block_groups)
8066 return;
0f9dd46c 8067
80eb234a 8068 down_read(&info->groups_sem);
b742bb82
YZ
8069again:
8070 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8071 spin_lock(&cache->lock);
ab8d0fc4
JM
8072 btrfs_info(fs_info,
8073 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8074 cache->key.objectid, cache->key.offset,
8075 btrfs_block_group_used(&cache->item), cache->pinned,
8076 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8077 btrfs_dump_free_space(cache, bytes);
8078 spin_unlock(&cache->lock);
8079 }
b742bb82
YZ
8080 if (++index < BTRFS_NR_RAID_TYPES)
8081 goto again;
80eb234a 8082 up_read(&info->groups_sem);
0f9dd46c 8083}
e8569813 8084
6f47c706
NB
8085/*
8086 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8087 * hole that is at least as big as @num_bytes.
8088 *
8089 * @root - The root that will contain this extent
8090 *
8091 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8092 * is used for accounting purposes. This value differs
8093 * from @num_bytes only in the case of compressed extents.
8094 *
8095 * @num_bytes - Number of bytes to allocate on-disk.
8096 *
8097 * @min_alloc_size - Indicates the minimum amount of space that the
8098 * allocator should try to satisfy. In some cases
8099 * @num_bytes may be larger than what is required and if
8100 * the filesystem is fragmented then allocation fails.
8101 * However, the presence of @min_alloc_size gives a
8102 * chance to try and satisfy the smaller allocation.
8103 *
8104 * @empty_size - A hint that you plan on doing more COW. This is the
8105 * size in bytes the allocator should try to find free
8106 * next to the block it returns. This is just a hint and
8107 * may be ignored by the allocator.
8108 *
8109 * @hint_byte - Hint to the allocator to start searching above the byte
8110 * address passed. It might be ignored.
8111 *
8112 * @ins - This key is modified to record the found hole. It will
8113 * have the following values:
8114 * ins->objectid == start position
8115 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8116 * ins->offset == the size of the hole.
8117 *
8118 * @is_data - Boolean flag indicating whether an extent is
8119 * allocated for data (true) or metadata (false)
8120 *
8121 * @delalloc - Boolean flag indicating whether this allocation is for
8122 * delalloc or not. If 'true' data_rwsem of block groups
8123 * is going to be acquired.
8124 *
8125 *
8126 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8127 * case -ENOSPC is returned then @ins->offset will contain the size of the
8128 * largest available hole the allocator managed to find.
8129 */
18513091 8130int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8131 u64 num_bytes, u64 min_alloc_size,
8132 u64 empty_size, u64 hint_byte,
e570fd27 8133 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8134{
ab8d0fc4 8135 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8136 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8137 u64 flags;
fec577fb 8138 int ret;
925baedd 8139
1b86826d 8140 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8141again:
0b246afa 8142 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8143 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8144 hint_byte, ins, flags, delalloc);
9cfa3e34 8145 if (!ret && !is_data) {
ab8d0fc4 8146 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8147 } else if (ret == -ENOSPC) {
a4820398
MX
8148 if (!final_tried && ins->offset) {
8149 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8150 num_bytes = round_down(num_bytes,
0b246afa 8151 fs_info->sectorsize);
9e622d6b 8152 num_bytes = max(num_bytes, min_alloc_size);
18513091 8153 ram_bytes = num_bytes;
9e622d6b
MX
8154 if (num_bytes == min_alloc_size)
8155 final_tried = true;
8156 goto again;
ab8d0fc4 8157 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8158 struct btrfs_space_info *sinfo;
8159
ab8d0fc4 8160 sinfo = __find_space_info(fs_info, flags);
0b246afa 8161 btrfs_err(fs_info,
5d163e0e
JM
8162 "allocation failed flags %llu, wanted %llu",
8163 flags, num_bytes);
53804280 8164 if (sinfo)
ab8d0fc4 8165 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8166 }
925baedd 8167 }
0f9dd46c
JB
8168
8169 return ret;
e6dcd2dc
CM
8170}
8171
2ff7e61e 8172static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8173 u64 start, u64 len,
8174 int pin, int delalloc)
65b51a00 8175{
0f9dd46c 8176 struct btrfs_block_group_cache *cache;
1f3c79a2 8177 int ret = 0;
0f9dd46c 8178
0b246afa 8179 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8180 if (!cache) {
0b246afa
JM
8181 btrfs_err(fs_info, "Unable to find block group for %llu",
8182 start);
0f9dd46c
JB
8183 return -ENOSPC;
8184 }
1f3c79a2 8185
e688b725 8186 if (pin)
fdf08605 8187 pin_down_extent(cache, start, len, 1);
e688b725 8188 else {
0b246afa 8189 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8190 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8191 btrfs_add_free_space(cache, start, len);
4824f1f4 8192 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8193 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8194 }
31193213 8195
fa9c0d79 8196 btrfs_put_block_group(cache);
e6dcd2dc
CM
8197 return ret;
8198}
8199
2ff7e61e 8200int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8201 u64 start, u64 len, int delalloc)
e688b725 8202{
2ff7e61e 8203 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8204}
8205
2ff7e61e 8206int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8207 u64 start, u64 len)
8208{
2ff7e61e 8209 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8210}
8211
5d4f98a2 8212static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8213 u64 parent, u64 root_objectid,
8214 u64 flags, u64 owner, u64 offset,
8215 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8216{
ef89b824 8217 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8218 int ret;
e6dcd2dc 8219 struct btrfs_extent_item *extent_item;
5d4f98a2 8220 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8221 struct btrfs_path *path;
5d4f98a2
YZ
8222 struct extent_buffer *leaf;
8223 int type;
8224 u32 size;
26b8003f 8225
5d4f98a2
YZ
8226 if (parent > 0)
8227 type = BTRFS_SHARED_DATA_REF_KEY;
8228 else
8229 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8230
5d4f98a2 8231 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8232
8233 path = btrfs_alloc_path();
db5b493a
TI
8234 if (!path)
8235 return -ENOMEM;
47e4bb98 8236
b9473439 8237 path->leave_spinning = 1;
5d4f98a2
YZ
8238 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8239 ins, size);
79787eaa
JM
8240 if (ret) {
8241 btrfs_free_path(path);
8242 return ret;
8243 }
0f9dd46c 8244
5d4f98a2
YZ
8245 leaf = path->nodes[0];
8246 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8247 struct btrfs_extent_item);
5d4f98a2
YZ
8248 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8249 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8250 btrfs_set_extent_flags(leaf, extent_item,
8251 flags | BTRFS_EXTENT_FLAG_DATA);
8252
8253 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8254 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8255 if (parent > 0) {
8256 struct btrfs_shared_data_ref *ref;
8257 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8258 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8259 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8260 } else {
8261 struct btrfs_extent_data_ref *ref;
8262 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8263 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8264 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8265 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8266 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8267 }
47e4bb98
CM
8268
8269 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8270 btrfs_free_path(path);
f510cfec 8271
25a356d3 8272 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8273 if (ret)
8274 return ret;
8275
6b279408 8276 ret = update_block_group(trans, ins->objectid, ins->offset, 1);
79787eaa 8277 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8278 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8279 ins->objectid, ins->offset);
f5947066
CM
8280 BUG();
8281 }
71ff6437 8282 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8283 return ret;
8284}
8285
5d4f98a2 8286static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8287 struct btrfs_delayed_ref_node *node,
21ebfbe7 8288 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8289{
9dcdbe01 8290 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8291 int ret;
5d4f98a2 8292 struct btrfs_extent_item *extent_item;
4e6bd4e0 8293 struct btrfs_key extent_key;
5d4f98a2
YZ
8294 struct btrfs_tree_block_info *block_info;
8295 struct btrfs_extent_inline_ref *iref;
8296 struct btrfs_path *path;
8297 struct extent_buffer *leaf;
4e6bd4e0 8298 struct btrfs_delayed_tree_ref *ref;
3173a18f 8299 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8300 u64 num_bytes;
21ebfbe7 8301 u64 flags = extent_op->flags_to_set;
0b246afa 8302 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8303
4e6bd4e0
NB
8304 ref = btrfs_delayed_node_to_tree_ref(node);
8305
4e6bd4e0
NB
8306 extent_key.objectid = node->bytenr;
8307 if (skinny_metadata) {
8308 extent_key.offset = ref->level;
8309 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8310 num_bytes = fs_info->nodesize;
8311 } else {
8312 extent_key.offset = node->num_bytes;
8313 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8314 size += sizeof(*block_info);
4e6bd4e0
NB
8315 num_bytes = node->num_bytes;
8316 }
1c2308f8 8317
5d4f98a2 8318 path = btrfs_alloc_path();
80ee54bf 8319 if (!path)
d8926bb3 8320 return -ENOMEM;
56bec294 8321
5d4f98a2
YZ
8322 path->leave_spinning = 1;
8323 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8324 &extent_key, size);
79787eaa 8325 if (ret) {
dd825259 8326 btrfs_free_path(path);
79787eaa
JM
8327 return ret;
8328 }
5d4f98a2
YZ
8329
8330 leaf = path->nodes[0];
8331 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8332 struct btrfs_extent_item);
8333 btrfs_set_extent_refs(leaf, extent_item, 1);
8334 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8335 btrfs_set_extent_flags(leaf, extent_item,
8336 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8337
3173a18f
JB
8338 if (skinny_metadata) {
8339 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8340 } else {
8341 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8342 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8343 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8344 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8345 }
5d4f98a2 8346
d4b20733 8347 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8348 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8349 btrfs_set_extent_inline_ref_type(leaf, iref,
8350 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8351 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8352 } else {
8353 btrfs_set_extent_inline_ref_type(leaf, iref,
8354 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8355 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8356 }
8357
8358 btrfs_mark_buffer_dirty(leaf);
8359 btrfs_free_path(path);
8360
4e6bd4e0
NB
8361 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8362 num_bytes);
1e144fb8
OS
8363 if (ret)
8364 return ret;
8365
6b279408 8366 ret = update_block_group(trans, extent_key.objectid,
6202df69 8367 fs_info->nodesize, 1);
79787eaa 8368 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8369 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8370 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8371 BUG();
8372 }
0be5dc67 8373
4e6bd4e0 8374 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8375 fs_info->nodesize);
5d4f98a2
YZ
8376 return ret;
8377}
8378
8379int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8380 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8381 u64 offset, u64 ram_bytes,
8382 struct btrfs_key *ins)
5d4f98a2 8383{
76675593 8384 struct btrfs_ref generic_ref = { 0 };
5d4f98a2
YZ
8385 int ret;
8386
84f7d8e6 8387 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8388
fd708b81
JB
8389 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8390 root->root_key.objectid, owner, offset,
8391 BTRFS_ADD_DELAYED_EXTENT);
8392
76675593
QW
8393 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8394 ins->objectid, ins->offset, 0);
8395 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8396 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8397 ram_bytes, NULL, NULL);
e6dcd2dc
CM
8398 return ret;
8399}
e02119d5
CM
8400
8401/*
8402 * this is used by the tree logging recovery code. It records that
8403 * an extent has been allocated and makes sure to clear the free
8404 * space cache bits as well
8405 */
5d4f98a2 8406int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8407 u64 root_objectid, u64 owner, u64 offset,
8408 struct btrfs_key *ins)
e02119d5 8409{
61da2abf 8410 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8411 int ret;
8412 struct btrfs_block_group_cache *block_group;
ed7a6948 8413 struct btrfs_space_info *space_info;
11833d66 8414
8c2a1a30
JB
8415 /*
8416 * Mixed block groups will exclude before processing the log so we only
01327610 8417 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8418 */
0b246afa 8419 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8420 ret = __exclude_logged_extent(fs_info, ins->objectid,
8421 ins->offset);
b50c6e25 8422 if (ret)
8c2a1a30 8423 return ret;
11833d66
YZ
8424 }
8425
0b246afa 8426 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8427 if (!block_group)
8428 return -EINVAL;
8429
ed7a6948
WX
8430 space_info = block_group->space_info;
8431 spin_lock(&space_info->lock);
8432 spin_lock(&block_group->lock);
8433 space_info->bytes_reserved += ins->offset;
8434 block_group->reserved += ins->offset;
8435 spin_unlock(&block_group->lock);
8436 spin_unlock(&space_info->lock);
8437
ef89b824
NB
8438 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8439 offset, ins, 1);
b50c6e25 8440 btrfs_put_block_group(block_group);
e02119d5
CM
8441 return ret;
8442}
8443
48a3b636
ES
8444static struct extent_buffer *
8445btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8446 u64 bytenr, int level, u64 owner)
65b51a00 8447{
0b246afa 8448 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8449 struct extent_buffer *buf;
8450
2ff7e61e 8451 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8452 if (IS_ERR(buf))
8453 return buf;
8454
b72c3aba
QW
8455 /*
8456 * Extra safety check in case the extent tree is corrupted and extent
8457 * allocator chooses to use a tree block which is already used and
8458 * locked.
8459 */
8460 if (buf->lock_owner == current->pid) {
8461 btrfs_err_rl(fs_info,
8462"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8463 buf->start, btrfs_header_owner(buf), current->pid);
8464 free_extent_buffer(buf);
8465 return ERR_PTR(-EUCLEAN);
8466 }
8467
85d4e461 8468 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8469 btrfs_tree_lock(buf);
6a884d7d 8470 btrfs_clean_tree_block(buf);
3083ee2e 8471 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de 8472
8bead258 8473 btrfs_set_lock_blocking_write(buf);
4db8c528 8474 set_extent_buffer_uptodate(buf);
b4ce94de 8475
bc877d28
NB
8476 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8477 btrfs_set_header_level(buf, level);
8478 btrfs_set_header_bytenr(buf, buf->start);
8479 btrfs_set_header_generation(buf, trans->transid);
8480 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8481 btrfs_set_header_owner(buf, owner);
de37aa51 8482 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8483 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8484 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8485 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8486 /*
8487 * we allow two log transactions at a time, use different
52042d8e 8488 * EXTENT bit to differentiate dirty pages.
8cef4e16 8489 */
656f30db 8490 if (buf->log_index == 0)
8cef4e16
YZ
8491 set_extent_dirty(&root->dirty_log_pages, buf->start,
8492 buf->start + buf->len - 1, GFP_NOFS);
8493 else
8494 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8495 buf->start + buf->len - 1);
d0c803c4 8496 } else {
656f30db 8497 buf->log_index = -1;
d0c803c4 8498 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8499 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8500 }
64c12921 8501 trans->dirty = true;
b4ce94de 8502 /* this returns a buffer locked for blocking */
65b51a00
CM
8503 return buf;
8504}
8505
f0486c68
YZ
8506static struct btrfs_block_rsv *
8507use_block_rsv(struct btrfs_trans_handle *trans,
8508 struct btrfs_root *root, u32 blocksize)
8509{
0b246afa 8510 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8511 struct btrfs_block_rsv *block_rsv;
0b246afa 8512 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8513 int ret;
d88033db 8514 bool global_updated = false;
f0486c68
YZ
8515
8516 block_rsv = get_block_rsv(trans, root);
8517
b586b323
MX
8518 if (unlikely(block_rsv->size == 0))
8519 goto try_reserve;
d88033db 8520again:
f0486c68
YZ
8521 ret = block_rsv_use_bytes(block_rsv, blocksize);
8522 if (!ret)
8523 return block_rsv;
8524
b586b323
MX
8525 if (block_rsv->failfast)
8526 return ERR_PTR(ret);
8527
d88033db
MX
8528 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8529 global_updated = true;
0b246afa 8530 update_global_block_rsv(fs_info);
d88033db
MX
8531 goto again;
8532 }
8533
ba2c4d4e
JB
8534 /*
8535 * The global reserve still exists to save us from ourselves, so don't
8536 * warn_on if we are short on our delayed refs reserve.
8537 */
8538 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8539 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8540 static DEFINE_RATELIMIT_STATE(_rs,
8541 DEFAULT_RATELIMIT_INTERVAL * 10,
8542 /*DEFAULT_RATELIMIT_BURST*/ 1);
8543 if (__ratelimit(&_rs))
8544 WARN(1, KERN_DEBUG
efe120a0 8545 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8546 }
8547try_reserve:
8548 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8549 BTRFS_RESERVE_NO_FLUSH);
8550 if (!ret)
8551 return block_rsv;
8552 /*
8553 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8554 * the global reserve if its space type is the same as the global
8555 * reservation.
b586b323 8556 */
5881cfc9
MX
8557 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8558 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8559 ret = block_rsv_use_bytes(global_rsv, blocksize);
8560 if (!ret)
8561 return global_rsv;
8562 }
8563 return ERR_PTR(ret);
f0486c68
YZ
8564}
8565
8c2a3ca2
JB
8566static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8567 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8568{
3a584174 8569 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8570 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8571}
8572
fec577fb 8573/*
f0486c68 8574 * finds a free extent and does all the dirty work required for allocation
67b7859e 8575 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8576 */
4d75f8a9 8577struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8578 struct btrfs_root *root,
8579 u64 parent, u64 root_objectid,
8580 const struct btrfs_disk_key *key,
8581 int level, u64 hint,
8582 u64 empty_size)
fec577fb 8583{
0b246afa 8584 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8585 struct btrfs_key ins;
f0486c68 8586 struct btrfs_block_rsv *block_rsv;
5f39d397 8587 struct extent_buffer *buf;
67b7859e 8588 struct btrfs_delayed_extent_op *extent_op;
ed4f255b 8589 struct btrfs_ref generic_ref = { 0 };
f0486c68
YZ
8590 u64 flags = 0;
8591 int ret;
0b246afa
JM
8592 u32 blocksize = fs_info->nodesize;
8593 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8594
05653ef3 8595#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8596 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8597 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8598 level, root_objectid);
faa2dbf0
JB
8599 if (!IS_ERR(buf))
8600 root->alloc_bytenr += blocksize;
8601 return buf;
8602 }
05653ef3 8603#endif
fccb84c9 8604
f0486c68
YZ
8605 block_rsv = use_block_rsv(trans, root, blocksize);
8606 if (IS_ERR(block_rsv))
8607 return ERR_CAST(block_rsv);
8608
18513091 8609 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8610 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8611 if (ret)
8612 goto out_unuse;
55c69072 8613
bc877d28
NB
8614 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8615 root_objectid);
67b7859e
OS
8616 if (IS_ERR(buf)) {
8617 ret = PTR_ERR(buf);
8618 goto out_free_reserved;
8619 }
f0486c68
YZ
8620
8621 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8622 if (parent == 0)
8623 parent = ins.objectid;
8624 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8625 } else
8626 BUG_ON(parent > 0);
8627
8628 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8629 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8630 if (!extent_op) {
8631 ret = -ENOMEM;
8632 goto out_free_buf;
8633 }
f0486c68
YZ
8634 if (key)
8635 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8636 else
8637 memset(&extent_op->key, 0, sizeof(extent_op->key));
8638 extent_op->flags_to_set = flags;
35b3ad50
DS
8639 extent_op->update_key = skinny_metadata ? false : true;
8640 extent_op->update_flags = true;
8641 extent_op->is_data = false;
b1c79e09 8642 extent_op->level = level;
f0486c68 8643
fd708b81
JB
8644 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8645 root_objectid, level, 0,
8646 BTRFS_ADD_DELAYED_EXTENT);
ed4f255b
QW
8647 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8648 ins.objectid, ins.offset, parent);
8649 generic_ref.real_root = root->root_key.objectid;
8650 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8651 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
7be07912 8652 extent_op, NULL, NULL);
67b7859e
OS
8653 if (ret)
8654 goto out_free_delayed;
f0486c68 8655 }
fec577fb 8656 return buf;
67b7859e
OS
8657
8658out_free_delayed:
8659 btrfs_free_delayed_extent_op(extent_op);
8660out_free_buf:
8661 free_extent_buffer(buf);
8662out_free_reserved:
2ff7e61e 8663 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8664out_unuse:
0b246afa 8665 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8666 return ERR_PTR(ret);
fec577fb 8667}
a28ec197 8668
2c47e605
YZ
8669struct walk_control {
8670 u64 refs[BTRFS_MAX_LEVEL];
8671 u64 flags[BTRFS_MAX_LEVEL];
8672 struct btrfs_key update_progress;
aea6f028
JB
8673 struct btrfs_key drop_progress;
8674 int drop_level;
2c47e605
YZ
8675 int stage;
8676 int level;
8677 int shared_level;
8678 int update_ref;
8679 int keep_locks;
1c4850e2
YZ
8680 int reada_slot;
8681 int reada_count;
78c52d9e 8682 int restarted;
2c47e605
YZ
8683};
8684
8685#define DROP_REFERENCE 1
8686#define UPDATE_BACKREF 2
8687
1c4850e2
YZ
8688static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8689 struct btrfs_root *root,
8690 struct walk_control *wc,
8691 struct btrfs_path *path)
6407bf6d 8692{
0b246afa 8693 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8694 u64 bytenr;
8695 u64 generation;
8696 u64 refs;
94fcca9f 8697 u64 flags;
5d4f98a2 8698 u32 nritems;
1c4850e2
YZ
8699 struct btrfs_key key;
8700 struct extent_buffer *eb;
6407bf6d 8701 int ret;
1c4850e2
YZ
8702 int slot;
8703 int nread = 0;
6407bf6d 8704
1c4850e2
YZ
8705 if (path->slots[wc->level] < wc->reada_slot) {
8706 wc->reada_count = wc->reada_count * 2 / 3;
8707 wc->reada_count = max(wc->reada_count, 2);
8708 } else {
8709 wc->reada_count = wc->reada_count * 3 / 2;
8710 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8711 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8712 }
7bb86316 8713
1c4850e2
YZ
8714 eb = path->nodes[wc->level];
8715 nritems = btrfs_header_nritems(eb);
bd56b302 8716
1c4850e2
YZ
8717 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8718 if (nread >= wc->reada_count)
8719 break;
bd56b302 8720
2dd3e67b 8721 cond_resched();
1c4850e2
YZ
8722 bytenr = btrfs_node_blockptr(eb, slot);
8723 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8724
1c4850e2
YZ
8725 if (slot == path->slots[wc->level])
8726 goto reada;
5d4f98a2 8727
1c4850e2
YZ
8728 if (wc->stage == UPDATE_BACKREF &&
8729 generation <= root->root_key.offset)
bd56b302
CM
8730 continue;
8731
94fcca9f 8732 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8733 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8734 wc->level - 1, 1, &refs,
8735 &flags);
79787eaa
JM
8736 /* We don't care about errors in readahead. */
8737 if (ret < 0)
8738 continue;
94fcca9f
YZ
8739 BUG_ON(refs == 0);
8740
1c4850e2 8741 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8742 if (refs == 1)
8743 goto reada;
bd56b302 8744
94fcca9f
YZ
8745 if (wc->level == 1 &&
8746 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8747 continue;
1c4850e2
YZ
8748 if (!wc->update_ref ||
8749 generation <= root->root_key.offset)
8750 continue;
8751 btrfs_node_key_to_cpu(eb, &key, slot);
8752 ret = btrfs_comp_cpu_keys(&key,
8753 &wc->update_progress);
8754 if (ret < 0)
8755 continue;
94fcca9f
YZ
8756 } else {
8757 if (wc->level == 1 &&
8758 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8759 continue;
6407bf6d 8760 }
1c4850e2 8761reada:
2ff7e61e 8762 readahead_tree_block(fs_info, bytenr);
1c4850e2 8763 nread++;
20524f02 8764 }
1c4850e2 8765 wc->reada_slot = slot;
20524f02 8766}
2c47e605 8767
f82d02d9 8768/*
2c016dc2 8769 * helper to process tree block while walking down the tree.
2c47e605 8770 *
2c47e605
YZ
8771 * when wc->stage == UPDATE_BACKREF, this function updates
8772 * back refs for pointers in the block.
8773 *
8774 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8775 */
2c47e605 8776static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8777 struct btrfs_root *root,
2c47e605 8778 struct btrfs_path *path,
94fcca9f 8779 struct walk_control *wc, int lookup_info)
f82d02d9 8780{
2ff7e61e 8781 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8782 int level = wc->level;
8783 struct extent_buffer *eb = path->nodes[level];
2c47e605 8784 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8785 int ret;
8786
2c47e605
YZ
8787 if (wc->stage == UPDATE_BACKREF &&
8788 btrfs_header_owner(eb) != root->root_key.objectid)
8789 return 1;
f82d02d9 8790
2c47e605
YZ
8791 /*
8792 * when reference count of tree block is 1, it won't increase
8793 * again. once full backref flag is set, we never clear it.
8794 */
94fcca9f
YZ
8795 if (lookup_info &&
8796 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8797 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8798 BUG_ON(!path->locks[level]);
2ff7e61e 8799 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8800 eb->start, level, 1,
2c47e605
YZ
8801 &wc->refs[level],
8802 &wc->flags[level]);
79787eaa
JM
8803 BUG_ON(ret == -ENOMEM);
8804 if (ret)
8805 return ret;
2c47e605
YZ
8806 BUG_ON(wc->refs[level] == 0);
8807 }
5d4f98a2 8808
2c47e605
YZ
8809 if (wc->stage == DROP_REFERENCE) {
8810 if (wc->refs[level] > 1)
8811 return 1;
f82d02d9 8812
2c47e605 8813 if (path->locks[level] && !wc->keep_locks) {
bd681513 8814 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8815 path->locks[level] = 0;
8816 }
8817 return 0;
8818 }
f82d02d9 8819
2c47e605
YZ
8820 /* wc->stage == UPDATE_BACKREF */
8821 if (!(wc->flags[level] & flag)) {
8822 BUG_ON(!path->locks[level]);
e339a6b0 8823 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8824 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8825 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8826 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8827 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8828 eb->len, flag,
8829 btrfs_header_level(eb), 0);
79787eaa 8830 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8831 wc->flags[level] |= flag;
8832 }
8833
8834 /*
8835 * the block is shared by multiple trees, so it's not good to
8836 * keep the tree lock
8837 */
8838 if (path->locks[level] && level > 0) {
bd681513 8839 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8840 path->locks[level] = 0;
8841 }
8842 return 0;
8843}
8844
78c52d9e
JB
8845/*
8846 * This is used to verify a ref exists for this root to deal with a bug where we
8847 * would have a drop_progress key that hadn't been updated properly.
8848 */
8849static int check_ref_exists(struct btrfs_trans_handle *trans,
8850 struct btrfs_root *root, u64 bytenr, u64 parent,
8851 int level)
8852{
8853 struct btrfs_path *path;
8854 struct btrfs_extent_inline_ref *iref;
8855 int ret;
8856
8857 path = btrfs_alloc_path();
8858 if (!path)
8859 return -ENOMEM;
8860
8861 ret = lookup_extent_backref(trans, path, &iref, bytenr,
8862 root->fs_info->nodesize, parent,
8863 root->root_key.objectid, level, 0);
8864 btrfs_free_path(path);
8865 if (ret == -ENOENT)
8866 return 0;
8867 if (ret < 0)
8868 return ret;
8869 return 1;
8870}
8871
1c4850e2 8872/*
2c016dc2 8873 * helper to process tree block pointer.
1c4850e2
YZ
8874 *
8875 * when wc->stage == DROP_REFERENCE, this function checks
8876 * reference count of the block pointed to. if the block
8877 * is shared and we need update back refs for the subtree
8878 * rooted at the block, this function changes wc->stage to
8879 * UPDATE_BACKREF. if the block is shared and there is no
8880 * need to update back, this function drops the reference
8881 * to the block.
8882 *
8883 * NOTE: return value 1 means we should stop walking down.
8884 */
8885static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8886 struct btrfs_root *root,
8887 struct btrfs_path *path,
94fcca9f 8888 struct walk_control *wc, int *lookup_info)
1c4850e2 8889{
0b246afa 8890 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8891 u64 bytenr;
8892 u64 generation;
8893 u64 parent;
1c4850e2 8894 struct btrfs_key key;
581c1760 8895 struct btrfs_key first_key;
1c4850e2
YZ
8896 struct extent_buffer *next;
8897 int level = wc->level;
8898 int reada = 0;
8899 int ret = 0;
1152651a 8900 bool need_account = false;
1c4850e2
YZ
8901
8902 generation = btrfs_node_ptr_generation(path->nodes[level],
8903 path->slots[level]);
8904 /*
8905 * if the lower level block was created before the snapshot
8906 * was created, we know there is no need to update back refs
8907 * for the subtree
8908 */
8909 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8910 generation <= root->root_key.offset) {
8911 *lookup_info = 1;
1c4850e2 8912 return 1;
94fcca9f 8913 }
1c4850e2
YZ
8914
8915 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8916 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8917 path->slots[level]);
1c4850e2 8918
0b246afa 8919 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8920 if (!next) {
2ff7e61e 8921 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8922 if (IS_ERR(next))
8923 return PTR_ERR(next);
8924
b2aaaa3b
JB
8925 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8926 level - 1);
1c4850e2
YZ
8927 reada = 1;
8928 }
8929 btrfs_tree_lock(next);
8bead258 8930 btrfs_set_lock_blocking_write(next);
1c4850e2 8931
2ff7e61e 8932 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8933 &wc->refs[level - 1],
8934 &wc->flags[level - 1]);
4867268c
JB
8935 if (ret < 0)
8936 goto out_unlock;
79787eaa 8937
c2cf52eb 8938 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8939 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8940 ret = -EIO;
8941 goto out_unlock;
c2cf52eb 8942 }
94fcca9f 8943 *lookup_info = 0;
1c4850e2 8944
94fcca9f 8945 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8946 if (wc->refs[level - 1] > 1) {
1152651a 8947 need_account = true;
94fcca9f
YZ
8948 if (level == 1 &&
8949 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8950 goto skip;
8951
1c4850e2
YZ
8952 if (!wc->update_ref ||
8953 generation <= root->root_key.offset)
8954 goto skip;
8955
8956 btrfs_node_key_to_cpu(path->nodes[level], &key,
8957 path->slots[level]);
8958 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8959 if (ret < 0)
8960 goto skip;
8961
8962 wc->stage = UPDATE_BACKREF;
8963 wc->shared_level = level - 1;
8964 }
94fcca9f
YZ
8965 } else {
8966 if (level == 1 &&
8967 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8968 goto skip;
1c4850e2
YZ
8969 }
8970
b9fab919 8971 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8972 btrfs_tree_unlock(next);
8973 free_extent_buffer(next);
8974 next = NULL;
94fcca9f 8975 *lookup_info = 1;
1c4850e2
YZ
8976 }
8977
8978 if (!next) {
8979 if (reada && level == 1)
8980 reada_walk_down(trans, root, wc, path);
581c1760
QW
8981 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8982 &first_key);
64c043de
LB
8983 if (IS_ERR(next)) {
8984 return PTR_ERR(next);
8985 } else if (!extent_buffer_uptodate(next)) {
416bc658 8986 free_extent_buffer(next);
97d9a8a4 8987 return -EIO;
416bc658 8988 }
1c4850e2 8989 btrfs_tree_lock(next);
8bead258 8990 btrfs_set_lock_blocking_write(next);
1c4850e2
YZ
8991 }
8992
8993 level--;
4867268c
JB
8994 ASSERT(level == btrfs_header_level(next));
8995 if (level != btrfs_header_level(next)) {
8996 btrfs_err(root->fs_info, "mismatched level");
8997 ret = -EIO;
8998 goto out_unlock;
8999 }
1c4850e2
YZ
9000 path->nodes[level] = next;
9001 path->slots[level] = 0;
bd681513 9002 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
9003 wc->level = level;
9004 if (wc->level == 1)
9005 wc->reada_slot = 0;
9006 return 0;
9007skip:
9008 wc->refs[level - 1] = 0;
9009 wc->flags[level - 1] = 0;
94fcca9f
YZ
9010 if (wc->stage == DROP_REFERENCE) {
9011 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
9012 parent = path->nodes[level]->start;
9013 } else {
4867268c 9014 ASSERT(root->root_key.objectid ==
94fcca9f 9015 btrfs_header_owner(path->nodes[level]));
4867268c
JB
9016 if (root->root_key.objectid !=
9017 btrfs_header_owner(path->nodes[level])) {
9018 btrfs_err(root->fs_info,
9019 "mismatched block owner");
9020 ret = -EIO;
9021 goto out_unlock;
9022 }
94fcca9f
YZ
9023 parent = 0;
9024 }
1c4850e2 9025
78c52d9e
JB
9026 /*
9027 * If we had a drop_progress we need to verify the refs are set
9028 * as expected. If we find our ref then we know that from here
9029 * on out everything should be correct, and we can clear the
9030 * ->restarted flag.
9031 */
9032 if (wc->restarted) {
9033 ret = check_ref_exists(trans, root, bytenr, parent,
9034 level - 1);
9035 if (ret < 0)
9036 goto out_unlock;
9037 if (ret == 0)
9038 goto no_delete;
9039 ret = 0;
9040 wc->restarted = 0;
9041 }
9042
2cd86d30
QW
9043 /*
9044 * Reloc tree doesn't contribute to qgroup numbers, and we have
9045 * already accounted them at merge time (replace_path),
9046 * thus we could skip expensive subtree trace here.
9047 */
9048 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9049 need_account) {
deb40627 9050 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9051 generation, level - 1);
1152651a 9052 if (ret) {
0b246afa 9053 btrfs_err_rl(fs_info,
5d163e0e
JM
9054 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9055 ret);
1152651a
MF
9056 }
9057 }
aea6f028
JB
9058
9059 /*
9060 * We need to update the next key in our walk control so we can
9061 * update the drop_progress key accordingly. We don't care if
9062 * find_next_key doesn't find a key because that means we're at
9063 * the end and are going to clean up now.
9064 */
9065 wc->drop_level = level;
9066 find_next_key(path, level, &wc->drop_progress);
9067
01e0da48 9068 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
2ff7e61e
JM
9069 parent, root->root_key.objectid,
9070 level - 1, 0);
4867268c
JB
9071 if (ret)
9072 goto out_unlock;
1c4850e2 9073 }
78c52d9e 9074no_delete:
4867268c
JB
9075 *lookup_info = 1;
9076 ret = 1;
9077
9078out_unlock:
1c4850e2
YZ
9079 btrfs_tree_unlock(next);
9080 free_extent_buffer(next);
4867268c
JB
9081
9082 return ret;
1c4850e2
YZ
9083}
9084
2c47e605 9085/*
2c016dc2 9086 * helper to process tree block while walking up the tree.
2c47e605
YZ
9087 *
9088 * when wc->stage == DROP_REFERENCE, this function drops
9089 * reference count on the block.
9090 *
9091 * when wc->stage == UPDATE_BACKREF, this function changes
9092 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9093 * to UPDATE_BACKREF previously while processing the block.
9094 *
9095 * NOTE: return value 1 means we should stop walking up.
9096 */
9097static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9098 struct btrfs_root *root,
9099 struct btrfs_path *path,
9100 struct walk_control *wc)
9101{
0b246afa 9102 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9103 int ret;
2c47e605
YZ
9104 int level = wc->level;
9105 struct extent_buffer *eb = path->nodes[level];
9106 u64 parent = 0;
9107
9108 if (wc->stage == UPDATE_BACKREF) {
9109 BUG_ON(wc->shared_level < level);
9110 if (level < wc->shared_level)
9111 goto out;
9112
2c47e605
YZ
9113 ret = find_next_key(path, level + 1, &wc->update_progress);
9114 if (ret > 0)
9115 wc->update_ref = 0;
9116
9117 wc->stage = DROP_REFERENCE;
9118 wc->shared_level = -1;
9119 path->slots[level] = 0;
9120
9121 /*
9122 * check reference count again if the block isn't locked.
9123 * we should start walking down the tree again if reference
9124 * count is one.
9125 */
9126 if (!path->locks[level]) {
9127 BUG_ON(level == 0);
9128 btrfs_tree_lock(eb);
8bead258 9129 btrfs_set_lock_blocking_write(eb);
bd681513 9130 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9131
2ff7e61e 9132 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9133 eb->start, level, 1,
2c47e605
YZ
9134 &wc->refs[level],
9135 &wc->flags[level]);
79787eaa
JM
9136 if (ret < 0) {
9137 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9138 path->locks[level] = 0;
79787eaa
JM
9139 return ret;
9140 }
2c47e605
YZ
9141 BUG_ON(wc->refs[level] == 0);
9142 if (wc->refs[level] == 1) {
bd681513 9143 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9144 path->locks[level] = 0;
2c47e605
YZ
9145 return 1;
9146 }
f82d02d9 9147 }
2c47e605 9148 }
f82d02d9 9149
2c47e605
YZ
9150 /* wc->stage == DROP_REFERENCE */
9151 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9152
2c47e605
YZ
9153 if (wc->refs[level] == 1) {
9154 if (level == 0) {
9155 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9156 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9157 else
e339a6b0 9158 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9159 BUG_ON(ret); /* -ENOMEM */
8d38d7eb 9160 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
1152651a 9161 if (ret) {
0b246afa 9162 btrfs_err_rl(fs_info,
5d163e0e
JM
9163 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9164 ret);
1152651a 9165 }
2c47e605 9166 }
6a884d7d 9167 /* make block locked assertion in btrfs_clean_tree_block happy */
2c47e605
YZ
9168 if (!path->locks[level] &&
9169 btrfs_header_generation(eb) == trans->transid) {
9170 btrfs_tree_lock(eb);
8bead258 9171 btrfs_set_lock_blocking_write(eb);
bd681513 9172 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9173 }
6a884d7d 9174 btrfs_clean_tree_block(eb);
2c47e605
YZ
9175 }
9176
9177 if (eb == root->node) {
9178 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9179 parent = eb->start;
65c6e82b
QW
9180 else if (root->root_key.objectid != btrfs_header_owner(eb))
9181 goto owner_mismatch;
2c47e605
YZ
9182 } else {
9183 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9184 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9185 else if (root->root_key.objectid !=
9186 btrfs_header_owner(path->nodes[level + 1]))
9187 goto owner_mismatch;
f82d02d9 9188 }
f82d02d9 9189
5581a51a 9190 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9191out:
9192 wc->refs[level] = 0;
9193 wc->flags[level] = 0;
f0486c68 9194 return 0;
65c6e82b
QW
9195
9196owner_mismatch:
9197 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9198 btrfs_header_owner(eb), root->root_key.objectid);
9199 return -EUCLEAN;
2c47e605
YZ
9200}
9201
9202static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9203 struct btrfs_root *root,
9204 struct btrfs_path *path,
9205 struct walk_control *wc)
9206{
2c47e605 9207 int level = wc->level;
94fcca9f 9208 int lookup_info = 1;
2c47e605
YZ
9209 int ret;
9210
9211 while (level >= 0) {
94fcca9f 9212 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9213 if (ret > 0)
9214 break;
9215
9216 if (level == 0)
9217 break;
9218
7a7965f8
YZ
9219 if (path->slots[level] >=
9220 btrfs_header_nritems(path->nodes[level]))
9221 break;
9222
94fcca9f 9223 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9224 if (ret > 0) {
9225 path->slots[level]++;
9226 continue;
90d2c51d
MX
9227 } else if (ret < 0)
9228 return ret;
1c4850e2 9229 level = wc->level;
f82d02d9 9230 }
f82d02d9
YZ
9231 return 0;
9232}
9233
d397712b 9234static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9235 struct btrfs_root *root,
f82d02d9 9236 struct btrfs_path *path,
2c47e605 9237 struct walk_control *wc, int max_level)
20524f02 9238{
2c47e605 9239 int level = wc->level;
20524f02 9240 int ret;
9f3a7427 9241
2c47e605
YZ
9242 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9243 while (level < max_level && path->nodes[level]) {
9244 wc->level = level;
9245 if (path->slots[level] + 1 <
9246 btrfs_header_nritems(path->nodes[level])) {
9247 path->slots[level]++;
20524f02
CM
9248 return 0;
9249 } else {
2c47e605
YZ
9250 ret = walk_up_proc(trans, root, path, wc);
9251 if (ret > 0)
9252 return 0;
65c6e82b
QW
9253 if (ret < 0)
9254 return ret;
bd56b302 9255
2c47e605 9256 if (path->locks[level]) {
bd681513
CM
9257 btrfs_tree_unlock_rw(path->nodes[level],
9258 path->locks[level]);
2c47e605 9259 path->locks[level] = 0;
f82d02d9 9260 }
2c47e605
YZ
9261 free_extent_buffer(path->nodes[level]);
9262 path->nodes[level] = NULL;
9263 level++;
20524f02
CM
9264 }
9265 }
9266 return 1;
9267}
9268
9aca1d51 9269/*
2c47e605
YZ
9270 * drop a subvolume tree.
9271 *
9272 * this function traverses the tree freeing any blocks that only
9273 * referenced by the tree.
9274 *
9275 * when a shared tree block is found. this function decreases its
9276 * reference count by one. if update_ref is true, this function
9277 * also make sure backrefs for the shared block and all lower level
9278 * blocks are properly updated.
9d1a2a3a
DS
9279 *
9280 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9281 */
2c536799 9282int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9283 struct btrfs_block_rsv *block_rsv, int update_ref,
9284 int for_reloc)
20524f02 9285{
ab8d0fc4 9286 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9287 struct btrfs_path *path;
2c47e605 9288 struct btrfs_trans_handle *trans;
ab8d0fc4 9289 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9290 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9291 struct walk_control *wc;
9292 struct btrfs_key key;
9293 int err = 0;
9294 int ret;
9295 int level;
d29a9f62 9296 bool root_dropped = false;
20524f02 9297
4fd786e6 9298 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9299
5caf2a00 9300 path = btrfs_alloc_path();
cb1b69f4
TI
9301 if (!path) {
9302 err = -ENOMEM;
9303 goto out;
9304 }
20524f02 9305
2c47e605 9306 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9307 if (!wc) {
9308 btrfs_free_path(path);
cb1b69f4
TI
9309 err = -ENOMEM;
9310 goto out;
38a1a919 9311 }
2c47e605 9312
a22285a6 9313 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9314 if (IS_ERR(trans)) {
9315 err = PTR_ERR(trans);
9316 goto out_free;
9317 }
98d5dc13 9318
0568e82d
JB
9319 err = btrfs_run_delayed_items(trans);
9320 if (err)
9321 goto out_end_trans;
9322
3fd0a558
YZ
9323 if (block_rsv)
9324 trans->block_rsv = block_rsv;
2c47e605 9325
83354f07
JB
9326 /*
9327 * This will help us catch people modifying the fs tree while we're
9328 * dropping it. It is unsafe to mess with the fs tree while it's being
9329 * dropped as we unlock the root node and parent nodes as we walk down
9330 * the tree, assuming nothing will change. If something does change
9331 * then we'll have stale information and drop references to blocks we've
9332 * already dropped.
9333 */
9334 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9335 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9336 level = btrfs_header_level(root->node);
5d4f98a2 9337 path->nodes[level] = btrfs_lock_root_node(root);
8bead258 9338 btrfs_set_lock_blocking_write(path->nodes[level]);
9f3a7427 9339 path->slots[level] = 0;
bd681513 9340 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9341 memset(&wc->update_progress, 0,
9342 sizeof(wc->update_progress));
9f3a7427 9343 } else {
9f3a7427 9344 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9345 memcpy(&wc->update_progress, &key,
9346 sizeof(wc->update_progress));
9347
6702ed49 9348 level = root_item->drop_level;
2c47e605 9349 BUG_ON(level == 0);
6702ed49 9350 path->lowest_level = level;
2c47e605
YZ
9351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9352 path->lowest_level = 0;
9353 if (ret < 0) {
9354 err = ret;
79787eaa 9355 goto out_end_trans;
9f3a7427 9356 }
1c4850e2 9357 WARN_ON(ret > 0);
2c47e605 9358
7d9eb12c
CM
9359 /*
9360 * unlock our path, this is safe because only this
9361 * function is allowed to delete this snapshot
9362 */
5d4f98a2 9363 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9364
9365 level = btrfs_header_level(root->node);
9366 while (1) {
9367 btrfs_tree_lock(path->nodes[level]);
8bead258 9368 btrfs_set_lock_blocking_write(path->nodes[level]);
fec386ac 9369 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9370
2ff7e61e 9371 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9372 path->nodes[level]->start,
3173a18f 9373 level, 1, &wc->refs[level],
2c47e605 9374 &wc->flags[level]);
79787eaa
JM
9375 if (ret < 0) {
9376 err = ret;
9377 goto out_end_trans;
9378 }
2c47e605
YZ
9379 BUG_ON(wc->refs[level] == 0);
9380
9381 if (level == root_item->drop_level)
9382 break;
9383
9384 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9385 path->locks[level] = 0;
2c47e605
YZ
9386 WARN_ON(wc->refs[level] != 1);
9387 level--;
9388 }
9f3a7427 9389 }
2c47e605 9390
78c52d9e 9391 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
2c47e605
YZ
9392 wc->level = level;
9393 wc->shared_level = -1;
9394 wc->stage = DROP_REFERENCE;
9395 wc->update_ref = update_ref;
9396 wc->keep_locks = 0;
0b246afa 9397 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9398
d397712b 9399 while (1) {
9d1a2a3a 9400
2c47e605
YZ
9401 ret = walk_down_tree(trans, root, path, wc);
9402 if (ret < 0) {
9403 err = ret;
20524f02 9404 break;
2c47e605 9405 }
9aca1d51 9406
2c47e605
YZ
9407 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9408 if (ret < 0) {
9409 err = ret;
20524f02 9410 break;
2c47e605
YZ
9411 }
9412
9413 if (ret > 0) {
9414 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9415 break;
9416 }
2c47e605
YZ
9417
9418 if (wc->stage == DROP_REFERENCE) {
aea6f028
JB
9419 wc->drop_level = wc->level;
9420 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9421 &wc->drop_progress,
9422 path->slots[wc->drop_level]);
9423 }
9424 btrfs_cpu_key_to_disk(&root_item->drop_progress,
9425 &wc->drop_progress);
9426 root_item->drop_level = wc->drop_level;
2c47e605
YZ
9427
9428 BUG_ON(wc->level == 0);
3a45bb20 9429 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9430 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9431 ret = btrfs_update_root(trans, tree_root,
9432 &root->root_key,
9433 root_item);
79787eaa 9434 if (ret) {
66642832 9435 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9436 err = ret;
9437 goto out_end_trans;
9438 }
2c47e605 9439
3a45bb20 9440 btrfs_end_transaction_throttle(trans);
2ff7e61e 9441 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9442 btrfs_debug(fs_info,
9443 "drop snapshot early exit");
3c8f2422
JB
9444 err = -EAGAIN;
9445 goto out_free;
9446 }
9447
a22285a6 9448 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9449 if (IS_ERR(trans)) {
9450 err = PTR_ERR(trans);
9451 goto out_free;
9452 }
3fd0a558
YZ
9453 if (block_rsv)
9454 trans->block_rsv = block_rsv;
c3e69d58 9455 }
20524f02 9456 }
b3b4aa74 9457 btrfs_release_path(path);
79787eaa
JM
9458 if (err)
9459 goto out_end_trans;
2c47e605 9460
ab9ce7d4 9461 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9462 if (ret) {
66642832 9463 btrfs_abort_transaction(trans, ret);
e19182c0 9464 err = ret;
79787eaa
JM
9465 goto out_end_trans;
9466 }
2c47e605 9467
76dda93c 9468 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9469 ret = btrfs_find_root(tree_root, &root->root_key, path,
9470 NULL, NULL);
79787eaa 9471 if (ret < 0) {
66642832 9472 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9473 err = ret;
9474 goto out_end_trans;
9475 } else if (ret > 0) {
84cd948c
JB
9476 /* if we fail to delete the orphan item this time
9477 * around, it'll get picked up the next time.
9478 *
9479 * The most common failure here is just -ENOENT.
9480 */
9481 btrfs_del_orphan_item(trans, tree_root,
9482 root->root_key.objectid);
76dda93c
YZ
9483 }
9484 }
9485
27cdeb70 9486 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9487 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9488 } else {
9489 free_extent_buffer(root->node);
9490 free_extent_buffer(root->commit_root);
b0feb9d9 9491 btrfs_put_fs_root(root);
76dda93c 9492 }
d29a9f62 9493 root_dropped = true;
79787eaa 9494out_end_trans:
3a45bb20 9495 btrfs_end_transaction_throttle(trans);
79787eaa 9496out_free:
2c47e605 9497 kfree(wc);
5caf2a00 9498 btrfs_free_path(path);
cb1b69f4 9499out:
d29a9f62
JB
9500 /*
9501 * So if we need to stop dropping the snapshot for whatever reason we
9502 * need to make sure to add it back to the dead root list so that we
9503 * keep trying to do the work later. This also cleans up roots if we
9504 * don't have it in the radix (like when we recover after a power fail
9505 * or unmount) so we don't leak memory.
9506 */
897ca819 9507 if (!for_reloc && !root_dropped)
d29a9f62 9508 btrfs_add_dead_root(root);
90515e7f 9509 if (err && err != -EAGAIN)
ab8d0fc4 9510 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9511 return err;
20524f02 9512}
9078a3e1 9513
2c47e605
YZ
9514/*
9515 * drop subtree rooted at tree block 'node'.
9516 *
9517 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9518 * only used by relocation code
2c47e605 9519 */
f82d02d9
YZ
9520int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9521 struct btrfs_root *root,
9522 struct extent_buffer *node,
9523 struct extent_buffer *parent)
9524{
0b246afa 9525 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9526 struct btrfs_path *path;
2c47e605 9527 struct walk_control *wc;
f82d02d9
YZ
9528 int level;
9529 int parent_level;
9530 int ret = 0;
9531 int wret;
9532
2c47e605
YZ
9533 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9534
f82d02d9 9535 path = btrfs_alloc_path();
db5b493a
TI
9536 if (!path)
9537 return -ENOMEM;
f82d02d9 9538
2c47e605 9539 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9540 if (!wc) {
9541 btrfs_free_path(path);
9542 return -ENOMEM;
9543 }
2c47e605 9544
b9447ef8 9545 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9546 parent_level = btrfs_header_level(parent);
9547 extent_buffer_get(parent);
9548 path->nodes[parent_level] = parent;
9549 path->slots[parent_level] = btrfs_header_nritems(parent);
9550
b9447ef8 9551 btrfs_assert_tree_locked(node);
f82d02d9 9552 level = btrfs_header_level(node);
f82d02d9
YZ
9553 path->nodes[level] = node;
9554 path->slots[level] = 0;
bd681513 9555 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9556
9557 wc->refs[parent_level] = 1;
9558 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9559 wc->level = level;
9560 wc->shared_level = -1;
9561 wc->stage = DROP_REFERENCE;
9562 wc->update_ref = 0;
9563 wc->keep_locks = 1;
0b246afa 9564 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9565
9566 while (1) {
2c47e605
YZ
9567 wret = walk_down_tree(trans, root, path, wc);
9568 if (wret < 0) {
f82d02d9 9569 ret = wret;
f82d02d9 9570 break;
2c47e605 9571 }
f82d02d9 9572
2c47e605 9573 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9574 if (wret < 0)
9575 ret = wret;
9576 if (wret != 0)
9577 break;
9578 }
9579
2c47e605 9580 kfree(wc);
f82d02d9
YZ
9581 btrfs_free_path(path);
9582 return ret;
9583}
9584
6202df69 9585static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9586{
9587 u64 num_devices;
fc67c450 9588 u64 stripped;
e4d8ec0f 9589
fc67c450
ID
9590 /*
9591 * if restripe for this chunk_type is on pick target profile and
9592 * return, otherwise do the usual balance
9593 */
6202df69 9594 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9595 if (stripped)
9596 return extended_to_chunk(stripped);
e4d8ec0f 9597
6202df69 9598 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9599
fc67c450 9600 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9601 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9602 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9603
ec44a35c
CM
9604 if (num_devices == 1) {
9605 stripped |= BTRFS_BLOCK_GROUP_DUP;
9606 stripped = flags & ~stripped;
9607
9608 /* turn raid0 into single device chunks */
9609 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9610 return stripped;
9611
9612 /* turn mirroring into duplication */
9613 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9614 BTRFS_BLOCK_GROUP_RAID10))
9615 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9616 } else {
9617 /* they already had raid on here, just return */
ec44a35c
CM
9618 if (flags & stripped)
9619 return flags;
9620
9621 stripped |= BTRFS_BLOCK_GROUP_DUP;
9622 stripped = flags & ~stripped;
9623
9624 /* switch duplicated blocks with raid1 */
9625 if (flags & BTRFS_BLOCK_GROUP_DUP)
9626 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9627
e3176ca2 9628 /* this is drive concat, leave it alone */
ec44a35c 9629 }
e3176ca2 9630
ec44a35c
CM
9631 return flags;
9632}
9633
868f401a 9634static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9635{
f0486c68
YZ
9636 struct btrfs_space_info *sinfo = cache->space_info;
9637 u64 num_bytes;
3ece54e5 9638 u64 sinfo_used;
199c36ea 9639 u64 min_allocable_bytes;
f0486c68 9640 int ret = -ENOSPC;
0ef3e66b 9641
199c36ea
MX
9642 /*
9643 * We need some metadata space and system metadata space for
9644 * allocating chunks in some corner cases until we force to set
9645 * it to be readonly.
9646 */
9647 if ((sinfo->flags &
9648 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9649 !force)
ee22184b 9650 min_allocable_bytes = SZ_1M;
199c36ea
MX
9651 else
9652 min_allocable_bytes = 0;
9653
f0486c68
YZ
9654 spin_lock(&sinfo->lock);
9655 spin_lock(&cache->lock);
61cfea9b
W
9656
9657 if (cache->ro) {
868f401a 9658 cache->ro++;
61cfea9b
W
9659 ret = 0;
9660 goto out;
9661 }
9662
f0486c68
YZ
9663 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9664 cache->bytes_super - btrfs_block_group_used(&cache->item);
3ece54e5 9665 sinfo_used = btrfs_space_info_used(sinfo, true);
f0486c68 9666
3ece54e5
QW
9667 if (sinfo_used + num_bytes + min_allocable_bytes <=
9668 sinfo->total_bytes) {
f0486c68 9669 sinfo->bytes_readonly += num_bytes;
868f401a 9670 cache->ro++;
633c0aad 9671 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9672 ret = 0;
9673 }
61cfea9b 9674out:
f0486c68
YZ
9675 spin_unlock(&cache->lock);
9676 spin_unlock(&sinfo->lock);
3ece54e5
QW
9677 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9678 btrfs_info(cache->fs_info,
9679 "unable to make block group %llu ro",
9680 cache->key.objectid);
9681 btrfs_info(cache->fs_info,
9682 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9683 sinfo_used, num_bytes, min_allocable_bytes);
9684 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9685 }
f0486c68
YZ
9686 return ret;
9687}
7d9eb12c 9688
c83488af 9689int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9690
f0486c68 9691{
c83488af 9692 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9693 struct btrfs_trans_handle *trans;
9694 u64 alloc_flags;
9695 int ret;
7d9eb12c 9696
1bbc621e 9697again:
5e00f193 9698 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9699 if (IS_ERR(trans))
9700 return PTR_ERR(trans);
5d4f98a2 9701
1bbc621e
CM
9702 /*
9703 * we're not allowed to set block groups readonly after the dirty
9704 * block groups cache has started writing. If it already started,
9705 * back off and let this transaction commit
9706 */
0b246afa 9707 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9708 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9709 u64 transid = trans->transid;
9710
0b246afa 9711 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9712 btrfs_end_transaction(trans);
1bbc621e 9713
2ff7e61e 9714 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9715 if (ret)
9716 return ret;
9717 goto again;
9718 }
9719
153c35b6
CM
9720 /*
9721 * if we are changing raid levels, try to allocate a corresponding
9722 * block group with the new raid level.
9723 */
0b246afa 9724 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9725 if (alloc_flags != cache->flags) {
01458828 9726 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9727 CHUNK_ALLOC_FORCE);
9728 /*
9729 * ENOSPC is allowed here, we may have enough space
9730 * already allocated at the new raid level to
9731 * carry on
9732 */
9733 if (ret == -ENOSPC)
9734 ret = 0;
9735 if (ret < 0)
9736 goto out;
9737 }
1bbc621e 9738
868f401a 9739 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9740 if (!ret)
9741 goto out;
2ff7e61e 9742 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9743 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9744 if (ret < 0)
9745 goto out;
868f401a 9746 ret = inc_block_group_ro(cache, 0);
f0486c68 9747out:
2f081088 9748 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9749 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9750 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9751 check_system_chunk(trans, alloc_flags);
34441361 9752 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9753 }
0b246afa 9754 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9755
3a45bb20 9756 btrfs_end_transaction(trans);
f0486c68
YZ
9757 return ret;
9758}
5d4f98a2 9759
43a7e99d 9760int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9761{
43a7e99d 9762 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9763
01458828 9764 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9765}
9766
6d07bcec
MX
9767/*
9768 * helper to account the unused space of all the readonly block group in the
633c0aad 9769 * space_info. takes mirrors into account.
6d07bcec 9770 */
633c0aad 9771u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9772{
9773 struct btrfs_block_group_cache *block_group;
9774 u64 free_bytes = 0;
9775 int factor;
9776
01327610 9777 /* It's df, we don't care if it's racy */
633c0aad
JB
9778 if (list_empty(&sinfo->ro_bgs))
9779 return 0;
9780
9781 spin_lock(&sinfo->lock);
9782 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9783 spin_lock(&block_group->lock);
9784
9785 if (!block_group->ro) {
9786 spin_unlock(&block_group->lock);
9787 continue;
9788 }
9789
46df06b8 9790 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9791 free_bytes += (block_group->key.offset -
9792 btrfs_block_group_used(&block_group->item)) *
9793 factor;
9794
9795 spin_unlock(&block_group->lock);
9796 }
6d07bcec
MX
9797 spin_unlock(&sinfo->lock);
9798
9799 return free_bytes;
9800}
9801
2ff7e61e 9802void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9803{
f0486c68
YZ
9804 struct btrfs_space_info *sinfo = cache->space_info;
9805 u64 num_bytes;
9806
9807 BUG_ON(!cache->ro);
9808
9809 spin_lock(&sinfo->lock);
9810 spin_lock(&cache->lock);
868f401a
Z
9811 if (!--cache->ro) {
9812 num_bytes = cache->key.offset - cache->reserved -
9813 cache->pinned - cache->bytes_super -
9814 btrfs_block_group_used(&cache->item);
9815 sinfo->bytes_readonly -= num_bytes;
9816 list_del_init(&cache->ro_list);
9817 }
f0486c68
YZ
9818 spin_unlock(&cache->lock);
9819 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9820}
9821
ba1bf481 9822/*
52042d8e 9823 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9824 *
9825 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9826 * ok to go ahead and try.
9827 */
6bccf3ab 9828int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9829{
ba1bf481
JB
9830 struct btrfs_block_group_cache *block_group;
9831 struct btrfs_space_info *space_info;
0b246afa 9832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9833 struct btrfs_device *device;
cdcb725c 9834 u64 min_free;
6719db6a
JB
9835 u64 dev_min = 1;
9836 u64 dev_nr = 0;
4a5e98f5 9837 u64 target;
0305bc27 9838 int debug;
cdcb725c 9839 int index;
ba1bf481
JB
9840 int full = 0;
9841 int ret = 0;
1a40e23b 9842
0b246afa 9843 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9844
0b246afa 9845 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9846
ba1bf481 9847 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9848 if (!block_group) {
9849 if (debug)
0b246afa 9850 btrfs_warn(fs_info,
0305bc27
QW
9851 "can't find block group for bytenr %llu",
9852 bytenr);
ba1bf481 9853 return -1;
0305bc27 9854 }
1a40e23b 9855
cdcb725c 9856 min_free = btrfs_block_group_used(&block_group->item);
9857
ba1bf481 9858 /* no bytes used, we're good */
cdcb725c 9859 if (!min_free)
1a40e23b
ZY
9860 goto out;
9861
ba1bf481
JB
9862 space_info = block_group->space_info;
9863 spin_lock(&space_info->lock);
17d217fe 9864
ba1bf481 9865 full = space_info->full;
17d217fe 9866
ba1bf481
JB
9867 /*
9868 * if this is the last block group we have in this space, we can't
7ce618db
CM
9869 * relocate it unless we're able to allocate a new chunk below.
9870 *
9871 * Otherwise, we need to make sure we have room in the space to handle
9872 * all of the extents from this block group. If we can, we're good
ba1bf481 9873 */
7ce618db 9874 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9875 (btrfs_space_info_used(space_info, false) + min_free <
9876 space_info->total_bytes)) {
ba1bf481
JB
9877 spin_unlock(&space_info->lock);
9878 goto out;
17d217fe 9879 }
ba1bf481 9880 spin_unlock(&space_info->lock);
ea8c2819 9881
ba1bf481
JB
9882 /*
9883 * ok we don't have enough space, but maybe we have free space on our
9884 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9885 * alloc devices and guess if we have enough space. if this block
9886 * group is going to be restriped, run checks against the target
9887 * profile instead of the current one.
ba1bf481
JB
9888 */
9889 ret = -1;
ea8c2819 9890
cdcb725c 9891 /*
9892 * index:
9893 * 0: raid10
9894 * 1: raid1
9895 * 2: dup
9896 * 3: raid0
9897 * 4: single
9898 */
0b246afa 9899 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9900 if (target) {
3e72ee88 9901 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9902 } else {
9903 /*
9904 * this is just a balance, so if we were marked as full
9905 * we know there is no space for a new chunk
9906 */
0305bc27
QW
9907 if (full) {
9908 if (debug)
0b246afa
JM
9909 btrfs_warn(fs_info,
9910 "no space to alloc new chunk for block group %llu",
9911 block_group->key.objectid);
4a5e98f5 9912 goto out;
0305bc27 9913 }
4a5e98f5 9914
3e72ee88 9915 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9916 }
9917
e6ec716f 9918 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9919 dev_min = 4;
6719db6a
JB
9920 /* Divide by 2 */
9921 min_free >>= 1;
e6ec716f 9922 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9923 dev_min = 2;
e6ec716f 9924 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9925 /* Multiply by 2 */
9926 min_free <<= 1;
e6ec716f 9927 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9928 dev_min = fs_devices->rw_devices;
47c5713f 9929 min_free = div64_u64(min_free, dev_min);
cdcb725c 9930 }
9931
0b246afa 9932 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9933 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9934 u64 dev_offset;
56bec294 9935
ba1bf481
JB
9936 /*
9937 * check to make sure we can actually find a chunk with enough
9938 * space to fit our block group in.
9939 */
63a212ab 9940 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9941 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
60dfdf25 9942 ret = find_free_dev_extent(device, min_free,
7bfc837d 9943 &dev_offset, NULL);
ba1bf481 9944 if (!ret)
cdcb725c 9945 dev_nr++;
9946
9947 if (dev_nr >= dev_min)
73e48b27 9948 break;
cdcb725c 9949
ba1bf481 9950 ret = -1;
725c8463 9951 }
edbd8d4e 9952 }
0305bc27 9953 if (debug && ret == -1)
0b246afa
JM
9954 btrfs_warn(fs_info,
9955 "no space to allocate a new chunk for block group %llu",
9956 block_group->key.objectid);
9957 mutex_unlock(&fs_info->chunk_mutex);
edbd8d4e 9958out:
ba1bf481 9959 btrfs_put_block_group(block_group);
edbd8d4e
CM
9960 return ret;
9961}
9962
6bccf3ab
JM
9963static int find_first_block_group(struct btrfs_fs_info *fs_info,
9964 struct btrfs_path *path,
9965 struct btrfs_key *key)
0b86a832 9966{
6bccf3ab 9967 struct btrfs_root *root = fs_info->extent_root;
925baedd 9968 int ret = 0;
0b86a832
CM
9969 struct btrfs_key found_key;
9970 struct extent_buffer *leaf;
514c7dca
QW
9971 struct btrfs_block_group_item bg;
9972 u64 flags;
0b86a832 9973 int slot;
edbd8d4e 9974
0b86a832
CM
9975 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9976 if (ret < 0)
925baedd
CM
9977 goto out;
9978
d397712b 9979 while (1) {
0b86a832 9980 slot = path->slots[0];
edbd8d4e 9981 leaf = path->nodes[0];
0b86a832
CM
9982 if (slot >= btrfs_header_nritems(leaf)) {
9983 ret = btrfs_next_leaf(root, path);
9984 if (ret == 0)
9985 continue;
9986 if (ret < 0)
925baedd 9987 goto out;
0b86a832 9988 break;
edbd8d4e 9989 }
0b86a832 9990 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9991
0b86a832 9992 if (found_key.objectid >= key->objectid &&
925baedd 9993 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9994 struct extent_map_tree *em_tree;
9995 struct extent_map *em;
9996
9997 em_tree = &root->fs_info->mapping_tree.map_tree;
9998 read_lock(&em_tree->lock);
9999 em = lookup_extent_mapping(em_tree, found_key.objectid,
10000 found_key.offset);
10001 read_unlock(&em_tree->lock);
10002 if (!em) {
0b246afa 10003 btrfs_err(fs_info,
6fb37b75
LB
10004 "logical %llu len %llu found bg but no related chunk",
10005 found_key.objectid, found_key.offset);
10006 ret = -ENOENT;
514c7dca
QW
10007 } else if (em->start != found_key.objectid ||
10008 em->len != found_key.offset) {
10009 btrfs_err(fs_info,
10010 "block group %llu len %llu mismatch with chunk %llu len %llu",
10011 found_key.objectid, found_key.offset,
10012 em->start, em->len);
10013 ret = -EUCLEAN;
6fb37b75 10014 } else {
514c7dca
QW
10015 read_extent_buffer(leaf, &bg,
10016 btrfs_item_ptr_offset(leaf, slot),
10017 sizeof(bg));
10018 flags = btrfs_block_group_flags(&bg) &
10019 BTRFS_BLOCK_GROUP_TYPE_MASK;
10020
10021 if (flags != (em->map_lookup->type &
10022 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10023 btrfs_err(fs_info,
10024"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
10025 found_key.objectid,
10026 found_key.offset, flags,
10027 (BTRFS_BLOCK_GROUP_TYPE_MASK &
10028 em->map_lookup->type));
10029 ret = -EUCLEAN;
10030 } else {
10031 ret = 0;
10032 }
6fb37b75 10033 }
187ee58c 10034 free_extent_map(em);
925baedd
CM
10035 goto out;
10036 }
0b86a832 10037 path->slots[0]++;
edbd8d4e 10038 }
925baedd 10039out:
0b86a832 10040 return ret;
edbd8d4e
CM
10041}
10042
0af3d00b
JB
10043void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10044{
10045 struct btrfs_block_group_cache *block_group;
10046 u64 last = 0;
10047
10048 while (1) {
10049 struct inode *inode;
10050
10051 block_group = btrfs_lookup_first_block_group(info, last);
10052 while (block_group) {
3aa7c7a3 10053 wait_block_group_cache_done(block_group);
0af3d00b
JB
10054 spin_lock(&block_group->lock);
10055 if (block_group->iref)
10056 break;
10057 spin_unlock(&block_group->lock);
f87b7eb8 10058 block_group = next_block_group(block_group);
0af3d00b
JB
10059 }
10060 if (!block_group) {
10061 if (last == 0)
10062 break;
10063 last = 0;
10064 continue;
10065 }
10066
10067 inode = block_group->inode;
10068 block_group->iref = 0;
10069 block_group->inode = NULL;
10070 spin_unlock(&block_group->lock);
f3bca802 10071 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10072 iput(inode);
10073 last = block_group->key.objectid + block_group->key.offset;
10074 btrfs_put_block_group(block_group);
10075 }
10076}
10077
5cdd7db6
FM
10078/*
10079 * Must be called only after stopping all workers, since we could have block
10080 * group caching kthreads running, and therefore they could race with us if we
10081 * freed the block groups before stopping them.
10082 */
1a40e23b
ZY
10083int btrfs_free_block_groups(struct btrfs_fs_info *info)
10084{
10085 struct btrfs_block_group_cache *block_group;
4184ea7f 10086 struct btrfs_space_info *space_info;
11833d66 10087 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10088 struct rb_node *n;
10089
9e351cc8 10090 down_write(&info->commit_root_sem);
11833d66
YZ
10091 while (!list_empty(&info->caching_block_groups)) {
10092 caching_ctl = list_entry(info->caching_block_groups.next,
10093 struct btrfs_caching_control, list);
10094 list_del(&caching_ctl->list);
10095 put_caching_control(caching_ctl);
10096 }
9e351cc8 10097 up_write(&info->commit_root_sem);
11833d66 10098
47ab2a6c
JB
10099 spin_lock(&info->unused_bgs_lock);
10100 while (!list_empty(&info->unused_bgs)) {
10101 block_group = list_first_entry(&info->unused_bgs,
10102 struct btrfs_block_group_cache,
10103 bg_list);
10104 list_del_init(&block_group->bg_list);
10105 btrfs_put_block_group(block_group);
10106 }
10107 spin_unlock(&info->unused_bgs_lock);
10108
1a40e23b
ZY
10109 spin_lock(&info->block_group_cache_lock);
10110 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10111 block_group = rb_entry(n, struct btrfs_block_group_cache,
10112 cache_node);
1a40e23b
ZY
10113 rb_erase(&block_group->cache_node,
10114 &info->block_group_cache_tree);
01eacb27 10115 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10116 spin_unlock(&info->block_group_cache_lock);
10117
80eb234a 10118 down_write(&block_group->space_info->groups_sem);
1a40e23b 10119 list_del(&block_group->list);
80eb234a 10120 up_write(&block_group->space_info->groups_sem);
d2fb3437 10121
3c14874a
JB
10122 /*
10123 * We haven't cached this block group, which means we could
10124 * possibly have excluded extents on this block group.
10125 */
36cce922
JB
10126 if (block_group->cached == BTRFS_CACHE_NO ||
10127 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10128 free_excluded_extents(block_group);
3c14874a 10129
817d52f8 10130 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10131 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10132 ASSERT(list_empty(&block_group->dirty_list));
10133 ASSERT(list_empty(&block_group->io_list));
10134 ASSERT(list_empty(&block_group->bg_list));
10135 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10136 btrfs_put_block_group(block_group);
d899e052
YZ
10137
10138 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10139 }
10140 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10141
10142 /* now that all the block groups are freed, go through and
10143 * free all the space_info structs. This is only called during
10144 * the final stages of unmount, and so we know nobody is
10145 * using them. We call synchronize_rcu() once before we start,
10146 * just to be on the safe side.
10147 */
10148 synchronize_rcu();
10149
8929ecfa
YZ
10150 release_global_block_rsv(info);
10151
67871254 10152 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10153 int i;
10154
4184ea7f
CM
10155 space_info = list_entry(info->space_info.next,
10156 struct btrfs_space_info,
10157 list);
d555b6c3
JB
10158
10159 /*
10160 * Do not hide this behind enospc_debug, this is actually
10161 * important and indicates a real bug if this happens.
10162 */
10163 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10164 space_info->bytes_reserved > 0 ||
d555b6c3 10165 space_info->bytes_may_use > 0))
ab8d0fc4 10166 dump_space_info(info, space_info, 0, 0);
4184ea7f 10167 list_del(&space_info->list);
6ab0a202
JM
10168 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10169 struct kobject *kobj;
c1895442
JM
10170 kobj = space_info->block_group_kobjs[i];
10171 space_info->block_group_kobjs[i] = NULL;
10172 if (kobj) {
6ab0a202
JM
10173 kobject_del(kobj);
10174 kobject_put(kobj);
10175 }
10176 }
10177 kobject_del(&space_info->kobj);
10178 kobject_put(&space_info->kobj);
4184ea7f 10179 }
1a40e23b
ZY
10180 return 0;
10181}
10182
75cb379d
JM
10183/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10184void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10185{
10186 struct btrfs_space_info *space_info;
10187 struct raid_kobject *rkobj;
10188 LIST_HEAD(list);
10189 int index;
10190 int ret = 0;
10191
10192 spin_lock(&fs_info->pending_raid_kobjs_lock);
10193 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10194 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10195
10196 list_for_each_entry(rkobj, &list, list) {
10197 space_info = __find_space_info(fs_info, rkobj->flags);
10198 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10199
10200 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10201 "%s", get_raid_name(index));
10202 if (ret) {
10203 kobject_put(&rkobj->kobj);
10204 break;
10205 }
10206 }
10207 if (ret)
10208 btrfs_warn(fs_info,
10209 "failed to add kobject for block cache, ignoring");
10210}
10211
c434d21c 10212static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10213{
c434d21c 10214 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10215 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10216 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10217 bool first = false;
b742bb82
YZ
10218
10219 down_write(&space_info->groups_sem);
ed55b6ac
JM
10220 if (list_empty(&space_info->block_groups[index]))
10221 first = true;
10222 list_add_tail(&cache->list, &space_info->block_groups[index]);
10223 up_write(&space_info->groups_sem);
10224
10225 if (first) {
75cb379d
JM
10226 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10227 if (!rkobj) {
10228 btrfs_warn(cache->fs_info,
10229 "couldn't alloc memory for raid level kobject");
10230 return;
6ab0a202 10231 }
75cb379d
JM
10232 rkobj->flags = cache->flags;
10233 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10234
10235 spin_lock(&fs_info->pending_raid_kobjs_lock);
10236 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10237 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10238 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10239 }
b742bb82
YZ
10240}
10241
920e4a58 10242static struct btrfs_block_group_cache *
2ff7e61e
JM
10243btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10244 u64 start, u64 size)
920e4a58
MX
10245{
10246 struct btrfs_block_group_cache *cache;
10247
10248 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10249 if (!cache)
10250 return NULL;
10251
10252 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10253 GFP_NOFS);
10254 if (!cache->free_space_ctl) {
10255 kfree(cache);
10256 return NULL;
10257 }
10258
10259 cache->key.objectid = start;
10260 cache->key.offset = size;
10261 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10262
0b246afa 10263 cache->fs_info = fs_info;
e4ff5fb5 10264 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10265 set_free_space_tree_thresholds(cache);
10266
920e4a58
MX
10267 atomic_set(&cache->count, 1);
10268 spin_lock_init(&cache->lock);
e570fd27 10269 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10270 INIT_LIST_HEAD(&cache->list);
10271 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10272 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10273 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10274 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10275 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10276 btrfs_init_free_space_ctl(cache);
04216820 10277 atomic_set(&cache->trimming, 0);
a5ed9182 10278 mutex_init(&cache->free_space_lock);
0966a7b1 10279 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10280
10281 return cache;
10282}
10283
7ef49515
QW
10284
10285/*
10286 * Iterate all chunks and verify that each of them has the corresponding block
10287 * group
10288 */
10289static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10290{
10291 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10292 struct extent_map *em;
10293 struct btrfs_block_group_cache *bg;
10294 u64 start = 0;
10295 int ret = 0;
10296
10297 while (1) {
10298 read_lock(&map_tree->map_tree.lock);
10299 /*
10300 * lookup_extent_mapping will return the first extent map
10301 * intersecting the range, so setting @len to 1 is enough to
10302 * get the first chunk.
10303 */
10304 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10305 read_unlock(&map_tree->map_tree.lock);
10306 if (!em)
10307 break;
10308
10309 bg = btrfs_lookup_block_group(fs_info, em->start);
10310 if (!bg) {
10311 btrfs_err(fs_info,
10312 "chunk start=%llu len=%llu doesn't have corresponding block group",
10313 em->start, em->len);
10314 ret = -EUCLEAN;
10315 free_extent_map(em);
10316 break;
10317 }
10318 if (bg->key.objectid != em->start ||
10319 bg->key.offset != em->len ||
10320 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10321 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10322 btrfs_err(fs_info,
10323"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10324 em->start, em->len,
10325 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10326 bg->key.objectid, bg->key.offset,
10327 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10328 ret = -EUCLEAN;
10329 free_extent_map(em);
10330 btrfs_put_block_group(bg);
10331 break;
10332 }
10333 start = em->start + em->len;
10334 free_extent_map(em);
10335 btrfs_put_block_group(bg);
10336 }
10337 return ret;
10338}
10339
5b4aacef 10340int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10341{
10342 struct btrfs_path *path;
10343 int ret;
9078a3e1 10344 struct btrfs_block_group_cache *cache;
6324fbf3 10345 struct btrfs_space_info *space_info;
9078a3e1
CM
10346 struct btrfs_key key;
10347 struct btrfs_key found_key;
5f39d397 10348 struct extent_buffer *leaf;
0af3d00b
JB
10349 int need_clear = 0;
10350 u64 cache_gen;
49303381
LB
10351 u64 feature;
10352 int mixed;
10353
10354 feature = btrfs_super_incompat_flags(info->super_copy);
10355 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10356
9078a3e1 10357 key.objectid = 0;
0b86a832 10358 key.offset = 0;
962a298f 10359 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10360 path = btrfs_alloc_path();
10361 if (!path)
10362 return -ENOMEM;
e4058b54 10363 path->reada = READA_FORWARD;
9078a3e1 10364
0b246afa
JM
10365 cache_gen = btrfs_super_cache_generation(info->super_copy);
10366 if (btrfs_test_opt(info, SPACE_CACHE) &&
10367 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10368 need_clear = 1;
0b246afa 10369 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10370 need_clear = 1;
0af3d00b 10371
d397712b 10372 while (1) {
6bccf3ab 10373 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10374 if (ret > 0)
10375 break;
0b86a832
CM
10376 if (ret != 0)
10377 goto error;
920e4a58 10378
5f39d397
CM
10379 leaf = path->nodes[0];
10380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10381
2ff7e61e 10382 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10383 found_key.offset);
9078a3e1 10384 if (!cache) {
0b86a832 10385 ret = -ENOMEM;
f0486c68 10386 goto error;
9078a3e1 10387 }
96303081 10388
cf7c1ef6
LB
10389 if (need_clear) {
10390 /*
10391 * When we mount with old space cache, we need to
10392 * set BTRFS_DC_CLEAR and set dirty flag.
10393 *
10394 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10395 * truncate the old free space cache inode and
10396 * setup a new one.
10397 * b) Setting 'dirty flag' makes sure that we flush
10398 * the new space cache info onto disk.
10399 */
0b246afa 10400 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10401 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10402 }
0af3d00b 10403
5f39d397
CM
10404 read_extent_buffer(leaf, &cache->item,
10405 btrfs_item_ptr_offset(leaf, path->slots[0]),
10406 sizeof(cache->item));
920e4a58 10407 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10408 if (!mixed &&
10409 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10410 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10411 btrfs_err(info,
10412"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10413 cache->key.objectid);
10414 ret = -EINVAL;
10415 goto error;
10416 }
0b86a832 10417
9078a3e1 10418 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10419 btrfs_release_path(path);
34d52cb6 10420
3c14874a
JB
10421 /*
10422 * We need to exclude the super stripes now so that the space
10423 * info has super bytes accounted for, otherwise we'll think
10424 * we have more space than we actually do.
10425 */
3c4da657 10426 ret = exclude_super_stripes(cache);
835d974f
JB
10427 if (ret) {
10428 /*
10429 * We may have excluded something, so call this just in
10430 * case.
10431 */
9e715da8 10432 free_excluded_extents(cache);
920e4a58 10433 btrfs_put_block_group(cache);
835d974f
JB
10434 goto error;
10435 }
3c14874a 10436
817d52f8
JB
10437 /*
10438 * check for two cases, either we are full, and therefore
10439 * don't need to bother with the caching work since we won't
10440 * find any space, or we are empty, and we can just add all
52042d8e 10441 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10442 * time, particularly in the full case.
10443 */
10444 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10445 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10446 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10447 free_excluded_extents(cache);
817d52f8 10448 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10449 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10450 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10451 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10452 found_key.objectid +
10453 found_key.offset);
9e715da8 10454 free_excluded_extents(cache);
817d52f8 10455 }
96b5179d 10456
0b246afa 10457 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10458 if (ret) {
10459 btrfs_remove_free_space_cache(cache);
10460 btrfs_put_block_group(cache);
10461 goto error;
10462 }
10463
0b246afa 10464 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10465 update_space_info(info, cache->flags, found_key.offset,
10466 btrfs_block_group_used(&cache->item),
10467 cache->bytes_super, &space_info);
8c579fe7 10468
6324fbf3 10469 cache->space_info = space_info;
1b2da372 10470
c434d21c 10471 link_block_group(cache);
0f9dd46c 10472
0b246afa 10473 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10474 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10475 inc_block_group_ro(cache, 1);
47ab2a6c 10476 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10477 ASSERT(list_empty(&cache->bg_list));
10478 btrfs_mark_bg_unused(cache);
47ab2a6c 10479 }
9078a3e1 10480 }
b742bb82 10481
0b246afa 10482 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10483 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10484 (BTRFS_BLOCK_GROUP_RAID10 |
10485 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10486 BTRFS_BLOCK_GROUP_RAID5 |
10487 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10488 BTRFS_BLOCK_GROUP_DUP)))
10489 continue;
10490 /*
10491 * avoid allocating from un-mirrored block group if there are
10492 * mirrored block groups.
10493 */
1095cc0d 10494 list_for_each_entry(cache,
10495 &space_info->block_groups[BTRFS_RAID_RAID0],
10496 list)
868f401a 10497 inc_block_group_ro(cache, 1);
1095cc0d 10498 list_for_each_entry(cache,
10499 &space_info->block_groups[BTRFS_RAID_SINGLE],
10500 list)
868f401a 10501 inc_block_group_ro(cache, 1);
9078a3e1 10502 }
f0486c68 10503
75cb379d 10504 btrfs_add_raid_kobjects(info);
f0486c68 10505 init_global_block_rsv(info);
7ef49515 10506 ret = check_chunk_block_group_mappings(info);
0b86a832 10507error:
9078a3e1 10508 btrfs_free_path(path);
0b86a832 10509 return ret;
9078a3e1 10510}
6324fbf3 10511
6c686b35 10512void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10513{
6c686b35 10514 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10515 struct btrfs_block_group_cache *block_group;
0b246afa 10516 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10517 struct btrfs_block_group_item item;
10518 struct btrfs_key key;
10519 int ret = 0;
10520
5ce55557
FM
10521 if (!trans->can_flush_pending_bgs)
10522 return;
10523
545e3366
JB
10524 while (!list_empty(&trans->new_bgs)) {
10525 block_group = list_first_entry(&trans->new_bgs,
10526 struct btrfs_block_group_cache,
10527 bg_list);
ea658bad 10528 if (ret)
c92f6be3 10529 goto next;
ea658bad
JB
10530
10531 spin_lock(&block_group->lock);
10532 memcpy(&item, &block_group->item, sizeof(item));
10533 memcpy(&key, &block_group->key, sizeof(key));
10534 spin_unlock(&block_group->lock);
10535
10536 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10537 sizeof(item));
10538 if (ret)
66642832 10539 btrfs_abort_transaction(trans, ret);
97aff912 10540 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10541 if (ret)
66642832 10542 btrfs_abort_transaction(trans, ret);
e4e0711c 10543 add_block_group_free_space(trans, block_group);
1e144fb8 10544 /* already aborted the transaction if it failed. */
c92f6be3 10545next:
ba2c4d4e 10546 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10547 list_del_init(&block_group->bg_list);
ea658bad 10548 }
5ce55557 10549 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10550}
10551
e7e02096 10552int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10553 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10554{
e7e02096 10555 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10556 struct btrfs_block_group_cache *cache;
0b246afa 10557 int ret;
6324fbf3 10558
90787766 10559 btrfs_set_log_full_commit(trans);
e02119d5 10560
2ff7e61e 10561 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10562 if (!cache)
10563 return -ENOMEM;
34d52cb6 10564
6324fbf3 10565 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10566 btrfs_set_block_group_chunk_objectid(&cache->item,
10567 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10568 btrfs_set_block_group_flags(&cache->item, type);
10569
920e4a58 10570 cache->flags = type;
11833d66 10571 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10572 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10573 cache->needs_free_space = 1;
3c4da657 10574 ret = exclude_super_stripes(cache);
835d974f
JB
10575 if (ret) {
10576 /*
10577 * We may have excluded something, so call this just in
10578 * case.
10579 */
9e715da8 10580 free_excluded_extents(cache);
920e4a58 10581 btrfs_put_block_group(cache);
835d974f
JB
10582 return ret;
10583 }
96303081 10584
4457c1c7 10585 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10586
9e715da8 10587 free_excluded_extents(cache);
11833d66 10588
d0bd4560 10589#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10590 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10591 u64 new_bytes_used = size - bytes_used;
10592
10593 bytes_used += new_bytes_used >> 1;
2ff7e61e 10594 fragment_free_space(cache);
d0bd4560
JB
10595 }
10596#endif
2e6e5183 10597 /*
2be12ef7
NB
10598 * Ensure the corresponding space_info object is created and
10599 * assigned to our block group. We want our bg to be added to the rbtree
10600 * with its ->space_info set.
2e6e5183 10601 */
2be12ef7 10602 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10603 ASSERT(cache->space_info);
2e6e5183 10604
0b246afa 10605 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10606 if (ret) {
10607 btrfs_remove_free_space_cache(cache);
10608 btrfs_put_block_group(cache);
10609 return ret;
10610 }
10611
2e6e5183
FM
10612 /*
10613 * Now that our block group has its ->space_info set and is inserted in
10614 * the rbtree, update the space info's counters.
10615 */
0b246afa 10616 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10617 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10618 cache->bytes_super, &cache->space_info);
0b246afa 10619 update_global_block_rsv(fs_info);
1b2da372 10620
c434d21c 10621 link_block_group(cache);
6324fbf3 10622
47ab2a6c 10623 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10624 trans->delayed_ref_updates++;
10625 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10626
0b246afa 10627 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10628 return 0;
10629}
1a40e23b 10630
10ea00f5
ID
10631static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10632{
899c81ea
ID
10633 u64 extra_flags = chunk_to_extended(flags) &
10634 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10635
de98ced9 10636 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10637 if (flags & BTRFS_BLOCK_GROUP_DATA)
10638 fs_info->avail_data_alloc_bits &= ~extra_flags;
10639 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10640 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10641 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10642 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10643 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10644}
10645
1a40e23b 10646int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10647 u64 group_start, struct extent_map *em)
1a40e23b 10648{
5a98ec01 10649 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10650 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10651 struct btrfs_path *path;
10652 struct btrfs_block_group_cache *block_group;
44fb5511 10653 struct btrfs_free_cluster *cluster;
0b246afa 10654 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10655 struct btrfs_key key;
0af3d00b 10656 struct inode *inode;
c1895442 10657 struct kobject *kobj = NULL;
1a40e23b 10658 int ret;
10ea00f5 10659 int index;
89a55897 10660 int factor;
4f69cb98 10661 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10662 bool remove_em;
ba2c4d4e 10663 bool remove_rsv = false;
1a40e23b 10664
6bccf3ab 10665 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10666 BUG_ON(!block_group);
c146afad 10667 BUG_ON(!block_group->ro);
1a40e23b 10668
4ed0a7a3 10669 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10670 /*
10671 * Free the reserved super bytes from this block group before
10672 * remove it.
10673 */
9e715da8 10674 free_excluded_extents(block_group);
fd708b81
JB
10675 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10676 block_group->key.offset);
9f7c43c9 10677
1a40e23b 10678 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10679 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10680 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10681
44fb5511 10682 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10683 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10684 spin_lock(&cluster->refill_lock);
10685 btrfs_return_cluster_to_free_space(block_group, cluster);
10686 spin_unlock(&cluster->refill_lock);
10687
10688 /*
10689 * make sure this block group isn't part of a metadata
10690 * allocation cluster
10691 */
0b246afa 10692 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10693 spin_lock(&cluster->refill_lock);
10694 btrfs_return_cluster_to_free_space(block_group, cluster);
10695 spin_unlock(&cluster->refill_lock);
10696
1a40e23b 10697 path = btrfs_alloc_path();
d8926bb3
MF
10698 if (!path) {
10699 ret = -ENOMEM;
10700 goto out;
10701 }
1a40e23b 10702
1bbc621e
CM
10703 /*
10704 * get the inode first so any iput calls done for the io_list
10705 * aren't the final iput (no unlinks allowed now)
10706 */
7949f339 10707 inode = lookup_free_space_inode(block_group, path);
1bbc621e
CM
10708
10709 mutex_lock(&trans->transaction->cache_write_mutex);
10710 /*
52042d8e 10711 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10712 * free space inode
10713 */
10714 spin_lock(&trans->transaction->dirty_bgs_lock);
10715 if (!list_empty(&block_group->io_list)) {
10716 list_del_init(&block_group->io_list);
10717
10718 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10719
10720 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10721 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10722 btrfs_put_block_group(block_group);
10723 spin_lock(&trans->transaction->dirty_bgs_lock);
10724 }
10725
10726 if (!list_empty(&block_group->dirty_list)) {
10727 list_del_init(&block_group->dirty_list);
ba2c4d4e 10728 remove_rsv = true;
1bbc621e
CM
10729 btrfs_put_block_group(block_group);
10730 }
10731 spin_unlock(&trans->transaction->dirty_bgs_lock);
10732 mutex_unlock(&trans->transaction->cache_write_mutex);
10733
0af3d00b 10734 if (!IS_ERR(inode)) {
73f2e545 10735 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10736 if (ret) {
10737 btrfs_add_delayed_iput(inode);
10738 goto out;
10739 }
0af3d00b
JB
10740 clear_nlink(inode);
10741 /* One for the block groups ref */
10742 spin_lock(&block_group->lock);
10743 if (block_group->iref) {
10744 block_group->iref = 0;
10745 block_group->inode = NULL;
10746 spin_unlock(&block_group->lock);
10747 iput(inode);
10748 } else {
10749 spin_unlock(&block_group->lock);
10750 }
10751 /* One for our lookup ref */
455757c3 10752 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10753 }
10754
10755 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10756 key.offset = block_group->key.objectid;
10757 key.type = 0;
10758
10759 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10760 if (ret < 0)
10761 goto out;
10762 if (ret > 0)
b3b4aa74 10763 btrfs_release_path(path);
0af3d00b
JB
10764 if (ret == 0) {
10765 ret = btrfs_del_item(trans, tree_root, path);
10766 if (ret)
10767 goto out;
b3b4aa74 10768 btrfs_release_path(path);
0af3d00b
JB
10769 }
10770
0b246afa 10771 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10772 rb_erase(&block_group->cache_node,
0b246afa 10773 &fs_info->block_group_cache_tree);
292cbd51 10774 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10775
0b246afa
JM
10776 if (fs_info->first_logical_byte == block_group->key.objectid)
10777 fs_info->first_logical_byte = (u64)-1;
10778 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10779
80eb234a 10780 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10781 /*
10782 * we must use list_del_init so people can check to see if they
10783 * are still on the list after taking the semaphore
10784 */
10785 list_del_init(&block_group->list);
6ab0a202 10786 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10787 kobj = block_group->space_info->block_group_kobjs[index];
10788 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10789 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10790 }
80eb234a 10791 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10792 if (kobj) {
10793 kobject_del(kobj);
10794 kobject_put(kobj);
10795 }
1a40e23b 10796
4f69cb98
FM
10797 if (block_group->has_caching_ctl)
10798 caching_ctl = get_caching_control(block_group);
817d52f8 10799 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10800 wait_block_group_cache_done(block_group);
4f69cb98 10801 if (block_group->has_caching_ctl) {
0b246afa 10802 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10803 if (!caching_ctl) {
10804 struct btrfs_caching_control *ctl;
10805
10806 list_for_each_entry(ctl,
0b246afa 10807 &fs_info->caching_block_groups, list)
4f69cb98
FM
10808 if (ctl->block_group == block_group) {
10809 caching_ctl = ctl;
1e4f4714 10810 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10811 break;
10812 }
10813 }
10814 if (caching_ctl)
10815 list_del_init(&caching_ctl->list);
0b246afa 10816 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10817 if (caching_ctl) {
10818 /* Once for the caching bgs list and once for us. */
10819 put_caching_control(caching_ctl);
10820 put_caching_control(caching_ctl);
10821 }
10822 }
817d52f8 10823
ce93ec54 10824 spin_lock(&trans->transaction->dirty_bgs_lock);
9a0ec83d
NB
10825 WARN_ON(!list_empty(&block_group->dirty_list));
10826 WARN_ON(!list_empty(&block_group->io_list));
ce93ec54 10827 spin_unlock(&trans->transaction->dirty_bgs_lock);
9a0ec83d 10828
817d52f8
JB
10829 btrfs_remove_free_space_cache(block_group);
10830
c146afad 10831 spin_lock(&block_group->space_info->lock);
75c68e9f 10832 list_del_init(&block_group->ro_list);
18d018ad 10833
0b246afa 10834 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10835 WARN_ON(block_group->space_info->total_bytes
10836 < block_group->key.offset);
10837 WARN_ON(block_group->space_info->bytes_readonly
10838 < block_group->key.offset);
10839 WARN_ON(block_group->space_info->disk_total
10840 < block_group->key.offset * factor);
10841 }
c146afad
YZ
10842 block_group->space_info->total_bytes -= block_group->key.offset;
10843 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10844 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10845
c146afad 10846 spin_unlock(&block_group->space_info->lock);
283bb197 10847
0af3d00b
JB
10848 memcpy(&key, &block_group->key, sizeof(key));
10849
34441361 10850 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
10851 spin_lock(&block_group->lock);
10852 block_group->removed = 1;
10853 /*
10854 * At this point trimming can't start on this block group, because we
10855 * removed the block group from the tree fs_info->block_group_cache_tree
10856 * so no one can't find it anymore and even if someone already got this
10857 * block group before we removed it from the rbtree, they have already
10858 * incremented block_group->trimming - if they didn't, they won't find
10859 * any free space entries because we already removed them all when we
10860 * called btrfs_remove_free_space_cache().
10861 *
10862 * And we must not remove the extent map from the fs_info->mapping_tree
10863 * to prevent the same logical address range and physical device space
10864 * ranges from being reused for a new block group. This is because our
10865 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10866 * completely transactionless, so while it is trimming a range the
10867 * currently running transaction might finish and a new one start,
10868 * allowing for new block groups to be created that can reuse the same
10869 * physical device locations unless we take this special care.
e33e17ee
JM
10870 *
10871 * There may also be an implicit trim operation if the file system
10872 * is mounted with -odiscard. The same protections must remain
10873 * in place until the extents have been discarded completely when
10874 * the transaction commit has completed.
04216820
FM
10875 */
10876 remove_em = (atomic_read(&block_group->trimming) == 0);
04216820 10877 spin_unlock(&block_group->lock);
04216820
FM
10878
10879 if (remove_em) {
10880 struct extent_map_tree *em_tree;
10881
0b246afa 10882 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
10883 write_lock(&em_tree->lock);
10884 remove_extent_mapping(em_tree, em);
10885 write_unlock(&em_tree->lock);
10886 /* once for the tree */
10887 free_extent_map(em);
10888 }
10889
34441361 10890 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10891
f3f72779 10892 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10893 if (ret)
10894 goto out;
10895
fa9c0d79
CM
10896 btrfs_put_block_group(block_group);
10897 btrfs_put_block_group(block_group);
1a40e23b
ZY
10898
10899 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10900 if (ret > 0)
10901 ret = -EIO;
10902 if (ret < 0)
10903 goto out;
10904
10905 ret = btrfs_del_item(trans, root, path);
10906out:
ba2c4d4e
JB
10907 if (remove_rsv)
10908 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10909 btrfs_free_path(path);
10910 return ret;
10911}
acce952b 10912
8eab77ff 10913struct btrfs_trans_handle *
7fd01182
FM
10914btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10915 const u64 chunk_offset)
8eab77ff 10916{
7fd01182
FM
10917 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10918 struct extent_map *em;
10919 struct map_lookup *map;
10920 unsigned int num_items;
10921
10922 read_lock(&em_tree->lock);
10923 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10924 read_unlock(&em_tree->lock);
10925 ASSERT(em && em->start == chunk_offset);
10926
8eab77ff 10927 /*
7fd01182
FM
10928 * We need to reserve 3 + N units from the metadata space info in order
10929 * to remove a block group (done at btrfs_remove_chunk() and at
10930 * btrfs_remove_block_group()), which are used for:
10931 *
8eab77ff
FM
10932 * 1 unit for adding the free space inode's orphan (located in the tree
10933 * of tree roots).
7fd01182
FM
10934 * 1 unit for deleting the block group item (located in the extent
10935 * tree).
10936 * 1 unit for deleting the free space item (located in tree of tree
10937 * roots).
10938 * N units for deleting N device extent items corresponding to each
10939 * stripe (located in the device tree).
10940 *
10941 * In order to remove a block group we also need to reserve units in the
10942 * system space info in order to update the chunk tree (update one or
10943 * more device items and remove one chunk item), but this is done at
10944 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10945 */
95617d69 10946 map = em->map_lookup;
7fd01182
FM
10947 num_items = 3 + map->num_stripes;
10948 free_extent_map(em);
10949
8eab77ff 10950 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10951 num_items, 1);
8eab77ff
FM
10952}
10953
47ab2a6c
JB
10954/*
10955 * Process the unused_bgs list and remove any that don't have any allocated
10956 * space inside of them.
10957 */
10958void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10959{
10960 struct btrfs_block_group_cache *block_group;
10961 struct btrfs_space_info *space_info;
47ab2a6c
JB
10962 struct btrfs_trans_handle *trans;
10963 int ret = 0;
10964
afcdd129 10965 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10966 return;
10967
10968 spin_lock(&fs_info->unused_bgs_lock);
10969 while (!list_empty(&fs_info->unused_bgs)) {
10970 u64 start, end;
e33e17ee 10971 int trimming;
47ab2a6c
JB
10972
10973 block_group = list_first_entry(&fs_info->unused_bgs,
10974 struct btrfs_block_group_cache,
10975 bg_list);
47ab2a6c 10976 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10977
10978 space_info = block_group->space_info;
10979
47ab2a6c
JB
10980 if (ret || btrfs_mixed_space_info(space_info)) {
10981 btrfs_put_block_group(block_group);
10982 continue;
10983 }
10984 spin_unlock(&fs_info->unused_bgs_lock);
10985
d5f2e33b 10986 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10987
47ab2a6c
JB
10988 /* Don't want to race with allocators so take the groups_sem */
10989 down_write(&space_info->groups_sem);
10990 spin_lock(&block_group->lock);
43794446 10991 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10992 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10993 block_group->ro ||
aefbe9a6 10994 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10995 /*
10996 * We want to bail if we made new allocations or have
10997 * outstanding allocations in this block group. We do
10998 * the ro check in case balance is currently acting on
10999 * this block group.
11000 */
4ed0a7a3 11001 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
11002 spin_unlock(&block_group->lock);
11003 up_write(&space_info->groups_sem);
11004 goto next;
11005 }
11006 spin_unlock(&block_group->lock);
11007
11008 /* We don't want to force the issue, only flip if it's ok. */
868f401a 11009 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
11010 up_write(&space_info->groups_sem);
11011 if (ret < 0) {
11012 ret = 0;
11013 goto next;
11014 }
11015
11016 /*
11017 * Want to do this before we do anything else so we can recover
11018 * properly if we fail to join the transaction.
11019 */
7fd01182
FM
11020 trans = btrfs_start_trans_remove_block_group(fs_info,
11021 block_group->key.objectid);
47ab2a6c 11022 if (IS_ERR(trans)) {
2ff7e61e 11023 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11024 ret = PTR_ERR(trans);
11025 goto next;
11026 }
11027
11028 /*
11029 * We could have pending pinned extents for this block group,
11030 * just delete them, we don't care about them anymore.
11031 */
11032 start = block_group->key.objectid;
11033 end = start + block_group->key.offset - 1;
d4b450cd
FM
11034 /*
11035 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11036 * btrfs_finish_extent_commit(). If we are at transaction N,
11037 * another task might be running finish_extent_commit() for the
11038 * previous transaction N - 1, and have seen a range belonging
11039 * to the block group in freed_extents[] before we were able to
11040 * clear the whole block group range from freed_extents[]. This
11041 * means that task can lookup for the block group after we
11042 * unpinned it from freed_extents[] and removed it, leading to
11043 * a BUG_ON() at btrfs_unpin_extent_range().
11044 */
11045 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11046 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11047 EXTENT_DIRTY);
758eb51e 11048 if (ret) {
d4b450cd 11049 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11050 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11051 goto end_trans;
11052 }
11053 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11054 EXTENT_DIRTY);
758eb51e 11055 if (ret) {
d4b450cd 11056 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11057 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11058 goto end_trans;
11059 }
d4b450cd 11060 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11061
11062 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11063 spin_lock(&space_info->lock);
11064 spin_lock(&block_group->lock);
11065
e2907c1a 11066 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11067 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11068 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11069 -block_group->pinned,
11070 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11071 block_group->pinned = 0;
11072
c30666d4
ZL
11073 spin_unlock(&block_group->lock);
11074 spin_unlock(&space_info->lock);
11075
e33e17ee 11076 /* DISCARD can flip during remount */
0b246afa 11077 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11078
11079 /* Implicit trim during transaction commit. */
11080 if (trimming)
11081 btrfs_get_block_group_trimming(block_group);
11082
47ab2a6c
JB
11083 /*
11084 * Btrfs_remove_chunk will abort the transaction if things go
11085 * horribly wrong.
11086 */
97aff912 11087 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11088
11089 if (ret) {
11090 if (trimming)
11091 btrfs_put_block_group_trimming(block_group);
11092 goto end_trans;
11093 }
11094
11095 /*
11096 * If we're not mounted with -odiscard, we can just forget
11097 * about this block group. Otherwise we'll need to wait
11098 * until transaction commit to do the actual discard.
11099 */
11100 if (trimming) {
348a0013
FM
11101 spin_lock(&fs_info->unused_bgs_lock);
11102 /*
11103 * A concurrent scrub might have added us to the list
11104 * fs_info->unused_bgs, so use a list_move operation
11105 * to add the block group to the deleted_bgs list.
11106 */
e33e17ee
JM
11107 list_move(&block_group->bg_list,
11108 &trans->transaction->deleted_bgs);
348a0013 11109 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11110 btrfs_get_block_group(block_group);
11111 }
758eb51e 11112end_trans:
3a45bb20 11113 btrfs_end_transaction(trans);
47ab2a6c 11114next:
d5f2e33b 11115 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11116 btrfs_put_block_group(block_group);
11117 spin_lock(&fs_info->unused_bgs_lock);
11118 }
11119 spin_unlock(&fs_info->unused_bgs_lock);
11120}
11121
c59021f8 11122int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11123{
1aba86d6 11124 struct btrfs_super_block *disk_super;
11125 u64 features;
11126 u64 flags;
11127 int mixed = 0;
c59021f8 11128 int ret;
11129
6c41761f 11130 disk_super = fs_info->super_copy;
1aba86d6 11131 if (!btrfs_super_root(disk_super))
0dc924c5 11132 return -EINVAL;
c59021f8 11133
1aba86d6 11134 features = btrfs_super_incompat_flags(disk_super);
11135 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11136 mixed = 1;
c59021f8 11137
1aba86d6 11138 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11139 ret = create_space_info(fs_info, flags);
c59021f8 11140 if (ret)
1aba86d6 11141 goto out;
c59021f8 11142
1aba86d6 11143 if (mixed) {
11144 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11145 ret = create_space_info(fs_info, flags);
1aba86d6 11146 } else {
11147 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11148 ret = create_space_info(fs_info, flags);
1aba86d6 11149 if (ret)
11150 goto out;
11151
11152 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11153 ret = create_space_info(fs_info, flags);
1aba86d6 11154 }
11155out:
c59021f8 11156 return ret;
11157}
11158
2ff7e61e
JM
11159int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11160 u64 start, u64 end)
acce952b 11161{
2ff7e61e 11162 return unpin_extent_range(fs_info, start, end, false);
acce952b 11163}
11164
499f377f
JM
11165/*
11166 * It used to be that old block groups would be left around forever.
11167 * Iterating over them would be enough to trim unused space. Since we
11168 * now automatically remove them, we also need to iterate over unallocated
11169 * space.
11170 *
11171 * We don't want a transaction for this since the discard may take a
11172 * substantial amount of time. We don't require that a transaction be
11173 * running, but we do need to take a running transaction into account
fee7acc3
JM
11174 * to ensure that we're not discarding chunks that were released or
11175 * allocated in the current transaction.
499f377f
JM
11176 *
11177 * Holding the chunks lock will prevent other threads from allocating
11178 * or releasing chunks, but it won't prevent a running transaction
11179 * from committing and releasing the memory that the pending chunks
11180 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11181 * transaction and hold the commit root sem. We only need to hold
11182 * it while performing the free space search since we have already
11183 * held back allocations.
499f377f
JM
11184 */
11185static int btrfs_trim_free_extents(struct btrfs_device *device,
c2d1b3aa 11186 struct fstrim_range *range, u64 *trimmed)
499f377f 11187{
929be17a 11188 u64 start, len = 0, end = 0;
499f377f
JM
11189 int ret;
11190
929be17a 11191 start = max_t(u64, range->start, SZ_1M);
499f377f
JM
11192 *trimmed = 0;
11193
0be88e36
JM
11194 /* Discard not supported = nothing to do. */
11195 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11196 return 0;
11197
52042d8e 11198 /* Not writable = nothing to do. */
ebbede42 11199 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11200 return 0;
11201
11202 /* No free space = nothing to do. */
11203 if (device->total_bytes <= device->bytes_used)
11204 return 0;
11205
11206 ret = 0;
11207
11208 while (1) {
fb456252 11209 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11210 u64 bytes;
11211
11212 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11213 if (ret)
fee7acc3 11214 break;
499f377f 11215
929be17a
NB
11216 find_first_clear_extent_bit(&device->alloc_state, start,
11217 &start, &end,
11218 CHUNK_TRIMMED | CHUNK_ALLOCATED);
11219 /*
11220 * If find_first_clear_extent_bit find a range that spans the
11221 * end of the device it will set end to -1, in this case it's up
11222 * to the caller to trim the value to the size of the device.
11223 */
11224 end = min(end, device->total_bytes - 1);
11225 len = end - start + 1;
499f377f 11226
929be17a
NB
11227 /* We didn't find any extents */
11228 if (!len) {
499f377f 11229 mutex_unlock(&fs_info->chunk_mutex);
929be17a 11230 ret = 0;
499f377f
JM
11231 break;
11232 }
11233
929be17a
NB
11234 /* Keep going until we satisfy minlen or reach end of space */
11235 if (len < range->minlen) {
11236 mutex_unlock(&fs_info->chunk_mutex);
11237 start += len;
11238 continue;
11239 }
11240
c2d1b3aa
NB
11241 /* If we are out of the passed range break */
11242 if (start > range->start + range->len - 1) {
11243 mutex_unlock(&fs_info->chunk_mutex);
c2d1b3aa
NB
11244 break;
11245 }
11246
11247 start = max(range->start, start);
11248 len = min(range->len, len);
11249
929be17a
NB
11250 ret = btrfs_issue_discard(device->bdev, start, len,
11251 &bytes);
11252 if (!ret)
11253 set_extent_bits(&device->alloc_state, start,
11254 start + bytes - 1,
11255 CHUNK_TRIMMED);
499f377f
JM
11256 mutex_unlock(&fs_info->chunk_mutex);
11257
11258 if (ret)
11259 break;
11260
11261 start += len;
11262 *trimmed += bytes;
11263
c2d1b3aa
NB
11264 /* We've trimmed enough */
11265 if (*trimmed >= range->len)
11266 break;
11267
499f377f
JM
11268 if (fatal_signal_pending(current)) {
11269 ret = -ERESTARTSYS;
11270 break;
11271 }
11272
11273 cond_resched();
11274 }
11275
11276 return ret;
11277}
11278
93bba24d
QW
11279/*
11280 * Trim the whole filesystem by:
11281 * 1) trimming the free space in each block group
11282 * 2) trimming the unallocated space on each device
11283 *
11284 * This will also continue trimming even if a block group or device encounters
11285 * an error. The return value will be the last error, or 0 if nothing bad
11286 * happens.
11287 */
2ff7e61e 11288int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11289{
f7039b1d 11290 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11291 struct btrfs_device *device;
11292 struct list_head *devices;
f7039b1d
LD
11293 u64 group_trimmed;
11294 u64 start;
11295 u64 end;
11296 u64 trimmed = 0;
93bba24d
QW
11297 u64 bg_failed = 0;
11298 u64 dev_failed = 0;
11299 int bg_ret = 0;
11300 int dev_ret = 0;
f7039b1d
LD
11301 int ret = 0;
11302
6ba9fc8e 11303 cache = btrfs_lookup_first_block_group(fs_info, range->start);
f87b7eb8 11304 for (; cache; cache = next_block_group(cache)) {
f7039b1d
LD
11305 if (cache->key.objectid >= (range->start + range->len)) {
11306 btrfs_put_block_group(cache);
11307 break;
11308 }
11309
11310 start = max(range->start, cache->key.objectid);
11311 end = min(range->start + range->len,
11312 cache->key.objectid + cache->key.offset);
11313
11314 if (end - start >= range->minlen) {
11315 if (!block_group_cache_done(cache)) {
f6373bf3 11316 ret = cache_block_group(cache, 0);
1be41b78 11317 if (ret) {
93bba24d
QW
11318 bg_failed++;
11319 bg_ret = ret;
11320 continue;
1be41b78
JB
11321 }
11322 ret = wait_block_group_cache_done(cache);
11323 if (ret) {
93bba24d
QW
11324 bg_failed++;
11325 bg_ret = ret;
11326 continue;
1be41b78 11327 }
f7039b1d
LD
11328 }
11329 ret = btrfs_trim_block_group(cache,
11330 &group_trimmed,
11331 start,
11332 end,
11333 range->minlen);
11334
11335 trimmed += group_trimmed;
11336 if (ret) {
93bba24d
QW
11337 bg_failed++;
11338 bg_ret = ret;
11339 continue;
f7039b1d
LD
11340 }
11341 }
f7039b1d
LD
11342 }
11343
93bba24d
QW
11344 if (bg_failed)
11345 btrfs_warn(fs_info,
11346 "failed to trim %llu block group(s), last error %d",
11347 bg_failed, bg_ret);
0b246afa 11348 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11349 devices = &fs_info->fs_devices->devices;
11350 list_for_each_entry(device, devices, dev_list) {
c2d1b3aa 11351 ret = btrfs_trim_free_extents(device, range, &group_trimmed);
93bba24d
QW
11352 if (ret) {
11353 dev_failed++;
11354 dev_ret = ret;
499f377f 11355 break;
93bba24d 11356 }
499f377f
JM
11357
11358 trimmed += group_trimmed;
11359 }
0b246afa 11360 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11361
93bba24d
QW
11362 if (dev_failed)
11363 btrfs_warn(fs_info,
11364 "failed to trim %llu device(s), last error %d",
11365 dev_failed, dev_ret);
f7039b1d 11366 range->len = trimmed;
93bba24d
QW
11367 if (bg_ret)
11368 return bg_ret;
11369 return dev_ret;
f7039b1d 11370}
8257b2dc
MX
11371
11372/*
ea14b57f 11373 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11374 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11375 * data into the page cache through nocow before the subvolume is snapshoted,
11376 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11377 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11378 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11379 */
ea14b57f 11380void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11381{
11382 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11383 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11384}
11385
ea14b57f 11386int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11387{
ea14b57f 11388 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11389 return 0;
11390
11391 percpu_counter_inc(&root->subv_writers->counter);
11392 /*
11393 * Make sure counter is updated before we check for snapshot creation.
11394 */
11395 smp_mb();
ea14b57f
DS
11396 if (atomic_read(&root->will_be_snapshotted)) {
11397 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11398 return 0;
11399 }
11400 return 1;
11401}
0bc19f90 11402
0bc19f90
ZL
11403void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11404{
11405 while (true) {
11406 int ret;
11407
ea14b57f 11408 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11409 if (ret)
11410 break;
4625956a
PZ
11411 wait_var_event(&root->will_be_snapshotted,
11412 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11413 }
11414}
031f24da
QW
11415
11416void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11417{
11418 struct btrfs_fs_info *fs_info = bg->fs_info;
11419
11420 spin_lock(&fs_info->unused_bgs_lock);
11421 if (list_empty(&bg->bg_list)) {
11422 btrfs_get_block_group(bg);
11423 trace_btrfs_add_unused_block_group(bg);
11424 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11425 }
11426 spin_unlock(&fs_info->unused_bgs_lock);
11427}